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Abstract

A modern power grid needs to become smarter in order to provide an affordable,
reliable, and sustainable supply of electricity. For these reasons, a smart grid is
necessary to manage and control the increasingly complex future grid. Certain
smart grid elements including renewable energy, storage, microgrid, consumer
choice, and smart appliances like electric vehicles increase uncertainty in both
supply and demand of electric power.

In this book, we investigate the intelligent control of two important components
in smart grid, namely microgrids (MGs) and electric vehicles (EVs). We focus on
developing theoretical frameworks and proposing corresponding algorithms, to
optimally schedule virtualized elements (e.g., conventional generators’ output,
electricity imported, EVs’ charging rates, and customers’ energy demand) under
different uncertainties (e.g., renewable energy generation uncertainty, energy
demand uncertainty, EVs’ pattern uncertainty, electricity price uncertainty), so that
the total cost of operating the microgrid or the EV charging system can be mini-
mized and the systems maintain stabilized. First, we consider power demand and
supply management problem in microgrid with uncertain renewable energy inte-
gration. To model the randomness of renewable energy generation, a novel
uncertainty model is developed. An optimization problem is then formulated to
determine the optimal power consumption and generation scheduling for mini-
mizing the fuel cost. We propose a two-stage optimization approach to solve the
problem. The second case considers energy generation scheduling in the microgrid.
For this case, we develop robust optimization-based techniques to tackle the
uncertainties from net demand, heat demand, and electricity prices. It is shown that
our energy generation scheduling strategy performs well which can effectively
reduce the system expenditure. Based on the framework in the second case, we
further investigate the energy generation scheduling problem in microgrids
involving temporal-correlated renewable energy. Under such case, chance con-
straint approximations and robust optimization approaches based on a Chebyshev
inequality framework are developed to first transform and then solve the scheduling
problem. Experimental results show that temporal-correlation information of the
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renewable energy within a proper time span can effectively reduce the conserva-
tiveness of the problem solution.

Next, we consider charging scheduling of a large number of EVs at a charging
station which is equipped with renewable energy generation devices. Stimulated by
the fact that in practical scenario, EV arrival and renewable energy may not follow
any determinate process yet obtaining some statistical information of future EVs’
arrivals (departures) is possible, we propose a novel two-stage EV charging
mechanism to minimize the cost and efficiently utilize renewable energy. Several
uncertain quantities such as the arrival and departure times of the EVs, their
charging requirements, and available renewable energy are taken into account.
Finally in the last case, we develop a hybrid centralized–decentralized (HCD) EV
charging scheme which offers flexible charging choices for customers. In this
charging scheme, EV owners can either assign the charging tasks to system con-
troller or individually choose the charging profiles based on their own preferences.
In addition, the stochastic characteristics of EVs such as the arrival and departure
times and charging demands are taken into account.

The aforementioned microgrid management policies and EV charging schemes
can effectively reduce the operational cost of the systems. The proposed approaches
and obtained results may provide guidelines to improve the efficiency of the smart
grid operation and provide useful insights helping system operators develop rational
investment strategies.

xviii Abstract



Chapter 1
Introduction

In this chapter, we first present the background regarding the components of power
system, transformation from traditional grid to smart grid and smart grid’s unique
characteristics. Then, we specifically discuss two important components in smart
grid, namely microgrids (MGs) and electric vehicles (EVs). Intelligent control of
these two components under uncertainties is our objective and research interests.
Finally, the organization of this book is illustrated.

1.1 Background

1.1.1 Electrical Power Systems

Electrical power system is an interconnected assemblage of elements and networks
in order to generate, transfer, and consume the electrical energy. Power system com-
ponents are divided into three general categories: generators, transmission and dis-
tribution network, and consumers.

• Generators: A generator, which is the main component of each power plant,
converts different types of energy into electrical power. Most of the generators
burn fossil fuels such as natural gas, oil, and coal to produce electricity, and some
of them utilize nuclear energy, but the usage of renewable sources such as wind,
solar, geothermal heat, biomass, and hydroelectric energy has been increasing in
recent years as well.

• Transmission and distribution network: Transmission system carries electrical
energy from suppliers in generation side to electrical substations in demand side.
Using the transmission network, electricity is transferred at high voltage (110 kV
andhigher) in order to decrease the power loss during the transmission of the power.
Overhead power lines are usually utilized as transmission networks. Underground
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power lines are used just in the city or sensitive areas because they have higher
cost and operational restrictions. At final step, the distribution network receives
electrical power in substations from transmission lines. After reducing the level of
voltage (less than 50 kV) by substations, distribution system delivers electricity to
consumers in demand side.

• Consumers: The last component of power systems is consumers. Consumers or
loads receive electrical power from distribution network as end users. The size of
loads varies from small household appliances to huge industrial machinery.

1.1.2 Transition to a Smart Grid

The utility industry across theworld is trying to address numerous challenges, includ-
ing generation diversification, optimal deployment of expensive assets, demand
response, energy conservation, and reduction of the industry overall carbon foot-
print. It is evident that such critical issues cannot be addressed within the confines
of the existing electricity grid.

The existing electricity grid is unidirectional in nature. Its topology is shown in
Fig. 1.1. In this hierarchical configuration, a failure in any component is transferred
to other components in the chain and may result in poor power quality, such as
power cuts or even blackouts. This system converts only one-third of fuel energy
into electricity, without recovering the waste heat. Almost 8% of its output is lost
along its transmission lines, while 20% of its generation capacity exists to meet peak
demand, which happens only 5% of the time [1].

Fig. 1.1 Unidirectional power flow from generation side to demand side
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Furthermore, continuous increase in the electricity consumption around the
world places considerable stress on aging power system. It is projected that electricity
usage in the USA will increase from 3873 TWh in 2008 to 5021 TWh in 2035.
Summer peak demand in the USA is expected to increase by 40% from 2008 to 2030
as well. Environmental pollution and global warming due to the use of fossil fuels
for electricity generation and depletion of fossil fuel reserves have already raised
serious concerns about sustainable operation of power systems in the future.

It is widely believed that the present electric power system is undergoing a pro-
found change driven by these urgent needs, including the concerns on environmental
problems and the need for energy conservation. We need improved grid reliability
while dealing with an aging infrastructure.We also need better operational efficiency
and customer services. For this reason, the current electric power grid will need to be
transformed “smarter.” This transformation is to meet the environmental target, to
support distributed energy generation and storage, and to satisfy the urgent require-
ment for demand response (DR) and renewable energy integration.

The smart grid (SG), also called smart electrical/power grid, intelligent grid,
is expected to address the major shortcomings of the existing grid. Regarded as
the next-generation power grid, smart grid uses two-way flows of electricity and
information to create a widely distributed and automatic energy delivery network [2].
By utilizing modern information technologies, the smart grid is capable of delivering
power in more efficient ways and responding to wide-ranging conditions and events
[3]. Broadly stated, the smart grid could respond to events that occur anywhere in
the grid, such as power generation, transmission, distribution, and consumption, and
adopt the corresponding strategies. For instance, once a medium voltage transformer
failure event occurs in the distribution grid, the smart grid may automatically change
the power flow and recover the power delivery service. Let us consider another
example of demand profile shaping. Since lowering peak demand and smoothing
demand profile reduces overall plant and capital cost requirements, in the peak period
the electric utility can use real-time pricing to convince some users to reduce their
power demands, so that the total demand profile full of peaks can be shaped to a
nicely smoothed demand profile.

More specifically, the smart grid can be regarded as an electric system that uses
information, two-way, cyber-secure communication technologies, and computation
intelligence in an integrated fashion across electricity generation, transmission, sub-
station, distribution, and consumption to achieve a system that is clean, safe, secure,
reliable, resilient, efficient, and sustainable [4]. This description covers the entire
spectrum of the energy system from the generation to the end points of consumption
of the electricity. The ultimate smart grid is a vision. Given the vast landscape of
the smart grid research, different researchers may express different visions for smart
grid due to different focus and perspectives. An example of the general operation
architecture of smart grid is shown in Fig. 1.2, where the system consists of four parts,
namely power generation and control system, power transmission and control sys-
tem, residential distribution system, and communication network system.Table1.1
depicts the salient features of the smart grid in comparison with the existing grid.
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Fig. 1.2 An example of the operation framework of smart grid

Table 1.1 A brief comparison between the existing grid and the smart grid

Existing grid Smart grid

Electromechanical Digital

One-way communication Two-way communication

Centralized generation Distributed generation

Few sensors Sensors throughout

Manual monitoring Self-monitoring

Manual restoration Self-healing

Failures and blackouts Adaptive and islanding

Limited control Pervasive control

Few customer choices Many customer choices
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1.1.3 Microgrids (MGs) and Electric Vehicles (EVs)

To allow pervasive control and monitoring, the smart grid is emerging as a conver-
gence of information technology and communication technology with power system
engineering. In smart grid, two-way flows of electricity and information are sup-
ported, which lay the foundation for realizing various functions and management
objectives. The grid will keep becoming smarter with the development of new man-
agement applications and services that can leverage the technology and capability
upgrades enabled by this advanced infrastructure.

Within the framework of smart grid, many new components, which are difficult
and even infeasible to be integrated into conventional power grids, become possible,
easy, or even indispensable. Among them, two important components in the future
smart grid are microgrids (MGs) and electric vehicles (EVs).

• The growth and evolution of the smart grid is expected to come with the plug-
and-play integration of the basic structures called microgrids, which represents
the future paradigm of power systems. Specifically, microgrids are small-scale
low-voltage power supply networks designed to supply electrical load for a small
community such as a university campus, a commercial area, and a trading estate.
Microgrids can autonomously coordinate local generations and demands in a
dynamicmanner. It canoperate in either grid-connectedmodeor islandedmode [5].
There have beenworldwide deployments of pilotmicrogrids, e.g., inUS,Germany,
Greece, and Japan [6]. The power generators or microsources employed in micro-
grids are usually renewable or non-conventional distributed energy resources.
While incorporating such renewable resources shall bring great environmental ben-
efits, it imposes new challenges as well: Different from that in the traditional power
systems with conventional controllable electric generators, generation scheduling
in microgrids with fluctuant, climate-dependent renewable energy sources has to
cope with the non-trivial uncertainties. In addition, small-scale demands in mic-
gorids are also hard to predict and the real-time pricing in electricity market yields
another uncertainty dimension. Considering these challenges, intelligent energy
management of microgrids to achieve a robust and cost-effective goal still remains
an open issue.

• Electric vehicles (EVs) are gaining attentions as a cleaner alternative to fossil fuel
vehicles. To encourage the purchase of EVs, government of different countries
including Australia, Canada, China, Europe Union, and USA subsidize or finance
the customers and implement many actions such as tax exemption, transit and
parking facility constructions [7]. On the one hand, the higher penetration of EVs
not only makes the transportation sector less carbon-intensive, but also plays an
important role in improving the overall stability and efficiency of the power sys-
tem by playing an active role in the demand-side management (DSM), spinning
reserve services, and reducing the impact of uncertainties brought by renewable
energy integration. On the other hand, it will create significant new load on the
distribution network which brings up multiple technical issues, such as voltage
deviations, transformers and line saturations, increase of electrical losses, making
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the integration of EVs into the power grid very challenging. Therefore, integrating
massive EVs into the power grid requires the charging to be coordinated to realize
the actual benefits and eliminate the harmful impacts.

1.2 Research Focus

The objective of this book is to design sustainable, reliable, and cost-effective control
schemes to intelligently manage the operations of two important components of
future smart grid, i.e.,microgrids andEVs. Specifically, we aim to develop theoretical
frameworks and propose corresponding algorithms, to optimally schedule virtualized
resources or elements (e.g., conventional generators’ output, electricity imported,
EVs’ charging rates, and customers’ energy demand) in various combinations under
different uncertainties (e.g., renewable energy generation uncertainty, energy demand
uncertainty, EVs’ pattern uncertainty, electricity price uncertainty), so that the total
cost of operating the microgrid or the EV charging system can be minimized and the
corresponding systems maintain stabilized. In particular, we focus on the following
scenarios.

A. Energy Management in Microgrid

• We first consider the demand and supply management problem in microgrids con-
sidering the uncertainty of renewable energy generation.We focus on the control of
home appliances and distributed generators to achieve a cost-effective scheduling.

• Then, we consider the energy generation scheduling problem in a microgrid sys-
tem, in which uncertainties from combined heat and power (CHP) generators,
renewable energy resources, and electricity prices are taken into account. We aim
at effectively scheduling different energy sources to achieve a reliable and cost-
effective control.

• Based on the framework in the second scenario, we further investigate the energy
generation scheduling in amicrogrid system involving temporal-correlated renew-
able energy. Our motivation is to study how the temporal-correlation information
impacts the scheduling performance.

B. Electric Vehicle Charging

• Furthermore, we consider charging scheduling of a large number of EVs at a
charging station which is equipped with renewable energy generation devices.
The uncertainties from renewable energy, EVs’ arrival and departure times, and
EVs’ charging amount should be all taken into account.

• Finally, we investigate a hybrid centralized–decentralized EV charging scheme
which offers flexible charging choices for customers. Model predictive control-
based technique and game theory concepts are adopted to formulate the problem.
Uncertainties of EVs’ arrival and departure times and their energy demands should
be specifically considered.
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1.3 Organization of the Chapters

Figure1.3 shows the main content and organization of the book. Specifically, we can
divide the main content into two parts, including energy management in microgrids
and EVs’ charging control. The first half of the book (Chaps. 3 and 4) considers
demand and supply management and energy generation scheduling in microgrids.
The second half of the book develops two EV charging schemes under two different
scenarios.

In summary, the rest of this book is organized as follows:

• Chapter 2 introduces relatedworks on the energymanagement problems inmicro-
grids and EV charging strategies.

• Chapter 3 develops a demand and supply energymanagement schemewhich aims
at minimizing themonetary cost of operating themicrogrid system by strategically
determining the operationprocesses of homeappliances anddistributedgenerators.

• Chapter 4 formulates a costminimization problem to intelligently schedule energy
generations for microgrids equipped with unstable renewable sources and com-
bined heat and power (CHP) generators.We aim at effectively scheduling different
energy sources.

• Chapter 5 studies the energy generation scheduling problem inmicrogrids involv-
ing unstable temporal-correlated renewable energy.We focus on investigating how
the temporal-correlated information of renewable energy impacts the scheduling
performance of a microgrid.

• Chapter 6 investigates the cost-effective scheduling approach of EV charging
at a renewable energy-aided charging station. In addition, a fast charging rate

Fig. 1.3 Main content and organization of the book

http://dx.doi.org/10.1007/978-981-10-4250-8_3
http://dx.doi.org/10.1007/978-981-10-4250-8_4
http://dx.doi.org/10.1007/978-981-10-4250-8_2
http://dx.doi.org/10.1007/978-981-10-4250-8_3
http://dx.doi.org/10.1007/978-981-10-4250-8_4
http://dx.doi.org/10.1007/978-981-10-4250-8_5
http://dx.doi.org/10.1007/978-981-10-4250-8_6
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compression algorithm is developed which tremendously reduces the complexity
of the problem solving.

• Chapter 7 investigates the coordination of EVs’ charging at a charging park
considering the EV owners’ various charging preferences. A hybrid centralized–
decentralized (HCD) charging mechanism is designed to effectively schedule the
charging of EVs and stimulate the EV owners’ energy demands.

• Chapter 8 summarizes the book and discusses the further work for intelligent
control of microgrids and EVs.
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Chapter 2
Literature Review

In this chapter, we provide a literature review of intelligent microgrid management
and electric vehicle charging control with different decision objectives in different
scenarios.Wefirst give an overviewof the energymanagementmechanisms inmicro-
grids. We then review existing works concerning electric vehicle charging strategies.
The limitations of previous literature and the advantages of our method over theirs
are analyzed.

2.1 Energy Management in Microgrid

2.1.1 Supply and Demand Management

This problem can be viewed as containing two different parts. On the power supply
side, we need to build a hierarchical demand control scheme so as to achieve the
economic consumption scheduling and fulfill the requirements set by energy users;
on the power demand side, there is a need to properly model the randomness of
renewable energy generation, which may account for a significant portion of power
supply inmicrogrids.Note that load balance constraints act as the connection between
power consumption and generation.

Demand control techniques can be categorized into either price-based load con-
trol techniques, referred to as demand response methods, or direct load control,
referred to as demand-side management. Under price-based load control scheme,
users are encouraged to make energy consumption decisions individually according
to the price information. Demand-side management strategies, however, are usu-
ally applied directly by a central controller and require consumer subscription to an
economic incentive program. Some representative work has studied demand control
techniques in residential microgrids. A recent paper [1] develops a real-time pricing

© Springer Nature Singapore Pte Ltd. 2018
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schemewhich aims at reducing the peak-to-average load ratio (PAR) through demand
response management in smart grid systems. A two-stage optimization problem is
proposed and solved. Fathi et al. develop a stochastic model for scheduling in a local
area network with the objective of cost minimization and PARminimization [2]. The
work in [3] presents a linear programming formulation for minimizing the energy
cost through direct load control. In [4], a robust optimization approach is presented
to adjust the hourly load level of a given consumer in response to hourly electricity
prices. The uncertainties of renewable energies, however, are not considered in these
studies. As such, the control schemes may not be readily optimal and applicable to
the microgrid scenario where renewable energies constitute a significant portion of
power resources.

There also exist some studies considering renewable energy uncertainties when
scheduling the energy generation. Such work can be categorized into two groups:
the stochastic-based approaches and the robust optimization-based approaches. For
instance, Wang et al. define stochastic upper and lower supply curves to capture a
broad range of fluctuations in the power system, where energy generated by each
power source is modeled as stochastic arrivals in the queuing model [5]. In [6],
scenario-based stochastic operationmanagementmethods are developed to tackle the
fluctuant demands and renewable energies using the probability distribution function
(PDF) of each uncertain variable. Hidden Markov models have also been adopted
to characterize renewable energy generation [7–9]. Stimulated by observations that
in practical scenarios, obtaining an accurate distribution function could be computa-
tionally costly and renewable energy may not follow Markov process or any simple
distributions, robust optimization has recently received growing attention as a mod-
eling framework for optimization under uncertainty. Instead of assuming explicit
probability distribution, robust optimization confines the renewable generation in a
pre-defined uncertainty set containing theworst-case scenario. For example, Zhang et
al. consider a distributed economic dispatch problem formicrogridwith high penetra-
tion of renewable energies [10]. The intrinsically stochastic properties of renewable
energy sources are captured by a polyhedral uncertainty set with deterministic lower
and upper bounds. Similar methods for modeling renewable energies can also be
found in other recent work [11, 12]. The main topics concerning supply and demand
management in microgrids are illustrated in Fig. 2.1.

Different from the existing work, our approach in Chap. 3 jointly considers power
demand and supply management. Rather than assuming there is available knowledge
of the specific distribution of renewable energy generation, the proposed approach
describes the underlying uncertainty in a more detailed yet flexible manner. It allows
more information of renewable energy generation to be effectively incorporated into
the uncertainty model when such information is available.

2.1.2 Energy Generation Scheduling

Energy generation scheduling is the process of effectively scheduling different energy
sources (local generators, central grid, renewable energy generations, etc.) to meet

http://dx.doi.org/10.1007/978-981-10-4250-8_3
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Fig. 2.1 Main topics concerning supply and demand management in microgrids

the energy requests at a minimum cost subject to various physical constraints of
the power systems. It is a classic problem in electricity system which is composed
of two aspects, namely unit commitment (UC) [13] and economic dispatch (ED)
[14]. The UC problem involves determining the start-up and shut-down schedules
of generator units to be used to meet forecast demand over a short time in future. It
is a complex optimization problem with both integer and continuous variables and
has been shown to be NP-Complete in general. The basic UC methods reported in
the literature include priority listing [15], dynamic programming [16], Lagrangian
relaxation [17], integer programming [18, 19]. After UC problem has determined the
start-up and shut-down schedules, theEDproblem seeks to find the optimal allocation
of electric power outputs from various available generators without alternating their
on/off status. Readers can refer to comprehensive surveys on UC [20] and ED [21]
for more details.

Conventional energy generation scheduling is typically conducted 24h in advance
(day-ahead) and based on the fact that the system load can be forecast with reason-
ably good accuracy one day in advance. In microgrids, however, this is no longer
the case due to the fact that accurate predictions of small-scale electricity and heat
demands, renewable energy supplies, and electricity market prices are very diffi-
cult, as we stated earlier. Some recent literature has investigated energy generation
scheduling of microgrids [22–26]. In [22], a multi-objective optimization of eco-
nomic load dispatch for a microgrid is investigated using evolutionary computation.
The paper aims at minimizing the emission of the thermal generators and minimiz-
ing the total operating cost. In [23], a generalized formulation for intelligent energy
management of microgrid is proposed using artificial intelligence techniques jointly
with linear-programming-based multi-objective optimization. Similarly in [24], an
intelligent energy management system is proposed for optimal operation of a CHP-
based microgrid over a 24-h time interval. Authors of [25, 26] also propose different
energy management strategies based on different assumptions. The limitation of
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these results, however, is that they all assume that the energy demands and supplies
are known ahead of time, which is rarely the case in practice.

There also exist some studies considering demand and supply uncertainties when
scheduling the energy generation. These works can be categorized into two groups:
the stochastic optimization-based approaches [6, 27–31] and robust optimization-
based approaches [10, 32–35]. In [27], the author develops a solution method for
scheduling units of a power-generating system to produce electricity by taking into
consideration the stochastic nature of the hourly load and its correlation structure. In
[28], a stochastic model for the long-term solution of security-constrained unit com-
mitment is proposed. A more complicated scenario can be found in [6], in which an
efficient stochastic framework is developed to investigate the effect of uncertainty on
the operation management of microgrids. The proposed stochastic framework would
consider the uncertainties of load forecast error, wind turbine generation, photo-
voltaic generation, and market price concurrently. Paper [29] examines the impact of
the stochastic nature of wind on planning and dispatch of a system. Similarly, authors
of [30] compare stochastic and reserve methods and evaluate the benefits of a com-
bined approach for the efficient management of uncertainty in the unit commitment
problem. In [31], a two-stage stochastic objective function aiming at minimizing the
expected operational cost is implemented. The stochastic optimization approaches1

explicitly incorporate a probability distribution function of the uncertainty, and they
often rely on enumerating discrete scenarios of the uncertainty realizations. Such
approaches mainly have two practical limitations. First, it may be difficult and costly
to obtain an accurate probability distribution of uncertainty. Second, the solution
only provides probabilistic guarantees to the system reliability. To obtain enough
high guarantee requires a huge number of samples, which poses substantial compu-
tational challenges.

In recent literature, robust optimization has received growing attention as a mod-
eling framework for optimization under uncertainty. In [32], a two-stage adaptive
robust unit commitment model is proposed for the security-constrained unit com-
mitment problem in the presence of nodal net injection uncertainty. In [33], a robust
optimization approach is proposed to accommodate wind output uncertainty, with
the objective of providing a robust unit commitment schedule for the thermal gen-
erators in the day-ahead market. In [10], a power scheduling approach is proposed
based on robust optimization to address the intrinsically stochastic availability of
renewable energy sources. Papers [34, 35] also present robust optimization-based
approach for optimal microgrid management considering wind power or energy
consumption uncertainties. Instead of postulating explicit probability distribution,

1As an example, consider two-stage linear programs. Here the decision maker takes some action in
the first stage, after which a random event occurs affecting the outcome of the first-stage decision.
A recourse decision can then be made in the second stage that compensates for any bad effects that
might have been experienced as a result of the first-stage decision. The optimal policy from such a
model is a single first-stage policy and a collection of recourse decisions (a decision rule) defining
which second-stage action should be taken in response to each random outcome.
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Fig. 2.2 Main topics concerning energy generation scheduling in electrical grids

robust optimization confines the random variable in a pre-defined uncertainty set
containing the worst-case scenario. For instance, in [10–12, 32–35], uncertainties in
price prediction or renewable energy generation are presented as interval values with
deterministic lower and upper bounds, and the framework developed in [36, 37] is
incorporated to solve the problem. Without requiring explicit probability distribu-
tion, uncertainty can be characterizedmore flexibly. In addition, the conservativeness
of the solution can easily be controlled, and the problem is always computationally
tractable both practically and theoretically even for large-scale problems. The main
topics concerning energy generation scheduling in electrical grids are illustrated in
Fig. 2.2.

In our study (Chap. 4), robust optimization concept is also applied to tackle the
uncertainties in energy generation scheduling problem of microgrids. Different from
the previous robust optimization works [10–12, 32–35] which confine the uncer-
tainty within a lower and upper bounds, in our work, we propose a new uncertainty
model to characterize the renewable energy and user demand uncertainties, which
can provide more statistical details in describing the underlying uncertainty. More-
over, the proposed uncertainty model is also flexible enough that we can incorporate
more information into the uncertainty model when such information is available.
Whereas in Chap.5, we further focus on investigating how the temporal-correlation
information of the renewable energy impacts the scheduling performance bounds
based on the framework in Chap.4. To the best of our knowledge, we are the first to
do such evaluations.

http://dx.doi.org/10.1007/978-981-10-4250-8_4
http://dx.doi.org/10.1007/978-981-10-4250-8_5
http://dx.doi.org/10.1007/978-981-10-4250-8_4
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2.2 Electric Vehicle Charging Control

The existing EVs’ charging scheduling mechanisms can be roughly classified into
two categories: centralized charging strategies and decentralized charging strategies.
The main idea of centralized control is utilizing centralized infrastructure to collect
information from all EVs and centrally optimize EVs’ charging considering the grid
technical constraints. In such a strategy, the master controller makes decisions about
the rate and time of charging EVs to get the optimal solution. References [38–41]
develop various centralized charging strategies with different optimization objec-
tives, including saving system cost, minimizing CO2 emission, reducing power loss,
adjusting power frequency, and satisfying EV owners. Either optimization methods
or heuristic algorithms are adopted by researchers to solve such problems. In [42],
a hierarchical control scheme is proposed for EVs’ charging station loads in a dis-
tribution network while minimizing energy cost and abiding by substation supply
constraints. The scheduling is based on the forecasted load information. Reference
[43] proposes a dynamic programming (DP)-based optimization method of charging
an EV fleet modeled as a single, so-called aggregate battery. In these papers, the
dynamics of the EVs’ arriving/departing times and charging patterns are not consid-
ered. Recent literatures [44–47] all adopt receding horizon-control-based techniques
to tackle the uncertainties in the dynamic charging systems. References [48–50]
develop online algorithms for coordinating the EVs’ charging to save the system cost
and lessen the EVs’ harmful impacts on the distribution network. Jin et al. [51] study
EV charging scheduling problems from a customer’s perspective by jointly consid-
ering the aggregator’s revenue and customers’ demands and costs. Paper [52] studies
risk-aware day-ahead scheduling and real-time dispatch for plug-in EVs, aiming to
jointly optimize the EV charging cost and minimizing the risk of the load mismatch
between the forecast and the actual EV loads. Different from previous papers, both
static and dynamic charging scenarios are considered in [51, 52]. Though the cen-
tralized charging strategy is straightforward, the size of the centralized optimization
increases with the number of EVs. Accurate information collection from a large
number of EVs may also impose a challenge. Designing an effective centralized EV
charging strategy therefore remains as a difficult problem.

In contrast, the vehicle owners can directly control their EVs’ charging patterns
employing the decentralized charging strategies [53–68]. Gan et al. [53] propose
a decentralized algorithm to schedule EV charging to fill the electric load valley.
This charging control strategy iteratively solves an optimal control problem in which
the charging rate of each vehicle can vary continuously within its upper and lower
bounds. In each iteration, each EV updates its own charging profile according to the
control signal broadcast by the utility, and the utility company alters the control sig-
nal to guide their updates. In [54–60], various decentralized charging frameworks to
coordinate charging demand ofEVs are implemented based on game theory concepts.
In [61], a decentralized online valley filling algorithm for EV charging is proposed.
An optimal power flow (OPF) framework is adopted to model the network constraint
that arises from charging EVs at different locations. Similarly, decentralized EV
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charging schemes with valley filling objective can be found in [62, 63]. Considering
the selfish nature of people, authors of [64] define some weighting factors in the
objective function of EV charging management problem aiming at modeling users’
convenience in the presented optimization procedure. Xi et al. [65] study a decen-
tralized price-based EV charging control. They study a pricing scheme that conveys
price and quantity information to the load aggregator and compare it to a simpler
price-only scheme. In [66], a novel online coordination method for the charging of
plug-in EVs in smart distribution networks is proposed. An innovative parking lot
prediction unit is developed adopting M/G/∞ queuing model. In [67], the authors
formulate the EV charging problem as a convex optimization problem and then pro-
pose a decentralized water-filling-based algorithm to solve it. A receding horizon
approach (similar to [44–46]) is utilized to handle the random arrival of EVs and
the inaccuracy of the forecast non-EV load. Although the decentralized charging
strategy offers more ownership authority to EV owners, it may not ensure optimality
in the charging of EVs and causes security concerns of the power grid [38, 54, 68].

In the above-mentioned literature, the charging energy is supplied purely from
power grid, largely generated by conventional units. The main goal of introducing
EVs, namely reducing the pollution and greenhouse gas of transportation sector,
is consequently greatly abated, as the pollution is transferred from vehicle itself to
conventional energy units. Renewable energy should play a role as significantly as
possible to achieve the real environmental advantage. Renewable-energy-based EV
charging hence becomes a practical and critical problem.

