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Preface

Population genetics is concerned with the distribution of alleles, that is, variants at
a genetic locus, in a population and the dynamics of such a distribution across gen-
erations under the influences of genetic drift, mutations, selection, recombination
and other factors [57]. The Wright–Fisher model is the basic model of mathematical
population genetics. It was introduced and studied by Ronald Fisher, Sewall Wright,
Motoo Kimura and many other people. The basic idea is very simple. The alleles
in the next generation are drawn from those of the current generation by random
sampling with replacement. When this process is iterated across generations, then
by random drift, asymptotically, only a single allele will survive in the population.
Once this allele is fixed in the population, the dynamics becomes stationary. This
effect can be countered by mutations that might restore some of those alleles that
had disappeared. Or it can be enhanced by selection that might give one allele an
advantage over the others, that is, a higher chance of being drawn in the sampling
process. When the alleles are distributed over several loci, then in a sexually
recombining population, there may also exist systematic dependencies between the
allele distributions at different loci. It turns out that rescaling the model, that is,
letting the population size go to infinity and the time steps go to 0, leads to partial
differential equations, called the Kolmogorov forward (or Fokker–Planck) and the
Kolmogorov backward equation. These equations are well suited for investigating
the asymptotic dynamics of the process. This is what many people have investigated
before us and what we also study in this book.

So, what can we contribute to the subject? Well, in spite of its simplicity,
the model leads to a very rich and beautiful mathematical structure. We uncover
this structure in a systematic manner and apply it to the model. While many
mathematical tools, from stochastic analysis, combinatorics, and partial differential
equations, have been applied to the Wright–Fisher model, we bring in a geometric
perspective. More precisely, information geometry, the geometric approach to
parametric statistics pioneered by Amari and Chentsov (see, for instance, [4, 20]
and for a treatment that also addresses the mathematical problems for continuous
sample spaces [9]), studies the geometry of probability distributions. And as a
remarkable coincidence, here we meet Ronald Fisher again. The basic concept
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of information geometry is the Fisher metric. That metric, formally introduced
by the statistician Rao [102], arose in the context of parametric statistics rather
than in population genetics, and in fact, it seems that Fisher himself did not see
this tight connection. Another fundamental concept of information geometry is the
Amari–Chentsov connection [3, 10]. As we shall argue in this book, this geometric
perspective yields a very natural and insightful approach to the Wright–Fisher
model, and with its help we can easily and systematically compute many quantities
of interest, like the expected times when alleles disappear from the population.
Also, information geometry is naturally linked to statistical mechanics, and this
will allow us to utilize powerful computational tools from the latter field, like the
free energy functional. Moreover, the geometric perspective is a global one, and it
allows us to connect the dynamics before and after allele loss events in a manner
that is more systematic than what has hitherto been carried out in the literature. The
decisive global quantities are the moments of the process, and with their help and
with sophisticated hierarchical schemes, we can construct global solutions of the
Kolmogorov forward and backward equations.

Let us thus summarize some of our contributions, in addition to providing a self-
contained and comprehensive analysis of the Wright–Fisher model.

• We provide a new set of computational tools for the basic quantities of interest
of the Wright–Fisher model, like fixation or coexistence probabilities of the
different alleles. These will be spelled out in detail for various cases of increasing
generality, starting from the 2-allele, 1-locus case without additional effects like
mutation or selection to cases involving more alleles, several loci and/or mutation
and selection.

• We develop a systematic geometric perspective which allows us to understand
results like the Ohta–Kimura formula or, more generally, the properties and
consequences of recombination, in conceptual terms.

• Free energy constructions will yield new insight into the asymptotic properties
of the process.

• Our hierarchical solutions will preserve overall probabilities and model the
phenomenon of allele loss during the process in more geometric and analytical
detail than previously available.

Clearly, the Wright–Fisher model is a gross simplification and idealization
of a much more complicated biological process. So, why do we consider it
then? There are, in fact, several reasons. Firstly, in spite of this idealization, it
allows us to develop some qualitative understanding of one of the fundamental
biological processes. Secondly, mathematical population genetics is a surprisingly
powerful tool both for classical genetics and modern molecular genetics. Thirdly,
as mathematicians, we are also interested in the underlying mathematical structure
for its own sake. In particular, we like to explore the connections to several other
mathematical disciplines.

As already mentioned, our book contains a self-contained mathematical analysis
of the Wright–Fisher model. It introduces mathematical concepts that are of interest
and relevance beyond this model. Our book therefore addresses mathematicians
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and statistical physicists who want to see how concepts from geometry, partial
differential equations (Kolmogorov or Fokker–Planck equations) and statistical
mechanics (entropy, free energy) can be developed and applied to one of the most
important mathematical models in biology; bioinformaticians who want to acquire
a theoretical background in population genetics; and biologists who are not afraid
of abstract mathematical models and want to understand the formal structure of
population genetics.

Our book consists essentially of three parts. The first two chapters introduce
the basic Wright–Fisher model (random genetic drift) and its generalizations
(mutation, selection, recombination). The next few chapters introduce and explore
the geometry behind the model. We first introduce the basic concepts of information
geometry and then look at the Kolmogorov equations and their moments. The
geometric structure will provide us with a systematic perspective on recombination.
And we can utilize moment-generating and free energy functionals as powerful
computational tools. We also explore the large deviation theory of the Wright–
Fisher model. Finally, in the last part, we develop hierarchical schemes for the
construction of global solutions in Chaps. 8 and 9 and present various applications in
Chap. 10. Most of those applications are known from the literature, but our unifying
perspective lets us obtain them in a more transparent and systematic manner.

From a different perspective, the first four chapters contain general material, a
description of the Wright–Fisher model, an introduction to information geometry,
and the derivation of the Kolmogorov equations. The remaining five chapters
contain our investigation of the mathematical aspects of the Wright–Fisher model,
the geometry of recombination, the free energy functional of the model and its
properties, and hierarchical solutions of the Kolmogorov forward and backward
equations.

This book contains the results of the theses of the first [60] and the third
author [113] written at the Max Planck Institute for Mathematics in the Sciences
in Leipzig under the direction of the second author, as well as some subsequent
work. Following the established custom in the mathematical literature, the authors
are listed in the alphabetical order of their names. In the beginning, there will be
some overlap with the second author’s textbook Mathematical Methods in Biology
and Neurobiology [73]. Several of the findings presented in this book have been
published in [61–64, 114–118].

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013)/ERC grant agreement no. 267087. The first and the third authors
have also been supported by the IMPRS “Mathematics in the Sciences”.

We would like to thank Nihat Ay for a number of inspiring and insightful
discussions.

Leipzig, Germany Julian Hofrichter
Leipzig, Germany Jürgen Jost
Leipzig, Germany Tat Dat Tran
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Chapter 1
Introduction

1.1 The Basic Setting

Population genetics is concerned with the stochastic dynamics of allele frequencies
in a population. In mathematical models, alleles are represented as alternative values
at genetic loci.

The notions of allele and locus are employed here in a rather abstract manner.
They thus cover several biological realizations. A locus may stand for a single
position in a genome, and the different possible alleles then are simply the four
nucleotides A;C;G;T. Or a locus can stand for the site of a gene—whatever that
is—in the DNA, and since such a gene is a string of nucleotides, say of length L,
there then are 4L different nucleotide combinations. Of course, not all of them will
be realized in a population, and typically there is a so-called wildtype or default
gene, together with some mutants in the population. The wildtype gene and its
mutants then represent the possible alleles.

It makes a difference whether we admit finitely many or infinitely many such
possible values. Of course, from the preceding discussion it is clear that in biological
situations, there are only finitely many, but in a mathematical model, we may also
consider the case of infinitely many possibilities. In the finite case, they are drawn
from a fixed reservoir, and hence, there is no possibility of genetic novelty in such
models when one assumes that all those alleles are already present in the initial
population. In the infinite case, or when there are more alleles than members of the
population, not all alleles can be simultaneously present in a finite population, and
therefore, through mutations, there may arise new values in some generation that
had not been present in the parental generation.

We consider here the finite case. The finitely many possible values then are
denoted by 0; : : : ; n. The simplest nontrivial case, n D 1, on one hand, already
shows most of the features of interest. On the other hand, the general structure of
the model becomes clearer when one considers arbitrary values of n.
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2 1 Introduction

We consider a population of N diploid individuals, although for the most basic
model, the case of a population of 2N haploid individuals would lead to a formally
equivalent structure. (Here, “diploid” means that at each genetic locus, there are two
alleles, whereas in the “haploid” case, there is only one.)

We start with a single genetic locus. Thus, each individual in the population car-
ries two alleles at this locus, with values taken from 0; : : : ; n. Different individuals
in the population may have different values, and the relative frequency of the value
i in the population (at some given time) is denoted by pi. We shall also consider p as
a probability measure on SnC1 WD f0; : : : ; ng, that is,

nX

iD0
pi D 1: (1.1.1)

The relationship between the deterministic concept of a frequency and the stochastic
concept of a probability of course requires some clarification, and this will be
addressed below, through the passage to a continuum limit.1

The population is evolving in time, and members pass on genes to their offspring,
and the allele frequencies pi then change in time through the mechanisms of
selection, mutation and recombination. In the simplest case, one has a population
with nonoverlapping generations. That means that we have a discrete time index t,
and for the transition from t to t C 1, the population Vt produces a new population
VtC1. More precisely, members of Vt can give birth to offspring that inherit their
alleles. This process involves potential sources of randomness. Most basically, the
parents for each offspring are randomly chosen, and therefore, the transition from
the allele pool of one generation to that of the next defines a random process. In
particular, we shall see the effects of random genetic drift. Mutation means that
an allele may change to another value in the transition from parent to offspring.
Selection means that the chances of producing offspring vary depending on the value
of the allele in question, as some alleles may be fitter than others. Recombination
takes place in sexual reproduction, that is, when each member of the population has
two parents. It is then determined by chance which allele value she inherits when
the two parents possess different alleles at the locus in question. Depending on how
loci from the two parents are combined, this may introduce correlations between the
allele values at different loci.

Here is a remark which is perhaps obvious, but which illuminates how the
biological process is translated into a mathematical one. As already indicated, in
the simplest case we have a single genetic locus. In the diploid case, each individual
carries two alleles at this locus. These alleles could be different or identical, but
for the basic process of creating offspring, this is irrelevant. In the diploid case,
for each individual of the next generation, two parents are chosen from the current
generation, and the individual inherits one allele from each parent. That allele then is

1In a certain sense, we shall sidestep the real issue, and in this text, we do not enter into the issue
of objective and subjective probabilities.
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randomly chosen from the two that parent carries. The parents are chosen randomly
from the population, and we sample with replacement. That means that when a
parent has produced an offspring it is put back into the population so that it has
the chance to be chosen for the production of further offspring. To be precise,
we also allow for the possibility that one and the same parent is chosen twice for
the production of an individual offspring. In such a case, that offspring would not
have two different parents, but would get both its alleles from a single parent, and
according to the procedure, then even the same allele of that parent could be chosen
twice. (Of course, when the population size N becomes large—and eventually, we
shall let it tend to infinity—, the probability that this happens becomes exceedingly
small.) But then, formally, we can look at the population of 2N alleles instead of
that of N individuals. The rule for the process then simply says that the next allele
generation is produced by sampling with replacement from the current one. In other
words, instead of considering a diploid population with N members, we can look
at a haploid one with 2N participants. That is, for producing an allele in the next
generation, we randomly choose one parent in the current population of 2N alleles,
and that then will be the offspring allele. Thus, we have the process of sampling
with replacement in a population of size 2N. The situation changes, however, when
the individuals possess several loci, and the transmission of the alleles at different
loci may be correlated through restrictions on the possible recombinations. In that
case, we need to distinguish between gametes and zygotes, and the details of the
process will depend on whether we recombine gametes or zygotes, that is, whether
we perform recombination after or before sampling. This will be explained and
addressed in Chap. 5.

Since we want to adopt a stochastic model, in line with the conceptual structure
of evolutionary biology, the future frequencies become probabilities, that is, instead
of saying that a fraction of pi of the 2N alleles in the population has the value i, we
shall rather say that the probability of finding the allele i at the locus in question is
pi. While these probabilities express stochastic effects, they will then change in time
according to deterministic rules.

Although we start with a finite population with a discrete time dynamics,
subsequently, we shall pass to the limit of an infinite population. In order to
compensate for the growing size, we shall make the time steps shorter and pass to
continuous time. Obviously, we shall choose the scaling between population size
and time carefully, and we shall obtain a parabolic differential equation for the
deterministic dynamics of the probabilities in the continuum limit.

1.2 Mutation, Selection and Recombination

The formal models of population genetics make a number of assumptions. Many of
these assumptions are not biologically plausible, and for essentially any assumption
that we shall make, there exist biological counterexamples. However, the resulting
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gain of abstraction makes a mathematical analysis possible which in the end will
yield insights of biological value.

We consider a population Vt that is changing in discrete time t with nonover-
lapping generations, that is, the population VtC1 consists of the offspring of
the members of Vt. There is no spatial component here, that is, everything is
independent of the location of the members of the population. In particular, the
issue of migration does not arise in this model.

Moreover, we shall keep the population size constant from generation to
generation.

While we consider sexual reproduction, we only consider monoecious or, in a
different terminology, hermaphrodite populations, that is, they do not have separate
sexes, and so, any individual can pair with any other to produce offspring. We
also assume random mating, that is, individuals get paired at random to produce
offspring.

The reproduction process is formally described as follows. For each individual
in generation t C1, we sample the generation t to choose its one or two parents. The
simplest case is to take sampling with replacement. This means that the number of
offspring an individual can foster is only limited by the size of the next generation.
If we took sampling without replacement, each individual could only produce one
offspring. This would not lead to a satisfactory model. Of course, one could limit
the maximal number of offspring of individuals, but we shall not pursue this option.

Each individual in the population is represented by its genotype �. We assume
that the genetic loci of the different members of the population are in one-to-one
correspondence with each other. Thus, we have loci ˛ D 1; : : : ; k. In the haploid
case, at each locus, there can be one of n˛ C 1 possible alleles. Thus, a genotype is
of the form � D .�1; : : : �k/, where �˛ 2 f0; 1; : : : ; n˛g. In the diploid case, at each
locus, there are two alleles, which could be the same or different. We are interested
in the distribution of genotypes � in the population and how that distribution changes
over time through the effects of mutation, selection, and recombination.

The trivial case is that each member of Vt by itself, that is, without recombination,
produces one offspring that is identical to itself. In that case, nothing changes in
time. This baseline situation can then be varied in three respects:

1. The offspring is not necessarily identical to the parent (mutation).
2. The number of offspring an individual produces or may be expected to produce

varies with that individual’s genotype (selection).
3. Each individual has two parents, and its genotype is assembled from the

genotypes of its parents (sexual recombination).

Item 2 leads to a naive concept of fitness as the realized or the expected number
of offspring. Fitness is a difficult concept; in particular, it is not clear what the unit
of fitness is, whether it is the allele or the genotype or the ancestor of a lineage, or in
groups of interacting individuals even some higher order unit (see for instance the
analysis and discussion in [70]). Item 3 has two aspects:
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(a) Each allele is taken from one of the parents in the haploid case. In the diploid
case, each parent produces gametes, which means that she chooses one of her
two alleles at the locus in question and gives it to the offspring. Of course,
this choice is made for each offspring, so that different descendents can carry
different alleles.

(b) Since each individual has many loci that are linearly arranged on chromosomes,
alleles at neighboring loci are in general not passed on independently.

The purpose of the model is to understand how the three mechanisms of mutation,
selection and recombination change the distribution of genotypes in the population
over time. In the present treatise, item 3, that is, recombination, will be discussed in
more detail than the other two.

These three mechanisms are assumed to be independent of each other. For
instance, the mutation rates do not favour fitter alleles.

For the purpose of the model, a population is considered as a distribution
of genotypes. Probability distributions then describe the composition of future
populations. More precisely, pt.�/ is the probability that an individual in generation
t carries the genotype �. The model should then express the dynamics of the
probability distribution pt in time t.

For mutations, we consider a matrix M D .m��/ where �; � range over the
possible genotypes and m�� is the probability that genotype �mutates to genotype �.
In the most basic version, the mutation probability m�� depends only on the number
d.�; �/ (d standing for distance, of course) of loci at which � and � carry different
alleles. Thus, in this basic version, we assume that a mutation occurs at each locus
with a uniform rate m, independently of the particular allele found at that locus.
Thus, when the allele i at the locus ˛ mutates, it can turn into any of the n˛ other
alleles that could occur at that locus. Again, we assume that the probabilities are
equal, and so, it then mutates with probability m

n˛
into the allele j ¤ i. In the simplest

case, there are only n C 1 D 2 alleles possible at each locus. In this case,

m�� D md.�;�/.1 � m/k�d.�;�/: (1.2.1)

When the number n C 1 of alleles is arbitrary, but still the same at each site, we
have instead

m�� D
�m

n

�d.�;�/�
1 � m

n

�k�d.�;�/
: (1.2.2)

In contrast to mutation, recombination is a binary operation, that is, an operation
that takes two parent genotypes �; � as arguments to produce one offspring genotype
�. Here, a genotype consists of a linear sequence of k sites occupied by particular
alleles. We consider the case of monoecious individuals with haploid genotypes for
the moment. An offspring is then formed through recombination by choosing at
each locus the allele that one of the parents carries there. When the two parents
carry different alleles at the locus in question, we have to decide by a selection rule
which one to choose. This selection rule is represented by a mask �, a binary string
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of length k. An entry 1 at position ˛ means that the allele is taken from the first
parent, say �, and a 0 signifies that the allele is taken from the second parent, say �.
Each genotype is simply described by a string of length k, and for k D 6, the mask
100100 produces from the parents � D �1 : : : �6 and � D �1 : : : �6 the offspring
� D �1�2�3�4�5�6. The recombination operator

R��� D
X

�

pr.�/C��� .�/ (1.2.3)

is then expressed in terms of the recombination schemes C���.�/ for the masks �
and the probabilities pr.�/ for those masks. In the simplest case, all the possible 2k

masks are equally probable, and consequently, at each locus, the offspring obtains
an allele from either parent with probability 1=2, independently of the choices at the
other loci. Thus, this case reduces to the consideration of k independent loci.

Dependencies between sites arise in the so-called cross-over models (see for
example [11]). Here, the linear arrangement of the sites is important. Only masks
of the form �c D 11 : : : 100 : : : 0 are permitted. For such a mask, at the first a.�c/

sites, the allele from the first parent is chosen, and at the remaining k � a.�c/ sites,
the one from the second parent. As a can range from 0 to k, we then have k C 1

possible such masks �c, and we may wish to assume again that each of those is
equally probable.

In the diploid case, each individual carries two alleles at each locus, one from
each parent. We think of this as two strings of alleles. It is then randomly decided
which of the two strings of each parent is given to any particular offspring.
Therefore, formally, the scheme can be reduced to the haploid case with suitable
masks, but as we shall discuss in Chap. 5, there will arise a further distinction, that
between gametes and zygotes.

With recombination alone, some alleles may disappear from the populations,
and in fact, as we shall study in detail below, with probability 1, in the long
term, only one allele will survive at each site. This is due to random genetic drift,
that is, because the parents that produce offspring are randomly selected from the
population. Thus, it may happen that no carrier of a particular allele is chosen at
a given time or that none of the chosen recombination masks preserves that allele
when the mating partner carries a different allele at the locus under consideration.
That would then lead to the ultimate extinction of that allele. However, when
mutations may occur, an allele that is not present in the population at time t may
reappear at some later time. Of course, mutation might also produce new alleles that
have not been present in the population before, and this is a main driver of biological
evolution.

For these introductory purposes, we do not discuss the order in which the
mutation and recombination operators should be applied. In fact, in most models
this is irrelevant.

Finally, we include selection. This means that we shall modify the assumptions
that individuals in generation t are randomly selected with equal probabilities as
parents of individuals in generation t C 1. Formally, this means that we need to
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change the sampling rule for the parents of the next generation. The sampling
probability for an individual to become a parent for the next generation should
now depend on its fitness, that is, on its genotype, according to the naive fitness
notion employed here. Thus, there is a probability distribution ps.�/ on the space of
genotypes �. Again, the simplest assumption is that in the haploid case, each allele
at each locus has a fitness value, independently of which other alleles are present
at other loci. In the diploid case, each pair of alleles at a locus would have a fitness
value, again independently of the situation at other loci. Of course, in general one
should consider fitness functions depending in a less trivial manner on the genotype.
Also, in general, the fitness of an individual will depend on the composition of the
population, but we shall not address this important aspect here.

The preceding was needed to the set the stage. However, everything said so far
is fairly standard and can be found in the introduction of any book on mathematical
population genetics. We shall now turn to the mathematical structures underlying the
processes of allele dynamics. Here, we shall develop a more abstract mathematical
framework than utilized before in population genetics.

Let us first outline our strategy. Since we want to study dynamics of probability
distributions, we shall first study the geometry of the space of probability distribu-
tions, in order to gain a geometric description and interpretation of our dynamics.
For the dynamics itself, it will be expedient to turn to a continuum limit by suitably
rescaling population size 2N and generation time ıt in such a way that 2N ! 1,
but 2Nıt D 1. This will lead to Kolmogorov type backward and forward partial
differential equations for the probability distributions. This means that in the limit,
the probability density f . p; s; x; t/ WD @n

@x1���@xn P.X.t/ � xjX.s/ D p/ with s < t will
satisfy the Kolmogorov forward or Fokker–Planck equation

@

@t
f . p; s; x; t/D 1

2

nX

i;jD1

@2

@xi@xj

�
xi.ıi

j � xj/f . p; s; x; t/
��

nX

iD1

@

@xi

�
bi.x; t/f . p; s; x; t/

�
;

(1.2.4)

and the Kolmogorov backward equation

� @

@s
f . p; s; x; t/ D 1

2

nX

i;jD1
pi.ıi

j � p j/
@2

@pi@p j
f . p; s; x; t/C

nX

iD1
bi. p; s/

@

@pi
f . p; s; x; t/

(1.2.5)

where the second order terms arise from random genetic drift, which therefore is
seen as the most important mechanism, whereas the first order terms with their
coefficients bi incorporate the effects of the other evolutionary forces.

Again, this is standard in the population genetics literature since its original
introduction by Wright and its systematic investigation by Kimura. We shall develop
a geometric framework that will interpret the coefficients of the second order terms
as the inverse of the Fisher metric of mathematical statistics. Among other things,
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this will enable us to find explicit solutions of these equations which, importantly,
are valid across loss of allele events. In particular, we can then determine all
quantities of interest, like the expected extinction times of alleles in the population,
in a more general and systematic manner than so far known in the literature.

1.3 Literature on the Wright–Fisher Model

In this section, we discuss some of the literature on the Wright–Fisher model. Our
treatment here is selective, for several reasons. First, there are simply too many
papers in order to list them all and discuss and compare their relevant contributions.
Second, we may have overlooked some papers. Third, our intention is to develop a
new and systematic approach for the Wright–Fisher model, based on the geometric
as opposed to the stochastic or analytical structure of the model. This approach
can unify many previous results and develop them from a general perspective, and
therefore, we did not delve so deeply into some of the different methods that have
been applied to the Wright–Fisher model since its inception.

Actually, there exist some monographs on population genetics with a systematic
mathematical treatment of the Wright–Fisher model that also contain extensive
bibliographies, in particular [15, 33, 39], and the reader will find there much useful
information that we do not repeat here.

But let us first recall the history of the Wright–Fisher model (as opposed to
other population genetics models, cf. for example [17, 18] for a branching process
model). The Wright–Fisher model was initially presented implicitly by Ronald
Fisher in [46] and explicitly by Sewall Wright in [125]—hence the name. A third
person with decisive contributions to the model was Motoo Kimura. In 1945,
Wright approximated the discrete process by a diffusion process that is continuous
in space and time (continuous process, for short) and that can be described by a
Fokker–Planck equation. By solving this Fokker–Planck equation derived from the
Wright–Fisher model, Kimura then obtained an exact solution for the Wright–Fisher
model in the case of two alleles in 1955 (see [79]). Shortly afterwards, Kimura [78]
produced an approximation for the solution of the Wright–Fisher model in the multi-
allele case, and in [80], he obtained an exact solution of this model for three alleles
and concluded that this can be generalized to arbitrarily many alleles. This yields
more information about the Wright–Fisher model as well as the corresponding
continuous process. We also mention the monograph [24] where Kimura’s theory
is systematically developed. Kimura’s solution, however, is not entirely satisfactory.
For one thing, it depends on very clever algebraic manipulations so that the general
mathematical structure is not very transparent, and this makes generalizations very
difficult. Also, Kimura’s approach is local in the sense that it does not naturally
incorporate the transitions resulting from the (irreversible) loss of one or more
alleles in the population. Therefore, for instance the integral of his probability
density function on its domain need not be equal to 1. Baxter et al. [14] developed
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a scheme that is different from Kimura’s; it uses separation of variables and works
for an arbitrary number of alleles.

While the original model of Wright and Fisher works with a finite population in
discrete time, many mathematical insights into its behavior are derived from its dif-
fusion approximation that passes to the limit of an infinite population in continuous
time. As indicated, the potential of the diffusion approximation had been realized
already by Wright and, in particular, by Kimura. The diffusion approximation
also makes an application of the general theory of strongly-continuous semigroups
and Markov processes possible, and this then lead to a more systematic approach
(cf. [43, 119]). In this framework, the diffusion approximation for the multi-allele
Wright–Fisher model was derived by Ethier and Nagylaki [36–38], and a proof of
convergence of the Markov chain to the diffusion process can be found in [34, 56].
Mathematicians then derived existence and uniqueness results for solutions of the
diffusion equations from the theory of strongly continuous semigroups [34, 36, 77]
or martingale theory (see, for example [109, 110]). Here, however, we shall not
appeal to the general theory of stochastic processes in order to derive the diffusion
approximation, but rather proceed directly within our geometric framework.

As the diffusion operator of the diffusion approximation becomes degenerate
at the boundary, the analysis at the boundary becomes difficult, and this issue
is not addressed by the aforementioned results, but was dealt with by more
specialized approaches. An alternative to those methods and results some of which
we shall discuss shortly is the recent approach of Epstein and Mazzeo [29–31] that
systematically treats singular boundary behavior of the type arising in the Wright–
Fisher model with tools from the regularity theory of partial differential equations.
We shall also return to their work in a moment, but we first want to identify
the source of the difficulties. This is the possibility that alleles get lost from the
population by random drift, and as it turns out, this is ultimately inevitable, and as
time goes to infinity, in the basic model, in the absence of mutations or particular
balancing selective effects, this will happen almost surely. This is the key issue,
and the full structure of the Wright–Fisher model and its diffusion approximation
is only revealed when one can connect the dynamics before and after the loss of an
allele, or in analytic terms, if one can extend the process from the interior of the
probability simplex to all its boundary strata. In particular, this is needed to preserve
the normalization of the probability distribution. In geometric terms, we have an
evolution process on a probability simplex. The boundary strata of that simplex
correspond to the vanishing of some of the probabilities. In biological terms, when a
probability vanishes, the corresponding allele has disappeared from the population.
As long as there is more than one allele left, the probabilities continue to evolve.
Thus, we get not only a flow in the interior of the simplex, but also flows within all
the boundary strata. The key issue then is to connect these flows in an analytical,
geometric, or stochastic manner.

Before going into further details, however, we should point out that the diffusion
approximation leads to two different partial differential equations, the Kolmogorov
forward or Fokker–Planck equation on one hand and the Kolmogorov backward
equation on the other hand. While these two equations are connected by a duality
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relation, their analytical behavior is different, in particular at the boundary. The
Kolmogorov forward equation yields the future distribution of the alleles in a
population evolving from a current one. In contrast, the Kolmogorov backward
equation produces the probability distribution of ancestral states giving rise to a
current distribution. See for instance [94]; a geometric explanation of the analogous
situation in the discrete case is developed in Sect. 4.2 of [73].

The distribution produced by the Kolmogorov backward equation may involve
states with different numbers of alleles present. Their ancestral distributions,
however, do not interfere, regardless of the numbers of alleles they involve. Thus,
some superposition principle holds, and the Kolmogorov backward equation nicely
extends to the boundary. For the Kolmogorov forward equation, the situation is more
subtle. Here, the probability of some boundary state does not only depend on the
flow within the corresponding boundary stratum, but also on the distribution in the
interior, because at any time, there is some probability that an interior state loses
some allele and turns into a boundary state. Thus, there is a continuous flux into
the boundary strata from the interior. Therefore, the extension of the flow from the
interior to the boundary strata is different from the intrinsic flows in those strata,
and no superposition principle holds.

As we have already said, there are several solution schemes for the Kolmogorov
forward equation in the literature. For the Kolmogorov backward equation, the
situation is even better. The starting point of much of the literature was the
observation of Wright [126] that when one includes mutation, the degeneracy at
the boundary is removed. And when the probability of a mutation of allele i into
allele j depends only on the target j, then the backward process possesses a unique
stationary distribution, at least as long as those mutation rates are positive. This then
lead to explicit representation formulas for even more general diffusion processes,
in [25, 27, 35, 53, 54, 86, 105, 106, 112]; these, however, were rather of a local
nature, as they did not connect solutions in the interior and in boundary strata
of the domain. Finally, much useful information can be drawn from the moment
duality [68] between the Wright–Fisher model and the Kingman coalescent [81],
see for instance [26] and the literature cited there. The duality method transforms
the original stochastic process into another, simpler stochastic process. In particular,
one can thus connect the Wright–Fisher processes and its extension with ancestral
processes such as Kingman’s coalescent [81], the method of tracing lines of descent
back into the past and analyzing their merging patterns (for a brief introduction,
see also [73]; for an application to Wright–Fisher models cf. [88]). Some of these
formulas, in particular those of [35, 106] also pertain to the limit of vanishing
mutation rates. In [106], a superposition of the contributions from the various strata
was achieved whereas [35] could write down an explicit formula in terms of a
Dirichlet distribution. However, this Dirichlet distribution and the measure involved
both become singular when one approaches the boundary. In fact, Shimakura’s
formula is simply a decomposition into the various modes of the solutions of a
linear PDE, summed over all faces of the simplex; this illustrates the rather local
character of the solution scheme.
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Some ideas from statistical mechanics are already contained in the free fitness
function introduced by Iwasa [67] as a consequence of H-theorems. Such ideas will
be developed here within the modern theory of free energy functionals. A different
approach from statistical mechanics which can also produce explicit formulae
involves master equations for probability distributions; they have been applied to
the Moran model [89] of population genetics in [65]. That model will be briefly
described in Sect. 2.4.

Large deviation theory has been systematically applied to the Wright–Fisher
model by Papangelou [96–100], although this is usually not mentioned in the
literature. In Chap. 7, we can build upon his work.

As already mentioned, the Kolmogorov equations of the Wright–Fisher model
are not accessible to standard stochastic theory, because of their boundary behavior.
In technical terms, the square root of the coefficients of the second order terms of
the operators is not Lipschitz continuous up to the boundary. As a consequence, in
particular the uniqueness of solutions to the above Kolmogorov backward equations
may not be derived from standard results.

In this situation, Epstein and Mazzeo [29–31] have developed PDE techniques to
tackle the issue of solving PDEs on a manifold with corners that degenerate at the
boundary with the same leading terms as the Kolmogorov backward equation (1.2.5)
for the Wright–Fisher model in the closure of the probability simplex in .�n/�1 D
�n � .�1; 0/. Such an analysis had been started by Feller [43] (and essentially also
[42]), who had considered equations of the form

@

@t
f .x; t/ D x

@2

@x2
f .x; t/C b

@

@x
f .x; t/ for x � 0 (1.3.1)

with b � 0, that is, equations that have the same singularity at the boundary
x D 0 as the Fokker–Planck or Kolmogorov forward equation of the simplest
type of the Wright–Fisher model. Feller could compute the fundamental solution
for this problem and thereby analyze the local behavior near the boundary. In
particular, the case where b ! 0 is subtle; in biological terms, this corresponds
to the transition from a setting with mutation to one without, and without mutation,
the boundary becomes absorbing. For more recent work in this direction, see for
instance [21]. In any case, this approach which focusses on the precise local analysis
at the boundary and which only requires a particular type of asymptotics near the
boundary and can therefore apply general tools from analysis, should be contrasted
with Kimura’s who looked for global solutions in terms of expansions in terms of
eigenfunctions and which needs the precise algebraic structure of the equations.
Epstein and Mazzeo [29, 30] then take up the local approach and develop it much
further. A main achievement of their analysis is the identification of the appropriate
function spaces. These are anisotropic Schauder spaces. In [31], they develop a
different PDE approach and derive and apply a Moser type Harnack inequality,
that is, the probably most powerful general tool of PDE theory for studying the
regularity of solutions of partial differential equations. According to general results
in PDE theory, such a Harnack inequality follows when the underlying metric and
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measure structure satisfy a Poincaré inequality and a measure doubling property,
that is, the volume of a ball of radius 2r is controlled by a fixed constant times
the volume of the ball of radius r with the same center, for all (sufficiently small)
r > 0. Since in the case that we are interested in, that of the Wright–Fisher model,
we identify the underlying metric as the standard metric on the unit sphere, such
properties are natural in our case. Also, in our context, their anisotropic Schauder
spaces Ck;�

WF.�n/ would consist of k times continuously differentiable functions
whose kth derivatives are Hölder continuous with exponent � w.r.t. the Fisher metric
(a geometric concept to be explained below which is basic for our approach). In
terms of the Euclidean metric on the simplex, this means that a weaker Hölder
exponent (essentially �

2
) is required in the normal than in the tangential directions

at the boundary. Using this framework, they subsequently show that if the initial
values are of class Ck;�

WF.�n/, then there exists a unique solution in that class. This
result is very satisfactory from the perspective of PDE theory (see e.g. [72]). Our
setting, however, is different, because the biological model forces us to consider
discontinuous boundary transitions. The same also applies to other works which
treat uniqueness issues in the context of degenerate PDEs, but are not adapted to the
very specific class of solutions at hand. This includes the extensive work by Feehan
[41] where—amongst other issues—the uniqueness of solutions of elliptic PDEs
whose differential operator degenerates along a certain portion of the boundary @0	
of the domain 	 is established: For a problem with a partial Dirichlet boundary
condition, i.e. boundary data are only given on @	 n @0	, a so-called second-
order boundary condition is applied for the degenerate boundary area; this is that
a solution needs to be such that the leading terms of the differential operator
continuously vanishes towards @0	, while the solution itself is also of class C1

up to @0	. Within this framework, Feehan then shows that—under certain natural
conditions—degenerate operators satisfy a corresponding maximum principle for
the partial boundary condition, which assures the uniqueness of a solution. Again,
our situation is subtly different, as the degeneracy behaviour at the boundary is
stepwise, corresponding to the stratified boundary structure of the domain �n, and
hence does not satisfy the requirements for Feehan’s scenario. Furthermore, in the
language of [41], the intersection of the regular and the degenerate boundary part
@@0	, would encompass a hierarchically iterated boundary-degeneracy structure,
which is beyond the scope of that work.

Finally, we should mention that the differential geometric approach to the
Wright–Fisher model was started by Antonelli–Strobeck [5]. This was further
developed by Akin [2].

1.4 Synopsis

We now briefly describe, in somewhat informal terms, our approach and results.
Again, we begin with the case of a single locus. As already indicated, we consider

the relative frequencies or probabilities p0; : : : ; pn on the set f0; 1; : : : ; ng of possible
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alleles at our locus. This leads to the simplex

†
n WD

(
. p0; p1; : : : ; pn/ W pi � 0 for all i;

nX

iD0
pi D 1

)

of probability distributions on a set of n C 1 elements. This means that when
p 2 †n

and we draw an allele according to the probability distribution p, we obtain
i with probability pi. The various faces of †

n
then correspond to configurations

where some alleles have probability 0. Again, when we take the probabilities
as relative frequencies, this means that the corresponding alleles are not present
in the population. Concerning the oscillation between relative frequencies and
probabilities, the situation is simply that the relative frequencies of the alleles in
one generation determine the probabilities with which they are represented in the
next generation according to our sampling procedure. And in the most basic model,
we sample according to the multinomial distribution with replacement.

A fundamental observation is that there exists a natural Riemannian metric
on the probability simplex †

n
. This metric is not the Euclidean metric of the

simplex, but rather the Fisher metric. Fisher here stands for the same person as
the originator of the Wright–Fisher model, but this metric did not emerge from his
work on population genetics, but rather from his work on parametric statistics, and
apparently, he himself did not realize that this metric is useful for the model. In
fact, the Fisher metric was developed not really by Fisher himself, but rather by the
statistician Rao [102]. The Fisher metric is a basic subject of the field of information
geometry that was created by Amari, Chentsov, and others. Information geometry,
that is, the theory of the geometry of probability distributions, deals with a geometric
structure that not only involves a Riemannian metric, but also two dually affine
structures which are generated by potential functions that generalize the entropy
and the free energy of statistical mechanics. We refer to the monographs [3, 10].

It will appear that the Fisher metric becomes singular on the boundary of
the probability simplex †

n
. These singularities, however, are only apparent, and

they only indicate that from a geometric perspective, we have chosen the wrong
parametrization for the family of probability distributions on nC1 possible types. In
fact, as we shall see in Chap. 3, a better parametrization uses the positive sector SnC of
the n-dimensional unit sphere. (This parametrization is obtained by pi 7! qi D . pi/2

for a probability distribution . p0; p1; : : : ; pn/ on the types 0; 1; : : : ; n.) With that
parametrization, the Fisher metric of †

n
is nothing but the Euclidean metric on

Sn ,! R
nC1, which, of course, is regular on the boundary of SnC.

More generally, the Fisher metric on a parametrized family of probability
distributions measures how sensitively the family depends on the parameter when
sampling from the underlying probability space. The higher that sensitivity, the
easier is the task of estimating that parameter. That is why the Fisher metric is
important for parametric statistics. For multinomial distributions, the Fisher metric
is simply the inverse of the covariance matrix. This indicates on one hand that
the Fisher metric is easy to determine, and on the other hand that it is naturally
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associated to our iterated sampling from the multinomial distribution. In fact, the
Kolmogorov equations can naturally be interpreted as diffusion equations w.r.t. the
Fisher metric. One should note, however, that the Kolmogorov equations are not
in divergence form, and therefore, they do not constitute the natural heat equation
for the Fisher metric, or in other words, they do not model Brownian motion
for the Fisher metric. They rather have to be interpreted in terms of the dually
affine connections of Amari and Chentsov that we mentioned earlier. From that
perspective, entropy functions emerge as potentials. In particular, this will provide
us with a beautiful geometric approach to the exit times of the process, that is,
the expected times of allele losses from the population. When considering so-
called exponential families (called Gibbs distributions in statistical mechanics),
information geometry also naturally connects with the basic quantities of statistical
mechanics. These are entropy and free energy. As is well known in statistical
mechanics, the free energy functional and its derivatives encode all the moments
of a process. We shall make systematic use of this powerful scheme, and also
indicate some connections to recent research in stochastic analysis. In Chap. 7, we
shall explore large deviation principles in the context of the Wright–Fisher model.
Moreover, the geometric structure behind the Kolmogorov equations will also guide
our analysis of the transitions between the different boundary strata of the simplex.
This will constitute our main technical achievement.

As discussed, the key is the degeneracy at the boundary of the Kolmogorov
equations. While from an analytical perspective, this presents a profound difficulty
for obtaining boundary regularity of the solutions of the equations, from a biological
or geometric perspective, this is very natural because it corresponds to the loss
of some alleles from the population in finite time by random drift. And from
a stochastic perspective, this has to happen almost surely. For the Kolmogorov
forward equation, in Chap. 8, we gain a global solution concept from the equations
for the moments of the process, which incorporate the dynamics on the entire
simplex, including all its boundary strata. This also involves the duality between
the Kolmogorov forward equation and the Kolmogorov backward equation. In
Chap. 9, we then develop a careful notion of hierarchically extended solutions of
the Kolmogorov backward equation, and we show their uniqueness both in the time
dependent and in the stationary case. The stationary case is described by an elliptic
equation whose solutions arise from the time dependent equation as time goes to
infinity.2 The stationary equation is important because, for instance, the expected
times of allele loss are solutions of an inhomogeneous stationary equation. From
our information geometric perspective, as already mentioned, we can interpret these
solutions most naturally in terms of entropies.

2In fact, one might be inclined to say that time goes to minus infinity in the backward case, because
this corresponds to the infinite past. With this time convention, however, the Kolmogorov backward
equation is not parabolic. When we change the direction of time, it becomes parabolic, and we can
then speak of time going to infinity. This mathematically natural, although not compatible with the
biological interpretation.
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In Chap. 10, we shall explore how the schemes developed in this book, namely
the moment equations and free energy schemes, information geometry, the expan-
sions of solutions of the Kolmogorov equations in terms of Gegenbauer polyno-
mials, will provide us with computational tools for deriving formulas for basic
quantities of interest in population genetics.

We mainly focus on the basic Wright–Fisher model in the absence of additional
effects like selection or mutation. Nevertheless, we shall describe, in line with
the standard literature, how this will modify the equations. Also, in Sect. 6.1, we
shall systematically apply the moment generating function and energy functional
method to those issues. The issue of recombination will be treated in more detail
in Chap. 5 because here our geometric approach on one hand leads to an important
simplification of Kimura’s original treatment and on the other hand also provides
general insight into the geometry of linkage equilibria.



Chapter 2
The Wright–Fisher Model

2.1 The Wright–Fisher Model

The Wright–Fisher model considers the effects of sampling for the distribution of
alleles across discrete generations. Although the model is usually formulated for
diploid populations, and some of the interesting effects occurring in generalizations
depend on that diploidy, the formal scheme emerges already for haploid populations.
In the basic version, with which we start here, there is a single genetic locus that
can be occupied by different alleles, that is, alternative variants of a gene.1 In the
haploid case, it is occupied by a single allele, whereas in the diploid case, there are
two alleles at the locus. Biologically, diploidy expresses the fact that one allele is
inherited from the mother and the other from the father. However, the distinction
between female and male individuals is irrelevant for the basic model. In biological
terminology, we thus consider monoecious (hermaphrodite) individuals. Inheritance
is then symmetric between the parents, without a distinction between fathers and
mothers. Consequently, it does not matter from which parent an allele is inherited,
and there will be no effective difference between the two alleles at a site, that is, their
order is not relevant. Even in the case of dioecious individuals, one might still make
the simplifying assumption that it does not matter whether an allele is inherited
from the mother or the father. While there do exist biological counterexamples, one
might argue that for mathematical population genetics, this could be considered as
a secondary or minor effect only. Nevertheless, it would not be overly difficult to
extend the theory presented here to also include such effects.

Generalizations will be discussed subsequently, and we start with the simplest
case. In particular, for the moment, we assume that there are no selective differences
between these alleles and no mutations. These assumptions will be relaxed later,
after we have understood the basic model.

1Obviously, the term “gene” is used here in a way that abstracts from most biological details.
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In order to have our conventions best adapted to the diploid case, we consider
a population of 2N alleles. In the haploid case, we are thus dealing with 2N
individuals, each carrying a single allele, whereas in the diploid case, we have N
individuals carrying two alleles each.

For each of these alleles, there are n C1 possibilities. We begin with the simplest
case, n D 1, where we have two types of alleles A0;A1. In the diploid case, an
individual can be a homozygote of type A0A0 or A1A1 or a heterozygote of type
A0A1 or A1A0—but we do not care about the order of the alleles and therefore
identify the latter two types. The population reproduces in discrete time steps. In the
haploid case, each allele in generation m C 1 is randomly and independently chosen
from the allele population of generation m. In the diploid case, each individual in
generation m C 1 inherits one allele from each of its parents. When a parent is a
heterozygote, each allele is chosen with probability 1=2. Here, for each individual
in generation m C 1, randomly two parents in generation m are chosen. All the
choices are independent of each other. Thus, the alleles in generation m C 1 are
chosen by random sampling with replacement from the ones in generation m. In this
model, the two parents of any particular individual might be identical (that is, in
biological terminology, selfing is possible), but of course, the probability for that to
occur goes to zero like 1

N when the population size increases. Also, each individual
in generation m may foster any number of offspring between 0 and N in generation
m C 1 and thereby contribute between 0 and 2N alleles.

In any case, the model is not concerned with the lineage of any particular
individual, but rather with the relative frequencies of the two alleles in each
generation. Even though the diploid case appears more complicated than the haploid
one, at this stage, the two are formally equivalent, because in either case the 2N
alleles present in generation m C 1 are randomly and independently sampled from
those in generation m. In fact, from a mathematical point of view, the individuals
play no role, and we are simply dealing with multinomial sampling in a population
of 2N alleles belonging to n C 1 different classes. The only reason at this stage to
talk about the diploid case is that that case will offer more interesting perspectives
for generalization below.

