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PREFACE

Problems related to vibrations of soils and foundations have required
increased attention during the past two decades, and notable advances have
been made during the past ten years. Recent contributions include new
theoretical procedures for calculating dynamic responses of foundations,
improved field and laboratory methods for determining dynamic behavior
of soils, and field measurements to evaluate the performance of the prototype.
It is the purpose of this text to describe the state-of-the-art as it relates to
procedures for analysis, design, and measurements of the response of
foundations to dynamic loadings, and the transmission of vibrations through
soils. The primary emphasis is directed towards vibrations of the mag-
nitudes generated by machinery, but the principles and many of the resuits
can be adapted to the dynamic conditions resulting from earthquakes or
blast loadings.

The book has developed from notes prepared for a graduate course in

" Soil Dynamics which has been taught by the authors, in succession, since

1961. It has been assumed that the reader has an adequate background in
statics and elementary dynamics but probably has not completed a formal
course in vibration theory. Chapter 2 reviews the elements of vibrations
needed to understand the material presented in fater chapters. The course
notes, essentially in the present form, were prepared for a two-week short
course during the summer of 1968 which was attended by practicing engineers
and professors. It has been found that the contents of this book can be
followed readily by practicing engineers and that this information may
provide the basis for a first year graduate course.

Throughout the text notes are included to point out topics which need
further investigation, both analytical and experimental. In particular, the
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need for field evaluation of the behavior of prototype installations is empha-
sized. It is only through a feedback from prototype measurements to design
procedures that we are able to gain confidence in and improve upon present
design methods. Chapter 9 on Instrumentation is included to familiarize
the reader with the principles and types of vibration measuring equipment
which may be used for obtaining field and laboratory data on vibrations of
soils and foundations,

The authors wish to acknowledge the stimulation and assistance offered
by several senior advisors and by many colleagues. The number of times a
name appears in the reference list indicates some measure of each individual’s
contribution to our background in the subject of vibrations of soils and
foundations. The late Professor K. Terzaghi directed the attention of the
senior author toward soil dynamics in 1951 and subsequently provided many
forms of assistance and encouragement. Several of the recent improvements
in the analyses of soil dynamics problems are based on methods developed by
Professor N. M. Newmark, and his stimulation and interest have contributed
to our continued efforts in this field. Discussions with Professor R. V.
Whitman over the past decade have been especially significant in our selection
and evaluation of topics for continued study. Many junior colleagues,
particularly Dr. T. Y. Sung and Professors B. O, Hardin, J. Lysmer, and
V. P. Drnevich have contributed directly to the ideas and methods presented
in this text. Special thanks are extended to Mr. M. P. Blake for his careful
reading of the notes and for his valuable comments.

Finally, the authors wish to acknowledge the generous assistance
provided by the Department of Civil Engineering, The University of Michigan,
to the development and preparation of this text. We have appreciated the
careful typing of the manuscript which was done by Miss Pauline Bentley and
Miss Reta Teachout.

F. E. RICHART, Jr,
J. R. HaLL, Jr.
R. D. WooDps

Ann Arbor Michigan
January 1969

CONTENTS

! Introduction |

1.1
1.2

1.3
1.4

Design Criteria

Relations Between Applied Loads and Quantities which
Govern Criteria

Evaluation of Soil Properties

Design Procedures

2 Vibration of Elementary Systems 5

2.1
22
23
2.4

25
2.6

Vibratory Motion

Vector Representation of Harmonic Motion
Single-Degree-of-Freedom Systems

Phase-Plane Analysis of Single-Degree-of-Freedom
Systems

Systems with Two Degrees of Freedom

Natural Frequencies of Continuous Systems

Wave Propagation in an Elastic,

Homogeneous, Isotropic Medium 60

3.1
32

i3

Waves in a Bounded Elastic Medium

Waves in an Infinite, Homogenecous, Isotropic Elastic
Medium

Waves in an Elastic Half-Space

v

LS L

10
11

32

43
37

60

75
80

vii



viii

4

CONTENTS

Elastic Waves In Layered Systems 23

4.1

Distribution of Wave Energy at Boundaries

4.2 Elements of Secismic Methods

4.3

Steady-State Vibration Techniques

Propagation of Waves in Saturated Media 121

5.1
5.2
53
34
5.5

Introduction

Compression Waves in Ideal Fluids

Wave Propagation in Porous Saturated Solids
Effect of Water Table on Wave Propagation in Soils
Summary

Behavior of Dynamically Loaded Soils 140

6.1
6.2
6.3

6.4

Introduction

Behavior of Elastic Spheres in Contact

Behavior of Soils Under Small-Amplitude Vibratory
Loading

Behavior of Soil Under Large-Amplitude Loading

Theories for Vibrations of Foundations on

Elastic Media 191

7.1 Introduction

7.2 Lamb (1904) and the Dynamic Boussinesq Problem

7.3 Vertical Oscillation of Footings Resting on The Surface
of The Elastic Half-Space

7.4 Torsional Oscillation of Circular Footings on the Elastic
Half-Space

7.5 Rocking Oscillation of Footings Resting on the Elastic
Half-Space

7.6 Sliding Oscillation of a Circular Disk Resting on the
Elastic Half-Space

7.7 Geometrical Damping Associated with Vibrations of
Rigid Circular Footings on the Elastic Half-Space

7.8 Coupled Rocking and Sliding of the Rigid Circular
Footing on the Elastic Half-Space

7.9 Oscillation of the Rigid Circular Footing Supported by

an Elastic Layer

7.10 Vibrations of Rigid Foundations Supported by Piles or

Caissons

93
100
11

121
123
132
136
139

140
141

151
170

191
192

194

213

216

221

224

227

230

235

g Isolation Of Foundations

8.1 Isolation by Location
8.2 lsolation by Barriers

9 Instrumentation for Laboratory and Field
Measurements

9.1 Basic Electrical Elements

9.2 Instruments for Electrical Measurements

9.3 Vibration Transducers and Their Calibration
9.4 Cables and Connectors

9.5 Vibration Measurements for Field Tests

9.6 The Resonant-Column Test

10 Design Procedures for Dynamically Loaded
Foundations

10.1 Intreduction
10.2 Design Criteria
10.3 Dynamic Loads

CONTENTS

244

263

308

104 Brief Review of Methods for Analyzing Dynamic

Response of Machine Foundations
10.5 Lumped-Parameter Vibrating Systems

10.6 Analysis and Design for Vertical Vibrations of

Foundations

10.7 Analysis and Design for Rocking Vibrations of

Foundations
10.8 Conclusions

. Appendix
References

Index

381
387
403

244
247

264
269
275
289
292
300

308
309
322

336
345

353

369
379

ix



SYMBOLS

In selecting the symbols used in this text, an attempt was made to con-
form to the List of Recommended Symbols for Soil Mechanics, adopted in
Paris (1961) by the International Society of Soil Mechanics and Foundation
Engineering and “Nomenclature for Soil Mechanics,” Journal of the Soil
Mechanics and Foundations Division, Proceedings, American Society of Civil
Engineers, Vol. 88, No. SM 3 (June 1962), Paper No. 3183. However, in a
few cases symbols were adopted to conform to usage in other disciplines or
to avoid confusion. Whenever the same symbol is used to represent two
items-for example, e for void ratio and e as the base of natural logarithms—
the distinction should be clear from the text.

Symbols are defined where they first appear in the text; those which occur
several times are listed below. When a symbol represents a quantity having
dimensions, the dimensions most commonly used are listed along with the
symbol. If no dimension is indicated, the symbol represents a pure number,

A (ft) = displacement amplitude
A {ft?) = area
A, (ft) = amplitude of horizontal oscillation
A, (ft) = amplitude of vertical vibration
Ag (rad.) = amplitude of angular rotation about vertical axis of symmetry
A4, (rad.) — amplitude of angular rotation about a horizontal axis
XI



Xii  SYMBOLS

dy

a

Qom
B (bjft?)
B

B,
B,

Bg

C;
c (ft)

¢ (Ib-secfin,)
¢, (Ib-secfin,)
¢, (Ib-secfin.)

¢, (Ib-secfin.)

¢,, (Ib-sec/rad)

¢ (Ibfft?)
D

D

T

= dimensionless frequency, defined by Eq. (7-2)

= dimensionless frequency factor for a single-degree-of-freedom
system, defined by Eq. (2-72)

= dimensionless frequency at maximum amplitude of vibration

= bulk modulus, or modulus of compressibility

= dimensiontess mass factor for a single-degree-of-freedom
system, defined by Eq. (2-73)

= mass ratio for horizontal oscillation of rigid circular footing,
defined by Eq. (7-56)

= mass ratio for vertical vibration of rigid circular footing on
elastic half-space, defined by Eq. (7-23)

= mass ratio for torsional oscillation of rigid circular footing
about a vertical axis, defined by Eq. (7-38)

= mass ratio for rocking of rigid circutar footing about a
hoerizontal axis through base of footing, defined by Eq. (7-44)

= dimensionless mass ratio, defined by Eq. (7-3)
= arbitrary constant

= half-length of the longer side of a rectangular foundation
(see Fig, 7-12)

= viscous-damping coefficient

= critical damping, defined by Eq. (2-31)

= damping constant for horizontal oscillation
= damping constant for vertical vibration

= damping constant for rocking of footing about horizontal
axis

= effective cohesion intercept
= damping ratio, defined by Eq. (2-32)
= relative density of cohesionless soils, defined by Eq. (6-37)

= damping ratio for horizontal oscillation, defined by Eg.
(7-63) for rigid circular footing

= damping ratio for vertical oscillation, defined by Eq. (7-62)
for rigid circular footing

= damping ratio for torsional oscillation, defined by Eq. (7-65)
for rigid circular footing

D,

d (ft)
E (Ib/in?)

Fi, Fy

f (cyclesfsec)
[ (cycles/sec)
fa (cycles/sec)
S (cycles/sec)
frur (cycles/sec)
[ (cycles/sec)

fls f2
G (Ib/in.%)

G,

£ (ftfsec?)

H (ft)

I (ft-1b-sec?)
Iy (ft-1b-sec®)

I, (ft-1b-sec?)

K,

k (Ibfin.)
k, (Ibfin.}

SYMBOLS  Xili

= damping ratio for rocking of rigid circular footing about
horizontal axis, defined by Eq. (7-53) —

= half-width of rectangular foundation (see Fig. 7-12)
= modulus of linear deformation, Young’s modulus

— void ratio (volume of voids per unit volume of solid con-
stituents); also, base of natural logarithms

= eccentricity, the radial distance from the center of gravity of
a rotating mass to the center of rotation

= Lysmer’s displacement function, defined by Eq. (7-21)

~ components of Lysmer’s displacement function F

= frequency

= beat frequency

= damped natural frequency

= resonant frequency for constant-force-amplitude excitation
= resonant frequency for rotating-mass-type excitation

= undamped natural frequency

= components of Reissner’s displacement function

= modulus of shear deformation or shear modulus

= specific gravity, ratio of unit weight of a material to the unit
weight of water

= acceleration of gravity (32.17 ft/sec?)
= thickness of layer of soil
= mass polar moment of inertia

— mass moment of inertia of footing in rotation about a
vertical axis

= mass moment of inertia of footing in rotation about hori-
zontal axis

S

= coefficient of earth pressure at rest (ratio between normal
stress on a vertical section and normal stress on a horizontal
section at a given point in a mass of soil)

= spring constant

= equivalent spring constant
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kqs (Ibfin.)

k, (Ibfin.)

kes (in.-Ibjrad)

k, (in-lbfrad)
ks (in.-tbjrad)

k' (1b/ft3)
L (ft)
Ly (ft)

£ (ft)

m (Ib-sec?/ft)
m, (lb-sec?/ft)
my (Ib-sec¥/ft)
N

n

P (Ib)
£, (Ib)
p (bjft?)
0 (b)
0, (Ib)

= spring constant relating - horizontal displacement to applied
horizontal force @,, defined by Eq. (7-60) for rigid circular
footing

= spring constant relating vertical displacement z to applied
force Q,; spring constant for rigid circular footing on
elastic half-space, defined by Eq. (7-26)

= spring constant relating angular rotation about vertical axis
to applied static torque, defined by Eq. (7-37)

= spring constant for rotation

= spring constant relating angular rotation about horizontal
axis to applied static moment, defined by Eq. (7-50)

= modulus of subgrade reaction

= wave length

= wave length of Rayleigh wave

= length of beam or rod

= amplitude magnification factor

= amplitude magnification factor, defined by Eq. (7-25)
= amplitude magnification factor, defined by Eq. (7-58)
= amplitude magnification factor, defined by Eq. (7-39)
= amplitude magnification factor, defined by Eq. (7-41)
= amplitude magnification factor, defined by Eq. (7-45)
= amplitude magnification factor, defined by Eq. (7-47)
= mass (m = Wjg)

== total eccentric mass in rotating-mass oscillator

= mass of each eccentric weight in multimass oscillator

= wave number (N = 2x/L}

= porosity, ratio between total volume of voids and total
volume of soil

= force
= amplitude of periodic force acting on elastic body

= fluid pressure

= time-dependent external force acting on elastic system

= amplitude of external force acting on elastic system

R(f)
r (ft)
re (ft)
7 (f)
S

T {sec)
T (ft-1b)
T, (sec)
T, (sec)
To (ft-1b)
T, (ft-1b)
1 (sec)
U(z)
u (ft)
4 (ftfsec)
u (1bjft?)
V (ft%)
V. (ft%)
Ve (ft9)
v {ft/sec)
v, (ft/sec)
ver (ftfsec)
vp (ftisec)
v (ft/sec)
vg (ftfsec)
v, (ft/sec)
& (ftfsec)
W (1b)
Wi(z)
w (ft)

SYMBOLS

= radius
= radial distance from origin of coordinates
= radius of circular footing
= radius of gyration
= degree of saturation
= period

= torque

= beat period

= undamped natural period

= torque about vertical axis

= torque about horizontal axis

= time

= spatial variation of displacement u
= displacement in x-direction

= velocity in x-direction

= pore pressure in soils

= total volume

= total volume of solid particles

= total volume of voids

= velocity of wave propagation

= velocity of sound waves in air

= velocity of longitudinal or rod wave
= velocity of dilatation wave or primary wave {P-wave)
= velocity of Rayleigh wave (R-wave)
= velocity of shear wave {S-wave)

= velocity of sound wave in water

= apparent velocity

= weight

= spatial variation of displacerment w

= displacement in z-direction

XY
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x (ft)
x, (ft}

x, (ft)

x {f1)

z (ft)
z, (ft}

z, (ft)

2 (ftfsec)
Z (ftfsec?)
o (1/ft)

x

¥ (lb/ft3)

va (Ib/Ft3)
¥s (Ib/ft?)
¥ (Ibfft%)
¥ (Ibfft3)

= horizontal distance

== crossover distance, distance to point at which direct wave
and refracted wave arrive at the same time in a refraction
survey

= horizontal displacement caused by static force Q,, defined
by Eq. (7-59) for rigid circular footing

= horizontal moment arm of unbalanced weights from center
of rotation in rotating-mass oscillator

= displacement in the vertical direction, positive downward

= vertical displacement at center of circular area of loading on
surface of elastic half-space

= vertical displacement caused by static load @,

velocity in the vertical direction
= acceleration in the vertical direction
= coefficient of attenuation, defined by Eq. (6-27)

= parameter relating shear-wave velocity to compression-wave

velocity:
G 1 — 2
TN TG Vito

= unit weight of soil

= umnit dry weight of soil

= unit weight of solid particles

= unit weight of water (62.4 1b/f(%)
.= unit weight of submerged soil

= shear strain

= average maximum shear-strain amplitude developed in
torsion of hollow cylindrical soil sample

= logarithmic decrement, defined by Eq. (2-39)
= loss angle in a viscoelastic solid, defined by Eq. (6-30)
= linear strain in the /-direction

= cubic dilatation or volumetric strain of elastic body
(€:Ez+€y+€z)

I
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= cubic dilatation or volumetric strain in a fluid
= angle
= angular rotation about axis of symmetry

= angular rotation of rigid circular footing about a vertical
axis caused by static torque

A (and G) (Ib/in.2) = Lamé’s constants:

# tb-sec/in.?
¥

p (Ib-sec?/fth)
o, (Ib/ft2)

&, (1b/ft?)

T (IbJit%)
7, (Ibfft2)
@

' (deg)
@

i

Ys

by

w (radfsec)

wy (rad/fsec)
@, (radfsec)
w, (rad/sec)
w,, (radfsec)

V‘Z

; G
Tl — 2y

= shear coefficient of viscosity

= Poisson’s ratio

= 3.14159. ..

= mass density (p = y/g)

== total normal stress in the /-direction

= average effective normal stress or effective octahedral normal
stress

= shear stress

= octahedral shear stress, defined by Eq. (6-22)
= potential function

= effective angle of internal friction in soils

= phase angle

= angular rotation about a horizontal axis

= angular rotation of footing about horizontal axis caused by
static moment

= potential function

= circular frequency

= damped natural circular frequency

= undamped natural circular frequency

= natural frequency for uncoupled translation
= natural frequency for uncoupled rotation

= Laplacian operator (V® = #%/3x® 4 92/3)® + 8%/8z2 for
Cartesian coordinates)
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Notes about subscripts:

b -4 refer to Cartesian coordinates

r, 0,z refer to cylindrical coordinates

i,2,3 refer to directions of principal stresses or strains
ik represent general coordinate directions
exp used for base of natural logarithms

INTRODUCTION

The problems associated with the design of foundations to resist dy-
namic loadings, either from supported machinery or from external sources,
still require special solutions dictated by local soil conditions and environ-
ment. The foundation must first satisfy the criteria for static loadings, then
it must be satisfactory for resisting the dynamic conditions.

Designing to resist dynamic loading conditions requires answering the
following questions: (1) What should be considered ““failure’” of the chosen
design function and what are the numerical limits on the failure criteria? (2)
What are the relations between the applied loads and the quantities which are
significant in the failure criteria? (3) How do we identify and evaluate these
significant quantities? (4) Finally, after we have evaluated these significant
quantities, what sort of a factor of safety (or statistical estimate of the
reliability in evalvating these quantities) do we apply in the design process?

The basic reason for preparing this text is to provide recent information
which assists in answering questions 1 through 4 in the design process. This
information is intended to supplement the considerable amount of valuable
information already available in such notable books on the subject as those
by Rausch (1943), Lorenz (1960), Barkan (1962), Major (1962), and Harris
and Crede (1961).*

* Complete references are listed alphabetically in the References sections at the end
of the book.



2 INTRODUCTION CHAP. |

I.1 Design Criteria

Establishing the design criteria is probably the most important step in
the design process. This defines the problem to be solved and is the gage by
which we judge our computed selution and, if possible, our measurements
of the performance of the prototype. For dynamically loaded foundations
the criteria are generally described in terms of limiting values of acceleration,
velocity, or displacement under the operating conditions. Limiting values of
these criteria are determined by what is considered to be a ““failure” of the
design function. Section 10.2 describes several limits of these design criteria
for different requirements. It is significant to note, for example, that a
vibration amplitude of 0.001 in. at a frequency of 1000 cycles/min would
represent a satisfactory value for the displacement-frequency criterion if the
design purpose was ‘“‘to preveit serious damage to machinery,” but would be
entirely inadequate if the design purpose was “not to be noticeable to per-
sons” (see Fig. 10-1). Consequently, it is essential that “ground rules™ be
established at the start of the design study.

1.2 Relations Between Applied Loads and Quantities
which Govern Criteria

The first part of this topic ts sometimes difficult to evaluate numerically.
Dynamic loadings generated by the natural forces of earthquakes, wind, or
water waves, or manmade forces from blasting, traffic, construction, or
neighboring machinery may be transmitted to the foundation through a
structural system or through the soil. In most of these cases, it is necessary
to obtain field measurements under conditions similar to those for the pro-
posed design, and to assume that these loadings will be encountered by the
prototype. Consequently, it is necessary to have information on the trans-
mission and interception of energy transmitted through the soil (Chaps.
3, 4, and 8) and some knowledge of methods for evaluating forces and
motions in the field (Chap. 9). A discussion of the forces developed by
certain simple machines is included in Chap. 10.

The link between the applied loads and the failure criteria is made
analytically. Because the limiting value of the failure criteria for vibrating

machine foundations usually involves motions of a few thousandths of an

inch, the failure mechanism is in the range of elastic deformations of the
supporting soil. Consequently, solutions based on a consideration of an
elastic supporting system often provide satisfactory relations between the
applied loads and dynamic response of foundations. Chapter 7 deals with a
number of solutions for the response of foundations, primarily based on the
theory of elasticity. These elasticity solutions require an evaluation of the

sEC. 1.4 DESIGN PROCEDURES 3

Poisson’s ratio and shear modulus for the elastic material; in terms of our
design process, this means that the significant quantities in questions 2 and
3 are the shear modulus and Poisson’s ratio for the soil.

1.3 Evaluation of Soil Properties

The process of obtaining representative values for the critical soil
properties is probably the most difficult part of the design study. Samples
must be obtained from the proposed construction site and tested under con-
ditions anticipated to represent the operating environment. Because the soil
properties which influence the dynamic response of foundations are estab-
lished for a different order of magnitude of deformations from those in-
volved in static soil properties, a new set of laboratory- and field-testing
procedures have been developed, primarily during the past decade. Chapter
6 includes a discussion of the dynamic soil properties needed for design
purposes and some information on the influence of testing conditions on these
properties. Further discussion of the test equipment is found in Chap. 9.

1.4 Design Procedures

There are several methods by which the design criteria may be satisfied
for a particular installation. A few of these are discussed in Chap. 10, but
particular emphasis is placed upon the lumped-parameter method. There is
already a wealth of literature available concerning the solutions for lumped-
parameter systems, but it has always been a problem to determine repre-
sentative values for the lumped mass, spring, and dashpot. For dynamically
loaded foundations supported directly on soils it has been found that the
theory of foundations supported by the elastic half-space provides the key for
determining satisfactory values for the damping and spring constant for a
given foundation-soil system. The lumped mass represents the weight of the
foundation and supported equipment. Examples are included in Chap. 10
to illustrate the application of the lumped-parameter method using damping
and spring constants established from the elastic-half-space theory.

The consideration of so0il as an elastic half-space has further advantages
in application of solutions from geophysics to problems of wave propagation
in soils and of isolation of foundations—namely, it permits extensions of the
theoretical studies to problems of the refraction and diffraction of waves in
soils by geometrical discontinuities.

The contents of this book are directed primarily toward the problems
of analysis and design of machine foundations, including consideration of
the wave energy transmitted through the supporting soil.



4 INTRODUCTION CHAP. 1

Information pertaining to these problems has been collected from the
fields of seismology, theory of elasticity, soil dynamics, instrumentation, and
machine design. Each of these fields has its special set of accepted termi-
nology and symbols and these have been followed as closely as possible. It is
recognized that the reader may have some difficulty while he becomes familiar
with the terminology in a field outside his specialty. Instead of a cumbersome
glossary of terms, a detailed index has been provided to direct the reader to
the pape where each term is defined. A list of symbols is included at the front
of the book for convenient reference.

VIBRATION OF
ELEMENTARY SYSTEMS

To predict or analyze the response of a vibratory system, in many cases
it is satisfactory to reduce it to an idealized system of lumped parameters.
The simplest system is the classical single-degree-of-freedom system with
viscous damping consisting of a mass, spring, and dashpot. Since this system
is easily formulated mathematically, the solution is found in all textbooks
on vibrations as well as in mathematical texts on differential equations. Yet,
while such a system appears to be a gross simplification of any real system,
there are many instances in which it provides a very satisfactory model with
which to make a dynamic analysis, even though the real system may not
physically resemble the mathematical model. For example, it will be shown
in Chap. 7 that a footing resting on an elastic medium can be represented

" mathematically by clements associated with a single-degree-of-freedom system

where the values of the physical constants are determined from the dimensions
and properties of the foundation and elastic medium, Once a system has been
reduced to a model, the next step is the analysis, which may be analytical or
graphical depending upon the type of problem. In some cases nonlinearities
must be included in the model in order to approximate the real system more
closely. Although such conditions usually result in camplicated mathematical
expressions, graphical solutions may often be obtained readily.

For some systems a single-degree-of-freedom model will not represent
accurately the dynamic response. In these cases a model having two or more
degrees of freedom may be required. The analysis then becomes considerably
more complicated and the use of a digital or analog computer becomes

5




6 VIBRATION OF ELEMENTARY SYSTEMS CHAP. 2

necessary. For continuous systems which cannot be represented by lumped
components of springs, masses, and dashpots, hand calculations are usually
limited to the determination of the natural frequency of the system or of its
response to steady vibration.

The following sections present the analytical, graphical, and numerical
methods that form the basic tools required for vibration design and for
analysis of foundations and basic mechanical and structural components.

2.1 Vibratory Motion

Harmonic or sinusoidal motion is the simplest form of vibratory motion
and may be described mathematically by the equation

z = Asin (ot — ¢) (2-1)

which is plotted as a function of time in Fig. 2-1. The quantity 4 represents
the displacement amplitude from the mean position, sometimes referred to as
single amplitude. The distance 24 represents the peak-to-peak—displacement
amplitude, sometimes referred to as double amplitude, and is the quantity
most often measured from vibration records. The circular frequency w
defines the rate of oscillation in terms of radians per unit time, 2 rad being
equal to one complete cycle of oscillation, The frequency of oscillation in
terms of cycles per unit time is given by

= (2-2)

(In some literature the units of cycles per second are called Hertz, abbrevi-
ated Hz.) The time required for the motion to begin repeating itself is called
the period of vibration and is given by

2

T=-== (2-3)
oy

1
f

It can be seen from Fig. 2-1 that to define physically harmonic motion two -

independent quantities are required. The most commonly used parameters
are amplitude and frequency. In some instances a third quantity, the phase
angle @, is required to specify the time relationship between two quantities
having the same frequency when their peak values having like sign do not
occur simultaneously. In Eq. (2-1) the phase angle is a reference to the time
origin. More commonly, however, the phase angle will be a reference to

sec. 2.1 VIBRATORY MOTION 7
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Y

Figure 2-I. Quantities describing
harmonic motien.

another quantity having the same frequency. For example, at some reference
point in a harmonically vibrating system, the motion may be expressed by

, == A sin ot 2-4)

(=]

Motion at any other point in the system might be expressed by

z, = A, sin (wt — ¢,) (2-5)

withm = ¢ > —.

For positive values of ¢ the motion at point / reaches its peak within
one half-cycle after the peak motion occurs at point 1. The angle ¢ is then
called a phase fag. For negative values of ¢ the peak motion at i occurs
within one half-cycle ahead of the motion at 1 and ¢ is called a phase lead.

Obviously, all motion of vibrating bodies is not harmonic and, in fact,
harmonic motion is generally obtained only under controlled laboratory
conditions. In Fig. 2-2 three other types of motion are shown. Periodic
motion (Fig. 2-2a) is of the type such that the displacement-time relationship
repeats itself; whereas in random motion, as shown in Fig. 2-2b, the displace-
ment-time pattern never repeats. Figure 2-2¢ shows a fransient-type motion
associated with damped systemis where an impulsive-type disturbance has
been applied over a short time interval. After the impulse the vibrations

" decay until the system returns to a rest condition. Problems involving tran-

sient motion will be considered in a later section.

When two harmonic motions of slightly different frequency are super-
imposed, a nonharmonic motion occurs, as shown in Fig. 2-3, which appears
to be harmonic except for a gradual increase and decrease in amplitude.
For such a condition the expression for motion may be written as the sum of

two harmonic motions:
z = Ay sin (o7 — §,) -+ Ay sin {@yf — @) (2-6)

The dashed curve representing the envelope of the vibration amplitudes
oscillates at a frequency, called the bear frequency, which corresponds to the
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{a) Periodic.
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(b} Random.
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Figure 2.2, ,el‘iOdiC, random, and

{c) Tronsient, transient motion.

difference in the two source frequencies:

1 log — ey
=—=11 =2 B
S T, v (2-7)

The frequency of the combined oscillations is the average of the frequencies
of the two components and is given by

1 1 o, +w

The maximum and minimum amplitudes of motion are the sum and difference
respectively of the amplitudes of the two sources:

Zmax = Al + A2

Zynin = |A1 — Azl

Motion of the type described by Eq. (2-6) often occurs when vibrations
are caused by two machines designed to operate at the same speed. Unless
the drive systems of the two machines are synchronized, there will be a slight
difference in their operating speed, resulting in vibrations having the beat
frequency.

(2-9)

sec, 2.1 VIBRATORY MOTION 9

Figure 2-3. Motion containing a beat.

Up to now only displacement has been considered. In many problems
one must also consider the first and second derivatives and in some cases the
third derivative of displacement with respect to time. The quantities obtained
from the derivatives of Eq. (2-1) are given below.

Displacement = z = A sin (wt — ¢) (2-10a)
Velocity — j—f =t = wd cos (wt — ¢) (2-10b)
d’z
Acceleration = — = Z = —o®A4 sin (w0t — ¢) (2-10¢)
t
d*z
Jerk = — = —w®4 cos (vt — @) {2-10d)
I ?

The dot over the quantity indicates derivatives with respect to time. If a
comparison of the quantities obtained is made, it is seen that with each suc-

- ceeding derivative the amplitude of the quantity obtained is the amplitude

of the previous quantity multiplied by w.

Thus, for harmonic motion the displacement amplitude along with the
frequency is all that is needed to determine the amplitude of any of the other
quantities. In fact, if any two amplitudes or any one amplitude along with the
frequency are specified, then all other quantities are uniquely determined.
In many instances a vibration nomograph, as shown in Fig, 2-4, provides
a convenient conversion between the four quantities of frequency, displace-
ment amplitude, velocity amplitude, and acceleration amplitude. Tt will be
noted that in Fig. 2-4 the acceleration is expressed as a factor multiplied by g.
The symbol g is used throughout this book to represent the acceleration of

gravity, where
lg = 386 in.fsec? (2-11)
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Figure 2-4. Vibration nomograph for harmonic motion.

When using Fig. 2-4 one must be consistent and use either single or double
amplitude for all quantities. As an example, a peak displacement of 0.001 in.
at 25 cycles/sec produces a peak velocity of 0.16 in./sec and a peak accelera-
tion of 0.065 g. This point is shown in Fig. 2-4 by the circle and dashed line
at 25 cycles/sec.

For motion other than harmonic motion, simple relationships do not
exist between displacement, velocity, and acceleration, and the conversion
from one quantity to the other must be accomplished by differentiation or
integration.

2.2 Vector Representation of Harmonic Motion

In the solution of problems involving harmonic motion, a physical
feeling can be obtained by use of the concept of rotating vectors. For
problems of transient motion, however, the method fails, but graphical
methods can be used in these cases.

SEC, 2.3 SINGLE-DEGREE-OF-FREEDOM SYSTEMS [ |

Using displacement as the reference quantity and rewriting Eqs. (2-10)
in terms of sine functions, we obtain

z = A sin wt {2-12a) .
4
. m
Z = wA cos wt = wA sin (wt+2—) \J
(2-12b)
A sin wt wt
= —w’d sin ot = 04 sin (ot + 7)
(2-12¢)
?.
From Egs. (2-12) it can be observed
that velocity leads displacement by 90°

and acceleration leads displacement by
180°. If a vector of lengthA is rotated Figure 2-5. Vector representation of har-
counterclockwise about the origin, as monic motion.

shown in Fig. 2-5, its projection onto

the vertical axis would be equal to A sin wt, which is exactly the expression
for displacement given in Eq. (2-12a). It follows that velocity can be repre-
sented by the vertical projection of a vector of length wA positioned 90°
ahead of the displacement vector. Likewise, acceleration can be represented
by a vector of length w®4 located 180° ahead of the displacement vector. A
plot of all three of the above quantities is shown in Fig. 2-6.

L
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Figure 2-6. Vector representation of harmonic displacement, velocity and
acceleration.
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2.3 Single-Degree-of-Freedom Systems

We shall next consider the solutions to a vibratory system having only
one degree of freedom. In such a system, the position of all parts of the
system can be described by a single variable at any instant of time. If a system
requires more than a single variable to define its configuration, then it has
more than one degree of freedom. In general, the number of degrees of
freedom of a system is equal to the number of independent variables
required to define the position of ail parts of the system at any instant of
time.

Free Vibrations— Undamped

The system shown in Fig. 2-7a consists of a linear spring with a
spring constant k and a weight W having a mass m — Wig. The spring
constant k is defined as the change in force per unit change in length of the
spring. The weight is restricted to move in the vertical direction without
rotation. The solution to the problem is simplified by measuring the dis-
placement z from a position z, below the point at which the spring force is
equal to zero. The distance represents the static deflection and is given by

w

p (2-13)

Zy =

The differential equation of motion is obtained from Newton’s second law,
which states that the net unbalanced force on a constant-mass system is
equal to the mass of the system multiplied by its acceleration. If the system
shown in Fig. 2-7a is displaced a distance z from the rest position, the force

W+kz

E"‘—O —

(a} z=0 at Rest Position. (b}

Figure 2-7. Spring-mass system without damping.

sec. 2.3 SINGLE-DEGREE-OF-FREEDOM SYSTEMS 3

in the spring will be equal to (W + kz), as shown in Fig. 2-7b. Thus, from
Newton’s second law,

W (W + kz) = - 5 — mz (2-14)
g

which reduces to
mZ+ kz=20 (2-15)

The solution of this equation, found in any text on differential equations, is
z:Clsin\/ﬁt—ﬁ—CzcosJEt (2-16)
m m

where the arbitrary constants C; and C, are evaluated from the initial con-

ditions of the system. The quantity \/k/_m corresponds to the undamped
natural circular frequency of the system, designated as

wn—\/ﬁ rad/sec (2-17a)

m
and the undamped natural frequency is

fa= 1 \/ 3 cycles/sec (2-17b)

T 2avVm

The undamped natural frequency may be expressed in another form by sub-
stitution of W/g for m and z, for W/k. Thus,

fu= & \/ g @18)
27V z,
Table 2-1 gives values of f,, for values of z, within the practical range of most
problems.
Table 2-1
z’ n
(in.) (cycles/sec)
0.001 99.0
0.01 313
0.1 9.90
1.0 313
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From the above we can see that for free vibration of an undamped
single-degree-of-freedom system, the motion i§ ha?monic ar}d occurs at a
natural frequency f,. The amplitude of motion 1s deterr_mned from the
initial conditions, two of which must be specified. If dlsp]acerpent and
velocity are specified at ¢ = 0 and denoted as z, and z,, respectively, the
following expressions are obtained for €, and C, in Eq. (2-16):

C, = (2-19a)

e 1;\1.

n

C, -z, (2-19b)

Series and Parallel Springs

Although it is convenient to symbolize a single-degree-of-freedom system
as a single spring attached to a mass, in most I:eal systems there are usually
several springs required for stability. It is possible, however, to calcul-ate an
equivalent single spring to represent the assemblage of springs. In Fig. 2-8

kz

{a) Series Springs. {b) Parallel Springs.

Figure 2-8. Series and parallel spring systems.

two general types of spring arrangements are shown. For the seri'es arrange-
ment we have the condition of equal force in each spring. Two springs having
spring constants of k, and k, as in Fig. 2-8a will deflect statically when loaded

by a weight W by an amount

=X ¥ W(l n l) (2-20)
ki ke ki ks
Thus, the equivalent spring constant is
k,= w__1 (2-21)

SEC. 2.3 SINGLE-DEGREE-OF-FREEDOM SYSTEMS |5

For a system with # springs in series, the expression for an equivalent spring
is

1

k (2-22)

[

_1. _l_ l + R + l

ky  ky k,
The paralle! spring arrangement in Fig. 2-8b must satisfy the condition of
equal displacement in each spring and the sum of the forces in each spring
must equal the weight W:

W=PFP +P=zk + 2k, (2-23)

Thus, for parallel springs,

W
ke=—=k 1k (2-29)

g

In general, a system with # parallel springs has an equivalent spring constant
given by

ky=by +hy+ o+ k, (2-25)

Free Vibrations—With Damping

If an element is added to the spring-mass system in the above analysis
in order to dissipate energy, a system is obtained which more closely behaves
like 2 real system. The simplest mathematical clement is the viscous damper
or dashpot shown schematically in Fig. 2-9a. The force in the dashpot is
directly proportional to velocity Z and has a value computed from the viscous

.damping coefficient ¢ having units of Ib/(in./sec). Thus, the dashpot exerts

a force which acts to oppose the motion of the mass.

f\)|r
o
r|>

figure 2-9, Single-degree-of-free-
dom system with viscous damp-
ing. {a) {b)
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For free vibrations of the system in Fig. 2-9, the differential equation of
motion may be obtained by making use of Newton’s second law and measur-
ing displacement from the rest position. A positive displacement will pro-
duce a spring force acting on the mass in the negative direction (restoring
force) and a positive velocity will produce a damping force acting in the
negative direction, all shown in Fig. 2-9b. Summation of vertical forces
leads to

mZ+ciA+kz=20 (2-26)

for free vibrations. 1f we let z = exp (f1),
mpt e+~ k=20 (2-27)

which has the following solutions for §:

Br= " [e + Ve — dkm) (2-28a)
2m

Bo= 4 [—c — JE— akm) (2-28b)
2m

Three possible cases must be considered for the above equations, depending
upon whether the roots are real, complex, or equal.

CASE 1: ¢® > 4km. For this case the two roots of Eq. (2-27) are real as well
as negative and the solution to Eq. (2-26) is

z = Cyexp (f1) + Cyexp (831) (2-29)

Since /i, and §, are both negative, z will decrease exponentially without change in
sign, as shown on Fig. 2-10a. In this case no oscillations will occur and the system
is said to be overdamped.

CASE 2: ¢® = 4km. This condition is only of mathematical significance, since
the equality must be fulfilled in order for the roots of Eq. (2-27) to be equal. The
solution is

z = (Cy + Cy)exp (— 25’»;) (2-30)

This case is similar to the overdamped case except that it is possible for the sign
of z to change once as in Fig. 2-10b. The value of ¢ required to satisfy the above
condition is called the critical damping coefficient, c,, and Eq. (2-30) represents
the critically damped case. Thus,

e, = 2km (2-31)

SINGLE-DEGREE-OF-FREEDOM SYSTEMS |7

{a) -

z
\ 2 =4km
(b} -t

N—

sec. 2.3

z 1/\T‘_ c® <4 km
77 m____ L
Figure 2-10. Free vibrations of 2 () 2 ?\\]/—'; t
viscously damped system. (a) uf_v.__._ L
Overdamped. (b} Critically damp- L
ed. (c) Underdamped. L
The damping ratio, D, will be defined by
D== (2-32)
¢

CASE 3: ¢ < 4km. For systems with damping less than critical dampin_g,
the roots of Eq. (2-27) will be complex conjugates. By introducing the relationship
for ¢,, the roots f, and f, become

by = w,(—D + i1 — D% (2-33a)
By = wp(—D — i1 — D% (2-33b)

Substitution of Eqs. (2-33) into Eq. (2-29) and conversion to trigonometric form
" with the aid of Euler’s formula, exp i6 = cos 6 + i sin 6, gives

z = exp (—w, DIN(Cy sin w1 — D2 + Cyc0s w1 — DB (2-34)

where C, and C, are arbitrary constants. Equation (2-34) indicates that the motion
will be oscillatory and the decay in amplitude with time will be proportional to
€Xp (- w, D1}, as shown by the dashed curves in Fig, 2-10c. Examination of Eq.
(2-34) shows that the frequency of free vibrations is less than the undarped natural
cireular frequency and that as D — 1, the frequency approaches zero, The natural
circular frequency for damped oscillation in terms of the undamped natural circular
frequency is given by

wg = w1 — D? (2-33)
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and will be called the damped natural circular frequency. For systems with less than
40 per cent critical damping, the reduction in natural frequency is less than 10 per
cent. For greater values of damping, the reduction in natural frequency is more
pronounced.

Referring to Fig. 2-10, the amplitudes of two successive peaks of oscillation
are indicated by z, and z,. These will occur at times ¢, and #,, respectively, Evaluat-
ing Eq. (2-34) at ¢} and 1, we get

zy = exp (— w0, D) (Cy sin wyty, + C, cos wyh) (2-36a)
zy = eXp {— o, DEHWC, sin wyty + €4 COs wyty) (2-36h)

However, 1, = t; = 2#f/w,. Thus, wgty = wyt; + 27 and hence
sin mut, = sin (wyt; + 27) = sin wyty

Thus, the ratio of peak amplitudes is given by

Zy 27
— =cxp [—w, Dty — £)] = exp (cu,,D —) (2-371)
Zy By,

Substitution of Eq. (2-35) gives

Z ( 2nD ) 2-38)
—_— ex —ee -
Z3 P Vi— Dt

The lagarithmic decrement is defined as the natural logarithm of two successive
amplitudes of motion, or
I 272D

=z TI-D &3

It can be seen that one of the properties of viscous damping is that the decay of
vibrations is such that the amplitude of any two successive peaks is a constant ratio.
Thus the logarithmic decrement can be obtained from any two peak amplitudes
z;y and z, ,, from the relationship

1 z
1
4 =-~In
n I,

(2-40)

It is also important to note that if the peak amplitude of vibration is plotted on a
logarithmic scale against the cycle number on an arithmetic scale, the points will
fall on a straight line if the damping is of the viscous type as assumed in Eq. (2-26),

- -OF-FREEDOM SYSTEMs |9
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Forced Vibrations—Undamped

We shall next consider the response of the spring-mass system to the
application of a harmonic force @ of amplitude @,, as shown in Fig. 2-11a.
Using Newton’s second law, we find the differential equation of motion to be

mz + kz = Q,sin wt (2-41)

The solution to this equation includes the solution for free vibrations, Eq.
(2-16), along with the solution which satisfies the right-hand side o.f Eq.
(2-41). In order to obtain a physical feeling for the problem, the particular

prtLlr kA
wZh

A

'
S S
iw ¥

m AITQ sin wt Ya,

(.
Figure 2-11. Forced vibrations of Qysin wh YA
a single-degree-of-freedom system

without damping. (a) System. (b) Motion Vectors, (c) Force Vectors,

solution will be obtained using the concept of rotating vectors. Since the
applied force is harmonic, it is reasonable to assume that the internal spring
force and inertia force will also be harmonic. Thus, the motion of the system
will be of the form

z = A sin ewt (2-42)

which is represented graphically in Fig. 2-11b. The forces acting on the mass
are shown in Fig. 2-11c. The spring force acts opposite to the displacement
and the inertia force acts opposite to the direction of acceleration. The
exciting-force vector of amplitude @, is shown acting in phase with the dis-
placement vector. Thus, from equilibrium requirements,

0, + motd — kA =0 (2-43)
giving '
Qo

PR

K (2-44)
k — mo [ - (_“i)
wn

msz
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The complete solution obtained from Egs. (2-44) and (2-16} is

o
z = ———sinwf + C;sinw,t + C;cos w,t (2-45)
1— (&
[}

IFor a real system, the vibrations associated with the last two terms of Eq.
{2-45) wili eventually vanish because of damping, leaving the so-called
steady-state solution:

o
k .
z=———-—sinwt (2-46)

- ()

Investigation of Eq. (2-44) shows that for w < «,, 4 is positive, and that for
@ > w,, 4 isnegative. However, by noting that — A4 sin wt = A sin (wt — ),
the amplitude of motion can always be taken as positive by introducing a
phase angle between force and displacement equal to 7 for @ > w,. If the
amplitude 4 is divided by the static displacement produced on the system
by a force of amplitude Q,, the dynamic magnification factor M is obtained:

ML (2-47)
)

This is plotted in Fig. 2-12 along with the relationship for the phase angle
between force and displacement. The magnification factor becomes infinite
when o = w,, because no damping is included in the model. An important
feature to point out in the solution is that for & < w, the exciting force is
in phase with the displacement and opposes the spring force. For w > w,
the exciting force is 180° out of phase with the displacement and opposes the
inertia force. At @ = w,, the inertia force and spring force balance, and the
exciting force increases the amplitude of motion without bound.

Foreed Vibrations— Damped

The introduction of viscous damping into the single-degree-of-freedom
model provides a system which closely approximates the properties of many

SINGLE-DEGREE-OF-FREEDOM SYSTEMS 21
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Figure 2-12. Dynamic magnification factor and phase angle between force
and displacement of an undamped single-degree-of-freedom system.

real systems, since damping is always present in one form or an9thcr.
Although the use of a viscous-type damping is for mathematical convenience,
there are surprisingly few instances where it does not provide a satisfactory
model. Figure 2-13a shows the system to be analyzed. Again, using the
reasoning described for the undamped case, the particular solution to the
differential equation

mZ + ¢ 4+ kz = Q, sin wt (2-48)

may be obtained using the concept of rotating vectors. The displacement,
velocity, and acceleration vectors are shown in Fig. 2-13b. In this problem

wlh kA
e cwh w
kY wA A
w
¥ Q
A mwlA °
A sin (wt-¢)
Q, sin wt
(a) System. (b} Motion vectors. {c) Force Vectors.

Figure 2-13. Forced vibrations of a single-degree-of-freedom system with
viscous damping.
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the displacement is assumed as
z = Asin (wr - ¢) (2-49)

Hence, when the force vectors are drawn as in Fig. 2-13c, the exciting force
will be ¢ degrees ahead of the displacement vector. In this case the existence
of the phase angle is apparent since the damping force cmd is 90° out of
phase with the spring and inertia forces. Summation of the vectors in the
horizontal and vertical directions provides two equations with A and ¢ as
unknowns:

kA - maw*d — Q,cos ¢ =0 {2-50a)
cwd — Q,sin g =0 (2-50b)
Solving for 4 and ¢ gives

A= o (2-51)

Vik — mot)E 4+ ot

(41

tan ¢p = ———— 2-52
v k— mot ( )

Substitution of the expressions for D and e, and rearrangement gives

o M = éi - 21 - 2 (2-53)
o 0 ! o) w
- 1 —{— 2D —
k \/[ (wn)] + |: wj
2p %
tan ¢ = — O (2-54)

which are the dynamic magnification factor and phase angle between force
and displacement for steady-state vibration. These equations are plotted in
Fig. 2-14 for various values of D and will be referred to as the response curves
for constant-force-amplitude excitation. Constant-force amplitude implies
that O, is independent of w. It is noticed that the frequency at which the
maximum amplitude occurs is not the undamped natural circular frequency
w,, but a frequency slightly less than w,. The frequency at maximum
amplitude, 1. will be referred to as the resonant frequency for constant-force
amplitude and is given by the expression

F = FN/1— 2DE (2-55)
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Figure 2-14. Response curves for a viscously damped single-degree-of-freedom system.

The value of M at this frequency is given by

Mo = (2-56)
T 2D1 - p?

Inspection of the above equations reveals that for D = l/\ffZ, Ju=0 a'nd
the maximum response is the static response. The curves showing the varia-
tion of p with w/w, have the properties that the point of maximum slope
occurs at the resonant frequency and all curves have a value of 7/2 at w =
w,. Figure 2-14a is given in more detail in Appendix Fig. A-1.

Rotating-Mass—-Type Excitation

For many systems the vibrations are produced by forces from un-
balanced rotating masses. A common type vibration generator, shown in Fig.

i By M yew? mygw?
w . i W w
Counterrctating Masses Force ‘ectors

Figure 2-15. Forces produced by two counterrotating masses.
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2-15, consists of two counterrotating eccentric masses m, at an eccentricity
e. The phase relationship between the masses is such that they both reach
their top position simultaneously. Each mass produces a rotating-force
vector equal to myew®. Addition of these two vectors results in the cancella-
tion of the horizontal components and the addition of the vertical com-
ponents, The vibratory force is thus

Q = m,ew? sin wt (2-57)

where m, = 2m, = total eccentric mass. In contrast to the constant-force—
amplitude case discussed previously, the rotating-mass-type force has an
amplitude proportional to the square of the frequency of oscillation. The
solution to the damped single-degree-of-freedom system acted upon by the
force defined by Eq. (2-57) can be obtained by a substitution of m,ew? for
0, in Eq. {2-51). Note that

o n’lﬂeu)‘z _ ‘n_lﬂ “}’F_’! ea)z . de_ 2)2 . (2-58)
K4 k m k m \J,
Thus, the quantity Y. se

kD

'
o< EY AN
2

5

(2-59)
i<,

where M is the dynamic magnification factor for the constant-force—amplitude
case. The expression for ¢ obviously remains the same. Figure 2-16 is a

ot

/m

1
o] 1.0 2.0

=€|E

Figure 2-16. Response curves for rotating mass type excitation of a viscously
damped single-degree-of-freedom system.
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lot of Eq. (2-59) for various values of D. The curves are similar i.n appear-
ance to those obtained for the constant-force—amplitude case. An important
difference is that the resonant frequency occurs above the undamped natural
frequency and is given by

1
i (2-60)
S V1 _2D*
The ordinate at f,,, is given by
m.e 2D./1 — p?

max

It should be pointed out that m is the fota/ vibrating mass and r'r_:c]udes the
mass m,. The physical significance of the quantity m,e/m can be mterprgte_d
in two ways. When the eccentric mass is rotating at frequency Wy, it 18
producing a force having an amplitude of m,ew;. 1f lh_ls force a.mplltuc.ie is
divided by the spring constant of the system, the quantity m,e/m is ob-tamcd.
From another, more practical viewpoint, it can be observed that in Fig. 2-16
the amplitude approaches the value m,e/m as the frequency increases beyond
the resonant condition. This is related to the physical phenomenon that a
rotating mass, if unrestrained, will tend to rotate about its center of gravity.
For this case the vibration amplitude is e, since m, = m. Howe_ve_r,. for most
systems m, represents only part of the total mass resulting in a llrmtl-ng vibra-
tion amplitude of (m,/m)e. This phenomenon is the basis for adding more
mass to a system vibrating above its resonant frequency in order to reduce
its vibration amplitude. .

Up to this point there have been two natural frequencies (unda:mped and
damped) and two resonant frequencies (constant-force-amplitude and
rotating-mass) associated with a single-degree-of-freedom system. As a
comparison, all four of these have been plotted in terms of D in Fig. 2-17.
For values of D less than 0.2, all frequencies are within 5 per cent of the
undamped natural frequency. For higher values the diﬂ'e‘rences between
the frequencies become large. For D = 0.707, no peak exists in the curves for
forced vibration; for D = 1.0, oscillatory motion does not exist for damped
free vibrations.

Geometrical Shape of Resonance Curves

If an experiment is run to determine the reponse curve of a single-degree-
of-freedom system, it is possible to deduce properties of the system from tl'u:
shape of the curve. Seme of the significant points have already been noted in
the previous discussion, but the ones given below are also useful. It is
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Figure 2-17. Frequencies of a single-degree-of-freedom system.

apparent from the fact that the curve starts at zero amplitude that Fig. 2-18a
is the response curve for a rotating-mass-type excitation. If a line is drawn
from the origin tangent to the response curve, its point of tangency coincides
with the undamped natural frequency of the system. In addition, for any
line drawn from the origin intersecting the curve at two points the following
relationship exists:

hofi=13 (2-62)

where f1 and f, are the frequencies at the points where the line intersects the
curve. Thus, from a single experimental curve several independent calcula-
tions can be made and an average used to obtain the undamped natural fre-
quency of the system. From this it is possible to calculate other properties
such as m, ¢, and k if the input force is known.
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Figure 2-18b is a response curve for a single-degree-of-freedorr.l systermn
acted upon by a constant-force amplitude, as indicated from the finite value
of A at f = 0. A classical method of measuring damping makes use of the
relative width of the curve. Using the guantities indicated on the curve, the
logarithmic decrement can be calculated from

o fi-ft A2 V12D
2 ot N4 — A 1 — Dt

(2-63)

The equation must obviously be evaluated by trial and error, since the ex-
pression involves D on the right-hand side. When D is small, the last term
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Figure 2-18. Geometric shapes of response curves for the determination of
damping.

can be taken as equal to 1.0. An extremely simplified expression is obtained
if Ir is small and 4 is chosen equal to 0.7074,,,,. Then

g (2-64)

where Af = f, — £

Response Due to Motion of the Support

In many cases the vibration of a system is not due to forces acting directly
on the mass but from motion of the base. The solution to this problem will
also be obtained making use of vector representation of motion and forces.
Figure 2-19a shows the problem to be analyzed. The motion of the base is
taken as A, sin w? and the response of the mass m is assumed to be 4 sin
(wf — ). The motion vectors along with the associated force vectors are
shown in Figs. 2-19b and c, respectively. 1t is noted that a displacement of the
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Figure 2-19. Motion and force vectors for the case of a moving support.

support causes a force to be applied to the mass in the same direction as the
displacement, whereas the opposite is true for a displacement of the mass.
The force vectors are obtained from the motion vectors, as shown in Fig.
2-19¢. If the force components from the motion of the support are resolved
into a resultant, the same vector diagram as in Fig. 2-13c is obtained.
Hence, the solution for 4 may be obtained by substituting ANEE + Fot for
@, in Eq. (2-51), giving
z 2 2
A4 — , Al\/k + ¢"w (2-65)
Vik — ma®)? + o’

which reduces to

. (ZD @y
A_ v “’”) (2-66)

A 22 2
REERes
\ wﬂ w‘ﬂ
The expression for ¢, is found from the relationships shown in Fig. 2-19c.
The angle ¢ is given by Eq. (2-52) and from the vector diagram

(2-67)
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Figure 2-20. Solutions for motion of the support or force transmission.
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Also ¢, == ¢ — ¢, and, from the trigonometric expression for the tangent
of the difference of two angles,
@ 3
w?’l

tan ¢ = - (2-68)
1— (ﬂ)u — 4D

W,

Equations (2-66) and (2-68) have been plotted in F ig. 2-20 for vartous values
of D. In problems of vibration isolation of sensitive equipment, the above
solution affords a guide to the solution of designing the supporting system if
the input from the base is known.

Force Transmission

When a force is applied to a mass, it is sometimes necessary to consider
the force transmitted to the support. This essentially involves the computation
of the resultant of the spring force and the damping force caused by the rela-
tive motion between the mass and its support. From Fig. 2-21 the transmitted
force P, is equal to

P, = (kAP + (cod)® — AVE: = ctp? (2-69)
Substitution of Eq. (2-51) into the above gives, upon simplification,

wz
1+ {202
P, \/+( wn)

= (2-70)

T i

n

which is exactly the same as the relationship for

F’?E___EA Af4, obtained for the case involving motion of
N the support.
\\‘:,2_. The phase relationship between @, and the
PN force transmitted to the support may be derived
cwh—— from Fig. 2-21, if we note that P, is opposite
R in direction to the force applied to the mass. It
sz\{il Q. can be seen that :
A
Mu?A tan g, — 24 . (2-71)

Figure 2-21. Phase relation-
ship between applied force
and transmitted force.

and @, = ¢ — @,, giving exactly the same
expression as Eq. (2-68).

In the presentation of the solutions to different cases involving the single-

sec. 2.3 SINGLE-DEGREE-OF-FREEDOM SYSTEMS 3 |

degree-of-freedom system, it is conventional to express the relationships in terms
of the dimensionless parameters of ¢/ (2\/ km) and w\/ mfk which separate the effects
of damping and frequency. However, in design or analysis problems the damping
factor is probably the least used. In most cases it is the mass or spring constant of

a

Figure 2-22. Response curves for a single-degree-of-freedom system with
the effect of mass and frequency separated (ofter Lysmer, 1965).

the system which can most easily be changed or adjusted. Using curves such as
those in Fig. 2-14, it is a very cumbersome task to determine the exact effect of
changes in m and &, since they are interrelated between the abscissa and each of the
family of curves. Lysmer (1965) separated the effects of mass and frequency and
derived the set of relations given below (and shown in Fig. 2-22) in terms of a

dimensionless-frequency factor

wc
G, = - (2-72)
and mass facior
- k
B - "c’_2 (2-73)

The dynamic magnification factor, phase angle, and other quantities for the

constant-force—amplitude case are as follows:
1

M=l -sar+a @7
tan ¢ = %"B&g (2-75)
Mpaxe = \/EE = (2-76)

1
Gy — ‘l‘_il{—% @77)
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2.4 Phase-Plane Analysis of Single-Degree-of-Freedom
Systems

The previous section, covering the solutions to problems involving the
single-degree-of-freedom system, made use of the method of rotating vectors
in the formulation of the solutions. This concept is useful for visualization
of the graphical procedures which will be described next. When the response
of a vibrating system is plotted graphically in terms of z and Z/w_, we obtain
a curve referred to as the phase-plane trajectory. This curve is very useful
for problems involving transient motion, since it allows the engineer to
“see” how the properties of the system affect its response to impact or
transient loads. The phase-plane method can also be applied to systems with
nonlinear properties such as friction damping, nonlinear spring forces,
and many others (see Jacobsen and Ayre, 1958).

Free Vibrations of Spring-Mass Systems

From Eq. (2-16) we have the solution to free vibrations of a spring—~
mass system. By combining terms in the equation we can write the solution

as
z=/C}+ Cicos (w,t — ¢) (2-78)

Differentiation with respect to time and division by w,, gives

Z T .
= = —JCEi+ Clsin(w,t — ¢) (2-79)

n

Squaring Eqs. (2-78) and (2-79) and adding gives

2
f+():ﬁ+@ (2-80)

F4
w'n

which is the equation of a circle with its center at the origin and having a

radius of v C% 4 CE The constants C, and C, have been expressed in terms
of initial conditions by Eqs. (2-19). Plotting Eqgs. (2-78) and (2-79) on co-
ordinates of z and Z/w,,, as shown in Fig. 2-23, gives a point starting at z, and
Z,fw, traveling clockwise on the circular arc, described by Eq. (2-80), and
moving with an angular velocity of w,. Thus, at any time ¢, the angular
distance traveled around the circle is w,z. The quantities z or 7/, can be
obtained as a function of time ¢ and plotted by extending lines from the
phase-plane, as shown in Fig. 2-23. The fundamental relationships for free
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Fig. 2-23. Phase-plane solution for free-vibrations of an undamped single-
degree-of-freedom system.

vibrations of a spring-mass system can be seen immediately from Fig. 2-23.
For example, the maximum displacement and velocity in terms of the initial
displacement and velocity are related to the radius of the circle. That is,

Zinax = (i) = \/z?, + (ﬁ) (2-81)
Wy, /max w,

Vibrations from a Step Function

If a constant force Q is instantaneously applied to a simple spring-mass
system, the equation governing the motion is

z = Cysin w,t + C,cos w,t + % (2-82)
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which can be rewritten as

z— % =/ CE 4+ CEeos (w,t — ®) (2-83)

The expression for velocity is

== —\/C2 - Csin(w,t — ) (2-84)

k{3

Evaluation of the constants Cy and C, from initial conditions gives

o= =z -2 (2-85)
w k

Squaring and adding Eqs. (2-83) and (2-84) gives

2 s \2
(z _ Q) + (i) —ctic (2-86)
k a,,
which again is the equation of a circle, but this time with the center at
z = @/k. If the initial conditions are plotted on the phase-plane, a line
drawn from (z = Q/k) to the point (z,, 2,/»,) will be the radius of the circle,
as shown in Fig. 2-24. It can be seen that the solution represents harmonic
motion about a mean position (z = @/k) with an amplitude depending on the
mitial values of displacement and velocity. If the force @ changes at some
time ¢,, the values of z and 2/, after rotation of w ¢, rad, are used for the
initial conditions starting at # = #,, with the center of the circle shifting to the
new value of Qfk. If the force @ varies with time, the construction of
the phase-plane trajectory must be broken down into small time intervals in
which the force @ is taken as the average value during each time interval. The
degree of accuracy of the solution depends upon the number of time intervals

chosen to represent the force @.

EXAMPLE. In Fig. 2-25, a mass having a weight W = 1001b is shown
attached to a spring having a spring constant & = 6000 Ib/in. The system is initially
at rest. At time r = 0 a force Q = 30 1b is applied instantaneously and remains at
this level until # = 0.015 sec, after which it instantaneously changesto ¢ = —251b
and remains at that level until 1 = 0.020 sec. After + = 0.020 sec no force is
applied to the system and it is allowed to oscillate in free vibration,

5
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24 t

L o,

Q

Figure2-24. Phase-plane solution foran undamped single-degree-of-freedom
system acted upon by a static foree Q.

To solve for the response of the system, we first calculate its natural frequency

and period.
1 (kg 1 [(6000)(386)
fo = W 2—71\/——(100) =243 cycles/sec

1
T, == =0.0412 sec

b

The center of the phase-plane trajectory for 0 < ¢ < 0.015 sec is given by

) =

=—— = 0.005 in.

Q 30
k6000
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Figure 2-25. Phase-plane example,

and the arc constructed with this center will subtend an angle of

6 ot 360 o015 360) = 131°
_F,,( ) = 50anz ¢ n

The construction from # = 0 to ¢ = 0.015 sec is shown in Fig. 2-25 by the arc from
point (]) to point (). For ¢ = 0.015 to ¢ = 0.020 sec the force acting on the system
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is —25 b and the center of the phase-plane trajectory is shifted to

2 000417 |
% =0~ in.
Point (2) now represents the initial conditions for the next segment of the phase
plane and an arc is constructed through an angle of

0.005

8 = . a
d0arn 60 — 44

This is represented by the arc from point @ to point @. For ¢ > 0.020 sec no ex-
ternal force acts on the system and the center of the phase-plane trajectory is shifted
to the origin. Point @) represents the initial conditions for the remaining part of the
construction. Since no damping exists, the oscillations will continue at an amplitude
equal to the radius from the origin to point @. In Fig. 2-25d the displacement—time
curve has been constructed by projecting points from the phase plane onto the
z-axis. The time scale is calculated from the angular motion on the phase plane,

Vibrations with Friction Damping

This example will illustrate the application of the phase plane to friction
damping, as shown by the system in Fig. 2-26. For this problem the initial
displacement and velocity have been given and the solution for free vibration
will be determined. The weight in Fig. 2-26a is resting on a surface having a
coefficient of friction equal to 0.5. Thus, a friction force F = 401b will act
on the weight in a direction opposite to its instantaneous velocity. The
solution to the problem is easily visualized if the friction force is treated like
an exciting force. Hence, whenever the phase-plane trajectory is above the
z-axis, the friction force acts in the negative z-direction, and when the tra-
jectory is below the z-axis, the friction force acts in the positive z-direction. This
defines the centers of the trajectory for free vibrations at z = +(40/400) =
40.10 in.

The undamped natural frequency and period of the system are

1 /(400)(386)
w—= |— = =698 cycles/sec
4 211'\/ 80 ycles/

@, = 2u{6.98) = 43.8 rad/sec

T, = S = 0.1433 sec

n
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Figure 2-26, Phase-plane for friction damping.

The initial conditions are
z =059 in.

2 =149 in./sec.

For the phase-plane we need to divide the initial velocity by w,,. This gives
Zfw, = 0.34 in. and is plotted along with the initial displacement to give point
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(D in Fig. 2-26b. Since the trajectory starts above the z-axis (positive
velocity), the center will be located at z = —0.10 in. and an arc is constructed
to point (2. At point (@) the trajectory crosses the z-axis, and the velocity
changes sign, shifting the center to z = +0.10in. This center is used until
the trajectory crosses the z-axis at point @ and the center shifts to z = —0.10
in. The construction is continued in this manner until finally a point is
reached where the trajectory crosses the z-axis al a point between the loca-
tion of the two centers. No further construction is possible and it is found
that the system has come to a rest position which may or may not correspond
to a position having zero force in the spring. This particular point illustrates
a difference between viscous damping and friction damping. For friction
damping the system comes to rest after some finite time interval, while a
viscously damped system theoretically never stops moving. Another differ-
ence can be seen from the displacement-time diagram in Fig. 2-26¢c. The
envelope of the peak points on the curve is a straight line as compared to the
exponential envelope of a viscously damped system.,

Vibrations with Viscous Damping

This example will illustrate the solution to free vibrations of a viscously
damped system, as shown in Fig. 2-27a. Again it is useful to treat the viscous

Average ~ 2D
Centers .

Figure 2-27. Phase-plane for vis- R
cous damping. *
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damper as an exciting force, which for this case is proportional to but opposite
in direction to the velocity of the mass m, as shown in Fig. 2-27b. For free
vibrations the instantaneous center of the phase-plane trajectory is given by

¢z cw, Z
2= — "= — =~—— —
k k o,
or
Z
z=-—2D% (2-87)
[13]

n

To facilitate the phase-plane solution, the line representing Eq. (2-87) is
plotted directly on the phase-plane. Since it is necessary to work with forces
which are constant, an average center over a small velocity interval is used to
construct a segment of the trajectory. This results in a trajectory having
cusps at the beginning and end of each interval. The accuracy of the solution
depends upon minimizing the sharpness of the cusps, because the exact
solution in this case is a spiral. It should be noted that the correlation of
displacement and time requires summation of the angles used for each incre-
ment of the phase plane construction.

Vibration from Motion of the Support

The above methods of treating the damping forces as exciting forces
may be extended to many types of problems. However, there are some
special cases which can be easily solved with slight modifications of the above
procedures. Two such cases involve the response of systems when the excita-
tion is due to motion of the support. In one case the absolute motion of the
mass can be determined if the displacement of the support is known. In the
other case the relative motion between the support and the mass can be
obtained if the acceleration of the support is known.

Displacement of the support. If the displacement of the support of a
spring-mass system is given, the differential equation of motion is

mi+k(z—z)=0 (2-88)
where z, is the displacement of the support. Rearrangement gives

mZ + kz = kz, (2-89)
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Thus, kz, can be considered to be the forcing function, and the center of the
circular arc is z,.

If viscous damping is included in the system, it is more convenient
to specify the acceleration of the support and solve for the refative motion
between the mass and the support.

Acceleration of the support. [f z, is the relative motion between the
mass and the support, the differential equation of motion is

m(z, + 2) + c2, + kz, = 0 (2-90)
From this,
mz, + kz, = —mZ, — ¢z, (2-91)

The right-hand side of this equation represents the equivalent force applied
to the system; division by k gives the center as

A S A _pk (2:92)
k k ot @,
The left-hand side of Eq. (2-91) is written in terms of the relative motion,
which will be the quantity obtained using the phase-plane solution. The
first term on the right-hand side is obtained from the acceleration of the
support and the second term is obtained during construction of the phase
plane, using the procedure shown in Fig. 2-27.

Acceleration from the Phase Plane

Displacement, velocity, and time can all be readily determined from the
phase plane. It is also possible to obtain acceleration from the phase plane,
At any time ¢ the radius will have a length r and will be positioned at an angle
8 with respect to the horizontal axis, as shown in Fig. 2-28. In a time interval
of Ar the radius will move through an angle of w, Ar, and the arc length at
the end of the radius will be rw,, As. The change in velocity during this time
interval is related to the vertical component of the distance re, Af and is
shown in Fig. 2-28 as A#/w,. From geometry,

Az 1
cos § = -2
ar, ren, At

(2-93)
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>z
Figure 2-28. Calculation of ac-
celeration from the phase plane.
From this,
. AZ
F="" = wircos ) (2-94)

At

The quantity (r cos ) is simply the projection of the radius onto the horizontal
or z-axis. This projection is multiplied by w? to give the acceleration. If the
projection is to the /eft of the center of the arc, the acceleration is positive;
while if it is to the right, the acceleration is negative.

Muitilinear Spring Systems

Many cases involve nonlinear restoring forces. These may usually be
approximated by a series of linear relationships—as shown in Fig. 2-29, where
the force-deformation relationship is defined by k,, k,, and k,. For dis-
placements of the system within range I, the factor k; governs its behavior.

!
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Figure 2-29. Force-deformation relationship for a multilinear system.
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If the displacement of the system is in range 11, then k, governs its behavior.
For each range of displacement, a particular linear relationship governs the
behavior.

The solution to the above problem can be obtained by the addition of
elements which produce forces proportional to and in the same direction
as the displacement of the system. Detailed solutions using this method are
given by Jacobsen and Ayre (1958). However, a slight modification in the
phase-plane construction allows the exact solution to be obtained and in
addition considerably reduces the time required to obtain a solution.

The concept used is that when the displacement of the system lies within
arange where the restoring force has a linear relationship, the system behaves
as if the same relationship was valid for all values of displacement. However,
extrapolation of the force—deformation relationship to zero force does not
give zero displacement. For the example shown in Fig. 2-29, zero restoring
force for range II corresponds to a negative displacement and is the center
for free vibrations when the displacement of the system is within range II.
If the displacement of the system passes into range I, then the center of the
circle shifts to the origin. For problems of this type it is convenient to con-
struct the force-deformation relationship to scale and extend the straight
line portions of each range. Having done this, the center of the circle can be
obtained from the intersection of the value of the exciting force and the
straight line compatible with the displacement of the system.

In addition to the change in the center of the circle when passing from
one linear range to another, there are two changes resulting from the change
in the undamped natural frequency. First of all, there is a change in relation-
ship between rotation of the radius and time, since the radius will have a
new angular velocity equal to the new value of @,. Second, there is an
instantaneous change in the quantity Z/w,. Since the velocity of the system
must necessarily be continuous (an instantaneous change in velocity requires
an infinite force), the value of the ordinate is multiplied by w 4/w,,.

Example. The system shown in Fig. 2-30a consists of a mass placed be-
tween two equal springs designed so that they resist only compressive forces and
so that each spring is precompressed by 1.5 in. For such a system the restoring-
force-vs.-displacement curve has a discontinuity at a displacement of 1.5 in. For
displacements less than 1.5 in., both springs act to produce a spring constant for the
systermn equal to 400 Ib/in. For displacements greater than 1.5 in., only one spring
acts, providing a spring constant of 200 1bfin. Thus, the natural frequency for each
range of displacement is

/ﬁ
Wy Z\‘ i 14.1 rad/fsec

200
Wy = ‘\}/T =10.0 rad,fsec
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Figure 2-30. Phase-plane solution for a bilinear system.

In order to illustrate the method of solution, assume that a force of 1200 Ib is
applied instantaneously to the system and allowed to remain for a relatively long
duration. Fer range 1 the center is located at z = 3.0 in., which can be found
cither by dividing 1200 1b by 400 Ib/in. or constructing a plot of restoring force vs.
displacement with an extension of the initial straight-line portion as shown on the
figure. Next, an arc is constructed from the origin to point (I). This is the point
where the spring constant of the system changes and the center changes from 3.0 in.
to 4.5 in, In addition, the ordinate on the phase plane must be multiplied by the
factor (@, fw,, = 1.41) to compensate for the change in natural frequency of the
system. Using the new center and peint (3) on the phase plane, the second circular
arc is continued until the displacement becomes less than 1.5 in. or the load is
changed.

This method is not restricted in any way to a predetermined restoring-force—
deformation relationship. In fact, one of the most useful applications involves the
condition in which the system has a yielding modulus and an unloading modulus
after yielding. This results in an energy-absorbing system which can be made to
represent closely a real system.
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Phase Plane with Obligue Coordinates

For problems inveolving viscously damped systems, a modification of the
previous method is given by Jacobsen and Ayre (1958), from which the
solution can be much more easily obtained.