Though the topic has not been well investigated in the literature, a few related
works can still be found dealing with the charging scheduling of EVs with renewable
energy integration. Moeini et al. [69] propose a charging management framework
considering multiple criteria including total loss of distribution networks, reschedul-
ing cost, and wind energy utilization. In [69], it is assumed that the energy demand
of EVs is known by the controller. In [70], a price-incentive model is utilized to
generate the management strategy to coordinate the charging of EVs and battery
swapping station (BSS). While in [71], the mathematical models are built for both
smart charging and V2G operation with distribution grid constraints. Authors in [70,
71] both assume that theEVs are static and always available to be charged/discharged.
In [72], a stochastic optimization algorithm is presented to coordinate charging of
electric-drive vehicles (EDVs) in order to maximize the utilization of renewable
energy in transportation. Due to the stochastic nature of transportation patterns, the
Monte Carlo simulation is applied to model uncertainties presented by numerous
scenarios. In [73], the charging problem is formulated as a stochastic semi-Markov
decision process with the objective of maximizing the energy utilization. In recent
work [74], the uncertainties of the EV arrival and renewable energy are described
as independent Markov processes. In [75, 76], the authors tackle the EV charging
scheduling problem adopting Lyapunov optimization techniques, such that statistics
of the underlying processes does not need to be known in prior. The main topics
concerning EV charging scheduling are illustrated in Fig. 2.3.
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Fig. 2.3 Main topics concerning EV charging scheduling

Compared with what has been proposed in the past, our EV charging mechanism
proposed in Chap.6 mainly shows the following several advantages: (1) Renew-
able energies can be effectively utilized by the EVs; (2) compared with the online
scheduling schemes, the proposed mechanism incorporates useful estimated infor-
mation day-ahead to help reduce the uncertainties in the real-time scheduling stage;
(3) compared with the offline scheduling schemes, our mechanism is fairly flexible
such that it can effectively respond to real-time incidents; (4) a fast computing algo-
rithm is designedwhich can easily tackle a large number of EVs; i.e., oneweakness of
the centralized charging strategies is overcome. Whereas in Chap. 7, compared with
previous studies, the proposed hybrid centralized–decentralized (HCD) EV charging
scheme offers flexible charging choices for customers, where EV owners can either
assign the charging tasks to system controller or individually choose the charging
profiles based on their own preferences. The stochastic characteristics of EVs such as
the arrival/departure times and charging demands are all taken into account. More-
over, the communication burden between EVs and the system controller is low, and
the proposed charging scheme is robust to poor communication channels.
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Chapter 3
Demand and Supply Management
in Microgrids

3.1 Introduction

Microgrids are expected to be more robust and cost-effective than the traditional
approach of centralized grids. However, a number of technical and regulatory issues
have to be resolved before the microgrid can become a commonplace. One problem
requiring due attention is the effective management of power supply and demand
loads, which amounts to matching the power generation and consumption profiles
[1, 2]. Specifically, the power generators ormicrosources employed inmicrogrids are
usually renewable or non-conventional distributed energy resources. While incorpo-
rating such renewable resources shall bring great environmental benefits, it imposes
new challenges as well: Different from that in the traditional power systems with
conventional controllable electric generators, generation scheduling in microgrids
with fluctuant, climate-dependent renewable energy sources has to cope with the
non-trivial uncertainties.

The microgrids may adopt hierarchical or decentralized demand control schemes
[3, 4]. The decentralized control schemes facilitate distributed control and manage-
ment of large complex systems. However, such control requires significant exper-
iments before implementation. Also, it may introduce new security challenges.
Hierarchical control is performed by a master controller which is responsible for
matching the generation and load. When the demand resources are controlled upon
the occurrence of disturbance, the strategy is often known as direct load control
[5, 6]. In a direct control program, based on an agreement between the central con-
troller and customers, the controller can remotely control the operations of certain
appliances in a household. This capability can be especially effective where there are
electric devices allowing flexible usage time and/or energy storage, such as electric
water heater (EWH) equipped with hot water storage tank and plug-in hybrid elec-
tric vehicles (PHEVs). The Kyotango microgrid project in Japan is an example of
hierarchically controlled microgrid [7].

This chapter tackles the basic problem faced by the microgrid system central
controller (MGCC), namely to achieve a good match between power demand and
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supply subject to uncertainties of renewable energy. On the power demand side, we
envision a scenario with real-time communication between the controller and energy
consumer premises. Specifically, in each time period, the operator controller receives
consumer power demands with different power-level requirements, durations, and
time elasticity levels. The MGCC needs to minimize the electricity generation cost
by optimally scheduling the operation of each appliance subject to the requirements
set by the users. Here, the generation fuel cost is modeled as a convex function of
instantaneous total power consumption.

On the power supply side, MGCC has to focus on effectively managing power
generation in order to match the user load and maintain system reliability. A novel
uncertainty model is proposed to capture the fluctuant nature of renewable energy.
Compared with previous robust optimization-based approaches which confine the
renewable energy within a lower bound and an upper bound, the proposed model
providesmore statistical details in describing the underlying uncertainty. Specifically,
an empirical distribution is extracted as a useful reference, which allows the actual
distribution of renewable energy to vary around it. To the best of our knowledge,
this is the first time that the distribution uncertainty model is adopted to depict the
indeterminacy property of renewable energy generation. The load balance constraint
is aptly approximated using the chance-constraint representation, which allows con-
venient tuning of the conservation level of the solution using a single parameter.
A tractable robust optimization approach is developed for transforming the chance
constraints into linear constraints and then solving the problem. It is shown that the
proposed power demand and supply management scheme greatly reduces the energy
cost for the microgrid system. Furthermore, some of the desirable properties of the
proposed scheme are investigated, which sheds light on policy making for the future
MGCC.

The remainder of this chapter is organized as follows. In Sect. 3.2, we show
the mathematical depiction of the power demand and supply management problem
and the uncertainty model of the renewable energy. Section3.3 presents the robust
approach for handling the load balance constraint. Simulation results and discussions
are presented in Sect. 3.4. Finally, this chapter is concluded in Sect. 3.5.

3.2 Formulation of the Microgrid Demand and Supply
Management Problem

In this section, a mathematical representation of the energy consumption and gen-
eration scheduling problem in an islanded microgrid with renewable energy is pro-
vided. An MGCC is responsible for scheduling the operations of the microgrid as
well as performing optimization for minimizing the electricity generation cost for
the microgrid system. The operations of the system and its mathematical depictions
are introduced from the energy user side and energy generation side, respectively.
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The uncertainty model for describing the randomness of renewable energy is then
demonstrated.

3.2.1 Energy Demand Side

Consider a group of energy consumers participating in this energy consumption
scheduling program. It is assumed that there are two-way communication infrastruc-
tures (e.g., a local area network (LAN)) between MGCC and energy consumers. Let
A denote the set of flexible appliances belonging to these consumers [8], which may
include PHEVs, dishwashers, cloth dryers, air conditioners. Time is divided into
discrete time slots with equal length.1 For each appliance a that is switched on, the
active power consumed during one unit of time slot is xa . An energy consumption
scheduling vector ya is also defined for each appliance a as follows:

ya = [y1a , ..., yHa ] (3.1)

where H ≥ 1 is the scheduling horizon indicating the number of time slots ahead that
are taken into account for decision-making in the energy consumption scheduling.
For each coming time slot h ∈ H = [1, 2, ..., H ], a binary variable yha = 0/1 denotes
the state of appliance a (on/off). Under such case, the actual energy consumption for
appliance a at time slot h can be expressed as xa · yha .

There is usually an upper limit on the total energy consumption in the microgrid
in each time slot. Denoting this limit as Emax , we have:

∑

a∈A
xa · yha ≤ Emax , ∀h ∈ H. (3.2)

Next, assume that for each appliance a ∈ A, the user indicates αa,βa ∈ H as the
beginning and end of a time interval in which the appliance a can be scheduled.
Obviously, αa < βa . For instance, the user may select αa = 8 PM and βa = 6 AM
(the next day) for his PHEV so that he could plug it in at night and get it fully charged
before going to work the next day. Denote the minimum number of time slots needed
for appliance a to finish its preset work as Ta . Given the predetermined parameters
αa,βa, Ta , the appliance scheduling is subject to the following constraints:

βa∑

h=αa

yha ≥ Ta, ∀a ∈ A, (3.3)

1The duration of one time slot is set as one hour in this chapter. Balancing periods of 5–30 minutes
are also adopted in many countries [9]. Note that the length of one time slot is enough for solving
the problem and the communication delay can be negligible as well.
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and

yha = 0, ∀a ∈ A, ∀h ∈ H \ [αa,βa]. (3.4)

Constraint (3.3) shows that the time length βa −αa needs to be large enough to allow
finishing the normal operation of appliance a. In addition, the energy user can choose
proper αa , βa , and Ta to indicate whether the operation of appliance a needs to be
started immediately (βa − αa = Ta) or can be deferred (βa − αa > Ta).

To reveal the ramping-down and ramping-up limits on load levels of each time
slot, we have:

∑

a∈A
xa · yha −

∑

a∈A
xa · yh+1

a ≤ r D, h ∈ [1, 2..., H − 1], (3.5)

∑

a∈A
xa · yh+1

a −
∑

a∈A
xa · yha ≤ rU , h ∈ [1, 2..., H − 1]. (3.6)

In this regard, it is assumed that each household participating in this energy con-
sumption scheduling program is equipped with a smart meter, which is capable of
detecting the electric power level of each appliance. The energy consumer announces
to the MGCC his needs by selecting parameters αa,βa , and Ta for each appliance
a ∈ A.

The above constraints (3.2)–(3.6) describe common characteristics of household
appliances. However, there exist some appliances of which the operation cannot be
interrupted. Such kind of loads are called as uninterruptible loads. Discussions on
how such loads may be handled are presented below.

Operation of Uninterruptible Loads: Some loads are interruptible, such as PHEV,
which means that it is possible to charge the battery for some time, stop charging
for some time, and then switch on the charging process again. Some other loads,
however, are not interruptible, e.g., microwave oven. Appliances generating such
loads, once started, have to be finished in one go. For each uninterruptible appliance
a ∈ A′, whereA′ represents the set of uninterruptible appliances, and each time slot
h, let zha denote an auxiliary binary variable such that zha � 1 if appliance a starts
operation at time slot h and zha � 0 otherwise. We have

βa−Ta+1∑

h=αa

zha = 1 (3.7)

and

zha = 0, ∀h ∈ H\[αa,βa − Ta + 1]. (3.8)
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Then, we relate start time vector zha with decision variable vector yha as follows:

yha ≥ zha, y
h+1
a ≥ zha, ..., y

h+Ta−1
a ≥ zha . (3.9)

From (3.9), if zha = 1, then yha = yh+1
a = ... = yh+Ta−1

a = 1.

3.2.2 Energy Supply Side

We now turn to the energy supply side to consider the load balance constraint in
the microgrid. The microgrid may be viewed as a graph consisting of three nodes
as illustrated in Fig. 3.1. The first node represents the renewable energy generation
sources such as wind turbines, solar panels, and fuel cells. At time slot h, denote the
total energy generated in this node as ξh , where ξh is a random variable of which
the probability density function may not be known. Node 2 in Fig. 3.1 represents the
load connected through the transmission line to node 1 and node 3. The load at time
h, denoted as lh , is dependent on the energy consumption from the user side which,
from the above analysis, can be expressed as:

lh =
∑

a∈A
xa · yha . (3.10)

Finally, the third node includes a group of controllable electricity generators,
which has a total amount of generation Ph

cg as commanded by MGCC. Controllable
generators in microgrid typically include gas turbines, microturbines, reciprocating
internal combustion engines with generators. These generators are powered by fossil
fuels and can be controlled to compensate the mismatch between load and renewable
power supply. A key requirement to the MGCC is to set the generation source power
such that the supply could meet the demand. This statement can be mathematically
described as

ξh + Ph
cg ≥ lh . (3.11)

Fig. 3.1 The microgrid’s graph
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3.2.3 Problem Formulation

The objective function of MGCC can be defined in terms of minimizing the energy
cost of the whole microgrid system. The optimal energy consumption scheduling
problem therefore can be formulated as follows:

min
H∑

h=1

Ch(Ph
cg)

s.t. (3.2) to (3.11) (3.12)

where Ch(·) is the cost function of electricity plant in themicrogrid, which is assumed
to be an increasing convex function. The convex property reflects the fact that each
additional unit of power needed to serve the demands is provided at a higher cost.
Example cases include the quadratic cost function [10, 11] and the piecewise linear
cost function [1, 12]. Without loss of generality, we consider quadratic cost function
Ch(Ph

cg) = ah Ph
cg

2 + bh Ph
cg + ch throughout this chapter, where ah ≥ 0, bh ≥ 0, and

ch ≥ 0 are known parameters for each time slot h. In practice, the coefficient of the
quadratic term is usually small. Therefore, the quadratic cost function can be reduced
to a linear cost function.As to the renewable energy cost, for typical renewable energy
(e.g., solar and wind energy), capital cost dominates. The operation and maintenance
costs are typically very low or even negligible [13, 14]. In this chapter, it is assumed
that the renewable energy generators such as solar panels and wind turbines have
already been installed, and the marginal cost of renewable energy can be neglected,
leading to its omission in the objective function [15]. The main difficulty in solving
problem (3.12) is the indeterminacy of renewable energy generation ξh existing in
constraint (3.11). Note that optimizing over the space defined by (3.11) amounts to
solving an optimization problem with potentially a large or even infinite number of
constraints. Obviously, this realization of uncertainty is intractable. Next, a practical
and flexible model will be developed to capture the uncertainty of ξh .

3.2.4 Probability Distribution Measure of Renewable Energy

It is generally difficult to characterize the renewable energy generation. In previous
optimization approaches, operations on the random variable ξh is cumbersome and
computationally intractable. Moreover, in practice, knowledge of the precise distri-
bution of ξh may not be available. Solutions based on assumed distributions hence
may not be justified. The variability of a random variable is usually measured using
its variance or second moments which, however, may not provide sufficient details in
describing the random variable. In this chapter, a reference distribution, rather than
moment statistics, is extracted from historical data that will capture the distribution
properties. Since renewable energy generation distribution is fluctuating over time



3.2 Formulation of the Microgrid Demand and Supply Management Problem 27

and hard to be described in a closed-form expression, an empirical distribution may
be adopted as a useful reference and allow the actual distribution to fluctuate around
it. For example, it may be assumed that the renewable energy generation distribu-
tion f0(ξh) is shifting around a known Gaussian distribution (or other distribution)
gh(ξ

h), which can be obtained based on long-term field measurements.
The discrepancy between f0(ξh) and its reference gh(ξ

h) can be described by a
probabilistic distance measure, for example, the Kullback–Leibler (KL) divergence
[16] which is a non-symmetric measure of the difference between two probability
distributions. Name these two distributions as f (ξh) and g(ξh), respectively. Gen-
erally, one of the distributions, say, f (ξh), represents the real distribution through
precise modeling, while the reference g(ξh) is a closed-form approximation based on
the theoretic assumptions and simplifications. The definition of the KL divergence
between two continuous distributions is given as follows:

DKL( f (ξ
h), g(ξh)) =

∫

ξh∈S
[ln f (ξh) − lng(ξh)] f (ξh)dξh, (3.13)

where S is the integral domain. When distributions f (ξh) and g(ξh) are close to
each other, the distance measure is close to zero. Adopting the KL divergence, the
distribution uncertainty set is defined as follows:

Ur (g(ξh), D0) = { f (ξh) | E f [ln f (ξh) − lng(ξh)] ≤ D0}, (3.14)

where D0 ≥ 0 represents a distance limit and is obtained from empirical data or
real-time measurement. It indicates energy generation’s variation level. If the energy
generation is very volatile, we have less confidence in the reference distribution and
thus may set a larger distance limit.

Considering the renewable energy generation distribution f0(ξh) with reference
distribution gh(ξ

h) and distance limit Dh , we have the following constraints for
renewable energy generation distribution f0(ξh):

E f0 [ln f0(ξh) − lngh(ξ
h)] ≤ Dh, (3.15)

E f0 [1] = 1. (3.16)

Given (3.15) and (3.16), the load balance constraint (3.11) can be transformed to
allow efficient solution of problem (3.12).

Remark Finding a proper reference distribution and obtaining an appropriate dis-
tance limit sometimes may be difficult, especially when still in lack of historical
data. However, there are good reasons to expect that in most cases, situation could
be improved quickly with continuous accumulation of historical records.
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3.3 Optimization Algorithms

In this section, the optimization algorithms for solving the prime problem (3.12)
are presented. Firstly, a robust approach for handling the load balance constraint is
proposed. Then, the prime problem is decomposed into a sub-problem and a main
problem to allow easier solution. Finally, the possible extensions of the proposed
algorithm are briefly discussed.

3.3.1 Robust Approach for the Load Balance Constraint

As shown in (3.11), the load balance constraint is ξh + Ph
cg ≥ lh . In practice, a

decision criterion is to set Ph
cg and l

h in such a way that people can be confident that
the load balance constraint is achieved. To achieve that, we may introduce a small
value ε to control the degree of conservatism and change the above expression into
a chance constraint:

P(ξh ≤ lh − Ph
cg) ≤ ε, (3.17)

where ε is the fault tolerance limit of the power grid, representing the acceptable
probability that the desirable power supply is not attained. Then, its robust expression
can be obtained:

max
f0(ξh)∈Ur (gh ,Dh)

P(ξh ≤ lh − Ph
cg) ≤ ε, (3.18)

which is equivalent to:

max
f0(ξh)∈Ur (gh ,Dh)

∫ lh−Ph
cg

0
f0(ξ

h)dξh ≤ ε. (3.19)

Define δh = lh − Ph
cg as the robust renewable energy usage (REU) decision, which

equals the amount of energy dispatched to renewable energy plants at time slot h. In
addition, an auxiliary function can be introduced as follows:

h(ξh, δh) =
{
1, ξh ≤ δh;
0, ξh > δh .

(3.20)

The left part of inequality (3.19) then can be formulated into an optimization
problem:
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max
f0(ξh)

∫ +∞

0
h(ξh, δh) · f0(ξ

h)dξh (3.21)

s.t. E f0 [ln f0(ξh) − lngh(ξ
h)] ≤ Dh

E f0 [1] = 1

Define Qh
f (δ

h) = max f0(ξh)∈Ur (gh ,Dh)

∫ +∞
0 h(ξh, δh) · f0(ξh)dξh as the worst-case

fault probability. We can then obtain a worst-case mappingMh
ws which maps robust

REU decision δh to Qh
f (δ

h):

Mh
wc : δh −→ Qh

f (δ
h). (3.22)

3.3.2 Sub-Problem: Determine the Robust REU Decision
Threshold

Since there exists a random variable ξh in the constraints, the energy generation and
consumption scheduling problem (3.12) cannot be solved directly. As aforemen-
tioned, problem (3.12) can be decomposed into a sub-problem and a main problem.
The goal of the sub-problem is to determine the robust REU decision threshold δh

∗

so that the load balance constraint can be transformed into a solvable form.

Proposition 3.1 Problem (3.21) is a convex optimization problem.

Proof Rewrite (3.21) as follows:

max
f0(ξh)

∫ +∞

0
h(ξh, δh) · f0(ξ

h)dξh (3.23)

s.t.
∫ +∞

0
[ln f0(ξh) − lngh(ξ

h)] f0(ξh)dξh ≤ Dh (3.24)

∫ +∞

0
f0(ξ

h)dξh = 1. (3.25)

It can be seen that the objective function (3.23) and equality constraint function
(3.25) are affine with respect to f0(ξh). Next, it is shown that the inequality constraint
function (3.24) is convex.

Lemma 3.1 If f : Rn −→ R is convex, then the perspective of f , which is denoted
as a function g : Rn+1 −→ R that

g(x, t) = t f (x/t), (3.26)
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with domain

dom g = {(x, t)|x/t ∈ dom f, t > 0} (3.27)

preserves convexity.

That is to say, if f is a convex function, so is its perspective function g. Similarly,
if f is concave, so is g. This can be proved in several ways, e.g., by direct verification
of the defining inequality or using epigraphs and the perspective mapping on Rn+1.
Readers can refer to [17] for more detailed discussions.

Consider the convex function f (x) = −ln x on R++. Its perspective is

g(x, t) = −t ln(x/t) = t ln(t/x) = t (ln t − ln x) (3.28)

and it is convex onR2++. The function g is called the relative entropy of t and x . Then,
we have that the KL divergence

∫
x∈S[ln f (x) − lng(x)] f (x)dx between distribution

f (x) and g(x) is convex in f (x) (and g(x) as well). In this case, it is claimed that
the inequality constraint (3.24) is convex in distribution f0(ξh).

Through Slater’s condition, strong duality holds for problem (3.23)–(3.25).
Adopting the Lagrangian method, the worst-case fault probability Qh

f (δ
h) can be

obtained as follows:

Qh
f (δ

h) = min
τ ,η

max
f0(ξh)

E f0

[
h(ξh, δh) − η − τ ln

f0(ξh)

gh(ξh)

]
+ τDh + η

where τ ≥ 0 and η are Lagrangian multipliers associated with constraints (3.24)–
(3.25), respectively. Let

P(δh, f0, τ , η) = E f0

[
h(ξh, δh) − η − τ ln

f0(ξh)

gh(ξh)

]
, (3.29)

the derivative of P(δh, f0, τ , η) with respect to f0 is as follows:

∂P
∂ f0

= lim
t→0

1

t

[
P(

f0(ξ
h) + t · g0(ξ

h)
) − P(

f0(ξ
h)

)]
(3.30)

=
∫ +∞

0

(
h(ξh, δh) − τ ln

f0(ξh)

gh(ξh)
− η − τ

)
g0(ξ

h)dξh .

Using the Karush–Kuhn–Tucker (KKT) optimality conditions, we have

h(ξh, δh) − τ ln
f0(ξh)

gh(ξh)
− η − τ = 0 (3.31)

∫ +∞

0
f0(ξ

h)dξh = 1 (3.32)
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E

[
ln

f0(ξh)

gh(ξh)

]
− Dh ≤ 0 (3.33)

τ ·
(
Dh − E

[
ln

f0(ξh)

gh(ξh)

])
= 0 (3.34)

τ ≥ 0 (3.35)

From (3.31), the optimal distribution function can be expressed as follows:

f ∗
0 (ξh) = gh(ξ

h) exp

(
h(ξh, δh) − η

τ
− 1

)
. (3.36)

The dual variables (τ , η) in (3.36) should be chosen properly such that conditions
(3.32)–(3.35) are satisfied. Specifically, the following results can be obtained:

Proposition 3.2 The choice of (τ , η) is a solution of the following nonlinear equa-
tions:

H1(τ , η) = R(δh)e−η/τ + S(δh)e(1−η)/τ − 1 = 0 (3.37)

H2(τ , η) = S(δh)e(1−η)/τ − η − τ (1 + Dh) = 0, (3.38)

where S(δh) = (1 − Gh(δ
h)) exp(−1), R(δh) = Gh(δ

h) exp(−1), and Gh(δ
h) =∫

ξh≥δh gh(ξ
h)dξh denotes the complementary cumulative distribution function of ref-

erence distribution gh(ξ
h).

Proof By substituting the optimal distribution f ∗
0 (ξh) back into (3.32) and f ∗

0 (ξh),
(3.31) into (3.34), we have

∫ +∞

0
gh(ξ

h) exp

(
h(ξh, δh) − η

τ
− 1

)
dξh = 1 (3.39)

∫ +∞

0

(
h(ξh, δh) − η − τ

)
gh(ξ

h) (3.40)

· exp
(
h(ξh, δh) − η

τ
− 1

)
dξh − Dh · τ = 0,

which are equivalent to:

exp
(
−1 − η

τ

)
·
∫ +∞

δh
g(ξh)dξh (3.41)

+ exp

(
−1 + 1 − η

τ

)
·
∫ δh

0
g(ξh)dξh − 1 = 0
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(1 − η − τ ) exp

(
−1 + 1 − η

τ

)
·
∫ δh

0
g(ξh)dξh (3.42)

+(−η − τ ) exp
(
−1 − η

τ

) ∫ ∞

ξh
g(ξh)dξh − τDh = 0.

Equation (3.37) can be easily obtained from (3.41) by introducing S(δh) and R(δh).
Through (3.41), (3.42) can be transformed into:

(1 − η − τ ) exp

(
−1 + 1 − η

τ

)
·
∫ δh

0
g(ξh)dξh +

(−η − τ )

[
1 − exp

(
−1 + 1 − η

τ

)
·
∫ δh

0
g(ξh)dξh

]
− τDh = 0.

Then

exp

(
−1 + 1 − η

τ

)
·
∫ δh

0
g(ξh)dξh − η − τ − τDh = 0, (3.43)

which is equivalent to (3.38). Hence, Proposition 3.2 is proved.

It is, however, still rather difficult to obtain an explicit solution from (3.37) and
(3.38). Hence, we propose the Newton iterations as detailed in Algorithm 3.1.

Once the solutions for (3.37)–(3.38) in Proposition 3.2 are determined, through
(3.31)–(3.34), the worst-case fault probability can be obtained as follows:

Qh
f (δ

h) = E f ∗
0
[h(ξh, δh)] = (1 + Dh)τ + η (3.44)

Our next step is then to find the robust REU decision threshold δh
∗
such that

Qh
f (δ

h∗
) = ε, which involves the calculation of inverse function of Qh

f (δ
h), and

it is not directly possible from (3.44). The following property of function Qh
f (δ

h),
however, may help us design such a search method.

Proposition 3.3 The worst-case fault probability Qh
f (δ

h) is non-decreasing with
respect to the REU decision δh.

The conclusion in Proposition 3.3 is straightforward since

dQh
f (δ

h)/dδh = dE f ∗
0
[h(ξh, δh)]/dδh = f ∗

0 (δh) ≥ 0.

Though direct solution is not available, the monotonicity of Qh
f (δ) enlightens a

bisection method to search for the solution for Qh
f (δ

h) = ε. The main idea is to
perform the search within an interval of [0, ρ], where ρ is an empirical constant such
that Qh

f (ρ) > ε.
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Details of the algorithm for searching the robust REU decision threshold are
presented in Algorithm 3.1. Note that, from the 3rd to the 11th lines of the algorithm,
Newton iteration is adopted to solve the equation in Proposition 3.2 and obtain
the worst-case probability with fixed robust REU decision. Then, the worst-case
probability at δh− and δh

−
is compared with the fault tolerant limit ε, respectively.

The comparison results help shrink the search region as shown in lines 12–14.

Algorithm 3.1 Search for robust REU decision threshold δh
∗

Input: Reference distribution gh(ξ
h);

Distance limit Dh ;
Search radius ρ;
Load balance fault tolerant limit ε;
Tolerance ε.

Output: Robust REU decision threshold such that Qh
f (δ

h∗
) = ε;

1: Begin
2: initialize δh− = 0, δh

− = ρ, and set H(τ , η) = [H1(τ , η), H2(τ , η)]T
3: while |δh− − δh

−| > ε

4: set δ̄h = δh−+δh
−

2 and initiate the time iteration k = 1
5: while H(τ , η) > ε
6: evaluate H(τ , η) and Jacobian matrix J(τ , η)

7: solve J(τ , η)�xk = −H(τ , η)

8: update τk+1 = [τk + �τk ]+, ηk+1 = ηk + �ηk
9: update Qh

f (δ̄
h) = (1 + Dh)τk+1 + ηk+1

10: set k = k + 1
11: end while
12: if

(
Qh

f (δ̄
h) − ε

)(
Qh

f (δ
h−

) − ε
)

< 0

13: then set δh− = δ̄h else set δh
− = δ̄h end if

14: if |Qh
f (δ̄

h) − ε| < ε break end if
15: end while
16: set δh

∗ = δ̄h

17: End

3.3.3 Main Problem: Determine the Optimal Energy
Consumption and Generation Scheduling

Once the robust REU decision threshold δh
∗
for the robust load balance constraint

(3.19) is obtained, the energy generation and consumption management problem
can be reformulated. Specifically, the following optimization problem can be tackled
rather than the original Eq. (3.12)
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min
H∑

h=1

Ch(Ph
cg)

s.t.
∑

a∈A
xa · yha − Ph

cg = δh
∗
, ∀h ∈ H,

and (3.2) to (3.10), (3.45)

where the optimization variables include the controllable energy generation variable
Ph
cg for all time slots h ∈ H and the energy consumption scheduling vector ya for

all appliances a ∈ A. The objective function aims at minimizing the overall energy
cost in microgrid over the whole time horizon.

It can be seen that all the constraints of (3.45) are linear and the objective func-
tion is quadratic. This problem is a mixed-integer quadratic programming problem.
Algorithms that can be adopted to tackle this kind of problem include the cutting
plane method and the branch and bound method. This problem can also be effec-
tively solved by some commercial optimization software including CPLEX, Mosek,
FortMP and Gurobi.

3.3.4 Extensions of the Proposed Algorithm: A Brief
Discussion

With trivial or, sometimes, non-trivial extensions, the proposed algorithm may be
applied to solve some other power demand and supply problems in microgrids. A
few possible extensions are briefly discussed as follows.

• The scenario that has been considered in this chapter assumes that the end users
control their power consumption in accordance with the guideline that MGCC
suggests. Under such case, the uncertainties from the end user side are expected to
be limited and can be handled by the system, since the control sequences obtained
by the proposed algorithm are of reasonably good robustness. For the cases where
uncertainties from the user side exceed the range of tolerance (e.g., many end users
do not follow the guideline for whatever reasons), the proposed uncertainty model
can be extended to include the uncertainty from the end user side by properly
integrating user-side and supply-side uncertainties. Once the integrated reference
distribution of the combined uncertainties is obtained, the proposed algorithm can
be used with virtually no changes. Detailed discussions on such cases, however,
are out of the scope of this book. For the even worse case where unexpected real-
time changes go beyond what have been modeled, a few classic approaches may
be adopted, e.g., by increasing the power output of energy generators, turning on
stand-by fast response generators, importing electricity from the power grid, or
shedding load if necessary, etc.