The quantity of interest therefore is the number2 Ym of alleles A0 in the population
at time m. This number then varies between 0 and 2N. The distribution of allele
numbers thus follows the binomial distribution. When n > 1, the principle remains
the same, but we need to work more generally with the multinomial distribution. We
shall now discuss the basic properties of that distribution.

2The random variable Y will carry two different indices in the course of our text. Sometimes, the
index m is chosen to indicate the generation time, but at other occasions, we rather use the index
2N for the number of alleles in the population, that is, more shortly, (twice) the population size.
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2.2 The Multinomial Distribution

We consider the basic situation of probabilities p0; : : : ; pn on the set f0; 1; : : : ; ng.
That is, we consider the simplex

†n WD
(
. p0; p1; : : : ; pn/ W pi � 0 for all i;

nX

iD0
pi D 1

)

of probability distributions on a set of nC1 elements. When we consider an element
p 2 †n and draw one of those elements according to the probability distribution p,
we obtain the element i with probability pi.

For each time step of the Wright–Fisher model, we draw 2N times independently
from such a distribution p, to create the next generation of alleles from the current
one. Call the corresponding random variables Yi

2N , standing for the number of alleles
Ai drawn that way. We utilize the index 2N for the total number of alleles here as
subsequently we wish to consider the limit N ! 1. For simplicity, we shall write
i in place of Ai. When we draw once, we obtain a single element i, that is, Yi

1 D 1

and Yj
1 D 0 for all j ¤ i. Since that element had probability pi, we have

E.Yi
1/ D E..Yi

1/
2/ D pi for all i; and E.Yi

1Y
j
1/ D 0 for j ¤ i (2.2.1)

and hence

Var.Yi
1/ D pi.1� pi/; Cov.Yi

1Y
j
1/ D �pip j for i ¤ j: (2.2.2)

When we draw 2N times independently from the same probability distribution p,
we consequently get for the corresponding random variables Yi

2N

E.Yi
2N/ D 2Npi; Var.Yi

2N/ D 2Npi.1 � pi/; Cov.Yi
2NYj

2N/ D �2Npip j for i ¤ j:
(2.2.3)

By the same kind of reasoning, we also get

E..Yi
2N/

˛/ D O.2N/ (2.2.4)

for all other moments (where ˛ is a multi-index with j˛j � 3 whose convention will
be explained below in Sect. 2.11).

We also point out the following obvious lumping lemma.

Lemma 2.2.1 Consider a map

` W †n ! †m

. p0; : : : ; pn/ 7! .q0; : : : ; qm/

with q j D P
iDij�1C1;:::;ij pi where i0 D �1; im D n; (2.2.5)
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that is, we lump the alleles Aij�1C1; : : : ;Aij into the single super-allele Bj. Then the
random variable Zj

2N that records multinomial sampling from †m is given by

Zj
2N D

X

iDij�1C1;:::;ij
Yi
2N : (2.2.6)

ut

2.3 The Basic Wright–Fisher Model

For the Wright–Fisher model, we simply iterate this process across several genera-
tions. Thus, we introduce a discrete time m and let this time m now be the subscript
for Y instead of the 2N that we had employed so far to indicate the total number of
alleles present in the population. Instead of the absolute probabilities of multinomial
sampling, we now need to consider the transition probabilities.

That is, when we know what the allele distribution at time m is and when we
multinomially sample from that distribution, we want to know the probabilities
for the resulting distribution at time m C 1. We also not only want to know the
expectation values for the numbers of alleles—which remain constant in time—and
the variances and covariances—which grow in time in the sense that if we start at
time 0 and want to know the distribution at time m, the formulas in (2.2.3) acquire a
factor m—, but we are now interested in the entire distribution of allele frequencies.

We recall that we have n C1 possible alleles A0; : : : ;An at a given locus, still in a
diploid population of fixed size N. There are therefore 2N alleles in the population
in any generation, so it is sufficient to focus on the number Ym D .Y1m; : : : ;Y

n
m/ of

alleles A1; : : : ;An at generation time m. Assume that Y0 D �0 D .f�10; : : : ; �n
0g/

and that, as before, the alleles in generation m C 1 are derived by sampling with
replacement from the alleles of generation m. Thus, the transition probability is
given by the multinomial formula

P.YmC1 D yjYm D �/ D .2N/Š

.y0/Š.y1/Š : : : .yn/Š

nY

iD0

�
�i

2N

�yi

; (2.3.1)

where

�; y 2 S.2N/
n D

(
� D .�1; : : : ; �n/ W �i 2 f0; 1; : : : ; 2Ng;

nX

iD1
�i � 2N

)

and

�0 D 2N � j�j D 2N � �1 � : : : � �nI y0 D 2N � jyj D 2N � y1 � : : : � yn:
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In particular, if � j D 0 for some j, then also

P.YmC1 D yjYm D �/ D 0 whenever y j ¤ 0; (2.3.2)

and

P.YmC1 D yjYm D �/ D .2N/Š

.y0/Š.y1/Š : : : .y j�1/Š.y jC1/Š : : : .yn/Š

Y

i¤j

�
�i

2N

�yi

;

(2.3.3)

for yj D 0. Thus, whenever allele j disappears from the population, we simply get
the same process with one fewer allele. Iteratively, we can let n alleles disappear so
that only one allele remains which will then live on forever.

Returning to the general case, we then also have the probability

P.YmC1 D yjY0 D �/ D
X

�1;:::;�m

P.YmC1 D yjYm D �m/ P.Ym D �mjYm�1 D �m�1/

: : : P.Y1 D �1jY0 D �/: (2.3.4)

This is the probability for finding the allele distribution y at generation m C 1

when the process started with the distribution � at generation 0. In order to go from
time 0 to time mC1, we sum over all possibilities at intermediate times. This is also
called the Chapman–Kolmogorov equation.

In terms of this probability distribution, we can express moments as

E..YmC1/˛jY0 D �/ D
X

y

y˛ P.YmC1 D yjY0 D �/; (2.3.5)

assuming that the process started with the allele distribution � at time 0.
From (2.2.3), we have

E.YmC1jYm D �m/ D �m; (2.3.6)

and iterating (2.3.6), we get

E.YmC1jY0 D �/ D �: (2.3.7)

In particular, by (2.3.6), the expected allele distribution at generation m C 1 equals
the allele distribution at generation m, and the iteration (2.3.7) then tells us that it
also equals the allele distribution at generation 0. Thus, the expected value does not
change from step to step. This, or more precisely (2.3.6), is also called the martingale
property.
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In order to prepare for the limit N ! 1, we rescale

t D m

2N
; and hence ıt D 1

2N
; Xt D Y2Nt

2N
: (2.3.8)

We then get a discrete Markov chain Xt valued in
˚
0; 1

2N ; : : : ; 1
�n

with t D 1 for
X now corresponding to 2N generations for Y. With XtCıt D Xt C ıXt, we then have
from (2.3.5)

E..XtCıt/˛jX0 D x0/ D
X

x

x˛ P.XtCıt D xjX0 D x0/ (2.3.9)

where

P.XtCıt D xjX0 D x0/ D P.YmC1 D yjY0 D �/ (2.3.10)

and as in (2.2.3)

E.ıXi
t/ D 0; (2.3.11)

E.ıXi
t :ıX

j
t/ D Xi

t.ıij � Xj
t/ıt D 1

2N
Xi

t.ıij � Xj
t/; (2.3.12)

noting that each time only one allele is drawn so that E.Xi
tX

j
t/ D 0 for i ¤ j. Also,

from (2.2.4) and (2.3.8),

E.ıXt/
˛ D o.ıt/ D o.

1

N
/ for j˛j � 3: (2.3.13)

We now denote by m˛.t/ the ˛th-moment of the distribution at the tth generation,
i.e.,

m˛.t/ D E.Xt/
˛ (2.3.14)

Then

m˛.t C ıt/ D E.Xt C ıXt/
˛ (2.3.15)

Expanding the right hand side and noting (2.3.11)–(2.3.13), we obtain the
following recursion formula, under the assumption that the population number N
is sufficiently large to neglect terms of order 1

N2
and higher,

m˛.t C ıt/ D
	
1 � j˛j.j˛j � 1/

2



m˛.t/C

nX

iD1

˛i.˛i � 1/
2

m˛�ei .t/ (2.3.16)



2.4 The Moran Model 23

Under this assumption, the moments change very slowly per generation and we
can replace this system of difference equations by a system of differential equations:

Pm˛.t/ D �j˛j.j˛j � 1/
2

m˛.t/C
nX

iD1

˛i.˛i � 1/

2
m˛�ei.t/: (2.3.17)

2.4 The Moran Model

There is a variant of the Wright–Fisher model, the Moran model [89], that instead
of updating the population in parallel does so sequentially. When we shall pass to
the continuum limit below, the two models will have the same limits, and therefore
succumb to the same analysis. The Moran model will be useful for understanding
the relation with the Kingman coalescent below.

In order to introduce the Moran model, we slightly change the interpretation
of the Wright–Fisher model. Instead of letting members of the population produce
offspring, we simply replace them by other individuals from the population. Thus,
at every generation, for each individual in the population, randomly some individual
is chosen, possibly the original individual itself, that replaces it. If we do that for all
individuals simultaneously, we obtain a process that is equivalent to the Wright–
Fisher process. But then, instead of updating all individuals simultaneously, we can
also do that sequentially. Thus, for the Moran model, at a random time, we randomly
select one individual in the population and replace by some other random individual.

Thus, if there are �k carriers of allele Ak in a population of haploid individuals

of size 2N, then the chance that a carrier of Ai is chosen for replacement is �i

2N , and

the chance that it is replaced by an individual of type Aj is � j

2N . Thus, altogether, we
have that the probability of having a transition from a carrier of Ai to one of Aj is

�i

2N

� j

2N
: (2.4.1)

The expected number of individuals of type Aj after such a transition is

nX

iD0

�i

2N

� j

2N
D � j

2N
; (2.4.2)

that is, this expected number is not affected by the transition. Thus, we can let
the process run and each random time, selected at some rate 
, we can do such
a transition.

More generally, the arguments leading to (2.2.1) and (2.2.2) apply, and we
therefore get the same results for the variances and covariances as for the Wright–
Fisher model when we do this random updating 2N times.
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2.5 Extensions of the Basic Model

We return to the basic Wright–Fisher model and want to discuss how this model is
modified when mutation and/or selection effects are included. From the discussion
in Sect. 2.4 it is clear that we shall get analogous results for the Moran model.

In order to have a framework for naturally including mutation and selection,
instead of (2.3.1), we write

P.YmC1 D yjYm D �/ D .2N/Š

.y0/Š.y1/Š : : : .yn/Š

nY

iD0

�
 i.�/

�yi

; (2.5.1)

where the  i which replace �i

2N in (2.3.1) now should include those effects. The

rationale is this. In the original model (2.3.1), �i

2N simply was the chance to find the
allele Ai when randomly picking an allele from the pool. When the alleles can mutate
before sampling (since we let the processes of sampling and mutation alternate,
their order plays no role), that probability is increased or decreased according to
the net contribution of mutations to the frequency of Ai. When selection operates,
the chance to pick Ai is multiplied by a factor that expresses its relative fitness in
the population. In other words, the fitter alleles or allele combinations have a higher
chance of being chosen than the less fit ones. In order to incorporate selection effects
in a simple mathematical model, we shall need to make some assumptions that
simplify the biology.

Let us begin with mutation. Let #ij

2
be the fraction of alleles Ai that mutate into

allele Aj in each generation. (The factor 1
2

is introduced here for convenience in

Sect. 6.2 below.) For convenience, we put #ii D 0. Then �i

2N needs to be replaced by

 i
mut.�/ WD 2�i �Pn

jD0 #ij�
i CPn

jD0 #ji�
j

4N
; (2.5.2)

to account for the net effect of Ai mutating into some other Aj and conversely, for
some Aj mutating into Ai. When there is no mutation, then all #ij D 0, and we have

 i
mut.�/ D �i

2N , and we are back to (2.3.1).
It turns that the case where the mutation rate depends only on the target, while

biologically not so realistic, is mathematically particularly convenient. In that case,

#ij DW #j for all i ¤ j; (2.5.3)

and (2.5.2) becomes

 i
mut.�/ D .2 �Pn

jD0;j¤i #j/�
i C #i

Pn
jD0 �j

4N
: (2.5.4)
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We model selection by assigning to each allele pair AiAj a fitness coefficient
1 C �ij. This includes the special case where the fitness of allele Ai has a value
1 C �i that does not depend on which other allele it is paired with; in that case,
1 C �ij D 1

2
.1 C �i/ C 1

2
.1 C �j/ D 1 C �iC�j

2
is the average of the fitness values

of the two alleles. Thus, our convention is that the baseline fitness in the absence of
selective differences is 1. This will be convenient in Chap. 4. We shall assume the
symmetry

�ij D �ji: (2.5.5)

Although there do exist some biological examples where one may argue that
this is violated, in general this seems to be a biologically plausible and harmless
assumption.

When such selective differences are present, �i

2N needs to be replaced by

 i
sel.�/ WD

Pn
jD0.1C �ij/�

i� j

Pn
j;kD0.1C �jk/� j�k

: (2.5.6)

When there are no selective differences, that is, �ij D 0, then since
Pn

jD0 � j D
2N, we are again back to (2.3.1).

We should note that the absolute fitness 1C�ij of an allele pair AiAj thus depends
only that allele pair itself, but not on the relative frequencies of these or other
alleles in the population. Only the relative fitness 1C�ijPn

j;kD0.1C�jk/� j�k depends on the

composition of the population. This is clearly an assumption that excludes many
cases of biological interest. For instance, the relative fitness of males and females
depends on the sex ratio in the population.3

The combined effect of mutation and selection may depend on the order in which
they occur. A natural assumption would be that selection occurs before mutation and
sampling. In that case, �j in (2.5.2) would have to be replaced by  j

sel.�/. Later on,
when we compute moments, however, this will play no role, as the two effects will
simply add to first order.

In any case, instead of (2.3.1), we now have

P.YmC1 D yjYm D �/ D .2N/Š

.y0/Š.y1/Š : : : .yn/Š

nY

iD0

�
 i.�/

�yi

; (2.5.7)

where  i.�/ now incorporates the effects of mutation and selection. When no
mutations occur and no selective differences exist, then  i.�/ D �i, and we have
the original model (2.3.1).

3This was already analyzed by Fisher [47]. See [74] for a systematic analysis.
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Analogously to (2.2.1), we have

E.Yi
mC1jYm D �/ D 2N i.�/; (2.5.8)

or equivalently, with Xt D Yt
2N ; ıXt D XtC1 � Xt as before,

E.ıXi
t/ D  i.x/ � xi

2N
; (2.5.9)

We shall assume that the mutation rates satisfy

#ij D O.
1

N
/ (2.5.10)

and the selection coefficients 1C �ij likewise satisfy

�ij D O.
1

N
/ (2.5.11)

for all i; j and large N, and we consequently define

�ij WD 2N#ij; �j WD 2N#j;

sij WD 2N�ij: (2.5.12)

Thus, since the �ij are symmetric, so are the sij, that is,

sij D sji: (2.5.13)

We then have

 i.x/ D 1

2N
.xi.1C

X

j

sijx
j �

X

j;k

sjkxjxk/ �
X

j

�ij

2
xi C

X

j

�ji

2
xj/C o.

1

2N
/:

(2.5.14)

This implies

E.ıXi
t/ D  i.x/� xi D 1

2N
.xi.

X

j

sijx
j �

X

j;k

sjkxjxk/ �
X

j

�ij

2
xi C

X

j

�ji

2
xj/

Co.
1

2N
/ DW 1

2N
bi.x/C o.

1

2N
/: (2.5.15)

The vector bi.x/ will later on determine the drift terms in the Kolmogorov
equations.
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We also get from (2.5.10), (2.5.11)

E.ıXi
tıX

j
t// D 1

2N
xi.ıij � xj/C o.

1

N
/DW 1

2N
aij.x/C o.

1

2N
/: (2.5.16)

The terms aij.x/ will become the coefficients of the diffusion term in the
Kolmogorov equations.

We also have

E.ıXt/
˛ D o.

1

2N
/ for j˛j � 3: (2.5.17)

Thus, under the assumptions (2.5.10) and (2.5.11), the second and higher
moments are the same, up to terms of order o. 1

2N /, as those for the basic model,
see (2.3.12), (2.3.13).

Besides selection and mutation, there is another important ingredient in models
of population genetics, recombination. That will be treated in Chap. 5.

2.6 The Case of Two Alleles

Before embarking upon the mathematical treatment of the general Wright–Fisher
model in subsequent chapters, it might be useful to briefly discuss the case where
we only have two alleles, A0 and A1. This is the simplest nontrivial case, and the
mathematical structure is perhaps more transparent than in the general case.

We let x be the relative frequency of allele A1. That of A0 then is 1� x. Likewise,
we let y be the absolute frequency of A1; that of A0 then is 2N�y. The corresponding
random variables are denoted by X and Y. The multinomial formula (2.3.1) then
reduces to the binomial formula

P.YmC1 D jjYm D i/ D
 
2N

j

!
.

i

2N
/ j.1� i

2N
/2N�j for i; j D 0; : : : ; 2N: (2.6.1)

Thus, in the absence of mutations and selection, the formulas (2.3.11), (2.3.12)
become

E.ıXt/ D 0; E.ıXt/
2 D 1

2N
Xt.1 � Xt/: (2.6.2)

The moments

mk.t/ D E.Xt/
k (2.6.3)
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then satisfy

Pmk.t/ D k.k � 1/

2
E
�

Xt.1 � Xt/X
k�2
t

�

D k.k � 1/

2
mk�1.t/ � k.k � 1/

2
mk.t/:

(2.6.4)

We next look at the case with mutation, and we put � WD �10; 
 WD �01, that
is, A1 mutates to A0 at the rate �

4N , and in turn A0 mutates to A1 at the rate 

4N .

Then (2.5.14), (2.5.15) become (writing b.x/ in place of b1.x/)

bmut.x/ D 


2
� �C 


2
x: (2.6.5)

In the case of selection, when the fitness values of A0A0;A0A1;A1A1 are 1 C s
2N ;

1C hs
2N and 1, resp., (for instance, h D 1

2
), we get

bsel.x/ D x.1 � x/.h � 1C x � 2hx/s; (2.6.6)

and if we have both mutation and selection,

b.x/ D bmut.x/C bsel.x/: (2.6.7)

The diffusion coefficient is

a.x/ D x.1 � x/: (2.6.8)

Thus, altogether we have

E.ıXtjXt/ D
�

2

� 
 C �

2
Xt C Xt.1 � Xt/.h � 1C Xt � 2hXt/s

�
ıt C o.ıt/;

E..ıXt/
2jXt/ D Xt.1 � Xt/ıt C o.ıt/;

E..ıXt/
˛jXt/ D o.ıt/; for ˛ � 3:

(2.6.9)

2.7 The Poisson Distribution

The Poisson distribution is a discrete probability distribution that models the number
of occurrences of certain events which happen independently and at a fixed rate
within a specified interval of time or space. This may be perceived as a limit



2.8 Probabilities in Population Genetics 29

of binomial distributions with the number of trials N tending to infinity and a
correspondingly rescaled success probability pN 2 O. 1N /.

The formal definition is that a discrete random variable X is said to be Poisson
distributed with parameter 
 > 0, if its probability mass function satisfies

P.X D k/ D 
ke�


kŠ
for k 2 N: (2.7.1)

We have

E.X/ D P
k k 


ke�


kŠ D P
k 



k�1e�


.k�1/Š D 
 (2.7.2)

E.X2/ D P
k k2 


ke�


kŠ D P
k 


2 
k�2e�


.k�2/Š CP
k 



k�1e�


.k�1/Š D 
2 C 


and hence

Var.X/ D 
: (2.7.3)

2.8 Probabilities in Population Genetics

In this section we shall introduce some quantities which are important in population
genetics and which we shall compute in Chap. 10 as applications of our general
scheme. For the notation employed, please see Sect. 2.11.3 below.

2.8.1 The Fixation Time

In the basic Wright–Fisher model, that is, in the absence of mutations, the number
of alleles will decrease as the generations evolve, and eventually, only one allele
will survive. This allele then will be fixed in the population. One then is naturally
interested in the time � when the last non-surviving allele dies out. This is the
fixation time, when a single allele gets fixed in the population. This fixation time
is finite with probability 1, indeed, since we are working on a finite state space and
the boundary is absorbing, that is,

P.� < 1/ D lim
m!1 P.� � m/ D lim

m!1 P.Ym 2 f0; 2Ng/ D 1: (2.8.1)
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2.8.2 The Fixation Probabilities

The calculation of the fixation probabilities of the individual alleles, that is, the
probabilities with which each allele becomes the single surviving allele, is rather
easy. In fact, from (2.3.7), we know that

� D E.YmjY0 D �/ D E.Y� P.� < m/jY0 D �/C E.Ym P.� � m/jY0 D �/

! E.Y� jY0 D �/ for m ! 1 (2.8.2)

by (2.8.1). This means that the expected number of alleles Aj at � is equal to �j, and

therefore their relative frequency is �j

2N . Thus, the probability for finding allele Aj at

the fixation time � is �j

2N .

2.8.3 Probability of Having .k C 1/ Alleles (Coexistence)

Thus, when we start our population with nC1 alleles, eventually only one allele will
survive, as all but one alleles will successively die out. Therefore, we would like to
know, at an arbitrary generation, how many alleles are present. The corresponding
probability is called the coexistence probability.

2.8.4 Heterozygosity

More precisely, we would also like to know the distribution of the alleles at each
generation m. For that purpose, we consider the heterozygosity or genetic variability
matrix with entries

hm.i; j/ D 2Yi
mYj

m

2N.2N � 1/ (2.8.3)

which records the probability that two randomly drawn members of generation m
carry the alleles Ai and Aj. When we have only two alleles A1 and A0 and Y stands
for the number of A1’s, then the quantity reduces to

hm D 2Y.2N � Y/

2N.2N � 1/ ; (2.8.4)

the probability that two randomly drawn alleles are of different type. We then have
h� D 0 when � is the fixation time.
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2.8.5 Loss of Heterozygosity

In a diploid population, if an individual has two different alleles at a specific locus,
we say the individual is heterozygous at that locus, and if the two alleles are the
same, the individual is homozygous. The allele frequency is used to characterize
the genetic diversity, or richness of the gene pool, in a population. The measure of
the amount of heterozygosity across loci can be used as a general indicator of the
amount of genetic variability. Loss of heterozygosity in the Wright–Fisher model
results from the random genetic drift.

2.8.6 Rate of Loss of One Allele in a Population Having
.k C 1/ Alleles

When we are at a generation in which the population has only k C 1 alleles, we
would like to know how quickly one of the remaining alleles will be lost.

2.8.7 Absorption Time of Having .k C 1/ Alleles

We denote by TkC1
nC1.p/ D inf

n
t > 0 W Xt 2 @k�njX0 D p

o
the first time the popula-

tion has at most .k C 1/ alleles. TkC1
nC1.p/ is a continuous random variable valued in

Œ0;1/.

2.8.8 Probability Distribution at the Absorption Time
of Having .k C 1/ Alleles

X
TkC1

nC1
. p/

then is a random variable valued in @k�n. We consider its probability valued

in �.fi0;:::;ikg/
k , i.e., the probability distribution of the alleles in the population at the

first time when at most .k C 1/-alleles coexist. That is, we ask which alleles survive
at that time and what their frequencies are.

2.8.9 Probability of a Particular Sequence of Extinction

Let QM;M�1;:::;2. p1; : : : ; pM/ be the probability that for a given initial allele frequen-
cies . p1; : : : ; pM/, allele AM becomes extinct first, followed by allele AM�1, AM�2
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and so on, ending with fixation of allele A1. This quantity encodes the order of the
loss of alleles in a population.

2.9 The Kolmogorov Equations

In this section, we shall introduce the Kolmogorov equations which we shall derive
in Sect. 4.2 as the diffusion approximations of Wright–Fisher models. There are two
such equations, the Kolmogorov forward equation for the density function and the
Kolmogorov backward equation for the ancestral state (cf. [82]).

Let us start with a brief description of the general theory. We consider a process
X.t/ D .Xi.t//iD1;:::;n with values in 	 � R

n and t 2 .t0; t1/ � R which satisfies
the following conditions. Here, originally time t is discrete, but we want to pass to
the continuum limit ıt ! 0. The notation will be as in Sect. 2.3. In particular, we
consider 2N ! 1 with ıt D 1

2N as in (2.3.8).

lim
ıt!0

1

ıt
Eıt
�
ıXi
ˇ̌
X.t/ D x

� DW bi.x; t/; i D 1; : : : ; n (2.9.1)

and

lim
ıt!0

1

ıt
Eıt
�
ıXiıXj

ˇ̌
X.t/ D x

� DW aij.x; t/; i; j D 1; : : : ; n (2.9.2)

existing for all .x; t/ 2 	 � .t0; t1/ and further

lim
ıt!0

1

ıt
Eıt
�
.ıX/˛

ˇ̌
X.t/ D x

� D 0 (2.9.3)

for all .x; t/ 2 	 � .t0; t1/ and all multi-indices ˛ D .˛1; : : : ; ˛n/ with j˛j � 3.
In the limit of continuous time and an infinite population, the probability density
f . p; s; x; t/ WD @n

@x1���@xn P.X.t/ � xjX.s/ D p/ with s < t (if it exists and is smooth
enough), then satisfies

• the Kolmogorov forward equation (also known as the Fokker–Planck equation)

@

@t
f . p; s; x; t/ D �

nX

iD1

@

@xi

�
bi.x; t/f . p; s; x; t/

�
C 1

2

nX

i;jD1

@2

@xi@xj

�
aij.x; t/f . p; s; x; t/

�
;

(2.9.4)



2.10 Looking Forward and Backward in Time 33

• the Kolmogorov backward equation

� @

@s
f . p; s; x; t/ D

nX

iD1
bi. p; s/

@

@pi
f . p; s; x; t/C 1

2

nX

i;jD1
aij. p; s/

@2

@pi@pj
f . p; s; x; t/

(2.9.5)

with . p; s/; .x; t/ 2 	 � .t0; t1/ in each case.

The probability density function f as given here depends on two points in the
state space . p; s/ and .x; t/ although either Kolmogorov equation only involves
derivatives with respect to one of them (correspondingly, f needs to be of class C2

with respect to the relevant spatial variables in	 and of class C1 with respect to the
relevant time variable in .t0; t1/). In the theory of partial differential equations, the
first order derivatives are called drift terms (with bi being the drift coefficients),
the second order derivatives diffusion terms (with diffusion coefficients aij). We
should point out that this convention is the opposite of the biological interpretation,
as the second order terms arise from random genetic drift whereas the first order
terms represent diffusion effects due to such forces as mutation and selection.
Nevertheless, we shall follow the PDE terminology.

By expressing the model through such partial differential equations for prob-
ability density functions rather than as a stochastic process, we shift from the
consideration of random trajectories of the process to the deterministic evolution
of a function which encodes the randomness of the process. This will allow us,
in particular, a detailed treatment of the boundary behaviour and the hierarchical
structure of the process.

2.10 Looking Forward and Backward in Time

When we have described the Wright–Fisher model in Sect. 2.3, we have essentially
asked how a distribution of alleles in the population can be expected to evolve in
the future. Let us normalize the starting time of the process to be 0, which we shall
also call the present. We consider here the rescaled variables Xm D Ym

2N , in order
to be able to work on the probability simplex †n (see (2.11.13)). Thus, given a
frequency distribution X0 D x0, we ask about the probability distribution P.XmjX0 D
x0/ for the random variable Xm for m > 0. Of course, instead of starting with a
single value X0 D x0, we could also have a started with a probability distribution
P.x0/ (see also (2.3.4)). The rescaling limit then yields the Kolmogorov forward
equation. Its solution simply yields the probabilities for allele distribution at future
times, in the rescaling limit of an infinite population evolving in continuous time.
That is, it tells us the probabilities of the various possible future states when we
know with which probabilities we started at time 0. And even if we start with a
distribution with non-vanishing frequencies for all alleles A0; : : : ;An, that is, with
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an initial condition in the interior †n of the probability simplex, after some time,
one or more alleles may get lost, and we land in the boundary of the simplex. In the
absence of mutations, we can then never come back into the interior. This happens
almost surely along any sample path, and since the dynamics continues to follow
the same pattern in any boundary face, the allele loss gets repeated, until only one
allele survives, and we end up in one of the corners of the simplex. We can also
look into the future at the population level. We can ask about the probabilities for
the offspring of each population member several generations from now. But in the
absence of selective differences, this is trivial. Each individual has the same chance
of producing offspring. Since, in the finite population case, the size of the generation
is fixed, when one individual produces more offspring, others can correspondingly
produce only less. Eventually, the offspring of a single individual will cover the
entire population.

But we can also look backward in time. Given again a current state at time 0,
we can ask about the probabilities of various ancestral states to have given rise to
that current state. Knowing the current state, we can neither determine its future nor
its past precisely, but can compute only the probabilities of future and past states.
Let us first look at the population level. Here, we can ask whether two individuals
in the current generation had the same ancestor in some past generation, or more
precisely, we can compute the probabilities for two or more individuals to have
the same ancestor ` generations back into the past. And we can ask how many
generation we have go back into the past at least so that all members of the current
generation descend from a single ancestor, that is, to find the most recent common
ancestor (MRCA). The resulting stochastic process is Kingman’s coalescent [81];
see Sect. 4.4 for some more details (a concise discussion can also be found in [73]).

Again, we can also ask about probability distributions for the allele frequencies
in the past. In the continuum limit, this is described by the Kolmogorov backward
equation. Thus, when we assume a definite state at time 0, we can ask about the
probabilities for its various ancestral states. The Kolmogorov backward equation
will then show how those ancestral probabilities evolve as time is running backward,
hence the name. This will reveal the same characteristics as in the forward
case: When we let any particular ancestral state evolve in turn, then, with some
probability, it will lose some alleles, that is, move into the boundary of the simplex
before reaching the present. While in the forward case such allele is simply lost and
does no longer influence the process, the backward case is somewhat asymmetric as
the absorption into the boundary will also make itself felt in the interior. Hence, it is
crucial whether our final condition, a probability distribution for relative frequencies
at time 0, also encompassed boundary strata, that is, states where one or more alleles
are lost. Of course, when the final condition is a definite state in the interior, that is,
we assume in particular that no allele loss has happened, then nothing could have
flown into the boundary. In general, however, the possibility of allele loss in the past
leads to some difficulties in the analysis of the backward equation, see Chap. 9.
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2.11 Notation and Preliminaries

In the last section of the current chapter, we systematically assemble some notation.
Random variables have already occurred above when we formally introduced the
basic Wright–Fisher model, but it should nevertheless be useful for the reader
to have all relevant notations in a single place. We then collect the notation for
moment generating functions which will also play an important role in subsequent
chapters. Finally, we introduce some notation concerning the geometry of the
standard simplex and its various faces, as well as for certain function spaces that
are adapted to that geometry.

We often employ a multi-index notation. Thus, ˛ D .˛0; : : : ; ˛n/ is a multiindex
with n C 1 (the number of alleles present) nonnegative integer entries. We also put
j˛j D P

˛i. X˛ then stands for
Q

i.X
i/˛

i
, when X D .X0; : : : ;Xn/.

2.11.1 Notation for Random Variables

We start with some notations.
We may have either integer times m 2 N or real times t 2 R

C. Time is
represented by a subscript. So, Zm or Zt is the value of the random process Z at
time m or t.

We usually consider a population of N diploid individuals. Thus, in the single
locus case, when every individual carries two alleles, we have a population of 2N
alleles.

The random variable Y denotes allele frequencies, whereas X denotes relative
frequencies. When we have alleles A0; : : : ;An at a single locus, their frequencies
are given by Y D .Y0; : : : ;Yn/. Thus,

Pn
iD0 Yi D 2N. The corresponding relative

frequencies are given by Xi D 1
2N Yi. Thus,

Pn
iD0 Xi D 1.

We usually write p.y0; : : : ; yn/ D P.Y0 D y0; : : : ;Yn D yn/ for the probability
that the components of the random variable Y take the values yi. We shall employ
the same notation for different random variables. Thus, p or P do not denote specific
functions, but stand for the generic assignment of probabilities. Which random
variable is meant will be clear from the variable names and the context.

When we have several loci � D 1; : : : ; k and possible alleles A
i�
� at locus �, we

denote the (relative) frequencies by Yi1:::ik (Xi1:::ik ). In contrast, when we consider

the allele combinations at the loci of diploid individuals, we write Y
i
j or X

i
j for

the (relative) frequencies of the combination of alleles i and j in an individual.
We usually ignore the order, that is, we identify the combinations i

j and j
i . Thus,

P
i;j Y

i
j D 1

2

P
` Y` D N and

P
i;j X

i
j D 1.

Turning to the special case of two loci with two alleles each, we denote the alleles
at the first locus by A0;A1, and those at the second locus by B0;B1. Moreover, we
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write for the allele combinations

G0 D .A0; B0/; G1 D .A0; B1/; G2 D .A1; B0/; G3 D .A1; B1/ (2.11.1)

and thus get the corresponding relative frequencies X0 D X00, X1 D X01, X2 D X10,
X3 D X11. We also put i0 D 0.1/ if i D 1.0/ and write

Dij D XijXi0j0 � Xij0Xi0j:

When we use the G`s, we also write D` WD Dij when G` D .Ai;Bj/.
Subsequently, we shall often abbreviate

.Ai;Bj/ DW .ij/:

This notation possesses the advantage of a straightforward extension to the case of
more than two loci.

2.11.2 Moments and the Moment Generating Functions

We recall some facts about moment generating functions. In particular, we shall
discuss the moment generating function of the multinomial distribution.

Let Y D .Y1; : : : ;Yn/ W 	 ! R
n be a tuple of random variables with joint

probabilities p.y1; : : : ; yn/ D P.Y1 D y1; : : : ;Yn D yn/ for their values. The
moment generating functions then is

M.s1; : : : ; sn/ WD E.e
Pn

iD1 siYi
/ D

X

y1;:::;yn

p.y1; : : : ; yn/e
P

i yisi : (2.11.2)

M encodes the moments of the distribution p in the sense that the moment

E..Y1/
1 : : : .Yn/
n/ D
X

y1;:::;yn

nY

iD1
.yi/
i p.y1; : : : ; yn/

D @
P

i

.@s1/
1 : : : .@sk/
k
M.s1; : : : ; sn/js1D0;:::;snD0: (2.11.3)

We shall also need the following transformation rule. If

Yi D
X̀

jD1
ai

jZ
j (2.11.4)
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then

E.e
Pn

iD1 siYi
/ D E.e

Pn
iD1 si

P
j ai

jZ
j
/ D

X

z1;:::;z`

p.Z1 D z1; : : : /e
P

i sia
i
jz

j
: (2.11.5)

In particular, when the Yi are allele frequencies, and Xi D 1
2N Yi are the correspond-

ing relative frequencies, then

E.e
Pn

iD1 siXi
/ D E.e

Pn
iD1

si
2N Yi

/; (2.11.6)

and where we have of course P.X1 D x1; : : : / D P.Y1 D y1; : : : / with xi D yi

2N .
If Y is the sum of k independent random variables Y1; : : : ;Yn with moment

generating functions Mj, then

M.s1; : : : ; sn/ D
nY

jD1
Mj.sj/ D

X

y1;:::;yn

p.y1; : : : ; yn/e
P

i yisi : (2.11.7)

When we apply this to multinomial sampling where we sample 2N times
independently, then the resulting random variable is the sum of 2N random variables
obtained by sampling just once. Thus, when, as before, we have n C 1 possibilities

 D 0; : : : ; n occurring with probabilities p
 , we obtain for the moment generating
function

M.s0; : : : ; sn/ D .

nX


D0
p
e

s
 /2N : (2.11.8)

Thus, with (2.11.3), we recover the moments of the multinomial distribution,

E.Yi/ D 2Npi (2.11.9)

E.YiYj/ D 4N2pipj C 2Npi.ıij � pj/ (2.11.10)

E.YiYjY`/ D 2N.2N � 1/.2N � 2/pipjp`

C2N.2N � 1/. pipj.ıi` C ıj`/C pip`ıij/C 2Npiıij`;

(2.11.11)

where ıij` D 1 if i D j D ` and D 0 otherwise. In particular, we have

Cov.Yi;Yj/ D E.YiYj/� E.Yi/E.Yj/ D 2Npi.ıij � pj/: (2.11.12)
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2.11.3 Notation for Simplices and Function Spaces

Since we plan to develop a hierarchical scheme for the solution of the Kolmogorov
equations on the various boundary strata of the standard simplex, we need to develop
some notation which allows for the recursive application of our scheme on different
boundary strata. We also need suitable hierarchical products. That is the purpose of
this section.

We recall the simplex

†n WD
(
.x0; x1; : : : ; xn/ W xi � 0 for all i;

nX

iD0
xi D 1

)
: (2.11.13)

This is the standard n-simplex in R
nC1 representing the probabilities or relative

frequencies x0; x1; : : : ; xn of alleles A0;A0; : : : ;An in our population. Thus we have
the normalization

Pn
jD0 xj D 1, and we therefore have x0 D 1 � Pn

iD1 xi. Often,
however, it is advantageous to work in R

n instead of RnC1, we shall therefore work
with the (open) n-dimensional standard orthogonal simplex

�n WD
n
.x1; : : : ; xn/ 2 R

n
ˇ̌
xi > 0 for i D 1; : : : ; n and

nX

iD1
xi < 1

o
; (2.11.14)

or equivalently,

�n D
n
.x1; : : : ; xn/ 2 R

n
ˇ̌
xj > 0 for j D 0; 1; : : : ; n and

nX

jD0
xj D 1

o
: (2.11.15)

Its topological closure is

�n D ˚
.x1; : : : ; xn/ 2 R

n
ˇ̌
xi � 0 for i D 1; : : : ; n and

nX

iD1
xi � 1

�
: (2.11.16)

In order to include time t 2 Œ0;1/, we shall also use the notation

.�n/1 WD �n � .0;1/:

The boundary @�n D �n n �n consists of various subsimplices of descending
dimensions called faces, starting from the .n � 1/-dimensional facets down to the
vertices (which represent 0-dimensional faces). Each subsimplex of dimension k �
n � 1 is isomorphic to the k-dimensional standard orthogonal simplex �k. For an
index set Ik D fi0; i1; : : : ; ikg � f0; : : : ; ng with ij ¤ il for j ¤ l.
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We put

�
.Ik/
k WD

n
.x1; : : : ; xn/ 2 �n

ˇ̌
xi > 0 for i 2 IkI xi D 0 for i 2 In n Ik

o
: (2.11.17)

We note that �n D �
.In/
n .

For a given k � n � 1, there are of course
�nC1

kC1
�

different such subsets Ik of In,

each of which corresponds to a certain boundary face �.Ik/
k . We therefore introduce

the k-dimensional boundary @k�n of �n by putting

@k�
.In/
n WD

[

Ik�In

�
.Ik/
k � @�.In/

n for 0 � k � n � 1: (2.11.18)

With this notation, we have @n�n D �n, although this is not a boundary component.
The concept of the k-dimensional boundary also applies to simplices which are
themselves boundary instances of some �.Il/

l , Il � In for 0 � k < l � n, thus

@k�
.Il/
l D

[

Ik�Il

�
.Ik/
k � @�

.Il/
l : (2.11.19)

In the Wright–Fisher model, �n corresponds to the state of all n C 1 alleles
being present, whereas @k�n represents the state of exactly (any) k C 1 alleles being
present in the population. The individual�.fi0;:::;ikg/

k comprising @k�n correspond to
the state of exactly the alleles i0; : : : ; ik being present in the population. Likewise,
@k�1�.fi0;:::;ikg/

k corresponds to the state of exactly one further allele out of i0; : : : ; ik
being eliminated from the population. Eventually,

@k�
.In/
n �

[

Ik�In

�
.Ik/
k

corresponds to the state of at most (any) kC1 alleles being present in the population.
We shall also need the function spaces

Hn WD C1.�n/; H0
n WD C1

0 .�n/; and

H WD ˚
f W �n ! Œ0;1� measurable such that Œ f ; g�n < 1;8g 2 Hn

�
;

More generally,

H.fi0;:::;ikg/
k WD C1

�
�
.fi0;:::;ikg/
k

�
;

Hk WD C1.@k�n/; k 2 f1; : : : ; ng:
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We shall also use the L2-product

. f ; g/ WD . f ; g/n WD
Z

�n

f .x/g.x/d

n.x/; (2.11.20)

where 

n.x/ is the Lebesgue measure on the simplex �n. (We shall leave out the
index n when the dimension is clear from the context.)

Finally, we need a notion of hierarchical L2-product over a simplex and all of its
boundary simplices:

n WD
Z

�n

f .x/g.x/d

.x/ D
nX

kD0

Z

@k�n

f .x/g.x/d

k.x/

WD
nX

kD0

X

fi0;:::;ikg

Z

�
.fi0;:::;ikg/
k

f .x/g.x/d

.fi0;:::;ikg/
k .x/;

(2.11.21)

and correspondingly

L2
� n[

kD0
@k�n

�
WD
n

f W�n �! R

ˇ̌
ˇ f j@k�n is 

k � measurable and

Z

@k�n

j f .x/j2 d

k.x/ < 1 for all k D 0; : : : ; n
o
: (2.11.22)

Here, 

k again stands for k-dimensional Lebesgue measure, but when integrating
over some �.Ik/

k with 0 … Ik, the measure needs to be replaced with the one induced

on �.Ik/
k by the Lebesgue measure of the containing R

kC1, which is denoted by




.Ik/
k . However, will also just write 

k as it is clear from the domain of integration

�
.Ik/
k with either 0 2 Ik or 0 … Ik which version is actually used. We will use 



without a sub- or superscript for the measure on the closed simplex composed of the
hierarchical family of Lebesgue measures on all its subsimplices.

In order to define an extended solution on �n and its faces (indicated by a
capitalised U) in Sect. 9.2, we shall in addition need appropriate spaces of pathwise
regular functions. Such a solution needs to be at least of class C2 in every boundary
instance (actually, a solution typically always is of class C1, which likewise
applies to each boundary instance). Moreover, it should stay regular at boundary
transitions that reduce the dimension by one, i.e. for �.Ik/

k and a boundary face

�k�1 � @k�1�.Ik/
k . Globally, we may require that such a property applies to all
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possible boundary transitions within�n and define correspondingly for l 2 N[f1g

U 2 Cl
p

�
�n
� W, Uj

�
.Id /
d [@d�1�

.Id /
d

2 Cl.�
.Id/
d [ @d�1�.Id/

d / for all Id � In; 1 � d � n

(2.11.23)

with respect to the spatial variables. Likewise, for ascending chains of
(sub-)simplices with a more specific boundary condition, we put for index sets
Ik � : : : � In and again for l 2 N [ f1g

U 2 Cl
p0

� n[

dDk

�
.Id/
d

�
W,

8
<̂

:̂

Uj
�
.Id /
d

is extendable to NU 2 Cl.�
.Id/
d [ @d�1�.Id/

d / with

NUj
@d�1�

.Id /
d

D U�
�
.Id�1/

d�1

�fd>kg for all max.1; k/ � d � n

(2.11.24)

with respect to the spatial variables.
Finally, we put e0 WD .0; : : : ; 0/ 2 R

n; ei WD .0; : : : ; 1„ƒ‚…
ith

; : : : ; 0/ 2 R
n for

i 2 f1; : : : ; ng.