The solution to free damped vibration can be expressed as

z = exp (— Do,)[V C? + CEcos (wyt — )] (2-95)

L exp( Do dWC L Clsin(wgd — g — )] (2-96)
w

n

where sin ¢, =

-

F4
w, CO5 o,
N
Figure 2-31. Oblique coordinate z

sin
system. @, SN P

By introducing the oblique set of coordinates shown in Fig. 2-31,

5 2 2 i 2
= (— cos 95‘1) -+ (z -+ = sin ?71) (2-97)
w

k] n

rgz+( )+22—smrp1 (2-98)
Wy,

"

and substitution of Eqs. (2-95) and (2-96) into Eq. (2-98) gives

r = (v'C + CEcos q;) exp (—Dw,t) = r, exp (—Da,t)  (2-99)

This is the equation of a logarithmic spiral. It is the trajectory traced by a
radius having an angular velocity of w, and a length that changes according
to Eq. (2-99). For forced vibrations the center of the spiral is located at a
displacement equal to Qfk. (An application of the above method is found in
Chap. 10.)

In order to use the method of oblique coordinates, it is necessary to
comstruct a template out of heavy paper to aid in the drawing of spiral curves.
For values of D = 0.5, an approximate method using 90° circular arcs pro-
vides an accuracy of 42 per cent. The approximate spiral is exact at 45°
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Figure 2-32, Approximate method for constructing a logarithmic spiral.

intervals. In Fig. 2-32 the geometry of the approximate spiral is shown. It is

constructed by drawing lines at 45° to the x-y coordinates through the origin.
The size of the spiral is chosen to fit the personal preference of the user, and
the maximum radius r, is placed on the x-axis. Next, a line is drawn from
point (I at an angle (¢, = sin~! D) with the x-axis until it intersects the 45°
line at point @). Point (2 is the center of the first 90° circular segment of the
spiral from point () to point (3. The center for the next 90° segment is at the
intersection of the final radius and the next 45° line (point @). The construc-

r cos (8 +¢,)
COS ¢4

tion is repeated until the desired length of spiral is obtained.

5
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Acceleration on Oblique-Coordinate System

The determination of acceleration from the phase plane with oblique
coordinates is slightly different from that presented previously. In Fig. 2-33
the radius r at any time ¢ makes an angle of § with respect to the z-axis. For
an increment of time A¢, the radius r will travel through an angle of w, At.
If the length of r remained constant, the length of the phase plane trajectory
would be res; At. However, r changes length such that the trajectory makes
an angle ¢, with respect to a perpendicular at the end of the radius, making
the length of the trajectory rw, Atf(cos ¢;). The resulting change in Z/w,, is

Figure 2-33. Acceleration from the phase-plane with oblique coordinates.
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measured parallel to the oblique axis. From the geometry obtained,
AZcos ¢ cos gy

8+ = 2-100
cos (0 + 1) o ro, At (2-100)

Solving Eq. (2-100) for Az/Ar gives
Ezgzrwﬂwdcos(9+ #1) (2-101)

At cos® ¢,

However, since sin ¢, = D, thencos®p, = 1 — D2 Also w,; = cun\/l — D2
Equation (2-101) can be rewritten as

2
F= —2n [rcos(f + ¥1)]

= (2-102})
\/1 — D?

From Fig. 2-33a [rcos (¢ + ¢,)] is the side of a right triangle formed by the
radius and a line inclined at an angle ¢,, with r as the hypotenuse. The dis-
tance from () to @) on the z-axis is [r cos (§ + ¢,)]/(cos ¢,). Factoring this
quantity out of Eq. (2-102) and substituting (cos ¢, = \/1 — D7) gives

P rcos (6 + %)wi
cos P,

(2-103)

Thus, if an inclined line is drawn from the tip of the radius to the z-axis, as
shown in Fig. 2-33b, the distance from this point to the center is equal to
#fw?. This provides a relatively easy method of determining accelerations
directly from the phase-plane solution.

2.5 Systems with Two Degrees of Freedom

Although many systems can be adequately modeled using a single-
degree-of-freedom model, in some cases it is necessary to consider a model
having two or more degrees of freedom. The simplest case is shown in Fig.
2-34, where two masses are connected in series. The more common case is

Z4 r——* F4-3
2

Ky k3 ka .
—WW— mp  —WW—R

e

Figure 2-34, System with two
degrees of freedom.
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coupled rocking and sliding of a single mass, which occurs when the exciting
and restoring forces do not all act through the center of gravity.

Coupled Transiation

Consider the two-mass system shown in Fig. 2-34, which is connected
by three springs. Each mass is restricted to move horizontally and the dis-
placement of each mass is designated by the two values z, and z,. The forces
in springs k, and k, each depend upon the value of only one displacement,
while the force in spring k, depends upon the relative displacement between
the two masses. The application of Newton’s second law to each mass gives

(2-104a)
(2-104b)

mZy = —kyzy — kaZy -+ kazZy

MyEy = kazy — kyzy — kyzs

as the differential equations for free vibration. The motions for free vibrations
are assumed harmonic and expressed by

z, = A, sin wt {2-1052}
z, = A, sin wt {2-105b)
Substitution of Egs. (2-105) into Egs. (2-104) gives
(ky + k3 — muow?)d, — koA, =0 (2-106a)
—kyA, + (ko -+ kg — M)Ay =0 {2-106b)

The above homogeneous equations have a nontrivial solution only if the
determinant of the coefficients is equal to zero. This provides a quadratic
in ?® called the frequency equation, which is

=0 (2-107)

(w?)? — (kl + ks +

ky + ka) w? kiky + kiks + koky
My my

myimy
The two roots to Eq. (2-107) correspond to the natural frequencies of the

System. The lowest value is the first-mode natural frequency, w;, and the
higher value is the second-mode natural frequency, w,;. From Egs. (2-106),

ey + ky — mo® N ky
¥y ko + ky — mgw?

A _ (2-108
A, -108)

Substitution of w, into Eq. (2-108} always gives a positive value of 4y/4,,
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while substitution of wy; gives a negative value. This means that for the first
mode both masses move in phase, while for the second mode they move 180°
out of phase.

Since both sine and cosine functions will yield the same frequency equa-
tion and since two frequencies are obtained as solutions, the general solution
can be written as

zy = Cysin wit + Cy cos et + Cysin wppt + C, cos oyt (2-109a)

zy = oy (C) sin wf 4+ Cy 08 wyt) + op(Cs sin wpt 4 Cycos wrpt)  (2-109b)

representing a superposition of both modes. The quantities oy and oy are
the values of 4,/A, for the first and second modes, respectively. The four
artibrary constants C,, C;, C;, and C, are determined from the initial con-
ditions, which include both the displacement and velocity for each mass.

It is sometimes convenient to calculate the natural frequencies making use
of Mohr's circle, as described by Den Hartog (1956). The procedure is to
first hold m, fixed and calculate the naturat frequency for m,. This gives

ky = ks (2-110)
g

wy
Then, holding m, fixed and calculating the frequency for m, gives

Wl — % (-111)
1

A third quantity which is a measure of the coupling between m, and m, is

e _ kg
Wyp —
\/mlmg

(2-112)

Finally &} and o}, are obtained from the Mohr diagram in Fig. 2-35.

Figure 2-35. Mohr's circle con-
struction for natural frequencies.
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Coupled Translation and Rotation

Coupled translation and rotation of a single mass occurs when the forces
and reactions do not coincide with the center of gravity of the mass. When
subjected to a translatory acceleration, the inertia force acting through the
center of gravity and the restoring forces acting on the mass produce a force
couple. The net result is coupling between the translational and rotational
modes of vibration.

The above problem is represented by the general system shown in Fig.
2-36. The system consists of a rigid mass m which is restrained so that the
center of gravity can only translate in the z-direction, but which is free
to rotate about the center of gravity.

Three springs are connected to the 4 Center of 2 ,
system at various locations. The " Pressure X
| R A

center of pressure of the spring re-

actions for pure translation is at a m m M
distance R from the center of gravity. N

By definition of the center of pressure, ‘ !_(_R) ‘34 s

the sum of the moments of the spring Se—

forces about the center of pressure is - = z{+)
equal to zero. Taking clockwise as | T ()
positive gives :

A

Figure 2-36. Coupled translation and rota-

kyzry — kyzry — kazry =0 (2-113)  tion
The effective spring constant for translation is given by
kz:k1+k2+k3 (2_114)

and the spring constant for rotation about the center of pressure is defined as
the moment per unit rotation

, = Moment _karypry + karapra & karoyry (2-115a)
P ¥
or
k, = kyr} + kory + kari (2-113b)

In order that we may obtain a better physical feeling for the parameters in-
volved in the system, it will be converted to the equivalent system shown in
Fig. 2-37, where the mass is concentrated in a ring having a radius of gyra-
tion 7; and the springs have been replaced by two equal springs each at a
distance r from the center of pressure. The springs each have a spring con-
stant of k,/2, making k,, = k,r®. In order to set up the differential equations of
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= m
T
C.P
N i
)
= 2
R
r r Figure 2-37. Simplified system
equivalent to Fig. 2-36.

motion for free vibration, an arbitrary displacement and rotation are applied
to the center of gravity. The restoring forces shown in Fig. 2-38 can be calcu-
lated from the resulting displacement and rotation of the center of pressure.
Summing the forces and moments about the center of gravity and applying
Newton’s second law gives

mi = —k(z + Ry) (2-116a)

mitg = —k.yp — k(z + Ry)R (2-116b)

Note, in the above equations, that the coupling is due to the fact that the
center of gravity and the center of pressure do not coincide. If R = 0, the
system is uncoupled and has two independent natural frequencies—one for
translation and one for rotation.
These arg defingd as

- K

R |
-t 3 AP
C.P. m

@ 1 @, = \/k— (2-1172)
z ' m
z+ Ry T
B y o, = [ 2-117b
‘e“\_‘ ‘# ¥ mfz ( )

e '
Ky ¥ N A

Tk, (z+Ry)

The equations for the coupled solu-
tion are obtained by substituting

z—=A,sinwt (2-118a)

and
Figure 2-38. Restoring forces for the system

on Fig. 2-37. (2-118b)

v = A, sin wt

by
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into Egs. (2-116), giving
(k, — mo)A, + k,RA, =0 (2-119a)

and

I, RA, + (k, + k RE — mPa?)A, = 0 (2-119b)

The frequency equation is obtained by setting the determinant of the co-
efficients from Eqs. (2-119) equal to zero. This gives
2
()’ — (k— 4 o J:sz )aﬂ + kwiﬁ —

M mr

0 (2-120)

Equation (2-120) can be rearranged to give

2,2 2 2 2 F 2
o 6 i (-
(£ r r w, ¥
which has been plotted for R/f = 0 and R/7 = | in Fig. 2-39. When R/ = 0
the system is uncoupled, since the center of pressure and the center of gravity
coincide. For this case the two frequencies correspond to a pure translation
and a pure rotation. For R/ = 1 a coupled system is obtained, wherein the
first-mode frequency is always less than e, or w,,, whichever is smaller, and

the second-mode frequency is always greater than w, or w,,.
The mode shapes for such a system can be found from Egs. (2-119),

giving

(2-121)

A, kR mi'—k,— kR o122
A, mot—k, kR (>-122)

1]

This quantity is actually the negative of the center of rotation—taking a
positive center as meaning to the right-—and is plotted as a function of w in

| Translation -’3- =0

1 T —

1st Mode

~f=

Figure2-39, Solution to Eq.(2-121}. 0 1 z 3
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Figure 2-40Q. Center of rotation
vs. natural frequency,

Fig. 2-40. The system shown in Fig. 2-40 will have two natural frequencies
wy and exy;. If the system is freely vibrating at ey, its center of rotation will
be point {d), which is to the right of the center of pressure. For w; the
center of rotation will be point @), which is to the left of the center of gravity.
For free oscillations involving a superposition of both modes, a center of
rotation is meaningless.

Forced Vibrations

If an exciting force is applied to the system shown in Fig. 2-41, the Eqs.
(2-119) become

(k, — mwA, + k,R4, = 0, (2-123a)

k., RA, + (k, + k. R? — mPPoDAd, = O, (2-123b)

where s is the distance from the center of gravity to the point of force applica-

tion. If the exciting force has been applied long enough for any transient

motion to have decayed (in a real system some amount of damping is always

present), the solution for 4, and 4, can be obtained using determinants.
Thus, '

0, kR

Qs k, + kR — miw®
(k, — mw®) kR

k,R k, + k,R* — mie®

A, = (2-124)
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A
r\)|,.."r

Qg 5N wt
|
kZ
2
-
Figure 2-4l. System shown on
Fig. 2-37 with an exciting force
applied. T b

Note that the denominator yields the frequency equation and thus has roots
o = o and wy;. Equation (2-124) can be written as

2 . =3 2 _ kR
4 - Q. (k,R*+ k, — mFa L Rs) (2-125)

TomP [0 — oflle® — ohl

Also, from Egs. (2-123),
. Qo [‘"sz -+ (mwﬁ_ kz)s]

= 2-126)
bomit [0f — of]le’ — o] (
The center of rotation is the negative of the ratio of the amplitudes:
A, _ szz + k, — mPw? — k,Rs (2-127)

A, —k,R + (me® — ks

As previously mentioned, Eq. (2-127) is the same as the relationship for mode
shapes when s = 0, as plotted in Fig. 2-40.

Forced Translation and Rotation with Damping

In order to illustrate the increase in complexity of the problem due to
the addition of damping to the system, equations will be obtained for the
solution of steady vibrations. The system to be analyzed will be reduced to
the simplified system shown in Fig. 2-42. The viscous-damping coefficient
for translation is ¢,; for rotation it is (¢, = ¢,r?). The motion of the center of
pressure and the resulting forces from the springs and dashpots are shown.
Summation of forces about the center of gravity of the system gives

mzZ = —k,(z + Ry) — c,{Z + Ry) + Q1) (2-128a)
mr = —k,p — ¢ — kfz + RpIR — ¢,(2 + RP)R + Q(t)s  (2-128b)
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r - Figure 2-42, Coupled translation
s and rotation with damping.

The solutions to Eqs. (2-128) are most easily obtained using complex nota-
tion. Let

O{r) = O, exp (iwt) = Q. {cos wr + isin wr) (2-129)
and
z = (A, + id,)exp (iwt) (2-130a)
9 = (A + id,g) exp (iwt) (2-130b)
Then
2 = w(id,; — A,,) exp (iw?) (2-131a)
and
2 = —w(A, + id,;) exp (iwt) (2-131b)

From Eqs. (2-130), the displacement amplitude and rotation amplitude are

A, = VA% + A%, (2-132a)

A, = VA2, + A%, (2-132b)

which can be evaluated after obtaining values for 4,), 4,,, 4,,, and Ay

The phase relationships between force, displacement, and rotation may
also be obtained from the values of 4,;, A,,, 4., and 4 ,. Finally, to obtain
Az1s Ay Ay, and 4, Egs. (2-130) are substituted into Eqgs. (2-128), separat-
ing the real and complex parts to obtain the following four equations:

(—mw® + kYA, — we,dys + Rk,A, — Roc, Ay = Q, (2-133a)
we A,y + (—mo® + kK )A, + we,RA, + Rk, A, =0 (2-133b)
Rk,A; — wc,RA,, + (—mi® 4+ k, + k,RDA,
+ (—we, — we,RNA,, = Q,s (2-133c)
c,wRA, + Rk A,z + (we, + 0c,R)A, + (—mP* + k, + kR4, = 0
(2-133d)
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Since all four equations must be solved for each value of frequency, it is
necessary to make use of a digital or analog computer to obtain the solution.

2.6 Natural Frequencies of Continuous Systems

Although the main consideration of this text comprises foundations and
soils, problems involving beams arise often enough to justify including a
brief section on the subject. For beams, mass and elasticity are not physically
isolated components and there are, theoretically, infinitely many natural
frequencies; but for most practical problems the lowest natural frequencies
are the most important. Figure 2-43 provides a means of calculating the first
three natural frequencies of beams having uniform cross-section and uni-
formly distributed loads. If concentrated masses that are large with respect
to the mass of the beam are placed on the beam, then the beam can be con-
sidered a weightless spring. If the above conditions are not met or if several
masses are placed on the beam, then other methods must be used to find the
lowest natural frequency.

Newmark's Method

The method devised by Newmark (1943} for calculating beam deflections
can also be applied to the problem of finding natural frequencies of beams

c.,=9.87 C,=335 C,=89
Simple Support
BBy | BT B | A T
0.5 0.333 0.66
C,=3.52 C.,=22.4 C,=6L.7
Cantilever —_—— | e
0.774 0.500 0.868
C,=22.4 Cuo=6L7 C, =12l
Fixed Support a./'—'\.g £ e
0.500 0.359 0.64I
C,=154 C,=50.0 Cu=104
Fixed Hinged 3 b | ™,
’ 0.560 0384 0.692

w, =G, /—nfia rad/sec

¢, = coefficient,
£ = Young’s modulus (Ib7in 2),
I = moment of inertia (in?),
m = mass of entire beam (Ib-sec¥in.),
£ = length of beam (in.}.
{Nodes are shown as proportion of £ from leftend.)

Figure 2-43. Beam frequencies for various end supports.
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having any variation of cross-section and mass loading. Space does not allow
a detailed description of the method and the reader is referred to Godden

(1965).

Static- Deflection Methods

The relationship between potential and kinetic energy of a vibrating
system provides the basis for approximate methods of calculating natural
frequencies of more complex systems. Two methods are described below.
For greater detail on the subject the reader is referred to Jacobsen and Ayre
(1958). The Southwell-Dunkerley approximation provides a means of
caleulating a lower bound for the natural frequency, while the Rayieigh
approximation provides an wupper bound for the natural frequency. Both
methods assume that the static deflection of the system is a reasonable
approximation for the shape of the dynamic displacement. Hence they are
referred to as static-deflection methods.

Southwell-Dunkerley approximation. This method provides a means of
obtaining a lower bound for the lowest natural frequency of a multiple-degree-
of-freedom system and is presented without proof. If a system is broken into
parts, each part considered a single-degree-of-freedom system, then the lower
bound for the coupled system is found by

1 1 1 1
T T bt
n nl n2 nj

where f,,; represents the natural frequency of the jth part. Using Eq. (2-18),
it is possible to obtain the relationship

_ 3.13
\/zsl+zsz+"'+zsj

for the natural frequency of a beam broken down into j parts, where z,,
represents the deflection of the jth part in inches. As an illustration of the
application of Eq. (2-134), consider Fig. 2-44, which shows a beam with four
weights, each of which is large compared to the weight of the beam. The
four systems to be analyzed which provide the static deflections in Eq. (2-134)
are shown in Fig. 2-44b. The answer obtained is always less than the “exact”’
answer,

I cycles/sec (2-134)

Rayleigh approximation. In the Rayleigh approximation an upper bound
of the lowest natural frequency is obtained. As an illustration of this method
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W, W W Wa
Py 1 }
7 77
{a)
Wi
R
1|
W
* _ -
AN 2
I5p W
— i
’ " Zs3 T ‘V‘V4 Figure 2-44, Static deflections used

______ § in the Southwell-Dunkerley ap-
S — o — proximation for the natural fre-
‘ T *  quency of a beam supporting large
weights compared to the weight
{b) of the beam.

consider again the same system. For the Rayleigh approximation a// of the
loads are applied simultaneously, with the condition that the forees of gravity
act in opposite directions on opposite sides of supports, as shown in Fig. 2-43.
The deflections in inches are calculated at each mass point and substituted

into the equation

f, =313

Vorn ¥ Vet t Wiz | Wit poiessec (2:139)
Wizo + Wazgy + Wazg + Wizl

to provide an upper bound. All quantities in the equation are taken as
positive regardless of the direction of the deflection

The advantages of the above two methods are that the calculations in-
volve static deflections and both an upper and lower bound are obtained,
providing a check as well as an indication of the accuracy of the solution.

. . Wy Wo . Z54
Figure 2-45, Static deflections used 83 _ 7
in the Rayleigh approximation for — + + — —
the natural frequency of the beam 7 ;Sk —a -7 R * +

1 s2 W3 Wq

shown on Figure 2-44a,



WAVE PROPAGATION IN
AN ELASTIC, HOMOGENEQUS,
ISOTROPIC MEDIUM

While it is considered more rigorous from the theoretical standpoint to
develop a general solution and then impose boundary conditions to obtain
specific solutions, it is more instructive in problems of wave propagation in
elastic media to start with the specific problem of waves in a bounded medium.

3.1 Waves in a Bounded Elastic Medium

Various forms of physical systems subject to vibrations yield the identi-
cal equation of motion. The equation is called the wave equation and is
expressed by the following partial-differential equation:

o2 9°
ﬁ‘ = y? a_;; | (3-1)

where v is the wave-propagation velocity. Some of the systems which can be
described by the wave equation are rods in longitudinal vibration, rods in
torsional vibration, pressure waves in an ideal fluid along the axis of the
container, and the transverse vibrations of a taut string. Although the wave

60
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equation is derived from any of these physical systems, the mathematical
solution is identical in all cases. The wave equation, therefore, is one of the
fundamental equations of mechanics.

Vibration in Rods

Three independent kinds of wave motion are possible in rods: longitu-
dinal, torsional, and flexural. The first two kinds of motion result in the
typical wave equation, while the third results in a dispersive equation of
motion (“‘dispersive’” here means that the velocity of the flexural waves
depends on their frequency of excitation or wave length). Only longitudinal
and torsional vibrations of rods will be considered here.

Longitudinal waves. Consider the free vibration of a rod with cross-
sectional area 4, Young’s modulus £, and unit weight ¢, as shown in Fig.
3-1. Assuming that each cross-section remains plane during motion and that
the stress is uniform over the area,* the equation of motion can be written
directly. The stress on a transverse plane at x is o, and the stress on a trans-
verse plane at (x + Ax) is [o, + (do,/0x) Ax]. The sum of forces in the x-
direction can be written as

—a,4 + (o’m + %Ax)A —~F
ox

If the displacement of the element in the x-direction is designated as u,

jr o, oy + %U: bx
Ax
fe———={
¢ 7 0 X
4] ] | J
Figure 3-1. Longitudinal vibration Ko Ox fe—

of a rod. F_—b u

* In the above derivation inertia forces caused by the lateral motions of particles
are neglected. The solution is, therefore, only approximate but is accurate as long as the
wave length of the longitudinal waves is long in comparison with the cross-sectional
dimensions of the rod,
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Newton’s second law can be written as

2
—0,A + g, d + arf”AxA —Axd ¥ a_u
ox g o*
or
do, _ 7
ox  gar (3-2)

The strain in the x-direction is du/8x and the ratio of stress to strain is
Young’s modulus; therefore,

o, =E Ou

and o
do, a*u

ax  oxt

Then using the mass density p = 2/g, Eq. (3-2) can be wiitten

P v u

ax2 =p % (3-3&)
or

Fu 5 8%

o Vg 8_x2 (3-3b)
where

2 E
Ve = —P {3-3¢)

and v %s defined as th_e phase velocity or longitudinal-wave-propagation
velocity in a r(_)d. Equation (3-3b) has the exact form of the wave equation.
The solution of Eq. (3-3b) may be written in the form

u=fet+ x) + (et — x) (3-4)

|
:

Ax = ve At Figure 3-2. Motion of wave form
in rod.
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where f and h are arbitrary functions. The solution expressed in Eq. (3-4)
has a simple physical intepretation. For a specific instant in time, £, both
terms on the right-hand side of Eq. (3-4) are functions of x only. The second
term can be represented by the solid block in Fig. 3-2, where the shape of the
block is specified by the function 4. After a time interval At, the argument of
the function # becomes [vo(t + Ar) — x]. If at the same time that ¢ is in-
creased by Az, x is increased by (Ax = vy At), the function 4 will remain
unchanged, as follows:

ul, = h(vat — x)
Ui, = Blog(t + A0 — (x + Ax)]

ulorar = hloet + ve At — x — ve At] = h(oct — X)

This demonstrates that the block in Fig. 3-2 at x, and # moves unchanged in
shape to x, at (z + At). It can now be stated that the right-hand term of Eq.
(3-4) represents a wave traveling in the positive x-direction with velocity vg.
In a similar manner, it can be shown that the first term on the right in Eq.
(3-4) represents a wave traveling in the negative x-direction with velocity ve.
This result could be anticipated from a consideration of the consequences of
applying an instantaneous displacement # to a section of the rod in Fig. 3-1.
It is obvious that the cross-section at (x + Ax) would experience a compres-
sive stress and that the cross-section x would experience a tensile stress.
Initially, only small zones close to these cross-sections would feel the stress,
but as time passed larger zones would experience the stress caused by the
displacement u. The results would be a tensile-stress wave traveling in the
negative x-direction and a compressive wave traveling in the positive x-
direction.

It is important to distinguish clearly between wave-propagation velocity
ve and the velocity of particles in the stressed zone, #. To clarify this dis-
tinction, first consider the stressed zone at the end of the rod in Fig. 3-3a.
When a uniformly distributed compressive-stress pulse of intensity g, and
duration ¢, (Fig. 3-3b) is applied to the end of the rod, initially only a small
zone of the rod will experience the compression. This compression will be
transmitted to successive zomes of the rod as time increases. The trans-
mission of the compressive stress from one zone to another represents a
wave traveling along the rod at a velocity ».

During a time interval Az, the compressive stress will travel along the
rod a distance (Ax = v Af). At any time after 7, a segment of the rod of
length (x, = vct,) will constitute the compressed zone, and the amount of
elastic shortening of this zone will be given by the displacement of the end
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Now, the displacement u divided by time 7, also represents the velocity of
the end of the rod or particle velocity:

(3-5)

It should be recognized that both wave-propagation velocity and particle
velocity are in the same direction when a compressive stress is applied but
that wave-propagation velocity is opposite to the particie velocity when a
tensile stress is applied. Another important consideration is that the particle
velocity & depends on the intensity of the stress (see Eq. 3-5) but that the

wave-propagation velocity ve is only a function of the material properties
{see Eq. 3-3¢).
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Torsional waves. The torque on a transverse section of a rod such as
shown in Fig. 3-4a produces an angular rotation e. The torque can be

written

T o1, % (3-6)
ox

where G = shear modulus (modulus of rigidity, lb/ig.z), .
I, = polar moment of inertia of the cross-section (in.*), and

a_e_ — angle of twist per unit length of rod (radfin.).
X

The torque due to the rotational inertia of an element of rod of length

Ax can be WI‘lttBn as
— P » 2 3- i

Applying Newton’s second law to an element, as shown in Fig. 3-4b, yields

Figure 3-4. Torsion in circular
rod. (b
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the following:

2
—T + (T + —TAx) = pIﬂAxa—e
x ot
or
T 8%
— = pl,— 3-8
ax P n atg ( )
Now, substituting for 7 from Eq. (3-6), Eq. (3-8) becomes
0 da d%e
—{GI,— )| = pl, —
ax( ”ax) o
or
d% d‘e
5 % P (3-9a)
where
a=8 (3-9b)
o

Equation (3-9a) has the form of Eq. (3-3c), except that Young’s modulus £
has been replaced by the shear modulus G.

End Conditions

There are several ways to examine the phenomena that occur at the
ends of rods of finite length in which a stress wave is traveling. The approach
presented here is that of a simple physical interpretation similar to the
presentation by Timoshenko and Goodier (1951). Another approach is
that of solving the wave equation for given boundary conditions as described
by Kolsky (1963).

The wave equation is a linear differential equation with constant co-
efficients. If there are two solutions to this equation, the sum of these two
solutions will also satisfy the wave equation, because superposition is valid.
Now, consider an elastic rod in which a compression wave is traveling in the
positive x-direction and an identical tension wave is traveling in the negative
x-direction (Fig. 3-5a). During the time interval in which the two waves
pass by each other in the crossover zone, the portion of the rod in which the
two waves are superposed has zero stress (Fig. 3-5¢) and a particle velocity
equal to twice the particle velocity in either wave. The particle velocity
doubles in the crossover zone because, as pointed out earlier, particle
velocity in a compression wave is in the direction of wave travel, but particle
velocity in a tension wave is opposite to the direction of wave travel. Since
the compression and tension waves are traveling in opposite directions in
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Figure 3-5. Wave in a rod—free- |
end condition.

Fig. 3-5, the particle velocities associated with both waves are additive. After
the two waves have passed, the stress and velocity return to zero at —t.he
crossover point and the compressive and tensile waves return to lhftlr initial
shape and magnitude. On the centerline cross-section, the stress is zero at
all times. This stress condition is the same as that which exists at a free end
of a rod. By removing one-half of the rod, the centerline cross-section

can be considered a free end. Then, by examining the left side of Fig. 3-5e,

we may see that a compression wave is reflected from a free end as a fension
wave of the same magnitude and shape. Similarly, a tension wave is reflected
as a compression wave of the same magnitude and shape. ' .

Now, consider an elastic rod in which a compression wave is trayellr_lg
in the positive x-direction and an identical compression wave is 'travellng in
the negative x-direction (Fig. 3-6a). During the interval in which the t}vo
waves traverse the crossover zone, the cross-section through the centerline
has a stress equal to twice the stress in each wave and a particle velocit'y
equal to zero. After the waves pass by each other, they return to their
original shape and magnitude. -

The centerline cross-section remains stationary during the entire process
and, hence, behaves like a fixed end of a rod. From an examination of the
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left half of Fig. 3-6d, it can be seen that a compression wave is reflected from
a fixed end of a rod as a compression wave of the same magnitude and shape;
and that at the fixed end of a rod the stress is doubled.

The above conclusions were based on the waves of constant-stress
amplitude. However, the same conclusions regarding wave propagation,
superposition, and reflection of waves can be applied to stress waves of any
shape.

Rods of Finite Length

So far, only infinite and semi-infinite rods have been considered. For
finite rods with various boundary conditions, other solutions to the wave
equations can be written as a trigonometric series

u = U(C,cos w,t + C,sin w,t) (3-10)
where :

U = the displacement amplitude along the length of the rod,
C,, C; = constants, and
@, = the circular frequency of a natural mode of vibration.
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This equation describes the displaced shape of a bar vibrating in a natural
mode. Substitution of Eq. (3-10) into Eq. (3-3b) gives

ZU 2
d—z + %’ U=20
from which
U = Cycos 225 1 ¢, sin 222 (-11)
Ve (5]

For a rod of finite length, the displacement amplitude & must be determined
separately for each of three possible end conditions. These end conditions
are (1) both ends free (free-iree), (2) one end fixed and one end free (fixed-
free), and (3) both ends fixed (fixed—fixed).

Free-Free. For the rod of length ¢ in Fig. 3-7a, the end conditions for
the free—free case are that the stress and, consequently, the strain on the end
planes must be zero. This means that dUjdx = 0 at x = 0 and at x = 7,
Now

v _ m—"(—cs sin 22% 1 ¢, cos “’"x) =0 (3-12)
dx  vg vo Ve
|

N / Up=Cjz cos Zrx (h=2)

\\/é:\\ U3 = C3 Cos 3T’TK (n =3)
7

(b)

Figure 3-7. Normal modes for free-free rod.
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By evaluating Eq. (3-12) at x = 0, we get C, = 0; and by evaluating Eq.
(3-12) at x = ¢ and assuming a nontrivial solution (C, 5= 0), we get

¢
sin =2 — @ (3-13)
Ve
To satisty Eq. (3-13),
W,
— = 7w
Uy
or
w, = ””;C, ne=1,23,- (3-14)

Equation (3-13) is the frequency equation from which the frequencies of
the natural modes of vibration of the free-free rod are found. Combining
Egs. (3-14) and (3-11), the distribution of displacement along the rod for
any harmonic can be found. The first three harmonics are shown in Fig.
3-7b, and the displacement amplitude can be expressed as

Unzcscosn%x, ne=1273,-- (3-15)

The general form of the displacement solution for the free-free rod is
obtained by substituting Eq. (3-15) in Eq. (3-10) to get

t
U = Cos n—;-{[((?])n cos HW;CI + (Cy), sin nﬂ::c ] (3-16)

By superposing the solutions for many natural modes of vibration, any
longitudinal vibration can be represented by

v =S cos E;Lx[(cl)ﬂ cos ”{fﬁ +(Cy), sin ”—"}’QJ (3-17)

n=1

Fixed-free. The end conditions for the rod in Fig. 3-8a are as follows:
at the fixed end (x = 0) the displacement is zero (U = 0); at the free énd
(x = £) the strain is zero (dU/8x = 0). Using the condition at x = 0 in
Eg. (3-11), €y = 0; and using the condition at x = # in Eq. (3-12),

cos 22l _ g (3-18)
Ve
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Figure 3-8. Normal modes for fixed-free rod.
For Eq. (3-18) to be satisfied,

=M 1,35, (3-19)
2

w?’l
Now, the displacement amplitude can be written

U, = Cysin 225 — ¢, sin 7% (3-20)
Ve 2/

The first three harmonics described by Eq. (3-20) are shown in Fig. 3-8b.

Fixed-fixed. The end conditions for the rod in Fig. 3-9a are as follows:
U=0atx=0and at x = ¢ For this to be true, C3 = 0 and

sin 22’ _ o (3-21)
Der
From Eq. (3-21) we get
a =L =123, (3-22)
Then we can write
Un:C4sinn—7;c, n=1,2,3,- (3-23)
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Uy=C, sin ’—'—{,5 (n=1)

Ca

U, =C, sin % (h=2)

X

P Us=Cy sin 25% (n=3)
Figure 3-9. Normal modes for
(b) fixed-fixed rod.

The first three harmonics described by Eq. (3-23) are shown in Fig. 3-9b.
All of the foregoing derivations for longitudinal waves can be applied directly
to torsional waves.

Experimental Determination of Elastic Moduli

. Travel-time method. The travel time of elastic waves can be used as the
basis for the experimental determination of elastic moduli of the material of
a }’od. Using the appropriate electronic equipment, it is possible to deter-
mine the time for an elastic wave to travel a distance 7, along a rod. If ¢
is the measured travel time for the longitudinal wave, then, from Eq. (3-30)c
Young’s modulus can be written ’

]
E_Yh

.1 (3-24)

If 7, is the measured travel time for a torsional wave, then, from Eq. (3-9b)
the shear modulus can be written

G=1LZ (3-25)

Resonant-column method. In this technique a column of material is
excited either longitudinally or torsionally in one of its normal modes, and
the wave velocity is determined from the frequency at resonance and from
the dimensions of the specimen. For example, if a free—free rod could be
excited longitudinally in the first normal mode of vibration and the frequency
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£, measured, the velocity of the longitudinal wave could be calculated from

Eq. (3-14), as follows:

wn:ZTrfn=7T—Uc, forn=1

and then
v = 2f,¢ (3-26})

Similarly, for a torsionally excited free—free rod, the velocity of the torsional
wave could be calculated as follows:
TUg
m, = 2uf, = A forn=1
and
vg = 2ff (3-27)

Because v, is known from Eq. (3-26), Young's modulus can be computed
from

E= p(2f ) (3-28)

and since vg is known from Eq. (3-27), the shear modulus can be computed

from
G = p(2fuf I (3-29)

Various specimen configurations have been tried in the resonant-
column approach. The most common arrangements are the free-free and
the fixed—free configurations. The free—free arrangement is not entirely free
at either end and the degree of freedom is not easily determined. Due to this
difficulty, the free-free configuration is not as well-suited to the resonant-
column technique as is the fixed-free configuration.

Another difficulty with the resonant-column technique is the necessity
of exciting the specimen and measuring its motion. To accomplish this,
driving and motion-monitoring instruments must be attached to the specimen,
and these attachments alter the specimen boundary conditions. It is possible
to compensate for the attachments at the free end of the fixed-free configura-
tion by assuming that the attachments can be lumped into a mass, as shown
in Fig. 3-10. The equations for the fixed-free rod do not apply, because the
end conditions at the free end are changed. For longitudinal excitation,
displacement is zero at the fixed end, but at the free end a force is exerted on
the rod which is equal to the inertia force of the concentrated mass.

This force can be expressed as

du otu
F=2 A = —m D 3-30
dx " ort (3-30)
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a -

NS

Figure 3-10. Fixed-free rod with

Le 4 |
mass attached to free end.

where 4 is the cross-sectional area of the rod and m is the mass of the equip-
ment attached to the free end. Applying the end condition for x = 0 to
Eq. (3-11), we find that C; — 0 and the displacement amplitude becomes

U = C, sin 22 (3-31)
Vo
At x = £, we use Eq. (3-10) to get
Bu = ou (Cycos ew,t + Cysin m,t)
dx  Ox
and
2%u 2 , .
5? = —w,U(C; cos w,t + C,sin w,r)
Substituting these expressions in Eq. (3-30) gives
AE U _ mewiU (3-32)
X
Finally, we substitute U from Eq. (3-31) into Eq. (3-32) to obtain
AE &‘Cosm—"{ = wim sm Ent
o Ue Ve
which can be reduced to
Af £ £
LY Dal fan Lo (3-33)

W Ve Ver

In Eq. (3-33) it should be recognized that afy is the weight of the rod
and that Wis the weight of the added mass. Equation (3-33) is the frequency
equation for all normal modes of vibration for the system in Fig. 3-10. The
right side of Eq. (3-33) can be written for convenience as (8 tan f), where
B = w,ffve. Then, for any ratio of weight of rod to weight of added mass,
the value of # can be found. Equation (3-33) is solved most easily by plotting
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a curve of 8 vs. Afy/W (see Fig. 7-24). The wave velocity can now be com-
puted from the following equation, using the appropriate values of f3:

v = 2L (3-34)
f
Young's modulus is then found from
) 2
E— pt — p(”’%[) (3-35)

When the ratio Afy/W — co, the rod approaches the fixed—free condition.
However, as the ratio 4%y/W — 0, the system approaches a single-degree-
of-freedom system with a spring constant k = 4E/ £ and a suspended mass
equal to W/g.

For torsional vibration, the equation comparable to Eq. (3-33) can be
written as

w,f  w,l

tan
Ug Ug

{

— = 3-36
I (3-36)
where [ is the mass polar moment of inertia of the specimen and 7, is the mass
polar moment of inertiz of the added mass.

3.2 Waves in an Infinite, Homogeneous,
Isotropic, Elastic Medium

In Sec. 3.1 it was shown that wave motion in an elastic rod could be
described by the wave equation and that a physical interpretation of wave
motion was easily related to the mathematical expressions. In the case of an
infinite elastic medium, however, physical interpretations are less obvious
and it will be necessary to emphasize mathematical relationships. Never-
theless, it will still be possible to reduce the problem to the form of the wave
equation.

Derivation of Equations of Mation

To derive the equations of motion for an elastic medium, it is necessary
to examine the equilibrium of a small element, as shown in Fig. 3-11. Since
this subject has been treated in detail by many other authors (Timoshenko
and Goodier, 1951; Kolsky, 1963; Ewing, Jardetzky, and Press, 1957;
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Figure 3-11. Stress on a small element of an infinite elastic medium.

Grant and West, 1965; and others), only the essential steps of the develop-
ment of the equations of motion will be presented here.

First consider the variation in force on opposite faces of the small
element in Fig, 3-11. The stresses on each face of this element are represented
by sets of orthogonal vectors. The solid vectors are acting on the visible
faces of the element and the dotted vectors are acting on the hidden faces.
Translational equilibrium of this element can be expressed by writing the
sum of forces acting parallel to each axis. In the x-direction the equilibrium
equation is

Oey p y) Ax Az
dy

(¢

d
(““+ 3

mAJc) AyAz — o Ay Az + (1-m +
%

— o, AxAz + (Tzz T a;;z Az) AxAy — 7, AxAy =0 (3-37)

Similar equations can be written for the summation of forces in the y- and
z-directions. Neglecting body forces and applying Newton’s second law in
the x-direction gives :

9o, or, Or 0%
—F o —m L T ®Y AY AP Az = p(Ax Ay Az) — 3-38
(ax - dy + az) *8p 8z = plAxhy z)8t2 (3-38)

Equations similar to Eq. (3-38) can be written for the y- and z-directions.
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Then, the three equations of motion in terms of stresses can be written

2 -~
pu_ 90, Oy | Br, (3-39a)
err  ox  dy 0z

2, =
o a‘rm tlo’_y ‘ a'ryz

o ox oy | oz

(3-39b)

2 -~
Pw _ Oy | 07y 0o, (3-39¢)

Par " ax 3y | oz

where v and w are displacements in the y- and z-directions, respectively. To
express the right-hand sides of Eqs. (3-3%) in terms of displacements, the
following relationships for an elastic medium will be used:

Gp = Aé + 2Ge, Tey = Tye = GV:W
Ty = Aé+ 2G€y Tyz = Tow = Gyye (3-40)

O, = Aé + 2Gez Tex = Taz = Gyzx

G — E P vE
21 ) 1+ (=2

where v is Poisson’s ratio, 1 and G are Lamé’s constants (G is also called the
shear modulus or rigidity modulus}, and € is called the cubical dilatation
(also called the dilation or volume expansion) and is defined by é = ¢, +
€, + €,. We also need the following relationships for strain and rotation in
terms of displacement:

ou dv  du _ dw v
= —_— _ —_— sz = - -
7 o Yer T o + dy dy 0z
ov dw ou - du ow
Y70 y e ay + oz T3 ax (3-4D)
ow du  ow . dv  du
o _gu_ uw 2, — v G
= 0z Veu dz ™ dx @ dx oy

where @ is the rotation about each axis. Combining the appropriate ex-
pressions of Eq. (3-40) and (3-41) with Eq. (3-39a) gives

?%u 0
= =+ G)— + GV* (3-42
Par ( ) Ox * " )
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Similarly, we can rewrite Eq. (3-39b) and (3-39¢) as

2% 0é

— = (A + G)— + GV* -4

Py (2 + )ay + v (3-43)
and

otw 0é

— =1+ G =+ GV -44

£ or (4-+ )6z " (3-44)

where V2 (the Laplacian operator in Cartesian coordinates) is defined as

poo & @

Ot - gy* + oz*

Equations (3-42), (3-43), and (3-44) are the equations of motion for an
infinite homogeneous, isotropic, elastic medium.

Solutions for Fquations of Motion

Two solutions can be found for the equations of motion: one solution
describes the propagation of a wave of pure volume change (irrotational
wave}, while the other describes the propagation of a wave of pure rotation
(equivoluminal wave). The first solution can be obtained by differentiating
Eqs. (3-42), (3-43), and (3-44) with respect to x, y, and z, respectively, and
adding all three expressions together. This operation results in an equation
of the form

0%

op = (A 26V
or
o -
372 = v5.V% (3-45)

This is exactly the form of the wave equation, where
A+ 26
oy — \/ 2126 (3-46)
P

The dilatation ¢, therefore, propagates at a velocity vp. The other solution
to the equations of motion can be obtained by differentiating Eq. (3-43) with
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respect to z and Eq. {3-44) with respect to y and then eliminating ¢ by sub-
tracting these two equations. This operation gives

(22 or (-2
2tt\ay oz ey 0Oz

and by using the expression for rotation @, from Eq. (3-41), we get

2%, _
P Py GV,
or
.
aa"j“ — iV, (3-47)
2

Similar expressions can be obtained for @, and ¢,, which implies that rota-
tion is propagated with velocity
by = \/9 (3-48)
P

From the above analysis it can be seen that an infinite elastic medium
can sustain two kinds of waves, that the two waves represent different types
of body motions, and that the waves travel at different velocities. The two
waves are usually referred to by the following terms:

(1) dilatational wave (primary wave, P-wave, compression wave,
irrotational wave), and

(2) distortional wave (secondary wave, S-wave, shear wave, equivo-
luminal wave).

The dilatational wave propagates with a velocity vp (Eq. 3-46), while the
distortional wave propagates with a velocity vy (Eq. 3-48). The terms
“P-wave” and S-wave” will generally be used in place of “dilatational wave”’
and “8istortional wave” in this text.

It is informative to compare the wave velocities determined for an infinite
clastic medium with those obtained in Sec. 3.1 for an elastic rod. The particle
motion associated with the compression wave in the rod and the dilatational
wave in the infinite medium is the same, but the wave-propagation velocities
are different. In the rod v, = N E/p, but in the infinite medium vp =
v (4 + 2G)/p. This means that the compression wave will travel faster in
the infinite medium than in a rod. The compression wave travels faster in the
infinite medium because there can be no lateral displacements, while in the
rod lateral displacements are possible. The second type of wave motion
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(distortional) propagates at the same velocity (v = \a-fE/;) in both the rod
and the infinite medium.

3.3 Waves in an Elastic Half-Space

In Sec. 3.2 it was found that two types of waves were possible in an
infinite elastic medium—waves of dilatation and waves of distortion. In an
elastic half-space, however, it is possible to find a third solution for the equa-
tions of motion which corresponds to a wave whose motion is confined to a
zone near the boundary of the half-space. This wave was first studied by
Lord Rayleigh (1885) and later was described in detail by Lamb (1904).
The elastic wave described by these investigators is known as the Rayleigh
wave (R-wave) and is confined to the neighborhood of the surface of a half-
space. The influence of the Rayleigh wave decreases rapidly with depth.

Rayleigh-Wave Velocity

A wave with the characteristics noted above can be obtained by starting
with the equations of motion (Eqs. 3-42, 3-43, and 3-44) and imposing the
appropriate boundary conditions for a free surface. We define the surface
of the half-space as the x-y plane with z assumed to be positive toward the
interior of the half-space, as shown in Fig. 3-12. For a plane wave traveling
in the x-direction, particle displacements will be independent of the y-
direction. Displacements in the x- and z-directions, denoted by » and w
respectively, can be written in terms of two potential functions @ and \¥':

_ o  av¥ b oV
+ — w
ax oz oz Ox

The dilatation € of the wave defined by v and w is

€ =

Y T o ox oz 0z ox

du | ow 3(@ 6‘1") (B(D BLP') V0
ax‘ 0z ox oz

and the rotation 2, in the x-z plane is

cu w _ (BCD I a_‘l") d (a(D ﬂ”) _ vy

oz)  ox\oz ax

Now it can be seen that the potential functions @ and ¥ have been chosen
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Plane Wave Front

Figure 3-12. Coordinate conven-
tion for elastic half-space.

such that @ is associated with dilatation of the medium and ¥ associated

with rotation of the medium.
Substituting v and w into Egs. (3-42) and (3-44) yields

02 (a%) 452 (azqf) (A+26) (V2CD) 62 (VZ‘P‘) (3-49)

ax\a) T Paz\ar
and
2 2
pi(a_fb) 3(”’) - +2G)—(V2d>) —(vﬂl}') (3-50)
z\ o7’ ax or

Equations (3-49) and (3-50) are satisfied if

2
70 _ 2120 qg iy (3-51)
o p
and
20
Cik (9) VI — VR (3-52)
or P

Now, by assuming a solution for a sinusoidal wave traveling in the
positive x-direction, expressions for @ and ¥ can be written

¢ = F(z) exp [i(wt — Nx)] (3-53)
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and
' = G(z) exp [i{eot — Nx)] (3-34)

The functions F(z) and G(z) describe the variation in amplitude of the wave
as a function of depth, and ¥ is the wave number defined by

N ===
L
where L is the wave length.
Now, substituting the expressions for © and ¥ from Eqgs. (3.53) and
(3-54) into Egs. (3-51) and (3-52) yields

— S’; F(z) = —N*F(z) + F'(z) (3-55)
5
and
— %2 G(z) = —N*G(z) + G"(2) (3-56)

5

By rearranging Eqs. (3-55) and (3-56), we get

F(z) — (N2 - “—’2) F(z) = 0 (3-57)
vp
and
G'(z) — (N2 _ ‘i:) G(z) = 0 (3-58)
tg

where F'(z) and G”(z) are derivatives with respect to z. Now, letting

2
g° = (N2 - ;%) (3-59)
and F
2
5% = (N2 - ‘;’—2) (3-60)
s

Egs. (3-57) and (3-58) can be rewritten as

F'(z) — ¢°F(z) =0 (3-61)
and

G'(2) — 52G(z) = 0 (3-62)
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The solutions of Eqs. (3-61) and (3-62) can be expressed in the form

F(z) = A, exp (—qz)} + B, exp (g2) (3-63)
G(z) = A, exp (—sz) + By exp (s2) (3-64)

A solution that allows the amplitude of the wave to become infinite with
depth cannot be tolerated; therefore,

B, =B,=0
and Eqs. (3-53) and (3-34) become

D = A4, exp [—gz + i(wt — Nx)] {3-65)
and
Y = A, exp [—sz + i{wt — Nx}] (3-66)

Now, the boundary conditions specifying no stress at the surface of a
half-space imply that ¢, = 0 and 7,,, = 0 at the surface z = 0. Therefore, at
the surface,

g, = i€ -} 2Ge, — Aé + ZGalv =0
oz
and
ow  Ou
z:c:sz:G_'f"i =0
T Y (ax az)

Using the definitions of » and w and the solutions for @ and 'f" from Egs.
(3-65) and (3-66), the above equations for boundary conditions can be
written

0, g = A [(A + 2G)g® — AN%] — 2i4,GNs = 0 (3-67)
ands

Toxlzeo = 2043 Ng + Ap(s2 + N =0 (3-68)

Upon rearranging, Eqs. (3-67) and (3-68) become

4, + 2G)¢*> — N®
A, 2iGNs

—1=0 (3-69)

and
A, 2giN

—_ 1=0 3-70
FREs (3-70)
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Now we add these two equations to get

(A+2G)g" — AIN®  2giN

3-71
2iGNs §° 4 NP ( )

and cross-multiply in Eq. (3-71) to obtain
49GsNt = (s 4+ N?) [(1 + 2G)¢® — AN? (3-72)

Squaring both sides of Eq. (3-72) and introducing ¢ from Eq. (3-59) and s
from Eq. (3-60), we get

; 2 2
16G2N4(N2 - %) (N2 - Ei)

Up 1)28
= | (1 +2G NZ——E)f —AN22N2+ Nﬂuﬁ ’ 3-73
(4 +2G) 2 X (3-73)
P 8

Now, dividing through by G*N®, we obtain

2 2 2 2 2 .2
)T T
vLN? veN? G vuN? vy N?

(3-74)

Then, using the following relationships derived in the footnote* gives

2 2

w Vg 2,2
= =a'K 3-75
vLN® 0, (3-75)
2 2
o — = — K (3-76)
vgN vy
1426 1 22— (3-77)
G o 1 — 2y
* By definition,
n2r
L
or
= 27
N

(Let Lz and v, be the wave length and velocity, respectively, of the surface wave.)
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Eq. (3-74) can be written

16(1 — o?K2)(1 — K*) = (2 - izazx'ﬂ)z(z — K (3-78)
oL

After expansion and rearrangement, Eq. (3-78) becomes
Kt — 8K + (24 — 16aH)K* + 16(c* — 1) =0 (3-79)

Equation (3-79) can be considered a cubic equation in K* and real valued
solutions can be found for given values of ». The quantity X represents a ratio
between the velocity of the surface wave and the velocity of the shear wave.

Also,
v 2mp
Ly=—2="42
/
and, from above,
27 pplw
Ly="—=
N w
therefore,
o
N=—
vg
and
YA
o
Let K and = be defined such that
2 2
v v .
X Kk* and - =oK?
v v
Then
w2 E)j* _ ke
vEN? o}
and
w? _ vi — Kt
Nt
& g

Subshitution of vy and vy from Eqs. (3-46) and (3-48) gives

A4 26
1 v p A+ 2G
x? H g G
P
and using
_ A
T2+
we get
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Figure 3-13. Relation between
R-Waves . . . -
Poisson’s ratio, v, and velocities of
propagation of compression (F),
0 ok 0{2 03 0‘_4 0.5 shear (5), and Rayleigh (R) waves
in a semi-infinite elastic medium
Poisson's Ratio, » {from Richart, 1962},

From this solution it is clear that K2 is independent of the frequency of the
wave; consequently, the velocity of the surface wave is independent of fre-
quency and is nondispersive.

Ratios of vy,/vg and vpfvg can be obtained from Eq. (3-79) for values of
Poisson’s ratio » from 0 to 0.5. Curves of these ratios as a function of » are
shown in Fig. 3-13,

Rayleigh- Wave Displacement

So far, a relationship for the ratio of the Rayleigh-wave velocity to the
shear-wave velocity has been obtained, but additional information about the
Rayleigh wave can be determined by obtaining the expressions for «# and w
in terms of known quantities. Upon substituting the expressions for @ and
¥ from Eqgs. (3-65) and (3-66) into the expressions for v and w, we get

ob  d¥
‘= ox - 0z
= — AN exp [—gz + i(wt — Nx)] — Ags exp [—sz + it — Nx)]
(3-80)
and

b v
w2082
dz  ox

= —A,iNexp [—gz + i(wf — Nx)] + AN exp [—sz + i(wt — Nx)]
(3-81)

sEC. 3.3 WAVES IN AN ELASTIC HALF-SPACE 87

From Eq. (3-70) we can get

and substitution of A, into Egs. (3-80) and (3-81) gives

u == A1|: —iN exp (—q¢z) + gzlisj:fz ¢Xp (—SZ)} exp i(wt — Nx) (3-82)
$

and

w = A, 24N° exp(—sz) — g exp (—qz)jl exp (et — Nx) (3-83)
S2 + N2

Equations (3-82) and (3-83) can be rewritten

2435
N
u = A, Ni{ —exp [f i(zN)} + zN exp [— i(zN)}
N s N
v
x exp (e — Nx)  (3-84)
and
&
w= AN S2——exp [— %(ZN)] - %exp l:f %(zN)]
2 ‘+- 1
N.‘

x exp i{wt — Nx) (3-85)*

Now, from Egs. {3-84) and (3-85), the variation of & and w with depth can be
expressed as

245
' U(z) = —exp {— l(zN)} + 2N N exp |:— i(zN)j| (3-86)
N 5 N
N2
and
24
W(z) = 7 N 1 exp [f %(ZN)} — %exp [— %(ZN)} (3-87)
N

* The significance of the presence of i in the expression for « (Eq. 3-84) an.d its absence
in the expression for w (Eq. 3-85) is that the #-component of displacement is 90° out of
phase with the w-component of displacement.
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The functions U(z) and W{(z) represent the spatial variations of the displace-
ments u and w. Equations (3-59) and (3-60) can be rewritten

2 2
g o
—=1- 3-88
NE N2 (3-88)

and

5‘2 ()
=1 - 3-89
N? N (-89)

and then, using Eqs. (3-75) and (3-76), Eqs. (3-88) and (3-89) can be reduced
to

%—2 =1 - 2K? (3-90)
and

s C

S=1-K (3-91)

Now, t/(z) and W(z) can be evaluated in terms of the wave number N for
any given value of Poisson’s ratio. For example, if » = 1, U(z) and W(z)
are given by

U(z) = —exp [—0.8475 (zN)] + 0.5773 exp [—0.3933 (zN)] (3-92)

and

W(z) = 0.8475 exp [—0.8475(zN)] — 1.4679 exp [—0.3933(zN)] (3-93)

Figure 3-14 shows curves for U(z) and W(z) vs. distance from the surface in

wave lengths of the Rayleigh wave (L) for Poisson’s ratios of 0.25, 0.33,
0.40, and 0.50.

Wave System at Surface of Half-Space

In preceding paragraphs expressions have been determined for the wave
velocities of the three principal waves which occur in an elastic half-space.
Knowing these velocities, we can easily predict the order in which waves will
arrive at a given point due to a disturbance at another point. In addition to
predicting the order of arrival of the waves along the surface, Lamb (1904)
described in detail the surface motion that occurs at large distances from a
point source at the surface of an ideal medium.
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Figure 3-14. Amplitude ratio vs. dimensionless depth for Rayleigh wave.

Under the conditions considered by Lamb, a disturbance spreads out
from the point source in the form of a symmetrical annular-wave system.
The initial form of this wave system will depend on the input impulse; but
if the input is of short duration, the characteristic wave system shown in Fig.
3-15 will develop. This wave system has three salicnt features corresponding
to the arrivals of the P-wave, S-wave, and R-wave. The horizontal and
vertical components of particle motion are shown separately in Fig. 3-13.
A particle at the surface first experiences a displacement in the form of an
oscillation at the arrival of the P-wave, followed by a relatively quiet period
leading up to another oscillation at the arrival of the S-wave. These events
are referred to by Lamb as the minor tremor and are followed by a much larger
magnitude oscillation, the major tremor, at the time of arrival of the R-wave.

The time interval between wave arrivals becomes greater and the
amplitude of the oscillations becomes smaller with increasing distance fr(?m
the source. In addition, the minor tremor decays more rapidly than the major
tremor. It is evident, therefore, that the R-wave is the most significant dis-
turbance along the surface of a half-space and, at large distances from the
source, may be the only clearly distinguishable wave.
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Figure 3-15. Wave system from surface point source in ideal medium (after
Lamb, 1904).

By combining the horizontal and vertical components of particle motion
starting at points (I} in Figs. 3-15a and b, the locus of surface-particle motion
for the R-wave can be drawn as shown in Fig. 3-15¢c, The path of the particle
motion describes a retrograde ellipse, in contrast to the prograde-eilipse
motion associated with water waves.

Most real earth-motion records are more complex than indicated in Fig.
3-15, due to the variation between ideal elastic-half-space theory and the
real earth. Some of the deviations which account for the differences between
the ideal and the real earth are (1) layering in the earth, (2) inhomogeneities
in the earth, (3) the curvature of the earth’s surface, and (4) multishock
input sources instead of single impulse.

Wave Field Generated by Circular Footing
So far, the basic theory of waves in an ideal elastic half-space has been

presented. Now we need to combine and expand on this information to
]
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obtain a picture of the wave field generated by a circular footing undergoing
vertical oscillations at the surface of a half-space. The energy coupled into
the ground by a footing is transmitted away by a combination of P-, 5-, and
R-waves.

The basic features of this wave field at a relatively large distance* from
the source are shown in Fig. 3-16a. The distance from the source of waves to
each wave front in Fig. 3-16a is drawn in proportion to the velocity of each
wave for a medium with » = 1. The body waves propagate radially outward
from the source along a hemispherical wave front (heavy dark lines in Fig.
3-16a) and the Rayleigh wave propagates radially outward along a cylindrical
wave front. All of the waves encounter an increasingly larger volume of

Circular Footing

¢ 2 Geometrical r—2 r—0.5
_w Domping Low ¢ o

JE S . —T-
R/f > h Wave ]

- ! ayleiy v

v=0.25 + /Ver1. Horiz.
N A omp. Comp.
) m~Shear Wave Relative
Ve R, Amplitude
X gyl \

r..
Geometrical
amping Low

co”’Dression Wave

Shear T
Window J ¥
{a)
. Per Cent of
Wave Type Total Energy
Rayleigh 67
Shear 26
Compression ’
{b}

Figure 3-16, Distribution of displacement waves from a circular footing ona
homogeneous, isotropic, elastic half-space (from Woods, 1968).

* According to Lysmer (1966), a distance of 2.5 wave lengths from the source is a
large distance.
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material as they travel outward; thus, the energy density in each wave de-
creases with distance from the source. This decrease in energy density or
decrease in displacement amplitude is called geometrical damping. 1t can be
shown (Ewing, Jardetzky, and Press, 1967, for example) that the amplitude
of the body waves decreases in proportion to the ratio of 1/r (r is the distance
from the input source) except along the surface of the haif-space, where the
amplitude decreases as 1/r2, The amplitude of the Rayleigh wave decreases
as 1 /\/ r.

The particle motion associated with the compression wave is a push-puil
motion parallel to the direction of the wave front; the particle motion associ-
ated with the shear wave is a transverse displacement normal to the direction
of the wave front; and the particle motion associated with the Rayleigh wave
is made up of two components (horizontal and vertical) which vary with depth
as shown in Fig. 3-16a. The shaded zones along the wave fronts for the body
waves indicate the relative amplitude of particle displacement as a function
of the dip angle (the angle measured downward from the surface at the center
of the source) as calculated by Miller and Pursey (1954) and T. Hirona (1948).
The region of the shear-wave front in which the larger amplitudes occur is
referred ta as the shear window.

For a vertically oscillating, uniformly distributed, circular energy source
on the surface of a homogeneous, isotropic, elastic half-space, Miller and
Pursey (1955) determined the distribution of total input energy among the
three elastic waves to be (as shown on Fig. 3-16b) 67 per cent Rayleigh wave,
26 per cent shear wave, and 7 per cent compression wave. The facts that
two-thirds of the total input energy is transmitted away from a vertically
oscillating footing by the Rayleigh wave and that the Rayleigh wave decays
much more slowly with distance than the body waves indicate that the
Rayleigh wave is of primary concern for foundations on or near the surface of
the earth.

ELASTIC WAVES
IN LAYERED SYSTEMS

An elastic half-space is appropriate as a model of the earth only as a
first approximation. Wave-propagation phenomena resulting from elastic-
half-space theory must be further refined to understand elastic-wave propaga-
tion in the earth. By considering a layered half-space as a model, it is possible
to improve the correlation between wave-propagation theory and observed
wave phenomena.

4.1 Distribution of Wave Energy at Boundaries
Two Half-Spaces in Contact

*In general, when a body wave traveling in an elastic medium encounters
an interface with another elastic medium, some of the incident-wave energy
will be reflected into the first medium ard some energy will be transmitted
into the second medium. Using the theory of elasticity, Zoeppritz (1919)
determined the nature of the reflected and transmitted waves and the distri-
bution of energy between these waves. There are, of course, two body waves
to consider, but one of these—the shear wave—must be separated into two
components before we may consider energy partition at an interface. The
two components to be considered are the S¥-wave, the component whose
motion is in a plane perpendicular to the plane of the interface, and the
§H-wave, the component whose motion is in a plane parallel to the interface.

93
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Figure 4-1. Partition of elastic wave at interface between two elastic media.

For an incident P-wave (P), as shown in Fig. 4-1a, there will be four
resultant waves: (1} a reflected P-wave (P-P,), (2} a reflected SV-wave
(P-5V)), (3) arefracted P-wave (P-P,), and (4) a refracted SV-wave (P-SV,).
The two components of the shear wave, SV and SH, must be considered
separately in describing the resultant waves at an interface. The resultant
waves from an incident SV-wave are: (1) a reflected SV-wave (SV-SV,), (2)
a reflected P-wave (SV-P;), (3) a refracted SV-wave (SV-SV,), and (4) a
refracted P-wave (SV-P;), shown in Fig. 4-1b. While incident P and SV-
waves each produce resultant P- and SV-waves, an incident SH-wave pro-
duces only SH-waves. The SH-wave does not produce a P-wave because it
has no component normal to the plane of the interface. The resultant waves
from an incident SH-wave are reflected SH-wave (SH-SH,) and refracted
SH-wave (§H-SH.,), shown in Fig. 4-1c.

The angle at which a resultant wave leaves the interface depends on the
angle at which the incident wave approaches the interface and the ratio of
wave velocities of the two media. Exit angles for all waves can be found from
Snell’s law: '

sina _sinb _sine _ sinf

(4-1)

Up Vg1 Upg Uge

where the angles a, b, e, and f'are measured from the normal to the interface
and are defined in Fig. 4-1, and where

vp = velocity of the P-wave in medium 1,
v = velocity of the S-wave in medium 1,
b = velocity of the P-wave in medium 2, and
vge = velocity of the S-wave in medium 2.
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Zoeppritz expressed the distribution of energy among the resultant waves
in terms of incident- and resultant-wave amplitudes, (The energy transmitted
by an elastic wave is proportional to the square of the displacement amplitude
of the wave.) The equations are written as follows:

For incident P-wave—

(4— C)sina+ Dcgosb — Esine + Fcosf= 0 (4-2)
(A -+ Cyeosa+ Dsinb — Ecose — Fsinf=0 (4-3)

—(4 + C)sin2g + D YPt (55 2b + E P2(U‘92) UPL Gin 2
Ush ~ 1/ Upe

2
—F f’f(”—ﬂ) VPl o5 2f = 0 (4-4)

P1\Ug1/ Vga

(A —C)cos2b+ DI gin2p + EL2 2 g 0p 1 p P2 IS G g

Upy PLVp1 PrLle
(4-5)
For incident SV-wave-—
(B+ D)sinb+ Ccosa — Ecose — Fsinf =0 (4-6)
(B— D)cosh + Csina + Esine — Fcosf=0 @7
2
(B4 Dycos2b — C 'sin2a + EL2-U82 ginge — FEI2 0507 =0
Un P1 Vsl ps P1Us;
(4-8)
—(B— Dysin2b 4+ C 'cos2b + EL2 P20052f+FP2 sin2f = 0
Ug1 P Us1 1V
(4-9)
'For incident SH-wave—
B4+ D—-—F=0 {4-10)
B‘“ D PEUS'ZCOSfF_O (4_11)

Py Vg cos b
where

A = amplitude of incident P-wave,
B = amplitude of incident S-wave,
C = amplitude of reflected P-wave,

D = amplitude of reflected S-wave,
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E = amplitude of refracted P-wave,
F = amplitude of refracted S-wave,
p; = density of medium 1,
pp = density of medium 2,

and the angles @, b, e, and f are defined in Fig. 4-1.

After Egs. (4-2) through (4-11) have been studied, it can be conciuded
that the amplitude of each resultant wave is a function of (1) the angle of
incidence of the incident wave, {2) the ratio of the wave velocities in the two
media, and (3) the ratio of densities of the two media. Therefore, for two
specified media the amplitude of resultant waves is a function of the incident
angle only. [t is possible, therefore, to calculate the amplitude of each re-
sultant wave for a given incident wave over a range of incident angles from
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Figure 4-2. Amplitude ratio vs. incident angle for P-wave (after McCamy
et al., 1962).
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Figure 4-3. Amplitude ratio vs. incident angle for SV-wave (after McCamy
etal., 1962).

0° to 90°. Equations (4-2) through (4-11) can be rearranged and solutions
obtained for the ratio of resultant-wave amplitude to incident-wave ampli-
tude. When the results of such calculations are plotted on a diagram of
ampjitude ratio vs. incident angle, an interesting and potentially useful
phenomenon can be observed; namely, for a given incident wave, each re-
sultant wave has relative maxima and minima amplitude ratios, depending
on theincident angle. Figures4-2 and 4-3 are examples of amplitude-ratio-vs.-
incident-angle diagrams for a situation where wave velocities and density are
greater in medium 1 than in medium 2. It can be seen, for example, in Fig.
4-2a that the amplitude ratio for the reflected P-wave (P-P,) is a minimum
when the angle of incidence of the incoming wave is about 60°. In Fig. 4-3b
it is seen that the minimum amplitude ratio for a reflected SV-wave (S7-SV})
from an incident $V-wave occurs at an angle of about 27°.

When the velocity of a reflected or refracted wave is greater than that of
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the incident wave, there will be a critical angle of incidence for which the
angle of reflection or refraction is 90°. For angles of incidence greater than
the critical angle, a disturbance which decays rapidly with distance from the
interface is created in place of the reflected or refracted wave. This disturb-
ance does not transmit energy away from the interface; therefore, the in-
cident-wave energy is partitioned among the remaining reflected and refracted
waves. For incident angles greater than the critical angle, the sine of the exit
angle is greater than unity, and complex functions must be introduced in
Egs. (4-2) through (4-11). This doubles the number of equations that must
be solved; however, the imaginary amplitude ratios for resultant waves
found from these equations have no physical significance, because these
waves do not transmit energy away from the interface. The dashed portion
of the curve in Fig. 4-3a represents this condition, It can be seen, for example,
that for the S¥V-P; wave to vanish, the incident angle must be greater than the
critical angle i,, which is given by

i, = arcsin (USI sin 90°) (4-12)
U
. - Ugy
i, = arcsin — (4-13)
Up1

It is clear that the critical angle is a function of the ratio vg,/vp, and this
ratio in turn is a function of Poisson’s ratio only.

Rayleigh Wave at Surface Discontinuity

We know from Chap. 3 that a large part of the total input energy from
a surface source is carried away from the source in the form of Rayleigh
waves; consequently, it is interesting to determine the mechanism that occurs
when a Rayleigh wave encounters an interface of velocity and density contrast.
This is essentially a problem of a surface wave at the interface of two quarter-
spaces in contact. A complete theory for a surface wave at the interface
between the two quarter-spaces is not currently available; however, some
work has been reported on a related problem, a Rayleigh wave at a corner
(Viktorov, 1958; deBremaecker, 1958; Knopoff and Gangi, 1960; Pilant
et al., 1964; Kane and Spence, 1963). At a corner, an incident Rayleigh
wave is partitioned among three types of waves: (1) a reflected Rayleigh
wave, (2) a transmitted Rayleigh wave, and (3) reflected body waves, as
shown in Fig. 4-4. The amount of energy carried away from the corner by
each type wave is a function of Poisson’s ratio and the corner angle. The
ratio of reflected-Rayleigh-wave energy to incident-Rayleigh-wave energy

)
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Figure 4-4. Partition of Rayleigh
wave energy at a corner.

as a function of the corner angle was determined in model studies by three
investigators (Viktorov, 1958; deBremaecker, 1958; Pilant et al., 1964) and
is shown in Fig. 4-5. The interesting phenomenon to note is that minimum
Rayleigh-wave energy is reflected at a corner angle of about 80°,

While the above information on R-waves at a corner does not apply
directly to the problem of R-waves along the surface of two quarter-spaces
in contact, it does present a basis upon which a qualitative estimate can be
made. An incident R-wave may be partitioned into (1) a reflected R-wave,
{2) reflected body waves, (3) a transmitted R-wave, (4) refracted body waves,
and (5) an interface wave. The distribution of energy among these waves will
depend on the angle of the interface and the properties of the two quarter-
spaces.
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Figure 4-5. Ratio of reflected R-wave energy to incident R-wave energy vs.
corner angle.
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Implications of Horizontal Layering

It has been shown that elastic waves will be at least partially reflected
at an interface between two media, and if horizontal layering occurs in a
half-space—as shown in Fig. 4-6—some energy originating at the surface and
traveling into the half-space will return to the surface. If more than one
interface exists, waves may be reflected back to the surface from each
layer, This reflected energy is partially responsible for the complications in
seismic-wave arrival records obtained at recording stations at the surface of
the earth.

When any reflected wave returns to the surface of the layered half-space,
it encounters the interface between solid and void where it will be totally
reflected. Multiple total reflections within the upper layer can generate a
second type of surface wave called the Love wave. Love first described this
wave in 1911; it consists of a horizontally polarized shear wave. Ewing,
Jardetzky, and Press (1957) describe the Love wave as a “horizontally
polarized shear wave trapped in a superficial [ayer and propagated by multiple
total reflections.”

For Love waves to be confined to the superficial layer, it is necessary
that the phase velocity of the Love wave be less than the shear-wave velocity
in the next lower layer. A Love wave will not occur if the superficial layer is
the higher-velocity layer. The Love wave travels with a velocity which is
between the shear-wave velocity of the superficial layer g, and the shear-wave
velocity of the next lower layer vg,.
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Figure 4-6. Multiple wave reflec-
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4.2 Elements of Seismic Methods

It is difficult to obtain information on in-sifu soil properties below the
uppermost layer of the earth by conventional sampling methods. There are
important advantages, therefore, in using seismic methods which can be
performed at the surface yet which yield wave propagation and profile in-
formation for materials situated at lower depths.

Direct-Arrival Survey

In problems concerning vibrations of soils and foundations, it is neces-
sary to use soil moduli obtained from low amplitudes of vibration. Seismic
methods are well suited for obtaining these moduli because they are based on
elastic-wave theory. It was shown in Eq. (3-48), for example, that to compute
the shear modulus it is necessary to determine the density of the material and
the shear-wave velocity. At the surface of the earth, it is relatively easy to
determine the density, and from seismic techniques it is easy to obtain the
velocity of the shear wave, or of the Rayleigh wave, which is practically the
same. With this information the shear modulus can be computed.