• The power demand and supply management framework discussed so far is an
offline approach suitable for planning the energy consumption and generation
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aheadof time.When real-time adjustment is of a big concernyet response time limit
is not too rigid, the proposed algorithm can be easily extended to handle such cases.
One option is to adopt the model predictive control (MPC) approach (also known
as “receding horizon approach”) [18, 19], of which the basic idea is to calculate
the optimal control sequences yet implement only the first step of them. In other
words, the power demand and supplymanagement problem is solved at time h = τ
(τ ∈ H denotes the current time index) for the remaining horizon [τ , τ +1, ..., H ],
yet only the solution for the current time slot τ is implemented. In the next time
slot, MGCC shall update the system information (e.g., the requirements of end
users and robust REU decision thresholds) and redo the calculations. For the cases
where response time has to be very short, however, different algorithms with lower
complexities and faster speed probably have to be developed, in order to support
real-time operation and small-step scheduling more efficiently. The designing of
such algorithms shall be considered in our future studies. Note that, for such cases,
enhancing the system fault tolerance against the noises of real-time data shall also
be considered.

• The problem formulation can also be easily extended to handle the case where
microgrids import electricity from outside power grid. Specifically, assuming that
the microgrid imports Ph

E units of electricity from the power grid, the problem
formulation (3.45) can be modified as:

min
H∑

h=1

ah · Ph
cg

2 + bh · Ph
cg + ch + dh · Ph

E (3.46)

s.t.
∑

a∈A
xa · yha − Ph

cg = δh
∗ + Ph

E , ∀h ∈ H,

and (3.2) to (3.10),

where dh is the electricity price of power grid at time slot h. The problem is
essentially still a mixed-integer quadratic programming problem which can be
solved by using the same algorithm, whereas if electricity price from the power
grid dh is time varying with non-trivial uncertainty, the problem will become more
complicated. A feasible option is to develop a worst-case robust optimization
approach for the problem. Readers may refer to [20–22] for more exhaustive
descriptions on dealing with bounded uncertainties in the coefficients of objective
function. Detailed discussions are not too difficult yet rather lengthy, and therefore
have to be left to a separate report.

3.4 Simulation Results and Discussions

In this section, simulation results are presented for assessing the performance of the
proposed power demand and supply management scheme and evaluating the effects
of different system parameters. Here, an assumption is made on top of Refs. [23, 24],
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where Gaussian random process has been adopted to describe the renewable energy
generation. Specifically, it is assumed that the reference distribution is a Gaussian
distribution gh(ξ

h) with mean mh and standard deviation σh . In addition, the para-
meters of the cost function in (3.45) for each time slot are set as ah > 0, bh = 0, and
ch = 0.

3.4.1 The Impacts of Distribution Uncertainty Set

We first set the fault tolerant limit ε = 10−3 and investigate the relations between
robust REU decision threshold δh

∗
and distance limit Dh for different values of mh

and σh . The results are plotted in Figs. 3.2 and 3.3. It is shown that the robust REU
decision threshold decreases with the increase in the distance limit. This observa-
tion is intuitive since a larger distance limit defines a larger distribution set which
allows the renewable energy output to fluctuate more intensively. Given the required
fault tolerant limit, REU decision threshold has to be set at a lower value so as to
have less reliance on renewable energy with stronger uncertainties and guarantee the
system reliability. Note that when Dh = 0, the renewable energy follows exactly
the reference distribution gh(ξ

h). In this special case, renewable energy generation
is a random variable with determinate distribution gh(ξ

h). While Dh > 0, our refer-
ence model considers a more general case which allows discrepancy between actual
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with distance limit Dh for different mh
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Fig. 3.3 Robust REU decision threshold δh
∗
with distance limit Dh for different σh

distribution and its reference. The discrepancy however is limited and confined by
a probabilistic distance measure. Simply put, the reference model allows the actual
renewable energy generation to follow a different distribution function from the ref-
erence distribution, but not be too disparate based on historical data or empirical
knowledge.

From Figs. 3.2 and 3.3, the following statement can also be proposed: When the
reference distribution is Gaussian, the robust REU decision threshold δh

∗
linearly

increases with the mean of reference distribution mh and linearly decreases with
the standard deviation of reference distribution σh . This statement can be explained
analytically as follows. Gh(δ

h) in (3.37)–(3.38) is first transformed into:

Gh(δ
h) =

∫

ξh≥δh
gh(ξ

h)dξh =
∫ +∞

δh−mh
σh

n(x)dx, (3.47)

where n(x) is the probability density function of the standard Gaussian distribution.
Since fault tolerant limit ε is of a relatively small value, we have that δh

∗
is less

than mh . As mh and σh vary, in order to preserve the same worst-case probability
Qh

f (δ
h∗

), the solutions (η, τ ) of the Eqs. (3.37)–(3.38) need to remain unchanged,

indicating that S(δh
∗
), R(δh

∗
) and G(δh

∗
) also need to be constants. In this regard:

δh
∗ − mh

σh
= C =⇒ δh

∗ = Cσh + mh,
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where C is a negative constant. Thus, δh
∗
linearly increases with mh and linearly

decreases with σh .

3.4.2 Effects of Fault Tolerant Limit ε

We set mh = 36 and σh = 2 and investigate how the robust REU decision threshold
varies when fault tolerance limit increases. Figure3.4 plots the mapping from fault
tolerant limit ε to robust REU decision threshold δh

∗
under different values of the

distance limit Dh . The figure indicates that a larger fault tolerant limit permits a
higher reliance on renewable energy (a larger robust REU decision threshold), which
is straightforward to understand. Also note that the worst-case fault probability is
an increasing function of the REU decision threshold. Thus, it is justified to adopt
the bisection method as presented in Algorithm 3.1 to search for the REU decision
threshold which satisfies the fault tolerant limit requirement. Note that in this figure,
the red triangle line is the special case where renewable energy follows reference
distribution exactly. It is also observed that robustREU threshold δh

∗
ismore sensitive

to ε when Dh increases.
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3.4.3 The Impacts of Uninterruptible Loads

For the experiment studied in this part, we set the power consumption scheduling
horizon |H| = 12 h. That is, theMGCC solves optimization problem (3.45) to decide
on the operations of each appliance for the next 12 hours. In this chapter, 30 household
appliances including electric cookers (EC), air conditioners (AC), electric water
heaters (EWH), cloth dryers (CD), dishwashers (DW), and plug-in hybrid electric
vehicles (PHEVs) are considered to study the optimal power consumption scheduling
with a mixed-integer quadratic programming approach. The detailed operation data
used in this chapter is modified based on the information from [25–29] and is shown
in Table3.1. Note that a user elasticity index is also introduced as follows:

γa = Ta
βa − αa + 1

to describe the scheduling flexibility of appliance a. Obviously, γa ∈ (0, 1], and
a larger γa implies a more inflexible arrangement property. The operation window
[αa,βa] of each appliance is chosen according to the preferences of different users.
In this chapter, the values of αa and βa are not enumerated one by one due to
limited space; instead, the ranges of γa for each kind of appliance are listed, which
is presented in the last column of Table3.1.

The mean mh and standard deviation σh of the reference distribution, together
with the distance limits for the next 12 time slots, are given in Table3.2. Based on
these data and adopting Algorithm 3.1, the robust REU threshold δh

∗
, representing

the amount of energy dispatched to renewable energy plants for each time slot, is
obtained. The results are demonstrated in the last column of Table3.2 and are used
to solve the main problem (3.45). Our experiments utilize MOSEK optimization
toolbox 6.0 on an Intel-P4 2.4-GHz personal computer. To investigate the impacts
of uninterruptible loads, the following cases are studied:

• Case 1: Only electric cookers are classified into the uninterruptible appliance set
A′, i.e., A′ = {EC}.

• Case 2:On top ofCase 1, air conditioners are added to the uninterruptible appliance
set A′, i.e., A′ = {EC,AC}.

Table 3.1 Operation data for
appliances in the microgrid

Type of Appliance Power Level (KW) Ta γa

EC 2 1 0.3–0.4

AC 3.5 10 0.9–1.0

EWH 4.5 3 0.5–0.7

CD 5 3 0.3–0.4

DW 0.85 2 0.3–0.4

PHEV 7.3 7 0.6–0.7
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Table 3.2 Parameters of
distribution uncertainty set
and corresponding robust
REU decision threshold

Time Slot mh σh Dh δh
∗

1 14.678 0.9571 0.0162 8.419

2 14.757 0.4853 0.0181 11.453

3 14.743 0.8002 0.0025 11.531

4 14.392 0.1418 0.0182 13.423

5 14.655 0.4217 0.0126 12.137

6 14.171 0.9157 0.0019 10.630

7 14.706 0.7922 0.0055 10.995

8 14.031 0.9594 0.0109 8.577

9 14.276 0.6557 0.0191 9.716

10 14.046 0.0357 0.0192 13.797

11 14.097 0.8491 0.0031 10.565

12 14.823 0.9339 0.0194 8.294

• Case 3: On top of Case 2, electric water heaters are added to the uninterruptible
appliance set A′, i.e., A′ = {EC,AC,EWH}.

• Case 4: On top of Case 3, cloth dryers are added to the uninterruptible appliance
set A′, i.e., A′ = {EC,AC,EWH,CD}.

• Case 5: On top of Case 4, dishwashers are added to the uninterruptible appliance
set A′, i.e., A′ = {EC,AC,EWH,CD,DW}.

• Case 6: On top of Case 5, PHEVs are added to the uninterruptible appliance set
A′, i.e., A′ = {EC,AC,EWH,CD,DW,PHEV}.
Figure3.5 demonstrates the energy cost for each case. Obviously, the energy cost

goes up when the uninterruptible appliance set A′ is scaled up. We compare the
costs of adjacent cases, and the difference between these costs is called cost gap. The
largest cost gap is shown between Case 5 and Case 6 due to PHEVs’ high electric
power consumption (P = 7.3 KW) and relatively considerable scheduling elasticity
(γa = 0.6–0.7).

3.4.4 The Price of User Elasticity

In this section, the effects of user elasticity on the energy cost of the microgrid
system are explored. First, it is assumed that all the appliances are uninterruptible.
Since the minimum running time of each appliance Ta is fixed, we extend or shrink
the operation window [αa,βa] to relax or tighten the user elasticity. Note that, at one
time, the operation window [αa,βa] of each appliance a will expand or shrink one
unit of time slot from both sides; i.e., the operation windowwill scale up or down two
time slots. If one side of the operation window cannot be extended due to the finite
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Fig. 3.5 The impacts of uninterruptible loads on the energy cost of the microgrid

length of time horizon, the operation window will only scale up on one side until
it covers the whole time horizon. The operation window of each appliance is kept
on extending or shrinking until all the operation windows cannot be changed. Then,
how energy cost changes when operation windows vary is demonstrated. Note that
the cases when operation windows are shrunk 6, 4, 2 time slots and extended 0, 2, 4
time slots are selected, respectively. The results are shown in Fig. 3.6. In this figure,
it is observed that when user elasticities are tightened, energy cost increases rapidly.
Such phenomenon can be interpreted that the user elasticity can make a significant
impact on the energy cost of the microgrid system. Compared with the effects of
interruptibility property, user elasticity has stronger influences on the expenditure
of the whole system. This result may give MGCC an inspiration that it is worthy
to provide more rewards to customers who agree to have more time flexibility than
those who allow interruptions to some appliances. Moreover, it is also shown that
when the operation windows are shrunk by 6 time slots, nearly all the appliances’
elasticity reaches 1. This approximates the case when all the appliances operate at
their desired time with no flexibility. Compared with this benchmark case, it can be
observed that the proposed power consumption management scheme can reduce the
energy cost significantly.
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Fig. 3.6 The impact of user elasticity on the energy cost of the microgrid

3.5 Conclusion

In this chapter, a fundamental problem of using a microgrid system central controller
to optimally schedule the demand and supply profiles so as to minimize the fuel con-
sumption costs during the whole time horizon is studied. We focus on a scenario
where the end-users control their power consumptions in accordance with the guide-
line that MGCC suggests. To tackle the randomness of renewable energy, a reference
distribution is introduced and then a distribution uncertainty set is defined to con-
fine the uncertainty. Such a novel model allows convenient handling of fluctuating
renewable generation as long as the renewable energy generation profile is not too
drastically different from the past observation or empirical knowledge. An optimiza-
tion formulation of the problem is proposed, and a two-stage algorithm approach is
developed, to firstly transform and then solve the problem. Numerical results indi-
cate that the proposed energy consumptionmanagement scheme can significantly cut
down energy expenses. Effects of a few factors, including the reference distribution,
the fault tolerant limit, the types and amount of uninterruptible loads, and the user
elasticity are carefully evaluated. Such evaluations, as we believe, help provide some
useful insights for the developments of more effective payback policies for the future
MGCC.
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Chapter 4
Energy Generation Scheduling in Microgrids

4.1 Introduction

Energy generation scheduling to achieve robust and economic power supply is an
essential component in microgrids. Two features of microgrids are the integration of
large-scale renewable sources and the use of combined heat and power (CHP) gener-
ators. Such features, however, impose significant difficulties on the design of intelli-
gent control strategies for microgrids. Traditional generation scheduling schemes are
typically based on the perfect prediction of future demands [1], which is hardly the
case in the microgrids since small-scale demands are hard to predict and renewable
energies are highly volatile. Furthermore, although the integration of CHP gener-
ators can bring great economic benefits to microgrids by simultaneous production
of useful thermal and power outputs, thereby increasing the overall efficiency and
bringing environmental benefits, it brings new uncertainties to the scheduling prob-
lem: The heat demand exhibits a new stochastic pattern and makes it more difficult
to predict the overall energy demands. On top of these, the real-time pricing in elec-
tricity market yields another uncertainty dimension to the scheduling problem. The
microgrid has to make a proper strategic decision on the amount of power to import
so as to cope with the financial risks brought by price uncertainty. Because of these
unique challenges, it remains an open issue to design robust and cost-effective energy
generation scheduling strategies for microgrids.

In this chapter, we consider a robust optimization-based energy generation
scheduling problem in a CHP-microgrid scenario considering the net demand (the
electricity demand not balanced by renewable energy) uncertainty, heat demand
uncertainty, and electricity price uncertainty. The main contributions of this chapter
can be briefly summarized as follows:

• We propose a new flexible uncertainty model to capture the fluctuant nature of the
net demand and heat demand. Specifically, we extract reference distributions as
useful references and allow the actual distributions of net demand and heat demand
to vary around their references. To the best of our knowledge, this is the first time

© Springer Nature Singapore Pte Ltd. 2018
R. Wang et al., Intelligent Microgrid Management and EV Control Under
Uncertainties in Smart Grid, https://doi.org/10.1007/978-981-10-4250-8_4
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that distribution uncertainty model is adopted to depict the indeterminacy nature
of net demand and heat demand.

• We develop chance-constraint approximation and robust optimization approaches
based on our uncertainty model to transform the constraints with random vari-
ables into typical linear constraints. An iterative algorithm is designed to solve the
problem.

• Price uncertainty is addressed by adopting robust optimization techniques, which
allows the degree of conservatism to be controlled easily. We finally transformed
the prime problem into a mixed-integer linear programming (MILP) problem,
which can be solved efficiently by commercial solvers.

• Thewide expandability of the proposedmethod is discussed, which shows its good
applicable merits.

• Numerical results based on real-world data evaluate the impacts of different para-
meters and provide some suggestions on designing investment policies for micro-
grid. It is also shown that the proposed energy generation scheduling strategy
achieves considerable cost savings, and the integration of CHP generators can
effectively reduce the system expenditure.

The remainder of this chapter is organized as follows. Section4.2 introduces
the particulars of the system operation. In Sect. 4.3, we introduce the mathematical
depiction of the energy generation scheduling problem and the uncertainty models of
net and heat demands. Section4.4 presents the chance-constraint approximation and
robust optimization approach for handling the demand balancing and price uncer-
tainty. In Sect. 4.5, several extensions of our proposed method are discussed. The
simulation results and discussions are shown in Sect. 4.6. The parameters and cali-
bration data are drawn from real-world statistics. Finally, we conclude this chapter
in Sect. 4.7.

4.2 System Model

We consider a microgrid comprising a number of homogeneous CHP generators,
a renewable energy generation system, and a local heating system. The microgrid
is operated on the grid-connected mode, such that it can purchase electricity from
the external utility grid when needed. The illustration of the microgrid system is
shown in Fig. 4.1. The main symbols are utilized in this chapter, and their meanings
are listed in Table4.1. The particulars of the system operation are explained in the
following subsections.
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Fig. 4.1 An illustration of a typical microgrid system

4.2.1 CHP Generators

We divide time into discrete time slots with equal length. Let A denote the set of
CHP generators. Further denote the start-up cost of turning on generator a as csa , the
sunk cost of maintaining the generator a in active mode for one time unit as cba , and
the marginal cost for generator a to produce one unit of electricity as cma . Adopting a
general generator model, we define energy generation scheduling vector xa and state
vector ya as follows:

xa = [x1a , x2a , . . . , xH
a ] and ya = [y1a , y2a , . . . , yHa ], (4.1)

where H ≥ 1 is the scheduling horizon which indicates the number of time slots
ahead that are taken into account for decision-making in the energy generation
scheduling. For each coming time slot h ∈ H = [1, 2, . . . , H ], let a binary vari-
able yha = 0/1 denote the state of generator a (on/off) and a variable xha denote the
dispatched load to generator a. For each generator a with the maximum electricity
output capacity Emax

a and the minimum stable generation Emin
a , we have

yha · Emin
a ≤ xha ≤ yha · Emax

a . (4.2)

The CHP generators can efficiently generate electricity and useful thermal energy
simultaneously. Let ηa denote the heat–electricity ratio for generator a, which means
that the CHP generator a can supply ηa units of heat for free when generating one unit
of electricity. Alternatively, heat can be supplied by local heating system at a price
of pg per unit. We use the variable Uh to denote the amount of heat generated from
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Table 4.1 Notations used in this Chapter4

Symbol Definition

A Set of CHP generators

a Index of CHP generator, a ∈ A
csa Start-up cost of turning on the generator a

cba Sunk cost of maintaining the generator a

cma Marginal cost for the generator a

H The set of time slots

xa Energy generation scheduling vector of CHP a

ya State vector of CHP a (binary)

Emin
a The minimum stable output capacity of CHP a

Emax
a The maximum electricity output capacity of CHP a

ηa Heat–electricity ratio for the generator a

pg Price of heating system for providing one unit of heat

Uh Amount of heat generated from heating system at time h

phs Electricity market price at time h

p̂hs Lower bound of the predicted electricity market price at time h

dh Uncertainty range of electricity market price at time h

V h Electricity obtained from outside power grid at time h

Lh Net demand at time h (random variable)

Sh Heat demand of the microgrid at time h (random variable)

f0(Lh) Electricity demand distribution at time h

gh(Lh) reference distribution of f0(Lh)

Dh Distance limit of f0(Lh)’s uncertainty set

Ur (·) Uncertainty set based on KL divergence

ε Fault tolerance limit of the power grid

local gas heaters at time slot h. Note that in this chapter, we omit the ramping-up and
ramping-down constraints of CHP generators since we consider fast-response CHP
generators such as gas turbines or microturbines, which have fast ramping rates and
are able to start from cold to full capacity in 1–10min [2].

4.2.2 Electricity from External Utility Grid

The microgrid can import electricity from outside electricity grid for the unbalanced
power demand in an on-demand manner. We assume that the electricity market price
at time h is phs , which is a bounded random variable that takes value in [ p̂hs , p̂hs +dh].
p̂hs denotes the lower bound of the predicted price. dh > 0 denotes that there exists
price uncertainty (financial risks) at time h while dh = 0 indicates the price at time
h is known in advance. The amount of electricity obtained from electricity grid at
time h is denoted as V h .
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4.2.3 Fluctuant Electricity and Heat Demand

Renewable energy generation can be regarded as a non-positive demand [1]. Denote
the net demand at time h as Lh , which is a random variable of which the probabil-
ity distribution may not be known. Similarly, the heat demand of the microgrid Sh

is also random. Accurate prediction of small-scale demands and renewable energy
generation is difficult to obtain due to limitedmanagement resources and their unpre-
dictable nature. We need a proper uncertainty model to capture the indeterminacy
properties of net and heat demands. A central requirement to the microgrid is to set
the generation source power such that the electricity and heat supplies could meet
the demands. This statement can be described as

V h +
∑

a∈A
xha ≥ Lh (4.3)

Uh +
∑

a∈A
ηa · xha ≥ Sh . (4.4)

4.3 Problem Formulation

In this section, a cost minimization problem formulation which incorporates CHP
generation constraints, uncertain net demand, uncertain heat demand, and time-
varying electricity prices is first given. The uncertainty model for describing the
randomness of net demand and heat demand is then demonstrated.

4.3.1 Cost Minimization Formulation

The microgrid aims to minimize the operation cost of the whole system over the
entire time horizon. The cost minimization formulation is defined as follows:

min
X,Y,V,U

H∑

h=1

{
pg ·Uh + phs · V h + (4.5)

∑

a∈A

[
cma · xha + cba · yha + csa · (yha − yh−1

a )+
]}

s.t. (4.2) (4.3) (4.4), yha ∈ {0, 1}
xha , V

h,Uh ∈ R
+
0 , h ∈ H, a ∈ A,

where X = [x1, x2, . . . , xa, . . .]T and Y = [y1, y2, . . . , ya, . . .]T are matrices of
decision vectors xa and ya for a ∈ A, respectively; V = [V 1, V 2, . . . , V h, . . .] and
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U = [U 1,U 2, . . . ,Uh, . . .] are vectors of decision variables V h and Uh for h ∈ H,
respectively; (·)+ is a functionwhere (x)+ = max(0, x). The cost function comprises
the cost of electricity from outside power grid, the cost of generating heat from local
heat generators, and the operation and start-up cost of CHP generators for the entire
time horizon H .

A difficulty in solving this problem lies in the correlation term (yha − yh−1
a )+.

However, if we introduce an auxiliary variable zha into the problem formulation, then
an equivalent expression can be obtained as:

min
X,Y,Z,V,U

H∑

h=1

{
pg ·Uh + phs · V h + (4.6)

∑

a∈A

[
cma · xha + cba · yha + csa · zha

]}

s.t. zha ≥ 0, zha ≥ yha − yh−1
a

(4.2) (4.3) (4.4), yha , z
h
a ∈ {0, 1}

xha , V
h,Uh ∈ R

+
0 , h ∈ H, a ∈ A,

where Z|A|×H is the matrix of auxiliary variable zha for a ∈ A, h ∈ H. Another
difficulty in solving problem (4.5) is the indeterminacy of net demand Lh and heat
demand Sh existing in constraints (4.3) and (4.4). Note that optimizing over the
space defined by (4.3) and (4.4) amounts to solving an optimization problem with
potentially large or even infinite number of constraints. Obviously, this realization
of uncertainties is intractable. Next, we develop a practical and flexible model to
capture the uncertainties of Lh and Sh .

4.3.2 Probability Distribution Measure of Uncertainties

It is generally difficult to characterize the net demand and heat demand. In our
optimization model, operations on the random variables Lh and Sh are cumbersome
and computationally intractable. Moreover, in practice, we may not know the precise
distributions of Lh and Sh . Solutions based on assumed distributions hence may not
be justified.Weusuallymeasure the variability of a randomvariable using its variance
or second moments which, however, may not provide sufficient details in describing
the random variables. In this chapter, we extract a reference distribution, rather than
moment statistics, from historical data that will capture the distribution properties.
Since net demand and heat demand distributions may fluctuate over time and hard
to be described in closed-form expressions, we will adopt empirical distributions
as useful references and allow the actual distributions to fluctuate around them.
For example, we may assume that the net demand distribution f0(Lh) is shifting
around a known distribution gh(Lh), which can be obtained based on predictions
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and long-term field measurements. In the following part of this chapter, we only
show the way to deal with random variable Lh . The method to tackle with random
variable Sh is exactly the same.

The discrepancy between f0(Lh) and its reference gh(Lh) can be described by a
probabilistic distance measure: the Kullback–Leibler (KL) divergence [3], which is
a non-symmetric measure of the difference between two probability distributions.
Name these two distributions as f (Lh) and g(Lh), respectively. Generally, one of the
distributions, say, f (Lh), represents the real distribution through precise modeling,
while the reference g(Lh) is a closed-form approximation based on the theoretical
assumptions and simplifications. The definition of the KL divergence between two
continuous distributions is given as follows:

DKL( f (L
h), g(Lh)) = (4.7)∫

Lh∈S
[ln f (Lh) − lng(Lh)] f (Lh)dLh,

where S is the integral domain. When distributions f (Lh) and g(Lh) are close to
each other, the distance measure is close to zero. Adopting the KL divergence, we
define the distribution uncertainty set as follows:

Ur (g(Lh), D0) = (4.8)

{ f (Lh) | E f [ln f (Lh) − lng(Lh)] ≤ D0},

where D0 > 0 represents a distance limit which may be obtained from empirical
data or real-time measurement. It indicates net demand’s variation level. If the net
demand is very volatile, we have less confidence on the reference distribution and
thus may set a larger distance limit.

Considering the electricity demand distribution f0(Lh) with reference distribu-
tion gh(Lh) and distance limit Dh , we have the following constraints for electricity
demand distribution f0(Lh):

E f0 [ln f0(Lh) − lngh(L
h)] ≤ Dh (4.9)

E f0 [1] = 1. (4.10)

With (4.9) and (4.10), we are now ready to transform the constraint (4.3) (similarly
for (4.4)) to allow efficient solution of the problem (4.6).

Note that in the proposed approach, renewable energy is treated as a non-positive
demand. We integrate user demand and renewable energy generation together and
denote it as the net demand. The combined uncertainties from both user and supply
sides are described by an uncertainty set as defined in (4.9) and (4.10).

The proposedmodel also allows some convenient extensions to include and handle
more components in the microgrid systems. For example, to incorporate the reserve
constraint into the proposedmodel,we only need to add the reserve constraints,which
are linear functions, into the formulation (4.5) and then add a quadratic reserve cost
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into the objective function [4]. The new problem could still be transformed into a
mixed-integer programming (MIP) problem, and the algorithm to be introduced in
the next section can still be applied with virtually no change.

Remark Proper estimations of reference distribution and distance limit may be
obtained by various methods (e.g., the Kernel Density Estimator [5, 6]), typically
involving analyzing a large amount of historical data. Detailed discussions on such
approaches, however, are beyond the scope of this book.

4.4 Optimization Algorithms

In this section, we present the optimization algorithms for solving problem (4.6).
We first develop a robust approach for handling constraints (4.3) and (4.4), and then
decompose (4.6) into a sub-problem and a main problem to allow easier solution.
Finally, a robust approach to tackle the financial risk inducted by time-varying elec-
tricity market clearing prices is demonstrated.

4.4.1 Robust Approach for Constraints (4.3) and (4.4)

As shown in (4.3), the net demand balance can be expressed as V h +∑
a∈A xha ≥ Lh .

In practice, a decision criterion is to properly set decision V h + ∑
a∈A xha to allow

good confidence that (4.3) is satisfied. To achieve that, we may introduce a small
value ε to control the degree of conservatism and change the above expression into
a chance constraint:

P

(
Lh ≥ V h +

∑

a∈A
xha

)
≤ ε (4.11)

where ε is the fault tolerance limit of the power grid, representing the acceptable
probability that the desirable power supply is not attained. Then, we can have this
expression that

max
f0(Lh)∈Ur (gh ,Dh)

P

(
Lh ≥ V h +

∑

a∈A
xha

)
≤ ε, (4.12)

which is equivalent to:

max
f0(Lh)∈Ur (gh ,Dh)

∫ +∞

V h+∑
a∈A xha

f0(L
h)dLh ≤ ε. (4.13)
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Defining Lh = V h + ∑
a∈A xha as the robust electricity supply (ES) decision, which

equals the amount of electricity generated and imported at time slot h, we introduce
an auxiliary function as follows:

h(Lh,Lh) =
{
0, Lh ≤ Lh;
1, Lh > Lh .

(4.14)

The left part of inequality (4.13) then canbe formulated into anoptimizationproblem:

max
f0(Lh)

∫ +∞

0
h(Lh,Lh) · f0(L

h)dLh (4.15)

s.t. E f0 [ln f0(Lh) − lngh(L
h)] ≤ Dh (4.16)

E f0 [1] = 1 (4.17)

Define Kh
f (Lh) = max f0(Lh)∈Ur (gh ,Dh)

∫ +∞
0 h(Lh,Lh) · f0(Lh)dLh as the worst-case

fault probability. We can then get a worst-case mappingMh
wc which maps the robust

ES decision Lh to Kh
f (Lh):

Mh
wc : Lh −→ Kh

f (Lh). (4.18)

Note that, the degree of conservatism depends on the values of fault tolerance
limit ε and the distance limit of uncertainty set Dh . When a less conservative control
sequence is desired, we shall set a higher fault tolerance limit and a more lenient
distance limit.A trade-off exists between the degree of conservation and the reliability
of the decision-making.

4.4.2 Sub-Problem: Determine the Robust ES Decision
Threshold

Since there exists a random variable Lh in the constraint, we cannot solve energy
generation scheduling problem (4.6) directly. As aforementioned, we decompose the
problem into a sub-problem and a main problem. The goal of the sub-problem is to
determine the robust ES decision threshold Lh∗

so that the constraint (4.3) can be
transformed into a solvable form.

Proposition 4.1 Problem (4.15)–(4.17) is a convex optimization problem.