2.11.4 Notation for Cubes and Corresponding Function Spaces

For the regularising blow-up scheme of Sect. 9.7.2, we furthermore introduce some
notation for cubes and their boundary instances: In conjunction to the definitions for
�n in Sect. 2.11.3, we define for n 2 N an n-dimensional cube �n as

�n WD ˚
. p1; : : : ; pn/

ˇ̌
pi 2 .0; 1/for i D 1; : : : ; n

�
: (2.11.25)

Analogous to �n, if we wish to denote the corresponding coordinate indices explic-
itly, this may be done by providing the coordinate index set I0

n WD fi1; : : : ; ing �
f1; : : : ; ng, ij ¤ il for j ¤ l as upper index of �n, thus

�.I0

n/
n D ˚

. p1; : : : ; pn/
ˇ̌
pi 2 .0; 1/for i 2 I0

n

�
: (2.11.26)

This is particularly useful for boundary instances of the cube (cf. below) or if for
other purposes a certain ordering .ij/jD0;:::;n of the coordinate indices is needed. For
�n itself and if no ordering is needed, the index set may be omitted (in such a case
it may be assumed I0

n � f1; : : : ; ng as in Eq. (2.11.25)). Please note that a primed
index set is always assumed to not contain index 0 (resp. i0 D 0, which we usually
stipulate in case of orderings) as the cube does not encompass a 0th coordinate.
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In the standard topology on R
n, �n is open (which we always assume when

writing �n), and its closure �n is given by (again using the index set notation)

�.I0

n/
n D ˚

. p1; : : : ; pn/
ˇ̌
pi 2 Œ0; 1� for i 2 I0

n

�
: (2.11.27)

Similarly to the simplex, the boundary @�n of �n consists of various subcubes
(faces) of descending dimensions, starting from the .n�1/-dimensional facets down
to the vertices (which represent 0-dimensional cubes). All appearing subcubes of
dimension 0 � k � n � 1 are isomorphic to the k-dimensional standard cube �k

and hence will be denoted by �k if it is irrelevant or given by the context which

subcube exactly shall be addressed. However, we may state �.I0

k/

k with the index set
I0
k WD fi1; : : : ; ikg � I0

n, ij ¤ il for j ¤ l stipulating that I0
k lists all k ‘free’ coordinate

indices, whereas the remaining coordinates are fixed at zero, i.e.

�.I0

k/

k WD ˚
. p1; : : : ; pn/

ˇ̌
pi 2 .0; 1/ for i 2 I0

kI pi D 0 for i 2 I0
n n I0

k

�
(2.11.28)

down until �.¿/
0 WD .0; : : : ; 0/ for k D 0.

For a given k, there are of course
�n

k

�
different (unordered) subsets I0

k of I0
n, each

of which corresponds to a certain boundary face �.I0

k/

k . Moreover, for each subset I0
k

with k elements, altogether 2.n�k/ subcubes of dimension k exist in @�n, which are

isomorphic to �.I0

k/

k (including �.I0

k/

k ) depending on the (respectively fixed) values
of the coordinates with indices not in I0

k. Thus, if necessary, we may rather state a
certain boundary face �k of @�n for 0 � k � n � 1 by only giving the values of the
n � k fixed coordinates, i.e. with indices in I0

n n I0
k, which may be either 0 or 1, hence

�k D ˚
pj1 D b1; : : : ; p

jn�k D bn�k
�

(2.11.29)

with j1; : : : ; jn�k 2 I0
n, ir ¤ is for r ¤ s and b1; : : : ; bn�k 2 f0; 1g chosen

accordingly. In particular for dimension n � 1, it is noted that we have n � 1 faces,
which each appear twice; in zero dimension, there are 2n vertices. If we wish to
indicate the total k-dimensional boundary of �n, i.e. the union of all k-dimensional
faces belonging to �n, we may write @k�n for k D 0; : : : ; n with analogously
@n�n WD �n.

Lastly, when writing products of simplex and cube which do not span all consid-
ered dimensions, we indicate the value of the missing coordinates by curly brackets
marked with the corresponding coordinate index, i.e. for In D fi0; i1; : : : ; ing and
Ik � In with ikC1 … Ik we have e.g.

�
.Ik/
k � f1g.fikC1g/ � �.I0

nn.I0

k[fikC1g//
n�k�1

WD ˚
. pi1 ; : : : ; pin /

ˇ̌
pi > 0 for i 2 Ik; p

ikC1 D 1; pj 2 .0; 1/ for j 2 I0
n n .I0

k [ fikC1g/
�

(2.11.30)
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with pi0 D p0 D 1 �Pk
jD1 pij . If coordinates are fixed at 0, the corresponding entry

may be omitted, e.g. we may just write �.Ik/
k for �.Ik/

k � f0g.InnIk/.

Furthermore, we also introduce a (closed) cube �.I0

k/

k with a removed base vertex

�.¿/
0 somewhat inexactly denoted by �.I0

k/

k , i.e.

�.I0

k/

k WD �.I0

k/

k n �.¿/
0 D

n
pi1 ; : : : ; pik 2 Œ0; 1�

ˇ̌
ˇ

kX

jD1
pij > 0

o
: (2.11.31)

For functions defined on the cube, the pathwise smoothness required for an
application of the yet to be introduced corresponding Kolmogorov backward
operator (cf. p. 242) may be defined as with the simplex in equality (2.11.23); hence,
we put

Qu 2 Cl
p.�n/ W, Quj�d[@d�1�d 2 Cl.�d [ @d�1�d/ for every �d � �n

(2.11.32)

with respect to the spatial variables, implying that the operator is continuous at
all boundary transitions within �n. This concept likewise applies to subsets of �n

where needed.



Chapter 3
Geometric Structures and Information
Geometry

3.1 The Basic Setting

We consider the probability simplex

†
n WD

(
.x0; : : : ; xn/ W

nX

iD0
xi D 1

)
: (3.1.1)

The xi will stand for relative allele frequencies or probabilities that were denoted by
pi in (1.1.1). When the total number of alleles present in the population is 2N (i.e.,
a population consisting of N diploid individuals), we have

xi 2
n 0
2N
;
1

2N
; : : : ;

2N

2N

o
; (3.1.2)

but in the infinite population size limit that we shall mainly consider, the xi can take
any values between 0 and 1. The normalization

nX

iD0
xi D 1 (3.1.3)

induces correlations between the xi, i D 0; : : : ; n, that will be captured by the Fisher
metric introduced below. On this space of relative frequencies or probabilities, we
shall consider probability distributions p.x/. As probability distributions, they need
to satisfy the normalization

Z

†
n

p.x/dx D 1; (3.1.4)
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or in the discrete case

X

xDx0;:::;xn

p.x/ D 1: (3.1.5)

In the sequel, we shall equip the probability simplex †
n

with various geometric
structures. Of course, it already possesses a geometric structures as an affine linear
subset of R

nC1. Another geometric structure is obtained by projecting it to the
positive sector of the unit sphere in R

nC1. Simple as these structures may seem, they,
and in particular the relation between them, will provide us with a lot of structural
insight. This is the content of information geometry. In order to treat information
geometry, we need to develop some basic concepts from Riemannian geometry. A
reader who is either familiar with that or not interested in geometry per se may skip
the next sections and continue with Sect. 3.5. In any case, those next sections only
provide a survey. For detailed proofs, the reader is referred to [71].

3.2 Tangent Vectors and Riemannian Metrics

Let M be an n-dimensional differentiable manifold M. Such a manifold can be
locally described by coordinates taking their values in R

n. They are therefore written
as x D .x1; : : : ; xn/. Properties like smoothness can then be checked in local
coordinates. In particular, all objects considered in the sequel will be assumed to
be smooth.

The tensor calculus works in such local coordinates and employs indices that
run from 1 to n, the dimension of our manifold. Since the coordinates are arbitrary,
geometric quantities should not depend on the choice of coordinates. Therefore,
tensor calculus incorporates certain rules for switching between different coordinate
systems. Even though most of our constructions will only involve a single coordinate
system, as the simplex or the positive spherical sector can be covered by a single
coordinate system, nevertheless the types of geometric objects, as they show
themselves by their transformation behavior, will also be important for our analysis.
Therefore, we shall introduce here the basic aspects of tensor calculus.

We usually write x D f .y/ when we replace the coordinates x by other
coordinates y. The corresponding conventions include the Einstein summation
convention that a summation sign is omitted when the same index occurs twice
in a product, once as an upper and once as a lower index, that is, for instance

viwi WD
nX

iD1
viwi: (3.2.1)

Thus, in this chapter, unless explicitly stated otherwise, indices will range from 1 to
n, and such index pairs as in (3.2.1) will be summed over from 1 to n.
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There also exists a convention for inverses of tensors which we shall describe
here for the metric tensor, an important object to be defined below. When G D .gij/i;j
is a metric tensor, the inverse metric tensor is written as G�1 D .gij/i;j, that is, by
raising the indices. In particular

gijgjk D ıi
k WD

(
1 when i D k

0 when i ¤ k:
(3.2.2)

More generally, the metric tensor is employed for raising and lowering indices, that
is,

vi D gijvj and vi D gijv
j: (3.2.3)

A tangent vector for M is a rule for computing directional derivatives of functions
at some point x0. In local coordinates x, a tangent vector is written as

V D vi @

@xi
: (3.2.4)

For a function '.x/, we can then compute the directional derivative as

V.'/.x0/ D vi @'

@xi

ˇ̌
xDx0

: (3.2.5)

The tangent vectors at a point p 2 M form an n-dimensional vector space, called the
tangent space TpM of M at p. When p varies in M, the tangent spaces TpM constitute
a vector bundle over M, called the tangent bundle TM of M. That is, the fiber of TM
at p 2 M is the vector space TpM. We shall need this vector bundle below in Sect. 3.4
when we introduce connections.

The rule for how to transform the local expression (3.2.4) for V into a different
coordinate system, that is, when we change coordinates from x to y, is

V D vi @yk

@xi

@

@yk
: (3.2.6)

Thus, the coefficients of V in the y-coordinates are vi @yk

@xi . Of course, this transforma-
tion rule is set up in such a way that the result of the operation of the tangent vector
V on a function ', V.'/, is independent of the choice of coordinates. Expressed
more shortly, (3.2.5) does not depend on the choice of coordinates.

A vector field assigns to each point p of M a vector in TpM. In local coordinates,
we can write a vector field as V.x/ D vi.x/ @

@xi . The space of vector fields on M is
denoted by �.TM/.

The transformation behavior (3.2.6) is called contravariant. There are also objects
that transform covariantly, that is, in a manner opposite to (3.2.6). The basic such
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objects are the covectors ! D !idxi. With the basic rule

dxi
� @
@xj

�
D ıi

j ; (3.2.7)

we can apply a covector ! to a vector V , yielding

!idxi
�
v j @

@xj

�
D !iv

jıi
j D !iv

i; (3.2.8)

or written more shortly as !.V/. The covariant transformation behavior

!idxi D !i
@xi

@yk
dyk (3.2.9)

ensures the invariance of !.V/.
We can then also form other tensors, with more than one index. A lower index

always indicates covariant, an upper one contravariant transformation. For example,
the metric tensor, written as gijdxi ˝ dxj, with gij D ˝

@
@xi ;

@
@xj

˛
being the product of

those two basis vectors, operates on pairs of tangent vectors. It therefore transforms
doubly covariantly, that is, when we change coordinates from x to y via x D f .y/,
gij.x/dxi ˝ dxj becomes

gij. f .y//
@xi

@yk

@xj

@y`
dyk ˝ dy`: (3.2.10)

The metric tensor provides a Euclidean product of tangent vectors,

g.V;W/ WD hV;Wi WD gijv
iw j (3.2.11)

for V D vi @
@xi ;W D wi @

@xi . (Here, g.:; :/ and h:; :i are alternative notations for
the same object.) In this formula, vi and wi transform contravariantly, while gij

transforms doubly covariantly so that the product as a scalar quantity remains
invariant under coordinate transformations.

Equipped with a Riemannian metric, one can introduce all the notions and carry
out all the constructions that are familiar from Euclidean geometry. For instance,
two vectors V;W are called orthogonal if hV;Wi D 0.

When we put

g WD det.gij/; (3.2.12)

we obtain the volume element
p

gdx1 : : : dxn of a Riemannian metric. We can
then integrate functions. Again, the transformation behavior of the volume ele-
ment (3.2.12) is such that the result will not depend on the choice of coordinates.
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Definition 3.2.1 A differentiable manifold M that is equipped with a Riemannian
metric g is called a Riemannian manifold.

In particular, when we change the local coordinates the tensor .gij/ representing
the Riemannian metric has to transform according to (3.2.10).

The standard operations for differentiable manifolds are compatible with Rie-
mannian metrics. In particular, we have

Lemma 3.2.1

1. Let .N; g/ be a Riemannian manifold, and let M be a (smooth) submanifold of N.
Then g induces a Riemannian metric on M.

2. Let .M1; g1/; .M2; g2/ be Riemannian manifolds. Then their Cartesian product
becomes a Riemannian manifold .M1 � M2; g1 � g2/.

Proof

1: Let x 2 M � N. Then the tangent space TxM is a linear subspace of the tangent
space TxN. Thus, for V;W 2 TxM, we can form the product g.V;W/. This then
yields the Riemannian metric on M.

2: Let x D .x1; x2/ 2 M1�M2. Every V 2 Tx.M1�M2/ can be uniquely decomposed
as V D V1 C V2 with Vi 2 Txi Mi; i D 1; 2. We then put

.g1 � g2/.V;W/ D g1.V
1;W1/C g2.V

2;W2/ (3.2.13)

to define our product metric. ut
Furthermore, let .M1; g1/ and .M2; g2/ be Riemannian manifolds of dimensions

n and m, and let g1�g2 be the product metric on M1�M2. Taking the representation
in local coordinates of the metrics, i.e. .g1ij.x1//i;jD1;:::;n with x1 D .x11; : : : ; x

n
1/ and

.g2kl.x2//k;lDnC1;:::;nCm with x2 D .xnC1
2 ; : : : ; xnCm

2 /, we have

�
.g1 � g2/rs

�
r;sD1;:::;m D

0

BBBBB@

.g1ij.x1//i;jD1;:::;n 0n;m

0m;n .g2kl.x2//k;lDnC1;:::;nCm

1

CCCCCA
(3.2.14)

with 0n;m being the n � m null matrix. For the inverse metric, we correspondingly
obtain

�
.g1 � g2/

rs
�

r;sD1;:::;m D

0
BBBBB@

.g1ij.x1//i;jD1;:::;n 0n;m

0m;n .g2kl.x2//k;lDnC1;:::;nCm

1
CCCCCA

(3.2.15)
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as for a block matrix M D �
A B
C D

�
like

�
.g1 � g2/rs

�
r;sD1;:::;m, we have

M�1 D
�

A�1 C A�1B.M=A/�1CA�1 �A�1B.M=A/�1
�.M=A/�1CA�1 .M=A/�1

�
(3.2.16)

with .M=A/�1 WD .D � CA�1B/�1 being the Schur complement of A in M (cf. [127,
pp. 17 f.]). Clearly, these considerations extend straightforwardly to product metrics
with more than two factors.

3.3 Differentials, Gradients, and the Laplace–Beltrami
Operator

The differential of a function ' is

d' D @'

@xi
dxi; (3.3.1)

which does not depend on the metric. This is a covector. When we want to have a
vector instead, the gradient of ', we need the metric:

grad' D gij @'

@xj

@

@xi
: (3.3.2)

We also want to differentiate vector fields. The divergence of a vector field Z D Zi @
@xi

is the function

div Z WD 1p
g

@

@xj

�p
gZj
� D 1p

g

@

@xj

�p
ggij

D
Z;

@

@xi

E�
: (3.3.3)

We can then define the Laplace–Beltrami operator

�g' WD div grad' D 1p
g

@

@xj

�p
ggij @'

@xi

�
: (3.3.4)

Here,
p

g is the determinant of the metric tensor, see (3.2.12). Let us point out that
the sign convention adopted here differs from that of [71].

This is a self-adjoint operator in the sense that for any two smooth functions '; 
(compactly supported if the manifold M is not compact itself)

Z
'�g 

p
gdx1 : : : dxn D

Z
 �g'

p
gdx1 : : : dxn: (3.3.5)
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A function ' is called harmonic if

�g' D 0: (3.3.6)

3.4 Connections

Definition 3.4.1 Let M be a differentiable manifold with tangent bundle TM. A
covariant derivative, or equivalently, a connection is a map

DW�.TM/˝ �.TM/ ! �.TM/ (3.4.1)

.V;Z/ 7! DVZ (3.4.2)

satisfying

(i) D is tensorial in V:

DVCWZ D DVZ C DWZ for V;W;Z 2 �.TM/; (3.4.3)

DfVZ D f DVZ for f 2 C1.M;R/;V 2 �.TM/: (3.4.4)

(ii) D is R-linear in Z:

DV.Z C Y/ D DVZ C DVY for V;Z;Y 2 �.TM/ (3.4.5)

and it satisfies the following product rule:

DV. f Z/ D V. f / � Z C f DV Z for f 2 C1.M;R/: (3.4.6)

Thus, when we multiply V by a smooth function f , we can simply pull that function
out, but when we multiply Z, we also need to differentiate that function f .

Again, tensor calculus expresses things in local coordinates. Thus, for a connec-
tion D; we define the Christoffel symbols �k

ij .i; j; k D 1; : : : ; n/ by

D @

@xi

@

@xj
DW �k

ij

@

@xk
: (3.4.7)

The Christoffel symbols, however, do not transform as tensors, in contrast to the
curvature tensor to be defined below.

Definition 3.4.2 The curvature tensor R of a connection D is defined by

R.X;Y/Z D DXDYZ � DYDXZ � DŒX;Y�Z (3.4.8)
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for vector fields X;Y;Z on M. Here, ŒX;Y� is the vector field that operates on
functions ' via ŒX;Y�' D X.Y'/ � Y.X'/.

A connection whose curvature tensor vanishes is called flat.

We define the components Rk
`ij of the curvature tensor by

R

�
@

@xi
;
@

@xj

�
@

@x`
D Rk

`ij

@

@xk
(3.4.9)

.i; j; k; ` 2 f1; : : : ; ng/: (Note the convention about the position of the indices; this
is taken from [71] and may differ from the convention employed in some other
textbooks.) These components can be expressed in terms of the Christoffel symbols
via

Rk
`ij D @�k

j`

@xi
� @�k

i`

@xj
C �k

im�
m
j` � �k

jm�
m
i` : (3.4.10)

The curvature tensor is antisymmetric in X and Y, i.e.,

R.X;Y/ D �R.Y;X/; (3.4.11)

or with indices,

Rk
`ij D �Rk

`ji 8 i; j; k; ` : (3.4.12)

Definition 3.4.3 The torsion tensor of a connection D on TM is defined as

T.X;Y/ WD TD.X;Y/ WD DXY � DYX � ŒX;Y� .X;Y 2 �.TM//: (3.4.13)

D is called torsion free if

T � 0: (3.4.14)

In terms of our local coordinates, the components of the torsion tensor T are
given by

Tij D T

�
@

@xi
;
@

@xj

�
D D @

@xi

@

@xj
� D @

@xj

@

@xi
D .�k

ij � �k
ji/
@

@xk
: (3.4.15)

Thus, the connection D on TM is torsion free if and only if

�k
ij D �k

ji for all i; j; k: (3.4.16)

So far, there was no relation between a connection D on a differentiable manifold
M expressed in local coordinates by the Christoffel symbols �k

ij and a Riemannian
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metric h � ; � i expressed in local coordinates by a metric tensor gij. We now impose
a compatibility condition in terms of a product rule for the differentiation of the
Riemannian product of two vector fields. Given a metric, for a connection D on M,
we may define its dual connection D� via

ZhV;Wi D hDZV;Wi C hV;D�
ZWi (3.4.17)

for all vector fields V;W;Z.

Definition 3.4.4 A connection D on M is called metric when it is self-dual in the
sense that D D D�.

That means that

ZhV;Wi D hDZV;Wi C hV;DZWi for all V;W;Z 2 �.TM/ (3.4.18)

For a metric connection, we have

Rk
`ij D �R`kij for all i; j; k; ` 2 f1; : : : ; dg (3.4.19)

(Compare this symmetry with (3.4.12) which holds for every connection, not
necessarily metric.)

Theorem 3.4.1 On each Riemannian manifold M; there is precisely one metric and
torsion free connection r, called the Levi-Civita connection of M: It is determined
by

hrXY;Zi D 1

2

˚
XhY;Zi � ZhX;Yi C YhZ;Xi

� hX; ŒY;Z�i C hZ; ŒX;Y�i C hY; ŒZ;X�i�:
(3.4.20)

for vector fields X;Y;Z.

For the Levi-Civita connection, the Christoffel symbols can be expressed in terms
of the metric gij:

�k
ij D 1

2
gk`.gi`;j C gj`;i � gij;`/; (3.4.21)

where gik;j WD @gik
@xj . When we have a metric, we can also use it to pull down the upper

index of the Christoffel symbols of a connection D; with the convention (3.2.3), we
get

�D
kij D gk`�

`
ij D hD @

@xi

@

@xj
;
@

@xk
i (3.4.22)



54 3 Geometric Structures and Information Geometry

where we now indicate the connection by a superscript for later purposes. In
particular, we obtain (3.4.21) by putting X D @

@xi ;Y D @
@xj ;Z D @

@xk in (3.4.20) and

use the fact that coordinate vector fields commute, e.g. Œ @
@xi ;

@
@xj �' D @2'

@xi@xj � @2'

@xj@xi D
0. Also, (3.4.21) then becomes

�ijk D 1

2
.gik;j C gjk;i � gij;k/; (3.4.23)

Let us then consider a pair .D1;D2/ of connections, as well as the Levi-Civita
connection r. Comparing (3.4.17) and (3.4.18) yields the following condition for
D1 and D2 to be dual in the sense of (3.4.17)

�
D1
kij C �

D2
kij D 2�r

kij for all i; j; k: (3.4.24)

Not surprisingly, the curvature tensor R of the Levi-Civita connection r satisfies
some additional identities. R is given by

R.X;Y/Z D rXrYZ � rYrXZ � rŒX;Y�Z

(cf. (3.4.8)). In local coordinates, as in (3.4.9),

R

�
@

@xi
;
@

@xj

�
@

@x`
D Rk

`ij

@

@xk
: (3.4.25)

We use again the convention (3.2.3) to pull down an index with the help of the metric
tensor and put

Rk`ij D gkmRm
`ij;

i.e.

Rk`ij D
D
R
� @
@xi
;
@

@xj

� @

@x`
;
@

@xk

E
: (3.4.26)

We point out that the indices k and l appear in different orders on the two sides
of (3.4.26), following the convention of [71].

For vector fields X;Y;Z;W; we then have

R.X;Y/Z D �R.Y;X/Z; i.e. Rk`ij D �Rk`ji; (3.4.27)

R.X;Y/Z C R.Y;Z/X C R.Z;X/Y D 0; i.e. Rk`ij C Rkij` C Rkj`i D 0; (3.4.28)

hR.X;Y/Z;Wi D �hR.X;Y/W;Zi; i.e. Rk`ij D �R`kij; (3.4.29)

hR.X;Y/Z;Wi D hR.Z;W/X;Yi; i.e. Rk`ij D Rijk`: (3.4.30)
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From the preceding, we recall that (3.4.27) holds for any connection, (3.4.28) for a
torsion free one, and (3.4.29) for a metric one. (3.4.28) is the first Bianchi identity.

Definition 3.4.5 The sectional curvature of the (linearly independent) tangent
vectors X D � i @

@xi ;Y D � j @
@xj 2 TxM of the Riemannian manifold M is

K.X;Y/ W D hR.X;Y/Y;Xi 1

jX ^ Yj2

D Rijk`�
i� j�k�`

gikgj`.� i�k� j�` � � i� j�k�`/

D Rijk`�
i� j�k�`

.gikgj` � gijgk`/� i� j�k�`

(3.4.31)

with the normalization factor jX ^ Yj2 D hX;XihY;Yi � hX;Yi2.
With (3.4.10), we obtain

Rklij D gkmRm
lij D @i�jlk � @j�ilk � � s

ki�jls C � r
kj�ilr

as gkmgmb D ıb
k and where we have used the metric to pull down the upper index of

the Christoffel symbols, i.e., gas�jls D �a
jl . And with (3.4.21), we can further rewrite

this as

Rklij D 1

2

�
@i@lgjk C @j@kgil � @i@kgjl � @j@lgik

�C grs
�
�kjs�ilr � �kir�jls

�
;

(3.4.32)

which we will use for calculating sectional curvatures.
We also observe the following scaling behavior of the curvature.

Lemma 3.4.1 If the metric g Riemannian metric is scaled with a factor 
 > 0, then
the corresponding sectional curvatures are scaled by 1



.

Proof In (3.4.31), g appears twice in the denominator, while Rklij in the enumerator
according to (3.4.32) only contains either @@g or terms of the form g�1@g@g, which
both contribute only one factor 
. ut
Lemma 3.4.2 Let .M1 � M2; g1 � g2/ be a Riemannian product as in Lemma 3.2.1.
Let x D .x1; x2/ 2 M1 � M2. Let V 2 Tx1M1;W 2 Tx2M2. Then

K.V;W/ D 0: (3.4.33)

Proof Since the metric g D g1 � g2 is a product metric, we have in product
coordinates gik D 0 D gik whenever the index i corresponds to a direction tangent
to M1 and k to a tangent direction of M2. Therefore, by (3.4.21), also �k

ij D 0

if, for instance, i; j represent directions tangent to M1 and k a direction tangent
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to M2. Thus, from (3.4.32), also Rk`ij D 0 when k; i correspond to directions
tangent to M1, whereas `; j stand for tangent directions of M2. Equation (3.4.31)
then yields (3.4.33). ut

3.5 The Fisher Metric

One can always equip a smooth manifold with some Riemannian metric. As such,
this is somewhat arbitrary, and this becomes more useful when that manifold carries
some additional structure that constrains or even determines such a Riemannian
metric. This is the case, as we shall now explain, for families of probability
distributions. In this and the following sections, we develop the basic structures
of information geometry which deals with the geometry of families of probability
distributions. A more detailed treatment can be found in [3, 10]; the latter will be
our main reference. Information geometry was originally developed by Amari and
Chentsov.

Let us consider a smooth family of probability distributions on some domain
	 parametrised by s D .s1; : : : ; sn/ 2 S � R

n with probability density functions
p.!js/W	 �! R. When the sample ! 2 	 is not important, we shall simply write
p.s/ in place of one of the more detailed alternatives p.!js/, p.!I s/ or p.:js/ .

The Fisher information metric of such a family is given by (cf. [4, p. 27])

gij.s/ WDEp.s/

� @
@si

log p.s/
@

@sj
log p.s/

�
for i; j 2 f1; : : : ; ng; s 2 S

(3.5.1)

D
X

!2	

@

@si
log p.!I s/

@

@sj
log p.!I s/ p.!I s/ (3.5.2)

D
X

!2	

1

p.!I s/

@

@si
p.!I s/

@

@sj
p.!I s/ (3.5.3)

where the expectation E is taken with respect to p.s/. Of course, when the sample
space 	 is infinite, the sums in (3.5.2) and (3.5.3) have to be replaced by integrals.

It may be checked that this defines a Riemannian metric on the parameter space S,
indeed. The Fisher metric measures the sensitivity of the parameter s to sampling
from 	. That is, in statistics, one takes samples ! from the sample space 	, and
one wants to find that parameter s0 for which the distribution p.:js0/ best matches
the statistics of the samples. Of course, the more sensitive the parameters are to the
sample statistics, the easier the task.
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We first consider probability distributions that depend linearly on their parame-
ters. Thus, let us take a probability distribution on a collection of points ˛ of the
form

q˛.�/ WD g˛0 C
IX

iD1
g˛i �

i; ˛ D 0; : : : ;A: (3.5.4)

The important assumption here is that the q˛ be linear functions of the parameters,
which we now denote by � i instead of si, with the index range i D 1; : : : ; I.

We therefore require first of all

X

˛

g˛0 D 1;
X

˛

g˛i D 0 for i D 1; : : : ; I; (3.5.5)

in order to have

X

˛

q˛ D 1; (3.5.6)

that is, q is indeed a probability distribution. We now want to choose the coefficients
in (3.5.4) so that the � i become the expectation values of certain observables f i for
the probability distribution q. For this purpose, we require

X

˛

f i
˛q˛.�/ D � i for i D 1; : : : ; I: (3.5.7)

We compute the Fisher metric (3.5.3) of the family (3.5.4) as

gij D
X

˛

1

q˛
g˛i g˛j ; for i; j D 1; : : : ; I: (3.5.8)

We now look at the important special case that captures the basic Wright–Fisher
model. For ˛ D 0; : : : ; n and i D 1; : : : ; n (A D I D n), we simply take as our
observables the probabilities p˛ � q˛ , i.e. f i

˛ D ıi
˛. The expectation value � i of the

ith observable then is qi, so that we get the special case � i D qi of (3.5.4). We then
have

p˛.�/ D �˛ for ˛ D 1; : : : ; n (3.5.9)

p0.�/ D �0 D 1 �
nX

ˇD1
�ˇ; (3.5.10)

and accordingly

g˛0 D ı˛0 and g˛i D ı˛i � ı˛0 ; for ˛ D 0; : : : ; n and i D 1; : : : ; n: (3.5.11)
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The Fisher metric (3.5.8) then becomes

gij D
nX

˛D0

1

p˛
g˛i g˛j D ıij

pi
C 1

p0
: (3.5.12)

We shall discuss the geometric interpretation of this formula in Sect. 3.8.
When we compute the inverse metric tensor of (3.5.12), we obtain

gij D pi.ı
j
i � p j/; (3.5.13)

which is nothing but the covariance matrix of the probability distribution p,
see (2.2.2).

3.6 Exponential Families

In fact, (3.5.13), that the inverse metric is the covariance matrix, is not a coincidence,
but a general phenomenon. In order to elucidate that phenomenon, we now consider
a different class of families of probability distributions.

These are the exponential families with probability density function

p.!I �/ D g.!/ exp
� nX

iD1
�i f i.!/ � F.�/

�
(3.6.1)

Here, the f 1; : : : ; f n are again observables, and their values are checked on samples
! 2 	, and one wants to find a probability distribution on 	 that best recovers the
statistics of those observables. In statistical mechanics, such distributions are also
called Gibbs distributions.

The factor g.!/ will not play any important role in the sequel. In contrast F.�/
is needed to ensure the normalization

X

!2	
p.!I �/ D 1 for all �; (3.6.2)

which yields

F.�/ D log
X

!

�
g.!/ exp

� nX

iD1
�i f i.!//

��
: (3.6.3)

(In statistical mechanics, F is called the free energy.)
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Differentiating (3.6.3) w.r.t. � yields

@

@�i
F.�/ D

X

!2	
g.!/f i.!/ exp

� nX

iD1
�i f i.!/ � F.�/

�
D Ep.�/. f i/; i D 1; : : : ; n;

(3.6.4)

the expectation value of the observable f i. In the sequel, we shall sometimes leave
out the subscript p.�/ when computing expectation values.

Such computations become clearer when, instead of F, we work with

Z.�/ D exp F.�/ D
X

!

g.!/ exp
� nX

iD1
�i f i.!//

�
: (3.6.5)

Z, called the Zustandssumme or partition function in statistical mechanics, satisfies

@kZ.�/

@�i1 � � � @�ik

D
X

!

g.!/f i1 � � � f ik exp
� nX

iD1
�i f i.!/

�
; (3.6.6)

whence

Ep.�/. f i1 � � � f ik / D 1

Z.�/

@kZ.�/

@�i1 � � � @�ik

; (3.6.7)

for i1; : : : ; ik 2 f1; : : : ; ng.
We now consider the special case where

Ep.�/. f i/ D 0 for all i: (3.6.8)

In that case, (3.6.7) yields

@kF.�/

@�i1 � � � @�ik

D @k log Z.�/

@�i1 � � � @�ik

D Ep.�/. f i1 � � � f ik /: (3.6.9)

In the general case, that is, when (3.6.8) need not hold, this becomes

@kF.�/

@�i1 � � � @�ik

D Ep.�/.. f i1 � Ep.�/. f i1 // � � � . f ik � Ep.�/. f ik///

D Ep.�/.. f i1 � @

@�i1

F/ � � � . f ik � @

@�ik

F//; (3.6.10)

because f i � Ep.� . f i/ in place of f i satisfies (3.6.8) and we can use (3.6.4).
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In particular, the Fisher metric satisfies

gij.�/ D @2F

@�i@�j
(3.6.11)

D Ep.�/

��
f i � @

@�i
F
��

f j � @

@�j
F
��

(3.6.12)

D Ep.� . f if j/� Ep.� . f i/Ep.� . f j/; i; j D 1; : : : ; n: (3.6.13)

Thus, the Fisher metric is nothing but the covariance matrix of the corresponding
distribution. Also, since the metric is positive definite, (3.6.11) implies that F.�/ is
strictly convex.

Now, in (3.5.13), the covariance matrix was the inverse of the Fisher metric,
whereas here it is the metric tensor itself. As we shall now explain, the reason for this
is a duality between linear and exponential representations of families of probability
distributions. We therefore return to the family (3.5.4) and consider

S.�/ WD
X

˛

q˛.�/ log q˛.�/; (3.6.14)

the negative of the entropy of statistical mechanics, and compute

@2

@� i@� j
S.�/ D

X

˛

1

q˛
@q˛

@� i

@q˛

@� j
D
X

˛

1

q˛
g˛i g˛j ; for i; j D 1; : : : ; I: (3.6.15)

Thus, we recognize the formula (3.5.3) for the Fisher metric. In particular,
since this is positive definite, S is a strictly convex function. Since strict convexity
is invariant under affine linear coordinate transformations, the particular form
of (3.5.4) is not important, as long as we represent our family of probability
distributions as a linear family.

We can therefore consider the Fisher metric

gij D @2S.�/

@� i� j
; for i; j D 1; : : : ; I: (3.6.16)

as a metric on an affine space.
Since S.�/ is a convex function, we can perform a Legendre transformation. That

means that we put

�i WD @S.�/

@� i
D
X

˛

g˛i log q˛ for i D 1; : : : ; I (3.6.17)
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and

F.�/ W D maxN�

 
IX

iD1
�i N� i � S. N�/

!

D
IX

iD1
� i @S.�/

@� i
� S.�/

D
IX

iD1
� i

 
X

˛

g˛i log q˛ C
X

˛

g˛i

„ƒ‚…
D 0

!
�
X

˛

q˛ log q˛

D
X

˛

 
IX

iD1
g˛i �

i � q˛
!

log q˛

D �
X

˛

g˛0 log q˛; (3.6.18)

since the maximum is realized when (3.6.17) holds.
From the properties of the Legendre transformation, we also obtain

 
@2F.�/

@�i�j

!

i;jD1;:::;I
D
 �@2S.�/

@� i� j

�

i;jD1;:::;I

!�1
D
 
X

˛

1

q˛
g˛i g˛j

!�1
; (3.6.19)

see (3.6.15).
We then have

gij D @2F.�/

@�i�j
D @� j

@�i
; (3.6.20)

again by the properties of the Legendre transform. That is, (3.6.20) is the inverse of
the Fisher metric.

We recall (3.6.16)

gij D @2S.�/

@� i� j
D @�i

@� j
: (3.6.21)
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In fact, we have

X

i;j

gijd�id�j D
X

i;j

gij
X

k;l

@�i

@�k

@�j

@� l
d�kd� l

D
X

i;j

gij
X

k;l

gikgjld�
kd� l

D
X

k;l

gkld�
kd� l;

(3.6.22)

that is, the inverse metric tensor gij in the �-coordinates is the same as the tensor gij

in the �-coordinates.
We also put

�0 WD
X

˛

g˛0 log q˛; (3.6.23)

and

f 0˛ D 1; for all ˛: (3.6.24)

We can see that . f i
˛/ is an left inverse of .g˛i /. In fact, for i D 1; : : : ; I, we have

� i D
X

˛

f i
˛q˛.�/; due to (3.5.7)

D
X

˛

f i
˛

 
g˛0 C

IX

jD1
g˛j �

j

!
; due to (3.5.4)

D
X

˛

f i
˛g˛0 C

IX

jD1

 
X

˛

f i
˛g˛j

!
� j:

(3.6.25)

Therefore

X

˛

f i
˛g˛0 D 0; for i D 1; : : : ; I

and

X

˛

f i
˛g˛j D ıij; for i; j D 1; : : : ; I:
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Moreover, from (3.5.5) and (3.6.24) we have

X

˛

f 0˛ g˛0 D
X

˛

g˛0 D 1;

and

X

˛

f 0˛ g˛i D
X

˛

g˛i D 0; for i D 1; : : : ; I:

It implies that

X

˛

f i
˛g˛j D ıij; for i; j D 0; : : : ; I:

Remark We note that in this case, we do not need the condition A D I.

Now, we can left invert (3.6.17) and obtain

log q˛ D
IX

jD0
f j
˛�j; (3.6.26)

that is,

q˛ D exp

 
IX

jD0
f j
˛�j

!
D exp

 
IX

jD1
f j
˛�j

!
e�0 : (3.6.27)

The normalization
P

˛ q˛ D 1 and (3.6.18), (3.6.23) yield

F.�/ D ��0 D log
X

˛

exp

 
IX

iD1
f i
˛�i

!
(3.6.28)

so that we can rewrite (3.6.27) as

q˛.�/ D exp

 
IX

iD1
f i
˛�i � F.�/

!
DW p˛.�/: (3.6.29)

We have thus obtained the exponential family (3.6.1), and in particular, F turns out
to be the free energy (3.6.3). From (3.6.22), we see that the Fisher metric w.r.t. the
exponential parameters is the inverse of the Fisher metric w.r.t. the linear ones. That
is, the metric gij considered in Sect. 3.5 has turned into the inverse metric gij in this
section.
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From (3.6.13), we also see that the expectation value � ij of the product f if j for
the distribution q is given by

� ij D � i� j C gij; (3.6.30)

that is,

gij D Cov. f i; f j/:

3.7 The Multinomial Distribution

We finally discuss how this applies to the multinomial distribution M.2NI p0; p1;
: : : ; pn/, p 2 �n introduced in Sect. 2.2. First of all, we see that when we sample
only once, this is simply the situation of the simple linear family with pi D qi

for which we get the metric tensor (3.5.12). As we have seen, the inverse metric
tensor is given by the covariance matrix, (3.5.13), and the covariance matrix of
the multinomial distribution for arbitrary 2N is given by (2.2.3). We should note,
however, that in (2.2.3), we have computed the covariance matrix for the random
variables Yi that count the number of events of type i, but here we consider the
normalized variables pi, which differ by a factor 1

2N from the Yi. Therefore, we need
to multiply the covariance matrix by a factor 1

.2N/2
, and we obtain the inverse metric

tensor of the multinomial distribution therefore as

gij D 1

2N
pi.ı

j
i � p j/; (3.7.1)

and the metric tensor is then given by

gij D 2N

�
ıij

pi
C 1

p0

�
: (3.7.2)

We can also check this by expressing the multinomial distribution as an
exponential family in their natural parameters

�i WD log

�
pi

1 �Pn
jD1 p j

�
; i D 1; : : : ; n (3.7.3)

and with g.!/ D �
2N

f 1.!/;:::;f n.!/;2N�Pj f j.!/

�
and F.�/ D 2N log

�
1 C Pn

jD1 exp.�j//,

the Fisher metric g thus defines a Riemannian metric on the space of natural
parameters ‚ of the multinomial distribution with .gij.�// coinciding with the
corresponding covariance matrix (cf. Eq. (3.6.11)). However, this is only true
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for .gij/ given in the �-coordinates, whereas the Ohta–Kimura formula and its
derivations are rather formulated in terms of the p-coordinates (see (5.6.4)).

Carrying out the corresponding coordinate change, the Fisher metric of the
multinomial distribution in the coordinates p1; : : : ; pn (the parameter p0 does not
appear as coordinate due to

Pn
iD0 pi D 1) becomes, according to the transformation

rule (3.2.10) for the metric tensor,

gkl. p/ D
nX

i;jD1
gij.�/

@�k

@pi

@�l

@p j
D .2N/2

nX

i;jD1
gij.gki/

�1.glj/
�1 D .2N/2gkl.�. p//

for k; l D 1; : : : ; n; p 2 �n: (3.7.4)

Here, we have used

2N
@pi

@�j
D @

@�j
E. f i/ D @2

@�i@�j
F.�/ D E. f if j/ � E. f i/E. f j/ � gij.�/; (3.7.5)

where the first equality is a special property of the multinomial distribution. Thus,
the Fisher metric on the parameter space �n in the p-coordinates is the inverse of
the metric on the parameter space in the �-coordinates ‚ (up to the factor .2N/2;
cf. [73]). For the inverse metric, this further implies

gkl. p/ D 1

.2N/2
gkl.�. p// D 1

2N
pk.ıkl � pl/ for k; l D 1; : : : ; n; p 2 �n;

(3.7.6)

and consequently we obtain (3.5.12),

gkl. p/ D 2N
�ıkl

pk
C 1

p0

�
for k; l D 1; : : : ; n; p 2 �n: (3.7.7)

Note that the parameter 2N, which is the number of independent drawings, only
affects the Fisher metric in terms of a scaling factor.

As another example, let us also compute the Fisher metric for the Poisson
distribution (2.7.1) depending on the scalar parameter 
. From (2.7.1), we have

log P.kj
/ D k log
 � 
 � log kŠ
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and hence

g.
/ D �
X

k

d2 log P.kj
/
d
2

p.kj
/

D
X

k


k�2e�


.k � 1/Š

D 1




X

k

P.k � 1j
/

D 1



: (3.7.8)

3.8 The Fisher Metric as the Standard Metric on the Sphere

In this section, we interpret the formulae (3.5.12), (3.5.13) for the Fisher metric in
geometric terms. We first use p0; � � � ; pn as coordinates on the simplex. Note that we
are using here n C 1 coordinate functions on an n-dimensional space, an issue to be
addressed shortly. The Fisher metric tensor (in the mathematical biology literature,
also called the Shahshahani metric) then becomes

�
�˛ˇ

�n

˛;ˇD1.p/ D

0

BBBB@

1
p0
0 : : : 0

0 1
p1
: : : 0

:::
:::
: : :

:::

0 0 : : : 1
pn

1

CCCCA
: (3.8.1)

Equation (3.8.1), however, is not yet the expression for a Riemannian metric
because, as mentioned, we have n C 1 coordinates p0; : : : ; pn on an n-dimensional
space. This can be easily corrected, however, by expressing

p0 D 1 �
nX

jD1
p j: (3.8.2)

This means that we consider the Fisher metric as a metric on the n-dimensional
simplex

†
n D

(
. p0; : : : pn/ W pi > 0;

nX

iD0
pi D 1

)
: (3.8.3)
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By the transformation behavior (3.2.10) for a Riemannian metric,

gij.y/ D �˛ˇ.x/
@x˛

@yi

@xˇ

@yj
; (3.8.4)

when transforming between the coordinates y and x D x.y/ (here we take y D Np D
. p1; : : : ; pn/, x D p D . p0; : : : ; pn/), and using

@p0

@p j
D �1 for j D 1; : : : ; n; (3.8.5)

we obtain the metric tensor gij in the coordinates p1; : : : pn as

.gij.Np//ni;jD1 D

0

BBBB@

1
p1

C 1
p0

1
p0

: : : 1
p0

1
p0

1
p2

C 1
p0
: : : 1

p0

:::
:::

: : :
:::

1
p0

1
p0

: : : 1
pn C 1

p0

1

CCCCA
; (3.8.6)

with p0 given by (3.8.2). The inverse metric tensor gij then becomes

.gij.Np//ni;jD1 D

0
BBB@

p1.1 � p1/ �p1p2 : : : �p1pn

�p1p2 p2.1 � p2/ : : : �p2pn

:::
:::

: : :
:::

�p1pn �p2pn : : : pn.1 � pn/

1
CCCA : (3.8.7)

We can also compute the Christoffel symbols of this metric as (see [5])

� i
ii D 1

2

�
pi

pn � 1�pi

pi

�

� i
jj D 1

2

�
pi

pn � pi

p j

�
for i ¤ j

� i
j` D 1

2

pi

pn for j ¤ `: (3.8.8)

We can also rewrite the metric in spherical coordinates, by simply putting

qi WD
p

pi; for i D 1; : : : ; n: (3.8.9)

Applying the transformation rule (3.8.4) with @p˛

@qj D 2ı˛j qj for j; ˛ D 1; : : : ; n, we
obtain O�ij.q/ D 4ıij in the q-coordinates, that is, simply the Euclidean metric. As
before, however, we need to satisfy the normalization constraint (3.8.2) which now
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becomes q0 D
q
1 �Pn

jD1 .q j/
2. Using @q0

@qj D � qj

q0
for j D 1; : : : ; n, we obtain

�
hij.Nq/

�n

i;jD1 D 4

.q0/2

0

BBBB@

.q1/
2 C .q0/

2
q1q2 : : : q1qn

q1q2 .q2/
2 C .q0/

2
: : : q2qn

:::
:::

: : :
:::

q1qn q2qn : : : .qn/2 C .q0/
2

1

CCCCA

(3.8.10)

and

�
hij.Nq/

�n

i;jD1 D 1

4

0
BBBB@

1 � .q1/2 �q1q2 : : : �q1qn

�q1q2 1 � .q2/
2
: : : �q2qn

:::
:::

: : :
:::

�q1qn �q2qn : : : 1 � .qn/2

1
CCCCA

(3.8.11)

Since this has been obtained as the restriction of the Euclidean metric to the unit
sphere, this must simply be the standard metric on the unit sphere Sn, up to the
factor 4 that emerged in our computations. Since the standard metric on the sphere
has sectional curvature � 1, and since by Lemma 3.4.1, the sectional curvature of a
Riemannian metric scales with the inverse of a scaling factor, our factor 4 leads to

Lemma 3.8.1 The Fisher metric on the standard simplex†
n

is 4 times the standard
metric on the unit sphere Sn, and its sectional curvature is 1

4
.

