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Preface

A permanent increase in the complexity, efficiency and reliability of modern
industrial systems necessitates a continuous development in control and fault
diagnosis. A moderate combination of these two paradigms is intensively studied
under the name of fault-tolerant control. This real world’s development pressure
has transformed fault diagnosis and fault-tolerant control, initially perceived as the
art of designing a satisfactorily safe system, into the modern science that it is
today.

Indeed, the classic way of fault diagnosis boils down to controlling the limits of
single variables and then using the resulting knowledge for fault alarm purposes.
Apart from the simplicity of such an approach, the observed increasing complexity
of modern systems necessitates the development of new fault diagnosis techniques.
On the other hand, the resulting fault diagnosis system should be suitably inte-
grated with the existing control system in order to prevent the development of
faults into failures, perceived as a complete breakdown of the system being con-
trolled and diagnosed.

Such a development can only be realised by taking into account the information
hidden in all measurements. One way to tackle such a challenging problem is to
use the so-called model-based approach. Indeed, the application of an adequate
model of the system being supervised is very profitable with respect to gaining the
knowledge regarding its behaviour. A further and deeper understanding of the
current system behaviour can be achieved by implementing parameter and state
estimation strategies. The obtained estimates can then be used for supporting
diagnostic decisions and increasing the control quality, while the resulting models
(along with the knowledge about their uncertainty) can be used for designing
suitable control strategies.

Although the majority of industrial systems are nonlinear in their nature, the
most common approach to settle fault diagnosis and fault-tolerant control prob-
lems is to use well-known tools for linear systems, which are widely described and
well documented in many excellent monographs and books. On the other hand,
publications on integrated fault diagnosis and fault-tolerant control for nonlinear
systems are scattered over many papers and a number of book chapters.

Taking into account the above-mentioned conditions, this book presents
selected Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear
Systems in a unified framework. In particular, starting from advanced state
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estimation strategies up to modern soft computing, the discrete-time description of
the system is employed. Such a choice is dictated by the fact that the discrete-time
description is easier and more natural to implement on modern computers than its
continuous-time counterpart. This is especially important for practicing engineers,
who are hardly ever fluent in complex mathematical descriptions.

The book results from my research in the area of fault diagnosis and fault-
tolerant control for nonlinear systems that has been conducted since 1998. It is
organised as follows. Part I presents original research results regarding state
estimation and neural networks for Robust Fault Diagnosis. Part II is devoted to
the presentation of integrated fault diagnosis and fault-tolerant systems. It starts
with a general fault-tolerant control framework, which is then extended by
introducing robustness with respect to various uncertainties. Finally, it is shown
how to implement the proposed framework for fuzzy systems described by the
well-known Takagi–Sugeno models.

This book is primarily a research monograph which presents, in a unified
framework, some recent results on fault diagnosis and fault-tolerant control of
nonlinear systems. It is intended for researchers, engineers and advanced post-
graduate students in control and electrical engineering, computer science, as well
as mechanical and chemical engineering.

Some of the research results presented in this book were developed with
the kind support of the National Science Centre in Poland under the grant
No. NN514678440 on Predictive fault-tolerant control for nonlinear systems.

I would like to express my sincere gratitude to my family for their support and
patience. I am also grateful to Prof. Józef Korbicz for suggesting the problem, and
for his continuous help and support. I would like to express my thanks to my friends
Prof. Vicenç Puig (Universidad Politécnica de Cataluña) and Prof. Christophe
Aubrun (Université de Lorraine) for the long lasting and successful cooperation.
I also would like to express my special thanks to Dr. Lukasz Dziekan for his help in
preparing some of the computer programmes, laboratory experiments and
simulations of Chap. 6

Zielona Góra, August 2013 Marcin Witczak
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Chapter 1
Introduction

A permanent increase in the complexity, efficiency, and reliability of modern
industrial systems necessitates a continuous development in control and Fault Diag-
nosis (FD) [1–6] theory andpractice.Amoderate combinationof these twoparadigms
is intensively studied under the name Fault-Tolerant Control (FTC) [7–10]. FTC [1]
is one of the most important research directions underlying contemporary automatic
control. It can also be perceived as an optimised integration of advanced fault diagno-
sis [5, 6, 11] and control [1] techniques. Engineers have investigated the occurrence
and impact of faults for a long time, due to their potential to cause substantial damage
to machinery and risk for human health or life. Nowadays, the research and appli-
cations of FD and FTC extend beyond the normally accepted safety-critical systems
of nuclear reactors, chemical plants or aircrafts, to new systems such as autonomous
vehicles or fast rail systems. Early detection andmaintenance of faults can help avoid
system shutdown, breakdowns and even catastrophes involving human fatalities and
material damage. A rough scheme of the modern control system that is able to tackle
such a challenging problem is presented in Fig. 1.1 [6, 12].

As can be observed, the controlled system is the main part of the scheme, and
it is composed of actuators, process dynamics and sensors. Each of these parts is
affected by the so-called unknown inputs, which can be perceived as process and
measurement noise as well as external disturbances acting on the system. When
model-based control and analytical redundancy-based fault diagnosis are utilised
[1, 2, 5–10], then the unknown input can also be extended by model uncertainty,
i.e., the mismatch between the model and the system being considered.

The system may also be affected by faults. A fault can generally be defined as
an unpermitted deviation of at least one characteristic property or parameter of the
system from the normal condition, e.g., a sensor malfunction. All the unexpected
variations that tend to degrade the overall performance of a system can also be inter-
preted as faults. Contrary to the term failure, which suggests a complete breakdown
of the system, the term fault is used to denote a malfunction rather than a catastrophe.
Indeed, failure can be defined as a permanent interruption in the system ability to
perform a required function under specified operating conditions. This distinction is

M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, 1
Lecture Notes in Electrical Engineering 266, DOI: 10.1007/978-3-319-03014-2_1,
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2 1 Introduction

Fig. 1.1 Modern control system

Fig. 1.2 Regions of system performance

clearly illustrated in Fig. 1.2. Since a system can be split into three parts (Fig. 1.1),
i.e., actuators, the process, and sensors, such a decomposition leads directly to three
classes of faults:

• Actuator faults, which can be viewed as any malfunction of the equipment that
actuates the system, e.g., a malfunction of the electro-mechanical actuator for
a diesel engine [13]. This kind of faults can be divided into three categories:

Lock-in-place: the actuator is locked in a certain position at an unknown time
t f and does not respond to subsequent commands:

ui, k = ui, t f = const, ∀k > t f . (1.1)

Outage: the actuator produces zero force and moment, i.e., it becomes ineffec-
tive:

ui, k = 0, ∀k > t f . (1.2)
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Loss of effectiveness: a decrease in the actuator gain that results in a deflection
that is smaller than the commanded position:

ui, k = ki u
c
i, k, 0 < ki < 1 ∀k > t f , (1.3)

where uc
i, k stands for the required actuation.

• Process faults (or component faults), which occur when some changes in the
system make the dynamic relation invalid, e.g., a leak in a tank in a two-tank
system.

• Sensor faults, which can be viewed as serious measurements variations. Similarly
to actuator faults, two sensor fault scenarios can be considered:

Lock-in-place: the sensor is locked in a certain position at an unknown time t f

and does not provide the current value of the measured variable:

yi, k = yi, t f = const, ∀k > t f . (1.4)

Loss of measurement accuracy: a degradation of the measurement accuracy of
the sensor:

yi, k = ki yc
i, k, ∀k > t f , (1.5)

while yc
i, k stands for the true value of themeasured variable and ki is significantly

different from 0.

The role of the fault diagnosis part is to monitor the behaviour of the system and
to provide all possible information regarding the abnormal functioning of its com-
ponents. As a result, the overall task of fault diagnosis consists of three subtasks [2]
(Fig. 1.3):

Fault detection: to make a decision regarding the system stage–either that some-
thing is wrong or that everything works under the normal conditions;
Fault isolation: to determine the location of the fault, e.g., which sensor or actuator
is faulty;
Fault identification: to determine the size and type or nature of the fault.

However, from the practical viewpoint, to pursue a complete fault diagnosis the
following three steps have to be realised [14]:

Residual generation: generation of the signals that reflect the fault. Typically, the
residual is defined as a difference between the outputs of the
system and its estimate obtained with the mathematical model;

Residual evaluation: logical decision making on the time of occurrence and the
location of faults;

Fault identification: determination of the type of fault, its size and cause.

The knowledge resulting from these steps is then provided to the controller re-design
part, which is responsible for changing the control law in such a way as to maintain
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Fig. 1.3 Three-stage process
of fault diagnosis Detection

Isolation

Identification

the required system performance. Thus, the scheme presented in Fig. 1.1 can be
perceived as a fault-tolerant one.

Finally, it is worth nothing that the term symptom denotes a deviation of an observ-
able quantity from normal behaviour.

Varying nomenclature has been established throughout the years of FD and FTC
development, which can be summarised as follows [1]:

• Safety depicts the absence of danger. A safety system is a part of the control equip-
ment with the sole purpose to protecting a technological system from a permanent
damage (or preventing human casualties). It enables a controlled shutdown, which
halts the technological process into a safe state. It is capable of evaluating the infor-
mation about critical signals and enables dedicated actuators to stop the process
under special conditions. Hence, the overall system is called a fail-safe system.

• Reliability is the probability that a system performs its intended function for
a specified time period under normal conditions. Reliability studies the frequency
with which the system is faulty, but it is not able to provide information about the
current fault status. FTC cannot change the reliability of the plant components,
but it can improve the overall reliability because it allows the overall system to
remain functional even after the occurrence of faults.

• Availability is the probability that a system stays operational when needed. As
opposed to reliability, it is also dependent on the maintenance policies, which are
applied to the system components.

• Dependability accumulates together the three properties of safety, reliability and
availability. A dependable system is a fail-safe system with high availability and
reliability.

A fault-tolerant system has the appealing property that faults do not develop into
failures. In the strict form, the system is said to be fail-operational, because the
performance remains the same, whereas in a reduced form, the system is operational
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after fault occurrence, but with possibly degraded performance. Such a system is
then called fail-graceful.

The relation between safety and fault tolerance will be elaborated in greater
detail because of its importance. Let us assume that the system performance can
be described by different regions, as shown in Fig. 1.2.

The system should remain in the region of the required performance during the
period of being operational. The controller’s aim is to hold the nominal system in
this region, in spite of uncertainties and disturbances. It may even hold it during
small faults; however, this is not its primary aim. Indeed, the effect of faults is being
masked, therefore the fault diagnosis system may not work as required.

On the other hand, the region of degraded performance is the one where the faulty
system is allowed to remain. However, the performance of such a system is (in some
way) degraded and does not satisfy the nominal performance levels. The system
goes from the region of required performance to the degraded one due to faults. The
FTC controller should have the capability to perform recovery actions that prevent
further degradation of the performance. It is obvious that the optimal strategy is that
the system returns to the region of the required performance. At the borderline of
these two regions, a supervision system is involved, which diagnoses the faults and
reconfigures the controller into the new circumstances.

The region of unacceptable performance should be avoided at all costs, by means
of FTC. This region lies between the one of degraded performance and that of danger,
which could lead to a disaster. The system goes to this region by either a sudden fail-
ure, or due to an uneffective FTC system, i.e., not preventing faults from developing
into failures.

To avoid danger for the system and its environment, the safety system stops
the operation of the overall system. If the border of the region of unacceptable
performance is crossed, the safety system should be immediately involved. This
clearly shows that the FTC controller and the safety system work in separate regions
of the system performance and fulfil a complementary role. For example, in industrial
standards, safety systems and supervision systems are executed as separate units.

1.1 Introductory Background

If residuals are properly generated, then fault detection becomes a relatively easy
task. Since without fault detection it is impossible to perform fault isolation and,
consequently, fault identification, all efforts regarding the improvement of resid-
ual generation seem to be justified. This quality influences also FTC, and hence it
deserves a special attention.

There have been many developments in model-based fault detection since the
beginning of the 1970s, regarding both the theoretical context and the applicability
to real systems (see [2, 5, 15] for a survey). Generally, the most popular approaches
can be split into three categories, i.e.,
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Fig. 1.4 Simple residual
generation scheme

• parameter estimation,
• parity relation,
• observer-based.

All of them, in one way or another, employ a mathematical system description to
generate the residual signal. Except for parameter estimation-based FDI, the residual
signal is obtained as a difference between the system output and its estimate obtained
with its model, i.e.,

zk = yk − ŷk . (1.6)

The simplest model-based residual generation scheme can be realised in a way sim-
ilar to that shown in Fig. 1.4. In this case, the design procedure reduces to system
identification, and fault detection boils down to checking the norm of the residual
signal ≥zk≥. In such a simple residual generation scheme, neural networks seem to
be especially popular [5, 6].

Irrespective of the identificationmetod used, there is always the problem of model
uncertainty, i.e., the model-reality mismatch. Thus, the better the model used to
represent the system behaviour, the better the chance of improving the reliability and
performance in diagnosing faults. This is the main reason why the fault detection
scheme shown in Fig. 1.4 is rarely used for maintaining fault diagnosis of high-
safety systems. Indeed, disturbances as well as model uncertainty are inevitable in
industrial systems, and hence there exists a pressure creating the need for robustness
in fault diagnosis systems. This robustness requirement is usually achieved at the
fault detection stage, i.e., the problem is to develop residual generators which should
be insensitive (as far as possible) to model uncertainty and real disturbances acting
on a system while remaining sensitive to faults. In one way or another, all the above-
mentioned approaches can realise this requirement for linear systems.

Other problems arise in fault detection of non-linear systems. Indeed, the available
non-linear system identification techniques limit the application of fault detection.
For example, in the case of observer-based FDI, non-linear state-space models can-
not be usually obtained using physical considerations (physical laws governing the
system being studied). Such a situation is usually caused by the high complexity of
the system being examined. This means that a model which merely approximates



1.1 Introductory Background 7

system-input behaviour (no physical interpretation of the state vector or parameters)
should be employed.

The process of fault isolation requires usually more complex schemes than the
one of fault detection. Indeed, this very important task of FDI is typically realised by
either the so-called dedicated or generalised schemes [2, 3]. In the case of a dedicated
scheme, residual generators are designed in such a way that each residual zi , i =
1, . . . , s, is sensitive to one fault only while remaining insensitive to others. Apart
from a very simple fault isolation logic, which is given by

|zi, k | > Ti ⇒ fi, k ≺= 0, i = 1, . . . , s, (1.7)

where Ti is a predefined threshold, this fault isolation design procedure is usually
very restrictive and does not allow achieving additional design objectives such as
robustness to model uncertainty. Irrespective of the above difficulties, the dedicated
fault isolation strategy is frequently used in neural network-based FDI schemes [5].

On the contrary, residual generators of a generalised scheme are designed in such
a way that each residual zi , i = 1, . . . , s, is sensitive to all but one faults. In this
case, the fault detection logic is slightly more complicated, i.e.,

|zi, k | ≤ Ti

|z j, k | > Tj , j = 1, . . . , i − 1, i + 1, . . . , s

}
⇒ fi, k ≺= 0, i = 1, . . . , s,

(1.8)

but it requires a less restrictive design procedure than a dedicated scheme, and hence
the remaining design objectives can usually be accomplished.

The existing Fault Detection and Diagnosis (FDD) techniques can be, in a general
manner, classified into two categories: data-based (model-free) and model-based
techniques; each of these methods can additionally be classified as qualitative and
quantitative approaches [16].

In essence, a quantitative model-based FDD approach employs a mathematical
model (sometimes called analytical redundancy, in contrast to hardware redundancy)
to perform FDD tasks in real-time. Themost commonly used techniques are based on
state estimation, parameter estimation, parity space and some combination of these
methods. Due to the fact that most control schemes are model-based, the majority
of fault tolerant controllers are designed based on the mathematical model of the
system being analysed.

FDD suitable for FTC can be selected based on the following criteria: its capacity
to dealwith different types of faults (actuator, process and sensor faults), and to supply
quick detection, its isolability and identifiability, ease of integrating it with an FTC
scheme, its ability to identify multiple faults, robustness to uncertainties and noise,
and computational complexity. The comparison of the existing quantitative model-
based approaches can be found in [16]. It should be noted that no single method is
capable of satisfying all these goals. Though it can be concluded thatmultiple-model-
based, parameter estimation, simultaneous state and parameter estimation techniques
are more appropriate for the framework of active FTC [16].
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Fig. 1.5 Passive fault-tolerant controller

In general, FTC systems are classified into two distinct classes [16]: passive and
active ones. In passive FTC [17–20], controllers are designed to be robust against a set
of predefined faults, therefore there is no need for fault detection, but such a design
usually degrades the overall performance. Hence, passive FTC sets the control aim in
a context where the ability of the system to achieve its given objective is preserved,
using the identical control law, irrespective of the system situation (faulty or healthy).
Indeed, the control law is not changed when faults occur, so the system is able to
achieve its control goal, in general, only for objectives associated with a very low
level of performance (sometimes called the conservative approach). Further, such
a controller works sub-optimally for the nominal plant because its parameters are
prearranged so as to get a trade-off between the performance and fault tolerance. It
should be noted that a passive fault-tolerant controller is similar to the robust approach
when uncertain systems are considered. Although the difference lies not only in the
size and interpretation of faults versus uncertainties but also in the structure of the
constraints resulting from the faults [1]. An overall structure of passive FTC can be
seen in Fig. 1.5. In the literature, passive FTC systems are also known as reliable
control systems or control systems with integrity. However, further discussion of
passive FTC is beyond the scope of this book and interested readers are referred to
the previously mentioned papers and references therein.

In contrast to passive ones, active FTC schemes react to the system component
faults actively by reconfiguring control actions, and by doing so the system stability
and acceptable performance is maintained. In certain situations, degraded perfor-
mance must be accepted. An active FTC (referred from here on simply as FTC,
unless some reference to passive FTC must be made) in the literature is sometimes
also referred to as self-repairing, reconfigurable, restructurable, or self-designing
control systems. To achieve fault tolerance, the control system relies heavily on fault
detection and diagnosis to provide the most up-to-date information about the real
status of the system [5, 6, 21]. Hence, the main goal of an FTC system is to design
the controller with an appropriate architecture, which enables stability and satisfac-
tory performance, not only when all control components are healthy, but also in cases
when there are faults in sensors, actuators, or other system components.
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Fig. 1.6 Reconfigurable fault-tolerant controller

The design objectives of the active FTC must include not only transient and
tsteady-state performance for the nominal (healthy) system, but additionally for
a faulty system. However, the emphasis with respect to system behaviour in both
cases is quite different. In healthy conditions, the emphasis is on the performance
and overall quality of the system, whereas in the presence of a fault the primary
objective is to keep the system from further degradation, even when the nominal
performance cannot be achieved (though it should be regained as much as possible).

Usually, as depicted in Fig. 1.6, the FTC system can be divided into four sub-
systems [16]:

• a reconfigurable controller,
• an FDD scheme,
• a controller reconfiguration scheme,
• a command/reference governor.

It should be noted that the inclusion of both FDD and a reconfigurable controller
within the system structure is the main difference between the active and the pas-
sive FTC system. Hence, the key issue of a successful FTC scheme is to design
a controller which can be easily reconfigured and an FDD scheme that is able to
detect faults quickly (being robust to model uncertainties, external disturbances and
changing operating conditions). Lastly, a reconfiguration mechanismmust be able to
recover as much as possible the pre-fault system performance, while working under
uncertainties and time-delays intrinsic in FDD as well as the control input and the
system state constraints. The key issue in every FTC system is the limited time frame
allotted for FDD and reconfiguration of the system controller. Moreover, efficient
employment and supervision of available redundancy (in software, hardware and
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communication networks), while at the same time stabilizing the faulty plant with
some performance goals, are some of the main issues to take into account in FTC.

As shown in Fig. 1.6, FDD must provide information about all detected faults
in real time. Based on this information, the reconfiguration block must take into
consideration the current system state and the outputs, as well as to construct an
appropriate post-fault system model. Afterwards, the reconfiguration data for the
controller should be designed, in such a way that a currently faulty system is sta-
bilised and fault propagation is stopped. The second objective is to recover as much
of the nominal performance as possible.Moreover, there is often a need for synthesiz-
ing a feed-forward controller in order to guarantee that the closed-loop system tracks
a future trajectory during its faulty state. At the same time, the actuator saturation and
other system constraints should be taken into consideration and the system trajecto-
ries adjusted if necessary. Such an FTC system is often classified as a reconfigurable
one, though some authors call it an accommodation scheme [1].

However, in some cases reconfiguration of the controller is not enough to stabilize
the faulty system. In such cases, the structure of the new controller must be changed.
This restructuring also uses an alternative input and output signals in the new con-
troller configuration. Afterwards, a new control law has to be designed on-line. Such
an FTC controller is called a restructurable fault-tolerant controller, and can be seen
in Fig. 1.7. This type of FTC is also sometimes called reconfiguration [1], but to avoid
confusion the former terms will be used, i.e., reconfigurable versus restructurable.
Restructuring of the controller is necessary after occurrence of severe faults that lead
to serious changes of the plant behaviour:

• Actuator failures interrupt the normal means of controlling the plant and could
make the plant partially uncontrollable. Alternative (or redundant) actuators have
to be used.

• Sensor failures disrupt the information flow between the controller and the plant.
They may make the plant partially unobservable. Alternative measurements have
to be chosen and used in such a way that the control task is still possible.

• Plant faults alter the dynamical behaviour of the overall system. If these alterations
cannot be tolerated by any existing control law, then the overall control loop has
to be redesigned and a new control law computed.

The necessity of control restructuring is apparent if actuator or sensor failures
are contemplated. The total failure of these components leads to a breakdown of
the control loop. Hence, a simple adaptation of the controller parameters to a new
situation is no longer possible and those having alternative sensors or actuators have
to be taken into account, preferably the ones that have similar interactions with the
plant and not being under the influence of a fault. Therefore, it is possible to design
a controller that satisfies the performance specification of the nominal system [1].

Currently, the existing reconfigurable fault-tolerant control design methods can
be classified into one of the following approaches [16, 17]:

• Linear quadratic [22],
• Pseudo-inverse/control mixer [23],
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Supervision

,

Fig. 1.7 Restructurable fault-tolerant controller

• Intelligent control using expert systems [24], neural networks [25], fuzzy logic
[26] and learning methodologies [27],

• Gain scheduling/linear parameter varying [28],
• Adaptive control (model reference) [29],
• Model following [30],
• Multiple-model [31],
• Integrated diagnostics and control [32],
• Eigenstructure assignment [33],
• Feedback linearisation or dynamic inversion [34],
• H∞ and other robust controls [35],
• Model predictive control [36],
• Linear matrix inequality [37],
• Variable structure and sliding mode control [38],
• Generalised internal model control [39].

FTC methods, as shown in Fig. 1.8, can be also classified in accordance with the
following criteria: mathematical design tools, design approaches, reconfiguration
mechanisms and the type of systems to be dealt with. The methods (Fig. 1.8) were
listed approximately in chronological order to emphasize the historical evolution of
FTC design techniques.

In most cases and practical applications, FTC systems rarely use only one of these
methods, and to obtain the best possible results a combination of several methods is
usually more appropriate. Hence, Fig. 1.8 shows combinations of different control
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Fig. 1.8 Classification of active FTC systems [16]
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structures and control design algorithms frequently used in successful FTC control
schemes.

Additionally, many of the currently used FTC design methods rely on ideas origi-
nally developed for other control objectives. However, using those well-known con-
trol techniques does not mean that new problems and challenges will not appear
besides the standard problems found in the conventional controller synthesis.

Finally, in order to judge the adequateness of a control method for FTC, its ability
to be implemented in an on-line real-time setting and yet at the same time to be
able to maintain acceptable (nominal or degraded) performance is one of the most
important criteria. Hence, the following requirements for any technique used in FTC
systems can be proposed [16]:

• control reconfiguration must be computed reliably under real-time constraints;
• the reconfigurable controller should be synthesised automatically with as little as
possible of trail-and-error and human interactions;

• the selected methods must always provide a solution even if the obtained solution
is suboptimal.

As has already been mentioned, a number of books have been published in the
last decade on the emerging problem of fault-tolerant control. In particular, the book
of [7], which is mainly devoted to fault diagnosis and its applications, provides some
general rules for hardware-redundancy based FTC. On the other hand, [8] introduce
the concepts of active and passive FTC. The authors also investigate the problem
of performance and stability of FTC under imperfect fault diagnosis. In particular,
they consider (under a chain of some, not necessarily easy to satisfy, assumptions)
the effect of delayed fault detection and imperfect fault identification, but the fault
diagnosis scheme is treated separately during the design and no real integration
of fault diagnosis and FTC is proposed. FTC is also treated in the very interest-
ing work [9], where a number of practical case studies of FTC are presented, i.e.,
a winding machine, a three-tank system, and an active suspension system. Unfortu-
nately, in spite of the incontestable appeal of the proposed approaches, neither FTC
integrated with fault diagnosis nor a systematic approach to non-linear systems is
studied. A particular case of a non-linear aircraft model is studied in [10], but the
above-mentioned integration problem is also neglected.

Thus, the main objective of this book is to provide reliable tools for both FD
and FTC for non-linear systems along with a suitable integration procedure that will
take into account the imprecision of the FD, which impairs the overall performance
of FTC.

1.2 Content

The reminder part of this book is divided into two main parts:
Robust fault diagnosis: This part is composed of three chapters. Chapter2 presents

a number of original design strategies for the so-called unknown input observer for

http://dx.doi.org/10.1007/978-3-319-03014-2_2
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both deterministic and stochastic non-linear discrete-time systems. The general
idea of unknown input decoupling is shown. As has already been mentioned, the
unknown input may represent noise, disturbances as well as model uncertainty. This
means that one way to achieve robustness is to decouple the unknown input from
the residual. This can be realised with the unknown input observer or filter. Sub-
sequently, careful discussion on unwanted effects of a fault decoupling is given.
Indeed, decoupling of the unknown input may result in fault decoupling. This unap-
pealing phenomenon may lead to the so-called effect of undetected faults, which
may have serious consequences. Thus, careful analysis regarding such an issue is
provided. The rest of the chapter is devoted to different design strategies, which can
be applied in various situations. Moreover, a computational framework for deriv-
ing the so-called unknown input distribution matrix (shaping the influence of the
unknown input on the system) is provided. The remaining chapter is focused on
the so-called soft computing techniques [5, 40–44]. Soft computing is an evolving
collection of methodologies, which aims to exploit tolerance for imprecision, uncer-
tainty, and partial truth to achieve robustness, tractability, and low cost. It provides
an attractive opportunity to represent ambiguity in human thinking with real life
uncertainty.

In particular, Chap. 3 is devoted to neural networks, which are one of the main
paradigms of soft computing. It also presents original developments regarding neural
network-based robust fault diagnosis [6, 12, 45–47]. One objective of this chapter is
to show how to describemodelling uncertainty of neural networks. Another objective
is to show how to use the resulting knowledge about model uncertainty for robust
fault detection. It is also worth noting that this chapter presents experimental design
strategies that can be used for decreasing model uncertainty of neural networks
[6, 45, 47].

Integrated fault diagnosis and control: This part is composed of three chapters.
Chapter4 introduces the idea of combining fault diagnosis and control schemes
within an integrated FTC framework for non-linear systems. In particular, the main
idea is to estimate the fault with the unknown input observer by treating the former as
an unknown input acting on the system. Subsequently, the information about the fault
and an associated fault estimation error is fed into the suitable controller, which aims
at compensating the effect of the fault. The originality of the approach follows from
the fact that the fault estimation error is taken into account while this unappealing
phenomenon is neglected in the approaches presented in the literature [7–10]. The
approach presented in Chap.5 extends the general framework presented in Chap. 4 by
relaxing the constraints imposed on system nonlinearities. Moreover, by exploiting
theH∞ approach, the robustness with respect to the noise/disturbances is achieved.
Finally, Chap. 6 shows how to implement the general integrated fault diagnosis and
control scheme within the fault-tolerant control framework for non-linear systems
described by Takagi–Sugeno models. In particular, the chapter contains a short intro-
duction into fuzzy logic while its remaining part is focused on the so-called Takagi–
Sugeno models [5]. A large number of publications both in the control and fault

http://dx.doi.org/10.1007/978-3-319-03014-2_3
http://dx.doi.org/10.1007/978-3-319-03014-2_4
http://dx.doi.org/10.1007/978-3-319-03014-2_5
http://dx.doi.org/10.1007/978-3-319-03014-2_4
http://dx.doi.org/10.1007/978-3-319-03014-2_6
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diagnosis frameworks focuses particular attention on this appealing methodology.
The chapter contains a short introduction to this computational intelligence method
and shows its application to fault diagnosis and fault-tolerant control.
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Robust Fault Diagnosis



Chapter 2
Unknown Input Observers and Filters

As can be observed in the literature, observers (or filters in a stochastic framework)
are commonly used in both control and fault diagnosis schemes of non-linear sys-
tems (see, e.g., [1–6] and the references therein). Undoubtedly, the most common
approach is to use robust observers, such as theUnknown InputObserver (UIO) [2, 7],
which can tolerate a degree of model uncertainty and hence increase the reliability
of fault diagnosis. Although the origins of UIOs can be traced back to the early 1970s
(cf. the seminal work of Ref. [8]), the problem of designing such observers is still of
paramount importance both from the theoretical and practical viewpoints. A large
amount of knowledge on using these techniques for model-based fault diagnosis has
been accumulated through the literature for the last three decades (see Ref. [2] and
the references therein). A large number of approaches to non-linear fault diagnosis
and fault-tolerant control was published during the last two decades. For example,
in Ref. [9] the high gain observer for Lipschitz systems was applied for the purpose
of fault diagnosis. One of the standard methods of observer design consists in using
a non-linear change of coordinates to turn the original system into a linear one (or
a pseudo linear one). As indicated in the literature, such approaches can be applied
for fault diagnosis and FTC [10, 11]. It should also be noted that when the feasi-
bility condition regarding the non-linear change of coordinates is not matched, then
the celebrated Extended Kalman Filter (EKF) can be applied in both stochastic and
deterministic context (see, e.g., [2]).

Generally, design problems regarding the UIOs for non-linear systems can be
divided into three distinct categories:

• Non-linear state transformation-based techniques: Apart from a relatively large
class of systems forwhich they canbe applied, even if the non-linear transformation
is possible it leads to another non-linear system and hence the observer design
problem remains open (see Ref. [7] and the references therein).

• Linearisation-based techniques: Such approaches are based on a similar strategy
like that for the EKF [1]. In Ref. [2] the author proposed an extended unknown
input observer for non-linear systems. He also proved that the proposed observer
is convergent under certain conditions.

M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, 19
Lecture Notes in Electrical Engineering 266, DOI: 10.1007/978-3-319-03014-2_2,
© Springer International Publishing Switzerland 2014
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• Observers for particular classes of non-linear systems: For example UIOs for
polynomial and bilinear systems or for Lipschitz systems [2, 12–14].

In the light of the above discussion, it is clear that accurate state estimation is
extremely important for fault detection and control applications.However, estimation
under noise and unknown inputs is very difficult.

In order to face the above-mentioned challenges, the design problems regarding
UIOs (undertakenwithin the framework of this chapter) are divided into three distinct
categories:

1. How to determine the unknown input distributionmatrix, which will not decouple
the effect of faults from the residual?

2. How to develop a possibly simple and reliable design procedure of UIO for both
non-linear stochastic and deterministic systems?

3. How to extend the approach developed for the constant unknown input distribution
matrix into a set of predefined unknown input distribution matrices?

Concerning the first question, a partial answer can be found in Ref. [15]. Indeed, the
authors concentrate on the determination of the unknown input distribution matrix
for linear systems but they do not answer the question when this matrix will cause the
fault decoupling effect. Apart from the fact that there are approaches that can be used
for designing UIOs for non-linear systems (listed above), the problem of determining
the unknown input distributionmatrix for this class of systems remains untouched. In
otherwords, the authors assume that thismatrix is known,which apart from relatively
simple cases is never the truth. It should also be mentioned that it is usually assumed
that disturbance decoupling will not cause a decrease in fault diagnosis sensitivity or
fault decoupling in the worst scenario. To tackle this problem within the framework
of this chapter, a numerical optimisation-based approach is proposed that can be
used to estimate the unknown input distribution matrix which does not cause the
fault decoupling effect. As an answer to the second question, this work presents an
alternative Unknown Input Filter (UIF) for non-linear systems, which is based on the
general idea of the Unscented Kalman Filter (UKF) [16, 17]. This approach is based
on an idea similar to that proposed in Refs. [2, 18], but the structure of the scheme is
different and instead of the EKF the UKF is employed. To tackle the third problem,
it is shown that the Interacting Multiple Model (IMM) algorithm can be employed
for selecting an appropriate unknown input distribution matrix from a predefined set.
The proposed solutions can be perceived as an alternative to the Takagi–Sugeno-
based approach presented, e.g., in Ref. [19], which will be the subject of Chap. 6.
Finally, it should be mentioned that some of the results portrayed in this chapter were
originally presented in Refs. [18, 20, 21].

http://dx.doi.org/10.1007/978-3-319-03014-2_6
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2.1 Unknown Input Decoupling

Let us consider a non-linear stochastic system given by the following equations:

xk+1 = g (xk) + h(uk) + Edk + Lf k + wk, (2.1)

yk+1 = Cxk+1 + vk+1. (2.2)

Note that the unknown input and fault distribution matrices, denoted by E and L,
are assumed (for the sake of simplicity) constant in this section. Such an assumption
will be relaxed in Sect. 2.6, where a set of predefined matrices will be used instead.
Moreover, it should bementioned that this chapter focuses on faults that can influence
the state equation (2.1), such as actuator faults. The case of sensor faults is beyond
the scope of this section and will be investigated in the subsequent part of the book.

The main problem is to design a filter which is insensitive to the influence of the
unknown input (external disturbances and modeling errors) while being sensitive to
faults. The necessary condition for the existence of a solution to the unknown input
decoupling problem is as follows:

rank(CE) = rank(E) = q (2.3)

(see Ref. [2] for a comprehensive explanation). If the condition (2.3) is satisfied, then

it is possible to calculate H = (CE)+ = [
(CE)T CE

]−1
(CE)T . Thus, by inserting

(2.1) into (2.2) and then multiplying (2.2) by H it is straightforward to show that

dk = H
[

yk+1 − C
[
g (xk) + h(uk) + Lf k + wk

] − vk+1

⎢
. (2.4)

Substituting (2.4) into (2.1) for dk gives

xk+1 = ḡ (xk) + h̄(uk) + Ēyk+1 + L̄f k + w̄k, (2.5)

where

ḡ (·) = Gg (·) , h̄(·) = Gh(·),
Ē = EH, w̄k = Gwk − EHvk+1,

and

G = I − EHC.

Consequently, the general observer structure is

x̂k+1 = ḡ
(
x̂k
) + h̄(·) + Ēyk+1 + K(·), (2.6)
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where K(·) is the state correction term. In order to make further deliberations more
general, no particular form of K(·) is assumed in the present and subsequent section.

Let us define a residual as a difference between the output of the system and its
estimate:

zk+1 = yk+1 − Cx̂k+1

= C(ḡ (xk) − ḡ
(
x̂k
) − K(·)) + f̄ k + Cw̄k + vk+1, (2.7)

where

f̄ k = CL̄f k = C
[

In − E
⎥
(CE)T CE

]−1
(CE)T C

⎢
Lf k . (2.8)

A natural question arises: Is it possible that the fault will be decoupled from the
residual? If so the proposed strategy seems to be useless as it will lead to undetected
faults,whichmayhave serious consequences regarding the performanceof the system
being diagnosed. An answer is provided in the subsequent section.

2.2 Preventing Fault Decoupling

It is usually assumed that a disturbance decoupling will not cause a decrease in
fault diagnosis sensitivity or a fault decoupling in the worst scenario. But such an
assumption is a rather unpractical tool in serious applications. Thus, to overcome such
a challenging problem, the following theorem provides a simple rule for checking
if the proposed unknown input observer will not decouple the effect of a fault from
the residual. It relates the fault and unknown input distribution matrices denoted by
L and E, respectively. Moreover, let us assume that the following rank condition is
satisfied:

rank(CL) = rank(L) = s. (2.9)

Theorem 2.1 The fault f k will not be decoupled from the residual (2.7) if and only
if the matrix

[CE CL] (2.10)

is a full-rank one.

Proof Let us suppose (theoretically) that rank(CL̄) = s. Then it can be shown that

f k = (CL̄)+f̄ k, (2.11)

which means that there exists a unique relationship between f k and f̄ k and hence the
fault will not be decoupled from the residual. Unfortunately, the subsequent part of
the proof shows that this is not always possible to attain. Indeed, (2.8) can be written
into an equivalent form
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f̄ k =
[

Im − CE
⎥
(CE)T CE

]−1
(CE)T

⎢
CLf k . (2.12)

Moreover, it can be observed that

[
Im − CE

⎥
(CE)T CE

]−1
(CE)T

⎢2

= Im − CE
⎥
(CE)T CE

]−1
(CE)T , (2.13)

which means that Im − CE
[
(CE)T CE

]−1
(CE)T is an idempotent matrix. One of

the fundamental properties of an idempotent matrix is that its rank is equal to the
trace, i.e.,

rank

(
Im − CE

⎥
(CE)T CE

]−1
(CE)T

)

= trace

(
Im − CE

⎥
(CE)T CE

]−1
(CE)T

)

= trace (Im) − trace

(
CE

⎥
(CE)T CE

]−1
(CE)T

)

= m − trace

(⎥
(CE)T CE

]−1
(CE)T CE

)
= m − q. (2.14)

Thus, from (2.9) it is clear that

rank

([
Im − CE

⎥
(CE)T CE

]−1
(CE)T

⎢
CL

)

∀ min(m − q, s). (2.15)

On the other hand,

rank

([
Im − CE

⎥
(CE)T CE

]−1
(CE)T

⎢
CL

)

≥ rank

(
Im − CE

⎥
(CE)T CE

]−1
(CE)T

)
+ rank (CL) − m

= s − q. (2.16)

Finally,

max(s − q, 0) ∀ rank

([
Im − CE

⎥
(CE)T CE

]−1
(CE)T

⎢
CL

)

∀ min(m − q, s). (2.17)
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Thus, it is necessary to find an alternative condition under which

f̄ k = CLf k − CE
⎥
(CE)T CE

]−1
(CE)T CLf k

= CLf k − CLf k = 0. (2.18)

Indeed, any vector CLf k ⇒ col(CE), where

col(CE) = {
α ⇒ R

m : α = CEβ for some β ⇒ R
q} , (2.19)

can be written as
CLf k = CEf̃ k, (2.20)

for some non-zero vector f̃ k . As a consequence,

CE
⎥
(CE)T CE

]−1
(CE)T CLf k

= CE
⎥
(CE)T CE

]−1
(CE)T CEf̃ k = CEf̃ k = CLf k . (2.21)

From the above discussion, it is clear that the proposed unknown input observer
will not decouple the fault effect from the residual iff CLf k /⇒ col(CE), which is
equivalent to

rank
([

CE CLf k

]) = q + 1 (2.22)

for all fi,k ≺= 0, i = 1, . . . , s. It is clear that (2.22) is equivalent to the fact that the
only solution to (for all fi,k ≺= 0, i = 1, . . . , s)

α1(CE)1 + α2(CE)2 + · · · + αq(CE)q + αq+1CLf k = 0, (2.23)

is for αi = 0, i = 1, . . . , q + 1. By further expansion of (2.23) to

α1(CE)1 + · · · + αq(CE)q + αq+1f1,k(CL)1 + · · · + αq+1fs,k(CL)s = 0, (2.24)

it can be seen that the zero-valued solution to (2.24) is equivalent to the existence of
a full-rank matrix (2.10), which completes the proof.

Since the fault decoupling prevention problem is solved, then it is possible to provide
a set of approaches for designing unknown input observers and filters.
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2.3 First- and Second-order Extended Unknown
Input Observers

The approach presented in this section is dedicated for deterministic systems. The
proposed strategy is based on the general framework of the second-order EKF. In
particular, the section will show the design of both first- and second-order EUIO.
Moreover, to make the presentation more general, the unknown input distribution
matrix is assumed to be a time-varying one. Let us consider a non-linear discrete-
time system described by (the fault free-case will be considered for the convergence
analysis purposes)

xk+1 = g (xk) + h(uk) + Ekdk, (2.25)

yk+1 = Ck+1xk+1. (2.26)

The problem is to design an observer that is insensitive to the influence of an unknown
input. The necessary condition for the existence of a solution to the unknown input
decoupling problem is

rank(Ck+1Ek) = rank(Ek) = q (2.27)

(see [15, p. 72, Lemma 3.1] for a comprehensive explanation). If the condition (2.27)
is satisfied, then it is possible to calculate Hk+1 = (Ck+1Ek)

+, where (·)+ stands for
the pseudo-inverse of its argument. Thus, by multiplying (2.26) by Hk+1 and then
inserting (2.25), it is straightforward to show that

dk = Hk+1
[
yk+1 − Ck+1

[
g (xk) + h(uk)

]]
. (2.28)

Substituting (2.28) into (2.25) gives

xk+1 = ḡ (xk) + h̄ (uk) + Ēkyk+1, (2.29)

where

ḡ (·) = Ḡkg (·) , h̄ (·) = Ḡkh(·)
Ḡk = I − EkHk+1Ck+1, Ēk = EkHk+1. (2.30)

Thus, the unknown input observer for (2.25) and (2.26) is given as follows:

x̂k+1 = x̂k+1/k + Kk+1(yk+1 − Ck+1x̂k+1/k),

where
x̂k+1/k = ḡ

(
x̂k
) + h̄ (uk) + Ēkyk+1. (2.31)
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As a consequence, the second-order extended Kalman filter algorithm used for the
state estimation of (2.25) and (2.26) can be given as follows:

x̂k+1/k = ḡ
(
x̂k
) + h̄ (uk) + Ēkyk+1 + sk, (2.32)

Pk+1/k = ĀkPkĀk
T + Qk, (2.33)

Kk+1 = Pk+1/kCT
k+1

·
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)−1
, (2.34)

x̂k+1 = x̂k+1/k + Kk+1(yk+1 − Ck+1x̂k+1/k), (2.35)

Pk+1 = [
I − Kk+1Ck+1

]
Pk+1/k, (2.36)

where

Āk = ∂ḡ (xk)

∂xk

∣∣∣∣
xk=x̂k

= Ḡk
∂g (xk)

∂xk

∣∣∣∣
xk=x̂k

= ḠkAk, (2.37)

and

si,k = 1

2
trace

⎡
⎣Pk

∂ḡi (xk)
2

∂x2k

∣∣∣∣∣
xk=x̂k

⎤
⎦ , i = 1, . . . , n. (2.38)

The algorithm (2.32)–(2.36) can be perceived as the second-order EKF for non-linear
systems with an unknown input. It should also be pointed out that when sk = 0 then
the algorithm (2.32)–(2.36) reduces to the first-order EUIO.

2.3.1 Convergence Analysis

An important property is the fact that the proposed algorithm is used for the deter-
ministic systems (2.25) and (2.26), and hence there exists a design freedom regarding
matrices Qk and Rk that can be exploited for increasing the convergence rate of the
EUIO. To tackle this challenging problem, the convergence conditions of the EUIO
related to the matrices Qk and Rk are developed and carefully analysed.