The proof of this proposition is shown in Appendix-A. Through Proposition 4.1
and Slater’s condition, we can see that strong duality holds for problem (4.15)–(4.17).
Adopting the Lagrangian method, we can obtain the worst-case fault probability
Kh

f (Lh) as follows:
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Kh
f (Lh) = min

τ ,η
max
f0(Lh)

E f0

[
h(Lh,Lh)

−η − τ ln
f0(Lh)

gh(Lh)

]
+ τDh + η,

where τ ≥ 0 and η are Lagrangian multipliers associated with constraints (4.16) and
(4.17), respectively. Let

P(Lh, f0, τ , η) = E f0

[
h(Lh,Lh) − η − τ ln

f0(Lh)

gh(Lh)

]
,

the derivative of P(Lh, f0, τ , η) with respect to f0 can be derived as

∂P
∂ f0

= lim
t→0

1

t

[
P(

f0(L
h) + t · g0(L

h)
) − P(

f0(L
h)

)]

=
∫ +∞

0

(
h(Lh,Lh) − τ ln

f0(Lh)

gh(Lh)
− η − τ

)
g0(L

h)dLh .

Adopting the Karush–Kuhn–Tucker (KKT) optimality condition, we have

h(Lh,Lh) − τ ln
f0(Lh)

gh(Lh)
− η − τ = 0 (4.19)

∫ +∞

0
f0(L

h)dLh = 1 (4.20)

E

[
ln

f0(Lh)

gh(Lh)

]
− Dh ≤ 0 (4.21)

τ ·
(
Dh − E

[
ln

f0(Lh)

gh(Lh)

])
= 0 (4.22)

From (4.19), the optimal distribution function can be expressed as follows:

f ∗
0 (Lh) = gh(L

h) exp

(
h(Lh,Lh) − η

τ
− 1

)
. (4.23)

The dual variables (τ , η) in (4.23) should be chosen properly such that conditions
(4.20)–(4.22) are satisfied. Specifically, we have the following results.

Proposition 4.2 The choice of (τ , η) is a solution of the following nonlinear equa-
tions.

H1(τ , η) = R(Lh)e−η/τ + S(Lh)e(1−η)/τ − 1 = 0 (4.24)

H2(τ , η) = S(Lh)e(1−η)/τ − η − τ (1 + Dh) = 0, (4.25)
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where S(Lh) = (1 − Gh(Lh)) exp(−1), R(Lh) = Gh(Lh) exp(−1), and Gh(Lh) =∫
Lh≤Lh gh(Lh)dLh denote the cumulative distribution function of reference distribu-
tion gh(Lh).

The proof for Proposition 4.2 is straightforward by substituting (4.23) to (4.20)–
(4.22). However, it is still rather difficult to obtain an explicit solution from (4.24)
and (4.25). Hence, we propose the Newton iteration method as detailed in Algorithm
4.1.

Once we determine the solutions for (4.24) and (4.25) in Proposition 4.2, we can
obtain the worst-case fault probability from (4.19) and (4.22) as follows:

Kh
f (Lh) = E f ∗

0
[h(Lh,Lh)] = (1 + Dh)τ + η. (4.26)

Our next step is then tofind the robust ESdecision thresholdLh∗
such that Kh

f (Lh∗
) =

ε, which involves the calculation of inverse function of Kh
f (Lh) that is not directly

possible from (4.26). The following property of function Kh
f (Lh), however, may help

us design such a search method.

Proposition 4.3 The worst-case fault probability Kh
f (Lh) is non-decreasing with

respect to the robust ES decision Lh .
It is straightforward to derive Proposition 4.3 since dKh

f (Lh)/dLh =
dE f ∗

0
[h(Lh,Lh)]/dLh = f ∗

0 (Lh) ≥ 0. Though direct solution is not available, the
monotonicity of Kh

f (L) enlightens us a bisection method to search for the solution
for Kh

f (Lh) = ε. The main idea is to perform the search within an interval of [0, ρ],
where ρ is an empirical constant such that Kh

f (ρ) > ε.
Details of the algorithm for searching the robust ES decision threshold are pre-

sented in Algorithm 4.1. Note that, from the 3rd to the 11th lines of the algorithm,
we use Newton iteration to solve the equation in Proposition 4.2 and obtain the
worst-case probability with fixed robust ES decision. Then, we compare the worst-
case probability at Lh− and Lh−

with the fault tolerance limit ε, respectively. The
comparison results help shrink the search region as shown in lines 12–14.

Once the robust ES decision threshold Lh∗
for the constraint (4.3) is obtained

(and similarly, robust heat supply (HS) decision threshold Sh∗ for constraint (4.4) is
obtained), we can approximate (4.3) and (4.4) with the following two constraints:

V h +
∑

a∈A
xha ≥ Lh∗ (4.27)

Uh +
∑

a∈A
ηa · xha ≥ Sh∗. (4.28)
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Algorithm 4.1 Search for robust ES decision threshold Lh∗

Input: Reference distribution gh(Lh);
Distance limit Dh ; Search radius ρ;
Load balance fault tolerance limit ε; Tolerance ε.

Output: Robust ES decision threshold such that Kh
f (Lh∗

) = ε;
1: Begin
2: initialize Lh− = 0, Lh− = ρ, and set H(τ , η) = [H1(τ , η), H2(τ , η)]T
3: while |Lh− − Lh−| > ε

4: set L̄h = Lh−+Lh−
2 , initiate the time iteration k = 1

5: while H(τ , η) > ε
6: evaluate H(τ , η) and Jacobian matrix J(τ , η)

7: solve J(τ , η)�xk = −H(τ , η)

8: update τk+1 = [τk + �τk ]+, ηk+1 = ηk + �ηk
9: set k = k + 1
10: end while
11: update Kh

f (L̄h) = (1 + Dh)τk+1 + ηk+1

12: if
(
Kh

f (L̄h) − ε
)(

Kh
f (Lh−

) − ε
)

< 0

13: then set Lh− = L̄h else set Lh− = L̄h end if
14: if |Kh

f (L̄h) − ε| < ε break end if
15: end while
16: set Lh∗ = L̄h

17: End

4.4.3 Main Problem: Robust Approach for the Uncertain
Electricity Prices

There exist financial risks associatedwith real time electricity price uncertaintywhere
phs are unknown quantities. We adopt certain intervals at the α−confidence level for
prices phs ∈ [ p̂hs , p̂hs +dh], h ∈ H and formulate the well-defined robust model [7, 8].
Specifically, we tackle the following optimization problem rather than the original
formulation (4.6):

min
H∑

h=1

{
pg ·Uh + p̂hs · V h +

∑

a∈A

[
cma · xha (4.29)

+cba · yha + csa · zha
]}

+ φ · � +
∑

h∈J0

eh

s.t. φ + eh ≥ dh · kh, ∀h ∈ J0
−kh ≤ V h ≤ kh

eh ≥ 0, kh ≥ 0, φ ≥ 0, zha ≥ 0, ∀h ∈ J0
zha ≥ yha − yh−1

a

(4.2) (4.27) (4.28), yha , z
h
a ∈ {0, 1}
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xha , V
h,Uh, kh, eh, � ∈ R

+
0 , h ∈ H, a ∈ A.

Robust problem (4.29) is obtained using duality properties and exact linear equiv-
alences. It represents the worse case while considering that electricity prices can be
uncertain in at most � slots. J0 = {h| dh > 0} is the set of electricity price phs , h ∈ H
that are subject to parameter uncertainty. Variable eh is the dual variable of the initial
problem (4.6) used to consider the known bounds of electricity prices, while φ and
kh are auxiliary variables used to obtain equivalent linear expression. Readers can
refer to Appendix-B for detailed description of how to obtain this robust problem
from problem (4.6). � is a parameter that controls the level of robustness in the
objective function. This parameter is assumed to be integer and takes value in the set
{0, 1, 2, . . . , |J0|}, i.e., between zero and the number of unknown electricity prices.
In this case, when � = 0, the influence of price uncertainty in the objective function
is ignored, while� = |J0|, all possible price deviations are taken into account, which
is the most conservative case. In general, a higher value of � increases the level of
robustness at the expense of higher cost. Note that constraints (4.3) and (4.4) with
random variables in the initial formulation (4.6) are approximated and replaced by
(4.27) and (4.28) with no random variable. This problem is a mixed-integer linear
programming (MILP) problem, which can be effectively tackled by cutting plane
method, branch and bounded method, etc.

4.5 Possible Extensions of the Proposed Algorithm

With proper extensions, the proposed algorithm can be applied to handle some other
scenarios regarding the energy generation scheduling problem in microgrids. A few
possible extensions are briefly discussed as follows.

• The robust approach introduced in Sect. 4.4.1 also allows some convenient exten-
sions to include and handle more constraints concerning the net demand (and the
heat demand as well) uncertainty. For example, if the microgrid is confident that
the density function f0(Lh) is not far from its reference gh(Lh) for any net demand,
then the following l∞ norm constraint with respect to f0(Lh) and gh(Lh) should
be incorporated into problem (4.15)–(4.17):

∥∥ f0(L
h) − gh(L

h)
∥∥∞ = max

{∣∣ f0(Lh) − gh(L
h)

∣∣} ≤ dh, (4.30)

where dh is the maximum discrepancy between these two curve profiles. This
constraint assures that there is no “sharp sting” protruding too far over the reference
distribution curve. Since any norm is convex, the inequality constraint function
on the left side of (4.30) is convex. Therefore, involvement of such a constraint
will not influence the problem solving virtually. Algorithm 4.1 can still be adopted
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to obtain the robust ES/HS threshold with some minor revisions on Kh
f (Lh) and

H(τ , η), respectively.
• The microgrids’ energy generation scheduling framework discussed in Sects. 4.3
and 4.4 is an offline approach suitable for planning the energy generation ahead
of time. When real-time adjustment is of a big concern yet response time limit is
not too rigid, the proposed algorithm can be easily extended to handle such cases.
One option is to adopt the model predictive control (MPC) approach (also known
as “receding horizon approach”) [9, 10], of which the basic idea is to calculate the
optimal control sequences yet implement only the first step of them. In otherwords,
the energy scheduling problem is solved at time h = τ (τ ∈ H denotes the current
time index.) for the remaining horizon [τ , τ +1, . . . , H ], yet only the solution for
the current time slot τ is implemented. In the next time slot, the microgrid shall
update the system information (e.g., the status of CHP generators, the net/heat
demand prediction profiles, and robust ES/HS decision thresholds) and redo the
calculations. For the cases where response time has to be very short, however,
different algorithms with lower complexities and faster speed probably have to be
developed, in order to support real-time operation and small-step scheduling more
efficiently. The designing of such algorithms shall be considered in our future
studies. Note that, for such cases, enhancing the system fault tolerance against the
noises of real-time data shall also be considered.

• In this chapter, the discrepancy between net demand distribution f0(Lh) and its ref-
erence gh(Lh) is described by K–L divergence, which is a non-symmetric distance
measure of the difference between two probability distributions. We select K–L
divergence due to its wide applications. However, when the symmetric property
of the measurement is of a big concern and some other forms of divergence (e.g.,
Jeffreys divergence1 and squared Hellinger distance2) are adopted to characterize
the distance between net demand distribution and its reference distribution, our
method can be conveniently extended to tackle such cases. For instance, if the
uncertainty set regarding the net demand distribution is defined through Jeffreys
divergence, then the left part of inequality (4.13) can be reformulated into the
following optimization problem:

max
f0(Lh)

∫ +∞

0
h(Lh,Lh) · f0(L

h)dLh (4.31)

s.t.
∫ +∞

0

(
f0(L

h) − gh(L
h)

) (
ln f0(L

h) − lngh(L
h)

)
dLh ≤ Dh (4.32)

∫ +∞

0
f0(L

h)dLh = 1. (4.33)

1The Jeffreys divergence between distribution p(x) and q(x) is defined as DJ (p||q) = ∫
(p(x) −

q(x))(lnp(x) − lnq(x))dx .
2The squared Hellinger distance between distribution p(x) and q(x) is defined as H2(p||q) =
2

∫
(
√
p(x) − √

q(x))2dx .
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Note that, comparedwith (4.15)–(4.17), the only difference of this formulation lies
in the inequality constraint (4.32). However, considering the fact that the inequality
constraint function in (4.32) is still convex with respect to f0(Lh), (4.31)–(4.33)
still forms into a convex optimization problem. Therefore, the process to determine
the robust ES decision threshold remains unchanged essentially. In order to obtain
a new robust ES decision threshold, only Kh

f (Lh) and H(τ , η) in Algorithm 4.1
need to be updated, and the algorithm can be applied with virtually no change.
As for the squared Hellinger distance and many other forms of divergence, the
situations are basically the same.

Note that, adopting the similar main idea of transforming a chance constraint
with an unknown distribution into a solvable form, a different reformulation was
proposed in [11], which provides a nice, closed-form solution for a special case
where uncertainty set is defined through K–L divergence with no other constraint. In
[11], the conjugate duality concept is adopted, and two decision variables (z and z0)
are optimized separately. Typically, optimizing over decision variables separately
is not sufficient to reach global optimality. To ensure that such an approach can
find the global optimal solution, a stringent requirement is that the optimal value
of decision variable z∗

0 can be expressed by z in closed form explicitly, which is
suitable for K–L divergence case but is hard to be satisfied for other scenarios when
other forms of divergence are adopted. Through our testing, for the special case
(i.e., K–L divergence case), our method performs almost as good as the one in [11],
yet our method has wider applications. As discussed above, our proposed method
can conveniently handle uncertainty set defined by various measurement definitions,
incorporating some other convex constraints.

4.6 Simulation Results and Discussions

In this section, we present simulation results based on real-world traces for assessing
the performance of the proposed energy generation scheduling scheme and evaluate
the effects of different parameters.

4.6.1 Parameters and Settings

4.6.1.1 Net Demand and Heat Demand Trace

We obtain the electricity and gas demand statistics from [12]. We focus on a college
at Forecasting Climate Zone (FCZ) 09. The electricity within this zone is supplied
by the Southern California Edison company. This trace contains hourly electricity
demand and heat demand of the college in year 2002. We assume there are solar
panels in the microgrid system. The area of solar panel in this microgrid system is
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set to be 3.75× 104 m2. The energy conversion efficiency is 0.8. The solar radiation
intensity data is adopted from [13].We employ electricity demand, heat demand, and
solar power data of a typical month in winter (January) and estimate the distributions
of net demand (electricity demand minus solar energy) and heat demand in each
hour based on the samples using Kernel Density Estimation [14]. We find that in all
the time slots (hours), the distribution functions of net demand and heat demand are
close to be normal distribution. Thus, the reference distribution of net demand and
heat demand is set to be normal distribution.

4.6.1.2 CHP Generator Characteristics

The parameters of CHP generators are set based on the statistics in [15]. The max-
imum output of a CHP generator is Emax

a = 3.5MWh, and the minimum stable
output is Emin

a = 1.5MWh. The marginal cost for producing one unit of electric-
ity is cma = 0.051 $/KWh, which is obtained using the fuel price and the energy
conversion efficiency. The sunk cost for CHP generator keeping in active mode is
cba = 110 $/h, which includes the capital cost, operation cost, and maintenance cost.
We set the start-up cost to be csa = 560 $ and the heat–electricity ratio to be η = 2.065
[15]. Finally, it is assumed there are 8 CHP generators in thismicrogrid system unless
otherwise stated.

4.6.1.3 Electricity and Gas Prices

The electricity price trace is obtained from [16], and the gas price data is obtained
from [17]. In this chapter, we adopt the electricity market prices of central New York
Control Area (NYCA) on a typical day in January. We set p̂hs and dh equal to the
lower bound and variation range of electricity market price at hour h. In addition,
the natural gas price is set to be pg = 6.075 $/mmBTU.

4.6.2 Results and Discussions

4.6.2.1 Robust ES Threshold and Robust HS Threshold

We first solve the sub-problem and obtain the robust ES thresholdLh∗ and robust HS
thresholdSh∗ for solving themainproblem.The referencedistributions of net demand
and heat demand are normal and are estimated from sample data. The distance limit
of net demand and heat demand uncertainty sets is 10−1. The fault tolerance limit
of net demand supply is 10−2 while the fault tolerance limit of heat demand supply
is 10−1. Given reference distributions, distance limits, and fault tolerance limits, we
obtain Lh∗ and Sh∗ based on Algorithm 4.1. The results are shown in Table4.2.
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Table 4.2 Parameters of distribution uncertainty sets and corresponding ES and HS thresholds
(unit: MWh for electricity and mmBTU for heat. mh

E and σh
E are mean and standard deviation of

net demand reference distribution, respectively. mh
H and σh

H are mean and standard deviation of
heat demand reference distribution, respectively)

Time slot mh
E σh

E Lh∗ mh
H σh

H Sh∗

1 18.44 0.1059 18.98 63.88 8.3372 81.65

2 18.08 0.0965 18.57 51.96 5.0481 62.72

3 18.06 0.1005 18.58 43.63 1.7780 47.42

4 18.43 0.1246 19.07 46.62 1.8902 50.64

5 20.60 0.1456 21.34 50.39 1.7311 54.08

6 24.67 0.3807 26.61 80.35 7.5946 96.53

7 32.18 1.6355 40.52 124.93 1.4380 127.99

8 44.08 1.9485 53.50 283.69 8.0012 300.74

9 64.06 3.7971 78.77 285.91 6.4596 299.67

10 58.64 2.2394 60.54 254.82 7.5097 270.82

11 59.28 2.3199 58.88 219.39 10.7104 242.21

12 58.73 2.2730 56.27 195.55 10.1975 217.28

13 58.68 2.2121 54.18 183.64 11.0907 207.27

14 58.77 2.3731 56.66 177.02 11.6296 201.79

15 58.70 2.4761 61.38 171.43 12.0786 197.17

16 57.91 2.5475 64.65 167.69 12.1597 193.59

17 57.32 2.2805 67.77 166.47 12.6110 193.34

18 55.41 2.0156 65.69 169.83 14.0442 199.75

19 53.16 2.2647 64.72 176.10 14.0746 206.09

20 47.58 2.5553 60.62 184.35 14.3077 214.83

21 41.59 3.3157 58.51 190.49 15.3283 223.14

22 35.99 3.4268 53.47 198.32 15.0698 230.43

23 27.40 2.9277 42.34 111.43 10.2832 133.33

24 20.05 0.2638 21.40 78.80 7.7375 95.29

4.6.2.2 Potential Benefits of CHP Generators and Solar Panels

Once we obtain robust ES threshold Lh∗ and robust HS threshold Sh∗, we are ready
to adopt the robust optimization approach to study the energy generation scheduling
problem (4.29) with respect to real-time electricity market prices. Problem (4.29)
is solved using the data provided in the previous subsection. The problem is solved
using MOSEK optimization toolbox 7.0 on an Intel workstation with six processors
clocking at 3.2GHZ and 16GB of RAM.

We first try to investigate the potential savings with CHP generators and solar
panels. In particular, we conduct two sets of experiments. Both sets of experiments
have nearly the same default settings, except that solar panels in the microgrid are
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enabled in the first set, but not in the second one. We vary the number of CHP
generators installed in the microgrid from 0 to 10 and compute the total cost of the
system in a day. The results are shown in Fig. 4.2. It is observed that 8 CHP generators
with full capacity 28MW are sufficient to obtain nearly all the cost-saving benefits.
Thus, we may suggested that installed CHP generator capacity should be about half
of the peak demand (The peak demand of a day in January is around 60MW.). The
intuitive reason is that most of the time demands are much lower than the peaks.
This result can shed some light on making investment decisions in microgrids. Note
that the leftmost points in the two curves denote the case where microgrid only uses
external electricity and local heat generators (without CHP generators). System cost
in this case can be interpreted as a cost benchmark. The results show that CHP can
bring a saving of 6.2% (around $5700 per day) to the system. Finally, by comparing
the two curves in Fig. 4.2, we find that the one-day cost reduction achieved by solar
panels is about 6.05% (around $5200 per day).

4.6.2.3 Comparisons of Different Generation Scheduling Strategies

We compare three energy generation scheduling strategies: (1) the proposed robust
optimal strategy (ROS); (2) fixed choice strategy (FCS): making one fixed choice of
the generation level for entire duration for each generator. The system cost induced
by this strategy has been used as a benchmark in literature [18]; (3) deterministic
strategy (DS): A fixed number of CHP generators are switched on for the entire
time horizon. The microgrid has to properly schedule the output level of active CHP
generators, imported energy, and local heat generators to meet electricity and heat
demand. Specifically, we consider three schemeswith 0, 4, and 8CHP generator(s) in
active mode and termed as DS0, DS4, and DS8, respectively. We emphasize that the
microgrid always tries to find the optimal control sequences under any of these three
generation scheduling strategies, and the scheduling choices of the last two methods
for comparison (i.e., FCS and DS) are made in hindsight. In addition, all the three
scheduling strategies adopt the same parameter settings. The cost comparison results
are depicted in Fig. 4.3.

As we observe in Fig. 4.3, ROS can achieve a cost saving of 4.5% (about $3900
per day), 6.5% (about $5700 per day), 1.2% (about $1000 per day), and 5.0% (about
$4300 per day) compared with FCS, DS0, DS4, and DS8, respectively (equipped
with solar panels). Moreover, we note that merely utilizing external electricity (DS0)
or switching on all the local generators (DS8) are both not economical. Another
interesting observation is that the cost of DS8 is lower than that of DS0. This shows
that when all the CHP generators are switched on, although a significant amount of
electricity may be wasted in the off-peak time slots, the strategy nevertheless still
achieves better performance than the case where all electricity is imported from out-
side power grid. This justifies the economic potential of using local CHP generators.
Obviously, DS4 achieves more cost savings than DS0 and DS8. This is because that
when half of the CHP generators are turned on, a considerable proportion of the elec-
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tricity demand can be supplied by CHP generators, and the energy loss in off-peak
hours is relatively low than that in DS8.

4.6.2.4 The Impact of Robustness Level �

The sensitivities of the electricity cost with respect to robustness level � are depicted
in Fig. 4.4. We set |J0| = 24, i.e., price uncertainty may exist in all time slots of
the day. We are interested in finding an optimal solution which optimizes against all
scenarios under which a number� of the electricity price can vary in such a way as to
maximally influence the objective.We vary the value of� from 0 to 24 in formulation
(4.29) and obtain the optimal system cost. Remember that the value of � indicates
the number of worst-case prices during the 24 time slots. � = 0 corresponds to the
lowest robustness level while � = 24 corresponds to the highest robustness level.
Apparently, the system cost is an increasing function of�. The incremental cost when
the robustness level grows is the price for tackling the financial risks. We observe
that to fully overcome the financial risks (i.e., the most conservatism condition),
the microgrid has to pay additional 7.35% (about $5900 per day) expenditures.
However, the rise rate of the cost curve slows down when � increases. The reason is
that when � increases, the protection level for the robust solution increases, then the
probability that the robust solution is not favorable declines. Hence, it becomes less
costly to protect the microgrid against the financial risk. We also compare the costs
of two scenarios where solar panels are available and not available, respectively. The
difference between these costs is called cost gap. It is interesting to note that cost
gap only rises marginally when � increases. This shows that the uncertainty of solar
energy has little impacts on the financial risks of the system since the indeterminacy
of it has been alleviated by the proposed robust approach in the sub-problem.

4.6.2.5 The Impacts of Heat–Electricity Ratio η

Figure4.5 depicts the reduction in cost versus heat–electricity ratio η. It appears
that system cost decreases when η grows. The reason is that a larger η means CHP
generators can provide more heat for free. In this case, the microgrid can reduce the
reliance on local heat generators, which can be seen from Eq. (4.28). Meanwhile,
we observe that the decrease rate slows down when η increases. This observation is
intuitive since when η is large, nearly all the heat demands can be supplied by CHP
generators for free. Therefore, additional free heat cannot bring significant benefits
since the heat may be wasted.

4.6.2.6 System Cost Sensitivity to the Robust ES and HS Thresholds

In Fig. 4.6, we illustrate the relationship between the system cost and variation ofLh∗
and Sh∗. Specifically, we conduct two tests. In the first test, Sh∗ remains unchanged
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and we vary the value of Lh∗; while in the second one, Lh∗ remains constant and Sh∗
varies. It is observed that the system cost has a nearly linear relationship with Lh∗
and Sh∗, which is consistent with the theoretical formulation (4.29). From (4.29), we
see that the objective function have linear relationships with variables V h , Uh , and∑

a∈A xha , h ∈ H. However, due to the trade-off between using local CHP generators
and outside electricity when we vary Lh∗ and Sh∗, the relation between system cost
and Lh∗ (Sh∗ as well) is only approximately linear. Also note that system cost is
more sensitive to the variation of Lh∗. Since a large proportion of heat demands are
satisfied byCHPgenerators for free, the system expenditure on heating ismuch lower
than that on generating or buying electricity. Hence, the variation of heat demand
has lower impacts on the system cost.

4.7 Conclusions

In this chapter, we study the energy generation scheduling problem in a microgrid
scenario to minimize the cost and maintain system stability. To tackle the random-
ness of net demand and heat demand, we introduce reference distributions and then
define distribution uncertainty sets to confine the fluctuations. Such a model allows
convenient handling of volatile demands as long as the demand profiles are not too
intensely different from the predictions or empirical knowledge. The uncertainty
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in electricity price is addressed by bounded random variables. We develop chance
constraint approximations and robust optimization algorithms to firstly transform
and then solve the problem. It is further shown that our proposed method can be
conveniently extended to handle some other scenarios concerning the energy gener-
ation scheduling problem in microgrids. Numerical results based on real-world data
indicate the satisfactory efficiency of the proposed energy scheduling strategy and
the cost benefits of CHP generators. Moreover, the impacts of different parameters
have been carefully evaluated. Such evaluations, as we believe, shall provide useful
insights helping microgrid operators develop rational investment strategies.
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Chapter 5
Energy Generation Scheduling in Microgrids
Involving Temporal-Correlated Renewable
Energy

5.1 Introduction

In typical energy generation scheduling problems, in order to tackle with the time-
varying renewable energy and user demand, time is usually slotted and, in each time
slot, the renewable energy and user demand are considered as either determinis-
tic or random variables. Current literature rarely takes the correlation information
of renewable energy generation or user demand into account when they design the
energy generation scheduling schemes. Considering the fact that in practical sce-
nario, renewable energy generations or user demands are correlated over time [1,
2], we aim at evaluating how such information influences the performance of the
optimal energy generation scheduling strategy. If the correlation information can
improve the performance of the scheme to a large margin, then utilizing such infor-
mation is valuable. For this problem, mathematical tools such as the generalized
Gaussian inequality framework and the semidefinite programming (SDP) may help
us investigate and solve it.

In this chapter, by extending the previous work in Chap. 4, we further consider
a robust optimization-based energy generation scheduling problem in a microgrid
scenario considering the uncertainty of renewable energy and integration of energy
storages. Themain contributions of this chapter can be briefly summarized as follows:

• We adopt the moment statistic model to capture the fluctuant nature of the renew-
able energy. To the best of our knowledge, this is the first time thatmoment statistics
are utilized to model and analyze the properties of renewable energy generation. In
addition, moment statistics are easy to obtain in practical applications. Compared
with the distribution uncertainty model proposed in our previous work [3, 4], the
microgrid systems do not need to analyze a large amount of historical data by
adopting the moment statistic model.

• The energy generation scheduling problem is formulated into a cost minimization
problem with random variables in the constraints. We develop chance-constraint
approximations and robust optimization approaches to transform the problem into
a solvable form.

© Springer Nature Singapore Pte Ltd. 2018
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• To the best of our knowledge, this work is the first to investigate how the
temporal-correlation information of renewable energy impacts the energy gen-
eration scheduling in microgrids.

• Numerical results based on real-world data evaluate the impacts of different para-
meters and performance bounds of the proposed scheduling scheme. A novel
observation is that the temporal-correlation information of the renewable energy
can help to effectively reduce the conservativeness of the problem solving and
improve the performance of the proposed generation scheduling scheme.

The rest of this chapter is organized as follows. Section5.2 introduces the par-
ticulars of the system operation. In Sect. 5.3, we introduce the mathematical depic-
tion of the energy generation scheduling problem and the moment statistic model
of renewable energies. Section5.4 presents the chance-constraint approximation and
robust optimization approach for handling the demand balancing and renewable
energy uncertainties. The simulation results and discussions are shown in Sect. 5.5.
The parameters and calibration data are drawn from real-world statistics. Finally, we
conclude our this chapter in Sect. 5.6.

5.2 System Model

We consider a microgrid comprising a number of homogeneous conventional power
units, a renewable energy generation system (e.g., solar panels), and an energy storage
system. Currently, the microgrid is operated in the islanded mode. The illustration
of the microgrid system is shown in Fig. 5.1. The particulars of the system operation
are explained in the followings.