Remark Compare this with the state space of recombination (Proposition 5.6.1),
where the Fisher metric has been multiplied by four implying that the sectional
curvature will be divided by four.

3.9 The Geometry of the Probability Simplex

The simplex †
n

of (3.8.3) possesses a hierarchical structure. That is, its boundary

consists of n C 1 copies†
n�1
j WD f. p0; : : : ; pn/ 2 †n

; p j D 0g of the simplex†
n�1

.

In turn the boundary of each †
n�1
j consists of n copies of †

n�2
, and so on.

According to what we have discussed in the preceding, the simplex †
n

(and
analogously each of its subsimplices) carries a hybrid structure. On one hand, we
have the affine structure underlying (3.8.3). By (3.8.3), we also obtain a measure 

n

induced by the Lebesgue measure ofRn. On the other hand, we have the Riemannian
metric (3.8.10) of the spherical sector, becoming (3.8.6) in our affine coordinates.

For the inverse metrical tensor (3.8.7) (as expressed in the coordinates
p1; : : : ; pn), its normal component vanishes on the boundary whereas the tangential
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component restricts to the corresponding Fisher metric on the boundary simplices.
This is simply seen by putting p j D 0 in (3.8.7).

The simplex †
n

of (3.8.3) also possesses a dually flat structure. That is, a
Riemannian metric g together with two flat connections r;r� that are dual with
respect to g. This means that they satisfy (3.4.17), i.e.,

Zg.X;Y/ D g.rZX;Y/C g.X;rZY/; for all vector fields X;Y;Z:

Such dually flat structures have been introduced and investigated by Čensov [20]
and Amari [3, 48].

In fact, we can construct the flat connections from g as follows (also see [75]):
For �1 � s � 1, we define the s-connection through

�
.s/
ijk D �

.0/
ijk � s

2

@3S

@� i@� j@�k
(3.9.1)

where �.0/ijk represents the Levi-Civita connection r.0/ for gij, i.e., recalling (3.4.22),

�
.0/
ijk D g

 
r.0/

@

@�i

@

@� j
;
@

@�k

!
(3.9.2)

Also, from (3.4.23) and gij D @i@j', we infer

�
.0/
ijk D 1

2

@3S

@� i@� j@�k
; (3.9.3)

we have

�
.s/
ijk D 1

2
.1 � s/

@3S

@� i@� j@�k
; (3.9.4)

and since this is symmetric in i and j, r.s/ is torsion free. Since (3.4.24) is satisfied,
i.e.,

�
.s/
ijk C �

.�s/
ijk D 2�

.0/
ijk ;

it implies that r.s/ and r.�s/ are dual to each other with respect to g.
In particular, �.1/ijk D 0, and so r.1/ defines a flat structure, and the coordinates �

are affine coordinates for r.1/.
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The connection dual to r.1/ then is r.�1/ with Christoffel symbols

�
.�1/
ijk D @3S

@� i@� j@�k
(3.9.5)

with respect to the �-coordinates. We can then obtain dually affine coordinates � by

�i D @S

@� i
; (3.9.6)

and so also

gij D @�j

@� i
D @2S

@� i@� j
: (3.9.7)

The corresponding local potential is obtained by a Legendre transformation, as we
have seen in Sect. 3.5,

F.�/ D max
�
.� i�i � S.�//; S.�/C F.�/ � � � � D 0; (3.9.8)

and

� i D @F.�/

@�i
; gij D @� j

@�i
D @2F.�/

@�i@�j
: (3.9.9)

It is easy to see that r.�1/ defines a flat structure, and the coordinates � are affine

coordinates for r.�1/. Therefore
�
†

k�1
; g;r.1/;r.�1/

�
is a dually flat manifold.

3.10 The Affine Laplacian

Remark The operator A defined here will be our 2L�, see (3.12.4).

Given an affine structure with coordinates � i; i D 1; : : : ; n on †
n

as above and a
metric

gij.�/ D @2S.�/

@� i@� j
; i; j D 1; : : : ; n:

we formulate

Definition 3.10.1 The operator given by

A WD
nX

i;jD1
gij.�/

@2

@� i@� j
(3.10.1)
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is called the affine Laplacian (see also [75]), where the Kähler affine structure is in
the sense of Cheng–Yau (see [22]).

A solution of

Af D 0 (3.10.2)

is called an affine harmonic function.

Lemma 3.10.1 For the function

S.�/ D
X

˛

q˛.�/ log q˛.�/ (3.10.3)

of (3.6.14), we have

AS D k � const: (3.10.4)

The proof is obvious from the definition (3.6.16) of the Fisher metric.
This result will play a useful role below when we want to understand exit times

of genetic drift.
We now compute the transformation behavior of the affine Laplacian under non-

affine coordinate changes. Let us recall the general transformation formula for a
linear second order differential operator of the form

Mu.x/ D
X

i;j

aij.x/
@2

@xi@xj
u.x/C

X

i

bi.x/
@

@xi
u.x/C c.x/u.x/: (3.10.5)

Lemma 3.10.1 The partial differential operator (3.10.5) transforms under a
change of the coordinates .xi/i 7! .Qxi/i into

M Qu.Qx/ D
X

k;l

Qakl.Qx/ @2

@Qxk@Qxl
Qu.Qx/C

X

k

Qbk.Qx/ @
@Qxk

Qu.Qx/C Qc.Qx/Qu.Qx/ (3.10.6)

with Qu.Qx.x// D u.x/ and

Qakl.Qx/ D
X

i;j

aij.x/
@Qxk

@xi

@Qxl

@xj
; Qbk.Qx/ D

X

i

bi.x/
@Qxk

@xi
C
X

i;j

aij.x/
@2 Qxk

@xi@xj
; Qc.Qx/ D c.x/:

(3.10.7)
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Proof Let Qx be a coordinate change and u.x/ D Qu.Qx.x//. The chain rule yields

X

i;j

aij @2

@xi@xj
u D

X

i;j

X

k

aij @

@xi

�@Qxk

@xj

@

@Qxk
Qu
�

D
X

i;j

�X

l;k

aij @Qxl

@xi

@Qxk

@xj

@2

@Qxl@Qxk
Qu C

X

k

aij @
2 Qxk

@xi@xj

@

@Qxk
Qu
�

D
X

l;k

X

i;j

aij @Qxl

@xi

@Qxk

@xj

@2

@Qxl@Qxk
Qu C

X

k

X

i;j

aij @
2 Qxk

@xi@xj

@

@Qxk
Qu

and

X

i

bi @

@xi
u D

X

i

X

k

bi @Qxk

@xi

@

@Qxk
Qu D

X

k

X

i

bi @Qxk

@xi

@

@Qxk
Qu: (3.10.8)

Now putting Qalk; Qbk and Qc as in Eq. (3.10.7), we have

X

i;j

aij @2

@xi@xj
u C

X

i

bi @

@xi
u C cu D

X

l;k

Qalk @2

@Qxl@Qxk
Qu C

X

k

Qbk @

@Qxk
Qu C QcQu:

(3.10.9)

ut
In particular, the coefficient matrix of the second order derivatives aij transforms

like the coefficients gij of the inverse of the Riemannian metric g D .gij/ under
coordinate changes (i.e. twice contravariantly). This is, of course, in line with
our geometric approach where we interpret aij as an inverse metric tensor gij of
a Riemannian manifold. We should point out, however, that the transformation
behavior of the second order terms also yields an additional first order term.
Geometrically, this is due to the fact that the operator Mg WD P

i;j gij.x/ @2

@xi@xj is
not the Laplace–Beltrami operator for the metric gij; that latter operator is given

by �g' WD P
i;j

1p
det gij

@
@xi

�p
det gijgij.x/ @'

@xj

�
for some function ', see for instance

[71]. In particular, Mg and �g differ by a first order term. This will be elucidated in
Sects. 3.11 and 3.12.

With (3.10.6) at hand, we can also transform the affine Laplacian from the
coordinates � i to the dual coordinates �i. Even though those dual coordinates also
define an affine structure that is dual to the original one, this transformation is not
affine itself, simply because the two affine structures are different. Therefore, in the
�-coordinates, A will acquire an additional first order term. We have

@2

@� i@� j
D
X

`;m

@�`

@� i

@�m

@� j

@2

@�`@�m
C
X

`

@2�`

@� i@� j

@

@�`
: (3.10.10)
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Here and in the sequel, all sums range from 1 to n.
We recall (3.6.20), i.e.,

gij D @2S.�/

@� i� j
D @�i

@� j
(3.10.11)

and therefore obtain

A D
X

i;j

gij @2

@� i@� j
D
X

`;m

g`m
@2

@�`@�m
C
X

i;j;`

@3S.�/

@� i@� j@�`

@2�`

@� i@� j

@

@�`
: (3.10.12)

Since @3S.�/
@� i@� j@�`

D � 1
.� i/2

ıijıi0 by (3.6.15), we obtain

A D
X

`;m

 
ı`m

exp.#`/
C 1

exp.#0/

!
@2

@�`@�m
�
X

`

1

.exp.�`//2
@

@�`
: (3.10.13)

Here, the �` range between 0 and �1, and exp.�0/ D 1 �Pn
`D1 exp.�`/. Thus, we

have transformed the singularity at the boundary, where some � i become 0, to �1.
Our operator, however, then will become singular at �1.

3.11 The Affine and the Beltrami Laplacian on the Sphere

Under the coordinate transformations from pi on the simplex to the coordinates
qi D p

pi on the sphere, the affine Laplacian becomes

@2

@pi@p j
D
X

`;m

@q`

@pi

@qm

@p j

@2

@q`@qm
C
X

`

@2q`

@pi@p j

@

@q`
: (3.11.1)

Then on the sphere, the affine Laplacian is given by the form

A D Ng`m.q/ @2

@q`@qm
C 1 � .q`/2

4q`
@

@q`
;

where Ng`m.q/ D 1
4

�
ı`m � q`qm

�
is the inverse metric tensor on the sphere.

The affine Laplacian is different from the Laplace–Beltrami operator, the natural
divergence type operator derived from the Riemannian metric of the sphere, given
by

�Ng.q/ D Ng`m.q/ @2

@q`@qm
C .1 � n/q`

4

@

@q`
:
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As we see from this formula, the affine Laplacian has the same leading term as the
Laplace–Beltrami operator, but differs from it by a first order term. That term with
a factor 1=2 has been called the Christoffel force in [5].

3.12 The Wright–Fisher Model and Brownian Motion
on the Sphere

As in Sect. 3.8, we want to interpret the coefficients of the operators L and L� as
the inverse metric tensor of the standard sphere in simplicial coordinates xi; i D
1; : : : ; n � 1 with 0 � xi;

Pn�1
jD1 xj � 1,

gij D xi.ıij � xj/: (3.12.1)

We recall the Laplace–Beltrami operator (3.3.4)

�g WD 1p
g

X

i;j

@

@xi

�p
ggij @

@xj

�
: (3.12.2)

We rewrite the Laplace–Beltrami operator as

�g D
X

i;j

gij @2

@xi@xj
C 1p

g

X

i;j

@

@xi

�p
ggij

� @
@xj

D
X

i;j

gij @2

@xi@xj
�
X

i;j;`

gi`�
j
i`

@

@xj
(3.12.3)

after some computation.
When we apply this to the inverse spherical metric (3.12.1), we see that the first

term on the right hand side of (3.12.3) is our affine Laplacian (3.10.1)

A D 2L� D
X

i;j

gij @2

@xi@xj
; (3.12.4)

or twice the generator L� of the backward Kolmogorov equation for the Wright–
Fisher model.

The lower order terms, however, are different, and we now wish to discuss this
difference in geometric terms as in [5]. The Laplace–Beltrami operator (3.12.2)
generates Brownian motion for the Riemannian metric gij. We shall explain in a
moment what Brownian motion on a Riemannian manifold means (see [66]), but
we first point out that the probability density p.t; z; x/ for Brownian motion, that is,
the probability density for the position x at time t of a particle starting Brownian
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motion at z at time 0, evolves according to

@

@t
p.t; z; x/ D 1

2
�gp.t; z; x/; (3.12.5)

where �g operates w.r.t. to the variable x. Since �g is self-adjoint, see (3.3.5), also
the expectation values of a function ' evolve according to (3.12.5),

@

@t
'.t; x/ D 1

2
�g'.t; x/; (3.12.6)

that is, there is no difference between the corresponding forward and backward
equations.

Comparing (3.12.3), (3.12.4), we obviously have

L�f .x/ D 1

2
�g f .x/C 1

2

X

i;j;`

gi`�
j
i`

@f .x/

@xj

DW 1
2
�g f .x/C

X

j

Vj @f .x/

@xj
(3.12.7)

for smooth functions f with a vector field V .
Recalling the formulae (3.8.8) for the Christoffel symbols,

� i
ii D 1

2

�
xi

xn � 1�xi

xi

�

� i
jj D 1

2

�
xi

xn � xi

xj

�
for i ¤ j

� i
j` D 1

2
xi

xn for j ¤ `;

the above vector field V in (3.12.7) is given by

Vj D 1

2

X

i;`

gi`�
j
i` D �1

4
.1 � nxj/: (3.12.8)

This vector field vanishes at the center of the simplex, the point with xj D 1
n for

all j. At the corner xk D 1, the component Vk D n�1
4

is positive, whereas all other
components Vj D � 1

4
are negative. More generally, V.x/ always points towards that

corner of the simplex closest to x. Thus, we see the difference between Brownian
motion and the backward Wright–Fisher process given by the vector field V in
geometric terms. Also, while Brownian motion is invariant under all isometries of
the sphere, the Wright–Fisher is only invariant under permutation of the alleles and
hence has a much smaller symmetry group.
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Informally speaking, Brownian motion is a stochastic process whose time deriva-
tive is Gaussian white noise. The trajectories represent particles moving randomly
on the sphere. In particular, such particles are not confined to the positive sector.
The heat equation (3.12.5) involving the Laplace–Beltrami operator describes the
evolution of the corresponding probability density on the sphere. In contrast, the
elements of the positive sector of the sphere that arise from the continuum limit
of the Wright–Fisher-model represent probability distributions on our allele space.
With a slightly different interpretation, they stand for relative allele frequencies in
an infinite population. Again, we may consider trajectories which then represent
random such relative frequency evolutions, where the randomness is governed by
the multinomial distribution. For elements of the sphere outside the closed positive
sector, no such interpretation is possible, and the random trajectories cannot leave
that sector. The densities occurring in the Kolmogorov equations then stand for
probability densities on the space of such relative frequencies.



Chapter 4
Continuous Approximations

4.1 The Diffusion Limit

4.1.1 Convergence of Discrete to Continuous Semigroups
in the Limit N ! 1

In this section we prove a result about diffusion limits of Markov chains that we
shall need in the sequel. This result follows from the general theory of convergence
of Markov processes, see [36], but we shall present the proof here in order to keep
our treatment self-contained. The proof can be shortened by appealing to general
theorems about stochastic processes, but, in order to be self-contained, we do not
invoke those results here. A reader not interested in the technical details of the
justification of the diffusion limits may directly move on to Sect. 4.2.

Let us start with some remark on the notation. In Chap. 2, and in particular in
Sects. 2.2 and 2.3, we had introduced the random variables Y and X. The variable
Y expresses the absolute allele numbers with integer time steps, whereas X denotes
their relative frequencies, but also with rescaled time. We now need another variable
Z which records the relative frequencies, but without rescaling time.

We consider a sequence of homogeneous Markov chains fZN.m/gm2N in the state
spaces

�
.2N/
n D

(
z D .z1; : : : ; zn/ W

nX

iD1
zi � 1; zi D ji

2N
� 0 ji integer ; i D 1; : : : ; n

)
;
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with transition probabilities as in (2.5.7) (note, however, that the Ym are not
normalized, whereas the Zm are normalized by the factor .2N/�1)

PN.zmC1; zm/ D P
�

ZN.m C 1/ D zmC1
ˇ̌
ˇZN.m/ D zm

�

D
 

2N

2Nz0mC1 � � � 2Nzn
mC1

!
�
 0.zm/

�2Nz0mC1 � � � . n.zm//
2Nzn

mC1

(4.1.1)

where zmC1; zm 2 �
.2N/
n , z0m D 1 � z1m � � � � � zn

m,  0 D 1 �  1 � � � � �  n, and
 i.zm/; i D 1; : : : ; n are probabilities that may also be influenced by processes of
selection and mutation.

We then also have the Chapman–Kolmogorov equation

PN.zmC1; zm�1/ D
X

z

PN.zmC1; z/ PN.z; zm�1/: (4.1.2)

Note that the notation is somewhat ambiguous here, as on the left hand side, we are
looking at the transition probabilities for two time steps, from m�1 to mC1, whereas
on the right hand side, single time steps occur. For a more precise version, we refer
to (2.3.4). An analogous result will also hold subsequently in the time continuous
case.

The following proposition summarizes (2.5.14), (2.5.16) and (2.5.17).

Proposition 4.1.1 The sequence of homogeneous Markov chains fZN.m/gm2N sat-
isfies

• E
�

Zi
N.m C 1/ � Zi

N.m/
ˇ̌
ˇZN.m/ D zN

�
D bi.zN/.2N/�1 C o..2N/�1/;

• E
��

Zi
N.m C 1/ � Zi

N.m/
��

Zj
N.m C 1/ � Zj

N.m/
�ˇ̌
ˇZN.m/ D zN

�
D zi

N.ıij �
zj

N/.2N/�1 C o..2N/�1/;
• E

��
ZN.m C 1/ � ZN.m/

�˛ ˇ̌ˇZN.m/ D zN

�
D o..2N/�1/ with ˛ 2 N

n
0 W j˛j D

˛1 C : : :C ˛n � 3.

Definition 4.1.1 Let E be a metric space. Denote by DEŒ0;1/ the space of right
continuous functions x W Œ0;1/ ! E with left limits.

Then, let XN.t/ D ZN.Œ2Nt�/ be the homogeneous Markov process with sample
paths in D

�
.2N/
n
Œ0;1/ embedded in D�n

Œ0;1/. We shall show that there exists a

homogeneous continuous (diffusion) process fX.t/gt�0 in �n as a limit process of
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the XN when N ! 1. That process will have the following properties.

E
�

Xi.t C ıt/ � Xi.t/jX.t/ D x
�

D bi.x/.ıt/C o.ıt/I

E
��

Xi.t C ıt/ � Xi.t/
��

Xj.t C ıt/ � Xj.t/
�ˇ̌
ˇX.t/ D x

�
D xi.ıij � xj/.ıt/C o.ıt/I

E
��

X.t C ıt/ � X.t/
�˛ ˇ̌ˇX.t/ D x

�
D o.ıt/ with ˛ 2 N

n
0 W j˛j D ˛1C : : :C ˛n � 3:

(4.1.3)

These conditions are the continuous analogues of those in Proposition 4.1.1,
and we shall prove that the process fXN.t/gt�0 tends to the continuous process
fX.t/gt�0, in a sense that needs to be specified. A technical point, which is not really
conceptually difficult, but requires technical efforts to resolve, is that the discrete
processes are defined on discrete spaces with spacing 1

2N , but the limit space should
be defined on the positive real axis. Therefore, the notion of convergence needs
some care.

We first recall the basic definitions of semigroup theory, see for instance
[36, 58, 72].

Definition 4.1.2 A one-parameter family fT.t/gt�0 of bounded linear operators on
a Banach space B is called a semigroup if T.0/ D I and T.t C s/ D T.t/T.s/ for all
t; s � 0.

In our setting, the semigroup property will arise from the Chapman–Kolmogorov
equation.

In order to be analytically tractable, our semigroups need to satisfy some
properties that will ensure that they are generated by some infinitesimal generator
with controlled behavior; those technical concepts are described in the following
definition.

Definition 4.1.3 A semigroup fT.t/gt�0 on B is strongly continuous if

lim
t&0

T.t/f D f ; 8f 2 BI

it is contracting if

kT.t/k � 1; 8t � 0:

A (possibly unbounded) linear operator A on B is a linear mapping whose domain
D.A/ is a subspace of B and whose range R.A/ lies in B. The graph of A is given by

G.A/ D f. f ;Af / W f 2 D.A/g � B � B:

A linear operator A on B is closed if G.A/ is a closed subspace of B � B.
A linear operator B is a linear extension of A if D.A/ � D.B/ and Bf D Af ,

8f 2 D.A/.
A linear operator A on B is closable if it has a closed linear extension.
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If A is closable, then the closure A of A is the minimal closed linear extension of
A, more specifically, it is the closed linear operator B whose graph is the closure (in
B � B) of the graph of A.

The (infinitesimal) generator of a semigroup fT.t/gt�0 on B is the linear operator
A defined by

Af D lim
t&0

T.t/f � f

t
;

where the domain D.A/ of A is the subspace of all f 2 B for which this limit exists.

We shall use the abbreviations B D C.�n/;BN D C.�
.2N/
n / for the Banach

spaces of continuous functions on �n, �
.2N/
n with the sup norm, and we need the

projection operator

�N W B ! BN ; �N. f / D f j
�
.2N/
n
;

which obviously is a contracting linear operator.

Lemma 4.1.1

UN W BN ! BN ;

defined by

UNfN.zN/ D E
�

fN
�
ZN.1/

�ˇ̌
ˇZN.0/ D zN

�
; 8fN 2 BN ; zN 2 �.2N/

n ;

is a contracting linear operator UN on BN.

Proof This follows from the fact that averaging w.r.t. a probability distribution

decreases norms. In detail, for fN 2 BN ; zN 2 �.2N/
n

jUNfN.zN/j D
ˇ̌
ˇ
X

zN2�.2N/
n

fN.zN/ PN.zN ; zN/
ˇ̌
ˇ

�
X

zN 2�.2N/
n

ˇ̌
fN.zN/

ˇ̌
PN.zN ; zN/

�
X

zN 2�.2N/
n

��� fN
���

BN

PN.zN ; zN/

D
��� fN

���
BN

:

(4.1.4)
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Thus
���UNfN

���
BN

�
��� fN

���
BN

;

which is the contraction property. ut
Lemma 4.1.2

TN.t/ W BN ! BN ;

defined by

TN.t/fN.xN/ D E
�

fN
�
XN.t/

�ˇ̌
ˇXN.0/ D xN

�
; 8fN 2 BN ; xN 2 �.2N/

n ;

yields a one-parameter family of contracting linear operators fTN.t/gt�0 on BN with
the semigroup property (only) on R

C=2N.

Proof It follows from the homogeneity and the Chapman–Kolmogorov equa-
tion (4.1.2) that

TN.t/fN.xN/ D E
�

fN
�
ZN.Œ2Nt�/

�ˇ̌
ˇZN.0/ D xN

�

D E
�

fN
�
ZN.m/

�ˇ̌
ˇZN.0/ D xN

�
.where m D Œ2Nt�/

D
X

zm
N

fN.z
m
N/P

�
ZN.m/ D zm

N

ˇ̌
ˇZN.0/ D xN

�

D
X

zm
N

fN.z
m
N/
X

z
.m�1/
N

P
�

ZN.m/ D zm
N

ˇ̌
ˇZN.m � 1/ D z.m�1/

N

�
�

� P
�

ZN.m � 1/ D z.m�1/
N

ˇ̌
ˇZN.0/ D xN

�
(by the Chapman Kolmogorov equation)

D
X

zm
N

fN.z
m
N/

X

z
.1/
N ;:::;z

.m�1/
N

P
�

ZN.m/ D zm
N

ˇ̌
ˇZN.m � 1/ D z.m�1/

N

�
�

� P
�

ZN.m � 1/ D z.m�1/
N

ˇ̌
ˇZN.m � 2/ D z.m�2/

N

�
� � � P

�
ZN.1/ D z.1/N

ˇ̌
ˇZN.0/ D xN

�

D
X

zm
N

fN.z
m
N/

X

z
.1/
N ;:::;z

.m�1/
N

PN.z
.m�1/
N ; zm

N/PN.z
.m�2/
N ; z.m�1/

N / � � � PN.xN ; z
.1/
N /

(by the homogeneous Markov property)

D
X

z
.1/
N ;:::;z

.m�1/
N

X

zm
N

fN.z
m
N/PN.z

.m�1/
N ; zm

N/PN.z
.m�2/
N ; z.m�1/

N / � � � PN.xN ; z
.1/
N /
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D
X

z
.1/
N ;:::;z

.m�2/
N

X

z
.m�1/
N

UNfN.z
.m�1/
N /PN.z

.m�2/
N ; z.m�1/

N / � � � PN.xN ; z
.1/
N /

D
X

z
.1/
N ;:::;z

.m�2/
N

.UN/
2fN.z

.m�2/
N / � � � PN.xN ; z

.1/
N /

D Um
N fN.xN/ D UŒ2Nt�

N fN.xN/: (4.1.5)

Therefore, TN.t/ D UŒ2Nt�
N is a contracting linear operator for every t. The semigroup

property on R
C=2N is obvious. This completes the proof. ut

We shall now prove the analogous result in the continuum limit and identify the
generator.

Lemma 4.1.3

T.t/ W B ! B;

defined by

T.t/f .x/ D E
�

f
�
X.t/

�ˇ̌
ˇX.0/ D x

�
; 8f 2 B; x 2 �n;

yields a strongly continuous contracting semigroup fT.t/gt�0 on B with generator

Af .x/ D 1

2

nX

i;jD1
xi.ıij � xj/

@2f

@xi@xj
.x/C

nX

iD1
bi.x/

@f

@xi
.x/: (4.1.6)

We note that when the coefficients bi vanish, which is the case in the absence of
selection or mutation effects, this operator is the same as the operator (3.10.1) for
the inverse metric (3.8.7) (except for a factor 1

2
).

Proof We denote the transition density function of the homogeneous diffusion
process fX.t/gt�0 by p.t; x; z/. It follows from the Chapman–Kolmogorov equation
that

T.t C s/f .x/ D E. f .X.t C s//jX.0/ D x/

D
Z

f .z/p.t C s; x; z/dz

D
Z

f .z/
� Z

p.t; x; z/p.s; z; z/dz
�

dz (by the Chapman–Kolmogorov equation)
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D
Z � Z

f .z/p.s; z; z/dz
�

p.t; x; z/dz

D
Z

T.s/f .z/p.t; x; z/dz

D T.t/T.s/f .x/: (4.1.7)

Moreover, T.0/f .x/ D E. f .X.0//jX.0/ D x/ D f .x/, i.e., T.0/ D I. Therefore
fT.t/gt�0 is a semigroup on B. The strong continuity of this semigroup follows from
the continuity of f and X.t/. The contraction follows from

jT.t/f .x/j D
ˇ̌
ˇ̌
ˇ

Z
f .z/p.t; x; z/dz

ˇ̌
ˇ̌
ˇ

�
Z

j f .z/jp.t; x; z/dz

�
Z

k f kB p.t; x; z/dz D k f kB; 8t � 0; f 2 B; x 2 �n:

(4.1.8)

It follows that kT.t/f kB � k f kB for all t � 0; f 2 B.
Now, for f 2 C3.�n/ we have

T.t/f .x/ � f .x/ D
Z

f .z/p.t; x; z/dz � f .x/

D
Z �

f .z/ � f .x/
�

p.t; x; z/dz

D
Z � nX

iD1

@f

@xi
.x/.zi � xi/C 1

2

nX

i;jD1

@2f

@xi@xj
.x/.zi � xi/.zj � xj/C

C 1

6

nX

i;j;kD1

@3f

@xi@xj@xk
.x�/.zi � xi/.zj � xj/.zk � xk/

�
p.t; x; z/dz

.by Taylor expanding f at x; where x�is some point in �n/

D
nX

iD1

@f

@xi
.x/
�

bi.x/t C o.t/
�

C 1

2

nX

i;jD1

@2f

@xi@xj
.x/
�

xi.ıij � xj/t C o.t/
�

C 1

6

nX

i;j;kD1

@3f

@xi@xj@xk
.x�/o.t/ (due to Eq. (4.1.3))

D
nX

iD1

@f

@xi
.x/bi.x/t C 1

2

nX

i;jD1

@2f

@xi@xj
.x/xi.ıij � xj/t C o.t/:

(4.1.9)
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Therefore, C3.�n/ � D.A/1 and for f 2 C3.�n/

Af .x/ D lim
t&0

T.t/f .x/ � f .x/

t

D
nX

iD1
bi.x/

@f

@xi
.x/C 1

2

nX

i;jD1
xi.ıij � xj/

@2f

@xi@xj
.x/:

(4.1.10)

This completes the proof. ut
Theorem 4.1.1 The sequence of discrete generators AN of fTN.t/gt�0 given by

AN D TN.
1
2N / � I
1
2N

D 2N.UN � I/

converges to the generator A in the sense that for all f 2 D.A/ there exists a
sequence fN 2 BN such that fN ! f and ANfN ! Af as N ! 1 in the sense
that

lim
N!1 k fN � �Nf kBN D 0;

and

lim
N!1 kANfN � �NAf kBN D 0:

Proof As C3.�n/ � D.A/ is dense in B, we only need to prove the theorem for
f 2 C3.�n/. In fact, for each f 2 C3.�n/, choosing fN D �Nf , we have

ANfN.xN/ � �NAf .xN/ D 2N.UN � I/fN.xN/ � �NAf .xN/

D 2N
X

zN

�
fN.zN/ � fN.xN/

�
pN.xN ; zN/ � �NAf .xN/

D �N

 
2N

X

zN

�
f .zN/ � f .xN/

�
pN.xN ; zN/ � Af .xN/

!

D �N

 
2N

X

zN

� nX

iD1

@f

@xi
.x/.zi

N � xi
N/pN.xN ; zN/

1The maximal domain of definition D.A/ of A is larger than C3.�n/, but we shall not need that
here. It suffices for our purposes that C3 is dense in B.
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C 1

2

nX

i;jD1

@2f

@xi@xj
.x/.zi

N � xi
N/.z

j
N � xj

N/pN.xN ; zN/

C 1

6

nX

i;j;kD1

@3f

@xi@xj@xk
.x�/.zi

N � xi
N/.z

j
N � xj

N/.z
k
N � xk

N/pN.xN ; zN/
�

� Af .xN/

!

D �N

 
nX

iD1

@f

@xi
.x/
�

bi.x/C o.1/
�

C 1

2

nX

i;jD1

@2f

@xi@xj
.x/
�

xi.ıij � xj/C o.1/
�

C 1

6

nX

i;j;kD1

@3f

@xi@xj@xk
.x�/o.1/� Af .xN/

!

D �N.o.1// D o.1/: (4.1.11)

This implies the proof. ut
Theorem 4.1.2 The sequence of fTN.t/gt�0 converges to the semigroup T.t/t�0 in
the sense that for each f 2 B there exists fN 2 BN such that fN ! f and TN.t/fN !
T.t/f uniformly in bounded intervals as N ! 1.

Proof Choosing fN D �Nf , we have

kTN.t//fN � �NT.t/f k � kUŒ2Nt�
N fN � eŒ2Nt�.UN �I/fNkC

C keŒ2Nt�.UN �I/fN � e2N.UN�I/tfNk C ke2N.UN �I/tfN � �NT.t/f k
D A1 C A2 C A3:

(4.1.12)

We start by estimating A1.

Lemma 4.1.4

kUm
N fN � em.UN�I/fNk � p

mk.UNfN � fNk

for all m D 0; 1; : : :.

Proof Fix m � 0. For k D 0; 1; : : :, we have due to the contraction of UN

kUm
N fN � Uk

NfNk � kUjk�mj
N fN � fNk

D
�����

jk�mj�1X

iD0
Ui

N.UNfN � fN/

�����

� jk � mjkUNfN � fNk:

(4.1.13)
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Therefore,

kUm
N fN � em.UN�I/f k D

�����Um
N fN � e�m

1X

kD0

mk

kŠ
BkfN

�����

D e�m

�����

1X

kD0
.Um

N fN � Uk
NfN/

mk

kŠ

�����

� e�m
1X

kD0
jk � mjmk

kŠ
kUNfN � fNk

D E
�
jX � E.X/j

�
kUNfN � fNk

�
r

E
�

X � E.X/
�2kUNfN � fNk

D p
mkUNfN � fNk;

(4.1.14)

where X is a Poisson random variable with parameter m, i.e.

P.X D k/ D e�m mk

kŠ
I

X has mean and variance m (see (2.7.1)–(2.7.3)). ut
Therefore,

A1 D kUŒ2Nt�
N fN � eŒ2Nt�.UN�I/fNk

� p
Œ2Nt�kUNfN � fNk

D
p
Œ2Nt�

2N
kANfNk:

(4.1.15)

As ANfN converges to Af as N ! 1, so kANfNk is bounded, therefore A1 tends to 0
uniformly in bounded intervals as N ! 1.

To estimate A2;A3, put TN.t/ D eANt D e2N.UN �I/t. We easily see that fTN.t/gt�0
is a strongly continuous contracting semigroup on BN with the generator AN . In fact,
the contraction follows from

kTN.t/k D ke2N.UN�I/tk
D e�2Ntke2NtUN k
� e�2Nte2NtkUNk

� 1:

(4.1.16)
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Then, we have

A2 D keŒ2Nt�.UN �I/fN � e2N.UN�I/tk
D k

�
1 � e

f2Ntg
2N

�
TN.t/fNk

�
�
1 � e

f2Ntg
2N

�
k fNk

�
�
1 � e

f2Ntg
2N

�
k f k:

(4.1.17)

Therefore, A2 tends to 0 uniformly on bounded intervals as N ! 1.
We finally estimate A3.

Lemma 4.1.5 For N 2 N and t � 0,

TN.t/�N f � �NT.t/f D
Z t

0

TN.t � s/.AN�N � �NA/T.s/fds;

and therefore

kTN.t/�N f � �NT.t/f k �
Z t

0

k.AN�N � �NA/T.s/f kds:

Proof It is easy to see that T.s/f 2 D.A/ for all f 2 B. Set

hN.s/ D TN.t � s/�N T.s/f :

Then we have

d

ds
hN.s/ D

� d

ds
TN

�
�NT.s/f C TN.t � s/�N

d

ds
T.s/f

D TN.t � s/.�AN/�NT.s/f C TN.t � s/�NAT.s/f

D TN.t � s/
�
�NA � AN�N

�
T.s/f :

Thus we obtain

TN.t/�N f � �NT.t/f D hn.0/� hN.t/

D �
Z t

0

d

ds
hN.s/ds

D
Z t

0

TN.t � s/
�

AN�N � �NA
�

T.s/fds:

This completes the proof. ut
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Therefore, we have

A3 D kTN.t/fN � �NT.t/f k

�
Z t

0

k.AN�N � �NA/T.s/f kds:
(4.1.18)

Hence, A3 tends to 0 uniformly on bounded intervals as N ! 1.
This completes the proof. ut
The following corollary summarizes the results that will be important in our

study.

Corollary 4.1.1 For f 2 B; x 2 �n, E.�Nf .xN/jXN.0/ D x/ converges to

f .x; t/ WD T.t/f .x/ D E
�

f
�
X.t/

�ˇ̌
ˇX.0/ D x

�

which satisfies

@

@t
f .x; t/ D Af .x; t/ D 1

2

nX

i;jD1
xi.ıij � xj/

@2f .x; t/

@xi@xj
C

nX

iD1
bi.x/

@f .x; t/

@xi
: (4.1.19)

Proof The convergence follows from Theorems 4.1.2 and 4.1.1. Equation (4.1.19)
has been derived in Lemma 4.1.3. ut
The functions f that we shall apply Corollary 4.1.1 to are the moments of
our distribution. Thus, we consider the smooth function f .x; t/ D m˛.x; t/ D
E.X˛.t/jx.0/ D x/ on �n. Theorem 4.1.2 implies that the ˛th moment of the
diffusion random variable X.t/ is approximated by the ˛th moment of the Wright–
Fisher discrete variable XN.t/ in the sense that, if xN ! x in �n as N ! 1, then

m˛.XN.t/jXN.0/ D xN/ D E.�Nf .xN// D TN.t/fN.xN/

!T.t/f .x/ D E. f .X.t//jX.0/ D x/ D m˛.X.t/jX.0/ D x/ as N ! 1:
(4.1.20)

By Corollary 4.1.1, the moments of the diffusion process will satisfy the equation

@

@t
m˛ D 1

2

nX

i;jD1
xi.ıij � xj/

@2m˛

@xi@xj
C

nX

iD1
bi.x/

@m˛

@xi
:

4.2 The Diffusion Limit of the Wright–Fisher Model

Utilizing the theory developed in the previous section, in this section, we shall
consider the diffusion limit of the Wright–Fisher model and state the corresponding
Kolmogorov equations. In contrast to the previous section, however, we shall also
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incorporate boundary transitions, but for simplicity, we shall concentrate on the case
where the bi vanish.

We recall P2N.t C ıt; x0; x/ from (2.3.10) and the moment expression (2.3.9). By
the general results of the previous section (see Theorems 4.1.1, 4.1.2), the processes
P2N converge to a limiting process p.t; x0; x/, and also the corresponding moments
converge to the moments of the limiting process by Remark 4.1.20. Considering
the special case without selection or mutations, the coefficients bi of the semigroup
generator A of (4.1.6) all vanish. The same technique, however, also works for the
case of mutations and selection where we get nontrivial coefficients bi. This follows
from the corresponding moment evolution derived in the next section.

The moments then become

m˛.t; x0/ D
h
x˛; p.t; x0; x/

i

n
: (4.2.1)

Here, we now also include the initial value x0 in our notation.
Equation (4.2.1) requires some discussion. The moments as defined in (2.3.14)

also involve values of the frequencies X where some components are zero. Such
values correspond to boundary points of the simplex. Therefore, the moments in
the diffusion limit should involve the contributions from the boundary. These are
incorporated in the product Œ:; :�n. Subsequently when we introduce the boundary
flux, we shall see that this is the correct product, indeed.

The differential equation (2.3.17) then becomes

Pm˛.t; x0/ D
"

� j˛j.j˛j � 1/
2

x˛ C
nX

iD1

˛i.˛i � 1/

2
x˛�ei ; p.t; x0; x/

#

n

: (4.2.2)

We now recall the generator (4.1.6) of our semigroup. It has polynomial coefficients,
and therefore, it maps polynomials to polynomials; in fact, as we assume in this
Section that the coefficients bi vanish, we have

Ax˛ D �j˛j.j˛j � 1/

2
x˛ C

nX

iD1

˛i.˛i � 1/
2

x˛�ei : (4.2.3)

Hence, we can rewrite (4.2.2) as

Pm˛.t; x0/ D ŒAx˛; p.t; x0; x/�n: (4.2.4)

On the other hand, differentiating (4.2.1) w.r.t. t yields

Pm˛.t; x0/ D
h
x˛;

@

@t
p.t; x0; x/

i

n
: (4.2.5)
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Equating (4.2.4) and (4.2.5) therefore yields

h
x˛;

@

@t
p.t; x0; x/

i

n
D ŒAx˛; p.t; x0; x/�n (4.2.6)

for all x˛ and by linearity then for all polynomials. Since the polynomials are dense
in the space of all smooth functions, we conclude that for any smooth function ',
we must have for the expectation value '.t; x0/ WD Ep.t;x0;�/.'/ WD Œ'.x/; p.t; x0; x/�n
(where again the identification of the convolution with p.t; x0; �/ via the scalar
product Œ:; :�n with the expectation value will be justified below) that

@

@t
'.t; x0/ D @

@t
Ep.t;x0;:/.'/ D ŒA'.x/; p.t; x0; x/�n: (4.2.7)

Also,

@

@t
Ep.t;x0;:/.'/ D d

dt
Œ'.x/; p.t; x0; x/�n D

h
'.x/;

@

@t
p.t; x0; x/

i

n
: (4.2.8)

An important point in all our considerations will be to investigate the formula
resulting from integrating (4.2.7) by parts. In general, this formula will involve
boundary terms, and they will be identified in Chap. 8, Eq. (8.1.11). In any case,
for smooth test functions ' vanishing at the boundary, integrating (4.2.7) by parts
yields

@

@t
'.t; x0/ D

Z
'.x/A�

x p.t; x0; x/d

 (4.2.9)

with the adjoint A�, where the subscript x indicates that A� operates w.r.t. the
variable x. Since this holds for all smooth functions ' vanishing at the boundary,
we conclude that the density p.t; x0; x/ satisfies the differential equation

@

@t
p.t; x0; x/ D A�

x p.t; x0; x/: (4.2.10)

Altogether, we generally have (there is an alternative proof in [113], Proposi-
tion 3.5; see also the original derivation of Kolmogorov in [82] on R

n instead of on
the simplex as here):

Theorem 4.2.1 The diffusion approximation of an n-allelic Wright–Fisher model
may be described by the Kolmogorov equations for its transition probability density
uW .�n/1 �! R

C of its gametic configuration x D .x1; : : : ; xn/ 2 �n:

Lnu.x; t/ � A�u.x; t/ D 1

2

nX

i;jD1

@2

@xi@xj

�
aij.x/u.x; t/

� �
nX

iD1

@

@xi

�
bi.x/u.x; t/

�

(4.2.11)
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is the forward operator, and the Kolmogorov forward equation then is

@

@t
u.x; t/ D Lnu.x; t/ in .�n/1 D �n � .0;1/ (4.2.12)

for u. � ; t/ 2 C2.�n/ for each fixed t 2 .0;1/ and u.x; � / 2 C1..0;1// for each
fixed x 2 �n.

Moreover, when we consider the dependency on the initial data x0; s of u,
i.e., consider a conditional probability density u.x; tjx0; s/, then for any Borel
measurable subset B in �n, the probability

v.s; x0/ D
Z

B
u.t; xjs; x0/

n.dx/

satisfies the Kolmogorov backward equation

@

@s
v.x0; s/ D L�

nv.x0; s/ in .�n/1 D �n � .0;1/ (4.2.13)

for v.�; s/ 2 C2.�n/ for each fixed s 2 .0;1/ and v.x0; �/ 2 C1..0;1// for each
fixed x0 2 �n, where

L�
n v � Av D 1

2

nX

i;jD1
aij.x0/

@2

@xi
0@xj

0

v.x0; s/C
nX

iD1
bi.x0/

@

@xi
0

v.x0; s/ (4.2.14)

is the backward operator.

4.3 Moment Evolution

In this section, we write down the moment evolution equations in detail, from the
simplest case of the 2-allele model without selection and mutation to the most
general case. We hope that this section can be a useful reference for various
applications. A reader only interested in the general theory may wish to skip this
section.

We recall the moments of our continuous Markov process .Xt/t�0; they satisfy

E.ıXi
tjXt/ D bi.Xt/ıt C o.ıt/;

E.ıXi
tX

j
t jXt/ D aij.Xt/ıt C o.ıt/;

E.ıX˛tjXt/ D o.ıt/; for j˛j � 3:

(4.3.1)

Note that the factor 1
2N from (2.5.15)–(2.5.17) is incorporated in the time step ıt

here.
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We now generalize (2.3.16) and (2.3.17) to also include selection and mutation
effects:

m˛.t C ıt/ WD E.X˛
tCıt/

D
X

ˇ�˛

 
˛

ˇ

!
E
�

E
�
.ıXt/

ˇjXt
�
X˛�ˇ

t

�

D m˛.t/C
nX

iD1
˛iE

�
bi.Xt/.ıt/X

˛�ei
t

�
C
X

i¤j

˛i˛jE
�

aij.Xt/.ıt/.Xt/
˛�ei�ej

�

C
nX

iD1

˛i.˛i � 1/
2

E
�

aii.Xt/.ıt/X
˛�2ei
t

�
C o.ıt/:

(4.3.2)

Subtracting m˛.t/ from both sides, dividing by ıt and letting ıt tend to 0, we obtain

Pm˛.t/ D
nX

iD1
˛iE

�
bi.Xt/X

˛�ei
t

�
C
X

i¤j

˛i˛jE
�

aij.Xt/X
˛�ei�ej
t

�

C
nX

iD1

˛i.˛i � 1/

2
E
�

aii.Xt/X
˛�2ei
t

�
:

(4.3.3)

We shall now display these equations for various choices of the coefficients aij and
bi as derived in Sect. 2.5. In all cases, the aij.Xt/ and bi.Xt/ are polynomials in Xt.