Using (2.35), the state estimation error can be given as:

ek+1 = xk+1 − x̂k+1 = [
I − Kk+1Ck+1

]
ek+1/k, (2.39)

where

ek+1/k = xk+1 − x̂k+1/k ≤ Ākek − sk . (2.40)
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Assuming that ek ≺= 0 and defining an unknown diagonal matrix:

βk = diag(β1,k, . . . ,βn,k) (2.41)

such that

−βkek = sk, (2.42)

it is possible to write

ek+1/k = xk+1 − x̂k+1/k

= αk
[
Āk + βk

]
ek = αkZkek, (2.43)

whereαk = diag(α1,k, . . . ,αn,k) is an unknown diagonalmatrix. Thus, using (2.43),
the Eq. (2.39) becomes:

ek+1 = [
I − Kk+1Ck+1

]
αkZkek . (2.44)

It is clear from (2.43) that αk represents the lineariztion error. This means that the
convergence of the proposed observer is strongly related to the admissible bounds of
the diagonal elements of αk . Thus, the main objective of further deliberations is to
show that these bounds can be controlled with the use of the instrumental matrices
Qk and Rk .

First let us start with the convergence conditions, which require the following
assumptions:
Assumption 1 Following Ref. [22], it is assumed that the system given by (2.26) and
(2.29) is locally uniformly rank observable. This guaranties that (see Ref. [22] and
the references therein) that the matrix Pk is bounded, i.e., there exist positive scalars
θ̄ > 0 and θ > 0 such that

θI ∞ P−1
k ∞ θ̄I. (2.45)

Assumption 2 The matrix Ak is uniformly bounded and there exists A−1
k .

Moreover, let us define

ᾱk = max
j=1,...,n

|αj,k |, αk = min
j=1,...,n

|αj,k|. (2.46)

where σ (·) and σ̄ (·) denote the minimum and the maximum singular value of their
arguments, respectively.

Theorem 2.2 If

ᾱk ∀
[
α2

k

σ (Zk)
2 σ (Ck+1)

2 σ
(
ZkPkZT

k + Qk

)
σ̄
(
Ck+1Pk+1/kCT

k+1 + Rk+1
)
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+ (1 − ζ)σ
(
ZkPkZT

k + Qk

)
σ̄ (Zk)

2 σ̄ (Pk)

⎢ 1
2

, (2.47)

where 0 < ζ < 1, then the proposed extended unknown input observer is locally
asymptotically convergent.

Proof The main objective of further deliberations is to determine conditions for
which the sequence {Vk}∞k=1, defined by the Lyapunov candidate function

Vk+1 = eT
k+1P−1

k+1ek+1, (2.48)

is a decreasing one. Substituting (2.44) into (2.48) gives

Vk+1 = eT
k ZT

k αk

⎥
I − CT

k+1KT
k+1

]
P−1

k+1

× [
I − Kk+1Ck+1

]
αkZkek . (2.49)

Using (2.36), it can be shown that

⎥
I − CT

k+1KT
k+1

]
= P−1

k+1/kPk+1. (2.50)

Inserting (2.34) into
[
I − Kk+1Ck+1

]
yields

[
I − Kk+1Ck+1

] = Pk+1/k

⎥
P−1

k+1/k − CT
k+1

×
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)−1
Ck+1

⎢
. (2.51)

Substituting (2.50) and (2.51) into (2.49) gives

Vk+1 = eT
k ZT

k αk

⎥
P−1

k+1/k − CT
k+1

×
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)−1
Ck+1

⎢
αkZkek . (2.52)

The sequence {Vk}∞k=1 is decreasing when there exists a scalar ζ, 0 < ζ < 1, such
that

Vk+1 − (1 − ζ)Vk ∀ 0. (2.53)

Using (2.48) and (2.52), the inequality (2.53) can be written as

eT
k

⎥
ZT

k αk

⎥
P−1

k+1/k − CT
k+1

·
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)−1
Ck+1

⎢
αkZk
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−(1 − ζ)P−1
k

]
ek ∀ 0. (2.54)

Using the bounds of the Rayleigh quotient for X ⊗ 0, i.e., σ (X) ∀ eT
k Xek

eT
k ek

∀ σ̄ (X),

the inequality (2.54) can be transformed into the following form:

σ̄
(

ZT
k αkP−1

k+1/kαkZk

)

− σ

(
ZT

k αkCT
k+1

(
Ck+1Pk+1/kCT

k+1 + Rk+1

)−1

×Ck+1αkZk) − (1 − ζ)σ
(

P−1
k

)
∀ 0. (2.55)

It is straightforward to show that

σ̄
(

ZT
k αkP−1

k+1/kαkZk

)

∀ σ̄ (αk)
2 σ̄ (Zk)

2 σ̄
(

P−1
k+1/k

)
, (2.56)

and

σ

(
ZT

k αkCT
k+1

(
Ck+1Pk+1/kCT

k+1 + Rk+1

)−1 × Ck+1αkZk

)

≥ σ (αk)
2 σ (Zk)

2 σ
( ¯Ck+1

)2
× σ

((
Ck+1Pk+1/kCT

k+1 + Rk+1

)−1
)

= σ (αk)
2 σ (Zk)

2 σ
( ¯Ck+1

)2
σ̄
(
Ck+1Pk+1/kCT

k+1 + Rk+1
) . (2.57)

Applying (2.56) and (2.57) to (2.55) and then using (2.33), one can obtain (2.47).
Thus, if the condition (2.47) is satisfied, then {Vk}∞k=1 is a decreasing sequence

and hence, under the local uniform rank observability condition [22], the proposed
observer is locally asymptotically convergent.

2.3.2 Design Principles

First-order Case

When first-order expansion is employed, then sk in (2.32) should be sk = 0. This
means that βk = 0 and hence Zk = Āk .
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Remark 1 As can be observed by a straightforward comparison of (2.47) and (2.58),
the convergence condition (2.47) is less restrictive than the solution obtained with
the approach proposed in Ref. [22], which can be written as

ᾱk ∀
⎛
⎝ (1 − ζ)σ

(
ĀkPkĀk

T + Qk

)

σ̄
(
Āk
)2

σ̄ (Pk)

⎞
⎠

1
2

. (2.58)

However, (2.47) and (2.58) become equivalent when Ek ≺= 0, i.e., in all cases when
unknown input is considered. This is because of the fact that the matrix Āk is singular
when Ek ≺= 0, which implies that σ

(
Āk
) = 0. Indeed, from (2.37),

Āk = ḠkAk =
[

I − Ek

⎥
(Ck+1Ek)

T Ck+1Ek

]−1

(Ck+1Ek)
T Ck+1

]
Ak, (2.59)

and under Assumption 2, it is evident that Āk is singular when

Ek

⎥
(Ck+1Ek)

T Ck+1Ek

]−1
(Ck+1Ek)

T Ck+1

is singular. The singularity of the above matrix can be easily shown with the use of
(2.27), i.e.,

rank

(
Ek

⎥
(Ck+1Ek)

T Ck+1Ek

]−1
(Ck+1Ek)

T Ck+1

)

∀ min
[
rank(Ek), rank(Ck+1)

] = q. (2.60)

Taking into account the fact that q < n, the singularity of Āk becomes evident.
Remark 2 It is clear from (2.47) that the bound of ᾱk can be maximised by suitable
settings of the instrumental matrices Qk and Rk . Indeed, Qk should be selected in
such a way as to maximise

σ
(

ĀkPkĀk
T + Qk

)
. (2.61)

To tackle this problem, let us start with a similar solution to the one proposed in
Ref. [23], i.e.,

Qk = γĀkPkĀk
T + δ1I, (2.62)

where γ ≥ 0 and δ1 > 0. Substituting, (2.62) into (2.61) and taking into account that
σ
(
Āk
) = 0, it can be shown that,
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(1 + γ)σ
(

ĀkPkĀk
T
)

+ δ1I = δ1I. (2.63)

Indeed, singularity of Āk , causes σ
(

ĀkPkĀk
T
)

= 0, which implies the final result

of (2.63). Thus, this solution boils down to the classical approach with constant
Qk = δ1I. It is, of course, possible to set Qk = δ1I with δ1 large enough. As has
been mentioned, the more accurate (near “true” values) the covariance matrices, the
better the convergence rate. This means that, in the deterministic case, both matrices
should be zero ones. On the other hand, such a solution may lead to the divergence
of the observer. To tackle this problem, a compromise between the convergence and
the convergence rate should be established. This can be easily done by setting Qk as

Qk = (γεT
k εk + δ1)I, εk = yk − Ck x̂k, (2.64)

with γ > 0 and δ1 > 0 large and small enough, respectively. Since the form of Qk is
established, then it is possible to obtain Rk in such a way as to minimise

σ̄
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)
. (2.65)

To tackle this problem, let us start with the solution proposed in Refs. [22, 23]:

Rk+1 = β1Ck+1Pk+1/kCT
k+1 + δ2I, (2.66)

with β1 ≥ 0 and δ2 > 0. Substituting (2.66) into (2.65) gives

(1 + β1)σ̄
(

Ck+1Pk+1/kCT
k+1

)
+ δ2I. (2.67)

Thus, β1 in (2.66) should be set so as to minimise (2.67), which implies (β1 = 0)

Rk+1 = δ2I, (2.68)

with δ2 small enough.

Second-order Case

From Remark 2 it is clear that the matrix Rk should be set according to (2.68) both
in the first- and the second-order case. Indeed, it can be easily observed that its
derivation does not depend on the form of Zk . A significantly different situation
takes place in the case of Qk . Indeed, when (2.64) is employed to set Qk , then from
(2.33) and (2.36) it is evident that Pk is large in the sense of its singular values as
well as in the trace. Thus, from (2.38) and (2.42) it is clear that the diagonal entries
of βk should be relatively large. On the other hand, by observing (2.47) it can be
concluded that the upper bound of αk strongly depends on Zk while
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σ̄ (Zk) ∀ σ̄
(
Āk
) + σ̄

(
βk

)
= σ̄

(
Āk
) + max

i=1,...,n
|βi,k |. (2.69)

The above-described situation results in the fact that the upper bound of αk can be
very small (while using (2.64)), which may lead to the divergence of the observer.
Thus, the only solution is to set Qk in a conventional way, i.e.,

Qk+1 = δ3I, (2.70)

with δ3 > 0 small enough.

2.4 Unscented Kalman Filter

The main objective of this section is to provide a general framework for designing
the UIF for non-linear stochastic systems, which is based on the UKF.

As has already been mentioned, state estimation for non-linear stochastic systems
is a difficult and important problem for modern fault diagnosis and control systems
(see the recent books in the subject area for a complete survey and explanations
[2, 3, 24–27]). As can be observed in the literature, themost frequently used approach
to state estimation of non-linear stochastic systems is to use the celebrated EKF.
However, the linearised non-linear transformations of the state and/or output are
reliable only if there is no excessive difference between the local behaviour compared
to the original non-linear transformation. If this is not the case, then the EKF will
suffer from divergence. However, in the preceding part of this chapter the process and
measurement noise matrices are used as instrumental matrices that can significantly
improve the convergence performance (seeRefs. [2, 18] for a comprehensive survey).
Unfortunately, in the stochastic case, Q and R have to play their primary role as
covariance matrices.

As indicated in Ref. [16], it is easier to approximate a probability distribution
than it is to approximate an arbitrary non-linear function or transformation.

Bearing in mind this sentence, the idea of an Unscented Transform (UT) was
applied alongwith the celebratedKalman filter in order to form theUKF. Tomake the
chapter self-contained, the subsequent points will describe the UT and the algorithm
of the UKF.

Finally, it should be underlined that the reader is referred to Ref. [16] (and the
references therein) for a large number of practical examples showing the superiority
of the UKF over the conventional EKF. Thus, the subsequent part of the chapter is
focused on developing a new UKF-based scheme rather than showing its superiority
over the EKF.
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2.4.1 Unscented Transform

The unscented transform boils down to approximating the mean and covariance of
the so-called sigma points after the non-linear transformation h(·). The mean and
covariance of sigma points are given as x̄ and P, while the UT procedure is Ref. [16]

1. Generate k sigma points,

Xi, i = 1, . . . , k, (2.71)

with the mean x̄ and covariance P.
2. Obtain a non-linear transformation of each sigma point (cf. Fig. 2.1),

Xt
i = h(Xi), i = 1, . . . , k. (2.72)

3. Calculate the weighted mean of the transformed points,

x̄t =
k∑

i=1

WiXt
i . (2.73)

4. Calculate the covariance of the transformed points,

Pt =
k∑

i=1

Wi [Xt
i − x̄t] · [Xt

i − x̄t]T
. (2.74)

Note that the sigma points can be generated with various scenarios [16, 17], and one
of them will be described in the subsequent point. It should also be mentioned that,
in order to provide an unbiased estimate [16], the weights should satisfy

Fig. 2.1 Unscented transform
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k∑
i=1

Wi = 1. (2.75)

2.4.2 Principle of the UKF-based UIF

Let us consider a non-linear, discrete-time fault-free system, i.e., (2.1) and (2.2) for
f k = 0:

xk+1 = g (xk) + h(uk) + Edk + wk, (2.76)

yk+1 = Cxk+1 + vk+1. (2.77)

The UKF [17] can be perceived a derivative-free alternative to the extended Kalman
filter in the framework of state estimation. The UKF calculates the mean and co-
variance of a random variable, which undergoes a non-linear transformation by
utilising a deterministic “sampling” approach. Generally, 2n + 1, sigma points are
chosen based on a square-root decomposition of the prior covariance. These sigma
points are propagated through true nonlinearity, without any approximation, and then
a weighted mean and covariance are taken, as described in Sect. 2.4.1.

The presented form of the UKF is based on the general structure of the unknown
input observer (2.6) and by taking into account the fact that the output equation (2.77)
is linear.

The UKF involves a recursive application of these sigma points to state-space
equations. The standard UKF implementation for state estimation uses the following
variable definitions:

• λ = 2n(α2 − 1),
• Wm

0 = λ
n+λ ,

• Wc
0 = λ

n+λ + 1 − α2 + β,

• Wm
i = Wc

i = 1
2(n+λ)

,

• η = √
n + λ,

where Wm
i is a set of scalar weights, and λ and η are scaling parameters. The con-

stant α determines the spread of the sigma points around x̂ and is usually set to
10−4 ∀ α ∀ 1. The constant β is used to incorporate prior knowledge of the distrib-
ution (for the Gaussian distribution, β = 2 is an optimal choice). The UKF algorithm
is as follows:

Initialise with

x̂0 = E[x0], P0 = E[(x0 − x̂0)(x0 − x̂0)T ], (2.78)

For k ⇒ {1, . . . ,∞}
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Calculate 2n + 1 sigma points:

X̂k−1 = [x̂k−1 x̂k−1 + ηS(1), . . . , x̂k−1 + ηS(n),

x̂k−1 − ηS(1), . . . , x̂k−1 − ηS(n)], (2.79)

where S = √
Pk−1 and S(j) stands for the jth column of S.

Time update equations:

X̂i,k|k−1 = ḡ
(

X̂i,k−1

)
+ h̄(uk) + Ēyk+1, i = 0, . . . , 2n, (2.80)

x̂k,k−1 =
2n∑

i=0

W (m)
i X̂i,k|k−1, (2.81)

Pk,k−1 =
2n∑

i=0

W (c)
i [X̂i,k|k−1

− x̂k,k−1][X̂i,k|k−1 − x̂k,k−1]T + Q. (2.82)

Measurement update equations:

Pykyk = CPk,k−1CT + R,

Kk = Pk,k−1CT P−1
ykyk

, (2.83)

ŷk,k−1 = Cx̂k,k−1, (2.84)

x̂k = x̂k,k−1 + Kk(yk − ŷk,k−1), (2.85)

Pk = [In − KkC]Pk,k−1. (2.86)

2.5 Determination of an Unknown Input
Distribution Matrix

As a result of the deliberations presented in the preceding sections, the matrix E
should satisfy the following conditions:

rank(CE) = rank(E) = q, (2.87)

where
[CE CL] (2.88)

should be a full rank one, which means that

rank ([CE CL]) = min(m, s + q). (2.89)
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Thus, the set of matrices E satisfying (2.87) and (2.89) is given by

E = {
E ⇒ R

n×q : rank(CE) = q ∧ rank(E) = q ∧ rank ([CE CL])
= min(m, s + q)} . (2.90)

It should be strongly underlined thatE is not convex, which significantly complicates
the problem and limits the spectrum of possible approaches that can be used for
settling the determination of the unknown input distribution matrix.

The subsequent part of this section presents a numerical algorithm that can be used
for estimating the unknown input distributionmatrixE based on a set of input–output
measurements {(uk, yk)}nt

k=1.
To settle the problem of numerical estimation of E, the following optimisation

criterion is selected:

Ê = argmin
E⇒E

J(E) (2.91)

with

J(E) = 1

mnt

nt∑
k=1

zT
k zk, (2.92)

where zk stands for the residual defined by (2.7) and Ê is an estimate of E.
It is important to underline that the computation of (2.92) requires the run of

the proposed UIF for a given instance of the unknown input distribution matrix E.
The computation of the cost function (2.92) is definitely the most time-consuming
part of the proposed algorithm. On the other hand, the computation time and the
resulting computational burden are not of paramount importance since the proposed
algorithm performs off-line. Indeed, only the result of the proposed algorithm, being
an estimate of the unknown input distribution matrix E, is utilised on-line for the
unknown input decoupling.

The outline of the proposed algorithm is as follows:

Step 1: Obtain the fault-free input–output data set from the system
{(uk, yk)}nt

k=1.
Step 2: Initialise the algorithm with some initial value of E satisfying (2.87) and

(2.88).
Step 3: Use an optimisation strategy to find an estimate of E for which (2.92)

reaches its minimum and conditions (2.87) and (2.90) are satisfied.

Similarly as in the case of (2.8), i.e., by following with d̃k in a similar way as with
f̄ k in (2.8), it can be shown that the fault-free residual is

zk+1 = yk+1 − Cx̂k+1

= C
(
ḡ (xk) − ḡ

(
x̂k
) − K(·)) + d̃k + Cw̄k + vk+1, (2.93)
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where

d̃k = C
[

In − Ê
⎥
(CÊ)T CÊ

]−1
(CÊ)T C

⎢
d̄k . (2.94)

Alternatively, assuming d̄k = Edk , it can be expressed by

d̃k = C
[

In − Ê
⎥
(CÊ)T CÊ

]−1
(CÊ)T C

⎢
Edk . (2.95)

Following the same line of reasoning as in the proof of Theorem 2.1, it can be shown
that for any vector CEdk ⇒ col(CÊ), the effect of an unknown input d̃k will be
decoupled from the residual, i.e., d̃k = 0.

Based on the above deliberations, it seems that an alternative approach is:

Step 0: Obtain the fault-free input–output data set from the system
{(uk, yk)}nt

k=1.
Step 1: Estimate d̄k for k = 1, . . . , nt with, e.g., an augmented UKF.
Step 2: Find a basis of [d̄1, . . . , d̄nt ] (e.g. an orthonormal basis), which will con-

stitute an estimate of E.

Apart from the unquestionable appeal of the above algorithm, it does not take into
account that the conditions (2.87) and (2.90) must be satisfied. On the other hand,
it was empirically proven that, due to the process and measurement noise, accurate
estimation of d̄k (for k = 1, . . . , nt) is impossible, and hence Step 2 of the above
algorithm cannot be realised with expected results.

Thus, the only fruitful conclusion is that an optimal estimate of E is not unique,
which will undoubtedly facilitate the performance of the optimisation-based ap-
proach presented in the subsequent part of this section.

Taking into account all the above-mentioned difficulties, it is proposed to use the
adaptive random search algorithm [2, 28] to solve (2.91). The algorithm has proven
to be very reliable in various global optimisation problems, which also justifies its
application for this particular task.

The search process of the ARS can be split into two phases. The first phase
(variance-selection phase) consists in selecting an element from the sequence

{σ(i)}, i = 1, . . . , imax, (2.96)

where σ(1) stands for an initial standard deviation selected by the designer (forming
the covariance matrix Φ = σIn×q, where n × q is the number of elements of E), and

σ(i) = 10(−i+1)σ(1). (2.97)

In this way, the range of σ ensures both proper exploration properties over the search
space and sufficient accuracy of optimum localisation. Larger values of σ decrease
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the possibility of getting stuck in a local minimum. The second phase (variance-
exploration phase) is dedicated to exploring the search space with the use of σ
obtained from the first phase and consists in repetitive random perturbation of the
best point obtained in the first phase. The scheme of the ARS algorithm is as follows:
0. Input data

• σ(1): The initial standard deviation,
• jmax: The number of iterations in each phase,
• imax: The number of standard deviations (σi) changes,
• kmax: The global number of algorithm runs,
• E(0): The initial value of the unknown input distribution matrix.

1. Initialise

(1.1) Generate Ebest → E0, satisfying (2.87) and (2.90), k → 1, i → 1.

2. Variance-selection phase

(2.1) j → 1, E(j) → E(0) and σ(i) → 10(−i+1)σ(1).
(2.2) Perturb E(j) to get a new trial point E(j)

+ satisfying (2.87) and (2.90).

(2.3) If J(E(j)
+ ) ∀ J(E(j)) then E(j+1) → E(j)

+
else E(j+1) → E(j).

(2.4) If J(E(j)
+ ) ∀ J(Ebest) then

Ebest → E(j)
+ , ibest → i.

(2.5) If (j ∀ jmax/i) then j → j + 1 and go to (2.2).
(2.6) If (i < imax) then set i → i + 1 and go to (2.1).

3. Variance-exploration phase

(3.1) j → 1, E(j) → Ebest, i → ibest
and σ(i) → 10(−i+1)σ(1).

(3.2) Perturb E(j) to get a new trial point E(j)
+ satisfying (2.87) and (2.90).

(3.3) If J(E(j)
+ ) ∀ J(E(j)) then E(j+1) → E(j)

+
else E(j+1) → E(j).

(3.4) If J(E(j)
+ ) ∀ J(Ebest) then Ebest → E(j)

+ .
(3.5) If (j ∀ jmax) then j → j + 1 and go to Step 3.2.
(3.6) If (k → kmax) then STOP.
(3.7) k → k + 1, E(0) → Ebest and resume from (2.1).

The perturbation phase (the points (2.2) and (3.2) of the algorithm) is realised ac-
cording to

E(j)
+ = E(j) + Z, (2.98)

where each element of Z is generated according to N (0,σiI). When a newly gen-
erated E(j) does not satisfy (2.87) and (2.90), then the perturbation phase (2.98) is
repeated.
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It should also be noted that for some E(j) the proposed UIF may diverge, e.g.,
due to the loss of observability or a large mismatch with the real system. A simple
remedy is to impose a bound (possibly large) ζ on J(E(j)), which means that when
this bound is exceeded then the UIF is terminated and J(E(j)) = ζ.

2.6 Design of the UIF with Varying Unknown Input
Distribution Matrices

TheUIF proposed in this section is designed in such away that it will be able to tackle
the problem of automatically changing (or mixing) the influence of unknown input
distribution matrices according to system behaviour. In other words, the user can
design a number of such matrices in order to cover different operating conditions.
Thus, having such a set of matrices, it is possible to design a bank of UIFs and
the algorithm should use them to obtain the best unknown input decoupling and
state estimation. In order to realise this task, the Interacting Multiple-Model (IMM)
approach [29] is used. The subsequent part of this section shows a comprehensive
description of the UIF and the IMM.

The IMM solution consists of a filter for each disturbance matrix (corresponding
to a particular model of the system), an estimate mixer at the input of the filters,
and an estimate combiner at the output of the filters. The IMM works as a recursive
estimator. In each recursion it has four steps:

1. Interacting or mixing of model-conditional estimates, in which the input to the
filter matched to a certain mode is obtained by mixing the estimates of all filters
from the previous time instant under the assumption that this particular mode is
in effect at the present time;

2. Model-conditional filtering, performed in parallel for each mode;
3. Model probability update, based onmodel-conditional innovations and likelihood

functions;
4. Estimate combination, which yields the overall state estimate according to the

probabilistically weighted sum of updated state estimates of all the filters.

The probability of a mode plays a crucial role in determining the weights in the
combination of the state estimates and covariances for the overall state estimate.
Figure 2.2 shows the block diagram of the classic IMM algorithm [29], where

• x̂k+1|k+1 is the state estimate for time k using measurements through time (k +
1|k + 1) based on N models;

• x̂j
k+1|k+1 is the state estimate for time k using measurements through time (k +

1|k + 1) based on model j;
• Υ

j
k is the model likelihood at time k based on model j;

• μk is the vector of model probabilities at time k when all the likelihoods Υ
j
k have

been considered during model probability update.
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Fig. 2.2 IMM algorithm

With the assumption that model switching is governed by an underlyingMarkov [29]
chain, an interacting mixer at the input of the N filters uses the model probabilities
μk and the model switching probabilities pij to compute a mixed (initial or a priori)

estimate X̂
0j
k|k for N filters. The interacting mixer blends the previous state estimates

based on N models to obtain new state estimates. The mixing gains μ
i|j
k−1|k−1 are

computed from the preceding model probabilities μi
k−1 and the model switching

probabilities pij in the model probability update.
At the beginning of a filtering cycle, all filters use an a priori mixed estimate

X̂
0j
k−1|k−1 and the current measurement yk to compute a new estimate X̂

j
k|k and the

likelihood Υ
j
k for the jth model filter. The likelihoods, prior model probabilities,

and model switching probabilities are then used by the model probability update to
compute the newmodel probabilities. Theoverall state estimate X̂k|k is then computed
by an estimate combiner with the new state estimates and their probabilities.

The algorithm presented below is a combination of the UIF and the IMM and
constitutes a solution to the challenging problem of designing the UIF for a set of
predefined unknown input distribution matrices {Ej}N

j=1.

Step 1: Mixing state estimates

The filtering process starts with “a priori” state estimates X̂
j
k−1|k−1, state error

covariances Pk−1|k−1 and the associated probabilities μ
j
k−1 for each jth filter

model corresponding to the jth unknown input distribution matrix. The initial or
mixed state estimate and covariance for the jth model at time k is computed as
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c̄j =
N∑

i=1

pijμ
i
k−1, (2.99)

μ
i|j
k−1|k−1 = 1

c̄j
pijμ

i
k−1, (2.100)

X̂
0j
k−1|k−1 =

N∑
i=1

X̂
i
k−1|k−1μ

i|j
k−1|k−1, (2.101)

P0j
k−1|k−1 =

N∑
i=1

[
Pi

k−1|k−1

+ (
X̂

i
k−1|k−1 − X̂

0j
k−1|k−1

)
· (X̂i

k−1|k−1 − X̂
0j
k−1|k−1

)T ]
μ

i|j
k−1|k−1. (2.102)

pij is the assumed transition probability for switching from model i to model j,

and c̄j is a normalisation constant. For every state estimate X̂
i
k|k and X̂

i
k−1|k−1,

there is a corresponding covariance Pi
k|k and Pi

k−1|k−1.
Step 2: Model-conditioned update

Calculate sigma points (for each jth model):

X̂
j
k−1 = [

X̂
0j
k−1|k−1 X̂

0j
k−1|k−1 + η

√
P0j

k−1|k−1

X̂
0j
k−1|k−1 − η

√
P0j

k−1|k−1

]
. (2.103)

Time update (for each jth model):

X̂
j
i,k|k−1 = ḡ

(
X̂

j
i,k−1

)
+ h̄(uk) + Ēyk+1, i = 0, . . . , 2n, (2.104)

x̂j
k,k−1 =

2n∑
i=0

W (m)
i X̂

j
i,k|k−1, (2.105)

Pj
k,k−1 =

2n∑
i=0

W (c)
i

[
X̂

j
i,k|k−1

− x̂j
k,k−1

][
X̂

j
i,k|k−1 − x̂j

k,k−1

]T + Q. (2.106)

Measurement update equations:

Pj
ykyk

= CPj
k,k−1CT + R,

K j
k = Pj

k,k−1CT P−1 (j)
ykyk

, (2.107)

ŷj
k,k−1 = Cx̂j

k,k−1, (2.108)
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zj
k = yk − ŷj

k,k−1, (2.109)

x̂j
k|k = x̂j

k,k−1 + K j
kzj

k (2.110)

Pj
k|k = [In − KkC]Pj

k|k−1. (2.111)

Step 3: Model likelihood computations
The likelihood of the jth model is computed with the filter residuals zj

k , the co-

variance of the filter residuals Pj
ykyk and the assumption of the Gaussian statistics.

The likelihood of the jth model and model probabilities update are as follows:

Υ
j
k = 1√

|2πPj
ykyk |

exp
[ − 0.5(zj

k)
T (Pj

ykyk
)−1zj

k

]
,

c =
N∑

i=1

Υi
k c̄i,

μ
j
k = 1

c
Υ

j
k c̄j.

Step 4: Combination of state estimates
The state estimate x̂k|k and the covariance Pk|k for the IMM filter are obtained from
a probabilistic sum of the individual filter outputs,

x̂k|k =
N∑

i=1

x̂i
k|kμi

k,

Pk|k =
N∑

i=1

μi
k

[
Pi

k|k + (x̂i
k|k − x̂k|k

)(
x̂i

k|k − x̂k|k
)T ]

.

2.7 Illustrative Examples

The objective of the subsequent part of this section is to examine the proposed
approaches with two sample systems, i.e., an induction motor and a two-tank system.
In particular, the way of determining unknown input distribution matrix and the
“switching” of these matrices will be illustrated with an induction motor. The two-
tank system will be employed to show the performance of the proposed approach
with respect to fault detection and isolation. The final part of this section shows
a comparisonbetween thefirst- and the second-orderEUIO.Anempirical comparison
is realised with the model of an induction motor.
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2.7.1 Estimation of E for an Induction Motor

The purpose of this section is to show the reliability and effectiveness of the proposed
EUIO. The numerical example considered here is a fifth-order two-phase non-linear
model of an induction motor, which has already been the subject of a large number
of various control design applications (see Ref. [22] and the references therein).The
complete discrete-time model in a stator-fixed (a, b) reference frame is

x1,k+1 = x1,k + h

(
−γx1k + K

Tr
x3k + Kpx5kx4k + 1

σLs
u1k

)
, (2.112)

x2,k+1 = x2,k + h

(
−γx2k − Kpx5kx3k + K

Tr
x4k + 1

σLs
u2k

)
, (2.113)

x3,k+1 = x3,k + h

(
M

Tr
x1k − 1

Tr
x3k − px5kx4k

)
, (2.114)

x4,k+1 = x4,k + h

(
M

Tr
x2k + px5kx3k − 1

Tr
x4k

)
, (2.115)

x5,k+1 = x5,k + h

(
pM

JLr
(x3kx2k − x4kx1k) − TL

J

)
, (2.116)

y1,k+1 = x1,k+1, y2,k+1 = x2,k+1, (2.117)

where xk = [x1,k, . . . , xn,k]T = [isak, isbk,ψrak,ψrbk,ωk]T represents the cur-
rents, the rotor fluxes, and the angular speed, respectively, while uk = [usak,
usbk]T is the stator voltage control vector, p is the number of the pairs of poles,
and TL is the load torque. The rotor time constant Tr and the remaining parameters
are defined as

Tr = Lr

Rr
, σ = 1 − M2

LsLr
, K = M

σLsLr
, γ = Rs

σLs
+ RrM2

σLsL2
r
, (2.118)

where Rs, Rr and Ls, Lr are stator and rotor per-phase resistances and inductances,
respectively, and J is the rotor moment inertia.
The numerical values of the above parameters are as follows: Rs = 0.18 �, Rr =
0.15 �, M = 0.068 H, Ls = 0.0699 H, Lr = 0.0699 H, J = 0.0586 kgm2, TL =
10 Nm, p = 1, and h = 0.1 ms. The input signals are

u1,k = 350 cos(0.03k), u2,k = 300 sin(0.03k). (2.119)

Let us assume that the unknown input and its distribution matrix have the following
form:

E = [1.2, 0.2, 2.4, 1, 1.6]T , (2.120)

dk = 0.3 sin(0.5πk) cos(0.03πk), (2.121)
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Fig. 2.3 Residuals for a randomly selected E

while the noise covariance matrices are Q = 10−5I and R = 10−5I. Note that the
small values of the process and measurement noise are selected in order to clearly
portray the effect of an unknown input. Figure 2.3 shows the residual zk for randomly
selected E. From these results, it is evident that the estimation quality is very low and
hence the residual is significantly different from zero, which may lead to a decrease
in the fault detection abilities.

In order to prevent such a situation, the algorithm presented in Sect. 2.5 was
utilised with the following settings:

• σ(1): The initial standard deviation,
• jmax = 20: The number of iterations in each phase,
• imax = 5: The number of standard deviations (σi) changes,
• kmax = 50,
• E(0): Randomly selected.

The performance of the algorithmwas tested for a set of σ(1), i.e., {1, 2, 3, 4, 5}. Note
that kmax = 50, which means that each run of the algorithm was performed 50 times.
As a result, the mean and the standard deviation of the resulting J(E) (cf. (2.92)) for
each setting of σ(1) was calculated. The mean of J(E) is presented in Fig. 2.4, while
its standard deviation is portrayed in Fig. 2.5.

From these results, it is evident that the smallest mean and standard deviation are
obtained for σ(1) = 3. This, of course, does not mean that this is a particular value
σ(1) = 3, which should be the best one for each example. However, it can be easily
observed that, for other σ(1), i.e., {1, 2, 4, 5}, the mean and standard deviation are
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Fig. 2.4 Mean of J(E) for
σ(1) = 1, . . . , 5
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Fig. 2.5 Standard deviation
of J(E) for σ(1) = 1, . . . , 5
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also very small. Numerous numerical experiments confirm this property, i.e., this
means that the proposed algorithm is not extremely sensitive to the initial value of
σ(1).

As mentioned in the preceding part of the chapter, the matrix E, which is able
to decouple the unknown input, is not unique. Indeed, the estimate of E, for which
J(E) reaches its minimum, is

Ê = [0.3651, 0.0609, 0.7303, 0.3043, 0.4869]T . (2.122)

Figure 2.6 presents the residual for the obtained estimate. A direct comparison of
Figs. 2.3 and 2.6 clearly shows the profits that can be gainedwhile using the proposed
algorithm.
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Fig. 2.6 Residuals for the estimated E

2.7.2 Varying E Case

Let us reconsider an example presented in the previous section. The unknown input
is defined, as previously, by (2.121), but three different settings of the unknown input
distribution matrix Ej were employed during system simulation (the simulation time
was 10,000 samples):

E1 =[1.2, 0.2, 2.4, 1, 1.6]T for 0 ∀ k < 2, 500,

E2 =[0.2, 1.2, 2.4, 1, 1.6]T for 2, 500 ∀ k < 5, 000

and 7, 500 ∀ k < 10, 000,

E3 =[2.1, 2.1, 2.1, 2.1, 2.1]T for 5, 000 ∀ k < 7, 500.

Contrary to the above-described simulation scenario, it was assumed that the set of
unknown input distribution matrices for the UIF is composed of

E1 = [0.2, 1.2, 2.4, 1, 1.6]T ,

E2 = [0, 0.2, 2.4, 1, 0]T ,

E3 = [2.1, 2.1, 2.1, 2.1, 2.1]T ,

E4 = [1, 2, 3, 1, 0]T ,

E5 = [1.2, 0.2, 2.4, 1, 1.6]T .
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Fig. 2.7 Model probabilities

This means that E2 and E4 should not be used by the UIF, while E1, E3 and E5

should be appropriately switched.
Figure 2.7 shows model probabilities corresponding to the five unknown input

distribution matrices. From these results, it is evident that the instrumental matrices
E1, E3 and E5 were switched correctly. Moreover, probabilities corresponding to
E2 and E4 are very low.

2.7.3 Fault Detection and Isolation of a Two-Tank System

The main objective of this section is to show that the UIF can also be effectively
applied for fault detection and isolation. In this case, the unknown input is suitably
used for designing the required fault isolation performance. The system considered
consists of two cylindrical tanks of the same diameter. They are linked to each
other through a connecting cylindrical pipe (Fig. 2.8). The two-tank system can be
perceived as a Single-Input Multi-Output (SIMO) system, where the input u is the
water flow through the pump, while the outputs y1 and y2 are water levels in the first
and the second tank, respectively.

It is assumed that the system considered can be affected by the following set of
faults:

actuator fault: f1 pump lost-of-effectiveness or leakage from the pump pipe,
process faults: f2 clogged connecting cylindrical pipe,
sensor faults: f3 water level sensor fault of the first tank, f4 water level sensor fault

of the second tank.
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Fig. 2.8 Schematic diagram
of a two-tank system

Once the fault description is provided, then a complete system description can be
given as follows:

xk+1 = g (xk) + h(uk) + L1f a,k + wk, (2.123)

yk+1 = Cxk+1 + L2f s,k+1 + vk+1, (2.124)

where

g (xk) =
[

−h K1
A1

√
x1,k − x2,k + x1,k

h K1
A2

√
x1,k − x2,k − h K2

A2

√
x2,k + x2,k

]
, (2.125)

h(uk) =
[

h
1

A1
uk, 0

⎢T

, (2.126)

L1 =
[

− h
A1

h
A1

0 −h
A2

]
, (2.127)

L2 =
[
1 0
0 1

⎢
, C = I, (2.128)

f a,k = [
f1,k,

√
x1,k − x2,kf2,k

]T
, f s,k = [

f3,k, f4,k
]T

,

where x1,k and x2,k are water levels in the first and the second tank, respectively,
A1, A2 stand for the cross-sections of the tanks, K1 denotes the cross-section of the
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connecting pipe, K2 is the cross-section of the outflow pipe from the second tank,
and h is the sampling time.

The objective of the subsequent part of this section is to design UIF-based diag-
nostic filter which will make it possible to detect and isolate the above mentioned
faults.

Filter 1: In order to make the residual insensitive to f1, it is proposed to use the
developed UIF with the following settings:

E = L1
1, dk = f1,k, L = L2

1, f k = f2,k, Ck = [1, 0], (2.129)

where Li
1 stands for the ith column of L1. It is straightforward to examine that the

conditions (2.87) and (2.90) are satisfied, which means that the observer while
remaining insensitive to f1,k while it will remain sensitive to f2,k .

Filter 2: Similarly as in the Filter 1 case, the residual generated by the Filter 2
should be insensitive to f2,k ,

E = L2
1, dk = f2,k, L = L1

1, f k = f1,k, Ck = [1, 0]. (2.130)

It is straightforward to examine that conditions (2.87) and (2.90) are satisfied,
which means that the observer will be insensitive to f2,k while while remaining
sensitive to f1,k .

Filter 3: The filter should be insensitive to f3,k while sensitive to f4,k . This can be
realised using the conventional UKF with

C = [0, 1]. (2.131)

Filter 4: The filter should be insensitive to f4,k while it should be sensitive to f3,k .
This can be realised using the conventional UKF with

C = [1, 0], (2.132)

The main objective of this section is to show the testing results obtained with the
proposed approach. To tackle this problem, a Matlab-based simulator of a two-tank
system was implemented. The simulator is able to generate the data for normal as
well as for all faulty conditions (f1, . . . , f4) being considered. The filter-based fault
diagnosis schemewas also implemented usingMatlab.As a result, a complete scheme
that is able to validate the performance of the proposed fault diagnosis strategy was
developed. It should be also pointed out that the simulations were carried out using
the following numerical parameters: uk = 2.56, h = 0.1, A1 = 4.2929, A2 =
4.2929, K1 = 0.3646, K2 = 0.2524.

All fault scenarios where generated according to the following rule:

fi,k =
{ ≺= 0 k = 300, . . . , 400
0 otherwise

i = 1, . . . , 4.
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Fig. 2.9 Residuals for the fault-free case

Moreover, y1 and y2 were corrupted by measurement noise generated according to
the normal distribution, i.e.,N (0, diag(0.01, 0.01)). Thus, the following settings of
the instrumental matrices were employed: R = 0.1I and Q = 0.1I.

Figure 2.9 portrays the residual obtained with the four filters for the fault-free
case. As can be observed, all of them are very close to zero.

Figures 2.10, 2.11, 2.12 and 2.13 present the residuals for the faults f1 to f4 obtained
with the four filters.

The results are summarised in the formof a diagnostic table presented as Table 2.1.
It should be noticed that the residuals generated by Filter 3 and Filter 4 are

insensitive to f1 and f2. Such a situation is caused by the fact that observers use
feedback from the system output and hence some damping effects may arise. This is
the case in the presented situation. On the other hand, it was observed that the results
of experiments can be consistent with the theoretical expectations when there is no
measurement noise, but this is a rather unreal situation. Irrespective of the presented
results, the faults can still be isolated because they have unique signatures.
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Fig. 2.10 Residuals for the fault f1

Fig. 2.11 Residuals for the fault f2
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Fig. 2.12 Residuals for the fault f3

Fig. 2.13 Residuals for the fault f4
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Table 2.1 Diagnostic table Filter f1 f2 f3 f4

Filter 1 0 1 1 1
Filter 2 1 0 1 1
Filter 3 0 0 0 1
Filter 4 0 0 1 0

2.7.4 First- Versus Second-order EUIO

The main objective of this section is to perform a comprehensive study regarding the
first- and the second-order EUIO.

Let us reconsider the induction motor described by (2.112)–(2.117). Let X be a
bounded set denoting the space of the possible variations of the initial condition x0:

X = {[−276, 279] × [−243, 369] × S(2)
15 (0)

× [−11, 56]} ⊂ R
5, (2.133)

where S(n)
r (c) = {x ⇒ R

n : ∩x − c∩2 ∀ r}, r = 15. Let us assume that each initial
condition of the system x0 is equally probable, i.e.

pr(x0) =
{ 1

m(X)
for x0 ⇒ X,

0 otherwise,

where m(A) is the Lebesgue measure of the set A. Moreover, the following three
observer configurations were considered:

Case 1: First-order EUIO with:

Rk = 0.1I2,

Qk = 0.1I5.

Case 2: First-order EUIO with:

Rk = 0.1I2,

Qk = 103εT
k εkI5 + 0.001I5.

Case 3: Second-order EUIO with:

Rk = 0.1I2,

Qk = 0.1I5.

In order to validate the performance of the observers, each of them was run for
N = 1000 randomly selected initial conditions x0 ⇒ X and then the following quality
index was calculated:
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Fig. 2.14 Average norm of
the state estimation error
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, (2.134)

where nt = 1000. This quality index describes an average ration between the norm
of the initial state estimation error e0 and the norm of the state estimation estimation
error achieved after nt iterations. The following results were obtained:

Case 1: Q = 0.0023,
Case 2: Q = 9.6935 · 10−17,
Case 3: Q = 0.0385.

It is clear that the observer of Case 2 provides the best results. This can also be
observed in Fig. 2.14, which presents the evolution of an average norm of the state
estimation error. Themain reasonwhy the second-order EUIO does not provide good
results is that it is very sensitive to the initial state estimation error and to the initial
value of Pk . This follows from the fact that sk is calculated using the approximation
(2.38) instead of an exact form:

si,k = 1

2

⎡
⎣eT

k
∂ḡi (xk)

2

∂x2k

∣∣∣∣∣
xk=x̂k

ek

⎤
⎦ , i = 1, . . . , n.

