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Preface

Over the last decade, the unprecedented growth in the number of high data-rate
applications and devices has severely constrained the current wireless networks. The
operators of wireless networks face a challenge in supporting such demand, whereas
at the same time they need to increase the energy efficiency and infrastructure
utilization, which are directly related to their revenue. There have been recent
advancements in wireless network technologies such as wireless virtualization to
accommodate the exponential growth in demand as well as to increase energy and
infrastructure efficiencies. The idea of virtualized wireless network (VWN) has
been recently envisaged to allow multiple service providers to efficiently share the
physical wireless communications infrastructure belonging to the network operator.
In a VWN, each service provider expects to have its allocated slice of resources of
the various infrastructure components (e.g., base stations) in order to support its own
end users with different Quality-of-Service (QoS) requirements. VWN, therefore,
presents unique challenges specifically related to user association, dynamic resource
allocation, slice isolation, and resource utility that must be addressed to make it
practically effective.

This brief discusses the user association and resource allocation aspects in VWNs
and highlights key technology innovations to meet their requirements. Various
issues in practical implementation of VWNs are discussed along with potential
techniques such as Massive MIMO, Cloud-Radio Access Network (C-RAN), and
non-orthogonal multiple access (NOMA).

The target audience of this informative and practical Springer Brief is researchers
and professionals working on current and next-generation wireless networks. The
content is also valuable for advanced students interested in wireless communications
and signal processing for communications.

Montreal, QC, Canada Tho Le-Ngoc
Montreal, QC, Canada Rajesh Dawadi
Tehran, Iran Saeedeh Parsaeefard
Loughborough, Leicestershire, UK Mahsa Derakhshani
February 2017
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Chapter 1
Introduction

1.1 Motivations

1.1.1 Wireless Networks: Trends and Challenges

The tremendous increase in multimedia applications and high-end communication
devices like smart phones over the last decade has driven the capacity demand for
the currently deployed wireless networks. As such, the future generation of wireless
networks, e.g., fifth generation of wireless networks (5G), needs to address a number
of challenges. First, with the proliferation of the high data-rate applications that
have become ubiquitous nowadays, there should be a huge increase in the supported
data rates by the next-generation networks. Secondly, with the advent of machine
type communications (MTC) and the Internet-of-Things (IoT), the future network
will need to support devices that are not only remotely controlled in real time but
will also communicate with each other. This presents the requirement for ultra low
latency, sometimes of the order of sub-milliseconds, as well as higher reliability
beyond what the current network can support. Moreover, as usual, there is the
requirement to increase the energy efficiency as well as infrastructure efficiency.
At a high level, these challenges and requirements can be succinctly listed as:

• Supporting very high data rates with stricter Quality-of-Service (QoS) in order
to accommodate the ever-increasing data-intensive applications,

• Provisioning stringent latency and reliability requirements in order to support the
critical MTC devices and IoT,

• Enabling network scalability with flexibility so that a wide range of devices can
be supported with higher energy efficiency,

• Reducing the infrastructure and operational expenditure of the network.

Various techniques and architectural enhancements have been proposed in order
to address these challenges in 5G from the radio access network (RAN) to the
core networks. In 5G RAN, network densification, cloud RAN (C-RAN), new

© Springer International Publishing AG 2018
T. Le-Ngoc et al., Virtualized Wireless Networks, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-3-319-57388-5_1
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2 1 Introduction

radio technologies such as non-orthogonal multiple access (NOMA), and massive
multiple input multiple output (massive MIMO) are proposed to enhance the
capabilities of 5G. On the other hand, new networking technologies, such as
software-defined networking (SDN), network function virtualization (NFV) and
network slicing, are candidates to increase the flexibility and agility of 5G networks
to support different types of services.

In a 5G RAN, the idea of dense heterogeneous network (HetNet), consisting
of multiple types of small cells with low-power nodes in smaller coverage areas
overlapping with traditional macro cells, can offer higher capacity for dense areas
through traffic off-loading from the macro cell to the small cells. Moreover, the
small-cell network can be used to serve the coverage holes that cannot be otherwise
accommodated by the macro cells. In addition, the energy consumption of the
network is significantly reduced as well due to the deployment of low-power nodes.

C-RAN is another key enabling technology that can leverage the cloud function-
ality in the base-station baseband unit (BBU), to be connected to the radio remote
heads (RRHs) via a broadband wireline front-haul link. In addition to reducing
CAPEX and OPEX, facilitating coordination among the RRHs, and increasing the
scalability and energy efficiency in the network in C-RAN, via a cloud of BBUs,
there is the potential for deploying a central resource allocation scheme that has the
complete knowledge of the channel conditions of all users in the whole system. This
can enable efficient resource utilization and allocation.

Another important technique envisioned for the 5G that can potentially help
to address the above challenges is massive MIMO where the base station (BS)
employs low-power antenna arrays consisting of potentially a few hundred antennas
that simultaneously serve multiple users by relying on spatial multiplexing. By
aggressively exploiting the spatial multiplexing, the capacity gain with massive
MIMO systems has been shown to be more than ten times the conventional systems.
Moreover, through the coherent superposition of the waveforms emitted by multiple
antenna terminals at the intended users, significant improvement in energy efficiency
is also achieved with massive MIMO. Non-orthogonal multiple access (NOMA)
along with other new physical-layer technologies such as sparse code multiple
access (SCMA) are also candidates for high radio-access efficiency enhancement
to meet the 5G requirements.

On the networking side, by separating the control plane from the traffic plane via
SDN, flexible design of network elements via introducing NFV, and decoupling of
control and transmission layers in wireless access devices via software-defined radio
(SDR), the idea of virtualized wireless network (VWN)1 has been developed. In this
scenario, the service providers lease the underlying physical infrastructure from the
network operator and share the available resources to support their end-users. Unlike
traditional networks, the resources (e.g., spectrum and power) in a VWN are not
allocated on a fixed basis but rather dynamically allocated to the service providers
by considering their requirements and channel conditions. This can result in better
infrastructure and spectral efficiency, while lowering the capital and operating costs

1Which can also be considered as network slicing in wireless networks.
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as well. However, due to the additional requirements for maintaining the isolation
among the service providers, the user association and dynamic resource allocation
schemes need coordination among different cells in a VWN unlike traditional
networks.

With these key enabling technologies, the next-generation network will be able
to support high data rate and low-latency applications over a wide range of devices
with a better energy efficiency. Moreover, by leveraging the functionalities of VWN,
the service providers will be able to quickly come up in the market and start service
provisioning to the end-users without having to set up the entire physical network,
which in turn improves the service provisioning to the end-users as well.

1.1.2 VWN: Requirements

Virtualization, in the general sense, means the abstraction and sharing of the
available resources by multiple virtual entities. In the wired networks, virtualization
has already been successfully implemented, e.g., virtual private networks (VPNs)
and virtual local area networks (VLANs). Recently, virtualization has been proposed
in the context of wireless networks and has gained considerable research interest.
A VWN allows multiple service providers (called slices, hereafter) to lease the
physical infrastructure from the network operator in order to support their end-
users [1]. By sharing the common physical infrastructure among multiple slices,
the physical network is, in effect, decoupled from the end-user service provisioning.
This ensures the maximum resource utilization in the network [2]. It also allows new
service providers to quickly start the service provisioning without having to setup
and maintain the physical network while the network operator can focus on the
network efficiency improvement and maintenance aspects. The basic requirements
of a VWN can be described as below:

• Isolation among slices: The basic idea in a VWN is to allow multiple slices to
utilize the physical infrastructure in order to provide services to their end-users
in a reliable manner regardless of the other co-existing slices. Hence, variations
in one slice caused by dynamic channel conditions and mobility of users should
not affect the services provided to users in other slices. Effective isolation among
slices is a prime requirement in a VWN and has been discussed in the literature.
For example, Kokku et al. [1] propose a VWN scheme with slices requiring
either bandwidth-based or slot-based reservations from the network operator to
support isolation among the slices. Similarly, Parsaeefard et al. [3, 4] consider
an approach with slices having minimum bandwidth as well as power-based
reservations.

• Dynamic resource allocation: Unlike wired networks, the transmission capacity
in a wireless network depends on the dynamic channel conditions, and thus,
the resources allocated for the slice should be dynamically updated in order
to guarantee QoS to the end-users. Moreover, since the ultimate goal of the
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service providers is to effectively utilize the available resources in order to
maximize their revenue, efficient resource allocation is at the core of their
interests. To this end, a computationally simple and effective resource allocation
algorithm that can adaptively assign available resources to slices in order to meet
their requirements is essential [5].

• Mobility among slices: Apart from the traditional mobility of users from one
geographical area to another within the same service provider, a VWN should
support mobility within slices, so that users can experience reliable QoS, and
also, the available resources can be utilized to the maximum [6]. In order to
support this, advanced user association algorithms are needed that allocate users
to BSs by not only considering the received signal-to-interference-plus-noise
ratio (SINR) but also taking into account the slice requirements including per-
slice resource reservations.

1.1.3 VWN: User-Association and Resource-Allocation Issues

As noted, although a VWN is an extension of the concept of virtualization in the
wired networks, there are a number of challenges that are unique for the wireless
networks. By considering the aforementioned basic requirements, there are specific
issues that must be addressed in order to practically realize a VWN. Such issues
have been discussed in the following.

User association in a wireless network basically describes how the users are
assigned to BSs. In the conventional wireless networks, the basic metric used for
user-BS association is the received signal-to-noise-plus-interference ratio (SINR)
from the BS. With this technique, a user is associated with a BS if the received
SINR over a certain time interval is above a pre-defined threshold [7]. This
criterion is intuitive and simple to implement in order to determine the user
association. However, since the physical infrastructure (namely the BSs and the
backhaul network) will be shared among the slices in a VWN and each slice has
a specific resource reservation, simply assigning users to the BS with the highest
received SINR might not be a feasible and efficient solution. Also, with a dense
network and in the high-mobility users scenario, the conventional technique based
on received SINR may result in frequent handovers that impose overheads and
additional delays [7]. Thus, a dynamic user association policy is required in the
VWN that not only takes into account the received signal strength but also considers
the isolation constraints of the slices in the system [8].

One of the key motivations in implementing a VWN is to improve the spectral
and energy efficiency of the network [2]. In the current wireless networks, since
the physical infrastructure and spectrum are owned and operated by the service
providers and there is no provision for sharing the resources, the allocated resources
to a service provider may not be fully utilized at all times. With a VWN, however,
the slices should be allocated spectrum and other resources dynamically so that
the resources are efficiently utilized [6]. However, in order to realize this, a
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dynamic resource allocation algorithm is of utmost importance. Moreover, robust
and resilient medium access control (MAC) designs is a key enabler to reach higher
spectrum and power efficiency based on the dynamic resource allocation [9–11].

Unlike the current wireless networks, in a VWN, the resource allocation policy
should not only focus on the overall spectral and energy efficiency, but also the
resource reservations of the individual slices in order to provide reliable QoS to
the users [3, 4]. Implementing a dynamic resource allocation and flexible MAC
algorithm that considers all these aspects is a challenging task given the complexity
in the optimization problem involving the resource allocation. Various optimization
techniques to convexify the resource allocation problems and relaxation techniques
are required to formulate computationally tractable approaches.

In order to implement the user association and dynamic resource allocation
algorithms in a VWN, coordination among the BSs is required so that the algorithms
can present efficient solutions by considering the dynamic channel conditions
of all users in the system. Moreover, due to the computational complexity of
the algorithms, higher processing capability is required in the BS to implement
them practically. In order to realize these, one potential solution is to maintain a
centralized processing unit that can effectively implement the algorithms and has
control over all the BSs. This can be realized by leveraging the cloud functionality
through the C-RAN architecture where the processing modules of the BSs are
located in the cloud of highly efficient BBU pool [12, 13] that has access to the
dynamic channel conditions of users in the system.

1.2 Emerging Technologies: A Brief Overview

In order to address the various issues in user-association and resource-allocation
in a VWN, different innovative techniques and architectures need to be employed.
This section briefly introduces the various techniques and architectures considered
in proposed resource allocation algorithms in this brief along with the other related
research studies in the literature.

1.2.1 User-Association and Resource-Allocation

User association and resource allocation in wireless networks have been received
considerable attention in the last couple of years. However, most of the research
works were conducted in the context of traditional wireless networks, as VWN is a
recently proposed concept. A number of recent research studies have addressed the
issue of user association specifically in HetNets. Since dense HetNets are likely
to become the dominant theme in the next-generation network, the max SINR
approach is unsuitable due to the higher transmit power of the macro BS that forces
users to associate with only the macro BS. In order to address this issue, Guvenc [14]
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considers a biased user association in HetNets where the received power from the
small cell to users is increased by adding a bias. This way users can be associated
with small cells in order to maintain load balancing. However, this scheme leads
to sub-optimal performance as demonstrated in [15] due to the high interference
experienced by users associated with the small cells. Corroy et al. [16] consider
the dynamic user association problem to maximize the total sum-rate of all users in
the HetNet and verifies the performance improvement compared with the max SINR
approach. Moreover, in [17], a user association scheme is proposed for maximizing
the user data rate related utility that tries to maintain the load balancing in HetNets
and ensures user fairness. The original problem is relaxed to a fractional association
problem and the problem is solved using convex optimization theory. Also, Tang
et al. [18] formulate the user association policy from the user-centric view in a
stochastic game where the users compete with each other so that they can be served
by the BS with the highest bandwidth resources. The algorithm is formulated using
the Markov decision process that tracks the long-term reward for the users which
leads to a reliable performance in the dynamic channel.

The user association approaches followed in the aforementioned works do not
directly apply to a VWN due to a couple of reasons. First, the user association
problem in a VWN is different from the one for traditional networks due to the
isolation constraint among slices. Moreover, the problems considered in these works
generally deal only with the user association and do not impose the constraint on the
sub-carrier allocation. However, in a practical network deployment with orthogonal
frequency division multiple access (OFDMA) as the multiple access scheme, the
users need to be allocated sub-carriers from the corresponding BS. The sub-carrier
allocation imposes extra complexity of exclusive sub-carrier constraint within a BS.

Existing works on resource allocation in traditional networks have considered the
problem of sub-carrier and power allocation in an OFDMA network with an implicit
assumption that user association is performed using the max SINR approach. For
instance, joint cell, channel and power allocation in multi-cell relay networks is
explored in [19], where each user is associated to the BS with the highest channel
gain. Cho et al. [20] propose a proportional fair resource allocation in a multi-
cell OFDMA network aiming to maintain the quality of experience of users by
considering a utility function based on the mean opinion score. A similar problem
in OFDMA cognitive radio networks is studied in [21], where an iterative algorithm
is proposed to solve the sub-carrier and power allocation problem with the aim
of maximizing the spectral efficiency of the system. In [22], a resource allocation
algorithm is proposed for a two-cell downlink OFDMA network with a fractional
frequency reuse scheme between BSs.

1.2.2 Cloud-Radio Access Network (C-RAN)

In the distributed base station architecture existing in the current wireless networks,
the remote radio head (RRH) that performs the radio functionalities are connected
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to the baseband unit (BBU) using the Common Public Radio Interface (CPRI). This
allows for flexible deployment where the RRHs and BBUs could be a few hundred
meters apart [23]. However, considering the extreme data rates and coordination
among the BSs that will likely be required in the next-generation networks, this
architecture is quite limited in providing the low-latency communication link
between BSs.

In order to address this issue, C-RAN architecture has been recently proposed
to leverage the centralized high processing power of the cloud BBU pool. In this
technique, the BBUs are located in the cloud which would be connected with a high
data-rate and low latency fronthaul link. As this architecture is still in its infancy, a
number of works have addressed the resource allocation problem by considering the
limitations in a C-RAN network. The basic challenges in a C-RAN network involve
the limitations imposed on the fronthaul link that connects the RRHs with the BBUs,
the user association problem with the RRHs, and the limitations on the maximum
number of users supported by the BBUs. For instance, in [12], a resource allocation
algorithm in a C-RAN with limited fronthaul capacity is proposed by considering
a cooperative transmission scheme. Specifically, an optimal resource allocation
scheme to minimize the total transmit power in the downlink by considering the
QoS constraint of each user is analyzed. Similarly, in [13], the potential performance
improvement as well as energy saving benefits of the C-RAN architecture have been
demonstrated. In [24], the authors have proposed techniques to improve energy
and spectral efficiency by considering a cooperative transmission in a HetNet.
Specifically, a computationally efficient precoding scheme has been proposed that
tries to reduce the associated power consumption in the network. In [25], an
algorithm based on the relaxed integer programming (RIP) is proposed to jointly
associate users to RRHs in a C-RAN, in order to increase the energy efficiency.
Specifically, joint user association and beamforming are considered to coordinate
interference in the C-RAN and to propose an algorithm that tries to maximize the
energy efficiency in the network.

1.2.3 Massive MIMO

Recently, the application of massive MIMO has been proposed for the next-
generation wireless networks in order to increase the spectral and energy efficiencies
benefiting from the degrees of freedom gained from the large number of antennas
[26]. Specifically, operating a large number of service antennas at the BS coherently
helps to focus transmission of signal energy into smaller regions that in turn brings
improvement in spectral and energy efficiencies. Moreover, it has been shown
in recent works that the resource allocation problem is also relatively simplified
because of the channel hardening effect [27] which means that the channel variations
are negligible over the frequency domain and depend only on the large-scale fading
in the time domain. In order for the BS to have the knowledge about the channel
state information, the users need to transmit the pilot signals which should ideally
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be orthogonal among users. However, the reuse of pilot signals is inevitable in order
to accommodate more users in one cell and for users in different cells. This causes
interference and leads to an error in the channel estimation which is called pilot
contamination.

There have been a lot of research studies focusing on the resource allocation in
a massive MIMO system. For instance, Lu et al. [28] present the energy efficiency
achievable by a massive MIMO system and discuss various implementation issues
related to channel estimation, detection and precoding schemes in a massive MIMO
system. Since pilot duration is a significant parameter in the resource allocation
problem in a massive MIMO system due to the pilot contamination effect, some
research works have addressed the issue of optimizing the optimal pilot duration.
In [29], an optimal resource allocation algorithm is proposed in a conventional
wireless network with massive MIMO that computes the pilot signal power, data
signal power as well as pilot duration by considering different transmit power
schemes for data signal and training signal transmission. Moreover, in [30], the
maximum number of admissible users in a downlink pilot-contaminated time
division duplexing (TDD) massive MIMO system is derived and an algorithm is
proposed to achieve the maximum individual user capacity. Bethanabhotla et al. [31]
consider the user association problem in a massive MIMO network and propose
a centralized algorithm based on the network utility maximization. Moreover, the
performance of the proposed centralized scheme compared with a decentralized
scheme where users connect to BSs with a higher promised throughput demonstrates
the improvement obtained from the centralized scheme.

1.2.4 Non-orthogonal Multiple Access (NOMA)

Non-orthogonal multiple access (NOMA) has been recently explored as the poten-
tial scheme to increase the spectral efficiency and to support massive connectivity
in the future networks. For instance, NTT Docomo Inc. [32] proposes NOMA in the
context of the next-generation networks and highlights the limitations of OFDMA
in massive user connectivity and optimal spectral efficiency. Since users are allo-
cated different power allocation coefficients in NOMA, computationally efficient
power allocation algorithms are significant for the practical implementation. Saito
et al. [33] propose a NOMA scheme with SIC at the receiver as the baseline receiver
for robust multiple access. Basically, Saito et al. [33] consider two schemes for
power allocation, namely the fractional transmission power allocation (FTPA) and
the tree-search based transmission power allocation (TTPA). FTPA is similar to
the brute-force search where the user sets are selected to maximize the scheduling
metric of sum-rate. In order to reduce the complexity of brute-force search, TTPA
is proposed where instead of searching for all possible power combination ratios,
the redundant ones are discarded during the tree-search. Similarly, Liu et al. [34]
consider the dynamic user selection and power allocation for the users in the NOMA
with multiple antennas at the BS. The authors propose an iterative algorithm that
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tries to find the optimal user set that can be served by each beam and then formulate
the power allocation algorithm. Moreover, Parida and Das [35] propose another user
selection and power allocation algorithm in NOMA-based system with multiple
sub-carriers where users in each sub-carrier are superimposed upon each other.
The authors consider the greedy algorithm to assign users to sub-carriers and then
use the difference-of-convex (DC) programming approach to formulate the power
allocation algorithm within each sub-carrier.

1.3 Structure of This Brief

Although virtualization of wireless network brings in potential benefits and
improvements, its practical realization is possible only after addressing the various
technical challenges. In this brief, we explore various techniques and cover recent
advances in user association and dynamic resource allocation for VWNs (e.g.,
[36–39]). In particular, as the resource allocation problem in a VWN is inherently
non-convex and computationally intractable, we use various mathematical tools
and convexification techniques to approximate and propose the following efficient
algorithms and solutions in different scenarios.

As discussed, user association and dynamic resource allocation in VWNs is
significantly more challenging than in the traditional wireless network. Chapter 2
deals with this issue in a multi-cell OFDMA VWN by formulating a resource
allocation problem that jointly associates users to BSs as well as allocates sub-
carriers and power, while maintaining the minimum reserved rate per slice. By using
variable relaxation and various techniques like successive convex approximation
(SCA), complementary geometric programming (CGP), a computationally efficient
algorithm is proposed to maximize the total sum-rate of the system under the
given constraints. In order to verify the effectiveness of the proposed algorithm,
via simulation results, the performance is compared against the conventional max-
SINR approach.

One of the main requirements of a VWN is to maximize the power efficiency of
the system. In order to do so, in Chap. 3, the user association and resource allocation
problem is extended in a multi-cell VWN with the aim of maximizing the transmit
power efficiency, while still preserving the slice isolation requirements. Specifically,
we consider the resource allocation problem that jointly associates users to BSs as
well as allocates sub-carriers and power with the objective of minimizing the total
transmit power. Numerical results demonstrate the performance improvement of the
proposed algorithm compared to the conventional approach of associating users to
BS based on the received SINR.

