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Abstract

The content of this book is essentially theoretical. We present and develop
some very important concepts of speech enhancement in a simple but rigorous
way. Many ideas are new; not only they shed light on this old problem but also
give good hints on how to make things work better than some well-known con-
ventional approaches. With the proposed presentation, all aspects of speech
enhancement, from single channel, multichannel, beamforming, time domain,
frequency domain, time-frequency domain, to binaural, are unified in a clear
and flexible framework. We start with an exhaustive discussion on the funda-
mental best (linear and nonlinear) estimators, from which we show how they
are connected to some important measures such as the coefficient of determi-
nation, the correlation coefficient, the conditional correlation coefficient, and
the SNR. Then, in the subsequent chapters, we show how to exploit these
measures in order to derive all kinds of noise reduction algorithms that can
compromise in a very accurate and versatile way between noise reduction and
speech distortion.
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Chapter 1

Introduction

In this chapter, we briefly explain what is speech enhancement and describe
its general formulation. Then, we present the organization of this study.

1.1 General Formulation of the Speech Enhancement
Problem

We are routinely surrounded by undesired signals, i.e., noise and interfer-
ences. In all applications that are related to speech, from sound recording,
cellular phones, hands-free communication, teleconferencing, hearing aids, to
human-machine interfaces, a speech signal of interest captured by micro-
phones is always contaminated by noise and interferences. Therefore, speech
enhancement algorithms are required in order to clean the noisy signals from
their disturbances. A solution to this problem was first proposed and devel-
oped five decades ago by Schroeder at Bell Laboratories [1], [2]. Since then,
a lot of progress has been made and many approaches have been derived to
solve this fundamental problem with a single microphone, multiple micro-
phones, and in different domains; see [3], [4], [5], [6] and references therein to
have a pretty good idea on how this topic has evolved.

The very general way to formulate the speech enhancement problem is

y = x+ v, (1.1)

where the three vectors y, x, and v, of the same length, are the observed
(or noisy), speech, and additive noise signals, respectively. All signals are
zero mean, and x and v are assumed to be independent. The disturbance
is due, obviously, to the signal vector v, which affects both the quality and
intelligibility of the signal vector of interest x. Depending on the context
and how we want things to be processed, the desired signal can be the first
element, x1, of x, a part of x, or the whole vector x. Then, the objective of

1© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
J. Benesty, Fundamentals of Speech Enhancement, SpringerBriefs in Electrical
and Computer Engineering, https://doi.org/10.1007/978-3-319-74524-4_1



2 1 Introduction

speech enhancement is to estimate this desired signal from the observed signal
vector, y. For that, we need at least to estimate the second-order statistics
of y, i.e., its covariance matrix Φy.

With a single sensor and in the time domain, (1.1) is expressed as

y(t) =
[
y(t) y(t− 1) · · · y(t− L+ 1)

]T
= x(t) + v(t), (1.2)

where t is the discrete-time index, the superscript T is the transpose operator,
and x(t) and v(t) are defined similarly to y(t). The goal is then to estimate
x(t), the first component of x(t), from the observed signal vector, y(t), which
contains L successive time samples picked up by the microphone.

Continuing with the single-channel case but in the time-frequency domain,
we can write (1.1), thanks to the short-time Fourier transform, as

Y (k, n) = X(k, n) + V (k, n), (1.3)

where k and n are the frequency bin and the time frame, respectively. Again,
the objective is to estimate X(k, n) from Y (k, n).

In the multichannel scenario, i.e., with multiple (M) microphones, and in
the frequency domain, (1.1) becomes

y(f) = X(f)d(f) + v(f), (1.4)

where y(f) is a vector of length M containing all the microphone signals at
the frequency index f and d is the known steering (or transfer function ratio)
vector whose first element is 1. Then, the objective of multichannel speech
enhancement or beamforming is to estimate X(f) from y(f).

In this book, we discuss these different (and more) aspects of speech en-
hancement in a unified way.

1.2 Organization of the Work

This work is organized into six chapters including this one. The best (linear
and nonlinear) estimators are great tools in statistical signal processing. In
Chapter 2, we show how they are applied to the frequency-domain speech
enhancement problem. We also write these best estimators as a function of
some important performance measures, which will be very useful in the rest
of this study. In Chapter 3, we continue our investigation of the best esti-
mators but in the time domain. We also deal with the best binaural speech
enhancement estimator. In Chapter 4, we focus on the linear case and show
how the most relevant noise reduction filters as well as new ones can be easily
derived from the correlation coefficient. In Chapter 5, we discuss the impor-
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tance of the output SNR and show how it can be used to find fundamental
noise reduction filters and beamformers. Finally, in Chapter 6, we explain
why the fullmode output SNR is of great interest and from this measure we
derive a whole family of filters that can compromise very smoothly between
noise reduction and speech distortion.
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Chapter 2

Best Speech Enhancement Estimator
in the Frequency Domain

This chapter gives a fresh perspective on the best speech enhancement esti-
mator in the frequency domain. We consider the general nonlinear case. In
the first part, we deal with the single-channel scenario, where an example is
studied with gamma distributions and a best quadratic estimator is derived.
Then, in the second part, we focus on the multichannel scenario. Along this
study, a great emphasis is put on some important performance measures
(such as the coefficient of determination in the general nonlinear case and
the correlation coefficient in the particular linear case) that can accurately
tell us how the best estimators behave.

2.1 Signal Model and Problem Formulation

In all this chapter, we drop the dependence on the frequency, f , to simplify
the notation. Therefore, for example, when we mention the random variable
A, we mean A(f).

Let X and V be two zero-mean, independent, and circular complex ran-
dom variables belonging to the same probability space. The signal model
considered in a large part of this chapter is [1], [2], [3]

Y = X + V, (2.1)

where Y , X, and V are the observed, desired (speech), and noise signals,
respectively. Our objective is to estimate X in the best possible way in some
sense given Y . We can, equivalently, estimate V given Y first and then sub-
tract this estimate from the observed signal to obtain the estimate of the
speech signal.

Assuming that all variances are finite, the variance of Y is

5© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
J. Benesty, Fundamentals of Speech Enhancement, SpringerBriefs in Electrical
and Computer Engineering, https://doi.org/10.1007/978-3-319-74524-4_2



6 2 Best Estimator in the Frequency Domain

var (Y ) = E
(
|Y |2

)
(2.2)

= var (X) + var (V ) ,

where E(·) is the mathematical expectation, and var (X) and var (V ) are the
variances of X and V , respectively. From (2.2), it is easy to see that the input
signal-to-noise ratio (SNR) is

iSNR =
var (X)

var (V )
. (2.3)

We recall that the SNR is one of the most meaningful measures in speech
enhancement.

2.2 Laws of Total Expectation and Total Variance

We start this section by giving two important properties: the law of total
expectation (or the law of iterated expectations) and the law of total variance
(or Eve’s law).

Let A and B be two circular complex random variables. The conditional
expectation of A given B is the random variable E (A |B ), whose randomness
is inherited from B. The law of total expectation says that A and E (A |B )
have the same mean, i.e., [4]

E (A) = E [E (A |B )] , (2.4)

where the outer expectation on the right-hand side of (2.4) is over the distri-
bution of B. In fact, we can easily show the more general result:

E [f(B)A] = E {E [f(B)A |B ]} (2.5)

= E [f(B)E (A |B )] ,

where f(B) is any function of B.
The law of total variance states that [4]

var (A) = E [var (A |B )] + var [E (A |B )] , (2.6)

where the outer expectation and the outer variance on the right-hand side of
(2.6) are over the distribution of B. This property can be proved by using the
law of total expectation. Basically, (2.6) says that the conditional variance
on average is smaller than the variance, which actually makes perfect sense
since the uncertainty is reduced.

Since variances are always nonnegative, we deduce from (2.6) that
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0 ≤ var [E (A |B )]

var (A)
≤ 1. (2.7)

As a result, the classical magnitude squared coherence function can be gen-
eralized to ∣∣γA|B

∣∣2 = 1− E [var (A |B )]

var (A)
(2.8)

=
var [E (A |B )]

var (A)
.

This expression is often called the coefficient of determination in the literature
of statistics [5]. If A and B are independent, then var (A |B ) = var (A). As a

consequence,
∣∣γA|B

∣∣2 = 0. Conversely, if
∣∣γA|B

∣∣2 = 0, then var [E (A |B )] = 0,
which implies that A and B are independent. At the other limiting case,

if A = B, then var (B |B ) = 0, which leads to
∣∣γA|B

∣∣2 = 1. In fact, for

A = f(B), we have E (A |B ) = E [f(B) |B ] = f(B); as a result,
∣∣γA|B

∣∣2 = 1.
This coefficient of determination, which is a direct consequence of the law
of total variance and measures how close A is to E (A |B ), plays a key role
in the best estimator in general and in speech enhancement in particular.
It can be used as a powerful performance measure in all aspects of speech
enhancement as explained in great details in the rest.

2.3 Best Estimator

Returning to our signal model in (2.1), it is well known that the best estimator
of X in the minimum mean-squared error (MMSE) sense is the conditional
expectation of X given Y [6], i.e.,

E (X |Y ) = ZX(Y ). (2.9)

Indeed, let fX(Y ) be any (linear or nonlinear) function of Y , we always have

E
[
|X − ZX(Y )|2

]
= E

(
|EX |2

)
≤ E

[
|X − fX(Y )|2

]
, (2.10)

where EX = X −E (X |Y ) is the error signal between the desired signal and
its best estimator. By virtue of the law of total expectation, the two random
variables X and ZX(Y ) have the same mean, i.e.,

E [ZX(Y )] = E (X) = 0. (2.11)

It can also be verified that the MMSE is
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E
(
|EX |2

)
= E [var (X |Y )] (2.12)

= var (X)− var [ZX(Y )]

= var (X)
(
1−

∣∣γX|Y
∣∣2) ,

which clearly depends on the coefficient of determination.
In the same way, the best estimator of V in the MMSE sense is the con-

ditional expectation of V given Y , i.e.,

E (V |Y ) = ZV (Y ) (2.13)

and for any (linear or nonlinear) function of Y , fV (Y ), we always have

E
[
|V − ZV (Y )|2

]
= E

(
|EV |2

)
≤ E

[
|V − fV (Y )|2

]
, (2.14)

where EV = V − E (V |Y ) is the error signal between the noise and its best
estimator. By virtue of the law of total expectation, the two random variables
V and ZV (Y ) have the same mean, i.e.,

E [ZV (Y )] = E (V ) = 0. (2.15)

We also deduce that the MMSE is

E
(
|EV |2

)
= var (V )

(
1−

∣∣γV |Y
∣∣2) . (2.16)

By adding together the best estimator of X and the best estimator of V ,
we obtain the observed signal, i.e.,

Y = E (Y |Y )

= E (X |Y ) + E (V |Y ) . (2.17)

The above property is very interesting. As expected, it shows that the esti-
mation errors of both estimators cancel out. In other words, the best esti-
mator of X can be found, equivalently, from the best estimator of V . In the
best estimator of X, E (X |Y ) gives the speech distortion perspective while
Y − E (V |Y ) gives the noise reduction perspective. From (2.17), we easily

see that EX = −EV and, as a result, E
(
|EX |2

)
= E

(
|EV |2

)
. Then, equating

(2.12) and (2.16), we obtain

iSNR +
∣∣γV |Y

∣∣2 = 1 + iSNR×
∣∣γX|Y

∣∣2 . (2.18)

From the previous expression, we have



2.3 Best Estimator 9

lim
iSNR→0

∣∣γV |Y
∣∣2 = 1, (2.19)

lim
iSNR→∞

∣∣γX|Y
∣∣2 = 1. (2.20)

In words, the best estimator is able to completely remove the noise when the
input SNR is close to 0 and fully recover the desired signal when the input
SNR approaches infinity. However, (2.18) does not give us any information
about speech distortion in the first case and noise reduction in the second one.
These statements make intuitively sense and confirm what we have always
observed for the best estimator. We also see from (2.18) that there is not

such a thing such as distortionless (i.e.,
∣∣γX|Y

∣∣2 = 1) with the best estimator

in general, unless the noise is completely removed (i.e.,
∣∣γV |Y

∣∣2 = 1) at the
same time.

In the pathological scenario where X and V are independent and identi-
cally distributed (i.i.d.), we have

E (X |Y ) = E (V |Y ) =
Y

2
. (2.21)

As a result, single-channel speech enhancement is not feasible with the best
estimator. So when the distribution of the noise resembles the one of the
speech, we should not expect much noise reduction, not because of the prob-
lem of estimating statistics of nonstationary signals but because the distri-
butions of the speech and noise may be similar. In this difficult scenario, the
only way to attenuate the level of the noise is to use more than one sensor
(see Section 2.6).

Best Linear Estimator

It is of great interest to study the best linear estimator because of its simple
form. The study of this very important particular case can also lead to better
insights into the best estimator in general.

It is well known that the best linear estimator of X in the MMSE sense is

E (X |Y ) = HX,WY, (2.22)

where

HX,W =
var (X)

var (Y )
(2.23)

=
iSNR

1 + iSNR

is the celebrated Wiener gain. In this case, the coefficient of determination
and the MMSE are, respectively,
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∣∣2 = HX,W ≤ 1 (2.24)

and

E
(
|X −HX,WY |2

)
= var (X) (1−HX,W) . (2.25)

The coefficient of determination,
∣∣γX|Y

∣∣2, is a good measure of the desired
signal distortion; a value close to 1 (resp. 0) means low (resp. large) distortion.

In the same manner, the best linear estimator of V in the MMSE sense is

E (V |Y ) = HV,WY, (2.26)

where

HV,W =
var (V )

var (Y )
(2.27)

=
1

1 + iSNR
.

We deduce that the coefficient of determination and the MMSE are, respec-
tively, ∣∣γV |Y

∣∣2 = HV,W ≤ 1 (2.28)

and

E
(
|V −HV,WY |2

)
= var (V ) (1−HV,W) . (2.29)

The coefficient of determination,
∣∣γV |Y

∣∣2, is a good measure of noise reduc-
tion; a value close to 1 (resp. 0) means large (resp. low) noise reduction.

It is clear that

Y = E (X |Y ) + E (V |Y ) (2.30)

or, equivalently,

1 = HX,W +HV,W. (2.31)

We also have

1 =
∣∣γX|Y

∣∣2 + ∣∣γV |Y
∣∣2 , (2.32)

which is only true for the best linear estimator. This relation shows the
fundamental compromise between noise reduction and speech distortion, in

the single-channel case and with Gaussian signals, as
∣∣γX|Y

∣∣2 and
∣∣γV |Y

∣∣2 go
in opposite directions. For large noise reduction (resp. low speech distortion),
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∣∣2 (resp.

∣∣γX|Y
∣∣2) is rather close to 1, so that

∣∣γX|Y
∣∣2 (resp.

∣∣γV |Y
∣∣2) is

close to 0 implying large speech distortion (resp. low noise reduction).
We can state that nonlinear noise reduction in the single-channel case is

extremely efficient if the following condition holds∣∣γX|Y
∣∣2 + ∣∣γV |Y

∣∣2 ≈ 2. (2.33)

Under this condition, which can be fulfilled depending on the distributions of
X and V but certainly not when they are both Gaussians, we can have large
noise reduction and low speech distortion. It can be very instructive to find
some distributions for which (2.33) is more or less fulfilled. This is certainly

possible since
∣∣γX|Y

∣∣2 =
∣∣γV |Y

∣∣2 = 1 is a solution of (2.18).
This study suggests that, in the general case, we can combine the speech

distortion and noise reduction measures into one convenient measure:

ϱSC =
∣∣γX|Y

∣∣2 + ∣∣γV |Y
∣∣2 , (2.34)

where 1 ≤ ϱSC ≤ 2, with the subscript SC standing for single channel. For ϱSC
close to 2, we have the almost perfect estimator while for ϱSC close to 1, we
deal with the linear case and the well-known unavoidable compromise. There-
fore, the larger is ϱSC, the less the compromise between speech distortion and
noise reduction.

We conclude this part by saying that
∣∣γX|Y

∣∣2, ∣∣γV |Y
∣∣2, and ϱSC are accu-

rate, convenient, and most useful performance measures for the evaluation
of the single-channel speech enhancement problem with the best estimator.
The first measure quantifies distortion of the desired signal, the second one
evaluates noise reduction, and the last one tells us about the compromise.

2.4 Example with Gamma Distributions

The study of this section is somewhat an extension of the works presented in
[7], [8], [9], [10].

2.4.1 Reformulation of the Problem and
Approximation

We can also express (2.1) as

|Y |eȷθY = |X|eȷθX + |V |eȷθV , (2.35)



12 2 Best Estimator in the Frequency Domain

where ȷ is the imaginary unit, and θY , θX , and θV are the phases of Y , X,
and V , respectively. In the rest, we will use the approximation:

|Y | = Ỹ ≈ X̃ + Ṽ = |X|+ |V |, (2.36)

as it is very often the case in the single-channel speech enhancement problem
in the frequency domain. Therefore, we have Ỹ ∈ [0,∞) and X̃, Ṽ ∈ [0, Ỹ ].

As a result, when the estimator
̂̃
X is derived for the magnitude of the speech,

the estimator of X is

X̂ =
̂̃
XeȷθY . (2.37)

Then, our objective is to derive and evaluate the best estimator of X̃, from
an MMSE perspective, with gamma distributions.

2.4.2 Best Estimator

It is well known that the modulus of the desired speech signal can be well
modeled with the gamma distribution:

pX̃

(
X̃
)
=

λα

Γ (α)
X̃α−1e−λX̃ , X̃ ≥ 0, (2.38)

where α > 0 is the shape parameter, λ > 0 the scale parameter, and Γ (·) the
gamma function. The gamma distributed random variable X̃ is denoted

X̃ ∼ Γα,λ. (2.39)

The mean of X̃ can be easily calculated; it is given by

E
(
X̃
)
=
α

λ
. (2.40)

The magnitude of the noise can also be modeled with the gamma distri-
bution but with a different shape parameter, β > 0, i.e.,

pṼ

(
Ṽ
)
=

λβ

Γ (β)
Ṽ β−1e−λṼ , Ṽ ≥ 0, (2.41)

which we denote Ṽ ∼ Γβ,λ. The mean of Ṽ is then

E
(
Ṽ
)
=
β

λ
. (2.42)

It can be verified that



2.4 Example with Gamma Distributions 13

pỸ

(
Ỹ
)
= pX̃+Ṽ

(
Ỹ
)

=

∫ Ỹ

0

pX̃

(
X̃
)
pṼ

(
Ỹ − X̃

)
dX̃

=
λα+β

Γ (α+ β)
Ỹ α+β−1e−λỸ , (2.43)

meaning that Ỹ is also a gamma distributed random variable, i.e., Ỹ ∼
Γα+β,λ.

The joint distribution of Ỹ and X̃ is

pỸ ,X̃

(
Ỹ , X̃

)
= pṼ ,X̃

(
Ỹ − X̃, X̃

)
= pṼ

(
Ỹ − X̃

)
pX̃

(
X̃
)
, (2.44)

where the last equation is the consequence of the fact that X̃ and Ṽ are
independent. Therefore, the conditional distribution of X̃ given Ỹ is

pX̃|Ỹ

(
X̃
∣∣∣Ỹ ) =

pỸ ,X̃

(
Ỹ , X̃

)
pỸ

(
Ỹ
)

=
pṼ

(
Ỹ − X̃

)
pX̃

(
X̃
)

pỸ

(
Ỹ
) . (2.45)

Substituting (2.38), (2.41), and (2.43) into (2.45), we easily find that

pX̃|Ỹ

(
X̃
∣∣∣Ỹ ) =

Γ (α+ β)

Γ (α)Γ (β)
× 1

X̃
×

(
X̃

Ỹ

)α(
1− X̃

Ỹ

)β−1

. (2.46)

Now, we have everything to find the best estimator in the MMSE sense:

̂̃
X = E

(
X̃
∣∣∣Ỹ )

=

∫ Ỹ

0

X̃pX̃|Ỹ

(
X̃
∣∣∣Ỹ ) dX̃

=
Γ (α+ β)

Γ (α)Γ (β)

∫ Ỹ

0

(
X̃

Ỹ

)α(
1− X̃

Ỹ

)β−1

dX̃. (2.47)

Making the change of variables U = X̃/Ỹ , we can write the previous expres-
sion as
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E
(
X̃
∣∣∣Ỹ ) = Ỹ

Γ (α+ β)

Γ (α)Γ (β)
B (α+ 1, β) , (2.48)

where

B (α, β) =

∫ 1

0

Uα−1 (1− U)
β−1

dU (2.49)

=
Γ (α)Γ (β)

Γ (α+ β)

is the beta function. Using the relationship:

Γ (α+ 1) = αΓ (α) , (2.50)

the best estimator simplifies to

E
(
X̃
∣∣∣Ỹ ) = Ỹ

α

α+ β

= Ỹ
E
(
X̃
)

E
(
X̃
)
+ E

(
Ṽ
) . (2.51)

Obviously, the estimator in (2.51) leads to the MMSE, assuming the approx-
imation in (2.36). We see that noise reduction is possible because the two
distributions of the speech and noise have different shapes.

Finally, we deduce that our estimator is

X̂G = HGY, (2.52)

where

HG =
E (|X|)

E (|X|) + E (|V |)
(2.53)

is a positive gain. It is of interest to compare this approach to the classical
Wiener gain technique:

X̂W = HWY, (2.54)

where

HW =
E
(
|X|2

)
E (|X|2) + E (|V |2)

. (2.55)

From (2.52), we easily find that the noise reduction factor and the speech
distortion index are, respectively,
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ξnr (HG) =
1

H2
G

(2.56)

and

υsd (HG) = (1−HG)
2
. (2.57)

2.5 A Brief Study of the Best Quadratic Estimator

From Section 2.3, we know that any random variable X can be decomposed
as

X = E (X |Y ) + EX , (2.58)

where EX is a zero-mean random variable with E (EX |Y ) = 0 and
E [f(Y )EX ] = 0, and f(Y ) being any function of Y . Obviously, the same
decomposition applies for the noise signal, V . In this section, we assume that
at least one of the two signals X and V is not Gaussian. Therefore, we can
generalize the linear model to the quadratic one:

E (X |Y ) = H̃∗
X,1Y + H̃∗

X,2Y |Y | = h̃H
X ỹ, (2.59)

E (V |Y ) = H̃∗
V,1Y + H̃∗

V,2Y |Y | = h̃H
V ỹ, (2.60)

where the superscript ∗ and H are the complex-conjugate and conjugate-
transpose operators, h̃X and h̃V are two complex-valued filters of length 2,
and

ỹ =
[
Y Y |Y |

]T
.