1. For the basic Wright–Fisher model with two alleles, b.x/ D 0; a.x/ D x.1� x/,
and the moment evolution equation is

Pmk.t/ D k.k � 1/
2

E
�

Xt.1 � Xt/X
k�2
�

D k.k � 1/
2

mk�1.t/ � k.k � 1/

2
mk.t/:

(4.3.4)

2. For the Wright–Fisher model with two alleles with mutation, by (2.6.5), b.x/ D


2

� �C

2

x; a.x/ D x.1 � x/, and the moment evolution equation is

Pmk.t/ D kE
��1
2

 � 1

2
.�C 
/Xt

�
Xk�1

t

�
C k.k � 1/

2
E
�

Xt.1 � Xt/X
k�2
�

D k



2
mk�1.t/ � k

�C 


2
mk.t/C k.k � 1/

2
.mk�1.t/ � mk.t//

D k.k � 1C 
/

2
mk�1.t/ � k.k � 1C �C 
/

2
mk.t/:

(4.3.5)
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3. For the Wright–Fisher model with two alleles with selection, by (2.6.6), b.x/ D
x.1�x/.h�1Cx�2hx/s; a.x/ D x.1�x/, and the moment evolution equation is

Pmk.t/ D kE
��

s.h � 1/Xt.1 � Xt/C s.1 � 2h/X2t .1 � Xt/
�
Xk�1

t

�

C k.k � 1/

2
E
�

Xt.1 � Xt/X
k�2�

D ks.h � 1/mk.t/C ks.2 � 3h/mkC1.t/C ks.2h � 1/mkC2.t/

C k.k � 1/

2
.mk�1.t/ � mk.t//

D k.k � 1/

2
mk�1.t/� k.k � 1C s/

2
mk.t/C ks

2
mkC1.t/;

�
in the special case h D 1

2

�

D �ks

2
.mk.t/ � mkC1.t//C k.k � 1/

2
.mk�1.t/� mk.t//;

�
in the special case h D 1

2

�
:

(4.3.6)

4. For the Wright–Fisher model with two alleles with mutation and selection,
by (2.6.7), b.x/ D 


2
� �C


2
x C x.1 � x/.h � 1 C x � 2hx/s; a.x/ D x.1 � x/,

and the moment evolution equation is

Pmk.t/ D kE
��1
2

 � 1

2
.�C 
/Xt C s.h � 1/Xt.1 � Xt/

C s.1 � 2h/X2t .1 � Xt/
�
Xk�1

t

�
C k.k � 1/

2
E
�

Xt.1 � Xt/X
k�2�

D k



2
mk�1.t/ � k

�C 


2
mk.t/C ks.h � 1/mk.t/C ks.2 � 3h/mkC1.t/

C ks.2h � 1/mkC2.t/C k.k � 1/

2
.mk�1.t/ � mk.t//

D k.k � 1C 
/

2
mk�1.t/ � k.k � 1C s C �C 
/

2
mk.t/C ks

2
mkC1.t/

�
in the special case h D 1

2

�
:

(4.3.7)

5. We now turn to the Wright–Fisher model with .n C1/ alleles. If there is neither
selection nor mutation, then by (2.3.11), (2.3.12), bi.x/ D 0; aij.x/ D xi.ıij�xj/,
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and the moment evolution equation is

Pm˛.t/ D
X

i¤j

˛i˛jE
�

� Xi
tX

j
tX

˛�ei�ej
t

�

C
nX

iD1

˛i.˛i � 1/

2
E
�

Xi
t.1 � Xi

t/X
˛�2ei

�

D �j˛j.j˛j � 1/
2

m˛.t/C
nX

iD1

˛i.˛i � 1/

2
m˛�ei.t/:

(4.3.8)

6. For the Wright–Fisher model with .n C 1/ alleles with general mutation rates,
by (2.5.15),

bi.x/ D �
� nX

jD0

�ij

2

�
xi C

nX

jD0

�ji

2
xj;

where �ii is arbitrary and can be fixed as 0, and aij.x/ D xi.ıij � xj/, and the
moment evolution equation is

Pm˛.t/ D
nX

iD1

˛iE

 �
�

nX

jD0

�ij

2
Xi

t C �0i

2
C

nX

jD1

�ji � �0i

2
Xj

t

�
X˛�ei

t

!

CX

i¤j

˛i˛jE
�

� Xi
tX

j
tX

˛�ei�ej
t

�
C

nX

iD1

˛i.˛i � 1/

2
E
�

Xi
t.1� Xi

t/X
˛�2ei

�

D
nX

iD1

�˛i#i

2
m˛.t/C

nX

iD1

˛i�0i

2
m˛�ei.t/C

nX

iD1

nX

jD1

˛i.�ji � �0i/

2
m˛�eiCej

� j˛j.j˛j � 1/

2
m˛.t/C

nX

iD1

˛i.˛i � 1/

2
m˛�ei .t/;

�
where #i D

nX

jD0

�ij

�

D
nX

iD1

�˛i.#i C �0i/

2
m˛.t/C

nX

iD1

˛i�0i

2
m˛�ei .t/C

nX

i;jD1
i¤j

˛i.�ji � �0i/

2
m˛�eiCej

� j˛j.j˛j � 1/

2
m˛.t/C

nX

iD1

˛i.˛i � 1/

2
m˛�ei .t/

D �
� j˛j.j˛j � 1/

2
C

nX

iD1

˛i.#i C �0i/

2

�
m˛.t/C

nX

iD1

˛i.˛i � 1C �0i/

2
m˛�ei .t/

C
nX

i;jD1i¤j

˛i.�ji � �0i/

2
m˛�eiCej : (4.3.9)
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7. For the Wright–Fisher model with .n C 1/ alleles with uniform mutation
(mutation rates depending only on the target genes), by (2.5.4), (2.5.15),
bi.x/ D �i

2
� j�j

2
xi; aij.x/ D xi.ıij � xj/, the preceding moment evolution

equation (4.3.9) simplifies as

Pm˛.t/ D
nX

iD1
˛iE

 �1
2
�i � 1

2
j�jXi

t

�
X˛�ei

t

!
C
X

i¤j

˛i˛jE
�

� Xi
tX

j
tX

˛�ei�ej
t

�

C
nX

iD1

˛i.˛i � 1/

2
E
�

Xi
t.1 � Xi

t/X
˛�2ei

�

D �j˛j.j˛j � 1C j�j/
2

m˛.t/C
nX

iD1

˛i.˛i � 1C �i/

2
m˛�ei.t/:

(4.3.10)
In fact, if �ij D �j for all i ¤ j, then for all i 2 f1; : : : ; ng we have

�i C �0i D
nX

jD0
�ij C �0i D

nX

jD0
j¤i

�ij C �0i D
nX

jD0
j¤i

�j C �i D j�j;

therefore

nX

iD1

˛i.#i C �0i/

2
D

nX

iD1

˛ij�j
2

D j˛jj�j
2

:

Thus, the first term in (4.3.9) becomes

�j˛j.j˛j � 1C j�j/
2

m˛.t/:

For the second term, because of �0i D �i, for all i 2 f1; : : : ; ng we obtain

nX

iD1

˛i.˛i � 1C �i/

2
m˛�ei.t/:

Finally, because of ˛i.�ji��0i/

2
D 0 for all i; j 2 f1; : : : ; ng with j ¤ i, the third

term is zero. Thus, for uniform mutation, (4.3.9) becomes (4.3.10), indeed.
8. For the Wright–Fisher model with .n C 1/ alleles with special selection

coefficients sij D siCsj

2
, (2.5.15) yields

bi.x/ D xi

 
nX

jD0

si C sj

2
xj �

nX

k;lD0

sk C sl

2
xkxl

!
D si

2
xi �

nX

jD0

sj

2
xixj;
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and aij.x/ D xi.ıij � xj/, and the moment evolution equation is

Pm˛.t/ D
nX

iD1
˛iE

 � si

2
Xi

t �
nX

jD0

sj

2
Xi

tX
j
t

�
X˛�ei

t

!

C
X

i¤j

˛i˛jE
�

� Xi
tX

j
tX

˛�ei�ej
t

�
C

nX

iD1

˛i.˛i � 1/

2
E
�

Xi
t.1 � Xi

t/X
˛�2ei

�

D
nX

iD1
˛iE

 � si � s0
2

�
nX

jD1

sj � s0
2

Xj
t

�
X˛

t

!

� j˛j.j˛j � 1/

2
m˛.t/C

nX

iD1

˛i.˛i � 1/
2

m˛�ei.t/

D
nX

iD1

˛i.si � s0/

2
m˛.t/�

nX

i;jD1

˛i.sj � s0/

2
m˛Cej.t/

� j˛j.j˛j � 1/

2
m˛.t/C

nX

iD1

˛i.˛i � 1/
2

m˛�ei.t/

D �
� j˛j.j˛j � 1/

2
�

nX

iD1

˛i.si � s0/

2

�
m˛.t/C

nX

iD1

˛i.˛i � 1/
2

m˛�ei.t/

�
nX

i;jD1

˛i.sj � s0/

2
m˛Cej :

(4.3.11)

9. For the Wright–Fisher model with .n C 1/ alleles with general selection,
by (2.5.15)

bi.x/ D xi

 
nX

jD0
sijx

j �
nX

k;lD0
sklx

kxl

!

D xi

 
si0 C

nX

jD1
.sij � si0/x

j �
� nX

k;lD1

�
skl C s00 � sk0 � sl0

�
xkxl

C 2

nX

lD1
.sl0 � s00/x

l C s00
�!
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D xi

 
�

nX

k;lD1

�
skl C s00 � sk0 � sl0

�
xkxl C

nX

jD1
.sij � si0 � 2sj0 C 2s00/x

j

C si0 � s00

!

D xi

 
�

nX

k;lD1
Qsklx

kxl C
nX

jD1
.Qsij � Qsj/x

j C Qsi

!
; (4.3.12)

where Qskl D skl C s00 � sk0 � sl0, Qsj D sj0 � s00, and aij.x/ D xi.ıij � xj/, and the
moment evolution equation is

Pm˛.t/ D
nX

iD1
˛iE

 �
�

nX

k;lD1
QsklX

k
t Xl

t C
nX

jD1
.Qsij � Qsj/X

j
t C Qsi

�
X˛

t

!

C
X

i¤j

˛i˛jE
�

� Xi
tX

j
tX

˛�ei�ej
t

�
C

nX

iD1

˛i.˛i � 1/

2
E
�

Xi
t.1 � Xi

t/X
˛�2ei

�

D
nX

iD1
˛i

 
�

nX

k;lD1
Qsklm˛CekCel.t/C

nX

jD1
.Qsij � Qsj/m˛Cej.t/C Qsim˛.t/

!

� j˛j.j˛j � 1/

2
m˛.t/C

nX

iD1

˛i.˛i � 1/
2

m˛�ei.t/

D �
nX

k;lD1
j˛jQsklm˛CekCel.t/C

nX

iD1

nX

jD1
˛i.Qsij � Qsj/m˛Cej.t/

�
� j˛j.j˛j � 1/

2
�

nX

iD1
˛iQsi

�
m˛.t/C

nX

iD1

˛i.˛i � 1/
2

m˛�ei.t/:

(4.3.13)

10. Finally, for the most general case considered here, that is, the Wright–Fisher
model with .n C 1/ alleles with general mutation and selection, by (2.5.15)

bi.x/ D �
� nX

jD0

�ij

2

�
xi C

nX

jD0

�ji

2
xj C xi

 
nX

jD0
sijx

j �
nX

k;lD0
sklx

kxl

!
;
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and aij.x/ D xi.ıij � xj/, and the moment evolution equation is

Pm˛.t/ D �
nX

k;lD1
j˛jQsklm˛CekCel.t/C

nX

iD1

nX

jD1
˛i.Qsij � Qsj/m˛Cej.t/

�
 

j˛j.j˛j � 1/

2
C

nX

iD1

˛i.#i C �0i � 2Qsi/

2

!
m˛.t/

C
nX

iD1

˛i.˛i � 1C �0i/

2
m˛�ei.t/:

(4.3.14)

11. For the Wright–Fisher model with two loci with two alleles each with recom-
bination,

bi.x/ D �irD.x/ D �ir
�
x1.1 � x1 � x2 � x3/ � x2x3

�
;

where �1 D ��2 D ��3 D �1; r D 2NR and aij.x/ D xi.ıij � xj/ for i; j D
1; 2; 3, then the moment evolution equation is

Pm˛.t/ D
3X

iD1
˛iE

�
�irD.Xt/.Xt/

˛�ei
�

C
3X

iD1

˛i.˛i � 1/
2

m˛�ei.t/ � j˛j.j˛j � 1/

2
m˛.t/

D
3X

iD1
˛i�ir

�
m˛�eiCe1 .t/� m˛�eiC2e1 .t/ � m˛�eiCe1Ce2 .t/ � m˛�eiCe1Ce3 .t/

� m˛�eiCe2Ce3 .t/
�

C
3X

iD1

˛i.˛i � 1/

2
m˛�ei.t/ � j˛j.j˛j � 1/

2
m˛.t/:

(4.3.15)
If we start at a linkage equilibrium, i.e. D.X.0// D 0, we obtain

D.X.t// D
�
1 � r

2N

�t
D.X.0// D 0

for all t. At linkage equilibrium, the genotype frequencies at one locus are
independent of the genotype frequencies at the other locus. In this case, it
suffices to consider the variables

�
X1.t/;X2.t/

� 2 �2, as they determine the
other two via

X3.t/ D X1.t/

X1.t/C X2.t/

�
1 � X1.t/ � X2.t/

�
;

X4.t/ D X2.t/

X1.t/C X2.t/

�
1 � X1.t/ � X2.t/

�
:

The problem thus becomes equivalent to the case of a single locus with three
alleles.
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12. For the Wright–Fisher model with two loci with two alleles each with mutation,
selection and recombination,

bi.x/ D �irD.x/ �
� 3X

jD0

�ij

2

�
xi C

3X

jD0

�ji

2
xj C xi

 
3X

jD0
sijx

j �
3X

k;lD0
sklx

kxl

!
;

and aij.x/ D xi.ıij � xj/ for i; j D 1; 2; 3, and the moment evolution equation is

Pm˛.t/ D
3X

iD1
˛iE

�
�irD.Xt/.Xt/

˛�ei
�

C
3X

iD1

˛i.˛i � 1/
2

m˛�ei.t/ � j˛j.j˛j � 1/

2
m˛.t/

�
3X

k;lD1
j˛jQsklm˛CekCel.t/C

3X

iD1

3X

jD1
˛i.Qsij � Qsj/m˛Cej.t/

D
3X

iD1
˛i�ir

�
m˛�eiCe1 .t/� m˛�eiC2e1 .t/ � m˛�eiCe1Ce2 .t/ � m˛�eiCe1Ce3 .t/

� m˛�eiCe2Ce3 .t/
�

C
3X

iD1

˛i.˛i � 1/

2
m˛�ei.t/ � j˛j.j˛j � 1/

2
m˛.t/

�
3X

k;lD1
j˛jQsklm˛CekCel.t/C

3X

iD1

3X

jD1
˛i.Qsij � Qsj/m˛Cej.t/

D
X

ˇ

A˛;ˇmˇ.t/;

(4.3.16)

where A D
�

A˛;ˇ

�

˛;ˇ
is an (infinite dimensional) sparse matrix whose entries

depend on r; sij; �ij.

4.4 Moment Duality

As we have noted in Sect. 4.2, the evolution of the moments determines the entire
Wright–Fisher process. In other words, it suffices to solve the moment evolution
equations. This also implies that if we find some other model with the same moment
evolution equations, then we could also use that model to derive properties of the
Wright–Fisher process. And if that other model turns out to be simpler, then this
scheme may be used to great advantage. This is indeed possible. There exists a
simple death process with the same moment evolution. Actually, that process can
also find a biological interpretation in terms of the Wright–Fisher model. That is the
Kingman coalescent [81]. We shall make use of the exposition in [26].
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Although, in this book, we shall not make systematic use of this relation, we
nevertheless would like to use this opportunity to explain it. We shall do so, however,
only for the simplest case, the 2-allele model without selection or mutation.

We thus recall Eq. (2.6.4) for the evolution of the moments mk.t; y/ D E.Yt/
kjY0�

y/ in the diffusion limit,

Pmk.t; y/ D
 

k

2

!
.mk�1.t; y/ � mk.t; y//: (4.4.1)

We then look at the death process D D .Dt/ on N where the transition from k to k�1
occurs at the rate

�k
2

�
. That is, in a population of size k, the death of an individual

happens at that rate. The expectation value

nk.t; y/ WD E.yDt jD0 D k/ (4.4.2)

then satisfies

nk.t C ıt; y/ � nk.t; y/ D
 

k

2

!
.nk�1.t; y/ � nk.t; y//; (4.4.3)

and for ıt ! 0, we get

Pnk.t; y/ D
 

k

2

!
.nk�1.t; y/ � nk.t; y//; (4.4.4)

that is, the same as (4.4.1). (Note that for ıt > 0, mk.t; y/ does not satisfy (4.4.3)
exactly, but only up to some error terms of order o.ıt/. Thus, the moment evolutions
of the two processes only become identical in the diffusion limit.)

Anyway, this then implies

mk.t; y/ D nk.t; y/; (4.4.5)

or spelled out,

E.Yt/
kjY0 � y/ D E.yDt jD0 D k/: (4.4.6)

Such a relation is called moment duality, and this can be developed in a general and
abstract manner, see [68]. Here, however, we do not explicate that theory, but only
point out the interpretation in terms of the Kingman coalescent.

But before doing that, we should first point out that since the process Dt is much
simpler than the Wright–Fisher process, we can use the relation (4.4.6) to derive
some results about the latter in a simpler manner. For instance, (2.8.2) directly
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follows from

E.Y� jY0 D y/ D E.yD� jD0 D 1/ D y: (4.4.7)

Now, the Kingman coalescent model considers the process where we ask about
the probabilities that two individuals in the current generation had the same ancestor
` generations back in the past (note that time is running backwards here, and
therefore, we call the generation ` instead of m). Obviously, we should then look
at the transitions from some generation ` back in the past containing the k ancestors
of the current generation of size 2N (as always) to generation `C 1 back in the past
and ask how many members of that population created the current one. That is, in
each generation in the past, we neglect all individuals that don’t have any descendent
left in the current generation. Again, we scale the process and look at time steps of
size ıs (again, time s is running back into the past). The process is scaled such that
the probability for two individuals at time s had the same ancestor at time s C ıs
back from the present is ıs, up to terms of order o.ıs/ which we neglect. Therefore,
if at time s, there were k ancestors, then there are

�k
2

�
pairs of them each of which

could have the same ancestor. Thus, the number of ancestors is expected to reduce
by
�k
2

�
ıs when we go ıs back in time. But this is precisely the same as the above

death process Ds with rescaled time step ıs. Therefore, the moment duality that we
have described above finds its natural explanation in the Kingman coalescent that
yields a process that traces the ancestry of individuals resulted from Wright–Fisher
sampling back in time.



Chapter 5
Recombination

5.1 Recombination and Linkage

Gametes consist of several loci, each of them occupied by an allele from a set of
alleles that is specific for the locus in question. The sites are assumed to be linearly
ordered. The number of loci, as well as the set of possible alleles for each, are the
same for all gametes within the population under consideration. When two gametes
are paired, they form an offspring gamete that at some of its sites gets the alleles
from the first parent, and at the other sites those of the second parent. This is
recombination, and a recombination scheme may restrict the possibilities for the
combinations.

We observe that by such a recombination scheme, half of the alleles of the pair of
recombined gametes are wasted. In principle, instead of simply creating one gamete
from a pair of gametes by recombination, one could also create the complementary
gamete which precisely gets its alleles at those loci from the first (second) parent
where the other one received its alleles from the second (first) parent. We would
then have to sample only half as many gametes. For the models that we shall
consider, this will make no difference for the dynamics of the probabilities of the
allele frequencies.

First, we consider the special case of two loci with two alleles each. Recalling
the conventions of Sect. 2.11.1, the set of possible alleles at the first locus contains
A0;A1, and for the second locus B0;B1. We thus have the gametes, i.e., allele
combinations

G0 D .A0;B0/;G1 D .A0;B1/;G2 D .A1;B0/;G3 D .A1;B1/:

The corresponding relative frequencies are X` D Xij when G` D .Ai;B j/. With
i0 D 0.1/ if i D 1.0/,

Dij D XijXi0j0 � Xij0Xi0j; and D` D Dij when G` D .Ai;B j/:

© Springer International Publishing AG 2017
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When Dij D 0, then the relative frequency of .Ai;B j/ equals the product of the
relative frequencies of Ai and B j. This is called linkage equilibrium.

Let R be the recombination rate. This means that when the gamete .Ai;B j/ is
mated with the gamete .A`;Bh/, then the gametes .Ai;B j/ and .A`;Bh/ are produced
with probability 1

2
.1�R/ each, whereas the combinations .Ai;Bh/ and .A`;B j/ occur

with probability 1
2
R each. The factor 1

2
here comes up because we assume that the

mating and recombination of two gametes produces a single offspring in place of
two.

In more detail, recombination can have

• no effect on a relative frequency, for instance when .A0;B0/ is paired with
.A0;B1/, then .A0;B0/ is produced with probability 1

2
independently of R

• a negative effect on a relative frequency, for instance when .A0;B0/ is paired with
.A1;B1/, then .A0;B0/ is produced with probability 1

2
.1 � R/ only

• a positive effect on a relative frequency, for instance when .A0;B1/ is paired
with .A1;B0/, then .A0;B0/ is produced with probability 1

2
R, even though neither

parent was of this type.

We now present a preliminary discussion of the effects of these recombination rules
where we leave out the multinomial sampling step; as we shall see below the relative
order of recombination and sampling does matter, and so, we shall need to address
that issue. The relative frequency of G0 then changes between the generations
according to

E.X0mC1jxm/ D .x0/2 C 2x0x1
1

2
C 2x0x2

1

2
C 2x0x3

1

2
.1� R/C 2x1x2

1

2
R D x0 � RD0;

(5.1.1)

since x0 C x1 C x2 C x3 D 1; the factor 2 occurs for symmetry reasons, because the
order of the two gametes does not matter. And in general

E.X`mC1jxm/ D x` � RD`: (5.1.2)

It is important for the interpretation that R is a probability. R D 0 means
that no recombination occurs, whereas R D 1

2
means that the two loci behave

independently. The reader will readily check that R and 1�R lead to mathematically
(but not biologically, of course) equivalent models. Therefore, we may restrict
ourselves to the range 0 � R � 1

2
.

For later purposes, we also write (5.1.2) as

E.X`mC1jxm/ D
X

r;s

a`rsx
r;s
m ; (5.1.3)
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with the coefficients a`rs, which again represent probabilities. For ` D 0, they are
displayed in (5.1.1), and for general `, they are given by the following table

a`rs ` D 0 ` D 1 ` D 2 ` D 3

.r; s/ D .0; 0/ 1 0 0 0

.0; 1/ 1
2

1
2

0 0

.0; 2/ 1
2

0 1
2

0

.0; 3/ 1
2
.1 � R/ 1

2
R 1

2
R 1

2
.1 � R/

.1; 1/ 0 1 0 0

.1; 2/ 1
2
R 1

2
.1� R/ 1

2
.1 � R/ 1

2
R

.1; 3/ 0 1
2

0 1
2

.2; 2/ 0 0 1 0

.2; 3/ 0 0 1
2

1
2

.3; 3/ 0 0 0 1

(5.1.4)

with the symmetry

a`rs D a`sr for all r; s; `: (5.1.5)

Here, we assume that the two partners in a pair are independently chosen for their
random union, which is indicated by the i; j-notation as upper index, that is,

Xr;s D XrXs and xr;s D xrxs: (5.1.6)

As before, we consider a population of N individuals. In the present context,
this means that we have 2N gametes in each generation. In distinction to the single
locus case, we now have two operations, sampling and recombination. Their order
matters, and there are two different possible schemes which we shall now describe.

Perhaps the following general remark concerning randomness will be useful, as
the same type of reasoning will appear repeatedly. As long as there are no correla-
tions, it does not matter for the stochastics of sampling (always with replacement)
whether we sample individual gametes or pairs of gametes, or according to which
scheme we pairwise mate randomly sampled gametes, as long as this scheme does
not depend on their identity.

5.2 Random Union of Gametes

In the random union of gametes model (as proposed by Karlin and McGregor
in [76]), abbreviated as RUG, 2N, or N pairs of gametes, are randomly sampled
from the population, and then pairwise recombined in a mating step to produce
the next generation of 2N gametes. Thus, for the formal model, we do not need to
speak about individuals at all, as in the basic Wright–Fisher model with a single
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locus. Of course, for the biological picture, one might want to ask how individuals
fit into it. Well, a diploid individual possesses two gametes. Instead of sampling
2N gametes, we might then sample N individuals and mate them pairwise and
recombine the first gametes of such a pair to form the first gamete of the offspring,
and likewise produce the second gamete of the offspring from the second pair of
parental gametes. We note that this sampling of pairs of parents each carrying two
gametes is different from the simple sampling of pairs of gametes. If, however,
there are no correlations between the frequencies of the two gametes an individual
carries, then this recombination process will not introduce such correlations either,
and therefore, the probabilities for the gamete frequencies are not affected by
this different sampling scheme. We should point out, however, that this might
change when selection effects are included. The reason is that selective differences
might introduce correlations between the gametes within individuals, as certain
combinations of two gametes might be fitter than others.

So, anyway, we shall sample from a population of 2N gametes to create the next
generation by pairwise recombination.

We can easily derive the moments of the RUG process. In fact, the first moment
has already been given in (5.1.2). For the sequel, we write

�` WD x` � RD`: (5.2.1)

The higher moments can now easily be derived from the fact that the RUG model
consists in random multinomial sampling from the frequencies given by �`. Thus,
recalling (2.11.9)–(2.11.11), we have

E.X`mC1jxm/ D �` which is (5.1.2) (5.2.2)

E.X`mC1Xh
mC1jxm/ D .1 � 1

2N
/�`�h C 1

2N
�`ı`h (5.2.3)

D .1 � 1

2N
/.x` � RD`/.xh � RDh/C 1

2N
.x` � RD`/ı`h

E.X`mC1Xh
mC1Xk

mC1jxm/ D .1 � 1

2N
/.1 � 2

2N
/�`�h�k C 1

.2N/2
�`ı`hıhk

C 1

2N
.1 � 1

2N
/.�`�hı`k C �`�kı`h C �h�kı`k/; (5.2.4)

and so on. In particular, we get for the coefficient of linkage disequilibrium
from (5.2.3)

E.Dij
mC1jxm/ D .1 � 1

2N
/.1 � R/Dij

m D .1 � 1

2N
/.� ij� i0 j0 � � ij0� i0 j/: (5.2.5)

Thus, the corresponding coefficient of linkage disequilibrium for the �` gets
decreased by a factor of .1 � 1

2N /, and the latter is decreased by a factor of .1 � R/
compared to the coefficient for the x`m.
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From (5.2.2)–(5.2.4), we also get

E.ıX`jxm/ D E.X`mC1 � X`mjxm/ D �RD` (5.2.6)

E.ıX`ıXhjxm/ D E.X`Xhjxm/C E.ıX`jxm/E.ıX
hjxm/

� E.X`jxm/E.X
hjxm/

D 1

2N
�`.ı`h � �h/C R2D`Dh (5.2.7)

E.ıX`ıXhıXjjxm/ D E.X`XhXjjxm/� x`mxh
mxj

m (5.2.8)

� E.X`Xhjxm/x
j
m C E.Xjjxm/x

`
mxh

m

� E.X`Xjjxm/x
h
m C E.Xhjxm/x

`
mxj

m

� E.XhXjjxm/x
`
m C E.X`jxm/x

h
mxj

m

D �R3D`DhDj � 1

2N

�
�`�h.1� ı`h/D

j C �`� j.1� ı`j/D
h C �h� j.1� ıhj/D

`
�

C 1

4N2

�
2�`�h� j � �`� jı`h � �`�hıhj � �h� jıj` C �`ı`hıhj

�
(5.2.9)

5.3 Random Union of Zygotes

In the random union of zygotes model, abbreviated as RUZ, which has been
developed in [123], we represent an individual by a pair of gametes, called a
zygote. From each zygote, that is, pair of gametes, we form a single gamete
by recombination. The model then consists in sampling 2N zygotes, from which
we form 2N gametes which are then pairwise mated into N individuals, i.e.,
zygotes. (Since the zygotes are sampled randomly, the precise mating scheme then
does not matter, as long as it does not depend on the identity of the gametes,
and will effectively constitute random mating.) Thus, here the paternal and the
maternal gamete are not recombined when forming an individual, but only when
that individual produces offspring itself. In other words, recombination is shifted
here by one generation compared to the RUG model.

Again, when there are no correlations between the two gametes constituting
a zygote in the initial population, then the model will not introduce any such
correlations. Therefore, we can consider the two gametes in a zygote as being
statistically independent. Again, we point out that this need not remain valid when
selection is introduced.

We consider a discrete time m, sometimes indicated by a corresponding subscript.
Let Yr;s and Xr;s be the absolute and relative frequencies of a zygote of type
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.Gi;G j/. When the random variable Xr;s assumes the value xr;s, the probability that
recombination then produces a gamete of G` is

E.X`mC1jx:;:m / D
X

r;s

a`rsx
r;s (5.3.1)

where x:;: stands for the collection xr;s; r; s D 0; 1; 2; 3 and the a`rs are the
coefficients of the recombination scheme. Here, importantly, since the two gametes
in a zygote are statistically independent, the corresponding random variables satisfy
(analogously to the RUG case)

Xr;s D XrXs: (5.3.2)

Therefore, we can equivalently write

E.X`mC1jxm/ D E.
X

r;s

a`rsX
r;s
mC1jxm/ D

X

r;s

a`rsx
r
mxs

m: (5.3.3)

This then is the transition rule for the random variables X` in the RUZ model.
Applying (2.11.5) therefore yields the formula of [123]

E.e
P
` s`X

`
mC1 jxm/ D E.e

P
` s`

P
r;s a`rsX

r
mC1

Xs
mC1 jxm/ D .

X

r;s

xr
mxs

me
P
` s`a`rs/N (5.3.4)

where we have used the formula (2.11.8) for the moment generating function of the
multinomial distribution and the fact that we are now multinomially sampling pairs
instead of individual gametes.

This formula then has eliminated the zygote frequencies; only the gamete
frequencies remain. We should keep in mind, however, that the coefficients a`rs here
represent probabilities.

From (5.3.4) and the considerations in Sect. 2.11.2, we obtain the moments

E.X`mC1jxm/ D
X

i;j

a`ijx
i
mxj

m which is (5.3.3) (5.3.5)

E.X`mC1Xh
mC1jxm/ D

X

i;j

X

r;s

..1 � 1

N
/xi

mxj
mxr

mxs
m C 1

N
xi

mxj
mıirıjs/a

`
ija

h
rs

E.X`mC1Xh
mC1Xk

mC1jxm/ D
�
1 � 3

N
C 2

N2

�X

i;j

xi
mxj

ma`ij
X

p;q

xp
mxq

mah
pq

X

r;s

xr
mxs

mak
rs

(5.3.6)

C
� 1

N
� 1

N2

�
�
�X

i;j

xi
mxj

ma`ija
h
ij

X

r;s

xr
mxs
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C
X

p;q

xp
mxq

ma`pqah
pq

X

i;j

xi
mxj

ma`ij C
X

r;s

xr
mxs

ma`rsa
h
rs

�
X

p;q

xp
mxq

mah
pq

�
C 1

N2

X

i;j

xi
mxj

ma`ija
h
ija

k
ij: (5.3.7)

From (5.1.1), (5.1.3), we have

X

h;k

a`hkxh
mxk

m D x` � RD`: (5.3.8)

Therefore, the moments of the RUZ model behave essentially like those of the
RUG model, that is, they coincide in the diffusion limit (or in case of absence of
recombination). The differences in the formulae for the second and for the higher
moments only result from technicalities (that is, sampling with 2N trials (RUG) vs.
N trials (RUZ)) and as such diminish with increasing N.

5.4 Diffusion Approximation

As in Sect. 4.2, we now pass to the diffusion approximation, that is, we let the
population size N ! 1 and rescale time with ıt D 1

2N . The expectation values
then need to be multiplied by 2N. We obtain the coefficients of the drift term

b`.x/ D lim
N!1 2NE.ıX`t / D lim

N!1.�2NRD`/: (5.4.1)

This can only remain finite if

R D R.N/ D O.
1

N
/; (5.4.2)

that is, if the recombination rate goes to 0 like 1
N . We henceforth assume (5.4.2). But

then

a`h.x/ D lim
N!1 2NE.ıX`t ıX

h
t /

D lim
N!1 2N.

1

N
x`.ı`h � xh/C .RD`/.RDh//

D 2x`.ı`h � xh/; (5.4.3)

because of (5.4.2). Thus, with this assumption that was needed to keep the first
moments finite, the diffusion coefficients a`h are independent of recombination.
Since in this situation the third and higher moments behave like o. 1N /, we can
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pass to the diffusion limit as in Theorem 4.2.1 to obtain the forward and backward
Kolmogorov operators, that is,

Lrec
3 W H3 ! H3; Lrec

3 u.x/ D 1
2

3P
`;hD1

@2.x`.ı`h�xh/u.x//
@x`@xh �P

`

@
@x`
.b`.x/u.x//;

(5.4.4)

and its adjoint

L�;rec
3 W H3 ! H3; .L3/�;recu.p/ D 1

2

3P
`;hD1

p`.ı`h � ph/
@2u.p/
@p`@ph CP

`

b`.p/
@u.p/
@p`

:

(5.4.5)

5.5 Compositionality

In addition to the hierarchy that we have already discussed for the single locus case,
we also have a compositionality in the following sense. In the two-locus case, we
could, for instance, ignore the dynamics at the second locus and only consider the
dynamics at the first locus. An inspection of the model shows that in the absence
of selective effects (which we have assumed so far), the frequencies at the first
locus are not affected by those at the second locus. Recombination only affects the
correlations between the probabilities at the two loci, but not the marginals. Thus,
for the frequencies of Ai, which are given as the sums of the frequencies of the pairs
.Ai;B0/ and .Ai;B1/, we have a standard Wright–Fisher dynamics. When Xi now
denotes the frequency of Ai and Xij that of the pair .Ai;B j/, we have

Xi D
X

j

Xij: (5.5.1)

This matches with the coefficients of the Kolmogorov operators, as we have

1X

jD0
b.ij/ D 0 (5.5.2)

1X

j;sD0
a.ij/.rs/ D

1X

j;sD0

1

2
x.ij/.ı.ij/.rs/ � x.rs// D 1

2
xi.ıir � xr/; (5.5.3)

where in (5.4.1), (5.4.2), we let the index ` for an allele pair correspond to the pair
of indices .ij/.
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Analogously, we can consider the dynamics of the frequencies at the second
locus only. Thus, by taking marginals, the frequency dynamics governed by the
Kolmogorov operators (5.4.4), (5.4.5) lead to two frequency dynamics governed
by the operators L1;L�

1 . Geometrically, we thus have a dynamical process on the
positive hyperoctant of the three-dimensional sphere that projects to a process on
the product of two one-dimensional spheres. The projected processes do not feel
effects of recombination.

Obviously, this picture generalize to more than two loci with more than two
alleles at each of them. This naturally leads into the field of algebraic statistics,
see for instance [95], but this will not be explored here.

5.6 The Geometry of Recombination

In this section we will consider the geometry of the state space of recombination.
We shall see that the geometric perspective that we have developed in Chap. 3
can substantially clarify the underlying mathematical structure. We start with the
formula of Ohta and Kimura as presented in [93]

@f

@t
D 1

4
p.1 � p/

@2f

.@p/2
C 1

4
q.1 � q/

@2f

.@q/2
C 1

2
D
@2f

@p@q
C 1

2
D.1 � 2p/

@2f

@p@D
(5.6.4)

C 1

2
D.1 � 2q/

@2f

@q@D
C 1

4
f pq.1 � p/.1 � q/C D.1� 2p/.1 � 2q/ � D2g @2f

.@D/2

� 1

2
D.1C 2NR/

@f

@D

for f . � ; t/ 2 C2.	. p;q;D// for every t > 0 and f . p; q;D; � / 2 C1..0;1// for
. p; q;D/ 2 	. p;q;D/ and with

	. p;q;D/ WD
˚
. p; q;D/ 2 R

3
ˇ̌
0 < p; q < 1;max. p C q � 1; 0/� pq < D < min. p; q/� pq

�
:

(5.6.5)

Thus, the coefficient matrix of the 2nd order derivatives equals

�
aij. p; q;D/

�

WD 1

4

0

@
p.1 � p/ D D.1� 2p/

D q.1� q/ D.1� 2q/
D.1 � 2p/ D.1 � 2q/ pq.1� p/.1� q/C D.1 � 2p/.1� 2q/� D2

1

A:

(5.6.6)
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In fact, we will show that for Eq. (5.6.4) .aij/ coincides with (the inverse of) a
Fisher metric on 	. p;q;D/.

Here, 	. p;q;D/ � R
3 clearly is a differentiable manifold, and it may be checked

that g D .gij/ given by .gij/ D .aij/ defines a scalar product (i.e. .gij/ is symmetric
and positive definite in 	. p;q;D/) with its coefficients depending continuously on the
base point. However, inverting .gij/ yields a quite lengthy expression, which we state
here only for completeness:

.gi1/. p;q;D/ D 4 det .gij/
�1
0

@
�. p�1/p.q�1/2q2�.2p�1/.q�1/q.2q�1/DC.�1�3.q�1/q/D2

�. p�1/p.q�1/qDCD3

D.q.�1�2p.q�1/Cq�2D/CD/

1

A;

(5.6.7)

.gi2/. p;q;D/ D 4 det .gij/
�1
0

@
�. p�1/p.q�1/qDCD3

�. p�1/2p2.q�1/q�. p�1/p.2p�1/.2q�1/DC.�1�3. p�1/p/D2
D. p.�1CpC2q�2pq�2D/CD/

1

A;

(5.6.8)

.gi3/. p;q;D/ D 4 det .gij/
�1
0

@
D.q.�1�2p.q�1/Cq�2D/CD/

D. p.�1CpC2q�2pq�2D/CD/

. p�1/p.q�1/q�D2

1

A: (5.6.9)

This is too complicated, and therefore, we shall introduce new coordinates so that
we can identify the metric. We begin with simplex coordinates.

Lemma 5.6.1 Under a change of coordinates . p; q;D/ 7�! x D .x1; x2; x3/ with

x1 WD pq C D; x2 WD p.1� q/� D; x3 WD q.1 � p/� D; (5.6.10)

the domain	. p;q;D/ is mapped onto�3, while the coefficient matrix .aij. p; q;D// of
the 2nd order derivatives in Eq. (5.6.4) transforms into

.aij.x// D 1

4

0

@
x1.1 � x1/ �x1x2 �x1x3

�x1x2 x2.1 � x2/ �x2x3

�x1x3 �x2x3 x3.1 � x3/

1

A; x 2 �3 (5.6.11)

and

.aij.x// D 4

0

B@
.x1/

�1 C .x0/
�1

.x0/
�1

.x0/
�1

.x0/
�1

.x2/
�1 C .x0/

�1
.x0/

�1

.x0/
�1

.x0/
�1

.x3/
�1 C .x0/

�1

1

CA; x 2 �3

(5.6.12)

with x0 WD 1 �P3
iD1 xi.
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Proof The assertion on 	. p;q;D/ is straightforward to check. Furthermore, we have

�
@xi

@p
;
@xi

@q
;
@xi

@D

�

iD1;2;3
D
0

@
q p 1

1� q �p �1
�q 1 � p �1

1

A: (5.6.13)

Applying the transformation formula for aij of Lemma 3.10.1 yields the desired
result. ut

We next apply the natural bijection �3 �! S3C to transform the simplicial into

spherical coordinates by yi WD p
xi for i D 1; 2; 3, see (3.8.9).

This transformation satisfies @yi

@xj D 1

2
p

xj
ıi

j , from which we obtain the formu-
lae (3.8.11), (3.8.10), that is,

.Oaij.y// D 1

16

0

B@
1 � .y1/2 �y1y2 �y1y3

�y1y2 1 � .y2/2 �y2y3

�y1y3 �y2y3 1 � .y3/
3

1

CA; y 2 S3C (5.6.14)

and

.Oaij.y// D 16

0

BBB@

1C .y1/
2

.y0/2
y1y2

.y0/2
y1y3

.y0/2

y1y2

.y0/2
1C .y2/

2

.y0/2
y2y3

.y0/2

y1y3

.y0/2
y2y3

.y0/2
1C .y3/

2

.y0/2

1

CCCA; y 2 S3C (5.6.15)

with y0 WD
q
1 �P3

iD1 .yi/
2.

Thus, .Oaij/ resp. .Naij/ coincide (up to the prefactor 16) with (the inverse of) the
standard metric g3 of the 3-sphere S3C � R

4. Lemma 3.8.1 (cf. also Lemma 3.4.1)
therefore yields

Proposition 5.6.1 	. p;q;D/ equipped with the Fisher metric of the multinomial
distribution carries the geometrical structure of a manifold of constant positive
curvature � 1

16
.

In particular, Naij.x/ is (up to scaling and the missing prefactor N) the covariance
matrix of the multinomial distribution M.NI p0; p1; : : : ; p3/ with parameters pi D
xi, i D 1; 2; 3; p0 D 1�P3

iD1 xi. Therefore, it also coincides with the Fisher metric
of the multinomial distribution on�3. We state this result as

Lemma 5.6.2 The coefficients of the 2nd order derivatives of the Ohta–Kimura
formula (5.6.4) equal (up to a constant factor) the components of the inverse of the
Fisher metric of the multinomial distribution on 	. p;q;D/.
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5.7 The Geometry of Linkage Equilibrium States

If D D 0, a population is said to be in linkage equilibrium. This means that the
product of the gross frequencies of the alleles A0 and B0 equals the frequency of
the gamete A0B0, and likewise for all other combinations of alleles at different loci,
e.g. A1 and B1. In the following, we will analyze the geometry of such linkage
equilibrium states utilizing the concepts introduced in Sect. 3.2.

Returning to the Ohta–Kimura formula (5.6.4), D D 0 yields

.aij. p; q; 0// D 1

4

0

@
p.1� p/ 0 0

0 q.1� q/ 0

0 0 p. p � 1/q.q � 1/

1

A (5.7.16)

with . p; q; 0/ 2 	. p;q;0/ D ˚
. p; q; 0/ 2 R

2 � f0gˇ̌0 < p; q < 1
�

as coefficient
matrix of the second order derivatives and

.aij. p; q; 0// D 4

0
B@

1
p.1�p/ 0 0

0 1
q.1�q/ 0

0 0 1
p. p�1/q.q�1/

1
CA (5.7.17)

for its inverse (cf. Eq. (5.6.7)f.). Interpreting .aij. p; q;D// as the Fisher metric of the
multinomial distribution on	. p;q;D/, we thus have that dropping the third coordinate
D D 0, .aij. p; q; 0// yields a product metric (cf. Lemma 3.2.1) on �1 � �1, in
which each factor �1 is equipped with the (inverse) metric g.x/ D 1

4
x.1 � x/, x 2

�1—corresponding (up to the prefactor) to the standard metric of the 1-dimensional
sphere S1C � R

2C. Hence, the state space 	. p;q;0/ resp. a corresponding restriction
of �3 of the diffusion approximation of the two-loci two-allelic recombinational
Wright–Fisher model in linkage equilibrium equipped with the Fisher metric of the
multinomial distribution (cf. Lemma 5.6.2) carries (independently of the chosen
coordinate representation) the geometrical structure of

S1C � S1C � S3C; (5.7.18)

which is known as the Clifford torus (after William K. Clifford, who in [23] first
described S1 � S1 as a closed, (locally) Euclidean surface embedded in an elliptic
3-space (cf. [103, p. 373])).

We wish to extend this observation to more general Wright–Fisher models as
presented previously in this book.
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5.7.1 Linkage Equilibria in Two-Loci Multi-Allelic Models

In order to generalize the above observations, we first extend the notion of
linkage equilibrium to models with more than two possible alleles at a locus.
Generally, ‘linkage’ between certain loci (or sets of loci) relates to the fact that
the allelic configuration at the one locus resp. loci set affects/determines the allelic
configuration at the other locus resp. loci set, i.e. in the two-loci 2-allelic model,
each allele at the one locus is ‘linked’ with both other alleles at the other locus.
However, as the allele frequencies at each locus actually form a 1-dimensional
space, for a given allele only one parameter suffices to describe the degree of
linkage disequilibrium with respect to both other alleles at the other locus as well
as both relations for the other allele at the same locus. Hence, only one parameter is
sufficient to describe 2 � 2 linkage relations.