As the current trend of the increasing data rate requirement suggests, the future
network needs to support a tremendous increase in the capacity. As such, the
resource allocation problem is extended in a VWN where the BS is equipped
with massive MIMO in order to utilize the degrees of freedom gained from the
large number of antennas. However, with massive MIMO, there is the increased
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complexity in channel estimation, which is performed using the pilot signals from
the users. In Chap. 4, the focus is on the case where the channel estimation is
imperfect due to pilot contamination effect and formulate a resource allocation
problem to dynamically allocate sub-carriers, power, antennas as well as pilot
duration to users in order to maximize the total sum rate of the system. An iterative
algorithm based on the dual decomposition method is proposed and the performance
of the proposed algorithm is compared with the scenario where the users are
allocated with a fixed pilot duration.

Unlike the traditional networks, the user association and resource allocation
algorithms in a VWN need to consider the channel state information of users in
all slices. This is only possible with the collaboration among the BSs during the
resource allocation. However, with the current system architecture, it may not be
feasible to have very low latency backhaul links to connect the BSs. This has led
to the consideration of C-RAN, where the baseband processing units are located
in the cloud. In Chap. 5, the resource allocation problem is explored in a C-RAN
VWN by formulating a joint user association and resource allocation problem that
associates users to RRHs/BBUs as well as allocates power and antennas to users, to
maximize the total sum rate of the system. The performance of the proposed scheme
is evaluated in both perfect and imperfect channel state information (CSI) estimation
scenarios.

Since NOMA has been recently proposed as a promising scheme to improve
the spectral and energy efficiencies, in Chap. 6, a resource allocation problem is
studied in the downlink of a VWN with NOMA. A power-efficient algorithm
is proposed that allocates power coefficients to users in order to minimize the
total transmit power, while ensuring the isolation among the slices in terms of
the minimum reserved rate per slice. Numerical results demonstrate the power
efficiency improvement achieved by NOMA scheme as compared to OFDMA one.

Finally, Chap. 7 presents concluding remarks and potential extensions of the
research works.
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Chapter 2
Bandwidth-Efficient Joint User-Association
and Resource-Allocation in Multi-Cell VWN

This chapter addresses the user association and resource allocation problem in a
multi-cell VWN where users belong to different slices with each slice requiring
a minimum reserved rate from the network. We formulate a bandwidth-efficient
joint user-association and resource-allocation scheme that assigns users to BS and
allocates the sub-carriers and power to maximize the total achieved sum-rate of the
network subject to the rate reservation per slices. The original problem is converted
into computationally tractable form using variable relaxation and complementary
geometric programming (CGP). The simulation results demonstrate the perfor-
mance improvement obtained with the proposed iterative algorithm compared to
the conventional max SINR-based approach for user association.

2.1 Introduction

In a virtualized wireless network (VWN), the physical resources of one network
provider, e.g., spectrum, power, and infrastructure are shared among different
service providers, also called slices [1, 2]. Generally, each slice comprises of a
set of users, and has its own quality-of-service (QoS) requirements. To harvest
the potential advantages of VWN, effective resource allocation is a major concern
which has been addressed in a number of works.

For instance, in [1], a resource management scheme is studied by introducing two
types of slices, including rate-based and resource-based slices, where the minimum
rate and minimum network resources are preserved for each slice, respectively.
Furthermore, in [3], interactions among slices, network operator, and users are
modeled as an auction game where the network operator is responsible for spectrum
management on a higher level, and each slice focuses on QoS management for
its own users. To preserve the QoS of slices from wireless channel fading, the
admission control policy is proposed in [4] where the requirement of each slice
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is adjusted by the channel state information (CSI) of its own users. To extend the
feasibility condition of VWN in order to support diverse QoS requirements, Jumba
et al. [5] consider the use of massive MIMO where the access point is equipped
with a large number of antennas. In [6], the combination of time, space and elastic
resource allocation for OFDMA system is considered. Advantages of full-duplex
transmission relay in VWN have been investigated in [7].

Generally, these works have focused on analyzing the resource allocation
problem in a single-cell VWN scenario. However, in practice, the coverage of a
specific region may require a set of BSs, in a multi-cell VWN scenario. The key
question in such a multi-cell VWN scenario is how to allocate the resources to
maintain the QoS of each slice, while improving the total performance of VWN
over a specific region. In this chapter, we consider a multi-cell OFDMA based VWN
where the coverage of a specific region is provided by a set of BSs serving different
groups of users belonging to different slices. The QoS of each slice is represented
by its minimum reserved rate. Each user of each slice can be only served by one
BS and this BS is not predetermined by the distance or by measuring the average
received signal strength of BSs. Consequently, in this setup, the resource sets in
the related optimization problem involve the set of BSs, sub-carriers and power for
each user belonging to each slice.

In the problem considered in this chapter, the objective of proposed resource
allocation problem is to maximize the total throughput of VWN in the specific
region subject to power limitation of BSs, minimum required rate of each slice, and
sub-carrier and BS assignment limitations. Based on the limitations of downlink
OFDMA transmission, each sub-carrier can be assigned to one user within a cell
and each user can be associated to only one BS. Since in this optimization problem,
the sub-carrier assignment and BS association are inter-related, we introduce the
user association factor (UAF) that jointly determines the BS assignment and sub-
carrier allocation as the optimization variable vector. Due to this user-association
constraint and the inter-cell interference, the proposed optimization problem is
non-convex and NP-hard, suffering from high computational complexity [8]. We
apply the frameworks of complementary geometric programming (CGP) and the
successive convex approximation (SCA) [9–12] to develop an efficient, iterative,
two-step algorithm to solve the proposed problem. For a given power-allocation,
the first step derives the optimum user-association solution, and subsequently, with
this obtained user-association solution, the second step finds the optimal power
allocation. This two-step optimization process is repeated until convergence. It
can be shown that the simplified problem of each step still involves non-convex
optimization problem. By applying various transformation and convexification
techniques, we develop the analytical framework to transform the non-convex
optimization problems encountered in each step into the equivalent lower-bound
geometric programming (GP) problems, [11], which can be solved by available
software packages, e.g., CVX [13].

Simulation results demonstrate that the proposed approach can significantly
outperform the traditional scenario where the BS assignment is based on the largest
average signal-to-interference-plus-noise ratio (SINR), and subsequent sub-carrier
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and power allocation is derived for the users of each cell. The simulation results
reveal that considering UAF can increase the feasibility of resource allocation
problem (the required rate of each slice will be satisfied with a higher probability
as compared to the traditional approach). Specifically, the proposed algorithm can
significantly increase the probability of achieving higher rates for the cell-edge
users, resulting better coverage for the VWN.

The rest of this chapter is organized as follows: Sect. 2.2 presents the system
model considered in this problem along with the problem formulation. The proposed
algorithm is discussed in Sect. 2.3 followed by Sect. 2.4 where we present the
numerical results with concluding remarks in Sect. 2.5.

2.2 System Model and Problem Formulation

We consider the downlink transmission of a VWN where the coverage of a specific
area is provided by a set of BSs, i.e., L D f1; : : : ;Lg. The total bandwidth of W Hz
is divided into a set of sub-carriers, N D f1; : : : ;Ng and shared by all BSs through
orthogonal frequency-division multiple-access (OFDMA). The bandwidth of each
sub-carrier, i.e., W

N , is assumed to be much smaller than the coherent bandwidth,
Wc, of the wireless channel so that the channel response in each sub-carrier is flat.
This set of BSs serves a set of slices, S D f1; : : : ; Sg, where the slice s has a set
of users Ks D f1; : : : ;Ksg and requests for a minimum reserved rate of Rrsv

s and
K D P

s2S Ks is the total number of users. An illustration of the system model with
3 BSs is presented in Fig. 2.1.

Let hl;ks;n and Pl;ks;n be the channel power gain (also representing the channel
state information (CSI)), and the allocated power, respectively, of the link from
BS l 2 L to user ks of slice s on sub-carrier n. Due to the OFDMA limitation,
each user is assigned to one BS, and to avoid intra-cell interference, orthogonal
sub-carrier assignment is assumed among users in a cell. The binary-valued user
association factor (UAF) ˛l;ks;n 2 f0; 1g represents both sub-carrier allocation and
BS assignment indicator for user ks of slice s on sub-carrier n of BS l, i.e., ˛l;ks;n D 1

when BS l allocates sub-carrier n to user ks, and ˛l;ks;n D 0, otherwise.
Consider P D ŒPl;ks;n�8l;s;ks;n

and ˛ D Œ˛l;ks;n�8l;s;ks;n
as the vectors of all transmit

powers and UAFs of users, respectively. The rate of user ks at sub-carrier n of BS l
can be expressed as

Rl;ks;n.P/ D log2

�

1C Pl;ks;nhl;ks;n

�2 C Il;ks;n

�

; (2.1)

where

Il;ks;n D
X

8l02L ;l0¤l

X

8s2S

X

8k0

s2Ks;k0

s¤ks

Pl0;k0

s;nhl;ks;n
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Fig. 2.1 Illustration of a multi-cell VWN with BSs serving users of different slices

is the interference to user ks in BS l and sub-carrier n, and �2 is the noise power.
Without loss of generality, noise power is assumed to be equal for all users in all
sub-carriers and BSs. From (2.1), the required minimum rate of slice s 2 S can be
represented as

C2.1 W
X

l2L

X

ks2Ks

X

n2N
˛l;ks;nRl;ks;n.P/ � Rrsv

s ;8s 2 S :

We consider the maximum transmit power limitation of each BS as

C2.2 W
X

s2S

X

ks2Ks

X

n2N

Pl;ks;n � Pmax
l ; 8l 2 L ;

where Pmax
l is the maximum transmit power of BS l. Furthermore, the OFDMA

exclusive sub-carrier allocation within each cell l can be expressed as

C2.3 W
X

s2S

X

ks2Ks

˛l;ks;n � 1; 8l 2 L ; 8n 2 N :

In this setup, due to the limitation of multi-cell OFDMA, we restrict the access of
each user by the following constraint

C2.4 W � X

n2N
˛l;ks;n

�� X

8l0¤l

X

n2N
˛l0;ks;n

� D 0; 8ks 2 Ks; 8s 2 S ; 8l 2 L :
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C2.4 implies that each user can be associated to only one BS. More specifically,
C2.4 ensures when any sub-carrier n is assigned to user ks by BS l, that user would
not be assigned any sub-carriers by other BSs l0:

The joint power, sub-carrier and BS assignment can be formulated as

max
˛; P

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;nRl;ks;n.P/; (2.2)

subject to: C2.1–C2.4.

The optimization problem (2.2) has a non-convex objective function due to inter-cell
interference and involves non-linear constraints with combination of continuous and
binary variables, i.e., P and ˛. In other words, (2.2) is a non-convex mixed-integer,
NP-hard optimization problem [8]. Therefore, proposing an efficient algorithm with
reasonable computational complexity is desirable.

2.3 Proposed Two-Level Iterative Algorithm

To tackle the computational complexity of (2.2), we adopt the iterative approach to
iteratively find the UAF and power allocation for each user in two steps as shown
in Algorithm 2.1. In the first step, for a given power allocation vector, the UAF
is considered as the variable of the user-association problem and solved by sub-
algorithm 2.1.A (to be discussed in detail in Sect. 2.3.1).

This derived UAF is then used in the second step to find the corresponding
allocated power as the solution of the power-allocation optimization problem by
sub-algorithm 2.1.B (to be discussed in detail in Sect. 2.3.2). Both these steps are
iteratively executed until both the current UAF and power allocation vector solutions
are not much different from their values obtained in the previous iteration. In other
words, the sequence of the UAF and power allocation vector solutions can be
expressed as

˛.0/ ! P.0/
„ ƒ‚ …

Initialization

! : : :˛�.t/ ! P�.t/
„ ƒ‚ …

Iteration t

! ˛� ! P�
„ ƒ‚ …

Optimal solution

; (2.3)

where t > 0 is the iteration number and ˛�.t/ and P�.t/ are the optimal values at
the iteration t from convex transformation of related optimization problems in each
step. The iterative procedure is stopped when

jj˛�.t/ � ˛�.t � 1/jj � "1 and jjP�.t/ � P�.t � 1/jj � "2

where 0 < "1 � 1 and 0 < "2 � 1.
Notably, both the user-association and power-allocation optimization problems

are still non-convex and suffer from high computational complexity. To solve them
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Algorithm 2.1 Iterative joint user-association and resource-allocation algorithm
Initialization: Set t D 0, and P.t D 0/ such as power in each sub-carrier of BS l is Pmax

l =K.
Repeat: Set t D t C 1.
Step 1.A User Association:
Initialization for Step 1.A: Set t1 D 0;˛.t1/ D ˛.t/, P.t1/ D P.t/ and set arbitrary initial for
sks ;n.t1/.

Repeat: Set t1 D t1 C 1.
Step 1.A.1: Update �l;ks .t1/; �l;ks .t1/, �l;ks ;n.t1/, �l;ks ;n.t1/ and 'l;ks ;n.t1/ using

(2.5)–(2.8) and (2.15)–(2.17),
Step 1.A.2: Find optimal UAF in (2.14) using CVX [13],1

Until jj˛�.t1/� ˛�.t1 � 1/jj � "1,
set ˛.t/ D ˛�.t1/.

Step 1.B Power Allocation:
Initialization for Step 1.B: Set t2 D 0, ˛.t2/ D ˛.t/.

Repeat: Set t2 D t2 C 1.
Step 1.B.1: Update �l;ks ;n.t2/, �o.t2/ using (2.22),
Step 1.B.2: Find optimal power allocation according to (2.23) using CVX [13, 14]
Until jjP�.t2/� P�.t2 � 1/jj � "2,

set P.t/ D P�.t2/.
Until jj˛�.t/� ˛�.t � 1/jj � "1, and jjP�.t/� P�.t � 1/jj � "2.

efficiently, we apply complementary geometric programming (CGP) for each step
[11] in which via different transformations and convexification approaches, the
sequence of lower bound GP based approximation of relative optimization problem
is solved as described next.

2.3.1 User-Association Problem

At the iteration t, with given P.t/, we formulate the following user association
optimization problem to maximize the sum rate,

max
˛

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;nRl;ks;n.P.t//; (2.4)

subject to: eC2:1;C2.3, C2.4,

where Rl;ks;n.P.t// is computed by (1) with P.t/ and

eC2:1 W
X

l2L

X

ks2Ks

X

n2N
˛l;ks;nRl;ks;n.P.t// � Rrsv

s ; 8s 2 S :

1CVX chooses its own initialize value for vector ˛ [13], which is applied for our algorithm to
check the convergence condition.
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In (2.4), the only optimization variable is ˛, and therefore, (2.4) has lower
computational complexity than (2.2). However, it still suffers from the integer
optimization variable ˛. In addition, due to C2.4 and the objective function,
(2.4) is still a non-convex optimization problem. To overcome the computational
complexity of (2.4), we follow the following steps: We first relax the UAF variable
to be continuous as ˛l;ks;n 2 Œ0; 1�. Then, we apply the technique as described in
Proposition 1 to convert (2.4) into the GP formulation by transforming C2.4 into
its related linear constraints, and the objective function to the monomial function
from Proposition 2. Specifically, to have a standard GP formulation, the equality
constraint in C2.4 should only involve monomial functions. In the following, we
first relax C2.4 and then apply iterative AGMA approximation (as shown in (A.9)
and (A.10) in the Appendix) to get the monomial approximation for C2.4.

Proposition 1 At iteration t1 in solving (2.4), define xl;ks.t1/ D P
n2N ˛l;ks;n.t1/

and yks.t1/ D P
l2L

P
n2N ˛l;ks;n.t1/. C2.4 can be approximated by the following

constraints.

C2.4.1: z�1
l;ks
.t1/C xl;ks.t1/yks.t1/z

�1
l;ks
.t1/ � 1; 8ks 2 Ks; s 2 S ; 8l 2 L ;

C2.4.2: �l;ks.t1/
�
l;ks
.t1/zl;ks.t1/ �

�
x2l;ks

.t1/

�l;ks.t1/

���l;ks .t1/

� 1; 8ks 2 Ks; 8s; 8l;

C2.4.3: xl;ks.t1/
Y

n2N

�
˛l;ks;n.t1/

�l;ks;n.t1/

���l;ks ;n.t1/

D 1; 8ks 2 Ks; s 2 S ; 8l 2 L ;

C2.4.4: yks.t1/
Y

l2L ;n2N

�
˛l;ks;n.t1/

�l;ks;n.t1/

���l;ks ;n.t1/

D 1; 8ks 2 Ks;8s; 8l 2 L ;

where zl;ks.t1/ is an auxiliary variable, and,

�l;ks.t1/ D 1

x2l;ks
.t1 � 1/C 1

; (2.5)

�l;ks.t1/ D x2l;ks
.t1 � 1/

x2l;ks
.t1 � 1/C 1

; (2.6)

�l;ks;n.t1/ D ˛l;ks;n.t1 � 1/
P

n2N ˛l;ks;n.t1 � 1/ ; ; (2.7)

�l;ks;n.t1/ D ˛l;ks;n.t1 � 1/
P

l2L
P

n2N ˛l;ks;n.t1 � 1/ ; (2.8)

for all ks 2 Ks, s 2 S , and 8l 2 L .
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Proof From the definition of xl;ks.t1/ and yks.t1/, C2.4 can be rewritten as for all
ks 2 Ks, s 2 S and l 2 L ,

xl;ks.t1/Œyks.t1/ � xl;ks.t1/� D 0; (2.9)

which is not a monomial function. Equation (2.9) can be rewritten as
xl;ks.t1/yks.t1/ D x2l;ks

.t1/ and by adding 1 to both the left and right hand sides,
we have xl;ks.t1/yks.t1/ C 1 D 1 C x2l;ks

.t1/ for all ks 2 Ks, s 2 S , and l 2 L .
We define zl;ks.t1/ � 0 as an auxiliary variable to relax and convert (2.9) into the
posynomial inequalities as follows [9]

xl;ks.t1/yks.t1/C 1 � zl;ks.t1/ � 1C x2l;ks
.t1/; 8ks 2 Ks; 8s 2 S ; 8l 2 L :

(2.10)

The above inequalities can be written as

xl;ks.t1/yks.t1/C 1

zl;ks.t1/
� 1;

zl;ks.t1/

1C x2l;ks
.t1/

� 1:

Now, the above constraints can be approximated using AGMA approximation as

C2.4.1: z�1
l;ks
.t1/C xl;ks.t1/yks.t1/z

�1
l;ks
.t1/ � 1; (2.11)

C2.4.2: zl;ks.t1/
� 1

�l;ks.t1/

���l;ks .t1/
�

x2l;ks
.t1/

˛l;ks.t1/

��˛l;ks .t1/

� 1; (2.12)

where �l;ks.t1/ D 1

x2l;ks
.t1�1/C1 and al;ks.t1/ D x2l;ks

.t1�1/
x2l;ks

.t1�1/C1 . Now, C2.4 can be replaced

by the following constraints

C2.4.1: z�1
l;ks
.t1/C xl;ks.t1/yks.t1/z

�1
l;ks
.t1/ � 1;

C2.4.2: zl;ks.t1/
�
1=�l;ks.t1/

���l;ks .t1/
�

x2l;ks
.t1/

˛l;ks.t1/

��˛l;ks .t1/

� 1;

bC2:4:3 W xl;ks.t1/ D
X

n2N
˛l;ks;n.t1/;

bC2:4:4 W yks.t1/ D
X

l2L ;n2N
˛l;ks;n.t1/;

Note that via (2.10), the positive condition for the constraints of GP is met [15].
However, the equality constraints inbC2:4:3 andbC2:4:4 are not monomial functions
since we have xl;ks.t1/�

P
n2N ˛l;ks;n.t1/ D 0 and yks.t1/�

P
l2L ;n2N ˛l;ks;n.t1/ D 0,

and, they have negative constraints. To convertbC2:4:3 andbC2:4:4 to the monomial
functions, we again apply AGMA approximation as
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C2.4.3: xl;ks.t1/
Y

n2N

�
˛l;ks;n.t1/

�l;ks;n.t1/

���l;ks ;n.t1/

D 1; (2.13)

C2.4.4: yks.t1/
Y

l2L ;n2N

�
˛l;ks;n.t1/

�l;ks;n.t1/

���l;ks ;n.t1/

D 1

where �l;ks;n.t1/ and �l;ks;n.t1/ are defined in (2.7) and (2.8), respectively. ut
Based on C2.4.1–C2.4.4, C2.4 is transformed and represented by the approxi-

mated monomial equalities and posynomial inequalities. Next, we show how we can
transform the objective function into the monomial function to reach the GP-based
formulation for (2.4).

Proposition 2 Consider the auxiliary variable x0 > 0 and 	1 � 1. The user
association problem (2.4) at each iteration t1 can be transformed into the following
standard GP problem

min
˛.t1/; x0.t1/;zl;ks .t1/;xl;ks .t1/;yks .t1/

x0.t1/; (2.14)

subject to W C2.4.1–C2.4.4;

	1

�
x0.t1/

c0.t1/

��c0.t1/ Y

l2L ;s2S ;ks2Ks;n2N

�
˛l;ks;n.t1/Rl;ks;n.P.t//

cl;ks;n.t1/

��cl;ks ;n.t1/

� 1;

eC2:1:1 W Rrsv
s �

Y

l2L ;ks2Ks;n2N

�
˛l;ks;n.t1/Rl;ks;n.P.t//

'l;ks;n.t1/

��'l;ks ;n.t1/

� 1; 8s 2 S ;

C2.3.1:
X

s2S

X

ks2KS

˛l;ks;n.t1/ � 1; 8l 2 L ;8n 2 N ;

where

'l;ks;n.t1/ D ˛l;ks;n.t1 � 1/Rl;ks;n.P.t//P
l2L

P
ks2Ks

P
n2N ˛l;ks;n.t1 � 1/Rl;ks;n.P.t//

; 8s 2 S ;

(2.15)

cl;ks;n.t1/ D ˛l;ks;n.t1 � 1/Rl;ks;n.P.t//
x0.t1 � 1/CP

l2L
P

s2S
P

ks2Ks

P
n2N ˛l;ks;n.t1 � 1/Rl;ks;n.P.t//

;

(2.16)

c0.t1/ D x0.t1 � 1/
x0.t1 � 1/CP

l2L
P

s2S
P

ks2Ks

P
n2N ˛l;ks;n.t1 � 1/Rl;ks;n.P.t//

:

(2.17)
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Proof To reach the GP based formula for (2.4), we should have minimization over
the objective function, i.e.,

min
˛.t1/

X

l2L

X

s2S

X

ks2Ks

X

n2N
�˛l;ks;nRl;ks;n.P.t//:

Clearly, we have negative elements on the objective function similar to our general
formulation of Appendix (A.8). To meet the positive conditions of objective function
in GP, we consider 	1 � 1 and rewrite objective function as

	1 �
X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;n.t1/Rl;ks;n.P.t//

which is always positive. Then, consider a positive auxiliary variable x0, and rewrite
the objective function with this new auxiliary variables

	1

x0 CP
l2L

P
s2S

P
ks2Ks

P
n2N ˛l;ks;n.t1/Rl;ks;n.P.t//

� 1: (2.18)

Now, (2.18) can be rewritten as the product of monomial functions based on the
AGMA (discussed in Appendix A.1.2) as

	1

�
x0

c0.t1/

�c0.t1/ Y

l2L ;s2S ;ks2Ks;n2N

�
˛l;ks;n.t1/Rl;ks;n.P.t//

cl;ks;n.t1/

�cl;ks ;n.t1/

� 1; (2.19)

where cl;ks;n.t1/ and c0.t1/ are updated from (2.16) and (2.17), respectively. There-
fore, the total optimization problem can be transformed into (2.14). ut

Now, at each iteration, the optimization problem can be replaced by its GP
approximation in (2.14). Iteratively, (2.14) will be solved until achieving the optimal
value of UAF value as shown in Step 1.A of Algorithm 2.1.