For convenience, we also define the two vectors of length 2:

x̃ =
[
X X|X|

]T
,

ṽ =
[
V V |V |

]T
.

The minimization of E
(
|EX |2

)
and E

(
|EV |2

)
leads to the best quadratic

estimators:

h̃X,Q = cov−1 (ỹ) cov (ỹ, x̃) i, (2.61)

h̃V,Q = cov−1 (ỹ) cov (ỹ, ṽ) i, (2.62)

where cov (ỹ) = E
(
ỹỹH

)
, cov (ỹ, x̃) = E

(
ỹx̃H

)
, cov (ỹ, ṽ) = E

(
ỹṽH

)
, and

i =
[
1 0
]T

. It is clear that
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h̃H
X,Qỹ + h̃H

V,Qỹ = Y. (2.63)

We deduce that the MMSEs are

E

(∣∣∣X − h̃H
X,Qỹ

∣∣∣2) = var (X)
(
1−

∣∣γ̃X|Y
∣∣2) , (2.64)

E

(∣∣∣V − h̃H
V,Qỹ

∣∣∣2) = var (V )
(
1−

∣∣γ̃V |Y
∣∣2) , (2.65)

where ∣∣γ̃X|Y
∣∣2 =

iT cov (x̃, ỹ) cov−1 (ỹ) cov (ỹ, x̃) i

var (X)
, (2.66)

∣∣γ̃V |Y
∣∣2 =

iT cov (ṽ, ỹ) cov−1 (ỹ) cov (ỹ, ṽ) i

var (V )
. (2.67)

Property 2.1. We have ∣∣γ̃X|Y
∣∣2 ≥

∣∣γX|Y
∣∣2 , (2.68)∣∣γ̃V |Y

∣∣2 ≥
∣∣γV |Y

∣∣2 , (2.69)

where
∣∣γX|Y

∣∣2 = var (X) /var (Y ) and
∣∣γV |Y

∣∣2 = var (V ) /var (Y ) are the
coefficients of determination for the best linear estimators (see Section 2.3).

Proof. Let us define the normalized covariance matrix:

covn (ỹ, x̃) =
cov (ỹ, x̃)

var (X)
. (2.70)

It is easy to verify that the first element of the vector covn (ỹ, x̃) i is 1. We
can express (2.66) as∣∣γ̃X|Y

∣∣2 = var (X) iT covn (x̃, ỹ) cov−1 (ỹ) covn (ỹ, x̃) i. (2.71)

Using the Cauchy-Schwarz inequality:[
iT covn (x̃, ỹ) cov−1 (ỹ) covn (ỹ, x̃) i

] [
iT cov (ỹ) i

]
≥
∣∣iT covn (ỹ, x̃) i∣∣2 = 1 (2.72)

and substituting this result into (2.71), we find the inequality in (2.68). The
inequality in (2.69) can be shown in the exact same way. Inequalities in (2.68)
and (2.69) are also consequences of the MMSE.

From Property 2.1, we can say that the best quadratic estimator reduces
more noise and distorts less the desired speech than the best linear estimator.
We also have
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ϱ̃SC =
∣∣γ̃X|Y

∣∣2 + ∣∣γ̃V |Y
∣∣2 ≥ 1, (2.73)

which means that the best quadratic estimator better compromises between
noise reduction and speech distortion than the best linear estimator.

2.6 Generalization to the Multichannel Case

In the multichannel context, we assume that we have M sensors and, hence,
M observations. Therefore, the observation signal vector is given by [11]

y =
[
Y1 Y2 · · · YM

]T
= Xd+ v, (2.74)

where X is the zero-mean random desired signal, d is the known steering (or
transfer function ratio) vector whose first element is 1, and v is the zero-mean
random noise vector. Assuming that X and v are independent, we deduce
that the covariance matrix of y is

cov (y) = E
(
yyH

)
(2.75)

= cov (x) + cov (v)

= var (X)ddH + cov (v) ,

where var (X) is the variance of X, and cov (x) and cov (v) are the covariance
matrices of x and v, respectively.

Considering the random variable X and the random vector y from the
signal model in (2.74), the law of total variance is

var (X) = E [var (X |y )] + var [E (X |y )] . (2.76)

As a consequence, the coefficient of determination is

∣∣γX|y
∣∣2 = 1− E [var (X |y )]

var (X)
(2.77)

=
var [E (X |y )]

var (X)
.

This measure is close to 1 when there is little noise and may get smaller
when the noise increases. Let V1 be the first component of v. The law of
total variance and the coefficient of determination are, respectively,

var (V1) = E [var (V1 |y )] + var [E (V1 |y )] (2.78)

and
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∣∣2 = 1− E [var (V1 |y )]

var (V1)
(2.79)

=
var [E (V1 |y )]

var (V1)
,

where var (V1) is the variance of V1. We see that when the noise dominates,∣∣γV1|y
∣∣2 is close to 1.

Similar to the single-channel case, the best estimator of X in the MMSE
sense is

E (X |y ) = ZX(y) (2.80)

and the MMSE is

E
[
|X − ZX(y)|2

]
= E [var (X |y )] (2.81)

= var (X)− var [ZX(y)]

= var (X)
(
1−

∣∣γX|y
∣∣2) .

Also, the best estimator of V1 in the MMSE sense is

E (V1 |y ) = ZV1(y) (2.82)

and the MMSE is

E
[
|V1 − ZV1(y)|

2
]
= E [var (X |y )] (2.83)

= var (V1)− var [ZV1(y)]

= var (V1)
(
1−

∣∣γV1|y
∣∣2) .

Let Y1 = X + V1 be the first component of y. We have

Y1 = E (Y1 |y ) (2.84)

= E (X |y ) + E (V1 |y ) .

This means that if we know E (X |y ), we can deduce E (V1 |y ), and vice
versa. Also, in the best estimator of X, E (X |y ) gives the speech distortion
perspective while Y1 − E (V1 |y ) gives the noise reduction perspective. We
have the fundamental relation:

iSNRSC +
∣∣γV1|y

∣∣2 = 1 + iSNRSC ×
∣∣γX|y

∣∣2 , (2.85)

where

iSNRSC =
var (X)

var (V1)
(2.86)



2.6 Generalization to the Multichannel Case 19

is the input SNR at the first sensor, which is equivalent to the single-channel
input SNR.

Now, let us focus on the best linear estimators for X and V1 in the MMSE
sense. For X, we have

E (X |y ) = hH
X,Wy, (2.87)

where

hX,W = var (X) cov−1 (y)d (2.88)

is the multichannel Wiener filter. We find that the coefficient of determination
is ∣∣γX|y

∣∣2 = var (X)dHcov−1 (y)d (2.89)

=
var (X)dHcov−1 (v)d

1 + var (X)dHcov−1 (v)d
,

which is a good measure of speech distortion. By analogy to the single-channel
case, another interesting way to define the input SNR in the multichannel
case is the fullmode input SNR (see Chapter 5 for a detailed discussion on
this measure):

iSNRFM =
tr
[
cov−1 (v) cov (x)

]
M

(2.90)

=
var (X)dHcov−1 (v)d

M
,

where tr[·] is the trace of a square matrix. Therefore, we can express (2.89)
as ∣∣γX|y

∣∣2 =
M × iSNRFM

1 +M × iSNRFM
≤ 1, (2.91)

which strongly depends on M . As the number of microphones increases, this
measure gets closer to 1, which of course makes sense since increasing M
improves the estimator. For V1, we have

E (V1 |y ) = hH
V1,Wy, (2.92)

where

hV1,W = cov−1 (y) cov (v) i (2.93)

is the multichannel Wiener filter for the estimation of V1, with i being the first
column of the M ×M identity matrix IM . The coefficient of determination
is then
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∣∣γV1|y
∣∣2 =

iT cov (v) cov−1 (y) cov (v) i

var (V1)
(2.94)

=
1 +M × iSNRFM − iSNRSC

1 +M × iSNRFM
≤ 1,

which is a good measure of noise reduction.
We now give an important property.

Property 2.2. Let

ϱMC =
∣∣γX|y

∣∣2 + ∣∣γV1|y
∣∣2 (2.95)

be the combined speech distortion and noise reduction measures in the mul-
tichannel case. With the best linear estimators, we always have

ϱMC ≥ 1. (2.96)

Proof. Using (2.91) and (2.94), it is easy to see that

ϱMC = 1 +
M × iSNRFM − iSNRSC

1 +M × iSNRFM
. (2.97)

We need to show that the quantity M × iSNRFM − iSNRSC is positive, i.e.,

M × iSNRFM − iSNRSC = var (X)

[
dHcov−1 (v)d− 1

var (V1)

]
(2.98)

≥ 0.

From the Cauchy-Schwarz inequality, we have∣∣iTd∣∣2 = 1 ≤
[
iT cov (v) i

] [
dHcov−1 (v)d

]
, (2.99)

implying that

dHcov−1 (v)d ≥ 1

var (V1)
. (2.100)

As a result, ϱMC ≥ 1.

Therefore, we always have 1 ≤ ϱMC ≤ 2. This is the fundamental differ-
ence with the single-channel case, where ϱSC = 1, showing the compromise
between noise reduction and speech distortion, while in the multichannel sce-
nario, we can limit this distortion and have more noise reduction by using

more microphones. In fact, it is easy to show that
∣∣γX|y

∣∣2 ≥
∣∣γX|Y

∣∣2 and∣∣γV |y
∣∣2 ≥

∣∣γV |Y
∣∣2, meaning that the multichannel best linear estimator dis-

torts less the desired speech and reduces more noise than the single-channel
best linear estimator. One can also verify that
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lim
M→∞

ϱMC = 2. (2.101)

It can be checked that

Y1 = E (X |y ) + E (V1 |y ) (2.102)

or, equivalently,

i = hX,W + hV1,W. (2.103)

It is interesting to observe that the coefficients of determination can also be
expressed as ∣∣γX|y

∣∣2 = hH
X,Wd (2.104)

and

∣∣γV1|y
∣∣2 =

hH
V1,W

cov (v) i

var (V1)
, (2.105)

which are well-known measures of the desired signal distortion and noise
reduction in the multichannel case with linear estimators. Indeed, the
closer hH

X,Wd is to 1, the less distorted the speech signal, and the closer

hH
V1,W

cov (v) i is to var (V1), the more noise reduction.
From (2.85) and (2.95), we deduce for the best estimator (linear or not)

that ∣∣γX|y
∣∣2 =

iSNRSC − 1 + ϱMC

1 + iSNRSC
(2.106)

and ∣∣γV1|y
∣∣2 =

ϱMC × iSNRSC + 1− iSNRSC

1 + iSNRSC
. (2.107)

The two previous expressions tell us the following. For a low input SNR,∣∣γV1|y
∣∣2 is close to 1, meaning that there is a good amount of noise reduction;

however,
∣∣γX|y

∣∣2 depends mostly on ϱMC−1, meaning that distortion depends
on the number of microphones and the distributions of X and V1. For a

large input SNR,
∣∣γX|y

∣∣2 is close to 1, meaning that there is low distortion;

however,
∣∣γV1|y

∣∣2 is close to ϱMC − 1, meaning that noise reduction depends
on the number of microphones and the distributions of X and V1. For a
large number of sensors, the effect of the distributions of X and V on the
performance of the multichannel best estimator becomes negligible.



22 2 Best Estimator in the Frequency Domain

References

1. J. Benesty, J. Chen, Y. Huang, and I. Cohen, Noise Reduction in Speech Processing.
Berlin, Germany: Springer-Verlag, 2009.

2. P. Loizou, Speech Enhancement: Theory and Practice. Boca Raton, FL: CRC Press,
2007.

3. J. Benesty, J. Chen, and E. Habets, Speech Enhancement in the STFT Domain.
Springer Briefs in Electrical and Computer Engineering, 2011.

4. N. A. Weiss, P. T. Holmes, and M. Hardy, A Course in Probability. Boston: Addison-
Wesley, 2005.

5. R. Steyer, “Conditional expectations: an introduction to the concept and its applica-
tions in empirical sciences,” Methodika, vol. 2, issue 1, pp. 53–78, 1988.

6. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper
Saddle River, NJ: Prentice Hall PTR, 1993.

7. R. Martin, “Speech enhancement using MMSE short time spectral estimation with
gamma distributed speech priors,” in Proc. IEEE ICASSP, 2002, pp. I-253–I-256.

8. R. C. Hendriks, J. S. Erkelens, J. Jensen, and R. Heusdens, “Minimum mean-square

error amplitude estimators for speech enhancement under the generalized gamma dis-
tribution,” in Proc. IWAENC, 2006.

9. J. S. Erkelens, R. C. Hendriks, R. Heusdens, and J. Jensen, “Minimum mean-square
error estimation of discrete Fourier coefficients with generalized gamma priors,” IEEE

Trans. Audio, Speech, Language Process., vol. 15, pp. 1741–1752, Aug. 2007.
10. B. Fodor and T. Fingscheidt, “MMSE speech enhancement under speech presence

uncertainty assuming (generalized) gamma speech priors throughout,” in Proc. IEEE
ICASSP, 2012, pp. 4033–4036.

11. J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal Processing. Berlin, Ger-
many: Springer-Verlag, 2008.



Chapter 3

Best Speech Enhancement Estimator
in the Time Domain

In this chapter, we study the best speech enhancement estimator in the time
domain. The first part focuses on the single-channel scenario, where impor-
tant insights are given thanks to different kinds of correlation coefficients;
in the linear case, we obtain the well-known Wiener filter whose functioning
is explained within this general framework. The second part deals with the
best binaural speech enhancement estimator; the approach taken here is by
the reformulation of the binaural problem into a monaural one thanks to
complex random variables. As a consequence, the linear case results in the
widely linear Wiener filter.

3.1 Signal Model and Problem Formulation

In the first part of this chapter, we are concerned with the speech enhance-
ment (or noise reduction) problem, in which the time-domain desired signal,
xt, with t being the discrete-time index, needs to be recovered from the noisy
observation [1], [2], [3], [4]:

yt = xt + vt, (3.1)

where vt is the unwanted additive noise signal, which is assumed to be in-
dependent of xt. All signals are considered to be real, zero mean, stationary,
and broadband.

The signal model given in (3.1) can be put into a vector form by considering
the L most recent successive time samples, i.e.,

yt =
[
yt yt−1 · · · yt−L+1

]T
= xt + vt, (3.2)

23© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
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and Computer Engineering, https://doi.org/10.1007/978-3-319-74524-4_3
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where yt is a vector of length L, and xt and vt are defined in a similar way
to yt.

Since xt and vt are independent by assumption, the covariance matrix (of
size L× L) of the noisy signal can be written as

cov (yt) = E
(
yty

T
t

)
(3.3)

= cov (xt) + cov (vt) ,

where cov (xt) and cov (vt) are the covariance matrices of xt and vt, respec-
tively. From (3.3), we deduce that the input SNR is

iSNR =
tr [cov (xt)]

tr [cov (vt)]
(3.4)

=
var (xt)

var (vt)
,

where var (xt) = E
(
x2t
)
and var (vt) = E

(
v2t
)
are the variances of xt and vt,

respectively.
Another important measure in the context of speech enhancement is the

squared Pearson correlation coefficient (SPCC) [1], [5]. It is easy to see that
the SPCC between xt and yt is

ρ2xt,yt
=

cov2 (xt, yt)

var (xt) var (yt)

=
E2 (xtyt)

E (x2t )E (y2t )

=
iSNR

1 + iSNR
. (3.5)

In the same way, the SPCC between vt and yt is

ρ2vt,yt
=

E2 (vtyt)

E (v2t )E (y2t )

=
1

1 + iSNR
. (3.6)

As a result,

1 = ρ2xt,yt
+ ρ2vt,yt

. (3.7)

This shows how the important correlation coefficients are naturally related
to the input SNR since they also equivalently tell us how the observed signal
is noisy.

As it can be guessed, in this single-channel noise reduction problem, our
desired signal is xt that we would like to estimate from the observation signal
vector, yt, in an optimal way thanks to the best estimator.



3.2 Best Estimator 25

3.2 Best Estimator

Considering the random variable xt and the random vector yt, and using
conditional expectations, we can decompose the variance of xt as

var (xt) = E [var (xt |yt )] + var [E (xt |yt )] , (3.8)

where the outer expectation and the outer variance on the right-hand side of
(3.8) are over the distribution of yt. This property is called the law of total
variance [6]. Since variances are always nonnegative, we deduce from (3.8)
that

0 ≤ var [E (xt |yt )]

var (xt)
≤ 1. (3.9)

As a result, the SPCC can be generalized to

ρ2xt|yt
= 1− E [var (xt |yt )]

var (xt)
(3.10)

=
var [E (xt |yt )]

var (xt)
.

This expression is often called the coefficient of determination in the literature
of statistics [7]. If xt and yt are independent, then var (xt |yt ) = E

(
x2t |yt

)
−

E2 (xt |yt ) = var (xt). As a consequence, ρ2xt|yt
= 0. Conversely, if ρ2xt|yt

= 0,

then var [E (xt |yt )] = 0, which implies that xt and yt are independent. At the
other limiting case, if xt = yt, then var (yt |yt ) = 0, which leads to ρ2xt|yt

= 1.

In fact, for xt = f(yt), we have E (xt |yt ) = E [f(yt) |yt ] = f(yt); as a result,
ρ2xt|yt

= 1. This coefficient of determination, which is a direct consequence

of the law of total variance and measures how close xt is to E (xt |yt ), plays
a key role in the best estimator in general and in speech enhancement in
particular. It can be used as a powerful performance measure in all aspects
of speech enhancement as explained in great details in the rest.

In the same manner, we can decompose the variance of vt as

var (vt) = E [var (vt |yt )] + var [E (vt |yt )] , (3.11)

from which we deduce the coefficient of determination:

ρ2vt|yt
= 1− E [var (vt |yt )]

var (vt)
(3.12)

=
var [E (vt |yt )]

var (vt)
.

It is well known that the best estimator of xt in the MMSE sense is the
conditional expectation of xt given yt [8], i.e.,
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E (xt |yt ) = zxt(yt). (3.13)

Indeed, let

ext = xt − E (xt |yt ) (3.14)

be the error signal between the desired signal and its best estimator, and let
fxt(yt) be any (linear or nonlinear) function of yt. We always have

E
(
e2xt

)
= E

{
[xt − zxt(yt)]

2
}
≤ E

{
[xt − fxt(yt)]

2
}
. (3.15)

By virtue of the law of total expectation, the two random variables xt and
zxt(yt) have the same mean, i.e.,

E [zxt
(yt)] = E (xt) = 0. (3.16)

It can also be verified that the MMSE is

E
(
e2xt

)
= E [var (xt |yt )] (3.17)

= var (xt)− var [zxt(yt)]

= var (xt)
(
1− ρ2xt|yt

)
.

The MMSE clearly depends on the coefficient of determination, ρ2xt|yt
, which

can be seen as a good measure of distortion of the desired signal, xt. The closer
is ρ2xt|yt

to 1, the less distorted the desired signal with the best estimator.
Then, we can deduce a distortion measure, which is close to the conventional
speech distortion index, i.e.,

υsd =
E
(
e2xt

)
var (xt)

= 1− ρ2xt|yt
. (3.18)

We also notice in (3.17) the law of total variance since E
(
e2xt

|yt

)
=

var (xt |yt ) and E
[
E
(
e2xt

|yt

)]
= E

(
e2xt

)
.

In the same way, the best estimator of vt in the MMSE sense is the con-
ditional expectation of vt given yt, i.e.,

E (vt |yt ) = zvt(yt) (3.19)

and for any (linear or nonlinear) function of yt, fvt(yt), we always have

E
(
e2vt
)
= E

{
[vt − zvt(yt)]

2
}
≤ E

{
[vt − fvt(yt)]

2
}
, (3.20)

where

evt = vt − E (vt |yt ) (3.21)
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is the error signal between the noise and its best estimator. By virtue of the
law of total expectation, the two random variables vt and zvt(yt) have the
same mean, i.e.,

E [zvt(yt)] = E (vt) = 0. (3.22)

We also deduce that the MMSE is

E
(
e2vt

)
= var (vt)

(
1− ρ2vt|yt

)
. (3.23)

The coefficient of determination, ρ2vt|yt
, is a good measure of noise reduction.

The closer is ρ2vt|yt
to 1, the more noise reduction with the best estimator.

In the pathological scenario where xt and vt are independent and identi-
cally distributed (i.i.d.), we have

E (xt |yt ) = E (vt |yt ) =
yt
2
, (3.24)

and ρ2xt|yt
= ρ2vt|yt

= 1/2. As a result, single-channel speech enhancement in
the time domain is not feasible with the best estimator.