The wave system shown on Fig. 3-13 was generated by an impulsive
source on the surface of an ideal haif-space. Three distinct arrivals were
indicated which represented waves traveling directly from the source to the
receiver. By recording the wave system at several receivers located at in-
creasing distances along a radius from the source, the velocity of ail three
waves can be determined. Figure 4-7a is a representation of an impulsive
energy source and three receiver stations R;, Ry, and R,. Figure 4-7b shows
three travel-time curves constructed by plotting the wave system recorded at

S
Ry Ra R3
J T U
: & & | R R R R
{a)
[y
R R-wWave
S-Wove
o
£ 1 1
e YR vy
P-Wave
1
Ve
x
Figure 4-7. Travel-time curves Distance
from direct arrivals, (b
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each receiver station. A line drawn through the first arrivals for each
identifiable type of wave represents the travel-time curve for that parti.cular
wave. The slope of each travel-time curve is the reciprocal of the velomty -of
the wave it represents. While this technique for determining wave velocities
is simple in concept, it is not often easy to accomplish. Wave-arrival records
for receivers on real soils are usually complicated, and often the only clearly
distinguishable arrival is that of the direct P-wave. Of course, if Poisson’s
ratio for the soil is known or can be estimated, rg and vy can be found from
vp, using the curves in Fig. 3-13. The wave-propagation velocities dete_:r-
mined from the first P-wave arrival are representative only of the material
along the surface, and other techniques must be employed to obtain wave-
propagation data for lower layers.

Reflection Survey

The P-wave will be the first wave to arrive at a given point along any
given path, and the first arrival is the easiest to identify; tlllerefore, ir} the
following discussions of seismic methods only the P-wave will b.e described.
The wave front of the P-wave, as shown in Fig. 3-16a, is a hemisphere, but
to simplify the diagrams in these discussions, ray theory will be used to repre-
sent traveling waves. In ray theory the wave path is represente.d by a ray
which is perpendicular to the wave front and parallel to the direction of wave
propagation. _ _

In Fig. 4-8a a half-space with a horizontally oriented surface layfer is
shown. Assuming S to be an impulsive energy source and R a receiver,
two paths can be traced along which wave energy can travel frqm S to If;
One path is directly along the surface from S to R. This is the “direct-wave

1

5 R 1
—x— —
3 K 1
VPt
Reflected
Waove
Direct Wave
| 2_HT
P12 VP Vg Vp1i ' X
A
S {P-S,) P22 ¥p21 Vs2
(P-Pal
{o) (b)

Figure 4-8. Ray paths and travel-time curves for direct and refiected waves.
' ]
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path and the travel-time equation can be written as

te— — (4-14)

Upn

in which ¢, is the travel time of the direct wave. The other path shown in Fig.
4-8a is composed of the ray from S to the interface 4 and back to the surface
at R. This ray s called the “reflected wave” and its travel-time equation can
be determined as follows:

Total distance traveled — 25A4.

I

254 2/ N
24 =2/(2) + #

Vi)
therefore,

- Distance traveled 254 N Vx4 4H* (4-15)
’ Wave velocity Upny Upy

Equation (4-15) represents a hyperbolic relationship between x and f,.
Figure 4-8b shows the travel-time curves for both the direct wave and the
reflected wave. For x very small, ¢, is simply 2H/v,,;; for x very large, ¢,
approaches 7, asymptotically.

To perform a reflection survey, the arrival times for the direct and re-
flected waves are recorded for receivers at the source and at several distances
from the source. Then the travel-time curves are plotted. For a layer in
which the velocity is not a function of depth, both vp, and A can be found.
From the direct wave, vp, is determined (v, = reciprocal of slope of travel-
time curve}; and then from the reflected wave the (x — 0)-intercept is scaled.
The dépth of the layer can be determined from the scaled (x = O)-intercept
value. If the wave velocity in the upper layer is a function of depth, the
average wave velocity may be determined from the (x == 0)-intercept providing
the thickness H can be determined independently. Reflections may also be
recorded from additional deeper interfaces, if they exist. For an analysis
of this more complex reflection problem, see Griffiths and King (1965) o
Ewing, Jardetzky, and Press (1957). )

There are limitations to the reflection method, however, the most im-
portant being that the reflected P-wave arrives at a recording station after
the receiver has already been excited by direct waves. Under these circum-
stances, it is often difficult to distinguish clearly the exact time of the reflected-
wave arrival. For this reason a seismic method which makes use of first

arrivals only is a distinct advantage. The refraction survey described next is
based on first arrivals only.
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Refraction Survey

Horizontal layering. If the upper layer of a horizontally layered half-
space has wave velocities lower than those of the second layer, a critical angle
of incidence (see Sec. 4.1) can be found for a P-wave which originates at the
surface and intersects the interface. The refracted P-wave (P-P,) generated
by the critically incident P-wave will travel parallel to the interface in the
lower medium, as shown in Fig. 4-9a. From ray theory, it would not be
expected that this critically refracted wave could be detected at the surface.
However, it can be shown by elasticity theory that the refracted wave causes
a disturbance along the interface and that this disturbance generates a wave
in the upper medium (Fig. 4-9b). This new wave is called the head wave,
and travels at a velocity v, in a direction inclined at (90 — i) to the inter-
face where i, is the critical angle of incidence.

All receivers along the surface at a distance from the source equal to or
greater than (2H tani,) will record a head-wave arrival. At receivers close
to the source in Fig. 4-10 (R, Ry, - - -) the direct wave will arrive before either
the reflected wave or the head wave, but there is some receiver R, at which the
head wave will arrive before either of the other waves because it travels for a
significant time in the higher-velocity lower medium. This wave—composed
of the initial P-wave from § to A, the critically refracted wave from A4 to B,
and the head wave from B to R,—will be referred to as the ““refracted wave.”

{ott— ()
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Figure 4-9. Head wave generated

by critically refracted P-wave.
I
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Figure 4-10. Ray paths for direct and head waves.

Travel-time equations can be written for the direct wave and the re-
_f racted wave. The travel time ¢, for the direct wave is given by Eq. (4-14) and
1s represented in Fig. 4-11b by the straight line through the origin with a slope
of 1/vp,. Using the notation in Fig. 4-11a, the travel time 1, for the refracted
wave can be written as follows:

H 1
t, =——— + —(x — 2H tan i,) + " (4-16)
Upy COSH,  Ups Uy COS I,
or
X 1 ]
f,=— + 2H( —— '“) (4-17)
Ups Uy COS i, Upg
Using the relationships
. . (2 2,
sini, =% and  cosi, = /1 —
Up2 Uj)z
t Direct 1
A Wove,/ —
Yp1
X
- Vp2
I Head Wave
I
|
I
- - r -x
¥pz > Vp1 P2:Vpz F_x. F._‘
(a) (b

Figure 4-11. Ray paths and travel-time curves for direct and head waves.
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Eq. 4-17 can be reduced to
] b 1 1
:h:i+2HCOSl°:l+2H/T*T (4-18)
Ups Upq Upe N g Vpy

Equation (4-18) represents a straight line in the x-# plane with alslope of
1/v 1, and an intercept on the r-axis at (2H ¢os i.)/vp;, as shown in Fig. 4-1 1b.
The distance x, from the source to the point at which the direct wave and the
refracted wave arrive at the same time js called the crossover distance (at
Xey Iy = 1,). By substituting x. for x in Egs. (4-14) and (4-18) and setting these
equations equal, an expression for x, can be found:

lg =1,

or

X, Xe . 2H cos i,

Vpp  Upg Up1
from which

Up v
X, = 2H /_” * Ui (4-19)
N vpy — vpm

Equation (4-19) can be rearranged and solved for the depth of the upper
layer:

H :x_c\/ffz_”& (4-20)
2 VNupy + vy

From a refraction survey three important unknowns can be obtained:
Up1, Ups, and H. Furthermore, this technique for obtaining seismic data is
reliable because all data are based on first arrivals.

Inclined layering. Up to this point, the analysis of the refraction tech-
nique has been limited to soil profiles with horizontal layering. Before treat-
ing the more general problem of inclined layering, it is necessary to introdu_ce
the concept of apparent wave velocity. Apparent wave velocity is the velocity
found by timing the passage of a wave between two closely spaced receivers.
A portion of a wave front is drawn in Fig. 4-12, and this wave front is in-
clined to the surface as it arrives at receiver stations a distance x apart. The
apparent velocity # of this wave front along the surface is given by

(4-21)

<
fi
bl o1

where ¢ is the elapsed time between arrivals at R,, and R,. The distance in the
!
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Wave Front

Figure 4-12. Apparent wave velocity.

direction of wave travel that the wave front moved is equal to (x sin 6),
where f is the angle of inclination. The elapsed time ¢ can also be written

- xsin0 (4-22)
&

where v is the phase velocity of the wave. Now, substituting Fq. (4-22) into
Eq. (4-21), the apparent velocity can be written

b= — (4-23)

It can be seen from Eq. (4-23) that when the wave front is parallel to the sur-
face (8 = 0°) the apparent velocity is infinite and when the wave front is
perpendicular to the surface (6 = 90%) the apparent velocity is equal to the
phase velocity.

It is of interest to digress and determine the apparent velocity of the
head wave in the case of a horizontally lavered system. This case is shown in
Fig. 4-13. The angle 0 is i,; therefore the apparent velocity of the head wave

R R
S X
VY
0 X Sin i,
¥P1
H
e iC Ie
b VAl P1:V¥P1
TR =
ez P21 Vpz
Vpz>Vpy

Figure 4-13. Apparent velocity of head wave for horizontal interface.
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can be written

- U
Up = 7,
sin i,
but
. v py
sin i, = £
Up2
$0
Uy = Upe

This confirms the fact that the apparent velocity in the case of a horizontal
upper layer is equal to the P-wave velocity in the second medium, vp,.

To analyze the problem of refractions from an inclined interface, the
diagram shown in Fig. 4-14 will be used. Note that the angle y at which the
interface is inclined is called the apparent dip and is equal to the true dip o
only if the line from S to R is in the plane of the dip angle. This also implies
that S, 4, B, and R are not in a vertical plane unless  is the true dip angle.

Now, the travel-time equations for the direct wave and the refracted
wave can be written. For the direct wave, 1, is given by Eq. (4-14). For the
refracted wave,

th:SAJrBRJrQ (4-24)
Up1 Vps
where
5S4 = HS. (4-25)
cos i,
— H
BR = —=£ (4-26)
cos i,
Hp=Hg+ xsiny and (4-27)
AB = xcosy — Hgtani, — Hptan i, (4-28)

Substituting Eqs. (4-25) through (4-28) into Eq. (4-24) and using the rela-
tionship
1 tan i, cos i (4-29)

Upy COS 1, Vg Upy
the travel time for the refracted wave can be written

[ — x[sm G, + tp)i| i 2Hgcos i, (4-30)
U Up1

Equation (4-30) is again the equation of a straight line with a slope given by
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Apparent Dip

Yp1 < ¥p2

Figure 4-14. Head-wave path for inclined interface.

the first term on the right and a r-axis intercept given by the second term on
the right. The travel-time curves for both direct and head waves are plotted
in Fig. 4-15a. In Fig. 4-15a it can be seen that the apparent velocity of the
second medium, fp,, is the reciprocal of the slope of the refracted-wave
travel-time curve.

There are still, however, two unknowns in Eq. (4-30): i, and ». To
obtain the data required for a complete solution—including the depth to the
interface, the apparent slope of the interface, and the P-wave velocities in
both media—the analysis must be repeated reversing the positions of R and
S, as shown in Fig. 4-16. Using this technique, called a reversed profile, it is
possible to get a different refracted wave travel-time equation:

, sin (i, — 2H i
rh=x[ ( ”’)] 4 REO L (4-31)

Upy Uy
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2Hg cos i,
Yp1
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Figure 4.15. Travel-time curves for direct and head waves.
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pal
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Figure 4-16. Reversed profile refraction survey.

Again, t,is given by Eq. (4-14). Figure 4-15b shows these travel-time curves.
The reciprocal of the slope of the refracted wave travel-time curve gives
another value for the apparent velocity of the second medium, 9p,. By
equating the apparent velocity dp, scaled from Fig, 4-15a to the bracketed
term of Eq. (4-30) and equating the apparent velocity iy, from Fig. 4-15b
to the bracketed term of Eq. (4-31), it is possible to obtain two equations in
two unknowns:

O U

and
1 _ [w} (4-33)
Tps Din

Equations (4-32) and (4-33) can be rearranged as

i, + w = arcsin !jPl (4-34)
Vg
and
i, — y = arcsin -2 (4-35)
Dpo

Equations (4-34) and (4-35) can be solved for v and i, and with known values
of p and /i, v;.; can be computed from
sin i, = Ui
Upg
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Then, Hg can be computed from Eq. (4-30) and Hj, can be computed from
Eq. (4-27).

Itis possible to determine the true dip angle & of the interface by running
two reversed profile refraction surveys along two lines intersecting at an
angle ¢, as shown in Fig. 4-17a. For the line SR the following relationship
can be obtained from the geometry of Fig. 4-17b:

sin 6 = 2K (4-36)

ER

. RER’
s5in _ 4-37
1 SR ( )

. ER
sin (90 — 0} == == = cos # 4-38
( ) SR {4-38)

Combining Eqs. (4-36) through (4-38), the following expression can be
obtained:
sin d(cos 0) = sin y, (4-39)

Similarly, for the line SR”,

sin dfcos (b — 8)] — sin vy, (4-40)

Equations (4-39) and (4-40) can be solved simultaneously for the unknowns
dand 9, or they can be solved by sine vectors, as shown in Fig. 4-17c.

4.3 Steady-State-Vibration Technique
Rayleigh Waves in Elastic Half-Space

It was noted in Sec. 3.3 that the seismic waves generated by a vertically
oscillating circular footing at the surface of a half-space were predominately
Rayleigh waves. It would be expected, therefore, that a motion transducer
with vertical motion sensitivity located at the surface of the half-space
would sense the vertical component of the Rayleigh wave. The displacéd
shape of the half-space surface at any instant in time due to a sinusoidal-
input source could be represented by a sine curve, as in Fig. 4-18. The dis-
tance between any two successive peaks (or troughs) is equivalent to one
wave length of the Rayleigh wave (denoted as Ly). The time variation of the
vertical displacement at the vibration source can be expressed as

Z(1) = sin wt (4-41)
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At any other point on the surface of the half-space, the time variation of
vertical displacement can be expressed as

z(1) = sin (wr — ¢) (4-42)
where ¢ is a phase angle. Equation (4-42) can be rewritten as

2afr

'r

z(t) = sin (et — ¢} = sin @ (t — _r_) = sin (wt — ) (4-43)

Vg
where r is the distance from the vibration input to the point. At the source of

vibrations, r = 0 and ¢ = 0, but at a distance r = L 5 from the source,

_ 2tz (4-44)

rn

¥

Atr = Ly, the phase angle is 27, and v can be written as
vr =fLr (4-45)

It can be seen from Eq. (4-45) that v can be computed from the measured
value of Ly at any input frequency f. Also, because vy is approximately
equal to vg, the shear modulus can be computed by substituting v 5 from Eq.
{4-45) in Eq. (3-48).

In the United States, most of the development of steady-state-vibration
techniques for subsurface soil exploration have been contributed by the U.S.
Army Corps of Engineers, Waterways Experiment Station (WES), Vicks-
burg, Mississippi. Since about 1960, soils engineers at WES have conducted
many steady-state—vibration surveys in conjunction with routine soil borings
and seismic exploration to establish techniques by which reliable soil data
can be obtained (see Fry, 1963 and 1965).

The theoretical attenuation with depth of both components of the R-
wave were shown in Fig. 3-14. On the basis of those attenuation curves it is
reasonable to assume that the bulk of the R-wave travels through a zone of
the half-space about one-wave-length deep. It could further be postulated
that the average properties within this zone approximate the properties at a
depth of one-half wave length (L¢/2).* '

By decreasing the frequency of the vibrations from an initial value, the
wave length increases and the R-wave effectively samples a greater depth.
Conversely, by increasing the frequency the wave length decreases and the

* Field investigations reported by Heukelom and Foster (1960), Fry (1963), and
Ballard (1964) indicate that this assumption is reasonable for uniform- and layered-soil
media.
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Figure 4-19. Determination of average wave length of Rayleigh wave.

sampled depth decreases. For a homogeneous, isotropic, elastic half-space
the material properties are independent of depth; therefore, all frequencies
will yield the same velocity. For an elastic half-space in which the elastic
properties change gradually with depth, v, varies with the frequency of the
input excitation. In this case different wave lengths effectively sample material
with different average elastic properties. It is possible, therefore, to obtain
valuable information on the elastic properties of a half-space whose properties
vary with depth from steady-state vibrations at the surface.

In a series of field tests, the authors investigated the variation with depth
of elastic properties of a silty fine sand using the steady-state technique. For
each of eight frequencies, Ly was determined. A straight line was fitted
through points plotted on a graph of distance from the source vs. number of
wave lengths from the source (Fig. 4-19). Each of the lines in Fig. 4-19
represents the data for one frequency. The reciprocal of the slope of each
line is the average wave length associated with each frequency. The shear-
wave velocity calculated for each frequency is plotted as a function of
one-half the wave length in Fig. 4-20. This is equivalent to a shear-wave—
velocity-vs.-depth profile. Borings at the site of these field tests showed that
the soil was uniform within the upper four feet. The results shown in Fig.
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Figure 4-20. Shear-wave velocity vs. depth in fine, silty sand.

4-20, therefore, indicate a soil whose elastic properties are a function of
overburden pressure. This is, of course, in agreement with known properties
of granular materials like the silty fine sand at this site.

The results presented in Figs. 4-19 and 4-20 were for a relatively shallow
depth. Investigators at the U.S. Army Corps of Engincers, Waterways
E}periment Station have investigated deeper soil strata using steady-state
vibrations. A plot of shear modulus-vs.-depth for a test in uniform sand was
reported by Ballard and Casagrande (1967) and is reproduced in Fig. 4-21,
In these tests the shear modulus was determined to a depth of 17 feet. At
other sites Ballard (1964) reported that depths of up to 170 feet were sampled
using the steady-state technique. In general, it has been found that greater
depths may be sampled in materials with higher values of shear modulus,

Rayleigh Wuve in Layered Half-Space

Ina ha]f—space consisting of a single layer over a semi-infinite medium,
the analytical expressions for R-wave propagation are very complex. How-
ever, the elastic properties of the upper layer can be determined from
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Fig. 4-21. Shear-wave velocity vs. depth in uniform, fine sand (ofter Ballard
and Casagrande, [967).

high-frequency (short wave-length) data, and the elastic properties of the lower
medium can be obtained from low-frequency (long wave-length) data. For
multilayered systems an analytical solution for vy is almost prohibitive, but
from field investigations it has been found that the R-wave propagates at a
velocity commensurate with the material through which the greater part of
the R-wave energy is transmitted. Heukelom and Foster (1960) reported an
investigation in which they were able to identify three R-wave velocities in
the four-layer highway profile, as shown in Fig. 4-22. In these tests the wave-
velocity-vs.-half-wave-length data correlated well with the true profile. Fry
(1965) reported on vibratory tests in which a layered rock was sampled to a
depth of about 95 feet, and good correlation with borings was obtained, as
shown in Fig. 4-23 on page 118.

A water table in a granular soil constitutes an interface to a compression
wave, but Rayleigh waves are influenced only slightly by a water table,
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Figure 4.22. Wave velocities observed on stratified soil as a function of
frequency and depth (after Heukelom and Foster, |960).

because the pore water cannot transmit shear. The influence of pore water on
shear-wave velocity is discussed in detail in Chap. 5. A general conclusion
1s that shear-wave velocity is insensitive to pore water. The insensitivity of

the S-wave and R-wave to the water table represents a distinct advantage for
steady-state techniques.
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Figure 4-23. Shear-wave velocity vs. depth in rock profile (after Fry, 1965).

While the cited cases have in general shown a good profile correlation,
the steady-state technique is not sufficiently sensitive to distinguish the exact
location of an interface. A clearer determination of a horizontal interface
can be obtained in some cases using Love waves as described in the next
section,

Love Wave in a Layered Half-Space

For a medium with a low-velocity layer on top of a higher-velocity layer,
Jones (1958) showed that steady-state Love waves could be used to deter-
mine the shear-wave velocity in the upper medium and the thickness of the

\
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upper layer. For a single surface layer the frequency equation for the Love
wave can be written as

wHi?t G T o
tan —(T - 1) S| (4-46)
Vst G,y -
Vi

where

L = wave length of vibrations,

v = phase velocity of the vibrations,
vg; = phase velocity of shear waves in surface layer,
tg: = phase velocity of shear waves in lower medium,
(G, = shear modulus in the surface layer,
G, = shear modulus in the lower medium, and

H == thickness of the surface layer.

The principal mode of Love-wave propagation corresponds to the lowest
branch of the tangent function for which

2 1/2
0 < Z—’Z—H(“T . 1) < (4-47)
Vg

For high frequencies (short wave lengths), an asymptotic solution for Eq.
{4-46) indicates that the velocity of the Love wave approaches the shear-wave
velocity for the upper layer. Similarly, at low frequencies (long wave lengths),
the Love-wave velocity approaches the shear-wave velocity in the lower
medium. A plot of distance-from-the-source-vs.-number-of-waves, similar
to Fig. 4-19, can be used to determine the average wave length of the Love
wave from which the shear-wave velocity may be calculated.

Jones also showed that for G,/G, ratios of 3 or greater in Eq. (4-46), the
solutions were approximately the same as for a ratio of G,/G; equal to
infinity. For the right-hand side of Eq. (4-46) equal to infinity, the principal
mode yields the following expression:

2 1/2 ‘
puil (if — 1) _ (4-48)
. L \vg 2
from which
,2 1/2
R
L \vg,
or, rearranging,
- — 1 1 (4-49)
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After further rearranging,

1 1 1 1
== — <t (4-59)

By plotting 1/v* vs. 1/f%, a straight line is obtained for which the slope is
—(1/16H%), and the 1/o® axis intercept gives the value of 1/v%,. An example
taken from Jones is given in Fig. 4-24, The data shown in Fig. 4-24 was
obtained at a site which consisted of an upper layer of silty clay and a lower
medium of gravel. The upper layer was about 5 feet thick and the ratio of
Go/G, was about 10/1. The layer thickness calculated from the slope of the
line in Fig. 4-24 is about 4.9 feet. Jones also presented a method for deter-
mining the depth of the upper layer in a system for which G5/, was less than
3. This method made use of theoretical curves and a trial-and-error pro-
cedure, but the method will not be presented here.

A description of the field equipment and techniques required to perform
the foregoing seismic tests can be found in Chap. 9.

1000 2
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[ 100 ]2
Frequency
Figure 4-24. Evaluation of thickness of layer from Love wave data (after
Jones, 1958).

PROPAGATION OF WAVES
IN SATURATED MEDIA

5.1 Introduction

In Chaps. 3 and 4 the topics of wave propagation in ideal solids were
treated. However, real soils have special characteristics which cause their
responses to wave energy to differ from those developed by ideal solids. The
voids in soil masses are filled with water, air, or mixtures of fluids, and these
pore fluids may significantly influence the dynamic behavior of soils. This
chapter includes a discussion of wave propagation in fluids and fluid-
saturated solids to illustrate, qualitatively, the dynamic behavior which might
be anticipated in fluid-saturated soils. Chapter 6 treats the dynamic behavior
of sails, including the nonlinear and inelastic response of the soil structure.

Before considering wave propagations in fluid-saturated bodies, it is
useful to review briefly the terminology employed in soil mechanics to de-
scribe the solid and fluid components of soils. An element of soil may be
represented by a column of unit cross-sectional area and total height V.
The volume of solid particles is then represented by a height ¥, and the total
volume of voids by a height V,, as shown in Fig. 5-1. The porosity n de-
scribes the portion of the total volume represented by the void spaces—

(5-1)

<=

—and the void ratio e describes the ratio of the volume of voids to the volume
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T Gas — *T of solids—
Y Water Se e e = Vo _n (5-2}
| ]

Vv

7T # i
f Solid 1 For a completely saturated soil the
\f olids I void space is completely filled with
L LLLL L L L

aliquid, usually water, and the degree
Figure 5-1. Phase diagram for elements Ofsafuration 5is 100 per cent. When
of soil. gas is present in the void space, the

degree of saturation is less than 100
per cent and the volume of fluid in the voids is described by Se, as noted in
Fig. 5-1. The unit weight » of soils at various conditions of water content is
defined conveniently in terms of void ratio e. The unit dry weight of soil is
defined as

1
-1 Gy, 53
Ya 11 e ¥ (5-3)

in which G, represents the specific gravity of the solid particles in the soil
and y,, is the unit weight of water (62.4 lb/ft?). Addition of water in the void
spaces increases the total wnit weight of the soil to

1+ e
in which the degree of saturation S is expressed as a decimal (S = 1.0 for
complete saturation). When the element of soil is completely submerged in
water, the submerged unit weight is

. (G, + ey, G, — 1
e L 5-5
1+ ¢ Vo 1+ey (3-3)

4
These fundamental relationships are required for the discussions of wave
propagation in mixtures and in soils, which follow a brief treatment of wave
propagation in ideal fluids.

In comparison with the theory for propagation of waves in elastic solids,
the theory for propagation of compression waves in fluids is relatively simple.
Since ideal fluids cannot develop shearing resistance, shear waves do not
occur, and only the compression waves need be considered. There is an
extensive body of literature in the field of hydrodynamics dealing with the
propagation of compression waves in fluids (see, for example, Lord Rayleigh,
1877, 1945; Lamb, 1879, 1945; Morse, 1948; and Streeter, 1961). These

!
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theoretical studies include the influences of many types of boundary con-
ditions on wave propagation in fluids and help to bridge the gap between the
theoretical behavior of ideal solids and the actual behavior of saturated or
partially saturated soils.

The propagation of smali-amplitude gravity waves in water is another
pbenomenon which is governed by the wave equation (Eq. 3-1) and which
may be useful for estimating the propagation of waves in soils. Gravity
waves are surface waves that have characteristics similar to Rayleigh waves
in solids. Thus, from studies of the propagation characteristics and the re-
fraction and diffraction of gravity waves in water (see for example, Wiegel
1964), we may obtain a qualitative picture of the behavior of Rayleigh waves
in soils.

5.2 Compression Waves in Ideal Fluids
Acoustic Waves in Air

Every elementary course in physics includes a discussion of the prop-
agation of sound waves in air, The behavior of the waves of compression
and rarefaction which propagate cutward from a source in air is described
by the wave equarion:

an — V% (5-6)

in which

p = the pressure developed by the sound wave,
v* = the Laplacian operator (=a%0dx? 4 2%dy? + 03/0z% for Cartesian
coordinates), and
v, = the velocity of sound in air,

a

Equation (5-6) applies for the particle displacement & and the density p,
as well as for the pressure p, and it is identical in form to Eq. (3-1). The
velocity of sound in air is

]
b, = /f‘a—pa (5-7)
Nop

in which k, is the ratio of specific heat at constant pressure to that at con-
stant volume, and p, is the mass density. For air, k, = 1.403, p, = 2117
Ib/ft?, and p, = 0.002337 Ib-sec?/ft* at the standard temperature of 20°C
and standard pressure of 760 mm of Hg (2117 Ib/ft? or 14.7 1bjin.?). This
gives v, = 1127 ftfsec ar the standard conditions. The wave velocity in air
varies with the pressure and temperature. The wave velocity at any
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temperature is related to the wave velocity at 0°C (v, = 1089 ftfsec) by

oC
- 1039\/ 1 (5-8)
e o

in which °C is the temperature in degrees centigrade.

The acoustic pressure may be expressed on the decibe! scale (db scale)
as a value represented by 20 times the logarithm to the base 10 of the ratio
of the actual pressure to a reference pressure. A standard reference pressure
in audioacoustics corresponds to a sound pressure of p, = 0.000204 dyne/cm?
(2.96 x 10~% Ib/in.2 or 4.26 x 1077 Ib/ft?). Thus, the db value for a pressure
of 1 1b/ft?, referred to the standard value, would be

1
db =201 — = 1274
(Po) 0810 2.6 % 107

In some instances the db scale is simply used to represent ratios of the
acoustic pressures; in these cases we may say that one quantity has a db value
relative to the db value of the other. The db scale may also be applied to
express the ratios of acoustic power by multiplying the logarithm to the base
10 of this ratio by a factor of 10. Further discussions of the application of the
db scale are given by Morse (1948) and Albers (1960).

Pressure Waves in Water

Waves of compression and rarefaction, the dilatational or acoustic
waves, are propagated in water according to the same laws that apply to
acoustic waves in air. An empirical expression for the velocity of sound in
fresh water at any temperature is

v, = 141,000 + 4217 — (3.7)¢* (5-9)

and for sea water at any temperature, salinity, and depth, it is (from Albers,
1960), .
v, = 141,000 + 421r — (3.7)22 4 1108 4 (0.018)d (5-10)

In Egs. (5-9) and (5-10}, v, is the velocity of wave propagation in centi-
meters per second, 7 is the water temperature in °C, S is the salinity in parts
per thousand, and 4 is the depth below the surface in centimeters. Thus, for
fresh water at 0°C, v,, = 141,000 cm/sec = 4630 ftfsec, and at 21.1°C
(70°F), v,, = 4860 ft/sec.
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It is important to keep in mind that the wave velocity in water is on the
order of 4800 ft/sec when measuring the propagation of the dilatational wave
in saturated soils. By introducing this value of », = 4800 ft/sec into the
expression for wave propagation velocity in water,

Uy = [—F (5-11)
Pu

a typical value for the bulk modulus B, (or modulus of volume compressi-
bility) of fresh water may be obtained as

Bw:(4800)23622—'147:4.47>< 107 Ibjf  or 310,400 Ibfin? (5-12)

This calculation shows that the bulk modulus of fresh water is on the order
of 300,000 Ib/in.%, Therefore, water is essentially incompressible when com-
pared with the compressibility of soils, and seismic methods for evaluating
propagation of the compression wave in saturated soils may be measuring
only the wave transmission in water.

Reflection, Refraction, and Diffraction of Waves

In this discussion, we shall consider a train of pressure waves prop-
agating through an ideal fluid at a wave velocity ». The periodic variations
in pressure may be represented by spherical surfaces, shown in Fig. 5-2a
ag a series of concentric circles. These circles represent the distance between
the maximum peaks of the pressure oscillations. The progress of the waves
may be identified by noting successive positions of these circles representing
the peak positions, or the “wave front.”

If we consider first the pressure wave propagating outward from a small
spherical source (Fig. 5-2a), the wave-propagation velocity » remains con-
stant but, because the wave energy is spread over a larger area as the spherical
wave front expands, the amplitude of vibration decreases according to 1]r.

The simple source represents a useful component of Huygens’ principle,
which states that every point on a wave surface becomes in turn a source for
a new disturbance. Thus, every point on a spherical wave surface sets up
new wavelets of spherical shape (see Fig. 5-2b). The enveloping surface for
all these new wavelets forms the new wave surface. This principle is useful
in explaining the propagation of a wave front at a reflecting surface, as shown
in Fig. 5-2c. On this diagram a unit length of the incident-wave front prop-
agating at a velocity v is represented by the line 4-B just as A touches the
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"\\ Original Wove Front at Time 15

New Wave Front at Time g + At

hiaoan

{b) Huygens’ principle.

(a} Waves propagating from a
spherical scurce.

{c) Wave reflection from
a plane surface.

{d} Refraction of wave passing from
medium having wave velocity o,
1o one having vp,

Figure 5-2. Wave phenomena in ideal fluids.

reflecting surface. After the interval of time At required for the wave to travel
the distance B-B’, the point on the wave front originally at B has reached B’
and the spherical front propagating from A at the same velocity v has also
traveled a distance A-A" (4-A4" = B-B') from A, as shown by the circle of
radius A-A" in Fig. 5-2c. The new wave front is formed by the surface which
passes through B’ and is tangent to the wavelets formed at all points along
the front, but represented by the wavelet from 4. The new wave front is
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represented by A'-B’ in Fig. 5-2c. From the geometry of this figure, it is
evident that the angle of incidence must equal the angle of reflection.

Huygens’ principle may also be used to describe refraction or change in
direction of the wave front as it passes from one medium with a wave velocity
#, to another medium with a wave velocity v,. Again an element of the wave
front A-B is shown in Fig. 5-2d just as A reaches the interface. After the
interval of time required for B to travel to B’ at the velocity »; in medium 1,
the wavelet from A4 has described a surface as shown by the circle in Fig.
5-2d having a radius v,Ar. The new wave front 4'-B" is now formed by the
envelope to this circle and point B’, and the direction of propagation is
perpendicularto A'-B’. Thus, the new wave front will have a different orienta-
tion to the interface than that for the incident wave. The relation between the
angle of incidence / and the angle of refraction r is established by Snell’s
law:

sini_ BB u (4-1)
sinr  A-A" v,

Refraction occurs whenever a wave passes through an interface between
materials which provide for different velocities of wave propagation, This
phenomenon is most familiar when related to the propagation of light through
different transparent materials, or sound through fluids having variations in
wave velocity because of changes in temperature. The refraction of gravity
waves in water, caused by changes in water depth, is similar to the refraction
of waves in soils, caused by changes in wave-propagation velocity.

A reduction in the depth of water through which a gravity wave passes
causes a reduction in wave velocity below that for deep water. Thus, gravity
waves approaching the shoreline at an angle are bent or refracted because
the inshore portion of the wave acts in shallower water and is slowed down;
consequently, the waves tend to swing around and conform to the bottom
contours. Considerations of refraction patterns of water waves are useful,
primarily in a qualitative sense, for estimating the influences in the changes
of the thicknesses and contours of soil layers on the patterns of propagation
for Rayleigh waves. Both gravity waves in water and Rayleigh waves in soils
are surface waves and are influenced by the ratio of thickness of the material
to the length of the propagating waves if this ratio is less than about 1.
Useful discussions of refraction of gravity waves in water are given by John-
son (1953) and Wiegel (1964).

Diffraction occurs for sound waves and for light waves, as well as for
gravity waves in water of constant depth. The theoretical solutions have
generally been developed for light or sound waves and then adapted to the
problems of gravity waves. Wave diffraction is developed by the interception
of incoming-wave energy by an irregular surface and the interaction of this
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Figure 5-3. Wave fronts and lines
of equal diffraction coefficients for

a semi-infinite rigid impervious

1
0 2 4 8 8 breakwater, with the incident
y waves normal to the breakwater
C {from Wiegel, 1964).

reflected and refracted wave energy with the original wave systems. The
diffraction of gravity waves near the end of a semi-infinite breakwater illus-
trates this type of problem (Wiegel, 1964). Figure 5-3 shows a train of waves
travelling perpendicular to a breakwater extending completely to the bottom
of a body of water of constant depth, The breakwater is impermeable and
rigid and extends an infinite distance to the right of point (y/L = 0). At the
time the incident-wave front reaches (x/L = 0), it is still a straight line.
However, at this point the wave to the right of point (y/L = 0) is intercepted
by the breakwater and reflected back to sea. The portion of the wave to the
left of point (y/L = 0) proceeds past the breakwater with the straight-line
portions of the front propagating as straight lines and the wavelets originating
from (y/L = 0) producing a circular wave front which develops waves behind
the breakwater.

It should be noted that dimensionless coordinates are used in Fig. 5-3
by relating the distances in the vicinity of the breakwater to the wave length
L of the incoming wave. The solid lines in Fig. 5-3 represent the wave fronts,
and the dotted lines represent values of the wave-diffraction coefficient K.
The wave-diffraction coefficient is the ratio of the wave amplitude in the zone
affected by diffraction to the incoming-wave amplitude. Thus a value of K’
less than /.0 identifies a region for which the breakwater has some beneficial
effect. '

The pattern of wave reduction behind the breakwater indicates the type
of shielding we might expect near the end of a semi-infinite trench excavated
completely through a soil layer for the purpose of intercepting Rayleigh
waves. A more realistic approximation to the case of a trench of finite depth
in soil is produced by the wave-diffraction patterns around floating break-
waters where some portion of the incoming-wave energy passes beneath the
structure and diffracts upward into the shielded zone.
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Propagation of Compression Waves in Mixtures

Solids suspended in liquids may produce an influence on the propagation
of the compression wave because their presence influences both the mass
density and the compressibility of the mixture. For the usual case of solid
particles suspended in water, the mass density is

_YuG. te

ot~ (5_13)
Ptot 2 1+e

in which G is the specific gravity of the solid particles and e is the void ratio.
The compressibility of the mixture is made up of the compressibility of the
fluid plus the compressibility of the solid particles in the form

e 1 1 1

]JreB_le—{-eEs

1 (5-14)
B
in which
B = bulk modulus of elasticity of the mixture,
B,, = bulk modulus of elasticity of water, and
B, = bulk modulus of elasticity of the solid particles.

Equation (5-14) is generally known as the Wood equation (Wood, 1930) for
compressibility of mixtures.

If we consider a simple mixture of quartz particles (for which the
specific gravity is 2.66 and the bulk modulus is 4.45 x 106 1b/in.?) and water,
we note from Eqs. (5-13) and (5-14) that the mass density and bulk modulus
of the mixture are dependent on the void ratio e. Therefore, the wave-
propagation velocity in the mixture, as defined by

/i (5-15)

| L —
o \4 Prot

also varies with e, Figure 5-4 shows the influence of changes in void ratio on
the ratio of compression-wave velocity in a mixture of quartz particles and
water to the compression-wave velocity in water. Note that, for void ratios
above about 1.2, the compression wave propagates more slowly in the mixture
than it does in water alone.

This variation of wave velocity with void ratio is of interest to those
involved with the reflection and absorbtion of sound waves at the sea bottom
(see, for example, Shumway, 1960, and Hamilton, 1963). Both laboratory
and in-situ sea-bottom tests have shown this decrease of sound-wave velocity
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Figure 5-4. Relation between compression-wave velocity and void ratio for
a mixture of quartz particles and water.

below that in water alone in bottom sediments for which the void ratio was
greater than about 1.2.
.~ The effect of small amounts of air in the water portion of the mixture is to
J reduce the wave-propagation velocity significantly. For less than 100 per
cent saturation, the volumes of air and water per unit volume V of soil are
(see Fig. 5-1)

A i) (5-16)
1+e
V=% y (5-17)
1-+e¢

in which S represents the degree of saturation expressed as a decimal. The
volume of solid particles in this unit volume is

1

= 14 5-18
Iy (5-18)

Vs

The total mass density of the solid-air-water mixture is

7h( Se +(1—S)eya G, ) (5-192)

Pm_g1+e (1+ ey, 14-e
or
Yuf Se G,
oo Tl 2€ 5-19b
Pros g(1+e 1+e) (5-19b)

because the product (1 — 8)y,[y,, is negligible.
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The combined bulk medulus of a volume V of an air-warer mixture is

B,
o T l‘; (5-20)
)
v \B,

As an example, consider the influence of 0.10 per cent of air bubbles in the
water on the bulk modulus of a unit volume of the air-water mixture. If
we take the conditions for which »,, = 4800 fifsec in de-aired water, then
B, = 310,4001b/in.%, Forair, B, = 30001b/ft> = 20.83 lb/in.2 at atmospheric
pressure. Then the bulk modulus for the air-water mixture is

_ 3103,;#(())(3100 = 19,500 1b/in.? (5-21)
1+ 0.001( — — 1)
20.83

aw

showing that the bulk modulus is reduced by a factor of about 16, For the
air-water mixture alone, the wave velocity is now

Pow —\/ Bo _ [U9S00(AAA21T) _ 0, ft/sec (5-22)
P (62.4)(0.999)

Thus, by including this small volume of air bubbles (0.10 per cent) in the
system, the wave-propagation velocity in the mixture is reduced by about a
factor of 4, (Streeter and Wylie, 1967, have included a more comprehensive
discussion of the effects of small amounts of air on the wave-propagation
velocities in fluids.) For soil-water-air mixtures, the wave-propagation
velocity can be evaluated from Eq. (5-15) after substituting 8,,, for B, in
Eq. (5-14) and calculating p,,, from Eq. (5-19).

This discussion of the effects of small amounts of air (or gas) in the pore
fluid of soils indicates that some control could be exerted on the wave-
transmisston characteristics of a saturated soil by introducing air bubbles.
The comparable problem has been attempted in a full-scale sitvation in Dover,
England, where a pneumatic breakwater was installed (see Evans, 1956
“A Wall of Bubbles...,” 1959; Kurihara, 1958). A wall of bubbies was
formed by compressed air escaping from a pipe laid on the sea bottom across
the mouth of the harbor. It was expected that the presence of the bubbles
would decrease the compressibility of the sea water in this location and
thereby decrease the propagation of wave energy into the harbor. This
pneumatic breakwater has been relatively successful, although there is some
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difference of opinion as to whether it is because the bubbles affect the com-
pressibility or because the bubbies cause a vertical current in the water.
Another application of bubbles in water to reduce dynamic forces has
been described by Graves (1968), in which a curtain of air bubbles has
effectively reduced hydraulic-blast forces on submerged structures.

5.3 Wave Propagation in Porous Saturated Solids

In Chap. 3 a discussion was presented of the propagation of waves in
ideal elastic solids, and in Sec. 5.2 the propagation of compression waves in
ideal fluids and mixtures was considered. A closer approximation to the
solution for elastic waves in soils can be obtained by studying the behavior
of porous elastic solids in which the pores are filled with a fluid, either air or
water.

Morse (1952) considered a medium consisting of solid granular materials
and fluid which filled the voids. Then he assumed the grains to be motionless
and incompressible, thereby restricting his analysis to the wave propagated in
the fluid, and evaluated the dissipation of the wave energy by viscous flow
through the pores. Sato (1952) treated a sphere of material which contained
a spherical hole full of fluid. Then he replaced this system by a sphere of
different radius (but with the original compressibility) of homogeneous
material and determined the elastic-wave velocities from this adjusted struc-
ture. Thus, he ignored the fluid motion. Zwikker and Kosten {1949), Paterson
(1955), Brandt (1955}, and Biot (1956) studied the elastic waves propagated
in saturated porous materials. Zwikker and Kosten assumed one-dimensional
strain in a porous clastic solid which contained air in the pores. They con-
sidered the coupled motion of the elastic structure and the air and obtained
two different velocities which they termed the disturbed elastic-structure wave
and the disturbed air wave. Brandtand Paterson studied the waves propagated
in saturated granular materials, both theoretically and experimentally.
The most complete treatment of the problem, presented by Biot (1956),
will be discussed here in some detail.

Biot Theory for Wave Propagation in Porous
Saturated Solids

Biot (1956) considered the general three-dimensional propagation of
both shear and compressive waves in a fluid-saturated porous medium. The
fluid was assumed to be a compressible liquid free to flow through the pores.
Assuming a conservative physical systern which was statistically isotropic,

1
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Biot derived the following stress-strain relations containing four distinct
elastic constants:

0, = 2Ge, 1 A6 + Cyé (5-23a)

0, = 2Ge, + 28 + Cye (5-23b)

0, = 20e, + Aé 4 Cyé (5-23¢)

T = 0Vni 7 =Gy T =Gy, {5-23d)
—p = Cgé + Cpe (5-23¢)

in which o, ¢, G. and 4 are as defined in Sec. 3.2, and

¢ = dilatation in the elastic structure,
€ == dilatation in the fluid,
p = total pressure acting on the fluid per unit area of cross-section of
porous material, and
Cg, Cx = constants relating to the coupling between the fluid and solid
constituents.

i/

If the total volume of the aggregate is held constant, then ¢ = 0 and/ |
Cr is seen to be a measure of the pressure required to push a certain addi- °

tional volume of fluid into the aggregate. Thus, Cp = nB, where 7 is the
porosity and B is given by Eq. (5-14). The constant Cy, is a positive quan-
tity. The constant C, is a coupling coefficient between the volume change of
the solid and that of the fluid. If p is taken as zero, then

i=— 9 (5-24)

If a pressure is applied to the elastic structure while p is zero, there will be a
volume change of the solid material of the elastic structure and also a de-
crease in the porosity which causes a flow of fluid from the element. The
volume change of the fluid thus produced should be a function of the
Poisson’s ratio of the solid, which indicates that C, probably has a value
which may be estimated from
Co .
0<—= <y (5-25)
Cr

For a system in which the dissipative forces are disregarded, the dynamic
equations of equilibrivm in the x-direction are

dor 074, = OF &*
e Do DT &5y 4 b, — U, 5.26
ax dy o9z o Ltz + pafu ! (5-262)
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and
op  * ., .
—_ = = — U, + U,—u, 5-26b
o (e pal ) ( )
in which

p = mass density of the elastic structure (solid particles),
p* = mass density of fluid, as given by the mass of fluid per unit volume of
porous material,
p4 = mass density of an additional apparent mass which relates to the
coupling between the fluid and the elastic structure,
u, = displacement of particles of the elastic structure in the x-direction, and
U, = displacement of the fluid particles in the x-direction.

Equations similar to Egs. (5-26) may be written for equilibrium in the y- and
z-directions.

By treating the equations of equilibrium (Eqgs. 5-26) in a manner similar
to that followed in Sec. 3.2, the velocities of the waves of rotation and dilata-
/ tion may be obtained. Biot found that for the fluid-saturated solid there was
only one rotational wave and that it involved coupled motion of the elastic
structure and the fluid. The equation governing the rotational wave is

(5-27)

6V — (ﬁ+ b )a_@

p* + pa/ ot
Equation (5-27) is the wave equation (see Eq. 5-6) expressed in terms of the

rotation of particles of the elastic structure @. The velocity of propagation of
the wave described by Eqg. (5-27) is

G 1/2
15+ P*PA
P*+PA

Ug =

(5-28)

which is the velocity of the shear wave in the elastic structure. Note that there
is no structural coupling between the elastic structure and the fluid, because
the fluid has no shearing stiffness. There is a rotation of the fluid, &, which is
related to the rotation of the elastic frame by

- P - .
P* + pa

The rotation of the fluid particles is in the same direction as that for the
particles of the elastic structure, From Egs. (5-27), (5-28), and (5-29), it is
seen that the only coupling in the rotational or shearing mode of oscillation

\
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is that developed by the relative motions of the solid and fluid as indicated
by the term involving the apparent additional mass density p,. In a real soil
p will vary with the grain size and permeability but, as a first approximation,
the total mass density of the saturated soil could be introduced into the
denominator of Eq. (5-28) to evaluate the shear-wave velocity.

For the ideal fluid-saturated solid, Biot found that rwe dilatational waves
are developed. One wave of dilatation (compressidﬁ wave) is transmitted
through the fluid and the other is transmitted through the elastic structure.
These two waves are coupled through the stiffnesses of the solid and fluid
components of the system as well as through the coupling effect produced
by motions of the solid and fluid.

It is because Biol's theory clearly points out the strong influence of the
structural coupling involved in the compression waves and the lack of struc-
tural coupling for the shear wave that we may feel confident that field measure-
ments of shear waves in saturated soils determine the shear-wave velocity in
the soil structure.

Example of Application of Biot’s Theory

Hardin (1961) described an example of the application of Biot’s theory
to a water-saturated body of quartz sand. He included the effect of confining
pressure on shear modulus of the elastic structure composed of granular
particles by assuming that G varies with (5,)'/%. The other parameters of the
system were chosen to be typical for a uniform quartz sand with a mean
particle diameter of 0,35 mm. After substituting these typical values into the
equations for wave-propagation velocity, Hardin obtained velocities of
propagation for the three waves as shown in Fig. 3-5.

The wave having the highest velocity, shown in Fig. 5-5, represents the
compression wave in the fluid. This was designated as the compression wave
of the “first kind” by Biat. It has a velocity of propagation higher than that
in water alone because of the **push” given by the vibrating elastic structure.
The compression wave in the elastic structure (wave of the “second kind™)
is slightly lower than the compression wave for the dry condition because of
the drag of the water in the pores. The shear wave in the elastic structure
travels at the lowest velocity. Note that the velocity of the shear wave varies
with (7,)!/% because of the assumption that G varies with (5,)3. The com-
pression wave in the elastic structure varies approximately with (&,)1/%, but
it is influenced by the coupling between the stiffnesses of the water and the
elastic structure. Variations in confining pressure produce little effect on the
wave-propagation velocity in the water.

The value of Biot’s theory is primarily qualitative—to point out the
existence of the three types of waves and the order of magnitude of the
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Figure 5-5. Theoretical variation of the two compression-wave velocities
and the shear-wave velocity with confining pressure, as calculated from the
Biot (1956) theory (from Hardin, 196/).

changes produced in these wave velocities by changes in the different param-
eters. This theory has also been used by Hardin (1961) to study the effects
of changes in soil parameters on damping in the system.

5.4 Effect of Water Table on Wave
Propagation in Soils

In many important industrial installations, the water table is relatively
close to the ground surface. Thus, the water-saturated soil may also be
included in the zone of soil that transmits vibrations to or from a particular
foundation. The preceding sections of this chapter have dealt with homo-
geneous masses of pure fluids, mixtures, or water-saturated solids. In this
section we shall discuss, qualitatively, the influences of the boundary between
the saturated soils and the dry or partially saturated soils. This boundary is
generally designated as the ‘“‘water table” for static conditions or as the
“‘piczometric level” for seepage conditions. In either case, it describes the

elevation of the water surface with respect to a plane of reference.
\
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Horizontal Water Table

As the simplest example of the influence of the water table on wave
propagation in soils, consider the static condition of a horizontal water table
in clean cohesionless soils. We may also assume that the soil is relatively
coarse-grained, so that any effects of a capillary zone can be ignored.

The first influence of the water table is on the static unit weight of the
soil. For a soil which is homogeneous except for the water effects, the unit
weight y above the water table is given by Eq. (5-4), and the effective or sub-
merged unit weight »* below the water table is given by Eq. (5-5). Then the
effective confining pressure &, at any point (4) within the soil mass is calcu-
lated from
14 2K,

3 2 (hy + hoy') (5-30)

(60)A =
in which
K, = coeflicient of horizontal earth pressure at rest at point A4,

hy = height of the column of unsaturated soil above point 4, and
hy = height of the column of saturated soil above point 4.

From Eq. (5-30} it is evident that the effective confining pressure acting at
each point in a soil mass depends on the effective overburden pressure which
is a function of the heights %, and 4, of the unsaturated and saturated soils.
It is shown in Chap. 6, particularly by Eqs. (6-18) and (6-20) and Fig. 6-8,
that the shear-wave velocity in soils depends on (&,)°2%, The compression
wave is affected similarly. Therefore, any effect which causes a change in &,
also causes a change in the wave-propagation velocity in the soil. Con-
sequently, the wave-propagation velocity in soils may be changed if the water-
table elevation is changed.

In the preceding paragraph it was noted that the presence of the water
table in the soil mass changed the wave-propagation characteristics of the
soil structure. Possibly even more important is the fact that the presence of
the water table converts the soil mass into a layered system. The upper
layer transmits wave energy through the soil structure, while the saturated
layer transmits wave energy through both the soil structure and the fluid,
Therefore, at the interface (water surface) the diagrams shown in Fig. 4-1
indicate the kinds of reflections and refractions which may occur. However,
if layer 2 is.a saturated soil, wave energy will be transmitted by shear and

compression waves in the soil siructure and by only compressian waves in the_

water.

T—"When the water table is relatively close to the surface of a deposit of
cohesionless soil, seismic methods which measure the travel times of the
compression waves in the soil will often identify the velocity of the com-
pression wave in water father than in the soil structure. For example, Ballard
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and Casagrande (1966, 1967) have described seismic investigations at Roi-
Namur, Kwajalein Atoll, Marshal! Islands, and at Cape Kennedy, Florida,
where the soils were uniform deposits of sands with the water table at about
6 ft below the surface. At the depth of 6 ft and below, the recorded values of
the compression wave were 4800 ft/sec and 5000 ft/sec, as compared to the
average values of 1050 ft/sec and 1100 ft/sec for the upper 6 feet at the
respective sites. They also measured the shear-wave velocities, which did not
show this discontinuity at the water surface.

In the description of the seismic-refraction surveys in Sec. 4.2, it was
noted that the time of first arrival of the P-wave is governed by the layer
closest to the surface, which transmits wave energy at the highest velocity.
Thus, a “hard” layer (i.e., high modulus or high velocity of wave trans-
mission) close to the surface will mask out a softer underlying layer in a
setsmic-refraction survey. Earlier in this chapter, it was noted that water has
a bulk moduius of approximately 300,000 1b/in.2, which leads to a value of
about 5000 ft/sec for the velocity of propagation of the compression wave.
‘Thus, water behaves as a ~'hard” material with respect to wave propagation
when compared to the behavior of soils under low confining. pressures.

The discussion in the preceding paragraph indicates that recorded values
of about 5000 ft/sec for P-wave propagation in soils may actually represent
only the wave propagation in the fluid portion of saturated soils. Conse-
quently, such measurements may not give any useful information about the
modulus of the soil structure.

By contrast, the steady-state-vibration method, noted in Sec. 4.3,
identifies the shear modulus of the soil structure at various depths within the
soil mass. Because fluids cannot transmit shear. waves, the only influences
of the water table and pore fluids on the propagation of shear waves in the
soil structure are through the buoyancy effects on unit weight of thesoil and
inertia ferces (see Biot theory, Sec. 5.3). Thus, for ir-siru evaluations of the
wave-propagation characteristics of soils, it is recommended that both the
seismic-refraction and the steady-state—vibration methods be used.

Inclined Piezometric Surface

An inclined piezometric surface is associated with water flow, or seep-
age, through soils. Thus, in addition to the usual buoyant effects produced by
immersion of soil particles, the vertical component of the scepage forces
must be considered in evaluating local variations of the unit weight of soil.
At any point within the soil mass, the vertical component of the hydraulic
gradient i, may be evaluated. Then the effective submerged unit weight under
seepage conditions is determined from :

r=(Gs_1)_yw
: 1+ e

+ iy, (5-31)
\
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In Eq. (5-31) the + sign applies to the last term when the water flow is down-
ward. Then [ is substituted for ' in Eq (5-30) to evaluate the confining
pressure in the soil at a particular point.

The effects of an inclined piezometric surface on the reflection and Te-
fraction of wave energy are similar to the effects of inclined layers, as dis-
cussed in Sec. 4.2,

Fluctuating Water Table

It is important to be able to estimate the probable ranges of fluctuation
of the water table at any proposed site. This fluctuation may be seasonal and
occur with some regularity, or may represent only a temporary condition.
Variations of the water table during or because of construction, or because of
floods or tides, may cause temporary changes in the dynamic characteristics
of a foundation-soil system. These temporary conditions can usually be
tolerated, but their influences should be examined during the design con-
siderations. However, the seasonal changes may be significant, and this
influence must be established, particularly if the design is based on dynamic
soil characteristics obtained from field measurements obtained under only
one set of field conditions.

5.5 Summary

This chapter emphasizes the important role water has in modifying the
wave-propagation characteristics of soils. Because water is a **hard” material
in comparison with many soils near the ground surface, it is capable of trans-
mitting the compression wave at a higher velocity than does the soil structure.
Seismic field tests may indicate compression-wave-propagation velocities of
the order of 5000 ft/sec in saturated soils, which is about the wave-propaga-
tion velocity in water. Thus, this kind of field test may not describe the
true behavior of the soil structure,

A brief discussion was included to illustrate the importance of small
amounts of gas on the wave-propagation velocity in a fluid—gas mixture.
Therefore, in unsaturated soils the highest velocity of propagation of the
compression wave could range from that in the soil structure alone to that in
the fluid, .

As a result of the discussion in this chapter, it is recommended that field
evaluations of the wave-propagation velocities in walter-bearing soils be
conducted by both the seismic-refraction and the steady-state—vibration
methods. :



BEHAVIOR OF DYNAMICALLY
LOADED SOILS

6.1 Introduction

Perhaps the most critical step in the design of a foundation-soil system
to resist dynamic loads is the correct evaluation of the soil properties in-
volved. These soil properties will be different for each construction site.
Furthermore, the dynamic response of a given soil depends upon the loading
conditions and strain distributions developed in the soil mass. Thus, it is
impossible to present a concise discussion which describes all situations.
Rather, the purpose of this chapter is to describe the general problems
associated with the response of soils to dynamic loads and to discuss some
typical test results for specific conditions. It will be left to the reader to
estimate how well the examples presented herein approximate his design
conditions and to add continually to his file of data in this rapidly developing
field.

The primary emphasis in this chapter is directed toward the response
of soils to vibratory stresses of relatively small magnitude. The small-
amplitude stress—strain behavior of a soil mass governs the velocity of wave
transmission through the soil (Chap. 3) and is the critical factor in deter-
mining the dynamic response of foundations supported directly on soils
(Chap. 10). The characteristics of the stress—strain curve determine the
ranges of strain associated with elastic or inelastic response and identify the
energy losses which develop in soil masses following repeated loadings.
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As a first step toward evaluating the dynamic responses of soils to small-
amplitude loadings, it is useful to consider the soil particles to be represented
by perfect elastic spheres. Mathematical solutions have been presented for the
static and dynamic responses which describe the influence of the confining
pressures and lateral deformations on the wave propagation, moduli, and
damping in masses of these ideal spheres. These solutions serve as useful
guides for estimating the dynamic response of real soils.

For dynamic strains of the same order of magnitude as those developed
beneath machine foundations, it has been found that soils exhibit an approxi-
mately elastic behavior. Thus, it is necessary to evaluate these quasi-elastic
soil characteristics for use in design. Methods are described in Sec, 6.3 for
evaluating these quantities from both laboratory and field tests.

Finally, large-amplitude dynamic strains cause changes in the soil
structure which result in settlements and often loss of strength in soil masses.
Section 6.4 includes a brief description of the effects of large-amplitude strains
similar to those produced by blasts, earthquakes, and compaction operations.

6.2 Behavior of Elastic Spheres in Contact
Arrangements of Perfect Spheres

For a first approximation to a mass of cohesionless soil, consider an
array of perfect spheres. This model may be further restricted to spheres of
identical size arranged in patterns in which the spheres are in contact and no
large voids are present because of missing spheres. Thus, the mass of
spheres is statistically homogeneous.

In Fig. 6-1a, a group of these identical spheres are shown in the simple
cubic packing in which each sphere touches six neighbors. This is the loosest
arrangement for equal spheres and produces a void ratio e = 0.91, This
may be established by examining a cubic element (Fig. 6-1¢) for which the
volume of the cube is 8R® and the volume of the inscribed sphere is 4w R®,
Thus, the void ratio is

) 3_a_pa
e:%= i B8R — 7R 61

iaR®

Figure 6-1a represents both the plan and elevation of the arrangement for the
simple cubic packing.

A second arrangement of these identical spheres can be developed by
a simple modification of Fig. 6-la. If the arrangement in Fig. 6-la is
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{a) Simple Cubic {e=0.91) (b} Pyramidal or Foce - centered
{Plan), Cubic {e=0.35) (Plon),

A

{c) Cube—sphere Element

{d) Cubic Element of Foce—centered
Cubic.

(e) Tetrahedral or Close-packed Hexagonal
(e =0.35) (Plan),

Figure 6-1. Modes of regular packing of equal spheres,

considered to represent the bottom layer of a pack of spheres and a second
identical layer is added on top but translated along a path indicated by 4-A’
in Fig. 6-1a, then each sphere of the second layer will fit in the pocket formed
by the depression between four spheres of the bottom layer. By adding suc-
cessive layers, each with the plan arrangement of Fig. 6-1a but translated
each time to allow the spheres to fit in the pocket between four spheres below,
the pyramidal packing shown in Fig. 6-1b is formed. This packing is

!
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sometimes called the face-centered cubic packing because a cubic element
with a face abed as shown in Fig. 6-1d also describes the packing. The
corners a, b, ¢, and d of the face of the cubic element are indicated in Fig.
6-1b to show how it fits into the aggregate.

The void ratio of the pyramidal or face-centered cubic packing can be
evaluated readily from Fig. 6-1d. The side of the cube has a length of

4R/\/ 2 and a volume of (32/\/ E)Ra. In this cubic element there are 6 hemi-
spheres and 8 octants, or a total of 4 spheres each having a volume of Fm R
Therefore, the void ratio is

3—2_ R® — 4(3 ‘JTRS)

V—V, J2
e = = X = 0.35

Vs 4 (ﬂ WR3)
3

The tetrahedral or close-packed hexagonal arrangement of identical
spheres shown in Fig. 6-1e also produces the minimum void ratio of e = 0.35.
Lower values of void ratio are possible, of course, if smaller equal spheres
are packed in the voids between the larger spheres.

The principal reason for the discussion of these arrangements of equal
spheres is to demonstrate the large changes in void ratio possible just by
rearrangement of particles. An aggregate of particles originally in the simple
cubic packing can be transformed into the pyramidal packing quite readily
if each layer moves along a path 4-4" as illustrated in Fig. 6-1a. The settle-
ment of a unit thickness for this rearrangement is

Ae 0.91 — 0.35 — 0.293

A: =
1 +e .91

or the layer is reduced by 29.3 per cent of its original thickness. Thus,
changes in particle arrangements can lead to serious settlements in layers of
cohesionless materials.

Spheres Subjected to Normal Loads

In the process of evaluating the behavior of a mass of equal-sized spheres
under normal loading, it is custorary to begin with the Hertz theory (Hertz,
1881; see also Timoshenko and Goodier, 1951) for two spheres pressed
together by a normal force P. Figure 6-2a shows two spheres of equal radius
R just touching, and Fig. 6-2b illustrates the deformation which occurs when
the normal force P presses the two spheres together. Upon application of the
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(d)
Figure 6-2. Behavior of equal spheres in contact. {a) Spheres just touching.

(b) Deformation by normal force. (c) Shearing forces between particles in
cubic packing. fd) Lateral deformation by shearing forces.

load, the point of contact develops into a flat circular area of contact of
radius a. The size of this contact area depends on the shear modulus G and
the Poisson’s ratio » of the sphere material; on the radius R of the sphere;
and on the normal force P. The radius of the contact area is

EVE Skl )
a \/ 3G PR (6-1)

The displacement { representing the reduction in the center-to-center dis-
tance between the two spheres is given by
2a®

C:_

R (6-2)

On the plane of contact between the two spheres, the normal stress ¢ varies
from a maximum at the center, r = 0, to a minimum at the radius, r — a,

according to the expression
ip r\2
1= («) (6-3)

2ma a

Eq. (6-3) describes a parabolic distribution of contact pressure which has a
maximum value of
ip 4Ga

Cmax = =
o 2ra® (1 — »)mR

(6-4)

that is 14 times the average pressure.
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Equations (6-1) through (6-4) demonstrate the nonlinear relations which
exist between the applied normal force P, the area of contact, the displacement
of the spheres, and the contact stresses. However, this is an elasric system
for which the load-displacement curves follow the same path during loading
or unloading (assuming that the spheres are made of an ideal elastic material),
and no energy is lost during a loading-unloading cycle. This describes a
nonlinear elastic behavior.

The normal compliance C of the two spheres in contact is the reciprocal
of the tangent to the load—deformation curve, and its value depends upon the
applied load P. It is expressed by

2/3 1/8
C = 4 = ﬂ':il—_”)} ! (i) (6-5)
dP 3L B8G RP

Equation (6-5) represents the incremental motion of the centers of the two
spheres as a consequence of an incremental normal force dP. From the
compliance, we can develop a simple expression for the tangent modulus of
elasticity for a simple cubic packing of equal spheres loaded along one co-
ordinate axis of the cube (for example, the x-axis as shown in Fig. 6-1a).
The average stress in the x-direction equals the force transmitted through a
row of spheres divided by the effective square cross-section of the row (see
Fig. 6-lc):
P

4R* 0

0y, =

Equation (6-6) can be introduced into Eq. (6-5) to develop the tangent
modulus E5 for uniaxial loading:

g _do. _ 1 :é[ 26 T”‘Gw (6-7)
" de, 2R 230 —w]

The significant factor in Eq. (6-7) is that the tangent modulus depends
upon the cube root of the axial stress. Equation. (6-7) also leads to an ex-
pression for the modulus of volume compression B, which relates the hydro-
static stress o, to the volumetric strain. If we consider o, = 0, = g5 = 03,
then the volumetric strain is three times the uniaxial strain given in Eq. (6-7),
and the modulus of volume compression becomes

B_ 1[_&]2’36w (6-8)
2031 —9)] 7

Because the deformation of spheres in contact is a local phenomenon, the
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behavior described by Egs. (6-7) and (6-8) could be superposed in any order
as long as only normal forces are developed at the points of contact between
the spheres. For'example, the usual condition existing in soils corresponds
to some allround confining pressure o, existing in the “at-rest” condition
because of the weight of the soil. Then, if an additional stress is added in the
x- or y-direction (see Fig. 6-l1a), the tangent modulus for longitudinal
deformation would correspond to that given by Eq. (6-7) if we substitute o,
for o,

It should be noted that the simple cubic packing of equal spheres is a
structure primarily of academic interest. The load—deformation or stress—
strain relations for this structure depend on normal forces at the points of
contact only when the stresses are hydrostatic or act along the principal
axes (i€, axes x and y in Fig, 6-la). When stresses are applied along a
diagonal direction (x = y in Fig. 6-1a), both normal and shearing forces
are developed at the points of contact, as shown in Fig. 6-2c. An additional
theoretical treatment is required to cover the effects of shearing forces at the
points of contact.

Effect of Tangential Forces at Contact Between Spheres

The case of two equal spheres pressed together by a normal force P,
then subjected to a shearing force §, was studied theoretically by Cattaneo
(1938), Mindlin (1949), and Mindlin and Deresiewicz (1953). The solu-
tions treated the problem in which a constant normai force £ was maintained
as the shearing force § was varied and the horizontal displacement 7 of the
vertical centerline through the spheres (see Fig. 6-2d) as well as the stresses
on the contact surface were evaluated. They considered first the condition
for no slip between the spheres at the contact surface, for which the theoretical
distribution of shearing stresses was as indicated by the curve labeled,
“r—mno slip,” in Fig. 6-3. Note that the theoretical distribution indicates
infinite shearing stresses at the periphery of the contact area. On a real
material the limiting shearing stress which may be developed depends on the
coefficient of friction between the two surfaces and the normal stress, or

7, =fo (6-9)

In Eq. (6-9) the coefficient of friction f is assumed to be a constant. In order
to make the theoretical solution conform to the realistic limits on the shear-
ing stresses, an annular zone was determined in which the shearing stresses
had the limiting value established by Eq. (6-9). This annular zone is shown in
Fig. 6-3 as the region between (r = @) and (r = ¢). Within the central zone
(r < c) no slip occurred.

The theoretical prediction of slip on an annular ring of the contact sur-
face was confirmed by experiments on glass spherical surfaces in contact
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Figure 6-4. Hysteresisioopformed
by shearing force-displacement
relations for two equal spheres
pressed together and subjected

Figure 6-3. Distribution of normal
(¢) and shearing (7) stresses on
the contact surface between two
spheres loaded by axial (P) and
shearing (S) forces {from Mindlin, to shearing forces.

1954).

(Mindlin et al., 1951). Furthermore, the evidence of slip upon loading il:ldi-
cates a continual change in the shearing stress distribution during -loadmg.
Similarly, the distribution of shearing stresses will vary upon unloading, and
residual stresses are developed in the slip zone when tangential force has been
again reduced to zero. Mindlin and Deresiewicz (1953) studied these changes
in slip, stress distribution, and displacement. They concluded that the
changes in shearing forces and displacements depended not only.on the
initial state of loading, but also on the entire past history of loading and
the instantaneous relative change of the normal and tangential forces. From
theoretical studies they developed the shearing force-lateral displacement
relations shown in Fig. 6-4 for a reversed loading. This diagram indicates a
typical hysteresis loop from which the energy loss per loading cycle can be
evaluated.

The behavior of an aggregate of equal spheres when both normal and
shearing forces act at the contact points may be studied by.con§idering the
simple cubic packing (Fig. 6-1a) loaded along the (x = y).-dlrectlor.l. FlI‘S.t a
hydrostatic pressure ¢, is applied, then an additional uniaxial stress is app_hed
in the (x = y)-direction. Because tangential forces are cleveloped on loading,
as indicated in Fig. 6-2c, there is a loss of energy upon loading. [_Jpon un-
loading, the direction of the tangential forces is reversed and there is again a
loss of energy at the contact. Deresiewicz (1958) has presented a theoretical
solution for the stress—strain relationships during loading and unloading and
for the criterion of failure. The stress—strain curve for loading is concave
toward the strain axis and similar in shape to the curve 0-1 in Fig. 6-4. By
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evaluating the strains parallel and perpendicular to the direction of loading,
an effective value of Poisson’s ratio for the array of spheres can be established.
For example, if the Poisson’s ratio for the sphere material is 0.25 and the
coefficient of friction f between the spheres is chosen as 0.50, the effective
Poisson’s ratio varies from about 0.10 for small longitudinal stresses to 0,22
at the failure stress. The “failure” in this case is defined as the beginning of
sliding between the spheres, which occurs when

f
o=y 2 (6-10)

o, 1—f

The longitudinal stress o(,_,, in Eq. (6-10) represents the axial stress (o, — ,)
which is applied in the (x = y)-direction. Upon unloading from the maximum
load applied, a stress-strain curve similar in shape to the curve 1-2 in Fig.
6-4 is developed. The significant fact derived from this study is that a
Stress—strain curve concave to the strain axis is developed when lateral ex-
pansion of the mass of spheres is permitted,

The arrangement of equal spheres in the face-centered cubic lattice was
treated by Duffy and Mindlin (1957). They considered additional increments
of the one-dimensional stress field acting on the array of spheres previously
subjected to a hydrostatic stress o, When the longitudinal stress acts parallel
to the edge of the cube (x-direction, Fig. 6-1b), the stress—strain relation is

_ 2 13
do, 2(8 7,»)[ 3G, J (6-11)

de, 8 — 5y L1 —9)?
The modulus obtained from Eq. (6-11) is higher than that obtained from the
Hertz theory (Eq. 6-7) because it includes the effects of the tangential stiff-
nesses at the contact points.

For the face-centered array of equal spheres under a hydrostatic stress
gy, only normal forces exist at the points of contact between the spheres.
Hendron, Fulton, and Mohraz (1963) have integrated the expression for
incremental strain to determine the hydrostatic strain along any chosen axis
as

., — (E@:Lﬁ)mg:” (6-12)
8G

Note that Eq. (6-12) represents a stiffer array than does Eq. (6-7) because 12
contacts per sphere are made in the face-centered array in contrast to 6
contacts per sphere in the simple cubic array. Hendron et al. (1963) also
studied the case of one-dimensional compression of the face-centered array

\
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of equal spheres. In this condition no lateral strain is permitted (e, =
e = 0) and strain is developed only in the z-direction. During a mono-
¥ . - +

tonically increasing load, the strain is described by

. [3(1 — ”)\"ETMEG?S - (6-13)
8G(1 + f)

By comparing Eqs. (6-12) and (6-13) it is seen that the ratio of axial strain at
the same value of o, reduces to

€ _ _2f?3 (6-14)
¢, (145

Stress-strain curves representing Eqs. (6-12) and (6-13) are shown in Fig.
6-5 for the loading cycle. Because shearing forces are developf?d at the con-
tact points for the one-dimensional strain conditio_n, energy is lost during
loading and unloading and the unloading curve is indicated by the dashed
line in Fig. 6-5 for the condition of no lateral strain.