Proposition 3 With AGMA, the above mentioned approach (Step 1.A) converges to
a locally optimal solution that satisfies the KKT conditions of the original problem.

Proof In [10], it is shown that the conditions for the convergence of the SCA are
satisfied and guarantee that the solutions of the series of approximations by AGMA
converges to a point that satisfies the KKT conditions of (2.4), i.e., a local maximum
is attained [16]. ut

2.3.2 Power-Allocation Problem

For a given set of UAFs obtained from Step 1.A, the optimization problem can be
formulated as
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max
P.t2/

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;n.t/Rl;ks;n.P.t2// (2.20)

subject to:

eC2:1:2 W
X

l2L

X

ks2Ks

X

n2N
˛l;ks;n.t/Rl;ks;n.P.t2// � Rrsv

s ;8s 2 S ;

eC2:2:2 W
X

s2S

X

ks2Ks

X

n2N
Pl;ks;n.t2/ � Pmax

l ; 8l 2 L ;

where t2 is the iteration index. Due to interference in the objective function of
Rl;ks;n.P.t2//, (2.20) is a non-convex optimization problem. In order to approximate
it to the corresponding GP form, first, we rewrite the objective of (2.20) as

max
P.t2/

Y

l2L ;s2S ;ks2Ks;n2N

l;ks;n.P.t2// (2.21)

where


l;ks;n.P.t2// D �2 C Il;ks;n.t2/C Pl;ks;n.t2/hl;ks;n

�2 C Il;ks;n.t2/
;

Il;ks;n.t2/ D
X

8l02L ;l0¤l

X

8s2S

X

8k0

s2Ks;k0

s¤ks

Pl0;k0

s;n.t2/hl;ks;n;:

Now, using AGMA, 
�1
l;ks;n

.P.t2// can be approximated as

b
 l;ks;n.P.t2// D .�2 C Il;ks;n.t2//

�
�2

�o.t2/

���o.t2/ Y

8l;s;ks;n

�
Pl;ks;n.t2/hl;ks;n

�l;ks;n.t2/

���l;ks ;n.t2/

;

where

�l;ks;n.t2/ D Pl;ks;n.t2 � 1/hl;ks;n

�2 CP
l2L ;ks2Ks;s2S Pl;ks;n.t2 � 1/hl;ks;n

; (2.22)

�o.t2/ D �2

�2 CP
s2L ;ks2Ks;s2S Pl;ks;n.t2 � 1/hl;ks;n

:

Consequently, (2.20) is transformed into the following standard GP problem

min
P.t2/

Y

l2L ;s2S ;ks2Ks;n2N
b
 l;ks;n.P.t2// (2.23)

subject to:
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eC2:1:2 W
Y

l2L ;;ks2Ks;n2N
b
 l;ks;n.P.t2// � 2�Rrsv

s ; 8s 2 S ;

eC2:2:2 W
X

s2S

X

ks2Ks

X

n2N
Pl;ks;n.t2/ � Pmax

l ; 8l 2 L ;

The overall optimization problem is iteratively solved as described in Step 1.B
until the power vector converges, i.e., jjP.t2/� P.t2 � 1/jj � "2 where 0 < "2 � 1.
Note that Proposition 3 holds for Step 1.B.

2.4 Numerical Results and Discussions

2.4.1 System Parameters

We consider a multi-cell VWN scenario with L D 4 BSs and N D 4 sub-carriers
serving S D 2 slices in a 2�2 square area. The 4 BSs are located at coordinates: (0.5,
0.5), (0.5, 1.5), (1.5, 0.5) and (1.5, 1.5). The channel power gains are based on the
path loss and Rayleigh fading model, i.e., hl;ks;n D �l;ks;nd��

l;ks
where � D 3 is the path

loss exponent, dl;ks 2 Œ0:1; 1� is the distance between the BS l and user ks normalized
to the cell radius and �l;ks;n is the exponential random variable with mean of 1 [17].
We use the noise power in a sub-carrier bandwidth as reference (i.e., normalized to
1 or 0 dB) and hence express transmit power or interference power in dB relative to
noise power. For all of the simulations, we set	1 D 107 and "1 D 10�5, "2 D 10�6.
In all of the following simulations, for each realization of network, when there exists
no feasible solution for the system, i.e., C2.1–C2.4 cannot be hold simultaneously,
the corresponding total rate is set to be zero. The simulation results are taken over
the average of 100 different channel realizations. For all the following simulations,
we set Rrsv D Rrsv

s for all s 2 S and Pmax D Pmax
l for all l 2 L .

2.4.2 Reference Resource Allocation

For performance comparison, we take as reference, the traditional SINR-based joint
sub-carrier and power allocation algorithm as summarized in Algorithm 2.2. Under
the SINR criterion, the users are assigned to the BSs that yields the highest average
received SINR. In this case, the resource allocation problem is formulated as

max
˛0;P

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛0

l;ks;nRl;ks;n.P/ (2.24)

subject to: C2.1–C2.3;



2.4 Numerical Results and Discussions 25

Algorithm 2.2 Reference resource-allocation algorithm
Initialization: Set t3 D 0, BS assignment: user ks is assigned to BS l based on the average received
SINR.
Repeat: Set t3 D t3 C 1.

Step 2.A: Compute ˛0�.t3/ by using Step 1.A of Algorithm 2.1 except that the BS is assigned
based on the signal strength.

Step 2.B: For a fixed ˛0�.t3/, find the optimal power allocation P0.t3/ by using Step 1.B of
Algorithm 2.1.
Until jj˛0�.t3/� ˛0�.t3 � 1/jj � "1 and jjP0�.t3/� P0�.t3 � 1/jj � "2.

where ˛0 D Œ˛0
l;ks;n

�8l;ks;n and ˛0
l;ks;n

shows the sub-carrier allocation of user ks

on sub-carrier n when it is allocated to the BS l. Clearly, (2.24) is still highly
non-convex. In order to show the importance and effects of defining UAF in this
context, we apply the similar approach based on CGP to solve (2.24). In other
words, Algorithm 2.2 is based on CGP and similar to Algorithm 2.1, except that,
in Algorithm 2.2, (2.14) contains only C2.1–C2.3, i.e., C2.4 is removed, since
BS-user association is based on the highest average received SINR. When the
sub-carrier assignment is solved, the optimal power is derived from Step 1.B
similar to Algorithm 2.1, for (2.24). This iterative algorithm is terminated when
the convergence conditions are met as summarized in Algorithm 2.2.

2.4.3 Total Rate and Rate-Outage Evaluation

Primarily, we evaluate and compare the total rates achieved by Algorithms 2.1 and
2.2 versus the number of sub-carriers and maximum transmit power in Fig. 2.2a
and b, respectively. We set Ks D 4 and the eight users in two slices are randomly
located in the 2 � 2 square area according to a uniform distribution. The results
in both Fig. 2.2a and b indicate that Algorithm 2.1 considerably outperforms
Algorithm 2.2 for different values of Rrsv

s , N and Pmax
l .

From Fig. 2.2a, it can be observed that the total rate is increased by increasing the
total number of sub-carriers, N, due to the opportunistic nature of fading channels
in wireless networks. As expected, with increasing Pmax

l , the total achievable rate
is also increased as shown in Fig. 2.2b. Both figures indicate that by increasing
the value of Rrsv

s , the total rate decreases because the feasibility region of resource
allocation in (2.24) is reduced leading to less total average achieved rate. However,
from Fig. 2.2b, increasing Rrsv

s has considerable effect on the performance of Algo-
rithm 2.2 as compared to Algorithm 2.1. It can be interpreted as Algorithm 2.1 can
efficiently control interference between different cells compared to Algorithm 2.2.
Therefore, the chance of feasible power allocation for larger values of Rrsv

s is
increased by Algorithm 2.1.
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To study this point further, we consider the rate-outage probability of C2.1,
expressed as

Pr(rate-outage) DPrf
X

l2L

X

ks2Ks

X

n2N
˛l;ks;nRl;ks;n.P;˛/ � Rrsv

s g; 8s 2 S :

Via Monte Carlo simulation, we compute Pr(rate-outage) of both Algorithms 2.1
and 2.2 for the above-mentioned simulation setting, as depicted in Fig. 2.3a with
N D 8 and Pmax

l D 40 dB for all l 2 L . The results demonstrate that as
the rate reservation per slice Rrsv

s increases, the rate-outage probability of both
Algorithms 2.1 and 2.2 increases. However, Algorithm 2.2 has larger rate-outage
probability compared to the outage probability of Algorithm 2.1, implying that
the feasibility region of Algorithm 2.2 is smaller than that for Algorithm 2.1. On
the other hand, Algorithm 2.1 can efficiently manage interference in the specific
region between different cells as compared to Algorithm 2.2. It is mainly because
Algorithm 2.1 has more degrees of freedom to choose the BS and allocate the sub-
carriers among users of different slices while the BS assignment is predetermined
in Algorithm 2.2. Therefore, the achieved rate of Algorithm 2.2 is less than that of
Algorithm 2.1. With increasing Rrsv

s , the rate reduction of Algorithm 2.2 is greater
than that of Algorithm 2.1, since Algorithm 2.2 cannot manage the interference
between different BSs. Hence, Algorithm 2.2 cannot satisfy the minimum rate
requirements of slices, leading to reduced VWN efficiency.

For the same setup, in Fig. 2.3b, the total rate of Algorithms 2.1 and 2.2 are
plotted for different values of Rrsv

s . Figure 2.3b clearly shows that Algorithm 2.1
yields higher rate than Algorithm 2.2. Note that in all the simulation results, when
the problem is infeasible, i.e., there is no power and sub-carrier vectors that can
meet the constraint C2.1 for all s 2 S , the achieved total rate is set to zero. These
simulations highlight the importance of introducing UAF as the joint BS assignment
and sub-carrier allocation in the multi-cell wireless networks to manage and control
the interference between different cells.

2.4.4 Coverage Analysis

In any cellular network, the coverage can be measured by SINR or achieved total
rate of users at the cell boundaries. To study the performance of Algorithm 2.1
in terms of coverage, we consider the simulation setup similar to Fig. 2.4 where
the majority of users are located in the cell-edge region, consequently, these users
experience high interference from other BSs. Therefore, the achieved rate of each
user is decreased, which can be considered as the worst-case scenario of coverage
analysis.

The cumulative distribution function (CDF) of the total throughput of cell-edge
users and cell-center users is depicted in Fig. 2.5a and b, respectively, for both
Algorithms 2.1 and 2.2. It can be seen that Algorithm 2.1 outperforms Algorithm 2.2
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Fig. 2.4 Illustration of network setup to investigate the coverage of multi-cell VWN

for the cell-edge users where 50% of users in the cell-edge achieve a rate of
2:5 bps/Hz by Algorithm 2.1, and around 1:5 bps/Hz via Algorithm 2.2. However,
the performance of both algorithms are similar for the cell-center users. It is because
via user-association in Algorithm 2.1, the interference among different cells can
be controlled while Algorithm 2.2 cannot control the interference through the
connectivity of users to different BS and it is pre-determined by the received SINR
of reference signal. In other words, Algorithm 2.1 can provide better coverage for
cell-edge users for multi-cellular VWN which is desirable from implementation
perspective.

The performance is further investigated with respect to the number of users in the
cell-edge in Fig. 2.6a, b. Algorithm 2.1 can consistently improve the performance
of cell-edge users and maintain desirable rate of each slice regardless of the user
deployment density as compared to the Algorithm 2.2. For instance, with K D 18,
for the uniform user distribution, the total rate is increased by 57% from 7 bps/Hz
(by Algorithm 2.2) to 11 bps/Hz (by Algorithm 2.1) for cell-edge users and by
33% from 24 bps/Hz (by Algorithm 2.2) to 32 bps/Hz (by Algorithm 2.1) for cell-
center users. For non-uniform user distribution, when K D 32, the rate is increased
by 71% from 7 bps/Hz (by Algorithm 2.2) to 12 bps/Hz (by Algorithm 2.1) for
cell-edge users and by 50% from 18 bps/Hz (by Algorithm 2.2) to 27 bps/Hz (by
Algorithm 2.1) for cell-center users. These results show the efficiency of applying
Algorithm 2.1 in increasing the coverage over the whole network.
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2.4.5 Optimality Gap Study

We investigate the performance gap between the optimum solution (by exhaustive
search) and the proposed Algorithm 2.1 for N D 2 sub-carriers and K D 4 users.
Figure 2.7 plots the total rate versus Pmax for both Algorithm 2.1 and the exhaustive
search. As seen in the figure, the performance of Algorithm 2.1 approaches the
performance of exhaustive search as Pmax increases because the AGMA approach
to convexify the rate is the best fit approximation for the high SINR scenario.

2.4.6 Computational Complexity and Convergence Analysis

In this section, we investigate the computational complexity and the convergence
of Algorithm 2.1. First, we focus on deriving the computational complexity of
Algorithm 2.1 analytically. Since CVX is used to solve GP sub-problems with the
interior point method in Step 1.A (User-Association problem) and Step 1.B (Power-

Allocation problem), the number of required iterations is log.c=.t0%//
log.�/ [14], where c

is the total number of constraints in (2.14), t0 is the initial point to approximate
the accuracy of interior point method, 0 < % � 1 is the stopping criterion for



2.5 Concluding Remarks 33

interior point method, and � is used for updating the accuracy of interior point
method [14]. As previously discussed, the numbers of constraints in (2.14) are
c1 D S C LN C 4LK C 1 for Step 1.A and c2 D S C L for Step 1.B.

Moreover, in Steps 1.A and 1.B, for each iteration, the number of computations
required to convert the non-convex problems using AGMA into (2.14) and (2.21) is
i1 D NL2K C 6NLK C LNSK and i2 D SLNK C 2LNK, respectively. Therefore, the
order of computational complexity for each step is

– i1 � log.c1=.t01%1//
log.�1/

for Step 1.A,

– i2 � log.c2=.t02%2//
log.�2/

for Step 1.B.

Based on this analysis, the computational complexity of Step 1.A is significantly
higher than that of Step 1.B. Moreover, Step 1.A is more sensitive to N and K than
Step 1.B. Since Algorithm 2.1 is a type of block SCA algorithm [18], when (2.2)
is feasible, the outer loop of Algorithm 2.1 is converged (Proposition 6 in [19] and
Theorem 2 in [18]). For further investigation by simulation, in Fig. 2.8a, the number
of iterations required for convergence for Steps 1.A and 1.B versus the total number
of sub-carriers, N, is plotted for K D 8 and Rrsv D 2 bps/Hz. Similarly, in Fig. 2.8b,
the number of iterations required for convergence versus the total number of users,
i.e., K, for N D 4 sub-carriers is plotted in the case of Steps 1.A and 1.B. As N and
K increase, the number of iterations required for convergence also increases. The
computational complexity of Step 1.A is higher than that of Step 1.B because the
total number of constraints for Step 1.A is higher than that for Step 1.B.

The major issue of Algorithm 2.1 is that (2.2) can be infeasible, e.g., due to
deep fades and/or high interference and C2.1 cannot be met. Therefore, a potential
extension work of this chapter could be to consider the admission control policy to
adjust Rrsv

s .

2.5 Concluding Remarks

Joint user association and resource allocation problem for multi-cell OFDMA based
VWNs was considered in this chapter. In the proposed setup, we have considered
a set of slices (service providers), each has a set of their own users and require
a minimum reserved rate. We formulated the related optimization problem based
on the new defined optimization variable, called user association factor (UAF),
indicating the joint sub-carrier and BS assignment. To solve the proposed non-
convex and NP-hard optimization problem, we followed an iterative approach where
in each step, one set of optimization variables is derived. However, in each step, the
optimization problem is non-convex and NP-hard. To derive the efficient algorithm
to solve them, we apply the framework of iterative successive convex approximation
via complementary geometric programming (CGP) to transform the non-convex
optimization problem into the convex one. Simulation results reveal that, via the
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proposed approach, the throughput and coverage of VWN, especially for the cell-
edge users, are considerably improved as compared to the traditional scenario where
the BS is assigned based on the maximum value of SINR.
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Chapter 3
Power-Efficient Joint User-Association
and Resource-Allocation in Multi-Cell VWN

This chapter addresses the power-efficient user-association and resource-allocation
problem in a multi-cell VWN. With the aim of minimizing the total transmit power
from the BS, we formulate a joint BS assignment, sub-carrier and power allocation
problem subject to the slice isolation constraints. This problem is inherently a non-
convex optimization problem. To tackle its computational complexity, we apply
successive convex approximation (SCA) and complementary geometric program-
ming (CGP) to convert the problem into a computationally efficient formulation and
propose an iterative algorithm for solving the problem. Simulation results illustrate
the performance enhancement of the VWN achieved through our formulation for
different network scenarios.

3.1 Introduction

Maximizing the power efficiency is one of the main goals of any communication
network since it directly relates to the operating expenses of the network. As such,
there have been a lot of research works done in order to maximize the power
efficiency of wireless networks. As mentioned in Chap. 2, while user association and
resource allocation is a challenging issue for the practical realization of a VWN, the
power efficiency problem adds another level of complexity in the resource allocation
problem.

As VWN is still an evolving structure, the existing research works have mainly
focused on the power efficient user association problem in the traditional wireless
network. For instance, Li and Liu [1] consider the user association problem in a relay
network with individual user data requirements. Specifically, the proposed algorithm
tries to minimize the total energy consumption from the network, including the
physical circuit energy and dynamically associates the users to the macro BS or
the relay station depending on the user locations and the received interference.

© Springer International Publishing AG 2018
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Moreover, Han et al. [2] consider another the user association problem in a
HetNet by using the game theory approach. Specifically, the users are modeled as
players and adjust and choose their BS selection strategy while considering their
own fairness and long-term payoffs. Similarly, Liu et al. [3] propose an energy-
efficient user association algorithm in massive MIMO enabled HetNet based on the
Lagrangian dual analysis that maintains the user throughput requirements as well
as the fairness among users. Tian et al. [4] consider the user association problem
in a network with coexistence among human and machine-type communication
devices and propose a power efficient algorithm that tries to maintain the QoS of
the machine-type devices based on the dual decomposition theory.

The aforementioned works have focused on the user association problem with
the objective of maximizing the transmit power efficiency in HetNet. The proposed
approaches are not directly applicable to a VWN due to a number of reasons. First,
due to the isolation constraint among slices in a VWN, the requirements of the
slices need to be met in order to optimally associate users to BSs. Moreover, unlike
the problems considered in the above mentioned works, the power efficient user
association problem in an OFDMA network is significantly different due to the
non-convexity of the problem and the OFDMA exclusive sub-carrier assignment
constraint.

We consider a power-efficient user association and resource allocation problem
in a multi-cell OFDMA VWN in this chapter. Specifically, the objective of
the proposed optimization problem is to minimize the total transmit power of
the VWN subject to the constraints. Due to the downlink OFDMA limitation,
one sub-carrier in each BS can only be assigned to a single user and each user
can only be allocated to a single BS. We use the variable user association factor
(UAF) to jointly determine the BS assignment and the sub-carrier allocation to a
given user. From the constraints on the UAF and the inter-cell interference, the
resource allocation problem is non-convex and NP-hard, which suffers from high
computational complexity. To encounter this challenge, we apply CGP and SCA
to propose an iterative algorithm with two steps: Step 1 derives the UAF for a
given power allocation, and subsequently, for each set of UAF obtained from Step
1, Step 2 derives the optimal power allocation. In each step, we use different
transformation techniques like the AGMA to obtain lower-bound GP formulation,
which can efficiently be solved by softwares, like CVX [5].