By adding together the best estimator of xt and the best estimator of vt,
we obtain the observed signal, i.e.,

yt = E (yt |yt )

= E (xt |yt ) + E (vt |yt ) . (3.25)

The above property shows that the estimation errors of both estimators cancel
out. In other words, the best estimator of xt can be found, equivalently, from
the best estimator of vt. In the best estimator of xt, E (xt |yt ) gives the
speech distortion perspective while yt − E (vt |yt ) gives the noise reduction
perspective. From (3.25), we easily see that ext = −evt and, as a result,
E
(
e2xt

)
= E

(
e2vt

)
. Then, equating (3.17) and (3.23), we obtain

iSNR + ρ2vt|yt
= 1 + iSNR× ρ2xt|yt

. (3.26)

From the previous expression, we have

lim
iSNR→0

ρ2vt|yt
= 1, (3.27)

lim
iSNR→∞

ρ2xt|yt
= 1. (3.28)

In words, the best estimator is able to completely remove the noise when the
input SNR is close to 0 and fully recover the desired signal when the input
SNR approaches infinity. However, (3.26) does not give us any information
about speech distortion in the first case and noise reduction in the second
one. Using the fact that
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iSNR =
ρ2xt,yt

ρ2vt,yt

=
1− ρ2vt,yt

1− ρ2xt,yt

, (3.29)

we can also express (3.26) as

ρ2xt,yt

ρ2vt,yt

=
1− ρ2vt|yt

1− ρ2xt|yt

= iSNR. (3.30)

Property 3.1. We have

ρ2xt|yt
≥ ρ2xt,yt

, (3.31)

ρ2vt|yt
≥ ρ2vt,yt

. (3.32)

As a consequence,

ρ2xt|yt
+ ρ2vt|yt

≥ 1. (3.33)

Proof. Let us consider an estimate of the desired signal that is proportional
to the observation, i.e.,

zxt(yt) = α

√
var (xt)√
var (yt)

yt, (3.34)

where α ̸= 0 is an arbitrary real number. In this case the MSE is

E
(
e2xt

)
= E

{
[xt − zxt(yt)]

2
}

(3.35)

= var (xt)
[(
1 + α2

)
− 2αρxt,yt

]
.

Since E
(
e2xt

)
≥ E

(
e2xt

)
, we deduce that

ρ2xt|yt
≥ −α2 + 2αρxt,yt . (3.36)

For the particular value of α = ρxt,yt in the previous expression, we find that
ρ2xt|yt

≥ ρ2xt,yt
. We can use a very similar proof to show the inequality in

(3.32).

The above suggests that we can combine the speech distortion and noise
reduction measures into one convenient measure:

ϱ = ρ2xt|yt
+ ρ2vt|yt

, (3.37)

where 1 ≤ ϱ ≤ 2. Fundamentally, ϱ measures the compromise between speech
distortion and noise reduction. For ϱ close to 2, we have the almost perfect
estimator with the best estimator in the sense that the noise is almost all
removed and speech distortion is almost nonexistent. For ϱ = 1, the observed
signal is fundamentally not affected; this will happen only when speech and
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noise are i.i.d., so that ρ2xt|yt
= ρ2vt|yt

= 1/2. From (3.26) and (3.37), we
deduce for the best estimator that

ρ2xt|yt
=
ϱ− 1 + iSNR

1 + iSNR
(3.38)

= ρ2vt,yt
(ϱ− 1) + ρ2xt,yt

and

ρ2vt|yt
=

(ϱ− 1) iSNR + 1

1 + iSNR
(3.39)

= ρ2xt,yt
(ϱ− 1) + ρ2vt,yt

.

The two previous expressions tell us the following. For a low input SNR,
ρ2vt|yt

is close to 1, meaning that there is a good amount of noise reduction;

however, ρ2xt|yt
depends mostly on ϱ − 1, meaning that distortion depends

on the distributions of xt and vt. For a large input SNR, ρ2xt|yt
is close to 1,

meaning that there is low distortion; however, ρ2vt|yt
is close to ϱ−1, meaning

that noise reduction depends on the distributions of xt and vt.
While the SPCCs ρ2xt,yt

and ρ2vt,yt
give a very good indication on the state

of the noisy signal (since they are related to the input SNR), the coefficients
of determination ρ2xt|yt

and ρ2vt|yt
, as well as ϱ give a very good indication on

the enhanced noisy signal with the best estimator since ρ2xt|yt
and ρ2vt|yt

are
good measures of speech distortion and noise reduction, respectively, and ϱ
is a good measure on the compromise between the two.

From Property 3.1, we can also define the gain in SNR of the best estima-
tor:

G =
oSNR

iSNR

=

(
ρ2xt|yt

1− ρ2vt|yt

)2

≥ 1, (3.40)

where oSNR is the output SNR of the best estimator1. This definition of the
gain in SNR is justified by the facts that G is always greater than or equal to
1 and for i.i.d. speech and noise, G = 1. Using (3.30), we easily see that the
output SNR in (3.40) is

1 It is important to keep in mind that a rigorous definition of the output SNR of the
best estimator in general may not be possible since the output SNR is a second-order

measure while the best estimator depends on distributions. This is why the coefficients of
determination may be the most natural and reliable measures in this context.
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oSNR = iSNR×

(
ρ2xt|yt

1− ρ2vt|yt

)2

=
ρ4xt|yt(

1− ρ2vt|yt

)(
1− ρ2xt|yt

) ≥ iSNR. (3.41)

One can check from the previous expression that when speech is large as
compared to noise, the output SNR is also large, and when speech is small as
compared to noise, the output SNR is also small; this is consistent with the
definition of the output SNR. In this context, we define the speech reduction
factor and the noise reduction factor as, respectively,

ξsr =
1

ρ4xt|yt

(3.42)

and

ξnr =
1(

1− ρ2vt|yt

)2 . (3.43)

As a consequence, we deduce the fundamental relationship for the best esti-
mator:

ξnr
ξsr

=
oSNR

iSNR
, (3.44)

which is well known in the linear case. This is an even more insightful way to
explain the compromise between noise reduction and speech distortion with
more intuitive measures. It is quite remarkable that these measures, which
should resemble the conventional ones with linear filtering, are derived in such
a simple way for the whole class of best estimators (linear and nonlinear).

Another interesting measure is the conditional correlation coefficient
(CCC). The CCC between xt and vt given yt is

ρxt,vt|yt
=

cov (xt, vt|yt)√
var (xt|yt) var (vt|yt)

, (3.45)

where

cov (xt, vt|yt) = E {[xt − E (xt|yt)] [vt − E (vt|yt)] |yt} (3.46)

= E [extevt |yt]

= −var (xt|yt)

= −var (vt|yt) .

Therefore, we deduce that
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ρxt,vt|yt
= −1. (3.47)

While ρxt,vt = 0, the magnitude of the CCC, |ρxt,vt|yt
|, is maximized; this is

due to the fact that the best estimators of xt and vt are conditionally fully
correlated. The minus sign in (3.47) comes from the fact that ext = −evt .

3.3 Best Linear Estimator

The best linear estimator is a very important and extremely useful particular
case of the best estimator in general. It is well known that the best linear
estimator of xt in the MMSE sense is

E (xt |yt ) = hT
xt,Wyt, (3.48)

where

hxt,W = cov−1 (yt) cov (xt) i (3.49)

is the classical single-channel Wiener filter in the time domain [1], with i
being the first column of the L × L identity matrix IL. We deduce that the
square of the coefficient of determination is

ρ4xt|yt
=

[
iT cov (xt) cov

−1 (yt) cov (xt) i

var (xt)

]2
(3.50)

=
hT
xt,W

cov (xt) ii
T cov (xt)hxt,W

var2 (xt)
= ξ−1

sr ,

which is a good measure of speech distortion. This measure is very similar to
the inverse of the conventional speech reduction factor [1]:

ξ−1
sr (hxt,W) =

hT
xt,W

cov (xt)hxt,W

var (xt)
. (3.51)

From the Cauchy-Schwarz inequality, i.e.,[
hT
xt,Wcov (xt) i

]2 ≤ hT
xt,Wcov (xt)hxt,W × var (xt) , (3.52)

it results that

ξsr ≥ ξsr (hxt,W) . (3.53)

The vector xt can be decomposed into two orthogonal components; one
proportional to the desired signal, xt, and the other to what we may consider
as an interference [4]:
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xt = xtγxt
+ xt,i, (3.54)

where

γxt
=

cov (xt) i

var (xt)
(3.55)

is the normalized correlation vector between between xt and xt,

xt,i = xt − xtγxt
(3.56)

is the interference signal vector, and

E (xt,ixt) = 0. (3.57)

Obviously, we can express the square of the coefficient of determination in
(3.50) as

ρ4xt|yt
=
(
hT
xt,Wγxt

)2
, (3.58)

which may give a better perspective on distortion since when hT
xt,W

γxt
is

close to 1, the desired signal, xt, is well recovered. If cov (xt) is of rank 1, i.e.,
xt,i = 0, then cov (xt) = var (xt)γxt

γT
xt

and hxt,W = var (xt) cov
−1 (yt)γxt

.
As a consequence,

ξsr = ξsr (hxt,W) . (3.59)

Also, the best linear estimator of vt in the MMSE sense is

E (vt |yt ) = hT
vt,Wyt, (3.60)

where

hvt,W = cov−1 (yt) cov (vt) i (3.61)

is the Wiener filter for the estimation of vt. Then, the coefficient of determi-
nation is

ρ2vt|yt
=

iT cov (vt) cov
−1 (yt) cov (vt) i

var (vt)
(3.62)

=
hT
vt,W

cov (vt) i

var (vt)
,

which is a good measure of noise reduction. It is not hard to see that

i = hxt,W + hvt,W. (3.63)

Therefore, (3.62) can be rewritten as
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1− ρ2vt|yt

)2
=

hT
xt,W

cov (vt) ii
T cov (vt)hxt,W

var2 (vt)

= ξ−1
nr . (3.64)

The measure
(
1− ρ2vt|yt

)2
is very similar to the inverse of the conventional

noise reduction factor [1]:

ξ−1
nr (hxt,W) =

hT
xt,W

cov (vt)hxt,W

var (vt)
(3.65)

and one can verify that

ξnr ≥ ξnr (hxt,W) . (3.66)

Using our definition of the output SNR in (3.41) of the best estimator, we
have

oSNR =
hT
xt,W

cov (xt) ii
T cov (xt)hxt,W/var (xt)

hT
xt,W

cov (vt) iiT cov (vt)hxt,W/var (vt)
, (3.67)

which resembles the conventional output SNR:

oSNR (hxt,W) =
hT
xt,W

cov (xt)hxt,W

hT
xt,W

cov (vt)hxt,W
. (3.68)

Now, if we compute the SPCC between xt and hT
xt,W

yt, and the the SPCC

between vt and hT
vt,W

yt, it is easy to verify that

ρ2xt,hT
xt,W

yt
= ρ2xt|yt

,

ρ2vt,hT
vt,W

yt
= ρ2vt|yt

.

Let us open a short parenthesis on the so-called partial correlation co-
efficient (PCC), whose function is to evaluate the correlation between two
variables after eliminating the effect of another variable on these two vari-
ables. The PCC between xt and vt with respect to yt, denoted ρxt,vt·yt , is
computed in two steps. In the first step, we find the two filters hxt and hvt

that minimize the error signals ext = xt−hT
xt
yt and evt = vt−hT

vtyt, respec-
tively. We get the Wiener filters hxt,W and hvt,W. Substituting these filters
back into the errors, we obtain the two residuals ext,W and evt,W. Then, in
the second step we compute the correlation coefficient between ext,W and
evt,W, i.e.,
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ρxt,vt·yt =
E (ext,Wevt,W)√

E
(
e2xt,W

)
E
(
e2vt,W

) . (3.69)

It is easy to check that (3.69) simplifies to

ρxt,vt·yt = −1, (3.70)

showing that CCC and PCC are strictly equivalent in the linear case.

3.4 Generalization to the Binaural Case

3.4.1 Problem Formulation

In binaural speech enhancement, we need to extract two “clean” signals from
the sensor array that will be delivered to the left and right ears of a human
subject.

Without loss of generality, we consider the signal model in which an array
consisting of 2M sensors capture a source (speech) signal convolved with
acoustic impulse responses in some noise field. The signal received at the ith
sensor is then expressed as [9]

y′t,i = g′t,i ∗ xt + v′t,i (3.71)

= x′t,i + v′t,i, i = 1, 2, . . . , 2M,

where g′t,i is the acoustic impulse response from the unknown desired source,
xt, location to the ith sensor, ∗ stands for linear convolution, and v′t,i is the
additive noise at sensor i. We assume that the impulse responses are time
invariant and that the signals x′t,i = g′t,i∗xt and v′t,i are mutually independent,
zero mean, real, broadband, and stationary.

Since we are interested in binaural estimation, it is more convenient to
work in the complex domain in order that the original (binaural) problem is
transformed into the conventional (monaural) noise reduction processing with
a sensor array [10]. In other words, instead of having two real-valued outputs,
we will have one complex-valued output. Indeed, from the 2M real-valued
microphone signals given in (3.71), we can artificially buildM complex-valued
sensor signals as

yt,m = y′t,m + ȷy′t,M+m (3.72)

= xt,m + vt,m, m = 1, 2, . . . ,M,

where
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xt,m = x′t,m + ȷx′t,M+m, m = 1, 2, . . . ,M (3.73)

is the complex desired speech signal and

vt,m = v′t,m + ȷv′t,M+m, m = 1, 2, . . . ,M (3.74)

is the complex additive noise at the complex sensor m.
It is customary to work with blocks of L successive time samples, i.e.,

yt,m =
[
yt,m yt−1,m · · · yt−L+1,m

]T
= xt,m + vt,m, m = 1, 2, . . . ,M, (3.75)

where xt,m and vt,m are defined in a similar way to yt,m. Concatenating all
the observations together, we get the vector of length ML:

y
t
=
[
yT
t,1 yT

t,2 · · · yT
t,M

]T
= xt + vt, (3.76)

where xt and vt are also concatenated vectors of xt,m and vt,m, respectively.
We deduce that the ML×ML covariance matrix of y

t
is

cov
(
y
t

)
= E

(
y
t
yH
t

)
(3.77)

= cov (xt) + cov (vt) ,

where cov (xt) and cov (vt) are the covariance matrices of xt and vt, respec-
tively.

Obviously, from the model given in (3.72), we deal with complex random
variables (CRVs) and it can be verified that, in general, xt,m and vt,m are
highly noncircular CRVs [11]. Let a be a zero-mean CRV, a good measure
of the second-order circularity is the circularity quotient [12] defined as the
ratio between the pseudo-variance and the variance of a, i.e.,

γa =
E
(
a2
)

E (|a|2)
. (3.78)

This measure coincides with the coherence function between a and a∗. Since
xt,m and/or vt,m are noncircular CRVs, the vector y∗

t
should also be included

as part of the observations [13], [14]. Therefore, we define the augmented
observation vector of length 2ML as

ỹ
t
=

[
y
t

y∗
t

]
= x̃t + ṽt, (3.79)
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where x̃t and ṽt are defined similarly to ỹ
t
. We deduce that the 2ML×2ML

covariance matrix of ỹ
t
is

cov
(
ỹ
t

)
= cov (x̃t) + cov (ṽt) , (3.80)

where cov (x̃t) and cov (ṽt) are the covariance matrices of x̃t and ṽt, respec-
tively.

In the rest, we consider the first complex sensor signal, i.e., yt,1, as the
reference. Therefore, our aim is to recover the complex desired speech signal,
xt,1, from the augmented complex observation vector, ỹ

t
, in the best possible

way. Using this reference, we define the input SNR as

iSNR =
var (xt,1)

var (vt,1)
, (3.81)

where var (xt,1) = E
(
|xt,1|2

)
and var (vt,1) = E

(
|vt,1|2

)
are the variances

of xt,1 and vt,1, respectively.
Another perspective in the context of binaural speech enhancement is from

the magnitude squared Pearson correlation coefficient (MSPCC) [1], [5]. It is
easy to see that the MSPCC between xt,1 and yt,1 is

∣∣ρxt,1,yt,1

∣∣2 =

∣∣E (xt,1y∗t,1)∣∣2
E
(
|xt,1|2

)
E
(
|yt,1|2

) (3.82)

=
iSNR

1 + iSNR
.

In the same way, the MSPCC between vt,1 and yt,1 is

∣∣ρvt,1,yt,1

∣∣2 =

∣∣E (vt,1y∗t,1)∣∣2
E
(
|vt,1|2

)
E
(
|yt,1|2

) (3.83)

=
1

1 + iSNR
.

As a result,

1 =
∣∣ρxt,1,yt,1

∣∣2 + ∣∣ρvt,1,yt,1

∣∣2 . (3.84)

This shows how the important correlations are related to the input SNR.
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3.4.2 Best Estimator

Considering the CRV xt,1 and the complex random vector ỹ
t
, and using

conditional expectations, we can express the law of total variance [6] with
respect to xt,1 as

var (xt,1) = E
[
var
(
xt,1

∣∣∣ỹ
t

)]
+ var

[
E
(
xt,1

∣∣∣ỹ
t

)]
, (3.85)

where the outer expectation and the outer variance on the right-hand side of
(3.85) are over the distribution of ỹ

t
. Since variances are always nonnegative,

we deduce from (3.85) that

0 ≤
var
[
E
(
xt,1

∣∣∣ỹ
t

)]
var (xt,1)

≤ 1. (3.86)

Therefore, the MSPCC can be generalized to

∣∣∣ρxt,1|ỹ
t

∣∣∣2 = 1−
E
[
var
(
xt,1

∣∣∣ỹ
t

)]
var (xt,1)

(3.87)

=
var
[
E
(
xt,1

∣∣∣ỹ
t

)]
var (xt,1)

.

This expression is often called the coefficient of determination in the liter-

ature of statistics [7]. If xt,1 and ỹ
t
are independent, then var

(
xt,1

∣∣∣ỹ
t

)
=

var (xt,1). As a consequence,
∣∣∣ρxt,1|ỹ

t

∣∣∣2 = 0. Conversely, if
∣∣∣ρxt,1|ỹ

t

∣∣∣2 = 0,

then var
[
E
(
xt,1

∣∣∣ỹ
t

)]
= 0, which implies that xt,1 and ỹ

t
are indepen-

dent. At the other limiting case, if xt,1 = yt,1, then var
(
yt,1

∣∣∣ỹ
t

)
= 0,

which leads to
∣∣∣ρxt,1|ỹ

t

∣∣∣2 = 1. In fact, for xt,1 = f(yt,1, y
∗
t,1), we have

E
(
xt,1

∣∣∣ỹ
t

)
= E

[
f(yt,1, y

∗
t,1)
∣∣∣ỹ

t

]
= f(yt,1, y

∗
t,1); as a result,

∣∣∣ρxt,1|ỹ
t

∣∣∣2 = 1.

This coefficient, which is a direct consequence of the law of total variance

and measures how close xt,1 is to E
(
xt,1

∣∣∣ỹ
t

)
, plays a key role in the best

estimator in general and in binaural speech enhancement in particular. It can
be used as a powerful performance measure in all aspects of binaural speech
enhancement as explained in the rest.

In the same manner, we can express the variance of vt,1 as

var (vt,1) = E
[
var
(
vt,1

∣∣∣ỹ
t

)]
+ var

[
E
(
vt,1

∣∣∣ỹ
t

)]
, (3.88)

from which we deduce the coefficient of determination:
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∣∣∣ρvt,1|ỹ
t

∣∣∣2 = 1−
E
[
var
(
vt,1

∣∣∣ỹ
t

)]
var (vt,1)

(3.89)

=
var
[
E
(
vt,1

∣∣∣ỹ
t

)]
var (vt,1)

.

The best estimator of xt,1 in the MMSE sense is well known to be the
conditional expectation of xt,1 given ỹ

t
[8], i.e.,

E
(
xt,1

∣∣∣ỹ
t

)
= zxt,1

(
ỹ
t

)
. (3.90)

Indeed, let fxt,1

(
ỹ
t

)
be any (linear or nonlinear) function of ỹ

t
, we always

have

E
(∣∣ext,1

∣∣2) = E

[∣∣∣xt,1 − zxt,1

(
ỹ
t

)∣∣∣2]
≤ E

[∣∣∣xt,1 − fxt,1

(
ỹ
t

)∣∣∣2] , (3.91)

where ext,1 = xt,1 − E
(
xt,1

∣∣∣ỹ
t

)
is the error signal between the desired

signal and its best estimator. By virtue of the law of total expectation, the

two random variables xt,1 and zxt,1

(
ỹ
t

)
have the same mean, i.e.,

E
[
zxt,1

(
ỹ
t

)]
= E (xt,1) = 0. (3.92)

It can also be verified that the MMSE is

E
(∣∣ext,1

∣∣2) = E
[
var
(
xt,1

∣∣∣ỹ
t

)]
(3.93)

= var (xt,1)− var
[
zxt,1

(
ỹ
t

)]
= var (xt,1)

(
1−

∣∣∣ρxt,1|ỹ
t

∣∣∣2) .
The MMSE clearly depends on the coefficient of determination,

∣∣∣ρxt,1|ỹ
t

∣∣∣2,
which can be seen as a good measure of distortion of the desired signal, xt,1.