An examination of curves O-A, 0-B, and 0-C in Fig, 6-5 reveals the
significant factor governing the stress—strain behavior of_ arrays of equal
spheres. The stiffest condition exists when the Jateral strain is equal to the
vertical strain under hydrostatic loading. When lateral strains are equal to
zero, the behavior of the aggregate A 8
is still of the “‘strain-hardening’ type
(the stress-strain curve is concave =0 }
toward the stress axis as it is for the =0, ’]
hydrostatic stress condition), but /
greater axial strains are developed
than for the hydrostatic loading.
Finally, for the condition of constant /
lateral pressure (but no restriction on o . o
strains), the stress-straln curve Is /
concave toward the strain axis. /

Therefore, we may conclude that the i &

stress—strain behavior of an array of / e
cquai-sized spheres in initial contact
depends on the amount of lateral strain -
developed during axial loading. L

The particles of real soils are, of o} €
course, not perfcct spheres arrangf:d Figure 6-5. Theoretical stress-strain curves
in a perfect packing. Furthermore, for triaxial tests of granular materials with
there are other variables which must  various lateral restraints.

/
r
!
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be considered when treating a material comparable to clean, dry, uniform
sand: irregular shape of the grains; rotation and displacement of these grains
during loading or unloading; nonuniform packing; and fracture of the grains
during loading. In addition, the treatment so far has considered only single
loading cycles involving very small strains. The effects of repeated applica-
tions of larger strains in real soils will be discussed in following sections.

Resonant-Column Tests of **Perfect™ Spheres

The previous discussion dealt with ideal spheres of exactly the same
size. For aggregates composed of these spheres it was found (Egs. 6-7 and
6-11) that the longitudinal modulus of elasticity varies with the } power of

the normal stress. In such a medium it would be anticipated that a longi-
tudinal wave would be propagated with a velocity

o¢ = \/ £ (3-3)
P

ve oc gl (6-15)

or

In order to evaluate this theoretical prediction, Duffy and Mindlin (1957)
conducted an experimental study of the elastic-wave propagation in a rod
composed of steel spheres. These spheres were high-tolerance ball bearings
carefully sorted into two groups. The bearings in one group each had a
tolerance on the diameter of § (4-0.000050) in., and those in the other group
each had a tolerance of { (4.0.000010) in. These spheres were carefully
arranged in a face-centered cubic array to form square bars. These bars were
covered by a rubber membrane and a confining pressure was developed by
vacuum within the porous bar. After applying the confining pressure, the
bars were set into longitudinal vibration, and the wave velocity was estab-
lished from the resonant frequency of forced vibration. Figure 6-6 shows the
test results obtained for the two groups of spheres as well as the curve pre-
dicted by theory. It is significant to note that even for these spheres, which
would be considered “perfect” by normal standards, there was a definite
difference between the longitudinal velocities predicted by theory and those
obtained by test.

In view of the discrepancies noted in Fig. 6-6, we cannot expect that the
wave-propagation velocities developed in real granular soils will agree closely
with the theoretical values predicted from theories for perfect spheres. The
theoretical studies are useful as a guide, but we must establish the wave-
propagation velocities in real soils by experimental methods.
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Figure 6-6. Variation of the velocity of the compression wave with con-
fining pressure for bars composed of stainless steel spheres (from Duffy
and Mindlin, 1957).

6.3 Behavior of Soils Under Small-Amplitude
Vibratory Loading

This section will treat the behavior of soils under vibratory loadir_lgs
which develop longitudinal strains of the order of 0.0001 in./in. or sh.earmg
strains of 0.0001 rad or less. [t is this order of magnitude of strains which are
developed in soils supporting vibratory machinery designed for continuous
operation.

Resonant-Column Tests of Soils

The resonant-column method was employed by lida (1938, 1940) to
study the wave propagation in vertical columns of sand set into longitudinal
or torsional oscillations. The frequency at resonance and the height of the
specimen provided the information for calculation of the wave velocity. Dry
and saturated samples were retained in a cylindrical shape by a cellophane
tube, and partially saturated samples were unsupported after being removed
from the compaction mold. In all cases the confining pressure was developed
by the weight of the samples. During the decade following Iilda’s tests, little
published information was available on the evaluation of soil properties by
vibratory methods, but interest picked up in the 1950s and many papers have
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been published since that time. A selected list of these references has been
given by Hardin and Richart (1963) and by Hardin and Black (1968). The
resonant-column device has been used since the mid-1950s for both research
and routine soil evaluation (for example, see Shannon, Yamane, and
Dietrich, 1959; and Wilson and Dietrich, 1960). Since about 1960 the
resonant-column device has been adopted as a research and testing tool in a
number of university, government, and consulting laboratories.

In the resonant-column test a vertical cylindrical sample of soil is con-
tained within a rubber membrane and a confining pressure is applied to main-
tain the shape of the sample during the test. From the preceding discussion
of the behavior of ideal spheres under load, we can anticipate that cohesion-
less materials will respond to applied loadings in a nonlinear, inelastic
manner, and that the response will depend on the effective confining pressure
T, Itis important to evaluate the effects of the various factors that influence
the shear modulus G of soils in both the laboratory tests and the prototype
situations. An evaluation of the internal damping in the soil and the effective
Poisson’s ratio are of secondary importance.

Variables Which Affect the Shear Modulus

Hardin and Black (1968) have indicated the various quantities which

exert an influence on the shear modulus of soils in the form of a functional
relation for G, as

G=f(5,e H, S, 7,C, Aft0 1T {6-16)
in which
a, = effective octahedral normal stress (average effective confining pressure),
¢ = void ratio,
H = ambient stress history and vibration history,
§ = degree of saturation,

7, = octahedral shear stress,

C = grain characteristics, grain shape, grain size, grading, mineralogy,
A = amplitude of strain,

J = frequency of vibration,

{ = secondary effects that are functions of time, and magnitude of load
increment,

# = soil structure, and
T = temperature, including freezing.

Of course, several of these quantities may be related as, for example, e,
C, and .

In the case of sands, it has been shown that for shearing-strain amplitudes
less than about 10~*, and within the range of the variables studied, G is

\
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essentially independent of each of the variables listed in Eq. (§-16) except for
# and e. Hardin and Richart (1963) showed that the grain size and grading
oof sands retained on the No. 120 sieve had almost no eﬁ'ec.:t on G, that. the
grain shape had little effect, and that the degree of saturation had a minor
effect which occurred only at low pressures. It was also found t}}at the
frequency of vibration had no measurable effect on G for frequencies less
than about 2300 cycles/sec.

Effect of Void Ratio and Confining Pressure

Figures 6-7 and 6-8 illustrate the influence of void ratio apd confining
pressure on the shear-wave velocities of clean granular materials over thc
range of (0.37 < e < 1.26). A special note sh01_11§1 be.made that the relative
density (see Eq. 6-37) of the material has a negligible mﬂu'er-lce on the ‘she.'?r-
wave velocity, For example, if we examine the wave veloc1tfes s_hqwn in Fig.
6-7 for the void ratio of 0.61, it can be seen that these are quite stlmllar for the
No. 20-30 and No. 80-140 sands, even though the relative densities for the two
materials are approximately 47 and 80 per cent, re'spectively. Furthgrmorf:,
the maximum variation of shear-wave velocity with change of void ratio
may be evaluated for any sand by considering the va.Iues of vg cgrrespondmg
to the maximum and minimum void ratios and a given conﬁmpg pressure.
These values will bracket the correct value for vg for this sand in situ subjected
to this same value of confining pressure. Thus, a distur‘bgd sample of: sand
from a given boring would be satisfactory for determining th&? maximum
and minimum void ratios for this material and, after the conﬁnlng pressure
&, was established, would provide enough information to establish limits
for the probable values of og. ‘

Figure 6-7 illustrates the significant effect the confining pressure has on
the shear-wave velocity of clean sands. Straight lines have been fitted through
the test points corresponding to the different conﬁnmg pressures, and these
lines are shown in Fig. 6-8 as solid lines. Also shgwn in Fig. 6-8 are das:hed
lines which represent the results from tests using clean_ angular-grained
materials in order to extend the range of void ratios considered. .Fo.r each
set of curves the effect of confining pressure on vg is shown to be s1gn1.ﬁc.ant.

Figure 6-8 also includes a small diagram which illustrates t]:lf: variations
of the shear modulus G caused by changes in void ratio or conﬁmqg pressure.
These values may be obtained directly from the shear-wave velocity through

the relation
G = pr’y (6-17)

Empirical expressions have been developed for »g and G for roul}d-grainzd
sands and angular-grained crushed quartz. For the round-grained sands
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Figure 6-7. Variation of shear-wave velocity with void ratio for various
confining pressures, grain sizes, and gradations In dry Ottawa sand (from

Hardin and Richart, 1963).
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Figure 6-8. Variation of shear-wave velocity and shear modulus with void
ratio and confining pressure for dry round and angular-grained sands (from
Hardin and Richart, 1963).

Since 1961, numerous independent checks of the wave-propagation velocities
of clean, dry, cohesionless materials have been made with at lea§t seven
different types of resonant-column devices. The wave-velocity, vond-rgtl?,
and confining-pressure data have consistently been found to agree (to lw_1thm
about 10 per cent) with those given by the curves in Fig. 6-8. Addl_tlonal
correlations have been obtained by use of the pulse technique (see Whitman
and Lawrence, 1963), although the wave velocities are slightly higher for the
pulse than for the steady-state vibration. _
Another variable first thought to be significant was the state of shearing
stress in the sample identified by the shearing stress on the octahedral plane,
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or the octahedral shearing stress,

7, =3V (0; — 0 + {0y — 09)® + (05— 0,02 (6-22)

However, Hardin and Black (1966) demonstrated that the shear-wave
velocity in sands depended on the confining pressure &, (normal stress on the
octahedral plane, or average of the three principal stresses) and was essenti-
ally independent of the state of shearing stress in the sample. This is a signifi-
cant factor in the design of machine foundations resting on sands because it
establishes &, as the principal quantity to be estimated for a particular bed
of sand in order to evaluate g or G for use in the dynamic analysis.

Effect of Saturation

In Chap. 5 a theoretical study (Biot, 1956) was described which treated
the wave propagation in a fluid-saturated porous medium. Tt was shown that
the presence of the fluid exerted an important influence on the dilatational-
wave velocity but produced only a minor effect on the shear-wave velocity.
The.ﬂuid affects the shear-wave velocity only by adding to the mass of the
particles in motion. Figure 6-9 shows the influence of degree of saturation
on the shear-wave velocity for a sample made of 20-30 Ottawa sand, Much
of the difference between the curves for the dry and saturated conditions can
be accounted for by the effect of the weight of the water. Therefore, it is
s.uﬂi.cient _for an evaluation of vy or G for cohesionless soils to consider the
in-situ unit weight and the effective 5,.
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Figure 6-9. Variation of shear-wave velocity with confining pressure for a
specimen of Ottawa sand in the dry, saturated, and drained conditions
(Test No. 18. ¢ = 0.55 — 0.54) (from Hardin and Richart, 1963).
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Behavior of Cohesive Soils

The dynamic response of cohesive soils has been studied by several
groups and tentative conclusions have been reached regarding many of the
variables indicated by Eq. (6-16). The most important difference between
testing cohesionless and cohesive soils is the time interval required for consol-
idation between load increments when establishing curves of the type shown
in Fig. 6-9. For samples of 20-30 Ottawa sand it has been found that 6 to 30
minutes were adequate for local adjustments in the sample and reliable and
repeatable readings could be obtained using this time interval between
pressure changes. Cohesive soils require a much longer time for consolida-
tion between pressure increments, depending on the permeability of the soil,
shape of the specimen, and drainage paths. For normally consolidated
samples of kaolinite tested in a resonant-column device using specimens of
the standard triaxial test size, Hardin and Black (1968) have indicated about
two hours as the time required for 100 per cent primary consoclidation to be
completed. In general, for resonant-column tests on samples of cohesive
soils taken from the field, test resulrs involving short time intervals between
pressure changes could be expected to be adequate only for pressures corre-
sponding to the “in-situ” confining pressures. However, reliable values of the
shear-wave velocity can be obtained at higher confining pressures if enough
time is allowed between pressure increments to permit the major part of
primary censolidation to be completed.

There is further evidence (Hardin and Richart, 1963; Hardin and Black,
1968 ; Humphries and Wahls, 1968) that the shear-wave velocity continues
to increase during secondary compression. The amount of this increase is
not fully accounted for by the change in void ratio, but some part of it is
probably associated with the change in soil structure (parameter ¢ in Eq.
6-16). There is a need for continued research on the effect of time, or second-
ary compression, and changes of soil structure on the shear-wave velocity
and shear modulus of cohesive soils. Fortunately, there is some relief for the
designer in accounting for the effects of secondary compression of soils on
the dynamic response of foundations. If serious secondary compression is
anticipated, it will have a significant effect on the szatic behavior of the
foundation and surrounding structures and will determine the type of founda-
tion which is feasible. Thus, the influence of secondary compression of the
underlying soils would first be considered for the static design and then evalu-
ated for dynamic conditions.

In spite of the many variables indicated by Eq. (6-16) and the discussion
of the effects of some of these parameters, it appears that in many cases the
primary influences on shear-wave velocity are variations of void ratio and
confining pressure. Lawrence (1965) used the ultrasonic-pulse technique for
tests on kaolinite and Boston blue-clay samples, and Hardin and Black
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(1968) and Humphries and Wahls (1968) ran resonant-column tests on
kaolinite samples. From an examination of these test results, Hardin and
Black (1968) concluded that for normally consolidated clays of low surface
acrivity, the shear-wave velocity is adequately predicted by Eg. (6-20) as long
as the shearing-strain amplitude is less than about 10-%, This conclusion for
certain normally consolidated clays is a significant aid to the designer, even
if it represents only a first approximation.

Tests of cohesive soils have shown that there is a stress-history effect
which can be important in addition to the secondary compression and time
effects. However, additional tests have indicated that some of these effects
may be “shaken out™ by a few cycles of high-amplitude loading. This will be
discussed in the section treating high-amplitude vibrations.

From the foregoing discussions of the effect of vibratory loadings on the
dynamic shear modulus of cohesive soils, we may conclude that Eq. (6-21) is
adequate for a first estimate, but that extensive studies are still needed to
pinpoint the influence on G of all the variables noted in Eq. (6-16).

“High-Amplitude’” Resonant-Column Tests

Studies of the effect of amplitude of strains developed in resonant-
column samples have been described by Hall (1962), Hall and Richart (1963),
Drnevich (1967), and Drnevich, Hall, and Richart (1967). Hall used solid
cylindrical samples of 20-30 Ottawa sand, uniform glass beads {avg. dia. =
1.0 mm and 0.06 mm), and Novaculite no. 1250 excited into both longitudinal
and torsional modes of resonant vibration, Because the test results were
described in terms of the displacement of the top of a sample 11-in. long and
fixed at the base, the localized strains are not easily identified. However,
the conclusions from tests of the Ottawa sands and glass beads are useful
from a qualitative standpoint. These included the observation that both the
fongitudinal- and shear-wave velocities decreased as the amplitude of vibra-

tion was increased. This decrease was as much as 10 to 15 per cent as the

double amplitude was increased from 1 x 10~5 to0 2.5 x 103 rad in the
torsion tests or from 2 x 107% to 1 x 1072 in. in the longitudinal tests.
Similar tests have also indicated that a decrease of wave velocities of 10 to
15 per cent occurs when the void ratio is changed from the minimum to the
maximum value. Thus, the maximum change in the void ratio influences the
wave velocities by an amount comparable to that produced by the variations
in amplitude used in these tests,

In the resonant-column test of solid cylindrical samples excited into
torsional oscillation, it is fairly difficult to evaluate a representative shearing
strain. At each cross-section along the sample, the shearing strain varies
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from zero at the center to a maximum at the periphery. In addition, the
shearing strains vary along the length of the sampie in a manner which
depends on the ratio of the mass moment of inertia of the sample to the mass
moment of inertia of the driving mechanism attached to the upper free end
of the sample,

In order to provide a more reliable estimate of the shearing strains
developed in the torsional resonant-column test, Dirnevich (1967) developed
a hollow cylindrical test specimen. Figure 6-10 shows a typical hollow sample
mounted on the fixed base. The samples were 30-cm long, 4-cm inside di-
ameter, and either 1-em or 0.3-cm in wall thickness depending on the grain
size of the cohesionless material to be tested. (It was found that the wall
thickness should be greater than 10 grain diameters.) With the hollow sample
the variation in shearing strain across the sample was minimized and the
average shearing strain adequately represented the strain conditions on a
particular cross-section. Then by increasing the mass moment of inertia of
the driving and pickup device attached to the top end of the sample, the varia-
tions in shearing strain along the length of the sample were further reduced.

With the hollow sample in the resonant-column test, Drnevich (1967)
was able to evaluate quantitatively the effect of the amplitude of shearing

Figure 6-10. Completed hollow
sample for resonant-column test.
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Figure 6-11. Dynamic shear-modulus (G = Tmax/¥;0 max) variation with

maximum shearing-strain amplitude and confining pressure for hollow
specimens (from Drnevich, Hall, and Richart, 1967).

strain on the shear modulus of various cohesionless materials. Figure 6-11
shows the decrease in shear modulus of 20-30 Ottawa sand in the dense and
loose conditions, with an increase in shearing strain from about 0.13 x 10—
to 6.0 x 107%. These curves are somewhat steeper (greater decrease in G for
increasing amplitude) than was found for the 30-50 Ottawa sand, for example,
but Fig. 6-11 does indicate that there is a decrease in G of the order of 1015
per centas the shearing strain increases up to about 10-% and a more significant
decrease occurs above this value. Note that the shear modulus identified from
the resonant-column test represents the “hysteresis modulus™ or the straight
line passing through the points 1 and 3 on Fig. 6-4. As the strains increase,
the hysteresis loop expands and the hysteresis modulus decreases.

The high-amplitude resonant-column tests were also used by Drnevich
to evaluate the influence of strain history on the value of the low-amplitude
shear-wave velocity. This has practical applications in providing an estimate
of the soil response under machine foundations (small-amplitude vibrations)
as a consequence of a variable soil-conditioning process such as compaction
by vibrating rollers (large-amplitude vibrations). The principal variables
included in the test program were (1) the type of cohesionless materials;
(2) void ratio; (3) confining pressure; (4) prestrain amplitude; and (5)
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Figure 6-12, Effect of a number of cycles of high-amplitude vibration on the
shear modulus at low amplitude (Ottawa sand, e = 0.46, hollow sample)
(from Drnevich, Hall, and Richart, 1967).

number of cycles of prestrain applied. The tests were designed to evaluate
the changes in the shear-wave velocity at a low-amplitude shearing strain
{less than 107%) by application of a varying number of repetitions of high-
amplitude shearing strains (greater than 10—%). Figure 6-12 illustrates typical
test results for the 20-30 Ottawa sand. Two values of prestrain amplitudes
(1.6 > 107* and 6.0 x 107¢) were applied to samples subjected to confining
pressures of 612, 1188, and 2340 Ib/ft2. A virgin sample was used in each test.
The testing procedure involved first applying the chosen value of confining
pressure and evaluating the shear-wave velocity corresponding to the low-
amplitude vibrations. Then the high-amplitude vibration was applied for a
particular number of cycles. At the end of this first increment of prestrain,
the amplitude was reduced to the low value and the shear-wave velocity
determined. From the shear-wave velocity, the value of G was computed
and plotted in Fig. 6-12 at the appropriate number of prestrain cycles. Each
pointin Fig, 6-12 corresponds to the value of G evaluated under low-amplitude
resonant-column vibrations at the end of the total number of high-amplitude
prestrain applications indicated.

The test results in Fig. 6-12 point out several significant phenomena
relating to the magnitude and number of cycles of the prestrain, For the
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prestrain amplitude of 1.6 x 10~ and &, = 612 [b/ft?, no measurable in-
fluence was noted for 10° prestrain cycles, and only a minor influence
occurred with 10° cycles. However, when &, was increased to 2340 Ib/ft2, a
peak was reached at about 6 x 10° cycles, and a decrease occurred for
greater numbers of cycles. For the prestrain amplitude of 6 x 10~ and
, = 1188 1b/ft?, the dropoff in low-amplitude G-value was more striking at
prestrain cycles above the peak value. The results shown in Fig. 6-12 indicate
that (1) there is probably a lower limiting value of prestrain amplitude which
does not induce strain-history effects at the low-amplitude vibration, (2) the
maximum strain-history effect occurs at something over 10% cycles at these
levels of prestrain, and (3) a peak value of the prestrain effect may occur
after which additional prestrain cycles may reduce or eliminate this gain.
From additional tests, Drnevich (1967) determined that a prestrain amplitude
of 107* represented the lower limit of effective prestrain amplitudes. Ampli-
tudes less than this value produced no prestrain effects.

These studies of the strain-history effects on cohesionless soils raise a
number of questions and provide few answers. Obviously, there is a need for
intensive study of the strain history on the small-amplitude dynamic response
of cohesionless, cohesive, and—in particular—partially saturated soils.

Internal Damping in Soils

When a rod of any material is set into a state of free vibration, the vibra-
tion will decrease in amplitude and eventually disappear. This reduction in
amplitude of vibration is caused by internal damping within the mass of the
material, and its decay is similar to that described for free vibration of a
viscously damped system. It should be stated at the start of this discussion
that the internal damping in soils is nof considered to be the result of a viscous
behavior; nevertheless, the theory for a single-degree-of-freedom system
with viscous damping is a useful framework for describing the effect of the
damping which actually occurs in soils. _

The decay of free vibration of a single-degree-of-freedom system with
viscous damping is described by the logarithmic decrement, which is defined as
the natural logarithm of two successive amplitudes of motion, or

5:111&: 27D

L (2-39)
, 1 D?

The logarithmic decrement is obtained experimentally, for example, from
the resonant-column test by setting a soil sample into steady-state forced
vibration, then shutting off the driving power and recording the amplitude
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Figure 6-13. Typical free vibration-decay curves obtained from resonant-
column tests of Ottawa sand (from Hail, 1962). (a) Amplitude-time decay
curves. (b) Amplitude vs. cycle number plot.

decay with time. Figure 6-13a shows a typical vibration-decay curve ob-
tained from a resonant-column test of Ottawa sand. The evaluation of
logarithmic decrement from the decay curve can be accomplished by plotting
each amplitude against cycle number on semilog graph paper, as shown in
Fig. 6-13b. If the damping in the material produces an effect similar to that
predicted by the theory for viscously damped free vibrations, a straight line
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will be developed on this semilog plot. Hall found that the damping deter-
mined from the decay of steady-state vibrations in resonant-column samples
of rounded granular materials behaved like viscous damping. The values of
logarithmic decrement varied from 0.02 to approximately 0.20 for the
materials and test conditions employed in these tests,

Hardin (1965) described continued and expanded studies of resonant-
column tests for evaluating the damping in sands. He also presented an
analytical study of the applications of the Kelvin~Voigt model (viscous
damping) to represent the material for comparison with the test results.
From this study he found that the Kelvin-Voigt model satisfactorily repre-
sented the behavior of sands in these small-amplitude vibration tests if the
viscosity ¢ in the model was treated as varying with the frequency to maintain
the ratio uw/G constant. This ratio is related to the logarithmic decrement by

5= w(’-gi’) (6-23)

In his conclusions Hardin recommended values of the ratio of uw/G for use
in design, which may be represented in terms of the logarithmic decrement as

8 = 79(7,0)" (5, (6-24)

in which y,¢ is the shearing-strain amplitude and &, is the confining pressure
(expressed in Ib/ft?). Note that this empirical equation (Eq. 6-24) is re-
commended only within the limits of shearing-strain amplitude of 10°% to
10, for confining pressures of 500 1b/ft? < &, < 3000 1b/ft2, and for fre-
quencies less than 600 cycles/sec.

In his study of high-amplitude shearing strains on the dynamic behavior
of sands, Drnevich (1967) included studies of damping. He found that no
change occurred in damping with cycles of prestrain for prestrain amplitudes
less than 107, that the logarithmic decrement varied with (5,)%/3 within the
range of 400 to 2000 1b/ft? for all shearing-strain amplitudes between 1075
and 6.0 x 107, and that many cycles of high amplitude prestrain increased
damping, in some cases, to twice its original value. A part of the reason for
the significant increases in damping is related to the testing procedure of
controlling the shearing-strain amplitude. As the shear modulus increases
because of the prestraining, the procedure of maintaining constant amplitude
developed larger strain energy each cycle. It would be expected that the

hysteresis loop would then include a larger area which represents increased . ]

damping.
The studies of internal damping in soils are by no means complete, and
extensive work must be dovne in evaluating the infiuence of each of the

\
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variables listed in Eq. (6-16). However, from the studies completed up to the
present time, it appears that values of logarithmic decrement for sands may
be as large as 0.20 and that they can be estimated from Eq. (6-24). Some
additional data corresponding to internal damping for several types of soil&
are indicated in Table 10-12.

Additional Methods for Evaluating Material Damping

Some of the quantitative expressions used to define the internal damping
of materials are viscosity, damping capacity, constant of internal friction,
hysteretic constant, specific damping capacity, logarithmic decrement,
elastic phase constant, and coefficient of internal friction. Other terms which
may be added to this list are damping modulus, resonance-amplification
factor, damping factor, specific damping energy, stress—strain phase angle,
specific dissipation function, and attenuation. There are numerous refer-
ences which treat these terms in detail, including the report by Jensen (1959),
the bibliography by Demer (1956), and the book by Lazan (1968).

Of these damping terms, the logarithmic decrement was discussed in the
preceding section, and the viscosity term was mentioned. The discussion of
amplitude—frequency response curves in Chap. 7 covers the resonance-
amplification factor. Of the remaining expressions in the above lists, the
specific damping capacity, coefficient of attenuation, and specific dissipation
functions occasionally occur in the literature for evaluation of the internal
damping in soils.

The term “specific damping capacity” indicates the ratio of the energy
absorbed in one cycle of vibration to the potential energy at maximum dis-
placement in that cycle. The “‘damping capacity” thus defined has a fairly
wide acceptance and may be expressed as a percentage or as a decimal. In
terms of the stress—strain diagram, the specific damping capacity represents
the ratio of the area enclosed by the hysteresis loop to the total area under the
hysteresis loop. For the steady-state condition as shown in Fig. 6-14a (note
that the horizontal scale in Fig. 6-14 is greatly exaggerated for simplicity of
illustration), the specific damping capacity is given by

_AE,
Eﬂ

A (6-25)

{4

The term E, in Eq. (6-25) represents the strain energy described by the area
under the hysteresis loop. The condition for a decaying vibration is illus-
trated in Fig. 6-14b. Point 1 corresponds to the maximum stress of a cycle
which starts and ends at points 1 and 2, respectively. It is seen from Fig.
6-14 that the value of A, depends on whether the steady-state (A, ) or the
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(a} Steady State Vibrations. {(b) Free Vibrations.

Figure 6-14, Stress-strain curves for a system with hysteresis damping.
decaying-vibration condition (4,_,) is considered when the damping values are

large. For the conditions of decaying vibrations, the relationship between
the logarithmic decrement and the specific damping capacity is

A,=1~— k’:“ exp (—26) (6-26)

H

in which k_ represents the proportionality factor between strain energy and
the square of the displacement amplitude for the nth cycle of decaying vibra-
tion. It should be emphasized that there is no general relationship between
A, and d; but for small values of 4, A, ~ A, and the ratio of the pro-
portionality constants, k,,.,/k,, is approximately 1. .

It is often desirable to evaluate the decrease in amplitude of vibration
with distance from a source which is caused by energy losses in the soil. This
is designated as ‘“‘attenuation,” the energy loss as a function of distance, and
is measured in terms of the coefficient of attenuation o (1/ft). The coefficient
of attenuation is related to the logarithmic decrement by

52T _ ' (6-27)
(41 '

in which v is the velocity, w denotes the circular frequency, and L is the wave
length of the propagating wave.

Attenuation should be distinguished from geometrical damping (see
Fig. 3-16 and Sec. 7.7) which occurs in elastic systems because of the spread-
ing out of wave energy from a source.
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A variation of this attenuation coefficient describes the specific dissipa-
tion function 1/Q as
L2 (6-28)
Q w

Internal damping in materials may also be evaiuated by measuring the
angle by which the strain lags the stress in a sample undergoing sinusoidal
excitation. If the soil is assumed to be a linear viscoelastic solid, the complex
shear modulus G* is considered to be composed of a real and an imaginary
component, each of which is a function of frequency, as

G*(w) = G(e) + iGy(m) (6-29)

In Eq. 6-29 G\(w) is the elastic component and G,(w) is the viscous com-
ponent. The loss angie ¢, is defined by

tan §; = % (6-30)
1
-

and it is related to the logarithmic decrement 6 {and the ratio uw/G, see Eq.
6-23) by
§=mtand, (6-31)

Several investigators have adopted theoretical procedures based on the com-
plex modulus and have presented their laboratory-test results in terms of
tan é,. Equation (6-31) provides the link for interpreting these results in
terms of the logarithmic decrement as used in this chapter.

From the preceding paragraphs it is seen that there are several methods
for measuring and describing damping in soils. Furthermore, because damp-
ing in soils increases with the amplitude of vibration (see Eq. 6-24), it may be
convenient to use different methods for different ranges of amplitude. The
use of the complex modulus may be warranted for dynamic situations in-
volving large-amplitude vibrations. However, for the order of magnitudes
of the vibrations encountered in soils beneath machine foundations, the
logarithmic decrement should be less than 0.2. For this value of §, Eqgs.
(6-29), (6-30), and (6-31) show that the viscous component of the complex
modulus is about 6 per cent of the elastic component. This difference of less
than 6 per cent between the elastic and complex modulus does not justify
adopting the theories of viscoelasticity for the study of response of machine
foundations, particularly when we consider the accuracy of present test
methods for determining G. Consequently, the test and design procedures
described in this book are based on the assumption of an-elastic modulus.
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When internal damping in soils is considered, it is represented in terms of the
logarithmic decrement.

Wave-Propagation Velocity from Field Tests

The general principles involved in the seismic field tests for the com-
pression-wave velocity and the steady-state-vibration method for the
Rayleigh-wave velocity were described in Chap. 4. The discussion will be
confined here to comparisons between the wave velocities obtained in the
field by the steady-state vibrations and in the laboratory by the resonant-
column tests.

As noted in Chap. 4, the steady-state-vibration method involves a
variable-frequency exciter which produces a vertical oscillating force on the
surface of the ground. A pickup is located on the ground surface at varying
distances away from the exciter in order to determine the wave length corre-
sponding to a particular frequency of excitation. This wave-length evaluation
is recorded for a series of different frequencies and the results shown in a
diagram similar to Fig. 4-19. The product of the wave length and frequency
is equal to the velocity of the Rayleigh wave, or

pp=fL (6-32)

It was demonstrated by Fig. 3-13 that in the ideal elastic body the difference
between the Rayleigh-wave velocity and the shear-wave velocity was minor,
from an engineering standpoint, for values of Poisson’s ratio greater than
about 0.25. The ratio of rgfvg is noted below as a function of » {from
Knopoff, 1952):

v | 0.25 J 0.33 ‘ .40

Uafts ‘ 0.92 ‘ 0933 | 0943 |

Thus the value of wave-propagation velocity (v ;) measured in the field by the
steady-state method could be expected to be on the order of 5 to 8 per cent
lower than the shear-wave velocity measured in the laboratory with the
resonant-column device at the same level of shearing strains. :
In the steady-state-vibration method the wave velocities obtained fro
the field tests are plotted at depths corresponding to a distance equal to one-
half the wave length. This type of plot is shown in Fig. 6-15 for in-situ tests
at the Eglin Field test site (after Fry, 1963). At this site the soil was composed
of fine, uniform sand with a void ratio of approximately 0.70. The average
effective confining pressure &, at any depth within the sand mass may be

\
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calculated from

Ty = g, = e I, (6_33)
11—

g, = yz (6-34)

F, = %t 0, t 0, (6-35)

3

L4

At the Eglin Field site the unit weight » was approximately 104 Ib/ft3. With
this value of y and an assumption of Poisson’s ratio of 1, the stresses o, and
d, were calculated for several depths within the sand mass. Then these values
of 5, and (e = 0.70) permitted calculations of vg at the several depths through
the use of Eq. (6-18). Finally, the Rayleigh-wave velocities were obtained
from the theoretical relation that v 5 == 0.933 vg for v = 1. These calculated
values of v are shown on Fig. 6-15 as the dashed line.

At this point, it should be reiterated that the steady-state—vibration
method (or half-wave-length method) is an empirical procedure, and it is
remarkable that it works so well. Equation {6-18) also represents an empirical
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Figure 6-15. Variation of Rayleigh wave velocity with depth—Eglin Field
Site (after Fry, 1963).
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method for evaluating the shear-wave velocity which is further complicated
by difficulties in evaluating &, for the field conditions. Consequently, a
difference of 10 per cent between results obtained by these two methods
represents good agreement, and a difference of 20 per cent should be accept-
able for most engineering computations.

6.4 Behavior of Soil Under Large-Amplitude Loading

Large-amplitude loadings are designated as those which cause a change
in the structure and often a change in the strength of soil. Such loadings may
be developed by excessive vibrations of machinery, compaction devices,
commercial blasting, nuclear blasts, or earthquakes. Earthquakes, blast
loadings, and machinery vibrations generaily do not occur until after con-
struction is completed, and the influence of these loadings on the supporting
soils must be evaluated during design studies. The construction procedures
of compaction and controlled blasting provide a preload for a construction
site to minimize further settlements of the operating facility.

It is the purpose of this section to describe some of the changes in soil
characteristics which result from these large amplitude loadings. The soil
characteristics of primary interest are the shearing strength, change of
volume (settlement), dynamic modulus, and internal damping.

Stress-Strain Behavior of Soils Under Dynamic Loads

Any procedure devised to evaluate the dynamic stress—strain character-
istics of a particular soil must attempt to duplicate as closely as possible the
boundary conditions which exist in the field. However, it has been customary
in the past to evaluate the dynamic stress-strain behavior of soils by means of
a dynamic triaxial test. Under these conditions lateral expansion of the
soil sample is permitted and the slope of the stress—strain curve decreases as
the load increases until it becomes horizontal at the maximum load. An
effective confining pressure of undetermined magnitude is introduced by the
lateral inertia of the sample. More recently both static and dynamic stress—
strain curves have been obtained for different materials using test equipment
which did not permit lateral expansion of the sample (for example, Whitman,
Roberts, and Mao, 1960; Davisson, 1963; and Zaccor and Wallace, 1963).
As noted in Sec. 6.2 and particularly in Fig. 6-5, the overall stress—strain
characteristics of soil samples are greatly influenced by lateral deformations
which must be considered each time test results are evaluated for use in
design. '

-
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Numerous investigations utilizing the dynamic triaxial test have been
conducted to evaluate the stress-strain characteristics of cohesionless soils
loaded to failure by a single application of load. Casagrande and Shannon
(1948) presented the results of triaxial tests on dry Manchester sand in which
the load was applied by a falling-beam-type apparatus. They found an
increase in the ultimate shearing strength of 10 to 15 per cent and an in-
crease in the modulus of deformation of about 30 per cent when the load was
applied dynamically rather than statically. The modulus of deformation was
defined by a secant modulus obtained by passing a straight line through the
origin and a point on the stress—strain curve at one-half the ultimate stress.
Seed and Lundgren (1954) investigated the strength and deformation char-
acteristics of saturated specimens of a fine and a coarse sand under dynamic
loadings. The rapid loading was applied by a falling-weight-impact testing
machine. They found an increase in strength of 15 to 20 per cent and an
increase in the modulus of deformation of about 30 per cent under the
dynamic loading conditions. They noted that dilatancy effects and lack of
drainage contributed to the strength under dynamic loads. Taylor and
Whitman (1954) reported results of dynamic triaxial tests of saturated
sands in which one of the major objectives was to measure the time change of
pore pressures. Since then, the methods for measuring transient pore pres-
sures have been developed to the point where rapid triaxial tests may be
conducted with leading times of 0.010 sec

with satisfactory measurements of pore 200l

pressures. Nashand Dixon (1961) developed )

a dynamic-pore-pressure measuring device 180r T

with which they successfully recorded pore 160 ' 1\“ |
pressure changes in triaxial tests of saturated ¢ ] i‘ “
sands under strain rates up to 8000 per cent 3 'O \ \I
per minute or loading rates up to about 220 & 120}

inches per minute. The rapid loadings were % o A

developed in the tests by Nash and Dixon by © ’ ®Cell Pressure
a falling-weight-and-lever system. As a o 8or Dynamic Axial
result, this approximated a constant-rate-of- 3 6ol Stress, Aoy
strain-type test. In the course of loading the g <~ Pore Water
specimen to its maximum (loading time 40r Pressure, u
approximately 0.1 sec), they found several a0l

short-time drops in the stress level and A 3030
simultaneous increases in the pore pressure, 0 10 20%Af 50
asshownin Fig. 6-16. This indicates that the Strain, Per Cent

structure collapsed intermittently at a rate _ )

. . Figure 6-16. Results of dynamic
which was fe-tster than_ the loading rate, but  C ial rests on saturated sand,
the change in the soil structure permitted showing sudden collapses (from
the sample to carry increasing axial loads  Nash and Dixon, 1961).
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until the maximum was reached. The time rate of these steps of structural
collapse or grain readjustments should be of considerable importance in
evaluating the behavior of sands under high rates of loading.

Dynamic triaxial tests have also been conducted on samples of cohesive
soils. Casagrande and Shannon (1948) studied intensively the behavior of
clays and soft rock under dynamic conditions. Their studies indicated that
the water content of the clay has an important influence on the relation
between time of loading and compressive strength. The percentage increase
of the fast transient strength over the static compressive strength was greatest
for specimens of the highest water content and least for specimens of the
lowest water content. The fast transient compressive strength, taken at a
time of loading of 0.02 sec, ranged between 1.4 and 2.6 times greater than the
10-minute static compressive strength for all tests on clays. For the same
dynamic loading conditions the modulus of deformation (secant modulus
determined at one-half the ultimate strength) for all types of clays tested was
found to be approximately twice that for the 10-minute static loading. Taylor
and Whitman (1954) evaluated this strain-rate effect on ten different cohesive
materials. Generally, an increase in the strain rate from static to 1000 per
cent per second increased the ultimate strength by a factor of 1.5 to 3, which
is of the same order of magnitude as that found by Casagrande and Shannon.
Tests by Jackson and Hadala (1964) indicated that the strain-rate factor for
the compacted clay used in their tests was of the order of 1.5 to 2.0, This
strain-rate factor was again the amount of increase in modulus of deforma-
tion and ultimate strength in the dynamic test above those measured in the
static tests.

This discussion of the rate of loading effects on dynamic triaxial tests of
both cohesionless and cohesive soils points out that there is an increase (1.5
to 3 times) in the modulus of deformation and ultimate strength over the
static values as loads are applied rapidly. However, these increases are
measured in the region of large deformations on the stress-strain curve
(i.e., above § of the ultimate strength) and relate to the behavior which
develops as the soil sample is in the process of failing.

Ligquefaction of Cohesionless Soils

The term “liquefaction™ has been applied to the process by which a
saturated mass of soil is caused by external forces to suddenly lose its shear-
ing strength and to behave as a fluid. First consider the expression for the
shearing strength of cohesionless soils:

7= (o — u}tan ¢’ (6-36)
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in which
o = total normal stress on the failure plane,
u = pore pressure, static plus dynamic, and

¢" = effective angle of internal friction.

It is evident from the above that an increase in the pore pressure u will cause
a reduction in 7. When the pore pressure increases to the point where u is
equal to o, the shearing strength drops to zero and the “quick™ or fluid
condition exists. This loss of shearing strength of soils because of high pore
pressures, either static or transient, has often produced flow slides whereby
embankments of submerged sand have run out almost horizontally as a fluid.
The liquefied condition may also develop within deposits of loose cohesion-
less soils having a horizontal surface. In this case the soil loses its bearing
capacity and any structure supported thereon will sink or settle. Liquefaction
may develop by impacts or repeated loadings (for example, from blasting or
earthquakes) applied to loose saturated cohesionless soils. The dynamic
forces disturb the soil skeleton and tend to force the particles to compact into
a denser arrangement. During the time it takes a sand grain to move into
its new position it is, temporarily, partially supported by the pore fluid, and
the external loads are transmitted to the fluid thereby increasing the pore
pressurc u. Consequently, liquefaction depends upon the ability of a co-
hesionless material to compact into a denser condition when the soil structure
is changed. Numerous studies have established that compaction of saturated
sands depends primarily upon the initial void ratio, the confining pressure,
and the intensity of the dynamic loading.

Because of the susceptibility of loose saturated sands to compact under
dynamic loadings, it was anticipated that controlled blasting by small charges
of dynamite or other high explosives should be an effective method of pro-
viding compaction. The study by Lyman (1942) showed that blasting was an
effective way to compact loose sands, but in order to be successful it was
necessary to run field tests at each site to establish the proper charge and
spacing. A further description of this method was given by Prugh (1963). The
probability of developing an increase in density by blasting depends upon the
ability of the material to fall back into a more dense position after it has been
disturbed by the charge. Consequently, this method is relatively inefficient
close to the surface of submerged slopes where the sand tends to roll back
into position down the slope rather than being confined as it falls. Con-
trolled blasting has been used, however, in determining whether submarine
slopes might be susceptible to flow slides caused by earthquakes (Kum-
meneje and Eide, 1961).
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An interesting study of the liquefaction and compaction of granular soils
by blasting has been reported by Florin and Ivanov (1961). They found that
in impulse tests, loose saturated sands were readily converted into a com-
pletely liquefied state over the entire depth of the test stratum. At this time
the soil had a bearing resistance which approached zero. Then, with a time
rate which depended on the permeability of the material, the sand settled
back into place, beginning at the bottom, as the upper layer remained in the
liquefied condition for a longer time. The ability of the sand layer to be
liquefied depended wpon its initial void ratio, the range of confining pressure
and, of course, t%lww. The authors
cmresult of many field observations, that loose sand is difficult
to liquefy at depths ranging between about 10 to 15 meters below ground
level. This indicates that surcharge with any material can be used as a method
for reducing sand liquefaction.

Florin and lvanov also produced liquefaction of the sand by steady-state
vibrations. By this method liquefaction was not caused simultaneously
throughout the depth of the test stratum, but the first vibrations liquefied the
upper layer, which carried a comparatively small confining pressure. This
then reduced the pressure of the overburden on the lower layers and, as a
result, the latter passed into the liquid state with continued vibration; thus,
the zone of liguefaction propagated downward. They also indicated that all
sufficiently loose cohesionless soils of any grain size may be liquefied, but
the time required for compaction depends upon the permeability. Coarse-
grained soils compact very rapidily,

Because of this susceptibility of loose saturated sands to compact and
possibly to liquefy as a result of impact or repeated loadings, it is probable
that difficulties will be encountered with this type of material when it is sup-
porting structures under earthquake loadings. Numerous investigations have
ascertained that the structural damage resulting from earthquakes has been
a result of liquefaction and compaction of loose saturated sands, for example
in the Chilean earthquake of May 1960 (Steinbrugge and Clough, 1960);
the Coatzacoalcos, Mexico earthquake of August 26, 1959, (Diaz de Cossio,
1960); the Jaltipan earthquake, Mexico (Marsal, 1961}); the Anchorage,
Alaska, earthquake of 1964 (Shannon and Wilson, 1964); and the Niigata
earthquake, Japan, 1964, (Falconer, 1964, and J.S.S.M.F.E. 1966.) Ex-
tensive soil investigations have been conducted following the Anchorage,
Alaska, earthquake (Shannon and Wilson, 1964) and the Niigata, Japan,
earthquake. For a comprehensive treatment of the development of landslides
and liquefaction of soils by earthquakes, the reader is referred to the Fourth
Terzaghi Lecture by Professor H. B. Seed (Seed, 1968). This outstanding
paper presents a historical review including case histories, the present state
of the art, and an extensive bibliography on the subject of landslides during
earthquakes due to soil liquefaction.
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Failure of Soil Samples in the Repeated-Load Triaxial Test

The two preceding sections treated the ultimate failure of triaxial samples
under a single load which increased continuously to the failure load. How-
ever, loads less than the failure load may be applied a number of times before
the cumulative deformation reaches a value considered to represent failure.
The number of load applications which may be resisted by a particular soil
sample depends on the magnitude and type of loading pulse and the char-
acteristics of deformation of the soil.

It has been noted previously that loose saturated sands and silts may
liquefy as a result of a single impact or rapidly applied load. These materials
may also fail by transient liquefaction after a number of load applications
have occurred. Figure 6-17 (from Seed and Lee, 1966) illustrates the behavior
of a sample of [oose saturated sand under repeated triaxial loading conditions.
The sample was first subjected to an effective confining pressure &, of 1
kg/cm? (ie., cell pressure = 2 kgfem?, initial pore pressure = 1 kgfcm?)
then an alternating axial stress of |0.39 kg/cm? was applied. As noted in
Fig. 6-17c the pore pressure gradually increased cach cycle until transient
liquefaction occurred after 8 cycles. In this test the incremental increase in
pore pressure each cycle indicated a decrease in void space in the sample
caused by minor slips or rearrangements of the soil particles.

The cumulative effects of minor rearrangements of soil particles or slips
at the contact points are indicated by gradual increases in axial strain as the
number of cycles increases. Figure 6-18 illustrates the behavior of a com-
pacted, silty clay subjected to repeated axial loads in the triaxial test. In one
test a total axial strain of 6 per cent was reached after 100,000 cycles of loads
applied at a rate of 20 per min. At a slower rate of load applications the
cumulative deformation was reduced, which indicated for this material that
thixotropic regain in strength occurred between load applications. Thus, the
frequency of load application is a factor to be considered when testing
materials having thixotropic characteristics.

In the two preceding paragraphs, the results of repeated-loading triaxial
tests have been described which, in the first case, caused collapse of the soil
structure in 8 cycles of loading and, in the other case, caused about 6 per
cent axial strain after 100,000 cycles of loading. Thus, if laboratory tests are
to be used to establish numerical values for the response of various soils
to repeated dynamic loadings, it is necessary to establish criteria for “failure.”
For large-amplitude loadings represented by an alternating stress greater than
about one-half the allowable static-stress increment, it would be anticipated
that failure of the sample under repeated triaxial loads would occur in a few
hundred or at the most a few thousand cycles. Failures occurring at this
number of stress repetitions are designated as “low-cycle fatigue” in the study
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Figure 6-19. Results of pulsating-load tests on samples of silty clay from L
Street slide area, Anchorage (from Seed and Chan, 1964).

of fatigue of metals. The low-cycle failure of soils is of particular interest
when a scil-structure system must be designed to withstand earthquake
loadings.

Following extensive damage which occurred because of slope failures
during the Anchorage, Alaska, earthquake in 1964, many repeated-loading
triaxial tests were conducted on soil samples from this location. The results
are summarized in the report by Shannon and Wilson (1%64) and are pre-
sented in more detail in papers by Seed and his co-workers. Figure 6-19
{(from Seed and Chan, 1964) shows test results for samples of silty clay from
the L Street Slide area for different amplitudes of alternating stress and for
rectangular and triangular pulse shapes. It is of particular significance that
the axial deformations remained relatively small throughout the major part
of the test and then increased rapidly as the failure condition was ap-
proached. Thus, there was relatively little indication of impending failure.
For these tests, an axial deformation of 25 per cent was designated as
failure.

From a study of many test results similar to those shown in Fig. 6-19, it
is possible to determine the allowable alternating axial stresses which may be
superposed on a static axial stress Aoy, to develop failure at a given number of
load applications. Figure 6-20 (from Seed, 1960) illustrates the type of
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alternating stress—steady stress diagrams
which were established for 1, 10,
and 100 transient stress pulses for two
soils, This information is in a form
similar to the alternating stress—steady
stress diagram (see Soderberg, 1933)
frequently employed to describe failure
conditions for fatigue of metals.

The axial strains developed in the
repeated-loading triaxial tests depend
upon the levels of stress applied. The
results shown in Fig. 6-19 correspond
to failures at low numbers of cycles of
relatively high stresses. When the level
of stress is reduced, it takes many more
stress rtepetitions to develop equiva-
lent axial strains. As illustrated in Fig.
6-18, axial deformations of the sample
may increase continuously even after
100,000 cycles of load have been
applied. Thus, failure from this type
of soil behavior would be establish-
ed in terms of [limiting total settle-
ment.
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Failure of Sands in the High- Amplitude Resonant-Column Test

In one series of tests conducted in the high-amplitude resonant-column
device, Drnevich (1967) attempted to evaluate the progressive settlement of
samples of dry 20-30 Ottawa sand. Hollow samples, similar to the one shown
in Fig. 6-10, were set into torsional vibration after being subjected to a given
confining pressure &,. The amplitude of reversed shearing strain was main-
tained constant throughout each test, with the highest strain amplitude
amounting to 6 x 10~*. Repetitions of this amplitude of shearing strain
caused a gradual increase in axial strain as shown in Fig. 6-21 for samples
prepared in the loose condition. Also shown in Fig. 6-21 is the strain de-
veloped in a dense sample with increased cycles of loading. The confining
pressure and initial void ratio is noted for each curve, as is the angle of
internal friction ¢". The maximum shearing stress developed on the horizontal
section was established by

Te0 = Gyze 7

Number of Cycles

Figure 6-21. Effect of repetitions of high-amplitude torsional prestrain on
hollow samples of 20-30 dry Ottawa sand (after Drnevich, 1967).

in which y_, was the amplitude of applied shearing strain and the effective
shear modulus at that strain was taken from Fig. 6-11. Then, from the
Mohr-circle relation for the applied stress conditions,

-
T,6 = 0, 8N ¢

the value of ¢’ can be determined. Table 6-1 includes data for two levels of
applied shearing strains applied to samples of 20-30 Ottawa sand in the loose
and dense conditions when subjected to three different confining pressures.
The cumulative axial strains developed by 10¢ cycles were negligible from the
applied shearing strains of y o, = 1.6 < 10~4, but significant strains developed
for the shearing-strain amplitude of y, = 6.0 x 1074 This information
reinforces previous conclusions that clean sands behave essentially as elastic
materials when subjected to shearing strains of less than I x 1074 It also
points out that axial strains or settlements may continue to develop in loose
sands after 10° or 107 repetitions of stresses well below the static failure
stresses.
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Tabie 6-1. Axial Strains Developed in High-Amplitude Torsional Resonant-
Column Tests of Dry 20-30 Ottawa Sand Samples*

O
g

D’Appolonia, 1968; and Luscher, Ortigosa, Rocker, and Whitman, 1967,
for example) for repeated air-pressure loadings on the surface of confined
samples. The loading rate in this series of tests was slow enough that no
dynamic effects were introduced, and the tests established the contributions
of repeated static stresses to the compaction of cohesionless soils. Figure
6-23 shows typical results obtained from these tests. Note that the percentage
vertical strain also represents change of volume because the confinement
permits no lateral deformation of the sample. For this material the relation
between percentage vertical strain and logarithm of number of loading cycles
was linear up to 105 to 107 cycles. Similar results have been obtained for
samples of other cohesionless soils.
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Figure 6-23. Typical results of one-dimensional repeated-loading tests
{from D'Appolonia, 1968).

In order to evaluate the influence of vertical accelerations on the com-
paction of cohesionless soils, the loading device shown in Fig. 6-22 was
modified slightly. The air pressure applied to the membrane at the top of the
sample was held constant throughout the test, and the confining chamber
was placed on a vibrating table instead of the rigid base shown in Fig. 6-22.
The drive mechanism for the vibrating table was adjustable, so both the
frequency of vertical vibration and amplitude of motion could be controlled.
Thus, sinuseidal vibrations with a range of peak accelerations could be
developed during the program of tests. Variations of this type of vibrating
table have been used often for determining the influence of vibrations on the
compaction and settlement of cohesionless soils (see, for example, Mogami
and Kubo, 1953; Linger, 1963; D’Appolenia and D’Appolonia, 1967;
Whitman and Ortigosa, 1968); but recent studies have been concerned
specifically with evaluation of the influences of acceleration and confining
pressures on settlement.

Figure 6-24 shows results of tests on air-dry samples of dune sand con-
ducted at a specific level of acceleration. These samples had no surcharge
pressure and were placed in the container in the loosest condition before each
test. Because the value of peak acceleration is the product of amplitude and
frequency squared [# = A(2n/)?], several values of amplitude were used, as

)
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Figure 6-24. Correlation between terminal density and peak acceleration
(after D'Appolonia and D' Appolonia, 1967},

noted in Fig. 6-24, in order to develop the same acceleration at different
frequencies. 1t is evident from the test results that there was little effect of
frequency over the range used in these tests. The test results show a marked
increase in dry unit weight (decrease in volume) as the value of peak accelera-
tion approached 1 g, with the maximum effect produced at about 2 g. For
accelerations above 2 g the sample began to loosen or to decrease in volume
again. Figure 6-25 illustrates the influence of the air-pressure surcharge on
the change in void ratio (decrease in volume) for different values of applied
accelerations. It is important to note that an increase in vertical pressure
increases the level of acceleration required to initiate the change in void ratio
or change in volume of the sample.

The test results shown in Figs. 6-24 and 6-25 reinforce the general con-
clusions that a change in volume in cohesionless soils, produced by impact or
vibratory loads, depends on the confining pressure and intensity of the
dynamic load as well as upon the initial void ratio and characteristics of the
soil.

Field Compaction of Cohesionless Soils by Vibrations

" Foundations supported by deposits of cohesionless soils may settle as a
result of repeated applications of dynamic forces. The total amount and rate
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Figure 6-25, Relationship between void ratio and peak acceleration for
several values of air pressure surcharge (after Whitman and Ortigosa, 1968).

of settlement depend on the intensity of the dynamic loads applied, the levels
of stress developed in the supporting soil, and the changes in volume of the
soil mass caused by the particular level and duration of the applied stresses.
Changes in soil volume and settlement of the surface of a deposit depend
primarily upon the initial condition of the soil. Large settlements are possible
if the soil is initially in the /oose condition, and minor settlements may occur
if the soil is initially “‘dense.”

It is convenient to represent the natural condition of a cohesionless soil
in terms of its relative density D,, which is defined in terms of void ratio by

Crrax — €
D, =" {6-37)
€max — €min
in which
e = measured void ratio of the soil in situ,
€max — vOId ratio for the loosest state, and
enin = void ratio for the densest state.

The relative density may also be defined in terms of the unit weights of the
soil by

1
D = Ymin )1} , (6-38)

Ymin Ymax '
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Laboratory procedures for determining maximum and minimum unit weights
of cohesionless soils are specified by standard procedures (see ASTM
Standards, Vol. 11, D-2049).

After the relative density has been evaluated for a particular soil layer of
thickness H, the maximum possible settlement Az of the surface of this layer
may be estimated from

Az = &~ Emin g (6-39)
1+ e

For example, if the layer consists of identical perfect spheres (see Sec. 6.2)
initially in the loosest state (e, = e = 0.91) and is subsequently vibrated
until it reaches the densest state (ey;, = 0.35), the surface would settle
0.293H. For this initial condition the relative density was zero. If this layer
had an initial void ratio of e = 0.63, this would correspond to a relative
density of 0.50 (or 50 per cent). By vibrating this layer of perfect spheres into
the densest condition, the surface would settle by an amount

7 — 9‘.@3’__0'351{ = {0.17H
1.63

If the layer of perfect spheres was initially at a void ratio of 0.35, the relative
density was 1.0 (or 100 per cent) and vibrations would cause no further settle-
ment.

The use of relative density was discussed thoroughly by Burmister (1938,
1948), and a specified value of relative density has often been used as a design
criterion or for control of field compaction. However, because relatively
small errors in determining ey, may cause significant errors in D, (see
D’Appolonia, 1953), the same method should be used for determining
emin for field control as was used in determining ey, when establishing the
design criterion.

The use of vibratory loadings for compacting cohesionless soils has been
studied and evaluated since the early 1930s. These loadings are usually
repeated impacts which may be applied at the surface (see, for example,
Pippas, 1932; Converse, 1953; Forssblad, 1965; and D’Appolonia, Whitman,
and D’Appolonia, 1969) or at a depth within the soil mass (see, for example,
Steuerman, 1939; BuRecl, 1948; WES, 1949; Fruhauf, 1949; D’Appolonia,
1953; and Forssblad, 1965). Because the effect of surface compaction
extends downward only a few feet, this method is most effective in compacting
granular fills which are placed in relatively thin layers. Existing deposits of
loose cohesionless materials may be compacted by a vibrator that penetrates
into the soil.

The method of compacting cohesionless materials by vibrations applied at
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the surface has long been employed in the preparation of sub-bases for high-
ways and airport runways and also has been a standard procedure for the
construction of earth and rockfill dams, These topics are beyond the scope
of this book and will not be treated here. The following discussion is limited
to the preparation of sites to support buildings or equipment on soils which
will be subjected to vibratory loads during the normal activity of the facility.

Compaction by loads applied at the surface may be accomplished using
machines which vary in size from small “one-man’ soil compactors to tractor-
drawn vibratory rollers producing a dynamic force of 10 tons or more. It
should be noted that these vibratory compactors are actually repeated-
impact machines in that the vertical accelerations are large enough for the
machine to jump free of the ground on the upstroke and act as a hammer on
the downstroke. Thus, equipment is available to provide a wide variation in
the amount of dynamic force which may be delivered to the soil. In addition
to the force amplitude, the number of repetitions delivered to each unit volume
of soil is important in causing compaction. The number of stress cycles
applied to each spot depends on the number of times the vibrator passes
above the given spot, the frequency of vibrations, and the speed of towing.
The magnitude of stress developed in any unit volume of soil depends on the
intensity of the surface force applied and the distance of this unit volume from
the loading point. Thus, there are many combinations of surface force,
number of passes, vibration frequency, towing speed, and lift height which
may produce satisfactory compaction for a particular cohesionless soil. The
most economical combination of these variables must be established by the
designer for specific field conditions.

A description of some of the factors to be evaluated when using vibratory
compaction for site preparation is included in the study by D’Appolonia,
Whitman, and D’Appolonia (1969). This paper describes the field compaction
and observations made for a site involving fills of dune sand. The dune sand
consisted of poorly graded, angular to subangular, predominantly quartz
particles with a mean grain size of 0.18 mm. Following the procedures
suggested by Burmister (1964), the former authors found that the minimum
unit weight of this material was 88.5 1b/ft* and that the maximum unit weight
was 110 Ib/ft®. Initial density measurements from test pits in an 8-ft test
embankment gave unit weights of 98 to 100 Ib/ft® (or 50 to 60 per cent relative
density).

Tests to evaluate the increase in compaction with number of vibrating-
roller passes were conducted on the 8-foot test embankment. A smooth-
drum roller with a dead weight of 12,500 1b and vibrating at a frequency of
27.5 cycles/sec was towed by a D-6 dozer at a speed of 2 ft/sec in all tests.
Measurements of the unit weight of the fill were made in test pits after 2, 5,
15, and 45 roller passes. The variation of unit weight with depth is shown in
Fig. 6-26a for the original conditions and after 5 roller passes. A composite
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diagram shown in Fig. 6-26b illustrates that increasing the number of roller
passes increased the unit weights throughout the measured depth, but that
the increase was less significant for more than about 5 passes. The maximum
compaction occurred at a depth of 1 to 2 ft and decreased with depth until,
at a depth of about 6 ft, no measurable effect was noted. Near the surface
the compaction was less effective, and for about the upper 6 in., where
accelerations were high and confining pressure was low, a loosening occurred.

From the curves shown in Fig. 6-26 it is evident that for this kind of
material the most efficient compaction would be obtained for a few roller
passes acting on relatively thin lift heights. From subsequent tests using 2-ft
lift heights, D’Appolonia et al. (1969) found that superposition of the com-
pactive efforts occurred. Then they proposed a method for specifying com-
paction procedures by interpreting the density-depth curve of Fig. 6-26a,
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Figure 6-27. Approximate method for determining lift height required
to achieve a minimum compacted relative density of 7554 with five roller
passes using data for a large lift height (from D’Appolonia, Whitman, and
D’Appolonia, 1969).

as shown in Fig. 6-27a, in terms of relative density. These curves may be
superposed, as shown in Fig. 6-27b, to give the proper lift height to produce
a chosen minimum value of relative density. For the case shown in Fig. 6-27b,
D, was chosen as 75 per cent; and by superposing the 5-pass curves, the
minimum lift height was found to be 18 in. For a larger number of passes,
the lift height could be increased.

Previous studies (for example, Converse, 1953) have indicated that the
most effective compaction is obtained at the resonant frequency of the system.
However, in the tests using a 6.3-kip (6300 1b) roller, D’Appolonia et al.
{(1969) did not find the resonant frequency of the system because the roller
was not capable of operating at a high enough frequency. Within the range
of operating frequencies, it was found that compaction increased as the
frequency increased, as might be anticipated by noting that the exciting
force increases with (frequency)?. In field situations it may be impossible or
uneconomical, from the standpoint of machine maintenance, to operate at
the resonant frequency of the system.

Another significant factor associated with vibratory compaction of
cohesionless soils was treated in the paper by D’Appolonia et al. (1969).
By embedding pressure cells in the fill with the sensing surfaces oriented both
horizontally and vertically, they were abie to measure the vertical stress and
horizontal stresses in the direction of rolling and perpendicular to the direc-
tion of rolling. Figure 6-28 shows the resulting coefficient of horizontal earth
pressure K, which is the ratio of horizontal to vertical static stresses in the
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Figure 6-28. Variation of K, as a function of number of roller passes {from
D' Appolonia, Whitman, and D'Appolonia, {969),

fill, measured at the end of each series of roller passes. The value

K,=" (6-40)
0-2

increased with the number of roller passes and was greater in the direction
perpendicular to the roller path than it was in the direction parallel to the
roller path. Note that these values of K, were obtained at a depth of 2 ft
below the roller. Undoubtedly as the depths of fill increased above this
particular point the value of K, would decrease.

When it is necessary to compact existing deposits of loose sand, the
vibroflotation process is often used. In this process the vibrating forces are
developed by a machine called a “Vibroflot,” in which an eccentric mass
rotates about a vertical shaft. One model of the Vibroflot has a 16-in. diam-
eter, is 6-ft long, and has a dead weight of 2 tons. Itcan develop 10tons of
horizontal force against the soil and has been used effectively to depths of
100 ft. Penetration of the Vibroflot into cohesionless soils is accomplished
by & water jet at the tip of the assembly which creates a “quick’ condition in
the soil. After reaching the desired depth, this tip jet is turned off and a
smaller jet at the upper end of the Vibroflot is turned on as the vibrating
device is gradually withdrawn to the surface. Additional sand is fed in at the
surface as the horizontal impacts compact a column of sand around the
vibrator. At the end of the process, a column of compacted sand remains in
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the scil mass with the amount of compaction decreasing with radial distance
from the line of penetration. The pattern of compacted columns to be de-
veloped by this method depends upon the required relative density, the
characteristics of the original deposit, and the equipment available.

D’Appolonia (1953) has given some criteria which are uvseful for estimating

the required spacings for Vibroflot penetrations.

In these discussions of compaction of cohesionless soils, it was em-
phasized that a particular value of relative density is desired. For normal
machinery vibrations, it is usually satisfactory if the supporting soil is com-
pacted to 70-75 per cent relative density (see D’Appolonia, 1953). However,
for foundations subjected to intensive vibrations or earthquake loadings,
higher values of D, may be required. The final choice of required D, at any
particular site must be established by the designer.

THEORIES FOR
VIBRATIONS OF FOUNDATIONS
ON ELASTIC MEDIA

7.1 Introduction

In this chapter various solutions for the dynamic behavior of founc_lati.ons
supported by an elastic medium are presented and discussed. The prmmpgl
elastic medium considered is the homogeneous, isotropic, elastic semi-
infinite body which is often called simply the “elastic half-space™ in follow?ng
sections. After accepting the assumptions involved in considering a footing
resting on the elastic half-space, it is possible to develop mathematical sglu-
tions for the dynamic response of footings thus supported. Several solutions
which demonstrate the importance of the geometrical variables and types of
exciting forces are presented to form a basis for the design procedures which
will be treated in Chap. 10. \

In Chap. 6 it was demonstrated that soils may be considered to behave
approximately as elastic materials for small amplitudes of strain. Furthgr-
more, fairly routine methods for evaluating the “elastic”” constants of 501‘15
both in the laboratory and in the field have been developed. The e1a§t1c
soil constants obtained at a given site can be introduced into the appropriate
theory to provide an estimate of the dynamic response of a particular founda-
tion. Consequently, theories based on the concepts of elastic media have

191
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engineering value which increases as our knowledge and confidence in estimat-
ing the effective values of the elastic soil properties increases.

Following the evaluations of footings resting on the elastic half-space,
the change in the dynamic response is considered when the elastic half-space
is replaced by an elastic layer resting on a rigid sub-base. Because the theories
for this situation are not as well developed, the results are useful primarily to
indicate general trends for the dynamic response. Finally, a short section on
the influence of piles on the dynamic response of foundations is included to
indicate a method of approach which may be useful as a rough guide to
design for this condition.

There are also several theories and design procedures which treat the
behavior of foundations resting on nonlinear media (Lorenz, 1950, 1953;
Novak, 1960; Weissmann, 1966; and Funston and Hall, 1967, for example).
These methods will not be considered in this chapter, but they may be con-
sidered as supplemental reading. Several of these procedures will become
more uscful in the future as methods for identifying the nonlinear “elastic™
behavior of soils under higher strain amplitudes becomes available.

7.2 Lamb (1904) and the Dynamic Boussinesq Problem

The paper by Lamb (1904) has been mentioned previously in Chap. 3
in connection with the theoretical development of ground motions associated
with the Rayleigh wave. The Lamb paper is also the cornerstone of theoreti-
cal solutions developed from the assumption of an oscillator resting on the
surface of a homogeneous, isotropic, elastic, semi-infinite body. In this
paper Lamb first studied the response of the elastic half-space as it was excited
by oscillating vertical forces acting along a line. Thus, he established the
solution for two-dimensional wave propagation. He extended this study to
include the condition of oscillating forces acting in a horizontal direction on
a line on the surface and for either the vertical or horizontal line source
acting at an interior point within the body. The locations of these oscillating
line loads are described in Fig. 7-1. He also showed how a series of vertically
oscillating forces acting at different frequencies could be combined to produce
a single pulse acting on a line on the surface. This pulse was then applied to
the surface to produce the surface displacements associated with the com-
pression, shear, and Rayleigh waves. .

Lamb followed threugh the same line of reasoning for the three-dimen-
sional case in which a single oscillating force acted at a point on the surface
and within the half-space, and again he developed the sclution for both the
steady-state oscillation and the transient-pulse loading. It is the oscillating
vertical force at the surface, which has often been termed the “dynamic
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Figure 7-1, Lamb’s problems for steady-state oscillating force or pulse
loading acting at a point (three-dimensional) or along a line (two-dimen-
sional), (a) For vertical loading at the surface. (b) For horizontal loading
at the surface. (c} For vertical loading within the body. {d) For horizontal
loading within the body,

Boussinesq loading,” which forms the basis for the study of oscillations of
footings resting on the surface of the half-space. By integration of the solu-
tion for the oscillating vertical force over a finite area of the surface, the
contact pressure produced on the half-space by the oscillating footing can be
described, and the dynamic response of the footing on the half-space can be
evaluated.

Lamb also noted the condition of dynanic reciprocity, which is an ex-
tension of Maxwell’s law of reciprocal deflections to dynamic conditions.
Maxwell’s law for the usual static case may be stated as follows: The de-
flection at point 1 in an elastic body due to a unit value of load at point 2 in
that body is equal precisely to the deflection at point 2 due to a unit \‘falue of
load applied at point 1. In using this relation it is necessary to conglder the
component of each deflection which is in the direction of the applied force
al the point under consideration, such that the product of the load and dt?-
flection gives work. In the dynamic case, Lamb demonstrated that t_h.e hori-
zontal displacement produced at a point on the surface of a semi-infinite
elastic body by an oscillating unit vertical force at that point has thf: same
value as the vertical displacement at the same point caused by an oscillating
horizontal unit force acting at the point. He noted further that this dynam'%c
reciprocity could be used to evaluate the dynamic motion within an elastic
body caused by a point load on the surface by considering the displacement
at the surface developed by an oscillating point force acting within the body.
This concept is illustrated in Figs. 7-1a and 7-lc, where the vertical displace-
ment at point Q caused by the vertical load Q acting at O’, shown in Fig. 7-1a,
is equal to the vertical displacement at point O’ caused by the vertical load ¢
acting at O as shown in Fig. 7-lc.
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7.3 Vertical Oscillation of Footings Resting on the
Surface of the Elastic Half-Space

Reissner (1936)

During the early 1930s the Deutschen Forschungsgesellschaft fiir
Bodenmechanik (DEGEBO) investigated the use of mechanical oscillators
to evaluate soil properties in the field (see, for example, Hertwig, Friih, and
Lorenz, 1933). Because of this activity, E. Reissner attempted to provide a
theory for evaluating the dynamic response of a vibrating footing as it was
influenced by properties of the soil. He chose the semi-infinite homogeneous,
isotropic, elastic body (elastic half-space) to represent the soil mass. The
parameters needed to describe the properties of this elastic body were the
shear modulus G, the Poisson’s ratio », and the mass density p (=y/g). The
vibrating footing was represented by an oscillating mass which produced a
periodic vertical pressure distributed uniformly over a circular area of
radius r, on the surface of the haif-space.

With the elastic half-space as the mathematical model, Reissner developed
an analytical solution for the periodic vertical displacement z, at the center of
the circular loaded area of the surface. He obtained this solution by integra-
tion of Lamb’s 1904 solution over a circular area. The mathematical treat-
ment will not be repeated here, but it may be found in the original paper or
in the papers by Quinlan (1953) or Sung (1953). The vertical displacement is
expressed by

P exp (iw!)

Gr (fl ifs) (7-1)

in which -
P, = amplitude of the total force applied to the circular contact area,
@ = circular frequency of force application
G = shear modulus of the half-space,
= radius of the circular contact area,
Jis f2 Reissner’s ““displacement functions.”

In Eq. (7-1) both the displacement and the force are positive in the downward
direction. The expressions for f; and f; are complicated functions of Poisson’s
ratio and a dimensionless frequency term a,, described by

p _ or,
dy, =Wry [——=— 7-2
\[G vg (7-2)

In Eq. (7-2) vg is the velocity of propagation of the shear wave in the elastic
body.
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Figure 7-2. Rotating mass oscillator with circular footing resting on semi-
infinite elastic body.