3.2 System Model and Problem Formulation

We consider the downlink transmission of a VWN, where the coverage of a specific
area is provided by a set of BSs, i.e., L D f1; : : : ;Lg. The total bandwidth of W Hz
is shared between the BSs through orthogonal frequency division multiple access
(OFDMA) within a set of sub-carriers N D f1; : : : ;Ng. It is assumed that the
bandwidth of each sub-carrier, W

N , is much smaller than the coherent bandwidth of
the wireless channel, therefore, the CSI in each sub-carrier is flat. The set of BSs
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serves a set of slices, i.e., S D f1; : : : ; Sg, where the slice s has its own set of users
(denoted by Ks D f1; : : : ;Ksg) and requests for a minimum reserved rate of Rrsv

s .
Let hl;ks;n and Pl;ks;n be the CSI of the link from BS l 2 L to user ks of slice

s on sub-carrier n and the allocated power to user ks of slice s on sub-carrier n,
respectively. Due to OFDMA limitation, each user is assigned to only one BS, and to
avoid intra-cell interference, orthogonal sub-carrier assignment is assumed among
users in a cell. Furthermore, we assume that there is no pre-allocated BS for users.
The binary-valued user association factor (UAF), ˛l;ks;n 2 f0; 1g is defined for user
ks of slice s on sub-carrier n of BS l as

˛l;ks;n D
(
1; if BS l allocates sub-carrier n to user ks;

0; otherwise:

From the OFDMA exclusive sub-carrier allocation within each cell l, we have

C3.1 W
X

s2S
X

ks2Ks
˛l;ks;n � 1; 8l 2 L ; 8n 2 N :

Also, from multi-cell OFDMA limitation, we restrict the access of each user only to
one BS as,

C3.2 W �Pn2N ˛l;ks;n
��P

8l0¤l

P
n2N ˛l0;ks;n

� D 0;

8ks 2 Ks; 8s 2 S ; 8l 2 L . Let P D ŒPl;ks;n�8l;s;ks;n
and ˛ D Œ˛l;ks;n�8l;s;ks;n

denote
the vector of all transmit powers and UAFs of users, respectively. The rate of user
ks of BS l in sub-carrier n is

Rl;ks;n.P/ D log2

�

1C Pl;ks;nhl;ks;n

�2 C Il;ks;n

�

; (3.1)

where

Il;ks;n D
X

8l02L ;l0¤l

X

8s2S

X

8k0

s2Ks;k0

s¤ks

Pl0;k0

s;nhl;ks;n

and �2 is the noise power assumed to be the same for all users in all sub-carriers
and BSs. Now, from (3.1), the required minimum rate of slice s 2 S is

C3.3 W
X

l2L

X

ks2Ks

X

n2N
˛l;ks;nRl;ks;n.P/ � Rrsv

s ; 8s 2 S :

Considering C3.1–C3.3, an optimization problem to jointly allocate the BS, sub-
carrier and power with the aim of maximizing the energy efficiency can be written as

min
˛; P

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;nPl;ks;n; (3.2)

subject to: C3.1–C3.3.
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The optimization problem (3.2) has a non-convex objective function due to inter-cell
interference and involves non-linear constraints with the combination of continuous
and binary variables, i.e., P and ˛. Consequently, (3.2) is a non-convex mixed-
integer, NP-hard optimization problem [6]. Therefore, an efficient algorithm with
reasonable computational complexity is needed to solve the resource allocation
problem.

3.3 Proposed Algorithm

To solve (3.2), we propose the iterative Algorithm 3.1, where first, we calculate ˛
based on a given P, and then, use the derived ˛ to calculate P as follows:

˛.0/ ! P.0/
„ ƒ‚ …

Initialization

! : : :˛.t/� ! P.t/�
„ ƒ‚ …

Iteration t

! ˛� ! P�
„ ƒ‚ …

Optimal solution

; (3.3)

where t > 0 is the iteration number, ˛.t/�, P.t/� are the optimal values at iteration t.
The iterative procedure is stopped when

jj˛�.t/ � ˛�.t � 1/jj � "1 and jjP�.t/ � P�.t � 1/jj � "2

where 0 < "1 � 1 and 0 < "2 � 1. Note that the user association and
power allocation problems are still non-convex and suffer from high computational
complexity. In developing an efficient algorithm, we apply CGP via different
transformations and convexification approaches to solve the sequence of lower-
bound GP-based approximations as discussed in the following sub-sections.

3.3.1 User-Association Problem

For a given P.t/, (3.2) is transformed into

min
˛

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;nPl;ks;n.t/; (3.4)

subject to: C3.1, C3.2,eC3.3

Here, for iteration t, C3.3 is converted to,

eC3:3 W
X

l2L

X

ks2Ks

X

n2N
˛l;ks;nRl;ks;n.P.t// � Rrsv

s ; 8s 2 S :
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In (3.4), ˛ are the optimization (binary) variables. Thus, (3.4) has much lower
computational complexity than (3.2). Furthermore, we relax ˛l;ks;n 2 Œ0; 1�, and
then use the AGMA to convert C3.2 and C3.3 as follows. First, we rewrite C3.3
as, 8s 2 S ,

eC3:3 W Rrsv
sP

l2L
P

ks2Ks

P
n2N ˛l;ks;nRl;ks;n.P.t//

� 1:

Now, since the denominator ineC3:3 is a posynomial, for each iteration t1 of the user
association sub-problem, we approximate it and rewrite C3:3 as,

C3:3 W
Y

s2L ;ks2Ks;n2N
Rrsv

s

�
˛l;ks;n.t1/Rl;ks;n.P.t//

'l;ks;n.t1/

��'l;ks ;n.t1/

� 1; (3.5)

where, 8l 2 L ;8s 2 S ;8ks 2 KS;8n 2 N ,

'l;ks;n.t1/ D ˛l;ks;n.t1 � 1/Rl;ks;n.P.t//P
l2L

P
ks2Ks

P
n2N ˛l;ks;n.t1 � 1/Rl;ks;n.P.t//

: (3.6)

Next, assuming xl;ks.t1/ D P
n2N ˛l;ks;n.t1/ and yks.t1/ D P

l2L
P

n2N ˛l;ks;n.t1/,
C3.2 can be written as

xl;ks.t1/Œyks.t1/ � xl;ks.t1/� D 0; 8ks 2 Ks;8s 2 S ;8l 2 L : (3.7)

To convert (3.7) into a monomial function, we rewrite it as xl;ks.t1/yks.t1/ D x2l;ks
.t1/,

and by adding 1 to both left and right hand sides, we get xl;ks.t1/yks.t1/ C 1 D
1Cx2l;ks

.t1/. Considering zl;ks.t1/ � 0 as an auxiliary variable, (3.7) can be converted
into the posynomial inequalities as, [7]

xl;ks.t1/yks.t1/C 1 � zl;ks.t1/ � 1C x2l;ks
.t1/; 8ks 2 Ks;8s 2 S ;8l 2 L : (3.8)

The above inequalities can be written as

xl;ks.t1/yks.t1/C 1

zl;ks.t1/
� 1; and

zl;ks.t1/

1C x2l;ks
.t1/

� 1:

Now, by using AGMA approximation, the above expressions are transformed into

C3.2.1: z�1
l;ks
.t1/C xl;ks.t1/yks.t1/z

�1
l;ks
.t1/ � 1;

C3.2.2:

�
1

�l;ks.t1/

���l;ks .t1/

zl;ks.t1/ �
�

x2l;ks
.t1/

�l;ks.t1/

���l;ks .t1/

� 1;
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where

�l;ks.t1/ D 1=Œx2l;ks
.t1 � 1/C 1�; (3.9)

�l;ks.t1/ D x2l;ks
.t1 � 1/

x2l;ks
.t1 � 1/C 1

: (3.10)

Now, C3.2 can be replaced by the following constraints

C3.2.1;C3.2.2;

C3:2:3 W xl;ks.t1/ D
X

n2N ˛l;ks;n.t1/;

C3:2:4 W yks.t1/ D
X

l2L ;n2N ˛l;ks;n.t1/:

Note that via (3.8), the positive condition for the constraints of GP is met. However,
the equality constraints in C3:2:3 and C3:2:4 are not monomials since we have
xl;ks.t1/ � P

n2N ˛l;ks;n.t1/ D 0 and yks.t1/ � P
l2L ;n2N ˛l;ks;n.t1/ D 0, and, they

have negative constraints. To convert C3:2:3 and C3:2:4 to the monomial functions,
we again apply AGMA approximation as

eC3:2:3 W xl;ks.t1/
Y

n2N

�
˛l;ks;n.t1/

�l;ks;n.t1/

���l;ks ;n.t1/

D 1;

eC3:2:4 W yks.t1/
Y

l2L ;n2N

�
˛l;ks;n.t1/

�l;ks;n.t1/

���l;ks ;n.t1/

D 1;

where �l;ks;n.t1/ and �l;ks;n.t1/ are given by,

�l;ks;n.t1/ D ˛l;ks;n.t1 � 1/
P

n2N ˛l;ks;n.t1 � 1/ ; �l;ks;n.t1/ D ˛l;ks;n.t1 � 1/
P

l2L
P

n2N ˛l;ks;n.t1 � 1/ :
(3.11)

Hence, the problem for sub-problem 1 can be written as

min
˛.t1/

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;n.t1/Pl;ks;n.t/; (3.12)

s.t: C3.1, C3.2.1–C3.2.2;eC3:2:3–eC3:2:4;eC3:3:

Now, (3.12) belongs to GP and can be solved using CVX.
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3.3.2 Power Minimization Problem

For given ˛, the power allocation problem is

min
P.t2/

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;n.t/Pl;ks;n.t2/ (3.13)

subject to:

eC3:3 W
X

l2L

X

ks2Ks

X

n2N
˛l;ks;n.t/Rl;ks;n.P.t2// � Rrsv

s ; 8s 2 S ;

where t2 is the iteration index. Due to interference in the objective function of
Rl;ks;n.P.t2//, (3.13) is a non-convex optimization problem. We again follow the
AGMA approach to convert (3.13) into the equivalent GP problem. First, we rewrite
eC3:3 as

Y

l2L ;ks2Ks;n2N

l;ks;n.P.t2// � 2�Rrsv

s ; 8s 2 S ;

where


l;ks;n.P.t2// D �2 C Il;ks;n.t2/C Pl;ks;n.t2/hl;ks;n

�2 C Il;ks;n.t2/
; (3.14)

Il;ks;n.t2/ D
X

8l0¤l

X

8s

X

8k0

s¤ks
Pl0;k0

s;n.t2/hl;ks;n: (3.15)

Now using AGMA approach, 
l;ks;n.P.t2// can be approximated as

b
 l;ks;n.P.t2// D.�2 C Il;ks;n.t2//

�
�2

�o.t2/

���o.t2/

�

Y

l2L ;ks2Ks;n2N

�
Pl;ks;n.t2/hl;ks;n

�l;ks;n.t2/

���l;ks ;n.t2/

;

where

�l;ks;n.t2/ D Pl;ks;n.t2 � 1/hl;ks;n

�2 CP
l2L ;ks2Ks;s2S Pl;ks;n.t2 � 1/hl;ks;n

; (3.16)

�o.t2/ D �2

�2 CP
l2L ;ks2Ks;s2S Pl;ks;n.t2 � 1/hl;ks;n

:
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Algorithm 3.1 Power-efficient joint UA and RA algorithm

Initialization: Set t D t1 D t2 D 1, ˛.t/ D Œ1�, where 1 is a vector C1�KN and P.t/ with power of
each sub-carrier of BS m as Pmax

m =K.
Repeat:
Step 1: Repeat: Set ˛.t1 D 1/ D ˛.t/, P.t1 D 1/ D P.t/ and set arbitrary initial for zl;ks .t1/,

Step 1a: Update �l;ks .t1/; �l;ks .t1/; �l;ks ;n.t1/;
�l;ks ;n.t1/ and 'l;ks ;n.t1/ as per (3.6)–(16),

Step 1b: Find optimal UAF in (3.12) using CVX [5],
Until jj˛�.t1/� ˛�.t1 � 1/jj � "1.

Step 2: Repeat: Obtain ˛.t2 D 1/ D ˛�.t1/.
Step 2a: Update �l;ks ;n.t2/ and �o.t2/ from (3.16),
Step 2b: Find optimum power from (3.17) via CVX [5],
Until jjP.t2/� P.t2 � 1/jj � "2.

Until: jj˛�.t/� ˛�.t � 1/jj � "1, and jjP�.t/� P�.t � 1/jj � "2.

Consequently, (3.13) is transformed into

min
P.t2/

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;n.t/Pl;ks;n.t2/ (3.17)

subject to:

NC3:3 W
Y

l2L ;s2S ;ks2Ks;n2N
b
 l;ks;n.P.t2// � 2�Rrsv

s ; 8s 2 S :

The overall optimization problem is iteratively solved as described in Algorithm 3.1
until the UAF and the power vector converge, i.e., jj˛.t1/ � ˛.t1 � 1/jj � "1 and
jjP.t2/ � P.t2 � 1/jj � "2 where 0 < "1; "2 � 1.

3.4 Numerical Results and Discussions

We consider a multi-cell VWN with L D 4 BSs within a 2 � 2 square area with
S D 2;N D 4 and K D 8 users uniformly distributed within the area. The channel
gains are derived from the Rayleigh fading model as hl;ks;n D �l;ks;nd��

l;ks
where � D 3

is the path loss exponent, dl;ks > 0 is the distance between the BS l and user ks

normalized to the cell radius and �l;ks;n is the exponential random variable with mean
of 1. For all of the simulations, we set "1 D 10�5 and "2 D 10�6, and Rrsv D Rrsv

s for
all s 2 S unless otherwise stated. The results are demonstrated based on the average
over 100 channel realizations. To compare the performance of our algorithm, we use
the sub-optimal approach where the users are assigned to BS based on the received
signal strength. Hence, here, the problem is

min
˛; P

X

l2L

X

s2S

X

ks2Ks

X

n2N
˛l;ks;nPl;ks;n; (3.18)

subject to: C3.1, C3.3.
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Fig. 3.1 Total transmit power versus N

The proposed Algorithm 3.1 can be applied for solving (3.18) except that all
constraints related to C3.2 are removed since the BS assignment is predetermined
based on the received signal strength.

Figure 3.1 shows the total transmit power of all BSs versus Rrsv
s and N

for both Algorithm 3.1 and the sub-optimal approach. As expected, due to the
opportunistic nature of fading channels [8], by increasing N, the total transmit
power decreases. However, the total transmit power required by the sub-optimal
approach is significantly higher than the one required by Algorithm 3.1. This is
because the BS assignment is based on the highest received signal strength in the
sub-optimal approach. Therefore, more transmit power is required to support the rate
reservation per slice. Also, with increased rate reserved per slice, the total transmit
power increases since the BSs need to transmit at a higher power to support the
reserved rate.

Figure 3.2 plots the total transmit power of all BSs versus K for different
Rrsv. Clearly, the total transmit power decreases with increasing K for a fixed Rrsv

because, from the user diversity gain, there is a higher chance of assigning the sub-
carriers with less power while fulfilling the minimum rate constraint per slice. Also,
similar to Fig. 3.1, the total transmit power of the sub-optimal approach is higher
than that of Algorithm 3.1 with the difference becoming more distinguishable at
higher values of K. Moreover, the total transmit power increases with the increase
in Rrsv.
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In Fig. 3.3, the effects of increasing the number of BSs, i.e., L, is investigated
with K D 32. It can be observed that increasing L does not have monotonic effect
on the transmit power. For instance, for Rrsv D 3 and Rrsv D 4, the total required
power at L D 4 is lower than that for L D 9 and 16. It is mainly because the inter-
cell interference will be increased by increasing the number of BSs, which results
in higher power requirement. However, large value of Rrsv such as Rrsv D 5 bps/Hz,
cannot be attained by L D 4. Therefore, the number of BSs should be properly
designed for a specific region to practically realize a power-efficient and feasible
VWN.

3.5 Concluding Remarks

In this chapter, we consider a power-efficient user-association and resource-
allocation problem in an OFDMA-based multi-cell VWN where users belonging to
different slices require minimum rate reservation in order to support the QoS of the
users. We propose a novel constraint for the joint BS and sub-carrier allocation and
convert the highly non-convex optimization problem into more tractable formulation
via CGP and SCA. Simulation results reveal the performance gains of the proposed
algorithm with respect to different system parameters and indicate the importance
of efficient user association in improving the power efficiency.
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Chapter 4
Uplink Resource-Allocation in VWN
with Massive-MIMO and Dynamic
Pilot-Duration

In this chapter, we address the resource allocation problem in a VWN with massive
MIMO at the BS. Specifically, we focus on the imperfect CSI estimation scenario in
a massive MIMO VWN and formulate the resource allocation problem that jointly
assigns sub-carrier, power, antenna and adaptive pilot duration to users with the aim
of maximizing the total sum-rate of the system. An iterative algorithm is proposed
that tries to dynamically assign these resources to users while maintaining the
isolation constraints among slices. The proposed iterative algorithm is compared
with the scenario where users have a fixed pilot duration to report their CSI
information to the BS. The numerical results demonstrate that there is a significant
improvement in the spectral efficiency of the VWN when using adaptive pilot
duration compared to the situation with a fixed pilot duration.

4.1 Introduction

Virtualization of wireless networks, as discussed in earlier chapters, is a promising
approach to improve network bandwidth- and power-efficiencies wherein the wire-
less resources, e.g., power, sub-carriers, and antennas are shared between different
slices. Unlike the traditional wireless network, in a VWN, each slice requires a
minimum reserved resource (rate or power) from the network in order to support
the QoS of its users. Since the performance of a wireless network is affected
by the dynamic channel conditions, there may arise situations when the resource
requirements of the slices cannot be met giving rise to infeasibility scenario.
A number of techniques have been proposed in order to extend the feasibility region
of the VWN that could lead to better spectral efficiency.

Application of massive MIMO in the BS of wireless networks has been recently
proposed to make extensive use of the degrees of freedom to increase the spectral
and energy efficiencies. Channel state information (CSI) estimation in a massive

© Springer International Publishing AG 2018
T. Le-Ngoc et al., Virtualized Wireless Networks, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-3-319-57388-5_4
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MIMO environment poses a serious challenge and significantly complicates the
resource allocation problem. Ideally, the pilot sequences transmitted by the users
to assist the BS in estimating the CSI of the users should be mutually orthogonal.
However, accommodating a large number of users in the neighboring BSs makes
it necessary to reuse the orthogonal sequences among users, which creates an
interference and causes imperfect CSI estimation.

There has been a growing interest in the research community to address the
issue of mitigating the pilot contamination effects recently. For instance, in [1],
various alternatives for precoding and cooperative methods have been presented
to alleviate pilot contamination. In [2], the maximum number of admissible users
in a downlink pilot-contaminated time division duplexing (TDD) massive MIMO
system is derived and an algorithm is proposed to achieve the individual user
capacity. In [3], an optimal power and pilot duration allocation algorithm is
proposed in a conventional wireless network with massive MIMO by considering
different power for data signal and training signal transmission.

In the context of VWNs, Jumba et al. [4] have studied the benefits of applying
massive MIMO on the achieved network throughput and shown that the feasibility
region of optimization problem is considerably expanded and the overall system
throughput is improved as a result. Both perfect and imperfect channel estimation
have been considered with fixed pilot duration in [4]. In this chapter, we aim
to investigate whether and to what extent adaptive pilot duration allocation can
improve the network performance.

The rest of this chapter is organized as follows: Sect. 4.2 presents the system
model considered in this problem along with the problem formulation. The proposed
iterative algorithm is discussed in Sect. 4.3 followed by Sect. 4.4 where we present
the numerical results with concluding remarks in Sect. 4.5.

4.2 System Model and Problem Formulation

We consider the uplink transmission of an OFDMA-based VWN with a single BS
equipped with an array of M D f1; : : : ;Mg antennas. The BS serves a set of slices,
S D f1; � � � ; Sg. Slice s 2 S consists of a set of single-antenna users, Ks D
f1; � � � ;Ksg and requires a minimum rate Rrsv

s . The total number of users in the
system is K D P

s2S Ks, and we assume K � M. An illustration of the system
model is presented in Fig. 4.1 along with the uplink pilot model.

The total available bandwidth is divided into a set of sub-carriers, N D
f1; : : : ;Ng and for OFDMA, each sub-carrier is exclusively assigned to at most a
single user at a time. The sub-carrier assignment indicator is denoted as

˛ks;n D
(
1; if sub-carrier n is allocated to user ks;

0; otherwise:
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Fig. 4.1 Illustration of massive MIMO VWN and the uplink pilot model

We denote the sub-carrier assignment vectors for the BS, each slice, and each user
as ˛ D Œ˛1; � � � ;˛S�, ˛s D Œ˛ks �

Ks
ksD1, and ˛ks D Œ˛ks;1; � � � ; ˛ks;N �, respectively. The

uplink pilot duration for user ks with sub-carrier n in slice s is denoted by 
ks;n.
Correspondingly, the pilot duration vectors of the system, slice s, and user ks are
� D Œ�1; � � � ;�S �, �s D Œ�ks �

Ks
ksD1, and �ks D Œ
ks;1; � � � ; 
ks;N �, respectively.

Let Mks;n be the number of antennas allocated to user ks on sub-carrier n. The
antenna allocation vector of the system, slice s, and user ks can be denoted as
M D ŒM1; � � � ;MS�, Ms D ŒMks �

Ks
ksD1 and Mks D ŒMks;1; � � � ;Mks;N �, respectively.

Also, let P D ŒP1; � � � ;PS�, Ps D ŒPks �
Ks
ksD1 and Pks D ŒPks;1; � � � ;Pks;N � be the

allocated power vectors of the system, slice s, and user ks. respectively, where Pks;n

is the power allocated to user ks in sub-carrier n. The channel state information
vector of user ks at sub-carrier n is denoted by hks;n 2 C1�Mks ;n , where the channel
amplitude coefficients are given by, [5],

hks;n;m D �ks;n;m

p
ˇks ; (4.1)

where �ks;n;m represents the small-scale fading coefficient of the link from the user
ks on the sub-carrier n to the antenna m and ˇks represents the large-scale link power
attenuation due to path-loss and shadowing. Note that ˇks is modeled as ˇks D
wks d

��
ks

where wks is a log-normal random variable representing the shadowing and
dks 2 Œ0:1; 1� is the normalized distance of the user ks from the BS with � being the
path loss exponent.
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In order to perform sub-carrier and power allocation aiming to maximize the
transmission rate, the user-link fading coefficients need to be estimated by using
the uplink pilot signals. To this end, all users simultaneously transmit orthogonal
pilot sequences at a specific part of the coherence time interval of T . Ideally, the
pilot sequences transmitted from the users to their BS and the neighboring BSs
should be mutually orthogonal to allow CSI estimation for all the users. However,
since the number of orthogonal pilot sequences that can be used within a fixed T
and bandwidth is limited, reuse of the orthogonal pilot sequences is unavoidable in
neighboring BSs. Therefore, a BS will get the same orthogonal sequences not only
from users in its coverage area but also from users in the neighboring areas, causing
pilot contamination. In this case, the BS would be unable to accurately estimate the
CSI of all users due to interference from users in neighboring BSs.