2.8 Concluding Remarks

The main objective of this chapter was to present three different approaches that can
be used for designing unknown input observers and filters for non-linear discrete-
time systems. In particular, a system description was provided, which covers a large
class of non-linear systems, and a general rule for decoupling the unknown input
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was portrayed. The chapter provides a rule for checking if the observer/filter will not
decouple the effect of a fault. This unappealing phenomenon may lead to undetected
faults, which may have a serious impact on the performance of the system being
controlled and diagnosed. Subsequently, an approach for designing the so-called
first- and second-order extended unknown input observer was provided. The pro-
posed approach is based on a general extended Kalman filter framework and can be
applied for non-linear deterministic systems. It was shown, with the help of the Lya-
punov method, that such a linearisation-based technique is convergent under certain
conditions. To tackle this task, a novel structure and design procedure of the EUIO
were proposed.Another approachwas proposed for non-linear stochastic framework,
bearing in mind that Ref. [16] it is easier to approximate a probability distribution
than it is to approximate an arbitrary non-linear function or transformation. The
unscented Kalman filter formed a base for the development of an unknown input fil-
ter. Based on the UIF, an algorithm for estimating unknown input distribution matrix
was proposed. Another important contribution of this chapter was the development
of the UIF that is able to switch the unknown input distribution matrices accord-
ing to the working conditions. This task was realised with the interacting multiple
model algorithm. The final part of the chapter presented comprehensive case studies
regarding practical application of the proposed approaches. These examples are an
induction motor and a two-tank systems. In particular, based on the example with the
induction motor, the strategies for determining the unknown input distribution ma-
trix and the case with a set of predefined unknown input distribution matrices were
examined. The same example (within a deterministic framework) was utilised to
perform a comparison between the first- and second-order extended unknown input
observer. The abilities regarding fault detection and isolation were illustrated with
the two-tank system. In all the cases, the proposed approaches exhibit their practical
usefulness.
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Chapter 3
Neural Network-based Approaches
to Fault Diagnosis

Apart from the unquestionable effectiveness of the approaches presented in the
preceding chapter, there are examples for which fault directions are very similar
to that of an unknown input. This may lead to a situation in which the effect of some
faults is minimised and hence they may be impossible to detect. Other approaches
that make use of the idea of an unknown input also inherit these drawbacks, e.g.,
robust parity relations approaches [1]. An obvious way to tackle such a challenging
problem is to use different description of model uncertainty. It is important to note
that the parameters of the model underlying such a fault detection scheme do not
necessarily have to have physical meaning. This considerably extends the spectrum
of candidate models that can be used for design purposes. The main objective of
this chapter is to show how to use artificial neural networks in such a robust fault
detection scheme. Contrary to the industrial applications of neural networks that
are presented in the literature (see, e.g, [2] and the references therein), the task of
designing a neural network is defined in this chapter in such a way as to obtain a
model with a possibly small uncertainty. Indeed, the approaches presented in the
literature try to obtain a model that is best suited to a particular data set. This may
result in a model with a relatively large uncertainty. Degraded performance of fault
diagnosis constitutes a direct consequence of using such models.

Taking into account the above discussion, the chapter is organised as follows.
Section3.1 extends the general ideas of experimental design to neural networks. In
particular, one objective of this section is to show how to describe model uncertainty
of a neural network using the statistical framework. Another objective is to propose
algorithms that can be used for developing an optimal experimental design which
makes it possible to obtain a neural network with a possibly small uncertainty. The
final objective is to show how to use the obtained knowledge about model uncertainty
for robust fault diagnosis. The approach presented in this section is based on a static
neural network, i.e., the multi-layer perceptron. It should also be pointed out that the
results described in this section are based on [3–5].

An approach that can utilise either a static or a dynamic model structure is
described in Sect. 3.2. This strategy is based on a similar idea as that of Sect. 3.1,

M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, 57
Lecture Notes in Electrical Engineering 266, DOI: 10.1007/978-3-319-03014-2_3,
© Springer International Publishing Switzerland 2014
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but instead of using a statistical description of model uncertainty a deterministic
bounded-error [6, 7] approach is employed. In particular, one objective is to show
how to describe model uncertainty of the so-called Group Method of Data Handling
(GMDH) neural network. Another objective is to show how to use the obtained
knowledge about model uncertainty for robust fault diagnosis. Finally, it should be
pointed out that the presented results are based on [5, 8, 9].

3.1 Robust Fault Detection with the Multi-Layer Perceptron

Let us consider a feed-forward neural network given by the following equation:

yM,k = P (l)g
(

P (n)uk

)
, (3.1)

while g(·) = [g1(·), . . . , gnh (·), 1]T , while gi (·) = g(·) is a non-linear differentiable
activation function,

P (l) =

⎢

p(l)(1)T

...

p(l)(m)T


⎥ , P (n) =


⎢

p(n)(1)T

...

p(n)(nh)T


⎥ , (3.2)

arematrices representing the parameters (weights) of themodel, and nh is the number
of neurons in the hidden layer.Moreover, uk ∀ R

r=nr +1, uk = [u1,k, . . . , unr ,k, 1]T ,
where ui,k, i = 1, . . . , nr are system inputs. For notational simplicity, let us define
the following parameter vector:

p =
[

p(l)(1)T , . . . , p(l)(m)T , p(n)(1)T , . . . , p(n)(nh)T
]T

,

where n p = m(nh + 1) + nh(nr + 1). Consequently, Eq. (3.1) can be written in a
more compact form:

yM,k = h ( p, uk) , (3.3)

where h (·) is a non-linear function representing the structure of a neural-network.
Let us assume that the system output satisfies the following equality:

yk = yM,k + vk = h ( p, uk) + vk, (3.4)

where the noise v is zero-mean, Gaussian and uncorrelated in k, i.e., its statistics are

E(vk) = 0, E(viv
T
k ) = αi,k C, (3.5)
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where C ∀ R
m×m is a known positive-definite matrix of the form C = ∂2 Im , while

∂2 and αi,k stand for the variance and Kronecker’s delta symbol, respectively. Under
such an assumption, the theory of experimental design [7, 10, 11] can be exploited
to develop a suitable training data set that allows obtaining a neural network with a
considerably smaller uncertainty than those designed without it. First, let us define
the so-called Fisher information matrix that constitutes a measure of parametric
uncertainty of (3.1):

P−1 =
nt∑

k=1

Rk RT
k , (3.6)

Rk =
(

βh ( p, uk)

βp

)T

p= p̂
, (3.7)

and

βh ( p, uk)

β p
=


⎢⎢

g
(

P (n)uk
)T

0T
(m−1)(nh+1) pl

1(1)g
≥ (uT

k pn(1)
)

uT
k . . .

...
...

...
...

0T
(m−1)(nh+1) g

(
P (n)uk

)T
pl
1(m)g≥ (uT

k pn(1)
)

uT
k . . .

. . . pl
nh

(1)g≥ (uT
k pn(nh)

)
uT

k
...

...

. . . pl
nh

(m)g≥ (uT
k pn(nh)

)
uT

k


⎥ , (3.8)

where g≥(t) = dg(t)

dt
, p̂ is a least-square estimate of p. It is easy to observe that

the FIM (3.6) depends on the experimental conditions θ = [u1, . . . , unt ]. Thus,
optimal experimental conditions can be found by choosing uk , k = 1, . . . , nt , so as
to minimise some scalar function of (3.6). Such a function can be defined in several
different ways [12, 13]:

• D-optimality criterion:

Φ(θ) = det P, (3.9)

• E-optimality criterion (σmax(·) stands for the maximum eigenvalue of its argu-
ment):

Φ(θ) = σmax (P) ; (3.10)

• A-optimality criterion:

Φ(θ) = trace P; (3.11)
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• G-optimality criterion:

Φ(θ) = max
uk∀U

ζ(θ, uk), (3.12)

where U stands for a set of admissible uk that can be used for a system being
considered (the design space), and

ζ(θ, uk) = trace
(

RT
k P Rk

)
=

m∑
i=1

r i,k P rT
i,k, (3.13)

while r i,k stands for the i th row of RT
k ;• Q-optimality criterion:

Φ(θ) = trace
(

P−1
Q P

)
, (3.14)

where P−1
Q = ⎡

R(u)R(u)T dQ(u), R(u) =
(

βh( p,u)
β p

)T

p= p̂
, and Q stands for the

so-called environmental probability, which gives independent input vectors in the
actual environment where a trained network is to be exploited [12].

As has already been mentioned, a valuable property of the FIM is that its inverse
constitutes an approximation of the covariance matrix for p̂ [14], i.e., it is a lower
bound of this covariance matrix that is established by the so-called Cramér–Rao
inequality [14]:

cov( p̂) ⇒ P . (3.15)

Thus, a D-optimum design minimises the volume of the confidence ellipsoid approx-
imating the feasible parameter set of (3.1) (see, e.g., [10] for further explanations).
An E-optimum design minimises the length of the largest axis of the same ellipsoid.
An A-optimum design suppresses the average variance of parameter estimates. A G-
optimum design minimises the variance of the estimated response of (3.1). Finally,
a Q-optimum design minimises the expectation of the generalisation error E(γgen)
defined by [12]:

γgen =
⎣

≺h( p, u) − h( p̂, u)≺2dQ(u). (3.16)

Among the above-listed optimality criteria, the D-optimality criterion, due to its sim-
ple updating formula, has been employed by many authors in the development of
computer algorithms for calculating optimal experimental design. Another important
property is that D-optimum design is invariant to non-degenerate linear transforma-
tion of themodel. This property is to be exploited and suitably discussed inSect. 3.1.2.
It is also important to underline that, from the practical point of view, D-optimum
designs often perform well according to other criteria (see [10] and the references
therein formore details). For further explanations regardingD-optimality criteria, the
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Fig. 3.1 i th output of the sys-
tem and its bounds obtained
with a neural network

reader is referred to the excellent textbooks [7, 10, 13, 15]. Since the research results
presented in this section are motivated by fault diagnosis applications of neural net-
works, the main objective is to use such a design criterion which makes it possible to
obtain accurate bounds of the system output (cf. Fig. 3.1). Indeed, it is rather vain to
assume that it is possible to develop a neural network with an arbitrarily small uncer-
tainty, i.e., to obtain a perfect model of the system. A more realistic task is to design
a model that will provide a reliable knowledge about the bounds of the system output
that reflect the expected behaviour of the system. This is especially important from
the point of view of robust fault diagnosis. The design methodology of such robust
techniques relies on the idea that fault diagnosis and control schemes should perform
reliably for any system behaviour that is consistent with output bounds. This is in
contradiction with the conventional approaches, where fault diagnosis and control
schemes are designed to be optimal for one single model. The bounds presented in
Fig. 3.1 can be described as follows:

yN
i,k ≤ yi,k ≤ yM

i,k, i = 1, . . . , m. (3.17)

In [16], the authors developed an approach that can be used for determining (3.17)
(that forms the 100(1 − δ) confidence interval of yi,k) for single output (m = 1)
neural networks. In [3], the approach of [16] was extended to multi-output models.
If the neural model gives a good prediction of the actual system behaviour, then p̂ is
close to the optimal parameter vector and the following first-order Taylor expansion
of (3.4) can be exploited:

yk ∞ ŷk + RT
k ( p − p̂) + vk, ŷk = h

(
p̂, uk

)
. (3.18)

Thus, assuming that E( p̂) = p, we get

E( yk − ŷk) ∞ RT
k ( p − E( p̂)) + E(vk) ∞ 0. (3.19)

Using a similar approach, the covariance matrix is given by
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cov( yk − ŷk) = E
(
( yk − ŷk)( yk − ŷk)

T
)

∞ RT
k E

(
( p − p̂)( p − p̂)T

)
Rk + ∂2 Im . (3.20)

Using the classic results regarding E (( p − p̂)( p − p̂)T
)
[7, 10, 13], i.e.,

E
(
( p − p̂)( p − p̂)T

)
= ∂2 P, (3.21)

Equation (3.20) can be expressed as

cov( yk − ŷk) ∞ ∂2
(

RT
k P Rk + Im

)
. (3.22)

Subsequently, using (3.22), the standard deviation of yi,k − ŷi,k is given by

∂yi,k−ŷi,k = ∂
(
1 + r i,k P rT

i,k

)1/2
, i = 1, . . . , m. (3.23)

Using (3.23) and the result of [16], it can be shown that yN
i,k and yM

i,k (that form the
100(1 − δ) confidence interval of yi,k) can be approximated as follows:

yN
i,k = ŷi,k − tδ/2

nt −n p
∂̂
(
1 + r i,k P rT

i,k

)1/2
, i = 1, . . . , m, (3.24)

yM
i,k = ŷi,k + tδ/2

nt −n p
∂̂
(
1 + r i,k P rT

i,k

)1/2
, i = 1, . . . , m, (3.25)

where tδ/2
nt −n p

is the t-Student distribution quantile, and ∂̂ is the standard deviation
estimate. Bearing in mind the fact that the primary purpose is to develop reliable
bounds of the system output, it is clear from (3.17), (3.24), and (3.25) that the G-
optimality criterion should be selected.

When some experiments are repeated, then the number ne of distinct uks is smaller
than the total number of observations nt . The design resulting from this approach is
called continuous experimental design and it can be described as follows:

θ =
⎤

u1 u2 . . . une

μ1 μ2 . . . μne

⎦
, (3.26)

where uks are said to be the support points, and μ1, . . . ,μne ,μk ∀ [0, 1] are called
their weights, which satisfy

⎛ne
k=1 μk = 1. Thus, when the design (3.26) is optimal

(with respect to one of the above-defined criteria), then the support points can also
be called optimal inputs. Thus, the Fisher information matrix can now be defined as
follows:
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P−1 =
ne∑

k=1

μk Rk RT
k . (3.27)

The fundamental property of continuous experimental design is the fact that the opti-
mum designs resulting from the D-optimality and G-optimality criteria are the same
(theKiefer–Wolfowitz equivalence theorem [7, 10, 13]). Another reason for usingD-
optimum design is the fact that it is probably the most popular criterion. Indeed, most
of the algorithms presented in the literature are developed for D-optimum design.
Bearing in mind all of the above-mentioned circumstances, the subsequent part of
this section is devoted to D-optimum experimental design. The next section shows
an illustrative example whose results clearly show profits that can be gained while
applying D-OED to neural networks.

3.1.1 Illustrative Example

Let us consider a neuron model with the logistic activation function [3]:

yM,k = p1
1 + e−p2uk−p3

. (3.28)

It is obvious that the continuous experimental design for the model (3.28) should
have at least three different support points (n p = 3 for (3.28)). For a three-point
design, the determinant of the FIM (3.27) is

det P−1 = p41
p22

μ1μ2μ3e2x1e2x2e2x3

· ((ex2 − ex1)x3 + (ex3 − ex2)x1 + (ex1 − ex3)x2)2

(ex1 + 1)4(ex2 + 1)4(ex3 + 1)4
, (3.29)

where xi = p2ui + p3. Bearing in mind the fact that the minimisation of (3.9)
is equivalent to the maximisation of (3.29), a numerical solution regarding the D-
optimum continuous experimental design can be written as

θ =
⎤

u1 u2 u3
μ1 μ2 μ3

⎦

=
⎝(

1.041−p3
p2

, 1
) (−1.041−p3

p2
, 1
) (

x3−p3
p2

, 1
)

1
3

1
3

1
3

⎞
, (3.30)

whereas x3 is an arbitrary constant satisfying x3 ≥ λ, λ ∞ 12. In order to check if
the design (3.30) is really D-optimum, the Kiefer–Wolfowitz equivalence theorem
[7, 10] can be employed. In the light of this theorem, the design (3.30) is D-optimum
when



64 3 Neural Network-based Approaches to Fault Diagnosis

Fig. 3.2 Variance function
for (3.30) and x3 = 20
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ζ(θ, uk) = trace
(

RT
k P Rk

)
≤ n p, (3.31)

where the equality holds for measurements described by (3.30). It can be seen from
Fig. 3.2 that the design (3.30) satisfies (3.31). This figure also justifies the role of the
constant λ, which is a lower bound of x3 in the third support point of (3.30). Indeed,
it can be observed that the design (3.30) is D-optimum (the variance function is
n p = 3) when the third support point is larger than some constant value, which is
equivalent to x3 ≥ λ.

In order to justify the effectiveness of (3.30), let us assume that the nominal
parameter vector is p = [2, 0.5, 0.6]T . It is also assumed that nt = 9. This means
that each of the measurements consistent with (3.30) should be repeated 3 times.
For the purpose of comparison, a set of nt points was generated according to the
uniform distribution U(−4, 40). It should also be pointed out that v was generated
according to N (0, 0.12). Figure3.3 presents feasible parameter sets obtained with
the strategies considered. These sets are defined according to the following formula
[7]:

P =
⎝

p ∀ R
n p
⎠⎠ nt∑

k=1

(yk − f ( p, uk))
2 ≤ ∂2η2

δ,nt

⎞
, (3.32)

where η2
δ,nt

is the Chi-square distribution quantile. From Fig. 3.3, it is clear that the
application of D-OED results in a model with a considerably smaller uncertainty
than the one designed without it. These results also imply that the system bounds
(3.17) will be more accurate.
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Fig. 3.3 Feasible parame-
ter set obtained for (3.30)
(smaller) and for a set of ran-
domly generated points
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3.1.2 Algorithms and Properties of D-OED for Neural Networks

Regularity of the FIM

The Fisher information matrix P−1 of (3.1) may be singular for some parameter
configurations, and in such cases it is impossible to obtain its inverse P necessary to
calculate (3.17), as well as to utilise specialised algorithms for obtaining D-optimum
experimental design [7, 10]. In [17] the author established the conditions underwhich
P−1 is singular. These conditions can be formulated as follows

Theorem 3.1 [17] The Fisher information matrix P−1 of (3.1) is singular iff at least
one of the following conditions holds true:

1. There exists j such that [p(n)
j,1, . . . , p(n)

j,nr
]T = 0.

2. There exists j such that [p(l)
1, j , . . . , p(l)

m, j ]T = 0.

3. There exist different j1 and j2 such that p(n)( j1) = ± p(n)( j2).

A direct consequence of the above theorem is that a network with singular P−1

can be reduced to one with positive definite P−1 by removing redundant hidden
neurons. Based on this property, it is possible to develop a procedure that can be
used for removing the redundant neurons without performing the retraining of a
network [18].

If the conditions of Theorem 3.1 indicate that P−1 is not singular, then the strategy
of collecting measurements according to the theory of D-optimum experimental
design (the maximisation of the determinant of P−1) guarantees that the Fisher
information matrix is positive definite. This permits approximating an exact feasible
parameter set (3.32) with an ellipsoid (cf. Fig. 3.3 to see the similarity to an ellipsoid).
Unfortunately, the conditions of Theorem 3.1 have strictly theoretical meaning as
in most practical situations the FIM would be close to singular but not singular in
an exact sense. This makes the process of eliminating redundant hidden neurons far
more difficult, and there is no really efficient algorithm that could be employed to
settle this problem. Indeed, the approach presented in [12] is merely sub-optimal.
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On the other hand, if such an algorithm does not give satisfactory results, i.e., the
FIM is still close to the singular matrix, then the FIM should be regularised in the
following way [10, p. 110]:

P−1
π = P−1 + πI, (3.33)

for π > 0 small but large enough to permit the inversion of P−1
π .

Relation Between Non-Linear Parameters and D-OED

Dependence on parameters that enter non-linearly ((3.30) depends on p2 and p3 but
does not depend on p1) into the model is an unappealing characteristic of non-linear
optimum experimental design. As has already been mentioned, there is a number
of works dealing with D-OED for neural networks but none of them has exploited
this important property. In [3], it was shown that experimental design for a general
structure (3.1) is independent of parameters that enter linearly into (3.1). Indeed, it
can be shown that (3.8) can be transformed into an equivalent form:

βh ( p, uk)

β p
= L

(
P (n), uk

)
Z
(

P (l)
)

, (3.34)

and

L
(

P (n), uk

)

=


⎢⎢

g
(

P (n)uk
)T

0(m−1)(nh+1)
(
g≥ (P (n)uk

) ⊗ uk
)T

...
...

...

0(m−1)(nh+1) g
(

P (n)uk
)T (

g≥ (P (n)uk
) ⊗ uk

)T


⎥⎥ , (3.35)

Z
(

P (l)
)

=


⎢⎢⎢⎢⎢⎢

1nh+1 . . . x(m−1)(nh+1)
x(m−1)(nh+1) . . . 1nh+1

p(l)
1 (1)1nr +1 . . . p(l)

1 (m)1nr +1
...

...
...

p(l)
nh+1(1)1nr +1 . . . p(l)

nh+1(m)1nr +1


⎥⎥⎥⎥⎥⎥

, (3.36)

where ⊗ denotes the Kronecker product, xt stands for an arbitrary t-dimensional
vector, and

g≥(t) = [g≥(t1), . . . , g≥(tnh )]T . (3.37)

Thus, Rk can be written in the following form:

Rk = P1R1,k, (3.38)



3.1 Robust Fault Detection with the Multi-Layer Perceptron 67

where

P1 =
(

Z
(

P (l)
))T

p= p̂
(3.39)

and

R1,k =
(

L
(

P (n), uk

))T

p= p̂
. (3.40)

The Fisher information matrix is now given by

P−1 =
nt∑

k=1

Rk RT
k = P1

[ nt∑
k=1

R1,k RT
1,k

]
PT
1 . (3.41)

Thus, the determinant of P−1 is given by

det
(

P−1
)

= det (P1)
2 det

( nt∑
k=1

R1,k RT
1,k

)
. (3.42)

From (3.42) it is clear that the process of minimising the determinant of P−1 with
respect to uks is independent of the linear parameters pl . This means that at least a
rough estimate of P (n) is required to solve the experimental design problem. Such
estimates can be obtained with any trainingmethod for feed-forward neural networks
[19]. A particularly interesting approach was recently developed in [20]. The authors
proposed a novel method of backpropagating the desired response through the layers
of the MLP in such a way as to minimise the mean-square error. Thus, the obtained
solution may constitute a good starting point for experimental design.

Indeed, it is rather vain to expect that it is possible to obtain a design that is
to be appropriate for all networks of a given structure. It is very easy to imagine
two neural networks of the same structure that may represent two completely dif-
ferent systems. If some rough estimates are given, then specialised algorithms for
D-optimum experimental design can be applied [7, 10].

σ-Equivalence Theorem for D-OED

Undoubtedly, themost popular activation functions g(·) that are commonly employed
for designing neural networks are g∂(t) = 1

1+exp(−t) and gtg(t) = tanh(t). It is well
known that these functions are very similar, and this similarity is expressed by the
following relationship:

g∂(t) = 1

2
+ 1

2
gtg

(
1

2
t

)
. (3.43)



68 3 Neural Network-based Approaches to Fault Diagnosis

Thus, the problem is to show how to use a D-optimum design obtained for a
network with the activation functions g∂(·) to obtain a D-optimum design for a
network with the activation functions gtg(·). In this work, the above problem is
solved as follows

Theorem 3.2 Let

θ∂ =
⎤

u1 . . . une

μ1 . . . μne

⎦
(3.44)

denote a D-optimum design for the network

yM,k = P (l)gtg

(
P (n)uk

)
. (3.45)

Then the design (3.44) is D-optimum for the following network:

yM,k = P (l)
∂ g∂

(
P (n)u∂

k

)
, (3.46)

where u∂
k = 2uk and P (l)

∂ is an arbitrary (non-zero) matrix.

Proof It is straightforward to observe that

P (l)
∂ g∂

(
2P (n)uk

)
= P (l)

tg gtg

(
P (n)uk

)
, (3.47)

where

P (l)
tg = 1

2
P (l)

∂ +
[

0m×nh ,
1

2
P (l)

∂ 1nh+1

]
. (3.48)

Thus, using (3.42), the determinant of the FIM for (3.45) is

det
(

P−1
)

= det

((
Z
(

P (l)
))T

p= p̂

)2

det

( nt∑
k=1

R1,k RT
1,k

)
, (3.49)

while using (3.42), (3.47), and (3.48), the determinant of the Fisher information
matrix for (3.46) is

det
(

P−1
)

= det

((
Z
(

P (l)
tg

))T

p= p̂

)2

det

( nt∑
k=1

R1,k RT
1,k

)
, (3.50)

and R1,k in (3.49) and (3.50) is calculated by substituting
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L
(

P (n), uk

)

=


⎢⎢⎢

gtg
(

P (n)uk
)T

0(m−1)(nh+1)

(
g≥
tg

(
P (n)uk

) ⊗ uk

)T

...
...

...

0(m−1)(nh+1) gtg
(

P (n)uk
)T

(
g≥
tg

(
P (n)uk

) ⊗ uk

)T


⎥⎥⎥ (3.51)

and

g≥
tg(t) =

[
g≥
tg(t1), . . . , g

≥
tg(tnh )

]T
(3.52)

into (3.40).
From (3.49) and (3.50), it is clear that the D-optimum design obtained with either

(3.49) or (3.50) is identical, which completes the proof.

Based on the above results, the following remark can be formulated:

Remark 3.3 Theorem 3.2 and the Kiefer–Wolfowitz theorem [7, 10] imply that the
D-optimum design (3.44) for (3.45) is also G-optimum for this model structure and,
hence, it is G-optimum for (3.46).

Illustrative Example

Let us reconsider the example presented in Sect. 3.1.1. The purpose of this example
was to obtain a D-optimum experimental design for the model (3.28). As a result,
the design (3.30) was determined. The purpose of further deliberations is to apply
the design (3.30) to the following model:

yM,k = p1 tanh(2(p2uk + p3)), (3.53)

and to check if it is D-optimum for (3.53). Figure3.4 presents the variance function
(3.12) for the model (3.53). From this figure it is clear that the variance function
satisfies the D-optimality condition (3.31).

Wynn–Fedorov Algorithm for the MLP

The preceding part of Sect. 3.1.2 presents important properties of D-OED for neural
networks. In this section, these properties are exploited to develop an effective
algorithm for calculating D-OED for neural networks. In a numerical example of
Sect. 3.1.1, it is shown how to calculate D-OED for a neural network composed
of one neuron only. In particular, the algorithm was reduced to direct optimisa-
tion of the determinant of the FIM with respect to experimental conditions. This
means that non-linear programming techniques have to be employed to settle this
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Fig. 3.4 Variance function
for (3.30) (x3 = 20) and
model (3.53)
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problem. Unfortunately, it should be strongly underlined that such an approach is
impractical when larger neural networks are investigated. Fortunately, the Kiefer–
Wolfowitz equivalence theorem [7, 10, 13] (see also (3.31)) provides some guidance
useful in construction of a suitable numerical algorithm. The underlying reasoning
boils down to correcting a non-optimum design θk (obtained after k iterations) by a
convex combination with another design [15, p. 27], which hopefully improves the
current solution, i.e.,

θk+1 = (1 − δk)θk + δkθ(uk) (3.54)

for some convenient 0 < δk < 1, where

θk =
⎤

u1 u2 . . . une

μ1 μ2 . . . μne

⎦
, θ(uk) =

⎤
uk

1

⎦
, (3.55)

while the convex combination (3.54) is realised as follows:
If uk √= ui , i = 1, . . . , ne, then

θk+1 =
⎤

u1 u2 . . . une uk

(1 − δk)μ1 (1 − δk)μ2 . . . (1 − δk)μne δk

⎦
, (3.56)

else

θk+1 =
⎤

u1 u2 . . . ui . . . une

(1 − δk)μ1 (1 − δk)μ2 . . . (1 − δk)μi + δk . . . (1 − δk)μne

⎦
.

In this way, the experimental effort related to θk is reduced and measurements cor-
responding to θ(uk) are favored instead. Hence, the problem is to select θ(uk) so
as to get a better value of the optimality criterion. A solution to this problem can
be found with the help of the Kiefer–Wolfowitz equivalence theorem [7, 10, 13].
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Indeed, the support points of optimum design θ∧ coincide with the maxima of the
variance function ζ(θ∧, uk) (see Sect. 3.1.1 for an illustrative example). Thus, by the
addition of θ(uk) for which the maximum of ζ(θk, uk) is attained, an improvement
in the current design can be expected (see [7, 13] for more details).

The above-outlined approach forms the base of the celebrated Wynn–Fedorov
algorithm [7, 10]. In this section, the results developed in Sect. (3.1.2) and the one of
Theorem 3.1 are utilised to adapt the Wynn–Fedorov algorithm in order to develop
D-OED for neural networks.

First, let us start with a slight modification of the Wynn–Fedorov algorithm that
boils down to reducing the necessity of using the linear parameters of (3.1) in the
computational procedure.

Since, according to (3.38),
Rk = P1R1,k , (3.57)

then (3.12) can be written as follows:

Φ(θ) = max
uk∀U

trace
(

RT
1,k PT

1 P P1R1,k

)
. (3.58)

Using (3.41) and the notation of continuous experimental design, the matrix P can
be expressed as follows:

P =
(

PT
1

)−1
[ ne∑

k=1

μk R1,k RT
1,k

]−1

P−1
1 . (3.59)

It is easy to observe that if Condition 2 of Theorem 3.1 is not satisfied, then it is
possible to compute the inverse of P1 (cf. (3.39)). Similarly, if both Conditions 1
and 3 are not satisfied, then the matrix

P2 =
[ ne∑

k=1

μk R1,k RT
1,k

]−1

(3.60)

in (3.59) can be calculated. Now, (3.58) can be expressed in the following form:

Φ(θ) = max
uk∀U

ζ(θ, uk), (3.61)

where
ζ(θ, uk) = trace

(
RT
1,k P2R1,k

)
. (3.62)

Note that the computation of (3.61) does not require any knowledge about the para-
meter matrix P (l), which enters linearly into (3.1). Another advantage is that it is not
necessary to form the matrix P1 ∀ R

n p×n p , which then has to be multiplied by R1,k
to form (3.57). This implies a reduction in the computational burden.
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Equation (3.61) can be perceived as themain step of theWynn–Fedorov algorithm,
which can now be described as follows:

Step 0: Obtain an initial estimate of P (n), i.e., the parameter matrix that enters non-
linearly into (3.1), with any method for training the MLP [19]. Set k = 1, choose
a non-degenerate (det(P−1) √= 0, it is satisfied when no conditions of Theorem 3.1
are fulfilled) design θk , set the maximum number of iterations nmax.
Step 1: Calculate

uk = arg max
uk∀U

trace
(

RT
1,k P2R1,k

)
. (3.63)

Step 2: If ζ(θk, uk)/n p < 1+ ψ, where ψ > 0, is sufficiently small, then STOP, else
go to Step 3.
Step 3: Calculate a weight associated with a new support point uk according to

δk = arg max
0<δ<1

det
(
(1 − δ)P2 + δR1,k RT

1,k

)
, (3.64)

which for single-output systems (m = 1) is given by

δk = ζ(θk, uk) − n p

(ζ(θk, uk) − 1)n p
, (3.65)

and go to Step 4.
Step 4: Obtain a new design θk+1, which is a convex combination [15, p. 27] of the
form

θk+1 = (1 − δk)θk + δkθ(uk). (3.66)

If k = nmax, then STOP, else set k = k + 1 and go to Step 1.

Step 1 is crucial in the presented algorithm. Indeed, the first problem is the fact that the
calculation of (3.60) involves matrix inversions. Since the dimension of this matrix
equals n p, then, even for simple networks, the number of parameters is a dozen or
so. Subsequently, it is shown that effective recursive formulae can be established
for calculating Pk

2, i.e., the matrix P2 in the kth iteration of the Wynn–Fedorov
algorithm. It can be seen from the inverse of (3.60) and (3.56) that

(
Pk+1
2

)−1 = (1 − δk)
(

Pk
2

)−1 + δk R1,k RT
1,k . (3.67)

Using the matrix inversion lemma and (3.67), the following recursive relation can
be established:
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Pk+1
2 = 1

1 − δk

·
[

Pk
2 − Pk

2R1,k

[
1 − δk

δk
Im + RT

1,k Pk
2R1,k

]−1

RT
1,k Pk

2

]
. (3.68)

Note that the calculation of (3.68) requires inversion of an m-dimensional matrix
instead of an n p-dimensional one.

The second problem concerning Step 1 is the fact that the variance function (3.63)
is multi-modal and hence conventional optimisation routines cannot be applied to
settle (3.61). For further explanations concerning the problem (3.61), the reader is
referred to [21]. Based on numerous computer experiments, it has been found that
the extremely simple Adaptive Random Search (ARS) algorithm [7] is especially
well suited for the purpose of optimising (3.61), although other techniques such as
evolutionary algorithms [22] can successfully be applied as well.

It is important to note that the above algorithm makes use of information about
the gradient of the performance index only, and the rule (3.64) results in the steepest-
descent algorithm. As a result, the convergence rate of the algorithm is compa-
rable with its gradient counterparts from mathematical non-linear programming.
This implies a significant decrease in the performance index in the first few itera-
tions, but then serious moderation of the convergence rate occurs as the optimum is
approached. There are some second-order counterparts of the algorithm considered,
but they require significantly higher implementation complexity. However, it should
be pointed out that theymay improve the designweight rather than the support points,
and in this context the features of the presented algorithm are satisfactory. Indeed,
many computer experiments show that the most significant support points are found
in just several iterations.

Numerical Example

The problem is to approximate the function

yk = exp(− sin(uk)) + vk,

where v → N (0, 0.022), uk ∀ [0.1, 10], with a neural network containing nh = 4
hidden neurons with hyperbolic tangent activation functions. Thus, the number of
parameters to be estimated is n p = 13. In the preliminary experiment uk, k =
1, . . . , nt = 15 were obtained in such a way as to equally divide the design space
U ∀ [0.1, 10]. Then the Levenberg–Marquardt algorithm [7] was employed for
parameter estimation. Based on the obtained parameter estimates, theWynn–Fedorov
algorithm was utilised to obtain D-OED, and then the parameter estimation process
was repeated once again. Figure3.5 shows the variance function and D-optimum
inputs (support points). Note that the number of support points is n p while μk =
1/13, k = 1, . . . , 13. Based on the obtained design, nt = 13 measurements were
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taken, each corresponding to the subsequent support points. Figure3.6 presents the
output bounds (3.17) for the network obtained with the application of OED (the 2nd
net) and the one obtained without it (the 1st net), while the true output represents the
shape of the approximated function. It can be observed that the use of OED results
in a network with a significantly smaller uncertainty than the one designed without
it.
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Special Case

A special case that deserves particular attention is when the design consists of
ne = n p/m support points, i.e., the number of distinct support points equals that of
parameters to be estimated. An example of such a design is presented in Sect. 3.1.2.
The analysis of this example indicates that the weights associated with the support
points are the same and equal 1/n p. This can be easily explained by transforming
(3.41) into the following form:

P−1 = RT W R, (3.69)

where

R =

⎢

RT
1
...

RT
ne


⎥ (3.70)

and W = diag(μ11m, . . . ,μne 1m).
It can be observed from (3.70) that R is a square matrix when n p = mne. To

achieve this, the number of support points should be

ne = n p

m
= (nh + 1) + nh(nr + 1)

m
. (3.71)

As can be seen from (3.71), the number of hidden neurons should be suitably selected
to guarantee that ne is a positive integer number. Thus, the determinant of (3.69) is

det
(

P−1
)

=
( ne∏

k=1

μk

)m

det (R)2 . (3.72)

From (3.72), it is clear that μk, k = 1, . . . , n p/m, maximising det
(

P−1
)
are the

same and equal m/n p.
Unfortunately, it is impossible to expect a priori how many support points should

be used to form a D-optimum design for a given neural model. Indeed, the equation
(3.71) indicates the minimum number of support points, while the maximum number
can be determined with the help of Caratheodory’s theorem [7, 10, 13] and is equal
to ne = n p(n p + 1)/2 + 1.

Now let us consider a single output neural model for which ne = n p. The para-
meter vector of (3.1) is estimated with the least-square method as follows:

p̂ = arg min
p∀Rn p

nt∑
k=1

(yk − h( p, uk))
2. (3.73)
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Another appealing characteristic of the design considered can be expressed by the
following theorem, which is based on the results presented in [23].

Theorem 3.4 Assume that

θ =
⎝

u1 . . . un p
1

n p
. . . 1

n p

⎞
,

and the number of observations for different uks is nx = nt
n p

(it is assumed that it is

a positive integer number). Assume also that for all β ∀ R
n p , there exists p ∀ R

n p

such that β = [h( p, u1), . . . , h( p, un p )]T and p does not satisfy the conditions of
Theorem 3.1. Then the cost function of (3.73) has a unique global minimiser p̂ and
no other global minimisers.

Proof See the proof of Theorem 1 in [23].

Since the weights associated with support points are the same, then it is natural to
assume that the number of observations for different uks is the same. Theorem 3.4
can be relatively easily interpreted because the optimisation problem (3.73) can be
expressed (under the assumptions of Theorem 3.4) as

min
p∀Rn p

n p∑
k=1

(ȳk − h( p, uk))
2 = 0, (3.74)

and

ȳk = 1

nx

nx∑
i=1

yi
k, (3.75)

where yi
k stands for the i th observation under uk . Thus, the solution p̂ of (3.74)

should satisfy
ȳk − h( p̂, uk) = 0, k = 1, . . . , n p. (3.76)

Indeed, the fact that p̂ does not satisfy the conditions of Theorem3.1 implies that (3.1)
is uniquely determined by its input-output map, up to a finite group of symmetries
(permutations of hidden neurons and changing the sign of all weights associated with
a particular hidden neuron) [24]. This means that p̂ is a unique solution of (3.76).

Towards Robustness: Sequential Design

As was shown in Sect. 3.1.2, the unappealing characteristic of experimental design
for the MLP is the fact that the FIM depends on the non-linear parameters P (n) only.
It is obvious that the true value of P (n) is unknown and hence its estimate should be
utilised instead. As was mentioned in Sect. 3.1.2, if some rough estimates are given,
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i.e., they can be obtained with any training method for feed-forward neural networks
[19], then the so-called sequential design [7, 13] can be applied. Such a strategy is
usually applied off-line, i.e., the first step is parameter estimation while the second
one is to use some specialised algorithms, e.g., theWynn–Federov algorithm detailed
in Sect. 3.1.2, to obtain a design of the form (3.26). In spite of the simplicity of such
a sequential approach, some non-trivial problems arise which can be described as
follows:

• Determination of the number of stages of experimentation-estimation required to
attain the prescribed accuracy;

• Dependence of the final design upon the initial parameter estimates;
• Unique parametrisation of (3.1). This is the necessary condition to ensure the
convergence of the sequential algorithm;

• Management of data collected in the consecutive experiments in order to guarantee
the convergence of p̂ to the true value of parameters p.

Some existing results being partial solutions to the first two questions can be found
in [7, 25, 26]. Sussman [24] proved that, under some conditions, a network of the
structure (3.1) with the hyperbolic tangent activation function is uniquely determined
by its input-output map, up to a finite group of symmetries (permutations of hidden
neurons and changing the sign of all weights associated with a particular hidden
neuron). In [17] the author extended the results of [24] to the structure (3.1) with the
logistic activation function. The solution to the last problem seems to be well devel-
oped and can be formulated as follows [7]: in order to guarantee the convergence of
p̂ to p, the estimation of p̂k (the estimate of p in the kth iteration of the sequential
algorithm) should make use of all previous observations collected during the pre-
ceding iterations of the sequential algorithm. Fukumizu [12] employed this strategy
for OED for the MLP. The routine employed in [12] adds one single measurement
to the measurement set collected in the preceding iterations of the algorithm. This
new support point is obtained in such a way as to obtain an optimum design for the
new parameter estimate. This idea is to be exploited in designing a new sequential
algorithm that can be used for both training and data development for the MLP.
Another approach [7] is to obtain a design for a new parameter estimate in a clas-
sic way, e.g., with the Wynn–Fedorov algorithm, while parameter estimation should
make use of all the previous observations that where collected during the preceding
iterations of the sequential algorithm. This strategy is employed in the numerical
example presented in the subsequent section.

Numerical Example

Let us reconsider the example presented in Sect. 3.1.1. It is assumed that an initial
parameter estimate is p̂ = [1.8, 0.45, 0.54]T . The sequential algorithmutilises (3.30)
to obtain OED in the consecutive iterations of the algorithm. The measurements y
were generated by disturbing the data obtainedwith (3.28) by the normally distributed
random noise N (0, 0.12). The Levenberg–Marquardt algorithm [7] was employed
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Fig. 3.7 Average norm of the
parameter estimation error in
the consecutive iterations of
the sequential algorithm
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for parameter estimation. In order to show the reliability of the sequential algorithm,
consisting of 250 cycles of estimation and experimentation, it was repeated 100
times. This means that in each cycle 9 × 250 measurements were collected, i.e., in
each iteration the measurements were repeated three times for each support point of
(3.30).

Figure3.7 shows an average norm of the parameter estimation error ≺ p − p̂≺2 in
the consecutive iterations of the sequential algorithm. From this result it can be seen
that the parameter estimate converges (on average) to the true parameter vector p.
This implies that the designed experiment tends to the optimal experiment for p.

3.1.3 Industrial Application

This section presents an industrial application study regarding the proposed approach.
In particular, the presented example concerns experimental design, neural model
development and fault detection of a valve actuator. The problem regarding FDI
of this actuator was attacked from different angles in the EU DAMADICS project.
Development and Application of Methods for Actuator Diagnosis in Industrial Con-
trol Systems (DAMADICS) was a research project focused on drawing together
wide-ranging techniques and fault diagnosis within the framework of real appli-
cation to on-line diagnosis of a 5-stage evaporisation plant of the sugar factory in
Lublin, Poland. The project was focused on the diagnosis of valve (cf. Fig. 3.8) plant
actuators and looked towards real implementationmethods for new actuator systems.
The sugar factory was a subcontractor (under theWarsaw University of Technology)
providing real process data and the evaluation of trials of fault diagnosis methods.

The control valve is a mean used to prevent, permit and/or limit the flow of sugar
juice through the control system (a detailed description of this actuator can be found
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Fig. 3.8 Actuator and its scheme

in [27]). As can be seen in Fig. 3.8, the following process variables can be measured:
CV is the control signal, P1 is the pressure at the inlet of the valve, P2 is the pressure
at the outlet of the valve, T 1 is the juice temperature at the inlet of the valve, X is
servomotor rod displacement, F is the juice flow at the outlet of the valve. Thus,
the output is y = (F, X), while the input is given by u = (CV, P1, P2, T ). In
Fig. 3.8, three additional bypass valves (denoted by z1, z2, and z3) can be seen. The
state of these valves can be controlled manually by the operator. They are introduced
for manual process operation, actuator maintenance and safety purposes. The data
gathered from the real plant can be found on theDAMADICSwebsite [27]. Although
a large amount of real data is available, they do not cover all faulty situations, while
the simulator is able to generate a set of 19 faults (see Table3.1) Moreover, due
to a strict production regime, operators do not allow changing plant inputs, i.e.,
they are set up by control systems. Thus, an actuator simulator was developed with
MATLAB Simulink (available at [27]). Apart from experimental design purposes,
the main reason for using the data from the simulator is the fact that the achieved
results can be easily compared with those obtained with different approaches, e.g.,
[28–30]. The main objective of the subsequent part of this section is to develop a
neural network that can be used for fault detection of the industrial valve actuator.
The above task can be divided into the following steps:

Step 1: Training of a network based on the nominal data set;
Step 2: Design of the experiment with the Wynn–Fedorov algorithm described in
Sect. 3.1.2 based on the network obtained in Step 1;
Step 3: Training of a network based on the data obtained with experimental design.
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Table 3.1 Set of faults considered for the benchmark

Fault Description S M B I

f1 Valve clogging x x x
f2 Valve plug or valve seat sedimentation x x
f3 Valve plug or valve seat erosion x
f4 Increased valve or busing friction x
f5 External leakage x
f6 Internal leakage (valve tightness) x
f7 Medium evaporation or critical flow x x x x
f8 Twisted servomotor’s piston rod x x x
f9 Servomotor housing or terminal tightness x
f10 Servomotor’s diaphragm perforation x x x
f11 Servomotor’s spring fault x
f12 Electro-pneumatic transducer fault x x x
f13 Rod displacement sensor fault x x x x
f14 Pressure sensor fault x x x
f15 Positioner feedback fault x
f16 Positioner supply pressure drop x x x
f17 Unexpected pressure change across the valve x x
f18 Fully or partly opened bypass valves x x x x
f19 Flow rate sensor fault x x x

Abrupt faults: S small, M medium, B big, I incipient faults

Based on the experience with the industrial valve actuator, it was observed that the
following subset of the measured variables is sufficient for fault detection purposes:
u = (CV, P1, 1), y = F .