We divide time into discrete time slots with an equal length. Let A denote the
set of conventional power generators. Further denote the start-up cost for turning
on a generator a as csa , the sunk cost of maintaining the generator a in active mode
for one unit of time as cba , and the marginal cost for the generator a to produce one
unit of electricity as cma . Adopting a general power unit model, we define the energy
generation scheduling vector xa and state vector ya as follows:

xa = [x1a , x2a , . . . , xH
a ] and ya = [y1a , y2a , . . . , yHa ], (5.1)

where H ≥ 1 is the scheduling horizon which indicates the number of time slots
ahead that are taken into account for decision-making in the energy generation
scheduling. For each coming time slot h ∈ H = [1, 2, . . . , H ], we use a binary vari-
able yha = 0/1 to denote the state of generator a (off/on) and a variable xha to denote
the dispatched load to power unit a. For each unit a with a maximum power output
capacity Emax

a and a minimum stable output Emin
a , we have

yha · Emin
a ≤ xha ≤ yha · Emax

a . (5.2)
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Fig. 5.1 Architecture of a typical microgrid system

In ourmodel, we assume that the renewable energy harvested from solar panels
will be first saved into energy storage devices for future use; i.e., a solar-plus-battery
system is considered. The household can obtain electricity from energy storages in an
on-demand manner. Denote the household demand and energy obtained from energy
storages at time h as Dh and V h , respectively. A central requirement of the microgrid
is to set the energy source power such that the electricity could meet the demand at
all time slots. This statement can be described as

H∑

h=1

xha + V h = Dh, ∀h ∈ H. (5.3)

Let Bh denote the amount of energy stored in the battery. To ensure that there is
always backup power for emergency use, we require the battery to be maintained at
or above its initial level at the end of the scheduling horizon:

H∑

h=1

V h −
H∑

h=1

ξh ≤ 0, (5.4)
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where ξh ∈ [0, ξmax ] is the random variable representing the amount of energy har-
vested from renewable energy devices (e.g., solar panels), and ξmax denotes the
maximum generation capacity of the renewable energy generators. A battery’s level
can never go beyond the maximum capacity or drop below 0. Therefore, we have
that

0 ≤ Bh ≤ Bmax , (5.5)

where Bmax represents the maximum capacity of the energy storage devices. Last,
the battery level varies over time as

Bh+1 = Bh + ξh − V h . (5.6)

In this chapter, we assume that the energy storage device is of a large size.
Under such case, constraints (5.5) and (5.6) can be relaxed when scheduling the
energy generation in microgrids [5].

5.3 Problem Formulation

5.3.1 Cost Minimization Formulation

The microgrid aims to minimize the operation cost of the whole system over the
entire time horizon. The cost minimization formulation is defined as follows

min
X,Y,V

H∑

h=1

∑

a∈A

[
cma · xha + cba · yha + csa · (yha − yh−1

a )+
]

s.t. (5.2) − (5.4), yha ∈ {0, 1} (5.7)

xha , V
h ∈ R

+
0 , h ∈ H, a ∈ A,

whereX = [x1, x2, ..., xa, ...]T andY = [y1, y2, ..., ya, ...]T are matrices of decision
vectors xa and ya for a ∈ A, respectively; V = [V 1, V 2, ..., V h, ...] is the vector of
decision variables V h for h ∈ H; (·)+ is a functionwhere (x)+ = max(0, x). The cost
function comprises the operation and start-up costs of conventional power generators
for the entire time horizon H .

A difficulty in solving this problem lies in the correlation term (yha − yh−1
a )+.

By introducing an auxiliary variable zha into the problem formulation, an equivalent
expression can be obtained as
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min
X,Y,Z,V

H∑

h=1

∑

a∈A

[
cma · xha + cba · yha + csa · zha

]
(5.8)

s.t. zha ≥ 0, zha ≥ yha − yh−1
a

(5.2) − (5.4), yha , z
h
a ∈ {0, 1}

xha , V
h ∈ R

+
0 , h ∈ H, a ∈ A,

where Z|A|×H is the matrix of auxiliary variable zha for a ∈ A, h ∈ H. The objective
for introducing an auxiliary variable zha into problem formulation (5.7) is to have an
equivalent, solvable problemwithout the correlation term (yha − yh−1

a )+. Another dif-
ficulty in solving problem (5.7) is the indeterminacy of renewable energy generations
ξh existing in (5.4). Note that to optimize over the space defined by (5.4) amounts
to solving an optimization problem with potentially large or even infinite number of
constraints. Obviously, this realization of uncertainties is intractable. Next, we adopt
the moment statistic model to capture the uncertainties of ξh .

5.3.2 Moment Statistic Model

It is generally difficult to characterize the renewable energy generation. However,
we may measure the variability of renewable energy generation using its mean and
second-order moments, which are quite easy to obtain from field measurements.
Mathematically, we may assume that renewable energy generation ξ = [ξ1, ..., ξH ]
is confined by the following uncertainty set:

P(μ, S) =
{
Pξ ∈ P∞ :

∫

Rn

ξ · P(dξ) = μ, (5.9)
∫

Rn

ξξTP(dξ) = S
}
,

where μ ∈ R
H and S ∈ S

H , SH is the set of symmetric matrixes with dimension H ,
while P∞ represents the set of all distributions on R

H . Thus, P(μ, S) contains all
distributions that share the same mean μ and second-order moment matrix S. The
temporal-correlated information of renewable energy generation is included in S;
e.g., the two lines above and below the diagonal of S indicate the correlation within
one time slot. With this moment statistic model, we are now ready to transform the
constraint (5.4) to allow efficient solution of (5.8).
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5.4 Optimization Algorithm

5.4.1 Robust Approach for Constraint (5.4)

As shown in (5.4), the energy storage balance can be expressed as:
∑H

h=1 V
h −∑H

h=1 ξh ≤ 0. In practice, a decision criterion is to properly set decision vector V to
allowgood confidence that (5.4) is satisfied. To achieve that,wemay introduce a small
value ε to control the degree of conservativeness and change the above expression
into a chance constraint

P

(
H∑

h=1

ξh <

H∑

h=1

V h

)
≤ ε, (5.10)

where ε is the fault tolerance limit of the microgrid, representing the acceptable
probability that the desirable power supply is not attained. Then we can have the
robust expression that

sup
Pξ∈P(μ,S)

P

(
H∑

h=1

ξh <

H∑

h=1

V h

)
≤ ε. (5.11)

Theorem 1 Solving the left part of inequality (5.11) is equivalent to solving the
following semidefinite programming problem (SDP):

max
k∑

i=1

λi (5.12)

s.t. zi ∈ R
H , Zi ∈ S

H ,λi ∈ R ∀i = 1, 2, . . . , k

aT
i zi ≥ biλi ∀i = 1, 2, . . . , k
k∑

i=1

(
Zi zi
zTi λi

)
�

(
S μ

μT 1

)

(
Zi zi
zTi λi

)
� 0 ∀i = 1, 2, . . . , k

wherea1H×1 = −1 · [1, 1, . . . , 1]T ; [a2, . . . , aH+1] = −1 · IH ; [aH+2, . . . , a2H+1] =
IH , and IH is the identitymatrixwith dimension H;b1 = ∑H

h=1 V
h; [b2, . . . , bH+1] =

[0, . . . , 0]T ; [bH+2, . . . , b2H+1] = ξmax · [1, 1, . . . , 1]T , and obviously k = 2H + 1.

The SDP reformulation (5.12) can be obtained through the generalized Cheby-
shev inequality bounds. Detailed proof of Theorem 1 is lengthy and omitted here due
to limited space. Readers may refer to reference [6] for more detailed descriptions.
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Defining b1 = ∑H
h=1 V

h as the robust electricity acquisition (EA) decision, which is
equal to the amount of electricity obtained from energy storage systems during the
whole time horizon. Further define Kξ(b1) = sup

Pξ∈P(μ,S) P(
∑H

h=1 ξh <
∑H

h=1 V
h)

as theworst-case fault probability.We can then get aworst-casemappingMwc which
maps the robust EA decision b1 to Kξ(b1):

Mwc : b1 −→ Kξ(b1). (5.13)

5.4.2 Determine the Robust EA Decision Threshold

Since there exist random variables in the constraint (5.4), we cannot solve energy
generation scheduling problem (5.8) directly. Asmentioned before, we adopt chance-
constraint approximations and robust approaches to transform the constraint (5.4).
The goal of such transformation is to determine the maximum robust EA decision
b∗
1 (i.e., robust EA decision threshold) so that the constraint (5.4) can be transformed
into a solvable form.

Theorem 2 The worst-case fault probability Kξ(b1) is non-decreasing with respect
to the robust EA decision b1.

It is straightforward to derive Theorem2 since dKξ(b1)/db1 = fξ(b1) ≥ 0,
where fξ is the probability density function of random variable

∑H
h=1 ξh . Though

directly obtaining the robust decision threshold is not practical, the monotonicity of
Kξ(b1) enlightens us a bisection method to search for the solution for Kξ(b∗

1) = ε.
The main idea is to perform the search within an interval of [0, ρ], where ρ is an
empirical constant such that Kξ(ρ) > ε.

Details of the algorithm for searching the robust EA decision threshold are
presented in Algorithm 1. Note that, in the fifth line of the algorithm, we use interior
point method to solve the SDP problem in Theorem 1 and obtain the worst-case
probability with fixed robust EA decision. Then we compare the worst-case fault
probability at b1− and b1− with the fault tolerance limit ε, respectively. The compar-
ison results help shrink the search region as shown in lines 6–9.

Once the robust EA decision threshold b∗
1 for the constraint (5.4) is obtained,

we can approximate (5.4) with the following constraint:

H∑

h=1

V h = b∗
1 . (5.14)

Now we can tackle the following optimization problem rather than the original for-
mulation (5.8)
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Algorithm 5.1 Search for robust EA decision threshold b∗
1

Input: Mean vector μ; Second-order moment matrix S
Search radius ρ; Battery balance fault tolerant limit ε;
Computational accuracy tolerance ε.

Output: Robust EA decision threshold such that Kξ(b∗
1) = ε;

1: Begin
2: initialize b1− = 0, b1− = ρ
3: while |b1− − b1−| > ε

4: set b̄1 = b1−+b1−
2

5: compute Kξ(b̄1) by solving the SDP problem (5.12)

6: if
(
Kξ(b̄1) − ε

)(
Kξ(b1−) − ε

)
< 0

7: then set b1− = b̄1
8: else set b1− = b̄1 end if
9: if |Kξ(b̄1) − ε| < ε break end if
10: end while
11: set b1∗ = b̄1
12: End

min
X,Y,Z,V

H∑

h=1

∑

a∈A

[
cma · xha + cba · yha + csa · zha

]
(5.15)

s.t. zha ≥ 0, zha ≥ yha − yh−1
a

(5.2) (5.3) (5.14), yha , z
h
a ∈ {0, 1}

xha , V
h ∈ R

+
0 , h ∈ H, a ∈ A.

Note that constraint (5.4) with random variables in the initial formulation (5.8) is
approximated and replaced by (5.14) with no random variable. This problem is a
mixed-integer linear programming (MILP) problem, which can be solved effectively
by cutting plane method, branch and bounded method, etc.

5.5 Performance Evaluation and Analysis

In this section, we present numerical results based on real-world traces to assess
the performance bounds of the proposed energy generation scheduling scheme and
evaluate the effects of different parameters.

5.5.1 Parameters and Settings

We assume there are solar panels in the microgrid system. The area of solar panels
in this microgrid system is set to be 1.5 × 104 m2. The energy conversion efficiency
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is 0.4. The monthly clearness index time series are from 10 meteorological stations
in Singapore. These stations are designed to perform monitoring of solar radiation.
Silicon sensors are employed at each station, with some also having pyranometers
that measure diffuse and global irradiance. The silicon sensors are calibrated by the
Fraunhofer Institute for Solar Energy Systems to achieve an uncertainty under 2%.
The data used in this work is hourly data collected by these 10 stations in November
2012 [1, 7].

We obtain the electricity demand statistics from [8]. We focus on a college at
Forecasting Climate Zone (FCZ) 09. This trace contains hourly electricity demand
of the college in year 2002. The parameters of conventional power generators are set
based on the statistics in [9]. The maximum output of a power unit is Emax

a = 3.5
MWh, and the minimum stable output is Emin

a = 1.5 MWh. The marginal cost for
producing one unit of electricity is cma = 0.051 $/KWh, which is obtained using the
fuel price and the energy conversion efficiency. The sunk cost for a generator keeping
in active mode is cba = 110 $/h, which includes the operation cost, capital cost, and
maintenance cost. The start-up cost is set to be csa = 560 $. Finally, unless otherwise
stated, it is assumed there are 10 power units in this microgird system, the duration
of a time slot is 1 h, and the time horizon is 12 h. The MILP problem is solved using
Mosek optimization toolbox 7.0 on an Intel workstation with six processors clocking
at 3.2 GHZ and 16 GB of RAM.

5.5.2 Results and Discussion

We first investigate the statistical properties of solar energy generation in the time
domain. In particular, we adopt solar irradiance data for the first two weeks in
November 2012. Nonlinear least square method is used to obtain the fitted line. The
results concerning the temporal coherence of solar energy generation with respect
to time lag is depicted in Fig. 5.2. Note that the colored dots show the coherence
of solar energy generations in 10 stations, and the blue curve is the fitted function
rtc = 1 − 0.1644τ + 0.0.0038τ 2, where τ is the time lag and rtc is the coherence.
As we observe in the figure, solar energy generations show near-linear correlation in
the time domain, and such observations help us analyze the performance bounds of
the proposed energy generation scheduling scheme in the following contents.

Next, we investigate how the robust EA decision threshold b∗
1 varies when the

fault tolerant limit ε increases. Figure5.3 plots the mapping from fault tolerance limit
ε to robust EA decision threshold b∗

1. It is shown from the figure that the robust EA
decision threshold b∗

1 grows when ε increases. In other words, a larger fault tolerant
limit ε permits a higher reliance on the solar energy (a larger robust EA decision
threshold), which is straightforward to understand. Note that the robust EA decision
threshold function is monotone; therefore, it is justified to adopt the bisectionmethod
as presented in Algorithm5.1 to search for the robust EA decision threshold. We also
observe that the incremental rate of the robust EA decision threshold slows down
when ε increases.



78 5 Energy Generation Scheduling In Microgrids Involving …

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time Lag τ

T
em

p
or
al
-C

oh
er
en

ce
r t

c
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Fig. 5.4 Cost bounds of the microgrid system with respect to the fault tolerant limit ε

In Fig. 5.4, we vary the values of fault tolerance limit ε and study how system
cost bound changes with respect to ε. Note that the cost bound represents the oper-
ation cost of the microgrid system under the worst-case condition of solar energy
generation. Apparently, the cost bound decreases when ε increases. The reason is
that when ε increases, the protection level for the robust solution will decrease, and
the scheduling strategies of the microgrid hence become less conservative, leading
to the decline of the operation cost. Also note that the cost bound is less sensitive
when the fault tolerance limit ε is at a higher level.

In Fig. 5.5, we evaluate how the fault probability Kξ(b1) varies with respect
to the amount of temporal-correlation information utilized under different values of
robust EA decision b1. Specifically, we conduct a set of experiments. In the first step,
we only utilize the mean and variance information of renewable energy generation
to define μ vector and S matrix; i.e., the elements in S is set to 0 except for those
on the diagonal; at the second step, we add the temporal-correlation information
within 1-h time lag, i.e., only the diagonal, and the lines above and below it have
values in the second-order moment matrix S. Then, at each time step n, n ≥ 2, the
temporal-correlation information within time lag 0 and time lag n − 1 is utilized for
the decision-making. We repeat such process until time step 12. At each step of the
experiment, we compute the fault probability under different values of robust EA



80 5 Energy Generation Scheduling In Microgrids Involving …

2 4 6 8 10 12
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Amount of temporal-correlation information utilized

Fa
ul
t
pr
ob

ab
ili
ty

K
ξ
(b

1)
b1 = 286.46
b1 = 343.75
b1 = 401.04
b1 = 458.33

Fig. 5.5 Fault probability Kξ(b1) with respect to the amount of temporal-correlation information
utilized under different value of robust EA decision b1

decision and plot Fig. 5.5. As depicted in this figure, when we expand the time lag
window to utilize more temporal-correlation information, the fault probability will
decrease first and then increase. This result indicates that the temporal-correlation
information of solar energy generation within a proper time span is of benefit for
reducing the conservativeness of the robust solution,whereas the correlation informa-
tion outside a time lag (8 h) window is useless, even harmful for the decision-making.
Thus, we may suggest that the microgrid should only utilize the temporal-correlation
information within 8 h for developing the scheduling strategies.

5.6 Conclusion

In this chapter, we investigated the energy generation scheduling problem in amicro-
grid system equipped with renewable energy resources and energy storage devices.
The aim of the scheduling is to minimize the system operation cost while main-
taining the system reliability. To cope with the indeterminacy nature of renewable
energy generation, we adopted a moment statistic model to confine the fluctuations.
Such model allows convenient handling of volatile renewable energies as long as the
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generations are not too intensely different from the predictions or empirical knowl-
edge. Chance-constraint approximations and robust optimization approaches based
on generalized Chebyshev bounds are developed to first transform and then solve
the scheduling problem. Numerical results based on real-world statistics evaluate the
cost bounds of the proposed scheduling scheme. The impact of different parameters
has been carefully studied. Moreover, we investigated the temporal-correlation prop-
erties of the solar energy. It is shown that the temporal-correlation information of
solar energy generation within a proper time lag is beneficial for reducing the conser-
vativeness of the robust solution, whereas the correlation information of longer time
span may be harmful for the decision-making. These results, as we believe, shall
provide useful insights helping the microgrid system operators to develop rational
scheduling strategies.
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Chapter 6
Massive Electric Vehicle Charging Involving
Renewable Energy

6.1 Introduction

In the world today, fossil fuels are the dominant energy sources for both transporta-
tion sector and electricity generation industry. Statistics show that transportation and
electricity generation account for over 60% of global primary energy demands [1].
The future solution for the fossil fuels scarcity, as well as the growing environmental
problems associated with their wide usage, will most likely involve an extensive use
of electric vehicles (EVs) and adopting renewable energy sources for electric energy
production [2]. Under such cases, renewable energy supplied EV charging is becom-
ing a popular approach for greener and more efficient energy usage. Since EVs have
controllable charging rate, they can be considered as flexible loads in grid system
which can benefit the grid system with demand response or load following. Accord-
ingly, charging scheduling of EVs in the presence of renewable energy becomes a
practical and important research problem.

A number of technical and regulatory issues, however, have to be resolved before
renewable energy supplied EV charging becomes a commonplace. The arrival of
EVs and their required energy amount may appear to be random, which increases
the demand-side uncertainties. In addition, while renewable energy offers a cheaper
and cleaner energy supply, it imposes great challenges to the stability and safety
of the charging system because of its high inter-temporal variation and limited pre-
dictability. Therefore, the stochastic characteristics of bothEVsand renewable energy
sources should be carefully considered. Standby generators, back-up energy suppli-
ers, or bulk energy storage systems may be necessary to alleviate the unbalancing
issue caused by renewable energy fluctuation, which results in extra cost. In order to
minimize the cost for obtaining extra energy and to increase energy efficiency, a flexi-
ble and efficient EV charging mechanism has to be properly designed to dynamically
coordinate the renewable energy generation and energy demands of EVs.

In this chapter, we consider charging scheduling of a large number of EVs at a
charging station which is equipped with renewable energy generation devices. The
charging station can also obtain energy through controllable generators or buying
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energy from outside power grid. Stimulated by the fact that in practical scenario, EV
arrival and renewable energy may not follow any determinate process yet obtaining
some statistical information of future EVs’ arrivals (departures) is possible, we pro-
pose a novel two-stage EV charging mechanism to reduce the cost and efficiently
utilize renewable energy. Several uncertain quantities such as the arrival and depar-
ture time of the EVs, their charging requirements and available renewable energies
are all taken into account. In addition, the mechanism allows more information of
EV arrivals (departures) and renewable energy generation to be effectively incorpo-
rated into the charging mechanism when such information is available. The main
contributions of this chapter can be briefly summarized as follows:

• A day-ahead cost minimization problem is formulated and solved based on the
available prediction of future renewable energy generation and EVs’ arrivals
(departures) to determine the amount of energy generated or imported in a day-
ahead manner.

• We propose a real-time EV charging and power regulation scheme based on the
planned energy generation day-ahead to determine the charging rate of each vehicle
and power output adjustments in a dynamic and flexible manner.

• We develop a fast charging rate compression (CRC) algorithm which significantly
reduces the complexity of solving the real-time EV charging scheduling problem.
The proposed algorithm supports real-time operations and enables the large-scale
small-step scheduling more efficiently.

• We further extend our mechanism to be applicable to two practical scenarios: (1)
the charging station needs to track a given load profile; and (2) the EVs only have
discrete charging rates.

Simulation results indicate that our proposed two-stage EV charging mechanism
can effectively reduce the system expenditure and peak-to-average ratio (PAR).
Moreover, the proposed mechanism enhances the system fault tolerance against
renewable energy uncertainties and the noises of real-time data. Note that the pro-
posed charging scheme adopts a universal methodology which is not restricted to the
specific data traces used in the paper: as long as the renewable energy generation data
and EVs pattern data (including EVs battery level, desired charging amount, charg-
ing speed, and arrival/departure times) can be obtained, the proposed EV charging
scheduling scheme can be implemented with virtually no change.

The remainder of this chapter is organized as follows: Sect. 6.2 introduces the
problem formulation and two-stage decision-making process. In Sect. 6.3, we present
the fast charging compression algorithm. The simulation results and discussions are
presented in Sect. 6.4. An extension of the proposed chargingmechanism is discussed
in Sect. 6.5. Finally, we conclude this chapter in Sect. 6.6.
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6.2 Two-Stage Decision-Making Model and Problem
Formulation

6.2.1 Two-Stage Decision-Making Model

As shown in Fig. 6.1, we consider a charging park where an intelligent controller
is responsible for the charging scheduling of a large number of EVs. To meet the
EVs’ energy demands, the intelligent controller (1) acquires electricity from either
controllable energy plants (a dedicated power supply [2]) or central power grid;
and (2) harvests the renewable energy from local solar panels or wind turbines.
Considering the practice of energy acquisition from controllable generators or power
grid and the limited predictability of renewable energy,we propose a two-stagemodel
for decisionmaking as shown in Fig. 6.2. Specifically, at the first stage, we divide time
into discrete time slots with equal length.1 The preliminary energy acquisition profile
Ẽc(h) and energy transfer factor α(h) are determined day-ahead before dispatch
based on the estimated EV energy demand Ẽv(h) and renewable energy generation
Ẽr (h), where h ∈ H is the time slot index andH is the set of time slots in day-ahead
scale. Note that Ẽv(h) is computed through the EVs’ arriving and departing pattern
predictions. On the other hand, the supply of renewable power Pr (t) and EVs’ real
power demand Pv(t) at time t can only be known in real time, which requires the
real-time control to balance the power supply and demand at the second stage (real-
time stage) if necessary. Hence during the real-time EV charging scheduling, we try
to obtain the proper EVs’ charging rates Vi (t) and real-time power acquisition Pc(t)
given the real-time renewable power generation Pr (t), EVs’ real-timeparkingprofiles
and day-ahead dispatched acquired power P̃c(t) (determined in the first stage). Note
that for the first stage, the decisionmaking is done one time day-ahead. For the second
stage, it is done more frequently in real time, i.e., as long as the renewable power
generation or the parking states change, the EVs’ charging decision coordinates
accordingly. Table6.1 lists the main notations to be used in the rest of this chapter.

6.2.2 Modeling System Uncertainties

It can be noticed that the intelligent charging operation involves several uncertain
quantities including power available from the renewable energy system, the EVs’
arrival and departure time, and their required charging amount. These quantities
are crucial parameters for managing the energy generation and consumption of the
system. Although these quantities are random, there are good reasons to expect that

1For the day-ahead energy generation scheduling, the length of one time slot usually varies between
5 and 30min (as indicated in p. 149, Ref. [3]). Typically, a smaller slot duration enables the energy
generation scheduling more flexible; meanwhile it to a certain level complicated the computation
process. The specific suitable time slot length depends on the scale of the charging system and
accuracy of the demand and load predictions.
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Fig. 6.1 The architecture of the EV charging station

Fig. 6.2 Illustration of two-stage decision-making model. First stage (day-ahead): the decision
variables are acquisition profile Ẽc(h) and energy transfer factor α(h). Second stage (real-time):
the decision variables are the charging speeds of EVs Vi (t)
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Table 6.1 Notations used in this Chapter

Symbol Definition

H Set of time slots in day-ahead scale, |H| = H

h Element in H, time slot index in day-ahead scheduling

t Time index in the real-time scheduling

Ẽc(h) Predetermined energy acquisition at time slot h

Ẽv(h) Estimated EV energy demand at time slot h

P̃v(t) Estimated EV power demand at time t

Ẽr (h) Estimated renewable energy generation at time slot h

T Length of one time slot

α(h) Energy transfer factor at time slot h

M(t) The number of EVs in the charging park at time t

wi (t) Priority factor of EV i at time t

Vimax The maximum charging rate of EV i

Vimin The minimum charging rate of EV i

Vi (t) Charging rate of vehicle i at time t

Vd (t) The desired total charging demand at time t

Pr (t) Renewable power realization at time t

Pc(t) Power generated or imported in real-time

� The set of charging tasks whose charging rates can vary

�S The set of charging tasks whose charging rates are fixed to maximum

τi Charging task of EV i .

some statistical information may be obtained through accumulation of historical
records. For example, the average energy generated by the renewable energy sources
at each time slot can be estimated in a day-ahead manner based on the historical
data and the weather forecast; inspecting a large number of samples of EVs’ arrival
and departure time, a probability distribution trend can be envisioned. We assume
that the parking lot can roughly estimate the following parameters day-ahead: EVs
arrival time distribution f A(x), departure time distribution fD(x), the total number
of EVs being charged in a day N̄ , and the average charging rate of an EV μv . In this
case, the estimated power (energy density) demand at time t can be expressed as:

P̃v(t) =
∫ t

0

(
f A(x) − fD(x)

)
dx · N̄ · μv, (6.1)

and the estimated energy demand during time slot h is:

Ẽv(h) =
∫ h

h−1
P̃v(t)dt, ∀h ∈ H. (6.2)
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6.2.3 Day-Ahead Energy Acquisition Scheduling

The intelligent controller will firstly decide how much energy needs to be generated
or imported in a day-ahead manner to minimize the expected energy acquisition cost
while fulfilling the energy demand of EV charging station. The day-ahead energy
acquisition scheduling problem can be formulated as:

min
Ẽc(h),α(h)

H∑
h=1

Ch
(
Ẽc(h)

)
(6.3)

s.t. Ẽc(h) + Ẽr (h) ≥ Ẽv(h) · α(h) (6.4)
H∑

h=1

Ẽv(h) · α(h) =
H∑

h=1

Ẽv(h) (6.5)

αL ≤ α(h) ≤ αU ,∀h ∈ H, (6.6)

where Ch(·) is the cost function of the electricity acquisition for the charging station,
which is assumed to be an increasing convex function. The convex property reflects
the fact that each additional unit of power needed to serve the demands is provided
at a non-decreasing cost. Example cases include the quadratic cost function [4, 5]
and the piecewise linear cost function [6, 7]. Without loss of generality, we consider
quadratic cost function throughout this chapter. As to the renewable energy cost, for
typical renewable energies (e.g., solar and wind energy), capital cost dominates. The
operation and maintenance costs are typically very low or even negligible [8, 9]. In
this chapter, it is assumed that the renewable energy generators such as solar panels
and wind turbines have already been installed, and the marginal cost of renewable
energy can be neglected, leading to its omission in the objective function [10]. Due
to the flexibility of EVs’ charging tasks, it is possible to shift some energy demand
to other time slots to achieve the demand response target and reduce the total cost.
α(h) > 0 is an energy transfer factor, and 1 − α(h) controls the portion of demand
at time slot h shifted to other time slots. If α(h) > 1, energy demand from other time
slots is transferred to time slot h, whereas ifα(h) < 1, the energy demand in time slot
h is shifted to other time slots. Note thatα(h) can vary within its lower bound αL and
upper bound αU . Constraint (6.4) is the load balance constraint, simply indicating
that energy in each time slot should be balanced. Constraint (6.5) reveals the fact that
the total energy required from EVs during a day remains unchanged, i.e., demand
only transfers between time slots.

6.2.4 Real-Time Power Regulation and Elastic EV Charging

It is assumed that a two-way communication infrastructure (e.g., a local area network
(LAN)) is available between the intelligent controller andvehicles.When anEVplugs
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in, it informs the intelligent controller its unplug time, desired charging amount,
maximum and minimum allowable charging rates. Also, it is assumed that the EV
owners are rational, so that the desired charging amountwill not exceed themaximum
charging capacity of vehicle during its parking period. In other words, if the vehicle
is charged at its maximum speed during the entire parking period, it can definitely
reach the preset desired battery level. For the real-time operation, the intelligent
controller has two tasks. First, given the real renewable generation and EVs’ charging
requirements, it has to determine a proper charging rate for each EV to achieve the
optimal utilization of renewable energy and finish the charging tasks before EVs’
departures. Second, the total acquired power should be properly regulated around the
predetermined generation profile in real-time to match the fluctuant power demand,
i.e., demand and supply should be balanced at any time instance.