Consider ehks;n as the estimated channel vector taking into account the pilot
contamination error and fks;n 2 CMks ;n�1 as the precoding vector for user ks

and on sub-carrier n. Also, let zks;n denote the additive white Gaussian noise
(AWGN) vector with zero mean and power spectral density �2 assumed to be 1
for simplicity. The received signal at the BS along with the interference from the
pilot contamination can be expressed as,

yks;n DpPks;n
ehks;nfks;nxks;n C

X

s2S
X

k0

s¤ks

q
Pk0

s;n
ehk0

s;nfks;nxk0

s;n

�p
Pks;n

X

s2S
X

ks2Ks
eks;nfks;nxks;n C zks;nfks;n; (4.2)

Note that the first term in the above expression represents the received signal from
user ks at sub-carrier n after precoding, the second term represents the interference
received from other users k0

s ¤ ks, the third term represents the error in the CSI
estimation from pilot contamination effect with eks;n Dehks;n �hks;n. The elements of
eks;n are random variables (RVs) with zero mean and variance ˇks

PPilot
ks ;n

ˇks C1 [5], where,

PPilot
ks;n

D 
ks;nPks;n is the power used for the pilot signal by user ks at sub-carrier n.
Considering the properties of MMSE-based channel estimation, eks;n is independent
ofehks;n;8ks 2 Ks; and 8n 2 N . Thus, using MRC precoding where fks;n D ehks;n,
we get

p
Pks;n

X

s2S
X

ks2Ks
eks;nfks;nxks;n D p

Pks;neks;n
ehks;nxks;n

Consequently, (4.2) can be written as

yks;n D p
Pks;n

ehks;n
ehH

ks;nxks;n C Iks;n C p
Pks;neks;n

ehks;nxks;n C zks;n
ehH

ks;n (4.3)

where, Iks;n D P
8s2S

P
k0

s¤ks

p
Pks;n

ehk0

s;n
ehH

ks;n
xk0

s;n. Thus, from (4.3), the received
SINR at the BS from the user ks at sub-carrier n can be calculated as


ks;n D Pks;nkehks;nk4
jjIks;njj2 C Pks;nkeks;n

ehH
ks;n

k2 C kehks;nk2 : (4.4)
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For mutually independent 1 � n vectors, p D Œp1; : : : ; pn� and q D Œq1; : : : ; qn�

whose elements are i.i.d. with zero mean, unity variance random variables, it can

be shown by the law of large numbers, that lim
n!1

1
n pHq

a:s�! 0 where
a:s�! denotes

the almost sure convergence. Now, from the law of large numbers for large Mks;n,
jjIks;njj2 ! 0 [5]. As a result, the received SINR becomes,


ks;n D Pks;nkehks;nk4
Pks;nkeks;n

ehH
ks;n

k2 C kehks;nk2 : (4.5)

Substituting the variance ofehks;n to be
PPilot

ks ;n
ˇ2ks

PPilot
ks ;n

ˇks C1 [5] in the above expression yields

the received SINR, 8ks 2 Ks; 8n 2 N ,


ks;n D
M2

ks;n
Pks;n.

PPilot
ks ;n

ˇ2ks

PPilot
ks ;n

ˇks C1 /
2

Mks;nPks;n.
PPilot

ks ;n
ˇks

PPilot
ks ;n

ˇks C1 /
2.

PPilot
ks ;n

ˇ2ks

PPilot
us ;k

ˇks C1 /
2 C Mks;n.

PPilot
ks ;n

ˇ2ks

PPilot
ks ;n

ˇks C1 /
2

D M2
ks;n

Pks;n�ks;n

Mks;nPks;n�ks;n.
PPilot

ks ;n
ˇks

PPilot
us ;k

ˇks C1 /
2 C Mks;n�ks;n

;

where �ks;n D .
PPilot

ks ;n
ˇ2ks

PPilot
ks ;n

ˇks C1 /
2. After some mathematical manipulations, we obtain,


ks;n D Mks;nPPilot
ks;n

Pks;nˇ
2
ks

Pks;nˇks C PPilot
ks;n
ˇks C 1

(4.6)

By substituting PPilot
ks;n

D 
ks;nPks;n, we obtain, for all ks 2 Ks and n 2 N ,


ks;n D 
ks;n�
2
ks;n
ˇ2ks

1C .1C 
ks;n/�ks;nˇks=
p

Mks;n
; (4.7)

where we substituted Pks;n D �ks;n=
p

Mks;n [5]. As Mks;n ! 1, we get 
ks;n D

ks;n�

2
ks;n
ˇ2ks

D 
ks;nP2ks;n
ˇ2ks

Mks;n. Hence, the rate of user ks on sub-carrier n by
considering the pilot duration of 
ks;n within the total uplink frame time T is

Rks;n D T � 
ks;n

T
log2

�
1C 
ks;nP2ks;nˇ

2
ks

Mks;n
	
: (4.8)

Thus, the total rate of user ks is

Rks.P;˛;M;�/ D
X

n2N
˛ks;nRks;n
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which is a function of P;˛; M; and �. Now, we define the utility function of a slice
s as

Fs.P;˛;M;�/ D
X

ks2Ks
Rks.P;˛;M;�/ � cM

s

X

ks2Ks

X

n2N
˛ks;nMks;n

� cP
s

X

ks2Ks

X

n2N
˛ks;nPks;n � c
s

X

ks2Ks

X

n2N
˛ks;n
ks;n; (4.9)

where cM
s , cP

s and c
s are pricing factors for the number of allocated antennas, the
transmit power and the uplink pilot duration for slice s, respectively. Considering
these three pricing factors, Fs.P;˛;M;�/ is an increasing function of total rate of
VWN while it is a decreasing function of the total consumed resource of the VWN
for each slice, i.e., power, antenna and pilot duration, which is novel in this context
and can be considered as a total revenue minus the costs for each slice. Since in an
OFDMA system, a sub-carrier in a BS can be allocated to one user, we have the
following constraint:

C4.1: ˛ks;n 2 f0; 1g; and
X

s2S
X

ks2Ks
˛ks;n � 1; 8n 2 N :

The sum of the total transmit power for each user ks over all sub-carriers n allocated
to it poses another constraint, i.e.

C4.2:
X

n2N ˛ks;nPks;n � Pmax
ks
; 8ks 2 Ks; 8s 2 S ;

where Pmax
ks

is the maximum transmit power of user ks. Since the minimum rate
reservation per each slice s is Rrsv

s , we have

C4.3:
X

ks2Ks
Rks � Rrsv

s ; 8s 2 S :

If Mmin
s and Mmax

s are the minimum and maximum numbers of antennas that can be
allocated for the slice s, then we have [6]

C4.4:
X

ks2Ks

X

n2N ˛ks;nMks;n 2 fMmin
s ;Mmin+1

s ; � � � ;Mmax
s g;

for each slice s 2 S . Finally, for each user, the uplink pilot duration 
ks;n has a
limitation, i.e.,

C4.5: 0 < 
ks;n < T; if ˛ks;n D 1:

Therefore, the resource allocation problem is

max
P;˛;M;�

X

s2S Fs.P;˛;M;�/; (4.10)

subject to: C4.1 � C4.5:
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(4.10) is an inherently non-convex optimization problem involving four sets of
optimization variables. Thus, finding optimal solution of (4.10) leads to high
computational complexity. To tackle this issue, in the next section, we propose a
two-step iterative algorithm with a low computational complexity.

4.3 Iterative Algorithm for Joint Resource and Adaptive
Pilot Duration Allocation

In the proposed Algorithm 4.1 to solve problem (4.10), we first apply the
framework proposed in [4] to derive the optimum values of P, ˛, and M for a
fixed � in Step 1. Then, for the obtained values of P, ˛, and M, we derive the
optimal value of � in Step 2. The derived solution of iteration l is denoted as
P�.l/;˛�.l/;M�.l/; and ��.l/ and the overall solution process can be represented as

�.0/ ! P.0/;˛.0/;M.0/
„ ƒ‚ …

Initialization

! : : :��.l/ ! P�.l/;˛�.l/;M�.l/
„ ƒ‚ …

Iteration

l ! : : :�� ! P�;˛�;M�
„ ƒ‚ …

Optimal solution

Steps 1 and 2 are repeated until the convergence conditions are met. Also, to
simplify the algorithm, we just focus on the case that 
ks;nP2ks;n

d2ks
Mks � 1 which

is a reasonable assumption in massive MIMO context due to large value of Mks .
For a fixed value of �, (4.9) involves three sets of variables P;˛; and M, which

is still a combinatorial function containing both discrete and continuous variables.
To simplify this problem, we relax the sub-carrier assignment indicator to be
continuous in the interval Œ0; 1� which will relax the constraints explained above.
Considering the variable transformations xks;n D ˛ks;nPks;n and yks;n D ˛ks;nMks;n,
the optimization problem of this step can be written as

max
˛;x;y

X

s2S
eFs.˛; x; y/; (4.11)

subject to:

eC4.1 W ˛ks;n 2 Œ0; 1�;
X

s2S
X

ks2Ks
˛ks;n � 1; 8n 2 N ;

Algorithm 4.1 Iterative resource-allocation and pilot-duration allocation algorithm
Initialization: Set each element of �.l D 0/, ˛.l D 0/, Pus .l D 0/, and N.l D 0/ to 0:3T , 1,
Pmax

us
=K and Nmax

s , respectively, for all us 2 Us and s 2 S . Initialize lmax � 1, 0 < " � 1,
�.l D 0/,  .l D 0/ and �.l D 0/.
Step 1: Obtain the optimum values of P�

us
.l/, ˛�.l/, N�.l/ using Algorithm 4.1.A for fixed �.l/.

Step 2: For fixed P�

us
.l/, ˛�.l/, N�.l/, find the optimal pilot duration ��.l/ using Algorithm 4.1.B.

Stop: if kP�

us
.l C 1/� P�

us
.l/k � ", where kxk is the norm of vector x, otherwise, set l WD l C 1

and go to Step 1.
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eC4.2 W
X

n2N xks;n � Pmax
ks
; 8ks 2 Ks; 8s 2 S ;

eC4.3 W
X

ks2Ks

eRks � Rrsv
s ; 8s 2 S ;

eC4.4 W Mmin
s �

X

ks2Ks

X

n2M yks;n � Mmax
s ;8s 2 S ;

eC4.5 W ˛ks;n
ks;n < T;8n 2 N ;8ks 2 Ks;8s 2 S

where eFs.˛; x; y/DP
ks2Ks

eRks .x;˛; y/�cM
s

P
ks2Ks

P
n2N yks ;n�cP

s

P
ks2Ks

P
n2N xks;n�c
sP

ks2Ks

P
n2N ˛ks ;n
ks ;n.

By assuming 
ks;nP2ks;n
ˇ2ks

Mks � 1 and new sets of xks;n, yks;n and ˛ks;n, the
total rate of user ks, Rks , is a convex function [4]. Consequently, (4.11) is a convex
optimization problem which can be solved by Lagrange dual function, defined as

L .˛; x; y; �ks ; �s; �s;  s/ D �
X

s2S
eFs C

X

ks2Ks
�ks.

X

n2N
xks;n � Pmax/

C
X

s2S �s.R
rsv
s �

X

ks2Ks

eRks/C
X

s2S �s.N
min
s �

X

ks2Ks

X

n2N yks;n/

C
X

s2S  s.
X

ks2Ks

X

n2N yks;n � Mmax
s /;C

X

ks2Ks
�ks.

X

n2N
˛ks;n
ks;n � T/;

(4.12)

where the Lagrange multipliers are �ks ; �s; �s; ;  s and �ks for the relaxed constraints
eC4.2, eC4.3, eC4.4 and eC4.5, respectively. To solve (4.12), we apply iterative gradient

descent method introduced in Algorithm 4.1.A where l1 is the iteration number. In
Algorithm 4.1.A, the dual variables can be updated as

�ks.l1 C 1/ D
�

�ks.l1/C ı�ks

@L

@�ks

�C
;8ks 2 K ; (4.13)

�s.l1 C 1/ D
�

�s.l1/C ı�s

@L

@�s

�C
; 8s 2 S ; (4.14)

Algorithm 4.1.A Resource-allocation algorithm
Initialization: Set �.l1 D 0/ D 0:3T , ˛.l1 D 0/ D ˛.l/, Pks .l1 D 0/ D Pks .l/, and M.l1 D 0/ D
M.l/ for all ks 2 Ks and s 2 S . Initialize lmax

1 � 1, 0 < " � 1, �.l1 D 0/,  .l1 D 0/ and
�.l1 D 0/.

1: Update dual variables, �ks ; �s, �s and  s, by gradient descent method for all s 2 S from
(4.13)–(4.17).

2: Using the above updated parameters for iteration .l1 C 1/, compute P�

ks ;n.l1 C 1/ and
M�

ks ;n.l1 C 1/ for all ks 2 Ks, and n 2 N using (4.18) and (4.19), respectively.
3: Perform sub-carrier allocation for all ks 2 Ks and for all n 2 N from (4.21).

Stop if kP.l1 C 1/� P.l1/k � " or l1 � lmax
1 , otherwise, set l1 WD l1 C 1 and go to 1.
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�s.l1 C 1/ D
�

�s.l1/C ı�s

@L

@�s

�C
; 8s 2 S ; (4.15)

 s.l1 C 1/ D
�

 s.l1/C ı s

@L

@ s

�C
; 8s 2 S ; (4.16)

�ks.l1 C 1/ D
�

�ks.l1/C ı�ks

@L

@�ks

�C
;8ks 2 Ks: (4.17)

where ı�ks
; ı�s ; ı�s ; ı s and ı�ks

are the small positive step sizes for their dual
variables.

Now, to update the primal variables, Pks;n; Mks;n and ˛ks;n, differentiating (4.12)
with respect to each of the variables and setting them to zero, we get following
expression for the updated value in the iteration l C 1 as

Pks;n.l1 C 1/ D .T � 
ks;n.l//

T

�
2.1C �s/

ln.2/.�ks C cP
s /

�Pmax
ks

0

; (4.18)

and,

Mks;n.l1 C 1/ D .T � 
ks;n.l//

T
�
�

1C �s

ln.2/. s � �s C cM
s /

�Mmax
s

0

; (4.19)

where Œx�ba D minfb;maxfx; agg. Differentiating (4.12) with respect to ˛ks;n, we have

@L

@˛ks;n
D c
s

X

ks2Ks

ks;n.l/C �ks
ks;n.l/C .1C �s/.T � 
ks;n.l//

T
� (4.20)

�

log2.
ks;n.l/Pks;n.l1/
2ˇ2ks

Mks;n.l1// � 3

ln.2/

�

;

and hence, as shown in [6],

˛�
ks;n.l1 C 1/ D

(
1; if @L

@˛ks ;n
> 0;

0; otherwise:
(4.21)

The iteration is repeated until jjP.l1 C 1/ � P.l1/jj � " or l1 � lmax
1 , where lmax

1 is
the maximum number of iterations for Algorithm 4.1.A.

For the derived values of P�.l/;M�.l/and;˛�.l/, the optimization problem for
finding ��.l/ is

max
�;0<
ks ;n<T

X

s2S
bFs.�/; (4.22)
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Algorithm 4.1.B Pilot-duration allocation
Initialization: Set ˛.l2 D 0/ D ˛�.l1/, Pks .l2 D 0/ D P�

ks
.l1/, and M.l2 D 0/ D M�.l1/ for

all ks 2 Ks and s 2 S , and lmax
2 � 1, aks ;n.l2 D 0/ D 0, bks ;n.l2 D 0/ D T , 0 < " � 1,

cks ;n.l2 D 0/ D T=2, and compute fks ;n.l2 D 0/ D fks ;n.cks;n.l2 D 0//

Iterative Bisection Method for all ks and n:

1) For cks ;n.l2/ D .aks ;n.l2/C bks ;n.l2//=2, calculate fks;n.cks;n.l2// and fks;n.aks ;n.l2//

– If fks;n.aks ;n.l2//� fks ;n.cks ;n.l2// < 0, bks ;n.l2/ D cks ;n.l2/
– Else, aks ;n.l2/ D cks ;n.l2/

2) Consider c.l2/ D Œcks ;n.l2/�8ks ;8n and f.l2/ D Œfks ;n.l2/�8ks ;8n,
Stop if:

• kc.l2/� c.l2 � 1/k < " or
• kf.l2/� f.l2 � 1/k < " or l2 > lmax

2

• Otherwise l2 D l2 C 1, go to 1.

where

bFs.�/ D
X

ks2Ks
Rks.�/ � cM

s

X

ks2Ks

X

n2N
˛ks;n.l/Mks;n.l/� (4.23)

� cP
s

X

ks2Ks

X

n2N
˛ks;n.l/Pks;n.l/ � c
s

X

ks2Ks

X

n2N
˛ks;n.l/
ks;n:

The optimum value of � from (4.22) can be obtained by setting @bFs.�/

@
ks ;n
D 0 where

0 < 
ks;n < T . To derive this optimal value, we apply the iterative bisection method
where we consider

fks;n.
ks;n/ D T


ks;n
� log2.
ks;nP�2

ks;n.l/ˇ
2
ks;nM�

ks;n.l// � 1 � c
s T;

and the iteration number l2 as summarized in Algorithm 4.1.B.

4.4 Numerical Results and Discussions

To study the performance of Algorithm 4.1, we simulate a scenario of a VWN with
a single BS serving two slices each with Ks D 4 users per slice where Pmax

ks
D 0 dB

and Rrsv D Rrsv
s D 2 bps/Hz. The users are distributed uniformly in the coverage

area of the BS. The total number of sub-carriers is N D 4 and the total transmission
frame duration is set to T D 1 s. To study the effects of changing pricing factors, we
consider 3 scenarios: (1) Set 1 where c
s D cM

s D cP
s D 0, (2) Set 2 where c
s D 0:5,

cP
s D 1, and cM

s D 0:07 and (3) Set 3 where c
s D 1, cP
g D 2 and cM

s D 0:09.
Obviously, Set 3 has more restricted price parameters than Set 2 and Set 1, while Set
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Fig. 4.2 Total rate versus Rrsv

2 has moderate pricing factors compared to other sets. We compare Algorithm 4.1
with the approach using fixed � where 
ks;n=T D 0:3 for all ks and n. The simulation
results are averaged over 100 different channel realizations and we set the total rate
to zero when there is an infeasibility in the solution.

Figure 4.2 plots the total rate versus Rrsv for the three different sets by applying
Algorithm 4.1 as well as for a fixed pilot duration. The results indicate that the total
rate achieved decreases with increasing Rrsv due to the fact that at higher Rrsv, C4.3
cannot be fulfilled all the time. Since we set the total rate to zero when there is
an infeasibility, the average rate decreases with increasing Rrsv. The overall system
throughput is improved by using adaptive pilot duration in Algorithm 4.1. Moreover,
the total rate decreases as the values of c
s ; c

P
s and cM

s increase. This is obvious since
the utility function (4.9) is defined as a non-increasing function of pricing factors.

From Fig. 4.3, the total rate increases with increasing Mmax
s as expected due to

the multiplexing gain of massive MIMO. Again, the overall system performance is
improved by adaptive pilot duration via Algorithm 4.1 as compared to the approach
using fixed pilot duration. Similarly, as the costs increase across Sets 1, 2, and 3, the
total achieved rate decreases as expected by (4.9).

To get more insight about the effects of the pricing factors on the VWN
performance, in Figs. 4.4 and 4.5, we plot the total rate versus c
s and cM

s with cP
s
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fixed, and c
s and cP
s with cM

s fixed, respectively. As seen in these two figures, the
total rate is not a convex function with respect to the pricing factors. Specifically, the
values of c
s and cM

s have significant effects on decreasing the total rate of the VWN.

4.5 Concluding Remarks

In this chapter, we examined the resource allocation problem in a massive MIMO-
based VWN. In consideration of possible pilot contamination errors, we formulated
an optimization problem to adaptively assign uplink pilot duration, power, antennas
and sub-carriers to users in order to maximize the overall system throughput. We
developed a low-complexity two-step iterative algorithm wherein the first step finds
the optimal power, antenna and sub-carrier allocation to be used in the second step
to optimize the uplink pilot duration. Simulation results indicate a significant system
performance improvement offered by the proposed scheme using adaptive pilot
duration as compared to the scenario with fixed pilot duration.
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Chapter 5
User-Association and Resource-Allocation
in a C-RAN-Based VWN

Although user association and dynamic resource allocation are the prime require-
ments in a VWN, the practical realization of these algorithms require coordination
among BSs in order to obtain the knowledge about the channel conditions of users
in all slices. To that end, C-RAN has been proposed to facilitate the collaboration
among BSs by shifting the baseband processing of all BSs into the cloud. In
this chapter, we address the issue of user association and resource allocation in
a C-RAN-based VWN. Specifically, we formulate a resource allocation problem
that jointly associates users to RRHs/BBUs and allocates the resources (power
and antenna) in order to maximize the total sum-rate of the system. We evaluate
the performance of the proposed scheme in both the imperfect and perfect CSI
scenarios.

5.1 Introduction

In order to practically implement the user association and dynamic resource
allocation algorithms in a VWN, the scheduler needs to know the channel state
information of all users in all slices. This is possible only through coordination
among the BSs. Recently, a new concept called C-RAN has been proposed where
the signal processing functionalities of the BSs are moved to a pool/cloud of
BBUs while RRH units are deployed to provide the radio signals over the mounted
antennas. The transmission link between these two separate units is called front-haul
link requiring a high capacity media [1]. The motivation for this is to create a very
low latency link between the BSs which will enable collaboration among the BSs as
well as to increase energy and infrastructure efficiency.

As C-RAN is a recently introduced concept, the research works have focused
more on the implementation issues and the challenges in integrating it into the
current network. For instance, Liu et al. [2] and Peng et al. [3] have addressed
the issue of limited capacity front-haul links that poses a severe constraint on
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the maximum number of served users over the coverage of interest. Specifically,
Liu et al. [2] propose the design of an OFDMA-based C-RAN architecture which
allows the RRHs to dynamically associate with the BBUs instead of performing
a one-one mapping between RRHs and BBUs. The simulation results performed
there demonstrate that the one-one mapping is clearly sub-optimal compared to
the dynamic association. Similarly, Wang et al. [4] discuss the various architectural
considerations in a front-haul limited C-RAN including partial centralization where
the RRH not only implements the RF functionalities but also some layer 2 functions
related to baseband processing. Moreover, the challenges in implementing the
resource allocation schemes in a C-RAN is discussed and various techniques includ-
ing Markov decision process (MDP) are proposed. Similarly, Liu et al. [5] propose a
joint power control and front-haul rate allocation algorithm in a C-RAN network by
considering orthogonal sub-carrier allocation to users. Moreover, Abdelnasser and
Hossain [6] consider the downlink power minimization problem in a small network
with C-RAN. Specifically, the authors use the approach of SCA to propose a
resource allocation algorithm that tries to minimize the total transmit power subject
to the individual user admission control requirements.