In Step 1, a number of experiments (the training of a neural network with the
Levenberg–Marquardt algorithm [7]) were performed in order to find a suitable
number of hidden neurons nh (cf. (3.1)). For that purpose, nt = 100 data points were
generated for which inputs were uniformly spread within the design regionU, where
0.25 < u1 < 0.75 and 0.6625 < u2 < 0.8375. As a result, a neural model consisting
of nh = 5 hidden neurons was obtained. The main objective of Step 2 was to utilise
the above model and the Wynn–Fedorov algorithm in order to obtain D-optimum
experimental conditions. First, an initial experiment was generated in such a way as
to equally divide the design space of u. Finally, the Wynn–Fedorov algorithm was
applied. Figure 3.9 shows the support points (ne = 45) and the variance function
for the obtained D-optimum design. Based on the derived continuous design, a set
consisting of nt = 100 points was found and used for data generation. The number
of repetitions of each optimal input uk was calculated by suitably rounding the
numbers μknt , k = 1, . . . , ne [7, 10]. It should be strongly stressed that the data
were collected in the steady-state of the valve because the utilised model (3.1) was
static. Finally, the new data set was used for training the networkwith the Levenberg–
Marquardt algorithm. As wasmentioned at the beginning of this section, the research
directions of the DAMADICS project were oriented towards fault diagnosis and, in
particular, fault detection of the valve actuator. Under the assumption of a perfect
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Fig. 3.9 Variance function and the corresponding support points

mathematical description of the systems considered, a perfect residual generation
should provide a residual that is zero during the normal operation of the system
and considerably different than zero otherwise. This means that the residual should
ideally carry information regarding a fault only. Under such assumptions, faults
can be easily detected. Unfortunately, this is impossible to attain in practice since
residuals are normally uncertain, corrupted by noise, disturbances and modelling
uncertainty. That is why, in order to avoid false alarms, it is necessary to assign a
threshold to the residual that is significantly larger than zero. The most common
approach is to use a fixed threshold [22, 31]. The main difficulty with this kind of
thresholds is the fact that they may cause many serious problems regarding false
alarms as well as undetected faults. In other words, it is very difficult to fix such a
threshold and there is no optimal solution that can be applied to settle such a task.
Fortunately, using (3.17), (3.24) and (3.25), it is possible to develop an adaptive
threshold that can be described as follows:

|zi,k | ≤ tδ/2
nt −n p

∂̂
(
1 + r i,k P rT

i,k

)1/2
, i = 1, . . . , m. (3.77)

Consequently, the decision logic can be realised as follows:
If the residual zk satisfies (3.77), then there is no fault symptom, else (3.77)

indicates that a fault symptom has occurred.
The objective of the subsequent part of this section is to use the obtained network

for fault detection, as well as to compare its performance with that of a network
obtained for a nominal data set. Table3.2 shows the results of fault detection for a set
of faults being specified for the benchmark (the symbols S—Small,M—Medium, and
B—Big denote the magnitude of the faults). All faults were generated with the same
scenario, i.e., the first 200 samples correspond to the normal operating mode of the
systemwhile the remaining ones were generated under faulty conditions. Figure3.10
presents the residual signal obtained with a network trained with the D-optimum data
set as well as an adaptive threshold provided by this network (the 2nd network). This
figure also presents an adaptive threshold provided by a network (the 1st network)
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Table 3.2 Results of fault detection

Fault Description S M B

f1 Valve clogging D D D
f2 Valve plug or valve seat sedimentation X X D
f7 Medium evaporation or critical flow D D D
f8 Twisted servomotor’s piston rod N N N
f10 Servomotor’s diaphragm perforation D D D
f12 Electro-pneumatic transducer fault X X D
f13 Rod displacement sensor fault D D D
f15 Positioner feedback fault X X D
f16 Positioner supply pressure drop N N D
f17 Unexpected pressure change across valve X X D
f18 Fully or partly opened bypass valves D D D
f19 Flow rate sensor fault D D D

D detected, N not detected, X not specified for the benchmark
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Fig. 3.10 Residual and adaptive thresholds for the fault f1—small (a) and its selected part (b)

trained with the data set generated by equally dividing the design space. It can be
observed that the neural network obtained with the use of D-optimum experimental
design makes it possible to obtain more accurate bounds than those obtained with
a neural network trained otherwise. Indeed, as can be seen in Fig. 3.10b, the fault
f1—small (which in the light of its nature is hard to detect) can be detected with
the help of the 2nd network while it is impossible to detect it with the use of the 1st
one. It should be strongly underlined that the situation is even worse when the 1st
network is used for residual generation, i.e., in the presented example it was used
for adaptive threshold generation only. As can be observed in Table3.2, almost all
the faults specified for the benchmark can be detected. The main reason why the
faults f8 and f16 (small and medium) cannot be detected is because their effect is
exactly at the same level as that of noise. However, it should be pointed out that this
was the case for other techniques [29, 30] tested with the DAMADICS benchmark.
Finally, Fig. 3.11 presents sample residuals for the faults f18—small and f19—small,
respectively.
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Fig. 3.11 Residual and adaptive thresholds for the fault f18—small (a) and f19—small (b),
respectively

3.2 GMDH Neural Networks

The synthesis process of the GMDH neural network [8] is based on the iterative
processing of a sequence of operations. This process leads to the evolution of the
resulting model structure in such a way as to obtain the best quality approximation
of the real system. The quality of the model can be measured with the application
of various criteria [32]. The resulting GMDH neural network is constructed through
the connection of a given number of neurons, as shown in Fig. 3.12. The neuron has
the following structure:

y(l)
n,k = θ

((
r(l)

n,k

)T
p(l)

n

)
, (3.78)

where y(l)
n,k stands for the neuron output (l is the layer number, n is the neuron

number in the lth layer),whilst θ(·)denotes a non-linear invertible activation function,
i.e., there exists θ−1(·). Moreover, r(l)

n,k = g

([
u(l)

i,k, u(l)
j,k

]T
)
, i, j = 1, . . . , r , and

p(l)
n ∀ R

n p are the regressor and the parameter vectors, respectively, and g(·) is
an arbitrary bivariate vector function, e.g., g(x) = [x21 , x22 , x1x2, x1, x2, 1]T that
corresponding to the bivariate polynomial of the second degree.

An outline of the GMDH algorithm can be as follows [8, 33]:

Step 1: Determine all neurons (estimate their parameter vectors p(l)
n with the training

data set T ) whose inputs consist of all possible couples of input variables, i.e.,
(r − 1)r/2 couples (neurons).
Step 2: Using a validation data set V , not employed during the parameter estimation
phase, select several neurons which are best fitted in terms of the chosen criterion.
Step 3: If the termination condition is fulfilled (either the network fits the data with
desired accuracy, or the introduction of new neurons did not induce a significant
increase in the approximation abilities of the neural network), then STOP, otherwise
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Fig. 3.12 Principle of the GMDH algorithm

Fig. 3.13 Final structure of the GMDH neural network

use the outputs of the best-fitted neurons (selected in Step 2) to form the input vector
for the next layer (see Fig. 3.12), and then go to Step 1.

To obtain the final structure of the network (Fig. 3.13), all unnecessary neurons are
removed, leaving only those which are relevant to the computation of the model
output. The procedure of removing the unnecessary neurons is the last stage of the
synthesis of the GMDH neural network. The feature of the above algorithm is that
the techniques for parameter estimation of linear-in-parameter models can be used
during the realisation of Step 1. Indeed, since θ(·) is invertible, the neuron (3.78) can
relatively easily be transformed into a linear-in-parameter one.

3.2.1 Model Uncertainty in the GMDH Neural Network

The objective of system identification is to obtain a mathematical description of a
real system based on input-output measurements. Irrespective of the identification
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method used, there is always the problem ofmodel uncertainty, i.e., themodel-reality
mismatch. Even though the application of the GMDH approach to model structure
selection can improve the quality of the model, the resulting structure is not the same
as that of the system. It can be shown [34] that the application of the classic evaluation
criteria like the Akaike Information Criterion (AIC) and the Final Prediction Error
(FPE) [32, 35] can lead to the selection of inappropriate neurons and, consequently,
to unnecessary structural errors.

Apart from the model structure selection stage, inaccuracy in parameter estimates
also contributes to modelling uncertainty. Indeed, while applying the least-square
method to parameter estimation of neurons (3.78), a set of restrictive assumptions
has to be satisfied. The first (and the most controversial) assumption is that the
structure of the neuron is the same as that of the system (no structural errors). In the
case of the GMDH neural network, this condition is extremely difficult to satisfy.
Indeed, neurons are created based on two input variables selected from U and hence
it is impossible to eliminate the structural error. Another assumption concerns the
transformation with θ−1(·). Let us consider the following system output signal:

yk = θ

((
r(l)

n,k

)T
p(l)

n

)
+ v

(l)
n,k . (3.79)

The use of linear-in-parameter estimation methods for the model (3.78), e.g., the
Least-Square Method (LSM) [36] requires transforming the output of the system
(3.79) as follows: (

r(l)
n,k

)T
p(l)

n = θ−1 (yk) − v
(l)
n,k . (3.80)

Unfortunately, the transformation of (3.79) with θ−1(·) results in
(

r(l)
n,k

)T
p(l)

n = θ−1
(

yk − v
(l)
n,k

)
. (3.81)

Thus, good results can only be expected when the noise v
(l)
n,k magnitude is relatively

small. The other assumptions are directly connected with the properties of the LSM,
i.e., in order to attain an estimator p̂(l)

n,k of p(l)
n,k for (3.78) which is unbiased and

minimum variance [10], it is assumed that

E
[
v(l)

n

]
= 0, (3.82)

cov
[
v(l)

n

]
=
(
∂(l)

n

)2
I . (3.83)

The assumption (3.82) means that there are no structural errors (deterministic distur-
bances) and model uncertainty is described in a purely stochastic way (uncorrelated
noise, cf. (3.83)). It must be pointed out that this is rather difficult to satisfy this
condition in practice.
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Let us suppose that, in some case, the conditions (3.82) and (3.83) are satisfied.
Then it can be shown that p̂(1)

n,k (the parameter estimate vector for a neuron of the
first layer) is unbiased and minimum variance [10]. Consequently, the neuron output
in the first layer becomes the input to other neurons in the second layer. The system
output estimate can be described by

ŷ(l)
n = R(l)

n

[(
R(l)

n

)T
R(l)

n

]−1 (
R(l)

n

)T
Y , (3.84)

where R(l)
n = [r(l)

n,1, . . . , r(l)
n,nt ]T , Y = [y1, . . . , ynt ]T , and ŷ(l)

n = [ŷ(l)
n,1, . . . , ŷ(l)

n,nt ]T

represent the system output vector and its estimate. Apart from the situation in the
first layer (l = 1), where the matrix R(l)

n depends on U , in the subsequent layers
R(l+1)

n depends on (3.84) and hence

E
[[(

R(l+1)
n

)T
R(l+1)

n

]−1 (
R(l+1)

n

)T
v(l+1)

n

]
√= 0. (3.85)

That is why the parameter estimator in the next layers is biased and no minimum
variance, i.e.,

E
[

p̂(l+1)
n

]
= E

[[(
R(l+1)

n

)T
R(l+1)

n

]−1 (
R(l+1)

n

)T
y

]

= E
[[(

R(l+1)
n

)T
R(l+1)

n

]−1 (
R(l+1)

n

)T (
R(l+1)

n p(l+1)
n + v(l+1)

n

)]

= p(l+1)
n + E

[[(
R(l+1)

n

)T
R(l+1)

n

]−1 (
R(l+1)

n

)T
v(l+1)

n

]
. (3.86)

To settle this problem, the instrumental variable method or other methods listed
in [7] can be employed. On the other hand, these methods provide only asymptotic
convergence, and hence a large data set is usually required to obtain an unbiased
parameter estimate.

3.2.2 Bounded-Error Approach

The problems detailed in the previous section clearly show that there is a need for the
application of a parameter estimation method different than the LSM. Such a method
should also be easily adaptable to the case of an uncertain regressor and should
overcome all of the remaining difficulties mentioned in Sect. 3.2.1. The subsequent
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part of this section gives an outline of such a method called the Bounded-Error
Approach (BEA).

Bounded Noise/Disturbances

The usual statistical parameter estimation framework assumes that data are corrupted
by errors which can be modelled as realisations of independent random variables,
with a known or parameterised distribution. A more realistic approach is to assume
that the errors lie between given prior bounds. This is the case, for example, for data
collected with an analogue-to-digital converter or for measurements performed with
a sensor of a given type. Such reasoning leads directly to the bounded-error approach
[6, 7]. Let us consider the following system:

yk =
(

r(l)
n,k

)T
p(l)

n + v
(l)
n,k . (3.87)

The problem is to obtain the parameter estimate p̂(l)
n as well as an associated

parameter uncertainty required to design a robust fault detection system. In order to
simplify the notation, the index (l)

n is omitted. The knowledge regarding the set of
admissible parameter values allows obtaining the confidence interval of the model
output which satisfies

yN
k ≤ yk ≤ yM

k , (3.88)

where yN
k and yM

k are respectively the minimum and maximum admissible values
of the model output that are consistent with the input-output measurements of the
system. Under the assumptions detailed in Sect. 3.2.1, the uncertainty of the neural
network can be obtained according to [37].

In this work, it is assumed that vk is bounded as follows:

vN
k ≤ vk ≤ vM

k , (3.89)

while the bounds vN
k and vM

k (vN
k √= vM

k ) are known a priori. The idea underlying the
bounded-error approach is to obtain a feasible parameter set [6]. It can be defined as

P =
{

p ∀ R
n p | yk − vM

k ≤ rT
k p ≤ yk − vN

k , k = 1, . . . , nt

}
. (3.90)

This set can be perceived as a region of the parameter space that is determined by nt

pairs of hyperplanes:

P =
nt⋂
k

Sk, (3.91)

where each pair defines the parameter strip
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Fig. 3.14 Feasible parameter
set

Sk =
{

p ∀ R
n p | yk − vM

k ≤ rT
k p ≤ yk − vN

k

}
. (3.92)

Any parameter vector contained in P is a valid estimate of p. In practice, the centre
(in some geometrical sense) of P (cf. Fig. 3.14 for n p = 2) is chosen as the parameter
estimate p̂, e.g.,

p̂i = pmin
i + pmax

i

2
, i = 1, . . . , n p, (3.93)

with
pmin

i = argmin
p∀P

pi , i = 1, . . . , n p, (3.94)

pmax
i = argmax

p∀P
pi , i = 1, . . . , n p. (3.95)

This is, of course, importantwhen the task is to develop a neural network forwhich the
knowledge regarding parameter uncertainty is not useful. In the presented approach,
the nominal model is obtained in such a way that the knowledge regarding parameter
uncertainty is used for fault detection purposes.

The problems (3.94) and (3.95) can be solved with the well-known linear pro-
gramming techniques [6, 38], but when nt and/or n p are large, the computational
cost may be significant. This constitutes the main drawback of the approach. One
way out of this problem is to apply a technique where constraints are executed sep-
arately one after another [39], although this approach does not constitute a perfect
remedy for the computational problem considered. This means that the described
BEA can be employed for tasks with a relatively small dimension, as is the case for
GMDH neurons. In spite of the above-mentioned computational problems, the tech-
nique described in [39] was implemented and used in this work. The main difficulty
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associated with the BEA concerns a priori knowledge regarding the error bounds
vN

k and vM
k . However, these bounds can also be estimated [6] by assuming that

vN
k = vN , vM

k = vM , and then suitably extending the unknown parameter vector p
by vN and vM . Determining the bounds can now be formulated as

(vN , vM ) = arg min
vM ≥0, vN ≤0

vM − vN , (3.96)

with respect to the following constraints:

yk − vM ≤ rT
k p ≤ yk − vN , k = 1, . . . , nt . (3.97)

In this section, the well-known simplex method was utilised to solve the problem
(3.96). Then, knowing vN and vM , the strategy described in [39] was employed.

Model Output Uncertainty

The methodology described in Sect. 3.2.2 makes it possible to obtain the parameter
estimate p̂ and the associated feasible parameter set P. However, from a practical
point of view, it is more convenient to obtain the system output confidence interval,
i.e., the interval in which the “true” model output y(k) can be found. This kind
of knowledge makes it possible to obtain an adaptive threshold [40], and hence to
develop a fault diagnosis scheme that is robust to model uncertainty.

LetV be the set of all vertices pi , i = 1, . . . , nv , describing the feasible parameter
set P (cf. (3.91)). If there is no error in the regressor, then the problem of determining
the model output confidence interval can be solved as follows:

yN
M,k = rT

k pN
k ≤ rT

k p ≤ rT
k pM

k = yM
M,k, (3.98)

where
pN

k = argmin
p∀V

rT
k p, (3.99)

pM
k = argmax

p∀V
rT

k p. (3.100)

The computation of (3.99) and (3.100) is realised by multiplying the parameter
vectors corresponding to all vertices belonging to V by rT

k .
Since (3.98) describes a neuron output confidence interval, the system output will

satisfy
rT

k pN
k + vN

k ≤ yk ≤ rT
k pM

k + vM
k . (3.101)

A more general case of (3.101) for neurons with a non-linear activation function will
be considered in Sect. 3.2.3. The neuron output confidence interval defined by (3.98)
and the corresponding system output confidence interval (3.101) are presented in
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Fig. 3.15 Model output
confidence interval for the
error-free regressor

Fig. 3.16 System output
confidence interval for the
error-free regressor

Figs. 3.15 and 3.16, respectively. As has already been mentioned, the neurons in the
lth (l > 1) layer are fed with the outputs of the neurons from the (l − 1)th layer.
Since (3.98) describes the model output confidence interval, the parameters of the
neurons in the layers have to be obtained with an approach that solves the problem
of an uncertain regressor [6].

In order to modify the approach presented in Sect. 3.2.2, let us denote an unknown
“true” value of the regressor rn,k by a difference between a known (measured) value
of the regressor rk and the error in the regressor ek :

rn,k = rk − ek, (3.102)

where it is assumed that the error ek is bounded as follows:

eN
i,k ≤ ei,k ≤ eM

i,k, i = 1, . . . , n p. (3.103)

Using (3.87) and substituting (3.102) into (3.103), one can define the region contain-
ing parameter estimates:

vN
k − eT

k p ≤ yk − rT
k p ≤ vM

k − eT
k p. (3.104)
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Unfortunately, for the purpose of parameter estimation it is not enough to introduce
(3.102) into (3.103). Indeed, the bounds of (3.104) depend also on the sign of each
pi . It is possible to directly obtain these signs only for models whose parameters
have physical meaning [41]. For models such as GMDH neural networks this is
rather impossible. In [6, Chapters 17 and 18], the authors proposed some heuristic
techniques, but these drastically complicate the problem (3.104) and do not seem to
guarantee that these signs will be obtained properly. Bearing in mind the fact that
the neuron (3.78) contains only a few parameters, it is possible to replace them by

pi = p≥
i − p≥≥

i , p≥
i , p≥≥

i ≥ 0, i = 1, . . . , n p. (3.105)

Although the above solution is very simple, it doubles the number of parameters,
i.e., instead of estimating n p parameters it is necessary to do so for 2n p parameters.
In spite of that, this technique is very popular and widely used in the literature
[6, 42]. Due to the above solution, (3.104) can be modified as follows:

vN
k −

(
eM

k

)T
p≥ +

(
eN

k

)T
p≥≥

≤ yk − rT
k ( p≥ − p≥≥)

≤ vM
k −

(
eN

k

)T
p≥ +

(
eM

k

)T
p≥≥. (3.106)

This transformation makes it possible to employ, with a minor modification, the
approach described in Sect. 3.2.2. The difference is that the algorithm processes each
constraint (associated with a pair of hyperplanes defined with (3.106)) separately.
The reason for such a modification is that the hyperplanes are not parallel [43].

The proposedmodification of the BEAmakes it possible to estimate the parameter
vectors of the neurons from the lth, l > 1, layer. In the case of an error in the
regressor, using (3.106) it can be shown that the model output confidence interval
has the following form:

yN
M,k

(
p≥N

k , p≥≥N
k

)
≤ rT

n p ≤ yM
M,k

(
p≥M

k , p≥≥M
k

)
, (3.107)

where

yN
M,k

(
p≥N

k , p≥≥N
k

)
=
(

rk − eM
k

)T
p≥N

k +
(

eN
k − rk

)T
p≥≥N

k , (3.108)

yM
M,k

(
p≥M

k , p≥≥M
k

)
=
(

rk − eN
k

)T
p≥M

k +
(

eM
k − rk

)T
p≥≥M

k , (3.109)

and (
p≥N

k , p≥≥N
k

)
= arg min

( p≥
k , p≥≥

k )∀V
yN

M,k( p≥
k, p≥≥

k ), (3.110)
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(
p≥M

k , p≥≥M
k

)
= arg max

( p≥
k , p≥≥

k )∀V
yM

M,k( p≥
k, p≥≥

k ). (3.111)

Using (3.107), it is possible to obtain the system output confidence interval:

yN
M,k

(
p≥N

k , p≥≥N
k

)
+ vN

k ≤ yk ≤ yM
M,k

(
p≥M

k , p≥≥M
k

)
+ vM

k . (3.112)

3.2.3 Synthesis of the GMDH Neural Network Via the BEA

In order to adapt the approach of Sect. 3.2.2 to parameter estimation of (3.78), it is
necessary to transform the relation

vN
k ≤ yk − θ

((
R(l)

n,k

)T
p(l)

n

)
≤ vM

k (3.113)

in such a way as to avoid the problems detailed in Sect. 3.2.1. In this case, it is
necessary to assume that

1. θ(·) is continuous and bounded, i.e.,

⊂ x ∀ R : a < θ(x) < b; (3.114)

2. θ(·) is monotonically increasing, i.e.,

⊂ x, y ∀ R : x ≤ y iff θ(x) ≤ θ(y). (3.115)

Now it is easy to show that

yk − vM
k ≤ θ

((
R(l)

n,k

)T
p(l)

n

)
≤ yk − vN

k , (3.116)

and then

θ−1
(

yk − vM
k

)
≤
(

R(l)
n,k

)T
p(l)

n ≤ θ−1
(

yk − vN
k

)
. (3.117)

As was pointed out in Sect. 3.2.2, an error in the regressor must be taken into account
during the design procedure of the neurons from the second and subsequent layers.
Indeed, by using (3.98) in the first layer and (3.107) in the subsequent ones it is
possible to obtain the bounds of the output (3.78) and the bounds of the regressor
error (3.89), whilst the known value of the regressor should be computed by using
the parameter estimates p̂(l)

n . Note that the processing errors of the neurons, which
are described by the model output confidence interval (3.107), can be propagated and
accumulated during the introduction of new layers (Fig. 3.17).This unfavourable phe-
nomenon can be reduced by the application of an appropriate selection method [44].
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Fig. 3.17 Propagation of model uncertainty (dotted lines), model response (continuous line)

Selection methods in GMDH neural networks play the role of a mechanism of struc-
tural optimisation at the stage of constructing a new layer of neurons. Only well-
performing neurons are preserved to build a new layer. During the selection, neurons
which have too large a value of the defined evaluation criteria [32, 35, 44] are rejected
based on chosen selection methods. Unfortunately, as was mentioned in Sect. 3.2.1,
the application of the classic evaluation criteria like the Akaike Information Crite-
rion (AIC) and the Final Prediction Error (FPE) [32, 35] during network synthesis
may lead to the selection of an inappropriate structure of the GMDH neural network.
This follows from the fact that the above criteria do not take into account modelling
uncertainty. In this way, neurons with small values of the classic quality indexes
QV but with large uncertainty (Fig. 3.18) can be obtained. In order to overcome this
difficulty, a new evaluation criterion of the neurons has been introduced in [8], i.e.,

QV = 1

nV

nv∑
k=1

⎠⎠⎠(yM
M,k + vM

k

)
−
(

yN
M,k + vN

k

)⎠⎠⎠ , (3.118)

where nV is the number of input-output measurements for the validation data set,
while yM

k and yN
k are calculated with (3.98) for the first layer or with (3.108)–(3.109)

for the subsequent ones. Finally, the neuron in the last layer that gives the smallest
processing error (3.118) constitutes the output of the GMDH neural network, while
model uncertainty of this neuron is used for the calculation of the system output
confidence interval. It is therefore possible to design the so-called adaptive threshold
[40], which can be employed for robust fault detection.

3.2.4 Robust Fault Detection with the GMDH Model

The purpose of this section is to show how to develop an adaptive threshold with the
GMDH model and some knowledge regarding its uncertainty. Since the residual is

zk = yk − ŷk, (3.119)
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Fig. 3.18 Problem of an incorrect selection of a neuron

Fig. 3.19 Fault detection with an adaptive threshold developed with the proposed approach

then, as a result of substituting (3.119) into (3.112), the adaptive threshold can be
written as

yN
M,k

(
p≥N

k , p≥≥N
k

)
− yk + vN

k ≤ zk ≤ yM
M,k

(
p≥M

k , p≥≥M
k

)
− yk + vM

k . (3.120)

The principle of fault detection with the developed adaptive threshold is shown in
Fig. 3.19.
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3.2.5 Alternative Robust Fault Detection Procedure:
A Backward Detection Test

As can be found in the literature, the procedure proposed in the preceding part of
this section (cf. Sect. 3.2.4) is called the forward test. Now, an alternative passive
robust fault detection test, inspired by the inverse image of an interval function, is
introduced. This is why this test is named the backward detection test (see [45], where
this name is used for describing a very similar approach to the one presented here
but in the context of set-membership state estimation). The backward detection test
applied to the GMDH neural net consists in checking if there exists p ∀ P (cf. (3.90))
such that

yk − vM
k ≤ rT

k p ≤ yk − vN
k . (3.121)

If there is no p ∀ P satisfying (3.121), then a discrepancy between the measured
output and the model output is detected and a fault should be indicated. In fact, this
test can be perceived as a kind of parameter identification, since the set of parameters
that are consistent with the actual set of Nt test measurements is

PNt =
{

p ∀ R
n p | yk − vM

k ≤ rT
k p ≤ yk − vN

k , k = 1, . . . , Nt

}
. (3.122)

Then, equivalently, the backward fault detection test consists in checking if

P ∩ PNt = ∅. (3.123)

The computation of the parameter set consistent with a given set of Nt measurements

Υ = [y1] × · · · × [yNt ], (3.124)

with

[yk] =
[

yk − vM
k , yk − vN

k

]
, (3.125)

can be realised with the same bounded-error parameter estimation algorithms as
those used for calculating the feasible parameter set or by computing the inverse
image of the function g(·) describing the GMDH neural network:

ym,k = g
(

p(1)
1 , . . . , p(1)

n1 , . . . , p(L)
1 , . . . , p(L)

nL

)
, (3.126)

where L is the number of layers of the GMDHmodel and nl is the number of neurons
in the lth neuron. Such an inverse can be described as follows

PNt = g−1(Υ ). (3.127)
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In [45], the authors proposed proposed an alternative approach called SIVIA (Set
Inversion Via Interval Analysis) that computes the inverse image of an interval func-
tion using subpavings. This algorithm makes use of the point test

t (x) =
(

x ∀ f −1(Υ )
)

, (3.128)

associated to the inverse image, which can be easily evaluated by computing f (x)

and checking if it belongs to Υ . However, when the dimension of the set to be char-
acterised is high, the computational complexity explodes since SIVIA uses bisection
in all directions [45].

Moreover, after computing (3.127), either using bounded-error parameter esti-
mation algorithms or the inverse image of an interval function using SIVIA, the
intersection presented in (3.123) should be computed, which is not an easy task in
general. When the dimension of the set whose inverse is calculated increases, the
calculation time can increase quickly as these algorithms rely on bisections in all
directions. Then, by using contractors in combination with bisections the compu-
tational burden can be reduced significantly, see [45] for more details. Then, the
presented backward test will be implemented using (3.121) with constraint satisfac-
tion algorithms that are polynomial in time. This can be justified by the fact that the
use of contractors is computationally less demanding because bisections are only
used when required.

Constraint Satisfaction Problem

An Interval Constraint Satisfaction Problem (ICSP) can be formulated as a
3-tuple H = (V,D,C), where V = {ω1, . . . , ωn} is a finite set of variables,
D = {ω1, . . . , ωn} is the set of their domains represented by the closed real intervals,
and C = {c1, . . . , cn} is a finite set of constraints relating variables of V. A point
solution of H is a n-tuple (ω̃1, . . . , ω̃n) ∀ V such that all constraints C are satisfied.
The set of all point solutions of H is denoted by S(H). This set is called the global
solution set. The variable ωi ∀ Vi is consistent with H iff

⊂ωi ∀ Vi (ω̃1 ∀ [ω1], . . . , ω̃n ∀ [ωn])
⎠⎠(ω̃1, . . . , ω̃n) ∀ S(H). (3.129)

The principle of algorithms for solving ICSP using local consistency techniques
consists essentially in iterating two main operations, domain contraction and prop-
agation, until reaching a stable state. Roughly speaking, if the domain of a variable
ωi is locally contracted with respect to a constraint c j , then this domain modification
is propagated to all the constraints in which vi occurs leading to the contraction of
other variable domains, and so on. Then, the final goal of such a strategy is to contract
as much as possible the domains of the variables without loosing any solution by
removing inconsistent values through the projection of all constraints. Projecting a
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constraint with respect to some of its variables consists in computing the smallest
interval that contains only consistent values applying a contraction operator.

Backward Test as an ICSP

The fault detection test in (3.121) can be formulated as an ICSPH = (V,D,C) with

V = {y1, . . . , yk, p},
D = {[y1], . . . , [yk],P},
C = {y1 = rT

1 p, . . . , yk = rT
k p}. (3.130)

This problem can be solved by using an ICSP solver as, for example, Interval Peeler
developed by the group of Jaulin that employs the principles described in [45] (http://
www.ensta-bretagne.fr/jaulin/demo.html). In the case when no solution is found, a
fault should be indicated since there is no parameter p ∀ P such that (3.121) is
satisfied.

In the case of the GMDH neural network, the feasible parameter set P is not
described by an interval parameter vector but by a polygon with vertices pi ∀ V(P),
i = 1, . . . , n p (cf. Fig. 3.14) instead, a slight modification is required in order to get
a problem that is compatible with the above-mentioned Interval Peeler. This can be
achieved by introducing additional restrictions into (3.130). Each pair of adjacent
vertices pi , pi+1 introduces a linear restriction of the form

f
(

p, pi , pi+1
)

= a1
(

pi , pi+1
)

p1 + · · · + an p

(
pi , pi+1

)
pn p − b

(
pi , pi+1

)
≤ 0, (3.131)

with p ∀ hull(P) = [ p̄, p], i.e., the minimum interval box containing the feasible
parameter set P. Thus, hull(P) can be easily computed as follows:

p̄i = min
p∀V(P)

pi , i = 1, . . . , n p, (3.132)

p
i
= max

p∀V(P)
pi , i = 1, . . . , n p. (3.133)

Numerical Example

A simple example in the noise-free context is considered. The main objective is
to show how the backward test works and how it outperforms the forward test.
Numerous experiments show that this appealing phenomenon appears also when an
additive noise is introduced. The example is based on a static interval model defined
as follows:

http://www.ensta-bretagne.fr/jaulin/demo.html
http://www.ensta-bretagne.fr/jaulin/demo.html
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Fig. 3.20 Forward fault
detection test (k = 1, . . . , 5)
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Fig. 3.21 Parameter region
consistent with the forward
test (k = 1, . . . , 5)
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yk = au1,k + bu2,k, (3.134)

where a ∀ [0.6190, 0.7626 and b ∀ [0.3966, 0.5402] represent the fault-free system
behaviour. Let us consider an abrupt fault scenario related to the changes of a and b
from their nominal values to a = 0.5829 and b = 0.4766, at time k = 1.

The results of the forward detection test are presented in Fig. 3.20. It can be
easily observed that the fault is not detected. As can be seen in Fig. 3.21, the feasible
parameter set (consistent with the data for k = 1, . . . , 5) outerbounds the fault-free
parameter set (represented by the rectangle). The faulty parameter (represented by
the cross) is inside P but outside the fault-free parameter set. This is the reason why
the forward test does not detect the fault. However, it can be observed in Fig.3.22
that the fault can be detected for k = 12. It can be also seen in Fig. 3.23 that the faulty
parameter (represented by the cross) is outside P, which clearly confirms the result of
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Fig. 3.22 Forward fault
detection test (k = 1, . . . , 5)
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Fig. 3.23 Parameter region
consistent with the forward
test (k = 6, . . . , 13)
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fault detection. On the other hand, using the backward test (3.121) (implemented by
3.130), the set of parameters consistentwith themeasured data at k = 1 is represented
by the line presented in Fig. 3.24. Since the line intersects a fault-free parameter set,
the fault cannot be detected. Processing the measured data at time instant k = 2,
one can obtain the second line (Fig. 3.25). It is straightforward to observe that the
intersection of the lines corresponding to k = 1 and k = 2 (cf. (3.130)), results in
a point that is outside the fault-free parameter set. Thus, this inconsistency makes it
possible to detected the fault being considered (Fig. 3.25).

This simple example clearly shows that the forward test cannot detect some faults
even if the faulty parameters are outside the fault-free parameter set. Only after a
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Fig. 3.24 Backward fault detection test at time k = 1 (fault not detected)
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Fig. 3.25 Backward fault detection test at time k = 2 (fault detected)

longer time horizon will the output measurement go out of the envelope. On the other
hand, the backward test detects the fault much faster, e.g., after two samples in the
simple example being considered. Taking into account the above discussion, it can
be noticed that the backward test is usually superior over the forward one. Such a
superiority results in a significantly shorter fault detection time. This is especially
important for industrial applications when a fast fault detection is of a paramount
importance, i.e., if the fault is not detected fast enough, then it may cause a sequence
of other faults.
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3.2.6 Industrial Application

The purpose of the present section is to show the effectiveness of the proposed
approach in the context of system identification and fault detection with the
DAMADICS benchmark. Based on the actuator benchmark definition [27, 46], two
GMDH models were designed. These models describe the behaviour of the valve
actuator and can be labelled as the juice flow model F = rF (X, P1, P2, T1) and the
servomotor rod displacementmodel X = rX (CV , P1, P2, T1), where rF and rX stand
for the modelled relation between the inputs F, X and the outputsCV , X, P1, P2, T1.

The real data used for system identification and the fault detection procedure were
collected on 17th November 2001. A detailed description regarding the data and the
artificially introduced faults can be found in Table3.3.

Unfortunately, the data turned out to be sampled too fast. Thus, every 10th value
was picked, resulting in the nt = 1,000 training and nV = 1,000 validation data sets.
Moreover, the output data should be transformed taking into account the response
range of the neuron output. In this section, hyperbolic tangent activation functions
were employed and hence this range is [−1, 1]. To avoid the saturation of the activa-
tion function, the range was further decreased to [−0.8, 0.8]. In order to perform data
transformation, linear scaling was used. The choice of the neuron structure and the
selection method of the neurons in the GMDH network are other important problems
of the proposed technique. For that purpose, dynamic neurons [47] and the so-called
soft selection method [44] were employed. The dynamics in this neuron are realised
by the introduction of a linear dynamic system—an Infinite Impulse Response (IIR)
filter. As has previously been mentioned, the quality index of a neuron for the vali-
dation data set was defined as

QV = 1

nv

nv∑
k=1

⎠⎠⎠(yM
M,k + vM

k

)
−
(

yN
M,k + vN

k

)⎠⎠⎠ , (3.135)

where yM
M,k and yN

M,k are calculated with (3.98) for the first layer or with (3.108)–
(3.109) for the subsequent ones. Table 3.4 presents the evolution of (3.135) for the
subsequent layers, i.e., these values are obtained for the best performing neurons in
a particular layer. Additionally, for the sake of comparison, the results based on the

Table 3.3 List of data sets

Fault Range (samples) Fault/data description

No fault 1–10,000 Training data set
No fault 10,001–20,000 Validation data set
f16 57,475–57,530 Positioner supply pressure drop
f17 53,780–53,794 Unexpected pressure drop across valve
f18 54,600–54,700 Fully or partly opened bypass valves
f19 55,977–56,015 Flow rate sensor fault
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Table 3.4 Evolution of QV and BV for the subsequent layers

Layer rF (·) rF (·) rX (·) rX (·)
QV BV QV BV

1 1.5549 0.3925 0.5198 0.0768
2 1.5277 0.3681 0.4914 0.0757
3 1.5047 0.3514 0.4904 0.0762
4 1.4544 0.3334 0.4898 0.0750
5 1.4599 0.3587 0.4909 0.0748

classic quality index [32],

BV = 1

nv

nv∑
k=1

⎠⎠yk − ŷk
⎠⎠ , (3.136)

are presented as well.
The results presented in Table3.4 clearly show that the gradual decrease QV

occurswhen a new layer is introduced. This follows from the fact that the introduction
of a new neuron increases the complexity of the model as well as its modelling
abilities. On the other hand, if the model is too complex, then the quality index
QV increases. This situation occurs, for both F = rF (·) and X = rX (·), when the
5th layer is introduced. This means that GMDH neural networks corresponding to
F = rF (·) and X = rX (·) should have four layers. From Table3.4, it can be also seen
that the application of the quality index BV gives similar results for F = rF (·), i.e.,
the same number of layers was selected, whilst for X = rX (·) it leads to the selection
of too simple a structure, i.e., a neural network with only two layers is selected. This
implies that the quality index QV makes it possible to obtain a model with a smaller
uncertainty. In order to achieve the final structure of F = rF (·) and X = rX (·),
all unnecessary neurons were removed, leaving only those that are relevant for the
computation of the model output. The final structures of GMDH neural networks
are presented in Figs. 3.26 and 3.27. From Fig. 3.27, it can be seen that the input
variable P2, was removed during the model development procedure. Nevertheless,
the quality index QV achieved a relatively low level. It can be concluded that P2 has a
relatively small influence on the servomotor rod displacement X . This is an example
of structural errors that may occur during the selection of neurons in the layer of the
GMDH network. On the other hand, the proposed fault detection scheme is robust
to such errors. This is because they are taken into account during the calculation of
a model output confidence interval.

Figures3.28 and 3.29 present the modelling abilities of the obtained models F =
rF (·) and X = rX (·), as well as the corresponding system output confidence interval
obtained with the proposed approach for the validation data set.

For the reader’s convenience, Fig. 3.30 presents a selected part of Fig. 3.28 for
k = 400–500 samples. The thick solid line represents the real system output, the thin
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Fig. 3.26 Final structure of
F = rF (·)
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Fig. 3.27 Final structure of
X = rX (·) C
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Fig. 3.28 Model and sys-
tem output as well as the
corresponding system out-
put confidence interval for
F = rF (·)

solid lines correspond to the system output confidence interval, and the dashed line is
themodel output. From Figs. 3.28 and 3.29, it is clear that the system response is con-
tained within system output bounds generated according to the proposed approach.
It should be pointed out that these system bounds are designed with the estimated
output error bounds. The above estimates were vN

nt
= −0.8631 and vM

nt
= 0.5843

for F = rF (·), while vN
nt

= −0.2523 and vM
nt

= 0.2331 for X = rX (·).
As has already been mentioned, the quality of the GMDH model can be further

improved with the application of the optimisation technique described in [5]. This
technique can be perceived as the retraining method for the network. For the valve
actuator considered, it was profitable to utilise the retraining technique for the model
F = rF (·). As a result, the quality index (3.136) was decreased from 0.3334 to
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Fig. 3.29 Model and sys-
tem output as well as the
corresponding system out-
put confidence interval for
X = rX (·)

Fig. 3.30 Selected part
of Fig. 3.28

0.2160 (cf. Table3.4). These results as well as the comparison of Figs. 3.30 and 3.31
justify the need for the retraining technique proposed in [5].

The main objective of this application study was to develop a fault detection
scheme for the valve actuator considered. Since both F = rF (·) and X = rX (·)were
designed with the approach proposed in Sect. 3.2.3, it is possible to employ them for
robust fault detection. This task can be realised according to the rules described in
Sect. 3.2.4. Figures3.32, 3.33, 3.34, and 3.35 present the residuals and their bounds
for the faulty data.

From these results it can be seen that it is possible to detect all four faults, although
the fault f18 was detected 18 s after its occurrence. This is caused by the relative
insensitivity of the obtained model to this particular fault. The results presented so
far were obtained with data from a real system. It should also be pointed out that,
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Fig. 3.31 Response of
F = rF (·) after
retraining

Fig. 3.32 Residual for the
fault f16

within the framework of the actuator benchmark [46], data for only four general
faults f16– f19 were available.

In order to provide a more comprehensive and detailed application study of
the proposed fault diagnosis scheme, a MATLAB SIMULINK actuator model was
employed. This toolmakes it possible to generate data for 19 different faults. Table3.5
shows the results of fault detection. It should be pointed out that both abrupt and incip-
ient faults were considered. As can be seen, the abrupt faults presented in Table3.5
can be regarded as small, medium and big according to the benchmark description
[46]. The notation given in Table3.5 can be explained as follows: N D means that it
is impossible to detect a given fault, D means that it is possible to detect a fault. From
the results presented in Table3.5, it can be seen that it is impossible to detect the
faults f5, f9 and f14. Moreover, some small and medium faults cannot be detected,
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Fig. 3.33 Residual for the
fault f17

Fig. 3.34 Residual for the
fault f18

i.e., f8 and f12. This situation can be explained by the fact that the effect of these
faults is at the same level as that of noise.

Forward Versus Backward Test

The purpose of the subsequent part of this chapter is to perform a comparative case
study regarding the forward and backward fault detection tests. It should be pointed
out that the main objective is to use two fault scenarios clearly indicating the draw-
backs and advantages of the approaches considered. In other words, a comprehensive
study regarding the DAMADICS benchmark is beyond the scope of this section.

The first fault scenario considered, named as f17 in the DAMADICS benchmark,
consists of an unexpected pressure drop across the valve, which starts at sample
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Fig. 3.35 Residual for the fault f19

Table 3.5 Results of fault detection

F S M B I

f1 D D D
f2 D D
f3 D
f4 D
f5 N D
f6 D
f7 D D D
f8 N D N D D
f9 N D
f10 D D D
f11 D D
f12 N D N D DX

f13 D D D D
f14 N D N D N D
f15 D
f16 D D D
f17 D D
f18 D D D D
f19 D D D

S small, M medium, B big, I incipient

k = 36 and ends at sample k = 52. This real fault scenario was registered at the
valve of a servo-actuator.Using the forward test, the fault is detected at sample k = 38
(cf. Fig. 3.36) since at this time the measured output leaves the confidence interval
(system output uncertainty) provided by the GMDHneural net portrayed in Fig. 3.26,
while Fig. 3.37 presents a fault-free part of Fig. 3.36, which clearly exhibits that the
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Fig. 3.36 Forward fault
detection test for f17 (k =
1, . . . , 70)
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Fig. 3.37 Forward fault
detection test for f17 (k =
16, . . . , 20)
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measured output is within the confidence interval. On the other hand, Figs. 3.40
and 3.41 show the results of the backward test. In this case, the fault is detected
at the same sample k = 38 (Fig. 3.40) as that for the forward one. Indeed, it can
be shown that the line does not intersect the feasible parameter set obtained in the
training phase (vertices shown with crosses). The set of parameters consistent with
the output envelopes (in a dotted line) also do not contain the parameters consistent
with the measurements. This explains why measurements go outside the envelope.
In Figs. 3.38 and 3.39, the result provided by the backward test is presented when
k = 37. In this case, the parameter strip consistent with the measurements intersects
the feasible parameter set, determined in the training phase, and hence the fault is
not detected. The set of parameters consistent with the envelope intersects with the
feasible parameter set. This explains why at that time the envelope is not violated.
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Fig. 3.38 Backward fault
detection test for f17 (k = 37)
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Fig. 3.39 Backward fault
detection test for f17 (k =
37)—zoomed
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The conclusion is that both forward and backward tests provided the same results.
The fault is detected at the same time. This means that it is impossible to show, which
of the tests is superior. However, the positive observation is that all of them perform
reliably for a given fault, which was obtained with the real valve actuator. The second
fault scenario considered, named f19 in the DAMADICS benchmark, deals with a
flow rate sensor fault. As previously, this is a real fault collected with the valve
actuator.