The closer is
∣∣∣ρxt,1|ỹ

t

∣∣∣2 to 1, the less distorted the desired signal with the best

binaural estimator.
In the same way, the best estimator of vt,1 in the MMSE sense is the

conditional expectation of vt,1 given ỹ
t
, i.e.,

E
(
vt,1

∣∣∣ỹ
t

)
= zvt,1

(
ỹ
t

)
(3.94)
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and for any (linear or nonlinear) function of ỹ
t
, fvt,1

(
ỹ
t

)
, we always have

E
(∣∣evt,1

∣∣2) = E

[∣∣∣vt,1 − zvt,1

(
ỹ
t

)∣∣∣2]
≤ E

[∣∣∣vt,1 − fvt,1

(
ỹ
t

)∣∣∣2] , (3.95)

where evt,1 = vt,1 −E
(
vt,1

∣∣∣ỹ
t

)
is the error signal between the noise and its

best estimator. By virtue of the law of total expectation, the two random

variables vt,1 and zvt,1

(
ỹ
t

)
have the same mean, i.e.,

E
[
zvt,1

(
ỹ
t

)]
= E (vt,1) = 0. (3.96)

We also deduce that the MMSE is

E
(∣∣evt,1

∣∣2) = var (vt,1)

(
1−

∣∣∣ρvt,1|ỹ
t

∣∣∣2) . (3.97)

The coefficient of determination,
∣∣∣ρvt,1|ỹ

t

∣∣∣2, is a good measure of noise re-

duction. The closer is
∣∣∣ρvt,1|ỹ

t

∣∣∣2 to 1, the more noise reduction with the best

binaural estimator.
Now, if we add together the best estimator of xt,1 and the best estimator

of vt,1, we obtain the observed signal, i.e.,

yt,1 = E
(
yt,1

∣∣∣ỹ
t

)
= E

(
xt,1

∣∣∣ỹ
t

)
+ E

(
vt,1

∣∣∣ỹ
t

)
. (3.98)

The above property shows that the estimation errors of both estimators cancel
out. In other words, the best estimator of xt,1 can be found, equivalently, from

the best estimator of vt,1. In the best estimator of xt,1, E
(
xt,1

∣∣∣ỹ
t

)
gives

the speech distortion perspective while yt,1 − E
(
vt,1

∣∣∣ỹ
t

)
gives the noise

reduction perspective. From (3.98), we easily see that ext,1 = −evt,1 and, as

a result, E
(∣∣ext,1

∣∣2) = E
(∣∣evt,1 ∣∣2). Then, equating (3.93) and (3.97), we

obtain

iSNR +
∣∣∣ρvt,1|ỹ

t

∣∣∣2 = 1 + iSNR×
∣∣∣ρxt,1|ỹ

t

∣∣∣2 . (3.99)

From the previous expression, we have
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lim
iSNR→0

∣∣∣ρvt,1|ỹ
t

∣∣∣2 = 1, (3.100)

lim
iSNR→∞

∣∣∣ρxt,1|ỹ
t

∣∣∣2 = 1. (3.101)

In words, the best binaural estimator is able to completely remove the noise
when the input SNR is close to 0 and fully recover the desired signal when
the input SNR approaches infinity. However, (3.99) does not give us any
information about speech distortion in the first case and noise reduction in
the second one. Using the fact that

iSNR =

∣∣ρxt,1,yt,1

∣∣2∣∣ρvt,1,yt,1 |
∣∣2 , (3.102)

we can also express (3.99) as

1−
∣∣ρxt,1,yt,1

∣∣2
1−

∣∣ρvt,1,yt,1

∣∣2 =
1−

∣∣∣ρxt,1|ỹ
t

∣∣∣2
1−

∣∣∣ρvt,1|ỹ
t

∣∣∣2 . (3.103)

Property 3.2. We have ∣∣∣ρxt,1|ỹ
t

∣∣∣2 ≥
∣∣ρxt,1,yt,1

∣∣2 , (3.104)∣∣∣ρvt,1|ỹ
t

∣∣∣2 ≥
∣∣ρxt,1,yt,1

∣∣2 . (3.105)

As a consequence, ∣∣∣ρxt,1|ỹ
t

∣∣∣2 + ∣∣∣ρvt,1|ỹ
t

∣∣∣2 ≥ 1. (3.106)

Proof. Let us consider an estimate of the desired signal that is proportional
to the observed signal at the reference sensor, i.e.,

zxt,1

(
ỹ
t

)
= α

√
var (xt,1)√
var (yt,1)

yt,1, (3.107)

where α ̸= 0 is an arbitrary complex number. In this case the MSE is

E
(∣∣ext,1

∣∣2) = E

[∣∣∣xt,1 − zxt,1

(
ỹ
t

)∣∣∣2] (3.108)

= var (xt,1)
[(

1 + |α|2
)
− (α+ α∗) ρxt,1,yt,1

]
.

Since E
(∣∣ext,1

∣∣2) ≥ E
(∣∣ext,1

∣∣2), we deduce that
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t

∣∣∣2 ≥ − |α|2 + (α+ α∗) ρxt,1,yt,1 . (3.109)

For the particular value of α = ρxt,1,yt,1 in the previous expression2, we find

that
∣∣∣ρxt,1|ỹ

t

∣∣∣2 ≥
∣∣ρxt,1,yt,1

∣∣2. We can use a very similar proof to show the

inequality in (3.105).

Property 3.2 suggests that we can combine the speech distortion and noise
reduction measures into one convenient measure:

ϱ =
∣∣∣ρxt,1|ỹ

t

∣∣∣2 + ∣∣∣ρvt,1|ỹ
t

∣∣∣2 , (3.110)

where 1 ≤ ϱ ≤ 2. Fundamentally, ϱ measures the compromise between speech
distortion and noise reduction. For ϱ close to 2, we have the almost perfect
estimator with the best binaural estimator in the sense that the noise is
almost all removed and speech distortion is almost nonexistent. From (3.99)
and (3.110), we deduce for the best binaural estimator that∣∣∣ρxt,1|ỹ

t

∣∣∣2 =
ϱ− 1 + iSNR

1 + iSNR
(3.111)

=
∣∣ρvt,1,yt,1

∣∣2 (ϱ− 1) +
∣∣ρxt,1,yt,1

∣∣2
and ∣∣∣ρvt,1|ỹ

t

∣∣∣2 =
(ϱ− 1) iSNR + 1

1 + iSNR
(3.112)

=
∣∣ρxt,1,yt,1

∣∣2 (ϱ− 1) +
∣∣ρvt,1,yt,1

∣∣2 .
The two previous expressions tell us the following. For a low input SNR,∣∣∣ρvt,1|ỹ

t

∣∣∣2 is close to 1, meaning that there is a good amount of noise reduction;

however,
∣∣∣ρxt,1|ỹ

t

∣∣∣2 depends mostly on ϱ−1, meaning that distortion depends

on the distributions of xt,1 and vt,1. For a large input SNR,
∣∣∣ρxt,1|ỹ

t

∣∣∣2 is close

to 1, meaning that there is low distortion; however,
∣∣∣ρvt,1|ỹ

t

∣∣∣2 is close to ϱ−1,

meaning that noise reduction depends on the distributions of xt,1 and vt,1.

While the MSPCCs
∣∣ρxt,1,yt,1

∣∣2 and
∣∣ρvt,1,yt,1

∣∣2 give a very good indication
on the state of the noisy signal (since they are related to the input SNR),

the coefficients of determination
∣∣∣ρxt,1|ỹ

t

∣∣∣2 and
∣∣∣ρvt,1|ỹ

t

∣∣∣2, as well as ϱ give

a very good indication on the enhanced noisy complex signal with the best

binaural estimator since
∣∣∣ρxt,1|ỹ

t

∣∣∣2 and
∣∣∣ρvt,1|ỹ

t

∣∣∣2 are good measures of speech

2 One can check that ρxt,1,yt,1 is a real number, i.e., ρxt,1,yt,1 =
√

iSNR
1+iSNR

.



42 3 Best Estimator in the Time Domain

distortion and noise reduction, respectively, and ϱ is a good measure on the
compromise between the two.

3.4.3 Best Widely Linear Estimator

From the recent literature [10], [13], [14], it is known that the best widely
linear estimator of xt,1 in the MMSE sense is

E
(
xt,1

∣∣∣ỹ
t

)
= hH

xt,1,Wỹ
t
, (3.113)

where

hxt,1,W = cov−1
(
ỹ
t

)
cov (x̃t) i (3.114)

is the widely linear Wiener filter in the time domain [10], with i being the
first column of the 2ML × 2ML identity matrix I2ML. We deduce that the
coefficient of determination is

∣∣∣ρxt,1|ỹ
t

∣∣∣2 =
iT cov (x̃t) cov

−1
(
ỹ
t

)
cov (x̃t) i

var (xt,1)
(3.115)

=
hH
xt,1,W

cov (x̃t) i

var (xt,1)
,

which is a good measure of speech distortion. This measure is very much
related to the inverse of the conventional speech reduction factor [1]:

ξ−1
sr

(
hxt,1,W

)
=

hH
xt,1,W

cov (x̃t)hxt,1,W

var (xt,1)
. (3.116)

Also, the best widely linear estimator of vt,1 in the MMSE sense is

E
(
vt,1

∣∣∣ỹ
t

)
= hH

vt,1,Wỹ
t
, (3.117)

where

hvt,1,W = cov−1
(
ỹ
t

)
cov (ṽt) i (3.118)

is the widely linear Wiener filter for the estimation of vt,1. Then, the coeffi-
cient of determination is
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∣∣∣ρvt,1|ỹ
t

∣∣∣2 =
iT cov (ṽt) cov

−1
(
ỹ
t

)
cov (ṽt) i

var (vt,1)
(3.119)

=
hH
vt,1,W

cov (ṽt) i

var (vt,1)
,

which is a good measure of noise reduction. It is easy to check that

i = hxt,1,W + hvt,1,W. (3.120)

Therefore, (3.119) can be rewritten as

∣∣∣ρvt,1|ỹ
t

∣∣∣2 = 1−
hH
xt,1,W

cov (ṽt) i

var (vt,1)
. (3.121)

The measure 1−
∣∣∣ρvt,1|ỹ

t

∣∣∣2 is very much related to the inverse of the conven-

tional noise reduction factor [1]:

ξ−1
nr

(
hxt,1,W

)
=

hH
xt,1,W

cov (ṽt)hxt,1,W

var (vt,1)
. (3.122)
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Chapter 4

Speech Enhancement Via Correlation
Coefficients

In the previous two chapters, we showed the importance of different kinds of
correlation coefficients in the formulation and analysis of the best estimators
for speech enhancement. In this chapter, we focus on the linear case and
show how the most relevant noise reduction filters as well as new ones can be
easily derived from the Pearson correlation coefficient. We work in the time
domain but the extension of these ideas to the more convenient short-time
Fourier transform domain is straightforward. Also, to simplify derivations
and make things as clear as possible, we only focus on the single-channel
case; generalization to the multichannel scenario is immediate.

4.1 Signal Model and Problem Formulation

The contribution in this chapter is an extension and a generalization of the
work presented in [1], [2], [3], [4].

We consider the single-channel noise reduction problem in the time domain
described in Chapter 3 (Section 3.1), i.e.,

y(t) = x(t) + v(t), (4.1)

where y(t), x(t), and v(t) are the microphone, desired, and noise signals,
respectively1. In a vector form, (4.1) is

y(t) =
[
y(t) y(t− 1) · · · y(t− L+ 1)

]T
= x(t) + v(t). (4.2)

Thus, the covariance matrix (of size L× L) of the noisy signal is

1 In this chapter, we slightly change the notation for convenience.

45© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
J. Benesty, Fundamentals of Speech Enhancement, SpringerBriefs in Electrical
and Computer Engineering, https://doi.org/10.1007/978-3-319-74524-4_4



46 4 Speech Enhancement Via Correlation Coefficients

Ry = E
[
y(t)yT (t)

]
= Rx +Rv, (4.3)

where Rx = E
[
x(t)xT (t)

]
and Rv = E

[
v(t)vT (t)

]
are the covariance matri-

ces of x(t) and v(t), respectively. Then, our objective is to estimate x(t) from
the observations, in different ways and different levels of compromises, thanks
to the many forms of the squared Pearson correlation coefficient (SPCC)
among all signals of interest.

We end this section by recalling the definition of the input SNR:

iSNR =
σ2
x

σ2
v

, (4.4)

where σ2
x = E

[
x2(t)

]
and σ2

v = E
[
v2(t)

]
are the variances of x(t) and v(t),

respectively.

4.2 Linear Filtering and Correlation Coefficients

In this chapter, we estimate the desired signal sample, x(t), or the noise
signal sample, v(t), by applying a real-valued filter, h, of length L, to the
observation signal vector, y(t), i.e.,

z(t) = hTy(t) (4.5)

= xfd(t) + vfn(t),

where z(t) can be either the estimate of x(t) or v(t),

xfd(t) = hTx(t) (4.6)

is the filtered desired signal, and

vfn(t) = hTv(t) (4.7)

is the filtered noise signal. If z(t) is the estimate of v(t), then the estimate of
x(t) is

x̂(t) = y(t)− z(t) (4.8)

= y(t)− hTy(t)

= (i− h)
T
y(t),

where i is the first column of the L × L identity matrix IL. In the rest, we
will also use the notation hx and hv. The first filter, hx, corresponds to the
estimation of x(t) while the second filter, hv, corresponds to the estimation
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of v(t). Obviously, from (4.8), we have the relationship:

hx + hv = i, (4.9)

which will extensively be used in all this chapter. Therefore, when v(t) is
estimated with hv, we can estimate x(t) with hx, thanks to the relation in
(4.9).

It is of great interest to know how much of x(t) [resp. xfd(t)] or v(t) [resp.
vfn(t)] is contained in the estimator z(t). The best second-order statistics
based measure to evaluate this is via the SPCC [1]. Next, we propose four
different forms of the SPCC.

We define the SPCC between z(t) and x(t) as

ρ2z,x (h) =
E2 [z(t)x(t)]

E [z2(t)]E [x2(t)]
(4.10)

=
σ2
x

(
hTγx

)2
hTRyh

=
hTRx1h

hTRyh
,

where

γx =
E [x(t)x(t)]

σ2
x

(4.11)

is the normalized correlation vector between x(t) and x(t), and

Rx1 = σ2
xγxγ

T
x (4.12)

is a rank-1 matrix. In fact, we know from Chapter 3 that we can decompose
Rx as

Rx = σ2
xγxγ

T
x + E

[
xi(t)x

T
i (t)

]
= Rx1 +Rxi , (4.13)

where Rx1 is defined in (4.12) and Rxi is the covariance matrix of the so-
called interference signal, xi(t), with E [xi(t)x(t)] = 0.

In the same manner, we define the SPCC between z(t) and v(t) as
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ρ2z,v (h) =
E2 [z(t)v(t)]

E [z2(t)]E [v2(t)]
(4.14)

=
σ2
v

(
hTγv

)2
hTRyh

=
hTRv1h

hTRyh
,

where γv is the normalized correlation vector between v(t) and v(t), and

Rv1 = σ2
vγvγ

T
v (4.15)

is a rank-1 matrix. We also have

Rv = σ2
vγvγ

T
v + E

[
vu(t)v

T
u (t)

]
= Rv1 +Rvu , (4.16)

where Rvu is the covariance matrix of vu(t) = v(t)− v(t)γv, and this latter
vector is uncorrelated with v(t).

The SPCC between z(t) and xfd(t) is also of great interest. It is given by

ρ2z,xfd
(h) =

hTRxh

hTRyh
. (4.17)

Using the decomposition in (4.13), (4.17) can be expressed as

ρ2z,xfd
(h) = ρ2z,x (h) +

hTRxih

hTRyh
(4.18)

= ρ2z,x (h) + ρ2z,xfi
(h)

≥ ρ2z,x (h) ,

where ρ2z,xfi
(h) is the SPCC between z(t) and the filtered interference, i.e.,

xfi(t) = hTxi(t). Expression (4.18) tells us that z(t) and xfd(t) are more
correlated than z(t) and x(t) are.

Finally, the last SPCC of interest is the one between z(t) and vfn(t), i.e.,

ρ2z,vfn (h) =
hTRvh

hTRyh
. (4.19)

With the help of (4.16), we can decompose (4.19) as

ρ2z,vfn
(h) = ρ2z,v (h) +

hTRvuh

hTRyh
(4.20)

= ρ2z,v (h) + ρ2z,vfu
(h)

≥ ρ2z,v (h) ,
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where ρ2z,vfu
(h) is the SPCC between z(t) and the filtered uncorrelated noise,

i.e., vfu(t) = hTvu(t). We can observe from (4.20) that z(t) and vfn(t) are
more correlated than z(t) and v(t) are.

It can easily be checked that

ρ2z,xfd
(h) + ρ2z,vfn (h) = 1, (4.21)

but

ρ2z,x (h) + ρ2z,v (h) = 1− ρ2z,xfi
(h)− ρ2z,vfu

(h) (4.22)

≤ 1.

We see that the four SPCCs defined above depend explicitly on the filter,
h, and measure different kinds of correlation. So it makes intuitively sense to
optimize them in order to get different kinds of noise reduction filters.

4.3 Optimal Filters

4.3.1 SPCC Between Filter Output and Desired Signal

In this subsection, we consider the SPCC between z(t) and x(t). A maximal
(resp. minimal) value of the SPCC implies that z(t) could be the estimate of
x(t) [resp. v(t)].

4.3.1.1 Maximization of the SPCC

It is obvious that the maximization of (4.10) leads to the estimate of the
desired signal since, in this case, x(t) will be maximally correlated with its
estimate, z(t). In (4.10), we recognize the generalized Rayleigh quotient [5].
It is well known that this quotient is maximized with the eigenvector, a1,
corresponding to the maximum eigenvalue of the matrix R−1

y Rx1
2. Let us

denote λa1
this maximum eigenvalue. Since the rank of the mentioned matrix

is equal to 1, we have

a1 =
R−1

y γx√
γT
xR

−1
y γx

, (4.23)

λa1 = σ2
xγ

T
xR

−1
y γx, (4.24)

2 In the rest of this chapter, we will use some well-known properties of joined diagonalized
matrices in order to simplify some of the expressions of the derived noise reduction filters.
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and the maximum SPCC is

ρ2z,x (a1) = λa1 . (4.25)

As a result, the optimal filter is proportional to a1, i.e.,

hx = αR−1
y γx, (4.26)

where α ̸= 0 is an arbitrary real number, whose value is important in practice
when we deal with nonstationary signals such as speech3; its value is even
more important when hx is implemented in another domain such as the STFT
domain, where a frequency-dependent scaling does not affect the subband
performance measures but greatly affects the fullband ones. Hence, with hx

in (4.26), the estimate of x(t) is

x̂(t) = hT
xy(t) (4.27)

and the output SNR is given by

oSNR (hx) =
hT
xRxhx

hT
xRvhx

≥ iSNR. (4.28)

Now, we need to determine α. There are at least three ways to find this
parameter. The first one is from the mean-squared error (MSE) criterion
between x(t) and x̂(t), i.e.,

J (α) = E
{[
x(t)− hT

xy(t)
]2}

= E
{[
x(t)− αγT

xR
−1
y y(t)

]2}
. (4.29)

The minimization of J (α) with respect to α leads to

α = σ2
x. (4.30)

Substituting this value into (4.26), we get the conventional Wiener filter [2]:

hW = σ2
xR

−1
y γx

= R−1
y Rx1 i

= R−1
y Rxi

=
(
IL −R−1

y Rv

)
i. (4.31)

3 Obviously, for stationary signals, the value of α is not relevant at all as long as it is
different from zero.
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Obviously, this filter maximizes the SPCC in (4.10) but it does not maximize
the output SNR. We will see later which kind of the SPCC whose maximiza-
tion is equivalent to maximizing the output SNR.

The second possibility is from the distortion-based MSE, i.e.,

Jd (α) = E
{[
x(t)− hT

xx(t)
]2}

= E
{[
x(t)− αγT

xR
−1
y x(t)

]2}
. (4.32)

By minimizing Jd (α) with respect to α, we obtain

α =
λa1

γT
xR

−1
y RxR

−1
y γx

(4.33)

and substituting the previous result into (4.26) gives the minimum distortion
(MD) filter:

hMD =
λa1R

−1
y γx

γT
xR

−1
y RxR

−1
y γx

. (4.34)

Clearly, as far as the output SNR is concerned, the two filters hW and hMD

are equivalent but when implemented in the STFT domain, they will give
much different values of the fullband output SNR.

Finally, the last manner to find α is by plugging hv = i − αR−1
y γx into

(4.10). We get

ρ2z,x (α) =

(
i− αR−1

y γx

)T
Rx1

(
i− αR−1

y γx

)(
i− αR−1

y γx

)T
Ry

(
i− αR−1

y γx

)
=

σ2
x

(
1− αγT

xR
−1
y γx

)2
σ2
y − 2α+ α2γT

xR
−1
y γx

. (4.35)

Since hv is involved in the SPCC, we need to minimize this latter. Minimizing
the previous expression is equivalent to minimizing its numerator. Therefore,
we have

α =
1

γT
xR

−1
y γx

. (4.36)

As a result, we deduce the so-called minimum variance distortionless response
(MVDR) filter [6]:

hMVDR =
R−1

y γx

γT
xR

−1
y γx

. (4.37)
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Indeed, one can check that hT
MVDRγx = 1, which means that the desired

signal is recovered if xi(t) is considered as an interference. This filter works
very well in the STFT domain [7], [8], [9], [10].

4.3.1.2 Minimization of the SPCC

Another perspective is to find the filter that minimizes (4.10). Therefore, the
filter output will be the estimate of v(t). The matrix R−1

y Rx1 has L − 1
eigenvalues equal to 0, since its rank is equal to 1. Let a2,a3, . . . ,aL be the
corresponding eigenvectors and let us consider the filter, which is a linear
combination of these eigenvectors:

hv =
L∑

i=2

αiai (4.38)

= A2α,

where

A2 =
[
a2 a3 · · · aL

]
(4.39)

is a matrix of size L× (L− 1) and

α =
[
α2 α3 · · · αL

]T ̸= 0 (4.40)

is a vector of length L−1. It is clear that hv in (4.38) minimizes (4.10), since

ρ2zx (hv) = 0. (4.41)

Therefore, the estimates of v(t) and x(t) are, respectively,

v̂(t) = hT
v y(t) (4.42)

and

x̂(t) = y(t)− v̂(t)

= hT
xy(t), (4.43)

where

hx = i− hv (4.44)

is the equivalent filter for the estimation of x(t).
There are at least two interesting ways to find α. The first one is from the

power of the residual noise, i.e.,
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Jr (α) = hT
xRvhx

= (i− hv)
T
Rv (i− hv)

= σ2
v − 2αTAT

2 Rvi+αTAT
2 RvA2α (4.45)

and the second one is from the MSE between x(t) and x̂(t), i.e.,

J (α) = E
{[
x(t)− hT

xy(t)
]2}

= E

{[
x(t)− (i− hv)

T
y(t)

]2}
= E

{[
v(t)−αTAT

2 y(t)
]2}

. (4.46)

The minimization of Jr (α) with respect to α gives

α =
(
AT

2 RvA2

)−1
AT

2 Rvi. (4.47)

As a result, we obtain the minimum noise (MN) filter for the estimation of
x(t):

hMN =
[
IL −A2

(
AT

2 RvA2

)−1
AT

2 Rv

]
i. (4.48)

While this filter may reduce quite a lot of noise, it may introduce an unac-
ceptable amount of distortion to the desired signal.