Our proposed setup considers the uplink transmission of users of different slices
in the specific region. The coverage will be provided by a set of RRHs with
massive MIMO, and the cloud of BBUs which are connected to the RRHs through a
limited front-haul capacity link. To provide the isolation between slices, we consider
minimum reserved rate and antennas for each slice. The hardware limitation of
C-RAN in our setup include maximum transmit power and antenna of each RRH,
front-haul capacity limitation and maximum load of each BBU. With the objective
to maximize the total throughput of network subject to the isolation and hardware
based constraints, we formulate the resource allocation problem which involves
joint allocation of BBU, RRH, front-haul, power, and antenna parameters. In this
chapter, we propose a modified expression for the throughput over C-RAN to
establish the relation between the parameters related to RRHs and BBUs.

The optimization problem is inherently non-convex and NP hard due to inter-
twined sets of optimization variables called user association parameters (UAP), and
a variety of constraints in this setup. To develop an efficient algorithm to solve the
problem, we propose a two-step iterative algorithm where 2 in the first step, joint
BBU, front-haul and RRH allocation parameters are assigned. Then, in the second
step, the transmit power and the number of allocated antennas to each user are
determined by considering all the slice based constraints. The problem for each step
is still non-convex and NP-hard. To solve them efficiently, we apply the techniques
of CGP and SCA where via different relaxation and transformation techniques, in
each step, the problems in each step are transformed into the GP counterparts [7, 8]
which can be solved very efficiently by optimization packages like CVX [9]. Via
numerical results, we demonstrate the effect of pilot contamination error and the
front-haul limitation on the performance of the VWN.

The rest of this chapter is organized as follows: Sect. 5.2 presents the system
model considered in this problem along with the problem formulation. The proposed
iterative algorithm is discussed in Sect. 5.3 followed by Sect. 5.4 where we present
the numerical results with concluding remarks in Sect. 5.5.
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5.2 System Model

We consider the uplink transmission of a massive MIMO-based VWN with a
C-RAN architecture consisting of a set of S D f1; � � � ; Sg slices. Each slice s 2 S
has a set of Ks D f1; � � � ;Ksg single-antenna users where the QoS of each slice
s 2 S is presented by its own minimum required rate Rrsv

s . The coverage for all
users, K D P

s2S Ks, in the VWN, are provided by a set of RRHs, L D f1; � � � ;Lg
and each RRH is equipped with M � 1 antennas. Each RRH is connected to the
cloud of B BBUs to process the baseband signals for each of the RRH via front-haul
link. The system model is illustrated in Fig. 5.1.

Let fks;b represent the association between the BBU b and the user ks such that

fks;b D
(
1; if user k in slice s is supported by BBU b;

0; otherwise:

Fig. 5.1 A multi-cell massive MIMO-based VWN with C-RAN architecture
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We also assume that each BBU b can support at most omax
b users [10]. This limitation

can be mathematically represented as

C5.1:
X

s2S

X

ks2Ks

wks;bfks;b � omax
b ; 8b 2 B;

where wks;b is the load balancing factor for the BBU b to the user ks and is a system
parameter assigned by the VWN to control the traffic and load of each BBU-user
pair. We define Fks as the summation of the BBU allocation for each user, i.e.

C5.2: Fks D
X

b2B
fks;b; 8ks 2 Ks;8s 2 S :

We denote the user-RRH association factor as the user association factor (UAF)
and denote it as ˛l;ks , where

˛l;ks D
(
1; if user ks in slice s is attached to RRH l;

0; otherwise:

Since each user can be only attached to at most one RRH at a time, we have the
constraint,

C5.3:
X

l2L
˛l;ks � 1; 8ks 2 Ks;8s 2 S : (5.1)

To further control the load of C-RAN, we assume that each user is supported by
only one BBU at each transmission instance and each user is assigned to the cloud
of BBUs, if and only if, it is assigned to at least one RRH. These two practical
implementation concerns can be mathematically represented as

C5.4: Fks D
X

8l2L
˛l;ks ; 8ks 2 Ks; 8s 2 S :

C5.2 and C5.4 make sure that Fks , the total number of BBUs supporting user ks

must equal the total number of RRHs connected to user ks so that the C-RAN
BBUs resources are not wasted. Fks is also used as an auxiliary variable that helps
to convert the non-convex optimization problem to the GP-based one.

Due to front-haul link limitation between the RRHs and the BBU pool [11],
we consider the case that each front-haul link between RRH l and BBU b has a
maximum capacity of cmax

l;b , represented as

C5.5:
X

s2S

X

ks2Ks

fks;b˛l;ks � cmax
l;b ; 8b 2 B; 8l 2 L :

In the up-link transmission with massive MIMO based RRHs, we denote hl;ks;m

as the amplitude of the channel coefficient of user ks and antenna m at RRH l and
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hl;ks 2 C
1�Ml;ks as the channel vector of user ks where Ml;ks is the total allocated

antennas by RRH l to user ks. More specifically, hl;ks;m is

hl;ks;m D �l;ks;m

p
ˇl;ks

where �l;ks;m represents the fast-fading coefficients from the user ks to the antenna m
of RRH l 2 L and ˇl;ks denotes the large-scale fading coefficient of user ks to RRH
l 2 L [12]. Note that ˇl;ks includes both path loss and shadowing [12]. We model
ˇl;ks as ˇl;ks D wl;ks d

��
l;ks

where wl;ks is a log-normal random variable representing the
shadowing and dl;ks 2 Œ0:1; 1� is the normalized distance of the user ks from the BS l
with � being the path loss exponent. Here, it is assumed that ˇl;ks has the same value
for all antenna m of RRH l, since the distance between the antennas in a RRH can be
assumed to be negligible compared to the distance between the RRH l and user ks.

Practically, the CSIs are estimated by the RRHs based on the up-link pilots with
duration 
 at the specific part of the coherence interval of T [13]. In this context,
there exist two scenarios in the network for estimating CSI values:

• Perfect CSI estimation where it is assumed that the orthogonality of pilot signals
in the multi-cell scenario of massive MIMO based networks are preserved. In this
scenario the SINR of user ks in slice s and in RRH l is


Perf
l;ks

D ˇl;ks Pl;ks Ml;ks ; 8ks 2 Ks;8s 2 S ; (5.2)

where pl;ks is the transmit power of user ks to RRH l and the noise for all users
and RRHs is normalized to 1.

Proof Without pilot contamination error, the uplink received signal from user
ks 2 Ks on sub-carrier n at RRH l is [13]

yPerf
l;ks

Dp
pl;ks al;ks hl;ks xl;ks C

X

l02L ;l0¤l

X

s2S

p
pl0;ks fl0;ks hl0;ks xl0;ks C fl;ks nl;ks ;

where xl;ks represents the transmit symbol, fl;ks 2 C
1�Ml;ks is the precoding

vector, and nl;ks is the corresponding noise coefficient vector. For maximum ratio
combing (MRC) detector, we have fl;ks D .hl;ks/

�, where v� is the conjugate
transpose operation of vector v. Thus, the received signal vector is [13]

yPerf
l;ks

Dp
pl;ks.hl;ks/

�hl;ks xl;ks C
X

8l02L ;l0¤l

X

8s2S

p
pl0;ks.hl;ks/

�hl0;ks xl0;ks C h�l;ks
nl;ks :

When Ml;ks � 1, from the law of large numbers, the term
P

8l02L ;l0¤l

P
8s2Sp

pl0;ks.hl;ks/
�hl0;ks xl0;ks in (5.3) becomes zero [13]. Considering pl;ks D El;ks=Ml;ks ,

and assuming �l;ks;m;8l;8ks;8m, to have zero mean and unit variance, (5.3) can
be transformed into

1
p

Ml;ks

yPerf
l;ks

D p
El;ksˇl;ks xl;ks C

p
ˇl;ks

Qnl;ks ; (5.3)
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where Qnl;ks represents the AWGN with power 1. Hence, for Ml;ks � 1, the SINR
from user ks in slice s to RRH l converges to (5.2). ut

• Imperfect CSI estimation where there exists the pilot contamination error and the
achieved SINR of user ks in slice s to RRH l 2 L is



Imperf
l;ks

D 
ˇ2l;ks
P2l;ks

Ml;ks



P

8s2S
P

8l02L
P

8k0

s2Ks
ˇ2l0;k0

s
P2l0;k0

s
Ml0;k0

s
C 1

; (5.4)

where the noise power for all users and RRHs is assumed to be to 1 for simplicity.

Proof Let ˚ represent the 
 � K orthonormal pilot sequence matrix used by the
users where ˚H˚ D IK and IK is the unit matrix. With pilot contamination, the
estimated CSIs are [13]

Qhl;ks;m D
�

hl;ks;m C 1
q

pPilot
l;ks

wl

�
Q̌
l;ks ;

where Q̌
l;ks D ˇl;ks.

P
l2L

P
ks2Ks

P
s2S ˇl;ks C 1

pPilot
l;ks

/�1 and pPilot
l;ks

is the transmit

power for the pilot sequence for the user ks and wl represents the contaminated
pilot sequence received at the RRH l. Now, the received signal after using MRC
at the RRH l from user ks is

yImperf
l;ks

Dfl;ks.
p

pl;ks hl;ks xl;ks C
X

8l02L ;l0¤l

X

8s

X

8k0

s2Ks;k0

s¤ks

p
pl0;k0

s
hl0;k0

s
xl0;k0

s
C nl;ks/

Now, for MRC, the precoding vector is given by fl;ks D Qh�l;ks
, where Qh�l;ks

is the
estimate channel vector taking into account the pilot contamination error. Hence,

yImperf
l;ks

DQh�l;ks
.
p

pl;ks hl;ks xl;ks C
X

8l02L ;l0¤l

X

8s

X

8k0

s2Ks;k0

s¤ks

p
pl0;k0

s
hl0;k0

s
xl0;k0

s
C nl;ks/

Substituting pl;ks D El;ks=
p

Ml;ks and pPilot
l;ks

D 
pl;ks in the above expression,
we have,

yImperf
l;ks

DQh�l;ks
.

p
El;ks

M3=4
l;ks

hl;ks xl;ks C
X

8l02L ;l0¤l

X

8s

X

8k0

s2Ks;k0

s¤ks

p
El0;k0

s

M3=4

l0;k0

s

hl0;k0

s
xl0;k0

s
C nl;ks/

(5.5)

By substituting the variance of hl;ks [13], and by using the law of large
numbers for large Ml;ks , we get the simplified expression for SINR of the user
ks as given by (5.4). ut
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Based on the expression for 
Perf
l;ks

and 
 Imperf
l;ks

, the rate of each user ks at the
RRH l is

Rl;ks D
(

log2.1C 
Perf
l;ks
/; for perfect CSI,

T�

T log2.1C 


Imperf
l;ks

/; for imperfect CSI:
(5.6)

To provide the isolation between different slices, in the proposed VWN setup, both
rate and resource reservation strategy will be developed here where the minimum
required rate, i.e., Rrsv

s , and the minimum number of antennas for specific region,
i.e., Mrsv

s , for each slice s are preserved, respectively, [14]. These two isolation based
constraints in VWN can be written as

C5.6:
X

8l2L

X

8ks2Ks

Fks˛l;ks Rl;ks � Rrsv
s ; 8s 2 S ;

C5.7:
X

8l2L

X

8ks2Ks

Ml;ks � Mrsv
s ; 8s 2 S :

From the hardware limitation, each user’s transmit power and RRH’s antennas are
limited as

C5.8: Pl;ks � Pmax
ks
; 8ks 2 Ks;8s 2 S ;8l 2 L ;

C5.9:
X

s2S

X

ks2Ks

Ml;ks � Mmax
l ; 8l 2 L ;

where Pmax
ks

and Mmax
l are the maximum transmit power of user ks and maximum

number of antennas mounted on the RRH l, respectively, where we assumeP
s2S Mrsv

s � Mmax
l to eliminate the redundancy between C5.7 and C5.9 and

feasibility issue of optimization problem.
With the objective of maximizing the total throughput of VWN, subject to all

above implementation constraints, the resource allocation problem of this setup can
be written as

max
˛;F, P, M

X

s2S

X

8l2L

X

8ks2Ks

Fks˛l;ks Rl;ks.P, M/; (5.7)

subject to: C5.1–C5.9;

where ˛, F, P, and M are the vectors of all ˛l;ks , fks;b, Pl;ks , and Ml;ks , respectively, for
all ks 2 Ks, s 2 S , and l 2 L . Equation (5.7) suffers from a high computational
complexity due to its highly non-convex and combinatorial structure. To overcome
this issue, we first relax the integer variables to be continuous. Then, we solve
the problem with a two-stem iterative algorithm by resorting to SCA and CGP to
transform the non-convex optimization problem into the GP-based approximation.
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5.3 Proposed Two-Level Iterative Algorithm

In order to solve the above problem, we propose a two-level iterative algorithm
which involves two major steps:

• Association (Step 1): UAF parameters, ˛, and BBUs association factors, F, are
derived by assuming the fixed values of the power and antenna vectors, P, and
M,

• RRH Adjusting (Step 2): Based on the optimal values of ˛� and F� from the
previous step, the RRH parameters, P, and M, are derived.

Algorithm 5.1 Iterative joint user-association and resource-allocation algorithm
Initialization: Set t WD 1 and initialize all power of each user by Pmax

ks
, and all antennas by

ŒMmax
l =K�.

Repeat
Step 1: Derive ˛�.t/ and F�.t/ from (5.9) by considering fixed values of P�.t �1/ and M�.t �1/;
Step 2: For fixed values of ˛�.t/ and F�.t/, find P�.t/ and M�.t/ from (5.24) or (5.26);
Step 3: Stop if jj˛�.t/�˛�.t�1/jj � "1, and jjP�.t/�P�.t�1/jj � "2. Otherwise, set t WD tC1

and go to Step 1.

The whole process is demonstrated as

˛.0/;F.0/ ! P.0/;M.0/
„ ƒ‚ …

Initialization

! : : :˛.t/�;F.t/� ! P.t/�;M.t/�
„ ƒ‚ …

Iteration

t ! ˛�;F� ! P�;M�

„ ƒ‚ …
Optimal solution

;

where t > 0 is the iteration number. Also, P.t/� and M.t/� are optimal values at the
iteration t from convex transformation of the related optimization problems in each
step. The iterative procedure is stopped when

jjP�.t/ � P�.t � 1/jj � "1 and jjM�.t/ � M�.t � 1/jj � "2

where 0 < "1 � 1 and 0 < "2 � 1.
Notably, both problems in each step for finding optimal values are still non-

convex optimization problems and suffer from high computational complexity. To
solve them efficiently, by applying CGP along with various transformations and
convexification approaches, the sequence of lower bound geometric programming
based approximation is derived. The Association and RRH Adjusting algorithms are
described in detail in the following sub-sections.

5.3.1 Association Algorithm

For fixed values of P.t � 1/ and M.t � 1/, at iteration t, the resource allocation
problem is simplified into
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max
˛;F

X

s2S

X

8l2L

X

8ks2Ks

Fks.t/˛l;ks.t/Rl;ks.P.t � 1/;M.t � 1//; (5.8)

subject to: C5.1–C5.6;

where the only optimization vectors are ˛ and F. Notably, (5.8) has a less
computational complexity compared to (5.7) while it is still non-convex and NP hard
problem. To reduce the computational complexity, we first relax ˛l;ks from integer
variable to the continuous variable as ˛l;ks D Œ0; 1�. In the following derivations, we
use t1 as the index of iteration for the Association algorithm.

Proposition 1 In each iteration, the GP based approximation of (5.8) is

min
˛.t1/;F.t1/x0.t1/

x0.t1/ (5.9)

subject to:

x1
�x0.t1/

c0.t1/

��c0.t1/ �
Y

l;ks

�Fks.t1/˛l;ks.t1/Rl;ks.t/

cl;ks.t1/

��cl;ks .t1/ � 1

C5.1:
X

8s2S

X

ksDKs

fks;b.t1/ � omax
b ; 8b 2 B;

eC5:2 W Fks.t1/ �
Y

b2B

�wks;bfks;b.t1/

dks;b.t1/

��dks ;b.t1/ D 1; 8ks 2 Ks;8s 2 S ;

C5.3:
X

8l

˛l;ks � 1; 8ks 2 Ks;8s 2 S ;

eC5:4 W Fks.t1/ �
Y

8l;8n

�
˛l;ks.t1/

el;ks.t1/

��el;ks .t1/

D 1; 8ks 2 Ks;8s 2 S ;

C5.5:
X

s2S

X

8ks2Ks

fks;b.t1/˛l;ks.t1/ � cmax
l;b ; 8b 2 B;

eC5:6 W Rrsv
s

Y

l;ks

�Fks.t1/˛l;ks.t1/Rl;ks.t/

'l;ks.t1/

��'l;ks .t1/ � 1; 8s 2 S :

where,

c0.t1/ D x0.t1 � 1/
x0.t1 � 1/CP

s2S
P

8l2L
P

8ks2Ks
Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/

;

(5.10)

cl;ks.t1/ D Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/

x0.t1 � 1/CP
s2S

P
8l2L

P
8ks2Ks

Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/
;

(5.11)
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dks;b.t1/ D wks;bfks;b.t1 � 1/
P

8b2B wks;bfks;b.t1 � 1/ ; 8ks 2 Ks;8s 2 S ; (5.12)

'l;ks.t1/ D Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/P
8l2L

P
8ks2Ks

Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/
; (5.13)

el;ks.t1/ D ˛l;ks.t1 � 1/
P

8l2L ˛l;ks.t1 � 1/ ; 8ks 2 Ks;8s 2 S ;8l 2 L : (5.14)

Proof The objective function in (5.7) can be expressed as:

min
˛;F

�
X

s2S

X

8l2L

X

8ks2Ks

Fks.t1/˛l;ks.t1/Rl;ks.t/ (5.15)

Now, similar to (A.11), we apply x1 � 1 as

x1 �
X

s2S

X

8l2L

X

8ks2Ks

Fks.t1/˛l;ks.t1/Rl;ks.t/

to satisfy the positive condition of objective function of GP. By considering t1, we
use x0.t1/ > 0 to transform (5.15) into

min
˛.t1/;F.t1/;x0.t1/

x0.t1/ (5.16)

x1 �
X

s2S

X

8l2L

X

8ks2Ks

Fks.t1/˛l;ks.t1/Rl;ks.t/ � x0.t1/: (5.17)

Now (5.16) can be rewritten as

x1
x0.t1/CP

s2S
P

8l2L
P

8ks2Ks
Fks.t1/˛l;ks.t1/Rl;ks.t/

� 1;

and by using AGMA, we get

x1
�x0.t1/

c0.t1/

��c0.t1/
Y

l;ks

�Fks.t1/˛l;ks.t1/Rl;ks.t/

cl;ks.t1/

��cl;ks .t1/ � 1; (5.18)

where,

c0.t1/ D x0.t1 � 1/
x0.t1 � 1/CP

s2S
P

8l2L
P

8ks2Ks
Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/

;

(5.19)
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cl;ks.t1/ D Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/

x0.t1 � 1/CP
s2S

P
8l2L

P
8ks2Ks

Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/
:

(5.20)

By applying AGMA for C5.2 to reach monomial function, we get

eC5:2 W Fks.t1/ �
Y

b2B

�wks;bfks;b.t1/

dks;b.t1/

��dks ;b.t1/ D 1; 8ks 2 Ks;8s 2 S ; (5.21)

where, dks;b.t1/ D wks ;bfks ;b.t1�1/P
8b2B wks ;bfks ;b.t1�1/ ;8ks 2 Ks;8s 2 S : Similarly, C5.6 can be

expressed as

Rrsv
sP

8l2L
P

8ks2Ks
Fks.t1/˛l;ks.t1/Rl;ks.t/

� 1; 8s 2 S ; (5.22)

which can be approximated as

eC5:6 W Rrsv
s

Y

l;ks

�Fks.t1/˛l;ks.t1/Rl;ks.t/

'l;ks.t1/

��'l;ks .t1/ � 1;

where

'l;ks.t1/ D Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/P
8l2L

P
8ks2Ks

Fks.t1 � 1/˛l;ks.t1 � 1/Rl;ks.t/
:

Also, for the constraint C5.4, we can approximate the equality constraint as
follows:

eC5:4 W Fks.t1/ �
Y

8l;8n

�
˛l;ks.t1/

el;ks.t1/

��el;ks .t1/

D 1; 8ks 2 Ks; 8s 2 S ;

where, el;ks.t1/ D ˛l;ks .t1�1/P
8l2L ˛l;ks .t1�1/ . So, the overall problem for sub-algorithm 1 can

be written as (5.9). ut
Consequently, (5.9) can be solved very efficiently via CVX at each iteration t1.

The iterative algorithm is initiated with an arbitrary initial value for sl;ks.t1/. At
each iteration, ˛.t1/, F.t1/, sl;ks.t1/, x0.t1/, are derived and then, (5.10)–(5.14) are
updated. The iterative algorithm will be stopped if jj˛�.t1/�˛�.t1 � 1/jj � "1, and
jjF�.t1/ � F�.t1 � 1/jj � "2 where 0 < "1 � 1 and 0 < "2 � 1.
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5.3.2 RRH Adjusting Algorithm

For fixed value of ˛ and F obtained from the Association algorithm, the resource
allocation problem is simplified into

max
P;M

X

s2S

X

8l2L

X

8ks2Ks

Fks.t/˛l;ks.t/Rl;ks.P;M/; (5.23)

subject to: C5.6 � C5.9:

Similar to (5.8), (5.23) has a less computational complexity compared to (5.7) due to
the fact that it just involves P and M. However, it is again non-convex optimization
problem and NP hard. To reduce the computational complexity, we first relax Ml;ks

from integer variable to the continuous variable between Œ0; Mmax
l �, then we apply

CGP framework to convert (5.23) into its GP-based approximation as follows in the
Proposition 2 where t2 is the index of iteration for the RRH Adjusting algorithm.