With n C 1 � 3 alleles and two loci, we have .n C 1/ � .n C 1/ linkage relations,
which—as the allele frequencies at each locus form an n-dimensional space—
effectively reduces to n2 linkage relations, which are expressed by n2 coefficients
of linkage disequilibrium Dij, i; j D 1; : : : ; n defined by

Dij.c/ WD
X

k¤i;l¤j

.cilckj � cijckl/: (5.7.19)

If all these coefficients vanish, the population is defined to be in linkage
equilibrium. In that case, each allele at one locus is in linkage equilibrium with
all other alleles at the other locus and conversely.

To determine the geometrical structure of the two-loci model in linkage equi-
librium, the corresponding state space �.nC1/2�1 needs to be transformed appropri-
ately, so that all Dij become coordinates. This may be achieved by a transformation
into the alternative coordinates .x�;D/ D .x�;D/i;jD1;:::;n comprising 2n allele
frequencies xi� and x�j and all coefficients of linkage disequilibrium Dij. This implies

@xi�

@xkl
D ıi

k;
@x�j

@xkl
D ı

j
l ;

@Dij

@xkl
D �ıi

kı
i
l C ıi

kx�j C xi�ıj
l (5.7.20)

for i; j ¤ 0 and .k; l/ ¤ .0; 0/, and transforming the (inverse) metric given by
the coefficients of the second order derivatives of the corresponding Kolmogorov
equation, i.e. .aij;kl.x// D �

xij.ı
ij
kl � xkl/

�
, accordingly yields

axi�;x�l
.x�;D/ D

X

p;q

X

r;s

xpq.ıpq
rs � xrs/

@xi�

@xpq

@x�l

@xrs

D
X

q

X

r

xiq.ı
iq
rl � xrl/

D xil � xi�x�l D Dil

� ax�l;xi�
.x�;D/ for i; l D 1; : : : ; n (5.7.21)
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(with the last equality being due to the undirectedness of linkage) and similarly

axi�;xk�

.x�;D/ D xi�.ıi
k � xk�/ for i; k D 1; : : : ; n; (5.7.22)

ax�j;x�l
.x�;D/ D x�j.ı

j
l � x�l/ for j; l D 1; : : : ; n: (5.7.23)

For the other components of the metric, we have

axi�;Dkl
.x�;D/ D

X

p;q

X

r;s

xpq.ıpq
rs � xrs/

@xi�

@xpq

@Dkl

@xrs

D
X

q

xiq
�

� .ıiq
kl � xkl/C

X

r

.ı
iq
rl � xrl/xk� C

X

s

.ı
iq
ks � xks/x�l

�

D �ıi
kDkl C xi�Dkl C xk�Dil (5.7.24)

� aDkl;xi�
.x�;D/ for i; k; l D 1; : : : ; q

and analogously

ax�j;Dkl
.x�;D/ � aDkl;x�j

.x�;D/ D �ıj
lD

kl C x�jDkl C x�lDkj

for j; k; l D 1; : : : ; n: (5.7.25)

Thus, these entries also vanish in linkage equilibrium. This means that the cor-
responding coordinate representation of the inverse metric in linkage equilibrium
becomes a block matrix, i.e.

.a.x
�;D// D

0

BBBBB@

.axi�;xk�

/ 0n;n 0n;n2

0n;n .ax�j;x�l
/ 0n;n2

0n2;n 0n2;n .aDij;Dkl
/

1

CCCCCA
; (5.7.26)

with the remaining entries being

aDij;Dkl
.x�;D/ D .xi� � ıi

k/x
k�.x�j � ıj

l/x
�l for i; j; k; l D 1; : : : ; n: (5.7.27)

This yields the generalization of the metric representation corresponding to the
Ohta–Kimura formula in linkage equilibrium (cf. Eq. (5.7.16)) to an arbitrary
number of alleles.

Moreover, .a.x
�;D/.x�;D// may be inverted in accordance with Eq. (3.2.16),

exhibiting the product structure of .a.x�;D/.x�;D//. We thus have:
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Lemma 5.7.1 In linkage equilibrium, for all n C 1 � 2 the corresponding
restriction of the state space �.nC1/2�1 of the diffusion approximation of a two-
loci .n C 1/-allelic Wright–Fisher model equipped with the Fisher metric of the
multinomial distribution is a 2n-dimensional manifold and carries the geometric
structure of

SnC � SnC � S2nC1
C : (5.7.28)

5.7.2 Linkage Equilibria in Three-Loci Multi-Allelic Models

When there are more than two loci, the situation gets significantly more complicated
as now linkage does not only need to be considered between pairs of loci, but also in
higher order relations. In particular, we need to clarify the term ‘linkage equilibrium’
in this extended setting. To keep the calculative effort manageable, we first analyze
a three-loci model; in doing so, we will give a definition of linkage equilibrium in
the current setting plus an adaptation of Lemma 5.7.1.

When wishing to analyze the geometry of the corresponding state space
�.nC1/3�1 restricted to the—yet to be determined—linkage equilibrium states,
again we need to transform the state space appropriately, for which in turn suitable
coordinates are required: This may be done somewhat tentatively by first adapting
the coordinate scheme of the two-loci model as far as applicable and subsequently
extending it to also fit the three-loci model.

Hence, analogous to the two-loci model, the configuration at each locus will be
assessed by the corresponding allele frequencies xi1��; x�i2�; x��i3 with i1; i2; i3 D
1; : : : ; n, yielding n3 coordinates; the coefficients of linkage disequilibrium Dij

are transferred into 3n2 coefficients of generalized 2-linkage disequilibrium
Di1i2�
2 ;Di1�i3

2 ;D�i2i3
2 , i1; i2; i3 D 1; : : : ; n with

Di1i2�
2 .x/ WD xi1��x�i2� � xi1i2�;

Di1�i3
2 .x/ WD xi1��x��i3 � xi1�i3 ;

D�i2i3
2 .x/ WD x�i2�x��i3 � x�i2i3 ;

(5.7.29)

measuring the linkage disequilibrium with respect to any pair of loci (the corre-
sponding twofold interactions are structurally analogous to those of the two-loci
model, giving rise to the notion of ‘generalized 2-linkage’).

However, .x��;D2/ does not yet form a full set of coordinates nor is linkage
between more than two loci (threefold interactions) taken into account. For this
reason, we introduce the coefficients of generalized 3-linkage disequilibrium by
extending the structure (5.7.29) into

Di1i2i3
3 .x/ WD xi1��x�i2�x��i3 � xi1i2i3 for i1; i2; i3 D 1; : : : ; n; (5.7.30)
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now taking into account all three loci and hence employing the product of all
corresponding allele frequencies. By adding these n3 coefficients as coordinates,
.x��;D2;D3/ now forms a complete set of .n C1/3�1 coordinates, which will yield
a suitable description of the linkage equilibrium.

Thus, the linkage equilibrium with respect to all three loci is defined to be
a state where all coefficients of generalized 2-linkage and generalized 3-linkage
disequilibrium vanish, i.e. both all twofold and all threefold linkage interactions
between the loci are in equilibrium. Consequently, we then have for the coordinate
representation of the inverse metric

.a.x
��;D2;D3// D

0

BBBBB@

.ax��;x��

/ 0n;n2 0n;n3

0n2;n .aD2;D2 / .aD2;D3 /

0n3;n .aD3;D2 / .aD3;D3 /

1

CCCCCA
(5.7.31)

with .ax��;x��

/ being a block matrix itself, i.e.

.ax��;x��

/ D

0

BBBBB@

.axi1�� ;xj1��

/ 0n;n 0n;n

0n;n .ax�i2�;x�j2�

/ 0n;n

0n;n 0n;n .ax��i3 ;x��j3
/

1

CCCCCA
; (5.7.32)

and the remaining entries .aD2;D2 / equaling

aD
i1i2�

2 ;D
j1 j2�

2 .x��;D2;D3/ D .xi1�� � ı
i1
j1
/xj1��.x�i2� � ıi2

j2
/x�j2�;

aD
i1�i3
2 ;D

j1�j3
2 .x��;D2;D3/ D .xi1�� � ı

i1
j1
/xj1��.x��i3 � ıi3

j3
/x��j3 ; (5.7.33)

aD
�i2i3
2 ;D

�j2 j3
2 .x��;D2;D3/ D .x�i2� � ı

i2
j2
/x�j2�.x��i3 � ıi3

j3
/x��j3

as well as

aD
i1 i2�

2 ;D
j1�j3
2 .x��;D2;D3/ � aD

j1�j3
2 ;D

i1 i2�

2 .x��;D2;D3/

D �ıi1
j1

Di1i2i3
3 C xi1��Dj1i2j3

3 C xj1��Di1 i2j3
3 ; (5.7.34)

aD
i1 i2�

2 ;D
�j2 j3
2 .x��;D2;D3/ � aD

�j2j3
2 ;D

i1 i2�

2 .x��;D2;D3/

D �ıi2
j2

Di1i2i3
3 C x�i2�Di1j2j3

3 C x�j2�Di1 i2i3
3 ; (5.7.35)

aD
i1�i3
2 ;D

�j2 j3
2 .x��;D2;D3/ � aD

�j2j3
2 ;D

i1�i3
2 .x��;D2;D3/

D �ıi3
j3

Di1i2i3
3 C x��i3Di1i2j3

3 C x��j3Di1 i2i3
3 (5.7.36)
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and .aD3;D2 / resp. .aD2;D3 / being

aD
i1 i2i3
3 ;D

�j2 j3
2 .x��;D2;D3/ � aD

�j2j3
2 ;D

i1 i2i3
3 .x��;D2;D3/

D xi1��.x�i2� � ıi2
j2
/x�j2�.x��i3 � ıi3

j3
/x��j3 ; (5.7.37)

aD
i1 i2i3
3 ;D

j1�j3
2 .x��;D2;D3/ � aD

j1�j3
2 ;D

i1 i2i3
3 .x��;D2;D3/

D .xi1�� � ı
i1
j1
/xj1��x�i2�.x��i3 � ıi3

j3
/x��j3 ; (5.7.38)

aD
i1 i2i3
3 ;D

j1 j2�

2 .x��;D2;D3/ � aD
j1j2�

2 ;D
i1 i2i3
3 .x��;D2;D3/

D .xi1�� � ı
i1
j1
/xj1��.x�i2� � ıi2

j2
/x�j2�x��i3 (5.7.39)

and eventually .aD3;D3 / equaling

aD
i1i2 i3
3 ;D

j1 j2 j3
3 .x��;D2;D3/

D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

xi1��xj1��x�i2�x�j2�x��i3x��j3

xi1��xj1��x�i2�x�j2�x��i3x��j3
�
2 � 1

ı
i1
j1

xj1��Cıi2
j2

x�j2�Cıi3
j3

x��j3

�

xi1��xj1��x�i2�x�j2�x��i3x��j3
�
2 � xi1�� C x�i2�

xi1��x�i2� ı
i1 i2
j1j2

� xi1�� C x��i3

xi1��x��i3
ı

i1i3
j1j3

� x�i2� C x��i3

x�i2�x��i3
ı

i2i3
j2j3

�

(5.7.40)

if either none, one or two of the indices i1; i2; i3 and j1; j2; j3 coincide resp.

aD
i1i2 i3
3 ;D

i1 i2 i3
3 .x��;D2;D3/

D xi1��x�i2�x��i3 .1 � xi1��x�i2� � x�i2�x��i3 � xi1��x��i3 C 2xi1��x�i2�x��i3 /

(5.7.41)

if all three indices coincide.
Thus, the block matrix .a.x

��;D2;D3// may be inverted in accordance with
Eq. (3.2.16), demonstrating the product structure of .a.x��;D2;D3//, and we
consequently obtain for the three-loci model transferring the assertion of
Lemma 5.7.1:

Lemma 5.7.2 In linkage equilibrium, for all n C 1 � 2 the corresponding
restriction of the state space �.nC1/3�1 of the diffusion approximation of a 3-
loci .n C 1/-allelic Wright–Fisher model equipped with the Fisher metric of the
multinomial distribution is a 3n-dimensional manifold and carries the geometric
structure of

SnC � SnC � SnC � S3nC2
C : (5.7.42)
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5.7.3 The General Case

From these constructions, we naturally expect that also general models with
an arbitrary number of loci and alleles feature a product structure in linkage
equilibrium when equipped with their Fisher metric. Clearly, the definition of
linkage equilibrium for three loci (cf. p. 118) may be extended to any number of
loci by defining suitable coefficients of linkage disequilibrium with respect to any
tuple of loci. This may be achieved by generalizing (5.7.29) and (5.7.30): For a
model with k � 2 loci and n C1 � 2 alleles resp. arbitrary number of alleles at each
locus (then put n as the maximum number of alleles at a locus), we introduce the
coefficients of generalized l-linkage disequilibrium for 2 � l � k by putting

D
hij1 ;:::;ijl ;�i
l .x/ WD

lY

mD1
xhijm ;�i � xhij1 ;:::;ijl ;�i (5.7.43)

for ij1 ; : : : ; ijl D 1; : : : ; n and every subset fj1; : : : ; jlg � f1 : : : ; kg with jr ¤ js for
r ¤ s, measuring the l-fold linkage interactions for every subset of l loci.

Taking the
�k

l

�
nl coefficients of generalized l-linkage disequilibrium, l D 2; : : : ; k

plus the kn allele frequencies as coordinates yields a full alternative description of
the

�
.n C 1/k � 1

�
-dimensional model as we have

kX

lD1

 
k

l

!
nl D .n C 1/k � 1: (5.7.44)

We may also formulate coefficients of generalized 1-linkage disequilibrium

D
hij1 ;�i
l .x/ WD

1Y

mD1
xhijm ;�i � xhij1 ;�i � 0 for all ij1 D 1; : : : ; n with j1 2 f1; : : : ; kg;

(5.7.45)

which, however, provide no information about the state of the model as each locus
is trivially in (full) linkage equilibrium with itself. Instead, the allele frequencies are
used as non-interaction coordinates.

As in the three-loci case, we may then define the model to be in linkage
equilibrium if for all l the coefficients of generalized l-linkage disequilibrium
vanish. It may then be shown as an application of information geometry that the
corresponding restriction of the state space�.nC1/k�1 when equipped with the Fisher
metric of the multinomial distribution carries the geometrical structure of

SnC � : : : � SnC„ ƒ‚ …
k

� Sk.nC1/�1
C : (5.7.46)
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To prove this, we first consider the allele frequencies xi1�����, i1 D 1; : : : ; n. They
serve as a parameter set of the multinomial distribution M, hence we may consider
the corresponding Fisher metric g������ on �n (cf. also Sect. 3.5). However, due to
their frequency property, i.e.,

P
i1

xi1����� D 1, .xi1�����/i1 may itself be interpreted as a
discrete probability distribution in �n (the last coordinate may be suppressed). We
thus consider the corresponding (proper) Fisher metric Qg������ on�n given by

Qg������
ij .x������/ WD 1

xi����� ı
i
j C 1

x0����� (5.7.47)

However, from Eq. (3.7.7), we directly observe that both metrics coincide, except
for the factor N (for N D 1, the multinomial distribution with parameter p 2 �n

agrees with p, which immediately confirms the identity of both metrics). Hence, we
may ignore the factor N (which also does not appear in the coefficient matrix of
the Kolmogorov equations due to the chosen scaling) and just write g. Analogous
considerations hold for x�i2�����; : : : ; x�����ik , ij D 1; : : : ; n.

Next, we consider the product

.�n; g
������/ � .�n; g

�������/ � : : : � .�n; g
������/ �! .�.nC1/k�1; g/ (5.7.48)

.xi1�����; x�i2�����; : : : ; x�����ik/ 7�! xi1i2:::ik (5.7.49)

As known from information geometry, the image of the product, i.e. the correspond-
ing restriction of the Fisher metric, has a product structure itself, if the following
independence relations are satisfied:

xi1����� � x�i2����� � � � x�����ik D xi1i2:::ik ; i1; i2; : : : ; ik D 1; : : : ; n (5.7.50)

By suppression of the respective n-th coordinate indices, it may directly be seen
that this corresponds to the vanishing of all coefficients of linkage disequilibrium

D
hij1 ;:::;ijl ;�i
l .x/ for ij1 ; : : : ; ijl D 1; : : : ; n and every subset f j1; : : : ; jlg � f1 : : : ; kg

with jr ¤ js for r ¤ s and l D 2; : : : ; k. This implies

Proposition 5.7.1 In linkage equilibrium, for all n C 1 � 2 and k � 2 the
corresponding restriction of the state space�.nC1/k�1 of the diffusion approximation
of a k-loci .n C 1/-allelic Wright–Fisher model equipped with the Fisher metric of
the multinomial distribution is a kn-dimensional manifold and carries the geometric
structure of

SnC � : : : � SnC„ ƒ‚ …
k

� Sk.nC1/�1
C : (5.7.51)

Other interesting observations in this context include the following: All consid-
erations with respect to linkage equilibria actually do not take into account the
recombinational structure of the model (if present at all) as the calculations only
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relate to the diffusion coefficients of the corresponding Kolmogorov equations of the
diffusion approximation of the model—which are independent of recombination,
see (5.4.4), (5.4.5). Without recombination, however, the assignment of alleles to
loci becomes moot as a k-loci .n C 1/-allelic model and a (1-locus) .n C 1/k-allelic
model may be identified.

In contrast, as soon as any loci structure comes in, the concept of linkage between
different loci or subsets of loci leads to the question of linkage equilibria, which
themselves directly relate to the concept of recombination via the common structure
of coefficients of linkage disequilibrium.



Chapter 6
Moment Generating and Free Energy
Functionals

6.1 Moment Generating Functions

In this section, we will construct the moment generating function for the Wright–
Fisher model and derive a partial differential equation that it satisfies. This
differential equation encodes all the moment evolution equations from the Sect. 4.3.
We shall then solve that differential equation and use this to obtain information
about the model. moment generating functions are a standard tool in stochastic pro-
cesses, see for instance [73, Chap. 3]. Master equations for probability distributions
have first been applied to the Moran model of population genetics in [65].

Definition 6.1.1

1. For the 2-allele case, let X be a random variable with discrete values with
probability distribution function p.x/ D P

�
X D x



. The (exponential) moment

generating function of the random variable X is

H.s/ WD E
�
esX

 D

X

x

exsp.x/

(defined for those values of s 2 R for which the sum converges).
2. In the general case, let X D .X1; � � � ;Xn/ be a tuple of random variables with

the joint probability distribution function p.x1; : : : ; xn/ D P
h
X1 D x1; : : : ;Xn D

xn
i
. The (exponential) moment generating function of X then is

H.s1; : : : ; sn/ WD E

�
e

nP
iD1

siXi�
D

X

x1;:::;xn

e

P
i

sixi

p.x1; : : : ; xn/ D
X

x

es�xp.x/

(defined for those values of s 2 R
n for which the sum converges).
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When we have the moment generating function H.s/, the moments of X can
directly be computed from its derivatives at s D 0,

E
h
X˛
i

D @˛H.s/

@s˛

ˇ̌
ˇ
sD0:

We shall now derive the (second order) partial differential equation for the (expo-
nential) moment generating functions of our Markov process Xt.

6.1.1 Two Alleles

In this case, the exponential moment generating function is

H.tI s/ D EŒesXt �

D
X

l�0

sl

lŠ
EŒ.Xt/

l�

D
X

l�0

sl

lŠ
ml.t/;

(6.1.1)

where ml.t/ is the lth moment of Xt.
From the moment equation (4.3.4)

Pml.t/ D � l.l � 1/
2

ml.t/C l.l � 1/
2

ml�1.t/;

we obtain

@H.tI s/

@t
D
X

l�0
Pml.t/

sl

lŠ

D
X

l�0

"
� l.l � 1/

2
ml.t/C l.l � 1/

2
ml�1.t/

#
sl

lŠ

D
X

l�2
�1
2

ml.t/
sl

.l � 2/Š C
X

l�2

1

2
ml�1.t/

sl

.l � 2/Š

D � s2

2

X

l�0
mlC2.t/

sl

lŠ
C s2

2

X

l�0
mlC1.t/

sl

lŠ

D � s2

2

@2

@s2
H.tI s/C s2

2

@

@s
H.tI s/:

(6.1.2)
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We now consider solutions of such equations. First, we solve Eq. (6.1.2) by
separation of variables. With H.tI s/ D T.t/S.s/, the equation becomes

T 0.t/
T.t/

D �s2S00.s/C s2S0.s/
2S

D �
:

It follows that T.t/ D Ce�
t and that S.s/ satisfies the ODE

� x2yxx C x2yx D �2
y: (6.1.3)

By putting y.x/ D P
n�0

anxn and equating coefficients in the ODE (6.1.3), we

obtain:

1. If 
 62 ƒ WD
n
�l D l.l�1/

2
; n 2 N

o
, then the ODE (6.1.3) has a unique solution

y.x/ D 0.
2. If 
 D �0, then y0.x/ D a.0/0 WD 1.
3. If 
 D �l for some l � 1, then the solution is of the form

yl.x/ D
X

i�0
a.l/i xi (6.1.4)

where

a.l/i D

8
ˆ̂<

ˆ̂:

0; if i < l;

1; if i D l;
i�1

2.�i��l/
� � � l

2.�lC1��l/
; if i � l C 1:

(6.1.5)

Therefore, the solution of (6.1.2) is

H.tI s/ D
X

l�0
clyl.s/e

��lt

D
X

l�0
cl

 
X

i�l

a.l/i si

!
e��l t

D
X

i�0

 
iŠ

iX

lD0
cla

.l/
i e��l t

!
si

iŠ
:

(6.1.6)

This yields the moment formula

mi.t/ D iŠ
iX

lD0
cla

.l/
i e��lt D

iX

lD0
clA

.l/
i e��lt:
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The coefficients cl can be calculated from the initial condition

� i

2N

�j WD p j D mj.0/ D
jX

lD0
clA

.l/
j ; 8j � 0:

In fact, by representing these equalities in matrix form

2

6666664

1 0 � � � 0 0

A.0/1 1 � � � 0 0
:::

:::
: : :

:::

A.0/j�1 A.1/j�1 � � � . j � 1/Š 0

A.0/j A.1/j � � � A. j�1/
j jŠ

3

7777775

2
666664

c0
c1
:::

cj�1
cj

3
777775

D

2
666664

1

p
:::

pj�1
pj

3
777775
; (6.1.7)

it follows that

2

666664

c0
c1
:::

cj�1
cj

3

777775
D

2

6666664

1 0 � � � 0 0

A.0/1 1 � � � 0 0
:::

:::
: : :

:::

A.0/j�1 A.1/j�1 � � � . j � 1/Š 0

A.0/j A.1/j � � � A. j�1/
j jŠ

3

7777775

�12

666664

1

p
:::

pj�1
pj

3

777775
: (6.1.8)

Remark We can easily check some instances: Because of c0 D 1, c1 D p, c2 D
p2�p
2

, c3 D p3�3=2p2C1=2p
6

, then m0.t/ D 1, m1.t/ D p;m2.t/ D p C . p2 � p/e�t,
m3.t/ D p C 3=2. p2 � p/e�t C . p3 � 3=2p2 C 1=2p/e�3t.

We shall employ a notation analogous to that in (2.3.4); that is, P.t; i; j/ denotes
the probability that a process starting with i alleles of type A1 at time 0 has j alleles
of that type at time t.

We then obtain the fixation probability at time t as

P.t; i; 2N/ D lim
j!1 mj.t/

D lim
j!1

jX

lD0
clA

.l/
j e��lt

D p C lim
j!1

jX

lD2
clA

.l/
j e��lt WD f . p; t/

(6.1.9)
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and the eventual fixation probability

P.1; i; 2N/ D lim
t!1

 
p C lim

j!1

jX

lD2
clA

.l/
j e��lt

!

D p C lim
j!1 lim

t!1

jX

lD2
clA

.l/
j e��lt

D p:

(6.1.10)

This is the same as (2.8.2), where a somewhat different notation had been employed.
Denote by T12 . p/ D inf ft > 0 W Xt 2 f0; 1gjX0 D pg the absorption time. Then

we have

P.T12 . p/ � t/ D P.t; i; 0/C P.t; i; 2N/:

Therefore, the expectation of the absorption time is

E.T12 . p// D
Z 1

0

t
@

@t

�
P.t; i; 0/C P.t; i; 2N/

�
dt

D � lim
j!1

jX

lD2
cl.Aj C A0

j/
.l/ 1

�l
:

Moreover, we have

2NX

jD0

 
j

2N

!l

P.1; i; j/ D lim
t!1 ml.t/ D

(
p; for l � 1;

1; for l D 0:
(6.1.11)

Hence, we obtain the eventual probability

P.1; i; j/ D pı2N;j C .1 � p/ı0;j;

which is, of course, 0 unless j D 0 or 2N.
The probability of heterogeneity is

Ht W D 2

2NX

jD0

j

2N

�
1 � j

2N

�
P.t; i; j/

D 2.m1.t/ � m2.t//

D 2

 
p �

�
p C c2A

.2/
2 e�t

�!

D 2p.1� p/e�t:

(6.1.12)
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6.1.2 Two Alleles with Mutation

We start with the moment evolution equation (4.3.5)

Pml.t/ D
 



2
l C l.l � 1/

2

!
ml�1.t/�

 

 C �

2
l C l.l � 1/

2

!
ml.t/: (6.1.13)

As before, we can obtain the differential equation for the moment generating
function. Let

H.t; s/ WD
X

l�0
ml.t/

sl

lŠ
;

then we have

@H.tI s/

@t
D
X

l�0
Pml.t/

sl

lŠ

D
X

l�0

" 



2
l C l.l � 1/

2

!
ml�1.t/ �

 

 C �

2
l C l.l � 1/

2

!
ml.t/

#
sl

lŠ

D 


2

X

l�1
ml�1.t/

sl

.l � 1/Š
C 1

2

X

l�2
ml�1.t/

sl

.l � 2/Š

� 
 C �

2

X

l�1
ml.t/

sl

.l � 1/Š � 1

2

X

l�2
ml.t/

sl

.l � 2/Š

D 


2
sH.t; s/C s2

2

@

@s
H.tI s/ � 
 C �

2
s
@

@s
H.tI s/ � s2

2

@2

@s2
H.tI s/

D � s2

2

@2

@s2
H.tI s/C

 
s2

2
� 
 C �

2
s

!
@

@s
H.tI s/C 


2
sH.t; s/:

(6.1.14)

We can likewise solve this equation by separation of variables and equating
coefficients.

Proposition 6.1.1 The operator

Ly.x/ WD �x2

2
y00.x/C x2 � .
 C �/x

2
y0.x/C 
x

2
y.x/ (6.1.15)

has the set of eigenvalues

ƒ WD
n

l D l.l � 1/C .
 C �/l

2
; l 2 N

o
(6.1.16)
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and corresponding eigensolutions

yl.x/ D
X

j�0
a.l/j xj (6.1.17)

where

a.l/j D

8
ˆ̂<

ˆ̂:

0; if j < l

1; if j D l
�j


j�
l
� � � �lC1


lC1�
l
; if j � l C 1:

(6.1.18)

where �n D nC
�1
2

Proof Similar to the case without mutations, by putting y.x/ D P
j�0

ajxj and equating

coefficients in the ODE (6.1.15), we obtain:

1. If 
 62 ƒ WD
n

l D l.l�1C
C�/

2
; l 2 N

o
, then the ODE (6.1.15) has a unique

solution y.x/ D 0.
2. If 
 D 
0, then y0.x/ D a.0/0 WD 1.
3. If 
 D 
l for some l � 1, then the solution is of the form

yl.x/ D
X

j�0
a.l/j xj (6.1.19)

where a.l/j as in (6.1.18). ut
Therefore, the solution of (6.1.14) is

H.tI s/ D
X

l�0
clyl.s/e

�
lt

D
X

l�0
cl

 
X

j�l

a.l/j sj

!
e�
lt

D
X

j�0

 
jŠ

jX

lD0
cla

.l/
j e�
lt

!
sj

jŠ
:

(6.1.20)

This yields the moment formula

mj.t/ D jŠ
jX

lD0
cla

.l/
j e�
lt D

jX

lD0
clA

.l/
j e�
lt:
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The coefficients cl can be calculated from the initial condition

� i

2N

�j WD p j D mj.0/ D
jX

lD0
clA

.l/
j ; 8j � 0:

In fact, by representing these equalities in matrix form

2

6666664

1 0 � � � 0 0

A.0/1 1 � � � 0 0
:::

:::
: : :

:::

A.0/j�1 A.1/j�1 � � � . j � 1/Š 0
A.0/j A.1/j � � � A. j�1/

j jŠ

3

7777775

2
666664

c0
c1
:::

cj�1
cj

3
777775

D

2
666664

1

p
:::

p j�1
p j

3
777775
; (6.1.21)

it follows that

2

666664

c0
c1
:::

cj�1
cj

3

777775
D

2

6666664

1 0 � � � 0 0

A.0/1 1 � � � 0 0
:::

:::
: : :

:::

A.0/j�1 A.1/j�1 � � � . j � 1/Š 0

A.0/j A.1/j � � � A. j�1/
j jŠ

3

7777775

�12

666664

1

p
:::

p j�1
p j

3

777775
: (6.1.22)

6.1.3 Two Alleles with Selection

We use the moment evolution equation (4.3.6)

Pml.t/ D l.l � 1/
2

�
ml�1.t/ � ml.t/

�
C sl

2

�
ml.t/ � mlC1.t/

�

to get the differential equation for the exponential moment generating functions:

@H.tI x/

@t
D
X

l�0
Pml.t/

xl

lŠ

D �x2 C sx

4N

@2

@x2
H.tI x/C x2 C sx

4N

@

@x
H.tI x/:

(6.1.23)

Then, we need to solve the eigen-problem

�.x2 C sx/yxx C .x2 C sx/yx D �2
y:
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By putting y.x/ D P
l�1

alxl (note that a0 D 0 follows from the above equation), we

are lead to the difference equation

s.l C 1/lalC1 C l.l � 1 � s/al � .l � 1/al�1 D 2
al; l � 1: (6.1.24)

This equation is difficult to solve explicitly. However, we can apply a perturbation
technique used in [107] to get an approximate solution as follows:

We first rewrite the difference equation (6.1.24) in the (infinite-dimensional)
matrix form

0

BBBBBBBBB@

�s 2s 0 0 0 � � � � � �
�1 2.1� s/ 6s 0 0 � � � � � �
0 �2 3.2 � s/ 12s 0 � � � � � �
0 0 �3 4.3� s/ 20s � � � � � �
:::

:::
: : :

: : :
: : :

:::
:::

:::
:::

: : :
: : :

: : :
:::
:::

1

CCCCCCCCCA

0

BBBBBBBBB@

a.l/1
a.l/2
a.l/3
a.l/4
:::
:::

1

CCCCCCCCCA

D 2
l

0

BBBBBBBBB@

a.l/1
a.l/2
a.l/3
a.l/4
:::
:::

1

CCCCCCCCCA

; (6.1.25)

where 
l are the eigenvalues which satisfy

0 � 
0 < 
1 � � � < 
n ! 1:

We approximate the moment generating function by suppressing the eigen-solutions
corresponding to large eigenvalues and solving for the eigenvalues 
.N/l and the

corresponding eigen-vectors fa.l/1 ; � � � ; a.l/N g of the truncated matrix

MN D

0
BBBBB@

�s 2s 0 0 0 � � � 0

�1 2.1� s/ 6s 0 0 � � � 0

0 �2 3.2 � s/ 12s 0 � � � 0
:::

:::
: : :

: : :
: : :

:::
:::

0 0 0 � � � �.N � 1/ N.N � 1 � s/ N.N C 1/s

1
CCCCCA
:

(6.1.26)

Thus, we have the approximate eigen-solution

y.N/l .x/ D
NX

jD1
a.l/j xj:
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6.1.4 n C 1 Alleles

We can apply the same scheme for any n. The exponential generating function now
is

H.tI s1; : : : ; sn/ D
X

˛

m˛.t/
s˛

˛Š
;

where m˛.t/ is the ˛th moment of Xt around 0.
From the moment evolution equation (4.3.8)

Pm˛.t/ D �j˛j.j˛j � 1/
2

m˛.t/C
nX

iD1

˛i.˛i � 1/

2
m˛�ei.t/; (6.1.27)

we obtain

@H.tI s/

@t
D
X

˛

Pm˛.t/
s˛

˛Š

D
X

˛

"
� j˛j.j˛j � 1/

2
m˛.t/C

nX

iD1

˛i.˛i � 1/
2

m˛�ei.t/

#
s˛

˛Š

D
X

˛

 
�
P

i¤j ˛i˛j

2
�
P

i ˛i.˛i � 1/

2

!
m˛.t/

s˛

˛Š

C
X

˛

nX

iD1

˛i.˛i � 1/
2

m˛�ei.t/
s˛

˛Š

D �1
2

X

i¤j

sisj
@2H.t; s/

@si@sj
� 1

2

X

i

s2i
@2H.t; s/

@s2i
C

nX

iD1

1

2

X

i

s2i
@H.t; s/

@si

D �1
2

nX

i;jD1
sisj

@2

@si@sj
H.tI s/C

nX

iD1

s2i
2

@

@si
H.tI s/:

(6.1.28)
Separating variables as above, T.t/ D Ce�
t and S.s/ satisfies the PDE

� 1

2

nX

i;jD1
sisj

@2

@si@sj
y.s/C

nX

iD1

s2i
2

@

@si
y.s/ D �
y.s/: (6.1.29)
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By putting y.s/ D P
˛

a˛s˛ and equating coefficients in the PDE (6.1.29), we

obtain:

1. If 
 62 ƒ WD
n
�l D l.l�1/

2
; l 2 N

o
; then the PDE (6.1.29) has a unique solution

y.s/ D 0.
2. If 
 D �0, then y0.x/ D a.0/0 WD 1.
3. If 
 D �l for some l � 1, then there are

� l
2

�
independent solutions of the form

yl;˛.s/ D
X

ˇ

a.l/˛;ˇsˇ; 8j˛j D l (6.1.30)

where

a.l/˛;ˇ D

8
ˆ̂<

ˆ̂:

0; if jˇj < l

ı˛
ˇ; if jˇj D l

inductively defined by (6.1.32) below; if jˇj � l C 1

(6.1.31)

a.l/˛;ˇ D

nP
iD1

.ˇi � 1/a.l/˛;ˇ�ei

jˇj.jˇj � 1/� l.l � 1/
: (6.1.32)

Therefore, the solution of Eq. (6.1.29) is

H.tI s/ D
X

l�0

X

j˛jDl

cl;˛yl;˛.s/e
��lt

D
X

l�0

X

j˛jDl

cl;˛

 
X

ˇ

a.l/˛;ˇsˇ

!
e��lt

D
X

ˇ

 jˇjX

lD0

X

j˛jDl

cl;˛a.l/˛;ˇe��lt

!
sˇ

D
X

ˇ

ˇŠ

 
X

j˛j�jˇj
cj˛j;˛a.j˛j/

˛;ˇ e��
j˛j

t

!
sˇ

ˇŠ
:

(6.1.33)

This yields the moment formula

mˇ.t/ D ˇŠ
X

j˛j�jˇj
cj˛j;˛a.j˛j/

˛;ˇ e��
j˛j

t D
X

j˛j�jˇj
cj˛j;˛A.j˛j/

˛;ˇ e��
j˛j

t
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where the coefficients cj˛j;˛ can be computed from the initial condition

pˇ D mˇ.0/ D
X

j˛j�jˇj
cj˛j;˛A.j˛j/

˛;ˇ ; 8ˇ:

Similarly to the two alleles case, we immediately obtain some interesting
quantities:

The fixation probabilities at time t is (l D 0; n with e0 D .0; : : : ; 0/ and p0 D
1 � p1 � � � � � pn)

P.t; i; 2Nel/ D lim
n!1 mnel.t/

D lim
n!1

nX

j˛jD0
cj˛j;˛A.j˛j/

˛;nel
e��

j˛j

t

D pl C lim
n!1

nX

j˛jD2
cj˛j;˛A.j˛j/

˛;nel
e��

j˛j

t

(6.1.34)

and the eventual fixation probability

P.1; i; 2Nel/ D lim
t!1

 
pl C lim

n!1

nX

j˛jD2
cj˛j;˛A.j˛j/

˛;nel
e��

j˛j

t

!

D pl:

(6.1.35)

The moments of the sojourn and absorption times were derived by Nagylaki [92]
for two alleles, and by Lessard and Lahaie [84] in the multi-allele case. We denote by

TkC1
nC1. p/ D inf

n
t > 0 W Xt 2 @k�njX0 D p

o
the first time when the population has

(at most) k C 1 alleles. TkC1
nC1. p/ is a continuous random variable valued in Œ0;1/

and we denote by '.t; p/ its probability density function. It is easy to see that @k�n

is invariant under the process .Xt/t�0, i.e. if Xs 2 @k�n then Xt 2 @k�n for all t � s
(once an allele is lost from the population, it can never be recovered). We have the
equality

P.T1nC1. p/ � t/ D
nX

lD0
P.t; i; 2Nel/: (6.1.36)

Therefore, the expectation of the absorption time is

E.T1nC1. p// D
Z 1

0

t
@

@t

� nX

lD0
P.t; i; 2Nel/

�
dt

D � lim
n!1

nX

j˛jD2
cj˛j;˛

nX

lD0
A.j˛j/

˛;nel

1

�j˛j
:
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Moreover, by using the same technique as in [85] (see also [39, Chap. 5]) we obtain

E.TkC1
nC1. p// D

kC1X

sD1
.�1/s

 
n � s

k C 1 � s

!
XZ 1

0

t
@

@t
f . p j1 C � � � C p js ; t/dt;

where the second sum runs over all possible ordered s-tuples j1 < : : : < js in
f1; : : : ; n C 1g and f . p; t/ is defined from (6.1.9). The probability of heterogeneity
is (see [118])

Ht D.n C 1/Š
X

j2	2N
n

� j1
2N

�
� � �
� jn
2N

� 
1 �

� j1
2N

�
� � � � �

� jn
2N

�!
P.t; i; j/

D.n C 1/Š
�

m 11.t/ �
nX

lD1
m 11Cel.t/

�

.where 11 D .1; � � � ; 1/; el D .0; � � � ; 1; � � � ; 0//:

We have from the moment equation

(
Pm 11.t/ D � n.n�1/

2
m 11.t/

m 11.0/ D p1 : : : pn;

which yields m 11.t/ D p1 : : : pne� n.n�1/
2 t.

Moreover,

(
Pm 11Cel.t/ D � .nC1/n

2
m 11Cel.t/C m 11.t/

m 11Cel.0/ D p1 : : : pn � pl;

which yields m 11Cel.t/ D e� .nC1/n
2 tp1 : : : pn

�
pl C en�1

n

�
.

Therefore, the probability of heterogeneity is

Ht D.n C 1/Š
�

m 11.t/ �
nX

lD1
m 11Cel.t/

�
;

D.n C 1/Š

 
p1 : : : pne� n.n�1/

2 t �
nX

lD1
e� .nC1/n

2 tp1 : : : pn

�
pl C en � 1

n

�!

D.n C 1/Š p1 : : : pn.1 � p1 � � � � � pn/e
� .nC1/n

2 t

D H0e
� .nC1/n

2 t:
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6.1.5 n C 1 Alleles with Mutation

We use the moment evolution equation (4.3.9)

Pm˛.t/ D �
 

j˛j.j˛j � 1/

2
C j� jj˛j

2

!
m˛.t/C

nX

iD1

 
˛i.˛i � 1/

2
C �i˛i

2

!
m˛�ei.t/:

(6.1.37)

We again want to obtain the differential equation for the moment generating
function. With

H.tI s1; : : : ; sn/ D
X

˛

m˛.t/
s˛

˛Š
;

we have

@

@t
H.tI s/ D

X

˛

Pm˛.t/
s˛

˛Š

D
X

˛

"
�
 

j˛j.j˛j � 1/

2
C j� jj˛j

2

!
m˛.t/

C
nX

iD1

 
˛i.˛i � 1/

2
C �i˛i

2

!
m˛�ei.t/

#
s˛

˛Š

D
X

˛

 
�
X

i¤j

˛i˛j

2
�
P

i ˛i.˛i � 1/

2
� j� j
2

X

i

˛i

!
m˛.t/

s˛

˛Š

C
X

˛

X

i

 
˛i.˛i � 1/

2
C �i

2
˛i

!
m˛�ei.t/

s˛

˛Š

D �1
2

X

i¤j

sisj
@2H.t; s/

@si@sj
� 1

2

X

i

s2i
@2H.t; s/

@s2i
� j� j
2

X

i

si
@

@si
H.tI s/

C 1

2

X

i

s2i
@H.t; s/

@si
C
X

i

�i

2
siH.t; s/

D �1
2

nX

i;jD1
sisj

@2

@si@sj
H.tI s/C

nX

iD1

 
s2i
2

� sij� j
2

!
@

@si
H.tI s/C

nX

iD1

�isi

2
H.t; s/:

(6.1.38)

We can also solve this equation by separation of variables and equating coeffi-
cients as in [118] to obtain:
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Proposition 6.1.2 The operator

Ln y.x/ WD �1
2

nX

i;jD1
xixj @2

@xi@xj
y.x/C

nX

iD1

� .xi/2

2
� xij� j

2

� @
@xi

y.x/C
nX

iD1

xi�i

2
y.x/

(6.1.39)

has the set of eigenvalues

ƒ WD
n

l D l.l � 1/C j� jl

2
; l 2 N

o
; (6.1.40)

and the corresponding eigenspaces of dimension
�nCl�1

n�1
�

with independent eigenso-
lutions

yl;˛.x/ D
X

ˇ

a.l/˛;ˇxˇ; 8j˛j D l (6.1.41)

where

a.l/˛;ˇ D

8
ˆ̂<

ˆ̂:

0; if jˇj < l;

ı˛
ˇ ; if jˇj D l;

inductively defined by (6.1.43) below; if jˇj � l C 1;

(6.1.42)

a.l/˛;ˇ D

nP
iD1

.ˇi C �i � 1/a.l/˛;ˇ�ei


jˇj � 
l
: (6.1.43)

Therefore, the solution of Eq. (6.1.38) is

H.tI s/ D
X

l�0

X

j˛jDl

cl;˛yl;˛.s/e
�
lt

D
X

l�0

X

j˛jDl

cl;˛

 
X

ˇ

a.l/˛;ˇsˇ

!
e�
lt

D
X

ˇ

 jˇjX

lD0

X

j˛jDl

cl;˛a.l/˛;ˇe�
lt

!
sˇ

D
X

ˇ

ˇŠ

 
X

j˛j�jˇj
cj˛j;˛a.j˛j/

˛;ˇ e�

j˛j

t

!
sˇ

ˇŠ
:

(6.1.44)



138 6 Moment Generating and Free Energy Functionals

This yields the moment formula

mˇ.t/ D ˇŠ
X

j˛j�jˇj
cj˛j;˛a.j˛j/

˛;ˇ e�

j˛j

t D
X

j˛j�jˇj
cj˛j;˛A.j˛j/

˛;ˇ e�

j˛j

t;

where the coefficients cj˛j;˛ can be computed from the initial condition

pˇ D mˇ.0/ D
X

j˛j�jˇj
cj˛j;˛A.j˛j/

˛;ˇ ; 8ˇ:

6.1.6 Exponential Families

As in (3.6.1), we consider an n-dimensional exponential family of (Gibbs) probabil-
ity densities of the form

p.xI 
/ D e
�.x/C

nP
iD1

fi.x/
i�F.
/ D 1

Z.
/
e
�.x/C

nP
iD1

fi.x/
i

; (6.1.45)

where the f i are observables and the 
 i are the family parameters. Z.
/ is the
partition function

Z.
/ D eF.
/ D
Z

e
�.x/C

nP
iD1

fi.x/
i

dx (6.1.46)

and F.
/ is a convex function (the free energy).
Now let X
 be an (n-dimensional) family of random variables with probability

densities p.xI 
/ and Y
 D f .X
/. Then we obtain the expectations (3.6.4)

NYi

 D Ep.�;
/fi.X
/ D

Z
fi.x/p.xI 
/dx D DiF.
/;

and moreover from (3.6.4) and (3.6.10),

Ep.�;
/
�

Y
 � NY

�˛ D

Z �
f .x/ � Nf

�˛

p.xI 
/dx

D

8
ˆ̂<

ˆ̂:

1; if j˛j D 0;

0; if j˛j D 1;

D˛F.
/; if j˛j � 2:
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Hence, we obtain the moment generating function for Y
 as

H.
I s/ D Ep.�;
/eY
 �s

D e NY
 �sEp.�;
/e.Y
�NY
/�s

D eDF.
/�s X

j˛j�0
Ep.�;
/

�
Y
 � NY


�˛ s˛

˛Š

D eDf .
/�s
 
1C

X

j˛j�2
D˛F.
/

s˛

˛Š

!