By minimizing the MSE, we find that

α =
(
AT

2 RyA2

)−1
AT

2 Rvi

= AT
2 Rvi. (4.49)

We deduce the MVDR filter for the estimation of x(t):

hMVDR = i−A2A
T
2 Rvi

= i−
(
R−1

y − a1a
T
1

)
Rvi

= hW +
(
aT1 Rvi

)
a1

= hW +
(
aT1 Ryi− aT1 Rx1 i

)
a1

=
(
aT1 Ryi

)
a1

=
R−1

y γx

γT
xR

−1
y γx

. (4.50)

As far as the output SNR is concerned, the two filters hW and hMVDR are
equivalent. However, in the STFT domain, hW and hMVDR will behave differ-
ently. Another insightful way to derive hMVDR is by substituting hx = i−A2α
into the SPCC in (4.10). We get
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ρ2z,x (α) =
(i−A2α)

T
Rx1

(i−A2α)

(i−A2α)
T
Ry (i−A2α)

=
σ2
x

σ2
y − 2αTAT

2 Ryi+αTα
. (4.51)

Maximizing the previous expression is equivalent to minimizing its denomi-
nator. We easily obtain

α = AT
2 Ryi

= AT
2 Rxi+AT

2 Rvi

= AT
2 Rx1 i+AT

2 Rvi

= AT
2 Rvi, (4.52)

which leads to hMVDR. It is clear from the above that

σ2
v ≥ αTα. (4.53)

Therefore, with hW or hMVDR, we can express the SPCC between z(t) and
x(t) as

ρ2z,x (hW) = λa1

=
σ2
x

σ2
y −αTα

=
iSNR

σ2
v −αTα

σ2
v

+ iSNR

, (4.54)

which shows a very interesting relationship between the eigenvalue of interest
and the input SNR. We always have

ρ2z,x (hW) ≥ ρ2x,y =
iSNR

1 + iSNR
, (4.55)

where ρ2x,y is the SPCC between x(t) and y(t). The previous expression tells
us that z(t) (with the Wiener filter) and x(t) are more correlated than y(t)
and x(t) are, which basically means that the SNR of z(t) is better than that
of y(t).
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4.3.2 SPCC Between Filter Output and Noise Signal

In this subsection, we consider the SPCC between z(t) and v(t). A maximal
(resp. minimal) value of the SPCC implies that z(t) could be the estimate of
v(t) [resp. x(t)].

4.3.2.1 Maximization of the SPCC

The rank of the matrixR−1
y Rv1

is equal to 1, so its only non-null and positive
eigenvalue is

λb1 = σ2
vγ

T
v R

−1
y γv, (4.56)

whose corresponding eigenvector is

b1 =
R−1

y γv√
γT
v R

−1
y γv

. (4.57)

As a result, the filter that maximizes (4.14) is

hv = βR−1
y γv, (4.58)

where β ̸= 0 is an arbitrary real number, and the maximum SPCC is

ρ2z,v (b1) = λb1 . (4.59)

This filter output gives the estimate of v(t), i.e.,

v̂(t) = hT
v y(t). (4.60)

We deduce that the estimate of the desired signal is

x̂(t) = y(t)− v̂(t)

= hT
xy(t), (4.61)

where

hx = i− hv (4.62)

is the equivalent filter for the estimation of x(t).
One way to find β is from the MSE between x(t) and x̂(t) [or, equivalently,

v(t) and v̂(t)], i.e.,
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J (β) = E
{[
v(t)− hT

v y(t)
]2}

= E
{[
v(t)− βγT

v R
−1
y y(t)

]2}
. (4.63)

Indeed, the optimization of the previous expression leads to

β = σ2
v . (4.64)

Therefore, we have

hv = σ2
vR

−1
y γv (4.65)

and from (4.62),

hW =
(
IL −R−1

y Rv

)
i, (4.66)

which is the classical Wiener filter.
The second way to find β is from the power of the residual noise, i.e.,

Jr (β) =
(
i− βR−1

y γv

)T
Rv

(
i− βR−1

y γv

)
(4.67)

= σ2
v − 2βγT

v R
−1
y Rvi+ β2γT

v R
−1
y RvR

−1
y γv.

After minimizing Jr (β) and substituting the obtained value of β into (4.58),
we easily find that the MN-type filter for the estimation of x(t) is

hMN,2 =

[
IL −

R−1
y Rv1

tr
(
R−1

y RvR
−1
y Rv1

)R−1
y Rv

]
i. (4.68)

Finally, the last way to find β is by plugging hx = i−βR−1
y γv into (4.14).

We get

ρ2z,v (β) =

(
i− βR−1

y γv

)T
Rv1

(
i− βR−1

y γv

)(
i− βR−1

y γv

)T
Ry

(
i− βR−1

y γv

)
=

σ2
v

(
1− βγT

v R
−1
y γv

)2
σ2
y − 2β + β2γT

v R
−1
y γv

. (4.69)

Minimizing the previous expression is equivalent to minimizing its numerator.
This leads to

β =
1

γT
v R

−1
y γv

. (4.70)

As a result, we find the null constraint (NC) filter for the estimation of x(t):
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hNC =

(
IL −

R−1
y γvγ

T
v

γT
v R

−1
y γv

)
i. (4.71)

Indeed, it can easily be verified that hT
NCγv = 0, which means that the

correlated noise is completely canceled.

4.3.2.2 Minimization of the SPCC

Let b2,b3, . . . ,bL be the eigenvectors corresponding to the L− 1 null eigen-
values of the matrix R−1

y Rv1
. Let us form the filter:

hx =

L∑
i=2

βibi

= B2β, (4.72)

where βi, i = 2, 3, . . . , L are arbitrary real numbers with at least one of them
different from 0,

B2 =
[
b2 b3 · · · bL

]
(4.73)

is a matrix of size L× (L− 1), and

β =
[
β2 β3 · · · βL

]T ̸= 0 (4.74)

is a vector of length L − 1. It can be verified that hx in (4.72) minimizes
(4.14), since

ρ2z,v (hx) = 0. (4.75)

Therefore, the filter output can be considered as the estimate of the desired
signal, i.e.,

x̂(t) = hT
xy(t). (4.76)

The MSE between x(t) and x̂(t) is then

J (β) = E
{[
x(t)− hT

xy(t)
]2}

(4.77)

= σ2
x − 2βTBT

2 Rxi+ βTβ

= σ2
x − 2βTBT

2 Rxi+ βTBT
2 RxB2β + βTBT

2 RvB2β

= Jd (β) + Jr (β) .

From (4.77), we observe that we have at least two obvious options to find β.
The first one is to minimize J (β). The second option is to minimize Jd (β).
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From the first option, we obtain the NC filter:

hNC = B2B
T
2 Rxi

=
(
R−1

y − b1b
T
1

)
(Ry −Rv) i

= i−R−1
y Rvi− b1b

T
1 Ryi+ b1b

T
1 Rv1

i

= hW +
(
bT
1 Ryi

)
(λb1b1 − b1)

= i−
R−1

y γv

γT
v R

−1
y γv

=

(
IL −

R−1
y γvγ

T
v

γT
v R

−1
y γv

)
i. (4.78)

The second option gives the MD-type filter:

hMD,2 = B2

(
BT

2 RxB2

)−1
BT

2 Rxi, (4.79)

where it is assumed that the rank of Rx is at least equal to L− 1.
Now, let us find β from the SPCC. Substituting hv = i − B2β into the

SPCC in (4.14), we obtain

ρ2z,v (β) =
(i−B2β)

T
Rv1 (i−B2β)

(i−B2β)
T
Ry (i−B2β)

=
σ2
v

σ2
y − 2βTBT

2 Ryi+ βTβ
. (4.80)

Maximizing the previous expression is equivalent to minimizing its denomi-
nator. We get

β = BT
2 Ryi

= BT
2 Rxi+BT

2 Rvi

= BT
2 Rxi+BT

2 Rv1 i

= BT
2 Rxi, (4.81)

which leads to hNC. It is clear from the above that

σ2
x ≥ βTβ. (4.82)

Therefore, we can express the maximum value of the SPCC between z(t) and
v(t) as
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ρ2z,v (b1) = λb1

=
σ2
v

σ2
y − βTβ

=
1

1 + iSNR× σ2
x − βTβ

σ2
x

, (4.83)

which shows a very interesting relationship between the eigenvalue of interest
and the input SNR. We always have

ρ2z,v (b1) ≥ ρ2v,y =
1

1 + iSNR
, (4.84)

where ρ2v,y is the SPCC between v(t) and y(t). The previous expression tells
us that z(t) (which is here the estimate of v(t) with a filter proportional
to b1) and x(t) are more correlated than y(t) and v(t) are, which basically
means that the SNR of y(t)− z(t) is better than that of y(t).

4.3.3 SPCC Between Filter Output and Filtered
Desired Signal

This subsection is concerned with the SPCC between z(t) and xfd(t). A max-
imal (resp. minimal) value of the SPCC implies that z(t) is the estimate of
x(t) [resp. v(t)].

4.3.3.1 Maximization of the SPCC

Let λt1 be the largest eigenvalue, with multiplicity P , of the matrix R−1
y Rx

4.
We denote t1, t2, . . . , tP the corresponding eigenvectors. It is clear that the
filter:

hx =
P∑

p=1

θptp, (4.85)

where θp, p = 1, 2, . . . , P are arbitrary real numbers with at least one of them
different from 0, maximizes (4.17), and the maximum SPCC5 is

ρ2z,xfd
(hx) = λt1 . (4.86)

4 In practice, we may consider the P largest eigenvalues of R−1
y Rx. In this case, they are

denoted λt1 , λt2 , . . . , λtP .
5 In case we take the P largest eigenvalues, we have ρ2z,xfd

(hx) =
∑P

p=1 λtp/P .
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We can rewrite (4.85) as

hx = Tθ, (4.87)

where

T =
[
t1 t2 · · · tP

]
(4.88)

is a matrix of size L× P and

θ =
[
θ1 θ2 · · · θP

]T ̸= 0 (4.89)

is a vector of length P . It can be checked that the SPCC can be written as

ρ2z,xfd
(hx) =

oSNR (hx)

1 + oSNR (hx)
, (4.90)

which means that hx in (4.85) or in (4.87) also maximizes the output SNR.
The estimate of x(t) is

x̂(t) = hT
xy(t). (4.91)

The MSE between x(t) and x̂(t) is then

J (θ) = E
{[
x(t)− hT

xy(t)
]2}

(4.92)

= σ2
x − 2θTTTRxi+ θTθ

= σ2
x − 2θTTTRxi+ θTTTRxTθ + θTTTRvTθ

= Jd (θ) + Jr (θ) .

From (4.92), we observe that we have at least two obvious options to find θ.
The first one is to minimize J (θ). The second option is to minimize Jd (θ).

From the first option, we obtain the Wiener-type filter:

hW,2 = TTTRxi. (4.93)

The second option gives the MD-type filter:

hMD,3 = T
(
TTRxT

)−1
TTRxi. (4.94)

In the assumed case where we have a maximum eigenvalue, λt1 , with multi-
plicity P , we have TTRxT = λt1IP , where IP is the P × P identity matrix.
As a result,

hMD,3 = λt1hW,2. (4.95)

Now, substituting hv = i−Tθ into (4.17), we get
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ρ2z,xfd
(θ) =

(i−Tθ)
T
Rx (i−Tθ)

(i−Tθ)
T
Ry (i−Tθ)

(4.96)

=
σ2
x − 2θTTTRxi+ θTTTRxTθ

σ2
y − 2θTTTRyi+ θTθ

.

It is clear that minimizing (4.96) is the same as minimizing its numerator.

This leads to θ =
(
TTRxT

)−1
TTRxi and then to hMD,3. This is another

way to derive the MD-type filter given in (4.94).

4.3.3.2 Minimization of the SPCC

Let λtL be the smallest eigenvalue, with multiplicity Q, of the matrix
R−1

y Rx
6. We denote tL−Q+1 = t′1, tL−Q+2 = t′2, . . . , tL = t′Q the corre-

sponding eigenvectors. The filter:

hv =

Q∑
q=1

θ′qt
′
q, (4.97)

where θ′q, q = 1, 2, . . . , Q are arbitrary real numbers with at least one of them
different from 0, minimizes (4.17), and the minimum SPCC7 is

ρ2z,xfd
(hv) = λtL . (4.98)

A more convenient way to write (4.97) is

hv = T′θ′, (4.99)

where

T′ =
[
t′1 t′2 · · · t′Q

]
(4.100)

is a matrix of size L×Q and

θ′ =
[
θ′1 θ

′
2 · · · θ′Q

]T ̸= 0 (4.101)

is a vector of length Q. Therefore, the estimates of v(t) and x(t) are, respec-
tively,

v̂(t) = hT
v y(t) (4.102)

and

6 In practice, we may consider the Q smallest eigenvalues of R−1
y Rx. In this case, they

are denoted λtL−Q+1 , λtL−Q+2 , . . . , λtL .
7 In case we take the Q smallest eigenvalues, we have ρ2z,xfd

(hv) =
∑Q

q=1 λtL−q+1/Q.
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x̂(t) = y(t)− v̂(t)

= hT
xy(t), (4.103)

where

hx = i− hv (4.104)

is the equivalent filter for the estimation of x(t).
There are at least two interesting ways to find θ′. The first one is from the

power of the residual noise, i.e.,

Jr
(
θ′) = E

{[
v(t)− θ′TT′Tv(t)

]2}
(4.105)

and the second one is from the MSE between x(t) and x̂(t), i.e.,

J
(
θ′) = E

{[
v(t)− θ′TT′Ty(t)

]2}
. (4.106)

The minimization of Jr
(
θ′) with respect to θ′ gives

θ′ =
(
T′TRvT

′)−1
T′TRvi. (4.107)

As a result,

hv = T′ (T′TRvT
′)−1

T′TRvi (4.108)

and the MN-type filter for the estimation of x(t) is

hMN,3 =
[
IL −T′ (T′TRvT

′)−1
T′TRv

]
i. (4.109)

By minimizing the MSE, we find the Wiener-type filter for the estimation
of x(t):

hW,3 =
[
IL −T′ (T′TRyT

′)−1
T′TRv

]
i

=
(
IL −T′T′TRv

)
i. (4.110)

Now, let us see what happens from the SPCC perspective. Plugging hx =
i−T′θ′ into (4.17), we get
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ρ2z,xfd

(
θ′) = (

i−T′θ′)T Rx

(
i−T′θ′)(

i−T′θ′)T Ry

(
i−T′θ′) (4.111)

=
σ2
x − 2θ′TT′TRxi+ θ′TT′TRxT

′θ′

σ2
y − 2θ′TT′TRyi+ θ′Tθ′

=
σ2
x − λtL

(
2θ′TT′TRxi− θ′Tθ′

)
σ2
y −

(
2θ′TT′TRyi− θ′Tθ′

) .

Maximizing the previous expression is equivalent to minimizing the quantity
2θ′TT′TRyi− θ′Tθ′. Therefore, we get another Wiener-type filter:

hW,4 =
(
IL −T′T′TRy

)
i. (4.112)

Because of the relation (4.21), the optimization of the SPCC between the
filter output and the filtered noise signal, i.e., ρ2zvfn

(h), will lead to the same
optimal filters derived in this subsection.

4.3.4 Other Possibilities

Obviously, it is possible to derive other noise reduction filters by combining
some of the defined SPCCs. Here, we briefly discuss one valuable possibility.

In this approach, we combine the two SPCCs:

ρ2z,vfn
(h) + ρ2z,xfi

(h) =
hT (Rv +Rxi)h

hTRyh
(4.113)

= ρ2z,vfn+xfi
(h) ,

where xi(t) is considered as an uncorrelated interference vector. Clearly, the
filter that minimizes (4.113) will make z(t) the estimate of x(t). A maximal
value of ρ2z,vfn+xfi

(h) implies that z(t) will be the estimate of v(t)+xi(t) and,
as a result, the estimate of x(t) will be y(t) − z(t). It is easy to derive all
relevant filters by following the same steps as above.
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Chapter 5

On the Output SNR in Speech
Enhancement and Beamforming

The output SNR is a well-known and accurate measure of the SNR after the
filtering/beamforming operation; it is widely used to evaluate all kinds of
optimal filters/beamformers for speech enhancement. However, it has never
really been fully exploited for the derivation of other noise reduction filters
than the classical maximum SNR filter. In this chapter, we first show how
the output SNR is related to the fullmode input SNR and, then, derive very
interesting filters/beamformers by alternating between two related filters in
the maximization and minimization of the output SNR.

5.1 Signal Model and Problem Formulation

We consider the signal model in which we haveM observed signals in a vector
form [1]:

y =
[
Y1 Y2 · · · YM

]T
= x+ v, (5.1)

where y is the noisy (observed) signal vector, x is the speech signal vec-
tor, v is the noise signal vector, and vectors x and v are defined similarly
to vector y. All signals are assumed to be random, complex, circular, zero
mean, and stationary. Furthermore, the vectors x and v are assumed to be
uncorrelated, i.e., E

(
xvH

)
= 0. It can be verified that the signal model in

(5.1) encompasses all aspects of speech enhancement and beamforming, from
the single-channel to the multichannel scenario, in the time, frequency, and
time-frequency domains. In the particular case of beamforming and taking
the first microphone as the reference, (5.1) is expressed as [1], [2]

y = X1d+ v, (5.2)
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where d is the (deterministic) steering vector of length M , whose first entry
is equal to 1.

Then, with the first element of y being the reference, which will always be
true here, our objective in the general case is to estimate X1, i.e., the first
element of x, given y uniquely from the output SNR, which is a good measure
of the SNR after linear processing. We want to show that the output SNR
is also an excellent criterion from which optimal filters/beamformers can be
derived.

From (5.1), we deduce that the covariance matrix (of size M ×M) of y is

Φy = E
(
yyH

)
(5.3)

= Φx +Φv,

where Φx = E
(
xxH

)
and Φv = E

(
vvH

)
are the covariance matrices of x

and v, respectively. It will always be assumed that Φv has full rank. For the
covariance matrixΦx, we are interested in three cases that often appear in the
problem of speech enhancement. They are the following. Case 1: rank (Φx) =
1 [and corresponds to the signal model in (5.2)], which implies that Φx =

ϕX1
ddH , where ϕX1

= E
(
|X1|2

)
is the variance of X1. Case 2: rank (Φx) =

P , where 1 ≤ P < M . Case 3: rank (Φx) = M , i.e., Φx has full rank. From
(5.3), we can define the input SNR as

iSNR =
tr (Φx)

tr (Φv)
(5.4)

=
ϕX1

ϕV1

,

where ϕV1 = E
(
|V1|2

)
is the variance of V1, i.e., the first component of v. In

(5.4), it is explicitly assumed that ϕX1 ≈ tr (Φx) /M and ϕV1 ≈ tr (Φv) /M ,
which is almost always the case in practice. With this conventional definition
of the SNR, we conclude this section.

5.2 Linear Filtering, Output and Fullmode Input SNRs

In this chapter, we estimate the desired speech signal, X1, or the noise signal,
V1, by applying a complex-valued filter, h, of length M , to the noisy signal
vector, y, i.e.,

Z = hHy (5.5)

= Xfd + Vfn,

where Z can be either the estimate of X1 or V1,
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Xfd = hHx (5.6)

is the filtered desired signal, and

Vfn = hHv (5.7)

is the filtered noise signal. If Z is the estimate of V1, then the estimate of X1

is

X̂1 = Y1 − Z (5.8)

= Y1 − hHy

= (i− h)
H
y,

where i is the first column of the M ×M identity matrix IM . In the rest, we
will also use the notation hX and hV . The first filter, hX , corresponds to the
estimation of X1 while the second filter, hV , corresponds to the estimation
of V1. Obviously, from (5.8), we have the relationship:

hX + hV = i. (5.9)

Therefore, when V1 is estimated with hV , we can estimate X1 with hX ,
thanks to the relation in (5.9). From (5.5), we see that the variance of Z is

ϕZ = E
(
|Z|2

)
(5.10)

= ϕXfd
+ ϕVfn

,

where

ϕXfd
= hHΦxh, (5.11)

ϕVfn
= hHΦvh. (5.12)

As a result, the output SNR can be defined as

oSNR (h) =
hHΦxh

hHΦvh
. (5.13)

When the output SNR is maximized (resp. minimized), we write oSNR (hX)
[resp. oSNR (hV )] since in this case, the filter hX (resp. hV ) corresponds to
the estimation of X1 (resp. V1). We will see that by alternating between the
two filters hX and hV in the optimization (i.e., maximization or minimiza-
tion) of the output SNR, we can derive very interesting filters/beamformers.

Given the structure of the output SNR, which is simply the generalized
Rayleigh quotient, joint diagonalization is going to be a very natural tool to
exploit here. The two Hermitian matrices Φx and Φv can be jointly diago-
nalized as follows [3]:
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AHΦxA = Λ, (5.14)

AHΦvA = IM , (5.15)

where

A =
[
a1 a2 · · · aM

]
(5.16)

is a full-rank square matrix (of size M ×M) and

Λ = diag (λ1, λ2, . . . , λM ) (5.17)

is a diagonal matrix whose main elements are real and nonnegative. The
eigenvalues of Φ−1

v Φx are ordered as λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0. We also
denote by a1,a2, . . . ,aM , the corresponding eigenvectors.

The procedure for jointly diagonalizing Φx and Φv consists of two steps
[4].

(i) Calculate Λ and A′, the eigenvalue and (unnormalized) eigenvector ma-
trices, respectively, of Φ−1

v Φx, i.e.,

Φ−1
v ΦxA

′ = A′Λ. (5.18)

(ii) Normalize the eigenvectors of Φ−1
v Φx such that (5.15) is satisfied. De-

noting by a′m, m = 1, 2, . . . ,M the (unnormalized) eigenvectors ofΦ−1
v Φx,

then we need to find the constants Cm’s such that am = Cma′m satisfy
aHmΦvam = 1. Hence,

Cm =
1√

a′Hm Φva′m
, m = 1, 2, . . . ,M. (5.19)

Thus, we have

A = A′C, (5.20)

where C is a diagonal normalization matrix with the elements
{C1, C2, . . . , CM} on its main diagonal.