From the standpoint of EV owners, it is desirable to reduce their EVs’ charging
time. For example, decreasing the charging time provides more flexibility for the
owners to leave the charging station earlier. This objective can be captured by the
constrained optimization problem as follows:

min
Vi (t)

∑
τi∈�

wi (t)
(
Vimax − Vi (t)

)2
, (6.7)

s.t.
∑
τi∈�

Vi (t) +
∑
τi∈�S

Vimax ≤ Vd(t), (6.8)

Vi (t) ≥ Vimin ∀τi ∈ �, (6.9)

Vi (t) ≤ Vimax ∀τi ∈ �. (6.10)

In (6.7), decision variable is Vi (t) which is the charging speed of EV i to be deter-
mined at time t . τi represents the charging task of vehicle i . Parameter wi (t) ≥ 0
is a priority factor which reflects the urgent degree of a charging task. More urgent
tasks would have larger wi (t). Without loss of generality, wi (t) can be determined
dynamically according to the state of the EV, which is defined as follows:

wi (t) = Er
i

T d
i − t

, ∀τi ∈ �, (6.11)

where Er
i is the amount of remaining requested energy for charging and T d

i is EV
i’s departure time. Equation (6.11) indicates that urgent charging tasks will have a
higher priority factor so as to be charged faster. This is to ensure that EVs depart with
desired battery level.wi also denotes the average charging rate EV i needs to finish the
charging task τi on time. Vimax is themaximumcharging rate (i.e., the desired charging
rate) of EV i . Vimin is the minimum allowable charging rate of EV i . At any time t ,
the charging tasks can be first classified into two categories: � is the set of charging
tasks whose charging rate can vary, i.e., � = {τi | wi (t) < Vimax }. �S denotes the set
of charging tasks whose charging rates have to be fixed at the maximum charging
rates because of the urgent charging time, i.e., �S = {τi | wi (t) = Vimax }. Note that
elements in � and �S may vary with time and for τi ∈ �, Vi ≤ Vimax , for τi ∈ �S ,
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Vi = Vimax . This EV classification approach ensures that all the EVs depart with
satisfactory charging amount. Vd(t) is the desired total charging demand at time t .
The way to set Vd(t) will be introduced later.

Notice that constraint (6.8) simply states the schedulability condition, and the
rest of the constraints bound the charging rates. Due to EVs’ arrivals and departures,
the system is dynamic and the number of vehicles and their charging requirements
will change over time. Therefore, the intelligent controller can solve problem (6.7)–
(6.10) to obtain the charging rate for each EV at time t . When the renewable power
realization changes, or an EV’s status changes (τi changes from � to �S) or a vehicle
enters or departs the system, the intelligent controller will update �, �S , and Vd(t) in
real time and then redo the calculation. Next, we will show how to determine Vd(t)
to optimally utilize the renewable energy.

Let P̃c(t) = Ẽc(h)

T denote the dispatched acquired power (i.e., the day-ahead pre-
scheduled power generation) at time t , where T is the length of a time slot, and Pr (t)
denote the renewable generation realization at time t . Then, Vd(t) can be defined as
follows:

• If
∑

τi∈� Vimin+
∑

τi∈�S
Vimax > P̃c(t)+Pr (t), then Vd(t) = ∑

τi∈� Vimin + ∑
τi∈�S

Vimax , Pc(t) = Vd(t) − Pr (t), Pc(t) is the acquired power in real time. This is for
the case where the renewable energy generation is very low, i.e., even though all
the controllable EVs (EVs that belong to set�) charge at their minimum allowable
charging rates, the demand is still higher than the available supply. Therefore, up
regulation is required to guarantee the power balancing, i.e., more energy has to
be imported, either by raising up the output level of fast-response generators or
buying more electricity from ancillary service markets.

• If
∑

τi∈� Vimin + ∑
τi∈�S

Vimax ≤ P̃c(t) + Pr (t) ≤ ∑
τi∈�∪�S

Vimax , then Vd(t) =
P̃c(t) + Pr (t) and Pc(t) = P̃c(t). This investigates the scenario where the renew-
able energy generation deviates not far from the previous prediction, i.e., the power
demand of EVs can be adjusted to match the available supply. This represents
the most common situation the charging system encounters. Under such case, the
power demand of controllable EVs can be adjusted tomatch the supply, thus power
acquisition profile does not need to be changed and is equal to the dispatched load
determined day-ahead.

• If
∑

τi∈�∪�S
Vimax < Pr (t) + P̃c(t), then Vd(t) = ∑

τi∈�∪�S
Vimax and Pc(t) =∑

τi∈�∪�S
Vimax − Pr (t). This corresponds to the case where the renewable energy

generation is plenty enough that even the highest charging demand can be satisfied,
i.e., although all the EVs charge at the maximum charging rates, available power
still exceeds. In this case, down regulation is required to make sure that power is
balanced, i.e., the intelligent controller can reduce the acquired power level or sell
the extra power out and only compensate the mismatch between the maximum
charging demand and the renewable energy output.

Remark In day-ahead energy acquisition scheduling, the intelligent controller aims
at minimizing the expected cost of the charging park given the estimated renew-
able energy supply Ẽr (h) and EVs’ energy demand Ẽv(h), h ∈ H. Decision variable
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Ẽc(h) is the scheduled electricity to be brought fromday-ahead energymarket or gen-
erated by base-load plants. In real-time power regulation, system reliability and EVs’
charging requirements become themain concerns. The aforementioned up/down reg-
ulation is provided by ancillary service markets or fast-response generators [11].

6.3 The Charging Rate Compression Algorithm

The problems (6.7)–(6.10) belongs to the category of convex quadratic programs and
can be solved in polynomial time. Many commercial optimization solvers includ-
ing CPLEX, Mosek, FortMP, and Gurobi can be utilized to solve such problems.
However, solving such a problem using quadratic program solver during run time
can be still too costly, especially when the number of EVs is large and the response
time has to be very short so as to quickly respond to EVs. What makes the above
formulation attractive is that a charging rate compression (CRC) algorithm can be
proposed such that the problem solving can be extremely fast. We first develop the
CRC algorithm and then introduce a lemma and a theorem to prove that it can solve
the problems (6.7)–(6.10).

At each time instance t , the set � of charging tasks can be further divided into
two subsets: a set � f of charging tasks with the minimum charging rate and a set �v

of charging tasks whose charging rate can still be compressed. Let V0 = ∑
i∈� Vimax

be the maximum power level of the charging task set �, Vv0 be the sum of maximum
charging rates of charging tasks in �v , and V f be the sum of the charging rates of
charging tasks in � f . To achieve a desired power level Vd(t) < V0 + ∑

i∈�S
Vimax ,

each charging task has to be compressed up to the following charging rate:

∀τi ∈ �v, Vi = Vimax − (Vv0 − Vm(t) + V f )
Wv

wi
, (6.12)

where

Vm(t) = Vd(t) −
∑
τi∈�S

Vimax (6.13)

Vv0 =
∑
τi∈�v

Vimax (6.14)

V f =
∑
τi∈� f

Vimin (6.15)

Wv = 1∑
τ∈�v

1
wi

. (6.16)

If there exist charging taskswhere Vi < Vimin , then the charging rates of these vehicles
have to be fixed at their minimum value Vimin . Sets � f and �v have to be updated
(therefore, V f , Vv0 , and Wv have to be recomputed), and (6.12) is applied again to



92 6 Massive Electric Vehicle Charging Involving Renewable Energy

the charging tasks in �v . If a feasible solution exists, i.e., the desired power level
of the system is higher than or equal to the minimum power level

∑M(t)
i=1 Vimin , the

iterative process ends until each value computed by (6.12) is greater than or equal to
its corresponding minimum Vimin . The algorithm for compressing the charging rate
of a set � of EVs to a desired charging power level Vd(t) is shown in Algorithm 6.1.

Algorithm 6.1 Algorithm for compressing the charging rate for a charging task set
of � at time t .
Input: Vd (t), Vimin , Vimax , wi , ∀τi ∈ �.
Output: Vi , ∀τi ∈ �.
1: Begin
2: V0 = ∑

τi∈� Vimax ;
3: Vmin = ∑

τi∈� Vimin ;
4: Vm(t) = Vd (t) − ∑

τi∈�S
Vimax ;

5: if (Vm(t) < Vmin)
6: Return INFEASIBLE;
7: else
8: do {
9: � f = {τi |Vi = Vimin };
10: �v = � − � f ;
11: Vv0 = ∑

τi∈�v
Vimax ;

12: V f = ∑
τi∈� f

Vimin ;

13: Wv = 1∑
τ∈�v

1
wi

;

14: OK= 1;
15: for (each τi ∈ �v)
16: Vi = Vimax − (Vv0 − Vm(t) + V f )

Wv

wi
;

17: if (Vi < Vimin )
18: Vi = Vimin ;
19: OK= 0;
20: end if
21: end for
22: } while (OK== 0);
23: return FEASIBLE;
24: end if
25: End

Lemma 6.1 Given the constraint optimization problem as specified in (6.7)–(6.10)
and

∑
τi∈� Vimax > Vm(t), any solution, V ∗

i (t), to the problem must satisfy∑
τi∈� V ∗

i (t) = Vm(t) and V ∗
i (t) �= Vimax , for all τi ∈ �.

Theorem 6.1 Given the constraint optimizationproblemas specified in (6.7)–(6.10),∑
τi∈� Vimax > Vm(t), and

∑
τi∈� Vimin < Vm(t), let V̂ (t) = ∑

V ∗
i (t)�=Vimin

Vimax +∑
V ∗
i (t)=Vimin

Vimin . A solution is optimal if and only if

V ∗
i (t) = Vimax −

1
wi (t)

(V̂ (t) − Vm(t))∑
V ∗
j (t)�=Vjmin

(1/w j )
, (6.17)
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for V̂ (t) > Vm(t) and V ∗
i (t) > Vimin , and V ∗

i (t) = Vimin otherwise.

The proofs of Lemma 6.1 and Theorem 6.1 are given in the Appendix B. Based
on the previous lemma and theorem, we can draw the conclusion as follows:

Corollary 6.1 Consider the charging tasks of |� ∪ �S| EVs, where Vi (t) is the
charging rate of the i th vehicle. Let Vimax denote the initial desired charging rate
of charging task τi ∈ � ∪ �S and wi (t) be the set of priority factors. Let Vd(t) be
the desired power level of the system and

∑
τi∈� Vimax > Vm(t). The charging rate

Vi , τi ∈ �, obtained from Algorithm 6.1 minimizes

∑
τi∈�

wi (t)
(
Vimax − Vi (t)

)2

subject to the inequality constraints
∑

τi∈� Vi (t) + ∑
τi∈�S

Vimax ≤ Vd(t), Vi (t) ≥
Vimin , and Vi (t) ≤ Vimax for τi ∈ �.

Remark Through analysis, the time complexity of Algorithm 6.1 is O(n2), where
n is the number of tasks in �.

6.4 Simulation Results and Discussions

In this section, we present simulation results based on real-world traces for assessing
the performance of the proposed two-stage EV charging scheme.

6.4.1 Parameters and Settings

Weassume there are solar panels providing renewable energy for the charging station.
The area of the solar panels in the system is set to be 3.125 × 104 m2. The energy
conversion efficiency is 0.8. The solar radiation intensity statistic is adopted from
[12], from which we employ the solar radiation data of a typical day in winter
(17/01/2013). The data utilized for the day-ahead energy acquisition scheduling and
real-time EV charging are depicted in Fig. 6.3. Note that the predicted average solar
radiance utilized in the day-ahead energy generation scheduling is plotted in the blue
circled line, and the actual real-time solar radiance adopted in the real-time charging
is shown by the red curve. We envision the scenario that the charging station is
located at a workplace (e.g., a campus) that is active from 6:00 AM to 6:00 PM.
Vehicles arrive earlier than 6:00 AM start to charge at 6:00 AM while those depart
later than 6:00 PM finish their charging before 6:00 PM. We simulate the operation
process of a large-scale charging station which serves totally 3000 EVs arriving and
departing independently in a typical day. It is assumed that the arrival timedistribution
and departure time distribution are all Gaussian with parameters shown in Table6.2
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Fig. 6.3 Solar irradiance in
a day
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Table 6.2 Parameters of the arrival and departure time probability distribution

Time parameter Arrival Departure

Mean: μr 10 14

Standard deviation: σr 1.2 1.3

(similar assumptions can be found in many papers, e.g., [13, 14]). EVs are active for
charging during their parking time, and discharging is not permitted. The amount
of energy needed for the EVs are evenly distributed between 20KWh and 50KWh.
The maximum allowable charging rate of an EV is 62.5KW (e.g., high-voltage (up
to 500VDC) high-current (125A) automotive fast charging [15]), and the minimum
charging rate of an EV is 0KW. The cost function of the electricity acquisition is

Ch
(
Ẽc(h)

)
= ah · Ẽc(h)2 and ah = 150 $ · (MWh)−2.

6.4.2 Results and Discussions

The simulation process contains two parts. First, given the estimated solar energy
in each time slot (in the simulation, one time slot is set as one hour), we solve
the day-ahead energy acquisition scheduling problems (6.3)–(6.6) and obtain Ẽc(h)

and α(h) for h = 1, . . . , H . The upper bound and lower bound of energy transfer
parameter α(h) is set to be 2 and 0.5, respectively. Once the dispatched energy
acquisition in each time slot is obtained, we are ready to simulate the charging
process of EVs based on the real-time renewable power generation and EVs’ real-
time arrival (departure) patterns. Adopting the data previously mentioned, all the
simulations are conducted on an Intel workstation with six processors clocking at
3.2GHZ and 16GB of RAM. We repeated the simulation for 10 times. All the 3000
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Fig. 6.4 Energy supply
from conventional generators
under different charging
schemes
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EVs complete chargingwith required amount before their departures. By utilizing the
CRC algorithm introduced in Sect. 6.3, the simulation time is reduced from 1005.1s
to 101.2 s, showing that the proposed CRC algorithm can significantly reduce the
complexity of the problem solving. Note that our CRC algorithm does not sacrifice
the problem-solving accuracy, and we obtain exactly the same results when adopting
quadratic programming solvers and our CRC algorithm.

We first investigate the effectiveness of our proposed EV charging mechanism.
Specifically, two charging schemes are compared. In the first scheme, EVs are kept
charging during their parking time and the charge speeds are the average rates that
they need to fulfill the charging tasks. Conventional generators generate electricity
for the unbalanced power demand in an on-demand manner. While in the second
scheme, the charging station charges EVs’ batteries according to the mechanism we
proposed, and electricity is generated based on the day-ahead scheduling and real-
time adjustment. The simulation results concerning the power supply curves, total
system cost, and peak-to-average ratio (PAR) under these two schemes are given in
Figs. 6.4 and 6.5, respectively. As we mentioned previously, quadratic cost functions
are adopted to compute the system expenditures for both schemes.

In Fig. 6.4, it is shown that by optimally controlling the charging rates of EVs,
our proposed charging strategy successfully transfers the peak demand to the off-
peak hours, which can help stabilize the operations of the charging system and
reduce the energy cost. As shown in Fig. 6.5, the total expenditure of the charging
station decreases from $4.1 × 104 per day in scheme 1 to $1.8 × 104 per day in our
proposed scheme, achieving a cost saving of 56.1%. Therefore, one of the aims of
the developed charging strategy, which is reducing the expenditure of the system, is
achieved. To investigate the variation of PAR, we study two cases: (1) PAR of the
aggregated supply (i.e., the supply from controllable generators plus the supply from
solar panels); and (2) PAR of the controllable generators’ output. As we observe in
Fig. 6.5, with scheme 1, the PARof the aggregated supply and the PARof controllable
generators’ output are 2.69 and 3.95, respectively. By adopting the proposed charging
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Fig. 6.5 Cost and PAR
comparisons of different
charging schemes
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scheme, these two PAR values reduce to 2.02 and 1.78 (decrease about 25 and
55%), respectively. The proposed EV charging strategy presents much better PAR
performance during the 12-h operation.An interesting observation is that in scheme1,
the PAR of controllable generators’ output is much higher than that of the aggregated
power supply; however, the situation is exactly opposite in our proposed scheme.
In other words, under normal circumstances, utilizing renewable energy will make
the output of controllable generators more fluctuant, whereas EVs can help solve
this problem by properly varying their charging speeds, i.e., charging quickly when
renewable energy is sufficient and reducing the rate when not enough renewable
energy is available.

In our scheme, the first-stage day-ahead energy generation scheduling is based on
the estimated renewable energy generation in next day. Normally, the real renewable
energy generationmight be different from the estimated one. Next, we investigate the
cost sensitivity with respect to this deviation. The simulation results are depicted in
Fig. 6.6. Specifically, we conduct the experiment as follows. In the first step, the day-
ahead energy generation scheduling is done based on the estimated solar irradiance
and EVs’ arriving (departing) patterns. Then, for the real-time charging, we vary the
solar irradiance data based on the real-world trace to represent different estimation
error levels. As it is observed in Fig. 6.6, system cost is much more sensitive in
scheme 1 than that in our scheme when the deviation varies. The reason is that by
applying our charging strategy, deviations of the solar power can be distributed to the
whole time horizon. However in scheme 1, the situation that solar power is excessive
during some time periods and insufficient in some other time becomes more severe.
Under such case, solar energy utilization efficiency fluctuates more extensively when
deviation level increases, and accordingly, system cost varies more violently. Hence,
our charging mechanism can effectively reduce the financial risks caused by the
estimation error of the renewable energy generation.

Figure6.7 illustrates how system cost varies under different fluctuation levels of
solar energy. In this experiment, we add 0-mean Gaussian noise to the real-time solar
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Fig. 6.6 System cost with respect to the real-time renewable generation deviation (�m represents
the deviation of real solar irradiance from the estimated one, and m is the actual data trace)
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Fig. 6.7 Systemcostwith respect to the different fluctuation level of renewable energy (m represents
the actual data trace, and σ represents the standard deviation of noise)
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irradiance data and then evaluate its impact on the system cost. Different standard
deviations of the noise reflect different fluctuation levels of solar energy. It appears
that the fluctuation of renewable energy has less impact on the system cost when
adopting our proposed scheduling scheme. This observation is intuitive since by
properly altering their charging rates, EVs act as an energy storage which may to
a certain extent alleviate the uncertainty problem. However in scheme 1, the con-
trollable generators have to compensate the solar power fluctuation during the entire
time horizon. In this case, the system cost will be affected more extensively when
fluctuation level increases. Note that this experiment also simulates the scenario that
system data is affected by noises. Thus, we claim that the our proposed EV charging
mechanism shows good performances in dealing with uncertainties of renewable
energy and noises of real-time data.

6.5 Extensions

6.5.1 Tracking a Given Load Profile

The electricity utilized for EV charging can be provided by a utility company. The
objective of the utility company may be to flatten the total load profile. The utility
company may also need to buy electricity in day-ahead electricity market and supply
the electricity to the charging parking as well as other energy consumers in real-
time. Under such case, the utility company may want the charging station to properly
schedule the charging of EVs, so that the demand can track the electricity profile it
brought in the day-ahead electricity market. Denote the load profile that the charging
park tracks as L(t). Our charging scheme can be extended to track L(t) by solving
the following constraint optimization problem:

min
Vi (t)

∑
τi∈�

wi (t)
(
Vimax − Vi (t)

)2
, (6.18)

s.t.
∑
τi∈�

Vi (t) +
∑
τi∈�S

Vimax ≤ L(t), (6.19)

Vi (t) ≥ Vimin ∀τi ∈ �, (6.20)

Vi (t) ≤ Vimax ∀τi ∈ �. (6.21)

Figure6.8 shows the simulation results of tracking given target load profiles.
The intelligent controller is in charge of managing 3000 EVs in a day on their
charging schedules. These vehicles plug in uniformly distributed between 6:00 and
14:00, with deadlines uniformly distributed between 10:00 and 18:00. The amount
of energies needed to charge are evenly distributed between 20KWh and 50KWh.
Two testings are conducted to show the load tracking results with different target
profiles. The target profiles are represented by the blue dot-circled curves. The red
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Fig. 6.8 Tracking given
target load profiles
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dash curves and green solid curves correspond to the aggregated charging rates
obtained from our EV charging mechanism and scheme 1, respectively. We observe
that the aggregated charging demand can closely follow the target load profiles when
adopting our proposed charging scheme. There are only small discrepancies around
18:00 due to the early or late departures of EVs.

Remark In order to ensure that the electricity demand of EVs can closely follow
the target load profile, load profile L(t) should not go beyond the variation limits of
EVs’ charging rates, that is:

L(t) ≥
∑
τi∈�

Vimin +
∑
τi∈�S

Vimax (6.22)

and

L(t) ≤
∑
τi∈�

Vimax +
∑
τi∈�S

Vimax (6.23)

6.5.2 Discrete Charging Rates

In our proposed charging scheme, we assume that the charging rate can vary con-
tinuously within the EV’s maximum and minimum allowable rates, determined by
the charger. Similar assumptions can be found in many literature including [16–18].
However in some circumstances, if only a few discrete charging speeds are allowed,
the proposed EV charging scheme can be easily extended to handle such case. Let Vi

denote the set of allowable charging rates of vehicle i . To capture the discrete charg-
ing rate case, we replace constraints (6.9) and (6.10) with the following constraint in
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Table 6.3 Simulation results under continuous charging rate case and discrete charging rate case
(all results are 10 times average)

Charging park size Power level type Charging cost ($) Cost growth (%)

Large scale
(3000 EVs)

Continuous charging
rate case

17993.1 −

Discrete charging rate
case

18028.8 0.2

Medium scale
(500 EVs)

Continuous charging
rate case

497.1 −

Discrete charging rate
case

511.2 2.8

Small scale
(100 EVs)

Continuous charging
rate case

22.2 −

Discrete charging rate
case

27.9 25.7

real-time EV charging:

Vi (t) ∈ Vi ∀τi ∈ �. (6.24)

Although the CRC algorithm is only suitable for the continuous charging rate
case, simulations show that with discrete allowable charging rates, the proposed
two-stage charging mechanism still has an acceptable computation-time perfor-
mance. In the simulation, each EV has four allowable charging speeds, i.e., Vi =
{0 KW, 20 KW, 40 KW, and 62.5 KW}, ∀τi ∈ � [2]. The number of EVs served in
a day is still 3000. The simulation results comparison with the continuous charging
rate case is summarized in the first row of Table6.3. Note that the simulations under
both cases are conducted 10 times, and results in Table6.3 are the average.

As it is shown in Table6.3, two main observations can be found as follows:

• For the discrete charging rate case, though the simulation time is much longer
for the continuous charging rate case, our two-stage EV charging mechanism
still performs acceptably for the real-time scheduling since computation time for
updating the charging rates of active vehicles is about 0.25s on average. Note that
this is the updating time running on the computer whose configuration is specified
in the previous subsection.

• The system cost increases slightly (about 0.2%) when only several discrete charg-
ing rates are allowed. This observation is intuitive since with discrete charging
rates, the scheduling flexibility is abated and mechanism performance gets worse.
In otherwords,whenEVs’ charging rates can vary continuously, the power demand
can follow the desired power supply more closely and thus utilize the renewable
energy in a more efficient manner. However, since the number of EVs is large, dis-
crepancy between the combinations of EVs’ discrete charging rates and desired
energy supply level is not significant. Thus, the cost only increases slightly.
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We further reduce the simulation scale to medium size (e.g., 500 vehicles) and
small size (e.g., 100 vehicles) to investigate how the size of the charging park impacts
the performances of the proposed scheme. Besides the charging park size, simulation
process and system parameters are exactly the same to those in the previous subsec-
tion. The area of the solar panels varies proportionally with the charging park size.
We also simulate 10 times and the results’ data are depicted in Table6.3. It appears
that for large-, medium-, and small-scale charging parks, system costs in discrete
charging rate case are 0.2, 2.8, and 25.7% higher than those in the continuous charg-
ing rate case, respectively. In otherwords, system cost ismore sensitive to the discrete
charging rate condition when the scale of charging park shrinks. The reason for this
phenomenon is that when the number of connected vehicles gets small and only
several discrete charging rates are allowed, the flexibility of the system deteriorates.
There will be a higher probability that aggregated charging demand cannot match
the available power. For instance, when there are only 30KW power available and
two vehicles are active at a given time, for the continuous charging rate case, EVs are
able to follow the supply closely. Whereas for the discrete charging rate case, either
10KW power is wasted or conventional units have to generate 10KW more so that
discrete demand can bematched. Therefore, power utilization becomes less efficient,
and conventional generators have to produce more electricity to ensure that charg-
ing tasks can be finished in time. As we mentioned previously, when the number of
EVs is large, discrepancy between the combinations of EVs’ discrete charging rates
and desired energy supply level becomes less significant, leading to only marginal
increase in cost. The proposed EV charging scheme favors reasonably for a large
charging park when only discrete charging rates are allowed.

6.6 Conclusion

In this chapter, we investigate the cost-effective scheduling approach of EV charging
at a renewable energy aided charging station. We design a two-stage EV charging
scheme to determine energy generation and charging rates of EVs. Specifically, at
the first stage, based on the EV pattern and renewable energy generation estimation,
a cost minimization problem is formulated and solved to obtain a preliminary energy
generation or importation scheduling profile in a day-ahead manner. Then at the
second stage, a real-time EV charging and power regulation scheme are proposed.
Such a scheme allows convenient handling of volatile renewable energy and indeter-
minate EV patterns. We also develop an efficient charging compression algorithm to
further lower the complexity of the problem solving. Simulation results indicate the
satisfactory efficiency of the proposed EV charging mechanism and the cost benefits
obtained from it. Moreover, the impacts of renewable energy uncertainties have been
carefully evaluated. The results show that the proposed EV charging scheme has a
good performance in enhancing the system fault tolerance against uncertainties and
the noises of real-time data. Such evaluations, as we believe, reveal that the pro-
posed charging mechanism is suitable for the case with a large number of EVs and
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unstable renewable energy. Furthermore, we extend the mechanism to track a given
load profile and handle the scenario that EVs only have discrete charging rates. As
a universal methodology, the proposed scheme is not restricted to any specific data
traces and can be easily applied to many other cases as well.
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Chapter 7
Hybrid Charging Control of Electric Vehicles

7.1 Introduction

Today’s transportation section accounts for a significant portion of petroleum con-
sumption and greenhouse gases emissions worldwide. Statistics show that 63.7%
of the petroleum consumed in the world in 2012 was due to the transport sector,
which caused emission of 7135 million tons of carbon dioxide into the environment
[1]. The world’s fossil fuels scarcity, as well as the growing environmental crisis
associated with their wide usage, are driving the electrification of transportation and
extensive use of electric vehicle (EVs). EVs are emerging as an efficient and sus-
tainable alternative for private and public road transportation. Though widespread
implementation of EVsmay introduce a solution to the world fossil fuel shortage and
air pollution concerns, the growing EV load also brings up multiple technical issues,
such as voltage deviations, transformers and line saturations, increase of electrical
losses. These issues may jeopardize the security and reliability of the power grid. As
a consequence, intelligent charging and scheduling for EVs becomes a practical and
important research problem.

A number of technical and regulatory issues, however, have to be resolved before
the intelligent charging becomes a commonplace. The arrival of EVs and their
required energy amount may appear to be random, which increase the demand-side
uncertainties. The role of EV owners is also important in the interactions between
the charging system and the EVs. From the EV owners’ point of view, the degree
of satisfaction should be an optimization objective. When departure, the EV owner
hopes that energy in the battery remains as much as possible. In addition, EV own-
ers may have various charging habits. Some are prone to individually determine
their own charging profiles, while others may hope the charging system undertake
the charging tasks for them. For instance, a future courier company may assign all
the charging tasks of its driverless car fleet to a system controller of the charging
park; meanwhile, some private car owners may prefer to control their charging pat-
terns all by their own. And in many circumstances, these two kinds of user demands
coexist. Therefore, a flexible and efficient EV chargingmechanism has to be properly
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designed to dynamically coordinate the charging of EVs and satisfy the requirements
of EV owners.

In this chapter, we consider the charging scheduling of a large number of EVs
at a charging station. Stimulated by the fact that in practical scenarios, both cen-
tralized and decentralized charging architectures have their shortcomings and EV
owners may have various charging preferences, a hybrid centralized–decentralized
(HCD) EV charging mechanism is developed which offers flexible charging choices
for customers. In this charging scheme, EV owners can either assign the charg-
ing tasks to system controller or individually choose the charging profiles based on
their own preferences. In addition, the stochastic characteristics of EVs such as the
arrival/departure times and charging demands are all taken into account. The main
contributions of this chapter can be briefly summarized as follows:

• On the centralized charging control side, we formulate the coordinated EV charg-
ing problem into a convex optimization problem which aims at minimizing the
charging cost of the whole EV fleet over a time horizon. To tackle with the sys-
tem condition dynamics where EVs’ arrival/departure times and their charging
demands are uncertain, a model predictive control (MPC)-based schedulingmech-
anism is developed. The scheme allows more information of EV arrivals (depar-
tures) and charging demands to be effectively incorporated into the chargingmech-
anism when such information is available.

• On the decentralized charging control side, a leader–follower noncooperative
Stackelberg game is formulated to model the interactions between the system
controller and EVs. The game aims at maximizing the profit of the charging sys-
tem and utilities of the EV owners. We prove the existence of the generalized
Stackelberg equilibrium (GSE) where both the leader and followers reach their
equilibrium states. It is shown that the GSE also represents the socially optimal
solution. Moreover, the communication burden between EVs and the system con-
troller is low, and the proposed decentralized charging scheme is robust to poor
communication channels.

• We further investigate the interactions between these two charging groups. It is
shown that an optimal energy cap exists for the decentralized charging groupwhich
maximize the entire system’s revenue. Moreover, an optimal energy allocation
algorithm is proposed to find such energy cap.

The remainder of this chapter is organized as follows: Sect. 7.2 introduces the
system model of the hybrid centralized–decentralized EV charging mechanism. In
Sect. 7.3, we present the centralized charging control strategy where model predic-
tive control (MPC)-based method is adopted to tackle with the system dynamics. In
Sect. 7.4, a leader–follower noncooperative Stackelberg game-based decentralized
EV charging scheme is introduced. The existence of equilibrium state and its opti-
mality are analyzed. The simulation results and discussions are presented in Sect. 7.5.
Finally, we conclude this chapter in Sect. 7.6.
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Fig. 7.1 Illustration of the system architecture

7.2 System Model

We consider an intelligent charging system (e.g., a charging park) which offers two
charging options for the customers: (1) centralized charging: utilizing centralized
infrastructure to collect information from EVs and centrally optimize EV charging
considering the grid technical constraints; (2) decentralized charging: The vehicle
owners directly control their EVs’ charging patterns according to their own prefer-
ences. The general structure of the system is shown in Fig. 7.1. The system controller,
the local controller(s), and EVs are the main players in this HCD charging control
scheme. The particulars of the system operation and main principles associated with
the modeling outlines of these components are explained in the following subsec-
tions.