Reissner also established a second dimensionless term, designated as the
“mass ratio” b, which is described by

b=~ (7-3)

in which m is the total mass of the vibrating footing and exciting mechanism
which rests on the surface of the elastic half-space (see Fig. 7-2). Equation
(7-3) essentially describes a relation between the mass of the rigid body which
undergoes vertical motion and a particular mass of the elastic body. _
Reissner established expressions for the amplitude of oscillator motion,

_& f%+f§ (7_4)
&_GQ&MMﬁHmmV

the phase angle ¢ between the external force, Q == Q,exp (iwt), and the
displacement z, was expressed as :

f,
_ : (7-5)
= b 1 )

and the input power required was expressed as

PR — %o LE U (7-6)
P2 /G (1 — baZfy? + (balfy)
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The external oscillating force amplitude O, may either be a constant (i.e.,
independent of the frequency w) or it may be a function of the frequency of
excitation. For the rotating-mass—type exciter with a total mass of m,
acting at a radius designated as the eccentricity e, this force is

0, = men? (7-7

For the two-mass oscillator shown in Fig. 7-2, the total eccentric mass 1,
is equal to 2m,.

Reissner’s theory formed the basis for nearly all further analytical studies
of oscillators resting on the half-space, although his theory did not receive
immediate adoption by engineers working in the field of soil dynamics be-
cause his theoretical results did not completely agree with the results of field
tests. There are several reasons for this, including (1) permanent settlements
developed during many tests, thereby violating the conditions assumed for
an elastic medium; (b) the amplitudes of motion sustained by the model field
vibrators were so large (as required for the insensitive recording instruments
then available) that the accelerations were often on the order of 2g to 3g,
which allowed the vibrator to jump clear of the ground and to act as a ham-
mer; (3) the assumption of a uniformly distributed pressure at the oscillator—
soil contact zone was not realistic; and (4) there was an error in the calcula-
tion of f; which influenced the numerical value of the results. Nevertheless,
the study by Reissner is the classic paper in this field.

Quinlan (1953) and Sung (1953)

Two papers which appeared at the same time extended Reissner’s
solutiof to consider the effects of changes in pressure distribution over the
circular area of contact on the surface of the half-space. Quinlan established
the equations for oscillating contact pressures which vary across a diameter
of the contact area with a parabolic distribution, with a uniform distribution,
and with the distribution corresponding to a rigid base. He developed solu-
tions only for the rigid-base case. Sung also established the basic equations
for the three pressure distributions and presented solutions for each case.
The pressure distributions are identified as

(a) Rigid Base (approximation)

_ Poexplion) forr <r
=T,

0, = ——
27-rr0\/r§ —r? : (7-8)

a,=10 forr>r,
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{b) Uniform

P, exp (int
az=—~"-—p§——) forr <r,

mr, {7-9)
g,=0 forr>r,

(c) Parabolic
2 .2 it
o, — 2P(r; —r )qexp {iwt) for r < 7,

r (7-10)
=0 forr>r,

Sung’s solutions described the displacement at the center of the circular
area loaded by the three pressure distributions. For the parabolic and
uniform-pressure distributions the loaded surface developed larger displace-
ments at the center than at the edges—a displacement pattern which can be
developed only by a flexible footing. The rigid-base pressure distribution
produced uniform displacement of the loaded surface under static conditions.
Thus, the three pressure distributions developed three different shapes of
surface displacements.

After determining these center displacements, Sung established the
dynamic response of a mass supported on the half-space for each type of
contact-pressure distribution by considering that the center of gravity of the
mass moved the same distance as the center of the loaded area. This assump-
tion produced exaggerated response curves for the parabolic and uniform-
pressure distributions because the center point has greater displacement than
the average. However, these response curves are instructive from a qualitative
standpoint for visualizing the influence of contact-pressure distribution on
the vibration response of the system.

Figure 7-3a shows the amplitude-frequency response curves correspond-
ing to the three pressure distributions in an oscillator-soil system for which
b=5, » =1, and the exciting force is caused by a rotating-mass exciter
(sec Eq. 7-7). From Fig. 7-3a it is evident that as the load is progressively
concentrated nearer the center of the loaded area, the peak amplitude of
motion increases and the dimensionless frequency a, at which this peak
amplitude occurs is lowered. An improvement on the presentation of the
response of footings which develop these pressure distributions was pre-
sented by Housner and Casteliani (1969). They determined response curves
based on a weighted average displacement which was based on the work done
by the total dynamic force. The peaks of the corresponding response curves
for the weighted average displacements are shown in Fig. 7-3a as the solid
circles designated as P, U, and R. As might be anticipated, the response

- curves for the weighted average displacements for the parabolic and uniform

displacements are closer to the curve for the rigid-base condition than are
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Figure 7-3, Effect of pressure distribution and Poisson’s ratic on theoretical
response curves for vertical footing motion (after Richart and Whitman,
1967).

Sung’s curves; however, the trend is still the same. This diagram should
indicate to a designer that he may influence the dynamic response of a
foundation by his control of the flexibility of the foundation pad. A practical
application of this type of control has been described by Fistedis (1957), who

\
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indicated that adjustment of the resonant frequency of an engine or com-
pressor foundation could be accomplished by post-tensioning a prestressed
concrete base pad. By changing the camber of the base pad, the major part
of the soil-contact pressure could be moved toward or away from the edges.

Figure 7-3b illustrates the influence of a change in Poisson’s ratio » of the
elastic body on the steady-state response for the rigid-base condition and
b = 5. This diagram shows that the amplitude of motion is greater and the
frequency at maximum amplitude is lower when » = 0. Because some solu-
tions for other modes of oscillation are available only for the case of v = 0,
it is useful to have this guide to indicate how the solution for » = 0 might
vary from a more realistic condition of » = 0.33 or 0.40. Generally, the
solution for » =: 0 would represent the “worst case” of a greater motion at a
lower frequency.

Sung established values for the displacement functions f; and f; (used in
Eq. 7-1) for values of » of 0, }, }, and } for each of the three base-pressure
distributions over the range of a, from 0 to 1.5. These displacement functions

were then introduced into Eq. (7-4) to evaluate the amplitude-frequency '

(A, vs. a,) response curves for different values of the mass ratio b. Figure 7-4

illustrates the influence of the mass ratio b on the shape of the amplitude- A

frequency response curves for the case of the rigid-base pressure distribution
and Poisson’s ratio of 1. By taking the values of the dimensionless amplitudes
A or A7 and the frequency factor g, at the peak of each response curve, a
series of curves can be established to relate A,, (or 4.}, a,,,, and b, which are
useful for establishing the maximum amplitude of motion and the frequency
at which it occurs. These curves have been prepared by Richart (1962) for
use in analysis or design. The same information is presented in Fig. 7-11 in a
more ¢onvenient form.

By comparing Fig. 7-4a with Fig. 2-14a, and Fig. 7-4b with Fig. 2-16,
we note that the shapes of these response curves are quite similar. The curves
for the lower b-values correspond to the curves with large damping ratios D.
This is a graphical illustration that vertical oscillation of a rigid footing on
an elastic semi-infinite body includes a significant loss of energy by radiation
of elastic waves from the footing throughout the half-space. This loss of
energy through propagation of elastic waves was defined in Sec. 3.3 as
geometrical damping. Because most footing systems which undergo vertical
vibrations lead to b-values of less than 10, vertical oscillations are usually
highly damped and extreme amplitudes of motion do not occur.

fn Sung’s study he assumed that the pressure distribution remained
constant throughout the range of frequencies considered. Actually, the
rigid-base pressure distribution which correctly predicts a uniform displace-
ment of the loaded surface under static conditions does not produce uniform

- displacement under dynamic conditions. Bycroft (1956) evaluated the

weighted average of the displacements beneath the footing and established
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Figure 7-4. Amplitude vs. frequency relations for vertical oscillation of a
rigid circular footing on an elastic half-space (» = }). (After Richart,
1962.}

better values for the displacement functions f; and f,. His values of the
displacement functions for the rigid base and for » — 0, }, and % are given in
Fig. 7-5.

Several important points may be observed in Fig. 7-5. Ata, = 0 (static
case), f = 0 and the value of f; must produce the correct static displacement
when introduced into Eq. (7-1). For the rigid circular footing, the static
displacement is

_ Pl

4Gr (7-11)

a

It should be noted that the f, and f, terms are evaluated only over the range
\
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Figure 7-5. Displacement func- ?/4
tions for rigid circular footing 1, 172
vibrating vertically on the surface 1 I
of an elastic half-space (after 0 0.5 1.0 l.

Bycroft, 1956). Frequency Ratio, a,

of (0 < a, < 1.5). This is the practical range over which the resonance
peaks may occur in the response curves and is satisfactory for most steady-
state resonance studies. Finally, the displacement function f, essentially
describes damping in the system (see Eq. 7-16).

Hysieh's Equations

By a reorganization of Reissner’s basic equations, Hsieh (1962) was
able to improve the presentation of the expression for *“geometrical damping’”
which developed from the elastic theory. He considered first a weightless,
rigid, circular disk of radius #, resting on the surface of the elastic half-space
{Fig. 7-6a). The disk was subjected to a vertical periodic loading of

P = P,exp (iwt) (7-12)

From Eq. (7-1) it was shown that the vertical displacement is

7 — Da@RULD f g (7-1)
Gr,

By differentiating with respect to time, he obtained

dz _ Pywexp(iwh) .0 7-13
dt Gr, =P N

Thus,

d P a , P 2
fiwz - fy E = G":;’ (f2 + F2) exp (iwt) = G:’o(fl )
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Figure 7-6, Notation for Hsieh’s equations.
or
Gr, dz
P:——_2f2 o+ Or, 2f1 - (7-14)
a)(f1+f2)dt f1+fz
Equation (7-14) can be simplified to
d
P=C, d_:z + K,z (7-15)

after substituting

€= 2T () 19

and

J1
K, = Gr 7-17

Y D
Note that because both C, and K, include f; and f;, they also depend on a,
and 7.
‘ Now, if a rigid cylindrical footing of base radius r, and total weight W
is p.lac.ed on the half-space and set into vertical oscillation by an external
periodic force @, we may write an expression for its dynamical equilibrium
as

W d*z
2z _ — P -
¢ di’ 0 (7-18)
After substituting Eq. (7-15) and m = Wjg, this reduces to
d® d
m &Tf +c, Etf + K,z = Q = Q, exp (iwt) (7-19)
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Equation (7-19) has the same general form as the equilibrium equation for
the damped-single-degree-of freedom system (see Lq. 2-48). The major
difference is that the demping term C, and the spring-reaction term K, are
both functions of the frequency of vibration. However, Eq. (7-16) shows
clearly that the geometrical damping in the elastic system is governed by
the displacement function f;. Equation (7-17) demonstrates that the static
displacement and elastic-spring response of the system is governed by the
term f;.

Hsieh included in this study a description of the frequency-dependent
damping and spring functions for horizontal oscillation, rocking, and
torsional oscillations and demonstrated their use in establishing equations
for coupled oscillations. This will be considered further in Sec. 7.8.

Lysmer’s Analog

To approximate the dynamic response of a rigid circular footing to
vertical motion, Lysmer (1965) considered a footing made up of a series of
concentric rings. By applying uniform pressures of different magnitudes on
each ring, he was able to develop a constant deflection under the footing and
to evaluate the dynamic response of the footing to a periodic exciting force.
In the process of developing his solution, Lysmer found several notations to
be convenient for simplification of the presentation. The displacement

function .
S=h+1i (7-20)
includes Poisson’s ratio, but if it is multiplied by a factor 4/(1 — »), a new
displacement function

4

i 4

F =

f=F +iF, (7-21)

is obtained which is essentially independent of v, Figure 7-7 illustrates the
way in which Bycroft’s displacement functions collapse onto a nearly common
curve when modified by Eq. (7-21). Using this notation, Lysmer calculated
values for #; and F, over the range of frequency ratio (0 << g, < 8.0) and,
with an approximation, extended this to a,— oo, The curves in Fig. 7-8
show the F, and F, curves over the range of (0 <C a4, < 8). It is useful to note
that previous analytical solutions only considered the displacement functions
up to 4, of 1.5 and did not clearly identify the peak of the F, curve.

With the displacement function F as noted in Eq. (7-21), and the positive
directions of the force P, and the displacement z designated as + downward,
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Eq. (7-1) becomes
P

z=—F 7-22

P’ (7-22)

z

wherein the directions of the applied force P and the resulting displacement are
the same for static loading. The spring factor k, can be developed from Eq.
(7-17) after substitution of the terms from Eq. (7-21).

Lysmer further noted that by introducing a modified dimensionless mass
ratio

1—» 11— m
B, = b= — 7-23
: 4 v (7-23)
for the vertical vibration of the rigid circular footing, the influence of Poisson’s
ratio was essentially eliminated. Then he developed response curves by
introducing his modified expressions F (Eq. 7-21) and B, (Eq. 7-23) mto
Eq. (7-4). After these substitutions, Eq. (7-4) can be cxprcssed as

, = (1 ;;:)Qo M (7_24)

in which M is the magnification factor by which the equivalent static dis-
placement produced by @, is multiplied to give the displacement amplitude
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Figure 7-8. Displacement function F for vertical vibration of a weightless
rigid circular disk (m = 0) (after Lysmer and Richart, 1966}).

A,. The response curves cotresponding to a constant-force excitation Q,

are shown in Fig. 7-9 for several values of B, as solid curves. Figure 7-10

includes response curves which are produced by the rotating-mass excitation

(0, = mew?, Eq. 7-7). After substituting Eq. (7-7) into Eq. (7-24) and

simplifying,

A, =2y, = D8y, (7-25)
m m

in which M, is the magnification factor by which the quantity m,e/m is
multiplied to give the displacement amplitude 4,. From Figs. 7-9 and 7-10,
the values of M and M, at the peak of each response curve and the value of
a, at the peak can be established. These values may then be plotted as
B, vs. a,,, (Fig. 7-11a) or B, vs. M, or M,,, (Fig. 7-11b). Figures 7-11a and
7-11b provide a simple means for evaluating the maximum amplitude of
vertical motion of a rigid circular footing and the frequency at which this
occurs for both the constant force and rotating-mass excitation. :

After studying the variations of the effective damping and spring factors
with frequency (a,) as obtained from the elastic-half-space theory, Lysmer
discovered that constant values of these quantities (i.e., independent of a,)
could be used. He chose the spring constant equal to the static value

g o A6, (7-26)

? 1—9
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Figure 7-9. Response of rigid circular footing to vertical force developed
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Figure 7-10. Response of rigid circular footing to vertical force developed
by rotating mass exciter (Q, = m,em?).
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and found the best fit for the damping term in the range (0 < g, < 1.0) to be

3.4¢2
= =/ 7-27
R ra— PG (7-27)

When these values of spring and damping constants were introduced into
Eqs. (2-72), (2-73), and (2-74), the steady-state response curves shown as the
dashed curves in Fig. 7-9 were obtained. Because the agreement is so re-
markable, it is sufficient, for all practical purposes, to use the approximate
expressions given in Eqs. (7-26) and (7-27) in the equation of equilibrium
(Eq. 7-19) for vertical oscillation of the rigid circular footing on the elastic
half-space. The equation of motion for Lysmer’s analog is

4
3.4r, \/sz'-i- 4Gr, ;
(1 —19) 11—

Using the spring constant k, (Eq. 7-26) and damping constant ¢, (Eq.
7-27), the functions corresponding to the single-degree-of-freedom system
can be established from the procedures described in Chap. 2. The expressions
for resonant frequencies depend on the damping ratio D, which is obtained
by dividing the damping constant ¢, (Eq. 7-27) by the critical damping c,.
For the vertical oscillation of the rigid circular footing, the critical damping
is obtained by substituting Eq. (7-26) into Eq. (2-31):

mZ+ =0 (7-28)

'4Gram

(1—»)

c, 0425

¢ B,

after substituting B, for the expressions noted in Eq. (7-23). For excitation
by a force of constant amplitude Q,, the resonant frequency is

kK, ——— 105 B, —0.
fmzi —z\/1_2D2:_v_SZ—O§.§ (7_31)
27 m 271'7‘0 B

¢ = 2k;m =2 (7-29)

then

D= (7-30)

z

When the exciting force is a function of the frequency (Eq. 7-7), Lysmer’s
expression for the resonant frequency is

Ug 0.9
mr = 5= e 7-32
7 2nr, \/ B, — 0.45 (7-32)

Note that these approximations give good answers only for B, = 1.
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By substituting the value of D from Eq. 7-30into Egs. 2—56‘and 2-61, we
can establish expressions for the maximum amplitude of oscillation as

Q(1—» B, (-33)

Aem = 0.85/B, — 0.18

o AGr

2

for constant-force excitation and

A, —me B (7-33b)
™ m 0.85/B,—0.18

for the rotating-mass excitation. The phase angle ¢ is determined from

0.85a
tan @ = — 0 (7-34)
me Bal—1

The most important result of Lysmer’s study was establishing the bridge
between the elastic-half-space theory and the mass-spring-dashpot system
and providing values for the damping and spring constants. Now that the
results for the vertically loaded rigid footing can be expressed by Eq. (7-28),
we can evaluate the response of this system to either periodic or transient
excitation, Further discussions of the development of this study and the use
of Eq. (7-28) for conditions of transient loading were given by Lysmer (19_65)
and by Lysmer and Richart (1966). The response of rigid footings to transient
vertical loadings will be discussed in Chap. 10, where Eq. (7-28) will be
included in the graphical phase-plane method.

Example of Footing Subjected to Steady-State Vertical
Oscillation

The report by Fry (1963) contains data from field vibration tests on
circular concrete footings which varied from about 5 to 16 ft in diameter.
For one series of tests, these model footings rested on the surface of a uniform
bed of loess, classified as a silty clay (CL). For this soil the unit weight y
was 117 1b/ft? and the properties needed for dynamic analyses were established
through seismic and steady-state—vibration tests as described in Chap. 4.
These were found to be vy = 460 ftfsec, G = 5340 Ibfin.2, and » = 0.355.

The footings were excited into vertical vibration by a four-mass oscillator
with eccentric weights arranged as shown in Fig. 10-5c. Each unbalanced
weight was 339 Ib, giving a total unbalanced weight of W, = 1356 !b. The
dead weight of the oscillator was 5600 lb. The total vibrating weight W
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included the dead weight of the oscillator, the weight of the concrete footing,
and the weight of the lead ballast which was rigidly attached to the footing.

To illustrate the method for calculation of the amplitude and frequency
of resonant vibration, consider a footing with a 62-in. diameter (r, = 31 in. =
2.583 ft) which has a total weight W of 30,970 Ib. Then, the mass ratio for
this test condition is

p _Ll—»W _ 1035 30970 _
! 4 4 117(2.583)

From Fjg. 7-11a the dimensionless frequency at maximum amplitude a,,,
is 0.67. Then the frequency at maximum amplitude may be obtained from
Eq. (7-2) after rearranging and substituting quantities:

@ Aoy 0.67 X 460
2m(2.583)

= 19.0 cyclesfsec

2 2ar

fmr=

a

The approximate value of resonant frequency obtained from Eq. (7-32) is

For = Us 0.90 = 18.9 cycles/sec
2ar, VB, — 0.45

The amplitude of vertical oscillation depends on B, and the magnitude of the
exciting force. From Fig. 7-11b the magnification factor M,,, is found to be
1.86 for B, — 2.48. Then for the test in which the radius of eccentricity of the
unbalanced weights was 0.105 in., the amplitude of motion is calculated as

m,e W.e
= — M-rm =

m w

1356 x 0.105
" 30,970

A 1.86 = 0.0086 in.

zm

The approximate solution obtained from Eq. (7-33b) is

meB,

A, = —r ____ — 0.0088 in.
m(0.85),/B, — 0.18

Vertical Oscillation of Rigid Rectangular Footing

Analytical solutions for vertical oscillating loads on a rectangular zone
of the surface of the elastic half-space have also been developed by integrating

v
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Lamb’s solution. Sung {(1953a) developed the mathematical expressions for a
uniformly distributed oscillating load acting on a rectangular area but did
not obtain numerical values. Kobori (1962) and Thomson and Kobori
(1963) followed the same procedure and obtained the displacement functions
S, and f; for the case of a uniformly distributed load over the rectangular
surface area. They evaluated these functions only in terms of the displacement
at the center of the loaded zone, which produced results indicating negative
damping at some values of the frequency ratio. (Negative damping cannot
occur for this vibrating system.) A recent paper by Elorduy, Nieto, and
Szekely (1967) presented solutions for the vertical oscillation of a rigid
rectangular base with a length 2¢ and a width 2d on the surface of the elastic
half-space. By superposing the effects of uniform loading on square clements
of the surface, they were able to produce uniform displacement of the loaded
area. They found, as did Lysmer, that the pressure distribution required to
maintain this uniform displacement varied with the frequency of oscillation.
They evaluated several of these distributions of pressure and also com-
puted the displacement functions f; and f, for a square (c/d = 1) and rec-
tangular (¢/d = 2) loading area on an elastic half-space for which the Poisson’s
ratio was }. These functions are shown as the solid line in Fig. 7-12. Also
shown in Fig. 7-12 are the corresponding curves from Sung (1953) and Bycroft
(1956) after the radius had been adjusted to give a circular area equal to that
for the square or rectangle. Because these curves are approximately the
same, for all practical purposes it is satisfactory to use the solution for a
circular rigid base of the same area to represent the case of vertical oscil-
lation of a rigid rectangular base (for ¢/d up to 2.0).

The limiting condition of a rectangular foundation occurs when the
oscillating body is treated as an infinitely long rigid strip. Quinlan (1953)
has given a solution for the resonant frequency of such a strip footing of
width 24 oscillating vertically in response to excitation of the rotating-mass—
type excitation (Eq. 7-7). For this two-dimensional case the mass ratio
is

= (7-35)

in which =’ is the mass per unit length of the footing and 4 is one-half
its total width. Figure 7-13 shows the mass-ratio—dimensionless-frequency
relationships for the two conditions of » = % and » = 4.

For a rectangular footing of finite length-to-width ratio, the resonant
frequency should lie between the limits given by the theory for the rigid
circular (or square) footing and that for the rigid strip of width 24 and of
infinite length.
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Figure 7-12. Displacement functions for vertical vibration of rigid rec-
tanguiar and rigid circular footings.
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Figure 7-13. Mass ratio vs. dimensionless frequency for vertical oscillation
of rigid strip of infinite length (after Quinfan, 1953).

1.4 Torsional Oscillation of Circular Footings
on the Elastic Half-Space

Reissner (1937) and Reissner and Sagoci (1944) presented analytical
solutions for the torsional oscillation of a circular footing resting on the
surface of the elastic half-space. In the first paper Reissner considered a
linear variation of shearing stress varying from zero at the center of the circle
to a maximum at the radius r, which bounded the loaded zone. Consequently,
this represented a flexible footing. In the second approach, Reissner and
Sagoci considered a linear variation in displacement from the center of the
circle to the periphery. This represents the movement of a rigid circular
Jooting oscillating about a vertical axis through the center of the contact

area. Under static conditions the tangential shearing stress ., which is
developed by the applied torque T, is given by the expression
3 T
of for0 <r<r, (7-36)

Tio = T T ——
4 p3/p2 o 2
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Equation (7-36) demonstrates that the shearing stress is zero at the center of
the footing and becomes infinite at the periphery. In practical cases the
infinite shearing stresses cannot be developed by soils. Thus, it could be
anticipated that calculated values of frequency would be higher and amplitudes
of motion would be lower than those occurring for real footings. The relation
between applied torque 7, and the resulting rotation o, under static con-
ditions determines the static spring constant

kg, = o ey Gr (7-37)

In the dynamic solutions Reissner, and Reissner and Sagoci again
employed the dimensionless frequency a, (Eq. 7-2) and the “mass ratio.”
For torsional oscillation the mass ratio is

B, — -2 (7-38)

in which 7 is the mass moment of inertia of the footing about the axis of
rotation. Again, the analytical results can be presented in a simplified form
by plotting the peak values of the amplitude—frequency response curves as
relations between B, a,,, (the dimensionless frequency at peak amplitude),
and the dynamic magnification factor, which for constant torque excitation
is

Mg, = (7-39)

For the case of excitation by a rotating-mass system, the exciting torque is

T, = mexw? (7-40)

in which x is the horizontal-moment arm of the unbalanced weights from the

center of rotation. With this excitation the peak amplitude of motion is given

by

m.ex
Ig

Aem = Merm (7'41)

Values of M_,,, M, and a,, are given in Fig. 7-14 as functions of Bg.
The theoretical solution for the torsional oscillation disclosed several
significant differences from the case for vertical oscillation: (1) this oscillation

is not influenced by Poisson’s ratio; (2) it is an uncoupled motion and may
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Figure 7-14. Torsional oscilfation of rigid circular footing on elastic
half-space. (a) Mass ratio vs. dimensionless frequency at resonance.
{b) Mass ratio vs. magnification factor at rescnance.

be treated independently of the possible vertical motion of the footing; and
(3) energy is dissipated by propagation of elastic shear waves, only, from the
footing; no compression or Rayleigh waves are developed. Furthermore,
because this is a rotational-type oscillation, the geometric damping effect
contributed by propagation of clastic waves is smaller than occurred for
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vertical oscillation. Note in Fig. 7-14b that the magnification factors increase
rapidly as Bp increases.

7.5 Rocking Oscillation of Footings Resting on the
Elastic Half-Space

Rigid Circular Footing

Analytical solutions for this problem were presented by Arnold, Bycroft,
and Warburton (1955) and by Bycroft (1956). The distribution of vertical
pressure on the circular zone of contact was assumed to vary as

3T,rcos 6
g e ¥ TR T

= exp (iwf) forr<r, (7-42)
23/t — P

for rocking about the y-axis and with f measured from the x-axis in the x-y
plane. The orientation of rocking is indicated in Fig. 7-16, in which the y-axis
is perpendicular to the plane of the page through point Q. Rocking of the
footing occurs about the y-axis (point O) with an angular rotation . Under
static application of the external moment T,,, the static rotation is (from
Borowicka, 1943)

3 - v} T,

7-43
8 Gr} (7-43)

5

Under dynamic conditions the amplitude of rocking is a function of the
mass ratio, which now takes the form

_3(1—1/)&

B
v 8 prd

(7-44)

and of the dimensionless frequency a, (Eq. 7-2). In Eq. (7-44) 1, denotes the
mass moment of inertia of the footing in rotation about point O (see Eq.
(7-49) for 1, of a circular footing). With constant amplitude of the exciting
moment 7T, the response curves are shown as solid lines in Fig. 7-15 for
several values of B,. The ordinate of the graph in Fig. 7-15 is expressed as the
dynamic magnification factor in rocking,

A
M, =" (7-45)
Y

which is recorded on a logarithmic scale because of the large magnitudes

L}
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Figure 7-15. Magn:ﬁﬁcation factor vs. dimensionless frequency relations
for pure rocking of rigid circular footing on elastic half-space (from

Hall, 1967).

involved. Figure 7-15 illustrates the sharp peaks for the response curves,
even for small values of B,. The shape of these curves as well as tt}e high
values of peak amplitudes are typical of a simple vibrating system w_hu_:h has
low damping. From this we may infer that relatively little energy is c.hss1pated
into the elastic half-space by elastic waves but that the clastic strain energy
in the supporting half-space is transferred back and forth beneath the two
halves of the rocking circular footing. o

The peak values of dimensionless frequency and magnification factor
from Fig. 7-15 provide information for Fig. 7-16. In Fig. 7-16a the frequency
at maximum amplitude is shown as a function of B, Becau-se o.f the sharp
peaks of the response curves in Fig. 7-15, the two curves in Fig. 7-16a—
which denote the cases for constant moment and rotating-mass moment—are
essentially identical. The peak values of the magniﬁc_:ation i:actor M,
are shown in Fig. 7-16b as a function of B, ; the same diagram includes the
curve of M, vs. B, . . .

In order to develop a moment about the y-axis produced by a rotating
mags, it is convenient to express the moment as

T, = mezw? (7-46)

L



218 VIBRATIONS OF FOUNDATIONS ON ELASTIC MEDIA

8 I T T T 1117

| Constant Force Excitation

By = 2=0) Ty
- v
6 8 G ym Myrm

| Rotating Mass Excitation

mg8l
Aym = —5
d" 41 “¥ym I\p M\Urm A

Mym

2_ =

0 [ ] L

1 2 3 0 20 40 00

Mym Or Myem
(b)
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in which z represents the vertical distance above point O of a horizontally
oscillating force m,ew? By using T,, as the exciting moment, we are replacing
a pure moment by a moment developed by an ecceniric force. This substitu-
tion requires that there be a horizontal force applied to the base of the
footing to maintain the center of rocking at point O. However, when
we sfart by assuming that rocking occurs about point O, we automatically
assume that the required restraints exist. Section 7.8 will treat the problem of
coupled rocking and sliding, which happens in real situations when excitation
is provided by a moment described by Eq. (7-46). With the exciting moment
as indicated by Eq. (7-46), the amplitude of rotation 4, may be evaluated
from e

(7-47)

Rocking of the rigid circular footing on an elastic half-space develops
an infinite vertical stress under the edge of the footing (see Eq. 7-42). Real
soils cannot sustain this stress; therefore, a soil support is not as stiff as the
ideal elastic medium having the same G. Thus, the actual maximum amplitude
of rotation will be somewhat higher and the frequency at this maximum
amplitude will be lower than the values calculated from Fig. 7-16.

Hall’s Analog

Hsieh (1962) showed that all modes of vibration of a rigid circular
footing resting on an elastic half-space could be represented in the form of
Eq. (7-19), in which the damping and spring factors are functions of the
frequency of oscillation. Because Lysmer had been successful in developing
a mass-spring-dashpot analog to the vertical vibration of a footing resting
on the half-space, Hall (1967) followed this approach to study the rocking
problem. This required evaluations of the damping and spring constants for
use in the equation of motion:

Iy +ey+ k=T, exp (iwt) (?-48)

In Eq. (7-48) the mass moment of inertia of the footing about the center of
rotation is designated . For a cylindrica! footing of radius r, and height h,
with uniformly distributed mass, the expression for 7, is

2h 1"2 hz
1,= M(—" —) 7.49
w . \a + 3 (7-49)
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It was found convenient to introduce the static spring constant as k,__ in
Eq. (7-48), where k,, is obtained from Eq. (7-43) as "

" T, 8Gr?
" T 3 —) (7-30)

Then it was necessary to provide a damping constant, which may be expressed
as

0.80r%,/Gp

¢, = —— N F 7-5
Y (1—(1+ B (-31)
The.damping term described by Eq. (7-51) is adequate for establishing
the maximum amplitude of rocking motion or the maximum dynamic
magnification factor as given in Fig. 7-16b. This can be checked by introduc-
ing the expression for critical damping for the mass—spring-dashpot system—

Cye = kI (7-52)

L
—into the calculation for the damping ratio

D ¢ 0.15

¥
e 7-53
"¢, (14 BB, 733
and noting that for small damping the maximum magnification factor for
rocking is

M, ~— -
vm N5 D, (7-54)

ln.the mass-spring-dashpot system the amplitude of motion at reso-
nance is controiled by the damping; whereas the frequency at maximum
amPhtude—or “resonant frequency”’—is established by the inertia term and
spring constant. A discussion of the methods of varying these two quantities
to account for the frequency-dependent effect is given in Chap. 10. However
for this particular case Hall found it simplest to consider that an additionai
mass moment of inertia be added to the real value for the rocking footing in
order to force the resonant frequency to agree with the value obtained from
the half-space theory. This may be expressed by a magnification factor by
which B, (or ,) must be multiplicd to give B,,q (of 7o), or

Bweﬁ' = nlchp ) (7'55)

!
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Values of #,, are indicated in the table below:
B|5 |3 |z ‘1 |0.8|O.5|0.2‘

1.079 | 1.110 | 1.143 l 1.219 ‘ 1.251 | 1.378 | 1.600 |

'P ‘

With this modified value of B, ¢ (0r f,.¢) and the damping term from
Eg. (7-51), Hall found good agreement between the analog solution and the
elastic-half-space solution, as indicated by the dashed curves in Fig. 7-15.

7.6 Sliding Oscillation of a Circular Disk Resting
on the Elastic Half-Space

Rigid Circular Disk

This problem can exist only in a mathematical sense, for it requires that
translation of the disk occur in the horizontal direction without rocking.
Physically this requires that the mass of the disk be confined within an
infinitely thin layer resting on top of the elastic half-space. Only by concen-
trating the mass of the disk in this thin layer can the center of gravity of the
disk be on the line of action of the restraining force P developed by the half-
space on the bottom face of the disk. The exciting force Q, the thin disk, and
the restraining force P are shown in the sketch in Fig. 7-17.

In the mathematical treatment it is relatively easy to specify boundary
conditions for oscillation of the disk, which demands only horizontal transla-
tion without rotation. The analytical solution for translation of the rigid
circular disk was presented by Arnold, Bycroft, and Warburton (1955), and
by Bycroft (1956), with results expressed in terms of the dimensionless
frequency a, (Eq. 7-2) and the mass ratio b (Eq. 7-3). Hall (1967) found that
the moedified mass ratio
e R (7-56)

3201 — ») pr3
eliminated the effect of Poisson’s ratio as a similar modified mass ratio had
for the case of vertical oscillation. Consequently, the response parameters
will be expressed here in terms of B,. Figure 7-17 illustrates the response
curves for the horizontal translation of the disk when excited by a horizontal
foree

0 = 0, exp (iwf) (7-57)

for which Q, is a constant. The abscissa of Fig. 7-17 is the dimensionless
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frequency a,, and the ordinate is the dynamic amplitude magnification factor

in which the static deflection (from Bycroft, 1956) is determined from

x. — (7 —_ 8"’)Qo
' 32(1 — »)Gr,

(7-58)

(7-59)

sec. 1.7 GEOMETRICAL DAMPING
B T T T T T
7 1 —
Q= Qge'™
e B
61— X —
L3 G,V,,O ; o
<
£ ‘C_L oY = |
3|5 e = (a)
o
(5 . .
0 — Rototing Mass ]
m Excitation
2 Constant 7
Force
1L Excitation ]
] I ] | ] ]
0 1O 2.0
9o
S I '
(7-8v) Q
T = — 9 —
Axm 32(1-v)Gr, ™
6 For Censt. Force Excitation a
£ "o me€
a S5 A= ﬁ Myrm T
= For Rotating Moss
G;i 4+ Excitation — (b}
b
" 2 —
)
2+ -
1= -
| ] | | | | ]
C 1 2 3 4q 5

Mxm or MXI’"‘I

Figure 7-18. Sliding oscillation of rigid circular disk on elastic half-space.
(a} Mass ratio vs. dimensionless frequency at resonance. (b} Mass ratio vs.
magnification factor at resonance.

223



224  VIBRATIONS OF FOUNDATIONS ON ELASTIC MEDIA CHAP. 7

Note in Fig. 7-17 that the magnitudes of M, are relatively small and that the
peaks of the response curves are relatively flat, particularly for the smaller
values of B,. This indicates that the mode of vibration in horizontal trans-
lation is associated with relatively high damping, as was the case for vibra-
tion by translation in the vertical direction.

Figure 7-18a again shows the relations between the mass ratio and the
value of g, at the maximum amplitude of oscillation for both the constant-
force and rotating-mass types of excitation. Figure 7-18b shows the magni-
tudes of the dynamic magnification factors as functions of B,. The fact that
the frequency at peak amplitude (Fig. 7-18a) develops two distinet curves
further demonstrates that a significant damping effect is associated with this
mode of vibration.

Hall’s Analog

For the sliding oscillation of a rigid circular disk it was again found
possible (Hall, 1967) to describe this motion i terms of the mass—spring—
dashpot analog. The mass for the analog was again taken equal to the mass
resting on the half-space, and the spring constant was established as equal to
the static response of the rigid disk to a horizontal load (see Eq. 7-59),

_M—vg, (7-60)
7— 8

&8

Then the damping constant required to provide satisfactory dynamic re-
sponse for the model was found to be

Cy = M ,-5\/;,‘(‘, (7-61)
7 — 8

The dashed curves in Fig, 7-17 illustrate how well the response curves
for the analog agree with the response curves for the half-space model.

7.7 Geometrical Damping Associated with Vibrations of
Rigid Circular Footings on the Elastic Half-Space

It is instructive to stop at this point and review the results so far de- '

scribed for the single-degrees-of-freedom vibration of the rigid circular
footing supported by the elastic half-space. We have considered translation
along the vertical and horizontal axes, rotation about the vertical axis through

]
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the center, and rotation about a diameter through the base of the footing. All
six degrees of freedom are represented by these four solutions because transla-
tions and rotations with respect to the x-axis are identical to similar moticns
with respect to the y-axis.

From the magnification-factor—frequency (M vs. a,) response curves
(Figs. 7-9, 7-15, 7-17), it has been demonstrated that the “resonance” con-
dition is associated with a finite amplitude of motion, which indicates that
damping is present in the system. However, the assumption of an ideal
elastic half-space precludes loss of energy because of inelastic behavior of the
material which constitutes the half-space. The indication of damping is
evidence that energy is lost in the vibrating system, and in the case of the
footing osciliating on the surface of the semi-infinite elastic body, or half-
space, the loss of energy occurs through transmission of elastic-wave energy
from the footing to infinity. This geometrical distribution of clastic-wave
energy has been designated as geometrical damping.

From each solution for vibration of the footing on the half-space it is
possible to establish a value of the equivalent damping ratio D, which can
then be used in the lumped-parameter analysis. A convenient method for
evaluating D is to equate the peak amplitude of motion from the half-space
solution to the amplitude obtained from the mass-spring-dashpot system
and then to solve for D. This procedure has been followed in preparing the
curves shown in Fig. 7-19. Approximately the same results can be obtained
by calculating D from the damping constants obtained in the analog solutions
and the expression for critical damping,

¢, = 2/km (2-31)

With this approach the damping ratio is

p== (2-32)
Cc
Expressions for the damping ratio are:
For vertical oscillation—
D, — 0\'%5 (7-62)
For horizontal oscillation— ’
p, — 2288 (7-63)
JE.
For rocking oscillations—
0.15 (7-64)

¥+ BB,
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For torsional oscillations—
0.50

=00 7-65
1 2Bg (7-63)

o

The variations of the effective-damping ratio D with B for the various
modes of vibration are shown in Fig. 7-19. The expressions for B,, B,, Bg,
and B, are given by Eqs. 7-23, 7-56, 7-38, and 7-44, respectively; and it
should be noted again that the effect of Poisson’s ratio is incorporated into
the computation for B.

From Fig. 7-19 it is evident that appreciable damping is associated with
a wide range of B for the translational modes of vibration. On the other
hand, damping is quite low for the rotational modes of vibration, particularly
for values of B > 2 in torsional oscillation and for B, > 1 in rocking.
Because many machine foundations are subjected to some overturning
forces, it is probable that some oscillation in the rocking mode will occur.
Consequently, the results shown on Fig. 7-19 should indicate to the designer
that he should provide the lowest possible value of B, for his machine founda-
tion in order to minimize the rocking motion.
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Figure 7-19. Equivalent damping ratio for oscillation of rigid circular footing
on the elastic half-space.
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7.8 Coupled Rocking and Sliding of the Rigid Circular
Footing on the Elastic Half-Space

As noted in the preceding article, there are six degrees of freedom pos-
sible for the motion of a rigid body: translation in the three coordinate
directions—x, y, and z—and rotation about each of these axes. With the
information presented in this chapter, it is possible to write the equations of
motion for each degree of freedom, thereby establishing six equations of
motion. Although this procedure is possible, we usually do not have enough
information on the exciting forces or soil parameters to justify the effort
involved. Furthermore, it is often found that the vertical mode of oscilla-
tion, the torsional mode, or both, occur as uncoupled motions. Coupled
motion is most frequently encountered in the design of machine foundations
as rocking and sliding. Therefore, the following discussion of coupled vibra-
tions with damping will be restricted to the case of combined rocking and
sliding.

Figure 7-20a shows a rigid circular footing which rests on the surface of
the elastic half-space. Its center of gravity is assumed to lie on the vertical
axis through the center of the circular base and is a distance 4, above the
surface of the half-space. We can express the motion of this rigid body in
terms of the horizontal translation x,, of its center of gravity (CG), and the
rotation  of the body about the CG. The sign convention chosen is illus-
trated in Fig. 7-20b, which indicates that 4-x and +P act to the right and
that +y and + R, are clockwise. The force P. and the moment R, are de-
veloped by the soil reaction on the base of the footing. From Fig. 7-20c it is
seen that the resulting motion of the footing can be established by super-
posing the translation x, of the CG and the rotation y about the CG. In
this diagram both motions are - (inphase), which forces the center of rota-
tion to lie below the CG; this is designated as the first mode of vibration. If
the translation is + while the rotation is — (motions out of phase), then the
center of rotation lies above the CG and the motion is designated as the second
mode of vibration. These designations of first and second modes follow from
the fact that resonance in the first mode of vibration occurs at a lower
frequency than does resonance in the second mode.

In order to establish the equations of motion from which the amplitudes
of motion and the frequencies at maximum amplitude (resonant frequencies)
can be caiculated, it is useful to designate the translation of the base of the

footing as
Xy = X, — Rop (7-66)

as noted in Fig. 7-20d. Then the horizontal force on the base of the footing is
expressed in terms of this base displacement and velocity as

P o= —c% — kyx, (7-67)
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Figure 7-20. Notation for rocking and sliding mode of vibration.

The force described by Eq. (7-67) has the same form as that given in Eq. (7-13)
for vertical vibration because they both involve translatory motions. The
quantity ¢, represents a damping coefficient and k, represents a spring-

reaction coefficient. Values of ¢, and &, obtained from the half-space theory

by Hsieh (1962) are frequency-dependent. We have also seen previously
that these quantities can be represented quite satisfactorily by the damping

(Eq. 7-61) and spring constants (Eq. 7-60) for the analog. The expression

for the resistance of the half-space to rocking of the footing—
R, = —c,p —k,p (7-68)

—also includes the damping (c,) and spring (k,) terms which may be fre-
quency-dependent or represented by the analog values (Eqs. 7-51 and
7-50). '
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The equation of motion for horizontal translation of the center of
gravity of the footing is

mE, = P, = —c, % — k,x, (7-69)
After substituting Eq. (7-66) and rearranging terms, Eq. (7-69) becomes
mx, -+ e,%, + kx, — hep — bk =0 (7-70)
The equation of motion for rotation about the CG is
Ij=T,+ R, —hP, (7-71)

in which I, is the moment of inertia of the footing about the CG. Substitu-
tions for R, P,, and x, change Eq. (7-71) to the form

I3 4 (e, + iy + (k, + hikpyy — hoeoX, — hokox, =T, (7-72)

With the substitution of

x, = Ay sin et + Ay cos af (7-73)
p = A4, sinwf + A, cos ot (7-74)
T,=T,,sinw! (7-75)

into Eqgs. (7-70) and (7-72), four equations in four unknowns are established.
When the vibrating system is represented by the lumped-parameter analog,
the spring and damping coefficients are constants and the solution of the
four simultaneous equations at each value of the frequency provide for
evaluation of the response. When the footing—soil system is represented by
the footing on the elastic half-space, the damping and spring coefficients are
frequency-dependent and the values of the coefficients must be calculated
at any given frequency before the four simultaneous equations are solved for

that value of frequency. In either case the calculations are most conveniently

performed with the help of a high-speed digital computer. Hall (1967) has
established that for a rigid circular footing the calculated response based on
the lumped-parameter analog agrees very well with the “exact” solution.
Equation (7-70) and (7-72) demonstrate that coupling occurs in this
problem because the vertical location of the CG of the footing lies above the
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line of action of the horizontal force £_ of the half-space on the bottom of the
footing. If k, is zero, no coupling is present, as demonstrated by the con-
dition that in this case Eq. (7-70) includes only motion related to the co-
ordinate x, and Eq. (7-72) includes only motion related to the coordinate .

1.9 Oscillation of the Rigid Circular Footing
Supported by an Elastic Layer

For this problem the footing rests on the surface of a layer of thickness
H of isotropic, homogeneous, elastic material which extends to infinity in the
horizontal directions only. This layer is supported by a semi-infinite body
which 1s infinitely rigid.

Reissner (1937) outlined the method of solution for the case of torsional
oscillation of a circular footing on layered medium and Arnold, Bycroft,
and Warburton (1955), and Bycroft (1956} have presented some solutions for
this problem. The problem of vertical oscillation of the rigid circular footing
on the elastic layer was treated by Arnold et al. (1955), Bycroft (1956), and
Warburton (1957). The following discussions indicate only the general
trends for the dynamic response of footings on a single layer under restricted
conditions. The general problem of the dynamic behavior of footings on
layered media or on elastic bodies with stiffness varying with depth needs
further investigation, both theoretical and experimental.

Torsional Oscillation

In Reissner’s (1937) discussion of the torsional oscillation of the circular
footing on elastic layers, he established the basic equations for the solution
and noted that the application of torsional oscillation at the surface provided
one method of estimating the layer thickness. He did not establish the dis-
placement functions f; and f; needed for evaluation of the dynamic response
of the footing. These functions were presented by Arnold et al. (1955) and
Bycroft (1956) for a few values of the layer thickness ratio Hfr,, in which H
is the thickness of the elastic layer which is fixed to the rigid support and r,, is

the footing radius (see Fig. 7-21). They computed values of f; and f, for ]

Hjr, equal to 10, 1.0, and 0.5, and also indicated the agreement between the
theoretical predictions and test results using a model footing resting on a
layer of foam rubber. Figure 7-21 was prepared from information given in

these two papers.
From both theory and tests they found that a resonant condition exists
even when the mass of the footing is zero (Bg = 0). The frequency for this

{
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Bs
T

Figure 7-21. Mass ratic vs. dimensionless frequency at resonance for
torsional oscillation of rigid circular footing on an elastic layer (after
Bycroft, 1956).

condition is shown in Fig. 7-21 as the g, value for Bg = 0. Also note in Fig.
7-21 that for finite values of By the frequency at maximum amplitude is
higher than for the case of the semi-infinite elastic medium (Hfr, = ).
This indicates that the presence of the rigid lower boundary introduces a
stiffening effect, thereby increasing this frequency. Finally, the presence of the
lower rigid boundary acts to reduce the geometrical damping of the system.
This is illustrated by an increase in maximum amplitude of motion during
vibration. For the footing on the semi-infinite medium the dynamic magnifi-
cation factor Mg is 1.0 for Bg = 0. The dynamic magnification factor was
computed to be 1.6 for Hfr, = 1.0 and 2.6 for H/r, = 0.5. Thus, as the layer
becomes thinner with respect to the radius of the footing, the effective damp-
ing is decreased.

Bycroft (1956) made special note of the limiting condition for the
frequency of torsional oscillation of a rigid circular footing on an elastic
layer. He demonstrated that as H/r, became smaller this frequency would
approach the natural frequency for a rod of radius r,, of length H, which
oscillated as a torsional column fixed at the base and free at the top. The
natural frequency of the resonant torsional column is

fo= i’% (7-76)
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and the dimensionless frequencies (a,) computed from this expression are
a, = 1.57 for Hjr, =1, and @, = 3.14 for H/r, = 0.5. These values may be
compared to @, = 1.87 for Hjr, =1, and a, = 3.55 for H/r, = 0.5 as com-
puted from the displacement functions f; and f,.

Vertical Oscillation

In the theoretical studies of vertical motion of a circular footing resting
on the surface of the elastic layer, the pressure distribution corresponding to
the rigid-base condition for the half-space (Eq. 7-8) was assumed. It was
recognized that this does not correspond to the correct pressure distribution
for a rigid footing on an elastic layer and Bycroft (1956) included a discussion
of this point. In his study of the displacement of the footing, represented by

the rigid-base pressure distribution, Bycroft computed the average static - i

displacement for several values of the layer-thickness ratio H/r,. Figure 7-22
shows the average displacement expressed in terms of the static displacement
of the footing on an elastic half-space. This diagram shows clearly that the
presence of the underlying rigid boundary provides a significant stiffening
effect to the footing motion. The dashed curve in this same diagram illus-
trates the increase of the static spring constant as the layer thickness ratio
Hjr, decreases. Note that this does not reach a factor of 2 until Hjr, is
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Figure 7-22. Static displacement and spring constant for vertical Joading
of rigid circular footing on elastic layer (after Bycroft, 1956).
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reduced to about 1, but that the spring constant increases rapidly as Hr,
pecomes smaller than 1.

In the studies of the dynamic behavior of the circular footing on the
elastic layer, Bycroft (1956) considered only the case for b = 0, while War-
burton (1957) presented solutions for b >> (. Both noted that true resonance,
with amplitudes of motion becoming infinite, occurred for b = 0. This reso-
nant vibration for b = 0 occurred when f; — oo at values of ¢, as indicated
below: -

for vy =0, fi—w as a, B — 2.1582

forv=4%  fi—® as a, H, 2.5742 (7-77)

Fo

fori<wy<3} firoo as a7 (Xl ¥
r, 2%V 1—2y

Bycroft noted that the case for b = 0 corresponds to the vibration of a rod of
elastic material fixed at the base, free at the top, and constrained at the sides
so that no lateral motion occurs. The resonant frequency of vibration of this
rod is given by

= (2n — Vwp _ (2n — v \/2(1 — ) (7-78)

4H 4H 1—2»

which may be rearranged to

a — 2n — Dar, 2(1 — ») (7-79)
2H 1 — 2

Note that higher modes of resonant frequency (ie., n=1, 2, 3,---) are
possible for this vertical motion of the weightless rigid plate on the elastic
straturn. The vertical displacements of particles at different depths in the
stratum are represented by the curves in Fig. 3-8 for the different modes of
vibration.

For footings which have weight (b > 0), the amplitudes of motion are
finite at the frequency we customarily describe as “resonance” (ie., fre-
quency for maximum amplitude of vibration). Warburton (1957) has
presented curves for this resonant frequency, or frequency at maximum
amplitude, as the usual mass ratio b-vs.-a, plots for different values of H/r,.
He prepared one such diagram for » = 0 and a second for » = }, which is
reproduced here as Fig. 7-23.

Warburton also evaluated the maximum dynamic displacements and
expressed them in terms of a magnification of the static displacement,
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Figure 7-23. Variation of dimensionless frequency at resonance with mass
ratio and thickness of the elastic layer for vertical oscillation of rigid
cireular footing (after Warburton, [957). ‘

Referring to Fig. 7-22, it is evident that the large magnification factors he

presented are not quite as bad as they appear at first glance because they ‘

amplify a static displacement which is reduced in magnitude as the layer
thickness decreases. The values indicated in Table 7-1 relate Warburton’s
values for dynamic motion to the static value for displacement of the rigid
footing on the semi-infinite body, or

A,1..4Gr,

= Zalm e 7-80
(1 -0, (50

Lm

Table 7-1. Magnification Factors for Vertical Yibration of Rigid
Circular Footing Supported by an Elastic Layer (» = 1)

H M, for

Ta b=0 b=35 b=10 | b=20 { b=30
1 @ 5.8 11.4 20.5 289

2 0 8.0 16.1 30.6 40.8

3 0 47 9.5 23.7 36.0
4 0 3.4 5.9 15.6 27.9
w© 1 1.21 1.60 2.22 2.72
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in which Mg, is the magnification factor for displacement at resonance for
thé layered system.

Warburton’s analysis treated the ideal elastic medium which has no
internal damping. For a real footing-soil system, the relatively small amount
of material or hysteresis damping will be important in reducing these high
magniﬁcation factors which have been indicated by the theoretical treatment.

7.10 Vibrations of Rigid Foundations Supported by
Piles or Caissons

Piles will be effective in resisting vibratory loadings only if they can
develop appreciable forces as their tops move through very small distances.
As noted in Chap. 10 under Design Criteria, the permissible dynamic motions
of machine foundations are often of the order of just a few thousandths of
an inch. Consequently, the pile must contribute ifs resisting forces during
this kind of movement or it is not effective. Resistances to vertical motion
may be provided by end bearing, skin friction, or by a combination of the
two. The resistance developed by piles to horizontal forces is provided by
horizontal bearing of the pile against the sail. In each of these cases the soil
properties involved depend upon the magnitude of the local deformation
developed by the pile acting against the soil and must be evaluated from tests
involving the same order of magnitude of strain in the soil as occurs in the
prototype situation. Fortunately, for these small strains many soils exhibit
an approximately elastic response which may be evaluated by laboratory or
field tests as described in Chap. 6. Thus, elastic solutions will again be used
to estimate the response of pile-supported foundations.

Vertical Vibrations of a Foundation Supported by
Point-bearing Piles to Rock

Point-bearing piles provide support for a foundation by transferring the
vertical loads to a stronger soil stratum at some depth beneath the surface.
Under stable dynamic conditions far which no further settlement occurs, the
dynamic loads are transferred through the elastic pile to the elastic contact
zone at the tip of the pile where the loads are absorbed by the stratum. We
can establish the maximum influence of piles for stiffening the support for a
foundation if we first consider that the stratum is rigid and no deformation
occurs at the pile tip when dynamic loads are transferred from the pile. This
would be approximately true if piles were driven through soft soils to rock.

The theoretical procedure required for this study was discussed in Chap.
3 and is represented by the sketch in Fig. 3-10. It involves an elastic rod fixed
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at the base and free at the top, with a mass m resting on the top. When no
weight rests on top we have a solid resonant column with the fixed-free
condition, which has a resonant frequency

Ve 1 E
== = 7-81
/ 4f 4f \/ P (7-81)
in which
E = Young's modulus of elasticity of the pile,
p(: g) = mass density of the pile material, and

¢ = length of the pile.

For the intermediate case in which the supported mass (i.e., the portion of
the total load assigned to each pile) is of the same order of magnitude as the
weight of the pile itself, the frequency equation has been given by Eq. (3-33).
The solution for Eq. (3-33) is shown graphically by Fig. 7-24, from which £,
may be calculated. Of course, when the weight of the pile is negligible with
respect to the supported weight, the natural frequency is given by Eq. (2-17b),
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Figure 7-24. Graphical solution for Eq. (3-33).
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Figure 7-25. Resonant frequency
of vertical oscillation for a point-
bearing pile carrying a static load
W. (Loaded stratum is rigid.)
(From Richart, 1962.) Pile Length, ft
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In order to illustrate the influence of axial loading on the resonant
frequency of end-bearing piles to rock, Richart (1962) prepared a diagram
which included the parameters of axial load, pile length, and pile material.
This diagram is reproduced here as Fig. 7-25. The three curves at the top of
the diagram illustrate the resonant frequencies of unloaded steel, concrete,
and wooden piles, as computed from Eq. (7-81). As the axial load is in-
creased on a pile of given length, the resonant frequency is reduced.
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In this analysis of a pile-supported foundation, only the resonant fre-
quency was considered. From an elastic analysis of a closed system corre-
sponding to this one, no geometrical damping occurs and the amplitudes of
motion at resonance are theoretically infinite. Actually, material or hysteresis
damping will restrict the motions somewhat, but the resonant motion will
still be of large magnitude relative to the static displacement.

Torsional Vibration of a Circular Foundation
Supported by Piles

The problem of torsional vibration of a circular footing supported by
piles is included to illustrate the effectiveness of piles in resisting lateral loads.
For the following discussion it will be assumed that the base of the footing
is in contact with the scil throughout the dynamic motions and that no
slippage occurs between the base of the foundation and the soil. The piles
are considered to be stub piles installed to increase torsional resistance only.
The method of analysis involves (1) an estimate of the rotational motion of
the soil beneath the footing as the footing twists and imparts shearing foroes
to the soil surface, (2) an estimate of the relative motion of a pile attached to
the footing with respect to the soil motion, and (3) use of the theory of sub-
grade reaction to estimate the restraining torque provided by the lateral
motions of the pile against the soil.

In their studies of torsional oscillations of rigid circular footings resting
on the surface of the elastic half-space Reissner and Sagoci (1944) developed
solutions for the static rotational displacements (referred to the vertical axis
through the center of the footing) within the half-space. Their solution was
developed using oblate-spheroidal coordinates. The tangential displacement
s directly below the periphery of the disk has been evaluated and is illustrated
in Fig. 7-26 as s/r,0, vs. z[r,. The static rotation e, represents the angular
rotation of the disk at the surface, and the displacements vary linearly with
the radius.

If a pile is attached to the footing, its point of attachment moves the
same distance along a circumferential arc as does a point on the footing base
or as does a point on the surface of the soil at the same radius r. Therefore,
at the footing-soil contact zone the pile does not have any relative motion
with respect to the soil and does not develop any lateral force. The only
stiffening effect of the pile is through transfer of shear by bending from a
deeper location where the pile moves against the soil. The amount of
horizontal force developed on the pile at each elevation depends on the
relative motion of the pile against the soil. For an infinitely rigid pile attached
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to the footing, the motion of the pile
against the soil would be

Spel = roa(l — —S) (7-82)
¥

3

where the quantity s/re, is given in Fig. Z
7-26 for each depth. However, a real
pile will bend because of the forces de-
veloped along its length and the relative
motion of pile against the soil will be
reduced.

The force developed by the pile
motion against the soil can be estimat- . X .
ed by using the theory of horizontal  sionc Tine 0. benses he sdge of o o
subgradereaction. From thisapproach  cular footing which has been rotated
the horizontal force P’ per unit length  through an angle ©,.
of pile is given by

— P = Kd " 5 (7-83)
in which

K, = coefficient of horizontal subgrade reaction, and
d = pile diameter.

The critical factor in this type of analysis is the proper selection of K, which
_relates the pressure developed as the surface of the pile moves a unit distance
mnto the soil; that is,

K,=2 (7-84)

The value of K, must be related to the order of magnitude of the motions
involped, and for vibration problems these motions are very small. Because
methods are available for evaluating the “‘elastic” constants for soils for
these small strains, it is useful to employ the theory of elasticity to establish
K,f. If we consider first the behavior of a circular pile, we can approximate
this by considering the pressure required to expand a cylindrical hole in an
elastic medium. Westergaard (1952) gives the radial expansion of a hole of
diameter d as

— pd (7-85)

Ad _ pd
2 4G
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from which the coeflicient of subgrade reaction is approximately

2p 4G
K, i d (7-86)
This approach has been followed because the inaccuracies introduced by the
geometry of the problem were considered to be less important than the
potential errors in G.

Now if we return to a consideration of the infinitely rigid cylindrical
pile which extends downward from the base of a circular footing, this pile
will move laterafly a distance s, as the footing rotates through an angle o,,
as shown in the sketch in Fig. 7-27a. At the same time, the soil moves
laterally because of the shearing forces introduced by the footing on the
surface (Fig. 7-27b). The net motion is illustrated in Fig. 7-27c. Then,
according to Eq. (7-83), the lateral force developed at each elevation is

P = if resd(l - f—) (7-87)

ro,

in which the displacement s is a function of the depth involved—or the
length of the pile. By integrating Eq. (7-87) from z==0 to z = £ we can
evaluate the efficiency of rigid piles in developing resistance to lateral motion
as they penetrate to greater depths. The efficiency factor is designated by

£
f P dz
LA NS (7-88)

E0ar = i

and represents the total horizontal force developed as a fraction of the total
force which could be developed if the soil did not move. Figure 7-28 illus-
trates the variation of this efficiency factor with length of rigid pile for the
condition of K, constant with depth.

For real piles the flexibility of the pile itself is of importance because
pile bending will reduce the relative motion of pile against the soil. Thus, the
flexibility introduces an efficiency factor which decreases as the pile length
increases.

EXAMPLE. To illustrate the combined effects of soil motion and pile flexi-
bility, consider 6-in.-diameter stub piles located along a 50-in.-diameter circle on
the base of a 62-in.-diameter circular concrete footing. The footing is to be sub-
jected to torsional oscillations and the stub piles are for the purpose of increasing
the torsional rigidity of the foundation,
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Figure 7-27. Action of stub piles. Figure 7-28. Efficiency factor for
rigid stub piles attached to a
circular footing twisted against

the soil.

For this example the shear medulus G of the soil is taken as 4500 Ib/in.* and
the footmg is not permitted to slip. Then the static torsional stiffness of the rigid
footing on the soil is given by

To\ 16 _, 16
=) =3 Gt — 35 @S00)B1)° =715 x 10° in.-Ibjrad
LN

lWhen the stub piles are introduced on a 50-in. diameter, the contribution to the
torsional stiffness of the system by each pile is

-
™ (7-89)

in which P, and s, are the horizontal force and displacement, respectively, at the
top of the pile. Because we have already considered the effect of soif motion in
re(‘:lucing the pile efficiency below that for the infinitely rigid pile moving against still
soil, we may express Eq. (7-89) as

To K ds fr?
(g:)p = (EF)a(EF) & (7-90)

in which (EF);s is the efficiency factor for a rigid pile including the effect of s0il
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motion, and (EF)x is the efficiency factor which takes into account the pile flex-
ibility.
In order to evaluate the effect of pile flexibility, we must first evaluate K, from
Eq. (7-86):
4G 4(4500)
d 6

= 3000 Ib/in? (7-91)
Then the stiffness for the infinitely rigid pile moving against still soil is

T,
(e—e) — Kyrtd = 1125 % 10° in.-Ibjrad (1-92)
s /R

Now, if the 6-in.-diameter stub pile is assumed to be made of reinforced con-
crete with E = 5 x 10° psi, the effect of pile flexibility may be evaluated from the
theory for beams on an elastic foundation
{Hetenyi, 1946). For K, constant with

1.0
depth and a constant EI pile, we first cal-
o8k | culate the value of 4 as
. 08 . K_hd 1
Yooar . -
0.2k 4 For a pile of finite length, Hetenyi gives
separate solutions for deflection and slope
! z

o 5 I‘S 2'0 2'5 30 for end shear only, and deflection and
. . slope for end moment only. Then, fora

Pile Length, in. stub pile assumed fixed into the circular
{a) footing, it is only nccessary to calculate

the force required to produce unit trans-

0 I ] lation of the peint of fixity. The ratio of

08| 4 the stiffness of the flexible pile to the stiff-

o ness of a rigid pile, both moving against

w 06 s soil at rest, gives the efficiency factor for

= flexibility (EF)z. The decrease of this

 04r 7 quantity with length of the 6-in.-diameter
w stub pile is shown in Fig. 7-29a.

o2 ] The combined effect of soil motion

| | and pile flexibility is shown by the curve

Pile Length, in. to rotation provided by a 6-in.-diameter
(b) stub pile 20-in, long is given by
Figure 7-29. Efficiency factor for six-inch To To
diameter concrete stub piles. (a) Effect ?s el R(EF)M(EF)F = 11.25
of pile flexibility. (b) Combined effects of r
flexibility and soil motion.

g

% 105 x 20 x 0.44 = 99 x 10° in.-lbjrad

L | |
0 5 10 15 20 25 30 jp Fig, 7-29b. Thus, the lateral resistance
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From this analysis it is seen that each 20-in.-long stub pile contributes a torsional
stiffness equal to about 13.8 per cent of that due to the contact between the circular
footing and the soil. Thus, the torsional stiffness of the foundation system could be
doubled, theoretically, by adding seven of these stub piles.

The foregoing discussion was restricted to a consideration of stub piles
which do not absorb any appreciable vertical load. However, it is possible
for real piles to absorb the entire vertical load of the footing if the soil settles
away from the footing. If this happens, the torsional resistance of the foot-
ing against the soil is lost and the entire torsional resistance must be provided
by the piles. It should be evident from this example that the torsional
restraint provided by the footing twisting against the soil is important and
should be maintained if torsional oscillations of the footing are anticipated.
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ISOLATION OF
FOUNDATIONS

Foundation isolation, as the term is used in this chapter, implies the
isolation of entire machine-foundation systems or of entire structures,
There is, of course, another field of engineering specialization associated with
mechanical isolation of machines, machine components, or structural
components. Mechanical isolation in this context means the isolation of
machines or structures from their foundations or from larger structural
elements using localized isolators. Some isolators which are commenly used
in mechanical isolation are rubber or composite pads, springs or spring-
damper systems, and pnurmatic springs. It is important in any specific
situation involving vibrations to distinguish between vibration problems
that can be resolved using mechanical isolation and those which cannot. For
this reason a foundation engineer must have a basic understanding of
mechanical isolation, The basis for understanding mechanical isolation is
available in Chap. 2, but for a more detailed treatment of mechanical iso-
lation techniques, see Crede (1951) or Harris and Crede (1961). For those
vibration problems in which mechanical isolation is inadequate, foundation
isolation may provide the required protection. The selection and design of
foundation-isolation systems is the topic of this chapter.

8.1 Isolation by Location
Atrenuation with Distance

It was shown in Chap. 3 that in an elastic half-space both body waves
and Rayleigh waves decrease in amplitude with increased distance from a
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source of vibration simply due to the geometry of the half-space. Rayleigh
waves decrease in amplitude more slowly than body waves and propagatein a
restricted zone close to the surface of the half-space; therefore, they are of
primary importance in any attempt to isolate foundations. The decrease in
amplitude of the vertical component of the R-wave with distance due to

geometry alone—geometri

A}
W= \/7 (8-1)

r, = distance from source to point of known amplitude,

where

r = distance from source to point in question,

w, = amplitude of the vertical component of the R-wave at distance r,
from source, and

w = amplitude of the vertical component of the R-wave at distance r from
source.

Considering geometrical damping alone, it can be seen that a large degree of
isolation can be achieved by locating a structure as far as possible from a
known vibration source.

Because soil is not perfectly elastic, there is another consideration which
influences the attenuation of R-waves. In real earth materials, energy is lost
by material damping. The existence of materjal damping in soils is demon-
strated by the fact that amplitude attenuation measured in the field is greater
than would be predicted by geometric damping alone. Figure 8-1 shows
amplitude-decay curves obtained in the field at the four sites described in
Table 8-1. The dashed curves through the data points (solid circles) represent
the measured attenuation of vertical-displacement amplitude of the ground
surface, and the solid straight line (slope = —1 on log-log plot) represents

Table 8-1. Site Conditions and Source of Excitation for Field Data
Presented in Fig. 8-|

I deriiuﬁr:;tion Soil Conditions Source of Excitation ;;i?:;rslg)
WES (1965) uniform, fine sand rotating-mass vibrator 20
(vertical)
Forssblad (1965) moerainic (silty, 7260-1b vibrating roller 26.7
) gravelly sand)
Richart (1962) 4--6-in. concrete slab single-cylinder internal- 40
over compact combustion engine
granular fill
Woods (1967) silty, fine sand electromagnetic vibrator 200
. (vertical)
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Figure 8-1. Attenuation of surface wave with distance from source of
steady-state excitation.

the theoretical atienuation predicted by Eq. (8-1). All four sets of field data |
indicate amplitude attenuation greater than predicted by geometrical damp- §

ing alone.

Both geometrical and material damping can be included in an expression =

for R-wave attenuation (Bornitz, 1931) as follows:

w = wl\/’le exp [—a(r — )] (3-2) |
r :

where « is the coefficient of attenuation, having dimensions of 1/distance }

(see Eq. 6-27). Equation (8-2) implies that the total energy on two concentric
circles at radii 7, and r from a point energy source is constant except for the

)
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energy lost through material damping. Barkan (1962) suggested values of o
ranging from 0.01 to 0.04 (1/feet) for various types of soils. The solid curves
in Fig. 8-1 represent Eq. (8-2) with « selected to fit each set of data. The
range of & in Fig. 8-1 is from 0.006 to 0.08 (1/feet). Although material damp-
ing occurs in real soils, as shown in Fig. 8-1, it is geometrical damping which
contributes most to the attenuation of R-waves.

The attenuation considered so far has been associated only with hori-
zontal (radial) distance from the source. An additional degree of isolation
from R-wave energy can be obtained by locating foundations below the
surface. It was shown in Chap. 3 that R-waves attenuate with depth;
therefore, it may be useful for isolation purposes to seat a foundation as deep
as practical while keeping the sides of the foundation separated from the
surrounding soil.

Geologic Formations

If it is possible to select the site for sensitive structures or instruments,
advantage may be taken of basic geologic formations. Foundations on
sound, deep-seated bedrock, for example, will experience smaller vibration
amplitudes than foundations on weathered materials or soils subject to the
same excitation. Seismologists have found that abandoned rock quarries
provide excellent sites for “quiet” seismograph stations. The depth of the
quarry screens local microseismic noise and the freshly exposed rock at the
quarry floor is an excellent foundation for instruments. Mines and under-
ground caverns have similar advantageous properties.

It has been suggested by geophysicists that isolation can be achieved by
locating a foundation in a protective natural geologic structure like a syncline.
Also a deep valley or a mountain range may act as a barrier to long-period
surface waves if it is situated between the source of excitation and a site to
be isolated.

8.2 jsolation by Barriers
Examples from Practice

Isolation of structures and machine foundations from ground-trans-
mitted vibrations by the installation of wave barriers has been attempted
many times, and has met with various degrees of success. Barkan (1962)
reported on an application of an open-trench and sheet-wall barrier to isolate
a building from traffic induced vibrations, as shown in Fig. 8-2. This in-
stallation was unsuccessful and vibrations from the street continued to
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Figure 8-4. Isolation of standards laboratory (after McNeill et af., 1965).

affect the building adversely. Dolling (1965) and Neumeuer (1963) reported
on the use of a bentonite-slurry-filled trench to isolate a printing plant in
Berlin from vibrations generated by subway trains. This application, as
shown in Fig. 8-3, was reported as successful because the amplitude of vibra-
tion in the printing plant after trench installation was about one-half the
amplitude before trench installation. It should be noted that a reduction of
one-half in vibration amplitude would usually not be considered adequate.
McNeill, Margason, and Babcock (1965) reported the successful application
of a trench and sheet-wall barrier to isolate a sensitive dimensional-standards

Figure 8-2. Isolation of building frem traffic induced vibrations (after
Barkan, 1962).

A

T, el laboratory, as shown in Fig. 8-4. This isolation system effectively limited
26'= / g ine acceleration of the slab to the owners’ specification {maximum acceleration of
. - i an 100 micro-g).
;.,'. | 32 -
45 b W 5 Sund an
i T ‘Benron s Mgguam Experimental Study of Trench and Sheet-Wall Barriers
- 'I 1 "' 1 urry nd. .-
l u'hl:i : |.|: e I“ o, Trench S . . . . . )
vusL W WL S In most applications of isolation barriers, the shape and size of the

Elevation Grnvel

barriers have been selected without benefit of a rational design procedure.
Barkan (1962) and Dolling (1965) reported on field investigations studying
the effectiveness of barriers, and some guidelines for barrier size and shape
were indicated. The tests by these investigators were limited in scope,

Bentonite -Slurry -
Trench k156"

Figure 8-3. Building isolation using bentonite-slurry filled trench (after
Neumeuer, 1963).
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however, and did not provide sufficient background on which adequate barrier
dimensions could be established. Recently, broader investigations have been
conducted to determine the effectiveness of trench and sheet-wall barriers as
vibration isolators and to develop guidelines for the design of these barriers,
(see Woods and Richart, 1967; and Woods, 1968). The following paragraphs
describe these investigations.