In the case of the forward test, the fault is detected at k = 32 (cf. Figs. 3.42 and
3.43). Similarly as for the fault f17, the measured output is inside the confidence
interval. This confirms the quality of the obtained neural network and its description
of uncertainty. Indeed, this proves that the network possesses good generalisation
abilities. On the other hand, Figs. 3.44 and 3.45 present the fault detection result
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Fig. 3.40 Backward fault
detection test for f17 (k = 38)
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Fig. 3.41 Backward fault
detection test for f17 (k =
38)—zoomed
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when the backward test is applied. In this case, a measurement at time k = 28
enables fault detection. This means that the backward test is superior over the for-
ward one. Note that this superioritymay have serious practical consequences. Indeed,
the control action can be performed faster, which decreases the possibility of fail-
ure. Finally, it should be noted that both techniques are based on the same feasible
parameter set obtained during the training of the network. The presented results as
well as many experiments with different systems clearly indicate that the backward
test is an attractive alternative to the forward one. As can be observed in the liter-
ature, the forward fault detection test based on propagating parameter uncertainty
to the residual or predicted output is predominant. This is, of course, related with
the historical reasons that are strongly settled in statistical theory regarding parame-
ter estimation-based techniques. It should be pointed out that such approaches have
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Fig. 3.42 Forward fault
detection test for f19
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Fig. 3.43 Forward fault
detection test for f19—
zoomed
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mainly been employed for linear systems. There are, of course, some linearisation-
based techniques that extend this technique for non-linear systems. However, their
performance is usually very limited. This restricts their practical application. The
proposed GMDH-based scheme avoids linearisation while dealing with non-linear
systems, which is its unquestionable appeal.

3.3 Concluding Remarks

The portrayed chapter presents two complete design procedures concerning the appli-
cation of neural networks to robust fault detection. Section3.1 showed how to settle
such a challenging task with a multi-layer perceptron. In particular, it was pictured
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Fig. 3.44 Backward fault
detection test for f19 (k = 28)
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Fig. 3.45 Backward fault
detection test (zoomed) for
f19 (k = 28)
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how to describe model uncertainty of the MLP with statistical techniques. Sub-
sequently, an algorithm that can be used for decreasing such a model uncertainty
with the use of experimental design theory was presented and described in detail.
It was also shown how to use the resulting knowledge about model uncertainty for
robust fault detection with the so-called adaptive threshold. The chapter presented
numerical examples that show all profits that can be gained while using the pro-
posed algorithms. An industrial application case study concerning the DAMADICS
benchmarkwas also presented. In particular, it was presented how to design an exper-
iment for the MLP being the model of the valve actuator. It was also shown how to
use the resulting model and the knowledge about its uncertainty for a robust fault
detection study based on a set of selected faults.
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A similar task was realised in Sect. 3.2. Starting from a set of input–output mea-
surements of the system, it was shown how to estimate the parameters and the cor-
responding uncertainty of a neuron via the BEA. The methodology developed for
parameter and uncertainty estimation of a neuron makes it possible to formulate an
algorithm that allows obtaining a neural network with a relatively small modelling
uncertainty. Subsequently, a complete design procedure of a neural network was pro-
posed and carefully described. All the hard computations regarding the design of the
GMDH neural network are performed off-line and hence the problem regarding the
time-consuming calculations is not of paramount importance. Based on the GMDH
neural network, a novel robust fault detection scheme was proposed which supports
diagnostic decisions. The scheme is called the forward fault detection test. Moreover,
an alternative backward fault detection test was proposed.

Similarly as in Sect. 3.1, the presented approach was tested with the DAMADICS
benchmark using both forward and backward approaches.

The experimental results presented in this chapter clearly show all profits that can
be gained while using the proposed neural network-based fault detection schemes.
It is worth noting that they can be successfully employed instead of the classic
techniques, e.g., the described unknown input observers. Indeed, the robustness of
the presented fault detection tools makes them useful for solving challenging design
problems that arise in engineering practice.

Finally, it should be pointed out that the techniques presented in this chapter
are continuously developing towards new and more challenging tasks [48, 49]. The
reader is also referred to the alternative approach for designing robust multi-layer
perceptron-based fault detection with the bounded error approach [50].
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Part II
Integrated Fault Diagnosis and Control



Chapter 4
Integrated Fault Diagnosis and Control:
Principles and Design Strategies

As has already been mentioned, FTC systems are classified into two distinct
classes [1]: passive and active. In passive FTC [2–4], controllers are designed to
be robust against a set of predefined faults, therefore there is no need for fault diag-
nosis, but such a design usually degrades the overall performance. In contrast, active
FTC schemes react to faults actively by reconfiguring control actions, and so the sys-
tem stability and acceptable performance are maintained. To achieve that, the control
system relies on FDI [5–8] as well as an accommodation technique [9]. Most of the
existing works treat FDI and FTC problems separately. Unfortunately, perfect FDI
and fault identification are impossible and hence there always is some inaccuracy
related to this process. Thus, there is a need for integrated FDI and FTC schemes for
both linear and non-linear systems.

As indicated in the preceding chapters, a number of books have been published in
the last decade on the emerging problem of FTC. In particular, the book [10], which
is mainly devoted to fault diagnosis and its applications, provides some general rules
for hardware redundancy-based FTC. On the contrary, the work [11] introduces the
concepts of active and passive FTC. It also investigates the problem of performance
and stability of FTC under imperfect fault diagnosis. In particular, the authors con-
sider (under a chain of some, not necessarily easy to satisfy, assumptions) the effect
of delayed fault detection and imperfect fault identification but the fault diagnosis
scheme is treated separately during the design and no real integration of fault diag-
nosis and FTC is proposed. FTC is also treated in a very interesting work [12], where
the number of practical case studies of FTC is presented, i.e., a winding machine,
a three-tank system, and an active suspension system. Unfortunately, in spite of the
incontestable appeal of the proposed approaches, neither FTC integrated with fault
diagnosis nor a systematic approach to non-linear systems are studied. A particu-
lar case of a non-linear aircraft model is studied in [13], but the above-mentioned
integration problem is also neglected.

One of the approaches to active FTC is control reconfiguration that creates depend-
able systems by means of appropriate restructuring of feedback control. It responds
to severe component faults that open the control loop by on-line redesigning of the

M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, 119
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controller [9]. It is possible to solve the reconfiguration problem by redesigning a new
controller for the faulty system for every isolated fault. An optimal controller can
be redesigned with the same optimisation problem as in the nominal case [14, 15],
but the redesign step can become too complex for large-scale systems. Also if the
controller is a human being, the replacement of the controller for reconfiguration
implies the need for strong training efforts.

The approaches presented in this chapter rely on the idea of keeping the nominal
controller in the loop and avoiding the complete controller redesign by placing a block
between the controller output u and the input of all available actuators uf . The goal
of this block is to provide a signal which has the same effect as the broken actuator
would have in the nominal system, therefore masking the fault. This approach can
be perceived as a kind of virtual actuator. The concept of a virtual actuator has
already been introduced in [9, 16–18], where it was demonstrated that it can be
applied automatically after the actuator fault has been detected, preventing from
serious system failures. It is worth mentioning that the approach presented in this
chapter could be extended to sensor faults leading to a kind of virtual sensor thanks
to the duality principle (see, e.g., [9] for more details).

Focusingon the previous aim, an integrated designprocedure of fault identification
and fault-tolerant control schemes is introduced. In particular, the general idea of
integrating fault identification and control schemes, which takes into account the
fault estimation error, is first presented in a linear context. As a result, the so-called
separation principle for the controller and the fault identification scheme is developed.
Subsequently, the proposed approach is extended to a class of non-linear system.
Similarly to the linear case, it is proven that using a suitable control strategy and
a fault identification scheme it is possible to obtain an integrated fault-tolerant control
framework, which takes into account the fault identification error. The final part of
the chapter presents an illustrative example regarding FTC of a twin-rotor system.
Finally, it should be pointed out that the results presented in this chapter are based
on [19–23].

4.1 FTC Strategy

The general FTC idea presented in this section was originally developed in [24]
for both linear and Takagi–Sugeno fuzzy systems. In order to make the chapter self
contained and easy to understand, the main FTC idea is firstly described for linear
systems and then suitably extended to non-linear systems in the subsequent part of
the chapter.

Let us consider the following reference model:

xk+1 = Axk + Buk, (4.1)

yk+1 = Cxk+1, (4.2)



4.1 FTC Strategy 121

where xk ∀ R
n stands for the reference state, yk ∀ R

m is the reference output, and
uk ∀ R

r denotes the nominal control input.
Let us also consider a possibly faulty system described by the following equations:

xf ,k+1 = Axf ,k + Buf ,k + Lf k, (4.3)

yf ,k+1 = Cxf ,k+1, (4.4)

where xf ,k ∀ R
n stands for the system state, yf ,k ∀ R

m is the systemoutput,uf ,k ∀ R
r

denotes the system input, f k ∀ R
s, (s ≥ m) is the fault vector, and L stands for its

distribution matrix which is assumed to be known.
The main objective of this chapter is to propose a novel FTC strategy, which can

be used for determining the system input uf ,k such that

• the control loop for the system (4.3)–(4.4) is stable;
• xf ,k converges asymptotically to xk irrespective of the presence of the fault f k .

The subsequent part of this section shows development details of the scheme that is
able to address such a problem.

The crucial idea is to use the following control strategy:

uf ,k = −Sf̂ k + K1(xk − x̂f ,k) + uk, (4.5)

where f̂ k is the fault estimate. Note that it is not assumed that xf ,k is available, but
an estimate x̂f ,k can be used instead. Thus, the following problems arise:

• to determine f̂ k ;
• to design K1 in such a way that the control loop is stable, i.e., the stabilisation
problem.

4.1.1 Fault Identification

Let us assume that the following rank condition is satisfied [8]:

rank(CL) = rank(L) = s. (4.6)

This implies that it is possible to calculate

H = (CL)+ =
[
(CL)T CL

]−1
(CL)T . (4.7)

By multiplying (4.4) by H and then substituting (4.3), it can be shown that

f k = H(yf ,k+1 − CAxf ,k − CBuf ,k). (4.8)
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Thus, if x̂f ,k is used instead of xf ,k , then the fault estimate is given as follows:

f̂ k = H(yf ,k+1 − CAx̂f ,k − CBuf ,k), (4.9)

and the associated fault estimation error is

f k − f̂ k = −HCA(xf ,k − x̂f ,k). (4.10)

Unfortunately, the problem with practical implementation of (4.9) is that it requires
yf ,k+1 and uf ,k to calculate f̂ k . Thus, (4.9) cannot be directly used to obtain (4.5).
Most of the existing approaches suffer from this problem (see, e.g., [25]), although the
authors ignore this difficulty. To solve this issuewithin the framework of the proposed
FTC approach, a one step prediction of the form f̄ k = αk f̂ k−1 is employed, where
αk is a diagonal matrix being a design parameter (further remedy to this problem is
to be provided in the subsequent chapter). Hence, the practical form of (4.5) boils
down to

uf ,k = −Sf̄ k + K1(xk − x̂f ,k) + uk . (4.11)

In most cases, the matrix αk is taken as the identity matrix, i.e., the one that corre-
sponds to a one time-step prediction. In the cases where the fault behaves in a linear
way, it is possible to design thematrixαk based on the previous fault changes. In cases
where faults change in a non-linear fashion, it is also possible to predict the nature
of the faults by using, for example, neural networks (see [19] for a comprehensive
study).

4.1.2 Stabilisation Problem

By substituting (4.5) into (4.3), it can be shown that

xf ,k+1 = Axf ,k − BSf̂ k + BK1(ek + ef ,k) + Buk + Lf k, (4.12)

where ek = xk −xf ,k stands for the tracking error while ef ,k = xf ,k − x̂f ,k is the state
estimation error. Let us assume that S satisfies the equality BS = L, e.g., S = I, for
the actuator faults. Thus, BS = L and hence

xf ,k+1 = Axf ,k + L(f k − f̂ k) + BK1(ek + ef ,k) + Buk . (4.13)

Finally, substituting (4.10) into (4.13) and then applying the result into ek+1 =
xk+1 − xf ,k+1 yield

ek+1 = (A − BK1)ek + (LHCA − BK1)ef ,k . (4.14)
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4.1.3 Observer Design

As has already been mentioned, the fault estimate (4.9) is obtained based on the
state estimate x̂f ,k . This raises the necessity for observer design. Consequently, by
substituting (4.8) into (4.3) it is possible to show that

xf ,k+1 = Āxf ,k + B̄uf ,k + L̄yf ,k+1, (4.15)

where
Ā = (I − LHC)A, B̄ = (I − LHC)B, L̄ = LH.

Thus, the observer structure, which can be perceived as an unknown input observer
(see, e.g. [8, 26]), is given by

x̂f ,k+1 = Āx̂f ,k + B̄uf ,k + L̄yf ,k+1 + K2(yf ,k − Cx̂f ,k). (4.16)

Finally, the state estimation error can be written as follows:

ef ,k+1 = (Ā − K2C)ef ,k . (4.17)

4.1.4 Integrated Design Procedure

The main objective of this section is to sumarise the presented results within an inte-
grated framework for fault identification and fault-tolerant control scheme develop-
ment. First, let us start with two crucial assumptions:

• the pair (Ā, C) is detectable;
• the pair (A, B) is stabilisable.

Under these assumptions, it is possible to design the matrices K1 and K2 in such
a way that the extended error

ēk =
[

ek
ef ,k

⎢
, (4.18)

described by

ēk+1 =
[

A − BK1 LHCA − BK1

0 Ā − K2C

⎢
ēk = A0ēk, (4.19)

converges asymptotically to zero.

Theorem 4.1 The extended error ēk converges asymptotically to zero iff there exist
matrices W ⇒ 0, L1 and P2 ⇒ 0, L2 such that
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[
W AW − BL1

WAT − LT
1 BT W

⎢
⇒ 0, (4.20)

[
P2 P2Ā − L2C

Ā
T

P2 − CT LT
2 P2

]
⇒ 0. (4.21)

Proof It can be observed from the structure of A0 in (4.19) that the eigenvalues
of the matrix A0 are the union of those of A − BK1 and Ā − K2C. This clearly
indicates that the design of the state feedback and the observer can be carried out
independently (separation principle). Thus, it is clear from the Lyapunov theorem
that ēk converges asymptotically to zero iff there exist matrices P1 ⇒ 0 and P2 ⇒ 0
such that following inequalities are satisfied:

(A − BK1)
T P1(A − BK1) − P1 ≺ 0, (4.22)

(Ā − K2C)T P2(Ā − K2C) − P2 ≺ 0. (4.23)

By applying the Schur complements, it is possible to show that (4.22)–(4.23) are
equivalent to

[
P−1
1 A − BK1

AT − KT
1 BT P1

⎢
⇒ 0, (4.24)

[
P−1
2 Ā − K2C

Ā
T − CT KT

2 P2

]
⇒ 0. (4.25)

By substituting W = P−1
1 and then multiplying (4.24) from left and right by

diag(I, W) and (4.25) from left and right by diag(P2, I), it can be shown that

[
W AW − BK1W

WAT − WKT
1 BT W

⎢
⇒ 0, (4.26)

[
P2 P2Ā − P2K2C

Ā
T

P2 − CT KT
2 P2 P2

]
⇒ 0. (4.27)

Subsequently, by substituting L1 = K1W and L2 = P2K2 it is possible to transform
(4.26) and (4.27) into (4.20)–(4.21), which completes the proof.

Finally, the design procedure boils down to solving the LMIs (4.20) and (4.21), and
then determining K1 = L1W−1 and K2 = P−1

2 L2.
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4.2 Extension to Non-linear Systems

This section shows that the approach presented in Sect. 4.1 can be extended to
non-linear systems with the reference model given by

xk+1 = Axk + Buk + g(xk) , (4.28)

yk+1 = Cxk+1, (4.29)

where g(x) is a non-linear function satisfying

(g(x1) − g(x2))T (g(x1) − g(x2))

≥ γ2 (x1 − x2)T (x1 − x2) , ≤x1, x2 ∀ X ∞ R
n, (4.30)

where γ > 0 stands for the Lipschitz constant.
Assuming now that the possibly faulty non-linear system is described by

xf ,k+1 = Axf ,k + Buf ,k + g
⎥
xf ,k

) + Lf k, (4.31)

yf ,k+1 = Cxf ,k+1, (4.32)

let us define
sk = g

⎥
xf ,k

) − g
⎥
x̂f ,k

)
, (4.33)

ωk = g(xk) − g
⎥
xf ,k

)
(4.34)

and
γk = g(xk) − g

⎥
x̂f ,k

)
. (4.35)

Following the same line of reasoning as in Sect. 4.1, it can be shown that the fault
estimate is given by

f̂ k = H
⎥
yf ,k+1 − CAx̂f ,k − CBuf ,k − Cg

⎥
x̂f ,k

))
, (4.36)

and the associated fault estimation error is

f k − f̂ k = −HCA(xf ,k − x̂f ,k) − HCsk . (4.37)

In contrast to the linear case, the control strategy is given

uf ,k = −Sf̂ k + K1(xk − x̂f ,k) + K2γk + uk (4.38)
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Similarly, the observer structure is

x̂f ,k+1 = Āx̂f ,k + B̄uf ,k + L̄yf ,k+1 + ḡ
⎥
x̂f ,k

) + K3(yf ,k − Cx̂f ,k), (4.39)

with
ḡ (·) = (I − LHC)g(·) = Gg(·) . (4.40)

Assuming that S = I (actuator faults) and then substituting L = B, it can be shown
that the ek+1 is given as follows:

ek+1 = A1ek + [Ā − A1]ef ,k + ωk + BHCsk − BK2γk, (4.41)

where A1 = A − BK1.
Finally, setting K2 = HC yields

ek+1 = A1ek + [Ā − A1]ef ,k + Gωk . (4.42)

Similarly, the state estimation error is given by

ef ,k+1 = A2ef ,k + Gsk, (4.43)

where A2 = Ā − K3C.
It can be easily observed that the system described by (4.42)–(4.43) is a cas-

caded non-linear discrete-time system [27, 28]. Observing that ef ,k enters linearly
into (4.42) and using the results presented in the work [28], the system (4.42)–(4.43)
is asymptotically stable only if (4.43) is asymptotically stable and the system

ek+1 = A1ek + Gωk, (4.44)

is asymptotically stable aswell. It can be concluded that this property canbe perceived
as a separation principle for the proposed control and fault estimation scheme.

Theorem 4.2 The tracking error ek converges asymptotically to zero if there exist
matrices X ⇒ 0, U ⇒ 0, N and scalars β̄ > 0, ᾱ > 0 such that

[
W ZT

Z Y

⎢
≺ 0, (4.45)

with

W =




−X 0 0 ηÃ
T

0 −U 0 ηXGT

0 0 U 0
ηÃ ηGX 0 −ηX


 , (4.46)

Z = [diag(γX, X, X, ), 03n×n], (4.47)
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Y = diag(β̄I,−β̄I,−ᾱI) (4.48)

and [−X X
X −ᾱI

⎢
≺ 0, (4.49)

with η = 1 + γ2 and Ã = AX − BN.

Proof The results presented below are in some part inspired by the paper [29]. Let
us define the Lyapunov function of the form

Vk = eT
k Pek + ωT

k Qωk, (4.50)

with P ⇒ 0 and Q ⇒ 0. Thus, ΦV = Vk+1 − Vk can be written as follows:

ΦV = eT
k+1Pek+1 + ωT

k+1Qωk+1 − eT
k Pek − ωT

k Qωk . (4.51)

By substituting (4.44) into (4.51) it can be shown that

ΦV = eT
k

[
AT
1 PA1 − P

]
ek + ωT

k+1Qωk+1 + ωT
k GT PA1ek

+ eT
k AT

1 PGωk + ωT
k

[
GT PG − Q

]
ωk, (4.52)

which can be rewritten as

ΥV = vT
k


AT

1 PA1 − P AT
1 PG 0

GT PA1 GT PG − Q 0
0 0 Q


 vk, (4.53)

with vk = [eT
k ,ωT

k ,ωT
k+1]T .

Additionally, from (4.30)

βγ2eT
k ek − βωT

k ωk ≥ 0, β > 0, (4.54)

which can be rewritten as follows:

vT
k


βγ2I 0 0

0 −βI 0
0 0 0


 vk ⊗ 0. (4.55)

Similarly, from (4.30) and by assuming that P ⇒ αI, α > 0, it can be shown that

γ2eT
k+1Pek+1 − αωT

k+1ωk+1 > αγ2eT
k+1ek+1 − αωT

k+1ωk+1 ≥ 0, (4.56)

which can be rewritten as follows:
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vT
k


γ2AT

1 PA1 γ2AT
1 PG 0

γ2GT PA1 γ2GT PG 0
0 0 −αI


 vk ⊗ 0, (4.57)

Consequently, from (4.53)–(4.57) it can be shown that

ΦV ≥ vT
k Mvk, (4.58)

where

M =

ηAT

1 PA1 − P + βγ2I ηAT
1 PG 0

ηGT PA1 ηGT PG − Q − βI 0
0 0 Q − αI


 . (4.59)

Thus, ifM ≺ 0, thenΦV < 0 and ek converges asymptotically to zero. Subsequently,
using the Schur complements, it is possible to show that M ≺ 0 is equivalent to




−P + βγ2I ηAT
1 P 0 ηAT

1 P
ηPA1 −Q − βI 0 ηGT P

0 0 Q − αI 0
ηPA1 ηPG 0 −ηP


 ≺ 0. (4.60)

Multiplying (4.60) from left and right by

diag(P−1, P−1, P−1, P−1) (4.61)

and then substituting X = P−1, U = XQX, and again using the Schur complements
(with β̄ = β−1 and ᾱ = α−1), it is possible to show that M ≺ 0 is equivalent to
(4.45). It should also be noted that P ⇒ αI is equivalent to (4.49).

Finally, the design procedure boils down to solving (4.45)–(4.49) and then calcu-
lating K1 = NX−1.

Theorem 4.3 The state estimation error ef ,k converges asymptotically to zero if
there exist scalars α > 0, β > 0 and matrices P ⇒ αI, Q ⇒ 0 such that




−P + βγ2I ηÃ
T

0 ηÃ
T

ηÃ −Q − βI 0 GT P
0 0 Q − αI 0

ηÃ PG 0 −ηP


 ≺ 0, (4.62)

with η = 1 + γ2 and Ã = PĀ − N2C.

Proof The proof is inspired by [29]. The state estimation error (4.43) for f k = 0
can be written as
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ek+1 = (Ā − K3C)ek + G
⎥
g(xk) − g

⎥
x̂k
)) = A1ek + Gsk . (4.63)

Let us define the Lyapunov function of the form

Vk = eT
k Pek + sT

k Qsk, (4.64)

with P ⇒ 0 and Q ⇒ 0. Thus, ΦV = Vk+1 − Vk can be written as follows:

ΦV = eT
k+1Pek+1 + sT

k+1Qsk+1 − eT
k Pek − sT

k Qsk, (4.65)

which can be rewritten as

ΦV = vT
k


AT

1 PA1 − P AT
1 PG 0

GT PA1 GT PG − Q 0
0 0 Q


 vk, (4.66)

with vk = [eT
k , sT

k , sT
k+1]T .

Additionally, from (4.30),

βγ2eT
k ek − βsT

k sk ≥ 0, β > 0, (4.67)

which can be rewritten as

vT
k


βγ2I 0 0

0 −βI 0
0 0 0


 vk ⊗ 0. (4.68)

Similarly, from (4.30) and by assuming that P ⇒ αI, α > 0, it can be shown that

γ2eT
k+1Pek+1 − αsT

k+1sk+1 > αγ2eT
k+1ek+1 − αsT

k+1sk+1 ≥ 0, (4.69)

which can be rewritten as

vT
k


γ2AT

1 PA1 γ2AT
1 PG 0

γ2GT PA1 γ2GT PG 0
0 0 −αI


 vk ⊗ 0. (4.70)

Consequently, from (4.66)–(4.70) it can be shown that

ΦV ≥ vT
k Mvk, (4.71)
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where

M =

ηAT

1 PA1 − P + βγ2I ηAT
1 PG 0

ηGT PA1 ηGT PG − Q − βI 0
0 0 Q − αI


 . (4.72)

Thus, ifM ≺ 0, thenΦV < 0 and ek converges asymptotically to zero. Subsequently,
using the Schur complements, it is possible to show that M ≺ 0 is equivalent to




−P + βγ2I ηAT
1 P 0 ηAT

1 P
ηPA1 −Q − βI 0 ηGT P

0 0 Q − αI 0
ηPA1 ηPG 0 −ηP


 ≺ 0. (4.73)

Substituting Ã = PA1 = PĀ − PK3C = PĀ − N2C into (4.73) gives (4.62), which
completes the proof.

Finally, the design procedure boils down to solving (4.62) and then calculating
K3 = P−1N2.

4.3 Constrained State Estimation

This section presents a straightforward approach that can be used when the state is
described by the following bounded state set:

X = {
x : Dx ≥ b, x ∀ R

n⎡ , (4.74)

with D ∀ R
c×n, c ≥ n being a full-rank matrix. Let us define the following:

x̂k : an unconstrained state estimate obtained with (4.39),
x̄k : a constrained state estimate obtained by projecting x̂k onto X.

Projection onto X boils down to solving the following constrained quadratic pro-
gramming problem:

x̄k = arg min
xk∀Rn

(xk − x̂x)
T (xk − x̂x),

subject to Dxk ≥ b. (4.75)

There is a number of algorithms that can be applied to solve (4.75), and most of them
can be classified as the so-called active set methods.

Let us assume that i of c constraints are active for x̂k , and let us denote by D̄ and
b̄ the i rows of D and i elements of b corresponding to the active constraints. Thus,
the problem (4.75) can be reformulated as
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x̄k = arg min
xk∀Rn

(xk − x̂x)
T (xk − x̂x),

subject to D̄xk = b̄, (4.76)

and its solution is given by

x̄k = x̂k − D̄
T
[
D̄D̄

T
]−1 ⎥

D̄x̂k − b̄
)
. (4.77)

The appealing property of the constrained state estimate is given by the following
theorem.

Theorem 4.4 Simon and Chia [30] The constrained unknown input observer esti-
mate x̄k given by (4.77) satisfies the inequality

√xk − x̄k√2 ≥ √xk − x̂k√2, (4.78)

where x̂k is the unconstrained state estimate obtained with the unknown input
observer (4.39).

4.3.1 Complete Design Procedure

The proposed FTC approach is illustrated in Fig. 4.1. The scheme is composed of
four parts:

• Possibly faulty system described by (4.31) and (4.32);
• Reference model described by (4.28) and (4.29);
• State estimation and fault identification described by (4.36) and (4.39), where K3
is designed by solving (4.62) and then calculating K3 = P−1N2;

• Fault-tolerant controller described by (4.38) where K1 is designed by solving
(4.45)–(4.49) and then calculating K1 = NX−1 while K2 = HC.

Fig. 4.1 Complete FTC
scheme

Reference model

Possibly faulty system State estimation
and fault identification

Fault-tolerant controller

u

x

uf
xf

yf

f
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As can be noticed, the complete design procedure involves the solution of a set of
linear matrix inequalities. It is also necessary to underline that there is no switching
mechanism that changes the control law when a fault is detected and isolated. On the
contrary, an integrated scheme is proposed and its convergence is proven within the
framework of theorems stated in the preceding part of this chapter. Thus, fault detec-
tion and isolation are not necessary in the proposed approach, although it is possible
to be done by using the fault estimate (obtained by the module State estimation and
fault identification in Fig. 4.1). Indeed, the fault can be detected when at least one f̂i
exceeds a predefined threshold δi,

|f̂i| > δi, i = 1, . . . , r. (4.79)

Similarly, the ith actuator fault can be isolated when |f̂i| > δi, where δi stands for
a predefined threshold.

4.4 Application Example

4.4.1 Description of the Twin-Rotor MIMO System

The TRMS is a laboratory setup developed by Feedback Instruments Limited for
control experiments.1 The system is perceived as a challenging engineering problem
due to its high non-linearity, cross-coupling between its two axes, and inaccessibility
of some of its states through the measurements. The TRMS mechanical unit has two
rotors placed on a beam together with a counterbalance whose arm, with a weight at
its end, is fixed to the beam at the pivot and determines a stable equilibrium position
(Fig. 4.2). The TRMS can rotate freely both in the horizontal and vertical planes by
changing the input voltage of the DC motors that drive the rotational speed of the
(tail and main) rotors.

The system input vector is uk = [Uh,k, Uv,k]T , where Uh and Uv are the input
voltages of the tail and main motor, respectively. The system states are xk = [iah,k,

ωh,k, �h,k, θh,k, iav,k, ωv,k, �v,k, θv,k]T , where iah/av is the armature current of
tail/main rotor, ωh/v is the rotational velocity of the tail/main rotor, �h/v is the
angular velocity around the horizontal/vertical axis, and θh/v is the azimuth/pitch
angle of beam.

1 http://www.feedback-group.com/product/twin-rotor-mimo-6056

http://www.feedback-group.com/product/twin-rotor-mimo-6056
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Fig. 4.2 Components of the
twin-rotor MIMO system

4.4.2 Non-linear Reference Model of Twin-Rotor MIMO System

The non-linear dynamic model of the TRMS supplied by the manufacturer does not
represent accurately the system dynamics because some of the effective forces were
not taken into account. Alternatively, an accurate non-linear model proposed in [31],
including all acting forces, is used instead. This improved non-linear model of the
TRMS can be expressed as follows:

diah

dt
= − Rah

Lah
iah − kahϕh

Lah
ωh + k1

Lah
Uh, (4.80)

dωh

dt
= kahϕh

Jtr
iah − Btr

Jtr
ωh − f1(ωh)ω

2
h

Jtr
, (4.81)

dΩh

dt
= lt f1(ωh)ω

2
h cos

2 θv − kohΩh − f3(θh)θh

D cos2 θv + E sin2 θv + F

+ kmωv sin θvΩv

⎥
(D − 2E) cos2 θv − E sin2 θv − F

)
⎥
D cos2 θv + E sin2 θv + F

)2

+ km cos θv

⎥
kavϕv iav − Bmrωv − f4(ωv)ω

2
v

)
⎥
D cos2 θv + E sin2 θv + F

)
Jmr

, (4.82)

dθh

dt
= Ωh, (4.83)

diav

dt
= −Rav

Lav

iav − kavϕv

Lav

ωv + k2
Lav

Uv, (4.84)

dωv

dt
= kavϕv

Jmr
iav − Bmr

Jmr
ωv − f4(ωv)ω

2
v

Jmr
, (4.85)
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dΩv

dt
= lmf5(ωv)ω

2
v + kgΩhf5(ωv)ω

2
v cos θv − kovΩv

Jv

+ g ((A − B) cos θv − C sin θv) − 0.5Ωv
2H sin (2θv)

Jv

+ kt
⎥
kahϕhiah − Btrωh − f1(ωh)ω

2
h

)
JvJtr

, (4.86)

dθv

dt
= Ωv, (4.87)

where the values of the parameters in (4.80)–(4.87) can be found in [31].
The non-linear model (4.80)–(4.87) was discretised using the zero-order hold and

sampling time Ts = 0.005s, such that it can be expressed as (4.28)–(4.29) around
an equilibrium point xeq as follows:

xk+1 = A(xeq)xk + B(xeq)uk + g
⎥
xeq, xk

)
, (4.88)

yk+1 = Cxk, (4.89)

where A(xeq) and B(xeq) are the frozen system matrices at the equilibrium point.
The non-linear function g

⎥
xeq, xk

)
is defined as

g
⎥
xk, xeq

) = (A(xk) − A(xeq))xk, (4.90)

where xeq = [iah,eq, ωh,eq, Ωh,eq, θh,eq, iav,eq, ωv,eq, Ωv,eq, θv,eq]T are the state
variables at the equilibrium point, uk = [Uh,k, Uv,k]T are the system inputs, and
yk = [iah,k, θh,k, iav,k, θv,k]T are the system outputs. The non-linear equation (4.90)
satisfies (4.30) with γ = 10.

By solving (4.45)–(4.49), it is possible to find the gain K1:

K1 =
[ −0.0208 0.2308 1.13 · 10−6 0 −1.11 · 10−6 0 1.17 · 10−4 0

−1.68 · 10−6 −1.27 · 10−6 1.31 · 10−3 0 −0.2215 0.3663 2.02 · 10−5 0

⎢
,

(4.91)

On the other hand, according to the above-described procedure, it is possible to
obtain the gain K2:

K2 =
[
1.2404 0 0 0 0 0 0 0

0 0 0 0 0.9422 0 0 0

⎢
. (4.92)

Finally, the gain K3 is obtained by solving (4.62)

K3 =




3.01E − 9 −1.95E − 8 0 −3.83E − 6
0 −1.01E − 7 2.03E − 4 −1.15E − 3

−4.38E − 4 2.56E − 2 −0.0285 1.49E − 4
3.16E − 6 1.0001 −1.43E − 4 2.85E − 7

0 −3.95E − 6 5.64E − 10 −2.69E − 8
8.23E − 4 −3.60E − 5 −8.0892 4.03E − 7
−0.1516 6.06E − 5 −2.36E − 4 1.50E − 3

−7.60E − 4 1.69E − 7 2.84E − 7 1.0001




. (4.93)
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As can be observed, the TRMS has two inputs, which are two voltages, i.e., the main
rotor and tail rotor ones. Unfortunately, the TRMS platform has no possibility to
introduce some actuator faults related to the main and tail DCmotors. Thus, the only
way tosimulating the faults is to increase (decrease) the voltages feeding the motors.
This means that the voltages coming from the controller will be reduced before they
reach the DCmotors. In this way a drop in DCmotor performance will be simulated.

After the application of the design procedure introduced in Sect. 4.2, the FTC
scheme is implemented according to Fig. 4.1 and testedwithin several fault scenarios.

4.4.3 Fault Scenario 1

In the first fault scenario, a fault in the TRMS tail rotor is applied as follows:

f h =
⎣
0V, for t < 20s
−0.2V, for t ≥ 20s

(4.94)

at the equilibrium point θh,ref = 0.4 rad and θv,ref = 0.1 rad. Figure4.3a presents the
response of the azimuth angle of the beamwhile Fig. 4.3b shows the pitch angle of the
beam with (solid line) and without (dashed line) the proposed FTC scheme (4.38).
Notice that the TRMS is stabilised in spite of the actuator fault (4.94). However, it
can be noticed that without the proposed FTC scheme the TRMS cannot follow the

10 20 30 40 50 60 70
0.38

0.39

0.4

Time (s)

θ h (
ra

d
)

Azimuth angle of the beam θ
h

θ
h
 with FTC

θ
h
 without FTC

10 20 30 40 50 60 70
0.0995

0.1

0.1005

0.101

Time (s)

θ v (
ra

d
)

Pitch angle of the beam θ
v

θ
v
 with FTC

θ
v
 without FTC

(a)

(b)

Fig. 4.3 Fault scenario 1: a azimuth angle of the beam (horizontal position), b pitch angle of the
beam (vertical position)
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Fig. 4.4 Fault scenario 1: a voltage of the tail rotor Uh, b estimated fault of the voltage of the tail
rotor Uh

reference. This is not the case when the FTC scheme is used. Figure4.4a shows the
control actionUh,k provided by the FTC scheme (4.38). It can be seen that the control
action changes to compensate the actuator fault (4.94) masking the fault effect to the
TRMS. Finally, Fig. 4.4b presents the estimated fault provided by (4.36). Notice that
the actuator fault is estimatedwith very high accuracy (see the fault definition (4.94)).

4.4.4 Fault Scenario 2

In this fault scenario the following fault is applied to the main rotor:

f v =
⎣
0V, for t < 20s
−0.3V, for t ≥ 20s

(4.95)

at the equilibrium point θh,ref = 0.4 rad and θv,ref = 0.1 rad.
Figures4.5a and 4.5b present the response of the azimuth and pitch angle of the

beam, respectively. Both angles are obtained with the proposed FTC scheme (4.38)
(solid line) and without it (dashed line). The angles are estimated correctly by the
observer (4.39). When the actuator fault (4.95) is applied to the TRMS without
the proposed FTC scheme, the pitch angle diverges from the desired reference and
presents a higher oscillation compared to the case when the FTC scheme is used.
On the other hand, although the azimuth angle tracks the reference, an oscillation
appears when the FTC scheme is not used. Figure4.6a shows how the control action
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Fig. 4.5 Fault scenario 2: a azimuth angle of the beam (horizontal position), b pitch angle of the
beam (vertical position)
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Fig. 4.6 Fault scenario 2: a voltage of the main rotor Uv , b estimated fault of the voltage of the
main rotor Uv

Uv,k changes to compensate the actuator fault (4.95). Thus, when the FTC scheme
is used, the control action Uh,k is not affected by the fault. Figure4.6b presents the
estimated fault provided by (4.36) that corresponds with the fault size introduced in
(4.95).
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4.4.5 Fault Scenario 3

In this last fault scenario, two faults affecting to the main and tail rotors are applied
at the same time:

f h =
⎣
0V, for t < 20s,
−0.3V, for t ≥ 20s,

(4.96)

f v =
⎣
0V, for t < 20s,
−0.4V, for t ≥ 20s,

(4.97)

at the equilibrium point θh,ref = 0.4 rad and θv,ref = 0.1 rad.
Figure4.7a presents the response of the azimuth angle of the beamwhile Fig. 4.7b

shows the pitch angle of the beam that are obtained with the proposed FTC scheme
(4.38) (solid line) and without it (dashed line). Notice that the TRMS is stabilized in
spite of the actuator faults (4.96) and (4.97). However, when the actuator faults are
applied to the TRMSwithout the proposed FTC scheme, the TRMS cannot follow the
reference for the azimuth and pitch angles. Figure4.8 shows the control action uf ,k
provided by the FTC scheme (4.38). It can be seen that the control action changes to
compensate the actuator faults. Finally, Fig. 4.9 presents the estimated faults provided
by (4.36). Notice that both actuator faults were estimated with very high accuracy
according to the fault definitions (4.96) and (4.97).
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Fig. 4.7 Fault scenario 3: a azimuth angle of the beam (horizontal position), b pitch angle of the
beam (vertical position)
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Fig. 4.8 Fault scenario 3: a voltage of the tail rotor Uh, b voltage of the main rotor Uv
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4.5 Concluding Remarks

This chapter proposed a novel FTC scheme that behaves as a virtual actuator, as well
as a design procedure that integrates fault identification and fault-tolerant control
strategies for a class of non-linear discrete-time systems. In the introductory part
of the paper, the proposed fault identification and control strategies were presented
for linear systems. Then, these two strategies were extended to the class of non-
linear discrete-time systems considered. As a result, non-linear observer-based fault
identification and FTC strategies were proposed. It was also shown that for the class
of non-linear systems considered the design of the observer and FTC scheme can
be done separately. This is a very important contribution of the chapter towards the
state-of-the-art in FTC. It is well known that the separation principlemay not hold for
non-linear systems. Indeed, it is shown that for the proposed scheme the separation
principle is valid. Moreover, as was mentioned in the preceding part of the book, in
contrast to the approaches presented in the literature the proposed approach takes
into account the fault identification error.

Another important contribution of the chapter is that the problems of designing
a non-linear observer and FTC scheme can be effectively solvedwith the use of linear
matrix inequalities. This allows using efficient and widely accessible tools. There is
no doubt that this result increases the spectrum of possible practical applications of
the proposed approach.

The last part of the chapter shows a comprehensive case study regarding the appli-
cation of the proposed approach to the twin-rotor system manufactured by Feedback
Instruments Limited. The presented results showa comparative study of fault-tolerant
control and control without fault tolerance. From the presented results, it is evident
that the proposed FTC approach is superior over the control strategy without fault
tolerance. Indeed, this case study clearly shows the technological applicability of the
proposed approach.

The subsequent three chapters extended the proposed approach to the uncertain
case where the process andmeasurement noise/disturbances (includingmodel uncer-
tainty) play a significant role. To tackle such a challenging problem theH∧ approach
is applied (see, e.g., [32] for a general idea). Moreover, a constraint regarding the
Lipschitz condition is relaxed by introducing the class of non-linear systems proposed
in [33].

References

1. Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems,
IFAC Symposium Fault Detection Supervision and Safety of Technical Processes, SAFE-
PROCESS (Washington, D.C., USA, 2003), pp. 265–276

2. Y. Liang, D. Liaw, T. Lee, Reliable control of nonlinear systems. IEEE Trans. Autom. Control
45(4), 706–710 (2000)

3. F. Liao, J. Wang, G. Yang, Reliable robust flight tracking control: an LMI approach. IEEE
Trans. Control Syst. Technol. 10(1), 76–89 (2000)



References 141

4. Z. Qu, C.M. Ihlefeld, J. Yufang, A. Saengdeejing, Robust fault-tolerant self-recovering control
of nonlinear uncertain systems. Automatica 39(10), 1763–1771 (2003)
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Chapter 5
Robust H∞-Based Approaches

5.1 Towards Robust Fault-Tolerant Control

The main objective of the present section is to extend the FTC scheme presented in
the preceding chapter by introducing the following improvements:

• the class of non-linear system is extended towards the one presented in [1];
• the H∀ approach is applied to achieve robustness with respect to the exogenous
disturbance present in the state equation;

• the effect of the one-step fault prediction error discussed in the previous chapter
is minimised with the H∀ approach.

The proposed approach can be perceived as a combination of linear-system strate-
gies [2] and [3] for a class of non-linear systems [1, 4]. It is designed in such a way
that the prescribed disturbance attenuation level is achieved with respect to the fault
estimation error while guaranteeing the convergence of the observer. The same goal
is attained in the control framework where a prescribed disturbance attenuation level
is achieved with respect to the tracking error. The resulting design procedure boils
down to solving a set of linear matrix inequalities, which can be easily realised with
modern computational packages.

The section starts with the introduction of a new class of non-linear systems.
Subsequently, the robust fault estimation approach is proposed.Basedon the achieved
results, robust FTC is proposed.