In the particular case of rank (Φx) = 1, we have

A =
[
a1 A2

]
, (5.21)

Λ = diag (λ1, 0, . . . , 0) , (5.22)

where

a1 =
Φ−1

v d√
dHΦ−1

v d
(5.23)

and
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λ1 = ϕX1d
HΦ−1

v d. (5.24)

It is always possible to write h in a basis formed from the vectors am, m =
1, 2, . . . ,M , i.e.,

h = Aα, (5.25)

where the components, αm, m = 1, 2, . . . ,M , of the vector α are the coordi-
nates of h in the new basis. As a consequence, the output SNR in (5.13) can
be rewritten, equivalently, as

oSNR (α) =
αHΛα

αHα
. (5.26)

Another possible measure of the SNR, which can be close to the input
SNR, is the fullmode input SNR defined as

iSNRFM =
tr
(
Φ−1

v Φx

)
M

(5.27)

=
tr
(
AAHΦx

)
M

=
tr (Λ)

M
.

From the previous expression, we define the mth (m = 1, 2, . . . ,M) spectral
mode input SNR:

iSNRm = λm. (5.28)

The number of nonnull spectral modes is obviously equal to the rank of
Φx. So in the case of rank (Φx) = 1, the first spectral mode input SNR is
equal to M times the fullmode input SNR, i.e., iSNR1 = M × iSNRFM and
iSNRi = 0, i = 2, 3, . . . ,M . As a result, we can express the fullmode input
and output SNRs as, respectively,

iSNRFM =

∑M
m=1 iSNRm

M
(5.29)

and

oSNR (α) =

∑M
m=1 |αm|2 iSNRm∑M

m=1 |αm|2
. (5.30)

Since

tr
(
Φ−1

v Φx

)
≥ tr (Φx)

tr (Φv)
,
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it follows that

iSNRFM ≥ iSNR

M
, (5.31)

or, equivalently,

M∑
m=1

iSNRm ≥ iSNR. (5.32)

Property 5.1. Let

cond (Φv) =
λ1 (Φv)

λM (Φv)
(5.33)

be the condition number of the matrix Φv, where λ1 (Φv) and λM (Φv) are,
respectively, the largest and smallest eigenvalues of Φv. We have

iSNR

cond (Φv)
≤ iSNRFM ≤ cond (Φv)× iSNR, (5.34)

with iSNRFM = iSNR if and only if cond (Φv) = 1.

Proof. Since Φv is a positive definite matrix and Φx is a positive semidefinite
matrix, it can be shown that

tr (Φx)

λ1 (Φv)
≤ tr

(
Φ−1

v Φx

)
≤ tr (Φx)

λM (Φv)
. (5.35)

But

tr
(
Φ−1

v Φx

)
M

≤ tr (Φv)

MλM (Φv)
iSNR

≤ Mλ1 (Φv)

MλM (Φv)
iSNR

≤ cond (Φv)× iSNR (5.36)

and

tr
(
Φ−1

v Φx

)
M

≥ tr (Φv)

Mλ1 (Φv)
iSNR

≥ MλM (Φv)

Mλ1 (Φv)
iSNR

≥ iSNR

cond (Φv)
. (5.37)
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What does the fullmode input SNR mean? We can see that it has the
potential to be quite large and much larger than the conventional input SNR,
depending on the condition number ofΦv. The most interesting and insightful
part of the fullmode input SNR is its decomposition into different spectral
modes, which clearly shows the repartition of the SNR at different spectral
bands. So when cond (Φv) is large, this means that the fullmode input SNR
is mostly governed by its largest modes. A great consequence of this is that it
tells us what amount of the output SNR we can expect with a linear filter since
this amount is always upper bounded by the maximum spectral mode input
SNR. In other words, the fullmode input SNR gives us great insights into the
potential of noise reduction while the conventional input SNR definition does
not lead to much interpretation except for its main purpose.

From the formulation of the output SNR in (5.30), which weights the
different spectral modes of the fullmode input SNR, three obvious particular
cases of α appear naturally. The first one is the equal-coordinate filter, i.e.,

α = α1 = α
[
1 1 · · · 1

]T
, where α ̸= 0, which equally weights the different

modes; therefore

oSNR (α1) = oSNR (1) = iSNRFM.

The second particular case is the maximum SNR filter, i.e., αmax =[
α1 0 · · · 0

]T
, where α1 ̸= 0, which gives the maximum value of the out-

put SNR, i.e.,

oSNR (αmax) = iSNR1 ≥ oSNR (α) , ∀α ̸= 0,

or, equivalently,

oSNR (hmax) = λ1 ≥ oSNR (h) , ∀h ̸= 0,

where hmax = Aαmax. Finally, the last one is the minimum SNR filter, i.e.,

αmin =
[
0 · · · 0 αM

]T
, where αM ̸= 0, which gives the minimum value of

the output SNR, i.e.,

oSNR (αmin) = iSNRM ≤ oSNR (α) , ∀α ̸= 0,

or, equivalently,

oSNR (hmin) = λM ≤ oSNR (h) , ∀h ̸= 0,

where hmin = Aαmin. Also, by playing on the values of the αm’s, we can
precisely manipulate the different spectral modes of the fullmode input SNR
as we wish for speech enhancement. In other words, improving the SNR with
a linear filter is just a matter of adjusting the different spectral mode input
SNRs, showing the importance of the fullmode input SNR definition. From
the above, we see that we always have
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iSNRM ≤ iSNRFM ≤ iSNR1,

iSNRM ≤ oSNR (α) ≤ iSNR1, ∀α ̸= 0.

Of course, for the estimation of the desired signal, X1, we must always ensure
that

oSNR (hX) > oSNR (i) = iSNR. (5.38)

5.3 Optimal Filters

In this section, we develop a large class of optimal filters from the output
SNR depending on the rank of the speech covariance matrix.

5.3.1 Rank-One Speech Covariance Matrix

When the rank of Φx is equal to 1, it is clear that the filter that maximizes
the output SNR is proportional to a1 [see (5.23)], i.e.,

hX = αΦ−1
v d, (5.39)

where α ̸= 0 is an arbitrary complex number.
Now, we need to determine α. This can be done by observing that while

hX maximizes the output SNR and gives the estimate of X1, the output SNR
with the filter hV = i − αΦ−1

v d can also be minimized in order to get the
estimate of V1. Substituting hV into (5.13), we get

oSNR (α) =
ϕX1

(
i− αΦ−1

v d
)H

ddH
(
i− αΦ−1

v d
)(

i− αΦ−1
v d

)H
Φv

(
i− αΦ−1

v d
) . (5.40)

Minimizing the previous expression is equivalent to minimizing its numerator.
Therefore, we have

α =
1

dHΦ−1
v d

. (5.41)

Substituting α back into (5.40), we see that oSNR (α) = 0, proving that
the output SNR is indeed minimized. As a result, we deduce the celebrated
MVDR filter:

hMVDR =
Φ−1

v d

dHΦ−1
v d

. (5.42)
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Let us turn our attention to the estimation of V1 in the first step. It is
cleat that the filter:

hV = A2α2, (5.43)

where α2 ̸= 0 is a vector of length M − 1, minimizes the output SNR since
oSNR (hV ) = 0. To obtain the estimate of X1, we plug hX = i − A2α2 in
the definition of the output SNR, resulting in

oSNR (α2) =
ϕX1

(i−A2α2)
H
ddH (i−A2α2)

(i−A2α2)
H
Φv (i−A2α2)

=
ϕX1

(i−A2α2)
H
Φv (i−A2α2)

. (5.44)

The maximization of oSNR (α2) is equivalent to the minimization of its de-
nominator. We easily get

α2 = AH
2 Φvi (5.45)

and the optimal filter for the estimation of X1 is

hX = i−A2A
H
2 Φvi (5.46)

= i−
(
Φ−1

v − a1a
H
1

)
Φvi

=
(
aH1 Φvi

)
a1

=
Φ−1

v d

dHΦ−1
v d

= hMVDR, (5.47)

which is again the MVDR filter.

5.3.2 Rank-Deficient Speech Covariance Matrix

In this subsection, we focus on the case where rank (Φx) = P with 1 ≤ P <
M . We already know that the filter that maximizes the output SNR is

hX = α1a1, (5.48)

where α1 ̸= 0 is an arbitrary complex number. To find α1, we use the filter
hV = i− α1a1 in the output SNR, which leads to



74 5 Output SNR in Speech Enhancement/Beamforming

oSNR (α1) =
(i− α1a1)

H
Φx (i− α1a1)

(i− α1a1)
H
Φv (i− α1a1)

(5.49)

=
ϕX1 − λ1

[
2ℜ
(
α1i

TΦva1
)
− |α1|2

]
ϕV1 −

[
2ℜ (α1iTΦva1)− |α1|2

] ,

and whose minimization gives

α1 = aH1 Φvi

=
aH1 Φxi

λ1
, (5.50)

where ℜ(·) is the real part of a complex number. We deduce the maximum
SNR filter with minimum distortion (MD):

hmMD =
a1a

H
1 Φxi

λ1
(5.51)

= a1a
H
1 Φvi.

Obviously, this filter is very much different from the MVDR filter in (5.42)
since a1 does not have the form in (5.23), in general. In fact, the larger the
value of P , the more different are the two filters. While hmMD gives the
maximum possible output SNR, speech distortion worsens as P increases.
However, for P = 1, hMVDR and hmMD are identical.

Now, let us derive the optimal filter when V1 is estimated first. Define the
matrix of size M × (M − P ):

AP+1 =
[
aP+1 aP+2 · · · aM

]
. (5.52)

One can verify that the filter:

hV = AP+1αP+1, (5.53)

where αP+1 ̸= 0 is a vector of lengthM−P , minimizes the output SNR since
oSNR (hV ) = 0. To get the estimate of X1, we insert hX = i −AP+1αP+1

in the definition of the output SNR, resulting in

oSNR (αP+1) =
(i−AP+1αP+1)

H
Φx (i−AP+1αP+1)

(i−AP+1αP+1)
H
Φv (i−AP+1αP+1)

=
ϕX1

(i−AP+1αP+1)
H
Φv (i−AP+1αP+1)

. (5.54)

The maximization of the previous expression gives

αP+1 = AH
P+1Φvi. (5.55)
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As a result, we obtain the distortionless (DL) filter:

hDL = i−AP+1A
H
P+1Φvi. (5.56)

This filter is, indeed, distortionless since

hT
DLx = X1 − iTΦvAP+1A

H
P+1x

= X1, (5.57)

where we used the fact that AH
P+1x = 0 [derived from (5.14)]. For P = 1,

one can check that hDL and hMVDR are identical. As P increases, the output
SNR of hDL decreases.

5.3.3 Full-Rank Speech Covariance Matrix

When Φx = M , we can also derive the maximum SNR filter with minimum
distortion, i.e., hmMD. However, this filter may lead to very large distortions
since it considers only the main direction of the desired signal as compared
to the noise, i.e., the maximum spectral mode of the fullmode input SNR. In
order to reduce distortion, we need to consider more than one spectral mode
but at the price of a lower output SNR. This is the classical compromise
between noise reduction and speech distortion that we clearly see from this
formulation, which can lead to much more accurate compromises than those
obtained from some conventional approaches.

Let us consider the Q (1 ≤ Q ≤M) largest spectral modes of the fullmode
input SNR. For that, we define the matrix of size M ×Q:

A1:Q =
[
a1 a2 · · · aQ

]
. (5.58)

We choose filters of the form:

hX,Q = A1:Qα1:Q, (5.59)

where α1:Q ̸= 0 is a vector of length Q. To find α1:Q, we use the filter
hV,Q = i−A1:Qα1:Q in the output SNR, which leads to

oSNR (α1:Q) =
(i−A1:Qα1:Q)

H
Φx (i−A1:Qα1:Q)

(i−A1:Qα1:Q)
H
Φv (i−A1:Qα1:Q)

(5.60)

=
ϕX1 −

[
2ℜ
(
iTΦvA1:QΛ1:Qα1:Q

)
−αH

1:QΛ1:Qα1:Q

]
ϕV1 −

[
2ℜ (iTΦvA1:Qα1:Q)−αH

1:Qα1:Q

] ,

where
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Λ1:Q = diag (λ1, λ2, . . . , λQ) . (5.61)

The minimization of (5.60) gives

α1:Q = AH
1:QΦvi

= Λ−1
1:QA

H
1:QΦxi. (5.62)

We deduce the first class of compromising filters:

hX,1,Q = A1:QΛ
−1
1:QA

H
1:QΦxi (5.63)

= A1:QA
H
1:QΦvi.

For Q = 1, we have the maximum SNR filter with MD, i.e., hX,1,Q = hmMD,
and for Q =M , we have the identity filter, i.e., hX,1,M = i. We should always
have

oSNR (hX,1,1) ≥ oSNR (hX,1,2) ≥ · · · ≥ oSNR (hX,1,M ) = iSNR. (5.64)

A very interesting particular case of (5.59) is

hX,1,Q = αA1:Q11:Q, (5.65)

where α ̸= 0 and 11:Q is a vector of length Q whose all elements are 1’s. the
parameter α is obtained as explained above. We get

α =
1T
1:QA

H
1:QΦvi

Q
(5.66)

As a result, the filter in (5.65) is

hX,1,Q =
A1:Q11:Q1

T
1:QA

H
1:QΦvi

Q
. (5.67)

What makes this filter so interesting is that its output SNR is

oSNR (hX,1,Q) =
1T
1:QA

H
1:QΦxA1:Q11:Q

1T
1:QA

H
1:QΦvA1:Q11:Q

=

∑Q
q=1 iSNRq

Q
. (5.68)

Therefore,

oSNR (hX,1,1) ≥ oSNR (hX,1,2) ≥ · · · ≥ oSNR (hX,1,M ) = iSNRFM. (5.69)

However, this filter may distort more the speech signal than hX,1,Q.
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Now, let us consider the M −R (0 ≤ R ≤M − 1) smallest spectral modes
of the fullmode input SNR and define the filters:

hV,R = AR+1αR+1, (5.70)

where

AR+1 =
[
aR+1 aR+2 · · · aM

]
(5.71)

is a matrix of size M × (M −R) and αR+1 ̸= 0 is a vector of length M −R.
Substituting hX,R = i−AR+1αR+1 into the output SNR, we get

oSNR (αR+1) =
(i−AR+1αR+1)

H
Φx (i−AR+1αR+1)

(i−AR+1αR+1)
H
Φv (i−AR+1αR+1)

(5.72)

=
ϕX1 −

[
2ℜ
(
iTΦvAR+1ΛR+1αR+1

)
−αH

R+1Λ1:QαR+1

]
ϕV1 −

[
2ℜ (iTΦvAR+1αR+1)−αH

R+1αR+1

] ,

where

ΛR+1 = diag (λR+1, λR+1, . . . , λM ) . (5.73)

From the maximization of (5.72), we obtain

αR+1 = AH
R+1Φvi

= Λ−1
R+1A

H
R+1Φxi. (5.74)

We deduce the second class of compromising filters:

hX,2,R = i−AR+1Λ
−1
R+1A

H
R+1Φxi (5.75)

= i−AR+1A
H
R+1Φvi,

which is equivalent to the first class.

5.4 Application to Fixed and Superdirective
Beamforming

We consider a plane wave, in the farfield, that propagates in an anechoic
acoustic environment at the speed of sound, i.e., c = 340 m/s, and impinges on
a uniform linear array (ULA) consisting of M omnidirectional microphones,
where the distance between two successive sensors is equal to δ. The direction
of the source signal to the array is parameterized by the azimuth angle θ. In
this context, the steering vector (of length M) is given by
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dθ =
[
1 e−ȷ2πfτ0 cos θ · · · e−ȷ(M−1)2πfτ0 cos θ

]T
, (5.76)

where ȷ =
√
−1 is the imaginary unit, f > 0 is the temporal frequency, and

τ0 = δ/c is the delay between two successive sensors at the angle θ = 0. Like
in superdirective beamforming [5], [6], we assume that the main lobe is at
the angle θ = 0 (endfire direction) and the desired signal propagates from
the same angle, so that the corresponding steering vector is d0. It will also
be assumed that δ is small.

From the gain in SNR, two important measures, which do not depend on
the statistics of the signals but on some noise models, are derived for fixed
beamforming. They are the white noise gain (WNG):

W (h) =

∣∣hHd0

∣∣2
hHh

(5.77)

and the directivity factor (DF):

D (h) =

∣∣hHd0

∣∣2
hHΓdh

, (5.78)

where the elements of Γd are given by

[Γd]ij =
sin [2πf(j − i)τ0]

2πf(j − i)τ0

= sinc [2πf(j − i)τ0] . (5.79)

The WNG is a measure of the sensitivity of the microphone array to some of
its imperfections, such as sensor noise, while the DF quantifies how the same
array performs in the presence of reverberation.

From the maximization of the WNG, we find the well-known delay-and-
sum (DS) beamformer [4]:

hDS =
d0

M
, (5.80)

withW (hDS) =M = Wmax. While the DS beamformer maximizes theWNG,
it never amplifies the diffuse noise since D (hDS) ≥ 1. However, this DF is not
very large and the beampattern of the DS beamformer is very frequency de-
pendent. If we maximize the DF, we easily get the superdirective beamformer
[4], [5], [6]:

hS =
Γ−1
d d0

dH
0 Γ−1

d d0

, (5.81)
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with D (hS) = dH
0 Γ−1

d d0 = Dmax. While the superdirective beamformer max-
imizes the DF (leading to supergains), its WNG may be smaller than 1, which
implies white noise amplification, especially at low frequencies.

Now, let us develop things from our perspective. Let us start by defining
the set S = {d0, i2, . . . , iM} containing M linearly independent vectors that
span the M -dimensional Euclidean space, where ii is the ith column of IM .
Thanks to the Gram-Schmidt orthonormalization process, we can easily gen-
erate from S another set So = {u1,u2, . . . ,uM} whose orthonormal vectors
span the same space. It is cleat that

u1 =
d0√
dH
0 d0

=
d0√
M

(5.82)

and

uH
i d0 = 0, i = 2, 3, . . . ,M. (5.83)

From So, we can form the M ×M unitary matrix:

U =
[
u1 u2 · · · uM

]
(5.84)

=
[
u1 U2

]
,

where UUH = UHU = IM .
The beamformer that minimizes both the WNG and the DF has the form:

hV = U2α2, (5.85)

where α2 ̸= 0 is an arbitrary complex-valued vector of length M −1. Indeed,
one can check that W (hV ) = D (hV ) = 0. Therefore, with hV , we can have
the estimate of the diffuse-plus-white noise at the reference sensor. To have
the estimate of the desired signal, we use the beamformer:

hX = i−U2α2. (5.86)

Substituting (5.86) into the definition of the WNG, we get

W (α2) =
(i−U2α2)

H
d0d

H
0 (i−U2α2)

(i−U2α2)
H
(i−U2α2)

(5.87)

=
1

1− 2ℜ
(
αH

2 UH
2 i
)
+αH

2 α2

,

whose maximization leads to

α2 = UH
2 i. (5.88)

As a consequence, the beamformer in (5.86) becomes
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hX = i−U2U
H
2 i

= i−
(
IM − u1u

H
1

)
i

=
(
uH
1 i
)
u1

= hDS, (5.89)

which is another way to derive the DS beamformer.
Using again (5.86) but in the definition of the DF gives

D (α2) =
(i−U2α2)

H
d0d

H
0 (i−U2α2)

(i−U2α2)
H
Γd (i−U2α2)

(5.90)

=
1

1− 2ℜ
(
αH

2 UH
2 Γdi

)
+αH

2 UH
2 ΓdU2α2

.

From the maximization of the previous expression, we get

α2 =
(
UH

2 ΓdU2

)−1
UH

2 Γdi. (5.91)

As a result, the beamformer in (5.86) becomes

hX = i−U2

(
UH

2 ΓdU2

)−1
UH

2 Γdi

= Γ
−1/2
d

[
IM − Γ

1/2
d U2

(
UH

2 ΓdU2

)−1
UH

2 Γ
1/2
d

]
Γ
1/2
d i

= Γ
−1/2
d

(
Γ
−1/2
d u1u

H
1 Γ

−1/2
d

uH
1 Γ−1

d u1

)
Γ
1/2
d i

=
Γ−1
d u1√

M × uH
1 Γ−1

d u1

= hS, (5.92)

which is another way to derive the superdirective beamformer, where we have
used the fact that

IM = Γ
1/2
d U2

(
UH

2 ΓdU2

)−1
UH

2 Γ
1/2
d +

Γ
−1/2
d u1u

H
1 Γ

−1/2
d

uH
1 Γ−1

d u1

. (5.93)

Now, if we want to compromise between supergains and white noise am-
plification, we propose to maximize the DF subject to a constraint on the
WNG, the same way it was done in [6]. This is equivalent to minimizing
1/D (α2) with a constraint on 1/W (α2), i.e., minimizing

1

D (α2)
+ ϵ

1

W (α2)
= 1− 2ℜ

(
αH

2 UH
2 Γdi

)
+αH

2 UH
2 ΓdU2α2

+ ϵ
[
1− 2ℜ

(
αH

2 UH
2 i
)
+αH

2 α2

]
, (5.94)
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where ϵ ≥ 0 is a Lagrange multiplier. We easily find that

α2 =
(
UH

2 Γd,ϵU2

)−1
UH

2 Γd,ϵi, (5.95)

where

Γd,ϵ = Γd + ϵIM . (5.96)

Therefore, the robust superdirective beamformer is

hR,ϵ = i−U2

(
UH

2 Γd,ϵU2

)−1
UH

2 Γd,ϵi. (5.97)

It is clear that hR,0 = hS and hR,∞ = hDS.
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Chapter 6

Speech Enhancement from the
Fullband Output SNR Perspective

Most of the speech enhancement algorithms are implemented in the time-
frequency domain, i.e., the short-time Fourier transform (STFT) domain.
The two main advantages of the STFT are that the algorithms can be im-
plemented very efficiently and the different frequency bins can apparently be
manipulated in a very flexible way in order to better compromise between
noise reduction and speech distortion. Therefore, it is important to under-
stand how things work from the fullband output SNR perspective and how
gains/filters for noise reduction can be improved by fully exploiting all facets
of this fundamental measure. This is the objective of this chapter, where two
cases of the single-channel problem are discussed as well as the multichannel
scenario.