The concept of isolation by wave barriers is based on reflection, scatter-
ing, and diffraction of wave energy. Wave barriers may consist, in general,
of solid, fluid, or void zones in the ground. The partition of elastic-wave
energy at a solid-to-solid interface was described in Chap. 4. Partitions of
wave energy at a solid-to-fluid interface or a solid-to-void interface are special
cases of the solid-to-solid problem, and detailed analyses can be found in
Kolsky (1963} and Ewing, Jardetzky, and Press (1957). At a solid-to-solid
interface, both P-waves and S-waves are transmitted; at a solid-to-fluid
boundary only P-waves are transmitted; and at a solid-to-void interface, no
waves are transmitted. The most effective barrier is that which transmits the
minimum wave energy; that barrier would be, of course, the void. Thau and
Pao (1966) have shown theoretically that a thin crack is sufficient to screen
vertically polarized SH-wavesin an elastic medium. Figure 8-5 {after Thau and
Pao} shows the relative amplitude of a plane SH-wave which encountered a
semi-infinite crack parallel to its wave front. Particle motion in Fig. 8-3 is
normal to the plane of the figure and is, therefore, analogous to the vertical
component of the R-wave at the surface of a half-space. On the basis of the
preceding considerations, open trenches were used as the barriers in these
isolation studies.

A
FOQ
08 03 /
/ /Ser'm
infinite
Crack !

2.0/ |‘ —

44 4 44 4 Eh

4 44 44 44444

Plane Wave Front

">_
IO Y | 4 Figure 8-5. Amplitude-ratic con-
'_‘_395__\' 50— tour diagram for SH-wave at a

crack in an elastic medium (after
Thau and Pao, [966).

(Note: A comparison of Fig. 8-5 for shear waves in an elastic solid with
Fig. 5-3 for gravity waves in water shows the analogous scattering and
diffraction characteristics of a void barrier in a solid and a solid barrier in
water.) \
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Figure B-6, Schematic of vibration isolation using a circular trench sur-
rounding the source of vibrations—active isolation (from Woods, 1968).

It is convenient to subdivide the problem of screening of elastic waves
by trenches into two categories: (1) active isolation (isolation at the source),
and (2) passive isolation (scréening at a distance). Active isolation, as shown
schematically in Fig. 8-6, is the employment of barriers close to or surround-
ing the source of vibrations to reduce the amount of wave energy radiated
away from the source. Passive isolation, as shown schematically in Fig. §-7
is the employment of barriers at points remote from the source of vibrations
but near a site where the amplitude of vibration must be reduced. Both
types of foundation isolation problems were investigated.

Amplitude of Sensitive
. ‘ Surface instrument
Incoming Rayleigh Wave Displacement or Tool

Straight, Open
Trench of Depth
H and Length L

Figure 8-7. Schematic of vibration isolation using a straight trench to
create a quiescent zone—passive isolation (from Woods, 1968).
N

The isolation tests were performed at the field-test site shown in Fig.
8-8. This site was situated on a sand-and-silt deposit in an area remote from
sources of manmade seismic noise. A profile showing the pertinent properties
of the soil at the ficld site is shown in Fig. 8-9. The angle of internal friction
¢’ was 38° and the cohesion intercept ¢ was 700 Ib/ft2, In a moist condition
(water content w = 5 to 15 per cent), this soil maintained vertical-walled
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Figure 8-8. Field site.

open trenches up to 4-ft deep. Each field-test layout consisted of a vibration
exciter as the source of input motion, a trench to screen displacement waves,
and pickup points at which were measured the amplitude of vertical ground
motion,

Wave-length scaling was determined appropriate for these model tests
{Woods, 1967); therefore, the wave length of the Rayleigh wave, Lg, had
to be determined at the field site for several frequencies of vibratioms.
Rayleigh-wave velocities vy and wave lengths Ly, as determined in the
field by the method described in Chap. 4, are given in Table 8-2, Critical

Table 8-2. Wave Length and Wave Velocity for
the Rayleigh VWave at the Field Site

Frequency Lz (f0) vg (ftjsec)
(cycles/sec)
200 2.25 450
250 1.68 420
300 1.38 415
350 1.10 , 385
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Figure 8-9. Field-site soil properties and schematic of instrumentation
(from Woods, [968).

dimensions of the trenches used in all tests were normalized on Ly for the
appropriate frequency when used to compare results of two or more tests at
different frequencies.

Active-isolation tests. The primary variables in the active isolation tests
were H and 6, where H was the trench depth and 6 was the angular length
of the trench. Barrier trenches 0.5-ft to 2.0-ft deep composed of segments of
annuli ranging from 90° to 360° were employed. Figure 8-10 shows a
schematic diagram of the experimental setup for these tests with the critical
dimensions labeled. The radii R, of the annular trenches were 0.50 ft and
1.00 ft. By employing trenches at these two radii and by using four exciter
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Figure 8-10. Schematic of test layout for active isolation in the field (from
Woods, [948).

frequencies (200, 250, 300 and 350 cycles/sec) it was possible to obtain ratios
of trench radius to wave length (R,/L ;) ranging from 0.222 to 0.910.

In these tests, one criterion of effectiveness was a reduction in the
amplitude of vertical ground motion of 0.25, By recording the vertical sur-
face displacement at many points with and without a trench barrier, a ratio
of amplitude after trench installation to amplitude before trench installation
could be computed. By plotting these amplitude ratios on a plan diagram
of the field-test site, contour diagrams of amplitude ratio were obtained.
These contour diagrams provided the means of evaluating the effectiveness
of each trench barrier. An example of an amplitude-ratio contour diagram
is shown in Fig. 8-11.

From these test results it was concluded that for trenches fully surround-
ing the source of vibration at a distance of one wave length or less, the scaled

)
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Figure 8-11. Amplitude ratio contour diagram (from Woods, /68).

depth of the trench must be about 0.6 for the trench to be effective. For fl}Il-
circle trenches the screened zone included an area of the half-space outside
of the trench extending to a radius of at least 10 wave lengths. Data was not
obtained beyond 10 wave lengths due to the site size and the power limita-
tions of the vibration exciter. .
For trenches of angular length less than 360°, the screer}ed Zone was an
area symmetrical about a radius from the source of excitatlop through fthe
center of the trench and was bounded laterally by two radial lines extending
from the center of the source of excitation through points 45° from each end
of the trench (Fig. 8-12). This definition of the screened zone excludes
trenches of arc length less than 90°, and all data confirmed that 90° trenches
were not effective. Also, in these tests the screened zone extended at least
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Figure 8-12. Amplitude ratio contour diagram (from Woods, 1968).

I0wavelengths from the source. The same criterion for screening effectiveness
(amplitude reduction of 0.25 or less) when applied to trenches of angular

length less than 360° showed that the same scaled trench depth H/L , = 0.6

is required to produce an effectively screened zone.

Furthen examination of all tests for active isolation indicated that
amplitude reductions greater than one order of magnitude are not likely to be
achieved using trench barriers up to 2 wave lengths (H/Ly = 2.0) deep. The
tests by Barkan (1962) and Dolling (1965) indicated similar results.

Passive-isolation tests. The test setup for passive isolation is shown
schematically in Fig. 8-13. The layout consisted of two vibration-exciter

)
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Figure 8-13. Plan view of field-site layout for passive isolation (from
Woods, 1968).

footings, a trench barrier, and 75 pickup benches. For this series of tests it
was assumed that the zone screened by the trench would be symmetrical
about the 0° line; therefore, surface-motion measurements were made for
only one-half of the screened zone. Symmetry of screening effects had been
already sufficiently established in the active-isolation tests. The variables in
these tests were trench depth H, trench length L, trench width W, and the
distance from the source of excitation to the trench, R.

To study passive isolation, trenches ranging in size from 1.0-ft deep by
1.0-ft long by 0.33-ft wide, to 4.0-ft deep by 8.0-ft long by 1.0-ft wide were
employed. By locating the vibration exciter at two distances from these
trenches and using four frequencies of excitation (200, 250, 300, and 350
cycles/sec) a range of eight R/L , ratios (R/L gz = 2.22 to 9.10) was obtained.
This range in R/Lj; was necessary to evaluate the effects of the exciter—
trench distance R on trench performance.
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Figure 8-14. Amplitude-ratio contour diagram (from Woods, 1968).

From practical considerations, the critical dimension for trench barriers
was the scaled depth H/Lp,; therefore, for each distance from the source the
shallowest trench which satisfied the criteria was determined. The minimum
scaled depth for the passive trenches was generally between H/L, — 1.2
and H/L g = 1.5, To evaluate the effect of total trench area on the screened

zone, a quantity HL/L3 (scaled trench length times scaled trench depth) {

was computed for each trench. There was a general trend toward increasing
HL[L% with increasing R/L . Figure 8-14 shows the amplitude-ratio contour
diagram for a trench which satisfies the criteria.

Figure B-15. Amplitude of vertical displacement vs. distance from source
for five tests (from Woods, 1968).

Amplitude magnification (indicated by amplitude-reduction—factor
contours greater than 1.0) can be seen in Fig. 8-14 in front of and near thc
end of the trench. This phenomenon may explain some.of t'he ﬁ¥st unsatis-
factory applications of trench barriers referred to earlier in this chapter.
This magnification phenomenon was also noted in the work by Thau and Pao
(1966) and can be seen in Fig. 8-5. _

Curves of amplitude of vertical displacement vs. distance along a lxr.le
of symmetry from the vibrator through the trench for five tests are shown in
Fig. 8-15. The increasing effectiveness of the larger trenches can be seen in
the region beyond the trench by the relative position of the curves for each
test. -Also apparent in this figure are the magnification in front of the trench
and maximum reduction at some distance behind the trench.
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Figure 8-16. Amplitude-ratio contour diagram (from Woods, 1968).

In planning the tests it was assumed that the width of an open trench -

would not be an important variable and that, in fact, a small crack or slit
would be sufficient to screen elastic waves. A few tests were performed to

evaluate this assumption and it was found that an increase in width did not

cause a significant change in either the magnitude of reduction or the shape of
the screened zone. These results tend to confirm the assumption that zrench
width is not an important variable. '
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Another assumption made in planning the trench study was that open
trenches would be more effective than sheet walls as surface-wave barriers;
therefore, a few sheet-wall-barrier tests were performed. An aluminum sheet
&-in. thick, 4-ft deep, and 8-ft long was used as the barrier. For comparison,
the length and depth of the sheet-wall barrier were the same as the length and
depth of the trench barrier shown in Fig. 8-16. In general, the sheet-wall
barriers wete not as effective in reducing amplitude of vertical ground motion
as the trench barriers.

It is interesting to compare the general positions and shapes of the
amplitude-ratio contours in Figs. 8-5 and 8-16. For example, the contours
of 0.50 and 0.25 on both figures show a definite similarity in position and
shape. There is also an overall correspondence in the regions of amplitude
magnification in front of and at the side of the barriers. The correspondence
of these features is remarkable because the contours in Fig. 8-5 are for a
plane shear wave encountering a semi-infinite barrier (crack) in a homo-
geneous, isotropic, elastic solid, while the contours in Fig. 8-16 are for a
cylindrical surface wave encountering a finite barrier (trench) in a real soil.

Conclusions Pertinent to Design of Isolation Barriers

The following recommendations for trench size and shape are influenced
by the criteria used in judging the isolation effectiveness of the trenches tested.
For this reason the effectiveness criteria are included in the design recom-
mendations. Two general criteria are required——one specifying the amplitude
reduction and the other specifying the area of influence.

For active isolation with trenches that fully surround the source of
vibration, a trench is considered effective if the amplitude of vertical ground
motion is reduced to 25 per cent of the no-trench motion within an annular
zone extending from the outer edge of the trench to a circle with a radius of
at least 10L.5. To accomplish this degree of isolation, the ratio of trench
depth to wave length of the R-wave (H/L ) should be about 0.6. For active
isolation with partially surrounding trenches, the same H/Lp is recom-
mended for an amplitude reduction of 0.25, but the area of influence must be
specified in more detail. In this case the zone of influence is an area sym-
metrical about a radius from the source of excitation through the center of
the trench and is bounded by two radial lines extending from the center of the
source through points 45° from each end of the trench and by a circular arc
of radius equal to 10L 5, (see Fig. 8-12). Note, this criterion excludes trenches
of angular length less than 90°.

For passive isolation a trench is considered effective if the amplitude of
vertical surface motion is reduced to 25 per cent of the no-trench motion
within a semicircutar area with radivs of one-half the trench length (L/2)
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and center at the center of the trench (see Fig. 8-14). For trenches located
between 2L and 7L from the source (2L, < R < 7L3), H/Lp must be
about 1.33. Furthermore, to maintain the same degree of isolation, the
scaled area of the vertical projection of the trench (HfLp x LiLp =
HL[12) should be increased as the distance from the source {R) increases.
The scaled area should be atleast 2.5 at R = 2L and atleast 6 at R = 7L,
Experimental data is not available for source-to-trench distances greater
than about 7L .

For both active and passive isclation, the trench width W is determined
solely on the basis of the trench-construction requirements. The recom-
mended trench dimensions for both types of isolation are a function of Lg
which, in turn, is a function of the frequency of the disturbance and the wave-
propagation velocity of the foundation material. For installations that are
already in operation, the frequency of ground motion should be measured
at the site of the proposed trench; while for a new installation the frequency
of the proposed equipment may be used. The wave-propagation velocity
should be measured in situ by the method described in Sec. 4.3 or estimated
on the basis of soil properties and confining pressure. The wave length Lp
can then be computed from Eq. (4-45):

Vg
Ly ==

f

Caution must be exercised with respect to focusing or amplitude magnifi-
cation in the selection of trench shape and trench location for active isolation
with partially surrounding trenches, and for passive isolation. Also, it should
be recognized that soil layering, a high water table, or other foundation or
building details may alter wave-propagation phenomena and require ad-
ditional considerations in the selection of a trench barrier.

There are problems, of course, associated with keeping trenches open
for depths of practical concern—say, 20 to 50 ft. One method of overcoming
this difficulty is to use bentonite-slurry-filled trenches as described by Dolling
(1965). However, more data is needed comparing slurry-filled trenches with
open trenches before this technique can be used generally. Another promis-
ing possibility is to replace the trench by single or multiple rows of thin-
shell-lined cylindrical holes. :

INSTRUMENTATION FOR
LABORATORY AND FIELD
MEASUREMENTS

In order to compare the actual performance of a dynamic system with
the calculated performance, it is necessary to use relatively complex instr.u-
mentation. The same type instrumentation is also used for laboratory studies
of dynamic soil properties. For all cases the problem involves a transd.ucer
which converts the physical quantity to be measured into an electrical signal
which is related to the physical quantity through a calibration factor for the
transducer. The electrical signal is measured and read directly or recorded
so that the information can be analyzed in more detail at a later time.
Engineering judgment js needed in many cases to insure that the most sign.iﬁ-
cant quantities are measured. This judgment is most often called for during
measurement, since prior planning cannot anticipate all details which might
significantly affect the measurements. Thus, the person making the measure-
ments must not only be trained in dynamics but he must also have the knqwl-
edge required to understand the operation of the instruments he is.usmg.
Without a good understanding of the basic operation of clectronic instru-
ments, the operator will not know when his equipment is pert.'ormmg
properly or be able to cope with difficult circumstances in taking the
measuregments, '
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The objectives of this chapter are to
provide a review of the basic electronic
principles which are applicable to vibration

R C L measurements and to provide information
on the types of instruments most com-
monly used for dynamic measurements,
There is also a section on the types of equip-

Figure 9-1. Basic elements of eleceri- €Nt used for the resonant-column meth-

cal circuits, od of determining dynamic soil properties.

9.1 Basic Electrical Elements

Figure 9-1 shows the three basic elements used in electrical circuits,
along with the symbols used to describe them. Vacuum tubes, transistors,
diodes, and other components will not be considered as they are beyond the
scope of this text. In order to understand the behavior of basic elements in an
electrical circuit we shall make use of an analogy between electrical and
mechanical components. The force—current analog is most suited for this
purpose. In this analog, the current J in the electrical circuit is analogous
to force in a mechanical system. Each electrical element has a corresponding
mechanical element which responds in a manner which is mathematically
the same.

Resistance

First consider the relationships for a resistor having a resistance R,
expressed in ohms. If a direct current (dc) flows through the resistor, a
voltage difference E will exist across the resistor having a value given by

E=IR (9-1)

which is an expression of Ohm’s law. We are all familiar with the fact that
when current flows through a wire it gets warm due to the resistance in the
wire. This heat represents a loss of energy. In a mechanical system a dashpot
1s an energy-absorbing element having the relationship

Force = (Viscous-damping coeff.) x (Velocity) 9-2)

By rewriting Eq. (9-1) as
E (9-3)
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we see that 1/R is analogous to the viscous-damping coefficient and voltage
is analogous to velocity. Equation (9-3) applies at any instant of time and
therefore can be used for alternating-current (ac) relationships just as the
analogous dashpot relationship applies to sinusoidal forces. . ‘
The power P absorbed by a pure resistance and converted into heat is

given by
P=IPR=— (9-4)

Capacitance

A capacitive element is one which has the ability to store an z?lectrical
charge. Current passes through the conductors leading to the capacitor only
when the charge on the capacitor changes. Thus, in a dc circuit no current
passes to the capacitor after it has become charged. The amount of charge

in a capacitor is given by the expression

g = CE (9-5)
where
g = charge in coulombs and

C = capacitance in farads.
The amount of charge is related to current by

= ‘ 0-6
g Lm: (9-6)

This equation is analogous to the impulse equation in mechanigs. InFro-
ducing Eq. (9-6) into (9-5) and taking the derivative with respect to time gives

1= c% (9-7)
dt

For our analogous physical element we have

Force = Mass x Acceleration (9-8)

Thus, we see that capacitance is analogous to mass.
If a sinusoidal voltage is applied to a capacitor, we can calculate the

charging current that will occur using Eq. (3-7). If

E = E, sin wt (9-9)
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then
dE , T
I =C— =CwE, sin |wt + — 9-10
= Jsin (o + 7) (9-10)

This is most easily visualized by taking a sinusoidal force (current} acting
on a free mass (capacitor) and considering the resulting velocity (voltage).
When a force is first applied to a mass, there is a time lag before the mass can
achieve a velocity due to its inertia. Thus, velocity lags force just as voltage
lags current in a capacitor.

Inductance

An inductive element consists of a coil having zero resistance surrounded
by a magnetic field due to the current passing through it. Any change in
current will change the magnetic field and induce a voltage in the coil, which
tends to oppose the change in current. The relationship for an inductive
element may be written

E=L% (9-11)

where L is the coil inductance in henrys. Integration of Eq. (9-11) with
respect to time gives

_1 )
_Lfde (9-12)

Since the integration of voltage (velocity in a mechanical system) with
respect to time is equivalent to displacement, an inductor is analogous to
the mechanical spring where

Force = (Spring constant) x (Displacement) (9-12)
In this case the spring constant is analogous to the reciprocal of the induct-

ance. If an alternating voltage is applied to an inductor, the resulting
current can be calculated from Eq. (9-12) as

I— £ gin (wt — 3) (9-13)
wlL 2 ’

In this case the current lags the voltage. It can be visualized by remember-
ing that for a spring no force (current) occurs until a displacement is pro-
duced (voltage X time).
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Table 9-1. Analogous Relationships between
Mechanical and Electrical Systems

Mechanical Electrical
Force = @ Current = [
Velocity = 2 Voltage = E
Displacement = z JEdr

dE
Acceleration = 2 —
dr
Dampi ! !
ne =c¢ —_—
Pig Resistance R
i 1
Spring = & - =
pring Inductance L
Mass = m Capacitance = C

For convenience, the analogous relationships have been listed in Table
9-1. Use will be made of these relationships in describing various electronic
circuits.

Impedance

The term impedance is used to describe the characteristics of an electrical
circuit. It is analogous to mechanical impedance, which is a measure of the
opposition of a system to an applied force {(current), usually taken as a
sinusoidal force. Thus, the ratio of velocity amplitude (voltage amplitude)
to force amplitude (current amplitude) as a function of frequency is the quan-
tity used to describe impedance. In view of the phase difference between
current and voltage for capacitors and inductors, it is convenient to introduce
complex notation and express the impedance in vector form. Thus, for pure
elements, the impedances Z are expressed by

Zp =R (ohms) (9-14)
Zo = —i a)l_C {ohms) (9-175)
Zy = iwL {ohms) (9-16)

where i = v —1. Impedances of the input and output terminals of electronic
instruments are usually expressed in terms of the element values and how
they are connected. For instance, the input terminals of an oscilloscope
might have an impedance composed of a resistance of 1 megohm (10° ohms)
in parallel with a capacitance of 47 picofarads (47 X 102 farad).
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Table 9-2. Prefixes Commonly Used in Electrical Measurements

giga = 10°
mega = 10%

kilo = 10*

milli = 10-*

micro = 10—°
nano = 10-*
pico = 1012

Due to the fact that both very large and very small quantities are found
in electrical components, prefixes are often used. Table 9-2 is a list of these
prefixes and the multipliers that they represent,

1 Matched impedance. If two instru-
ments are connected together such that
the main function js to transfer power
or energy from one to the other, there
exists an optimum relationship between
/g/RE the output impedance of the source
i and the input impedance of the re-
ceiver. For simplicity we shali consider
the source to be represented by an
O . electromotive force (emf) having a
Source Receiver  yoltage output E, in series with an out-
Figure 9-2. Simplified diagram of asource  put impedance having pure resistance
and receiver having resistiveimpedances. R, as shown in Fig. 9-2. The receiver
has an adjustable input impedance Ry,
which is to be adjusted so that the maximum power is absorbed. The current
flowing in the circuit is given by

E,

I=—=— (%-17)
R, + R,
The power absorbed by R, is
EsR
Py=1IR, = ——— 9-18
T R R 19

Taking the derivative of P, with respect to R, we get

ar, 2[ —2R, 1 } '
Y E 4 : 9-19
dR, (R, L R’ (R, + Ry’ ©-19)

Setting this equal to zero, we get
R, = R, (9-20)
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Thus, the condition of maximum transfer of energy occurs when the input
impedance of the receiver matches the output impedance of the source—
hence, the condition of matched impedance. For the measurement of the
voltage output of vibration transducers, matching impedance is of no im-
portance. In fact, R, is usually made large with respect to R, in order to
obtain the maximum voltage across R,. However, if the source is an oscillator
which is being used to drive a vibration generator, then it is important to
match the output impedance of the oscillator to the input impedance of the
vibration generator to obtain the maximum power output. A similar ex-
ample is found on the output connections of an ordinary hi-fi amplifier.
Output impedances of 4, 8, and 16 ohms are usually provided to match the
impedances of different types of speakers that may be used. When the
impedances are matched, there is an additional advantage in that the distor-
tion of the signal is reduced to a minimum.

9.2 Instruments for Electrical Measurements
Direct-Current Meters

The dc meter is a fundamental component of many instruments avail-
able for making electrical measurements. Most dc meters are incorporated
into an instrument that will measure voltage, current, or resistance by setting
a switch to the desired function. Basically the dc meter only measures
current, but measurements of voltage or resistance can be accomplished by
inserting additional elements between the meter and the circuit. The meter
has a very low resistance coil surrounded by a magnetic field. The coil moves
when a current passes through it. The electrical resistance of this coil is
made as small as possible so that it will not influence the circuit being
measured. In some cases, however, the readings of a meter are meaningless,
especially when the circuit resistances are of the same magnitude as the meter
resistance. For example, consider the circuit shown in Fig, 9-3a. If we wish
to measure the current /, flowing through the resistance R,, we break the
connection to R, and insert the meter as shown in Fig. 9-3b. The meter
resistance R, is shunted with a resistance R,, which is used to provide various
ranges of current measurement by allowing only a certain percentage of the
current actually to pass through the meter. The net meter resistance is
R_RJ(R, + R,). If the net meter resistance is only a small percentage of
the value of R,, then the current indicated by the meter will be very close to
the original current f,. However, it can easily be seen that if the net meter
resistance is nearly as large as R,, or if the circuit is very sensitive to changes
in R,, then the meter reading may be completely different than the original
value of 1. -
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m

Figure 9-3. Effects of meter im-

| .
= R
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(

¢} Measurement of Voltage Across Ry. pedance on circuit measurements.

In order to measure voltages, a resistance is placed in series with the
meter to produce a high net resistance equal to (R,, + R). If the meter is
connected to two points in a circuit, as in Fig. 9-3c, a small current 7, will
flow through the meter and will be proportional to the voltage difference
between the two points. In order not to affect the characteristics of the
original circuit, it can be seen that the current 7,, must be as small as possible.
This condition is met by having the net meter resistance large compared to
the resistances that make up the circuit in which the voltage measurements are
made. :

Measurements of resistance may be made by applying a known voltage

across the unknown resistance and measuring the current that flows through
it. Application of the relationship R == E/I provides the value of the unknown
resistance.
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Electronic Meters

The application of the dc meter as discussed in the preceding paragraphs
has certain disadvantages. The main disadvantage lies in the fact that the
presence of the meter changes the voltages and currents that are being
measured. In order to overcome this problem an electronic circuit contain-
ing rectifiers, amplifiers, and other active components is used to generafe the
signal which is applied to the meter. Input impedances for an electronic
meter used as a voltmeter range from 10° to as high as 10'* ohms. A meter
system of this type is commonly referred to as a vacuum-tube volimeter.

Alternating-Current Meters

When ac currents are applied to a dc meter, the variations in voltage or
current are so rapid that the meter cannot respond fast enough and no
measurement can be obtained. This problem is overcome in several ways.
One method is to rectify the signal so that only components having the
same sign are measured. Another method uses a thermocouple to generate a
direct current from the heat generated by the alternating current passing
through the thermocouple. Other methods are also used to measure alternat-
ing currents, but the important consideration is the response of the meter
to different wave forms. Since a meter reading can only convey one piece of
information about a voltage or current, meters are designed to measure one
of three characteristics: the average value, peak value, or root-mean-square
(rms) value of current or voltage. In almost all cases, however, the dial face is
calibrated so that the readings correspond to the tms value of a pure sinusoidal
signal. Thus, the readings will be in error if the wave form is not sinusoidal
except for the true rms-responding meter. For sinusoidal quantities,

Epms = 0707 E 401 (9-21a)
and
Epms = L111E,., (9-21b)

From this it can be seen that a 200-volt peak-to-peak square wave would read
70.7V (volts) on a peak-responding meter, 100V on an rms-responding
meter, and 111.1V on an average-responding meter. This points out the
fact that care should be used when interpreting meter readings if the wave
form is not sinusoidal,

Galvanometers

A galvanometer is nothing more than a sensitive dc meter that is
mechanically designed to respond to rapidly varying signals. Its response
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may be described accurately by the equation for the dynamic magnification
factor of a damped single-degree-of-freedom system (Eq. 2-53). Typical
values of undamped natural frequency range from less than 1 cycle/scc to
greater than 1000 cycles/sec. In general, the sensitivity of the galvanometer
decreases as its undamped natural frequency is increased. Since the main
purpose of the galvanometer is to measure dynamic signals, a means must be
provided to record its response. There are two methods by which this is
accomplished. One method is to attach a pen to the end of the galvanometer
and record the signal on a roll of paper passing under the pen at a known
velocity to provide a time scale. (The pen is actually part of the galvanom-
eter since its mass affects the response characteristics of the galvanometer.)
The other method records the galvanometer movement using a beam of light
reflected onto a light-sensitive photographic paper from a mirror attached
to the galvanometer coil. Since the mirror can be made very small, this system
is used where high values of undamped natural frequencies are required in
the galvanometer system. The maximum frequency response of a pen-type
system is about 100 cycles/sec, whereas frequencies as high as several thousand
cycles per second may be measured with the mirror-type system.

The methods used to record the signal onto paper are of importance
only in terms of convenience. For the pen-type system, there is a choice
between ink- and thermal-writing. The ink-writing pen requires a less
expensive paper for recording but requires a lot of maintenance if the system
is not in near-continuous use. The thermal-writing pen has a hot tip which
melts a coating on a special wype of recording paper. The paper is more
expensive but the savings in maintenance time often offset the difference in
price. The light-beam systems are made to record on either ordinary photo-
graphic paper or ultraviolet-sensitive paper. The only difference in the two
types of paper is that the ordinary photographic paper must be handled and
processed in complete darkness, whereas the ultraviolet paper develops
automatically when exposed to daylight or to a fluorescent lamp. The ultra-
violet-type system provides the convenience of making the recording almost
immediately visible after it is made without imposing a wait while the paper
is processed in a photographic laboratory. The choice of which system to
use of course depends upon each particular application or need since all of
the systems will give the same degree of accuracy.

Oscilloscopes

A cathode-ray oscilloscope is one of the most versatile measuring instru-
ments available. Tt provides a visual display of the wave form being measured,
from which it is possible to obtain accurate measures of voltage and time.
The heart of the instrument is a cathode-ray tube in which a beam of electrons

)
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illuminates a spot on its phosphor-coated face. This spot can be accurately
positioned both horizontally and vertically by application of voltages across
pairs of deflection plates between which the beam passes. One set is used to
control the vertical position and the other the horizontal position of the
beam. For most applications a calibrated sawtooth voltage is applied to the
horizontal-deflection plates so that the beam moves from left to right at a
known velocity and then rapidly returns to the left side of the tube to repeat
its sweep from left to right. This provides a #ime scale on the face of the
cathode-ray tube. The signal to be measured is amplified and applied to the
vertical-deflection plates. With this arrangement, complete information is
displayed showing the variation of voltage with time, which can be recorded
phatographically if a permanent record is desired. The applications of this
type instrument are almost unlimited in view of the availability of transducers
which can convert such quantities as force, displacement, velocity, accelera-
tion, pressure, strain, and temperature into voltages proportional to the
quantity being measured.

Magnetic-Tape Recorders

Magnetic-tape recorders provide a means of recording dynamic signals
for subsequent reproduction. The system has a great advantage over paper-
recording systems in which the signal is recorded permanently and cannot
be regenerated as an electrical signal. Since the magnetic-tape recorder can
reproduce the original signal, it is possible to make a much more detailed
analysis by using filters, wave-form analyzers, integrators, analog computers,
or other types of instruments depending on the information desired. In
many instances, the ability to regenerate the original signal permits the system
to provide more information than can be obtained using paper-recording
Systems.

Two methods are used to record and play back signals on a magnetic
tape; the direct-recordireproduce method and the FM-record/reproduce
method. The direct-record/reproduce method amplifies a signal and applies
it directly to the recording head, which magnetizes the tape by an amount
proportional to the signal level. When the tape is played back, a voltage is
generated by the reproducing head which is proportional to the rate of change
qf the magnetic field on the tape. Thus, it is the derivative of the recorded
signal and not the signal itself which is sensed by the reproducing head.
'In order to obtain the original signal, the signal from the reproducing head is
mtegrated. It is obvious that this system will have a lower limit on the fre-
qQuency that it can record since no voltage will be reproduced by the reproduc-
Ing head if the magnetic field is constant. There are other inherent problems
involved with the direct-recording method that are associated with the
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magnetic hysteresis of the tape, but a discussion of these will not be included
here.

The FM-record/reproduce method eliminates the problems of magnetic
hysteresis and inability to record dc signals by converting signal levels into
frequency deviations from a center frequency. A positive signal causes an
increase in frequency while a negative signal causes a decrease in frequency.
When the signal is reproduced, changes from center frequency are converted
to signal levels by means of relatively complex electronics. Although this
method appears to have great advantages over direct recording, other
problems arise that are not associated with the direct-recording method. In
the FM method the system is extremely sensitive to slight variations in tape
speed, since such variations have the same effect as a change in frequency.
Thus, the system requires a much more sophisticated tape-drive system than
can be used for the direct-record method. However, an FM system will give
better performance than the direct-record system except in the area of
maximum frequency response. An FM system can record signals from de
to 1250 cycles/sec at a tape speed of 7% in./sec, while a direct record system
can record from 100 to 12,000 cycles/sec at the same tape speed. The upper
limits on frequency response are directly proportional to tape speed. Thus,
since most soil-dynamics problems involve frequencies of less than 100 cycles/
sec, the FM-record/reproduce system is usually the only one that can be
used.

cannot distinguish between signal and noise, both will appear in the amplified
signal. This condition is described as a ““single-ended input,” since one side
of the signal source is grounded. However, if the signal source is not
grounded, the noise will occur as a voltage common to each terminal and the
generated signal will occur as a difference in voltage between each terminal.
It can be seen that for this case the noise could be eliminated by measuring
the algebraic difference of the voltage at each terminal. This is accomplished
using a differential or push-puil amplifier. Such an amplifier actually consists
of two nearly identical amplifiers, one producing an output having the same
sign as the input and the other producing an output which is the negative of
the input. The outputs of both amplifiers are added together to give the final
amplified signal. Since the noise has the same level and sign at the input to
each amplifier, it will be rejected and will not appear in the amplified signal.
Since two amplifiers are never exactly identical, some of the noise will appear
at the output of the amplifier. The ratio of the noise signal at the input to
that at the output is referred to as the common-mode rejection ratio; typical
values range from 100:1 to as high as 100,000:1 Since neither connection to
the signal source is grounded in a differential amplifier, the input is sometimes
referred to as a floating input. Although noise reduction is a main feature of
the differential amplifier, it can also be used where a common dc voltage exists,
as might be the case in a bridge circuit where the power source is not grounded.

9.3 Vibration Transducers and Their Calibration
Amplifiers
The vibration-displacement amplitudes most often measured in soils
and foundations range from millionths to thousandths of an inch and occur
at frequencies ranging from less than 10 cycles/sec to more than 100 cycles/
sec. The instruments required to measure motions of this magnitude are
designed on the basis of a single-degree-of-freedom system. Instruments
based on this design have two distinct advantages. First, in the single-degree-
of-freedom system a suspended mass is used as a reference from which to
measure vibrations, because in cases such as ground-motion measurements
no reference is available: the single-degree-of-freedom system circumvents
this problem. The second advantage is that certain electrical phenomena are
readily adapted to measuring the response of the system by producing an
electrical signal which can be observed with an oscilloscope or recorded for
subsequent analysis.
_ Aninstrument which converts mechanical motion into an electrical signal
18 called a transducer. For vibration measurements there are three general
types of transducers: displacement transducers, velocity transducers, and
acceleration transducers. The theory of operation and methods of calibra-
tion for each type of transducer will be discussed in the following sections.

An amplifier is an instrument whose main function is to increase the
voltage or current amplitude of a weak signal. In measurement applications
it is the voltage amplitude which is amplified. Current is amplified to provide
sufficient power to drive a galvanometer, vibration generator, or other
physical system. (The comments below are limited to voltage amplifiers.) |

Whenever a low-level voltage is amplified, one of the greatest problems
that arises is moise—that part of the signal which does not represent the
quantity that is being measured. This unwanted part is generated by several
sources: differences in ground potential at various parts in a2 measuring sysiein.
(ground loops), voltages induced into the cables that connect the signal. ]
source to the instrument, and the internal circuitry of the amplifier. This last
source is usually given in the instrument specifications in terms of a voltage
level over a given frequency range. Noise picked up by cable leads or pro- |
duced by ground loops can be reduced to a minimum with shielded cables §
connected in the proper way. However, at some point the noise level reaching §
the amplifier will be reduced to a minimum. At the input to the amplifier, ]
one side of the signal source is connected to ground and, since the a.mpliﬁ’el' -
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Displacement Transducers

Single-degree-of-freedom type. The response of a single-degree-of-free-
dom system due to motion of its support was analyzed in Sec. 2.3.
However, for the displacement transducer, the relative motion z, between
the mass and its support is the quantity desired. This relative displacement
can be found easily by setting up the differential equation for the system
shown in Fig. 9-4a, The acceleration of the mass will be

£= 2+ 2 (9-22)

The spring force and damping force are both directly proportional to z,;
thus, the equation of motion is

m(Z + 2)+ cZ, + kz, =0 (9-23)
which may be written as
mz, + ¢z, + kz, = —mZ, (9-24)

The quantity on the right-hand side of Eq. (9-24) represents the forcing
function which produces z,. Substitution of 4, sin w? for z, gives

—mi; = mw?A, sin w! (9-25)

which is similar in form to Eq. (2-57). Calculation of the equivalent Q,/k

£l 2, = Apsin (wt— @)

,¢L21:A1 5in wt

le

{b)

Figure 9-4. Ratio of relative to absolute displacement amplitude as a
function of frequency.
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provides the solution to the problem:

2A 2
QUI mo°A; (E)Al (9-26)

o,

Hence A,/A; = (w/w,*M follows from comparison with Eq. (2-53) and
¢ is given by Eq. (2-54). For convenience, the solutions are repeated here:

(o)
4 = (2-53)
SNINEE
o, w
22
tan ¢ == —w"— (2-54)

Equation (2-53) has been plotted in Fig. 9-4b for three values of damping
ratio D. Al three curves have the property that they approach a value of
1.0 for frequencies greater than the undamped natural frequency. This
means that the relative motion between the mass and its support is essentially
the same as the motion of the support for frequencies above a particular
value. The lowest frequency for which A,/4; remains within a specified
wariation from 1.0 depends on the value of D. For small D, a curve such as
@ in Fig. 9-4b will be obtained. This condition is undesirable not only
because of its slow convergence to 4,/4, = 1.0 but also because vibrations
at frequencies near the natural frequency of the transducer are exaggerated.
For large D, a curve similar to ©) will be obtained which eliminates the
amplification of components near the resonant frequency by actually eliminat-
ing the resonant frequency. Furthermore, the curve does not rapidly
approach A,/4, == 1.0. The optimum value of D is 0.6 because 4,/4,
rapidly approaches 1.0 at this damping ratio and the amplification at
resonance is only 4 per cent. Most displacement transducers designed on the
basis of a single-degtee-of-freedom system have damping ratios as close as
possible to 0.6. Using this system, measurements of z, provide a direct
measure of z; as long as the frequency components of the vibrations are
within the range where the relationship is one-to-one.

Unfortunately, it is difficult actually to measure z,. However, one
available method uses a system of mirrors to magnify the motion of a light-
beam reflected from the moving mass. The lightbeam is recorded on photo-
graphic paper which is later developed to obtain a record of the vibration.
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Calibration of a displacement transducer is usually not necessary because the
mirror system provides a fixed amount of magnification of the motion of the
mass. A simple check can be made by comparing the output with a known
displacement of the mass.

Relative-displacement type. An instrument commonly used to measure
the relative displacement between two objects is a linearly variable differential
transformer (LVDT). In some cases it is used as the sensing device for the
displacement transducer described above. A diagram of an LYDT, which
consists of a center primary coil and two outer secondary coils, is shown in
Fig. 9-5a. An iron core placed along the axis of the coils causes equal ac
voltages, 180° out of phase, to be induced into cach secondary coil. The
secondary coils are connected so that there is no net ac output voltage when
the iron core is in the center position. However, as the core is moved away
from the center position, the ac voltage in one secondary coil is increased
while the other is decreased. The relationship between ac-voltage output
and core displacement is linear within a small range each side of the null

©  a.c Qutput

[ °(Secondary Coils)
1

ooocooooo0oll a0eoo [[eoaocG0D00D
ocooocoopoolocoooo jJocooaooo000y
npooocooooo|cowoe [jooe0COCC000

~ Cora Motion

Iron Core
coa0o0oouoQo|[C 000D 0000C000D0
0OGQC0 Q0000|0000 HPOODOQDD0D
aoeo0000000|| 00000 ||[OCCOOODO0T

|

a.c. Input
{(Primary Coil)

{a)

[sRel=}

, Volts, a.c.

Linear

T

o~ 7

t80° Phase Shift Through Origin

{b)

Figure 9-5. Linearly variable differential transformer.

SEC. 9.3 VIBRATION TRANSDUCERS AND THEIR CALIBRATION 279

position. Since there is a 180° phase shift as the core passes through the null
posi.ti.on, _it is possible to determine the position of the core by using a phase-
sensitive instrument to convert the ac output into a de-voltage level. The
sign of the dc voltage depends on the position of the core with respect to the
null position.

It is obvious that the frequency response of an LVDT depends on the
frequency of the excitation voltage. The frequency-response limit is normally
equal to 10 per cent of the excitation frequency, which typically ranges from
60 to 2400 cycles/sec.

Calibration of an LYDT may be accomplished by attaching a dial
indicator or micrometer to an extension of the core.

Optical type. Many instances require the measurement of vibrations of
small objects to which it is not practical to attach a transducer. Even if a
transducer could be attached, the added mass would alter the dynamic
response to such an extent that any measurements would be meaningless.
Optical-displacement transducers overcome these difficulties by using an
optical connection. Two types of systems are commonly used. In one system
a beam of light from a cathode tube is focused on a half-reflecting, half-
absorbing foil target attached to the object. The lightbeam is adjusted so
that it is centered on the interface between the reflecting portion and the non-
reflecting portion of the target, as shown in Fig. 9-6. The position of the
object or the instrument is adjusted so that the beam reflects back into the

W@'ﬁ“\”“

~ Displacement
Follower

Micrometer

Figure 9-6. Schematic diagram of an optical displacement transducer.
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lens of the instrument. When properly positioned, the instrument will con-
tinually adjust the spot of light so that only half of it falls on the reflective
portion of the target. If the target moves, the instrument automatically
repositions the spot. The spot position is directly proportional to the voltage
applied to the deflection plates of the cathode-ray tube; this voltage is used as
the output voltage. Since the instrument responds to the relative position of
the object with respect to the instrument, calibration of the system can be
accomplished by moving the instrument a known distance and measuring
the change in output voltage. The static calibration factor obtained in this
manner is applicable to frequencies as high as 5000 cycles/sec or higher.

Another type optical-displacement system uses a scanning technique to
determine the position of an object. The only requirement for the object is
that it have sufficient visual contrast such as dark against light, painted lines
or even a machined edge. As the instrument scans the image, it detects the
point of discontinuity and generates an output voltage proportional to the
position of the discontinuity. With this arrangement it is possible to measure
simultaneously the position of several points. Calibration of the output
voltage in terms of displacement can be accomplished in the same manner as
described for the other system,

The limit of resolution for the two types of optical-displacement trans-
ducers depends on the focal length of the lens used. The lower limit is about
10 to 100 x 10~* in. The upper limit on displacement for the beam-type
instrument is about 2 in., but for the scanning type there is no limit since the
distance from the instrument to the object is not restricted by the require-
ment of being able to detect a small beam of light reflected from the object.

Optical-displacement transducers fulfill a need where vibration measure-
ments must be made without touching the object to be measured. However,
they are relatively expensive—prices for typical systems range from $5,000
to §10,000, depending on the accessories included with the instrument.

Velocity Transducers

Single-degree-of-freedom type. The system shown in Fig. 9-4a may also
be used as a velocity transducer. The relationship between the relative-
velocity amplitude and the base-velocity «.mplitude is identical to Eq. (2-53),
since multiplication of A, and A, by w leaves the equation unchanged. ‘The
comments on the optimum amount of damping for a displacement transducer
apply equally well to the velocity transducer.

The output from a velocity transducer is generated by a coil moving
through a magnetic field. Since the voltage induced in the coil is directly
proportional to the relative velocity between the coil and the magnetic field,
either the coil or the magnet is made part of the mass and the other component
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Figure 9-7. Velocity transducers,

is attached to the frame. The output voltage is then directly proportional to
zh Two types of velocity transducers and their components are shown in
Fig. 9-7. For the larger transducer the circular mass is the permanent magnet
aand jche coil is attached to the frame directly beneath it. The transducer is
required to be relatively large in order to provide a low undamped natural
frequency of | cycle/sec. The smaller transducer has an undamped natural
frquency of about 7 cycles/sec. Its component parts, shown in Fig. 9-8,
consist of a coil suspended by springs and a permanent magnet which is held
by the case of the instrument.
~ The equivalent electrical circuit for a velocity transducer is shown in
Flg. 9-9. The transducer is represented by a voltage generator £, and a coil
resistance R.,;. The oscilloscope tmpedance is shown as a pure resistance
.Rs,,,,pe. The shunt resistance R, is used to control the amount of damping
In the transducer. Some of the damping arises from eddy currents caused
by the relative motion between the magnetic field and metallic components
of the transducer. A significant part of the damping is caused by the loss of
energy associated with an electrical current passing around the loops of the
cm?un-th_rough each resistor, Since the damping is proportional to current,
whlch. 1s in turn proportional to voltage, the damping is exactly like viscous
damping, .By decreasing Ry, the amount of damping is increased, but at
the same time the output voltage to the oscilloscope is decreased. The normal
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Permanent
Magnet

Figure 9.8, Schematic diagram of
the components of a velocity
transducer.

procedure is to choose Ry, so that the damping is 60 per cent of critical.
This is determined from the shape of the output-sensitivity curve for various
values of R, ;. Once the desired value is determined, a resistor having this
value is permanently attached to the terminals of the velocity transducer.
Calibration of the transducer is achieved by exciting it with a known
vibration. An electromagnetic vibration generator may be used to calibrate
velocity transducers within the range of 5-2000 cycles/sec. Most vibration
generators are specified in terms of output-force-amplitude capabilities.
A small unit of 20-1b-force capacity will normally work well for calibration of
transducers. Larger units having force-output capabilities in the tens of
thousands of pounds are also available; however, the larger units are not
readily portable because the weight of the vibration generator will be from
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Figure 9-10. Electromagnetic
vibration generator.

I'to 3 times its force-output capacity. Figure 9-10 shows an electromagnetic-
vibration generator having a 25-Ib-force capacity. A velocity transducer is
shown attached to the end of the armature of the vibration generator. The
large circular component is an electromagnet which produces the magnetic
field surrounding the driving coil attached to the armature. An oscillator is
used to supply ac current to the driving coil at a controlled amplitude and
frequency to provide the desired vibration.

The determination of the calibration curve by subjecting the transducer
to a known vibration amplitude requires a means of determining accurately
the amplitude of vibration. The simplest method is to have a transducer of
known calibration mounted along with the transducer to be calibrated on a
common rigid block. The output voltage of the transducer to be calibrated
1s compared to the standard to obtain the calibration factor, which is ex-
pressed as volts/(in./sec) for a velocity transducer. The disadvantage of this
method is that no indication is available to tell whether or not the calibration
factor of the standard is correct. Fortunately, it is possible to make an
Independent check by making use of the visual persistence of the human eye.
It is found that for vibrations above about 30 cycles/sec, geometric patterns
such as those in Fig. 9-11 can be used to determine the peak-to-peak—dis-
placement amplitude. A spot will look like a line having a length equal to 24,
as shown in Fig. 9-11a. The length of this line may be measured accurately
With a microscope. Other patterns are also used, such as the two parallel
lines in Fig. 9-11b and the wedge in Fig. 9-11c. The appearance at rest
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(a)

R R

(b)
2A = 0.02004 Figure 3-11. Geometric patterns
(c) used in the visual persistence
method of measuring displacement
At Rest Vibrating amplitude.

and during vibration is shown for both of these patterns. Once the peak-to-
peak-displacement amplitude is measured, it is possible, using the relation-
ships for sinusoidal motion, to convert this measurement to velocity or
acceleration.

When an optical-displacement transducer is used as the calibration
standard, the calibration factor can be statically determined; and since the
static calibration is applicable to frequencies of 5000 cycles/sec or more, this
calibration will be adequate for the ranges of frequency used with most
velocity transducers.

Relative-velocity type. There are many applications for which a relative-
velocity transducer is the ideal instrument for making vibration measurements.
The resonant-column apparatus for measuring dynamic properties of soils
uses this type of transducer for measuring vibrations of a soil specimen:
a typical coil-and-magnet system is shown in Fig. 9-12. The same unit can
also be used to produce vibrations by connecting a source of alternating
current to the coil. The permanent magnet is normally connected to a rigid
frame and the coil is attached to the object to be vibrated or from which
vibration measurements are to be made,

Influence of cable length. There are some circumstances in which the
length of the cable between the velocity transducer and the measuring
instrument must be relatively long. An equivalent-circuit diagram of a
velocity transducer connected to an oscilloscope is shown in Fig. 9-13a.
The circuit can be greatly simplified by first considering the relative
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Figure 9-12. Driving «c¢oil and
permanent magnet for a resenant-
column device.

magnitudes of the various components. The velocity transducer and its
shunt can be replaced by a single equivalent resistance R,. This value will
fall within the range of 3005000 ohms for most velocity transducers. The
cable resistance and capacitance depend on cable length. Typical values
are near 0.01 ohm/ft and 30 picofarads/ft, respectively. If the oscilloscope
impedance is | megohm, it can be seen that the effect of cable resistance is
not important since 1,000,000 ft of cable would be required to produce a
cable resistance of only one per cent of the osciiloscope resistance. The
effect of cable capacitance on the circuit can be easily calculated by assuming
R.cane to be infinite and analyzing the equivalent circuit in Fig. 9-13b. From
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Figure 9-13. Circuits representing e
the effect of cable length on
velocity transducers.

St
o]




286 INSTRUMENTS FOR LABORATORY AND FIELD MEASUREMENTS CHAP. 9
this we get
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—_— = - =
Eo zo + Z(:ahl(‘ /Rz + 1 .
Vo alC,
S S (9-27)
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For R, = 1000 ohms, and a cable 1000 ft long, the value of E,,,/E, is 0.995
atf = 1000cycles/sec. Thus,cablelength for the average case may be ignored.
If the cable length is such as to make a significant change in the output or if
the effects cannot be calculated, the best approach is to calibrate the trans-
ducer with the cable in the circuit at the time of calibra&ion.

Acceleration Transducers

The construction of an acceleration transducer, or accelerometer, is
slightly different from the displacement or velocity transducer. Whereas
a low natural frequency was required for the previous cases, a high natural
frequency is required for an 'accelerometer. Figure 9-14 shows the basic
principles applicable to the design of an accelerometer. The quantity of

w2A sin (wi- )

w2A1 5in wi

Figure 9-14. Ratio of the acceleration amplitudes of the mass and the
support as a function of frequency,
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interest for this case is the absolute acceleration of the suspended mass. Its
relationship to the acceleration of the base is given by Eq. (2-66), which is
repeated here for convenience:

\rfll n (21) ﬂ)z

w,

A
A_ - / 212 2 (2-66)
1 o 1)
1— {2} +|202
v [ (wu)] T [ m.,J
The phase angle between the acceleration of the base and the mass is given by
21)(&)3
0,
tan @ == 3 (2-68)
- (ﬂ)(l — 4Dy
‘ 1

1)’

These have been plotted in Fig. 2-20.

At frequencies well below the natural frequency of the accelerometer, the
accelerations of the mass and base are nearly the same. If the damping is
small, measurements of the force in the spring attached to the mass provide a
quantity that is directly proportional to the acceleration of the mass. Within
the frequency range described above, this gives a measure of the acceleration
of the base. The most common method of constructing an accelerometer is
to use a quartz crystal or other piezoelectric material for the spring. A
material having piezoelectric properties will develop an electrical charge
directly proportional to the pressure applied to it. Hence, in a quartz-type
accelerometer, the charge is directly proportional to the acceleration of the
base at frequencies within the range where the acceleration of the mass and
the frame are equal. A high-impedance instrument called a cathode follower
is used to measure the charge developed by the piezoelectric crystal. A
cathode follower is actually an impedance transformer that allows an oscillo-
scope or other measuring instrument to be used for measuring a charge
voltage.

Accelerometer calibration is the same as for the velocity transducer.
However, cable length is a critical part of the measuring circuit, in contrast
to the relative insignificance of cable length for velocity-transducer calibra-
tion,

Influence of cable length. The circuit for a quartz accelerometer attached
to a cathode follower is shown in Fig. 9-15. The value of the input resistance
R, of the cathode follower is greater than 10'% ohms and can be considered
infinite for periods of vibration that are less than the product R,(C, + C, + C,)
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Figure 9-15. Circuit represent-
ing a piezoelectric transducer.

Accelerometer Cable  Cathode Fodlower
sec, which represents the RC time constant of the circuit. The RC t@me con-
stant is found by multiplying the resistance in ohms by the capacitance in
farads. The time in seconds obtained from this product represents the time
for a charge in the circuit to decay to 36.8 per cent of its initial valug. The
per cent of the open-circuit output (output when R; == oo). as a function of
RCf is shown in Fig. 9-16. For high-frequency char_acte_r:stlcs, theloutput
voltage is governed by the total capacitance in the circuit. From Fig. 9-15
the voltage E; measured by the cathode follower will be

g 9 (9-28)
GGG

RCf

Figure 9-16. Effect of RC time constant on voltage sensitivity of a piezo-
electric transducer.
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where

C, = accelerometer capacitance,
C; = input capacitance of the cathode follower, and
g, = charge developed by the accelerometer.

For the average accelerometer, the value of the cable capacitance C, is of the
same order as the other terms in Eq. (9-28), thus making cable capacitance
an important factor. For this reason very short cables must be used in order
to prevent large reductions in the sensitivity of the accelerometer. For example,
a typical accelerometer may have a sensitivity of 60 mV/g with a 10-ft cable
but a sensitivity of only 15 mV/g with a 100-ft cable.

The maximum range of frequency response of a piezoelectric accelerom-
eter is limited to about 50 per cent of its natural frequency. However, this
poses no serious problems, since for most cases the limit is hardly ever less
than 1000 cycles/sec and is usually considerably higher,

A final word should be included regarding frequency measurements.
For most cases the frequency indicated by the dial of the oscillator used to
drive the vibration generator is sufficiently accurate. However, if a con-
version is made from displacement to acceleration amplitude, the error will
be approximately twice the error of the frequency measurement since the
quantity «® is involved. An oscillator-frequency error of 10 per cent will
mean a 20 per cent error on acceleration. For critical work a more accurate
frequency generator or an accurate frequency-measuring instrument is
required.

9.4 Cables and Connectors

There is an almost unlimited variety of cable and coanector types
available for electronic instrumentation. The purpose of this section is to
acquaint the reader with the more common components and their application
to vibration instrumentation.

Cable Characteristics

An ideal cable would act as a pure conductor of electricity and would
have no effect on the signal that is transmitted through it. For many cases
this condition can be assumed to exist, but in others the cable characteristics
mnay be an important factor. A good example is the effect of cable capacitance
on the calibration factor of a piezoelectric accelerometer. Most cable specifica-
tions include the amount of capacitance and resistance per foot of cable—
although the latter quantity is sometimes omitted since it can be found in any
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handbook or text on electrical engineering if the size of the conductor is
kno“'![r};e term characteristic cable impedance, frequently encc?u.nterled in the
literature, refers to the impedance at the terminals gf a SBITll-mﬁ-rllte cable.
An analysis of such a cable indicates that it bphgv;s like a pure resistance Fhe
value of which is specified as its charactcrlstlc impedance. Ap mter.estmg
aspect of this characteristic is that if a finite length of .CE‘lblf‘: is terminate
with a resistor having a value equal to its charac.tensnc impedance, its
electrical characteristics are the same as the semi-ipﬁmte cable. For example':,
when a regular TV-antenna cable, which is designated 30_0'01"1? cable, is
connected to the antenna terminals of a T'V set that has an input Im'p.edan.ce
of 300 ohms it is the same as having the antenna connected to a semi-infinite
cable. The reason for having this characteristic is so that hlgh-frequencg
signals propagating along the cable will be completely' absorb;d at the end
of the cable. If not properly terminated, some of thf: signal will be reﬂecte.
back to the source and distort the transmitted signal. Fortunately, this
problem dees not have to be considered in the range .of frequenmes_ en-
countered in vibration measurements. As a rough g}nde, characteristic-
impedance considerations do not become_important until the wave length of
the electrical signals is of the same magnitude as cable length.

Cable Types

Figure 9-17 shows four types of conductors commonly used for instru-
mentation and which are discussed below.

(A) MAGNET

(B) HOOK UP

— =

(C) COAXIAL

Figure 9-17. Wire and cable used
for instrumentation.

(D) 2 CONDUCTOR, SHIELDED
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Magnet wire. This type wire is used for winding coils for velocity
pickups and other applications where many turns of wire are required. It
has a special enamel insulation which increases the wire diameter by only a
small percentage of its original diameter.

Hookup wire. This type wire is used for connections within electronic
circuits and has a rubber or plastic insulation. The conductor is either solid
or stranded depending on the flexibility requirements.

Coaxial cable. This cable contains a single insulated conductor sur-
rounded by a conducting shield. This cable is used for signal measurements
when the source is grounded on one side. The shicid acts as the ground wire
and the center conductor carries the signal.

Two-conductor shielded cable. This type cable contains two insulated
conductors surrounded by a shield. The cable shown in Fig. 9-17d has a
bare wire which makes contact with the foil shield and is used for the shield
connection. The primary use of two-conductor shielded cable is for signal
measurements with a differential amplifier. In this case, the signal is balanced
between the two conductors and the shield is grounded to reduce electro-
static-noise pickup.

The foil shield has several advantages over braided shielding. It is
much easier to work with when making connections and provides a 100
per cent shield cover, whereas the braided type provides only 70-95 per cent
shield cover. In addition, in many cases the foil shield costs less than the
braided shield.

Connectors

Figure 9-18 shows most of the connectors commonly used with the
cables in Fig. 9-17. The UHF and the BNC connectors are used with coaxial
cables and are the most common types of connectors used on oscilloscopes.
The UHF connector is a screw-type connection, while the BNC connector is
attached to the instrument with a locking haif-twist,

The Microdot connector is also used with a coaxial cable but is more
Specialized in its application, the most common being the connection between
a piezoelectric transducer and a cathode follower. This connection requires
4 special coaxial cable which does not change capacitance when it is mechani-
cally distorted. A change in capacitance would result in a change in signal
level and a change in signal level is no different than unwanted noise; hence,
it is necessary to use special low-noise coaxial cable,
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MICRO DOT

M5 MICROPHOMNE BANANA

Figure 9-18. Connectors used for instrumentation.

The MS- and microphone-type connectors are used with two-conductor
cables with the shield connected to the body of the connector. Both con-
nectors come in various numbers of cable contacts, but the MS type has the
greatest selection. The microphone-type connector has the distinct advantage
of being easier to connect and disconnect. When the MS-type connector is
used to connect two cables, it is almost impossible for the inexperienced
person to decide what part to unscrew to disconnect the cables. This often
causes the wires to be broken off inside the connector. With the microphone
connector, this problem does not exist.

The banana-plug connector can be used where shielding is not important.
Its low cost and ease of assembly make it a popular connector where large-

level signals are involved.

9.5 Vibration Measurements for Field Tests

In general, there are two testing methods for measuring dynamic soil
properties in the field. One method uses a source of steady-state vibration
and the other method uses a single impact as a source of vibration. Theories
given in Chap. 4 provide the basis for interpreting the measurements from
these two tests. The steady-state—vibration test is used for determining the
velocity of Rayleigh waves, from which the shear modulus of the soil can
be calculated. The impact test provides information on the velocity of the
P-wave. Both methods provide information on the variation of soil prop-
erties with depth and can be used to determine the location of boundaries
between layers. Field methods and instrumentation used in performing these
tests will be considered in this section.

After an installation is completed, it is desirable to make measurements
to compare the performance of the design facility with that predicted by

EC, 9.
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d.eSIgn. Measurements are also required for analyzing vibrations of founda-
tion and structural systems before and after corrective work. The results of
the§e measurements may be used to develop refinements for the methods of
design and analysis. Measurements may also assist in evaluating dynamic
loads developed by machines.

Vibration-Measuring Systems

. For most field work, velocity or acceleration transducers are used due to
their small §ize, portability and ruggedness. Displacement measurements can
:)c made using the same transducers with the addition of electronic integra-

ors.

Vibratfon-measurement systems to be used in the field should meet
se\{e.ral basic requirements. The first and most important requirement is the
ability to measure vibrations over as wide a range as possible for both
frequency and amplitude. This allows the person making the measurements
to cope with unexpected vibration characteristics which often occur in real
p.roble_ms. A second requirement is that the system provides for recording the
vibration for later analysis, The recording should permit inspection at the
measurement site so that another recording can be made if the first one is
n_lcomplete. A third requirement is that the system obtain two simultaneous
vibration measurements recorded on a common time base in order to verify
phase_ relationships needed to determine modes of motion or any other
quantity requiring two simultaneous measurements. As a final Fequirernent
the system must be capable of being easily transported by one or two persons.,

. Tw-o general systems meeting the above requirements are used at the
Uplvermty of Michigan Soil Dynamics Laboratory. These are shown in
Flg;. 9-19 and 9-20. The system shown in Fig. 9-19 consists of a dual-beam
oscilloscope and a Polaroid camera. The two velocity transducers shown can
be used to measure vibrations simultaneously at any two locations. Two-
con-ductor shielded cables are used with the differential amplifiers of the
0§0t_lloscope in order to eliminate electrostatic noise from the traces The
distinct advantages of this system are the wide ranges of velocity ampiitude
ar_ld frequency that can be measured and the ability to observe vibrations
without recording them. Typical specifications for the components of this
;){/)i)tgm are given in Table 9-3. The average cost of this system is about $1500-
. The system shown in Fig, 9-20 consists of a dual-channel recorder with
tl\;\f.o velocity tran§d1'1cers. Two~c0nduct0§ shielded cables are also used with

15 S){Stem to eliminate electrostatic noise from the two traces. The pens
for this recorder use a heated stylus that writes on a special wax-coated
Paper by melting the wax. Writing by this method rather than by ink writing
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Figure 9-19, Dual beam oscilloscope and accessories used for vibration
measurements.

is recommended for portable systems as it requires much less maintenance.
There are two advantages of this system over that shown in Fig. 9-19. First,
the operation of the instrument is so simple that a person can learn to operate
it within a very short time. The operation of an oscilloscope, however, re-
quires a certain degree of practice to become proficient. Second, it is possible,
with the system in Fig. 9-20, to obtain continuous recordings over a longer
time interval than obtainable with an oscilloscope. The disadvantages of the
recorder when compared with the oscilloscope are that it is less sensitive and

Figure 9.20. Two-channel record-
er used for vibration measure-
ments.,

Table 9-4. Typical Specifications for the
Vibration-Measuring System

the frequency response is limited to about 100 cycles/sec. However, except in Fig, 9-20

in a few cases, these are not important drawbacks. The cost of a system

like that shown in Fig. 9-20 is about $§2500-3000. Typical specifications are Recorder

listed in Table 9-4. Sensitivity 5 mY/jem-S50 V/om
Chart Speed: 0.1-10 cm/sec

Velocity Transducers

Table 9-3. Typical Specifications for the Vibration Same as in Table 9.3

Measuring System in Fig. 9-19

Oscill ; ;
scitloscope Vibration Measurements of Rigid Foundations

Sensitivity: 0.2 m¥/cm-20 Vicm
Horizontal Sweep: 5 secfcm~-1 microsec/cm Vibration m ioi i

Velocity Transducers ; neasurements of a rigid foundation can reveal not only the
Natural Frequency: 7 eyclesjsec amplitudes of vibration but also the mode of vibration. An understanding
MNominal Sensitivity: 1.0 volt/(in. /sec) of what to measure and where to measure it will save time in the field and
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provide more complete information from which to make an analysis or check
a design.

The first requirement in making a satisfactory vibration measurement
is good coupling between the transducer and the vibrating object. For
measuring low-amplitude vibrations of hard surfaces, the weight of the
transducer is sufficient to hold it in place. For vibration levels greater than
several tenths the acceleration of gravity, hand pressure can be used to hold
the transducer firmly against the vibrating object. [t is also possible to use a
quick-drying glue or even wax squeezed between two flat surfaces for a
quick, temporary connection.

Using two vibration transducers makes it possible to determine the mode
of vibration of a rigid foundation. There are essentially two types of motion
to be measured; translation and rotation. These may occur along or about
any axis of the foundation. In Fig. 9-21, four independent motions are shown
for a rectangular foundation. It is recognized that in general the motion of a
foundation will be a superposition of any number of these, but they are
separated here for ease of illustration.

Vertical motion. For a foundation vibrating in the vertical mode, the
amplitude of motion will be equal at all points and in-phase as shown in Fig.
9-21a. If the output of one transducer is used as a reference signal, the out-
put from the other transducer placed on at least three noncollinear points

]
(a} vertical. (b) Horizontal.
,/
Y \-\%
%/
(c) Rocking. {d} Twisting.

Figure 9-21. Components of motion for a rigid footing.
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may be compared for both amplitude and phase relationships. This will
indicate immediately whether or not the motion is predominantly in the
vertical direction,

Horizontal motion. Horizontal motion as shown in Fig. 9-21b is indi-
cated by in-phase equal horizontal vibration of at least three noncollinear
locations on the foundation. This is the same type measurement as used to
detect vertical motion.

Rocking motion. In Fig. 9-2Ic, the relative vertical amplitudes increase
linearly with respect to the distance from a horizontal line across the founda-
tion. However, thereis a 180° phase difference between vibrations on opposite
sides of the line of zero displacement. Vibrations measured at the ends and at
the center will clearty show this if rocking motion is present,

Twisting motion. For the rectangular foundation shown in Fig. 9-21d,
twisting motion will result in horizontal vibrations in a direction perpendicular
to a radius from the axis of rotation. The amplitude increases in direct
proportion to the distance from the axis of rotation. There is also the 180°
phase shift on opposite sides of the axis of rotation.

Rayleigh-Wave—Velocity Measurements

The procedure for determining dynamic soil properties from the measure-
ments of Rayleigh-wave velocities requires a source of harmonic vibration at
the surface of the soil. The wave length of the resulting surface waves is
determined by measuring the distance between points that are vibrating in
phase with the vibration source. Moduli may then be computed from the
measured wave length and frequency of vibration.

The source of steady-state vibration can be either an electromagnetic
oscillator modified to produce vibrations when it is placed on the surface of
the soil or a rotating-mass mechanical oscillator. The U.S. Army Waterways
Experiment Station has developed equipment for producing steady-state
vibrations and has used it extensively to obtain soil data for dynamics prob-
lems. A small electromagnetic oscillator of about 25-lb-force capacity,
shown in Fig, 9-22, is used for high-frequency vibrations (301000 cycles/sec).
Wave lengths produced in this frequency range are generally less than 20 ft
and hence only provide information to depths of 10 ft or less. Longer wave
ler}gths may be obtained using lower frequencies. These may be gencrated
using a rotating-mass oscillator like the one shown in Fig. 9-23. The greatest
problem at low frequencies is producing enough vibration to make the
Tesulting ground motions greater than the ambient level. This requires larger




S

798  INSTRUMENTS FOR LABORATORY AND FIELD MEASUREMENTS CHAP. 9

Figure 9-23. Rotating mass type oscillator used to
produce low-frequency ground vibrations (U.5.

Figure 9-22.  Electromagnetic oscil-
lator modified to produce ground
vibrations (U.S. Army photograph). Army phatograph).

input forces than are possible with electromagnetic oscillators; the rotating-
mass oscillator is the easiest method of obtaining them at low frequencies.

Onece a source of vibrations is established, the wave lengths are measured
by comparing the phase relationship of vibrations at various radii from the
source with the vibrations of the source. Normally, points that are in phase
as well as points that are [80° out of phase are measured, the latter represent-
ing half-wave-length intervals. A typical set of data is shown in Fig. 4-19
with the wave number plotted as a function of distance from the source for
various values of frequency. This information is used directly in the calcula-
tion of Rayleigh-wave velocity for each wave length.

P-wave-Velocity Measurements

The measurement of P-wave velocity through a soil is done using the
refraction survey, for which a source of impulsive energy is required along with
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Figure 9-24. Electronic timer and accessories wsed for refraction surveys
(U.5. Army photograph).

a method of measuring the time interval between the instant of impact and
the‘ first arrival of a P-wave at a known distance from the source. The source
of impulsive energy may be an explosive charge or a hammer struck against
the ground. If an explosive charge is used, a vibration transducer and a
recording channel are necessary for every point on the ground at which
measurements are to be taken. The hammer-blow method allows the impulse
t(? be repeated; thus, only one vibration transducer is required. Except for
oil-exploration surveys, the hammer-blow method is used most extensively
because of its simplicity.

The measurement of the time interval from impact to first arrival can be
made either with an electronic timer or with an oscilloscope. A portable
system with an electronic timer is shown in Fig. $-24. The timer is started by
a switch that is activated by the impact of the hammer, and the signal from
thg transducer at the time of arrival of the first wave stops the timer. The
gain -of the amplifier can be adjusted so that background noise does not stop
t}.le timer. However a disadvantage is that the instrument does not provide a
Pmture of the wave form. An oscilloscope overcomes this disadvantage, and
is a]sc? very useful when the level of background vibration is high. The
e‘ssentla.tl parts of the system are shown in Fig. 9-25. Measurement of travel
time with an oscilloscope is done by triggering the horizontal sweep with a
signal generated by the impact of the hammer. When this is done, a trace
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Cscilloscope

Figure 9-25. Basic system for a
refraction survey.

may be observed, as shown in Fig. 9-26. The travel time is calculated by
multiplying the sweep rate of the oscilloscope by the distance from the
beginning of the trace to the point of first arrival. By using repeated blows
with the hammer, it is possible to pick out the first arrival even in the presence
of ambient vibrations. A high-persistence or storage oscilloscope has a
distinct advantage for this type of work. By changing slightly the vertical
position of the sweep between consecutive impacts of the hammer, several
traces can be stored and viewed simultaneously to pick off the trace distance
used in the travel-time computation. Using a normal oscilloscope requires
picking off the trace distance as the sweep occurs, and many blows may be
required to obtain an accurate reading. The storage oscilloscope eliminates
this problem since the trace can be studied for as long as necessary.

Figure 9-26. Oscilloscope trace
obtained for measuring the time
of arrival of a P-wave using the
system shown in Fig. 9-25.

9.6 The Resonant-Column Test

For laboratory measurements of dynamic soil properties, the resonant-
column test is the most convenient. This test is based on theoretical solu-
tions given in Chap. 3 which relate the dynamic modulus of the column to its

resonant frequency. Other solutions that take internal damping of the soil
¥
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Figure 9-27. Resonant-column ap-
paratus used at the U.5. Army
Waterways Experiment Station,
Vicksburg, Mississippi (U.S. Army
photograph}).

“.]to account (for example, Hardin, 1965) have shown that the elastic solu-
tions are satisfactory within the range of damping developed for small-strain
amplitudes in the resonant-column test.

The various types of apparatus that have been used in the resonant-
column test all give similar results, However, the designs differ primarily
bepause of the boundary conditions imposed on the soil column. Wilson and
Dletl‘i(fh (1960) described an apparatus in which the soil column is attached
toa vibrating base having a resonant frequency several times that of the
specimen. The boundary conditions for this system closely represent a fixed-
fl_'ee condition. The base is constructed so that both longitudinal and tor-
sional vi-brations may be applied to the specimen. An apparatus based on the
same pr.mciplc and used by the U.S. Army Waterways Experiment Station is
shown in Fig. 9-27, Note that three electromagnetic vibration generators
are used to apply the vibrations to the base of the specimen. The middle
vibrator is used for longitudinal vibrations, while the other two are arranged
for application of torsional vibrations. Accelerometers are attached to the
top of the soil specimen, which is enclosed in a pressure cell. The frequency
of th‘e vibration generators may be adjusted to the maximum response of the
Specimen in order to determine its resonant frequency.

Hardin and Richart (1963) described two types of apparatus for running
th.e resonant-column test, and components of these are shown in Fig. 9-28.
F}gure 9-28a shows the torsional-vibration exciter for a free-free end con-
dition. An identical unit attached to the opposite end of the specimen acted
as a transducer to measure torsional vibrations. Each unit consisted of four
electromagnets wired to produce an oscillating torque on a bar magnet
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Figure 9-28. Driving components for 2 free-free resonant-column apparatus
{from Hardin and Richart, 1963).

attached to the end cap of the specimen. Small rubber pads prevented the
magnet from attaching itself to the end of one of the electromagnets, while
at the same time offering very little torsional restraint to small-amplitude
vibrations, This system produced resonance with maximum amplitudes
occurring at each end of the specimen and a node point in the center. A
similar arrangement was used to apply Jongitudinal oscillations (Fig. 9-28b);
the same permanent magnet is used but the electromagnets are placed and
wired to produce vibrations in the longitudinal direction.