Proposition 2 GP approximation of (5.23) is

• Perfect CSI

min
P, M

Y

l;ks;s

�
� 1

!l;ks.t2/

��!l;ks .t2/ � �ˇl;ks Pl;ks.t2/Ml;ks.t2/

jl;ks.t2/

��jl;ks .t2/
�

; (5.24)

subject to: C5.8, C5.9

C5.6 W
Y

l;ks

�
� 1

!l;ks.t2/

��!l;ks .t2/ � �ˇl;ks Pl;ks.t2/Ml;ks.t2/

jl;ks.t2/

��jl;ks .t2/
�Fks .t/

� 2�Rrsv
s ;8s:

C5.7 W Mrsv
s

Y

8ks;l

�Ml;ks.t2/

�l;ks.t2/

���l;ks � 1; 8s 2 S :

where

!l;ks.t2/ D 1

1C ˇl;ks Pl;ks.t2 � 1/Ml;ks.t2 � 1/ ;

jl;ks.t2/ D ˇl;ks Pl;ks.t2 � 1/Ml;ks.t2 � 1/
1C ˇl;ks Pl;ks.t2 � 1/Ml;ks.t2 � 1/ ;

�l;ks.t2/ D Ml;ks.t2 � 1/
P

ks2Ks

P
l2L Ml;ks.t2 � 1/ : (5.25)
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• Imperfect CSI

min
P, M

Y

l;ks;s

�

.1C 

X

8l0¤l

X

8k0

s¤ks

X

8s2S
ˇ2l0;k0

s
P2l0;k0

s
.t2/Ml0;k0

s
.t2// � � 1

g1.t2/

��g1.t2/

(5.26)

�
Y

l;ks

�
ˇ2l;ks
P2l;ks

.t2/Ml;ks.t2/

gl;ks.t2/

��gl;ks .t2/
�

subject to: C5.8, C5.9

OC5.6 W
Y

l;ks

�

.1C 

X

8l0¤l

X

8k0

s¤ks

X

8s2S
ˇ2l0;k0

s
P2l0;k0

s
.t2/Ml0;k0

s
.t2// � � 1

g1.t2/

��g1.t2/

�
Y

l;ks

�
ˇ2l;ks
P2l;ks

.t2/Ml;ks.t2/

gl;ks.t2/

��gl;ks .t2/
�Fks .t/

� 2�Rrsv
s ; 8s 2 S ;

OC5.7 W Mrsv
s

Y

8ks;l

�Ml;ks.t2/

�l;ks.t2/

���l;ks � 1; 8s 2 S :

where

g1.t2/ D 1

1C 

P

8l2L
P

8ks2Ks

P
8s2S ˇ2l;ks

P2l;ks
.t2 � 1/Ml;ks.t2 � 1/ ;

(5.27)

gl;ks.t2/ D 
ˇ2l;ks
P2l;ks

.t2 � 1/Ml;ks.t2 � 1/
1C 


P
8l2L

P
8ks2Ks

P
8s2S ˇ2l;ks

P2l;ks
.t2 � 1/Ml;ks.t2 � 1/ :

(5.28)

Proof For the perfect scenario, the objective function of (5.23) is

min
P, M

Y

l;ks;s

�
1

1C ˇl;ks Pl;ks Ml;ks

�

; (5.29)

which can be expressed as

� 1

!l;ks.t2/

�!l;ks .t2/ � �ˇl;ks Pl;ks.t2/Ml;ks.t2/

jl;ks.t2/

�jl;ks .t2/; (5.30)
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where,

!l;ks.t2/ D 1

1C ˇl;ks Pl;ks.t2 � 1/Ml;ks.t2 � 1/ ; and

jl;ks.t2/ D ˇl;ks Pl;ks.t2 � 1/Ml;ks.t2 � 1/
1C ˇl;ks Pl;ks.t2 � 1/Ml;ks.t2 � 1/ : (5.31)

Now, the objective function can be written as

Y

l;kss;n

�
� 1

!l;ks.t2/

��!l;ks .t2/ � �ˇl;ks Pl;ks.t2/Ml;ks.t2/

jl;ks.t2/

��jl;ks .t2/
�

: (5.32)

For C5.6, the AGMA approximation is

C5.6 W
Y

l;ks;

�
� 1

!l;ks.t2/

��!l;ks .t2/ � �ˇl;ks Pl;ks.t2/Ml;ks.t2/

jl;ks.t2/

��jl;ks .t2/
�Fks .t/

� 2�Rrsv
s ;8s:

Similarly for the constraint C5.7, we can approximate the expression into monomi-
als as follows:

Mrsv
sP

ks2Ks

P
l2L Ml;ks.t2/

� 1 (5.33)

C5.7 WMrsv
s

Y

8ks;n;l

�Ml;ks.t2/

�l;ks.t2/

���l;ks � 1; 8s 2 S :

where, �l;ks.t2/ D Ml;ks .t2�1/P
ks2Ks

P
l2L Ml;ks .t2�1/ . Hence, the overall problem for the perfect

CSI estimation scenario for the RRH Adjusting algorithm can be written as (5.24)
The rate of user ks in RRH l in the imperfect CSI scenario can be rewritten as

Rl;ks D log2

�
1C 


P
8l2L

P
8ks2Ks

P
8s2S ˇ2l;ks

P2l;ks
Ml;ks

1C 

P

8l0¤l

P
8k0

s¤ks

P
8s2S ˇ2l0;k0

s
P2l0;k0

s
Ml0;k0

s

�

: (5.34)

Hence, the objective function of (5.23) can be rewritten as

min
P, M

Y

l;ks;s

�1C 

P

8l0¤l

P
8k0

s¤ks

P
8s2S ˇ2l0;k0

s
P2l0;k0

s
Ml0;k0

s

1C 

P

8l2L
P

8ks2Ks

P
8s2S ˇ2l;ks

P2l;ks
Ml;ks

�

; (5.35)

Now, by considering t2 as the iteration index, the denominator of (5.35) can be
transformed by AGMA as
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� 1

g1.t2/

�g1.t2/ �
Y

l;ks;s

�
ˇ2l;ks
P2l;ks

.t2/Ml;ks.t2/

gl;ks.t2/

�gl;ks .t2/; (5.36)

where g1.t2/ and gl;ks.t2/ are introduced in (5.27) and (5.28). Hence, the GP
approximation of objective function is

min
P, M

Y

l;ks;s

�

.1C 

X

8l0¤l

X

8k0

s¤ks

X

8s2S
ˇ2l0;k0

s
P2l0;k0

s
.t2/Ml0;k0

s
.t2// � � 1

g1.t2/

��g1.t2/

�
Y

l;ks;s

�
ˇ2l;ks
P2l;ks

.t2/Ml;ks.t2/

gl;ks.t2/

��gl;ks .t2/
�

: (5.37)

Consequently, (5.23) is approximated to its GP format in (5.26). ut
At each iteration, problem (5.24) or (5.26) can be solved via CVX. The iterative

algorithm will be stopped if jjP.t2/� P.t2 � 1/jj � "3, jjM.t2/� M.t2 � 1/jj � "4,
where 0 < "3 � 1 and 0 < "4 � 1.

5.4 Numerical Results and Discussions

5.4.1 System Parameters

We consider a multi-cell VWN with L D 4 RRHs connected to B D 3 BBUs in a
2�2 square area serving users in S D 2 slices. The RRHs are located at coordinates
.0:5; 0:5/; .0:5; 1:5/; .1:5; 0:5/; and .1:5; 1:5/ and the users are generated randomly
based on the uniform distribution within the area of interest. The path loss exponent
for modelling the channel coefficients is taken to be � D 3 [13]. We set K D 8 and
Pmax

ks
D 0 dB, 8k 2 K unless otherwise stated. For all of the simulations, we set

x1 D 107, "1 D "3 D 10�5, "2 D "4 D 10�6 and Mmax
l D 150, for all l. We assume

each front-haul link has a maximum capacity of cmax
l;b D 10 baseband signals. In all

of the simulations, when there is no feasible solution for the system, i.e. any of the
constraints given by (5.7) does not hold, the total rate is set to be zero.

5.4.2 Performance Analysis

In Fig. 5.2, the effect of the minimum required rate of each slice on the total achieved
rate of the VWN is demonstrated. Here, we also compare the performance of the
proposed algorithm with that of the traditional algorithm in wireless networks where
each user is connected to the nearest RRH and the antennas of each RRH are
divided fairly between the users connected to that RRH. All users send data with
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Fig. 5.2 Total rate versus Rrsv
s

maximum power and each BBU selects the users with lower wks;b to the maximum
allowable number of supported users omax

b . As can be seen in Fig. 5.2, the total
rate decreases with increasing Rrsv

s due to the reduction in the feasibility region
for all approaches. Moreover, the total rate obtained is more in the case of perfect
CSI as compared to the case of imperfect CSI due to the interference from pilot
contamination from users in neighboring RRHs in the case of imperfect CSI. Also,
from Fig. 5.2, the proposed algorithm outperforms the traditional approach for both
perfect and imperfect CSI scenarios, which highlights the benefits of centralized
resource management in C-RAN to increase the performance of VWN by setting
parameters of the network in the central BBU.

To study the effect of the BBU capacity on the system performance, omax
b , in

Fig. 5.3, the total rate is plotted versus omax
b for K D 12. As observed in Fig. 5.3,

the total rate is an increasing function with respect to omax
b . Similar to the previous

observation, the total rate in the perfect CSI estimation is always higher than that
of the imperfect CSI scenario which implies the importance of CSI estimation in
the massive-MIMO aided C-RAN. For omax

b � 6 the total rate does not change even
by increasing omax

b since the system is able to support all the users at that value of
omax

b and any further increase does not have any effect on the system performance.
To investigate the performance of Algorithm 5.1 with respect to the massive MIMO
parameters, the total rate versus Mmax

l is plotted in Fig. 5.4. From Fig. 5.4, the total
rate increases with increasing Mmax

l which is due to the spatial multiplexing gain
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obtained from the increase in the number of antennas. Again, the total rate with
perfect CSI is higher than that with imperfect CSI estimation, and the total rate
decreases with increasing Rrsv

s similar to Fig. 5.2.
To get more insight about the effect of pilot duration, in Fig. 5.5, the total rate

versus 
=T is shown. From Fig. 5.5, the total rate keeps increasing as 
=T increases
up to 
=T D 0:3 and then decreases later. This is because at very low values of 
 ,
the pilot contamination effect is more pronounced. However, as 
 keeps increasing,
there is less transmission time and more time is allocated in sending the pilot signal.
Hence, a proper design of the pilot duration is essential in order to maintain high
efficiency of the VWN and based on the simulation results, 
=T D 0:3 is optimal
for this setup.

5.5 Concluding Remarks

In this chapter, we considered the resource allocation problem in the uplink of a
C-RAN-based VWN with front-haul limitations. Specifically, we formulated the
resource allocation problem in a C-RAN VWN where the users are assigned RRHs
as well as BBUs and allocated power and antennas with the aim of maximizing
the total sum rate of the system. we proposed an iterative algorithm based on
CGP and SCA that efficiently allocates these resources to users while maintaining
the resource reservation per slices in the VWN. The performance of the proposed
algorithm was compared for both perfect and imperfect CSI scenarios.
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Chapter 6
Resource Allocation in a NOMA-Based VWN

In this chapter, we consider the resource allocation problem in a NOMA-based
VWN. Specifically, we formulate a power-efficient resource allocation problem in
a NOMA-based VWN to find the optimal power allocation coefficients to users
while maintaining the slice isolation requirements. By using various convexification
approaches, we develop a computationally efficient algorithm that tries to minimize
the total transmit power from the BS. The simulation results performed demonstrate
that the proposed NOMA scheme significantly outperforms the OFDMA scheme in
terms of the power efficiency.

6.1 Introduction

Non-orthogonal multiple access (NOMA) has been recently introduced as an
effective approach to increase spectrum efficiency and provide massive connectivity
[1, 2]. Compared to the existing orthogonal multiple access techniques such as
OFDMA, via NOMA, multiple users share the entire spectrum at the same time
and frequency (and code), but with different allocated power levels. Since the users
share the time and frequency resources, sophisticated techniques for decoding the
superimposed signal need to be implemented at the receiver. By implementing
successive interference cancellation (SIC), the receiver iteratively subtracts the
strongest signal from the superimposed signal and decodes the intended signal [3].
In contrast, in OFDMA, the users are allocated different sub-carriers, which
effectively removes interference among users by exclusive sub-carrier allocation
within a cell. The important question in this scenario is whether NOMA can improve
the spectrum efficiency as compared to OFDMA.

There has been a significant research interest in this context. For instance,
Benjebbour et al. [4] compare the system level performance of the NOMA scheme
with different mechanisms for power allocation including the user grouping based

© Springer International Publishing AG 2018
T. Le-Ngoc et al., Virtualized Wireless Networks, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-3-319-57388-5_6
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on their channel gains and equal power allocation to all users. The authors propose
a sub-optimal power allocation scheme called fractional transmit power allocation
(FTPA) that is similar to the transmission power control mechanism in LTE.
Similarly, Takeda and Higuchi [5] analyze the performance of NOMA compared
to OFDMA for the cellular up-link setup. The optimization problem of this work
includes the minimum required throughput of each user as a constraint. The
performance of the system in the cell-edge has been shown to be significantly
improved in the case of NOMA compared to OFDMA. Similarly, Chen et al. [6]
propose an enhanced proportional fairness scheme based on NOMA and shows
the improvement of cell throughput by up to 28% compared to OFDMA scheme.
In [7], a power allocation problem for the downlink transmission of NOMA
system is formulated and solved by applying difference of convex functions (DC)
programming. In order to develop the proposed algorithm, the greedy user selection
approach is used to assign users to sub-carriers, and then, DC approximation is
applied to allocate power for each user.

In this chapter, we investigate the use of NOMA in the VWNs to improve
the network performance. The objective is to minimize the total transmit power
in a VWN, while maintaining the minimum required throughput of each slice.
Since the original problem is non-convex and computationally intractable, we use
the approach of CGP and AGMA to convert it into an efficient algorithm. The
simulation results demonstrate that NOMA is more power-efficient than OFDMA in
various scenarios. Specifically, the power efficiency is improved by up to 45–54%
with NOMA as compared to OFDMA.

6.2 System Model

Consider a VWN with a single BS that serves a set of slices (i.e., S ), in which each
slice s 2 S has its own set of users denoted by Ks. The total number of users in
the system is given by K D P

s2S Ks. To provide the isolation among slices, the
VWN should preserve a minimum required rate per each slice s, denoted by Rrsv

s .
We consider the following two transmission modes for the VWN:

• NOMA where the whole frequency band of interest is shared among users,
• OFDMA where the specific bandwidth is divided into a set of sub-carriers

denoted by N and each sub-carrier can be allocated to a maximum of one user
at a time.

In this chapter, our focus is to compare the power efficiency of these two
approaches for our system model. We assume that the bandwidth W is divided into
a set of sub-carriers N D f1; � � � Ng, and the channel gain from the BS to the user
ks in slice s and in sub-carrier n is

hks;n D �ks;nd��
ks
; (6.1)

where �ks;n is the fading coefficient, dks 2 Œ0:1; 1� is the distance of the user ks 2 Ks

to the BS normalized to the cell radius and � is the path loss exponent.
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6.2.1 NOMA

With NOMA, the transmitter encodes the information for each user spread on the
entire bandwidth and transmits the superimposed signal. Hence, considering the
transmission from the BS to K users, the received superimposed signal plus noise at
the receiver of the user ks in slice s at sub-carrier n is given by

yks;n D hks;nx C wks;n; (6.2)

where, hks;n is the complex channel gain from the BS to the user ks which is assumed
to be known to both the BS transmitter and the user ks, x denotes the superimposed
transmitted signal for all users and wks;n is the noise component for the user ks at
sub-carrier n. With the orthogonal scheme, the upper bound on the capacity of the
user ks can be achieved by allocating all the power and degrees of freedom available
to user ks with all the other users getting zero rate and is given by

Rks;n < log.1C �ks;nhks;n

�2
/; (6.3)

where �ks;n is the power allocation coefficient for the user ks at sub-carrier n and �2

is the noise power spectral density and is assumed to be equal for all users. Thus,
considering the case of only two users, for simplicity, the capacity region consists
of two extreme points where only one user gets the maximum rate achievable at any
instant while the other user gets zero rate.

However, with SIC implemented at the receiver, the users iteratively subtract
the signals from users lying below the current user in the decoding order. More
specifically, in the two-user scenario, where jh1;nj � jh2;nj, user 1 treats the signal
for user 2 at sub-carrier n as noise and can hence achieve a rate of

R1;n D log.1C �1;nh1;n
�2;njh1;nj2 C �2

/

D log.1C .�1;n C �2;n/h1;n
�2

/ � log.1C �2;nh1;n
�2

/ (6.4)

Now, user 2 performs successive interference cancellation, it first decodes the signal
for user 1, subtracts the determined signal from the superimposed signal and extracts
its data. Thus user 2 can achieve a rate of

R2;n D log.1C �2;nh2;n
�2

/ (6.5)

In general, with the decoding order of jh1;nj � jh2;nj � � � � � jhK;nj, the user
ks, with index i, can successively remove the interference of all users with indices
j < i at sub-carrier n. For the rest of the users, i.e., users with indices j > i, the
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interference cannot be removed. Consequently, the received SINR at the user ks,
with index i at the sub-channel n, is given by


NOMA
i;n D �i;nhi;n

�2 C hi;n
P

s2S
PK

jDiC1 �j;n

: (6.6)

Similarly, the rate of user ks, with index i, at the sub-carrier n is

RNOMA
ks;n D Ri;n D log2.1C 
NOMA

i;n /

D log2

�

1C �i;nhi;n

�2 C hi;n
P

s2S
PK

jDiC1 �j;n

�

(6.7)

Each slice s 2 S in the VWN has a minimum reserved rate of Rrsv
s in order to

support the QoS requirement of the users, which can be expressed as

C6.1:
X

ks2KS

X

n2N
RNOMA

ks;n � Rrsv
s ; 8s 2 S :

6.2.2 OFDMA

We consider an OFDMA system where the total available frequency is divided into
n 2 N sub-carriers and if ˛ks;n is the sub-carrier allocation indicator for the sub-
carrier n and user ks in slice s 2 S , then

˛ks;n D
(
1; if sub-carrier n is allocated to user ks;

0; otherwise:

Due to the OFDMA exclusive sub-carrier assignment, we have a constraint on
˛ks;n as

C6.2:
X

8s

X

8ks

˛ks;n � 1; 8n 2 N :

The received SINR at the user ks at sub-carrier n 2 N and in slice s 2 S is


OFDMA
ks;n D Pks;nhks;n

�2
; (6.8)

Hence, the rate of user ks at sub-carrier n is

ROFDMA
ks;n D ˛ks;n log2.1C 
OFDMA

ks;n /: (6.9)
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In this case, the minimum reserved rate of each slice is represented as

C6.3:
X

ks2KS

X

n2N
ROFDMA

ks;n � Rrsv
s ; 8s 2 S :

Consider � D Œ�1; : : : ;�S� as the vector of power allocation coefficients of all
users in all slices in NOMA, where �s D Œ�ks

�
Ks
ksD1 and �ks

D Œ�ks;1; � � � ; �ks;N �,
respectively. Similarly, for the OFDMA case, the power allocation vector of the
system can be represented as P D ŒP1; � � � ;PS�, where Ps D ŒPks �

Ks
ksD1 and

Pks D ŒPks;1; � � � ;Pks;N �. Also, the sub-carrier allocation vector of the system can be
represented as ˛ D Œ˛1; : : : ;˛S�, where ˛s D Œ˛ks �

Ks
ksD1 and ˛ks D Œ˛ks;1; � � � ; ˛ks;N �.

Now, for the case of NOMA, the optimization problem to minimize the total
transmit power can be expressed as

min
�

X

s2S
X

ks2KS

X

n2N �ks;n; (6.10)

subject to: C6.1:

For the case of OFDMA, the corresponding resource allocation problem is

min
P;˛

X

s2S
X

ks2KS

X

n2N ˛ks;nPks;n; (6.11)

subject to: C6.2–C6.3:

The proposed algorithm to solve the optimization problem is described in the
subsequent section for both NOMA and OFDMA schemes.

6.3 Proposed Algorithm

The formulated optimization problems in (6.10) and (6.11) are non-convex and
solving them is challenging. Besides, (6.11) involves binary integer variables. To
develop an efficient algorithm to solve (6.11), we deploy an iterative framework of
successive convex approximation, in which the non-convex function is transformed
into a convex one in each iteration.

For this transformation, we apply the CGP and variable relaxation to convert
(6.10) into the GP formulation. For (6.11), we apply the dual approach which has
been widely utilized for solving OFDMA-based resource allocation problems [8, 9].
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6.3.1 Iterative Algorithm for NOMA-Based Resource
Allocation

Let us first write RNOMA
ks;n

D log2.1C 
NOMA
i;n / as

eRNOMA
ks;n D log2

��2 C hi;n
P

s2S
PK

jDiC1 �j;n C �i;nhi;n

�2 C hi;n
P

s2S
PK

jDiC1 �j;n

	
: (6.12)

From the above, C6.1 can be rewritten as

Y

i2Ks

Y

n2N

�
�2 C hi;n

P
s2S

PK
jDiC1 ˇj;n

�2 C hi;n
P

s2S
PK

jDiC1 ˇj;n C ˇi;nhi;n

�

� 2.�Rrsv
s /; 8s 2 S :

To apply the CGP, consider t1 as the iteration number. In each iteration t1,
the non-convex function should be approximated to its convex counterpart. Based
on the structure of eRNOMA

ks;n
, we can apply AGMA approximation to propose the

monomial approximation of eRNOMA
ks;n

. At iteration t1, eRNOMA
ks;n

can be approximated
to the following convex function, for all i,

xi;n.t1/ D.�2 C hi;n

X

s2S

KX

jDiC1
�j;n/.