5.1.1 Preliminaries

Let us consider a non-linear discrete-time system (possibly faulty):

x f,k+1 = Ax f,k + Bu f,k + g(x f,k) + L f k + Wwk, (5.1)

y f,k+1 = Cx f,k+1, (5.2)

M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, 143
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where x f,k ≥ X ⇒ R
n is the state, u f,k ≥ R

r stands for the input, y f,k ≥ R
m denotes

the output, f k ≥ R
s stands for the fault, wk ≥ ln

2 is a an exogenous disturbance
vector and W ≥ R

n×n stands for its distribution matrix, while:

l2 = {
w ≥ R

n| ≺w≺l2 < +∀}
, (5.3)

≺w≺l2 =
( ∀⎢

k=0

≺wk≺2
) 1

2

. (5.4)

Moreover, g(x) is a non-linear function satisfying [1, 4]

(g(x1) − g(x2))
T (g(x1) − g(x2))

≤ (x1 − x2)
T MT M (x1 − x2) , ∞x1, x2 ≥ X, (5.5)

where M ≥ R
n×n . In the subsequent part of this section it will be shown how to deal

with such a system representation.
Using the Differential Mean Value Theorem (DMVT) [5], it can be shown that

g(a) − g(b) = Mx (a − b), (5.6)

with

Mx =


⎥⎥⎥⎥

∂g1

∂x
(c1)

...
∂gn

∂x
(cn)


 , (5.7)

where c1, . . . , cn ≥ Co(a, b), ci �= a, ci �= b, i = 1, . . . , n. Assuming that

āi, j ⊗ ∂gi

∂x j
⊗ ai, j , i = 1, . . . , n, j = 1, . . . , n, (5.8)

it is clear that there exists a matrix M ≥ M:

M =
{

M ≥ R
n×n|āi, j ⊗ mi, j ⊗ ai, j , i, j = 1, . . . , n,

}
, (5.9)

for which MT
x Mx √ MT M. In order to find the upper bound MT M, the following

evident inequality is used: MT M √ λmax(MT M)In . Thus, the problem is

M∧ = arg max
M≥M

λmax(MT M). (5.10)

Taking into account the fact that λmax(MT M) = ≺MT M≺2 = ≺M≺22, the optimisa-
tion problem (5.10) can be replaced by
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M∧ = arg max
M≥M

≺M≺, (5.11)

which can be perceived as a worst case norm analysis task. This can be easily solved,
e.g., with MATLAB (cf. the wcnorm function).

5.1.2 Fault Estimation Approach

Following [2, 6], let us assume that the system is observable and the following rank
condition is satisfied:

rank(C L) = rank(L) = s. (5.12)

Under the assumption (5.12), it is possible to calculate H = (C L)+ =
[
(C L)T C L

]−1

(C L)T . By multiplying (5.2) by H and then substituting (5.1), it can be shown that

f k = H( y f,k+1 − C Ax f,k − C Bu f,k − Cg(x f,k) − CWwk). (5.13)

Finally, by substituting (5.13) into (5.1) it can be shown that

x f,k+1 = Āx f,k + B̄u f,k + Gg(x f,k) + L̄ y f,k+1 + W̄wk, (5.14)

where G = (In − L HC), Ā = G A, B̄ = G B, L̄ = L H , W̄ = GW . In order to
estimate (5.13), i.e., to obtain f̂ k , it is necessary to estimate the state of the system,
i.e., to obtain x̂ f,k . Consequently, the fault estimate is given as follows:

f̂ k = H
⎡

y f,k+1 − C Ax̂ f,k − C Bu f,k − Cg(x̂ f,k)
⎣
. (5.15)

The corresponding observer structure is

x̂ f,k+1 = Āx̂ f,k + B̄u f,k + Gg(x̂ f,k) + L̄ y f,k+1 + K 3( y f,k − Cx̂ f,k), (5.16)

while the state estimation error is given by

e f,k+1 = ⎤
Ā − K 3C

⎦
e f,k + Gsk + W̄wk

= A1e f,k + Gsk + W̄wk, (5.17)

where
sk = g(x f,k) − g(x̂ f,k). (5.18)

Similarly, the fault estimation error ε f,k can be defined as

ε f,k = f k − f̂ k = −HC
⎤

Ae f,k + sk + Wwk
⎦
. (5.19)
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The objective of further deliberations is to design the observer (5.16) in such a way
that the state estimation error e f,k is asymptotically convergent and the following
upper bound is guaranteed:

≺ε f ≺l2 ≤ μ≺w≺l2 , (5.20)

where μ > 0 is a prescribed disturbance attenuation level. Thus, contrary to the
approaches presented in the literature, μ should be achieved with respect to the fault
estimation error but not the state estimation error.

The following theorem constitutes the main result of this section.

Theorem 5.1 For a prescribed disturbance attenuation level μ > 0 for the fault
estimation error (5.19), the H∀ observer design problem for the system (5.1) and
(5.2) and the observer (5.16) is solvable if there exist α > 0, β > 0, P → 0, Q → 0,
N such that the following LMI is satisfied:


⎥⎥⎥⎥⎥

−P + AT H̄ A + βMT M AT H̄ AT H̄W 0 ĀT P − CT NT

H̄ A H̄ − Q − β I H̄W 0 GT P
W T H̄ A W T H̄ W T H̄W − μ2 I 0 W T GT P

0 0 0 Q − αI 0
P Ā − NC P G P GW 0 − 1

2 P




⊂ 0, (5.21)

along with (5.35).

proof The problem of H∀ observer design [4, 7] is to determine the gain matrix
K 3 such that

lim
k∩∀ e f,k = 0 for wk = 0, (5.22)

≺ε f ≺l2 ≤ μ≺w≺l2 for wk �= 0, e f,0 = 0. (5.23)

In order to settle the above problem it is sufficient to find a Lyapunov function Vk

such that
ΔVk + εT

f,kε f,k − μ2wT
k wk < 0, k = 0, . . . ∀, (5.24)

where ΔVk = Vk+1 − Vk . Indeed, if wk = 0 then (5.24) boils down to

ΔVk + εT
f,kε f,k < 0, k = 0, . . . ∀, (5.25)

and hence ΔVk < 0, which leads to (5.22). If wk �= 0, then (5.24) yields

J =
∀⎢

k=0

⎡
ΔVk + εT

f,kε f,k − μ2wT
k wk

⎣
< 0, (5.26)

which can be written as
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J = −V0 +
∀⎢

k=0

εT
f,kε f,k −

∀⎢
k=0

μ2wT
k wk < 0. (5.27)

Knowing that V0 = 0 for e f,0 = 0, (5.27) leads to (5.23).
Since the general framework for designing the robust observer is given, the fol-

lowing form of the Lyapunov function is proposed [5]:

Vk = eT
f,k Pe f,k + sT

k Qsk, (5.28)

where P → 0 and Q → 0. Consequently,

ΔVk + εT
f,kε f,k − μ2wT

k wk

=eT
f,k

⎡
AT
1 P A1 − P − AT H̄ A

⎣
e f,k

+ eT
f,k

⎡
AT
1 P G + AT H̄

⎣
sk

+ eT
f,k

⎡
AT
1 P GW + AT H̄W

⎣
wk

+ sT
k

⎡
GT P A1 − H̄ A

⎣
e f,k

+ sT
k

⎡
GT P G + H̄ − Q

⎣
sk

+ sT
k

⎡
GT P GW + H̄W

⎣
wk

+ wT
k

⎡
W T GT P A1 + W T H̄ A

⎣
e f,k

+ wT
k

⎡
W T GT P G + W T H̄

⎣
sk

+ wT
k

⎡
W T GT P GW + W T H̄W − μ2 In

⎣
wk

+ sT
k+1 Qsk+1 < 0, (5.29)

with H̄ = CT HT HC . By defining

vk =
[
eT

f,k, sT
k , wT

k , sT
k+1

]T
, (5.30)

the inequality (5.29) becomes

ΔVk + εT
f,kε f,k − μ2wT

k wk = vT
k MV vk < 0, (5.31)

where MV is given by (5.32):
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MV =

AT

1 P A1 − P + AT H̄ A AT
1 P G + AT

1 H̄ AT
1 P GW + AT

1 H̄W 0
GT P A1 + H̄ A GT P G + H̄ − Q GT P GW + H̄W 0

W T GT P A1 + W T H̄ A W T GT P G + W T H̄ W T GT P GW + W T H̄W − μ2 I 0
0 0 0 Q


 , (5.32)

Additionally, from (5.5),

βeT
f,k MT Me f,k − βsT

k sk ⊗ 0, β > 0, (5.33)

which is equivalent to

vT
k


⎥⎥

βMT M 0 0 0
0 −β I 0 0
0 0 0 0
0 0 0 0


 vk ⊗ 0. (5.34)

Similarly, from (5.5) and by assuming that

P → αMT M, α > 0, (5.35)

it can be shown that

αeT
f,k+1MT Me f,k+1 − αsT

k+1sk+1

< eT
f,k+1 Pe f,k+1 − αsT

k+1sk+1 ⊗ 0, (5.36)

which is equivalent to
vT

k MY vk ⊗ 0, (5.37)

with

MY =


⎥⎥

AT
1 P A1 AT

1 P G AT
1 P GW 0

GT P A1 GT P G GT P GW 0
W T GT P A1 W T GT P G W T GT P GW 0

0 0 0 −αI


 . (5.38)

Finally, using (5.31) along with (5.34) and (5.37), the convergence condition of the
observer becomes
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⎥⎥⎥
2AT

1 P A1 − P + AT H̄ A + βMT M 2AT
1 P G + AT

1 H̄
2GT P A1 + H̄ A 2GT P G + H̄ − Q − β I

2W T GT P A1 + W T H̄ A 2W T GT P G + W T H̄

0 0

2AT
1 P GW + AT

1 H̄W 0
2GT P GW + H̄W 0

2W T GT P GW + W T H̄W − μ2 I 0
0 Q − αI


 ⊂ 0.

(5.39)

Moreover, by applying the Schur complements, (5.39) can be transformed into


⎥⎥⎥⎥

−P + AT H̄ A + βMT M AT H̄ AT H̄W 0 AT
1

H̄ A H̄ − Q − β I H̄W 0 GT

W T H̄ A W T H̄ W T H̄W − μ2 I 0 W T GT

0 0 0 Q − αI 0
A1 G GW 0 − 1

2 P−1


 ⊂ 0. (5.40)

Multiplying (5.40) from both sites by

diag(I, I, I, P) (5.41)

and then substituting

P A1 = P Ā − P K 3C = P Ā − NC (5.42)

yield (5.21), which completes the proof.

Note that (5.21) is a usual LMI, which can be easily solved, e.g., with MATLAB.
Thus, the final design procedure is as follows: given a prescribed disturbance atten-
uation level μ, obtain α > 0, β > 0, P → 0, Q → 0, N by solving (5.35) and (5.21).
Finally, the gain matrix of (5.16) is

K 3 = P−1N. (5.43)

It can be also observed that the observer design problem can be treated as an min-
imisation task, i.e.,

μ∧ = min
μ>0,α>0,β>0,P→0, Q→0,N

μ, (5.44)

under (5.35) and (5.21).

5.1.3 Integrated FTC Design

Similarly as in Chap.4, let us consider a reference model given by

http://dx.doi.org/10.1007/978-3-319-03014-2_4


150 5 Robust H∀-Based Approaches

xk+1 = Axk + Buk + g(xk), (5.45)

yk+1 = Cxk+1, (5.46)

and L = B in (5.1) and (5.2).
The objective is to design the control strategy u f,k for (5.1) and (5.2) such that

the tracking error
ek = xk − x f,k, (5.47)

will be asymptotically convergent, guaranteeing the prescribed disturbance attenua-
tion level. To achieve this goal, the following control strategy is proposed:

u f,k = − f̂ k−1 + K 1(xk − x̂ f,k) + K 2γk + uk . (5.48)

Taking into account the problems with one-step fault prediction (cf. Chap. 4), the
following assumption is imposed:

f̂ k = f̂ k−1 + v̄k, v̄k ≥ l2. (5.49)

Bearing in mind that all faults present in real systems have a finite value, such an
assumption is fully justified. Thus, for convergence analysis, the following form of
the FTC control is used:

u f,k = − f̂ k + v̄k + K 1(xk − x̂ f,k) + K 2γk + uk, (5.50)

Using a similar approach as in Chap.4 and setting K 2 = HC, the tracking error
becomes

ek+1 = A1ek + (B HC A − B K 1) e f,k + Gωk + W̃w̄k, (5.51)

with K 2 = HC, A1 = A − B K 1 and H = (C B)+, where

W̃ = [B, [B HC − I] W ] , w̄k =
⎛
v̄k

wk

⎝
. (5.52)

Using the same arguments as in Sect. 4.2, the convergence analysis can be relaxed to
the following form of the tracking error:

ek+1 = A1ek + Gωk + W̃w̄k . (5.53)

The following theorem constitutes the main result of the present section.

Theorem 5.2 For a prescribed disturbance attenuation level μ > 0 for the tracking
error (5.53), the H∀ controller design problem (5.50) for the system (5.1) and (5.2)
is solvable if there exist α > 0, β > 0, P → 0, Q → 0, N such that the following
LMI is satisfied:

http://dx.doi.org/10.1007/978-3-319-03014-2_4
http://dx.doi.org/10.1007/978-3-319-03014-2_4
http://dx.doi.org/10.1007/978-3-319-03014-2_4
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⎥⎥⎥⎥

I − P + βMT M 0 0 0 A1 P
0 − Q − β I 0 0 G P
0 0 −μ2 I 0 W̃ P
0 0 0 Q − αI 0

P AT
1 P GT PW̃

T
0 − 1

2 P


 ⊂ 0, (5.54)

along with (5.35), where

A1 P = AP − B K 1 P = AP − BN. (5.55)

proof By defining the Lyapunov function

Vk = eT
k Pek + ωT

k Qωk (5.56)

and
ΔVk + eT

k ek − μ2w̄T
k w̄k < 0, (5.57)

as well as using the same line of reasoning as in Theorem 5.1, it is possible
derive (5.54), which completes the proof.

Thus, the final design procedure is as follows: given a prescribed disturbance
attenuation level μ, obtain α > 0, β > 0, P → 0, Q → 0, N by solving (5.35) and
(5.54). Finally, the gain matrix of the FTC controller is

K 1 = N P−1. (5.58)

5.1.4 Illustrative Example: Fault Estimation

Let us consider a non-linear system

x f,k+1 = Ax f,k + Bu f,k + g(x f,k) + L f k + Wwk, (5.59)

y f,k+1 = Cx f,k+1, (5.60)

with

A =

 0.137 0.199 0.284
0.0118 0.299 0.47
0.894 0.661 0.065


 , B =


0.250.6
0.1


 ,

C =
⎛
1 0 0
0 1 0

⎝
, L =


01
0


 , W =


0.5 0 0

0 0.4 0
0 0 0.3


 ,
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and

g(x f,k) =
⎞
0.6 cos(12x1,k)

x22,k + 10
, 0, −0.33 sin(x3,k)

⎠T

. (5.61)

Since the system is given, it is straightforward to calculate

MT
x Mx = diag


0,

(
−7.2 sin(12x2,k)

x22,k + 10
− 1.2 cos(12x2,k)x2,k

(x22,k + 10)2

)2
, 0.1089 cos(x3,k)2


 .

(5.62)

Finally, the application of the proposed procedure leads to

MT M =

0 0 0
0 0.517 0
0 0 0.1089


 . (5.63)

As a result of solving the problem (5.44), the following couple was obtained:

μ∧ = 0.499, K 3 =

0.4885 2.0619

0 0
0.9724 1.0753


 . (5.64)

Let the initial condition for the system and the observer be

x f,0 = [3, 2, 1]T , x̂ f,0 = 0, (5.65)

while the input and the exogenous disturbance are

u f,k = sin(0.002πk), wk ∅ N (0, 0.12 I). (5.66)

Moreover, let us consider the following fault scenario:

f k =
{
1, for 300 ⊗ k ⊗ 200,
0, otherwise.

(5.67)

First, let us consider the case when x̂ f,0 = x f,0 (e f,0 = 0). Figure5.1 clearly
indicates that the condition (5.23) is satisfied, which means that an attenuation level
μ∧ = 0.499 is achieved.

Now let us assume that wk = 0 and x̂ f,0 �= x f,0. Figure5.2 clearly shows that
(5.22) is satisfied as well.

Finally, Fig. 5.3 shows the fault and its estimate for the nominal case (x̂ f,0 �= x f,0
and wk �= 0).
From these results, it can be observed that the proposed tool can be efficiently applied
for solving robustH∀-based fault identification of non-linear discrete time systems.
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Fig. 5.1 Evolution of ΔVk
+ εT

f,kε f,k − μ2wT
k wk
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Fig. 5.2 Evolution of ≺e f,k≺
(for k = 0, . . . , 20)
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5.2 Complete Robust Design of Fault-Tolerant Control

The present section extends the proposed results into the case when uncertainties are
present both in the state and the output equation. The structure of the section is similar
to that of the preceding one. It starts with the problem of fault estimation, and then
an integrated FTC control strategy is proposed. The final part of the section contains
an illustrative example, which shows the performance of the selected methods.
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Fig. 5.3 Fault and its estimate
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5.2.1 Preliminaries

Let us consider a non-linear discrete-time system:

x f,k+1 = Ax f,k + Bu f,k + g(x f,k) + L f k + W1wk, (5.68)

y f,k+1 = Cx f,k+1 + W2wk+1, (5.69)

where x f,k ≥ X ⇒ R
n is the state, u f,k ≥ R

r stands for the input, y f,k ≥ R
m denotes

the output, f k ≥ R
s stands for the fault, wk ≥ l2 is a an exogenous disturbance

vector and W1 ≥ R
n×n , W2 ≥ R

m×n stand for its distribution matrices, while

l2 = {
w ≥ R

n| ≺w≺l2 < +∀}
, ≺w≺l2 =

( ∀⎢
k=0

≺wk≺2
) 1

2

. (5.70)

5.2.2 Fault Estimation Strategy

Following [2, 6], let us assume that the system is observable and the following rank
condition is satisfied:

rank(C L) = rank(L) = s. (5.71)

Under the assumption (5.71), it is possible to calculate H = (C L)+ =
[
(C L)T C L

]−1

(C L)T . By multiplying (5.69) by H and then substituting (5.68) it can be shown that:
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f k = H( y f,k+1 − C Ax f,k − C Bu f,k − Cg(x f,k)

− CW1wk − W2wk+1). (5.72)

Finally, by substituting (5.72) into (5.68) it can be shown that:

x f,k+1 = Āx f,k + B̄u f,k + Gg(x f,k) + L̄ y f,k+1 + GW1wk

− L̄W2wk+1, (5.73)

where G = (In − L HC), Ā = G A, B̄ = G B, L̄ = L H . In order to estimate
(5.72), i.e., to obtain f̂ k , it is necessary to estimate the state of the system, i.e., to
obtain x̂ f,k . Consequently, the fault estimate is given as follows:

f̂ k = H
⎤

y f,k+1 − C Ax̂ f,k − C Bu f,k − Cg(x̂ f,k)
⎦
. (5.74)

The corresponding observer structure is

x̂ f,k+1 = Āx̂ f,k + B̄u f,k + Gg(x̂ f,k) + L̄ y f,k+1 + K 3( y f,k − Cx̂ f,k), (5.75)

while the state estimation error is given by

e f,k+1 = ⎤
Ā − K 3C

⎦
e f,k + Gsk + (GW1 − K 3W2)wk − L̄W2wk+1

= A1e f,k + Gsk + W̄1wk + W̄2wk+1, (5.76)

where
sk = g(x f,k) − g(x̂ f,k). (5.77)

Similarly, the fault estimation error ε f,k can be defined as

ε f,k = f k − f̂ k = −HC
⎤

Ae f,k + sk + W1wk
⎦− HW2wk+1. (5.78)

The objective of further deliberations is to design the observer (5.75) in such away
that the state estimation error e f,k is asymptotically convergent and the following
upper bound is guaranteed:

≺ε f ≺l2 ≤ ξ≺w≺l2 (5.79)

where ξ > 0 is a prescribed disturbance attenuation level. Thus, contrary to the
approaches presented in the literature, μ should be achieved with respect to the fault
estimation error but not the state estimation error.

The following theorem constitutes the main result of this section.

Theorem 5.3 For a prescribed disturbance attenuation level μ > 0 for the fault
estimation error (5.78), the H∀ observer design problem for the system (5.68) and
(5.69) and the observer (5.75) is solvable if there exist α > 0, β > 0, P → 0, Q → 0,
N such that the following LMI is satisfied:
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⎥⎥⎥⎥⎥⎥⎥⎥⎥

−P + AT H1 A + βMT M AT H1 AT H1W1
H1 A H1 − Q − β I H1W1

W T
1 H1 A W T

1 H1 W T
1 H1W1 − μ2 I

HT
2 A HT

2 HT
2 W1

0 0 0

P Ā − NC P G P GW1 − NW2

AT H2 0 ĀT P − CT NT

H2 0 GT P
W T

1 H2 0 W T
1 GT P − W T

2 NT

W T
2 HT HW2 − μ2 I 0 W̄ T

2 P
0 Q − αI 0

PW̄2 0 − 1
2 P




⊂ 0,

(5.80)

along with (5.96).

proof The problem of H∀ observer design [4, 7] is to determine the gain matrix
K 3 such that

lim
k∩∀ e f,k = 0 for wk = 0, (5.81)

≺ε f ≺l2 ≤ ξ≺w≺l2 for wk �= 0, e f,0 = 0. (5.82)

In order to settle the above problem it is sufficient to find a Lyapunov function Vk

such that

ΔVk + εT
f,kε f,k − μ2wT

k wk − μ2wT
k+1wk+1 < 0, k = 0, . . . ∀, (5.83)

where ΔVk = Vk+1 − Vk , μ > 0. Indeed, if wk = 0, (k = 0, . . . ,∀), then (5.83)
boils down to

ΔVk + εT
f,kε f,k < 0, k = 0, . . . ∀, (5.84)

and hence ΔVk < 0, which leads to (5.81). If wk �= 0 (k = 0, . . . ,∀), then (5.83)
yields

J =
∀⎢

k=0

⎡
ΔVk + εT

f,kε f,k − μ2wT
k wk − μ2wT

k+1wk+1

⎣
< 0, (5.85)

which can be written as

J = −V0 +
∀⎢

k=0

εT
f,kε f,k − μ2

∀⎢
k=0

wT
k wk − μ2

∀⎢
k=0

wT
k+1wk+1 < 0. (5.86)

Bearing in mind that

μ2
∀⎢

k=0

wT
k+1wk+1 = μ2

∀⎢
k=0

wT
k wk − μ2wT

0 w0, (5.87)

the inequality (5.86) can be written as
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J = −V0 +
∀⎢

k=0

εT
f,kε f,k − 2μ2

∀⎢
k=0

wT
k wk + μ2wT

0 w0 < 0. (5.88)

Knowing that V0 = 0 for e f,0 = 0, (5.88) leads to (5.82) with ξ = √
2μ.

Since the general framework for designing the robust observer is given, the fol-
lowing form of the Lyapunov function is proposed [5]:

Vk = eT
f,k Pe f,k + sT

k Qsk, (5.89)

where P → 0 and Q → 0.
Consequently,

ΔVk + εT
f,kε f,k − μ2wT

k wk − μ2wT
k+1wk+1

=eT
f,k

⎡
AT
1 P A1 + AT H1 A − P

⎣
e f,k

+ eT
f,k

⎡
AT
1 P G + AT H1

⎣
sk

+ eT
f,k

⎡
AT
1 PW̄1 + AT H1W1

⎣
wk

+ eT
f,k

⎡
AT
1 PW̄2 + AT H2

⎣
wk+1

+ sT
k

⎡
GT P A1 + H1 A

⎣
e f,k

+ sT
k

⎡
GT P G + H1 − Q

⎣
sk

+ sT
k

⎡
GT PW̄1 + HW1

⎣
wk

+ sT
k

⎡
GT PW̄2 + H2

⎣
wk+1

+ wT
k

⎡
W̄

T
1 P A1 + W T

1 H1 A
⎣

e f,k

+ wT
k

⎡
W̄

T
1 P A1 + W T

1 H
⎣

sk

+ wT
k

⎡
W̄1 PW̄1 + W T

1 H1W1 − μ2 I
⎣
wk

+ wT
k

⎡
W̄

T
1 PW2 + W T

1 H2

⎣
wk+1

+ wT
k+1

⎡
W̄

T
2 P A1 + HT

2 A
⎣

e f,k

+ wT
k+1

⎡
W̄

T
2 P G + HT

2

⎣
sk

+ wT
k+1

⎡
W̄

T
2 PW1 + HT

2 W1

⎣
wk

+ wT
k+1

⎡
W̄

T
2 PW̄2 + W T

2 HT HW2 − μ2 I
⎣
wk+1

+ sT
k+1 Qsk+1 < 0, (5.90)
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with H1 = CT HT HC and H2 = CT HT HW2.
By defining

vk =
[
eT

f,k, sT
k , wT

k , wT
k+1, sT

k+1

]T
, (5.91)

the inequality (5.90) becomes

ΔVk + εT
f,kε f,k − μ2wT

k wk − μ2wT
k+1wk+1 = vT

k MV vk < 0, (5.92)

where MV is given by (5.93):

MV =


⎥⎥⎥⎥⎥⎥

AT
1 P A1 − P + AT H1 A AT

1 P G + AT
1 H1 AT

1 PW̄1
+GT P A1 + H1 A GT P G + H1 − Q GT PW̄1

+W̄ T
1 P A1 + W T

1 H1 A W̄ T
1 P G + W T

1 H1 W̄ T
1 PW̄1

+W̄ T
2 P A1 + HT

2 A W̄ T
2 P G + HT

2 W̄ T
2 PW̄1

+0 0 0

+AT
1 HW1 AT

1 PW̄2 + AT H2 0
+H1W1 GT PW̄2 + H2 0

+W T
1 H1W1 − μ2 I W̄1 PW̄2 + W T

1 H2 0

+HT
2 W1 W T

2 HT HW T
2 + W̄ T

2 PW̄2 − μ2 I 0
0 Q




.

(5.93)

Additionally, from (5.5),

βe f,k MT Me f,k − βsT
k sk ⊗ 0, β > 0, (5.94)

which is equivalent to

vT
k


⎥⎥⎥⎥

βMT M 0 0 0 0
0 −β I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 vk ⊗ 0. (5.95)

Similarly, from (5.5) and by assuming that

P → αMT M, α > 0, (5.96)

it can be shown that

αeT
f,k+1MT Me f,k+1 − αsT

k+1sk+1

< eT
f,k+1 Pe f,k+1 − αsT

k+1sk+1 ⊗ 0, (5.97)

which is equivalent to
vT

k MY vk ⊗ 0, (5.98)
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with

MY =


⎥⎥⎥⎥⎥⎥⎥

AT
1 P A1 AT

1 P G AT
1 PW̄1

GT P A1 GT P G GT PW̄1

W T GT P A1 W T GT P G W T GT P GW

W̄
T
1 P A1 W̄

T
1 P G W̄

T
1 PW̄1

W̄
T
2 P A1 W̄

T
2 P G W̄

T
2 PW̄1

0 0 0
AT
1 PW̄2 0

GT PW̄2 0
0 0

W̄1 PW̄2 0
W T

2 HT HW T
2 0

0 −αI




.

(5.99)

Finally, using (5.92) along with (5.95) and (5.98), the convergence condition of the
observer becomes (5.100):


⎥⎥⎥⎥⎥⎥

2AT
1 P A1 − P + AT H1 A + βMT M 2AT

1 P G + AT
1 H1

2GT P A1 + 2H1 A GT P G + H1 − Q − β I

2W̄ T
1 P A1 + W T

1 H1 A 2W̄ T
1 P G + W T

1 H1

2W̄ T
2 P A1 + HT

2 A 2W̄ T
2 P G + HT

2

0 0

2AT
1 PW̄1 + AT

1 HW1 2AT
1 PW̄2 + AT H2 0

2GT PW̄1 + H1W1 2GT PW̄2 + H2 0

2W̄ T
1 PW̄1 + W T

1 H1W1 − μ2 I 2W̄1 PW̄2 + W T
1 H2 0

2W̄ T
2 PW̄1 + HT

2 W1 2W T
2 HT HW T

2 + W̄ T
2 PW̄2 − μ2 I 0

0 0 Q − αI




⊂ 0.

(5.100)

Moreover, by applying the Schur complements, (5.100) can be transformed
into (5.101):


⎥⎥⎥⎥⎥⎥⎥⎥⎥

−P + AT H1 A + βMT M AT H1 AT H1W1
H1 A H1 − Q − β I H1W1

W T
1 H1 A W T

1 H1 W T
1 H1W1 − μ2 I

HT
2 A HT

2 HT
2 W1

0 0 0

A1 G W̄1
AT H2 0 AT

1
H2 0 GT

W T
1 H2 0 W̄ T

1

W T
2 HT HW2 − μ2 I 0 W̄ T

2
0 Q − αI 0

W̄2 0 − 1
2 P−1




⊂ 0.

(5.101)

Multiplying (5.101) from both sites by

diag(I, I, I, I, P) (5.102)
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and then substituting

P A1 = P Ā − P K 3C = P Ā − NC,

PW̄1 = P GW1 − P K 3W2 = P GW1 − NW2 (5.103)

yield (5.80), which completes the proof.

Note that (5.80) is a usual LMI, which can be easily solved, e.g., with MATLAB.
Thus, the final design procedure is as follows. Given a prescribed disturbance atten-
uation level μ, obtain α > 0, β > 0, P → 0, Q → 0, N by solving (5.96) and (5.80).
Finally, the gain matrix of (5.75) is

K 3 = P−1N. (5.104)

It can be also observed that the observer design problem can be treated as an min-
imisation task, i.e.,

μ∧ = min
μ>0,α>0,β>0,P→0, Q→0,N

μ (5.105)

under (5.96) and (5.80).

5.2.3 Guaranteed Decay Rate

The objective of the preceding sections was to show that it is possible to design a
fault identification scheme in such a way that a prescribed disturbance attenuation
level is achieved with respect to the fault estimation error while guaranteeing the
convergence of the observer. In this section it will be pointed out how to attain the
additional objective, i.e., a guaranteed decay rate of the state estimation error.

Following [8], for wk = 0 (k = 0, . . . ,∀) and θ > 0, the decay rate of the state
estimation error is defined as

lim
k∩∀ eθk≺e f,k≺ = 0. (5.106)

Suppose that
ΔVk = Vk+1 − Vk ≤ −(1 − e−2θ)Vk, (5.107)

which is equivalent to
Vk ≤ e−2θk V0. (5.108)

Using (5.6), it can be shown that there exists Mx,k such that

sk = Mx,k e f,k . (5.109)



5.2 Complete Robust Design of Fault-Tolerant Control 161

With (5.109), the Lyapunov function (5.83) can be expressed as

Vk = eT
f,k Pe f,k + eT

f,k MT
x,k QMx,k e f,k = eT

f,k

[
P + MT

x,k QMx,k

]
e f,k

= eT
f,k Pk e f,k . (5.110)

Since, for e f,k �= 0, eT
f,k Pe f,k > 0 and eT

f,k MT
x,k QMx,k e f,k ⊗ 0, it is evident that

Pk → 0. Bearing in mind that

λmin(Pk)eT
f,k e f,k ≤ eT

f,k Pk e f,k ≤ λmax(Pk)eT
f,k e f,k, (5.111)

it can be shown that

≺e f,k≺ ≤
√

λmax(P0)

λmin(Pk)
e−θk≺e f,0≺, (5.112)

which is equivalent to (5.106).
Thus, using (5.107), to attain a guaranteed decay rate θ it is needed that

ΔV ≤ −(1 − e−2θ)Vk = −(1 − e−2θ)
⎡

eT
f,k Pe f,k + sT

k Qsk

⎣
, (5.113)

which is equivalent to replacing −P and − Q in (5.80) by −τ P and −τ Q, respec-
tively (τ = e−2θ, τ > 0), which gives


⎥⎥⎥⎥⎥⎥⎥⎥⎥

−τ P + AT H1 A + βMT M AT H1 AT H1W1
H1 A H1 − τ Q − β I H1W1

W T
1 H1 A W T

1 H1 W T
1 H1W1 − μ2 I

HT
2 A HT

2 HT
2 W1

0 0 0

P Ā − NC P G P GW1 − NW2

AT H2 0 ĀT P − CT NT

H2 0 GT P
W T

1 H2 0 W T
1 GT P − W T

2 NT

W T
2 HT HW2 − μ2 I 0 W̄ T

2 P
0 Q − αI 0

PW̄2 0 − 1
2 P




⊂ 0.

(5.114)

Note that θ = − 1
2 ln(τ ).

Thus, given a prescribed disturbance attenuation level μ, the following optimisa-
tion problem can be formulated:

τ∧ = min
τ>0,α>0,β>0,P→0, Q→0,N

τ (5.115)

under (5.96) and (5.114).
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An alternative solution is to minimise μ and τ simultaneously, i.e., given a scalar
0 ≤ λ ≤ 1, the optimisation problem is (cf. [8])

⎤
τ∧, μ∧⎦ = min

τ>0,μ>0,α>0,β>0,P→0, Q→0,N
λτ + (1 − λ)μ (5.116)

under (5.96) and (5.114).

5.2.4 Integrated FTC Design

Similarly as in Sect. 5.1, let us consider a reference model given by

xk+1 = Axk + Buk + g(xk), (5.117)

yk+1 = Cxk+1, (5.118)

and L = B in (5.68) and (5.69).
The objective is to design the control strategy u f,k for (5.68) and (5.69) such that

the tracking error
ek = xk − x f,k (5.119)

will be asymptotically convergent with guarantying the prescribed disturbance atten-
uation level. To achieve this goal, the following control strategy is proposed:

u f,k = − f̂ k−1 + K 1(xk − x̂ f,k) + K 2γk + uk . (5.120)

Taking into account the problems with one-step fault prediction (cf. Sect. 5.1), the
following assumption is imposed:

f̂ k = f̂ k−1 + v̄k, v̄k ≥ l2. (5.121)

Bearing in mind that all faults present in real systems have a finite value, such an
assumption is fully justified. Thus, for convergence analysis, the following form of
FTC is used

u f,k = − f̂ k + v̄k + K 1(xk − x̂ f,k) + K 2γk + uk, (5.122)

Using a similar approach as in Sect. 5.1 and setting K 2 = HC , the tracking error
becomes

ek+1 = A1ek + (B HC A − B K 1) e f,k + Gωk + W̃1w̄k + W̃2w̄k+1, (5.123)

with K 2 = HC, A1 = A − B K 1 and H = (C B)+, where
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W̃1 = [B, [B HC − I] W1] , w̄k =
⎛
v̄k

wk

⎝
, (5.124)

W̃2 = [B, B HW2] . (5.125)

Using the same arguments as in Sect. 4.2, the convergence analysis can be relaxed to
the following form of the tracking error:

ek+1 = A1ek + Gωk + W̃1w̄k + W̃2w̄k+1. (5.126)

The following theorem constitutes the main result of the present section.

Theorem 5.4 For a prescribed disturbance attenuation level μ > 0 for the tracking
error (5.126), the H∀ controller design problem (5.122) for the system (5.68) and
(5.69) is solvable if there exist α > 0, β > 0, P → 0, Q → 0, N such that the
following LMI is satisfied:


⎥⎥⎥⎥⎥⎥⎥

I − P + βMT M 0 0 0 0 A1 P
0 − Q − β I 0 0 0 G P
0 0 −μ2 I 0 0 W̃1 P
0 0 0 −μ2 I 0 W̃2 P
0 0 0 0 Q − αI 0

P AT
1 P GT PW̃

T
1 PW̃2 0 − 1

2 P




⊂ 0, (5.127)

along with (5.96), where

A1 P = AP − B K 1 P = AP − BN. (5.128)

proof By defining the Lyapunov function

Vk = eT
k Pek + ωT

k Qωk (5.129)

and
ΔVk + eT

k ek − μ2w̄T
k w̄k − μ2w̄T

k+1w̄k+1 < 0, (5.130)

as well as using the same line of reasoning as in Theorem5.3, it is possible
derive (5.127), which completes the proof.

Thus, the final design procedure is as follows: Given a prescribed disturbance
attenuation level μ, obtain α > 0, β > 0, P → 0, Q → 0, N by solving (5.96) and
(5.127). Finally, the gain matrix of the FTC controller is

K 1 = N P−1. (5.131)

http://dx.doi.org/10.1007/978-3-319-03014-2_4
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5.2.5 Illustrative Example: Fault Estimation

Let us consider a non-linear system

x f,k+1 = Ax f,k + Bu f,k + g(x f,k) + L f k + W1wk, (5.132)

y f,k+1 = Cx f,k+1 + W2wk+1, (5.133)

with

A =

0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0


 , B =


 0.4252

−0.0082
0.1813


 ,

C =
⎛
1 0 0
0 1 0

⎝
, L = B, W1 = 0.05In, W2 =

⎛
0.1 0 0
0 0.1 0

⎝

and

g(x f,k) =
⎞√

2 sin(x1,k),
0.6 cos(12x2,k)

x22,k + 10
, 0

⎠T

. (5.134)

Since the system is given, it is straightforward to calculate (5.7), and then

MT
x Mx = diag


2 sin2(x1,k),

(
−7.2 sin(12x2,k)

x22,k + 10
− 1.2 cos(12x2,k)x2,k

(x22,k + 10)2

)2

, 0


 .

(5.135)

Finally, the application of the proposed procedure cf. (5.11) leads to

MT M =

2 0 0
0 0.517 0
0 0 0


 . (5.136)

As a result of solving the problem (5.105), the following couple was obtained:

μ∧ = 0.769, K =

−0.1505 0.0519

0.0123 0.9629
−0.7057 0.9540


 . (5.137)

Let the initial condition for the system and the observer be

x f,0 = [3, 2, 1]T , x̂ f,0 = 0, (5.138)

while the input and the exogenous disturbance are
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Fig. 5.4 Evolution of ΔVk + εT
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u f,k = 10, wk ∅ N (0, 0.12 I). (5.139)

Moreover, let us consider the following fault scenario:

f k =
{
1, for 300 ⊗ k ⊗ 200,
0, otherwise.

(5.140)

First, let us consider the case when x̂ f,0 = x f,0 (e0 = 0). Figure5.4 clearly indicates
that the condition (5.82) is satisfied,whichmeans that an attenuation levelμ∧ = 0.769
is achieved.Now let us assume thatwk = 0 and x̂ f,0 �= x f,0. Figure5.5 clearly shows
that (5.81) is satisfied as well. Finally, Fig. 5.6 shows the fault and its estimate for
the nominal case (x̂ f,0 �= x f,0 and wk �= 0). Let us also consider an incipient fault
scenario:

f k =
{
0.05(k − 200), for 400 ⊗ k ⊗ 200,
0, otherwise.

(5.141)

Figure5.7 presents the attained results, which indicate that also in this case the
proposed approach performs well. Now let us assume again that wk = 0 and x̂ f,0 �=
x f,0. Moreover, it is assumed that μ = 0.99. As a result of solving the problem
(5.115), the following gain matrix was obtained:

K =

−0.0744 0.0337

0.0064 0.9800
−0.5519 0.9255


 , (5.142)

forwhich τ = 0.9. Figure (5.8) shows the obtained results. By observing Figs. 5.8 and
5.5, it can be seen that the proposed approach provides an efficient way for increasing



166 5 Robust H∀-Based Approaches

Fig. 5.5 Evolution of ≺ek≺
(for k = 0, . . . , 20)
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Fig. 5.6 Fault and its estimate
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the decay rate of the state estimation error. From these results, it can be observed
that the proposed tool can be efficiently applied for solving robust H∀-based fault
identification of non-linear discrete time systems.

5.2.6 Illustrative Examples: Fault-Tolerant Control

Let us consider the reference model (5.117) and (5.118) with

A =

0.1365 0.1991 0.2844
0.0117 0.2987 0.4692
0.8939 0.6614 0.0649


 , B =


1 2
3 4
5 6


 , (5.143)
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Fig. 5.7 Incipient fault and
its estimate
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Fig. 5.8 Evolution of ≺ek≺ for
τ = 0.9 (for k = 0, . . . , 20)
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C =
⎛
1 0 0
0 1 0

⎝
, g(xk) = [0, 0,−0.7 sin(x3,k)]T . (5.144)

The possibly faulty system (5.68) and (5.69) is described in the same way, and
additionally, L = B:

f k,1 =
{

(0.1 sin(0.01πk) − 0.1)u f,k,1, 50 < k < 150
0, otherwise

,

f k,2 =
{

(0.1 sin(0.01πk) − 0.1)u f,k,2, 200 < k < 250
0, otheriwse

,
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and

W1 = 0.01I3, W2 =
⎛
0.1 0 0
0 0.1 0

⎝
, wk ∼ N (0, 0.12 I).

Figures5.9–5.14 present the experimental results for the above-presented fault sce-
narios. From these results it is clear that in the case of the proposed FTC the state
of the possibly faulty system x f,k converges to the reference state xk irrespective
of the faults. It can be also observed that this is not the case for the control strategy
without the ability of fault tolerance. Indeed, it can be easily seen that the state xN

diverges from the reference state when faults occur. This fact clearly indicates high
performance of the proposed FTC.

5.3 Robust Design for Quasi-LPV Systems

The present section portrays an alternative approach to the one presented in Sect. 5.2.
Its main appealing property is that the non-linear system is suitably described in
a quasi-LPV form. Subsequently, a robust approach for the estimation of both sensor
and actuator faults is presented. It also contains integrated FTC for the actuator faults.
The section ends with an example regarding fault estimation of a multi-tank system.
Both sensors and actuator faults are considered during the case study.

5.3.1 Actuator Fault Estimation

The main objective of this section is to provide a detailed design procedure for the
robust observer, which can be used for actuator fault diagnosis. In other words, the
main role of this observer is to provide information about the actuator fault. Indeed,
apart from serving as a usual residual generator (see, e.g., [6]), the observer should
be designed in such a way that a prescribed disturbance attenuation level is achieved
with respect to the actuator fault estimation error while guaranteeing the convergence
of the observer.

Let us reconsider a non-linear system

x f,k+1 = Ax f,k + Bu f,k + g(x f,k) + La f a,k + W1wk, (5.145)

y f,k+1 = Cx f,k+1 + Ls f s,k + W2wk+1, (5.146)

with the actuator f a,k and sensor f s,k faults, respectively. Following [2, 6], let us
assume that the system is observable and the following rank condition is satisfied:

rank(C La) = rank(La) = s. (5.147)
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Fig. 5.9 State I for fault f k,1:
x1, x f,1, and xN ,1—without
FTC

50 100 150 200

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Discrete time

S
ta

te
 I

x
1

x
f,1

x
N,1

Fig. 5.10 State II for fault
f k,1: x2, x f,2, and xN ,2—
without FTC
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Under the assumption (5.147), it is possible to calculate

H = (C La)+ =
[
(C La)T C La

]−1
(C La)T . (5.148)

Substituting f s,k = 0 into (5.146) as well as multiplying it by H , and then substi-
tuting (5.145), it can be shown that

f a,k =H( y f,k+1 − C Ax f,k − C Bu f,k − Cg(x f,k) − CW1wk

− W2wk+1). (5.149)

Finally, by substituting (5.149) into (5.145) it can be shown that
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Fig. 5.11 State III for fault
f k,1: x3, x f,3, and xN ,3—
without FTC
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Fig. 5.12 State I for fault
f k,2: x1, x f,1, and xN ,1—
without FTC
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x f,k+1 = Āx f,k + B̄u f,k + Gg(x f,k) + L̄ y f,k+1 + GW1wk

− L̄W2wk+1, (5.150)

where G = (In − La HC), Ā = G A, B̄ = G B, L̄ = La H . In order to estimate
(5.149), i.e., to obtain f̂ k , it is necessary to estimate the state of the system, i.e., to
obtain x̂k . Consequently, the fault estimate is given as follows:

f̂ a,k = H( y f,k+1 − C Ax̂ f,k − C Bu f,k − Cg(x̂ f,k)). (5.151)

The corresponding observer structure is

x̂ f,k+1 = Āx̂ f,k + B̄u f,k + Gg(x̂ f,k) + L̄ y f,k+1 + K 3( y f,k − Cx̂ f,k), (5.152)
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Fig. 5.13 State II for fault
f k,2: x2, x f,2, and xN ,2—
without FTC
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Fig. 5.14 State III for fault
f k,2: x3, x f,3, and xN ,3—
without FTC
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while the state estimation error is given by

e f,k+1 = ⎤
Ā − K 3C

⎦
e f,k + Gsk + (GW1 − K 3W2)wk − L̄W2wk+1

= A1e f,k + Gsk + W̄1wk + W̄2wk+1, (5.153)

where
sk = g(x f,k) − g(x̂ f,k). (5.154)

Similarly, the fault estimation error ε fa ,k can be defined as

ε fa ,k = f a,k − f̂ a,k = −HC
⎤

Ae f,k + sk + W1wk
⎦− HW2wk+1. (5.155)



172 5 Robust H∀-Based Approaches

Noth that both e f,k and ε fa ,k are non-linear with respect to e f,k . To settle this problem
within the framework of this paper, the following solution is proposed.