Hall and Richart (1963) described two fixed—free resonant-column
devices, the main components of which are shown in Fig. 9-29. The base of
the specimen was rigidly attached to a frame and the top was left free. For
torsional vibrations the mechanism shown in Fig. 9.29a was used both to
apply a torque and to measure torsional oscillations. Both the driver and
pickup consisted of a coil surrounding a small permanent magnet. The only
physical connection between the top of the specimen
apparatus was the small
boundary conditions offered by this apparatus allowed the measurement of
soil damping to be made by
decay of vibrations. For longi

and the frame of the
wires attached to the coils. The well-defined

turning off the driving coil and recording the
tudinal vibrations the mechanism shown in {
Fig. 9-29b was attached to the top of the specimen. Two coils surrounded by ;
magnetic fields provided the oscillating axial force and the means of measuring §
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Figure 9-29. Driving and measuring components for a fixed-free resonant-
column apparatus (from Haill and Richart, 1963).

the resulting vibrations. This system also made it possible to measure damp-
ing by recording the decay of free vibrations. k P
| For the fixed-free systems described, only small changes in specimen
ength could be tolerated before interference between coils and magnets
OC(_:urrecl. When this happened, the apparatus no longer worked u%lless |
adjustments were made. To overcome this problem, a torsional resonant- |
column apparatus was developed at the University of Michigan; it has
gegt]angu_lar cqlls and magnets in the shape of C-clamps as shown,in Fig.
“:ith;)lylatg‘ tl:.ls ar:langemenF the specimen could change length by 0.5 in.
rnout @ ec.mglt ¢ operation ofj the apparatus. In this apparatus as well
o [ ihe :rs;ortla apparatus described by Hall and Richart (1963}, only one
ron Sf: o apply the torque fo thq free end of the specimen. This
oduced a transverse force to the specimen and caused bending. How-
Z\S;, _the resonant frequencies for bending and torsion are different and the
ping is small enough so that at the torsional resonant frequency of the }

Specimen the amount of bending was insignificant.
orienlzocll' ;}6‘2 system shown in Fig. 9-30, the driving coil and pickup coil were
e to each other. There are two reasons for this. First, when two




S

304 INSTRUMENTS FOR LABORATORY AND FIELD MEASUREMENTS CHAP. 9

Figure 9-30. Rectangular driving
coil and permanent magnet used
to allaw movement in the vertical
direction.

lternating current flowing in one coil
e whose magnitude is dependent on |
the induced voltage §
uced voltage may be reduced
d advantage of using the 90° §

coils are placed next to each other, ana
will induce in the adjacent coil a voltag
the orientation of the coils. By orienting the coils at 9¢°

is reduced to a minimum. Any remaining ind
further using a differential amplifier. The secon
orientation is that only torsional vibrations produced by the driving force are ]
measured, since any bending would move the coil paraltel to the magnetic §
field and produce no signal. The torsional vibrations cause the coil to move

perpendicular to the magnetic
rotational velocity.

Hardin and Music (19
allowed axial loads to be applied to the spe
of the resonant frequency. The previous €
to test soils under the application o
key part to Hardin’s apparatus is the top

cimen during the measurement

-cap system shown in Fig, 9-31.:

field and generate a signal proportional to the |

65) developed a resonant-column device which ]

quipment could be used only
f pressure in an enclosed cell. The §
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Figure 9-31. Top cap system of the
Hardin oscillator,

cTeI;le_ bt(l);totm of the specimen is attached to an ordinary base plate of a triaxial
spe(:imen ?gcap system s ltl.len lowered and connected to the top of the
N Soji : ¢ top cap is initially cou.nterbalanced so that no load is applied
e pttl:lmmcn. Oncg: tl'{e system is set up, stresses can be applied to the
i o : ey Ere applied in an ordinary triaxial test. Figure 9-31 shows the
Thees rov_‘rjnerfx; ers that connect thr;? top cap to the outer edge of the frame,
applicalzionl t; e.)ulblhty in the _torsmnal direction but are stiff axially for
e ;c axial loads. The 1‘nﬂuence of the apparatus is calibrated and
o additiootint l\;vhen calculating the modulus of the soil from test data:

used o Perfonr; (: }:; ff[ resonant-colu‘mn aPparatus there are other components
of ac e test. The first item is an osciltator to provide a source

oltage at frequencies over the range anticipated for the apparatus. Any

L co i i
. “ommercially available low-frequency oscillator is adequate. The output of

the osci i i

ol 0?1:Lator is fed into a power amplifier to supply current to the driving

the osc.ne reso.nant-coplmn device. In some cases, however, the output from
tllator 1s sufficient and the power amplifier is not necessary. To
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determine the resonant frequency of the soil column from the Out'ﬁm ofktl:s:
vibration transducer, an oscilloscope is used. Although a meter wi dW-::ur a8
well as an oscilloscope for determining the resonant frequency, 1th oes ot
indicate the wave form of the output, wh}ch is a chec}( on whether t' s syj o
is operating properly. When afmliilfqnctlon occurs, it usually appears 1
i a distortion of the sine wave. .

Outp/llfltsli%iaglllatshe above instruments are all that are needed for the rm;:il:
test, research purposes often require more accurate frequency. mfgguéggqhavé
Resonant-frequency readings with a precision .of a few parts in 100, e
been measured using a digital counter. Obtaming the point of resonanc;e el
such precision cannot be accomplishe_d. by obslervmg the t_'re?uency s pThe
response because the method is insensitive to slight errors in frequency.

—~

I ARE

OISV AP R
M i a4

Figure 9-32. Driving system for a

i fixed-free resonant-column appa-
\ ratus designed for large strain

v amplitudes.
4
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required precision is obtained by measuring the point at which force—or
torque—and velocity are in phase. This corresponds to a2 90° phase angle
between force and displacement and, since the damping is small, the phase
angle changes rapidly near resonance. If force and velocity signals are viewed
as an x-y plot on an oscilloscope, the point of resonance will produce a dis-
play which is a straight line. If the frequency is slightly off resonance, an
ellipse will appear. This method of measuring resonance has been found
much faster than any other method and is actually used as a routine method,

All of the resonant-column systems described above were designed to
operate at small-strain amplitudes (less than 10-5). Studies of dynamic soil
behavior at relatively high strain levels {greater than 10~Y) were conducted by
Drnevich (1967) using a torsional resonant-column apparatus developed at
the University of Michigan, The driving system used is shown in Fig. 9-32.
It consisted of four driving coils, three of which can be seen in the figure.
Permanent magnets in the shape of C-clamps were used to provide the
magnetic field for each coil. Also shown in the tigure is an LVDT with the
core attached to a spring supported by a frame. This was used to measure
changes in the length of the soil specimen during tests.

Since a solid cylindrical specimen is not subjected to uniform-strain
conditions when twisted, a hollow specimen was used. One of these is shown
in Fig. 6-10. Results of some of the tests using this apparatus are presented
in Chap. 6.

The resonant-column test may be considered by some to be a tool only
for soil dynamics, but this is not true. Insofar as many static soil-mechanics
problems deal with small-elastic-strain conditions, the resonant-column test
can provide information at these strain levels. The test can also be used as a
research tool to study changes in soil properties at small strains, This can be
accomplished without disturbing the specimen and hence provides a non-
destructive testing technique. Because of recent improvements in testing
apparatus and theories for analysis, the resonant-column test is becoming a
common laboratory procedure.
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DESIGN PROCEDURES FOR
DYNAMICALLY LOADED
FOUNDATIONS

10.1 Introduction

A desi.gn procedure must deal with three major
the condition fo
What are the loads or external conditio
What is the analytical procedure to be
Joadings to the failure condition?
ing the uncertainties related to eac

In the design of machine fo
foundations, successive corrections are use
system. A set of physical parameters are assume
determine if the design con :
then some of the physical parameters are vare
With this approach the criteria for fmlure- of th
applied loadings must be carefully determined,
control of the procedure. The an:
of each of the major physical varlgbles
choice can be made during successive COTIEC

The design procedures to be discusse

ns which produce the failure? .(3)
followed for relating the applied

h of foregoing, is the factor of safety.

tions in design.

the dynamic response of foun ‘

308

questions: (1} What is -
r failure of the design function and how is it defined? (2) §

Another factor, introduced after evaluat- f

undations or other dynamically loa(:lcd :
d to arrive at the final physical

d and then analyzed to
ditions are satisfied. 1f they are not satisfied, §
d and the process 18 repeated. ]
¢ design function and the 3
because these establish 8 i
analysis should describe cleatly the inﬂu-ence f
involved, in order that an intelligent i

d in this chapter relate primgrily to
dations subjected to steady-state vibrations of §

sec, 10.2 DESIGN CRITERiA 309

transient loadings. Generally, the supporting soil is considered to be in a
stable condition such that it does not compact or change geometry unless the
design conditions are exceeded. The emphasis of the chapter lies in the
procedure for carrying out the dynamic analyses after the design conditions
have been established.

10.2 Design Criteria

The end product of the design procedure is the determination of a
foundation-soil system which satisfactorily supports equipment or machinery.
The supported unit may be the source of dynamic loads applied to the system
or it may require isolation from external excitation. In each case the criteria
for satisfactory operation of the unit dictate the design requirements,

In Table 10-1 are listed some criteria which may be considered during the
design of the foundation system. This checklist is included only as a guide;
all topics may not be applicable to a particular problem, and additional topics
may be included to cover special installations.

The design criteria most often encountered relate to the dynamic re-
sponse of the foundation. These are expressed in terms of the limiting
amplitude of vibration at a particular frequency or a limiting value of peak
velocity or peak acceleration. Figure 10-1 indicates the order of magnitudes
which may be involved in the criteria for dynamic response. Five curves
limit the zones for different sensitivities of response by persons, ranging
from “not noticeable’ to “*severe.”” These categories are for persons standing
and being subjected to vertical vibrations. The boundary between *not
noticeable™ and “‘barely noticeable™ is defined by a line at a slope of -1 on
the log-log plot which represents a peak velocity of about 0.01 in./sec. The
line dividing the zones of “easily noticeable™ and “troublesome™ represents
a peak velocity of 0.10 in./sec.

The envelope described by the shaded line in Fig. 10-1 as “limit for
machines and machine foundations” indicates a limit for safery and not a
limit for satisfactory operation of machines. Operating limits for machines are
discussed in the next section. The shaded limit for machines in Fig. 10-1 is
composed of two straight lines. Below about 2000 cycles/min this limit
Tepresents a peak velocity of 1.0 in./sec, and above 2000 cycles/min it corre-
sponds to a peak acceleration of (0.5)g.

Two curves are also included in Fig. 10-1 to indicate limiting dynamic
conditions associated with blasting. These magnitudes of motion corre-
Spond to effects applied once, or at most repeated a few times. They defi-
nitely do not apply for steady-state vibrations. The line at the lower limit

f)f the zone “caution to structures” corresponds to a peak velocity of 3
in./sec,
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Table 10-1. Checklist for Design Criteria

L. Functional Considerations of Instatlation
Modes of failure and the design objectives
Causes of failure
Total operational environment
. Initial cost and its relation to item A
Cost of maintenance
F. Cost of replacement
U Design Considerations for Installations in Which the
Equipment Produces Exciting Forces

mgn®E>

A. Static bearing capacity
B. Static settlement
C. Bearing capacity: Static ~ Dynamic loads
D. Settlement: Static -'- Repeated dynamic loads
E. Limiting dynamic conditions
1. Vibration amplitude at operating frequency
2. Velocity
3. Acceleration
F. Possible modes of vibration—coupling effects

G. Fatigue failures
1. Machine componenis
2. Connections
3. Suppeorling structure
H. Environmental demands
1. Physiological effects on persons
2. Psychological effects on persons
3. Sensitive equipment nearby
4. Resonance of structural components
11, Design Considerations for Installation of Sensitive Equipment
A. Limiting displacement, velocity, or acceleration amplitudes
B. Ambient vibrations
C. Possible changes in ambient vibrations
1. by construction
2. by new equipment
D. Isolation of foundations
E. Local isolation of individual machines

It is important to note from Fig. 10-1 that the magnitudes of vibration

involved in these criteria are much smaller than the displacements usually

considered in the designs of foundations for static loads. For example, at 2

frequency of 1000 cycles/min, an amplitude of 0.0001 in. may be noticed by

persons, whereas it takes a motion of 0.01 in. at the same frequency to cause

damage to machinery or machine foundati
magnitude of vibration amplitudes to be considered in this chapter will
nearly always be less than 0.01 in. and will usually be of the order of 0.003

te 0.0001 in.

ons. Therefore, the order of ]
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+ From Reiher and Meister {1931} - (Steady State Vibrations)
* From Rausch (1943) — (Steady State Vibrations)
4 From Crandeli (1949) - (Due to Blasting)
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Figure 10-1. General limits of displacement amplitude for a particular
frequency of vibration (from Richart, 1962).

Steady-State Vibrations of Machinery

Prim"el"l;zn(i;s(;gn t?nl:ena Fela.ted to ?peration of machinery depend on the
D e o n of the entire mstallat_lon and the importance of each machine
e ts unction. Thus, the destgn c.:riteria involve considerations of the

cost, cost of maintenance {which includes the economic significance of
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“down time”), and the cost of replacement of the unit. The foundation
system must be designed to accommodate the level of operation desired by
the owner.

For rotating machinery the information presented by Blake (1964) may
be used to establish the permissible amplitudes of motion at the operating
speed. Figure 10-2 illustrates the categorics of performance A through E
on the amplitude-vs.-frequency diagram. Note that the amplitude of vibra-
tion refers to horizontal metions measured on the bearing (not the shaft)
of the machine. Blake (1964) has also introduced the concept of service
factor (see Table 10-2), which indicates the importance of the particular
machine to the prime function of the plant. The higher numerical values for
the service factor indicate the more critical machines.

With the introduction of the service factor, Fig. 10-2 may be used to
evaluate the performance of a wide variety of machines. Several examples
(from Blake, 1964) are included below to illustrate the use of the service

factor.

A. Measurements on an electric motor show 2 mils {0.002-in. single amplitude)
at 3600 rpm. From Table 10-2 the service factor is 1, and the effective
vibration is 2 x 1 = 2 mils. Enter Fig. 10-2 at 3600 rpm and go up to 2
mils. This point falls in class D. See ““Explanation of Cases” at the bottom
of Fig. 10-2 for recommended action.

B. A stiff-shafted centrifuge shows 7 mils (0.007 in,} at 1000 rpm. The service
factor is 2. Thus, the effective vibration is 7 x 2 = 14 mils. From Fig.
10-2 at 1000 rpm and {4 mils (0.014 in.), the point falls in Class E. See
notes to Fig. 7-2 for recommended action.

Table 10-2. Service Factors*

Single-stage centrifugal pump, electric motor, fan

Typical chemical processing equipment, noncritical 1
Turbine, turbogenerator, centrifugal compressor 1.6
Centrifuge, stiff-shaftt; multistage centrifugal pump 2
Miscellaneous equipment, characteristics unknown 2
Centrifuge, shaft-suspended, on shaft near basket 0.5
0.3

Centrifuge, link-suspended, slung

Effective vibration == measured single amplitude vibration, inches
multiplied by the sersice factor.

Machine tools are excluded. Values are for bolted-down equipment;
when not bolted, multiply the service factor by 0.4 and use the
product as a setvice factor.

Caution: Vibration is measured on the bearing housing, except as
stated.

* From Blake (1964).
+ Horizontal displacement on basket housing.
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.10 —

TR T

0.00I

Horizontal Amplitude of Vibrations ~ Measured on
Bearing. Single Amplitude -Inches

0.000! . .11..\1 L

100 1000 10,000
Freguency, cpm

Explanation of cases

Dolngerous Shut it down now 1o aveid danger.

Failure is near. Correct within two days to avoid breakdown,
Faulty Correct within IO days to save mamienance dollars
Minor faults. Correction wastes dollars -
No faults. Typical new equipmen?.

W ooOom

Fi 10-2. Criceri G . .
JI:}gél;r)e 2. Criteria for vibrations of rotating machinery (after Blake,

C. A link-suspended centrifuge operating at 950 rpm shows 2.5 mils, with the
batsket cmpty.‘ The service factor is 0.3 and the effective vibration is 0.75
gllls ((;00075 in.). The point at 950 rpm and 0.00075 in. in Fig. 7-2 falls in

ass B.

man:fzztipcm?l types_of machines, tl_w organizations concerned with their
operatin re, cllfls_tallatton, and operatloq often develop ratings for different
phere! g conditions. For' example, Parvis and Appendino (1966) give values
I vibrations at the bearings of turboalternator sets operating at 3000 rpm
which have the ratings indicated in Table 10-3. !
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Table 10-3. Range of Values of Vibrations for Turboalternators
Operating at 3000 rpm*

Vibration {Single-Amplitude)
Rating of - - -
Turboalternator On Bearing On Shaft On Turbine
Operation Caps (in.) (in.} Table (in.)
Excellent 0.0002 0.0010 0.00002
Good 0.0004 0.0020 0.00004
Fair 0.0008 0.0040 0.00008
Bad 0.0016 0.0080 0.00016
Dangerous 0.0032 0.0160 0.00032

* After Parvis and Appendino (1966).

Additional information relating to the operation of rotating machinery in
general is noted in Table 10-4 (from Baxter and Bernhard, 1967). These
limits are based on peak-velocity criterta alone and would be represented by
straight lines on plots similar to those of Figs. 10-1 and 10-2. Note the
similarity in values of peak velocity for the lower limit of the range for
machines as “smooth’ (0.010 in./sec in Table 10-4) and the lower limit of the
range “‘barely noticeable to persons” (0.01 in./sec in Fig. 10-1). Similarly,
note the lower limits for “slightly rough™ for machines (0.160 in./sec in
Table 10-4) and “troublesome to persons™ (0.10 in./sec in Fig. 10-1}, and the
danger limits of “very rough” (>0.63 in./sec in Table 10-4) and the Rausch
limit for machines (1.0 in./sec in Fig. 10-1). The *‘dangerous” rating for
turboalternators of 0.0032 in. at 3000 rpm (Table 10-3) also corresponds to
1.0 in./sec.

Baxter and Bernhard (1967) have also given a tentative guide to vibration
tolerances for machine tools—this information is shown in Table 10-5. The

Table 10-4. General Machinery-Vibration-Severity Data*®

Horizontal Peak Velocity Machine Operation
(in.fsec)
v S
= 0.005 Extremely smooth
0.005-0.010 Very smooth
0.010-0.020 Smooth
0.020-0.040 Very good
0,040-0,080 Good
0.080-0.160 Fair
0.160-0.315 Slightly rough
0.315-0.630 Rough
=>0.630 Very rough

* After Baxter and Bernhard (1967).
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Table 10-5. Tentative Guide to Vibration Tolerances
for Machine Tools*

Displacement of Vibrations as 7
Type Machine Read with Pickup on Spindle-
Bearing Housing in the Direction
of Cut

Grinders i

Thread grinder T(’lera“gi)?;ngg (milst) bl

Profile or contour grinder 0.03—0:08 o

Cylindrical grinder 0.03-1.0

Surface grinder (vertical reading) | 0.03-0.2

Gardner or Besly type 0.05-0.2

Centerless 0.04-0.1
Boring machines 0.06—0:1
Lathe 0.2-1.0

* These values came from the experience of

: ] personnel who have been t -
shqotmg machine tools for over ten years. They merely indicate the range inrt\tlt?il:h
satisfuctory parts have been produced and will vary depending on size and finish
tolerance. After Baxter and Bernhard (1967). e
1 mil = 0.001 in.

motions indicated in this table represent only general magnitudes; actual

operating tolerances must depend on the size and finish tolerances of the
parts to be machined.

Vibrations of Structures

A]tho_ugh the topics of vibrations of structures and the allowable limits
for such vibrations are beyond the scope of this book, it is useful to include
a few comments on this subject. This is particularly important in relation to
the problem of preventing damage to structures because of machine opera-
tions or construction operations in the immediate vicinity.

In Fig. 10-1 and in the text describing this figure, it was noted that limits
have_been established (Crandell, 1949) for motions of structures caused by
E[astlpg. Although the lower limit for the zone (in Fig. 10-1) denoted

caut.lon to structures™ represents a peak velocity of 3 in.fsec, it is geﬁeral
Practice to limit the peak velocity to 2 in./sec (see Wiss, 1968). The U.8
Bureau of Mines criteria for structural safety against damage from bIasti.nb;
involve both a limiting peak velocity and a limiting peak acceleration. Below
3_ cyc!es/sec the limit is 2 in./sec peak velocity, and above 3 cycles/sec the
limit is (0.10)g peak acceleration,
: Forlfailu.re conditions governed by limiting values of peak velocity or
acceleration, it is sometimes more convenient to plot this information on a
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Figure 10-3. Response spectra for vibration limits.

diagram similar to Fig. 10-3, which shows slimultane_o.us values of dlSp]}al.CG-
ment, velocity, and acceleration. The limit'mg condxtlpn for .eachbof tﬁf;
three quantities forms an envelope on this d1agram. Pomts-fallmgla.l ov; 1 :V
envelope violate the “failure” conditions,_whllc tho§e points fal 111;1g c:)he
the envelope represent satisfactory condin‘on.s. In flg. 10-3 are sb(lm:,n he
limiting conditions for (1) the “people™ l1m1t§ of barcly_ noticeable }zli_ d
“troublesome to persons,” (2) the Rausch limits f_or I.nachmes and mac Fm

foundations, and (3) the U.S. Bureau of Mines C.rl'tffl'la. Also shown in Fig.
10-3 are two shaded zones which describe the possibility of strucFural‘damage,
“particularly to walls, which may be caused by .ste.ady-statte vibrations (s_czc
*Building Research Station,” 1955). Diagrams similar to Fig. 10-3 are quity
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useful for evaluating the dynamic response of a vibrating system and are often
designated as shock or response-spectra diagrams.

Effects of Vibrations on Persons

When the design of a foundation--soil system involves the consideration
of people in the immediate vicinity, the problem may become complex. The
first point to be established is the tolerable level of vibration for the area where
persons are to be located. The next step is to ascertain if this level is possible
within the ranges of vibration input, distances, and soil conditions anticipated.

In Fig. 10-1 several ranges of human tolerances to vibrations were noted
which had been established experimentally by subjecting people to vertical
vibrations as they stood on a shaking table (see Reiher and Meister, 1931},
Generaily, people are most susceptible to vibrations applied in the direction
of the long axis of the body. The human tolerance limits of Reiher and
Meister have been confirmed by subsequent investigations and are generally
accepted as useful physiological vibration limits for people. For a compre-
hensive discussion of the effect of shock and vibrations on man; see Chap. 44,
by Goldman and von Gierke, in the book edited by Harris and Crede (1961).

The physiclogical vibration limits represent only the first step in evaluat-

ing the effects of vibrations on persons. The next and often more important
consideration is the psychological effect on persons. If the vibration is being
generated *“in his interest,” then a person may accept the physiological
vibration limit. However, if the vibration is generated “‘for someone else’s
benefit,” a vibration which is “barely noticeable” may be effectively trans-
formed into the “troublesome” category. Another example of the psycho-
logical effect occurs when a new foundation-soil system is designed for a
dynamic unit. It is not satisfactory to provide the same level of vibration 1o
persons in the neighborhood of the new unit as had existed from the old
installation. Even though they had accepted the previous vibration levels
and possibly even found them tolerable, people “expect’ the new installation
to perform better. Consequently, the reactions of people in the immediate
vicinity of vibration-generating equipment may introduce a significant factor
when establishing design criteria. It should be possible to make up a table
similar to Table 10-2 (service factors for machinery) to indicate the variations
in sensitivity of persons to vibrations, according to their psychological re-
sponse.

Criteria for Transient Loadings

The report by Steffens (1952) includes a summary of the various
methods proposed for assessment of vibration intensity and their application
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to the study of bailding vibrations. With relation to the effect of vibrations
on people, he concluded that the criteria presented by Reiher and Meister
(1931) for any particular frequency cover reasonably well the values given by
other investigators. The Rether and Meister limits, established by tests, are
shown in Fig. 10-1. Steffens also included tables which describe the ranges of
intensity for the “Modified Mercalli Scale™ of 1931 (abridged), Seiberg’s
“Mercalli-Cancani Scale” (abridged), the “Rossi-Forel Scale,”” and the
*Omori Scale™ (abridged) for earthquakes and attempted to apply these to
industrial vibrations. Generally, he found that the information provided
by the earthquake scales was of little use for the industrial-vibration problem.
He found the Reiher and Meister data useful and suggested that the Zeller
scale, based on a unit called the “Pal.”” might have potential. The Pal is
determined by 10log 2X (see for example Zeller, 1933} in which X is equal to
167 22 2% or 167* (amplitude)? ¢ (frequency)?® of the exciting motion. The
vibrations considered by Zeller ranged from 0 to 80 Pal; a vibration equiva-
lent to 55 Pal causes seasickness and a vibration of 70 Pal causes a painful
sensation to people. Finally, Steffens included a table containing typical
vibration data from traffic, blasting, and machinery. These data are repro-
duced herein as Table 10-6.

The problem of vibrations produced by impact loads on soils or soil-
supported structures is of considerable importance. In Table 10-6 only one
case for pile driving and two cases for blasting are noted ; but these are routine
construction procedures, and many consulting firms, contractors, and in-
surance companies have extensive files relating to vibrations generated by
pile driving and blasting. One criteria for evaluating the influence of impact or
vibratory energy on soils and structures is the “energy ratio” (Crandell,

1949) given by
. Q a 2
ER. — (Acceleratlon') (l;t)( sec ) (10-1)
(Frequency)® \sec?/ \cycles

The energy ratio decreases with distance from the source with the rate of
decay depending on the type of soil and local conditions; but Crandell
indicates a general trend of decrease of energy ratio according to {distance)=2,
From his study Crandell concluded that damage to structures did not occur
when the energy ratio produced by blasting was less than 3. The concept of
the energy ratio has also been selected as a criterion for evaluating the excita-
tion required to compact cohesionless soils (D’Appolonia, 1966). However a
lower limit of energy ratio which does not affect soil structure does not seem
to be well-defined at the present time (1969). Tschebotarioff (1965) has
pointed out at least ene instance for which energy ratios of 0.01 to 0.001
developed by repeated impacts from pile driving have caused serious setile-
ment of soils in the vicinity of the construction. Consequently, the total
influence of vibratory loading on soil structure cannot be evaluated by a simple

)
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!imit indicated by the energy ratio because the number of repetitions is also
important.

Several bits of information on the vibrations resulting from traffic are
noted in Table 10-6. It is important to evaluate the influence of traffic and
other background vibrations when considering the design criteria for a
particular installation. The evaluation should include a range of the po-
tential variables involved, such as the type and frequency of vehicles passing;
the roughness of the road surface, including the effects of ice in cold climates;
the influence of changing soil conditions, including frost and seasonal mois-
ture variations; and the possible effects of the changes in soil geometry, during
construction, on the wave-energy transmission from the traffic source to the
selected site. Several of these factors were investigated by Sutherland(1950}),
who found the effect of irregularities in the road to be the most significant,
The ambient or background vibration level at a particular location is of
patticular significance when foundations for sensitive equipment are to be
designed.

Foundations for Sensitive Equipment

Occasionally it is necessary to design a foundation which is “vibration-
free.” This is impossible, of course, but it indicates an extremely low value
of permissible motion. This requirement is often specified for sensitive
equipment such as electron microscopes, calibration test stands, precision-
machining operations, and radar towers. For installations in which the
equipment itself is not a significant source of vibration, it is necessary to
evaluate the ambient vibrations at the site and then to provide isolation of the
foundation and of the individual pieces of equipment by the methods indi-
cated in Chap. 8. Generally, the design criteria should be established by the
owner or equipment manufacturer because they must be satisfied with the
eventual operation of the equipment. In the case of the electron microscope,
a limiting criteria of 10~%g at the machine has been established by tests (Sell,
1963). In this particular instance, local isolation pads may provide about
one order of magnitude of reduction in g values. Criteria for calibration test
stands and similar facilities are often of the order of 10—*g with some varia-
tions according to the frequency of input vibrations. The interesting part of
the requirement of many of these “vibration-free” facilities is that they are
often located relatively close to a major source of vibrations, which compli-
cates the isolation problem.

_ Radar tracking towers are one type facility which require stable founda-
tions and are at the same time often located near rocket-launching facilities.
For satisfactory operation of the equipment, Pschunder (1966) has indicated
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that the total allowable tilt of the tower is of the order of } of the total point-
ing error. This includes the tilt induced by the flexibility of the tower struc-
ture in addition to the tilt introduced by rocking of the foundation mat.
Maxwell (1965) has noted that typical values for the angular rotation in
tilting of radar towers is often of the order of 0.02 mils (1020 mils = 1
radian, or | mil = 0.05617%); similar limits apply to the torsional motions.
In addition, criteria for radar-tower foundations usually include a range of
resonant frequencies to be avoided because of resonance in the structural or
electrical systems. Each particular type radar tower has its own set of design
criteria which must be satisfied by the foundation designer.

10.3 Dynamic Loads

Before a satisfactory design can be made for a machine foundation, it
is necessary to obtain as much information as possible about the magnitude
and characteristics of the dynamic loads involved. Often this is a relatively
difficult task because manufacturers may not wish to admit that any un-
balanced forces occur from operation of their equipment. However, there
are certain basic types of equipment for which the unbalanced forces can be
calculated, and a brief discussion of some of these are included in the follow-
ing paragraphs. Thereisa definite need for reliable measurements of machine-
induced forces which are transmitted to foundations, and the reader is
encouraged to obtain this kind of information at every opportunity.

Rotating Machinery

Rotating machinery designed to operate at a constant speed for fong
periods of time includes turbines, axial compressors, centrifugal pumps,
turbogenerator sets, and fans. In the case of each it is possible, theoretically,
to balance the moving parts to produce no unbalanced forces during rotation.
However, itf practice, some unbalance always exists. and its magnitude
includes factors introduced by design, manufacture, installation, and main-
tenance. These factors may include an axis of rotation which does not pass
through the center of gravity of a rotating component; an axis of rotation
which does not pass through the principal axis of inertia of a unit, thereby
introducing longitudinal couples; gravitational deflection of the shaft;
misalignment during installation; damage, corrosion, or wear of moving
parts; improper tightening of components; or unbalances introduced by
movement of materials being processed. The cumulative result of the un-
balanced forces must not be great enough to cause vibrations of the machine-
_foundation system which exceed the design criteria. When excessive vibra-
tions do occur, the obvious remedy is to reduce the unbalanced forces.

)
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In certain types of machines, unbalanced forces are developed on pur-
pose. Compaction machinery often contains unbalanced masses which rotate
aF a fixed eccentric radius about either a horizontal or vertical l.axis. The
vibratory rollers for surface compaction have a horizontal axis of rotation
whereas the Vibroflot has a vertical axis. In either case the exciting-forcé
amplitude can be evalvated from

0, = men® (10-2)

in which m, is the total unbalanced mass and e is the eccentric radius to the
center of gravity of the total unbalanced mass. The force transmitted to the
soil by this type compacting machinery depends on the resulting motion of
the contact faces of the machine against the soil. It is the purpose of this type
device to produce inelastic deformations in the soil, and much of the input
energy is absorbed in changing the soil structure.

Another type rotary mechanism which
often develops unbalanced forces is the
solid-waste shredder, rotary rock crusher, J l (
or hammermill, [n this kind of machine a v L Hammer
row of heavy steel weights or “hammers” | AT
are attached to disks or arms which rotate
at relatively high speeds (See Fig. 10-4).
When solid wastes, rocks, or automobile
bodles:. are fed into IhlS machine, the Fizure 10-4. Elements of a hammer-
material is smashed against a slotted anvil  mill.
by the rotating hammers, thereby fracturing
or shredding the material because of the high shearing stresses involved.
During this shredding operation the hammers are worn down. This changes
the total rotating weight and possibly the eccentricity if the hammers wear
unevenly or are not matched during replacement. Because of the need for
frequent replacement of the hammers in this kind of machine, the operating
unbalanced forces depend on the owner’s maintenance procedure.

—Anvil

Multimass Vibrators

~ The centripetal force developed by a single rotating mass Eq. (10-2)
Is a vector force O, which acts outward from the center of rotation (Fig.
10-5a). 'By combining two rotating masses on parallel shafts within the same
H}echa}nlsm, it is possible to produce an oscillating force with a controlled
direction. Asshown in Fig. 10-5b, counterrotating masses can be so arranged
that the horizontal-force components cancel but the vertical components are
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(0) Single Mass. {b} Two Counter-Rotating Masses.
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{c) Vertical. (d) Torsion. {e) Rocking.

Figure 10-5. Forces from rotating mass exciters.

added. If each mass m, has an eccentricity e, the verfical force produced is
0 = Q,sin wt = 2myec?® sin wi (10-3)

In order to improve the flexibility of this type of vibrator, four masses
may be arranged with one at each end of the two parallel shafts. A vertical
oscillating force is developed by the arrangement of weights shown in Fig.
10-5¢, a torsional couple about a vertical axis results from the arrangement
of Fig. 10-5d, and a rocking couple is produced when the masses are located
as in Fig. 10-Se. Vibrators of this design often include mechanisms which
permit different settings of the eccentricities of the weights (see, for example,
Bernhard and Spaeth, 1928; Hertwig, Friih, and Lorenz, 1933; or Fry, 1963).
Note that for the rocking or torsional forces developed from the four-mass
exciter, the torque or moment js given by

T — 4m1e‘§ w? sin ot (10-4)

in which x represents the distance between the weights at the ends of each

shaft.
Usually these multimass vibrators are designed such that adjustments of

the size of the weights or of the throw of the eccentric are fixed before each

)
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test and then maintained constant during the test. For this situation the
exciting force increases as the square of the rotating speed.

Single-Cylinder Engines

Internal-combustion engines, piston-type compressors and pumps, steam
engines, and other machinery involving a crank mechanism produce re-
ciprocating forces. The crank mechanism transfers a reciprocating motion
to a rotary motion, or vice versa. After the weight and center of gravity of
each of the moving parts are determined, the forces resulting from operation
of the machine can be evaluated.

The basic crank mechanism is shown in Fig. 10-6. It consists of a piston
which moves vertically within a guiding cylinder, a crank of length r which
rotates about point @, and a connecting rod of length L attached to the
piston at point p and to the crank at peint C. Thus, the crank pin C follows a
circular path, while the wrist pin p oscillates along a linear path. Points on the
connecting rod between C and p follow elliptical paths.

If the crank is assumed to rotate at a constant angular velocity w, we
may evaluate the acceleration of the piston along its axis of translation. In
Fig. 10-6 the vertical displacement of the piston is z,,, measured from the top
dead-center position at which wf is taken as zero. The total motion of the
piston is
z,= DB + L(1 — cos ¢) (10-5)

2
Ip = (r+£TL) -r{cos “’T+4LL. cos 2wit)

r

ZLSin 2wt )

Ip = rw (sin wt+

2= rwZ(cos w1+—[cos 2wt)

Figure 10-6. Crank mechanism.
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From the geometry of the diagram (Fig. 10-6),

DB = r (1 — cos w) (10-6)
and

sin ¢ = i sin wt (10-7)

With the introduction of expressions obtained from Eqgs. (10-6) and (10-7)
into Eq. (10-5), the displacement becomes

%
z,=r(l— coswt)+L(1 ﬁ\/1 -—}r}sinzwt) (10-8)

Because the ratio r/L is seldom greater than 4, the expression beneath ic
radical in Eq. (10-8) can be replaced by the first two terms of the expansion
into a power series by the binomial theorem, or

[ 2 2
‘1 — = sinfwt & 1 — — sin*wt (10-9)
vITE 2

and after substituting, Eq. (10-8) becomes

2

z, = r{l — cos wt} 4 ;—L sin®et (10-10)

The sin? term in Eq. (10-10) can be represented by its equivalent exgression
for the double angle in order to simplify the differentiation of the displace-
ment expression; thus,

2
z,= (r + :—L) - r(cos wt - ﬁ cos 2wt) (10-11a)

Then the velocity and acceleration are

o
== in wt + — sin 2wt (10-1ib)
Z,=rw (S]n wt + 3L )

and
Z,= rwz(cos wt + rzcos 2wt) (10-11c)

The expressions for velocity and acceleration provide the momentum and
inertia forces for the piston after multiplying by its mass. Note that one term

)
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varies with the same frequency as the rotation; this is called the primary
term. The term which varies at twice the frequency of rotation is called the
secondary term. The importance of the secondary term is established by the
ratio r/L. If the connecting rod is infinitely long the secondary term disappears
and the piston executes harmonic motion. For a connecting rod of finite
length the motion of the piston is periodic but not harmonic. Figure 10-7
illustrates the influence of the secondary term on the piston acceleration for
a crank mechanism having r/I, = }.

With Egs. (10-11) to describe the dynamic characteristics of the piston,
we may now consider the rotating parts of the crank. If there is any unbalance
in the crankshaft, this may be replaced by a mass concentrated at the crank
pin C, which produces the same inertia forces as the original system. The
vertical motion of point C is

ze = r{l — cos wt) (10-12a)
from which the velocity and acceleration are

Z¢r = rew sin o (10-12b)
and
20 = re? cos wt (10-12c¢)

The horizontal components are

Yo = —rsinwt (10-13a)
Fo = —rwcos ot (10-13b)
J¢ = ro®sin ot (10-13¢)

The motions of the piston and the crank have now been established,
leaving the characteristics of the connecting rod to be determined. Because
the wrist pin p follows a linear path, the crank pin C a circular path, and all

Figure 10-7. Piston acceleration
as function of crank angle for

riL = 1.
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points in between an elliptical path, the exact evaluation of the motions and
resulting forces developed by the connecting rod is fairly complicated.
However, it is satisfactory to replace the connecting rod by an equivalent
structure consisting of a mass at the wrist pin and a mass at the crank pin
which produce the same total mass and the same center of gravity. This
procedure is correct for evaluating the inertia forces but is an approximation
when establishing the inertia couple.

After adopting this procedure of dividing the connecting rod into two
masses, one moving with the piston (reciprocating} and one moving with the
crank pin (rotating), the total reciprocating and rotating masses may be
designated by e, and m,, respectively. Then the total vertical-inertia
force F, and total horizontal-inertia force F, are given by

2
F, = (M, + Meo)ro®cos ot + mmcrz w® cos 2wt (10-14)

and
F,= M, sin wf (10-15)

1t should be noted that the vertical force has both a primary component acting
at the frequency of rotation and a secondary component acting at twice that
frequency. The horizontal force has only the primary component.

The torque of the inertia forces can also be evaluated from the arrange-
ment of the masses and the geometry described in the preceding paragraphs.
The torque is about the longitudinal axis O (perpendicular to plane of figure)
in Fig. 10-6 and represents the torque acting on the shaft in the direction of
rotation or the torque on the frame in the opposite direction. Its magnitude

is given by

Ico

M = —m, . sin wt(—r— + cos wt + 3 cos 2w1) (10-16)
2L 2L

By “counterbalancing,” the inertia forces due to the rotating masses can
be reduced or eliminated completely. Usually this is done in the design of
internal-combustion engines or piston-type pumps or cOmpressors. However,
the reciprocating mass still produces unbalance in a simple system corre-
sponding to that shown in Fig. 10-6. Thus, a single-cylinder engine is in-
kerently unbalanced.

The following example illustrates the calculation for the primary and
secondary unbalanced forces for a single-cylinder engine. Typical data for
two single-cylinder engines are given in Table 10-7.

It will be assumed that the rotating mass is balanced. Then Eq. (10-14)

is reduced to
2

,
F, = My ro’ cos of + Myee T w® cos 2mt
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Table 10-7. Data for Single-Cylinder Engines

Bore | Stroke | Crank | Rod |, ‘ Piston | Pin | Rod | gotal | Total
(in.) fin.) r L 7 Weight | Weight | Weight ectp. npine
(in.) (in.) ’ (1b) {lb) b Weight | Weight

) aby | (b

gi 81 4 5 0.267 10.6 2.9 3.0 19.0 2270
3 63 31 10§ | 0.302 i 7.19 1.88 11.18 11.87 2270

For the 53-by-8-in. single-cylinder engine, the amplitude of the primary force
is

2

F 19  4r

386  (60)°

(rpm)? = 0.00216 (rpm)®

and the amplitude of the secondary force is

r

F' = . F' = (0.26T)F' = 0.000576 (rpm)°

Then at an operating speed of 1000 rpm, these force amplitudes amount to

F'= 2160 1b
and
F"= 576 1b

which are significant when compared with the machine weight of 2270 Ib.
Note that for this machine 30.6 per cent of the connecting-rod weight was
considered to act as part of the reciprocating weight,

Multicylinder Machines

‘ In multicylinder engines and compressors it is possible to arrange the
_cylmders in a manner which minimizes the unbalanced forces. Table 10-8
illustrates the forces developed by multicylinder machines for different crank
arrangements and numbers of cylinders. For a particular machine the un-
balanced primary and secondary forces as well as the torques should be
available from the manufacturer because these quantities were required for
the original design of the machine.

It should be noted that Table 10-8 illustrates the unbalanced forces
developed for multicylinder engines having the same bore and stroke for
each cylinder, For this condition the six-cylinder engine can be completely
balanced, Consequently, a V-12 engine made up of two in-line 6’s would also
be balanced. However, if the bore and stroke of the cylinders are not all the
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Tabfe 10-9. OQrder of Magnitude of Forces Developed by One- and

Table 10-8. Unbalanced Forces and Couples for
Two-Cylinder Engines

Different Crank Arrangements

{after Newcomb, 1951) :
Single-Cylinder Engine -Veriical
Forces Couples _
Crank Amrangements Primary Secondary Primary Secondary gﬁgeke - g |52|E n.
\ £ without = r =325in.
Single crank counterwts. None None L =iQ.75in.
{0.5)F" with . Total Wt. =22701b
counterwts. Reciprocating
. F'D without Weight =11.871b
Two cranks at 180° D o 2F counterwts. Nore Operating
in-line cylinders ?Fg with Speed =180C0 rpm
counterwis. Unbalanced Forces
Opposed cylinders 0 o} Nil Nil Primary . =3450 Ib ot 1800 rpm
. (1.41) F* withaut (1,41} 7D without Secondary = 1075 b at 1800 rpm
Two cranks ot 90 counterwts. 0 counterwis. F'n . ‘ A
{07071 F with (0.707) FD without Single- Cylinder Compressor - Vertical
counterwts. counterwts. Bore =145i
Twa cylinders on F without “la.on Primary ~ =9I801b
onecrank V San e (140 £ Nl Nit Stroke =9 in. vert. 4 Secondary =22I0 Ib
Cylinders at 90° counterwts Total WA. =10,2C0 Ib
. 2F without Forces ot Operating Speed . Primar =310
Two cylinders on g opee y b
one crark [[%%] ?Cqmﬁrwts. o None Nif of 450rpm Horiz. Secondary =0
Opposed cylinders counterwis.
Three cranks at 120° o 5 (c%jrﬁéfwes"_‘"h"”' (5.46)FD Horizontal Compressor — 2 Unequal Cylinders
A e - Low Pressure Cyt.: Bore = 23", Stroke = 14", Unbal. Wt.=11301b
High Pressure Cyl.: Bore = 14", Stroke = 14" Unbal Wi=
: ' , W1=89CIb
Four cylinders o o o o Wt. Compressor =22,400 |b ’
Cranks at 180° | J '-: :—1| r-: - (|.4I)F‘Drwithout Unbalanced Forces at 277rpm
counterwis. " .
Cronks at 90° +}e J&HJ__ o o) (0.707 £ D with 40F"D Horiz { Primary =6I901p | Vert 4 Primory = 53001b
counterwis. _ Secondary =73Q1b f Secondary = ¢
Six cylinders m o o o o Unbalanced Moment at 277 rprm
X onz{Primory =22,400 ft b ; Vers 4 Primary  =193001t1b
Secondary = (1,300 ft Ib | Secondary =0
r = crank radius {in} |
L = gonnecting-rod length {in.} ‘Q | i
D = cylinder-center distance (in.) 4

W = recip. wt. of one cylinder (Ib)
£ =10.0000284) r W (rpm)? = Primary

o= £ 1= Socondory shown on Table 10-9 constitute only a part of the loads acting on a particular

foundation. The response of the foundation will depend on the resultant
forces developed from the entire package of machinery and the location of
these forces.

The two-cylinder horizontal compressor described on Table 10-9 illus-
Fratfts the additional problems associated with the motion of two horizontal
in-line cylinders of different bore. Because of the large moving masses in-
volved, the vertical components of the primary force and moment are nearly
as }arge as the horizontal components, Furthermore, forces are developed
which will cause horizontal and vertical translation as well as rocking and

same, then Table 10-8 should not be used, but the unbalanced forces should
- be computed for each cylinder and the results superposed.

Table 10-9 illustrates the order of magnitude of forces which may be
developed by one- and two-cylinder engines or cOmpressors. For the single-
cylinder engines oriented vertically, both the primary and secondary vertical
forces are significant. An engine usually drives some additional machinery,
and a compressor needs something to drive it. Consequently, these forces
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twisting of the foundation for this machine. It is also probable that pitching
and lateral motions would occur because of coupling. Consequently, the
forces developed by this two-cylinder compressor would excite vibrations of
its foundation in all six degrees of freedom.

In general, multicylinder engines have smaller unbalanced forces than do
the one- and two-cylinder engines and compressors. However, in each case
it is necessary to evaluate the influence of the unbalanced forces and couples
on the response of the machine foundation in all six modes of vibration.

Forces from Vibratory Conveyors

Vibratory conveyors are often used to transport masses of solid particles.
Figure 10-8 illustrates the elements of this type machine, which consists
essentially of the conveyor trough, supporting springs, a reaction block, and
a motor—crank-drive mechanism. The springs may be either leaf springs, as
shown, or coil springs. Horizontal movements of particles in the conveyor
trough are developed by oscillation of the trough along a path which produces
a forward and upward acceleration of particles, then a backward and down-
ward acceleration. This causes the particles to move forward in a small
“hop” each oscillation. The sketch in Fig. 10-8 shows leaf springs inclined
at 60° from the horizontal, which forces the conveyor trough to move along
a path inclined at 30° from the horizontal. A crank mechanism provides the
input oscillation at a given amplitude of motion. Usually there is a speed-
reduction system between the motor and crank-drive mechanism to provide
a wide range of operating frequency of oscillation. If the operating frequency
is “tuned” to the resonant frequency of the mass-spring system, then mini-
mum input force is required to maintain the oscillation. The moving mass is
primarily the weight of the conveyor trough but may include a portion of the
transported material.

The foundation block is required to absorb an inclined oscillating force,
indicated as @, in Fig. 10-8. There may also be a pitching moment developed
if the line of action of the resultant force Q, does not coincide with the center
of the resistance developed by the foundation block. In any case, a horizontal

-« Porticle Motion  «——

.y =
;7@"//{ 77

“ Foundation Block ?

7 . N%ior and
Leaf Spring Crank Drive

Figure [0-8. Elements of vibratory conveyor.
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and a vertical force will be transmitted to the supporting soil, and waveenergy
will be propagated from the foundation block outward. Because the horizon-
tal component of the force applied to the soil is predominant, the elastic
waves propagating outward from the foundation will have a greater intensity
along the axis of conveyor vibration. This directional effect should be con-
sidered in the layout of vibrating conveyor systems if there is any vibration-
isolation problem in the vicinity.

As indicated in Fig. 10-8, the oscillating force is inclined at an angle to
the horizontal and has a magnitude

Q, = medn’f? (10-17)

in which m is the total oscillating mass, e is the crank throw or eccentricity,
and f, is the operating frequency of vibration. This force is then broken
down into its horizontal and vertical components in order to estimate the
dynamic motions of the foundation block.

Loads Developed by Intermittent Machine
Operation—Pulse Loads

Many types of machines produce intermittent loads which must be
transmitted through the foundation block to the supporting soil. The opera-
tion of punch presses, forging hammers, drop tests, and stamping machines,
for example, produce impulsive loads which may be considered as single
pulses because the effect of one load dies out before the next load occurs.

In order to evaluate the response of a foundation block to a pulse-type
load, it is necessary to have reliable information about the force-time relation
f)f the pulse. This information is often not readily available, and the reader
1s encouraged to obtain this information experimentally whenever possible.
Two pulse loads will be described to illustrate the needed information and to
provide loads which will be employed later (in Sec. 10.6) in the evaluation of
the d){namic response of footings. The pulse shown in Fig, 10-9b was obtained
experimentally from a load-sensitive column which supported a loading
Platen on a model footing (see Drnevich and Hall, 1966). Figure 10-9a
illustrates the general test setup in which the load was applied by dropping
a 5-1b sandbag a distance of 1 ft onto the loading platen. The shape of the
pl{lse and in particular the rise time were controlled by placing different
thJanesses of foam-rubber sheets on the surface of the loading platen. The
solid curve in Fig. 10-9b represents the experimental load-time pulse for
test Q-2 and the dashed rectangles constitute a step-type approximation to
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Figure 10-9. Impact load on model footing. (2) Test setup showing sandbag
dropping onto loading platen to force mass m to load soil through circular
footing having r, = é in. (b) Load-time pulse measured in load-sensitive
column for test Q-2 (after Droevich and Hall, 1966).

the loading pulse which will be used in the phase-plane solution for the foot-
ing response.

Figure 10-10a shows the elements of a punch press—a machine which
punches shapes from sheet metal by forcing a moving upper die against a
fixed lower die. The upper die moves vertically in guides and is actuated by
an eccentric crank and connecting rods. As the upper die is forced downward
against the metal to be processed, compression loads are built up in the con-
necting rods. These forces are resisted by developing tension in the structural
frame; thus, the loads are contained within the machine. However, when the
upper die punches through the sheet metal, there is a sudden release of this
compressive energy in the connecting rods along with a loss of support for the
weight of the upper die. These two forces accelerate the mass of the upper die
in a downward direction. This results in a tension shock imparted to the
connecting rods as they stop the motion of the die. Because this tension shock
in the connecting rods is developed by inertia loads, it is an external load ont
the machine. The result is a downward force on the crankshaft which then
causes motion of the entire machine and foundation block.

Figure 10-10b shows the tensile forces developed in the connecting rods
of a punch press which has a capacity of 250 tons of compressive force
between the dies. In this case, it is seen that the maximum transient tensile
load in the connecting rods (or downward force on the machine and founda-
tion) was of the order of 40 per cent of the rated capacity of the machine.
This transient-load pulse reached a maximum of about 100,000 Ib, but the
pulse duration was only about 0.010 sec. This loading pulse, the weight
of the machine and its moving parts, and soil data obtained by one of the
methods described in Chap. 6 provide the information needed to design a

foundation which will restrict the motion of the machine to acceptable .

limits.
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Figure 10-10. Impuise developed by punch press operation.
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Random Vibrations

and certain manmade forces have a random pattern
which provides excitation to structures and found.ations. In.order tg es;at:—
lish force or displacement patterns to be appl}ed as c?esd.gn lo.a s, d: x;
necessary to obtain reliable field data from previous excitations consiaere
similar to the proposed design conditions. For example, ground-mgtlg)ln
records from previous carthquakes' are often usc_:d to represefnt proba g
earthquake excitations when analyzing the dynamic response of a propose

structure.

Earthquakes, wind,

10.4 Brief Review of Methods for Analyzing Dynamic
Response of Machine Foundations

DEGEBO

An intensive study of the effect of vibrations on foundation response an;i
upon soil properties was carried out by the I')eutsc?hen Forschl}ngsgesellscba ;
fiir Bodenmechanik (DEGEBO) in Berlin primarily d‘urmg Fhe perio
1928-1936. This group developed a rotating-mass mecham(_:a] osc1llat0r_w1th
four eccentric masses to excite model footings into the vertlca_l and torsional
modes of vibration. The drive mechanism for the f:ccentrlc masses was
arranged as shown in Fig. 10-11, with four shafts drwszn b;y bevel gears—j
instead of four masses on two parallel shafts as shown 1n Fig. 10-5c and d;

inciple is the same.
o tIh: lzl?cniifst major report on their investigations .(DEGEBO. No. 13
Hertwig, Frith, and Lorenz (1933) described the test equipment and 1ncluc}e
an extensive evaluation of the dynamic response of the osc1lla.tgr and footing
plate in vertical vibration. They attempted to fit the test results into the frame-

work of the single-degree-of-freedom mass-spring—dashpot system and fpund
it possible to do so for any particular

test. However, the damping constant,
in particular, was appreciably differ-
ent fordifferent tests. They noted that
the dynamic response was nonlinear
and that progressive settlements de-
1Bevel  yeloped during vibration tests when

/ Gea"S  the oscillator was supported on sand.
The dynamic response was found to

Base
Plate

Weights
oscillator and base plate, on the area

ic
Figure 10-11. DEGEBO Oscillator (top view). of the base plate, and on the dynafm

SEgeentris depend on the total weight of the
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force applied as well as on the characteristics of the soil. At the end of the re-
port is a table which indicates the “characteristic frequency” for a variety of
soils. This table has been reproduced many times in the literature, to the
point that many people believe that soil has a “natural frequency” and
attempt to use this value in design. The table represents information ob-
tained from a particular set of test conditions and should be considered only
as interesting qualitative information.

In subsequent publications (for example, Lorenz, 1934) the effect of
oscillator weight, base-plate area, and exciting force were studied for their
influence on the resonant frequency. It was found that for the same base-
plate area and exciting force, increasing the total weight /owered the reson-
ant frequency. For a constant total weight and exciting force, an increase in
base-plate area raised the resonant frequency; and for a constant weight and
constant base-plate area, an increase in exciting force lowered the resonant
frequency. Hertwig and Lorenz (1935) obtained similar results for both
vertical and torsional tests of footings on sand and on clay.

The change in frequency with a change in exciting force indicated that
the soil response was nonlinear. This is true and it is particularly important
at the magnitude of motions involved in the DEGEBO tests, which often
involved vertical accelerations of the oscillator of more than +1g. Thus, for
many tests the oscillator was acting as a hammer. A discussion of the influence
of range of strain on the effective modulus of elasticity of soils was presented
in Chap. 6; this influence on the design of machine foundations will be
discussed in Sec. 10.7.

Methods Based on the “In-Phase Mass”

From the DEGEBO tests and subsequent analyses there developed the
concept that a mass of soil moved with the footing. This is illustrated by the
zone labeled m, beneath the footing in Fig.

10-12. By working backward from the equation
for the resonant frequency-—

1 [k
m?-ﬂ\/erms

fu (10-18)

—one is able to evaluate m, for each test.
However, it was found that m, varied with the
dead load, exciting force, base-plate area, mode
of vibration, and type of soil on which the
oscillator rested.

In spite of the difficulties in obtaining Figure 10-12. “In-phase mass"
specific values of m,, the mass of scil that of soil.
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supposedly moves with the footing or is “in phase™ with the footing,
the concept has appeared periodically in the literature. Crockett and Ham-
mond (1949) and Rao (1961), for example, have attempted to estimate a
weight of soil within a “bulb of pressure” in order to force Eq. (10-18) to
fit test results. These procedures are principally intuitive; reliable numbers
are difficult to obtain for design purposes. Even if the *“in-phase mass” could
be determined satisfactorily, this information would not lead directly to an
evaluation of the amplitude of vibration needed for design purposes. Con-
sequently, at this stage of development of design procedures for dynamically
loaded foundations, the “in-phase mass” is not a significant factor.

Tschebotarioff s ** Reduced Natural Frequency”

In an attempt to improve the methods for evaluating the resonant
frequency of machine foundations supported by different soils, Tschebotarioff
and Ward (1948) and Tschebotarioff (1953) developed an expression for a
“reduced natural frequency” of the system. Beginning with the DEGEBO
expression (Eq. 10-18) for the resonant frequency of a foundation (including
the effect of an “in-phase mass™"), the spring constant k was replaced by k'4,
where k&’ is the dynamic modulus of subgrade reaction (i.e., Ib/ft®) and A is
the contact area (ft?) of the foundation against the soil. With this substitution
Eq. (10-18) takes the form

1 k'A
fn =

= 10-19
2eNm+ m, ( )

This equation was further rearranged to

oAt j ke L, (10-20)
W 2x 1+ﬂ, \/%
b24)

in which g, is the average vertical contact pressure between the base of the
foundation and the soil, and the remaining terms are lumped together and
called the *reduced natural frequency f,,.”” Then from an evaluation of a
limited number of case histories available at the time (1953), Tschebotatioff
prepared curves which related £, to the base area of the foundation for several
soils. These relations appear as straight lines on the log-log plot of Fig.
10-13a. In order to calculate the resonant frequency for a given size footing
on a particular soil, Fig. 10-13a gives a value of f,,» which then leads to fo by
the use of Eq. (10-20) and of the design value of ¢,. It should be noted that

)
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Figure 10-13. Tschebotarioff’s “Reduced Natural Frequency.”

this _method gives only an estimate of the resonant frequency and tells us

nothm‘g about the amplitude of vibration.

) Flgure 10-13a may be replotted as f,,, vs. A=1/4 to give the diagram shown

i:r‘l‘ Fig. 10-13b, It is of. interest to note that relations similar to those in
12. 10-13b can be predicted from the elastic-half-space theory described in
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Chap. 7. For vertical vibrations the mass ratio b (Eq. 7-3) can be expressed as

bW _ W 4 (10-21)
Pra Yo Ve 2 Ve
™ ¢ m

and the dimensionless frequency a,, (Eq. 7-2) as

I in
Ay = wro\/% = 2nf.r, \/% (10-22a)
and
a2, = 4n¥fir L (10-22b)
G
Then, m\/—
43 4o A 2

ba,, = —G—U of v = G dof = (10-23)

if we substitute 4 == wr% Equation (10-23) represents the reduced natural

frequency:

sy z
—  [gGha}, 1_ _ \/ 10-24
e =" v X a (1024

For any particular b, a,, is fixed. Thus, Eq. (10-24) illustrates that for a
constant value of ¢ we get a linear relation between f,, (= f,z\/.qo) and
AY4. Therefore, the lines in Fig. 10-13b designated as peat, plastic clays,
sands, and sandstones actually represent typical values of shear modulus

for these materials.

Method Based on the Dynamic Subgrade Reaction

One method for estimating the deflection of a loaded structure resti.ng
on soil involves replacing the soil by a set of independent elastic springs wh:c_h
produce an equivalent reactive force to the displac_:ement developed'. This
concept has been designated as the theory of elastic .subgrade reaction. IF
is discussed in the books by Hayashi (1921), Terzaghi (1943), and Hetenyi
(1946}, for example, and a comprehensive discqssion of me:thods for evaluati
ing the coefficients of elastic subgrade reaction was given by Terzaghi
(]955F)i.gure 10-14 illustrates the approximations involved in replacing the s_oil
beneath a rigid foundation by a series of springs. Once the representative

)
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values are chosen for the reaction springs, these Q
values are fixed and there is no further modifica-
tion of their behavior as a consequence of
changing the total weight of the oscillating block
(i.e., change in confining pressure in the soil) or
of the amplitude of vibration (effect of strain),
Furthermore, this elastic subgraderestson a rigid
base, and for the dynamic condition it represents  Figure 10-14. Springs replac-
a closed system. When the system shown in Fig. ing soil support to provide
10-14is set into vertical vibration, it responds as dynamic subgrade reaction.
an elastic undamped system with amplitudes of
motion at resonance which approach infinity. Such a closed system does not
include the damping of energy by radiation as does the elastic-half-space
theory and gives no useful information on the amplitude of motion at fre-
quencies near resonance. This theory gives useful results only for the un-
damped natural frequency of vibration.

As indicated in the previous section, the coefficient of subgrade reaction
is related to a spring constant for a given system by

k=k'A (10-25)

in which the spring constant (Ib/ft) is represented as the product of &’
(Ib/ft* or pressure per unit displacement) multiplied by the foundation-
conlact area (A == fi%). Therefore, if we can obtain test information relating
the applied load to the displacement we have evaluated &, and from Eq. (10-25)
we can obtain k',

Information from plate-bearing tests and field tests on foundations has
been used to establish & for machine foundations. Barkan (1962) has cited
numerous field tests which demonstrate that the spring constant applicable
to dynamic motion is essentially equal to the ratio of increment of load to
increment of deflection (or moment to rotation) during static repeated-
loading tests. The resonant frequency observed during dynamic tests on a
foundation block was compared with the undamped natural frequency com-
puted using just the mass of the foundation block plus machinery and using
the value of k measured during a static repeated-loading test on the same
foundation block. From 15 data points from tests on foundations ranging
from 5-ft? to 161-ft2 base area resting on sand, clay, or loess, he found that
the observed frequency averaged 97 per cent of the computed frequency and
that the extremes ranged from 85 to 121 per cent. Therefore, it was con-
sidered that the procedure was satisfactory for estimating resonant frequencies.

The key to the procedure described by Barkan is the use of repeated
loadings in the static tests. Furthermore, it is important that the magnitudes
of the “dead load” and of the “live load" be similar to those anticipated
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under the actual foundation. Because of the small movements anticipated
(note displacements allowed for prototype foundations given in Fig. 10-1),
the process of obtaining reliable load-deformation data from medel or proto-
type footings is not easy. Special instrumentation is usually required for
these measurements and particular care is needed in carrying out the tests.

After field data are obtained from tests on model footings, the next
problem involves extrapolating this information to prototype dimensions.
The discussion by Terzaghi (1955) and others concerning the choice of a
modulus of subgrade reaction for static loadings applies as well to the
machine-foundation problem. Suggested methods for extrapolating test
information are given by Terzaghi (1955) and are indicated below for vertical
motions.

For cohesive soils: k=K, 1 (10-26a)
2d
2
For cohesionless soils: k, = k;l(zd—;{_—l) (10-26b)

in which

2d — width of a beam, or least dimension of foundation base,

k! = coefficient of vertical subgrade reaction for base of least dimension of
2d (Ib/ft®), and

k. = coefficient of vertical subgrade reaction for base of least dimension of
1 ft (Ib/ft?).

Thus, the test data provide information for establishing the values of k; for
the unit dimensions, then Egs. (10-26a) and (10-26b) are used to adjust the
subgrade coefficient to correspond to the prototype dimensions. This pro-
cedure is reasonable only when both the model footing and the prototype
footing produce equivalent stresses in similar soils.

Barkan (1936, 1962) has utilized the concept of elastic-subgrade reaction
extensively and has indicated spring constants for the various modes of
vibration of rigid foundations in the following form:

For vertical motion:

k, = kA
For horizontal motion:
k,=k,A
For rocking motion:
10-2
k, = kT (10-27)

For torsional motion:
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in which
A = contact area between foundation and soil,

’
I' = second moment of contact area about 2 horizontal axis normal to the
plane of rocking through the centroid, and

o
{" = second moment of the contact area about a vertical axis through the
centroid.

The c.oefﬁments k.. k., k., and kg are coeflicients of subgrade reaction and are
functions of soil type and of size and shape of the foundation. However
these are often assumed to be functions only of soil type. Barkan (19623
provided the data in Table 10-10 for k, and has suggested that the remaining
coefficients can be evaluated as

K, a 0.5k,
ki, ~ 2k, (10-28)
Ko ~ 1.5k

The spring constants computed on the basis of Eq. (10-28) and Table
10-10 could be used for preliminary design when reliable soil information is
not available. However, it is recommended that the procedures outlined in
Secs. 10-6 and 10-7 be used for design purposes.

Table 10-10. Recommended Design Values for Subgrade Coefficient k. *

. Allowable Static
Soil Group Bearing Stress
(ton/ft?)

Coefficient k%
(ton/ft?)

Weak soils (clay and silty clays with sand,
in a plastic state; clayey and silty sands} 1.5 95

Soils of medium strength (clays and silty
clays with sand, close to the plastic
limit; sand) 1.5-3.5 95-155

Strong soils (clay and silty clays with
sand, of hard consistency; gravels and

gravelly sands, loess and loessial soils) 3.5-5 155-310
Rocks 5 310

* After Barkan (1962).

Elastic-Half-Space Theory

_The tepresen.tation of a foundation on soil by a footing resting on a
semi-infinite elastl'c body was discussed extensively in Chap. 7. This elastic-
half-space theory includes the dissipation of energy throughout the half-space
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by “geometrical damping.” This theory permits calculation of finite ampli-
tudes of vibration at the “resonant” frequency. The entire amplitude-
frequency response curve may be obtained as well as the phase angle between
the exciting force and footing motion and the input power required. Because
the elastic-half-space theory is an analytical procedure, certain mathematical
simplifications have been introduced which are not quite realistic. The foot-
ing is assumed to rest on the surface of the haif-space and to have simple geo-
metrical areas of contact, usually circular but occasionaly rectangular or a
long strip. The half-space itself is assumed to consist of an ideal elastic,
homogeneous, isotropic material. However, the analytical solutions serve
as a useful guide for evaluation of the dynamic response of simple footings
undergoing single modes of vibration. They also provide a rational means of
evaluating the spring and damping constants which may then be incorporated
into the lumped-parameter, mass—spring-dashpot vibrating system.

10.5 Lumped-Parameter Vibrating Systems

In a study by Richart and Whitman (1967) it was shown that the
dynamic behavior of actual foundations could be predicted by the elastic-half-
space theory. Furthermore, Lysmer (1965) had shown that vertical vibra-
tions of a rigid circular footing on the elastic half-space could be represented
quite satisfactorily by a mass-spring-dashpot system if the damping constant
and spring constant were chosen correctly. Therefore, it followed that the
lumped-parameter system represented by a mass, spring, and dashpot could
be used to represent the motion of rigid foundations. The lumped-parameter
system treats all the masses, springs, and damping components of the system
as if they were lumped into a single mass, single spring, and single damping
constant for each mode of vibration. A description of the lumped-parameter
system equivalent to the half-space model for each mode of vibration was given
in Chap. 7; Fig. 10-15illustrates typical equivalent lumped systems for founda-
tions subjected to vertical, horizontal, and torsional exciting forces. Note
that in Fig. 10-15 the vertical and torsional excitations produce motion with
a single degree of freedom but that the horizontal excitation produces a
coupled motion involving both rocking and sliding.

For a single-degree-of-freedom system the lumped parameters lead to
an equation of motion of the type

ms + ¢z 4+ kz = Q(1) (2-48)
in which

m = equivalent mass,
¢ = effective damping constant,

k = effective spring constant,
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ACTUAL FOUNDATION EQUIVALENT SYSTEM

_ Rigid Block having
Vertical Equivalent Mass
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Horizontal . .
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Figure 10-15. Typical equivalent lumped systems.

¢ (1) = time-dependent exciting force, and

z,2, = fiisplacement, velocity, and acceleration, respectively, of the mass
in the direction of the chosen coordinate (in this example the vertical
direction was chosen).

Analytical and graphical methods for treating the lumped-parameter systems
were described in Chap. 2, and many books are available which include com-
prehc-nsive discussions of this topic. Consequently, any procedure which
permits a dynamically loaded foundation to be represented by lumped param-
eters simplifies our analysis of the foundation response.

In Chap. 2 it was noted that the exciting force Q(¢) in Eq. (2-48) can
be expressed as (Q, sin w?), in which the force amplitude @, is either a con-
stant ora function of the circular frequency w. When the force amplitude is a
fun'ctlon of the frequency it is evaluated from Eq. (10-2). The expressions
which describe the response of a mass m to either type of exciting force are
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Table 10-}1. Summary of Parameters Required for
Dynamic Analysis

Analysis Factors Required

Approximate estimate for

kand m
resonant frequency

Approximate estimate for ‘ <f, k
motien at frequencies
well away from resonance I >f m

1

Upper limit for motion at
frequencics near resonant Dand k or m
frequency

summarized in Table A-1 in the Appendix for the singlc-degree-.of-freedom
system. Note that the relations in Table A-1 apply to each of the six modes of
vibration, but that the vertical coordinate z was chosen for the ex.ample.
From Table A-1 it can be seen that the lumped parameters influence different
expressions relating to the response of the mass m; these effects are sum-
marized in Table 10-11.

Choice of Mass for Equivalent Lumped Systems

The method recommended in this text for establishing the lumped param-
eters for the equivalent mass—spring-dashpot system is based on the e]ast'lc-
half-space theory. The lumped mass is chosen as the. mass of the foundation
and supported machinery. Then the damping and spring constants are devel-

oped through the theory and have values as indicated in Table A-2 for the |

case of rigid circular footings. . .

The method based upon the concept of an “in-phase mass o'f soil lea'ds
only to an estimate of the natural frequency of the system and gives no in-
formation relating to the amplitude of vibration at resonance. Consequently,

this method is not satisfactory for determining the lumped parameters for a

vibrating system which includes damping.

Choice of Damping for Equivalent Lumped Systems

The dashpots of the lumped system represent the damp.ing .Of the soil
in the foundation—soil system. There are two types of damping in the real

system: one introduced by the loss of energy through propagation of elastic 3
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waves away from the immediate vicinity of the footing, the other associated
with internal energy losses within the soil due to hysteretic and viscous effects.
The equivalent damping corresponding to the elastic-wave propagation has
been designated as *“geometrical damping™ (Chap. 7) or is occasionally called
“radiation damping.” Expressions for the damping ratio D obtained through
the half-space theory and corresponding analogs for rigid circular footings
are summarized in Table A-2. This information is also shown in graphical
form in Fig. 7-19.

The equations and diagrams for geometrical damping developed by
vibrations of a rigid circular footing on the elastic half-space may also be used
to provide estimates for the geometrical damping developed by footings with
rectangular-plan form. This is accomplished by converting the rectangular
base of dimensions 2¢-by-24 into an equivalent circular base having a radius
r,, determined by the following:

For translation: r, = ded (10-29a)
m
3
For rocking: r, :\/mCd (10-29b)
im
2 2
For torsion: r, —\11/@—(2—*—&,) (10-29¢)
w

in which

2c = width of the foundation (along axis of rotation for the case of racking),
and

2d = length of the foundation (in the plane of rotation for rocking).

The internal damping in soils has been discussed in Chap. 6. Table
10-12 summarizes some of the available information relating to internal
damping of soils at the level of stress changes occurring under machine
foundations. (Where the test results are given as damping capacity or log
decrement, they are expressed in terms of an equivalent damping ratio D.)
From Table 10-12 it is evident that a typical value of D is on the order of 0.05
for internal damping in soils. ‘

The lumped damping parameter for any particular foundation—soil
system will include both the effects of geometrical and internal damping.
If we take the value of 0.05 to represent a typical internal-damping ratio,
then by comparing this value with the geometrical damping from Fig. 7-19,
Wwe can estimate the contribution of each. It is evident from this examination
that for vibrations in translatory modes, the geometrical damping overshadows
the internal damping to the point where the latter may be disregarded in
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Table 10-12. Some Typical Values of Internal Damping in Soils

. ivalent
Type Sail Equt;r)a en Reference

Dry sand and gravel 0.03-0.07 Weissmann and Hart (1961)

Dry and saturated
sand 0.01-0.03 Hall and Richart (1963)

Dry sand 0.03 Whitman (1963)

Dry and saturated
sands and gravels 0.05-0.06 Barkan (1962)

Clay 0,02-0.05 Barkan (1962)
Silty sand 0.03-0.10 Stevens (1966)
Dry sand 0.01-0.03 Hardin (1965)

preliminary analyses. On the other hand, for the rotary modes of vibration—
torsion and rocking—the geometrical damping is small and, for rocking in
particular, these two damping terms may be of the same order of magnitude.
In this case, the internal damping is important and should be included.