6.1 Signal Model and Problem Formulation

The work developed in this chapter is an important generalization and ex-
tension of some of the ideas presented in [1].

Let us take the single-channel speech enhancement problem in the time
domain of Section 4.1 (Chapter 4), i.e.,

y(t) = x(t) + v(t), (6.1)

where y(t), x(t), and v(t) are the microphone, desired, and noise signals,
respectively. Using the short-time Fourier transform (STFT), (6.1) can be
rewritten in the time-frequency domain as [2]

Y (k, n) = X(k, n) + V (k, n), (6.2)

where the zero-mean complex random variables Y (k, n), X(k, n), and V (k, n)
are the STFTs of y(t), x(t), and v(t), respectively, at the frequency bin k ∈
{0, 1, . . . ,K − 1} and the time frame n. In order to simplify the notation, we

83© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
J. Benesty, Fundamentals of Speech Enhancement, SpringerBriefs in Electrical
and Computer Engineering, https://doi.org/10.1007/978-3-319-74524-4_6
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drop the dependence on the time frame; therefore, (6.2) for example is written
as Y (k) = X(k) + V (k). Since x(t) and v(t) are uncorrelated by assumption,
the variance of Y (k) is

ϕY (k) = E
[
|Y (k)|2

]
(6.3)

= ϕX(k) + ϕV (k),

where ϕX(k) = E
[
|X(k)|2

]
and ϕV (k) = E

[
|V (k)|2

]
are the variances of

X(k) and V (k), respectively. From (6.3), we can define the subband input
SNR:

iSNR(k) =
ϕX(k)

ϕV (k)
(6.4)

and the fullband input:

iSNR =

∑K−1
k=0 ϕX(k)∑K−1
k=0 ϕV (k)

. (6.5)

It can be seen that

min
k

iSNR(k) ≤ iSNR ≤ max
k

iSNR(k). (6.6)

In words, the fullband input SNR can never exceed the maximum subband
input SNR and can never go below the minimum subband input SNR.

Then, our objective is the estimation of the desired signal, X(k), from the
observed signal, Y (k), in the best possible (or flexible) way from the fullband
output SNR that will be defined in the next section.

6.2 Speech Enhancement with Gains

The simplest and most effective way to perform speech enhancement in the
STFT domain is by applying a complex gain, H(k), to the observed signal,
Y (k), i.e.,

Z(k) = H(k)Y (k) (6.7)

= Xfd(k) + Vfn(k),

where Z(k) is either the estimate of X(k) or V (k), Xfd(k) = H(k)X(k) is the
filtered desired signal, and Vfn(k) = H(k)V (k) is the filtered noise. If Z(k) is

the estimate of V (k), then the estimate of X(k) is X̂(k) = Y (k)−Z(k). The
variance of Z(k) is then
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ϕZ(k) = |H(k)|2 ϕY (k) (6.8)

= ϕXfd
(k) + ϕVfn

(k),

where ϕXfd
(k) = |H(k)|2 ϕX(k) and ϕVfn

(k) = |H(k)|2 ϕV (k) are the vari-
ances of Xfd(k) and Vfn(k), respectively.

It is clear that the subband input and output SNRs are equal, i.e.,

oSNR [H(k)] =
ϕXfd

(k)

ϕVfn
(k)

(6.9)

= iSNR(k).

However, the fullband output SNR is

oSNR [H(:)] =

∑K−1
k=0 ϕXfd

(k)∑K−1
k=0 ϕVfn

(k)
. (6.10)

Therefore, our aim is to find the K subband gains, H(k), k = 0, 1, . . . ,K−1,
in such a way that the fullband output SNR is greater than the fullband
input SNR, i.e., oSNR [H(:)] > iSNR.

For convenience, we propose to use the index ki, i = 0, 1, . . . ,K − 1 and
ki ∈ {0, 1, . . . ,K − 1}, which allows us to order the K subband input SNRs
from the largest to the smallest, i.e.,

iSNR(k0) ≥ iSNR(k1) ≥ · · · ≥ iSNR(kK−1). (6.11)

We can also express the fullband output SNR as

oSNR (h) =
hHDXh

hHDV h
(6.12)

=

∑K−1
i=0 |H(ki)|2 ϕX(ki)∑K−1
i=0 |H(ki)|2 ϕV (ki)

,

where

h =
[
H(k0) H(k1) · · · H(kK−1)

]T
(6.13)

is a filter of length K containing all the subband gains and

DX = diag [ϕX(k0), ϕX(k1), . . . , ϕX(kK−1)] (6.14)

DV = diag [ϕV (k0), ϕV (k1), . . . , ϕV (kK−1)] (6.15)

are two diagonal matrices. It is assumed that ϕV (ki) ̸= 0, ∀ki ∈ {0, 1, . . . ,K−
1}. Let

λ(ki) = iSNR(ki), i = 0, 1, . . . ,K − 1. (6.16)
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It is worth noticing that

D−1
V DX = diag [λ(k0), λ(k1), . . . , λ(kK−1)] (6.17)

is also a diagonal matrix containing all the K subband input SNRs ordered
from the largest to the smallest.

Now, we give two important properties.

Property 6.1. Let λ(k0) ≥ λ(k1) ≥ · · · ≥ λ(kK−1) ≥ 0. We have∑K−1
i=0 |αi|2 λ(ki)∑K−1

i=0 |αi|2
≤
∑K−2

i=0 |αi|2 λ(ki)∑K−2
i=0 |αi|2

≤ · · ·

· · · ≤
∑1

i=0 |αi|2 λ(ki)∑1
i=0 |αi|2

≤ λ(k0) (6.18)

or, equivalently,∑K−1
i=0 |αi|2 ϕX(ki)∑K−1
i=0 |αi|2 ϕV (ki)

≤
∑K−2

i=0 |αi|2 ϕX(ki)∑K−2
i=0 |αi|2 ϕV (ki)

≤ · · ·

· · · ≤
∑1

i=0 |αi|2 ϕX(ki)∑1
i=0 |αi|2 ϕV (ki)

≤ ϕX(k0)

ϕV (k0)
, (6.19)

where αi, i = 0, 1, . . . ,K − 1 are arbitrary complex numbers with at least
one of them different from 0.

Proof. The previous inequalities can be easily shown by induction.

Property 6.2. Let λ(k0) ≥ λ(k1) ≥ · · · ≥ λ(kK−1) ≥ 0. We have

λ(kK−1) ≤
∑1

i=0 |βK−1−i|2 λ(kK−1−i)∑1
i=0 |βK−1−i|2

≤ · · ·

· · · ≤
∑K−2

i=0 |βK−1−i|2 λ(kK−1−i)∑K−2
i=0 |βK−1−i|2

≤
∑K−1

i=0 |βK−1−i|2 λ(kK−1−i)∑K−1
i=0 |βK−1−i|2

(6.20)

or, equivalently,

ϕX(kK−1)

ϕV (kK−1)
≤
∑1

i=0 |βK−1−i|2 ϕX(kK−1−i)∑1
i=0 |βK−1−i|2 ϕV (kK−1−i)

≤ · · ·

· · · ≤
∑K−2

i=0 |βK−1−i|2 ϕX(kK−1−i)∑K−2
i=0 |βK−1−i|2 ϕV (kK−1−i)

≤
∑K−1

i=0 |βK−1−i|2 ϕX(kK−1−i)∑K−1
i=0 |βK−1−i|2 ϕV (kK−1−i)

,

(6.21)

where βK−1−i, i = 0, 1, . . . ,K − 1 are arbitrary complex numbers with at
least one of them different from 0.
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Proof. The previous inequalities can be easily shown by induction.

It follows from the previous properties that1

iSNR(kK−1) ≤ oSNR (h) ≤ iSNR(k0), ∀h, (6.22)

as well as the inequalities in (6.6). Clearly, both the fullband input and output
SNRs can never exceed the maximum subband input SNR.

6.3 Determination of the Optimal Gains

There are two approaches to find the optimal gains from the fullband output
SNR in order to perform speech enhancement. The first one considers the
largest subband input SNRs. In this case, we get the estimate of the desired
signal directly. The second method considers the smallest subband input
SNRs. As a result, we get the estimate of the noise signal from which we
easily deduce the estimate of the desired signal.

6.3.1 Maximization of the Fullband Output SNR

The filter, h, that maximizes the fullband output SNR given in (6.12) is sim-
ply the eigenvector corresponding to the maximum eigenvalue of the matrix
D−1

V DX . Since this matrix is diagonal, its maximum eigenvalue is its largest
diagonal element, i.e., λ(k0). As a consequence, the maximum SNR filter is

hmax = α(k0)i1, (6.23)

where α(k0) ̸= 0 is an arbitrary complex number and i1 is the first column
of the K ×K identity matrix, IK . Equivalently, we can write (6.23) as{

Hmax(k0) = α(k0)
Hmax(ki) = 0, i = 1, 2, . . . ,K − 1

. (6.24)

With (6.23), we get the maximum possible fullband output SNR, which is

oSNR (hmax) = λ(k0) = max
k

iSNR(k) ≥ iSNR. (6.25)

As a result,

oSNR (hmax) ≥ oSNR (h) , ∀h. (6.26)

1 This is also a consequence of the definition of the fullband output SNR in (6.12), whose
form is the generalized Rayleigh quotient.
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We deduce that the estimate of the desired signal is{
X̂max(k0) = Hmax(k0)Y (k0)

X̂max(ki) = 0, i = 1, 2, . . . ,K − 1
. (6.27)

Now, we need to determine α(k0). There are at least two ways to find this

parameter. The first one is from the MSE between X(k0) and X̂max(k0), i.e.,

J [α(k0)] = E
[
|X(k0)− α(k0)Y (k0)|2

]
. (6.28)

The second possibility is to use the distortion-based MSE, i.e.,

Jd [α(k0)] = E
[
|X(k0)− α(k0)X(k0)|2

]
. (6.29)

The minimization of J [α(k0)] leads to the Wiener gain at the frequency
bin k0, i.e.,

αW(k0) =
iSNR(k0)

1 + iSNR(k0)
, (6.30)

while the minimization of Jd [α(k0)] gives the unitary gain at the frequency
bin k0, i.e.,

αU(k0) = 1. (6.31)

Even though this method maximizes the fullband output SNR, it is ex-
pected to introduce a huge amount of distortion to the desired signal, since
all its frequency bins are put to 0 except at k0. A much better approach when
we deal with broadband signals such as speech is to form the filter from a
linear combination of the eigenvectors corresponding to the P (≤ K) largest
eigenvalues of D−1

V DX , i.e.,

hP =

P−1∑
p=0

α(kp)ip+1, (6.32)

where α(kp), p = 0, 1, . . . , P −1 are arbitrary complex numbers with at least
one of them different from 0 and ip+1 is the (p+ 1)th column of IK . We can
also express (6.32) as{

HP (kp) = α(kp), p = 0, 1, . . . , P − 1
HP (ki) = 0, i = P, P + 1, . . . ,K − 1

. (6.33)

Hence, the estimate of the desired signal is
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X̂P (kp) = HP (kp)Y (kp), p = 0, 1, . . . , P − 1

X̂P (ki) = 0, i = P, P + 1, . . . ,K − 1
. (6.34)

To find the α(kp)’s, we can either optimize J [α(kp)] or Jd [α(kp)]. The first
one leads to the Wiener gains at the frequency bins kp, p = 0, 1, . . . , P − 1,
i.e.,

αW(kp) =
iSNR(kp)

1 + iSNR(kp)
, (6.35)

while the second one gives the unitary gains at the frequency bins kp, p =
0, 1, . . . , P − 1, i.e.,

αU(kp) = 1. (6.36)

The filters (of length K) corresponding to (6.35) and (6.36) are, respectively,

hP,W =
[
αW(k0) · · · αW(kP−1) 0 · · · 0

]T
(6.37)

and

hP,U =
[
1 · · · 1 0 · · · 0

]T
. (6.38)

For P = K, hK,W corresponds to the classical Wiener approach [2] and
hK,U is the identity filter, which does not affect the observations. Clearly,
hP,U corresponds to the ideal binary mask [3], since the subband observation
signals with the P largest subband input SNRs are not affected while the
K−P others with the smallest subband input SNRs are put to 0. We should
always have

oSNR
(
hP,U

)
≤ oSNR

(
hP,W

)
. (6.39)

From Property 6.1, we deduce that

iSNR ≤ oSNR
(
hK,W

)
≤ oSNR

(
hK−1,W

)
≤ · · · ≤ oSNR

(
h1,W

)
= λ(k0)

(6.40)

and

iSNR = oSNR
(
hK,U

)
≤ oSNR

(
hK−1,U

)
≤ · · · ≤ oSNR

(
h1,U

)
= λ(k0).

(6.41)
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6.3.2 Minimization of the Fullband Output SNR

It is clear that the filter denoted hV that minimizes the fullband output SNR
given in (6.12) is the eigenvector corresponding to the minimum eigenvalue
of the matrix D−1

V DX , which is λ(kK−1). Therefore, the minimum SNR filter
is

hV = β(kK−1)iK , (6.42)

where β(kK−1) ̸= 0 is an arbitrary complex number and iK is theKth column
of IK . Equivalently, we can write (6.42) as{

HV (ki) = 0, i = 0, 1, . . . ,K − 2
HV (kK−1) = β(kK−1)

. (6.43)

With (6.42), we get the minimum possible fullband output SNR, which is

oSNR (hV ) = λ(kK−1) = min
k

iSNR(k) ≤ iSNR. (6.44)

As a result,

oSNR (hV ) ≤ oSNR (h) , ∀h. (6.45)

We deduce that the estimates of the noise and desired signals are, respectively,{
V̂ (ki) = 0, i = 0, 1, . . . ,K − 2

V̂ (kK−1) = HV (kK−1)Y (kK−1)
(6.46)

and {
X̂(ki) = Y (ki), i = 0, 1, . . . ,K − 2

X̂(kK−1) = HX(kK−1)Y (kK−1)
, (6.47)

where

HX(kK−1) = 1−HV (kK−1) (6.48)

is the equivalent gain for the estimation of X(kK−1).

The MSE between X(kK−1) and X̂βK−1(kK−1) is

J [β(kK−1)] = E
[
|V (kK−1)− β(kK−1)Y (kK−1)|2

]
(6.49)

= |β(kK−1)|2 ϕX(kK−1) + |1− β(kK−1)|2 ϕV (kK−1)

= Jd [β(kK−1)] + Jr [β(kK−1)] .
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From the previous expression, we see that there are at least two ways to find
β(kK−1). The minimization of J [β(kK−1)] leads to

βW(kK−1) =
1

1 + iSNR(kK−1)
, (6.50)

which is the Wiener gain at the frequency bin kK−1 for the estimation of
V (kK−1) or, equivalently,

αW(kK−1) = 1− βW(kK−1) (6.51)

=
iSNR(kK−1)

1 + iSNR(kK−1)
,

which is the Wiener gain at the frequency bin kK−1 for the estimation of
X(kK−1). The minimization of the power of the residual noise, Jr [β(kK−1)],
gives

βU(kK−1) = 1, (6.52)

which is the unitary gain at the frequency bin kK−1 for the estimation of
V (kK−1) or, equivalently,

αN(kK−1) = 1− βU(kK−1) (6.53)

= 0,

which is the null gain at the frequency bin kK−1 for the estimation of
X(kK−1).

Obviously, the approach presented above is not meaningful for broadband
signals, since only one frequency bin is processed while all the others are not
affected at all. This is far to be enough as far as noise reduction is concerned,
even though very little distortion is expected. A more practical approach is
to form the filter from a linear combination of the eigenvectors corresponding
to the Q(≤ K) smallest eigenvalues of D−1

V DX , i.e.,

hV,Q =

Q−1∑
q=0

β(kK−Q+q)iK−Q+q+1, (6.54)

where β(kK−Q+q), q = 0, 1, . . . , Q − 1 are arbitrary complex numbers with
at least one of them different from 0 and iK−Q+q+1 is the (K −Q+ q+1)th
column of IK . Therefore, the equivalent filter for the estimation of the desired
signal at the different frequency bins is

hX,Q = 1− hV,Q, (6.55)

where 1 is a vector of length K with all its elements equal to 1. We can also
express (6.55) as
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HX,Q(ki) = 1, i = 0, 1, . . . ,K −Q− 1
HX,Q(kK−Q+q) = 1− β(kK−Q+q), q = 0, 1, . . . , Q− 1

. (6.56)

Hence, the estimate of the desired signal is{
X̂(ki) = Y (ki), i = 0, 1, . . . ,K −Q− 1

X̂(kK−Q+q) = HX,Q(kK−Q+q)Y (kK−Q+q), q = 0, 1, . . . , Q− 1
. (6.57)

Following the same steps as above, we deduce the two filters of interest:

hX,Q,W =
[
1 · · · 1 αW(kK−Q) · · · αW(kK−1)

]T
(6.58)

and

hX,Q,N =
[
1 · · · 1 0 · · · 0

]T
. (6.59)

For Q = K, hX,K,W = hK,W corresponds to the classical Wiener approach
and hX,K,N = 0 is the null filter, which completely cancels the observations.
The filter hX,Q,W can be seen as a combination of the ideal binary mask
and Wiener, where the observations with large subband input SNRs are not
affected while the ones with small subband input SNRs are processed with
the Wiener gains. The filter hX,Q,N is, obviously, the ideal binary mask. We
should always have

oSNR
(
hX,Q,N

)
≥ oSNR

(
hX,Q,W

)
. (6.60)

We can also deduce that

oSNR
(
hX,K,W

)
≥ oSNR

(
hX,K−1,W

)
≥ · · · ≥ oSNR

(
hX,1,W

)
≥ iSNR

(6.61)

and

oSNR
(
hX,K,N

)
≥ oSNR

(
hX,K−1,N

)
≥ · · · ≥ oSNR

(
hX,1,N

)
≥ iSNR.

(6.62)

6.4 Taking the Interframe Correlation Into Account

It is well known that a speech signal at successive time frames in the STFT
domain is highly correlated. Therefore, if we wish to improve the performance
of noise reduction, we need to take this interframe correlation into account.

Let us consider the L ≥ 1 most recent time frames of Y (k). Then, we can
express (6.2) as
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y(k) =
[
Y (k, n) Y (k, n− 1) · · · Y (k, n− L+ 1)

]T
= x(k) + v(k), (6.63)

where x(k) and v(k) are defined similarly to y(k). The L × L covariance
matrix of y(k) is

Φy(k) = E
[
y(k)yH(k)

]
(6.64)

= Φx(k) +Φv(k),

where Φx(k) and Φv(k) are the covariance matrices of x(k) and v(k), re-
spectively.

The two Hermitian matrices Φx(k) and Φv(k) in (6.64) can be jointly
diagonalized as follows [4]:

AH(k)Φx(k)A(k) = Λ(k), (6.65)

AH(k)Φv(k)A(k) = IL, (6.66)

where A(k) is a full-rank square matrix (of size L × L), Λ(k) is a diagonal
matrix whose main elements are real and nonnegative, and IL is the L × L
identity matrix. Furthermore, Λ(k) and A(k) are the eigenvalue and eigen-
vector matrices, respectively, of Φ−1

v (k)Φx(k), i.e.,

Φ−1
v (k)Φx(k)A(k) = A(k)Λ(k). (6.67)

The eigenvalues of Φ−1
v (k)Φx(k), denoted λl(k), l = 1, 2, . . . , L, are ordered

as λ1(k) ≥ λ2(k) ≥ · · · ≥ λL(k) ≥ 0 and the corresponding eigenvectors
are denoted a1(k),a2(k), . . . ,aL(k). Obviously, the noisy signal covariance
matrix can also be diagonalized as

AH(k)Φy(k)A(k) = Λ(k) + IL. (6.68)

We will see a bit later that this joint diagonalization is going to be very
useful.

Since the interframe correlation is now taken into account, X(k) is esti-
mated by applying a complex-valued filter, h(k) of length L, to the observa-
tion signal vector, y(k), i.e.,

Z(k) = hH(k)y(k) (6.69)

= Xfd(k) + Vrn(k),

where Z(k) is the estimate of X(k)2, Xfd(k) = hH(k)x(k) is the filtered
desired signal, and Vrn(k) = hH(k)v(k) is the residual noise. Obviously, the
case L = 1 corresponds to the conventional single-channel noise reduction

2 In this section, we only focus on the estimation of X(k); the extension of this approach
to the estimation of V (k) is straightforward.
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approach in the STFT domain with gains [2]. The variance of Z(k) is then

ϕZ(k) = hH(k)Φy(k)h(k) (6.70)

= ϕXfd
(k) + ϕVrn

(k),

where ϕXfd
(k) = hH(k)Φx(k)h(k) and ϕVrn(k) = hH(k)Φv(k)h(k) are the

variances of Xfd(k) and Vrn(k), respectively. We deduce from (6.70) that the
subband and fullband output SNRs are, respectively,

oSNR [h(k)] =
ϕXfd

(k)

ϕVrn(k)
(6.71)

=
hH(k)Φx(k)h(k)

hH(k)Φv(k)h(k)

and

oSNR [h(:)] =

∑K−1
k=0 ϕXfd

(k)∑K−1
k=0 ϕVrn(k)

. (6.72)

As we did in previous sections, we propose to use the index ki, i =
0, 1, . . . ,K−1 and ki ∈ {0, 1, . . . ,K−1}, which allows us to order the K sub-
band eigenvalues λ1(k), k = 0, 1, . . . ,K − 1 from the largest to the smallest,
i.e.,

λ1(k0) ≥ λ1(k1) ≥ · · · ≥ λ1(kK−1). (6.73)

So, with this indexing, the subband filter is denoted as h(ki), which is as-
sumed in the rest to have the form:

h(ki) = ψ(ki)a1(ki), (6.74)

where ψ(ki) is an arbitrary complex number and a1(ki) is the eigenvector cor-
responding to λ1(ki). For ψ(ki) ̸= 0, it is clear that h(ki) in (6.74) maximizes
the subband output SNR, since

oSNR [h(ki)] = λ1(ki). (6.75)

As a result, with h(ki) in (6.74), (6.73) is equivalent to saying that

oSNR [h(k0)] ≥ oSNR [h(k1)] ≥ · · · ≥ oSNR [h(kK−1)] . (6.76)

Also, we have

λ1(ki) ≥ iSNR(ki) (6.77)

and
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iSNR ≤ λ1(k0). (6.78)

In the particular case of L = 1, we have λ1(ki) = λ(ki) = iSNR(ki), which
corresponds to the study of previous sections.