D eDF.
/�s
 
1C F.
 C s/ � F.
/� DF.
/ � s

!
:

6.2 The Free Energy Functional

Free energy functionals have already been introduced in Sect. 3.5. In this section,
we shall systematically construct free energy functionals for our Kolmogorov
forward equations. We shall then use them to construct a necessary and sufficient
condition for our diffusion processes to have a unique stationary, reversible, or
ergodic probability measure. When this condition is satisfied, we show that the
flow of probability measures (densities) converges to the stationary one under
various notions of convergence (exponential, total variation, entropy distances,
etc.) Connections to information geometry and large deviation theory will also
be mentioned. A free energy functional has already been considered in [67], but
here we can draw upon a richer theory to draw more precise conclusions about the
asymptotics of the Wright–Fisher process.

6.2.1 General Definitions

We begin with some general concepts in order to introduce the theoretical context;
a good reference is [13].

In this section, for simplicity, we just write dx instead of d

.x/ for the Lebesgue
measure on �n and leave out the dimension index as no confusion is to be feared.

Definition 6.2.1 Let fXtgt�0 be a Markov diffusion process on 	. Denote by
.Tt/t�0 the corresponding strongly continuous semigroup, by L its generator, and by
u.x; tjx0/ the conditional transition probability density with respect to the Lebesgue
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measure dx.

(i) A measure � on 	 is called stationary (invariant) if

Z

	

Tt f .x/d�.x/ D
Z

	

f .x/d�.x/; 8t � 0; f 2 C1
0 .	/ (6.2.1)

or if equivalently (following [49, Theorem 2.3])

Z

	

Lf .x/d�.x/ D 0; 8f 2 C1
0 .	/: (6.2.2)

If �.x/ has a density p.x/ with respect to dx, then (6.2.1) is equivalent to

p.x/ D
Z

	

p.x0/u.x; tjx0/dx0; 8x; x0 2 	; t > 0: (6.2.3)

(ii) It is called reversible if

Z

	

g.x/Tt f .x/d�.x/ D
Z

	

f .x/Ttg.x/d�.x/; 8t � 0; f ; g 2 C1
0 .	/

(6.2.4)

or equivalently

Z

	

g.x/Lf .x/d�.x/ D
Z

	

f .x/Lg.x/d�.x/; 8f ; g 2 C1
0 .	/: (6.2.5)

If again �.x/ has a density p.x/ with respect to dx, then (6.2.4) is equivalent to

u.x; tjx0/p.x0/ D u.x0; tjx/p.x/; 8x; x0 2 	; t > 0: (6.2.6)

(iii) It is called ergodic if

lim
t!1 Ttf .x/ D

Z

	

f .y/�.dy/; � � a.e. x 2 	;8f 2 C1
0 .	/: (6.2.7)

Definition 6.2.2 For a nonnegative functional f .x/ defined on a �-finite measure
space .	;�/, we define its (negative) entropy functional by

S�. f / WD
Z

	

f log fd� �
� Z

	

fd�
�

log
� Z

	

fd�
�
: (6.2.8)

If f .x/ is a density with respect to �, i.e.
R
	

fd� D 1, then this reduces to the
standard negative entropy functional,

S�. f / D
Z

	

f log fd�: (6.2.9)
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Definition 6.2.3 We say that the family of densities fu.�; t/gt�0 on a �-finite
measure space .	;�/ satisfies the condition I.A;  / if it solves a diffusion equation
of the form

@tu.x; t/ D @i

�
Aij.x/@ju.x; t/C Aij.x/u.x; t/@j .x/

�

D rx � .A.x/rxu.x; t/C A.x/u.x; t/r .x//
D rx �

�
A.x/u.x; t/rx

�
log u.x; t/C  .x/

��
;

(6.2.10)

where

Aij.x/ D Aji.x/;

and that it satisfies the condition II.A;  / if, in addition to I.A;  /, we also have

Z

	

e� .x/d�.x/ < 1:

Definition 6.2.4 For a family of densities fu.�; t/gt�0 on a �-finite measure space
.	;�/ with condition I.A;  /, we define the potential energy functional by

‰.u.�; t// WD
Z

	

u.x; t/ .x/d�.x/ (6.2.11)

and the free energy functional by

F.u.�; t// WD
Z

	

u.x; t/
�

log u.x; t/C  .x/
�

d�.x/

D S�.u.�; t//C‰.u.�; t//:
(6.2.12)

(See [16, 69], for instance.)
We can extend this functional to the space of all densities D as

F .q/ WD
Z

	

q.x/
�

log q.x/C  .x/
�

d�.x/: (6.2.13)

We therefore say that the family of densities fu.�; t/gt�0
(i) has a free energy functional on .	;�/ if it satisfies the condition I.A;  / as in

Eq. (6.2.10);
(ii) has a good free energy functional on .	;�/ if it satisfies the condition II.A;  /

as in Eq. (6.2.10).
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Remark In the important paper [69], the relation between a Fokker–Planck equation
and the associated free energy functional was systematically explored. In particular,
it was demonstrated that a Fokker–Planck equation with gradient drift term may be
interpreted as a gradient flux, or a steepest descent, of a free energy functional with
respect to a certain (i.e. Wasserstein) metric. This result was originally developed
for Fokker–Planck equations on R

n for which the second order operator is the
standard Laplacian. This result has been extended in various ways, for example
on Riemannian/Finsler manifolds, but the results usually assume that the operator
is uniformly elliptic, which is not satisfied in our context, as the operator becomes
singular on the boundary. This problem will be discussed elsewhere in more general
terms.

Definition 6.2.5 Let f1; f2 be densities on a �-finite measure space .	;�/. The
relative entropy relative entropy (Kullback–Leibler divergence) of f1 with respect
to f2 is

DKL. f1kf2/ WD
( R

	 f1.x/ log f1.x/
f2.x/

d�.x/ if supp. f1/ � supp. f2/;

1 otherwise:

Theorem 6.2.1 Let fu.�; tjx0/gt�0 be a family of conditional densities on the simplex
�n endowed with the Lebesgue measure 

.x/ satisfying the Kolmogorov equations

@tu.x; tjx0/ D r.x/
i r.x/

j

�
Aij.x/u.x; tjx0/

�
� r.x/

i

�
bi.x/u.x; tjx0/

�
DW Lxu.x; tjx0/;

(6.2.14)

@tu.x; tjx0/ D Aij.x0/r.x0/
i r.x0/

j u.x; tjx0/C bi.x0/r.x0/
i u.x; tjx0/ DW L�

x0u.x; tjx0/;
(6.2.15)

where Aij.x/ D xi.ıij �xj/, bi.x/ are smooth functions on�n and r.x/
i D @

@xi ;r.x0/
i D

@

@xi
0

. Then the family fu.�; tjx0/gt�0 has a good free energy functional if and only if

there exists a unique absolutely continuous probability measure on �n which is
reversible with respect to the infinitesimal generator

L�
x D Aij.x/r.x/

i r.x/
j C bi.x/r.x/

i :

Proof .)/: We assume that fu.�; tjx0/gt�0 satisfies the condition II.A;  /, i.e. @tu D
Lxu with

Lxu D r.x/ � .A.x/r.x/u/C r.x/ � .A.x/ur.x/ .x//;

where  .x/ 2 C1.�n/ satisfies

Z

�n

e� .x/dx < 1: (6.2.16)
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Then the generator L�
x is of the form

L�
x f D r.x/ � .A.x/r.x/f / � A.x/r.x/ .x/ � r.x/f : (6.2.17)

By (6.2.16), d�1.x/ D e� .x/

Z dx is well-defined. By Lemma 6.2.3 below, d�1.x/ D
e� .x/

Z dx is reversible with respect to L�. (Also note that in this case d�1.x/ D
e� .x/

Z dx is also stationary with respect to L�, by applying the reversibility condition,
which we have just observed, with an arbitrary f and g D 1 and using L�1 D 0.)

We now want to show that d�1.x/ D e� .x/

Z dx is the unique absolutely
continuous probability measure on�n which is reversible with respect to L�. Indeed,
assume that 
 is an absolutely continuous probability measure on �n which is
reversible with respect to L�. Then d
.x/ D k.x/d�1.x/ for some positive function
k and of course we also have d�1.x/ D k.x/�1d
.x/. Therefore,

0 D
Z

�n

L�fd


D
Z

�n

L�fkd�1

D
Z

�n

fL�kd�1 due to the symmetry of �1:

(6.2.18)

This implies that L�k D 0. Similarly, because of the symmetry of 
, we also have
L�.k�1/ D 0. Thus

0 D L�.1/� kL�.k�1/� k�1L�k

D Aij.x/r.x/
i kr.x/

j k�1

D �Aij.x/r.x/
i kr.x/

j k

k2
;

(6.2.19)

which implies that k is constant. Because 
 and�1 are probability measures, k D 1.
This means that 
 D �1, which is the desired uniqueness.
.(/: Assume that d
.x/ D v.x/dx is an absolute continuous stationary

probability measure that is reversible with respect to L�. This implies that v is the
unique positive solution of Lv D 0 in �n with

R
�n
v.x/dx D 1. Following the

technique in [83], we rewrite Eq. (6.2.14) in the canonical form

Lv.x0/ D �g.x0/v.x0/� r.x0/
i

�
˛i.x0/v.x0/

�
D 0; (6.2.20)

where �g is the Laplace–Beltrami operator with respect to the metric depending
only on the state .gij.x0// D .Aij.x0// D .Aij.x0//�1 and ˛i.x0/ D bi.x0/ � �k

ik.x0/,
where �k

ik.x0/ is the Christoffel symbol corresponding to metric gij.x0/. Rescaling
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by volume density
p

g.x/ D p
det .Aij.x//

u.x; tjx0/ D
p

g.x/'.x; tjx0/ and v.x0/ D
p

g.x0/�.x0/; (6.2.21)

we obtain equations for ' and � as follows:

@t'.x; tjx0/ D �g.x0/'.x; tjx0/C ˛i.x0/r.x0/
i '.x; tjx0/; (6.2.22)

@t'.x; tjx0/ D �g.x/'.x; tjx0/� r.x/
i

�
˛i.x/'.x; tjx0/

�
; (6.2.23)

�g.x0/�.x0/� r.x0/
i

�
˛i.x0/�.x0/

�
D 0: (6.2.24)

Moreover, the reversibility of 
 means also that

u.x; tjx0/v.x0/ D u.x0; tjx/v.x/; 8t > 0; x; x0 2 �n: (6.2.25)

This is equivalent to

'.x; tjx0/�.x0/ D '.x0; tjx/�.x/; 8t > 0; x; x0 2 �n: (6.2.26)

It implies that

@t.'.x; tjx0/�.x0// D @t.'.x0; tjx/�.x//
D �g.x0/.'.x; tjx0/�.x0// � r.x0/

i

�
˛i.x0/'.x; tjx0/�.x0/

�
:

(6.2.27)

Combining (6.2.22), (6.2.24), and (6.2.27) we obtain

r.x0/
i '.x; tjx0/

�
� ˛i.x0/�.x0/C r i;.x0/�.x0/

�
D 0:

Since r.x0/
i '.x; tjx0/ does not vanish identically in �n, we have in �n

bj.x/ � r.x/
i gij.x/� r.x/

i g.x/

2g.x/
gij.x/ D ˛j.x/ D gij.x/

r.x/
i �.x/

�.x/
;

which implies that

bj.x/� r.x/
i gij.x/ D gij.x/r.x/

i ln
�
�.x/

p
g.x/

�
;

i.e.

�Zi.x/ D r.x/
i ln

�
�.x/

p
g.x/

�
D r.x/

i ln v.x/;
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where the vector Z is

Z.x/ D

0

B@
A11.x/ � � � A1n.x/
:::

: : :
:::

An1.x/ � � � Ann.x/

1

CA

�10

B@
@1A11.x/C � � � C @nA1n.x/ � b1.x/

:::

@1An1.x/C � � � C @nAnn.x/ � bn.x/

1

CA :

Thus, Z is of the form r , which implies v D Ce� for some  2 C1.�n/.
Because of

R
�n
vdx D 1, we obtain C D 1

Z < 1, which means that fu.�; t/t�0g
satisfies the condition II.A;  /. This completes the proof. ut
Remark The necessary condition in the two alleles case was proved by Ethier and
Kurtz [36, p. 417].

6.2.2 The Free Energy of Wright–Fisher Models

Two Alleles with Mutation

We start with a diploid Wright Fisher population of N individuals with two alleles
A0 and A1. Assume that there are mutations from A1 to A0 with rate ˇ

4N and from A0

to A1 with rate ˛
4N (the time unit is 2N generations). Then the frequency Xt of allele

A1 at generation 2Nt satisfies (2.6.9), which we recall here as

E.ıXtjXt/ D
�

2

� 
 C �

2
Xt

�
.ıt/C o.ıt/;

E..ıXt/
2jXt/ D Xt.1 � Xt/.ıt/C o.ıt/;

E..ıXt/
˛jXt/ D o.ıt/; for ˛ � 3:

(6.2.28)

The Kolmogorov forward equation (4.2.12) for the family of density functions
fu.�; t/gt�0 on the probability measure space .Œ0; 1�; dx/ thus becomes

@tu.x; t/ D 1

2

@2

@x2

�
x.1 � x/u.x; t/

�
� @

@x

�
b.x/u.x; t/

�
(6.2.29)

with drift coefficient b.x/ D 

2

� 
C�
2

x.
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To construct a free energy functional for this equation, we will rewrite it in the
following form

@tu.x; t/ D @

@x

 
x.1 � x/

2

@

@x
u.x; t/

!
C @

@x

 �1 � 2x

2
� b.x/

�
u.x; t/

!

D @

@x

 
x.1 � x/

2

@

@x
u.x; t/

!
C @

@x

 
x.1 � x/

2
u.x; t/

�1 � 

x

� 1 � �

1 � x

�!

D r � .A.x/ru.x; t//C r � .A.x/u.x; t/r .x//
D r �

�
A.x/u.x; t/r� log u.x; t/C  .x/

��
;

(6.2.30)
where

r D @

@x
; A.x/ D x.1 � x/

2
;

and

 .x/ D .1 � 
/ log x C .1 � �/ log.1 � x/: (6.2.31)

We see that the normalizing coefficient

Z.
; �/ WD
Z 1

0

e� .x/dx D
Z 1

0

x
�1.1 � x/��1dx D B.
; �/

is finite if and only if both 
 and � are positive.
Therefore, this family of densities always satisfies the condition I.A;  / and

satisfies the condition II.A;  / if and only if 
; � > 0. Thus, we need positive
mutation rates for II.A;  /.

In the finite case, the unique minimizer of the free energy functional is the Gibbs
density

u1.x/ WD e� .x/

Z.
; �/
D x
�1.1 � x/��1

B.
; �/
: (6.2.32)

This is seen by solving the stationary density equation

0 D r �
�

A.x/u1.x/r
�

log u1.x/C  .x/
��
: (6.2.33)

The minimum of F is

F1 D
Z 1

0

f1.x/.log f1.x/C  .x//dx D � log Z.
; �/ D � log B.
; �/:
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Two Alleles with Mutation and Selection

We next consider the case where in addition to mutation as in Sect. 6.2.2, there
are also selection effects. Let the fitness of an individual of type A1A1;A1A0;A0A0

be 1; 1 C sh
2N ; 1 C s

2N , resp. We recall (2.6.9) for the frequency Xt of allele A1 at
generation 2Nt:

E.ıXtjXt/ D
�

2

� 
 C �

2
Xt C sXt.1 � Xt/

�
1 � h C .1 � 2h/Xt

��
.ıt/C o.ıt/;

E..ıXt/
2jXt/ D Xt.1 � Xt/.ıt/C o.ıt/;

E..ıXt/
˛jXt/ D o.ıt/; for ˛ � 3:

(6.2.34)

For the family of density functions fu.�; t/gt�0 on the probability measure space
.Œ0; 1�; dx/, we have the Kolmogorov forward equation (4.2.12)

@tu.x; t/ D 1

2

@2

@x2

�
x.1 � x/u.x; t/

�
� @

@x

�
b.x/u.x; t/

�
(6.2.35)

with drift coefficient b.x/ D 

2

� 
C�
2

x C sx.1 � x/
�
1 � h C .1 � 2h/x

�
.

To construct a free energy functional for this equation, we rewrite it as

@tu.x; t/ D @

@x

 
x.1 � x/

2

@

@x
u.x; t/

!
C @

@x

 �1 � 2x

2
� b.x/

�
u.x; t/

!

D @

@x

 
x.1 � x/

2

@

@x
u.x; t/

!
C @

@x

 
x.1 � x/

2
u.x; t/

�1 � 

x

� 1 � �
1 � x

�

2s
�
1 � h C .1 � 2h/x

��
!

D r � .A.x/ru.x; t//C r � .A.x/u.x; t/r .x//
D r �

�
A.x/u.x; t/r� log u.x; t/C  .x/

��
;

(6.2.36)
where

r D @

@x
; A.x/ D x.1 � x/

2
;

and

 .x/ D .1 � 
/ log x C .1 � �/ log.1 � x/� 2s
�
.1 � h/x C 1

2
.1 � 2h/x2

�
:
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Again, the partition function

Z.
; �; s; h/ WD
Z 1

0

e� .x/dx D
Z 1

0

x
�1.1� x/��1e2s
�
.1�h/xC 1

2 .1�2h/x2
�
dx

is finite if and only if both 
 and � are positive.
Therefore, this family of densities always satisfies the condition I.A;  / and

satisfies the condition II.A;  / if and only if 
; � > 0.
The free energy functional is

F.u.�; t// WD
Z 1

0

 .x/u.x; t/dx C
Z 1

0

u.x; t/ log u.x; t/dx; (6.2.37)

which is finite if and only if 
; � > 0.
In the finite case, the unique minimizer of the free energy functional is the Gibbs

density

u1.x/ WD e� .x/

Z.
; �; s; h/
D x
�1.1 � x/��1e2s

�
.1�h/xC 1

2 .1�2h/x2
�

Z.
; �; s; h/
(6.2.38)

obtained by solving the stationary density equation

0 D r �
�

A.x/u1.x/r
�

log u1.x/C  .x/
��
: (6.2.39)

The minimum of F is

F1 D
Z 1

0

f1.x/.log f1.x/C  .x//dx D � log Z.
; �; s; h/:

We shall see that our flow of density functions exponentially converges to this
Gibbs density function and the free energy functional plays the role of the Lyapunov
functional.

n C 1 Alleles with Mutation

For a diploid Wright Fisher population of N individuals with nC1 alleles A0; : : : ;An

undergoing mutations from Ai to Aj with rates �ij

4N 2 R for all i ¤ j 2 f0; 1; � � � ; ng,
the relative frequencies Xt D .X1t ; : : : ;X

n
t / of alleles .A1; : : : ;An/ and X0t D

1 � X1t � � � � � Xn
t for allele A0 at generation 2Nt satisfy (2.5.15)–(2.5.17), recalled
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here as

E.ıXi
tjXt/ D bi.Xt/.ıt/C o.ıt/I

E.ıXi
tıX

j
t jXt/ D aij.Xt/.ıt/C o.ıt/; 8i; j D 1; : : : ; nI

E..ıXt/
˛jXt/ D o.ıt/; for j˛j � 3

(6.2.40)

with the drift term

bi.x/ D �
� nX

jD0

1

2
�ij

�
xi C

nX

jD0

1

2
�jix

j; i D 1; : : : ; n

and the diffusion term

aij.x/ D xi.ıij � xj/ i; j D 1; : : : ; n:

Remark Putting

b0.x/ D �1
2

� nX

jD0
�0j

�
x0 C 1

2

nX

jD0
�j0x

j;

we have

nX

iD0
bi.x/ D 0:

We shall prove:

Theorem 6.2.2 In a diploid Wright–Fisher model of N individuals with nC1 alleles
with general mutation rates, a necessary and sufficiency condition to have a unique
stationary distribution is

�ij D �j > 0 for all i ¤ j; i; j D 0; : : : ; n: (6.2.41)

The stationary distribution in this case is of the form

d�m1.x/ D f m1.x/dx D e� .x/

Z.�/
dx D …n

iD0.xi/�i�1

Z.�/
dx: (6.2.42)

Proof Again, we consider the Kolmogorov forward equation for the density func-
tion u.x; t/

@tu.x; t/ D
nX

i;jD1

@2

@xi@xj

�aij.x/

2
u.x; t/

�
�

nX

iD1

@

@xi

�
bi.x/u.x; t/

�
: (6.2.43)
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To use the free energy method, we rewrite this equation in divergence form:

@tu.x; t/ D
nX

iD1

@

@xi

 
nX

jD1

@

@xj

�aij.x/

2
u.x; t/

�!
�

nX

iD1

@

@xi

�
bi.x/u.x; t/

�

D
nX

iD1

@

@xi

 
nX

jD1

�
Aij.x/

@

@xj
u.x; t/

�!
C

nX

iD1

@

@xi

 � nX

jD1

@

@xj
Aij.x/� bi.x/

�
u.x; t/

!

D
nX

iD1

@

@xi

 
nX

jD1

�
Aij.x/

@

@xj
u.x; t/

�!
C

nX

iD1

@

@xi

 �1 � .n C 1/xi

2
� bi.x/

�
u.x; t/

!

D r � .A.x/ru.x; t//C r � .A.x/u.x; t/r .x//;
(6.2.44)

with the gradient

r D
� @

@x1
; : : : ;

@

@xn

�

and the diffusion coefficients

A.x/ D
�

Aij.x/
�n

i;jD1 D 1

2

�
aij.x/

�n

i;jD1:

 then has to satisfy

�
A.x/r .x/

�

i
D 1 � .n C 1/xi

2
� bi.x/

and hence

@i .x/ D
nX

jD1
2

 
ıij

xj
C 1

x0

! 
1 � .n C 1/xj

2
� bj.x/

!

D 1 � 2bi.x/

xi
� 1 � 2b0.x/

x0

D fi.x/� f0.x/:

(6.2.45)

We are looking for conditions for the rates �ij so that there is a potential function.
Such a  exists if and only if (see [59, p. 253])

@j

�
fi.x/ � f0.x/

�
D @i

�
fj.x/ � f0.x/

�
:
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This is equivalent to

��ji

xi
C �0;i

xi
C �j;0

x0
D ��ij

xj
C �0;j

xj
C �i;0

x0
; 8i ¤ j; x 2 int�n:

Letting xi ! 0 while keeping xj; x0 fixed, we conclude that �ji D �0;i for all j ¤ i.
Similarly, we obtain �ij D �0;j and �j;0 D �i;0. It follows that

�ij D �j for all i ¤ j; i; j D 0; : : : ; n: (6.2.46)

From (6.2.45), we then get

 .x/ D
nX

iD0
.1 � �i/ log.xi/:

Moreover, then satisfies

Z

�n

e� .x/dx < 1

if and only if �i > 0 for all i. ut
For a diploid Wright–Fisher population with uniform mutation rates �j

4N 2 R for
all i ¤ j 2 f0; 1; � � � ; ng, the free energy functional then is

F.q/„ƒ‚…
free energy

WD
Z

�n

 .x/q.x/dx

„ ƒ‚ …
potential energy

C
Z

�n

q.x/ log q.x/dx

„ ƒ‚ …
negative entropy

(6.2.47)

for a density function q on �n.
As we assume �i > 0 for all i, the partition function

Z.�/ WD
Z

�n

e� .y/dy D
Z

�n

.y1/�1�1.y2/�2�1 � � � .yn/�n�1.1 � y1 � � � � � yn/�0�1dy

D B.�/
(6.2.48)

is finite, and the minimizer of the free energy is the Gibbs density

q1.x/ WD e� .x/

Z.�/
: (6.2.49)
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Below, we shall consider the evolution of the free energy functional along the flow
of densities

F. p.�; t// WD
Z

�n

 .x/u.x; t/dx C
Z

�n

u.x; t/ log u.x; t/dx (6.2.50)

n C 1 Alleles with Mutation and Selection

We return to the case of general mutation rates �ij

4N 2 R for i ¤ j 2 f0; 1; � � � ; ng.
In addition, we now also include selection and assume that the genotype AiAj has
fitness 1C sij

2N . Equations (2.5.15)–(2.5.17) then become

E.ıXi
tjXt/ D bi.Xt/.ıt/C o.ıt/;

E.ıXi
tıX

j
t jXt/ D aij.Xt/.ıt/C o.ıt/; 8i; j D 1; : : : ; n;

E..ıXt/
˛jXt/ D o.ıt/; for j˛j � 3;

(6.2.51)

with the drift term

bi.x/ D �
� nX

jD0

1

2
�ij

�
xi C

nX

jD0

1

2
�jix

j C si.x/x
i � s.x/xi; i D 1; : : : ; n (6.2.52)

with

si.x/ D
nX

jD0
sijx

j (6.2.53)

and

s.x/ D
nX

iD0
si.x/x

i (6.2.54)

and the diffusion term

aij.x/ D xi.ıij � xj/; i; j D 1; : : : ; n:

We then have the following extension of Theorem 6.2.2.

Theorem 6.2.3 In a diploid Wright–Fisher model of N individuals of n C 1-alleles
with mutation and selection, a necessary and sufficient condition for having a unique
stationary distribution is

�ij D �j > 0 for all i ¤ j; i; j D 0; : : : ; n (6.2.55)
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and

sij D sji for all i; j: (6.2.56)

The stationary distribution in this case is of the form

d�m;s1 .x/ D f m;s1 .x/dx D e� .x/

Z.�; s/
dx D …n

iD0.xi/�i�1es.x/

Z.�; s/
dx (6.2.57)

with the partition function

Z.�; s/ D
Z

�n

…n
iD0.xi/�i�1es.x/dx

Proof As in the proof of Theorem 6.2.2,  exists if and only if for all i ¤ k

@k

�
fi.x/� f0.x/

�
D @i

�
fk.x/� f0.x/

�
; (6.2.58)

where

fi.x/ D 1 � 2bi.x/

xi
: (6.2.59)

Since we have already handled the mutation terms in (6.2.58) and shown that for
them (6.2.41) is necessary and sufficient, we only need to look at the contributions
from selection. From (6.2.52), (6.2.53), this contribution is

@

@xk
.si.x/�s.x/� s0.x/ � s.x// � @

@xi
.sk.x/� s.x/� s0.x/� s.x//

D @si.x/

@xk
� @s0.x/

@xk
� @sk.x/

@xi
C @s0.x/

@xi

D sik � s0k � si0 C s00 � ski C s0i C sk0 � s00;

which vanishes if and only if the symmetry condition (6.2.56) holds for all indices.
In the case of uniform mutation rates, then

bi.x/ D �i

2
� j� j
2

xi C si.x/x
i � s.x/xi:
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Therefore we can easily calculate the potential energy function as

 .x/ D
nX

iD0
.1 � �i/ log.xi/� s.x/; (6.2.60)

which follows from

@i .x/ D 1� 2bi.x/

xi
� 1 � 2b0

x0

D
 
1 � �i

xi
C j� j � 2.si.x/ � s.x//

!
�
 
1 � �0

x0
C j� j � 2.s0.x/� s.x//

!

D 1� �i

xi
� 1 � �0

x0
� 2.si.x/ � s0.x//:

(6.2.61)
ut

We now assume that the selection coefficients are of the form

sij D si C sj

2
: (6.2.62)

In that case, (6.2.53), (6.2.54) become

s.x/ D
X

j;k

sj C sk

2
xjxk D

X

j

sjx
j (6.2.63)

since
P

k xk D 1. Therefore, (6.2.60) becomes

 .x/ D
nX

iD0
.1 � �i/ log.xi/ �

nX

iD0
six

i; where x0 D 1 � x1 � � � � � xn:

In this case, the partition function for the free energy becomes

Z.�; s/ WD
Z

�n

e� .y/dy D
Z

�n

.y1/�1�1.y2/�2�1 � � � .yn/�n�1.1�y1�� � ��yn/�0�1e
nP

iD0
siyi

dy;

(6.2.64)

and Z is finite if and only if �i > 0 for all i D 0; : : : ; n. In that case again, the
minimizer of the free energy is the Gibbs density

q1.x/ WD e� .x/

Z.�; s/
: (6.2.65)
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6.2.3 The Evolution of the Free Energy

Now we consider the evolution of the free energy functional along the flow of
densities

F. p.�; t// WD
Z

	

 .x/u.x; t/dx C
Z

	

u.x; t/ log u.x; t/dx: (6.2.66)

We shall see that our flow of density functions exponentially converges to the
Gibbs density function (6.2.65) and the free energy functional plays the role of the
Lyapunov functional.

We know from the last subsection that in order to have a unique stationary
reversible density we need to assume uniform positive mutation rates. So, in this
subsection we shall assume that.

Lemma 6.2.1 F. p.�; t// decreases along the flow of densities.

Proof Using the divergence form of the flow (6.2.44), we have

@

@t
F. p.�; t// D

Z

	

 .x/
@

@t
u.x; t/dx C

Z

	

log u.x; t/
@

@t
u.x; t/dx C

Z

	

@

@t
u.x; t/dx

„ ƒ‚ …
D0

D
Z

	

 .x/r � .A.x/ru.x; t//dx C  .x/r � .A.x/u.x; t/r .x//dx

C
Z

	

log u.x; t/r � .A.x/ru.x; t//dx C log u.x; t/r � .A.x/u.x; t/r .x//dx

D �
Z

	

r .x/ � .A.x/ru.x; t//dx � r .x/ � .A.x/u.x; t/r .x//dx

�
Z

	

r log u.x; t/ � .A.x/ru.x; t//dx � r log u.x; t/ � .A.x/u.x; t/r .x//dx

(integrating by parts as in [114], Proposition 2.4)

D �
Z

	

r .x/ � .A.x/ru.x; t//dx � r .x/ � .A.x/u.x; t/r .x//dx

�
Z

	

ru.x; t/ � .A.x/ru.x; t//

u.x; t/
dx � ru.x; t/ � A.x/r .x/dx

D �
Z

	

I.x; t/dx:

(6.2.67)
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where

I.x; t/ D u.x; t/r .x/ � .A.x/r .x//C 1

u.x; t/
ru.x; t/ � .A.x/ru.x; t//

C 2r .x/ � .A.x/ru.x; t//

D p < r ;r >D C1

p
< rp;rp >D C2 < r ;rp >D

� 0:
(6.2.68)

This completes the proof. ut
Remark We note that in our case A.x/ does not satisfy a uniform ellipticity condition
as in [16]. In fact, when x goes to the boundary @	, the Fisher information metric
goes to infinity, and therefore A.x/ goes to 0.

We assume that there exists a unique stationary distribution d�1.x/ D u1.x/dx.
We focus on the rate of the convergence of u to u1. Putting

h WD u

u1
;

we shall investigate the rate of the convergence of h to 1.
The stationary density is the Gibbs density function

u1.x/ D e� .x/

Z
;

which is an exponential family (3.6.1). Thus

log u1 C  D � log Z:

Since Z is independent of x, this implies

@j.log u C  / D @j

�
log

u

u1

�
C @j.log u1 C  / D @j.log h/:

We now derive a partial differential equation for h from that of u.

Lemma 6.2.2

@th D r � .A.x/rh/� r � A.x/rh D L�h:
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Proof We have

@th D u�11 @tu

D u�11 @i

�
Aiju@j

�
log u C  

��

D u�11 @i

�
Aiju1h@j

�
log h

��

D @i

�
Aijh@j

�
log h

��C u�11 @i.u1/
�

Aijh@j
�

log h
��

D @i

�
Aij@jh

�
C @i.log u1/@i

�
Aij@jh

�

D r � .A.x/rh/� r � A.x/rh

(6.2.69)

This completes the proof. ut
Then, we can easily see that

d�1.x/ D u1.x/dx D e� .x/

Z
dx

is reversible with respect to L�.

Lemma 6.2.3
Z

�n

fL�gd�1 D
Z

�n

gL�fd�1; 8f ; g 2 C2.�n/:

Proof

Z

�n

fL�gd�1 D
Z

�n

f
�
r � .A.x/rg/

�
u1.x/dx �

Z

�n

f
�
r � A.x/rg

�
u1.x/dx

D �
Z

�n

A.x/rg � r
�

f
e� .x/

Z

�
dx �

Z

�n

�
r � A.x/rg

�
fu1.x/dx

D �
Z

�n

A.x/rg �
�
rf � f r .x/

�e� .x/

Z
dx

�
Z

�n

�
r � A.x/rg

�
fu1.x/dx

D �
Z

�n

A.x/rg � rf
e� .x/

Z
dx

D �
Z

�n

A.x/rg � rfd�1.x/;

(6.2.70)

which is symmetric between f and g. This yields the proof. ut



158 6 Moment Generating and Free Energy Functionals

We can now compute the decay rate of the free energy functional towards its
asymptotic limit along the evolution of the probability density function u. For
simplicity, we shall write F.t/ in place of F. p. � ; t//.
Lemma 6.2.4

F.t; �/ � F1.�/ D DKL.uku1/ D S�
1

.h/ � 0:

Proof We have

F.t; �/ D
Z

�n

u.log u C  /dx

D
Z

�n

u.log u1 C  /dx C
Z

�n

u.log u � log u1/dx

D
Z

�n

u.� log Z/dx C
Z

�n

u log
u

u1
dx

D � log Z C
Z

�n

u log
u

u1
dx

D � log Z C
Z

�n

h log hd�1

(6.2.71)

and

F1.�/ D F.u1/ D
Z

�n

u1.log u1 C  / D � log Z:

This implies the proof. ut
Lemma 6.2.5

d

dt
S�

1

.h/ D @tF.t; �/ D �J�
1

.h/ WD �
Z

�n

A.x/rh � rh

h
d�1:
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Proof We have

@tF.t; �/ D
Z

�n

@tu.log u C  /dx C
Z

�n

u@t.log u C  /dx

D
Z

�n

@i

�
Aiju@j

�
log u C  

��
.log u C  /dx C

Z

�n

@tudx

.because @t D 0/

D �
Z

�n

�
Aiju@j

�
log u C  

��
@i.log u C  /dx C @t

� Z

�n

udx
�

.integrating by parts/

D �
Z

�n

Aiju@j.log h/@i.log h/dx

D �
Z

�n

Aij@jh@ih

h
u1dx:

(6.2.72)

Since F.u1/ is independent of t, this implies the proof. ut

6.2.4 Curvature-Dimension Conditions and Asymptotic
Behavior

We start with some general notions, see [13] again.
We consider an operator .L;D.L// defined on a measure space .	;�/ of the form

Lf D aij.x/@i@jf C bi.x/@if ;8f 2 A D L2.	;�/\ D.L/:

Definition 6.2.6 The carré du champ operator of L is defined by

�. f ; g/ D 1

2

�
L. fg/� fLg � gLf

�
; 8f ; g 2 A (6.2.73)

and the iterated carré du champ operator of L is defined by

�2. f ; g/ D 1

2

�
L�. f ; g/� �. f ;Lg/� �.g;Lf /

�
; 8f ; g 2 A: (6.2.74)

We will also denote �. f ; f / D �. f / and �2. f ; f / D �2. f / for short.
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Definition 6.2.7 The measure� satisfies the logarithmic Sobolev inequality LSI.�/
(see [55]) if for all densities f we have

Z

	

f log fd� � 1

�

Z

	

1

2f
jrf j2d�:

Definition 6.2.8 The measure � satisfies the spectral gap condition SG.�/ if for all
functions h with

R
	 h.x/d�.x/ D 0, we have

Z

	

h2d� � 1

�

Z

	

jrhj2d�:

Definition 6.2.9 A family of densities fu.�; t/gt�0 on a �-finite measure space
.	;�/ is called hypercontractive with respect to � if for all pt satisfying

pt � 1 D e2�t. p0 � 1/;

we have

 Z

	

ˇ̌
u.x; t/

ˇ̌pt d�.x/

! 1
pt

�
 Z

	

ˇ̌
u.x; 0/

ˇ̌p0d�.x/
! 1

p0

:

Definition 6.2.10 We say that L satisfies the curvature-dimension condition
CD.�; n/ for � > 0 and n 2 Œ1;1� if for all f 2 A

�2. f / � ��. f /C 1

n
.Lf /2; �-a.e. (6.2.75)

We recall some background results:

Proposition 6.2.1 (Bochner–Lichnerowicz Formula) For a Riemannian mani-
fold .	; g/, the Laplacian and the Ricci curvature are related via

1

2
�g

�
jrf j2

�
D rf � r

�
�gf

�
C jrrf j2 C Ricg.rf ;rf / (6.2.76)

for all smooth functions f W	 ! R.

Proof See [71], for instance. ut
Proposition 6.2.2 (Hessian Formula) For a Riemannian manifold .	; g/, we have
the Hessian formula

rrf .rg;rh/ D 1

2

�
�.g; �. f ; h//C �.h; �. f ; g//� �. f ; �.g; h//

�
(6.2.77)

for all smooth functions f ; g; h W 	 ! R.
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Proof See [13], for instance. ut
Proposition 6.2.3 Consider an n-dimensional Riemannian manifold .	; g/ with
Riemannian measure �g. Let m � n, then L D �g C Z satisfies CD.�;m/, i.e.

�2. f / � ��. f /C .Lf /2

m
;8f 2 A �g-a.e.,

if and only if

Ric.L/ WD Ricg � rSZ � �g C 1

m � n
Z ˝ Z;

where

.rSZ/ij WD 1

2

�
@iZ

j C @jZ
i
�
; i; j D 1; � � � ; n

is the symmetric covariant derivative of the vector field Z in the metric g. Ric.L/ is
often called the generalized Ricci tensor.

Remark

1. The case m D n can only occur when Z D 0;
2. The case m D 1, L 2 CD.�;1/, i.e. �2. f / � ��. f /, occurs if and only if

Ric.L/ � �g.
3. If Z D �rW � r, then Ric.L/ D Ricg C rrW. Therefore, L 2 CD.�;1/ if and

only if Ricg C rrW � �g, which is a general result of Bakry and Émery [12] in
the Riemannian setting. Moreover, by denoting wm�n

1 D e�W , we have the more
general criterion L 2 CD.�;m/ if and only if Ricm.L/ WD Ricg� m�n

w1
rrw1 � �g.

Proof This follows from the Bochner–Lichnerowicz and Hessian formulas. ut
We note that for the above operator L, we always have

�. f ; g/ D aij@if@jg:

We now consider the Kolmogorov backward operator on 	 D �n with A D
C2.�n/:

L�h D Aij.x/@i@jh C bi.x/@ih;

where

Aij D 1

2

�
xi.ıij � xj

�
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and

bi D �i

2
� j�j

2
:

We have gij D 2.
ıij

xi C 1
x0
/ as our Riemannian metric on �n, which is the inverse

of Aij.x/. We note that this metric is twice the metric in Chap. 3, but since the Ricci
curvature tensor Rij does not change when we multiply the metric by a constant 

(although the sectional curvature will change by 
), by the relation Rij D �gij (which
holds since we have a constant curvature metric), the Ricci curvature � becomes n�1

8
.

With this Riemannian metric, we can write our Kolmogorov backward operator
in the form

L� D �g � rW � r;
where e�W is the density of the reversible measure�with respect to the Riemannian
measure d�g.x/ D j det.A.x//j� 1

2 dx. We know that the only reversible measure in
this case is �1. Therefore we can obtain W.x/;w1.x/ by

e�W.x/ D �.�0/ : : : �.�n/

2
n
2 �.j� j/

nY

iD0
.xi/�i� 1

2 D wm�n
1 .x/:

We have

�.w1; f / D Aij.x/@iw1@jf D w1
2.m � n/

Zf ; (6.2.78)

where

Zf WD
nX

iD1
.ci � jcjxi/@if

is a vector field on �n with ci D �i � 1
2
, jcj D Pn

iD0 ci D j� j � nC1
2

. Therefore

Ricm.L/.rf ;rf / D Ricg.rf ;rf /� m � n

w1
rrw1.rf ;rf /

D n � 1

8
.rf ;rf / � 1

2

�
2�. f ; �.w1; f // � �.w1; �. f ; f //

�

by the Hessian formula (6.2.77)

D n � 1

8
.rf ;rf / �

� 1

4.m � n/
.Zf /2 C 1

2
Aij.x/@if@j.Zf /

� 1

2
Z.Aij.x/@if@jf /

�
by (6.2.78)

D n � 1C 2jcj
8

�. f /C 1

8
Œci.@if � xi@if /

2 C c0.x
i@if /

2� � .Zf /2

4.m � n/
(6.2.79)
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Hence, if ci � 0 for all i D 0; : : : ; n i.e. �i � 1
2

for all i D 0; : : : n, then for m ! 1
we have

Ric1.L�/ � n � 1C 2jcj
8

g D �ng:

Thus, L� 2 CD.�n;1/.

Remark For �i D 1
2
, i.e. ci D 0, then Zf D 0 and L� D �g is the Laplacian;

moreover,

Ricm.L/ D Ricg D n � 1
8

g

for all m � n. Therefore in this case, L� satisfies CD. n�1
8
; n/.

We can also directly calculate

�2. f / D jrrf j2 C Ric.L�/.rf ;rf /

D jrrf j2 C Ricg.rf ;rf /C rrW.rf ;rf /:
(6.2.80)

We now apply the Hessian formula (6.2.77) to calculate rrW. We have

W.x/ D � log
2� n

2

Z
C

nX

iD0
.
1

2
� �i/ log xi D � log c C

X

iD0
di log xi

where

di D 1

2
� �i; jdj D

nX

iD0
di D n C 1

2
� j� j:

Then

@jW D dj

xj
� d0

x0

and

Aij@jW D 1

2
.xiıij � xixj/.

dj

xj
� d0

x0
/ D 1

2
.di � jdjxi/:

This implies that

�.W; f / D Aij@iW@jf D 1

2
.dj � jdjxj/@jf :
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Therefore,

rrW.rf ;rf / D �. f ; �.W; f //� 1

2
�.W; �. f ; f //

D 1

2
Aij@i f@j..dk � jdj/@kf /� 1

4
.dk � jdjxk/@k

�
Aij@i f@jf

�

D 1

2
Aij@i f

�
� jdj@jf

�
� 1

4
.dk � jdjxk/@kAij@i f@jf

D �jdj
2

jrf j2 � 1

8
.dk � jdjxk/.ıikıij � ıikxj � ıjkxi/@i f@jf

D �jdj
2

jrf j2 � 1

8

�
di.@i f /2 � jdjxi.@i f /2

� 2di@i fxj@jf C 2jdj.xi/2.@i f /2
�

D �jdj
2

jrf j2 � 1

8

 �
di.@i f /2 � 2di@i fxj@jf

C jdj.xi/2.@i f /2
�

� 2jdjjrf j2
!

D �jdj
4

jrf j2 � 1

8

�
di.@i f � Z1f /

2 C d0.Z1f /
2
�
;

D jcj
4

jrf j2 C 1

8

�
ci.@i f � Z1f /

2 C c0.Z1f /
2
�

(6.2.81)

with the vector field

Z1f D xi@i f :

This implies that

�2. f / D jrrf j2 C Ricg.rf ;rf /C jcj
4

jrf j2 C 1

8

�
ci.@i f � Z1f /

2 C c0.Z1f /
2
�
:

If ci � 0 for all i D 0; : : : n, i.e. �i � 1
2

for all i D 0; : : : n, then we obtain

�2. f / � n � 1C 2jcj
8

�. f / D �n�. f /: (6.2.82)

This means that we have the curvature-dimension condition CD.�n;1/ and that
�1 satisfies the LSI.�n;1/.
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Note that

�n D n � 1C 2jcj
8

is not optimal as we have used the rather coarse estimate

ci.@i f � Z1f /
2 C c0.Z1 f /2 � 0:

So, let us try to find the optimal value for the case of two alleles (n D 1). In this
case, the Ricci curvature n�1

8
vanishes. We have

W.x/ D � log
�.�1/�.�0/p
2�.�1 C �0/

C .
1

2
� �1/ log x C .