This comparison of the effectiveness of geometrical damping and internal
damping illustrates the value of the elastic-half-space theory in establishing
values for geometrical damping for motions of simple footings in each of the
modes of vibration, The values of geometrical damping thus obtained should
be considered as a first approximation, however, because the theory treats
footings resting on the surface of the elastic half-space; whereas actual founda-
tions are often partially embedded. Barkan (1962), Pauw (1952), and Fry
(1963) have reported on tests of footings partially embedded as well as on
footings resting on the surface of the soil. In general, partial embedment
reduced the amplitude of motion at the resonant peaks and increased the
value of the resonant frequency. This indicates an increase in the effective
spring constant as well as a probable increase in the effective damping ratio.
However, the effects on amplitude and frequency in the tests depended upon
the mode of vibration and magnitude of the motion. For motions within the
range of design criteria for machinery, it appears that this reduction in
amplitude resulting from partial embedment is on the order of 10 to 25 per
cent. Therefore, the design calculations will err on the conservative side if
the footing is considered to rest on the surface. Further field tests are needed
to establish the influence of partial embedment, particularly for the rocking
mode.

A second major discrepancy between the assumptions made in the
theoretical treatment and real conditions is the assumption that the soil is a
homogeneous, isotropic, elastic body. Often a soil stratum is layered and
may have a hard stratum of soil or rock at a shallow depth below the foot-
ing. This problem was discussed briefly in Sec. 7.9, in which it was noted that
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the amplitudes of vibration at resonance were increased by the presence of
the underlying rigid layer. This indicates that radiation of energy from the
footi'ng was impeded by the presence of the rigid layer and that part of this
elastic-wave energy was reflected back to the footing. Further studies should
be directed toward evaluations of the geometrical damping related to vibra-
tions of footings supported by layered media as well as of footings supported
by soils which vary in stiffness with depth or confining pressure.

Choice of Spring Constant for Equivalent Lumped Systems

The spring constant k is the most critical factor in the lumped-parameter
analysis. It governs the static displacement of the foundation which would be
developed by application of a static force equal to the dynamic force Q,;
and this static displacement is multiplied by a magnification facter M to
establish the maximum amplitude of dynamic motion. The magnification
factor (Eq. 2-53) is influenced by k through its contribution to the critical-
damping coefficient e, (Eq. 2-31), and thus to the damping ratio D (Eq.
2-32). Finally, k is the significant unknown in establishing the resonant
frequency (Eqs. 2-17, 2-35, or 2-60). Methods for establishing & include static
field tests of prototype foundations, static or dynamic field tests of model
foundations, or theoretical methods,

Tests on prototype foundations. Tests on the prototype foundations are,
of course, preferable if the tests are carefully conducted to include ranges of
load and deformations corresponding to acceptable operating conditions.
Pile-loading tests and tests of foundations supported by pile groups have
often been conducted, but usually these have been for the purpose of evaluat-
ing the load-carrying capacity rather than the spring constant. The same
type of test can provide useful information about the & required for dynamic
analysisifrepeated staticloadings or vibratory loadingsare applied andrealistic
ratios of steady load to alternating load are maintained. Tests of prototypes
are recommended if several foundations of similar characteristics are to be
built at one construction site. However, if only one structure is planned, the
test on the prototype may indicate either a satisfactory or unsatisfactory
performance. An unsatisfactory performance may require costly repairs
that could have been minimized by a more careful design in the first place.

Tests on model footings. Static or dynamic tests of model footings are
useful for establishing relations between the applied loads and response of
these footings for particular subsoil conditions. A comprehensive program of
carefully controlled model tests, exemplified by the vibration tests reported
by Fry (1963), provides not only information about the response of the
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individual footings but also permits evaluation of the best methods for
extrapolating this information for use in the design of prototype foundations.
It is the extrapolation procedure which governs the value of model-footing

tests for design purposes.

Formulas for spring constants. The spring constant represents a linear
relation between applied load and displacement of the foundation which
implies a linear stress—strain relation for the soil. Therefore, it follows that
theory of elasticity can provide useful formulas for the spring constants for
footings of simple shapes. Tables 10-13 and 10-14 include spring constants
obtained through the theory of elasticity for circular and rectangutar footings
resting on the surface of the elastic half-space. These expressions have been
obtained for rigid footings except for the case of horizontal motion, for which
the spring constant was obtained by assuming a uniform distribution of
shearing stress on the contact area and computing the average horizontal
displacement of this area. These formulas apply for sitvations corresponding
to rigid block or mat foundations with shallow embedment.

Table 10-13. Spring Constants for Rigid Circular Footing Resting on
Elastic Half-Space

Maotion Spring Constant Reference
Vertical ko — 46r, Timoshenko and Goodier (1951)
R Y
Horizontal | _ 32(1 — v)Gr, | Bycroft (1956)
B 7 — 8y
Rocking 8Gr? Borowicka (1943}
ST
— ¥
Torsion ko = 22Gr? Reissner and Sagoci (1944}
E
(Nare. G = EU—M)

Table 10-14. Spring Constants for Rigid Rectangular Footing
Resting on Elastic Half-Space

Motion Spring Constant Reference

Vertical ky = I B.Vacd Barkan (1962)
— 7
Herizontal k. = 41 + »Gp,Ved | Barkan (1962)
. G Gorbunov-Possadov
= B Bed®
Rocking ko T vﬂ"’ ¢ (1961)

(Note: values for 8, 8., and B, are given in Fig. 10-16 for various values of dfc)
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Th‘? effect of embedment is to increase the soil resistance to motion of th
.foundatlon; thus, the effective spring constant is increased. Figure 10-1;
illustrates the change in vertical spring constants for circular footings as th
depth of embedment increases. Curve a represents a rigid footing whi ]?1
adl-leres to the soil along the vertical surface, thereby developing skin-gfrictign
resistance to vertical motion of the block as well as developing resistance b
pressure on the base. Curve b corresponds approximately to the situation );'
an embedded foundation which is isolated from the soil along the verticol
surfaces. Itis included to point out the increase in spring constant develo ;1
only by base pressure applied at different depths. The spring constants cofre-
spon.dmg to curve b were obtained from the average settlement produced b
a umformly distributed load applied at the different depths of embedmenty
Byicomparmg the spring constants for curve a (with side adhesion) and curvel;
(without side adhesion), it is possible to separate the effects of end bearin
:}1(11d skin friction. The information shown in Fig. 10-17 was prepared b}%
. :rl:i:]atnm(;t?l(;%). from a solution of the elasticity problem by the finite-

The depth of embedment should produce even more significant effects
;)_In the spang ;:lonstants for rocking and sliding motions of the foundation

owever, the end of the 1960s i i ‘
However kn)(;) the end of the 19 » satisfactory solutions for these problems

Angther effect which provides a stiffening to the spring constant of the
_foundapon is the presence of a rigid boundary beneath an elastic layer. That
is, a thin elastic layer supported by a rigid base permits a smaller displace-
ment of a footing for a given load than does the elastic half-space. This was

3
LA | T T [ T T71] T T ,|,]||,|_5

d/c

Figure 10-16. Coefficients § B and f i
v P or rectangular footin
Whitman and Richart, 1967). o ﬁw g e (after
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Figure 10-17. Effect of depth of
embedment on the spring con-
stant for vertically loaded circular
footings (from Kaldjian, 1969).

1 | 1 i i I ] 1
0 04 0.8 1.2 1.6 2.0 2.4 2.8 32 386

Depth to Rodius Ratie, H/rg

illustrated by Fig. 7-22, in which the increase in k (for vertical loading) was
shown to be significant as the value of Hir, (where H is the thickness of the
elastic layer) decreased below about 2.

Flastic constants for soils. In the preceding section, which discussed
formulas for spring constants, it was indicated that these were derived from
solutions by the theory of elasticity. It should be emphasized that the elastic
medium was assumed to be isotropic and homogeneous; therefore, only two
elastic constants are required in the solution. Throughout this book the
elastic constants chosen have been the modulus of elasticity in shear, G, and
Poisson’s ratio ». Consequently, in order to evaluate spring coastants for
foundations from the formulas, we need reliable values for G and » for the
soil beneath the proposed foundation.

It is possible to compute Poisson’s ratio for soils from measured values
of the compression-wave and shear-wave velocities through the soil (see
Chap. 3). Mowever, these computations involve small differences of rather
large numbers, and significant errors are possible. Generally, it has been
found that Poisson’s ratio varies from about 0.25 to 0.35 for cohesionless
soils and from about 0.35 to 0.45 for cohesive soils which are capable of
supporting block-type foundations. Consequently, for design purposes little
error is introduced if Poisson’s ratio is assumed as 1 for cohesionless soils

and as 0.40 for cohesive soils.

sec. 10.6 VERTICAL VIBRATIONS OF FOUNDATIONS 353

Values of the shear modulus G may be evaluated in the field or from
samples taken to the laboratory, Static plate—bearing tests in the field can
establish an experimental value of the spring constant &, from which the shear
modulus can be caiculated {Table [0-13). /n-situ steady-state-vibration tests
may also be used to establish values of G at the construction site (see Sec
4.3). In the laboratory the resonant-column test (see Sec. 9.6} is now e;
standard method for determining the effective G of soil samples for design
purposes as well as being a research tool. Consequently, several methods are
available for obtaining useful values of & by testing the actual soil which will
support the proposed foundation. In the event the design study represents
on_]y a preliminary estimate or a feasibility study, reasonabie values of G for
50{15 can be estimated if we have some information on the veid ratio of the
soil and of the probable confining pressure &,. Figure 6-8 illustrates the
depenc'ience of the shear-wave velocity of quartz sand on the void ratio and
conﬁpmg pressure. The shear modulus can be obtained from the shear-wave
velocity given in Fig. 6-8 and the relation

G = prg (6-17)

For roupci_-grained sands (e << 0.80) the shear modulus can be estimated from
the empirical equation

_ 2630(2.17 — e)*
1+ e

G (5,)"° (6-19)

and, for angular-grained materials (¢ > 0.6), from

G — 1230(2.97 — ¢)*

1+ e ()" (6-21)

in wh.ich.both G and &, are expressed in Ibfin.%.. Hardin and Black (1968)
have indicated that Eq. (6-21) is also a reasonable approximation for the
shear modulus of normally consolidated clays with low surface activity.

10.6 Analysis and Design for Vertical
Vibrations of Foundations

In many cases machines which produce vertical forces can be located
c?ntra}ly on foundation blocks or mats with the result that only vertical
vibrations of the machine-foundation system are important. This section

includes examples of analyses of such systems based on both the elastic-half-

space theory (Chap. 7) and on the lumped-parameter analog.
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Steady-State Vibrations of Model Footings

It is useful to begin this section with a comparison of the vibration re-
sponse estimated by theory and that measured in carefully controlled field
tests on model footings. Fry (1963) has reported on tests conducted on model
footings from about 5-ft to 16-ft diameter coqst}'u?teq at the US A'rmy
Waterways Experiment Station in Vicksburg, Mississippl. and at Egh.n Field,
Florida. The basic dimensions and weights of the footings are given in Table
10-15. All of these circular footings were constructed on the surface of t}le
soil, except for base 5 at the Eglin Field site, which was erpbedded 25 in.
The soil at the WES site was a silty clay (CL), for which typical parameters
needed for dynamic analysis are

y = 117 Ib/ft
vg = 460 ft/sec
G = 5340 Ib/in.?
y = 0.35

The water table was approximately 16 ft from the surface, A_t the Eglin .F_ield
site the soil was a nonplastic uniform fine sand (SP) with uniform conditions
indicated from borings to 25 ft below the surface as well as reasonably uni-
form conditions indicated throughout the test area. The water tab_le was cl'eep
and was not encountered in any of the boreholes. For this material a typical
void ratio was e = 0.70. . ‘
The footings were excited by a rotating-mass vibrator of ‘the type 1]1us-.
trated in Fig. 10-5c. The four eccentric masses each had a weight of -339 Ib;
so the total eccentric weight was 13561b. The total static weight 9[‘ the vibrator
was 5600 1b. Four eccentric settings were used in the testing program:
0.105 in., 0.209 in., 0.314in., and 0.418 in. Values of force output from

Table 10-15. Data on WES Test Bases

. Wt. of Base + Vibrator—‘
Base No. ¥, (in.) Thickness (in.) (1b)

1—1st pour 31 14.3 12,820
1—2nd pour 31 29.7 25,640
1—3rd pour 31 36.0 30,970
2 43.81 20.5 18,465

3 54.0 24.0 24,315

4 62.0 245 - 30,970

5 43.81 25.0 18,465

16 96.0 24.0 64,961
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Table 10-16. Vertical Forces from Four-Mass WES Oscillator

Rotating Frequency is 20 25 30
(cycles/sec)
Q. (Ib) for e = 0.105 in, 3,285 5,840 9,125 13,140
0. (1b) for: = (.209 in. 6,540 11,620 18,160 26,160
0, (Ib) for e = 0.314 in. 9.825 17,460 27,290 39,300
Q, (Ib) for e = 0.418 in, 13,020 23,140 l 36,160 52,070

this vibrator can be calculated from Eq. (10-2), and several values are indi-
cated in Table 10-16 to establish the order of magnitude of forces involved.

By comparing the static weights of the footings in Table 10-15 with the
dynamic forces available from the vibrator at the higher speeds from Table
10-16, it is evident that the vibrator was capable of lifting some of the lighter
footings free of the ground during vibration. Consequently, for some of the
tests, additional weights were rigidly attached to the footing.

For the purpose of comparing theoretical and test results, three tests at
the WES site and three tests at the Eglin Field site were chosen. In each of
these tests the vibrator had an eccentricity setting of 0.105 in., which produced
the smallest set of exciting forces and the lowest accelerations in each pattern
of tests. Figure 10-18 (after Fry, 1963) illustrates the effect on the amplitude-
frequency response curve developed by changing the eccentric settings of the
rotating weights for particular test conditions. Note that for WES test
3-6 in Fig. 10-18 a motion of about 0,0037 in. was developed at 20 cycles/sec.
Dashed curves are shown in Fig. 10-18 which correspond to peak accelera-
tions of (0.1)g and (0.5)g. The response curves shown in Fig. 10-18 could also
have been plotted in Fig. 10-3, which would permit an easier evaluation of the
peak velocities and accelerations, From Fig. 10-18 it can be noted that the
peak accelerations for tests 3-7, 3-8, and 3-9 were greater than (0.5)g.
The largest value of peak acceleration for test 3-9 was (0.7)g.

The test results for the model footings can be evaluated better when they
are presented on dimensionless plots. For example, we may consider three
tests at the WES site, tests 2-18, 3-6, and 4-5, for which the mass ratios were
b = 3.12, b = 2.83, and b = 3.1, respectively. Points representing test data
are shown in Fig. 10-19a for comparison with the theoretical curves forb = 3
and » = } (or B, = (.5). Theoretical curves for the rigid-base pressure (R)
and the uniform-pressure (U) distribution (from Sung, 1953) are shown.
From Fig. 10-19a it is evident that the agreement between the test results and
the R-curve is reasonably good with respect to amplitude of vibration, but
that the theoretical curve indicates a higher frequency at maximum amplitude



356 DESIGN PROCEDURES FOR DYNAMICALLY LOADED FOUNDATIONS cHar, 10

0.020

0018

Cole

0.014

Displacement, in.

fo) o o
o

8 =4 =
@ = Iy

00086

0.004

6.c02

0 a 8 2 16 20 24 28 32
Frequency, Cps

Legend.
Symbol.  Run No. ECC Sefting—in.
. 6 0. 105
4 7 0.209
o 8 0.314
v 9 0.418

Note :6655 Ib ballast, 30,970 b

total weight including wibrator
Fig. 10-18. Typica! amplitude-frequency response curves for tests on model
footings {after Fry, [963).

than that shown by test. For these tests, in which the footings were sup-
ported by a cohesive soil, it appears that the rigid-base condition is approxi-

mated.
Tests 2-2, 5-1, and 3-5 run at the Eglin Field site provided the dimen-

sionless test data shown in Fig. 10-19b. For these tests the b-values were 4.5,
4.5, and 3.61, respectively; so they were compared with the theoretical vajues

for b = 4.
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Figure 10-19. Comparison of test results with theory for vertical oscillation
(a) Data from WES test site. (b) Data from Eglin Field test site,

In order to interpret the test frequency in terms of the dimensionless
frequency

27
4, = 2% | (7-2)

tg
1L1s necessary to obtain a representative value of vg. At the Eglin Field site
the footings were poured on the sand surface (except for base 5, which was
embedded). Thus, the sand beneath the footing was loaded by the weight of
the footing and ballast as well as by its own weight. For an approximation to
the pressure developed below the periphery of the footing, the theoretical
solupon obtained by Prange (1965) for a rigid circular footing on the iso-
tropic, homogeneous, elastic half-space was used. These relations are given
below for v = L. It is obvious that a bed of sand develops a different
;z; 0.1 02 | 04

1.5 2.0

0.6 0.8 ' 1.0

w0 ’

Qo] 0642 | 0440 | 0293 | 0.222 | 0178 | 0.147 | 0.09 | 0.067 | 0.037
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distribution of pressure under loading than does the ideal half-space, and
further information is needed on the effects of repeated loadings on the
distribution of contact pressure at the footing base, as well as information on
the vertical and horizontal pressures within the soil mass.

Figure 10-20a shows a rigid circular footing resting on the surface of a
soil mass. The radius and weight of the footing correspond to that for base
3 used in the Eglin Field tests. The average contact pressure was ¢ = 604.6
1bjft?; Fig. 10-20b shows how the average confining pressure &,, caused by
this surface pressure decreases with depth below the periphery of the footing
according to Prange’s solution.

The unit weight of the sand at the Eglin Field site was approximately
97 Ib/ft? and it was assumed that Poisson’s ratio was  for this material. Then
the vertical and horizontal stresses at a depth in the soil mass were

Q=38,4601b

y=97Ib/f3 [
=1
vTa | ;\: =45
|
|
(a) ¥z

G'Dq.|b/f12 Eosslb/ffa

To Totals 1D/t 2

g, = VZ (10-34a)
and

z, ft

o, =g, = ——0q, == (10-34b)
1 -9 3

s—L oy
+ (C) = {a}

These stresses established &,, as (1.67/3)yz.

The total average confining pressure at any depth below the perimeter of
the footing is the sum of d,, and 3,,, as shown by Fig. 10-20d. A minimum
value of &, .., usually occurs at a depth of z/r, < 1. This minimum value of
&, 0, and the void ratio of the sand (e = 0.7 at the Eglin Field site) were
introduced into the equation for velocity of the shear wave

Figtfre 10-20. Distribution of average confining pressure, 4, beneath
periphery_of rigid footing. (a) Vertical load on footing. (b) 6,, from footing
load. (¢) &, from unit weight of soil. (d) Total &, = &,, + G,

_ The entire test program of vertical vibrations of the model footings
mclufled 94 tests. Figure 10-21 illustrates the relations between the maximum
amplitudes of motion as computed from the half-space theory and those
measured .in the WES tests. The abscissa of Fig. 10-21 represents the maxi-
mum vertical acceleration of the footing as compared with the acceleration

by = [170 — (78.2)el(5,)"** (6-18

By this procedure, values of vg of 460, 470, and 500 ft/sec were determined for
the soil directly beneath Eglin Field bases 2, 3, and 5, respectively.

i - T
Note that errors in the calculation of vg (or G) have an important in- 20 ° ‘é’gE,iSn S,.-'E;d Site
fluence on the value of @, for maximum amplitude of vibration. Conversely, ' R
o
- o [

if the theoretical curves are to be used for predicting the frequency for design
or analysis, this also depends on the value of vg. In Fig. 10-19b the peak
amplitudes are at a lower value of a, than indicated by theory, and the shapes

A mlcomp.)
Azm(meas.)
o
L ]
[
L J
L ]
L
L
o
* o
o g &
oo
5 v
Q
.
’

of the response curves indicate less damping than might be indicated from 8 o % é‘;}.:‘-" )

theory. Part of this difference could be assigned to a probable change in 0.5(— o o b |

pressure distribution beneath the footing from the assumed rigid-base (R ¢ |

condition to one more nearly uniform. The theoretical curve for the uniform X . ‘

(U) pressure distribution for b = 4 and » = } is shown in Fig. 10-19b for 033 .0 20

comparison. The amplitudes of oscillation for the test footings agree fairly Agm w? |‘
g

well with those predicted from the uniform pressure distribution condition.
Figure 10-2]. Vertical vibration of model footings, summary of 94 tests.
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of gravity g. From Fig. 10-21 it is seen that the theoretical and test values for
tests at the WES site agree closely for A,,w%g less than about %. As the
acceleration ratio increases, these test and theoretical values differ more. The
test results from the Eglin Field site show considerably more scatter through-
out the entire range of acceleration ratios. However, the overall agreement
between test and theory is within a factor of about 2, which is considered good
for dynamic problems.

One item which should be noted with regard to the tests at the Eglin
Field site is the matter of tofal settlement of the footings over the course of the
vibration tests. For each pattern of tests, the response curves were obtained
by increasing the eccentricity of the rotating mass successively through the
four settings; then the dead load was changed and the next loading pattern
was applied. By this procedure the soil beneath the footing had been sub-
jected to a complex load-history by the time the second loading pattern was
applied. Converse (1953) has shown that vibrating footings on sand tend to
develop a ““hard zone” beneath the center of the footings after sustained high-
amplitude vibrations; so it would be anticipated that the pressure distribu-
tion beneath the footing would change as the loading history of the sand
changed. Finally, settlement records were kept and the average total settle-
ments at the end of the test program were about 4§ in. for base 2, 1% in. for
base 3, & in. for base 4, and 3 in. for base 5. Consequently, these footings
produced local failures and compaction of the supporting soil during some
parts of the test program. For an actual machine foundation, a proper

design would prevent this progressive settlement, and it could be anticipated - ‘

that the soil would behave more nearly like the elastic haif-space.

Vertical Single-Cylinder Compressor

This type of machine develops vertical periodic forces which can produce ]

a vertical motion of the machine and its foundation block. This motion

must be restricted to acceptable values, as noted in Sec. 10.2, to provide for !

satisfactory operation of the machine. The following discussion treats a

method for establishing the foundation-block size for a vertical single- |

cylinder compressor having the following characteristics:

Bore = 14,5 in.
Stroke = 9 in,
Operating frequency = 450  rpm

Unbalanced forces

Vertical: primary = 9,180 Ib

sec. 10.
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secondary = 2,220 b
Herizontal: primary = 310 b
secondary = 0 Ib

Weight of compressor

+ motor = 10,900 b

Thf: ve.rtical primary and secondary forces produce a periodic vertical force
as 1ndlcat'ed in Fig. 10-22 by the heavy solid curve. However, for purposes
Qf analysis, the reduced lower portion of the real-forceﬂtime,curve w}i)ll be
ignored and the excitation will be considered to be developed by a sinusoidal
force hgving an amplitude of @, = 11,400 1b at 450 rpm.

_ This compressor is to be supported by a foundation block restin
directly upon the soil. From resonant-column tests of samples of the siItg
clay at the proposed site, the shear-wave velocity vy was found to be 80%
fr‘ltl/g(eic.I Th(i;s va}zeO%t(') r;i anc: the unit weight y of 100 Ib/ft* establish the shear

ulus ¢ as 14, in.2, i ’ i
e aleslatians / Poisson’s ratio » was chosen as  for the follow-
. -The ﬁrst_ step in the design procedure is to establish the acceptable
11m1'ts of motion (criterion of “failure’). For this example it is assumed that
vertical motions equal to the horizontal motions noted as “case B in Fi
10-2 are acceptable. At 450 rpm the upper limit of case B corresponds tog;

Vertical Force,I000 Ib
o

Figure 10-22. Unbalanced vertical [ N R S S N T S S B

force from vertical single-cylinder o 180° 360°

compressor, Crank- Angle
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single amplitude of 0.0021 in. Thus, the design criterion for the foundation--
soil system requires the maximum amplitude of vertical motion to be less
than 0.0021 in.

The first approximation for the foundation-plan dimensions may be
obtained from the base area required to limit the static displacement, caused
by @, = 11,400 1b, to a value of 0.002 in. The equivalent rigid circular foot-
ing will be used in both the static and dynamic analysis, although a rec-
tangular foundation plan is needed. The static deflection

[

-(;E )
z, = A—92 5602 in — -3 15400
4Gr 4 x 14,000 % r,

o0

leads to a required radius r, = 67.9 in. = 5.66 ft. For convenience in further
calculations, assume r, = 6 ft, which determines a base area of 113 ft2.
With this assumed value of r,, the corrected static displacement is now z, =

0.0019 in.
The rigid circular footing of r, = 6 ft will be used in further calculations

to represent a rectangular foundation block 16t long and 7-ft wide. For a
block 3-ft thick the total weight is

W,=16 x 7 x 3 x 150 = 50,400 Ib

The total oscillating weight W, which includes the block and machinery
supported upon it, is

W = 50,400 4 10,900 = 61,300 1b

Then for the equivalent circular footing,

==(1—11)E:%><61,300 0473
4 yr® 4% 100(6)°

B

From Fig. 7-19 the damping ratio D is 0.60 for this value of B,. The natural
frequency f,, of the system depends upon the oscillating mass and the spring
constant

k- 14Gro :% X 4 x 14,000 X 72 = 6.048 x 10° Ibfin.
— ¥
Then .
1
f = L\/&_ L\/6.048 X 10° X 386 31 1 o ctecisec
2aNm 27w 61,300
or

f. = 1864 cycles/min
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Thus, the operating frequency of 450 rpm corresponds to (0.24)f,. From
Fig. A-1, "

A
M= Zx_q1m at ! = 0.24 for D = 0.6

8 n

which permits calculation of tI}‘e maéimum amplitude of vertical motion
r #e
A, = 1.02 x 2"=0.00194 in.

This value of motion satisfies the design criterion,

For this example the 16-by-7-by-3-ft concrete block and the soil with
G = 14,000 Ibfin.? form a satisfactory foundation for vertical vibration,
Howrever, it has been assumed in the analysis that the input force, center of
gravity of the oscillating mass, and the center of pressure of the soil on the
base of the foundation block all lie along the same vertical line. In assembling
the.rr-lachinery on the foundation block, care should be taken to align these
exciting and resisting forces as closely as possible to reduce coupling between
the vertical and rocking or pitching modes of vibration.

The solution for the maximum amplitude of vertical vibration was
obtgmed from the response curve (Fig. A-1) for constant amplitude of force
excitation (Q, = const, = 9§0 Ib). It could have been obtained also
from Fig. A-2, which correlspbﬁ s to the frequency-dependent excitation
(Qa = mgew®). In Chap. 2 it was noted that the ordinate of each curve on
Fig. A-2 may be obtained at each frequency ratio from the ordinate of a
similar curve on Fig. A-1 by

M ( I )2 _ AKQ2m e Ame*  Am
P gmpte meetme
m

The force of @, = 11,400 Ib at 450 rpm is developed by

o, 11,400
Mme = =2=——u 513 Ib-sec
w? 2(450 ry b-sec
Then
1.02(0.24)% = 0.0587 — Az X 61,300
386 x 5.13
or
A, = 0.0019 in.

as was obtained in the previous calculation. Note that the value of A,mim,e
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is usually obtained directly from Fig. A-2 at f/f, = 0.24 on the curve for
D = 0.6. However, in this low frequency range (f/f, << 0.3) the curves are
very steep on the semilog plot and more accurate values are obtained by

calculation, as indicated above.

Response of Foundations to Transient Vertical Loads

In order to evaluate the motions of foundations responding to transient °
loadings, it is necessary to have reliable information on the load—tnme-pulse;
to be applied. This pulse is then applied to the lumped?parameter analog o
the foundation—soil system and a solution can be obtained from the phase-

plane method.

Drop test on model footing. The first example to be considered here was
illustrated in Fig. 10-9a. A footing of 1-ft diameter rested on the sqrface ofa
bed of compacted Ottawa sand. This footing supported a dead weight andha
loading platen onto which a 5-1b sandbag was dropped. For test 0-2 t :1:
force-time-pulse shown by the solid curve m_Flg. 10-3b was develoPed, an
the rectangular force—time-pulse approximatlon§, also shown on this ﬁgu‘re,
were used in the phase-plane analysis of the footing response. The follo'wmg.
quantities related to the footing-soil system entered into the computations:

r, = Radius of the circular footing =6 in.
W = Weight of the footing =150 1b
3
y = Unit weight of the sand = 109 Ib/ft
b= Kg = Mass ratio = 11.0
14
B, — 1= b — Modified mass ratio —2.07
D= 0'435 = Damping ratio = 0.296
\/Bz T 2%
G = Shear modulus of soil = 3400 Ibfin.
» = Poisson’s ratio of soil =1
k, = AGr, _ Static spring constant = 108,800 1b/fin.
1 —w

* The effective  for the sand beneath the footing was established by the procedure
described by Fig. 10-20.
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|14 . .
m = — = Mass of footing = 0.389 Ib-sec?/in.
g
2
@y = [~ = Undamped natural frequency = 529 rad/sec
m

w; = \/lc-’ Vi— Di=— Damped frequency

= 505 rad/sec
s

T, = 2 = Natural period of footing = 0.0124 sec
0y

%, = arcsin D = Angle of inclination of ordinate — 17.2°

The rectangular force-time-pulse approximations to the pulse-loading
curve indicate a constant-force amplitude over an interval of 0.002 sec
(2 msec). This time interval corresponds to an angular movement w, Af on
the phase-plane of

war =360 = 0002 10y oo,

Ty 0.0124

The values of input force for each time interval establish the static displace-
ments zy, Z,, .. . shown in the phase-plane solution (Fig. 10-23a).

The phase-plane solution shown in Fig. 10-23a is constructed by the
procedure described in Chap. 2. The circled numbers, @, @, . .. designate
the points on the phase plane from which the displacement and velocity can
be evaluated, corresponding to the time of 4, 6, ... msec. For example, to
find the displacement at point (end of 10 msec. of loading), a line is
drawn from parallel to the Z/w, axis until it intersects the z-axis at point

- This value of z is 0.0005 in. The circles in Fig. 10-23b represent the
displacements at the end of the time intervals as obtained from the phase-
plane solution shown in Fig. 10-23a. The length of the line ®~ @ repre-
sents the value of Z/w, at the end of 10 msec of loading from which a velocity
of 0.09 in./sec is calculated.

The acceleration at the end of each time interval could also be evaluated
frora Fig. 10-23a by the method described in Chap. 2, but because rather large
instantaneous-force Jjumps are represented by the rectangles used to approxi-
mate the force pulse (Fig. 10-9b), the values of acceleration would be fairly
crude. In order to improve the calculations of accelerations, it is preferable
to use smaller time intervals for the force-pulse blocks. The problem de-
scribed by the graphical phase-plane method can also be solved readily with
a digital computer, which makes it easy to cut down the time duration on the
force—time-pulse blocks. Figure 10-23c shows the acceleration -time diagrams
obtained from the computer solution and the curve obtained from the test.
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Figure 10-23. Dynamic response of model footings—transient loading test Q-2.
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This good agreement between test and computed values is typical of the
results reported by Drnevich and Hall (1966). The computed value of the
displacement-time curve is shown as the solid curve on Fig. 10-23b, and it
should be noted that the phase-plane solution produces a displacement-time
curve which agrees closely with the computed solution.

From transient-loading tests on model footings similar to the one
described for Test Q-2, it was demonstrated that theoretical methods may
predict the displacement-time and acceleration—time behavior of the footing
quite satisfactorily. The phase-plane solution provides approximate answers
in a relatively short time, and the accuracy may be improved by taking smaller
time intervals in the force-time-pulse approximations.

Impact on punch-press foundation. The loading pulse described in Fig.
10-10b resulted from a sudden release of elastic energy as the upper die of a
punch press sheared through a metal blank. This loading pulse is reproduced
in Fig. 10-24a along with the rectangular force-pulse approximations to this
curve. This pulse is associated with a machine having a dead weight of
30,000 Ib which rests on a concrete-block foundation. The block is sup-
ported directly on a soil for which G = 10,000 psiand » = }.

Table 10-17 includes the significant quantities needed for a phase-plane
solution for the response of a machine—foundation-soil system set into motion
by this loading pulse. Three choices for the foundation block are noted in
Table 10-17 having dimensions of 18 by 18 by 3 ft, 18 by 18 by 4 ft, and
15 by I5 by 3 ft. The phase-plane solution shown in Fig. 10-24b and the

Table 10-17. Data for Analysis of Response of Block Foundation to Transient
Vertical Loading

Block |

Dimensions ‘ 18 < 18 x 3 ft 18 % 18 x & ft { 15 %15 x 3 ft
W ‘ 175,800 (Ib) 224400 (b) | 131,250 (Ib)
effective r, 10.16 (ft) 10.16 (ft) 8.46  (ft)
b 1.40 1.78 1.81
B, 0.26 0.334 0.339
D 0.83 0.735 0.730
k 6.5 % 10° (Ibjin.) | 6.5 x 105 (lbfin.) | 5.41 x 105 (bfin.}
o 56.2° 47.3° 46.9°
@, ’ 119.5 (rad/sec) 105.8  (rad/sec) 1262 (rad/sec)
Wy 66.6 (rad/sec) 71.8 (rad/sec) 86.3 (rad/sec)
T, | 0.0943 (seq) 0.0876 (sec) 0.0729  (sec)
8 ‘ 3.82° 4.11° 4.94°
Zmax 0.0042 (in.) 0.0041 (in.) 0.0048 (in.)
time for zp,, | 0.0125 (sec) 00130 (sec) 0.0126 (sec)

* W = wt. of foundation block + machine.
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Figure 10-24. Transient loading of 18-ft-by-|8-ft-by-3-ft foundation blc.ack.
(a) Force-time diagram. {b) Phase-plane solution. (c) Displacement-time

diagram.

displacement-time curve in Fig. 10-24c are shown for the 18-by-18-by-3-ft
foundation block to illustrate the method of analysis. Note from Table 10-17
that for vertical loading the weights and dimensions of cach of these fouqda-
tions lead to extremely high computed values fo‘r the geomctl"lcal dampmgCi
High damping ratios limit the maximum amplitude of motion develope

during response to the impact.

The phase-plane solution s .
same procedure followed for the phase-plane solution shown

hown in Fig. 10-24b was constructed by the
in Fig. 10-23a.
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However, the construction lines have been eliminated from Fig. 10-24b to
simplify the drawing. This phase-plane solution was discontinued after the
displacement had reached the maximum amplitude, again for convenience
in illustration. As before, the displacement z is evaluated from Fig. 10-24b
by following from a point on the curve—for example, point &—down along
a line parallel to the Z/w, axis to the abscissa. Thus, the displacement corre-
sponding to point (&) (at end of 6 msec) is 0.0015 in. The velocity at this time
is represented by the length of the line ®-@ (i.e., #/w,) multiplied by ,,
which gives a value of 2 = 0.62 in./sec at the end of 6 msec. The acceleration
at this time is obtained by projecting a line at —56.2° from the vertical
through point & to the abscissa. This intersection at z = 0.010 in. is a
distance of —0.0029 in. to the left of z,,, from which the acceleration at the
end of 6 msec is calculated to be

7 = (0.0029)w? = 41.4 in.[sec?

Data from phase-plane solutions of the three block foundations loaded
by the same pulse are given in Table 10-17 for comparison. Note that the
maximum displacement only increases from 0.0042 in. to 0.0048 in. by
decreasing the side of the square block from 18 to 15 ft. The final choice of
block size depends on the design criteria, which includes cost for a partic-
ular installation.

18.7 Analysis and Design for Rocking Vibrations
of Foundations

In contrast to the high values of geometrical damping generally associ-
ated with vertical oscillations, rocking oscillations develop relatively low
values of geometrical damping. This was illustrated in Fig. 7-19, where it was
shown that for rigid circular footings a value of B, of 0.75 or less was re-
quired in order to raise D above 0.10. The consequence of low damping is
exhibited by large values for the magnification factor M, shown in Fig. 7-16.
Consequently, the dynamic response at the resonant frequency for rocking
will result in large amplitudes of motion.

Design procedures for footings subjected to recking motions must either
provide such a low value for B, (i.e., B, < 0.5) that the magnification factors
become small or assure that the resonant frequency for rocking is well above
(by at least a factor of 2) the proposed operating frequency.

Rocking Tests of Model Footings

The series of tests on model footings described by Fry (1963) inciuded
excitation of the footings in the rocking mode of vibration by adjusting the
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vibrator to operate as indicated in Fig. 10-5¢. Even though a pure couple
was generated by the vibrator, the response of the footing involved both
rocking and a horizontal translation because the center of gravity of the
footing was above the center of sliding resistance (see Fig. 7-20). Therefore,
a coupled motion resulted, and two modes of resonant vibration were
possible, as indicated in Fig. 10-25. The lower-frequency mode is designated
asmode I. Another resonant frequency, mode I1, occurs at a higher frequency
and corresponds to an out-of-phase relation between rotation and transla-
tion. In mode II the footing rotates clockwise about the center of gravity as
the center of gravity moves to the left. Thus, the footing moves about some
center of rotation which is above the center of gravity (Fig. 10-25b).

The design restrictions placed on the model footings by the limited range
of frequencies available from the mechanical oscillator, as well as the desire
to limit all resonant vibrations to relatively small amplitudes, affected the
response of the footings in the rocking mode of vibration. Only base 1 (sce
Fig. 10-26b) had geometrical configurations which permitted mode-IT
rocking vibrations to develop within the range of available frequencies. The

other footings developed only mode-I rocking vibrations.
For base 1—test 36 at the Vicksburg site, the test results for the rocking

1l |
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Figure 10-25. First (I) and second (Il coupled modes of rocking vibrations of
model footings.
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mode of vibration are shown by the dashed curve in Fig. 10-26a. These
va]tlles were obtained from the vertical displacement measured 2 in fr.om the
pf:nphery of the upper surface of the concrete base on a diametf;r cTpen-
dlcular.to the axis of rocking. These vertical displacements were divfdeg b
the rz_idlus to the center of the circular top surface of the base to describe ch
amplltuc-k: of. rotation A, . A theoretical curve for the corresponding amplitude
of rotation is also shown in Fig. 10-26a, as obtained by the anal }Zis for
coup%ed rocking and sliding described in Sec. 7.8. Because the the)c{)retical
solution for rocking of the rigid disk was availabie only for the case of » = 0
the theoretical coupled solution applies only for v = 0. T
_ Figure 10-26b shows the general configuration of WES base 1 which had
a c.1rcu'lar base of 62-in. diameter in contact with the soil and additional
cylindrical concrete masses of 88-in. and 112-in. diameter added above. The
5600-1b mechanical vibrator was attached to the top of the footing, which. then

-
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constituted a relatively “top-heavy” mass as indicated by the mass ratio of
B, = 8.81 for rocking.

From the results of the theoretical solution shown in Fig. 10-26a, it is
seen that a resonant peak of 1.16 mils (1020 mils = 1 radian) was reached in
mode I of the coupled motion at about 8.4 cycles/sec. The theoretical peak
for mode-TI vibration is 0.23 mil of rotation at 23.8 cycles/sec. The significant
point brought out by the theoretical curve is that in order to obtain the
resonant conditions for mode-IT vibration, it is necessary to pass through
mode T, which develops high-amplitude motions. Note that in the dis-
cussion of allowable rotations for radar towers in Sec. 10.2 we were consider-
ing acceptable motions in the range of 0.05 mil. Thus, it is evident that the
test footing passed through mode-1 vibrations at a relatively high amplitude
of motion before reaching the peak motion in mode 11, which occurred at a
much smaller amplitude. The test data were not available for frequencies
less than 8 cycles/sec because of rough operating characteristics of the
mechanical vibrator below this speed, but there is little doubt that mode-I
vibrations did occur in the tests.

By comparing the amplitude-frequency curves obtained from theory and
test, it is seen that the mode-II peak for the test conditions represents a
higher amplitude of motion at a lower frequency than those predicted by
theory. Part of this discrepancy lies in the fact that real soils cannot develop
the pressure distributions on the footing base that correspond to the rigid-base
condition for rocking. The curve in Fig. 10-26c representing the vertical
pressure o, along a diameter in the plane of rocking of the footing goes to
infinity at the periphery of the footing. Real soils have a limiting pressure,
and the shaded distribution shown in Fig. 10-26c¢ illustrates a more probable
distribution of pressure provided by a real soil against the footing base. This
pressure distribution has lost the moment resistance provided by pressures
near the edge of the diagram; thus, the effective-moment arm of the resisting
couple is reduced. Consequently, we would expect that a shift of the center
of pressure toward the center of the footing would reduce the effective geo-
metrical damping. A reduction in effective geometrical damping would affect
the dynamic characteristics of the system by increasing the maximum
amplitude of vibration and by causing it to occur at a lower frequency. Thus,
this type of change in base-pressure distribution would cause the theoretical-
response curve better to approximate the test curve.

Additional comparisons have been made between the WES test data and
theoretical predictions for rocking tests. These comparisons are shown on
Table 10-18 for tests in which the lowest exciting-force input (i.e., eccentricity
= 0.105 in.) was applied. From this table it is seen that the computed ampli-
tude of motion varied from 0.72 to 3.94 times the measured value and the
computed value of frequency at maximum amplitude varied from 0.7 to

1.27 times the test values. Only for mode-1I vibration was the computed
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value lower than the measured value, and a possible explanation for this dis-
crepancy was discussed in the previous paragraph. For mode-1 vibrations
which are most likely to occur in prototype footings, the theoretical ampli-
tudes. were larger than those measured and the frequency for maximum
amplftude was generally lower. Except for WES test 3-26, the computed
amplitudes of motion were within a factor of 2 of the measured value. For
some reason, test 3-26 (on a base of 9-ft diameter weighing 24,315 Ib) de-
veloped a.lower amplitude of motion than did WES test 4-18A (on a base of
10.33'a-ft diameter weighing 30,970 Ib). Both bases were subjected to the same
rocking couple by the mechanical oscillator.
In addition to the comparisons of peak values indicated in Table 10-18

a more complete study of the shapes of the amplitude-frequency respons;
curves from both test and theory has indicated that in all but a few cases the
agreement throughout the frequency range was within a factor of 2. For the
exceptions the theoretical values were higher—as for WES test 3-26.

Table 10-18, C'ompa.lrison of Test and Theoretical Results for Rocking and Sliding
Vibrations of Rigid Circular Footings*

Test Vibrati Agvere 4 Ayu
No. ergd]:n Meas. # Loome N‘fe::z M Jeomp
(ml]) ypMeas fMeas {mil) Awmeas fMea.a

WES

1-36 I - — — -

1-36 II 0.315 0.73 1.27 0.095 1.24 117
2-23 I 0.28 1.04 0.70 0.24 1.96 0.99
3-26 I —t — - 0.047 3.94 0.83
4-13A I —t — — 0.055 1.96 1.09
Eglin Field

2-13 I 0.185 1.62 0.85 0.335 1.49 0.78
3-13 I 0.142 1.06 0.94 0.193 1.02 0.51
4-13 I 0.110 —t — 0.156 0.72 0.94

* Test data from Fry (1963).
1 No peak of amplitude—frequency response curve reached within frequency range available.

Analysis of Rocking of Machine Foundation

Figures 10-27a an.d b show the plan and elevation of a foundation pro-
po:;ied to support rotating lmachinery. The upper slab is at the first-floor level,
and the lower slab rests directly on the soil at an elevation of 1.5 ft below the
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top of the basement slab. For this installation the soil properties needed ip
the dynamic analysis of the foundation-soil system are: G = 12,300 psi,
vg = 720 ft/sec, v = 0.25, and y = 110 Ib/ft*. .

The problem is to evatuate the dynamic response of this foundation to the
horizontal and vertical forces generated by rotating machinery. This will be
carried out by analyses based on the elastic-half-space theory (Chap. 7) for
separate single-degree-of-freedom responses of the foundation to the
vertical and to the horizontal (or rocking) forces. For the vertical response
the first step is to calculate the radius of the equivalent circular area (Eq.

10-29a)— .
34 % 8
. icé:\/;x——%o ft

o
w ko)

—_to be used in the calculation for the modified mass ratio,

_U—wnWw 075x3272100 ;4
4 % 1109.3)

B
: 4y}

s AR g
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From Fig. 7-11 the dynamic magnification factor is about 1.1, and from Fig.
7-19 or Eq. (7-30) the damping ratio D is 0.56. This demonstrates that the
vertical motion is highly damped and that the maximum amplitude of
dynamic motion will be only slightly greater than the static displacement
produced by the input force. Therefore, for the preliminary calculation, it
appears that this foundation is satisfactory from the standpoint of vertical
vibrations.

For rocking vibrations excited by the horizontal component of the
machine forces, again we calculate the radius of an equivalent circular base,
this time from Eq. (10-29b), as

22 3 3
ro—:/c( ) :\4/34X8 — 6.55 fi

3 37
Then
p 3 -w 1, 225481 x 107
v 8§ pr® 8 110(6.55°

Figure 7-16 indicates that the dynamic amplitude magnification factor for
this value of B, is greater than 100. From Eq. (7-64),

0.15

, — ————={.0042
YL+ BB,

from which the magnification factor can be calculated as

=119

oL
e
With this low value of damping ratio, or high magnification factor, the peak
of the amplitude-frequency response curve will occur at a frequency almost
identical with the natural frequency. The dimensionless frequency a,,, can

be estimated from Fig. 7-16a as 0.30, from which the resonant frequency is

dembs  0.30 % 720
27r, 27 %X 6.55

= 5.25 cycles/sec = 315 cycles/min

S =

As a check, the resonant frequency for the lumped-mass system can be evalu-
ated through Eq. (2-17). For this calculation the expression for the spring
constant of the rectangular footing may be taken from Table 10-14, and with
B, from Fig. 10-16,

L 12300 X 144 4 o 34 8

9

ky = —2— g, 8cd?
1 —»

= 2.055 x 10° ft-lb/rad
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Then from Eq. (2-17),

1, _L\/k_w# 1 /2055 x 10° x 32.2
"N 2n 4.81 % 107

— 5.90 cycles/sec = 354 cycles/min

The difference between the resonant frequencies calculated by these two
methods is due primarily to the differences in the &,, values computed from
Table 10-13 and Table 10-14. However, these are reasonably close, and either
is satisfactory to indicate the order of magnitude of the resonant frequency.
From this preliminary analysis, it is evident that the foundation will
experience a severe rocking oscillation at a frequency in the range of 320-350
rpm. This particular foundation was scheduled to support several different
combinations of rotating machinery at different times, and all of the
machines operated around this range of frequencies or higher. When
operating at the higher frequencies, there was always the necessity for passing
through the resonant condition during starting up or stopping. Consequently,
this configuration was considered unsuitable for the purpose of resisting
rocking motions. In this particular case, several proposed foundations of
this general type were located parallel and relatively close together. There-
fore, it was expedient to tie these together with a shear wall at each end to
develop a box-type foundation which was stable against rocking,
It should be fairly obvious that foundations needed to resist rocking
forces induced by machines should be low and wide. This is demonstrated
by the dependence of the dynamic response of foundations to the mass ratio
.B,, (Eq. 7-44) for rocking. Whenever possible, the best procedure for reduc-
ing the value of B, is to increase the size of the footing, because r, enters the

computation as rJ.

Rocking of a Radar Tower

The supporting structure for a radar antenna must have dynamic re-
sponses which do not interfere with the operation of the electronic equipment.
The radar disk itself must be rigid enough so that it does not distort unduly
as the mechanism moves in azimuth and elevation; the rotating mechanisms
must have close tolerances; the vertical tower must be stiff and must not
develop resonant responses; and finally, the foundation which bears against
the soil must not permit large motions of the entire tower.

As noted in the discussion of design criteria (Sec. 10.2), permissible
rotations of radar-tower foundations are often of the order of 0.05 mil {or
about 0.00005 rad). Figure 10-28 illustrates the rotation of the radar antenna
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Figure 10-28. Rocking of radar
tower. i’

in elf:vation about a horizontal axis. This motion introduces a transient
rocking pulse into the tower which then may cause the tower to rock at its
natural frequency because of the flexible connection between the foundation
and .the soil or because of the various flexibilities in the structural system.
Obviously, the entire radar tower has many degrees of freedom in vibration

bgt.a standard design can be prepared for the structural system to avoid thé
critical resonant frequencies. It is the foundation—soil flexibility which will
vary fron} site to site and which must be evaluated for each tower installation.
This section will consider only the rocking of the radar tower, considering
the tower itself as a rigid mass and all the flexibility to be concentrated in the
supporting soil,

The radar tower shown in Figure 10-28 is supported by a rigid circular
concrete base 60 ft in diameter which rests directly on the soil. Field measure-
ments were made of the dynamic soil properties (see WES Misc. Paper No.
4-?84, July 1963), and values of the shear modulus between 12,000 and 20,000
psi and a Poisson’s ratio of 0.43 were determined by the steady-state-vibra-
tion method (see Sec. 4.3). Because slightly higher confining pressures were
to be developed in this soil under the completed structure, the limiting values
of G= 1:4,000 psi and G = 20,000 psi were used in the original design
computations.

- The analysis for rocking of the tower as a rigid body is analyzed here
by the lumped-parameter analog to the elastic theory for rocking of the rigid
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circular foundation. For this tower the circular foundation was 60 ft in
diameter, or r, = 30 ft, The mass moment of inertia in rocking about a
diameter through the base (point O, Fig. 10-28) was calculated to be

I, = 80.545 x 108 Ib-ft-sec®

With the unit weight of the soil of approximately 100 Ib/ft®, this leads to the
calculation of the mass ratio in rocking as

_3(1 — ) 80.545 x 10°

w
50
322

B = (1 — »)0.400

Calculations for the maximum amplitude of rotation and the frequency at
which this occurs for an overturning moment of 212,000 ft Ib, considered as a
constant-moment excitation, are shown in Table 10-19,

Field tests were conducted on this tower after construction to evaluate
the prototype performance (sec Ballard and Fowler, 1967). A summary of the
test results from excitation of the tower in the rocking mode are given in
Table 10-20 along with the original design estimates, which were prepared
with the aid of the elastic-half-space theory (with the assumption of » = 0).
Note that there is reasonably good agreement between the calculated and
measured amplitudes and frequencies.

Table 10-19. Calculations for Rocking of Radar Tower

Constant-Force Excitation, T = T,sin wt; T, = 212,000 ft-1b
Forv =0 Forz =04 Eq. No.
B, 0.40 0.24 7-44
D, 0.169 0.247 7-53
VI=DE 0.986 0.969
V1= 2D% 0.971 0.937
Myn 2.96 2.02 2-56
For G = 14,000 psi
y, f{rad) 1.46 x 10-° 0.876 x 10-* 7-43
4, (rad) 4.26 % 10-° 1.72 x 10-* 7-45
[ (cycles/sec) 6.56 8.2 2-55
For G = 20,000 psi
Y, (rad) 1.022 x 10-* 0.613 x 10— 7-43
Ay (rad) 2.98 x 10-¢ 1.20 x 10-¢ 7-45
S (cycles/sec) 7.8 9.8 2-55
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Table 10-20, Comparison of Measured and Calculated
Values for Rocking of Radar Tower*

I Frequency Range Rotation
(cycles/sec) (10-% rad)
Design 6.0-9.0 j.6-5.1
Measured 4.9-7.7 1.60

* From Ballard and Fowler (1967).

. T}}C design of the foundation for a radar tower should also include con-
sideration of the torsional resistance of the foundation as well as rocking
and should include an evaluation of the coupling between the structural anci
foundation flexibilities. Additional design criteria may be found—in Fu and
Jepson (1959), Horn (1964), and Pschunder (1966), for example—and useful
data on foundation and tower stiffnesses are given by Weissmann and White
(1961), Weissnann (1966) and Pschunder (1965, 1966).

10.8 Conclusions

This chapter has treated methods of analysis and design of dynamically
loaded foundations. These methods depend on the design criteria, applied
forces, soil response, and analytical procedures for relating these quantities.

The design criteria were based on a failure criterion of a limiting ampli-
tude of motion, or a limiting velocity or acceleration of the foundation. In
nearly all cases the motions involved were on the order of a few thousandths
of an inch up to perhaps a few hundredths, and general guidelines have been
established.

A critical part of the study of the dynamic response of a given system is
to evaluate the type and magnitude of the input forces to be resisted. These
may be calculated readily for certain types of machinery and can usually be
evaluated experimentally for machines producing transient loads. It becomes
more difficult to estimate the loads introduced by natural forces of wind,
water waves, or earthquakes. Thus, it may be concluded that much more
information is needed on the forces to be applied to foundations by machines
Or externai sources. '

_ Chapter 6 included a discussion of the response of soils to dynamic loads
whxch‘produce small deformations. Because the design criteria for foundation
bghawor restrict motions to small values, it follows that the supporting soils
w1.II normally be subjected to small strains only. Consequently, the dynamic
soil parameters described in Chap. 6 and the methods described in Chaps.
4 and 9 for determining these characteristics constitute 2 reasonably satis-
factory part of the design procedure at the present (1969). However, it is
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anticipated that a considerable amount of effort will continue to be directed
toward laboratory and field evaluation of soil behavior under dynamic load-
ing.

The analytical procedures for establishing the dynamic behavior of a
foundation relate the applied forces, soil properties, and foundation weights
and geometry to the response. By successive corrections of the design param-
eters, the analytical procedures provide a method for developing a dynamic
response of the foundation which falls within the design limits. Several
simplified methods of analysis have been discussed in Chaps. 7 and 10; these
have been found satisfactory when the prototype conditions correspond to the
assumptions made in establishing the theory. Much more work is required
in developing analytical procedures to cover the variables of shape of founda-
tion, depth of embedment, variations of soil properties with depth, geo-
metrical vs. hysteresis damping, coupling effects, and effects of adjacent
footings. Very little information is available on the dynamic behavior of
foundations supported by piles or caissons, or on flexible mats.

A final conclusion telates to the continuing need for field data from tests
on prototype foundations: The only justification for using any design pro-
cedure is that it provides a reliable estimate for the behavior of the prototype.
Thus, it is necessary to compare predicted and measured values at all oppor-
tunities in order to provide a realistic basis for subsequent efforts to im-
prove the methods of design.

APPENDIX

[nformation that is needed frequently i i is is i
: . y in design or analysis is in-
cluded in the following two tables and four ﬁguref. SRR
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Table A-l. Summary of Relations for Single-Degree-of-Freedom Vibration
{z-coordinate chosen for illustration)

Critical Damping ¢ =2Vkm (2-31)
Damping Ratio p-== (2-32)
CC
Undamped “Natural 1k
Frequency” f[=3 \/ -~ (2-17b)
Static Displacement zZ, = % (2-13)

. . . 242 27 —1/2
Amplitude-Magnification e [1- Lﬂ + {2p Il (2-53)
Factor During Vibration I fa
For Rotating-Mass Excitation
(Q, = moew?)

For Constant-Force Excitation ‘
(O, = constant) i

Amplitude at Frequency f

| 2
=2y | 4=" L)M
£ H m \k
Maximum Amplitude of Vibration
Az _ Qo 1 ‘ Ay = mge 1

"k 2DV - Do m 2DV1 _ D

" Frequency for Maximum Amplitude

Py (2-60)

"o 'nv/l — 2D (2'55) i n T —
fo = F | V1 — 2D

Table A-2. Equivalent Damping Ratio for Rigid Circular Footings

Maode of Vibration Mass (or Inertia) Ratio Dampm% Ratio
d—vm 0.425
Vertical B, = — D, = -
ertica ! -
Slidi (7—8) m 0.288
idin = , — =0t
g 32(1 — ») pt? VB,
31— 1, 0.15
Rockin B,=——— = = _
g w 3 pre v a+ Bw)\/Bw
i B — @ o 050
Torsional o= E’E 0= T80
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Figure A-1. Response curves for a viscously damped single-degree

5 -of-freedo
system (constant force amplitude excitation —Q i
o

= const).
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SUBJECT INDEX

A

Acceleration:
gravity 9
from phase plane 41, 46
pickups 286
Accelerometer 286
influence of cable length 287
Acoustic waves 123
Active isolation:
definition 251
field tests 253
Amplifiers 274
differential, common-mode rejection
ratio 275
floating input 275
Amplitude of motion, half-space theory 195
Analog:
electrical to mechanical 264, 267
Hall's 219, 224
Lysmer’s 203
Approximate methods:
beam frequencies 58
Rayleigh method 58
Southwell-Dunkerley method 58
Attenuation 166 (see also Damping)
coefficient of 246 .
of Rayleigh wave with distance 244

B

Beams 58
Bentonite-slurry trench 249
Blasting, vibrations from 3135, 319
Body waves {see P-wave and S-wave)
Boundary conditions (end conditions),
semi-infinite rods 66
Breakwater 128
pneumatic 131
refraction by 128
Bulk modulus 129 (see also Modudus, of
volume compressibility)

C

Cable 289
capacitance 285
characteristic impedance 290
characteristics 289
electrical termination 290
influence on calibration factor 284, 287
resistance 285
types 290
Caissons, vertical vibrations 235
Calibration of transducers 278, 279, 282,
283, 287

407
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Capacitance, electrical 265
Cathode follower 287
Circular footing on half-space, vertical
oscillation:
distribution of energy from 92
waves generated by 90
Coaxial cable 291
Coefficient of attenuation 166, 246
Compaction:
of in-situ soils 183
of samples by vibrations 180
by vibrating rollers 185
Compression waves, ideal fluids 123
Connectors 291
banana-plug 292
BNC 291
microdot 291
microphone 292
UHF 291
Contact pressure, base of foundations:
parabolie, vertical motion 197
rigid, circular, rocking 216
rigid base approximation, vertical motion
196
uniform, vertical motion 197
Coulomb damping (see Damping, friction)
Coupled motion:
damped system 55
forced vibration 54
rocking and sliding 227
field test data 371
translation 49
and rotation 51
Critical angle of refraction 98
Critical damping 16
Cross-over distance 106
Current measurement 269

D

Damping 15
coeficient of attenuation 166, 246
constant, geometrical, rigid circular foot-
ing:
rocking 220
sliding 224
vertical 208
critical 16
friction 37
geometrical 199, 245
vertical vibration 199

Damping (cont.):
internal hysteretic, soils 162, 165, 245
logarithmic decrement 18, 26, 162
soils, experimental 163
loss angle 167
material 165, 245
specific damping capacity 165
specific dissipation function 167
viscous 15, 39
Damping ratio, geometrical, rigid circular
footing: 17
horizontal 225
rocking 220, 225, 226
torsion 226
vertical 208, 225, 226
Damping resistor 282
Dashpot 15
Decibel 124
Design criteria isolation, foundations for
sensitive equipment 309, 321
machinery, steady-state 311
radar towers 322, 379
transient loading 315, 317
Diffraction 127
of gravity waves in water 128
Dilation (cubical dilation, dilatation} 77
definition for plane wave 80
Dilatational wave:
propagation velocity 78
synonyms 79
Dip angle:
apparent 108
true 108, 111
Displacement :
complex notation 56
dynamic rigid circular footing, rocking
218
Lysmer, vertical oscillation 203
Reissner, vertical oscillation 194
static, elastic layer, rigid circular footing,
vertical 232
static rigid circular footing:
rocking 216
sliding 222
Displacement functions;
Lysmer’s 203
Reissner’s 194
Displacement measurements:
geometric patterns, visual observation
283
transducers 276

Distortional wave:
propagation velocity 79
synonyms 79
Dynamic loads 322
from multicylinder engines 330
from rotating machinery 322
from single-cylinder engines 325
transient:
pulse 333
from punch press 334
from vibratory conveyors 332
Dynamic magnification factor 20
Dynamic modulus, measurement 300
Dynamic reciprocity 193

E

Eccentric mass 23, 196
Eccentricity 23, 196
Elastic half-space, kinds of waves possibie
80
Elastic layer, rigid circular footing:
torsional oscillation 230
vertical oscillation 232
Elastic moduli, experimental determination;
resonant-column method 72, 300
travel-time method 72
Elastic solids, porous, saturated, wave
propagation 132
Elastic waves, wave equation 60, 78, 123
Electrical circuit:
current measurement 269
piezoelectric accelerometer 287
velocity transducer 280
voltage measurement 269
Electronic terms, prefixes 268
Embedment, effect on spring constant
circular footings 352
Energy ratio 320
Equation of motion for infinite, homo-
geneous, isotropic elastic medium
75,77, 78
Eguivoluminal wave 78
Exciting force, by rotating mass 196

F

Failure of soil samples:
in resonant-column tests 178
triaxial test, repeated loads 175

SUBJECT INDEX 409

Field measurements:
P-wave velocity 298
Rayleigh wave velocity 297
refraction survey 104, 298
travel time 299
Finite rods, end conditions:
fixed-fixed 71
fixed-free 70
free-free 69
Force transmission 30
Forced vibrations 19, 20
Foundation isolation, definition of 244
Foundation vibrations, measurement 295
Free vibration:
damped 15
undamped 11
Frequency:
circular 6
dimensionless 194
dimensionless factor 31
natural :
beams 57
of continuous system 57
damped 17
Newmark’s method 57
Rayleigh approximation 58
relationship to static deflection 13, 58
Southwell-Dunketley approximation 58
resonant rigid circular footing, vertical
208
undamped natural 13
Frequency equation:
fixed-fixed rod 71
fixed-free rod 70
free-free rod 70
Freguency measurement errors 289
Friction damping 37

G

Galvanometers 271
Geologic formations, as vibration isolators
247
Geometrical damping:
definition 92, 225
vertical vibration 199, 225, 226
Geophone 275 (see alse Transducer)

H

Hardin oscillator 304
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Harmonic motion 6
vector representation 10
Head wave 104
Hertz 6
Hollow cylindrical specimen 159
Horizontal vibration:
measurement 297
sliding 221
Huygens’ principle 125

Impedance 267
Inductance 266
Inelastic behavior 44, 192
In-phase mass 337
Irrotational wave 78 (see aiso Dilatational
wave)
Isolation:
by barriers 247
criteria for field tests 261
by geologic formations 247
by trenches 247
Isolation trenches, design dimensions 261

Jerk 9

L

Laplacian operator 78

Lateral earth pressure developed by vibrat-
ing compactors 188

Layered media (see Elastic layer)

Layering, horizontal 100

Liquefaction 172, 175

Logarithmic decrement 18 (see also Damp-
ing, logarithmic decrement)

Logarithmic spiral, construction of 43, 46

Longitudinal waves, rods 61

Love waves 100, 118

LVDT 278

M

Machine foundations:
methods for analyzing:
DEGEBO 336

Machine foundations (cont.):
dynamic subgrade reaction 340
lumped-parameter system 345

rocking, example 373
Machinery, vibrations from 243,319
Magnification factor 20
elastic layer, rigid circular footing,
vertical 234
half-space theory, rigid circular
footing:
rocking 216, 220
sliding 222
torsional vibration 214
vertical vibration 204, 205
Mass, dimensionless factor 31
Mass moment of inertia, rigid cylindrical
footing, rocking 219
Mass ratio:
modified, vertical oscillation 204
rigid circular footing:
horizontal, sliding 221
rocking 216
torsion 214
vertical oscillation 195
Modes of vibration 53
coupled translation and rotation 353
experimental determination 296
Modulus:
shear:
complex 167
granular soils 154
tangent, cubic packing of spheres 145
of volume compressibility:
cubic packing of spheres 145
mixture of air and water 131
mixture of solids and liquid 129
of water 125

Mohr’s circle 30

Moment of inertia, mass (see Mass moment

of inertia)

Meters 269

ac 271
de 269

N

Newmark’s method 57
Noise, electronic 274
Nomograph, vibration 10

o

Octahedral shearing stress 1356
Ohm’s Law 264
Oscillator;
electromagnetic 283, 293
rotating mass 24, 298, 324
Oscilloscope 272, 293

P

P-wave synonyms 79
P-wave velocity, measurement 298
Pal 320
Particle velocity:
definition of 64
equation 64
Passive isolation:
definition 251
field tests 256
Persons, effects of vibrations on 311, 317
Phase angle 6
half-space theory 195
Phase-plane 32
acceleration 41, 46
free vibrations 32
friction damping 37
inelastic behavior 44
motion of the support 40
multilinear springs 42
oblique coordinates 45
solution:
drop test on model footing 366
punch press 368
step function 33
viscous damping 39
Pickup (see also Transducer) 275
Piezoelectric material 287
Piles:
natural frequency:
loaded 236
unloaded 236
torsional vibrations 238
vertical vibrations 235
Poisson’s ratio:
effect on vertical vibrations 199
effect on wave velocity 86
Porosity 121
Potential functions 80
Power, electrical 265
Power required, half-space theory 195
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Prefixes of electronic terms 268
Pressure, contact (see Contact pressure)
Primary unbalanced force 327

R

Radar tower analysis, example, rocking
vibrations 378
Railways, vibrations from 313
Rayleigh approximation to natural fre-
quency 38
Rayleigh wave ( R-wave).
attenuation of 245
definition 80
at interface 98
length 113
particle motion at surface 90
partition of at a corner 99
refraction of 127
relative displacement 88
velocity 80, 85, 86
measurement 297
wave length, field method 111
RC time constant 288
Recorders 272
magnetic tape 273
paper 272, 295
Rectangular foundation:
equivalent radius 347
vertical oscillation 210
Reduced natural frequency 338
Reflection 93, 125
Reflection survey 101
Refracted waves, definition of for refraction
survey 104
Refraction 93, 127
of gravity waves in water 127
Snell’s law 94, 127
Refraction survey 104, 268
horizontal layering 104
inclined layering 106
reversed profile 109
Relative density 184
Resistance, electrical 264
Resonance curves, shape of 25
Resonant-column method:
with added mass:
longitudinal vibration 73
torsional vibration 73
description of 72
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Rescnant-column test 300
hollow sample 159
of perfect spheres 150
of soils 151
Resonant frequency 22, 25
Reversed profile 109
Rocking vibration:
measurement 297
radar tower 376
rectangular foundation analysis, example
373
rigid circular footings, field test data 369
Rods, vibrations in:
flexural 61
longitudinal 61
torsional 61, 65
Rotating mass excitation 24
Rotating mass oscillator 298
Rotation, definition for plane wave 80

S

S-wave synonyms 79
Saturation, degree of 122
Scaling law, wave length scaling for isola-
tion tests 252
Secondary unbalanced force 327
Seismic methods 100
reflection survey 101
refraction survey 104
steady-state vibration 111
Settlement 185
Shear modulus:
cohesionless soils:
effect of amplitude 160
effect of prestrain 161
equations for 154, 353
complex 167
evaluation beneath footing 358
Shear waves, horizontally polatized (Love
waves) 100, 118
Shear window, definition 92
Shielded cable 291
Shunt resistance 269, 281
Single-degree-of-freedom system 11
force transmission 30
forced vibrations 19, 20
constant force 22
motion of the support 27, 40
rotating mass 23
vector representation 21

Single-degree-of-freedom system (cont.):
free vibrations 11
frequency factor 31
friction damping 37
Lysmer’s representation 31
mass factor 31
phase-plane solution 32
resonant frequency 22
steady-state solution 20
Sinusoidal motion 6
Sliding (see Horizontal oscillation)
Slurry-trench, bentonite 249
Snell’s law 94, 127
Soil properties, in-situ determination 100
Sound, velocity of, in:
air 123, 124
water 124
Southwell-Dunkerley approximation 358
Spheres in contact:
contact pressure, normal loads 144
normal compliance 145
radius of contact, normal loads 144
Spring constants:
rectangular footing, static, formulas for
350
rigid circular footing, static:
formulas for 350
rocking 220
sliding 224
torsion 214
vertical 205
static, elastic layer, rigid circular footing,
vertical 232
Springs 14
multilinear 42
parallel 14
rotational 351
series 14
Static deflection methods 58
Static displacement, rigid circular footing,
vertical motion 200
Steady-state vibrations 20
Step function 33
Strain-displacement relationship, ideal
elastic medium 77
Stress-strain behavior :
soils under dynamic loads 170
theoretical, spheres 149
Stress-strain relationships, ideal elastic
medium 77
Subgrade reaction;
coefficient of 342

Subgrade reaction (cont.):
horizontal, on piles 239
dynamic 338, 340

T

Tape recorders 273
Termination resistance 290
Torsional oscillation, rigid circular footing
213
Torsional vibration, measurement 297
Torsional waves, rods 65
Traffic, vibrations from 318, 321
Transducer 275
acceleration 286
calibration 278, 279, 282, 283, 287
displacement 276
LVDT 278
optical 279
relative displacement 278
relative velocity 284
velocity 280
Transmissibility 30
Transmission of force 30
Travel time 299
Travel-time method, elastic moduli 72
Trenches:
dimensions for isolation 26t
as isolation barriers 247
slurry-trench as isolation 249
Two degrees of freedom 48
coupled translation 48
coupled translation and rotation 51
damped system 35
forced vibration 54
Mohr’s circle 50

U

Unit weight:
submerged 122
total 122
unit dry weight 122

v

Vectors 11
Velocity:
P-wave 78
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Velocity (cont.):
R-wave 86
S-wave 79
shear wave 66
Velocity transducer 280
equivalent electrical circuit 285
Vertical vibration:
measlrement 296
rigid circular footing, field test data 356
single-cylinder compressor, analysis,
example 360
transient loading:
analysis, example for model footing
364
analysis, punch press 367
Vibrating roller 185
Vibration;
amplitude 6
free 11
frequency 6
generator 282, 298
harmonic 6
measuring systems 293
period 6
periodic 7
random 7
sinusoidal 6
transient 7
vector 10
Viscous damping 15, 39
Void ratio 121
cubic packing of spheres 141
tetrahedral packing of spheres 143
Voltage measurement 269

W

Water table, effect on wave velocities 136
Waves:
direct 103
distribution of energy 95
head 104
reflected 93
refracted 94
refraction survey 104
shear, components 93
Snell’s law 94, 127
transmitted 93
Wave equation 60, 123
ideal elastic medium 78, 79
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Wave equation (cont.):
for longitudinal waves in a rod 62
solution for finite rods 69
torsional waves in a rod 66
Wave front:
eylindrical (R-wave) 91
hemispherical (P, S-waves} 91
Wave length, measurement 297
Wave number (N), definition 82
Wave propagation velocity, distinguished
from particle velocity 63
Wave reflection, rods 67
Wave system at surface of half-space 88
major tremor 89
minor tremor 89
Wave velocity :
acoustic waves in air 123, 124

Wave velocity (cont.):
apparent 106
COmpression waves:
in mixture of air and water 131
in mixture of solids and liquids 129
in porous saturated solids 135, 136
effect of saturation 156
in elastic solids, effect of Poisson’s ratio
86, 168
pressure waves in water 124
Rayleigh waves, steady-state method,
field 168
shear waves:
cohesive soils 157
granular soils 154
porous saturated solids 134
spheres 151
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