Using the DMTV [5], it can be shown that

g(a) − g(b) = Mx (a − b), (5.156)

with

Mx =


⎥⎥⎥⎥

∂g1

∂x
(c1)

...
∂gn

∂x
(cn)


 , (5.157)

where c1, . . . , cn ≥ Co(a, b), ci �= a, ci �= b, i = 1, . . . , n. Assuming that

āi, j ⊗ ∂gi

∂x j
⊗ ai, j , i = 1, . . . , n, j = 1, . . . , n, (5.158)

it is clear that

Mx =
{

M ≥ R
n×n|āi, j ⊗ mx,i, j ⊗ ai, j , i, j = 1, . . . , n,

}
. (5.159)

Thus, using (5.156), the term A1e f,k + Gsk in (5.153) can be written as

A1e f,k + sk = ( Ā + G Mx,k − K 3C)e f,k, (5.160)

where Mx,k ≥ Mx .
From (5.160), it can be deduced that the state estimation error can be converted

into an equivalent form,

e f,k+1 = A2(α)e f,k + W̄1wk + W̄2wk+1, (5.161)

A2(α) = Ã(α) − K 3C,

which defines an LPV polytopic system [9] with

Ã =
{

Ã(α) : Ã(α) =
N⎢

i=1

αi Ãi ,

N⎢
i=1

αi = 1, αi ⊗ 0

}
, (5.162)

where N = 2n2 . Note that this is a general description, which does not take into
account that some elements of Mx,k may be constant. In such cases, N is given by
N = 2(n−c)2 , where c stands for the number of constant elements of Mx,k .

In a similar fashion, (5.155) can be converted into
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ε fa ,k = −HC
⎤

A3(α)e f,k + W1wk
⎦− HW2wk+1, (5.163)

with

A3 =
{

A3(α) : A3(α) =
N⎢

i=1

αi A3,i ,

N⎢
i=1

αi = 1, αi ⊗ 0

}
. (5.164)

The objective of further deliberations is to design the observer (5.152) in such a way
that the state estimation error e f,k is asymptotically convergent and the following
upper bound is guaranteed:

≺ε f ≺l2 ≤ ξ≺w≺l2 , (5.165)

where ξ > 0 is a prescribed disturbance attenuation level. Thus, contrary to the
approaches presented in the literature, μ should be achieved with respect to the fault
estimation error but not the state estimation error.

Thus, the problem of H∀ observer design [4, 7] is to determine the gain matrix
K 3 such that

lim
k∩∀ e f,k = 0 for wk = 0, (5.166)

≺ε f ≺l2 ≤ ξ≺w≺l2 for wk �= 0, e f,0 = 0. (5.167)

In order to settle the above problem, it is sufficient to find a Lyapunov function Vk

such that

ΔVk + εT
fa ,kε fa ,k − μ2wT

k wk − μ2wT
k+1wk+1 < 0, k = 0, . . . ∀, (5.168)

where ΔVk = Vk+1 − Vk , μ > 0. Indeed, if wk = 0, (k = 0, . . . ,∀) then (5.168)
boils down to

ΔVk + εT
fa ,kε fa ,k < 0, k = 0, . . . ∀, (5.169)

and henceΔVk < 0, which leads to (5.166). Ifwk �= 0 (k = 0, . . . ,∀), then (5.168)
yields

J =
∀⎢

k=0

⎡
ΔVk + εT

fa ,kε fa ,k − μ2wT
k wk − μ2wT

k+1wk+1

⎣
< 0, (5.170)

which can be written as

J = −V0 +
∀⎢

k=0

εT
fa ,kε fa ,k − μ2

∀⎢
k=0

wT
k wk − μ2

∀⎢
k=0

wT
k+1wk+1 < 0. (5.171)

Bearing in mind that
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μ2
∀⎢

k=0

wT
k+1wk+1 = μ2

∀⎢
k=0

wT
k wk − μ2wT

0 w0, (5.172)

the inequality (5.171) can be written as

J = −V0 +
∀⎢

k=0

εT
fa ,kε fa ,k − 2μ2

∀⎢
k=0

wT
k wk + μ2wT

0 w0 < 0. (5.173)

Knowing that V0 = 0 for e f,0 = 0, (5.173) leads to (5.167) with ξ = √
2μ.

Since the general framework for designing the robust observer is given, then the
following form of the Lyapunov function is proposed [5]:

Vk = eT
f,k P(α)e f,k, (5.174)

where P(α) → 0. Contrary to the design approach presented in the literature (see,
e.g. [4] and the references therein), it is not assumed that P(α) = P is constant.
Indeed, P(α) can be perceived as a parameter-depended matrix of the form (cf. [9])

P(α) =
N⎢

i=1

αi P i . (5.175)

As a consequence,

ΔVk + εT
fa ,kε fa ,k − μ2wT

k wk − μ2wT
k+1wk+1

= eT
f,k

⎡
A2(α)T P(α)A2(α) + A3(α)T H1 A3(α) − P(α)

⎣
e f,k

+ eT
f,k

⎡
A2(α)T P(α)W̄1 + A3(α)T H1W1

⎣
wk

+ eT
f,k

⎡
A2(α)T P(α)W̄2 + A3(α)T H2

⎣
wk+1

+ wT
k

⎡
W̄

T
1 P(α)A2(α) + W T

1 H1 A3(α)
⎣

e f,k

+ wT
k

⎡
W̄

T
1 P(α)W̄1 + W T

1 H1W1 − μ2 I
⎣
wk

+ wT
k

⎡
W̄

T
1 P(α)W2 + W T

1 H2

⎣
wk+1

+ rwT
k+1

⎡
W̄

T
2 P(α)A2,k + HT

2 A3(α)
⎣

e f,k

+ wT
k+1

⎡
W̄

T
2 P(α)W1 + HT

2 W1

⎣
wk

+ wT
k+1

⎡
W̄

T
2 P(α)W̄2 + W T

2 HT HW2 − μ2 I
⎣
wk+1 < 0, (5.176)

with H1 = CT HT HC and H2 = CT HT HW2.
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By defining

vk =
[
eT

f,k, w
T
k , wT

k+1

]T
, (5.177)

the inequality (5.176) becomes

ΔVk + εT
fa ,kε fa ,k − μ2wT

k wk − μ2wT
k+1wk+1 = vT

k MV vk < 0, (5.178)

where MV is given by (5.179):

MV =

⎥

A2(α)T P(α)A2(α) + A3(α)T H1 A3(α) − P(α) A2(α)T P(α)W̄1 + A3(α)T H1W1

W̄ T
1 P(α)A2(α) + W T

1 H1 A3(α) W̄ T
1 P(α)W̄1 + W T

1 H1W1 − μ2 I

W̄ T
2 P(α)A2(α) + HT

2 A3(α) W̄ T
2 P(α)W1 + HT

2 W1

A2(α)T P(α)W̄2 + A3(α)T H2

W̄ T
1 P(α)W2 + W T

1 H2

W̄ T
2 P(α)W̄2 + W T

2 HT HW2 − μ2 I


 .

(5.179)

The following theorem constitutes the main result of this section.

Theorem 5.5 For a prescribed disturbance attenuation level μ > 0 for the fault
estimation error (5.155), the H∀ observer design problem for the system (5.145)
and (5.146) and the observer (5.152) is solvable if there exist matrices P i → 0
(i = 1, . . . , N), U and N such that the following LMIsare satisfied:


⎥⎥⎥

AT
3,i H1 A3,i − P i AT

3,i H1W1 AT
3,i H3 A2,i U T

W T
1 H1 A3,i W T

1 H1W1 − μ2 I W T
1 H2 W̄

T
1 U T

HT
2 A3,i HT

2 W1 W T
2 HT HW2 − μ2 I W̄

T
2 U T

U A2,i UW̄1 UW̄2 P i − U − UT


 ⊂ 0,

i = 1, . . . , N , (5.180)

where (cf. (5.161) and (5.153))

U A2,i = U( Ãi − K 3C) = U Ãi − NC, (5.181)

UW̄1 = U(GW1 − K 3W2) = U GW1 − NW2. (5.182)

proof The following two lemmas can be perceived as the generalisation of those
presented in [9].

Lemma 5.6 The following statements are equivalent:

1. There exists X → 0 such that

V T XV − W ⊂ 0. (5.183)

2. There exists X → 0 such that
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⎛−W V T U T

U V X − U − U T

⎝
⊂ 0. (5.184)

proof Applying the Schur complement to (1) gives

V T U T (U T + U − X)−1U V − W ⊂ 0. (5.185)

Substituting U = U T = X yields

V T XV − W ⊂ 0. (5.186)

Thus, (1) implies (2).
Multiplying (5.184) by T = [

I V T
]
on the left and by T T on the left of (5.184)

gives (5.183), which means that (2) implies (1) and hence the proof is completed.

Lemma 5.7 The following statements are equivalent:

1. There exists X(α) → 0 such that

V (α)T X(α)V (α) − W(α) ⊂ 0. (5.187)

2. There exists X(α) → 0 such that

⎛−W(α) V (α)T U T

U V (α) X(α) − U − U T

⎝
⊂ 0. (5.188)

proof The proof can be realised by following the same line of reasoning as the one
of Lemma 5.6.

It is easy to show that (5.188) is satisfied if there exist matrices X i → 0 such that

⎛−W i V T
i U T

U V i X i − U − U T

⎝
⊂ 0, i = 1, . . . , N . (5.189)

Subsequently, observing that the matrix (5.179) must be negative definite and
writing it as


⎥

A2(α)T

W̄
T
1

W̄
T
2


 P(α)

[
A2(α) W̄1 W̄2

]
(5.190)

+

 A3(α)T H1 A3(α) − P(α) A3(α)T H1W1 A3(α)T H3

W T
1 H1 A3(α) W T

1 H1W1 − μ2 I W T
1 H2

HT
2 A3(α) HT

2 W1 W T
2 HT HW2 − μ2 I


 ⊂ 0,

(5.191)
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and then applying Lemma 5.7 and (5.189) lead to (5.180), which completes the proof.
Finally, the design procedure boils down to solving the LMIs (5.180) and then

(cf. (5.181) and (5.182) K 3 = U−1N .
It can be also observed that the observer design problem can be treated as a min-

imisation task, i.e.,
μ∧ = min

μ>0,P1→0,U,N
μ (5.192)

under (5.180).

5.3.2 Sensor Fault Estimation

The main objective of this section is to provide a detailed design procedure of the
robust observer, which can be used for sensor fault diagnosis. In other words, the
main role of this observer is to provide information about the sensor fault. Indeed,
apart from serving as a usual residual generator (see, e.g. [6]), the observer should
be designed in such a way that a prescribed disturbance attenuation level is achieved
with respect to the sensor fault estimation error while guaranteeing the convergence
of the observer.

Let us define the matrix X , to be partitioned in such a way that

X =

⎥

xT
1
...

xT
nx


 , (5.193)

where x j stands for the j th row of X . Let us also denote X j as the matrix X without
the j th row and y j as a vector y without the j th element.

Sensor fault diagnosis will be realised by a set of m observers of the form

x̂k+1 = Ax̂k + g(x̂k) + K 3, j

⎡
y j

f,k − C j x̂k

⎣
, j = 1, . . . , m, (5.194)

while the j th output (for Ls,k = I) is described by

y f, j,k = cT
j x f,k + wT

2, jwk + f j,k . (5.195)

Thus
f s, j,k = y f, j,k − cT

j x f,k − wT
2, jwk, (5.196)

and the j th fault estimate is

f̂ s, j,k = y f, j,k − cT
j x̂k . (5.197)
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The fault estimation error ε f j,k of the j th sensor is

ε f j,k = f s, j,k− f̂ s, j,k = −cT
j x f,k+cT

j x̂k−wT
2, jwk = −cT

j e f,k−wT
2, jwk, (5.198)

while the state estimation error (for f a,k = 0) is

e f,k+1 = Ae f,k + sk − K 3, j C j e f,k − K 3, j W2wk + W1wk, (5.199)

e f,k+1 =
⎡

A − K j
3C j

⎣
e f,k + sk − W̄wk . (5.200)

Using a similar approach as that is Sect. 5.3.1, the state estimation error (5.200) can
be described as

e f,k+1 = A4 (α) e f,k − W̄wk, (5.201)

A4(α) = Â(α) − K j
3C j , (5.202)

where

Â =
{

Â(α) : Â(α) =
N⎢

i=1

αi Âi ,

N⎢
i=1

αi = 1, αi ⊗ 0

}
. (5.203)

Similarly as in Sect. 5.3.1, the general framework for designing the robust observer
is

ΔVk + εT
fi,k

ε fi,k − μ2wT
k wk < 0, k = 0, . . . ∀, (5.204)

with
Vk = eT

f,k P(α)e f,k . (5.205)

Consequently, it can be shown that:

ΔVk+εT
fi,k

ε fi,k − μ2wT
k wk

= eT
f,k

⎡
A4(α)T P(α)A4(α)

⎣
e f,k

+ eT
f,k

⎡
A4(α)T P(α)W̄

⎣
wk

+ wT
k

⎡
W̄

T
P(α)A4(α)

⎣
e f,k

+ wT
k

⎡
W̄

T
P(α)W̄

⎣
wk < 0. (5.206)

By defining

vk =
[
eT

f,k, w
T
k

]T
, (5.207)
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the inequality (5.206) becomes

ΔVk + εT
fs ,kε fs ,k − μ2wT

k wk = vT
k MV vk < 0, (5.208)

where

MV =
⎞

A4(α)T P(α)A4(α) − P(α) + c j cT
j A4(α)T P(α)W̄ + c jw

T
2, j

W̄
T

P(α)A4(α) + w2, j cT
j W̄

T
P(α)W̄ + w2, jw

T
2, j − μ2 I

⎠
.

(5.209)

Theorem 5.6 For a prescribed disturbance attenuation level μ > 0 for the fault
estimation error (5.198), the H∀ observer design problem for the system (5.145)
and (5.146) and the observer (5.194) is solvable if there exist matrices P i → 0
(i = 1, . . . , N), U and N such that the following LMIs are satisfied:


⎥

−P i + c j cT
j c jw

T
2, j AT

4,i U
T

w2, j cT
j w2, jw

T
2, j − μ2 I W̄

T
U T

U A4,i UW̄ P i − U − UT


 ⊂ 0, (5.210)

where
U A4,i = U( Âi − K 3C) = U Âi − NC. (5.211)

proof Observing that the matrix (5.209) must be negative definite and writing it as

⎞
A4(α)T

W̄ T

⎠
P(α)

[
A4(α)T W̄ T

]
+

−P(α) + c j cT

j c jw
T
2, j

w2, j cT
j w2, jw

T
2, j − μ2 I


 ⊂ 0, (5.212)

and then applying Lemma 5.7 and (5.189) lead to (5.210), which completes the proof.

5.3.3 Integrated FTC Design

Using the same arguments as in Sect. 5.2, the convergence analysis can be relaxed to
the following form of the tracking error:

ek+1 = A1ek + Gωk + W̃1w̄k + W̃2w̄k+1. (5.213)

Similarly as in Sect. 5.3.1, (5.213) can be expressed as

ek+1 = A2(α)ek + W̃1w̄k + W̃2w̄k+1, (5.214)

A2(α) = Ã(α) − B K 1.

The following theorem constitutes the main result of the present section.
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Theorem 5.7 For a prescribed disturbance attenuation level μ > 0 for the tracking
error (5.213), the H∀ controller design problem (5.122) for the system (5.68) and
(5.69) is solvable if there exist P → 0, U , V such that the following LMIs are
satisfied:


⎥⎥⎥

I − P i 0 0 A2,i U

0 −μ2 I 0 W̃
T
1 U T

0 0 μ2 I W̃
T
2 U T

U T AT
2,i UW̃1 UW̃2 P i − U − UT


 ⊂ 0, i = 1, . . . , N , (5.215)

with

A2,i U =
⎡

Ãi − B K 1

⎣
U = Ãi U − BV . (5.216)

proof The proof is similar to that of Theorem5.5.

Thus, the final design procedure is as follows: Given a prescribed disturbance
attenuation level μ, obtain P → 0, U , V by solving (5.215). Finally, the gain matrix
of the FTC controller is

K 1 = V U−1. (5.217)

5.3.4 Illustrative Example: Fault Estimation of a Multi-Tank
System

The multi-tank system considered (Fig. 5.15) is designed for simulating real indus-
trial multi-tank system in laboratory conditions [10]. The multi-tank system can be
efficiently used to practically verify both linear and non-linear control, identifica-
tion and diagnostics methods. The multi-tank system consists of three separate tanks
placed one above the other and equipped with drain valves and level sensors based
on hydraulic pressure measurement. Each of them has a different cross-section in
order to reflect system nonlinearities. The lower bottom tank is a water reservoir for
the system. A variable speed water pump is used to fill the upper tank. The water out-
flows the tanks due to gravity. The multi-tank system considered has been designed
to operate with an external, PC-based digital controller. The control computer com-
municates with the level sensors, valves and a pump by a dedicated I/O board and
the power interface. The I/O board is controlled by real-time software, which oper-
ates in a Matlab/Simulink environment. The non-linear discrete-time model of the
multi-tank system is given as follows (cf. Fig. 5.16):
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Fig. 5.15 Multi-tank system

x1,k+1 = x1,k + h

(
1

β1(x1,k)
uk − 1

β1(x1,k)
C1xα1

1,k

)
, (5.218)

x2,k+1 = x2,k + h

(
1

β2(x2,k)
C1xα1

1,k − 1

β2(x2,k)
C2xα2

2,k

)
, (5.219)

x3,k+1 = x3,k + h

(
1

β3(x3,k)
C2xα2

2,k − 1

β3(x3,k)
C3xα3

3,k

)
, (5.220)

where xi,k, i ≥ 1, . . . , 3, is water level in the i th tank, βi (xi,k) stands for the cross
section area of the i th tank at the level xi,k and is, respectively, defined as

β1(x1,k) = aw: constant cross-sectional area of the top tank;
β2(x2,k) = cw + x2,k

x2max
bw: variable cross-sectional area of the middle tank;

β3(x3,k) = w
√

R2 − (R − x3,k)2: variable cross-sectional area of the bottom
tank.

The numerical values of the above parameters are as follows: C1 = 1.0057 ·10−4,
C2 = 1.1963 ·10−4,C3 = 9.8008 ·10−5, b = 0.34, c = 0.1,w = 0.035, R = 0.364,
x2max = 0.35, α1 = 0.29, α2 = 0.2256, α3 = 0.2487, and h = 0.01s.

In order to unify further deliberations, the multi-tank system can be described in
a state-space form as:

x f,k+1 = Ax f,k + Bu f,k + g(x f,k) + La f a,k + W1wk, (5.221)

y f,k+1 = Cx f,k+1 + Ls f s,k + W2wk+1, (5.222)

where x f,k ≥ X ⇒ R
n is the state vector describing the liquid level in the tanks

(n = 3), u f,k ≥ R
r stands for the input (r = 1), y f,k ≥ R

m denotes the output
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Fig. 5.16 Geometrical
parameters of the tanks

(m = 3), and f a,k ≥ R
s , (s = r ), f s,k ≥ R

m stand for the actuator and sensor fault,
respectively, while wk ≥ R

n is a an exogenous disturbance vector with W1 ≥ R
n×n ,

W2 ≥ R
m×n being its distribution matrices.

The system matrices and non-linearities are

A = In, B =

0.140

0


 , C = Im,

La = B, Ls = Im,

g(x f,k) =


⎥⎥⎥

1
β1(x1,k)

C1xα1
1,k

1
β2(x2,k )

C1xα1
1,k − 1

β2(x2,k )
C2xα2

2,k

1
β3(x3,k )

C2xα2
2,k − 1

β3(x3,k )
C3xα3

3,k


 . (5.223)

As has already been mentioned, the robustness problem will be tackled within the
H∀ framework, which yields the following assumption:

w ≥ l2, l2 = {
w ≥ R

n| ≺w≺l2 < +∀}
, ≺w≺l2 =

( ∀⎢
k=0

≺wk≺2
) 1

2

. (5.224)
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Fig. 5.17 Distribution of the
disturbances for the top tank
level sensor
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The distribution matrices W1 and W2 should express the influence and magnitude
of wk onto the state and output Eqs. (5.145) and (5.146), respectively. To obtain an
appropriate proportion between the elements of W1 and W2, a series of constant
liquid level measurements was performed for the top tank. Subsequently, the mean
was removed, which represents the constant liquid level, and then the disturbances
were analysed. Figure5.17 depicts the histogram of the estimated disturbances. The
standard deviation of the disturbance is equal to 1.75 · 10−4 (obtained for 1000
measurements). Almost identical results were obtained for the sensors in the middle
and bottom tanks. This is not surprising since all sensors are identical.

The term W1wk (cf. 5.145) will represent the inaccuracy of the pumpwith respect
to a desired control action. After similar experiments like those for the sensors, it was
derived that the maximum magnitude of W1wk is approximately 10 times smaller
than that of W2wk . As a result, the following settings of the distribution matrices
were established:

W1 = diag(0.001, 0, 0), W2 = 0.01Im . (5.225)

The analysis was started with the estimation of the actuator fault. To make the exper-
iment more difficult, it was assumed that the measurement of the liquid level of the
last tank is not available, which means that

C =
⎛
1 0 0
0 1 0

⎝
.

Let the initial condition for the system and the observer be

x0 = [0.1, 0.2, 0.3]T , x̂0 = 1 · 10−4[1, 1, 1]T , (5.226)
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Fig. 5.18 Evolution of ΔVk
+ εT

fa ,kε fa ,k − μ2wT
k wk

− μ2wT
k+1wk+1
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while the input is

uk = 1. (5.227)

As a result of solving the problem (5.180), the following couple was obtained:

μ = 0.45; K =

0.1089 0
0.0004 1.7107

0 0.9473


 . (5.228)

Let us consider the following actuator fault scenario:

f a,k =

⎧⎪⎪⎨
⎪⎪⎩

0.1, for 300 ⊗ k ⊗ 200,
−0.2uk for 1500 ⊗ k ⊗ 500,
0.0005(k − 1800) for 2100 ⊗ k ⊗ 1800,
0, otherwise.

(5.229)

Figure5.18 clearly indicates that the condition (5.167) is satisfied, which means that
an attenuation level μ = 0.45 is achieved. Finally, Figs. 5.19–5.21 show the faults
and their estimates. Moreover, Fig. 5.22 shows the system state x3,k and its estimate
x̂3,k . The obtained results clearly indicate that the proposed approach works with
desired performance.

The objective of the subsequent example is to show the performance of the pro-
posed sensor fault estimation scheme. The example concerns the second sensor’s
faults. Thus, the following fault scenarios were considered:
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Fig. 5.19 Constant bias
actuator fault and its estimate
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Fig. 5.20 20% decrease fault
in actuator and its estimate
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1. Incipient fault:

f s2,k =
{−0.005(k − 1000), for 1500 ⊗ k ⊗ 1000,
0, otherwise,

2. 20% decrease in the accuracy:

f s2,k =
{−0.2 yk, for 1500 ⊗ k ⊗ 1000,
0, otherwise.

The results of fault identification are shown in Fig. 5.23. From these it is clear that the
proposed approach provides satisfactory outcome. This means that the estimation of
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Fig. 5.21 Incipient actuator
fault and its estimate
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Fig. 5.22 State x3,k and its
estimate x̂3,k
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a given sensor measurements can be used in the case when the sensor is faulty. Such
an approach will be employed in the subsequent chapter.

5.4 Concluding Remarks

The main objective of this chapter was to propose a novel structure and design
procedure of an integrated fault identification and fault-tolerant control scheme for
a class of non-linear discrete-time systems. In particular, the chapter was divided into
three parts. The first one introduced the concept of integrated fault identification and
fault-tolerant control along with robustness with respect to the uncertainties acting
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Fig. 5.23 Fault identification for the incipient and the 20% decrease fault in the second sensor

on the state equation of the system as well as the unappealing effect of one-time step
prediction of the fault. The second part enhanced robustness even further. Indeed,
additionally, the uncertainties present in the output equation were considered. The
last part showed how to implement the proposed FTC framework for LPV systems.
It is worth mentioning that fault estimation and control robustness were attained
with the H∀ approach. In the usual H∀ framework, the prescribed disturbance
attenuation level is achieved with respect to the state estimation error. The proposed
approach is designed in such a way that a prescribed disturbance attenuation level is
achievedwith respect to the fault estimation errorwhile guaranteeing the convergence
of the observer with a possibly large decay rate of the state estimation error. The
same property is achieved with respect to the control tracking error. Each part of
the chapter had a similar structure, i.e., fault estimation and integrated FTC were
carefully analysed. Each was also finalised with the illustrative examples, which
showed the performance of the selected solutions.
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Chapter 6
Fuzzy Multiple-Model Approach
to Fault-Tolerant Control

6.1 Essentials of Fuzzy Logic

Fuzzy logic is a superset of the conventional (Boolean) logic that was extended
to handle the concept of partial truth—truth values between “completely true” and
“completely false”. It was introduced by Dr. Lotfi Zadeh [1] as a means of the
vagueness of a natural language modelling. Initially, it encountered scepticism, and
it took a long time until it was finally accepted. Nowadays, fuzzy logic systems are
widespread and has found numerous applications, especially in the domain of control
engineering, identification, as well as modern computer science.

As there is a strong relationship betweenBoolean logic and the concept of a subset,
there is a similar strong relationship between fuzzy logic and a fuzzy subset theory.

Definition 6.1 A Classical set F is a set of ordered pairs

F = {(w, IF (w)) | ∀w ≥ W} (6.1)

defined by an indicator function IF (w) ≥ {0, 1}.
The value zero of the indicator function is used to represent non-membership, while
the value one is used to represent membership.

For example, if the set of young people F is described as a crisp interval of people
younger than, say 20 years, i.e., F = [0, 20]. Then the question arises: Why is
somebody on his 20th birthday young and right the next day not young? Obviously,
this is a structural problem, if the upper bound of the range is moved from 20 to an
arbitrary point, the same question can be imposed.

A more natural way to construct the set F would be to relax the strict separation
between young and not young. This can be accomplished by allowing not only the
crisp decision YES he/she is in the set of young people or NO he/she is not in the
set of young people but more flexible phrases like: Well, he/she belongs a little bit
more to the set of young people or NO, he/she belongs nearly not to the set of young
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people. Thus, the concept of a fuzzy set is introduced, and young is described as
a linguistic variable,1 which represents humans’ cognitive category of “age”.

Definition 6.2 A fuzzy set F is a set of ordered pairs

F = {(w,μF (w)) | ∀w ≥ W} (6.2)

defined by a membership function 0 � μF (x) � 1.

Amembership function provides a measure of the degree of similarity of an element
in W to the fuzzy subset. In practice, the terms ‘membership function’ and ‘fuzzy
subset’ are used interchangeably.

Now, the idea of fuzzy sets and basic operations on them can be introduced. In the
fuzzy logic, union, intersection and complement are defined in terms of membership
functions and are motivated by their crisp counterparts. Let fuzzy sets F1 and F2
be described by their membership functions μF1(w) and μF2(w). The definition of
a fuzzy intersection leads to the membership function

μF1⇒F2(w) = min[μF1(w),μF2(w)], ∀w ≥ W, (6.3)

and the definition of a fuzzy union leads to the membership function

μF1≺F2(w) = max[μF1(w),μF2(w)] ∀w ≥ W. (6.4)

Additionally, the membership function for a fuzzy complement is

μF̄1
(w) = 1 − μF1(w) ∀w ≥ W. (6.5)

The ‘max’ and ‘min’ operators are not the only ones that could be chosen to model
the fuzzy union and fuzzy intersection. Other operators which have an axiomatic
basis can be used, e.g., a t-conorm operator for the fuzzy union (also known as an
s-norm, and denoted by S). Similarly, the bounded sum, drastic sum, and t-norm
operators can be used for the fuzzy intersection (denoted T ) [4].

Since the essential definitions are given, it is possible to proceed to the core
structure used within the framework of this chapter, i.e., a Takagi–Sugeno model. It
should also be noted that the results presented in this chapter are based on [5].

6.2 Fuzzy Multiple-Model Representation

A non-linear dynamic system can be described in a simple way by a Takagi–Sugeno
fuzzy model, being a branch of a general fuzzy framework, which uses series of
locally linearised models from the non-linear system, parameter identification of an

1 However, [2] demonstrated that to use a (type 1) fuzzy set to model a word is scientifically
incorrect, because word is uncertain whereas a fuzzy set is certain. To do so a type 2 fuzzy set is
required, for an example the reader is referred to [3].
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a priori given structure or a transformation of a non-linear model using the non-linear
sector approach (see, e.g., [6–9]). According to this model, a non-linear dynamic
system can be linearised around a number of operating points. Each of these linear
models represents the local system behaviour around the operating point. Thus, fuzzy
fusion of all linear model states describes global system behaviour.

Let us consider a non-linear model affine in control:
{

xk+1 = g1(sk)xk + g2(sk)uk,

yk = g3(sk)xk,
(6.6)

with gi (·), i = 1, 2, 3, being non-linear functions and sk is a vector assumed to be
measurable. A methodical way to deal with (6.6) is Takagi–Sugeno modelling [6].
Depending on the ‘point of view’, two approaches are available leading to a unique
framework [10]. From the historical viewpoint, the first approach stems from the
fuzzy rule-based control area and its property of being a universal approximator [11].
In this class of fuzzymodelling, the TS fuzzymodel acts as an approximation of (6.6),
thus allowing description of a non-linear dynamic system by a set of Linear Time
Invariant (LTI) models interconnected with non-linear functions. Each of the LTI
models is then associated by a rule at the consequent part of a weighting function
established based on the premise variable sk . It has a base of M rules, each having
p antecedents, where the i th rule is expressed as (in a state-space representation)

Ri : IF s1k is Fi
1 and . . . and s p

k is Fi
p,

THEN

{
xi

k+1 = Ai xi
k + Bi uk,

yi
k = C i xi

k,
(6.7)

in which xi
k ≥ R

n stands for the state, yi
k ≥ R

m is the output (note that each model
had an individual state and output), and uk ≥ R

r denotes the nominal control input,
also i = 1, . . . , M, Fi

j ( j = 1, . . . , p) are fuzzy sets and sk = [s1k , s2k , . . . , s p
k ]

is a known vector of premise variables [6]. In a general manner, these models are
obtained via an identification procedure, according to the universal approximation
property [12, 13]. Another approach uses directly the non-linear expression of the
model and can be expressed in a rule-based form, although not strictly equivalent
to (6.7), where the i th rule is described as

Ri : IF s1k is Fi
1 and . . . and s p

k is Fi
p,

THEN

{
xk+1 = Ai xk + Bi uk,

yk = C i xk .
(6.8)

Given a pair of (sk, uk) and a product inference engine, the final output of the
normalised TS fuzzy model can be expressed as



192 6 Fuzzy Multiple-Model Approach to Fault-Tolerant Control

{
xk+1 = ∑M

i=1 hi (sk)[Ai xk + Bi uk],
yk = ∑M

i=1 hi (sk)C i xk,
(6.9)

where hi (sk) are normalised rule firing strengths (non-linear functions of sk) defined
as

hi (sk) =
T p

j=1μFi
j
(s j

k )

∑M
i=1(T p

j=1μFi
j
(s j

k ))
, (6.10)

and T denotes a t-norm (e.g., a product). The term μFi
j
(s j

k ) is the grade of a mem-

bership of the premise variable s j
k . Moreover, the rule firing strengths hi (sk)

(i = 1, . . . , M) satisfy the following constraints (the convex sum property):

{∑M
i=1 hi (sk) = 1,

0 � hi (sk) � 1, ∀i = 1, . . . , M.
(6.11)

Hence, (6.9) also corresponds to a quasi-LPV form [14].

6.3 Development of the Takagi–Sugeno Fuzzy Model

Figure 6.1 illustrates the model-based fuzzy control design approach. In order to
design a fuzzy controller, a Takagi–Sugeno fuzzy model for a non-linear system is
needed. Hence, the construction of a fuzzy model is of a paramount importance and

Fig. 6.1 Model-based fuzzy
control design
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it is an essential step in the approach being considered. As has been mentioned, there
are two approaches for constructing fuzzy models:

• identification (fuzzy modelling) using input-output data,
• derivation from given non-linear system equations.

Following the excellent work [15], there is a large set of literature on fuzzy mod-
elling using the input-output data. The procedure essentially consists of two parts:
structure identification and parameter identification. The identification approach to
fuzzy modelling is suitable for plants for which it is impossible or too difficult to
derive an analytical model [7]. A very interesting approach concerning experimental
design for the identification of such models is described in [16].

In reality, input-output identification methods allow finding a model in the
form (6.7) or an equivalent one using linear/non-linear estimation [12, 13] or clus-
tering methods [17, 18]. The identification problem also demands the selection of
premise variables, which govern the changes of a dynamical regime. Practically
speaking, to guarantee smooth behaviour of the model, the premise variables are
selected to be slowly varying. The combination of local models requires a consis-
tency among them. However, one way to guarantee the consistency of the rules using
state-space models is to identify all local models with the same order and convert
all of them into the so-called observer canonical form. In this way all the states
of the local models will be consistent and in the form of (6.7), whereas their evo-
lution will be perfectly synchronised [17]. On the other hand, non-linear dynamic
models for physical systems can be readily obtained by, for example, the Newton–
Euler method and the Lagrange method [7]. In such cases, the latter approach, which
derives a fuzzy model in the form (6.9) from given non-linear dynamical models,
is more appropriate. It utilises the concept of ‘sector non-linearity’, ‘local approxi-
mation’ or a combination of those to construct fuzzy models. The latter is based on
the linearisation around several set points of the non-linear system. In this case, the
resulting model is only an approximation and the membership functions μFi

j
(s j

k ) are

chosen as triangular or sigmoid functions [7], whereas the former technique repre-
sents exactly the analysed non-linear model in a compact set of the state variables.
In other words, they are composed of linear models blended together with non-linear
functions.

6.4 Virtual Fuzzy Actuators

Let us consider the following TS reference model:

xk+1 = Ak xk + Bk uk, (6.12)

yk+1 = Ck+1xk+1, (6.13)
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with Ak = ∑M
i=1 hi (sk)Ai , Bk = ∑M

i=1 hi (sk)Bi , Ck+1 = ∑M
i=1 hi (sk+1)C i for

i = 1, . . . , M . Let us also consider a possibly faulty TS system described by the
following equations:

x f,k+1 = Ak x f,k + Bk u f,k + Lk f k (6.14)

y f,k+1 = Ck+1x f,k+1, (6.15)

with Lk = ∑M
i=1 hi (sk)Li .

The main objective of this section is to propose a control strategy which can be
used for determining the system input u f,k such that

• the control loop for the system (6.14)–(6.15) is stable;
• x f,k+1 converges asymptotically to xk+1 irrespective of the presence of the
fault f k .

The subsequent part of this section shows development details of the scheme that is
able to settle such a challenging problem. The crucial idea is to use the following
control strategy:

u f,k = −Sk f̂ k + K 1,k(xk − x̂ f,k) + uk . (6.16)

Thus, the following problems arise:

• to determine f̂ k ;
• to design K 1,k in such a way that the control loop is stable, i.e., the stabilisation
problem. The control law in such a form is called the PDC, [19],

• to estimate x̂ f,k .

Let us assume that the following rank condition is satisfied:

rank(Ck+1Lk) = rank(Lk) = s. (6.17)

This implies that it is possible to calculate

Hk+1 = (Ck+1Lk)
+ =

[
(Ck+1Lk)

T Ck+1Lk

⎢−1
(Ck+1Lk)

T . (6.18)

By multiplying (6.15) by Hk+1 and then substituting (6.14), it can be shown that

f k = Hk+1( y f,k+1 − Ck+1 Ak x f,k − Ck+1Bk u f,k). (6.19)

Thus, if x̂ f,k is used instead of x f,k , then the fault estimate is given as follows

f̂ k = Hk+1( y f,k+1 − Ck+1 Ak x̂ f,k − Ck+1Bk u f,k) (6.20)

and the associated fault estimation error is
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f k − f̂ k = −Hk+1Ck+1 Ak(x f,k − x̂ f,k). (6.21)

Unfortunately, the crucial problem with practical implementation of (6.20) is that
it requires y f,k+1 and u f,k to calculate f̂ k , and hence it cannot be directly used to
obtain (6.16). To settle this problem, it is assumed that there exists a diagonal matrix
αk such that f̂ k

≤= f̊ k = αk f̂ k−1, and hence the practical form of (6.16) boils
down to

u f,k = −Sk f̊ k + K 1,k(xk − x̂ f,k) + uk . (6.22)

In most cases the matrix αk should be equivalent to an identity one, i.e., it would
simply mean a one step delay, which should have a negligible effect on the perfor-
mance of FTC. In Chap.5, it was shown how to settle this problem with the H∞
approach.

Subsequently, by substituting (6.16) into (6.14), it can be shown that

x f,k+1 = Ak x f,k − Bk Sk f̂ k + Bk K 1,k(ek + e f,k) + Bk uk + Lk f k, (6.23)

where ek = xk − x f,k stands for the tracking error while e f,k = x f,k − x̂ f,k stands
for the state estimation error.

Let us assume that Sk satisfies Bk Sk = Lk , e.g., for actuator faults Sk = I . Thus

x f,k+1 = Ak x f,k + Lk( f k − f̂ k) + Bk K 1,k ek + Bk K 1,k e f,k + Bk uk . (6.24)

Finally, substituting (6.21) into (6.24) and then applying the result into ek+1 =
xk+1 − x f,k+1 yield

ek+1 = (Ak − Bk K 1,k)ek + (Lk Hk+1Ck+1 Ak − Bk K 1,k)e f,k . (6.25)

As has already been mentioned, the fault estimate (6.20) is obtained based on the
state estimate x̂ f,k . This raises the necessity for observer design. Consequently, by
substituting (6.19) into (6.14), it is possible to show that

x f,k+1 = Āk x f,k + B̄k u f,k + L̄k y f,k+1, (6.26)

where

Āk = (I − Lk Hk+1Ck+1)Ak,

B̄k = (I − Lk Hk+1Ck+1)Bk, L̄k = Lk Hk+1.

Thus, the observer structure, which can be perceived as an UIO (see, e.g., [20, 21]),
is given by

http://dx.doi.org/10.1007/978-3-319-03014-2_5
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x̂ f,k+1/k = Āk x̂ f,k + B̄k u f,k + L̄k y f,k+1,

x̂ f,k+1 = x̂ f,k+1/k + K 2,k+1( y f,k+1 − Ck+1 x̂ f,k+1/k). (6.27)

Finally, the state estimation error can be written as follows:

e f,k+1 = ( Āk − K 2,k+1Ck+1 Āk)e f,k . (6.28)

The main objective is to summarise the presented results within an integrated frame-
work for the development of the fault identification and fault-tolerant control scheme.
First, let us start with two crucial assumptions:

• the pair ( Āk, Ck+1) is detectable
• the pair (Ak, Bk) is stabilisable.

Under these assumptions, it is possible to design the matrices K 1,k and K 2,k in such
a way that the extended error

ēk =
[

ek

e f,k

]
, (6.29)

described by

ēk+1 =
[

Ak − Bk K 1,k Lk Hk+1Ck+1 Ak − Bk K 1,k e f,k

0 Āk − K 2,k+1Ck+1 Āk

]
ēk = Ae,k ēk, (6.30)

converges asymptotically to zero.
It can be observed from the structure of (6.30) that the eigenvalues of the matrix

Ae,k are the union of those of Ak − Bk K 1,k and Āk − K 2,k+1Ck+1 Āk . This clearly
indicates that the design of the state feedback and the observer can be carried out
independently (the separation principle).

Let us start with controller design with the corresponding tracking error defined
by

ek+1 = [Ak − Bk K 1,k]ek = A0(h(sk))ek, (6.31)

where K 1,k = ∑M
i=1 hi (sk)K i

1 and the matrix A0(h(sk)) belongs to a convex poly-
topic set defined as

A0 =
⎥

A0(h(sk)) :
M∑

i=1

hi (sk) = 1, 0 � hi (sk) � 1

A0(h(sk)) =
M∑

i=1

M∑
j=1

hi (sk)h j (sk)A0,i, j ,

A0,i, j = 1

2
(Ai − Bi K j

1 + A j − B j K i
1)

}
. (6.32)

By adapting the general results of thework [22], the following definition is introduced
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Definition 6.3 The tracking error described by (6.31) is robustly convergent to zero
in the uncertainty domain (6.32) iff all eigenvalues of A0(h(sk)) have magnitude
less than one for all values of h(sk) such that A0(h(sk)) ≥ A0.

Theorem 6.4 The tracking error described by (6.31) is robustly convergent to zero
in the uncertainty domain (6.32) if there exist matrices Qi, j � 0, G1, W j such that

[
G1 + GT

1 − Qi, j ⊗
N0,i, j Qm,n

]
� 0, (6.33)

for all i, m = 1, . . . , M and j � i , n � m, where N0,i, j = 1
2 [(Ai + A j )G1 −

Bi W j − B j W i ].
Proof See [22].

Finally, the design procedure boils down to solving the set of [ 12 M(1 + M)]2
LMIs (6.33) and then determining K i

1 = W i G−1
1 .

Since the controller design procedure is provided, then the observer synthesis
framework can be described. To tackle this problem, it is proposed to use a modified
version of the celebrated Kalman filter, which can be described as follows:

x̂ f,k+1/k = Āk x̂ f,k + B̄k u f,k + L̄k y f,k+1,

Pk+1/k = Āk Pk Āk
T + Uk,

K 2,k+1 = Pk+1/k CT
k+1

(
Ck+1 Pk+1/k CT

k+1 + V k+1

)−1
,

x̂ f,k+1 = x̂ f,k+1/k + K 2,k+1( y f,k+1 − Ck+1 x̂ f,k+1/k),

Pk+1 = [
I − K 2,k+1Ck+1

]
Pk+1/k, (6.34)

where Uk = δ1 I and V k = δ2 I , with δ1 and δ2 sufficiently small positive numbers.
It is important to note that the Kalman filter is applied here for state estimation

of a deterministic system (6.14)–(6.15), and hence Uk and V k play the role of the
instrumental matrices only (see Sect. 2.3 for more details).