7.2.1 Centralized Charging Control Model

A local controller is responsible for scheduling the charging patterns of a group of
EVs on behalf of the their owners. If the number of EVs is large, the EVs can be
classified into several groups (e.g., according to their geographical positions) and
one local controller is responsible for the charging tasks of one EV group. The local
controller and EVs (the local controller and system controller as well) are connected
through two-way communication infrastructures (e.g., a local area network (LAN)).
The operation time of the charging system is divided into discrete time intervals with
equal length. The length of an interval is denoted by τ , which can vary from 5min
to half an hour based on the charging traffic conditions. LetA denote the set of EVs
who participate in the centralized charging scheme. Adopting a general scheduling
model, we define EV charging scheduling vector xa and state vector ya as follows:
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Fig. 7.2 Available charging period of electric vehicle a

xa = [x1a , x2a , . . . , xH
a ] and ya = [y1a , y2a , . . . , yHa ], (7.1)

where H ≥ 1 is the scheduling horizon which indicates the number of time slots
ahead that are taken into account for decision-making in the EVs’ charging schedul-
ing. For each coming time slot h ∈ H = [1, 2, . . . , H ], let a binary variable yha = 0/1
denote the state of EV a (not charging/charging) and a variable xha denote the charg-
ing demand of EV a at time h. For each EV a with the maximum allowable charging
rate Rmax

a and the minimum charging rate Rmin
a , we have

yha · Rmin
a · τ ≤ xha ≤ yha · Rmax

a · τ . (7.2)

Let t sa and t
f
a denote the plug-in time and departure time of EV a, respectively. Since

we divide time into multiple discrete time slots, the available charging time of EV a,
denoted by Ta , is defined as the set of continuous time slots fall between the plug-in
time t sa and plug-out time t fa , as depicted in Fig. 7.2. Obviously, we have yha = 0
if h /∈ Ta . Further denote the battery capacity, initial battery energy, and desired
departure battery energy of EV a by Ecap

a , Es
a , and Ed

a , respectively. Obviously, we
have Ed

a ≤ Ecap
a . The desired departure state of charge (SOC) of EV a is defined as

γd
a = Ed

a /E
cap
a , where 0 < γd

a ≤ 1. The local controller can automatically detect the
arrival time t sa , battery capacity Ecap

a , and initial battery energy Es
a of EV a when it

connects to the charging plug. The departure time t fa and desired departure SOC γd
a

are provided to the local controller by owner of EV a before the charging is began.
Given t sa and t fa , the available charging period Ta can be easily obtained. Given the
above descriptions, we have the following constraints intuitively:

Es
a +

∑

h∈Ta

xha ≥ Ed
a (7.3)

Ed
a ≤ Ecap

a (7.4)

Considering the fact that customers are risk averse, they would be reluctant to join
the scheme if they face the financial risks associated with electricity price uncertainty
(i.e., their EV may be charged during periods when the electricity prices are high).
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Thus, it is assumed that the local controller offers flat electricity price pc (which is
announced in advance) for the EVs in return for their participation in this centralized
charging scheme.

7.2.2 Decentralized Charging Control Model

Let B(h) denote the set of EVs engaging the decentralized charging scheme at time
h. EVs are able to communicate with the system controller via two-way communi-
cation channels, as illustrated in Fig. 7.1. For a particular time slot h ∈ H, the system
controller has a limited energy Eh

m that it can provide to the B(h) connected vehicles
for charging, where B(h) = |B(h)|. The system controller charges the EVs a price
of phd for one unit of electricity. For each EV b ∈ B(h), let xhb denote the amount of
energy it requests from the charging system so as to meet its energy requirements.
The energy demand xhb may vary for different EVs based on different parameters
such as battery capacity Ecap

b , current SOC γc
b , desired plug-out SOC γd

b , the time
varying electricity price phd , and the travel plans (two identical EVs may have differ-
ent travel plans and may have different energy demands). We assume that EVs will
only request the amount of energy they currently needed subject to their immediate
need for charging and EVs compete with each other for the limited scarce avail-
able energy. Thus, the following constraints must be satisfied for the total amount of
energy EVs charged at time slot h:

∑

b∈B(h)

xhb ≤ Eh
m, (7.5)

where Eh
m is the energy cap for the decentralized charging group. Obviously, the

demand of the connected EVs is coupled through the above constraint. For the system
controller, it tries to properly optimize the electricity price phd such that the revenue for
selling the energy ismaximized. A lower electricity pricemeans sacrificing revenues.
However, if the price is set too high, customers (EVs) may reduce their demand, find
alternative charging markets, or even wait until the price drops, also amounting to
losing profits. Thus, a suitable phd has to be decided to maximize the benefits of the
charging system.

The interactions between system controller and EVs can be modeled as a leader–
follower noncooperative Stackelberg game, in which there is a single leader (system
controller) and multiple followers (EVs). The system controller chooses the total
amount of energy it provides to EVs inB(h) and the electricity price. Given these two
parameters, EVs respond to the controller by properly choosing their own charging
demands. The game can be defined in its strategic form as

S = {(B(h) ∪ {system controller}), {xhb }b∈B(h), E
h
m, p

h
d , {Uh

b }b∈B(h),U
h
sc}, (7.6)

where Uh
b and Uh

sc are utility functions of EV b and system controller, respectively.
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Note that the main task of the system controller is to properly coordinate the
charging profiles of all the connected EVs (belong to either the centralized charging
group or the decentralized charging group) to minimize the cost of the whole system.

7.3 Centralized Charging Scheme

7.3.1 Global Optimal Scheduling

To find global optimal EV charging profiles during the day, we first make the fol-
lowing assumptions: (1) The arrival time and departure time of each EV in the set
A are known; (2) the plug-in SOC and desired plug-out SOC for each EV in the set
A are known; (3) the local controller collects all the information accordingly and
then performs the scheduling optimization. The local controller solves the following
optimization problem to obtain the global optimal charging scheduling sequences:

min
X,Y

H∑

h=1

Ch
g (l

h) (7.7)

s.t. lh =
∑

a∈A
xha

xha ≥ 0, (7.2) (7.3) and (7.4)

yha ∈ {0, 1} and yha = 0, if h /∈ Ta,

whereX = [x1, x2, . . . , xa, . . .]T andY = [y1, y2, . . . , ya, . . .]T arematrices of deci-
sion vectors xa and ya for a ∈ A, respectively; Ch

g (·) is the cost function of the cen-
tralized charging system for generating or importing electricity, which is assumed
to be an increasing convex function. The convex property reflects the fact that each
additional unit of power needed to serve the demands is provided at a higher cost.
Without loss of generality,we consider quadratic cost functionCh

g (l
h) = bhlh + ahlh

2

throughout this chapter [2, 3]. The global scheduling optimization problem can be
interpreted as to minimize the total cost of the EV charging system during the day,
by optimizing over the EV charging scheduling matrix X and state matrix Y. Prob-
lem (7.7) is a mixed-integer quadratic programming (MIQP) problem, which can be
effectively tackled by cutting plane method, branch and bounded method, etc. The
solution to this problem provides the global (off-line) optimal EV charging schedul-
ing sequences during the whole day. However, this scheduling scheme is impractical
since the EVs’ arriving and departing patterns are unknown and so are their para-
meters (current SOCs, plug-out SOCs). In the following subsection, we introduce a
practical dynamic scheduling approach, which relaxes the assumptions adopted in
the global optimal scheduling problem (7.7). The solution of this dynamic scheduling
approach performs close to the global optimal scheduling scheme.
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7.3.2 A Dynamic Scheduling Approach

One difficulty of the centralized charging lies in the fact that the system is dynamic
withEVscoming anddeparting all the time.Thus, it is not possible to have a stationary
long-term scheduling profile. To tacklewith the system condition dynamics,we adopt
the model predictive control (MPC) approach (also known as “receding horizon
approach”) [4, 5], ofwhich the basic idea is to calculate the optimal control sequences
yet to implement only the first step of them. In other words, the centralized EV
scheduling problem is solved at time h = τ (τ ∈ H denotes the current time index.)
for the remaining horizon [τ , τ + 1, . . . ,W τ ], yet only the solution for the current
time slot τ is implemented (W τ is the decision-making horizon). In the next time slot,
the local controller shall update the system information (e.g., the set of connectedEVs
currently, their current SOC, and desired plug-out SOC) and redo the calculations.
The time horizon for the decision-making can be defined as the latest plug-out time of
the EV in the current connected vehicle set, i.e.,W τ = maxa∈A(τ )�t fa �, whereA(τ ) is
the current connected vehicle set. The illustration of the current time horizon for the
decision-making is depicted in Fig. 7.3. Mathematically, the optimization problem
at current time τ can be formulated as:

min
xha ,y

h
a

W τ∑

h=τ

Ch
g (l

h) (7.8)

s.t. lh =
∑

a∈A
xha

xha ≥ 0, (7.2) (7.3) and (7.4)

yha ∈ {0, 1} and yha = 0, if h /∈ Ta
a ∈ A(τ ), h ∈ [τ , τ + 1, . . . ,W τ ].

Fig. 7.3 The illustration of the current time horizon for the decision-making of the charg-
ing scheduling, i.e., W τ = maxa∈A(τ )�t fa �. The current connected EVs’ set is A(τ ) =
{EV 1, EV 2, EV 3, EV 4, EV 5}
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The dynamic EV charging scheduling problem (7.8) at the beginning of time slot
τ is still a MIQP problem which can be solved efficiently by many commercial opti-
mization software including CPLEX, Mosek, FortMP, and Gurobi. By solving (7.8),
we obtain charging scheduling sequences xha , a ∈ A(τ ), h ∈ [τ , τ + 1, . . . ,W τ ],
among which only the charging scheduling sequences xha , a ∈ A(τ ), h = τ are
executed, and other scheduling sequences xma , a ∈ A(τ ), m ∈ [τ + 1, . . . ,W τ ] are
discarded, which will be finally updated at the beginning of time slot m.

7.4 Decentralized Charging Scheme

7.4.1 Game Formulation

In this section, we formulate the interactions between system controller and EVs into
a leader–follower noncooperative Stackelberg game,where the system controller acts
as the leader and the EVs are followers. At any time slot h, two principle components
of the gameS = {(B(h) ∪ {system controller}), {xhb }b∈B(h), Eh

m, p
h
d , {Uh

b }b∈B(h),Uh
sc}

are the utility functions of the leader (system controller)Uh
sc and the followers (EVs)

Uh
b , b ∈ B(h). We have detailed discussions as follows:

7.4.1.1 Utility Functions of EVs

EV’s utility function captures the benefit it obtains for consuming the demand energy.
The utility function Uh

b (x
h
b , x

h
−b,α

h
b,β

h
b , p

h
d ) of EV b is defined as a function of the

energy it charges. Here, xhb is the requested charging energy of b from the charging
station. xh−b is the vector formed of all players decision variables except the one of
player b, i.e., xh−b = (xh1 , x

h
2 , . . . , x

h
b−1, x

h
b+1, . . .).α

h
b > 0 andβh

b > 0 are parameters
measuring the charging habit of EV b. The value of αh

b and βh
b may depend on the

current SOC, the battery capacity, and the travel plan of the EV b. In addition, the
price of electricity phd also influences the charging benefit of a EV. Mathematically,
we have the following assumptions on the properties of the utility function of EV b:

(i) Assumption 7.1: The utility functions Uh
b is non-decreasing with respect to the

amount of energy the EV charges. In other words, each EV tends to charge more
if possible unless it reaches its maximum battery level, i.e.,

∂Uh
b (x

h
b , x

h
−b,α

h
b,β

h
b , p

h
d )

∂xhb
≥ 0. (7.9)

(ii) Assumption 7.2: An EV has a declining marginal benefit with respect to the
charging amount. This statement can be interpreted from these two aspects:
(1) The marginal charging time (i.e., drivers’ waiting time) increases since the
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charging rate slows down when the battery gets drenched; (2) satisfaction level
of an EVgradually gets saturatedwhenmore andmore energy is consumed; i.e.,

∂2Uh
b (x

h
b , x

h
−b,α

h
b,β

h
b , p

h
d )

∂xhb
2 ≤ 0. (7.10)

(iii) Assumption 7.3: EV’s benefit gets lower when the electricity price increases,
i.e.,

∂Uh
b (x

h
b , x

h
−b,α

h
b,β

h
b , p

h
d )

∂ phd
< 0. (7.11)

Without loss of generality, the quadratic utility function is defined as:

Uh
b (x

h
b , x

h
−b,α

h
b,β

h
b , p

h
d ) (7.12)

= −1

2
αh
b(x

h
b )

2 + βh
b · xhb − phd · xhb

Note that the game formulation we proposed in this chapter is a general methodology
which is not restricted to the current quadratic utility function. As long as the utility
function satisfies the above assumptions, the proposed method can be applied with
virtually no change.

7.4.1.2 Utility Function of the System Controller

The objective of the system controller is to maximize the revenue for selling the
electricity to EVs, and thus, the utility function of the system controller is defined
mathematically as:

Uh
sc = pc ·

∑

a∈A(h)

xha + phd ·
∑

b∈B(h)

xhb (7.13)

−Ch
m

⎛

⎝
∑

a∈A(h)

xha +
∑

b∈B(h)

xhb

⎞

⎠ ,

where Ch
m is the cost function of the charging system. Utility functionUh

sc captures the
revenue for selling the energy (fist two terms) and the cost for generating or buying the
energy (the last term). Without loss of generality, we also consider the quadratic cost
function here, i.e.,Ch

m(x) = nhx + mhx2. In the proposed game, the systemcontroller
can control the price for selling the energy phd and total energy cap Eh

m . The EVs
respond to this price and choose the amount of energy to charge xhb to maximize their
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utilities, and simultaneously, they have to ensure that their total charging demand
should not exceed the energy cap Eh

m . Note that the centralized charging scheduling
sequences xha , a ∈ A(h) are determined by the centralized charging scheme (local
controller). In this regard, for a fixed electricity price phd , an EV b solves the following
optimization problem:

max
xhb

Uh
b (x

h
b , x

h
−b,α

h
b,β

h
b , p

h
d ) (7.14)

s.t.
∑

b∈B(h)

xhb ≤ Eh
m . (7.15)

Obviously, the charging strategy of EV b not only depends on its own utility function
but also depends on other EVs’ charging strategies through constraint (7.15), and
this constraint is shared by all the players (i.e., EVs). This game is a jointly convex
generalized Nash equilibrium problem1,2,3 (GNEP) due to the same shared “coupled
constraint” (7.15) and themax-concave (i.e., min-convex) objective functions of EVs
[6]. Then, after all the EVs’ charging amount reaches the GNE, the system controller
optimize the energy price phd to maximize the revenue of the system. Given the
GNE charging amount of EVs (xhb , x

h
−b), the system controller solves the following

problem:

max
phd

Uh
sc (7.16)

to maximize the system revenue. The solution of the formulated noncooperative
leader–follower generalized Stackelberg game (GSG) is the generalized Stackelberg
equilibrium (GSE) in which the leader finds its optimal price and the followers reach
their equilibrium states. At this equilibrium, no player (i.e., both the leader and the
followers) can increase his utility by changing unilaterally his strategy to any other
feasible point. Here, we term the formulated game as generalized Stackelberg game
(GSG) rather than Stackelberg game because of the coupled constraint (7.15) for
the followers. Since the followers’ strategies are coupled, they need to seek a GNE
instead of a traditional Nash equilibrium (NE). Therefore, the formulated game is
termed as GSG whose solution is called GSE.

1The generalized Nash equilibrium problem (GNEP) is a noncooperative game in which each
player’s admissible strategy set depends on the other players’ strategies.
2In a noncooperative game, if the players’ actions are coupled solely through the constraints, then
this game is a special class of game whose solution is a generalized Nash equilibrium (GNE).
3The objective functions of EVs are all min-convex (max-concave) functions, and the strategy set
which is constrained by a single linear function is closed and convex with respect to all variables;
then, we have that this formulatedGNEP is jointly convex [6]. Detailed discussionswill be presented
in the next section.
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7.4.2 Existence of GSE

We first specify the definition of GSE and then discuss in detail the existence and
the properties of it.

Definition 7.1 For the GSG formulation

S = {(B(h) ∪ {system controller}), {xhb }b∈B(h), E
h
m, p

h
d , {Uh

b }b∈B(h),U
h
sc}

defined in Sect. 7.4.1, whereUh
sc andU

h
b , b ∈ B(h) are utility functions of the leader

and followers given by (7.13) and (7.12), respectively. A strategy set (xh∗
, phd

∗
)

constitutes theGSE of the game, if and only if the following inequalities are satisfied:

Uh
b (x

h
b

∗
, xh−b

∗
,αh

b,β
h
b , p

h
d

∗
) ≥ Uh

b (x
h
b , x

h
−b

∗
,αh

b,β
h
b , p

h
d

∗
)

∀xhb ∗ ∈ xh
∗
, b ∈ B(h),

∑

b∈B(h)

xhb ≤ Eh
m

and

Uh
sc(p

h
d

∗
, xh

∗
) ≥ Uh

sc(p
h
d , x

h∗
). (7.17)

In other words, no EV can increase its revenue by deviating from its GSE charging
amount xh∗

and no price other than the GSE price phd
∗
can improve the utility of the

charging system.
Typically, in noncooperative games, the existence of Nash equilibrium is not

always guaranteed. For the followers’ game, to investigate the existence of GNE in
response to a price phd , we first propose the following definitions and theorems:

Definition 7.2 We say a game satisfies the convexity assumption if the following
condition holds: For every player v ∈ N and every strategy xv ∈ R

nv , whereN is the
set of players, the objective functionUv(·, xv, x−v) is min-convex (max-concave) and
the strategy set Xv(x−v) is closed and convex. Note that we use Xv(x−v) to represent
the strategy set of player v since his strategy set is dependent on other players’
strategies.

Obviously, in the proposed followers’ game, for each players, the objective func-
tion Uh

b is max-concave and the strategy set which is merely confined by constraint
(7.15) is closed and convex. Thus, the followers’ game satisfies convexity assump-
tion.

Definition 7.3 Let a GNEP be given, which satisfies convexity assumption, this
GNEP is jointly convex if for some closed convexX ⊆ R

n (n = n1 + n2 + · · · + nN )
and all v ∈ N , we have

Xv(x−v) = {xv ∈ R
nv : (xv, x−v) ∈ X}. (7.18)



114 7 Hybrid Charging Control of Electric Vehicles

For the proposed followers’ game, it is easy to check that the strategy set of EV
b is:

Xb(xh−b) =
⎧
⎨

⎩xhb ∈ R
+
0 ,

∑

b∈B(h)

xhb ≤ Eh
m

⎫
⎬

⎭ . (7.19)

Obviously, this game satisfies the jointly convex condition. Based on the previous
definitions, the following theorem is proposed.

Theorem 7.1 In a jointly convex GNEP, the utility function of each player Uv is
continuously differentiable, and then, every solution of the variational inequality
problem VI(X,F)4 is also a solution of GNEP, whereX is as defined in the definition
of jointly convex and F = [ ∂Uv

∂xv
]Nv=1.

The proof for this theorem can be found in [6]. Note that Theorem 7.1 does not
say that any solution of a jointly convex GNEP is also a solution of the VI(X,F) and
some solutions may lost. We further have the definition of the variational equilibrium
(VE) as follows.

Definition 7.4 In a jointly convex GNEP, the utility function of each player Uv is
continuously differentiable, and we call a solution of the GNEP that is also a solution
of VI(X,F) a variational equilibrium (VE).

In aGNEP, the existenceofVE is of particularly interest since aVE ismore socially
stable than other GNE (if there exists any), and thus, it is a desirable equilibrium
state [7]. Next, we will prove the existence and uniqueness of VE in our proposed
followers’ game.

Theorem 7.2 If X is a compact convex set and F(x) is continuous on X, then the
variational inequality problem admits at least one solution x∗.

The proof for this theorem is lengthy and can be found in [8]. Considering the
proposed followers’ game, the strategy set of EVs

Xh =
{
(xh1 , x

h
2 , . . . , x

h
b , . . .) : (7.20)

∀b ∈ B(h), xhb ≥ 0,
∑

b∈B(h)

xhb ≤ Eh
m

}

is a Polyhedron, which is compact and convex. For the corresponding

Fh = −
[
∂Uh

b

∂xhb

]B(h)

b=1

=

⎡

⎢⎢⎢⎣

αh
1x

h
1 + phd − βh

1
αh
2x

h
2 + phd − βh

2
...

αh
B(h)x

h
B(h) + phd − βh

B(h)

⎤

⎥⎥⎥⎦ (7.21)

4The variational inequality problem VI(X,F(x)) consists in finding a vector x̄ ∈ X such that (y −
x̄)T · F(x̄) ≥ 0 for all y ∈ X.
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is obviously continuous (linear), therefore we claim there exists VE in the followers’
game. To investigate the uniqueness of VE, we propose the following theorem.

Theorem 7.3 In a variation inequality problemVI(X,F), ifF(x) is strictlymonotone
on X. Then the solution is unique, if one exists.

The proof for this theorem is presented in the Appendix C. Now turn to the
definition of Fh, we have that the Jacobian of Fh is

JFh =

⎡

⎢⎢⎢⎢⎣

αh
1 0 . . . 0
· αh

2 . . . ·
· · . . . ·
· · . . . ·
0 0 . . . αh

B(h)

⎤

⎥⎥⎥⎥⎦
, (7.22)

which is a diagonal matrix with all the diagonal elements positive. In other words,
JFh is a positive-definite matrix so Fh is strictly monotone on Xh. Therefore, given
an electricity price phd , there exists GNE and more precisely, an unique VE for the
followers’ GNEP.

Theorem 7.4 For a fixed electricity price phd , the unique VE is the socially optimal
solution of the proposed followers’ GNEP between EVs.

The proof for Theorem 7.4 is presented in the Appendix C. This theorem states
that by solving the VI(Xh,Fh), where Xh and Fh are defined by (7.20) and (7.21),
respectively, the socially optimal solution of the followers’ GNEP can be obtained.
As a result, when the system controller sets its optimal price in response to the VE
demand of the EVs, the GSG reaches its GSE, which represents the socially optimal
solution.

7.4.3 Solution and Algorithm

7.4.3.1 VE for the Followers’ GNEP

For the decentralized charging scheme proposed in this chapter, the GNEP among
the EVs is transformed into a strictly monotone variational inequality (VI) problem
whose solution leads to the socially optimal VE. Numerous methods have been
proposed to solve the VI problem, including projection method, relaxation method,
decomposition method. In this chapter, we adopt Solodov and Svaiter (S–S) method
to solve the VI problem [9, 10]. The S–S method is a kind of extragradient method (a
subclass of the projection method) which can solve the VI problem efficiently. The
S–S method works briefly as follows: Suppose xk ∈ X be the current approximation
of the solution of VI(X,F); first, we compute the point PX (xk − μkF(xk)), where
PX (·) denotes the orthogonal projection map onto X and μk is a judiciously chosen
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positive steplength.Here, PX (xk − μkF(xk)) is the solution of the followingquadratic
programming problem

min
x∈X

1

2
xT x − (xk − μkF(xk))T x; (7.23)

next, the line segment between xk and PX (xk − μkF(xk)) is searched for a point zi

such that the hyperplane

∂Hk = {x ∈ R
n| < F(zk), x − zk >= 0} (7.24)

strictly separates xk from the solution of the VI(X,F) x∗, where < ·, · > is the
usual inner product in Rn . To compute zk , an Armijo-type procedure is adopted, i.e.,
zk = xk − ηkr(xk,μk) where ηk = γ īμk with ī is the smallest nonnegative integer i
satisfying

< F(xk − γiμkr(xk,μk)), r(xk,μk) > (7.25)

≥ σ

μk
‖r(xk,μk)‖2

where r(xk,μk) = xk − PX (xk − μkF(xk)) being the projected residual function;
after the hyperplane ∂Hk is constructed, the next iteration xk+1 is computed by
projecting xk onto the intersection between the feasible set X with the halfspace
∂Hk = {x ∈ R

n| < F(zk), x − zk >≤ 0} which contains the solution set X∗. The
details of the S–S method are shown in Algorithm 7.1. Upon solving the VI(X,F),
the VE demand of each EV can be obtained. Next, we show how to optimize the
electricity price by the system controller given the VE of the EVs.

7.4.3.2 Electricity Price Optimization

To investigate the electricity price optimization, we first consider the Karush–Kuhn–
Tucker (KKT) optimal condition system of the VI problem, which is given by

Fh + ∇h
x

⎛

⎝
∑

b∈B(h)

xhb − Eh
m

⎞

⎠ · λ = 0, (7.26)

λ

⎛

⎝
∑

b∈B(h)

xhb − Eh
m

⎞

⎠ = 0, (7.27)

for some multiplier λ ≥ 0. Note that if

∑

b∈B(h)

xhb < Eh
m, (7.28)
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then some EVs are able to increase their charging demand to gain higher utilities.
Finally, this constraint becomes an equality, and hence, at the VE,

∑

b∈B(h)

xhb = Eh
m, (7.29)

i.e., for a fixed electricity price, the sum of demands of all the EVs at the VE are equal
to the available energy cap Eh

m . Note that in the game formulation, energy is assumed
to be a scarce resource. The energy cap Eh

m should be lower than the total energy
consumption capacity of the connected EVs. This avoids the trivial case where all
the EVs get the energy allocation equal to their maximum capacity. From (7.26), we
have that:

λ + αh
b x

h
b

∗ + phd − βh
b = 0, (7.30)

for any b ∈ B(h). Thus, the electricity price should satisfy

phd = βh
b − λ − αh

b x
h
b

∗
. (7.31)

Considering the utility function of the system controller Uh
sc from (7.13), obviously

when phd reaches its maximum the system can obtain the maximum utility, and
therefore, the optimal price of the proposed game is:

phd
∗ = βh

b − αh
b x

h
b

∗
, (7.32)

i.e., λ = 0 when the GSG reaches the GNE. The requested charging amount of each
vehicle should be

xhb
∗ = βh

b − phd
∗

αh
b

(7.33)

with the optimal electricity price phd
∗
. This is the equilibrium state of the game.

7.4.3.3 Algorithm Design

In order to reach the equilibrium, the system controller and the EV have to com-
municate with one another to make their choices. Upon any EV b is plugged in,
the system controller receives its utility parameters αh

b and βh
b via communication

channels (e.g., V2G). The algorithm starts with the setting of energy cap Eh
m . Given

the fixed amount Eh
m , the system controller solves VI(Xh,Fh) to obtain the opti-

mal charging strategy vector xh∗ using the S–S mechanism. The system controller
then gets the optimal electricity price ph∗

d adopting (7.32). ph∗
d is broadcasted to EVs

through communication channels, andEVs determine their charging demand through
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solving (7.14), which is actually given by (7.33). Note that this algorithm shows it
advantages over that in reference [11] in the following aspects: (1) Algorithm 7.2 is
implemented in a distributed fashion (each EV chooses its own charging demand),
and EVs undertake very low computational burden since the VI problem is solved
by the system controller, while in [11], EVs have to participate into the problem
solving of the VI problem. (2) By adopting our proposed algorithm, the communi-
cation traffic between the EVs and the system controller is very low. In each time
slot, only one round-trip communication is implemented (i.e., the EVs submit their
utility functions, and the system controller broadcasts the optimal electricity price),
while in [11], dozens of round-trip messages have to be exchanged before the game
reaches its GSE. Particularly, when the communication channel is poor, our approach
can easily overcome the unstable channel by retransmission. But in [11], the game
is difficult to reach GSE in this scenario. Since to implement the algorithm, it has to
ensure that in each iteration, all the exchanged messages between the controller and
EVs are available and correct. This would become more challenging when the EV
fleet is of a large size. The details of the S–S scheme to find GNE and the proposed
algorithm to reach GSE are depicted in Algorithms 7.1 and 7.2, respectively.

Algorithm 7.1 Solodov and Svaiter (S–S) method [9, 10]
Input: The matrix Fh and the strategy set Xh which are given in (7.20) and (7.21), respectively;

Initial electricity price ph0d ; Final tolerance ε.
Output: Optimal charging strategy vector xh∗

b .
1: Begin
2: choose x0 ∈ Xh , η−1 > 0, γ ∈ (0, 1), σ ∈ (0, 1), θ > 1, k = 0, gap = e, where e is a vector

with entries equal to 1;
3: if ‖gap‖ < ε
4: then stop;
5: else
6: compute μk = min{θ · ηk−1, 1};
7: if r(xk ,μk) = xk − PX (xk − μkF(xk))
8: then xk ∈ Xh∗, stop;
9: else
10: compute ī = argmini∈Z+{< Fh(xk − γiμkr(xk ,μk)), r(xk ,μk) >≥ σ

μk ‖r(xk ,μk)‖2},
where ηk = γ īμk ;

11: compute zk = xk − ηkr(xk ,μk);
12: compute the halfspace ∂Hk = {x ∈ R

n | < F(zk), x − zk >≤ 0};
13: compute xk+1 = PXh∩Hk

(xk);
gap = xk+1 − xk ;
k = k + 1;
go to 3;

14: end if
15: end if
16: End
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Algorithm 7.2 Algorithm to reach GSE

Input: Utility function Uh
b for each vehicle b ∈ B(h); Initial electricity price ph0d .

Output: Optimal electricity price ph∗
d ; optimal charging strategy xh∗

b selected by each vehicle
b ∈ B(h).