�2

si;n.t1/
/�si;n.t1/�

KY

8s;jDiC1

�
hi;n�j;n.t1/

gj;n.t1/

��gj;n.t1/��i;n.t1/hi;n

ri;n.t1/

��ri;n.t1/

; (6.13)

where for all i and n 2 N ,

si;n.t1/ D �2

zi;n.t1/
; gj;n.t1/ D �j;n.t1 � 1/hj;n

zi;n.t1/
; ri;n.t1/ D �i;n.t1 � 1/hi;n

zi;n.t1/
;

(6.14)

zi;n.t1/ D �2 C hi;n

X

s2S

KX

jDiC1
�j;n.t1 � 1/C hi;n�i;n.t1 � 1/: (6.15)

Considering (6.13)–(6.15), the optimization problem (6.10) at iteration t1 is
approximated to the following convex optimization problem

min
�.t1/

KX

iD1

NX

nD1
�i;n.t1/ (6.16)

subject to: (6.13) � (6.15);
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Algorithm 6.1 Iterative algorithm based on CGP for NOMA-based VWN

Initialization: Set t1 D 1, �.t1/ D Œ1�, where 1 is a vector C1�K .
Repeat:

Step 1: Update si;n.t1/; gj;n.t1/; ri;n.t1/, and zi;n.t1/ from (6.14)–(6.15),
Step 2: Find optimal ��.t1/ from (6.16) via CVX [10],

Until: jj��.t1/� ��.t1 � 1/jj � "1.

Y

i2Ks

Y

n2N
xi;n.t1/ � 2.�Rrsv

s /; 8s 2 S :

The overall iterative algorithm to solve (6.10) based on the convex function (6.16)
is presented in Algorithm 6.1.

6.3.2 Dual Approach for OFDMA-Based Resource Allocation

Since (6.11) involves binary variables ˛, we first relax ˛ks;n 2 Œ0; 1�;8ks 2 Ks;

8s 2 S ;8n 2 N . Now, by considering yks;n D ˛ks;nPks;n, the total rate of OFDMA
can be rewritten as [8, 9],

eROFDMA
ks;n .˛; y/ D ˛ks;n log2.1C yks;nhks;n

˛ks;n�
2
/: (6.17)

Note that the above expression belongs to a class of convex functions with the format
of f .a; b/ D a log.1C b=a/ [11]. Therefore, C6.3 can be written as

eC6:3 W
X

ks2KS

X

n2N
eROFDMA

ks;n .˛; y/ � Rrsv
s ; 8s 2 S : (6.18)

Consequently, (6.11) can be written as

min
y;˛

X

s2S
X

ks2KS

X

n2N yks;n; (6.19)

subject to: C6:2;eC6:3:

Proposition 1. Problem (6.19) is convex and can be solved using the Lagrange
dual method [9].

Proof. In (6.17), eRks;n.˛; y/ is of the form f .a; b/ D a log.1 C b=a/ which is a
convex function and can be solved by the Lagrangian method [11].
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The corresponding Lagrange function for (6.19) is

L .�s; �n; y;˛/D
X

8s;8ks;8n

yks;nC
X

8s

�s.R
rsv
s �

X

8ks;n

eROFDMA
ks;n /C

X

8n

�n.
X

s

X

ks

˛ks;n�1/;

(6.20)

where �s;8s 2 S and �n;8n 2 N are the Lagrange variables associated to eC6:1
and C6:2, respectively. Considering � and � as the vectors of the Lagrange variables
for �s and �n;8s;8n; respectively, the dual function for (6.20) is, [11]

D.�; �/ D min
y;˛

L .�; �; y;˛/: (6.21)

Thus, the dual problem can be written as

max
�;�

D.�; �/ (6.22)

subject to: � > 0 & � > 0:

Since problem (6.19) is convex, the duality gap is zero and hence, the solution of the
dual problem is equal to the solution of the primal problem [11]. Hence, by applying
KKT conditions, the optimal power allocation for user ks in slice s and sub-carrier
n, i.e., P�

ks;n
, is

P�
ks;n D

�
�s

ln.2/
� �2

hks;n

�Pmax

0

; (6.23)

where, Œx�ba D maxfminfx; bg; ag. Also, the optimal sub-carrier allocation, ˛�
ks;n

, is

˛�
ks;n D

8
ˆ̂
<̂

ˆ̂
:̂

0;
@.L .�s;�n;y;˛//

˛�

ks ;n
< 0

2 Œ0; 1�; @.L .�s;�n;y;˛//
˛�

ks ;n
D 0

1;
@.L .�s;�n;y;˛//

˛�

ks ;n
> 0;

(6.24)

where,

@.L .�s; �n; y;˛//
@˛�

ks;n

D �n � �s

�

log2.1C 
ks;n/ � 
ks;n

.1C 
ks;n/ln.2/

�

; 8s 2 S

and 
ks;n D yks ;nhks ;n

˛ks ;n�
. Now, from the KKT conditions, we have

�ks;n D �s

�

log2.1C 
ks;n/ � 
ks;n

.1C 
ks;n/ln.2/

�

;8s 2 S : (6.25)
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Algorithm 6.2 Resource allocation for OFDMA-based VWN

Initialization: Set t2 D 1, ˛.t2/ D Œ1�, where 1 is a vector C1�KN , pks ;n.t2/ D 1;8ks 2 Ks;

8s 2 S ;8n 2 N , tmax
2 D 5000.

Repeat:

Step 1: Update �s.t2 C 1/ D �
�s.t1/C ı�s

@L
@�s

�
C

;8s 2 S :

Step 2: Repeat: Set inner loop iteration index as t3 D 1.
Step 2a: Update P�

ks ;n.t3/;8ks 2 Ks;8n 2 N , from (6.23),
Step 2b: Find �ks ;n.t3/ from (6.25) and set ˛ks ;n.t3/ D 1; if �ks;n.t3/ D maxŒ�ks ;n�;8ks 2 Ks;

8s 2 S ,
Until jjP.t3/� P.t3 � 1/jj � "2.

Until: jj�s.t2/� �s.t2 � 1/jj � "2, or t2 > tmax
2 .

To satisfy the OFDMA exclusive sub-carrier allocation, ˛�
ks;n

is chosen such that �ks;n

is maximum [12], mathematically represented as

˛�
ks;n D

8
<

:

1; k0
s D max8ks2Ks;8s2S @.L .�s;�n;y;˛//

@˛�

ks ;n

0; ks ¤ k0
s:

(6.26)

The overall algorithm is described in Algorithm 6.2. ut
To solve the convex problem (6.19), the iterative algorithm based on the dual

function can be applied with a low computational complexity as demonstrated in
[8, 9] which is summarized in Algorithm 6.2.

6.4 Numerical Results and Discussions

To study the performance of the proposed algorithm for NOMA and compare it with
the OFDMA scheme, we simulate a scenario of a VWN with a single BS serving
two slices each with Ks D 8 users, where K D P

s2S Ks and Rrsv D Rrsv
s for all

s 2 S . The users are randomly located (from a uniform distribution) within the
whole area of interest unless otherwise stated. The total number of sub-carriers is
taken to be N D 64. The channel gains are derived according to the Rayleigh fading
model. More specifically, hks;n D �ks;nd��

ks
where � D 3 is the path loss exponent,

dks 2 Œ0:1; 1� is the normalized distance between the BS and user ks normalized
to the cell radius, i.e., cell radius is 1, and �ks is the exponential random variable
with mean of 1. The results are taken over the average of 100 different channel
realizations.

In Fig. 6.1, the total transmit power versus Rrsv is depicted for both NOMA and
OFDMA schemes. From Fig. 6.1, it is clear that the total transmit power increases
with increasing Rrsv for both cases. It is because the BS needs to transmit at a higher
transmit power to satisfy the minimum reserved rate per slice. However, the total
transmit power in the case of OFDMA is higher than that in the case of NOMA,
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Fig. 6.1 Total transmit power versus Rrsv

indicating that NOMA is more power efficient that OFDMA. Specifically, the total
transmit power has been decreased by almost 45% from 22 dB to almost 12 dB at
Rrsv D 1 bps/Hz and by 54% from 33 to 15 dB at Rrsv D 5 bps/Hz, respectively, with
NOMA as compared to OFDMA.

Figure 6.2 plots the total transmit power versus K for different Rrsv. From Fig. 6.2
and as expected from the multi-user diversity gain [13], it can be observed that the
total transmit power decreases with increasing K for a fixed Rrsv. Also, similar to
Fig. 6.1, it is clear that the total transmit power is an increasing function of Rrsv,
while it is higher in the case of OFDMA as compared to NOMA. In Fig. 6.3, we
study the effect of NOMA with non-uniform user distribution over the VWN for
two scenarios, where in the first scenario, users are located close to the cell-center,
i.e., the normalized distance, dks 2 Œ0:1; 0:7� and in the second scenario, the users
are located close to the cell boundary, i.e. dks 2 Œ0:8; 1�. Figure 6.3 shows the total
transmit power versus Rrsv

s for both OFDMA and NOMA. Based on the results in
Fig. 6.3, the total transmit power with OFDMA is more than in the case of NOMA
for both scenarios. Also, with increasing Rrsv

s , the total transmit power sharply
increases for OFDMA as compared to that for NOMA, e.g., for Rrsv

s > 3 bps/Hz.
More importantly, via OFDMA, for the cell-edge scenario, there is no solution for
the resource allocation problem for Rrsv

s > 3 bps/Hz. However NOMA can reach the
feasible solution by increasing the transmit power. This indicates the effectiveness
of NOMA in achieving higher energy efficiency while preserving the isolation based
constraints of the slices in the VWN.
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6.5 Concluding Remarks

In this chapter, we investigated the power efficiency performance of NOMA
compared to OFDMA for a VWN. In particular, we formulated an optimization
problem with the objective to minimize the transmit power, while supporting the
minimum reserved rate per each slice to ensure effective isolation among users in
the slices. Since the resource allocation problem is non-convex and suffers from
high computational complexity, we developed the CGP and AGMA approximation
to propose the computationally tractable iterative algorithm. Via simulation results,
we investigate the performance of the algorithm and compare it with the OFDMA
scheme. Simulation results reveal that the proposed algorithm outperforms the
OFDMA in terms of the required transmit power, specifically when most of users are
located near the cell-edge and there is a diverse variation in the channel conditions.
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Chapter 7
Conclusion

7.1 Summary

In this brief, the problems of user-association and resource-allocation as well as
their requirements in a VWN were discussed along with the various state-of-the-
art techniques in order to meet the requirements. We considered various aspects,
including massive MIMO, C-RAN, NOMA in studying the resource allocation
problems in both the single-cell and multi-cell VWNs. By applying various
optimization techniques and approximations, computationally efficient algorithms
were developed to allocate resources to users in slices under various scenarios, while
preserving the slice isolation constraints of the VWN.

In Chap. 2, we considered a multi-cell OFDMA VWN and formulated a resource
allocation problem to jointly associate users to BSs and allocate sub-carriers and
power with the aim of maximizing the total sum-rate of the system. The original
non-convex problem was converted into the GP form using CGP, where SCA was
applied to propose a computationally efficient algorithm. The performance of the
proposed algorithm was compared with the conventional approach of associating
users to BS based on the maximum received SINR. Numerical results demonstrated
the improvement in spectral efficiency of the VWN compared with the proposed
scheme.

Chapter 3 addressed the power-efficiency issue in a multi-cell VWN. Specifically,
we extended the joint user-association and resource-allocation problem to minimize
the total transmit power of the VWN subject to the isolation constraints of the
slices. Simulation results demonstrated that the proposed algorithm significantly
outperforms the conventional approach of associating users based on the maximum
received SINR in terms of the power efficiency of the VWN.

In Chap. 4, we addressed the resource allocation problem in a massive MIMO-
based VWN. Specifically, we extended the resource allocation problem in a VWN
with BSs using massive MIMO and considered adaptive pilot duration as an integral
part of the resource allocation problem to maximize the total sum-rate of the system
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subject to the constraints on the VWN as well as the pilot contamination effects.
Simulation results have demonstrated that the application of massive MIMO at the
BS significantly extends the feasibility region of the VWN and the performance is
improved with the adaptive pilot duration as compared to the fixed pilot duration.

The resource allocation problem in a C-RAN-based VWN was addressed in
Chap. 5 where we considered the joint user association and resource allocation
problem in a multi-cell VWN by applying the C-RAN architecture. Specifically, we
formulated the resource allocation problem to jointly associate users to RRHs/BBUs
and allocate power and antennas to users. In order to maintain the slice isolation
requirements, we considered both minimum reserved rate and number of antennas
per slice in this setup. With the aim of maximizing the total sum rate of the system,
an iterative algorithm based on SCA and CGP was proposed. The simulation results
have been performed to compare the performance of the proposed algorithm in per-
fect and imperfect CSI scenarios and demonstrated the effect of pilot contamination
on the system performance.

Chapter 6 considered the power allocation problem in a VWN using NOMA
where users are assigned the same time-frequency resources but with different
power allocations, while preserving the isolation constraints of the slices. With the
aim of minimizing the total transmit power of the VWN, we proposed a power-
efficient algorithm and compared the performance of the VWN against the OFDMA
scheme. The simulation results have demonstrated that NOMA is significantly more
power efficient than OFDMA in the VWN.

7.2 Potential Future Works

As VWN is still an evolving architecture and the requirements of the next generation
network keep changing, there are a number of possible extensions based on the
works in this brief. Some of these are listed below:

• We considered resource allocation problems in a VWN in this brief with the
isolation constraints mainly based on the reserved rate and number of antennas
per slice, a possible extension would be to consider the provision of admission
control in the slices since due to the dynamic channel conditions in the wireless
environment, there may arise infeasibility scenarios in the VWN when the
constraints cannot be satisfied.

• We considered power-efficient resource allocation problems in Chaps. 2 and 6
for OFDMA and NOMA, respectively, where the objective was to minimize
the total transmit power from the BS. Further studies can consider an energy-
efficient scheme by taking into account the circuit power in the BS as well by
using various power consumption models in the BS.

• We considered the adaptive pilot duration allocation problem in a single cell
VWN in Chap. 3. Further studies can consider a multi-cell VWN where multiple
BSs will serve users in different slices at a same region.
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• The resource allocation in NOMA VWN could be extended to consider a multi-
cell scenario with another sub-algorithm to consider the user association when
the coverage of a certain area involves multiple BSs.

• Although the resource allocation problem in the C-RAN VWN is highly non-
convex and involves a large number of variables, it could be extended to cover
the OFDMA scheme in the multi-cell scenario by relaxing some constraints or
by assuming fixed number of antennas and/or power per user.



Appendix
Brief Notes on Geometric Programming
and Successive Convex Approximation

A.1 Introduction to Geometric Programming

A.1.1 Monomial and Posynomial Function

Let x D .x1; : : : ; xn/ be a vector with components xi where the components, xi, are
real positive variables, a monomial function g.x/ is a function of the form

g.x/ D cxa1
1 xa2

2 : : : x
an
n ; (A.1)

where c > 0 and ai are real numbers.
A posynomial is a function of the form

f .x/ D
KX

kD1
ckxa1k

1 xa2k
2 : : : xank

n (A.2)

where, ck > 0. from the definition above, a posynomial is a sum of one or more
monomials.

A.1.2 Arithmetic-Geometric Mean Approximation

The arithmetic-geometric mean approximation (AGMA) is widely used in solving
optimization problems by converting the summation of monomials into the approx-
imated product forms. Specifically, if f .x/ is posynomial function, i.e. f .x/ DP

k gk.x/ where gk.x/ are monomials, then, by the arithmetic-geometric mean
inequality, we have
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f .x/ � Of .x/ D
Y

k

�
gk.x/
˛k.x0/

�˛k.x0/

; (A.3)

where the parameters ˛k.x0/ can be obtained by computing

˛k.x0/ D gk.x0/
f .x0/

;8k: (A.4)

In the above approximation, x0 is a fixed point with x0 > 0 and is the optimal
solution obtained from the last iteration of the optimization. It has been proved that
Of .x/ is the best local monomial approximation of f .x/ near x0 [1].

A.1.3 Geometric Programming

Geometric programming (GP) is a class of non-linear optimization problems,
which can be solved very efficiently via numerical methods [2]. Various resource
allocation problems have been solved by converting them into GP problems to
reach computationally tractable algorithms, e.g., [2–8]. A geometric programming
problem is an optimization problem of the form

minimize f0.x/ (A.5)

subject to fi.x/ � 1; i D 1; : : : ;m; (A.6)

gj.x/ D 1; j D 1; : : : ; p; (A.7)

where fi.x/ are posynomial functions, and gj.x/ are monomial functions and xi > 0

are the optimization variables. The above Eq. (A.5) describes the GP in a standard
form where the inequality constraints are posynomials and the equality constraints
are monomials.

A.1.4 Complementary Geometric Programming

Although GP has been extensively studied in the literature and there are a number
of efficient tools to solve GP problems, the optimization problems in practical sce-
narios in communication systems are not typically in the standard GP form. There
are a lot of restrictions, for example, on the equality and inequality constraints,
which cannot be met for many practical problems related to the resource allocation
of wireless networks. For example, in some cases, the equality constraints contain
posynomial functions, inequality constraints present lower bound of posynomial
function or the posynomial functions contain negative coefficients. Depending on
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the nature of the optimization problem, these types of problems belong to either one
of classes of optimization problems such as generalized GP, signomial programming
or complementary geometric programming (CGP).

A CGP problem can be presented as

min
x

F0.x/; (A.8)

subject to: Fi.x/ � 1; i D 1; ::; I;

Gj.x/ D 1; j D 1; ::; J;

where F0.x/ D f C
0 .x/ � f �

0 .x/, Fi.x/ D f C

i .x/
f �

i .x/ , i D 1; � � � ; I and Gj.x/ D gj.x/
fj.x/

in

which f C
0 .x/, f �

0 .x/, j D 0; 1; � � � ; J; are posynomial functions, while gj.x/ and fj.x/
are monomial and posynomial functions [9], respectively.

One approach to solve (A.8) is to convert it into a sequence of standard GP
problems [10] that can be solved to reach a global solution. In other words,
successive convex approximation (SCA) can be applied, where the non-convex
optimization problem is approximated as a convex problem in each iteration.
Specifically, AGMA can be applied to transform the non-posynomial functions to
posynomial form, i.e., Fi.x/, and Gj.x/ to their monomial functions, respectively.

Using AGMA, at the iteration l, the approximated forms of f �
i .x/ D PKi�

kD1 gi�
k .x/

and fj.x/ D PKj

kD1 gj
k.x/ are

ef �
i .x.l// D

Ki�Y

kD1

�
gi�

k .x.l//

� i�
k .l/

�� i�
k .l/

; (A.9)

and,ef j.x.l// D
KjY

kD1

 
gj

k.x.l//

�
j
k.l/

!�j
k.l/

; (A.10)

where � i�
k .l/ D gi�

k .x.l�1//
f �

i .x.l�1// and �
j
k.l/ D g

j
k.x.l�1//

fj.x.l�1// . Subsequently, eFi.x.l// D
f C

i .x.l//

ef �

i .x.l//.x.l//
and eGj.x.t// D gj.x.t//

ef j.x.t//
are posynomial and monomial functions,

respectively [10], and the optimization problem related to each iteration l of (A.8)
becomes

min
x.l/

	 C f C
0 .x.l// � f �

0 .x.l//; (A.11)

subject to:

eFi.x.l// � 1;eGj.x.l// D 1; i D 1; ::; I; j D 1; ::; J;

where 	 � 1 is a sufficiently large constant added to the objective function in
(A.11) to keep it always positive [10]. However, the objective function of (A.11) still
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cannot satisfy the posynomial condition of (A.5). To reach the GP-based formulation
for each iteration, we introduce the auxiliary variable x0 > 0 for a linear objective
function and use it to transform (A.11) into

min
x0.t/

x0.l/; (A.12)

subject to:
	 C f C

0 .x.l//
f �
0 .x.l//C x0

� 1;

eFi.x.t// � 1;eGj.x.t// D 1;

i D 0; 1; : : : ; I; j D 1; : : : ; J;

where x0.t/ D Œx0.l/; xn.l/; � � � ; x0.l/�. Similar to Fi.x/, term 	Cf C

0 .x.l//
f �

0 .x.l//Cx0
can be

converted into posynomial function via AGMA, and finally, the resulting optimiza-
tion problem has a GP-based structure and can be solved by efficient numerical
algorithms, [10].

It has been shown that the solution obtained by the iterative algorithm based on
the GP-based approximation of problem (A.8) can offer a performance very close
to that of the optimal solution [10].

A.2 Multi-Block Successive Convex Approximation

Successive convex approximation (SCA) is an iterative approach to solve general
non-convex optimization problems where at each iteration of the algorithm, the non-
convex problem is approximated by its corresponding convex form by considering
a set of variables while fixing others. In other words, at each iteration, a locally tight
approximation of the original optimization problem is solved subject to the tight
convex restriction of the constraint sets.

Consider an optimization problem of the form

min f .x/ (A.13)

s. t. x 2 X ; (A.14)

where the feasible set X is the Cartesian product of n closed convex sets:
X D X1 � � � � � Xn where Xi 	 R

mi and
P

i mi D m. Here, the variables,
x 2 R

m, in the original optimization problem can be decomposed into subsets as
x D .x1; x2; : : : ; xn/ where xi 2 Xi; i D 1; : : : ; n.

In the multi-block SCA approach, the algorithm updates a single block of
variables in each iteration, i.e. at iteration t, if the selected block is block i, then
the global upper-bound approximation of the original objective function f .:/ is
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formed at the point xt�1. Specifically, if ui.xi; xt�1/ is the convex approximation
of the original objective function f .x/ at the point xt�1, then, at the iteration t, the
following sub-problem is solved,

min
xi

ui.xi; x
t�1/ (A.15)

s. t. xi 2 Xi: (A.16)

The convergence and the complexity analysis of the SCA-based approach has been
studied in various works, for instance [11]. Moreover, with the arithmetic-geometric
mean approximation, the SCA approach converges to a locally optimal solution that
satisfies the KKT conditions of the original problem [12].
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