Let

h =
[
hT (k0) h

T (k1) · · · hT (kK−1)
]T

(6.79)

be a long filter of length KL containing all the ordered subband filters. We
can express the fullband output SNR as

oSNR (h) =
hHDΦxh

hHDΦvh
, (6.80)

where

DΦx = diag [Φx(k0),Φx(k1), . . . ,Φx(kK−1)] (6.81)

DΦv = diag [Φv(k0),Φv(k1), . . . ,Φv(kK−1)] (6.82)

are block diagonal matrices. It is worth noticing that

D−1
Φv

DΦxDA = DADΛ, (6.83)

where

D−1
Φv

= diag
[
Φ−1

v (k0),Φ
−1
v (k1), . . . ,Φ

−1
v (kK−1)

]
, (6.84)

DA = diag [A(k0),A(k1), . . . ,A(kK−1)] , (6.85)

DΛ = diag [Λ(k0),Λ(k1), . . . ,Λ(kK−1)] . (6.86)

Therefore, our objective is to find h in such a way that oSNR (h) > iSNR.
Since

oSNR (h) =

∑K−1
i=0 |ψ(ki)|2 λ1(ki)∑K−1

i=0 |ψ(ki)|2
, (6.87)

we deduce that

λ1(kK−1) ≤ oSNR (h) ≤ λ1(k0). (6.88)

The filter, h, that maximizes the fullband output SNR given in (6.80) is
simply the eigenvector corresponding to the maximum eigenvalue, λ1(k0), of
the matrix D−1

Φv
DΦx . As a consequence, the maximum SNR filter (of length

KL) is

hmax =
[
ψ(k0)a

T
1 (k0) 0

T
]T
, (6.89)
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where ψ(k0) ̸= 0 . Equivalently, we can write (6.89) as{
hmax(k0) = ψ(k0)a1(k0)
hmax(ki) = 0, i = 1, 2, . . . ,K − 1

. (6.90)

With (6.89), we get the maximum possible fullband output SNR, which is

oSNR (hmax) = λ1(k0) ≥ iSNR (6.91)

and

oSNR (hmax) ≥ oSNR (h) , ∀h. (6.92)

We deduce that the estimate of the desired signal is{
X̂max(k0) = hH

max(k0)y(k0)

X̂max(ki) = 0, i = 1, 2, . . . ,K − 1
. (6.93)

Now, the parameter ψ(k0) needs to be determined. There are at least two

ways to find it. The first one is from the MSE between X(k0) and X̂max(k0),
i.e.,

J [ψ(k0)] = E
[∣∣X(k0)− ψ∗(k0)a

H
1 (k0)y(k0)

∣∣2] . (6.94)

The second possibility is to use the distortion-based MSE, i.e.,

Jd [ψ(k0)] = E
[∣∣X(k0)− ψ∗(k0)a

H
1 (k0)x(k0)

∣∣2] . (6.95)

The minimization of J [ψ(k0)] leads to the maximum SNR filter with min-
imum MSE at the frequency bin k0, i.e.,

hmax,1(k0) =
a1(k0)a

H
1 (k0)Φx(k0)i1

1 + λ1(k0)
, (6.96)

while the minimization of Jd [ψ(k0)] gives a minimum distortion filter at the
frequency bin k0, i.e.,

hmax,2(k0) =
a1(k0)a

H
1 (k0)Φx(k0)i1
λ1(k0)

, (6.97)

where i1 is the first column of IL.
Clearly, this method maximizes the fullband output SNR but it is expected

to introduce a huge amount of distortion to the desired signal, since all its
frequency bins are put to 0 except at k0. A much better approach when we
deal with broadband signals such as speech is to form the filter (of length
KL) from a concatenation of the eigenvectors corresponding to the P (≤ K)
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largest eigenvalues from the set {λ1(ki), i = 0, 1, . . . ,K − 1}, i.e.,

hP =
[
ψ(k0)a

T
1 (k0) · · · ψP−1(kP−1)a

T
1 (kP−1) 0

T
]T
, (6.98)

where ψ(kp), p = 0, 1, . . . , P −1 are arbitrary complex numbers with at least
one of them different from 0. We can also express (6.98) as{

hP (kp) = ψ(kp)a1(kp), p = 0, 1, . . . , P − 1
hP (ki) = 0, i = P, P + 1, . . . ,K − 1

. (6.99)

Hence, the estimate of the desired signal is{
X̂P (kp) = hH

P (kp)y(kp), p = 0, 1, . . . , P − 1

X̂P (ki) = 0, i = P, P + 1, . . . ,K − 1
. (6.100)

To find the ψ(kp)’s, we can either optimize J [ψ(kp)] or Jd [ψ(kp)]. The
first one leads to filters with minimum MSE at the frequency bins kp, p =
0, 1, . . . , P − 1, i.e.,

hP,1(kp) =
a1(kp)a

H
1 (kp)Φx(kp)i1

1 + λ1(kp)
, (6.101)

while the second one gives the minimum distortion filters at the frequency
bins kp, p = 0, 1, . . . , P − 1, i.e.,

hP,2(kp) =
a1(kp)a

H
1 (kp)Φx(kp)i1
λ1(kp)

. (6.102)

The filters (of length KL) corresponding to (6.101) and (6.102) are, respec-
tively,

hP,1 =
[
hT
P,1(k0) · · · hT

P,1(kP−1) 0
T
]T

(6.103)

and

hP,2 =
[
hT
P,2(k0) · · · hT

P,2(kP−1) 0
T
]T
. (6.104)

This approach can be seen as a generalization of the ideal binary mask [3],
since the subband observation signals of the microphone with the P largest
subband output SNRs are processed with filters with minimum MSE or min-
imum distortion, while the K − P others with the smallest subband output
SNRs are put to 0. We should always have

oSNR
(
hP,2

)
≤ oSNR

(
hP,1

)
. (6.105)

We can deduce that
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iSNR ≤ oSNR
(
hK,1

)
≤ oSNR

(
hK−1,1

)
≤ · · · ≤ oSNR

(
h1,1

)
= λ1(k0)

(6.106)

and

iSNR ≤ oSNR
(
hK,2

)
≤ oSNR

(
hK−1,2

)
≤ · · · ≤ oSNR

(
h1,2

)
= λ1(k0).

(6.107)

6.5 Generalization to the Multichannel Case

We consider the conventional signal model in which a microphone array with
M sensors captures a convolved source signal in some noise field. The received
signals, at the time index t, are expressed as [5], [6]

ym(t) = gm(t) ∗ x(t) + vm(t) (6.108)

= xm(t) + vm(t), m = 1, 2, . . . ,M,

where gm(t) is the acoustic impulse response from the unknown speech source,
x(t), location to the mth microphone, ∗ stands for linear convolution, and
vm(t) is the additive noise at microphone m. We assume that the signals
xm(t) = gm(t) ∗ x(t) and vm(t) are uncorrelated, zero mean, stationary, real,
and broadband. By definition, the convolved speech signals, xm(t), m =
1, 2, . . . ,M , are coherent across the array while the noise signals, vm(t), m =
1, 2, . . . ,M , are typically only partially coherent across the array. Using the
STFT, (6.108) can be rewritten in the time-frequency domain as

Ym(k, n) = Gm(k)X(k, n) + Vm(k, n) (6.109)

= Xm(k, n) + Vm(k, n), m = 1, 2, . . . ,M,

where Ym(k, n), Gm(k), X(k, n), Vm(k, n), and Xm(k, n) are the STFTs of
ym(t), gm(t), x(t), vm(t), and xm(t), respectively, at the frequency bin k ∈
{0, 1, . . . ,K − 1} and the time frame n. Assuming that the first sensor is the
reference and dropping the dependence on n, we can write the M STFT-
domain microphone signals in a vector notation as

y(k) =
[
Y1(k) Y2(k) · · · YM (k)

]T
= d(k)X1(k) + v(k)

= x(k) + v(k), (6.110)

where

d(k) =

[
1
G2(k)

G1(k)
· · · GM (k)

G1(k)

]T
, (6.111)
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and x(k) and v(k) are defined similarly to y(k). Since Xm(k) and Vm(k) are
uncorrelated by assumption, we deduce that the M ×M covariance matrix
of y(k) is

Φy(k) = E
[
y(k)yH(k)

]
(6.112)

= ϕX1(k)d(k)d
H(k) +Φv(k)

= Φx(k) +Φv(k),

where ϕX1(k) = E
[
|X1(k)|2

]
is the variance of X1(k), and Φx(k) and Φv(k)

are the covariance matrices of x(k) and v(k), respectively. It results that the
subband and input SNRs are, respectively,

iSNR(k) =
ϕX1(k)

ϕV1(k)
(6.113)

and

iSNR =

∑K−1
k=0 ϕX1(k)∑K−1
k=0 ϕV1(k)

, (6.114)

where ϕV1(k) = E
[
|V1(k)|2

]
is the variance of V1(k), the additive noise at

the first (reference) sensor. It is obvious that

min
k

iSNR(k) ≤ iSNR ≤ max
k

iSNR(k). (6.115)

As before, the two Hermitian matrices Φx(k) and Φv(k) can be jointly
diagonalized as follows [4]:

AH(k)Φx(k)A(k) = Λ(k), (6.116)

AH(k)Φv(k)A(k) = IM , (6.117)

where A(k) is a full-rank square matrix (of size M ×M), Λ(k) is a diagonal
matrix whose main elements are real and nonnegative, and IM is the M ×M
identity matrix. Furthermore,Λ(k) andA(k) are the eigenvalue and eigenvec-
tor matrices, respectively, of Φ−1

v (k)Φx(k). Since the rank of Φx(k) is equal
to 1, the eigenvalues of Φ−1

v (k)Φx(k) are λ1(k) = ϕX1(k)d
H(k)Φ−1

v (k)d(k)
and λ2(k) = λ3(k) = · · · = λM (k) = 0. In other words, the first and last
M − 1 eigenvalues of the matrix product Φ−1

v (k)Φx(k) are positive and ex-
actly zero, respectively. We also denote a1(k),a2(k), . . . ,aM (k), the corre-
sponding eigenvectors, where the first one can be expressed as

a1(k) =
Φ−1

v (k)d(k)√
dH(k)Φ−1

v (k)d(k)
. (6.118)
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Conventional multichannel speech enhancement in the STFT domain is
performed by applying a complex-valued filter, h(k) of length M , to the
observation signal vector, y(k), i.e.,

Z(k) = hH(k)y(k) (6.119)

= Xfd(k) + Vrn(k),

where Z(k) is the estimate of X1(k, n), Xfd(k) = hH(k)x(k) =
X1(k)h

H(k)d(k) is the filtered desired signal, and Vrn(k) = hH(k)v(k) is
the residual noise. The variance of Z(k) is then

ϕZ(k) = hH(k)Φy(k)h(k) (6.120)

= ϕXfd
(k) + ϕVrn(k),

where ϕXfd
(k) = ϕX1(k)

∣∣hH(k)d(k)
∣∣2 and ϕVrn(k) = hH(k)Φv(k)h(k) are

the variances of Xfd(k) and Vrn(k), respectively. We deduce from (6.120)
that the subband and fullband output SNRs are, respectively,

oSNR [h(k)] =
ϕXfd

(k)

ϕVrn(k)
(6.121)

=
ϕX1(k)

∣∣hH(k)d(k)
∣∣2

hH(k)Φv(k)h(k)

and

oSNR [h(:)] =

∑K−1
k=0 ϕXfd

(k)∑K−1
k=0 ϕVrn(k)

. (6.122)

Again, we propose to use the index ki, i = 0, 1, . . . ,K − 1 and ki ∈
{0, 1, . . . ,K−1} to order theK subband eigenvalues λ1(k), k = 0, 1, . . . ,K−1
from the largest to the smallest, i.e.,

λ1(k0) ≥ λ1(k1) ≥ · · · ≥ λ1(kK−1). (6.123)

So, with this indexing, the subband filter is denoted as h(ki), which is as-
sumed in the rest of this section to have the form:

h(ki) = ψ(ki)a1(ki), (6.124)

where ψ(ki) is an arbitrary complex number and a1(ki) is the eigenvector
corresponding to λ1(ki). For ψ(ki) ̸= 0, it is clear that h(ki) maximizes the
subband output SNR, since

oSNR [h(ki)] = λ1(ki) (6.125)

= ϕX1(ki)
∣∣aH1 (ki)d(ki)

∣∣2 .
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As a result, (6.123) is equivalent to

oSNR [h(k0)] ≥ oSNR [h(k1)] ≥ · · · ≥ oSNR [h(kK−1)] . (6.126)

Also, we have

λ1(ki) ≥ iSNR(ki) (6.127)

and

iSNR ≤ λ1(k0). (6.128)

Let

h =
[
hT (k0) h

T (k1) · · · hT (kK−1)
]T

(6.129)

be a long filter of length KM containing all the ordered subband filters. We
can express the fullband output in (6.122) as

oSNR (h) =
hHDΦxh

hHDΦvh
, (6.130)

where

DΦx = diag [Φx(k0),Φx(k1), . . . ,Φx(kK−1)] (6.131)

DΦv = diag [Φv(k0),Φv(k1), . . . ,Φv(kK−1)] (6.132)

are block diagonal matrices. It is worth noticing that

D−1
Φv

DΦxDA = DADΛ, (6.133)

where

D−1
Φv

= diag
[
Φ−1

v (k0),Φ
−1
v (k1), . . . ,Φ

−1
v (kK−1)

]
, (6.134)

DA = diag [A(k0),A(k1), . . . ,A(kK−1)] , (6.135)

DΛ = diag [Λ(k0),Λ(k1), . . . ,Λ(kK−1)] . (6.136)

Since

oSNR (h) =

∑K−1
i=0 |ψ(ki)|2 λ1(ki)∑K−1

i=0 |ψ(ki)|2
, (6.137)

we deduce that

λ1(kK−1) ≤ oSNR (h) ≤ λ1(k0). (6.138)

Therefore, our objective is to find h in such a way that oSNR (h) > iSNR.
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The filter, h, that maximizes the fullband output SNR given in (6.130)
is the eigenvector corresponding to the maximum eigenvalue, λ1(k0), of the
matrixD−1

Φv
DΦx . As a consequence, the maximum SNR filter (of lengthKM)

is

hmax =
[
ψ(k0)a

T
1 (k0) 0

T
]T
, (6.139)

where ψ(k0) ̸= 0 is an arbitrary complex number. Equivalently, we can write
(6.139) as {

hmax(k0) = ψ(k0)a1(k0)
hmax(ki) = 0, i = 1, 2, . . . ,K − 1

. (6.140)

With (6.139), we get the maximum possible fullband output SNR, which is

oSNR (hmax) = λ1(k0) ≥ iSNR (6.141)

and

oSNR (hmax) ≥ oSNR (h) , ∀h. (6.142)

We deduce that the estimate of the desired signal is{
X̂1,max(k0) = hH

max(k0)y(k0)

X̂1,max(ki) = 0, i = 1, 2, . . . ,K − 1
. (6.143)

Now, we need to find ψ(k0). The first possibility is from the MSE between

X1(k0) and X̂1,max(k0), i.e.,

J [ψ(k0)] = E
[∣∣X1(k0)− ψ∗(k0)a

H
1 (k0)y(k0)

∣∣2] . (6.144)

The second possibility is to use the distortion-based MSE, i.e.,

Jd [ψ(k0)] = E
[∣∣X1(k0)− ψ∗(k0)a

H
1 (k0)x(k0)

∣∣2] . (6.145)

From the minimization of J [ψ(k0)], we get the classical Wiener filter at
the frequency bin k0, i.e.,

hmax,W(k0) =

√
ϕX1(k0)λ1(k0)

1 + λ1(k0)
a1(k0) (6.146)

=
ϕX1(k0)Φ

−1
v (k0)d(k0)

1 + ϕX1(k0)d
H(k0)Φ

−1
v (k0)d(k0)

,

while the minimization of Jd [ψ(k0)] gives the well-known MVDR filter at the
frequency bin k0, i.e.,
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hmax,D(k0) =

√
ϕX1(k0)λ1(k0)

λ1(k0)
a1(k0) (6.147)

=
Φ−1

v (k0)d(k0)

dH(k0)Φ
−1
v (k0)d(k0)

.

Even though this method maximizes the fullband output SNR, it is ex-
pected to introduce a large distortion to the desired signal, since all its fre-
quency bins are put to 0 except at k0. A more practical approach when we
deal with broadband signals such as speech is to form the filter (of length
KM) from a concatenation of the eigenvectors corresponding to the P (≤ K)
largest eigenvalues from the set {λ1(ki), i = 0, 1, . . . ,K − 1}, i.e.,

hP =
[
ψ(k0)a

T
1 (k0) · · · ψ(kP−1)a

T
1 (kP−1) 0

T
]T
, (6.148)

where ψ(kp), p = 0, 1, . . . , P −1 are arbitrary complex numbers with at least
one of them different from 0. We can also express (6.148) as{

hP (kp) = ψ(kp)a1(kp), p = 0, 1, . . . , P − 1
hP (ki) = 0, i = P, P + 1, . . . ,K − 1

. (6.149)

Hence, the estimate of the desired signal is{
X̂1,P (kp) = hH

P (kp)y(kp), p = 0, 1, . . . , P − 1

X̂1,P (ki) = 0, i = P, P + 1, . . . ,K − 1
. (6.150)

To find the ψ(kp)’s, we can either optimize J [ψ(kp)] or Jd [ψ(kp)]. The first
one leads to the Wiener filters at the frequency bins kp, p = 0, 1, . . . , P − 1,
i.e.,

hP,W(kp) =
ϕX1(kp)Φ

−1
v (kp)d(kp)

1 + ϕX1(kp)d
H(kp)Φ

−1
v (kp)d(kp)

, (6.151)

while the second one gives the MVDR filters at the frequency bins kp, p =
0, 1, . . . , P − 1, i.e.,

hP,D(kp) =
Φ−1

v (kp)d(kp)

dH(kp)Φ
−1
v (kp)d(kp)

. (6.152)

The filters (of length KM) corresponding to (6.151) and (6.152) are, respec-
tively,

hP,W =
[
hT
P,W(k0) · · · hT

P,W(kP−1) 0
T
]T

(6.153)

and

hP,D =
[
hT
P,D(k0) · · · hT

P,D(kP−1) 0
T
]T
. (6.154)
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For P = K, hK,W and hK,D correspond to the classical multichannel Wiener
and MVDR approaches, respectively. The case hP,D can be seen as a gen-
eralization of the ideal binary mask [3] to the multichannel case, since the
subband observation signals of the reference microphone with the P largest
subband output SNRs are processed in such a way that the desired signals
are undistorted while the K − P others with the smallest subband output
SNRs are put to 0. We should always have

oSNR
(
hP,D

)
≤ oSNR

(
hP,W

)
. (6.155)

We also deduce that

iSNR ≤ oSNR
(
hK,W

)
≤ oSNR

(
hK−1,W

)
≤ · · · ≤ oSNR

(
h1,W

)
= λ1(k0)

(6.156)

and

iSNR ≤ oSNR
(
hK,D

)
≤ oSNR

(
hK−1,D

)
≤ · · · ≤ oSNR

(
h1,D

)
= λ1(k0).

(6.157)
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robust superdirective, 81
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gamma distribution, 12

generalized Rayleigh quotient, 49, 67, 87
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law of total expectation, 6

law of total variance, 6
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mean-squared error (MSE), 50
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minimum mean-squared error (MMSE), 7
minimum MSE filter
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minimum noise filter
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minimum noise-type filter
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minimum SNR filter, 71

STFT domain, single channel, 90
minimum variance distortionless response

(MVDR), 51

MVDR filter, 72, 73
STFT domain, multichannel, 102, 103
time domain, single channel, 51, 53

noise reduction factor
frequency domain, single channel, 14

time domain, binaural, 43
time domain, single channel, 30, 33

noise reduction filter, 45

noncircular, 35
null constraint filter

time domain, single channel, 56, 58
null gain

STFT domain, 91

optimal filter, 49, 72
optimal gain, 87
output SNR, 67

fullband, multichannel, 100

fullband, single channel, 85, 94

subband, multichannel, 100

subband, single channel, 85, 94

time domain, single channel, 29, 33, 50

partial correlation coefficient (PCC), 33

positive definite matrix, 70

positive semidefinite matrix, 70

short-time Fourier transform (STFT), 83

signal-to-noise ratio (SNR), 6

SPCC, 46

spectral mode input SNR, 69

speech distortion index

frequency domain, single channel, 14

time domain, single channel, 26

speech enhancement, 1, 5, 23, 45, 65, 83

speech reduction factor

time domain, binaural, 42

time domain, single channel, 30, 31

squared Pearson correlation coefficient
(SPCC), 24

steering vector, 2, 17, 66

ULA, 77

superdirective beamforming, 77

supergain, 79

time-frequency domain, 83

uniform linear array (ULA), 77

unitary gain

STFT domain, 88, 89, 91

white noise amplification, 79

white noise gain (WNG), 78

widely linear Wiener filter, 42

Wiener filter

frequency domain, multichannel, 19

STFT domain, multichannel, 102, 103

time domain, single channel, 31, 32, 50,
56

Wiener gain, 9

STFT domain, 88, 89, 91

Wiener-type filter

time domain, single channel, 60, 62, 63
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