1: Begin
2: Each EV b ∈ B(h) submits its utility function parameters αh

b and βh
b ;

3: The system controller determines the energy cap Eh
m for the uncontrolled EVs;

4: The system controller solves VI(Xh,Fh) by adopting Algorithm 7.1 and obtains the optimal
charging strategy vector xh∗;

5: The system controller computes the optimal electricity price phd
∗
based on (7.32);

6: The system controller broadcast the electricity price phd
∗
to all the EVs that are uncontrolled.

7: Each vehicle chooses their charing demand by solving problem (7.14) and obtains the optimal
charging strategy xh∗

b , b ∈ B(h);
8: End

7.4.4 Algorithm to Determine a Proper Eh
m

In the distributed charging scheme, EVs compete with each other for a fair allocation
of the scarce energy. Intuitively, when the energy cap Eh

m is low, the competition
between EVs becomes fierce and the optimal energy price phd gets high. In contrast,
if the Eh

m is high, then phd is low. Under both cases, the total revenue of the system
Uh

sc is poor. Hence, we may assume thatUh
sc will first increase and then decline with

respect to Eh
m (i.e., quasi-concave) and a proper Eh

m exists which can maximize Uh
sc

(such assumptionwill be proved in the following simulation part). Various algorithms
can be adopted to search the optimal Eh

m , including genetic algorithm (EA), Newton–
Raphsonmethod, gradient descentmethod. In this chapter,we assumeUh

sc is derivable

Algorithm 7.3 Algorithm to search an optimal Eh
m

Input: Starting point Eh0
m , tolerance ε;

Output: Optimal energy cap Eh∗
m .

1: Begin
2: x0 = Eh0

m , k = 0;
3: compute y0 = Uh

sc(x0) based on Algorithm 2;
4: while (true)
5: compute ∇Usc(xk) = Usc(xk+ε)−Usc(xk )

ε ,
where ε is a small number;

6: xk = xk + α · ∇Usc(xk);
7: y1 = Uh

sc(xk);
8: if ‖y1 − y0‖ ≤ ε
9: break;
10: end if
11: y0 = y1;
12: k = k + 1;
13: end while
14: Eh∗

m = xk ;
15: End
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with respect to Eh
m and propose the following algorithm based on gradient descent

method to search an optimal Eh
m . The effectiveness of the proposed algorithm will

be verified in the following section.

7.5 Experimental Evaluation

In this section, we present simulation results based on real-world traces for assessing
the performance of the proposed mixed EV charging scheme and evaluate the effects
of different parameters.

7.5.1 Simulation Setting

In this chapter, the units of the electricity price, the cost functions, and the utility
functions are US cent ¢/KWh. For the centralized charging, the scheduling horizon
is 8h with time evenly divided into 32 time slots, i.e., the length of each time slot
is 15 mins. The number of connected vehicles currently is 100 unless otherwise
stated. The plug-out times are uniformly distributed between 1 time slot and 32 time
slots. The amounts of energy needed for the EVs are evenly distributed between 8
and 64 KWh. The maximum allowable charing rate of an EV is 28 KW, and the
minimum charging rate of an EV is 0 KW. For the cost function of the electricity
acquisition Ch

g (·), we set ah = 1 × 10−3 ¢/KWh2 and bh = 1.6 ¢/KWh. To solve the
optimization problem (7.8), interior point method is adopted, which can solve the
convex optimization problem efficiently. For the distributed charging, 100 vehicles
participate in this scheme. Unless otherwise stated, their utility function parameters
αh
b and βh

b are chosen randomly in the range of [0.75, 1.25] and [13, 15], respectively.
The energy cap Eh

m is set as 700 KWh by default. Note that all statistical results
are averaged over all possible random values of the EVs’ parameters using 500
independent simulation results.

7.5.2 Results and Discussion

We first investigate how the optimal charging price ph∗
d varies with respect to energy

cap Eh
m . The energy cap Eh

m is linearly varied from 675 to 725 KWh for different
EV numbers B(h) = 95, 100, and 105. Adopting Algorithm 7.2, we compute the
corresponding optimal electricity price ph∗

d . The results are depicted in Fig. 7.4. It
is obviously shown that the average optimal price decreases with the energy cap.
This is due to the fact that when the total available capacity of the charging system
increases, the grid has more energy to sell, and thus, the competition between EVs
gets weaker and price declines. In other words, as the available energy increases, the
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Fig. 7.4 The variation of
optimal electricity price for
decentralized controlled
vehicles ph∗

d with respect to
their energy cap Eh

m
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Fig. 7.5 The variation of
optimal electricity price for
decentralized controlled
vehicles ph∗

d with respect to
their number
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system controller has to reduce the energy price to encourage the vehicle to charge
more energy. Meanwhile, in Fig. 7.5, the effect of the number of connected EVs on
the average optimal electricity price is presented. It appears that the growing vehicle
number leads to a growth in the average optimal price. The reason is that a larger
vehicle number means increasing in electricity demand. In this case, the system
controller can set a higher electricity price to stimulate EVs charge less energy.

The impacts of EVs’ utility function parameters αh
b and βh

b on the average optimal
electricity price are illustrated in Figs. 7.6 and 7.7, respectively. To do the test, we
vary the value of αh

b for different ranges of βh
b ∈ [10, 12], [12, 14], and [14, 16],

respectively. The test to assessing the impact of βh
b is conducted in a similar way,

i.e., βh
b is increased for various ranges of α ∈ [0.5, 0.8], [0.8, 1.1], and [1.1, 1.4],

respectively. We observe that the optimal price is a decreasing function of αh
b . In

contrast, a rise in βh
b presents an upper trend in the optimal price. The reason is that

a higher αh
b indicates that the EV’s marginal utility declines. Thus, EVs are prone
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Fig. 7.6 The variation of
optimal electricity price for
decentralized controlled
vehicles ph∗

d with respect to
the users’ utility parameter
αh
b

Fig. 7.7 The variation of
optimal electricity price for
decentralized controlled
vehicles ph∗

d with respect to
the users’ utility parameter
βh
b

to charge less, and the corresponding electricity price decreases. While on opposite,
an increment on βh

n implies a rise of the marginal utility of the vehicle and therefore
leads to a brisker energy demand and a higher electricity price. These results also
verify the theoretical analysis result presented in Sect. 7.4.3.

InFig. 7.8,wepresent the total averageutilities of the charging systemas a function
of the energy cap of the distributed charging scheme Eh

m . To do the test, 100 vehicles
are centrally controlled and the other 100 vehicles choose their charging profiles
by their own. Energy cap of the latter group Eh

m increases from 300 to 700 KWh,
and we compare the average utilities of the whole system. It appears that the average
utility first shows an upper trend and then declines. There exists an optimal Eh

m which
maximize system’s utility. Thus, by adopting Algorithm 7.3 proposed in the previous
section, the system controller can properly determine an optimal Eh

m to maximize
its revenue given the system condition. The cost function Ch

m is further altered to
investigate its impact. We observe that if the cost for acquiring knowledge grows,
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Fig. 7.8 The utility of the
system with respect to
decentralized controlled
EVs’ energy cap Eh

m under
different cost functions

i.e., parameters mh or nh increase, both system utility and optimal energy cap Eh∗
m

decline. For the centralized controlled EV group, since the charging requirements
have to be satisfied, the adjustment conducted by the system controller is relatively
limited. Therefore, as the energy cost increases, the system controller is prone to cut
down the proportion of energy allocated to decentralized controlled EVs so that it
can curtail the energy expenses.

In Fig. 7.9, we evaluate how the vehicle numbers in both charging groups impact
the system utility. To conduct this test, the total connected vehicles are fixed to 200,
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Fig. 7.9 The utility of the
system with respect to the
number of vehicles that are
centralized controlled (the
total number of EVs is 200)

and we vary the proportion of centralized controlled vehicles (equivalently, the pro-
portion of uncontrolled EVs) and compute the average system utilities. Specifically,
the number of centralized controlled vehicle is varied from 80 to 120. We compare
the cases where the centralized charging price for one unit of electricity pc is low,
medium, and high. It is shown (see Fig. 7.9a) that when pc is low, the total sys-
tem utility drops as the centralized controlled EVs’ proportion increases. This fact
indicates that at this price stage, the incremental revenue due to the number growth
of the centralized controlled EVs is less than the loss caused by the departure of
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decentralized controlled vehicles. Then, we rise the values of pc to a medium level
and recompute the corresponding average system revenues. We note in Fig. 7.9b that
the system utility first increases and then declines as the number of centralized con-
trolled EVs varies from 80 to 120. If pc is further increased, the system revenue
will show a growing tendency as depicted in Fig. 7.9c. This is because at this price
interval, the increasing earning from centralized controlled EVs has surpassed the
loss due to the decreasing number of decentralized controlled vehicles. We may see
that given a price pc, there exists an optimal number ratio between centralized con-
trolled EVs and decentralized controlled EVs which maximize the system utility.
Therefore, based on the EVs’ information and cost functions, the system controller
can properly choose the energy cap Eh

m , electricity price pc, and other parameters
such that the number ratio of these two EV groups is stimulated to its best value.
Proper parameter selections can be obtained by various methods, typically involving
large-scale simulations and analyzing a large number of historical data. In addition,
given the best number ratio of these two charging groups, the charging park can
properly determine the scales of centralized charging facilities and decentralized
charging facilities so that the expected revenue is maximized. Hence, our research
may provide some illuminations on the investment policy makings of the charging
parks.

7.6 Conclusion

In this chapter, we investigate the coordination of EV charging at a charging park
considering the EV owners’ various charging preferences. A hybrid centralized–
decentralized charging mechanism is designed to determine the charging rates and
demands of EVs. Specifically, at the centralized charging side, based on the EVs’
arrival/departure patterns, a cost minimization problem is formulated and solved to
obtain an off-line global optimal scheduling. Considering the fact that the charging
station is dynamic with EVs’ patterns unpredictable, a model predictive control
(MPC)-based adaptive charging approach is developed to determine the near-optimal
EV charging profiles in real time. On the decentralized charging side, to model the
interactions between EVs and the charging system, a leader–follower noncooperative
Stackelberg game-based approach is proposed, where the system controller acts as
the leader and EVs act as the followers. We prove the existence and optimality of
the equilibrium state. It is also shown that the communication burden between EVs
and the system controller is low and our decentralized charging scheme is robust
to poor communication channels. Simulation results investigate the performances
of the charging scheme and the impacts of different parameters. It is indicated that
an optimal charging cap exists for the decentralized charing group which could
maximize the revenues of the whole charging system. In addition, our research may
further shed some illuminations on the investment policy making for charging park.
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Chapter 8
Summary and Future Work

In this chapter, we summarize this book and discuss the future work for intelligent
control of microgrids and scheduling of EVs’ charging.

8.1 Summary of Contributions

In this book, we specifically investigate the intelligent control and scheduling of two
important components in smart grid, namely microgrids and EVs. In particular, we
first study the energy management problems in microgrids with system uncertainties
under different scenarios. We then focus on the control of EV charging to achieve
a cost-effective scheduling. The main contributions of this book are summarized as
follows.

• In Chap.3, we propose a novel power demand and supply management scheme
in the microgrid to intelligently schedule the energy consumption patterns of
home appliances and output of electricity generators. We develop a novel uncer-
tainty model to capture the randomness of renewable energy generation which, by
introducing a reference distribution according to past observations and empirical
knowledge and defining a distribution set to confine the uncertainty, allows us
to conveniently handle the fluctuations of energy supply brought by the renew-
able energy. We then formulate an optimization problem to determine the optimal
power consumption and generation scheduling profiles for minimizing the fuel
cost. Finally, we propose a two-stage optimization approach to transform and then
solve the prime problem. Numerical results indicate that the proposed scheme
help effectively reduce the energy cost. Detailed studies on the impacts of differ-
ent factors on the proposed scheme provide some interesting insights which shall
be useful for policy making for the future MGCC.

© Springer Nature Singapore Pte Ltd. 2018
R. Wang et al., Intelligent Microgrid Management and EV Control Under
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• In Chap.4, we formulate a cost minimization problem to intelligently schedule
energy generations for microgrids equipped with unstable renewable sources and
combined heat and power (CHP) generators. In such systems, the fluctuant net
demands (i.e., the electricity demands not balanced by renewable energies) and
heat demands impose unprecedented challenges. To cope with the fluctuation
nature of net demand and heat demand, we develop a new flexible uncertainty
model. Specifically, reference distributions are introduced according to predic-
tions and field measurements and then uncertainty sets are defined to confine net
and heat demands. The model allows the net demand and heat demand distribu-
tions to fluctuate around their reference distributions. Another difficulty existing
in this problem is the indeterminate electricity market prices. We develop chance-
constraint approximations and robust optimization approaches to firstly transform
and then solve the prime problem. We also discuss the extensions of the proposed
approaches to handle even wider applications. Numerical results based on real-
world data evaluate the impacts of different parameters. It is shown that our energy
generation scheduling strategy performs well and the integration of CHP genera-
tors can effectively reduce the system expenditure. Our research also helps shed
some illuminations on the investment policy making for microgrids.

• In Chap.5, a cost minimization problem is formulated to intelligently schedule
energy generations for microgrids equipped with unstable renewable sources and
energy storages. In such systems, the uncertain renewable energy will impose
unprecedented scheduling challenges. To cope with the fluctuate nature of the
renewable energy, an uncertainty model based on renewable energies’ moment
statistics is developed. Specifically, we obtain the mean vector and second-order
moment matrix according to predictions and field measurements and then define
uncertainty set to confine the renewable energy generation. The uncertainty model
allows the renewable energy generation distributions to fluctuate within the uncer-
tainty set. We develop chance-constraint approximations and robust optimization
approaches based on a Chebyshev inequality framework to firstly transform and
then solve the scheduling problem. Numerical results based on real-world data
traces evaluate the performance bounds of the proposed scheduling scheme. It is
shown that the temporal-correlation information of the renewable energy within a
proper time span can effectively reduce the conservativeness of the solution.More-
over, detailed studies on the impacts of different factors on the proposed scheme
provide some interesting insights which shall be useful for the policy making for
the future microgrids.

• In Chap.6, we investigate the cost-effective scheduling approach of EV charging
at a renewable energy aided charging station. A novel two-stage EV charging
mechanism is designed in this chapter. Specifically at the first stage, based on the
prediction of future energy requests and considering the elastic charging property
of EVs, we formulate an offline optimal energy generation scheduling problem and
solve it in a day-ahead manner to determine the energy generation in each time
slot next day. Then at the second stage, based on the planned energy generation
day-ahead, we develop an adaptive real-time charging strategy to determine the
charging rate of each vehicle in a dynamic manner. A charging rate compression

http://dx.doi.org/10.1007/978-981-10-4250-8_4
http://dx.doi.org/10.1007/978-981-10-4250-8_5
http://dx.doi.org/10.1007/978-981-10-4250-8_6
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(CRC) algorithm is developed which tremendously reduces the complexity of the
problem solving. The fast algorithm supports real-time operations and enables
the large-scale small-step scheduling more efficiently. Simulation results indicate
that the proposed scheme can help effectively save the energy cost and reduce the
system PAR. Detailed evaluations on the impact of renewable energy uncertainties
show that our proposed approach achieves a good performance in enhancing the
system fault tolerance against uncertainties and the noises of real-time data. We
further extend the mechanism to track a given load profile and handle the scenario
where EVs only have several discrete charging rates.

• In Chap.7, we investigate the coordination of EVs’ charging at a charging park
considering the EV owners’ various charging preferences. A hybrid centralized–
decentralized (HCD) EV charging control scheme is designed. Specifically on the
centralized charging side, we first develop an offline optimal scheduling approach
aiming at minimizing the energy cost while satisfying the charging requirements
of EVs. Then to deal with the system dynamics and uncertainties, we develop a
model predictive control (MPC)-based adaptive scheduling strategy to determine
the near-optimal EV charging profiles in real time. On the decentralized side, we
model the interactions betweenEVs and the charging system controller as a leader–
follower noncooperative Stackelberg game in which the system controller acts as
the leader and the EVs act as followers. The existence of the equilibrium state and
its optimality are analyzed. It is shown that the decentralized charging scheme is
robust to unstable communication channels.We further investigate the interactions
between these two charging groups and propose an algorithmmaximizing the total
revenues of the whole system. Our research shall provide useful insights helping
the charging park operator develop rational investment strategies.

8.2 Future Work

In the future, we will extend the work in the following aspects.

8.2.1 Energy Storage Integration into the Microgrid

Future studies on the microgrid may consider the cases where there is energy storage
in the system or surplus energy can be sold to the outside utility grid. For the former
case, the energy storagewill impose its own cost; meanwhile it may to a certain extent
alleviate the uncertainty problem caused by the fluctuation of the renewable energy,
especially when the storage is of a large enough capacity. As to the optimal capacity
of the energy storage system, it depends on the fluctuation patterns of the energy
demand and scale of the microgrid system. For the latter case, a few other conditions,
e.g., the price of the electricity, the competition between different microgrids, etc.,
probably have to be taken into account. The optimization problems for these two
different cases therefore become significantly different from the one we considered
in this book and worth further studies.

http://dx.doi.org/10.1007/978-981-10-4250-8_7
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8.2.2 Design of a Vehicle to Grid (V2G) Aggregator

Currently, we only consider EV charging strategies in which EVs obtain electricity
from the grid. Actually, EV batteries can also be designed for fast discharge to the
grid. System enabling this process is called vehicle to grid (V2G) system. If a group
of parked cars with V2G capability are aggregated, they can provide ramping and
regulation in support of the power grid. In V2G, one challenge is the availability of
EVs, since an EV can only deliver power to the grid when it is parked and connected
to grid. As a result, this increases the uncertainty of the power supplied by EVs. How
to effectively organize and control these vehicles remains an interesting topic. In the
future, we may consider this issue by trying to design an efficient V2G aggregator,
which acts as an interface between power grid and EVs. Efficient scheduling algo-
rithms also need to be developed. By properly charging and discharging the batteries
of EVs, EVs can act as dispatchable energy storage system, balancing the demand
and supply as well as improving the system flexibility and reliability.

8.2.3 More Detailed Statistical Properties of Renewable
Energy Generation

For energy generation scheduling problem in microgrids, we may study in more
details regarding the statistical properties of renewable energy generation. We may
verify that the probability density function of renewable energy generation is uni-
modal through analyzing a large amount of historical data. If that is the case, we
could adopt the generalized Gaussian inequality bounds rather than the generalized
Chebyshev inequality bounds to further reduce the conservativeness of the robust
solution in Chap. 5. In addition, we may consider a more practical case where the
size of the energy storage is limited. Then, the energy generation scheduling strate-
gies may change, and some other problems such as how to determine a proper size
of the energy storage device are interesting and worth further studies.

http://dx.doi.org/10.1007/978-981-10-4250-8_5


Appendix A
Energy Generation Scheduling in Microgrids

A.1 Proof of Proposition 4.1

Proof Rewrite (4.15)–(4.17) as follows:

max
f0(Lh)

∫ +∞

0
h(Lh,Lh) · f0(L

h)dLh (A.1)

s.t.
∫ +∞

0
[ln f0(Lh) − lngh(L

h)] f0(Lh)dLh ≤ Dh

∫ +∞

0
f0(L

h)dLh = 1.

We can see that the objective function and equality constraint function are affined
with respect to f0(Lh). Next, we show that the inequality constraint function is
convex.

Lemma: If f : Rn −→ R is convex, then the perspective of f , which is denoted
as a function g : Rn+1 −→ R that

g(x, t) = t f (x/t), (A.2)

with domain

dom g = {(x, t)|x/t ∈ dom f, t > 0} (A.3)

preserves convexity.
That is to say, if f is a convex function, so is its perspective function g. Similarly,

if f is concave, so is g. This can be proved in several ways, e.g., by direct verification
of the defining inequality or using epigraphs and the perspective mapping on Rn+1.
Readers can refer to [1] for more detailed discussions.

© Springer Nature Singapore Pte Ltd. 2018
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We consider the convex function f (x) = −ln x on R++. Its perspective is

g(x, t) = −t ln(x/t) = t ln(t/x) = t (ln t − ln x) (A.4)

and it is convex onR2++. The function g is called the relative entropy of t and x . Then,
we have that the KL divergence

∫
x∈S[ln f (x) − lng(x)] f (x)dx between distribution

f (x) and g(x) is convex in f (x) (and g(x) as well). In this case, we claim that the
inequality constraint is convex with respect to distribution f0(Lh). �

A.2 Reformulation of Problem (4.6)

Specifically, the robust counterpart of Problem (4.6) is as follows:

min
X,Y,Z,V,U

H∑
h=1

{
pg ·Uh + p̂hs · V h + (A.5)

∑
a∈A

[
cma · xha + cba · yha + csa · zha

]}

+ max{W0|W0⊆J0,|W0|≤�}

{∑
h∈W0

dh · V h

}

s.t. zha ≥ 0, zha ≥ yha − yh−1
a

(4.2) (4.3) (4.4), yha , z
h
a ∈ {0, 1}

xha , V
h,Uh ∈ R

+
0 , h ∈ H, a ∈ A,

Proposition 4.4: Problem (A.5) has an equivalent MIP formulation as (4.29).

Proof Given a vector V∗, we can convert the last part of Problem (A.5)’s objective
function to a linear one as follows:

β0(V∗) = max

{∑
h∈W0

dh · V h∗ : W0 ⊆ J0, |W0| ≤ �}
}

= max

{ ∑
h∈J0

dh · V h∗ · φh :
∑
h∈J0

φh ≤ �, (A.6)

0 ≤ φh ≤ 1,∀h ∈ J0

}
.

Next, the dual of Problem (A.6) is:
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min
∑
h∈J0

eh + � · φ (A.7)

s.t. φ + eh ≥ dh · V h∗

φ ≥ 0, eh ≥ 0,∀h ∈ J0.

By strong duality, we have:

β0(V∗) = min

{ ∑
h∈J0

eh + � · φ : (A.8)

φ + eh ≥ dh · V h∗,φ ≥ 0, eh ≥ 0,∀h ∈ J0

}
.

Substituting (A.8) to Problem (A.5), we obtain that Problem (A.5) is equivalent to
Problem (4.29). �
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Appendix B
Massive Electric Vehicle Charging Involving
Renewable Energy

B.1 Proof for Lemma 5.1

Proof We prove the lemma by adopting the Karush–Kuhn–Tucker (KKT) optimal-
ity conditions for the solution to the given problem. The Lagrangian function for
Problems (6.7)–(6.10) is:

L(V,λ, ν)

=
∑
τi∈�

wi (Vimax − Vi )
2 + λ0

(∑
τi∈�

Vi − Vm

)
(B.1)

+
∑
τi∈�

λi (Vimin − Vi ) +
∑
τi∈�

νi (Vi − Vimax ),

where λ0 ≥ 0, λi ≥ 0, and νi ≥ 0 for τi ∈ � are Lagrangian multipliers associated
with constraints (6.8), (6.9), and (6.10). Through Slater’s condition, strong duality
holds for this problem. In such case, the sufficient and necessary conditions for the
existence of a minimum value at V ∗

i are, for all τi ∈ �

∂L

∂V ∗
i

= −2wi (Vimax − V ∗
i ) + λ0 − λi + νi = 0, (B.2)

λ0

(∑
τi∈�

Vi − Vm(t)

)
= 0, (B.3)

∑
τi∈�

λi (Vimin − Vi ) = 0, (B.4)

∑
τi∈�

νi (Vi − Vimax ) = 0. (B.5)
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First assume that (6.8) is inactive, which means that
∑

τi∈� V ∗
i − Vm(t) < 0 and

λ0 = 0. In this case, at least one constraint in (6.9) or (6.10) must be active. Let us
assume that the kth constraint in (6.9) is active, i.e., V ∗

k = Vkmin and λk ≥ 0. Then,
the kth constraint in (6.10) must be inactive, that is, V ∗

k − Vkmax < 0 and νk = 0.
From (B.2), we then obtain

λk = −2wi (Vimax − V ∗
i ) < 0, (B.6)

which contradicts the assumption that λk ≥ 0. Hence, we have the conclusion that
if any V ∗

k = Vkmin , constraint (6.8) have to be active.
Similarly, if at least one constraint in (6.10) is active while others are inactive,

i.e., V ∗
h = Vhmax (active) and Vlmin < V ∗

l < Vlmax (inactive), then we can obtain that
λh = 0, νh ≥ 0, λk = 0, and νk = 0. Based on (B.2), we obtain the following two
equations:

λ0 = 2wi (Vhmax − V ∗
h ) + λh − νh = −νh ≤ 0, (B.7)

λ0 = 2wi (Vkmax − V ∗
k ) + λk − νk

= 2wi (Vkmax − V ∗
k ) > 0. (B.8)

Note that the above equations (B.7) and (B.8) cannot be satisfied simultaneously,
which means that all the constraints in (6.10) can either be active or inactive. Under
such cases, if all the constraints in (6.10) are active, we have

∑
τi∈�

V ∗
i =

∑
τi∈�

Vimax > Vm(t), (B.9)

which contradicts the constraint (6.8) that the charging task is schedulable. If all
the constraints in (6.10) are inactive, then from (B.5) we have λ0 = 0 from (B.8),
which means that

∑M(t)
i=1 V ∗

i − Vm(t) = 0 given (B.3). This again contradicts the
assumption that (6.8) is inactive. Therefore, we have the conclusion that for any
solution to the optimization problem (6.7)–(6.10), constraint (6.8) is active, i.e.,∑

τi∈� V ∗
i (t) = Vm(t) and V ∗

i (t) 
= Vimax , for τi ∈ �. Hence, Lemma 5.1 is proved.
�

B.2 Proof for Theorem 5.1

Proof Consider the KKT optimality condition in (B.2)–(B.5). We have proved in
Lemma 5.1 that any solution, V ∗

i (t), to the optimization problem must satisfy∑
τi∈� V ∗

i (t) = Vm(t) and V ∗
i (t) 
= Vimax , for τi ∈ �. Therefore, we only need

to consider the condition that νi = 0, for τi ∈ �. Suppose that the hth constraint in
(6.9) is active, i.e., V ∗

h = Vhmin and
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λh = λ0 + ν0 − 2wh(Vhmax − V ∗
h )

= λ0 − 2wh(Vhmax − Vhmin ). (B.10)

For other constraints that are inactive, we have λk = 0 based on (B.4). Based on
(B.2), we have:

λ0

wi
= λi

wi
+ 2(Vimax − V ∗

i ). (B.11)

By summing up the above equation for all i that satisfy V ∗
i 
= Vimin , we can get:

λ0

∑
V ∗
i 
=Vimin

1

wi
= 2

∑
V ∗
i 
=Vimin

(Vimax − V ∗
i ), (B.12)

which is equivalent to

λ0

∑
V ∗
i 
=Vimin

1

wi

= 2

( ∑
V ∗
i 
=Vimin

Vimax +
∑

V ∗
i =Vimin

Vimin

−
∑

V ∗
i =Vimin

Vimin −
∑

V ∗
i 
=Vimin

V ∗
i

)

= 2
(
V̂ (t) − Vm(t)

)
, (B.13)

and thus:

λ0 = 2
(
V̂ (t) − Vm(t)

)
∑

V ∗
i 
=Vimin

(1/wi )
(B.14)

as long as V̂ (t) > Vm(t), λ0 > 0, λi ≥ 0, and constraint (6.10) are satisfied. Under
such case, the optimal charging rate V ∗

i either satisfies V ∗
i = Vimin or

V ∗
i = Vimax − λ0

2wi

= Vimax −
1
wi

(
V̂ (t) − Vm(t)

)
∑

V ∗
i 
=Vimin

(1/wi )
. (B.15)

Since Slater condition holds for Problems (6.7)–(6.10), the KKT conditions provide
necessary and sufficient condition for optimality. Theorem 5.1 is proven. �
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Appendix C
Hybrid Charging Control of Electric Vehicles

C.1 Proof of Theorem 6.3

Proof Suppose that x1 and x∗ are both solutions and x1 
= x∗. Then since both x1

and x∗ are solutions, they must satisfy:

F(x1)T · (x
′ − x1) ≥ 0, ∀x′ ∈ X, (C.1)

F(x∗)T · (x
′ − x∗) ≥ 0, ∀x′ ∈ X. (C.2)

After substituting x∗ for x
′
in (C.1) and x1 for x

′
in (C.2) and adding the resulting

inequalities, we obtain:

F(x1 − x∗)T · (x∗ − x1) ≥ 0. (C.3)

But inequality (C.3) is in contradiction to the definition of strict monotonicity. Hence,
x1 = x∗. �

C.2 Proof of Theorem 6.4

Proof Given a fixed electricity price phd , to find the socially optimal solution of the
proposed followers’ GNEP, one has to solve the following optimization problem:

max
xhb

∑
b∈B(h)

Uh
b (xhb , x

h
−b,α

h
b,β

h
b , p

h
d ) (C.4)

s.t.
∑

b∈B(h)

xhb ≤ Eh
m, (C.5)
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which is obviously a quadratic programming problem. The Karush–Kuhn–Tucker
(KKT) optimal conditions for this problem are:

Fh + ∇h
x

⎛
⎝ ∑

b∈B(h)

xhb − Eh
m

⎞
⎠ · λ = 0, (C.6)

λ

⎛
⎝ ∑

b∈B(h)

xhb − Eh
m

⎞
⎠ = 0, (C.7)

which are exactly the same to the KKT conditions of the VI(Xh,Fh) problem, i.e.,
(7.26) and (7.27). Since the Slater’s condition holds, the KKT conditions provide
sufficient and necessary conditions for optimality. Thus, the uniqueVE is the socially
optimal solution of the proposed followers’ GNEP. �
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