When the initial tracking error is known (i.e., the deviation of a faulty system
state from a nominal system state), an upper bound on the norm of the control input
ů f,k = K 1,k(xk − x̂ f,k) can be found as follows [23]: Let us assume that the initial
tracking error e0 lies in an ellipsoid of the diameter γ, i.e., √e0√ � γ, then the

constraint on a control input described as follows √ů f,k√max = maxl

∣∣∣ůl
f,k

∣∣∣ ∧ λ is

enforced at all times if the following LMIs hold:

[
X ⊗

0.5(W T
i + W T

j ) G1 + GT
1 − Qi, j

]
→ 0,

Qi, j → γ2 I, diag(X) ⊂ λ2 I, (6.35)

http://dx.doi.org/10.1007/978-3-319-03014-2_2
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where W i , W j , Qi, j and G1 satisfy conditions given by (6.33) for all i = 1, . . . , M
and j � i .

In order to solve the regulator problem it is necessary to find a state feedback
controller such that the following objective function is minimised:

J∞ =
∞∑

i=0

(
ẙT

f,k+i QR ẙ f,k+i + ůT
f,k+i RR ů f,k+i

)
, (6.36)

where ẙ f,k+i = y f,k+i − yk+i , QR → 0 and RR � 0 are suitable weight matrices.
However, the system being considered is uncertain, and hence, only the upper

bound of the objective function can be minimised. Therefore the following theorem
gives only a sub-optimal solution for the regulator problem [22].

Theorem 6.5 The upper bound for the objective function (6.36) for the initial track-
ing error e0 lying in an ellipsoid of the diameter γ can be obtained by solving the
following LMI optimization problem:

min
Qi, j ,G1,W i

η,

subject to


⎡⎡⎣

G1 + GT
1 − Qi, j ⊗ ⊗ ⊗

N0,i, j Qm,n ⊗ ⊗
0.5Q1/2

R (C i + C j )G1 0 η I ⊗
0.5R1/2

R (W i + W j ) 0 0 η I

⎤
⎦⎦⎛ � 0, Qi, j → γ2 I, (6.37)

for all i, m = 1, . . . , M and j � i, n � m, where N0,i, j = 1
2 [(Ai + A j )G1 −

Bi W j − B j W i ] and the local feedback gains are K i
1 = W i G−1

1 .

Proof See [22].

6.4.1 Implementation Details

This section provides a clear design procedure regarding the proposed approach.
The initial stage is to compute virtual actuator gains K i

1 for all i = 1, . . . , M , by
solving LMIs described by (6.33) or (6.37) (if a regulator is needed); the specific
input constraints (6.35) can be considered if required. Finally, a virtual actuator is
developed, which is shown in Fig. 6.2.

The first step is to compute the virtual actuator output described by (6.22). To
do so, there is a need for using the current control input, the difference between
a previously estimated state of a possibly faulty system and a state of a nominal
system. Because the current fault estimate is not available, there is a need for using
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Fig. 6.2 Virtual actuator for Takagi–Sugeno fuzzy systems

f̊ k = αk f̂ k−1. Finally, it is feasible to find an output of a possibly faulty system
achieved by using the new control input (from the virtual actuator) and also to find
the reference system state using the nominal input (6.12). Indeed, it is possible to
compute an estimate of the state of a possibly faulty system by using (6.27), and
hence to compute compute the fault estimate by using (6.19).

6.5 Virtual Fuzzy Sensor

One observer is sufficient to detect faults, i.e., it can indicate an alarm if a fault
occurs in the system. To isolate faults, a number of observers should be designed
based on the idea of generalised observer scheme [24, 25] and has already been
successfully used in FTC systems [26, 27]. The generalised observer scheme used as
a virtual sensor is depicted in Fig. 6.3. The upper block in a fuzzy virtual sensor is the
observer (integrated with the model) of the overall system. By means of its output
it checks the consistency of each of the input-output pairs. If ε(k) exceeds some
predetermined threshold T S (determined by the noise and modelling inaccuracy of
the original system), which may not be constant (the adaptive threshold is favoured,
i.e., a threshold which is changing according to the perceived accuracy or robustness
of the model at any given time point), then the outputs of other m observers must
be checked. The fault detection and isolation task can be efficiently solved with the
concept of a TS virtual sensor. Each of them blocks is fed by all but one output signal
and tests the consistency of the estimated i th output and its sensor readings. If the
resulting residual zi,k does not exceed a predefined threshold T S

i , then this means
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Fig. 6.3 Virtual sensor for Takagi–Sugeno fuzzy systems

that the i th sensor performs correctly. After a sensor fault is detected and isolated,
the FTC system is reconfigured to use all but the i th corrupted sensor readings, while
the output of the i th virtual sensor replaces the output of the faulty sensor. After the
sensor is repaired (or replaced), the use of all sensors can be safely resumed. Finally,
it should be pointed out that the approach presented in this section is very similar to
that of Sect. 5.3.2.

6.6 Illustrative Examples

The main objective of the subsequent part of this section is to provide illustrative
examples that will exhibit the performance of the approaches described in the present
chapter. In particular, the systems being considered include: a tunnel furnace, a three-
tank system and a twin-rotor system. All examples present a comprehensive case
study regarding the selected approaches.

http://dx.doi.org/10.1007/978-3-319-03014-2_5
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6.6.1 TS Model Design for a Tunnel Furnace

The tunnel furnace is a laboratory counterpart of real industrial tunnel furnaces,
which can be applied in the food industry or production of ceramics (among others).
The furnace is equipped with three electric heaters and four temperature sensors. The
maximum power outputs of the heaters were measured to be approximately 686W,
693W and 756W ± 20W, respectively. The required temperature of the furnace can
be kept by controlling the work of the heaters. This task can be achieved by group
regulation of the voltage with the application of the controller PACSystems RX3i
(with the firmware version 6.0) manufactured byGE Fanuc Intelligent Platforms [28]
and the semiconductor relays RP6 produced by LUMEL [29], providing an impulse
control with a variable impulse frequency fmax = 1Hz. The temperature of the
furnace is measured via IC695ALG600 module [30] from Pt100 Resistive Thermal
Devices (RTDs) with the accuracy of ±0.7 ∩C. The visualisation of the work of the
tunnel furnace is realisedwith theQuickpanelViewdevice fromGEFanuc Intelligent
Platforms [31]. Its hardware setup can be seen in Figs. 6.4 and 6.5. It is worth noting
that the system considered is a distributed–parameter one (i.e., a system whose state
space is infinite-dimensional), thus any resulting model from input-output data will
be at best an approximation. Hence, to achieve a good approximation, the optimal
experimental design is of paramount importance and is often an iterative process. An
interesting paper dealing specifically with the identification of the TS fuzzy models
is [16], and its recommendations are partially repeated in a book dealing with fuzzy
systems [17].

In non-linear system identification, both the amplitude and frequency contents of
the input signals are ofmajor importance. Thus, for identifying TS fuzzymodels con-
taining both equilibrium and off-equilibrium local affine models, it is recommended
that input signals should be designed according to the following guidelines [16]:

• The system being considered should be brought through a sequence of equilibria
that includes the equilibria of the local models. At each equilibrium the system
should be excited by super-positionedPRBS, i.e., a pseudo–random, usually binary
signal added to the original input signal. The PRBS signals should have the fre-
quency content that covers an interval from the inverse rise time to above the
bandwidth of the closed-loop system.

• For each off-equilibrium local model, several transient trajectories should be
generated. The corresponding input signals should contain both large amplitude
steps and perturbations, so both the trend and perturbation dynamics of the off-
equilibrium local models could be determined. Also the frequency contents should
typically be higher compared to the frequency content of the equilibrium data to
prevent the system from settling at some equilibrium.

Of course, these are general guidelines, so in practical applications there will be
some constraints that will often limit the number of transitions, frequency content,
amplitudes, and the length of the experiment. Also depending strongly on the appli-
cation, the requirements in terms of the accuracy of off-equilibrium local models
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Fig. 6.4 Laboratory model of a tunnel furnace—hardware setup

Fig. 6.5 Interior of a tunnel
furnace

should be considered. Sometimes, equilibrium local models can be extrapolated into
transient operating regions without significant loss of accuracy.

Other excitation signals are multisine signals with variable frequency and the
swept sinus with random frequencies. These signals are frequently used in the iden-
tification of mechanical systems [17].

Thus in order to identify a model for the tunnel furnace, the input signals were
defined as follows:

• Five operating points were considered, at 20, 40, 60, 80 and 100%of themaximum
power of heaters, respectively.

• Heating phase: at each operating point for the first 1,800s, the constant input signal
values were used (to heat the furnace to a desired temperature).

• Perturbation phase: after the heating phase, for the next 1,620s (for each of the
input signal individually and independently)a perturbation signal was applied as
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follows: the perturbation was a uniformly distributed pseudo-random signal in the
range of [−10, 10%] of the maximum power, super-positioned on the signal gen-
erated in the heating phase (for 100% operating point the range was [−10, 0%]),
whereas each signal duration was chosen at random in a range of [5,15] seconds.
Finally, a new value and duration were generated.

• Short cooling phase: after the perturbation phase, for a short time period of 120s,
the heaters were disabled.

• Short heating phase: after the cooling phase, for 60 s, a maximum power for all
the heaters was applied.

• Thus, a cycle for each operating point lasted 3,600s, and after five full cycles, for
the remaining time of simulation, a uniformly distributed pseudo-random signal
in the range of [0, 100%] of maximum power and duration in the range of [5,15]
seconds were applied for each heater individually, thus, giving a total duration of
the experiment equal to 19,000s.

Afterwards, the resulting experimental data were cut into appropriate segments for
each of the operating points. From each input-output data of the operating point,
a local system-state model was built, using subspace methods. Subspace methods
originate in a mix between system theory, geometry and numerical linear algebra.
These subspace methods are successfully used for model identification for indus-
trial processes [32]. The N4SID [33] algorithm was selected for the task of model
identification, with the order of the models equal to four, as greater values did not
introduce a significant increase in the modelling accuracy. Subsequently, to guaran-
tee the consistency of fuzzy rules, all of the resulting local models were converted
into the observer canonical form [33]. The resulting matrices for each local model
are

A1 =


⎡⎡⎣
1.0021 −0.0040 −0.0230 0.0259
0.0023 0.9960 −0.0083 0.0099
0.0024 −0.0028 0.9907 0.0099
0.0009 −0.0005 −0.0059 1.0051

⎤
⎦⎦⎛ ,

A2 =


⎡⎡⎡⎣
0.9995 −0.0048 0.0010 0.0038
0.0003 0.9956 0.0008 0.0028
0.0001 −0.0014 0.9994 0.0011
0.0002 −0.0023 0.0005 1.0011

⎤
⎦⎦⎦⎛ ,

A3 =


⎡⎡⎣
1.0013 −0.0034 0.0024 −0.0009
0.0021 0.9970 0.0002 0.0004
0.0011 −0.0002 0.9976 0.0013
0.0006 0.0001 −0.0006 0.9993

⎤
⎦⎦⎛ ,
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A4 =


⎡⎡⎣

0.9993 −0.0022 0 0.0029
0.0002 0.9967 −0.0005 0.0034

−0.0003 0.0001 0.9987 0.0006
0.0004 −0.0018 0.0016 0.9989

⎤
⎦⎦⎛ ,

A5 =


⎡⎡⎣

0.9977 −0.0054 0.0065 0.0002
0.0003 0.9925 0.0063 0

−0.0030 −0.0025 1.0071 −0.0035
−0.0046 −0.0011 0.0093 0.9944

⎤
⎦⎦⎛ ,

B1 =


⎡⎡⎣

0.4565 0.7132 −0.3372
0.2529 0.5025 −0.1768

−0.0991 0.2829 0.2101
0.0196 0.1951 0.1526

⎤
⎦⎦⎛ ,

B2 =


⎡⎡⎣

0.0590 −0.0169 0.5376
0.1541 0.1590 0.2107
0.0760 0.0264 0.3059

−0.1752 0.1992 0.3504

⎤
⎦⎦⎛ ,

B3 =


⎡⎡⎣
0.1647 0.1054 −0.0362
0.0853 0.1502 −0.0291
0.0295 0.1020 0.0665
0.0184 0.0513 0.1089

⎤
⎦⎦⎛ ,

B4 =


⎡⎡⎣
0.0090 0.3650 −0.0617
0.2099 0.4394 −0.2910
0.2848 0.3058 −0.2542
0.2192 0.2708 −0.2352

⎤
⎦⎦⎛ ,

B5 =


⎡⎡⎣
0.0383 −0.0081 0.3631
0.3795 −0.2730 0.2910
0.4411 −0.4493 0.3601
0.7984 −0.4391 −0.1311

⎤
⎦⎦⎛ .

Finally, as the premise variable, the second temperature output was chosen with
triangular membership functions. To improve the approximation results, the para-
meters of the membership functions were optimised. The algorithm used for this task
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Fig. 6.6 Response of the Takagi–Sugeno model and the tunnel furnace

was a non-linear least-squares solver implemented inMATLAB environment, which
utilised the trust-region-reflective algorithm.This algorithm is a subspace trust-region
method and is based on the interior-reflective Newton method described in [34]. The
modelling results can be seen in Fig. 6.6, whilst the control trajectories and fuzzy
sets are shown in Fig. 6.7. Each figure presents the response of the tunnel furnace
and the TS model with the fuzzy membership functions shown in Fig. 6.7. As can
be observed, the resulting model is quite good and follows the original trajectories
with only a slight error, which can be observed mostly for the first TS model.

6.6.2 Virtual Sensor for a Tunnel Furnace

The definition of reference inputs is exactly the same as that in the preceding section,
the only difference is that the first hour of the experiment is considered (for the
clarity of presentation). The four sensors are available and normally provide real
experimental data with an additional assumption that initially all sensors are healthy
(any discrepancy at this point would be clearly visible to anyone). The following
sensor fault scenario is considered here:
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Fig. 6.7 Selected input trajectories and fuzzy sets used in the Takagi–Sugeno model

• The first sensor’s total failure, i.e., it is switching to constant reading of 20 ∩C or
can be considered disconnected. The fault is assumed to start at the 2,000th s and
lasts till 2,500th s, when it is assumed to be repaired (replaced).

• The third sensor being stuck, i.e., it is switching to reading its last healthy mea-
surement. The fault is assumed to start at the 500th s and lasts till 1,500th when it
is assumed to be repaired (replaced or restarted).

• The rest of the sensors are assumed to be healthy.

The results of experiment can be seen in Figs. 6.8 and 6.9. In Fig. 6.8, residuals
provided by four virtual sensors are provided. Figure 6.8 portrays the performance
of the virtual sensors. It can be easily seen that the residuals indicate the occurrence
of faults. It can also be observed that the estimates of the signals measured by the
faulty sensors are correct. Let us start the analysis with the first sensor fault. This
kind of abrupt fault, being the total failure (or disconnection, etc.) of the sensor,
is the most common one. In fact, the hardware driving the tunnel furnace is capa-
ble of detecting such errors by itself and allowing the repairs to be made on-line.
But assuming that the fault was not detected by the hardware, for example due to
some kind of short-circuit (but with the magnitude of several Ohms) in the wiring of
the sensor, it would still be detected by the use of the virtual sensors. By observing
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Fig. 6.8 Residuals obtained with the virtual sensors

residuals between the 2,000th and the 2,500th s, it can be seen that all but first sensor
residuals show an abrupt change, whereas the first virtual sensor residuals show only
the standard low level variations in the residuals. Thus, this fault can be easily iso-
lated and its effect can be neglected by substituting the faulty reading with the output
of the corresponding virtual sensor. After the sensor is repaired, residual drops in all
virtual sensors and readings from all the outputs can be safely resumed.

The next fault being considered concerns the third sensor. Such a fault would be
very uncommon in the hardware configuration of the tunnel furnace, considering that
a temperature sensor is an electrical one, but can be a common one in mechanical
sensors. Indeed, most critical safety industrial applications (power plants, central
heating, etc.)would require the use ofmechanical indicators and the electrical sensors
in a tandem, providing redundancy and supervision by a human operator, who would
make a similar comparison of readings as the one considered here.

6.6.3 FTC of a Three-Tank System

The selected non-linear system results from a celebrated benchmark [35] and is
shown in Fig. 6.11. It portrays a hydraulic process consisting of three identical tanks
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Fig. 6.9 Performance of virtual sensors

T1, T2, T3 with a cross section A. These tanks are connected to each other by cylin-
drical pipes with identical cross sections Sn . The nominal outflow valve is located
at the outlet of the tank T2. The out-flowing liquid is collected in a reservoir (of
a greater volume than all tanks combined), which supplies the pumps 1 and 2.
Q1 and Q2 are the flow rates of the pumps 1 and 2, respectively. The water lev-
els x1 and x2 are measured via piezoresistive pressure sensors. The connecting pipes
between the tanks are equipped with manually adjustable ball valves, which allow
the corresponding pipes to be opened or closed in order to simulate clogging or
operating errors.

By taking into account the fundamental laws of conservation of fluid, a detailed
mathematical model describing dynamic behaviour of this multi-input/multi-output
system can be developed. The water levels x1, x2 and x3 are governed by the con-
straint x1 > x3 > x2, and a non-linear system model is expressed by the following
state equations [35]:
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⎝⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎠
⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞

A
dx1(t)

dt
= Q1(t) − α1Sn(2g(x1(t) − x3(t)))1/2

+Q f1(t),

A
dx2(t)

dt
= Q2(t) + α3Sn(2g(x3(t) − x2(t)))1/2

−α2Sn(2gx2(t))1/2 + Q f2(t),

A
dx3(t)

dt
= α1Sn(2g(x1(t) − x3(t)))1/2

−α3Sn(2g(x3(t) − x2(t)))1/2 + Q f3(t),

(6.38)

where αi , i = 1, 2, 3, are constants. Q fi (t), i = 1, 2, 3, denote an additional mass
flow caused by leaks or actuator faults and g is the gravity constant.

A normalised TS model, with s(t) = u(t), which approximates the non-linear
system (6.38), is described in [36]:

ẋ(t) =
4∑

i=1

hi (u(t))[Ai x(t) + Bu(t) + L f (t) + di ], (6.39)

y(t) = C x(t). (6.40)

Thematrices Ai , B and d (trend) are acquired by linearising the initial system (6.38)
around four points chosen in the operating range of the system considered and the
membership functions are shown in Fig. 6.10. Four local models (in this case) guar-
antee a good approximation of the non-linear state space model of the real system
by the TS model. The following numerical values were used:

A1 =

⎣−0.0109 0 0.0109

0 −0.0206 0.0106
0.0109 0.0106 −0.0215

⎤
⎛ , d1 = 10−3


⎣−2.86

−0.38
0.11

⎤
⎛ ,

A2 =

⎣−0.0110 0 0.0110

0 −0.0205 0.01044
0.0110 0.01044 −0.0215

⎤
⎛ , d2 = 10−3


⎣−2.86

−0.34
0.038

⎤
⎛ ,

A3 =

⎣−0.0084 0 0.0084

0 −0.0206 0.0095
0.0084 0.0095 −0.0180

⎤
⎛ , d3 = 10−3


⎣−3.70

−0.14
0.69

⎤
⎛ ,

A4 =

⎣−0.0085 0 0.0085

0 −0.0205 0.0095
0.0085 0.0095 −0.0180

⎤
⎛ , d4 = 10−3


⎣−3.67

−0.18
0.62

⎤
⎛ ,
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Fig. 6.10 Fuzzy sets used in Takagi–Sugeno model of a three-tank system

B = 1

A


⎣1 0
0 1
0 0

⎤
⎛ , C =

[
1 0 0
0 1 0

]
, L = −B,

while the numerical evaluation of (6.38) was performed with

α1 = 0.78, α2 = 0.78, α3 = 0.75,

g = 9.8, Sn = 5 × 10−5 and A = 0.0154.

Subsequently, the continuous time model (6.39) was transformed into the discrete-
time one using the Euler method with the sampling time 100ms. The reference input
is defined by

uk,1 = 2.5 · 10−5[sin(k/320) + 0.5 sin(k/160)

+ 0.5 sin(k/640) + 0.3 sin(k/60)] + 10−4,

uk,2 = 3.75 · 10−6[cos(k/320) + 0.5 sin(k/160)

+ 0.5 cos(k/640) + 0.3 sin(k/60)] + 1.75 · 10−5.

The fault scenario is described as follows:

f k =
[

rk,1 0
0 rk,2

]
uk,

where

rk,1 =
{

0, k < 1500,
0.4, k � 1500,
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Fig. 6.11 Three-tank system

rk,2 =
{

0, k < 1000,
0.5 + 0.3 sin(πk/90), k � 1000.

Figure 6.12 presents the achieved results for the proposed FTC strategy (with
αk = I). As a result, Fig. 6.12 clearly shows that the faults can be estimated with
very high accuracy. The initial discrepancies are caused by the differences between
the initial state of the system and the FTC observer as well as by some model errors.
From Fig. 6.13, it can be observed that u f,k,1 is equal to uk,1 until the occurrence
of the fault f k,1. After that time the control strategy u f,k,1 was changed. It was also
changed when f 2 occurred, but due to reasons stated above the FTC system at the
beginning tried to achieve an equilibrium (u f,k,2 converged to uk,2). The final con-
clusion is that the residual (Fig. 6.14) is very close to zero in the presence of faults.
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Fig. 6.12 Faults and their estimates
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Fig. 6.13 Trajectories of uk and u f,k
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Fig. 6.14 Residual zk

This is because of the proposed control strategy, for which x f,k converges to xk and
consequently zk converges to zero. On the other hand, the presence of faults can be
easily determined using the fault estimate.

6.6.4 FTC of a Twin-Rotor System

The selected non-linear system is based on the TRMS, a laboratory set-up devel-
oped by Feedback Instruments Limited [37] for control experiments. Due to its high
non-linearity, cross coupling between its two axes and inaccessibility of some its
outputs and states for measurements, the system is often perceived as a challenging
engineering problem. Extensive research on the modelling of such a system can be
found in [38] and the references therein. The TRMS as shown in Fig. 4.2 is driven
by two DC motors. It has two propellers perpendicular to each other and joined by
a beam pivoted on its base, so that it can rotate in such a way that its ends move

http://dx.doi.org/10.1007/978-3-319-03014-2_4
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on spherical surfaces. The joined beam can be moved by changing the input volt-
age of its motor, which controls the rotational speed of the propellers. The system is
equipped with a pendulum counterweight fixed to the beam and it determines a stable
equilibrium position. Additionally, the system is balanced in such a way that when
the motors are switched off, the main rotor end of the beam is lowered. In certain
aspects the behaviour of the TRMS system resembles that of a helicopter [38]. For
example, there is a strong cross-coupling between the main rotor (collective) and
the tail rotor. However, the system is different from a helicopter in many ways, the
main differences being the: location of the pivot point (midway between two rotors
in TRMS versus main rotor head in the helicopter), vertical control (speed control
of main rotor versus collective pitch control), yaw control (tail rotor speed versus
pitch angle of tail rotor blades) and lastly, cyclical control (none versus directional
control).

The mathematical model of the TRMS can be described by a set of four non-
linear differential equations with two linear differential equations and four non-linear
functions [37]. Some of the parameters can be obtained from [37], whereas others
should be obtained by experimentations, e.g., inertia, magnitudes of the physical
propeller, coefficients of friction and impulse force. The inputs of the system are
defined by the input vector u = [uh, uv]T , where uh is the input voltage of the tail
motor and uv is the input voltage of the main motor. The state vector is defined as
x = [Φh,αh,ωt ,Φv,αv,ωm]T , whereΦh is the angular velocity around the vertical
axis,αh is the azimuth angle of the beam, ωt is the rotational velocity of the tail rotor,
Φv is the angular velocity around the horizontal axis, αv is the pitch angle of the
beam, ωm is the rotational velocity of the main rotor. The output vector is defined
as y = [ωm,αv,αh]T . For the complete physical model of such a system refer to
[37, 38].

A normalised TS model, which approximates the non-linear TRMS system, is
obtained by linearising a system around five operating points [39]. The system can
be described in the following way:

xk+1 =
5∑

i=1

hi (αh,k)[Ai xk + Bi (uk − ui ) + Li f k], (6.41)

yk = C i xk + di . (6.42)

The matrices Ai , Bi , C i , ui and di (trend) are acquired by linearising the initial
system around five points chosen in the operating range of the system considered,
with the premise variable sk = αh,k andmembership functions as shown in Fig. 6.18.
Five local models guarantee a good approximation of the state of the real system by
the TS model within the operating range. The following numerical values, with the
sampling time 50ms, were used:
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A1 =


⎡⎡⎡⎡⎡⎡⎣

0.9812 −0.0105 0.1847 0 0 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.0152 −0.0254 0.9908 −0.1718 0
0 0.0004 0.1367 0.0498 0.9957 0

0.0495 0.0276 0.0047 0 0 1

⎤
⎦⎦⎦⎦⎦⎦⎛

, d1 =

⎣ 0

−0.9326
0

⎤
⎛ ,

A2 =


⎡⎡⎡⎡⎡⎡⎣

0.9814 −0.0103 0.1841 0 0.0004 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.0200 −0.0254 0.9908 −0.1718 0
0 0.0005 0.1367 0.0498 0.9957 0

0.0495 0.0274 0.0046 0 −0.0010 1

⎤
⎦⎦⎦⎦⎦⎦⎛

, d2 =

⎣ 0.1074

−0.9257
64.1737

⎤
⎛ ,

A3 =


⎡⎡⎡⎡⎡⎡⎣

0.9818 −0.0098 0.1830 0 0.0007 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.0405 −0.0254 0.9908 −0.1718 0
0 0.0010 0.1367 0.0498 0.9957 0

0.0495 0.0268 0.0045 −0.0001 −0.0020 1

⎤
⎦⎦⎦⎦⎦⎦⎛

, d3 =

⎣ 0.2146

−0.9133
127.7300

⎤
⎛ ,

A4 =


⎡⎡⎡⎡⎡⎡⎣

0.9826 −0.0090 0.1809 0 0.0010 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.0734 −0.0254 0.9908 −0.1717 0
0 0.0018 0.1367 0.0498 0.9957 0

0.0496 0.0256 0.0044 −0.0001 −0.0030 1

⎤
⎦⎦⎦⎦⎦⎦⎛

, d4 =

⎣ 0.3199

−0.8895
189.7399

⎤
⎛ ,

A5 =


⎡⎡⎡⎡⎡⎡⎣

0.9837 −0.0079 0.1774 0 0.0013 0
0 0.9657 0 0 0 0
0 0 0.8780 0 0 0
0 0.1126 −0.0254 0.9908 −0.1712 0
0 0.0028 0.1367 0.0498 0.9957 0

0.0496 0.0239 0.0043 −0.0001 −0.0039 1

⎤
⎦⎦⎦⎦⎦⎦⎛

, d5 =

⎣ 0.4211

−0.8501
249.3018

⎤
⎛ ,
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B1 =


⎡⎡⎡⎡⎡⎡⎣

0.0047 −0.0003
0 0.0491

0.0469 0
−0.0005 0.0004
0.0035 0
0.0001 0.0007

⎤
⎦⎦⎦⎦⎦⎦⎛

, B2 =


⎡⎡⎡⎡⎡⎡⎣

0.0047 −0.0003
0 0.0491

0.0469 0
−0.0005 0.0005
0.0035 0
0.0001 0.0007

⎤
⎦⎦⎦⎦⎦⎦⎛

,

B3 =


⎡⎡⎡⎡⎡⎡⎣

0.0047 −0.0002
0 0.0491

0.0469 0
−0.0005 0.0010
0.0035 0
0.0001 0.0007

⎤
⎦⎦⎦⎦⎦⎦⎛

, B4 =


⎡⎡⎡⎡⎡⎡⎣

0.0046 −0.0002
0 0.0491

0.0469 0
−0.0005 0.0018
0.0035 0
0.0001 0.0006

⎤
⎦⎦⎦⎦⎦⎦⎛

,

B5 =


⎡⎡⎡⎡⎡⎡⎣

0.0045 −0.0002
0 0.0491

0.0469 0
−0.0005 0.0028
0.0035 0
0.0001 0.0006

⎤
⎦⎦⎦⎦⎦⎦⎛

, Li = Bi , ∀i≥{1, ..., 5},

C1 =

⎣0 0 0 0 0 1
0 0 0 0 1 0
0 896.2360 0 0 0 0

⎤
⎛ , C2 =


⎣0 0 0 0 0 1
0 0 0 0 1 0
0 894.1477 0 0 0 0

⎤
⎛ ,

C3 =

⎣0 0 0 0 0 1
0 0 0 0 1 0
0 879.0008 0 0 0 0

⎤
⎛ , C4 =


⎣0 0 0 0 0 1
0 0 0 0 1 0
0 851.0135 0 0 0 0

⎤
⎛ ,

C5 =

⎣0 0 0 0 0 1
0 0 0 0 1 0
0 810.7468 0 0 0 0

⎤
⎛ ,

u1 =
[
0
0

]
, u2 =

[
0

0.05

]
, u3 =

[
0
0.1

]
, u4 =

[
0

0.15

]
, u5 =

[
0
0.2

]
,

The reference input is defined by

uh = uk,1 = 0,
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Fig. 6.15 Faults and their estimates

uv = uk,2 =
⎝⎠


0, k < 4000
0.05, 4000 � k < 7000
0.10, k � 7000

.

The actuator fault scenarios, i.e., a decrease in the performance of the two rotors, are
described as follows:

f k,1 =
{

0, k < 7000,
0.007 sin(0.005k), k � 7000,

f k,2 =
{

0, k < 5400,
0.035 + 0.025 sin(0.01k), k � 5400.

The regulator for the FTC system was designed with the following parameters γ =
0.05 and the weighting matrices, based on Bryson’s rule [40]:

QR = 1

γ2

[
1 0
0 1

]
, RR = 1

0.04

[
1 0
0 1

]
.

Due to the high transients of the systems in the initial phase, the FTC system was
not enabled until the 4,000th iteration, but the control input was also in the neutral
state (i.e., u = [0, 0]T ) during that time period.

Figures 6.17 and 6.18 present the results achieved for the proposed FTC strategy
(with αk = I). As a result, Fig. 6.15 clearly shows that the faults can be estimated
with a very high accuracy (especially the second fault estimator). The estimator for
the first fault presents some deviations from the nominal value due to the abrupt
changes in the reference input and modelling errors as a consequence of the high
non-linearity of the system (its high cross-coupling between the main rotor and the
tail rotor). But after about 250 samples, in both the faultless and the faulty state,
estimation achieves very high accuracy, even though the fault is time-varying.

From Fig. 6.16, it can be observed that u f,k is close to uk until the occurrence
of the fault f k . After that time, the control strategy u f,k is changed. The only
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Fig. 6.16 Trajectories of uk and u f,k

deviations from the expected behaviour can be seen in the cases where the faults
were overestimated, due to the reasons stated above.

The final conclusion is that FTC stabilises the system with high performance
(Figs. 6.17 and 6.18). Indeed, even in the presence of the faults the original trajectories
are unchanged. This is because of the proposed control strategy, for which x f,k

converges to xk and consequently zk = y f,k − yk converges to zero, whereas the
system without the FTC control significantly deviates from the original trajectories.
Especially interesting is the fact that sometimes even a small uncompensated fault,
as the one of the tail motor, can lead to catastrophic failure, which can be seen by
the trajectories of the pitch angle of the beam αh .
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Fig. 6.17 Outputs of the system y f,k with with and without FTC
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Fig. 6.18 Outputs of the system y f,k with and without FTC as well as fuzzy sets used in the
Takagi–Sugeno model

6.7 Concluding Remarks

In this chapter, an active FTC strategy was proposed, which enables on-line recon-
figuration of control after the occurrence of sensor and actuator faults. The approach
was developed in the context of Takagi–Sugeno fuzzy systems. The key contribution
of the proposed approach is an integrated FTCdesign procedure of fault identification
and fault-tolerant control schemes. The procedure also allows including input con-
straints into the FTC system. The FTC controller is implemented as a state feedback
controller. This controller is designed in such a way that it can stabilize the faulty
plant using the Lyapunov theory and LMIs. The designed controller is called a virtual
actuator, because it feeds the faulty actuator and produces the intended effects on the
output of the plant by using an appropriate compensation. Also a design procedure
for the regulator for TS fuzzy systems was shown, which enables minimising the
objective cost function. The chapter presented also a number of illustrative exam-
ples, which exhibit the performance of the proposed approaches. In particular, it is
shown how to design the TS model of a tunnel furnace. The procedure starts with an
appropriate selection of experimental design, i.e., the shape and frequency of the sys-
tem input. Subsequently, the data-driven strategy is used to derive the TS model. The
obtained model is then used to design the virtual sensor, which makes it possible to
implement the FTC strategy with respect to sensor faults. Another example concerns
the celebrated benchmark, i.e., a three-tank system. In this case, the virtual fuzzy
actuator is examined. The same approach is tested on a twin-rotor system, which
mimics the helicopter. The systems being considered possesses completely different
properties but in both cases the proposed FTC strategy proved to be an efficient tool.
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Chapter 7
Conclusions and Future Research Directions

From the point of view of engineering, it is clear that providing a reliable control
strategy that is able to tolerate potential faults is an essential issue in modern control
design, particularly as far as the control of complex industrial systems is considered.

There is no doubt that such a challenging task can only be realised with suitably
integrated fault diagnosis and control schemes. The only way to realise efficient
integration is to obtain as much information about the faults as possible while taking
into account any potential imprecision of the implemented fault diagnosis.

Unfortunately, most systems present in our reality exhibit non-linear behaviour,
which makes it impossible to use the well-developed techniques for linear systems.
If it is assumed that the system is linear, which is not true in general, and even if
robust techniques for linear systems are used (e.g., unknown input observers, linear
state-feedback controllers, etc.), it is clear that such an approximation may lead to
unreliable performance of fault diagnosis and fault-tolerant control. Indeed, due to the
imprecision of the system description, early indication of faults which are developing
is rather impossible. Such a situation increases the probability of the occurrence of
failures, which can be extremely serious in terms of economic losses, environmental
impact, or even human mortality.

Indeed, robust techniques are able to tolerate a certain degree ofmodel uncertainty.
In other words, they are not robust to everything, i.e., are robust to an arbitrary
degree of model uncertainty. This real world development pressure creates the need
for new techniques which are able to tackle integrated fault diagnosis and fault-
tolerant control for non-linear systems. As discussed in introduction, in spite of the
fact that the problem has been attacked from various angles by many authors and a
number of relevant results have already been reported in the literature, there is no
general framework which can be simply and conveniently applied to maintain such
an integration.

As was underlined in Chap.2, observers are immensely popular as residual gen-
erators for fault detection (and, consequently, for fault isolation) of both linear and
non-linear dynamic systems. Their popularity lies in the fact that they can also be
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employed for control purposes. This natural property makes them a perfect candidate
for realising the required integration procedure.

There are, of course, many different observers (or filters in the stochastic case)
which can be applied to non-linear, and especially non-linear deterministic systems.
Logically, the number of “real world” applications (not only simulated examples)
should proliferate, yet this is not the case. The main reason is that the design com-
plexity of most observers for non-linear systems does not encourage engineers to
apply them in practice. Moreover, their design procedures are usually presented with
academic artificial examples, which are useless for engineers. Another reason is that
the applicability of robust observers, such as the celebrated unknown input observer,
is limited due to the lack of an appropriate description of model uncertainty.

The above discussion clearly justifies the need for simpler observer structures,
which can be obtained by solving the following problems:

Problem 1 Improvement of convergence of linearisation-based observers.
Problem 2 Design of data-driven methods for determining the model uncertainty,

i.e., derivation of an unknown input distribution matrix.
Problem 3 Design of filters that are able to switch (or mix) unknown input distrib-

ution matrices according to the operating conditions.

As was mentioned in Chaps. 3 and 6, challenging design problems arise regularly in
modern fault diagnosis systems and fault-tolerant control. Unfortunately, the classic
analytical techniques often cannot provide acceptable solutions to such difficult tasks.
If this is the case, one possible approach is to use soft computing-based fault diagnosis
approaches, which can be divided into three categories:

• neural networks,
• fuzzy logic-based techniques,
• evolutionary algorithms.

Apart from the unquestionable appeal of soft computing approaches, there is a num-
ber of design issues that can be described by

Problem 4 Development of robust neural network-based fault diagnosis.
Problem 5 Integration of analytical and soft computing fault-tolerant control.

The issue of integrated fault diagnosis and fault-tolerant control raises other prob-
lems:

Problem 6 Design of a general framework for integrated fault diagnosis and fault-
tolerant control.

Problem 7 Extension of the developed framework for non-linear systems
described by analytical models.

Problem 8 Minimisation of the uncertainty effect (modelling uncertainty, distur-
bances, noise) on the performance of integrated fault diagnosis and fault-tolerant
control.

Problem 9 Extension of the developed framework for non-linear systems
described by soft computing-based models.

http://dx.doi.org/10.1007/978-3-319-03014-2_3
http://dx.doi.org/10.1007/978-3-319-03014-2_6
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Although partial solutions to Problems 1–9 are scattered over many papers and a
number of book chapters, there is no work that summarises all of these results in a
unified framework.

Thus, one original objective of this book was to present selected approaches for
solving the challenging Problems 1–9 in a unified framework.

Other objectives, perceived as solutions toProblems 1–9, are presented in the form
of a concise summary of the contributions provided by this book to the state-of-the-art
of modern model-based fault diagnosis for non-linear systems:

Solutions to Problem 1

• A general scheme of the EUIO is proposed that is based on the second-order
extended Kalman filter (cf. Sect. 2.3). The convergence condition is also provided
and employed to improve the convergence of the described approach.

• It was also empirically verified that the performance of the EUIO can be suitably
extended, which recommends its practical application.

Solution to Problem 2

• Adesign strategy for developing the unknown input distributionmatrix is proposed
(cf. Sect. 2.5). This data-driven optimisation approach is based on the approach that
prevents the unappealing effect of fault decoupling (cf. Sect. 2.2). This means that
the determined unknown input distribution matrix will not cause this unappealing
phenomenon.

Solutions to Problem 3

• The unknown input filter, which is based on the unscented Kalman filter, is pro-
posed in Sect. 2.4. The approach can be applied for non-linear stochastic systems.

• The interactive multiple model approach along with the proposed unknown input
filter is employed for settling the problem of switching (or mixing) unknown input
distribution matrices according to the operating conditions.

Solutions to Problem 4

• Robust neural network-based fault diagnosis strategies are revisited inChap.3. The
general framework presented in [1] is suitably extended by providing an alternative
fault detection approach, which is called the backward test (cf. Sect. 3.2.5).

• Itwas empirically proven that the backward test constitutes an appealing alternative
to the well-known forward one.

Solution to Problem 5

• Chapter6 provides an integrated fault-tolerant control scheme for the non-linear
systems that can be describedwithTakagi–Sugenomodels. The proposed approach
is based on analytical techniques and is carefully described in Chap.4.

Solutions to Problem 6

• A general framework for integrated fault diagnosis and fault-tolerant control is
proposed in Chap.4.

http://dx.doi.org/10.1007/978-3-319-03014-2_2
http://dx.doi.org/10.1007/978-3-319-03014-2_2
http://dx.doi.org/10.1007/978-3-319-03014-2_2
http://dx.doi.org/10.1007/978-3-319-03014-2_2
http://dx.doi.org/10.1007/978-3-319-03014-2_3
http://dx.doi.org/10.1007/978-3-319-03014-2_3
http://dx.doi.org/10.1007/978-3-319-03014-2_6
http://dx.doi.org/10.1007/978-3-319-03014-2_4
http://dx.doi.org/10.1007/978-3-319-03014-2_4
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• The proposed approach is based on the observer-based fault identification scheme
that is suitably integrated with state-feedback control. It is worth underlining that
the appealing property of the proposed framework is that it takes into account the
imprecision related to the fault diagnosis procedure.

Solution to Problem 7

• The general fault-tolerant control framework proposed in Sect. 4.1.4, is extended
to Lipschitz non-linear discrete-time systems and carefully described in Chap.4.

Solutions to Problem 8

• The general fault-tolerant control framework proposed in Chap. 4 is extended in
Chap.5 to handle the robustness issue.

• Using theH∞ approach, the uncertainties present in the state equation are tackled
in Sect. 5.1.

• Applying the H∞ strategy, the uncertainties present in both the state and output
equations are tackled in Sect. 5.2.

• Using theH∞ approach, non-linear systems described by quasi-LPVmodels with
the uncertainties in the state and output equations are tackled in Sect. 5.3.

Solutions to Problem 9

• The framework proposed in Sect. 4.1.4 was suitably extended to the systems that
can be described with the Takagi–Sugeno fuzzy models (cf. Chap.6).

• The fault-tolerant control scheme was also extended to the case of the sensor faults
(cf. Chap.6).

The book also presents a number of practical implementations of the proposed
approaches, which can be summarised as follows:

• State estimation and sensor, actuator fault diagnosis of a two-phase induction
motor;

• State estimation and sensor, actuator fault diagnosis of a two-tank system;
• Experimental design for a neural model of a valve actuator;
• MLP-model design of a valve actuator;
• MLP-based robust fault detection of a valve actuator;
• GMDH neural network-based model design of a valve actuator;
• GMDH neural network-based robust fault detection of a valve actuator with for-
ward and backward tests;

• Fault-tolerant control of a twin-rotor system using analytical techniques;
• Fault-tolerant control of a twin-rotor system using fuzzy logic;
• Fuzzy model design of a tunnel furnace;
• Fault-tolerant control of a tunel furnace;
• Fault-tolerant control of a three-tank system.

The advantage of the general framework presented in this monograph is the fact that
it is independent of a particular form of the system being diagnosed. Indeed, when the
non-linear state-space model is available, then effective observer-based approaches

http://dx.doi.org/10.1007/978-3-319-03014-2_4
http://dx.doi.org/10.1007/978-3-319-03014-2_4
http://dx.doi.org/10.1007/978-3-319-03014-2_4
http://dx.doi.org/10.1007/978-3-319-03014-2_5
http://dx.doi.org/10.1007/978-3-319-03014-2_5
http://dx.doi.org/10.1007/978-3-319-03014-2_5
http://dx.doi.org/10.1007/978-3-319-03014-2_5
http://dx.doi.org/10.1007/978-3-319-03014-2_4
http://dx.doi.org/10.1007/978-3-319-03014-2_6
http://dx.doi.org/10.1007/978-3-319-03014-2_6
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can be employed. If this is not the case, then one can design such models with the
proposed Takagi–Sugeno approach. An alternative solution is to use the proposed
robust neural network-based techniques.

Irrespective of the above advantage, there still remain open problems regarding
some important design issues. What follows is a discussion of the areas proposed for
further investigations.

Handling constraints in the fault-tolerant control There is no doubt that all systems
have physical constraints which limit their performance. These constraints may
change during fault occurrence. For example, when an actuator fault appears in
systems, then the control limits must be suitably modified.

Development of integrated fault-tolerant control with neural networks It was pro-
ven that neural networks can be efficiently used for robust faul diagnosis. Thus,
a natural task seems to employ them for fault-tolerant control within a unified
framework described in Chap.4.

Relaxing the existence conditions of observer-based fault-tolerant control As has
been mentioned, many non-linear systems satisfy Lipschitz conditions. On the
other hand, the Lipschitz constant for such systems may have relatively large
values. This can make the usage of the observer design procedures described in
Chap.5 impossible. Thus, the development of less conservative transformation
techniques constitutes one of the future research directions.
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