1

2
� �0/ log.1 � x/:

With the Riemannian metric g.x/ D 2
x.1�x/ on �1 D .0; 1/, we have �. f / D

jrf j2 D 1
2
x.1 � x/.@xf /2 and the Hessian of W

rrW.rf ;rf / D c1 C c0
4

jrf j2 C 1

8

�
c1.1 � x/2 C c0x

2
�
.@xf /2; (6.2.83)

where c1 D �1 � 1
2

and c0 D �0 � 1
2
.

When �1; �0 � 1
2
, i.e. c0; c1 � 0, the smallest eigenvalue of the Hessian of W is

�1 D
�p

c1 C p
c0

2

�2

by the Cauchy inequality.
Therefore, we have

Lemma 6.2.6 If �1; �0 >
1
2
, then L� satisfies CD.�1;1/ with

�1 D
 q

�1 � 1
2

C
q
�0 � 1

2

2

!2
:

Proposition 6.2.4 If L is symmetric with respect to the stationary measure � and
satisfies the CD.�;1/ condition, then � satisfies LSI.�;1/.

Proof See for example [13]. ut
These results will allow us to reach very precise conclusions. For instance, we

have:

Theorem 6.2.4 For the Wright–Fisher model with nC1 alleles and positive uniform
mutation rates satisfying �i >

1
2

for all i D 0; : : : ; n, the stationary distribution f1dx
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satisfies the LSI.�n;1/ with

�n D n � 1C jcj
4

D n � 3C 2j� j
8

:

Proof Applying the results of (6.2.82) and (6.2.4). ut
Theorem 6.2.4 immediately implies some corollaries (see for example [13] for

further details):

Corollary 6.2.1 Under the above assumptions, the family of densities fu.�; t/gt�0 is
hypercontractive with respect to �1, i.e., for all pt satisfying

pt � 1 D e2�t. p0 � 1/;

we have

 Z

	

ˇ̌
u.x; t/

ˇ̌pt d�1.x/
! 1

pt

�
 Z

	

ˇ̌
u.x; 0/

ˇ̌p0d�1.x/
! 1

p0

:

Corollary 6.2.2 Under the above assumptions, the measure �1 has the spectral
gap SG.�/.

We now recall some known transport inequalities, which will be helpful for our
entropy estimates.

Proposition 6.2.5 (Csiszár–Kullback–Pinsker Inequality) If � and 
 are two
probability distributions, then

k� � 
kTV �
r
1

2
DKL.�k
/; (6.2.84)

where

k��
kTV D sup
˚j�.A/�
.A/j W A is an event to which probabilities are assigned.

�

is the total variation distance (or statistical distance) between � and 
.

Proof See for example [19]. ut
Proposition 6.2.6 If � and 
 are two probability distributions with Radon–
Nikodym derivatives f and g with respect to �, then

k f � gkL1.�/ �
p
2DKL.�k
/: (6.2.85)
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Proof It follows from (6.2.84) and the equality

k
 � �kTV D 1

2
k f � gkL1.�/:ut

Corollary 6.2.3 Under the above assumptions, the rate of convergence of the
relative entropy DKL.uku1/ is

DKL.u.t/ku1/ � e�2�tDKL.u.0/ku1/:

Combining this with (6.2.84) and (6.2.85) implies that

(i) u.t/dx exponentially converges to u1dx with respect to the total variation
distance;

(ii) u.t/dx exponentially converges to u1dx with respect to the L1-norm.



Chapter 7
Large Deviation Theory

This chapter applies Wentzell’s theory of large deviations to the Wright–Fisher
model, using the approach of Papangelou [96–98, 100]. For a different approach
to the large deviation principle for exit times in population genetics, we refer the
reader to [90, 91]. As customary, we shall abbreviate Large Deviation Principle as
LDP.

7.1 LDP for a Sequence of Measures on Different State
Spaces

In this section, we develop the definition of LDP for a sequence of probability
measures on different state spaces. This will be illustrated by some standard
examples.

Definition 7.1.1 Let f	rgr be a sequence of discrete state spaces, �r a probability
measure on 	r and fargr a sequence of positive real numbers such that lim

r!1 ar D
1. We consider a functional I W D.I/ WD [r	r ! R. We say that the sequence
f�rgr satisfies a large deviation principle with speed fargr and rate I, denoted by
f�rg 2 LD.I; farg/, if for every x 2 D.I/, there exists a sequence fxrgr such that
xr 2 	r and xr ! x as r ! 1 and

lim
r!1 a�1

r ln�r.xr/ D �I.x/:

When ar D r, we simply write f�rg 2 LD.I/.

© Springer International Publishing AG 2017
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In this setting, Varadhan’s examples [121] become

Example 7.1.1 Consider tossing a coin: The probability of k heads in r tosses of a
fair coin is

P.r; k/ D
 

r

k

!
2�r:

A corresponding sequence of state spaces is 	r D f0; 1r ; : : : ; 1g, and we put

�r

�k

r

�
D P.r; k/

as a probability measure on 	r. As
S

r 	r is dense in 	 D Œ0; 1�, there exists a
sequence xr D kr

r 2 	r with xr ! x as r ! 1 for every x 2 Œ0; 1�.
Using the Stirling approximation

lim
r!1

rŠp
2�r

�
r
e

�r D 1;

we easily get

lim
r!1

1

r
ln�r.xr/ D lim

r!1
1

r
ln P.r; kr/ D �

�
x ln x C .1 � x/ ln.1 � x/C ln 2

�

D �
�

x ln
x

1=2
C .1 � x/ ln

1 � x

1=2

�
:

Therefore f�rg 2 LD.I/ with the rate functional IW Œ0; 1� ! RC given by

I.x/ D x ln
x

1=2
C .1 � x/ ln

1 � x

1=2
:

Similarly, we can see that the sequence of probability measures on 	r

�r;p

�k

r

�
WD
 

r

k

!
pk.1 � p/r�k

satisfies f�r;pg 2 LD.Ip/ with the rate functional IpW Œ0; 1� ! RC defined by

Ip.x/ D x ln
x

p
C .1 � x/ ln

1 � x

1 � p
:

Remark We can also interpret this example in the following manner (see [104]):
Let X be a Bernoulli distributed random variable with a parameter p in the

state space f0; 1g, i.e. P.X D 1/ D p and P.X D 0/ D 1 � p, denoted by
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X 	 Bernoulli.p/. Assume that we have a sequence of i.i.d. random variables
X1;X2; : : : with the same distribution as X and put Sr D X1 C � � � C Xr. Then
f Sr

r g 2 LD.Ip/, i.e.

lim
r!1

1

r
ln P

�Sr

r
D Œrx�

r

�
D �Ip.x/:

We see that at x D p we have Ip.p/ D 0 therefore limr!1 P
�

Sr
r D Œrp�

r

�
D 1

which is the law of large number; at x ¤ p we have Ip.x/ > 0 and thus obtain
a large deviation. We note that the rate function Ip can be represented by Ip.x/ D
DKL.Bernoulli.x/kBernoulli.p// which is Sanov’s version of the LDP (see 7.2.5).

Example 7.1.2 Consider a sequence of n-dimensional normalized discrete sim-
plexes

	.2N/ WD
(

i

2N
D
�

i1

2N
; : : : ;

in

2N

�
W i1 2 N0; : : : ; i

n 2 N0 and
nX

kD1
ik � 2N

)
;

and multinomial distributions with parameter p, denoted by �2N;p 	 Multinom
.2N; p/, i.e.

�2N;p

� i

2N

�
D 2NŠ

i0Š : : : inŠ
.p0/i

0

: : : .pn/i
n
;

i

2N
2 	.2N/

with p 2 �n WD ˚
x D .x1; : : : ; xn/ W xi � 0 for i D 1; : : : ; n and x1 C : : :C xn

� 1g, p0 D 1 � p1 � : : : � pn and i0 D 2N � i1 � : : : � in.

Similarly, we have for each p 2 �n, f�2N;pg 2 LD.Ip/ where the rate functional
IpW�n ! RC is defined by

Ip.x/ D
nX

iD0
xi ln

xi

pi
D DKL.xkp/; x 2 �n:

7.2 LDP for a Sequence of Stochastic Processes

7.2.1 Preliminaries

For consistency of notation and definitions, we shall adapt the concepts of Papan-
gelou for LDP in continuous state space to our setting.

Definition 7.2.1 Let .	; �	/ be a Polish space, i.e. a separable completely metriz-
able topological space, fargr be a sequence of positive real numbers such that
limr!1 ar D 1, and let IW	 ! Œ0;1� be a lower semicontinuous functional which
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is proper (also called “good” in the literature), i.e. every level set fx 2 	W I.x/ � cg
is compact in 	 for all c � 0. Furthermore, let �r be a sequence of probabilities
on 	.

We then say that the sequence f�rgr

1. satisfies an upper large deviation principlewith speed fargr and rate I, denoted
by f�rg 2 LDu.I; farg/, if for all closed subsets C in .	; �	/

lim sup
r!1

a�1
r log�r.C/ � � inf

x2C
I.x/I

2. satisfies a lower large deviation principle with speed fargr and rate I, denoted by
f�rg 2 LDl.I; farg/, if for all open subsets A in .	; �	/

lim inf
r!1 a�1

r log�r.A/ � � inf
x2A

I.x/I

3. satisfies a large deviation principle with speed fargr and rate I, denoted by
f�rg 2 LD.I; farg/, if it satisfies both the upper and the lower large deviation
principle with speed fargr and rate I;

4. satisfies a G-lower large deviation principle with speed fargr and rate I, denoted
by f�rg 2 LDl;G.I; farg/, if for all open subsets A in .G; �G/ of a given subset
G 
 	

lim inf
r!1 a�1

r log�r.A/ � � inf
x2A

I.x/:

If ar D r, we will drop the expression farg in LD.I; farg/, and simply write
LD.I/.

Definition 7.2.2 Let 	 be a Polish space, fargr be a sequence of positive real
numbers such that limr!1 ar D 1. Let fX.r/.�/ gr2N0 be a sequence of Markov
processes in the state space 	 starting at some given p 2 	. Let K be a compact
subset of 	 and fix some T > 0 . We say that the sequence fX.r/T gr satisfies the
large deviation principle with speed fargr and rate Jp;T uniformly on K, denoted by

fX.r/T g 2 LD.Jp;T ; farg;K/ if

1. a lower bound condition holds uniformly on K, i.e.

lim sup
r!1

a�1
r log sup

p2K
Pp.X

.r/
T 2 C/ � � inf

p2K
inf
q2C

Jp;T .q/

for all closed subsets C,
2. an upper bound conditions holds uniformly on K, i.e.

lim sup
r!1

a�1
r log sup

p2K
Pp.X

.r/
T 2 A/ � � sup

p2K
inf
q2A

Jp;T.q/

for all open subsets A.
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7.2.2 Basic Properties

We now list some basic properties of the large deviation principle (see, for example,
[104, 120]):

Proposition 7.2.1 If �r 2 LD.I/ and F 2 BC.	;R/, then

lim
r!1

1

r
log

Z

	

erF.x/�r.dx/ D sup
x2	

fF.x/� I.x/g:

Proposition 7.2.2 Let be given a sequence fFrgr of nonnegative functions and a
lower semicontinuous nonnegative function F satisfying

lim inf
r!1 Fr.xr/ � F.x/ for all x 2 	 and xr ! x as r ! 1:

Then, if �r 2 LD.I/, we have

lim sup
r!1

1

r
log

Z

	

e�rFr.x/�r.dx/ � � inf
x2	fF.x/C I.x/g:

Proposition 7.2.3 Let 	0 also be a Polish space and F 2 C.	;	0/. If �r 2 LD.I/,
then F]�n WD �r ı F�1 2 LD.I0/ with

I0.y/ D inf
x2F�1.y/

I.x/:

Proposition 7.2.4 Let 	0 also be a Polish space and Fr 2 C.	;	0/ a sequence
converging locally uniformly to F: If �r 2 LD.I/, then �r ı F�1

r 2 LD.I0/ with

I0.y/ D inf
x2F�1.y/

I.x/:

Proposition 7.2.5 (Sanov’s Theorem) Assume that X1;X2; : : : are i.i.d. random
variables with values in a Polish space E and probability distribution � 2 P.E/.
Denote by dW2 the 2-Wasserstein metric in P.E/. It is well known that .P.E/; dW2 /

is also a Polish space (see [122, Theorem 6.18, p. 104]).We consider a sequence of

probability measures �r D 1
r

rP
jD1
ıXj 2 P.P.E//. Then f�rg 2 LD.I/ with the rate

function I.�/ W P.E/ ! Œ0;1� defined by

I.
/ D
(

DKL.
k�/; if 
 � �

1; else.

Proposition 7.2.6 (Cramér’s Theorem) Assume that X1;X2; : : : are i.i.d. random
variables with common distribution 
. Let �r be the distribution of the sample mean
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Yr D X1C:::CXr
r . Denote by ƒ.
/ WD log E.e
X1 / the logarithmic moment generating

function associated with 
 andƒ�.x/ D sup
2R f
x �ƒ.
/g the Legendre–Fenchel
transform of ƒ.
/. Then, f�ng 2 LD.ƒ�/.

Example 7.2.1 Here are some illustrative examples for Cramér’s and Sanov’s
theorems (see [101, pp. 144–147]):

1. If the i.i.d. sequence of random variables fXig are normally distributed with mean
� and variance �2, i.e. Xi 	 N.�; �2/, then

ƒ.
/ D �
C 1

2
�2
2; .
 2 R/

and

ƒ�.x/ D .x � �/2
2�2

; .x 2 R/:

It is easy to see that

DKL.N.x; �
2/kN.�; �2// D

Z

R

�
1p
2��

e� .y�x/2

2�2

�
log

�
1p
2��

e� .y�x/2

2�2

�

�
1p
2��

e� .y��/2

2�2

�dy

(7.2.1)

D
Z

R

�
1p
2��

e� .y�x/2

2�2

��
.y � �/2

2�2
� .y � x/2

2�2

�
dy

(7.2.2)

D ƒ�.x/: (7.2.3)

2. If the i.i.d. sequence of random variables fXig are Poisson distributed with
parameter � > 0, i.e. Xi 	 Poisson.�/, then

ƒ.
/ D �.e
 � 1/; .
 2 R/

and

ƒ�.x/ D
(
� � x C x log. x

�
/ if x � 0;

1 else:
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It is easily seen that

DKL.Poisson.x/kPoisson.�// D

8
<̂

:̂

1P
kD0

e�x xk

kŠ log
e�x xk

kŠ

e�� �k
kŠ

; if x � 0

1; else
(7.2.4)

D ƒ�.x/: (7.2.5)

3. If the i.i.d. sequence of random variables fXig is Bernoulli distributed with
parameter p 2 .0; 1/, i.e. Xi 	 Bernoulli.p/, then

ƒ.
/ D log.pe
 C 1 � p/; .
 2 R/;

and

ƒ�.x/ D
(

x log. x
p /C .1 � x/ log. 1�x

1�p / if x 2 Œ0; 1�;
1 else:

It is easy to see that

ƒ�.x/ D DKL.Bernoulli.x/kBernoulli.p//:

7.3 LDP for a Sequence of �-Scaled Wright–Fisher Processes

In this section we first show that �-scaled Wright–Fisher processes are �-processes,
in the terminology of Wentzell [124, p. 20]. We then recall Wentzell’s theory for
finding an action functional for a sequence of such processes, which immediately
yields the rate functional as well as the speed function for the large deviation
principle of the sequence. We also briefly mention the techniques of Papangelou
in treating the singularity problem on the boundary. Finally we systematically
reconstruct minimizers for action functionals for the various Wright–Fisher models.

7.3.1 �-Processes

We consider here a diploid Wright–Fisher population of N individuals with n C
1 types of alleles fA0; : : : ;Ang with mutation and selection. Let the mutation rate
from Ai to Aj be �ij and the fitness for genotype AiAj be 1 C �ij. We denote by Zi

m
the relative frequency of allele Ai at generation m for i D 0; : : : ; n and also write
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Zm D .Z1m; : : : ;Z
n
m/. We then have a Markov chain fZmgm2N0 with the state space

�
.2N/
n WD

(
.z1; : : : ; zn/ D

�
i1

2N
; : : : ;

in

2N

�
W i1 2 N0; : : : ; i

n 2 N0 and
nX

kD1

ik � 2N

)
;

and the transition probability given by

P
�

ZmC1 D Qz
ˇ̌
ˇZm D z

�
D .2N/Š

.2NQz0/Š : : : .2NQzn/Š

nY

kD0

�
 
.ms/
k .z/

�jk
; .z; Qz 2 �.2N/

n ;m 2 N0/;

where Qz0 D 1 �
nP

kD1
Qzk and  .ms/

0 .z/ D 1 �
nP

kD1
 
.ms/
k .z/ with

 
.ms/
k .z/ D

 
.m/
k .z/

nP
lD0
.1C �kl/ 

.m/
l .z/

nP
i;jD0

.1C �ij/ 
.m/
i .z/ .m/j .z/

; k D 1; : : : ; n (7.3.6)

and

 
.m/
k .z/ D zk

0

@1 �
X

l¤k

�kl

1

AC
X

l¤k

zl�lk; k D 1; : : : ; n: (7.3.7)

Remark This model implies that we allow mutations, and then selection before
random sampling with replacements in each generation takes places.

Now, for each r D 1; 2; : : : ; following the method of Papangelou, see for
example, [97], we consider its 1

r -scaled chain, i.e. a time continuous Markov chain

fX.r/t gt�0 with X.r/t D ZŒrt�. Assume further that mutations and selection are small
with order of 1

r , i.e.

�ij D �ij

r
; and �ij D sij

r
:

Then the transition probability at jumps is

Px;y D P
�

XtC 1
r

D y
ˇ̌
ˇXt D x

�
D .2N/Š

.2Ny0/Š : : : .2Nyn/Š

nY

kD0

�
 
.ms/
k .x/

�2Nyk

;

.x; y 2 �.2N/
n ; t � 0/
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with

 
.ms/
i .x/ D xi C bi.x/

r
C o

�
1

r

�
; (7.3.8)

where

bi.x/ D �
� nX

jD0
�ij

�
xi C

nX

jD0
�jix

j C xi

 
nX

jD0
sijx

j �
nX

k;lD0
sklx

kxl

!
:

This implies that X.r/t is piecewise constant in �
.2N/
n with jumps at times t D

k
r ; k 2 N0 and each unit time of the chain fX.r/t gt is equivalent to r generations in

the chain fZmgm. These processes fX.r/t gt are called �-processes (see [124, p. 20]).

Remark In case of r D 2N, it is well known that for kN
2N ! t as N ! 1,

the sequence of discrete Wright–Fisher processes

	
X.2N/

kN
2N



converges to a Wright–

Fisher diffusion process fXtgt on every bounded set of times as N ! 1.

7.3.2 Wentzell Theory for �-Processes

In this subsection, we fix T > 0 and look for the large deviation principle for a
sequence of �-processes fX.r/gr2N0 with sample paths in ƒ.Œ0;T�I�n/. We recall
Wentzell theory (see [124, Chap. 3]) for finding the action functional in the setting of
variational problems and derive then the rate functional on the basis of the following
remark:

Remark That arS0;T.�/ W ƒ.Œ0;T�I�n/ ! Œ0;1� is the action functional (see
[124, pp. 4–5] ) for fX.r/gr2N0 as r ! 1 is equivalent to fX.r/gr2N0 satisfying
the large deviation principle with a good rate functional S0;T and speed ar, i.e.
fX.r/g 2 LD.S0;T ; farg/.

We start with notation.

ƒ.Œ0; T�I�n/ WD f'W Œ0; T� ! �n is càdlàg, i.e. paths are right continuous and have left limitsg;
ƒp;q.Œ0; T�I�n/ WD f' 2 ƒ.Œ0; T�I�n/ W '.0/ D p; '.T/ D qg;
ƒAC.Œ0; T�I�n/ WD f'W Œ0; T� ! �n W absolutely continuousg;
ƒAC

p;q.Œ0; T�I�n/ WD f' 2 ƒAC.Œ0; T�I�n/ W '.0/ D p; '.T/ D qg:
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From [124, p. 27], we have the definition of the cumulant generating function of
a Markov chain:

Definition 7.3.1 For a sequence of Markov chains fX.r/t gt�0 in the state spaces

�n WD
(

x D .x1; : : : ; xn/ 2 R
n�0 W

nX

kD1
xk � 1

)
;

the cumulant generating function is

Gr.x; z/ D r log Ex

n
exp

h
z �
�

X.r/1
r

� x
�io

; .x 2 �n; z 2 R
n/:

Therefore,

lim
r!1.ar/

�1Gr.x; arz/ D lim
r!1.ar/

�1r log Ex

n
exp

h
arz �

�
X.r/1

r
� x
�io

D lim
r!1

8
<̂

:̂
�rx � z C .ar/

�1r log

2

64
X

y2�.2N/
n

exp Œarz � y�Px;y

3

75

9
>=

>;

D lim
r!1

(
� rx � z C .ar/

�1r log

"
X

y2�.2N/
n

.2N/Š

.2Ny0/Š : : : .2Nyn/Š

�
 
.ms/
0 .x/

�2Ny0

�
nY

kD1

�
e

zk
r  

.ms/
k .x/

�2Nyk

#)

D lim
r!1

8
<

:�rx � z C .ar/
�1r log

2

4
 
 
.ms/
0 .x/C

nX

kD1
e

zk
r  

.ms/
k .x/

!2N
3

5

9
=

;

D lim
r!1

(
�rx � z C r2 log

"
1C

nX

kD1

�
e

zk
r � 1

�
 
.ms/
k .x/

#)

D 1

2
z � A.x/z C b.x/ � z DW G.x; z/;

where

A.x/ D �
aij.x/

�n

i;jD1 D �
xi.ıij � xj/

�n

i;jD1 :
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The Legendre–Fenchel transform of G.x; z/ is

H.x; u/ D sup
z
Œz � u � G.x; z/� D 1

2
.u � b.x// � A�1.x/.u � b.x//; .x 2 �n; u 2 R

n/

(7.3.9)

D 1

2
ku � b.x//k2g; (7.3.10)

where we consider the Riemannian manifold .�n; g/ with the Fisher information
metric

gij.x/ D ıij

xi
C 1

x0
; for i; j D 1; : : : d:

Then, from the results of Wentzell for �-processes [124, Theorem 3.2.3’, p. 68]
as well as techniques of Papangelou for treating the singularity at the boundary (see,
e.g., [96]), we obtain the main proposition:

Proposition 7.3.1 Assume that ar D N
r ! 1 as r ! 1. Then arS0;T is the action

functional for fX.r/gr2N0 as r ! 1, where the normalized action functional S0;T is
defined by

S0;T.x/ WD
( R T

0 H.x.t/; Px.t//dt if x 2 ƒAC.Œ0;T�I�n/;

1 otherwise

D

8
<̂

:̂

1
2

TR

0

kPx.t/ � b.x.t//k2gdt if x 2 ƒAC.Œ0;T�I�n/;

1 otherwise.

(7.3.11)

In other words, we have

S0;T.x/ D � lim
ı!0

lim
r!1

r

N
log P

�
jX.r/t � x.t/j < ı for all t 2 Œ0;T�

�
: (7.3.12)

Remark

1. Assume that S0;T vanishes at Ox.�/, (this also means that Ox.�/ is the minimum of
S0;T ) then Eq. (7.3.12) implies that the process fX.r/g will asymptotically follow
the path Ox.�/. This may be considered as the law of large numbers for paths.

2. In case b.x/ D 0, i.e. if there is only random genetic drift, the minimizers of S0;T
are precisely the Fisher metric geodesics with constant speed.

3. In case b.x/ D 0, if we fix endpoints, i.e. sample paths of fX.r/g in
ƒp;q.Œ0;T�I�n/, then, asymptotically, when the path X.r/.t/ starts at p and ends
at q, then with overwhelming probability, it has followed the shortest geodesic
w.r.t. the Fisher metric betweens its start and end point.

4. In case b.x/ D 0, if we fix the start point at p, we have the following results of
Papangelou [99, 100] about the large deviation theory for fX.r/T gr.
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Proposition 7.3.2 (Theorem 1 in [100]) Let K be a closed subset of�n, F a closed
subset of�n and G a subset of�n open in the relative topology of�n. Then, for any
T > 0, we obtain fX.r/T g 2 LD.Sp;T ; farg;K/ with

Sp;T.q/ D 2

T

"
arccos

 
nX

kD0

p
pkqk

!#2
:

Moreover, when lim
r!1

ar
r D 1, we have the lower estimate for the large deviation

on the boundary (see Theorem 8.2.2 in [99]):

Proposition 7.3.3 Let T > 0. If lim
r!1

ar
r D 1, then for every subset G 
 @�n

which is open in �@�n
, we have fX.r/T g 2 LDl;G.Sp;T ; farg/.

7.3.3 Minimum of the Action Functional Sp;q.�/

In this subsection, we consider fX.r/gr with sample pathsƒp;q.Œ0;T�I�n/ and would
like to find minima for the action functionals Sp;q.�/ for the various Wright–Fisher
models. In general, from the Euler–Lagrange equation, we conclude that if x is an
extremal curve, then

xkHxk � H D gij.x/
�
ıik Pxi.Pxj � bj.x//C ıjk Pxk.Pxi � bi.x//� .Pxi � bi.x//.Pxj � bj.x//

�

D gij.x/.Pxi Pxj � bi.x/bj.x//

D kPxk2g � kb.x/k2g
D c for some constant c:

(7.3.13)

Remark The geometric idea behind finding the extremal curve is the following. In
case of b.x/ D 0, the extremal curve is simply the geodesic curve with respect to
the Fisher information metric. When b.x/ does not vanish, the extremal curve is
a perturbation of that geodesic curve. More precisely, it is the solution of a non-
homogeneous geodesic equation in which the non-homogeneous part comes from
the evolutionary forces b.x/. In one dimension, the variational problem is

( R T
0

H.x.t/; Px.t//dt ! min for x.�/ 2 ƒp;q.Œ0;T�I .0; 1//;
x.0/ D p; x.T/ D q;
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where the Lagrangian is

H.x; Px/ D 1

2
g.x/.Px � b.x//2

with g.x/ D 1
x.1�x/ .

The Euler–Lagrange equation can be rewritten in the form

2g.x/
�

Rx C �111.g.x//Px2
�

D 2b.x/b0.x/g.x/C b2.x/g0.x/; (7.3.14)

where �111.g.x// D g0.x/
2g.x/ is the Christoffel force (see Sect. 3.11), the symbol � means

a derivative with respect to time t whereas 0 stands for a derivative with respect to
the coordinate x.)

This implies that

d

dt

�
Px2g.x/

�
D 2PxRxg.x/C Px2g0.x/Px D 2g.x/

�
Rx C �111.g.x//Px2

�
Px

D
�
2b.x/b0.x/g.x/C b2.x/g0.x/

�
Px D d

dt

�
b2.x/g.x/

�
;

which implies that Px2g.x/ � b2.x/g.x/ D c as in Eq. (7.3.13). On the other hand,
Eq. (7.3.14) is

Rx C �111.g.x//Px2 D b.x/b0.x/C b2.x/
2x � 1
2x.1 � x/

WD F.x/; (7.3.15)

a non-homogeneous geodesic equation. It becomes a geodesic equation if F.x/ D 0,
i.e., b.x/ D 0 or b.x/ D cC 1

2
ln x.1�x/ (the latter case does not occur in population

genetics where b.x/ should be a polynomial). By the transformation y D 2 arcsin
p

x
(Fisher’s angular transformation, see [5]), i.e., dy D p

g.x/dx is the Riemannian
volume measure with the Fisher information metric, Eq. (7.3.15) is transformed
into the simpler form Ry D pQg.y/ QF.y/ WD G.y/ with Qg.y/ D g.x/ and QF.y/ D F.x/.

Two Alleles Case Without Mutations and Selection

In this case we have n D 1, b.x/ D 0 and

g.x/ D 1

x
C 1

1 � x
D 1

x.1 � x/
:
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Fig. 7.1 T D 0:5; p D 0:16; q D 0:64, x.t/ D sin2
�
.1� 2t/ arcsin

p
0:16C 2t arcsin

p
0:64

�

It follows from (7.3.13) that each extremal x of S0;T.x/ satisfies

Px.t/2
x.t/.1 � x.t//

� c; t 2 Œ0;T� .for some constant c/:

Therefore, by taking the square root on both sides and integrating from 0 to t, we
obtain

2 arcsin
p

x.s/
ˇ̌
ˇ
t

0
D p

ct:

Combining this with the boundary condition x.0/ D p; x.T/ D q, we obtain (see
Fig. 7.1)

x.t/ D sin2
�T � t

T
arcsin

p
p C t

T
arcsin

p
q
�
:

Two Alleles Case with One-Way Mutation

In this case we have n D 1, b.x/ D ��0x WD �x, (�1 D 0/ and

g.x/ D 1

x
C 1

1 � x
D 1

x.1 � x/
:

It follows from (7.3.13) that each extremal x of S0;T.x/ satisfies

Px.t/2 � �2x.t/2
x.t/.1 � x.t//

� c; t 2 Œ0;T� .for some constant c/:
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This implies that

Px.t/2 D .�2 � c/x.t/2 C cx.t/ for t 2 Œ0;T�:

Now put g.c; x/ D .�2�c/x2Ccx D �2x2Ccx.1�x/ and, without loss of generality,
assume that p � q. Then, we see that c should be found such that g.c; x/ � 0 for all

x 2 Œp; q�. It is easy to see that c � c0 WD �2q
q�1 and g.c; x/ % 1 as c ! 1. Put

G.c; x/ D
xZ

p

dup
g.c; u/

:

We note that the quantity

T D T.p; q; c/ D
qZ

p

dup
g.c; u/

(7.3.16)

has nontrivial derivative with respect to c, i.e.

@cT D �1
2

qZ

p

u.1� u/du

g.c; u/3=2
¤ 0:

Therefore, there is a unique Nc D Nc.p; q;T/ which solves Eq. (7.3.16). For this Nc, we
define

HNc.x/ D
xZ

dup
g.Nc; u/ :

Then we have t D HNc.x.t// � HNc.p/ and T D HNc.q/� HNc.p/, which implies that

HNc.x.t// D T � t

T
HNc.p/C t

T
HNc.q/:

Since @xHNc.x/ D 1p
g.Nc;x/ > 0, then HNc is invertible and we immediately obtain the

minimum

x.t/ D H�1Nc
�T � t

T
HNc.p/C t

T
HNc.q/

�
:



184 7 Large Deviation Theory

Remark In the case of two alleles without mutations or selection, HNc.x/ D
2 arcsin

p
x and H�1Nc .y/ D sin2 y

2
. Then the minimum curve is

x.t/ D H�1Nc
�T � t

T
HNc.p/C t

T
HNc.q/

�

D H�1Nc
�T � t

T
2 arcsin

p
p C t

T
2 arcsin

p
q
�

D sin2
�T � t

T
arcsin

p
p C t

T
arcsin

p
q
�
:

(7.3.17)

Remark The behavior of x.t/ will depend on Nc D Nc.p; q;T/.
1. If Nc D �2, then the minimum curve is of parabolic type. In this case, the

equality (7.3.16) becomes

T D
qZ

p

du

�
p

u
D 2

�
.
p

q � p
p/: (7.3.18)

This means that if p; q;T satisfy the above relation (7.3.18), then we have Nc D �2

and we easily obtain HNc.x/ D 2
�

p
x and H�1Nc .y/ D �2

4
y2.

This yields the minimum curve

x.t/ D H�1Nc
�T � t

T
HNc.p/C t

T
HNc.q/

�

D H�1Nc
�T � t

T

2

�

p
p C t

T

2

�

p
q
�

D
�T � t

T

p
p C t

T

p
q
�2
;

(7.3.19)

which is of parabolic type (see Fig. 7.2).
2. If Nc > �2, then the minimum curve is of trigonometric (co)sine type. In this case,

the equality (7.3.16) becomes

T D
qZ

p

dup�.Nc � �2/u2 C Ncu

D 1pNc � �2

 
arcsin

�2.Nc � �2/q
Nc � 1

�
� arcsin

�2.Nc � �2/p

Nc � 1
�!
:

(7.3.20)
Then, we easily obtain

HNc.x/ D 1
pNc � �2 arcsin

 
2.Nc � �2/x

Nc � 1
!
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Fig. 7.2 T D 0:5; � D 2; Nc D 4 D �2; p D 1
16
; q D 9

16
; x.t/ D

�
.1�2t/ 1

4
C.2t/ 3

4

�2 D . 1
4

�t/2

and

H�1Nc .y/ D Nc
2.Nc � �2/

 
sin
�p

Nc � �2y
�

C 1

!

This implies the minimum curve

x.t/ D H�1Nc
�T � t

T
HNc.p/C t

T
HNc.q/

�

D H�1
Nc

 
T � t

T

1
pNc � �2

arcsin
�2.Nc � �2/p

Nc � 1
�

C t

T

1pNc � �2
arcsin

�2.Nc � �2/q
Nc � 1

�!

D Nc
2.Nc � �2/

"
1C sin

 
T � t

T
arcsin

�2.Nc � �2/p

Nc � 1
�

C t

T
arcsin

�2.Nc � �2/q
Nc � 1

�!#
;

(7.3.21)

which is of trigonometric (co)sine type (see Fig. 7.3).
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Fig. 7.3 T D 0:5; � D 1; Nc D 10 > �2; p D 1
16
; q D 3

4
; x.t/ D 5

9

"
1C sin

 
.1� 2t/ arcsin

�
�

71
80

�
C 2t arcsin

�
7
20

�!#

3. If Nc < �2, then the minimum curve is of hyperbolic cosine type. In this case, the
equality (7.3.16) becomes

T D
qZ

p

du
p
.�2 � Nc/u2 C Ncu

D 1p
�2 � Nc

 
ln
�p

�2 � Ncq C Nc
2
p
�2 � Nc C

p
.�2 � Nc/q2 C Ncq

�

� ln
�p

�2 � Ncp C Nc
2
p
�2 � Nc C

p
.�2 � Nc/p2 C Ncp

�!
:

(7.3.22)
Then we easily obtain

HNc.x/ D 1p
�2 � Nc ln

 
p
�2 � Ncx C Nc

2
p
�2 � Nc C

p
.�2 � Nc/x2 C Ncx

!

and

H�1Nc .y/ D Nc
2.�2 � Nc/

 
cosh

�p
�2 � Ncy � ˛

�
� 1

!
;
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where

˛ D ln
� Nc
2
p
�2 � Nc

�
:

This implies the minimum curve

x.t/ D H�1
Nc

�T � t

T
H

Nc.p/C t

T
H

Nc.q/
�

D H�1
Nc

"
T � t

T

1p
�2 � Nc ln

 
p
�2 � Ncp C Nc

2
p
�2 � Nc C

p
.�2 � Nc/p2 C Ncp

!

C t

T

1p
�2 � Nc ln

 
p
�2 � Ncq C Nc

2
p
�2 � Nc C

p
.�2 � Nc/q2 C Ncq

!#

D Nc
2.�2 � Nc/

"
cosh

 
T � t

T
ln
�p

�2 � Ncp C Nc
2
p
�2 � Nc C

p
.�2 � Nc/p2 C Ncp

�

C t

T
ln
�p

�2 � Ncq C Nc
2
p
�2 � Nc C

p
.�2 � Nc/q2 C Ncq

�
� ˛

!
� 1

#
;

(7.3.23)
which is of hyperbolic cosine type (see Fig. 7.4).

Two Alleles Case with Two-Way Mutation

In this case we have n D 1, b.x/ D �1 � .�0 C �1/x and

g.x/ D 1

x
C 1

1 � x
D 1

x.1 � x/
:

It follows from (7.3.13) that each extremal x of S0;T.x/ satisfies

Px.t/2 �
�
�1 � .�0 C �1/x.t/

�2

x.t/.1 � x.t//
� c; t 2 Œ0;T� .for some constant c/:

It implies that for all t 2 Œ0;T�
Px.t/2 D .�1�.�0C�1/x.t//2Ccx.t/.1�x.t// D �

.�0C�1/2�c
�
x2C�c�2�1.�0C�1/

�
xC�21 :

Put g.c; x/ D �
.�0 C �1/

2 � c
�
x2 C �

c � 2�1.�0 C �1/
�
x C �21 . Without loss of

generality, we assume that p � q. Then, we see that c should be found such that
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Fig. 7.4 T D 0:5; � D p
10; Nc D 1 < �2; p D 1

9
; q D 1

3
; x.t/ D 1

18

"
cosh

 
.1 � 2t/ ln. 1

2
C

q
2
9
/C 2t ln. 7

6
C
q

4
3
/� ln 1

6

!
� 1

#

g.c; x/ � 0 for all x 2 Œp; q�. It is easy to see that c � c0 WD
�

� .�1�.�0C�1/p/2
p.1�p/

�
_

�
� .�1�.�0C�1/q/2

q.1�q/

�
and g.c; x/ % 1 as c ! 1. Put

G.c; x/ D
xZ

p

du
p

g.c; u/

We note that the quantity

T D T.p; q; c/ D
qZ

p

dup
g.c; u/

(7.3.24)

has nontrivial derivative with respect to c, i.e.

@cT D �1
2

qZ

p

u.1� u/du

g.c; u/3=2
¤ 0:
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Therefore there is a unique Nc D Nc.p; q;T/ which solves Eq. (7.3.24). For this Nc, we
define

HNc.x/ D
xZ

dup
g.Nc; u/ :

Then we have t D HNc.x.t// � HNc.p/ and T D HNc.q/� HNc.p/, which implies that

HNc.x.t// D T � t

T
HNc.p/C t

T
HNc.q/:

Because @xHNc.x/ D 1p
g.Nc;x/ > 0 then HNc is invertible and we immediately obtain

the minimum

x.t/ D H�1
Nc
�T � t

T
HNc.p/C t

T
HNc.q/

�
:

Then, the behavior of x.t/ will depend on Nc D Nc.p; q;T/ and similar to the one-
way mutation case, we easily obtain

1. If Nc D .�0C�1/2, then the minimum curve is of linear or parabolic type depending
on whether �0 is equal to �1 or not. In this case, the equality (7.3.24) becomes

T D
qZ

p

duq
.�20 � �21 /x C �21

D
8
<

:

q�p
�1
; if �0 D �1

2

�20��21

�q
.�20 � �21 /q C �21 �

q
.�20 � �21 /p C �21

�
; otherwise

(7.3.25)

Thus, if p; q;T satisfy the above relation (7.3.25), then we have Nc D .�0C�1/2
and we obtain

HNc.x/ D
8
<

:

x
�1
; if �1 D �0

2

�20��21

q
.�20 � �21 /x C �21 ; otherwise

and

H�1
Nc .y/ D

8
<

:
�1y; if �1 D �0
�20��21
4

y2 � �21
�20��21 ; otherwise.
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Fig. 7.5 T D 0:5; �0 D �1 D 0:6; Nc D 1:44 D .�0 C �1/
2; p D 0:4; q D 0:7 [i.e. .p; q; T/

satisfy (7.3.25)], x.t/ D .1� 2t/0:4C .2t/0:7 D 0:4C 0:6t

It implies the minimum curve

x.t/ D H�1
Nc

�T � t

T
H

Nc.p/C t

T
H

Nc.q/
�

D
8
<

:

T�t
T p C t

T q; if �1 D �0

1

�20��21

�
T�t

T

q
.�20 � �21 /p C �21 C t

T

q
.�20 � �21 /q C �21

�2 � �21
�20��21

; otherwise

(7.3.26)
which is of linear or parabolic type (see Figs. 7.5 and 7.6).

2. If Nc > .�0 C �1/
2, then the minimum curve is of trigonometric (co)sine type. In

this case, the equality (7.3.24) becomes

T D
qZ

p

dup
g.Nc; u/

D 1

k

 
arcsin

kq � b
kq

b2

k2
C �21

� arcsin
kp � b

kq
b2

k2
C �21

!
;

(7.3.27)
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Fig. 7.6 T D 0:5; �1 D 1; �0 D p
3; Nc D .1 C p

3/2; p D 13
72
; q D 8

9
[i.e. .p; q; T/

satisfy (7.3.25)], x.t/ D 1
2
. 7
6

C t/2 � 1
2

where

k2 D Nc � .�0 C �1/
2; b D Nc

2
� �1.�0 C �1/:

Then, we easily obtain

HNc.x/ D 1

k
arcsin

kx � b
kq

b2

k2
C �21

and

H�1
Nc .y/ D

q
b2

k2
C �21

k
sin ky C b

k2
:
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Fig. 7.7 T D 0:5; � D 1; Nc D 10 > �2; p D 1
16
; q D 3

4
; x.t/ D 5

9

"
1C sin

 
.1� 2t/ arcsin

�
�

71
80

�
C 2t arcsin

�
7
20

�!#

This implies the minimum curve

x.t/ D H�1Nc
�T � t

T
HNc.p/C t

T
HNc.q/

�

D H�1Nc

 
T � t

T

1

k
arcsin

kp � b
kq

b2

k2
C �21

C t

T

1

k
arcsin

kq � b
kq

b2

k2
C �21

!

D
q

b2

k2
C �21

k
sin

 
T � t

T
arcsin

kp � b
kq

b2

k2
C �21

C t

T
arcsin

kq � b
kq

b2

k2
C �21

!
C b

k2
;

(7.3.28)
which is of trigonometric (co)sine type (see Fig. 7.7).

3. If Nc < .�0 C �1/
2, then the minimum curve is of hyperbolic cosine or hyperbolic

sine or exponential type depending on Nc.4�0�1�c/ < 0; > 0 or D 0, respectively.
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In this case, the equality (7.3.24) becomes

T D
qZ

p

dup
g.Nc; u/

D 1

k

"
ln

 
kq C b

k
C
s
�

kq C b

k

�2 C �21 � b2

k2

!

� ln

 
kp C b

k
C
s
�

kp C b

k

�2 C �21 � b2

k2

!#

(7.3.29)

where

k2 D .�0 C �1/
2 � Nc; b D Nc

2
� �1.�0 C �1/:

Then we easily obtain

HNc.x/ D 1

k
ln

 
kx C b

k
C
s
�

kx C b

k

�2 C �21 � b2

k2

!

and

H�1Nc .y/ D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1
k

 
e˛ cosh.ky � ˛/ � b

k

!
if c.�0�1 � c/ < 0;

1
k

 
e˛ sinh.ky � ˛/ � b

k

!
if c.�0�1 � c/ > 0;

1
2k eky � b

k2
if c.�0�1 � c/ D 0;

where

˛ D
8
<

:

1
2

ln
�

b2

k2
� �21

�
if c.�0�1 � c/ < 0;

1
2

ln
�

� b2

k2
C �21

�
if c.�0�1 � c/ > 0:

This implies the minimum curve

x.t/ D H�1Nc
�T � t

T
HNc.p/C t

T
HNc.q/

�
; (7.3.30)

which is of hyperbolic cosine type (see Fig. 7.8).
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Fig. 7.8 T D 0:5; � D p
10; Nc D 1 < �2; p D 1

9
; q D 1

3
; x.t/ D 1

18

"
cosh

 
.1 � 2t/ ln. 1

2
C

q
2
9
/C 2t ln. 7

6
C
q

4
3
/� ln 1

6

!
� 1

#



Chapter 8
The Forward Equation

In this chapter, we treat the Kolmogorov forward equation for the diffusion
approximation of the .nC1/-allelic 1-locus Wright–Fisher model, without mutation
and selection. We recall the basic definitions.

Lnu.x; t/ WD 1

2

nX

i;jD1

@2

@xi@xj

�
xi.ıi

j � xj/u.x; t/
�

(8.0.1)

is the forward operator (cf. also Sect. 2.9). The Kolmogorov forward equation then
is

(
@
@t u.x; t/ D Lnu.x; t/ in .�n/1 D �n � .0;1/

u.x; 0/ D f .x/ in �n; f 2 L2.�n/
(8.0.2)

for u. � ; t/ 2 C2.�n/ for each fixed t 2 .0;1/ and u.x; � / 2 C1..0;1// for each
fixed x 2 �n. Also, we have the backward operator

L�
n u.x; t/ � Au.x; t/ D 1

2

nX

i;jD1
aij.x/

@2

@xi@xj
u.x; t/C

nX

iD1
bi.x/

@

@xi
u.x; t/: (8.0.3)

Furthermore, we shall need

!k.x/ WD
kY

iD0
xi D x1x2 � � � xk

 
1 �

kX

jD1
xj

!
:
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196 8 The Forward Equation

8.1 Eigenvalues and Eigenfunctions

We shall start our solution scheme with expansions in terms of the eigenvalues
and eigenfunctions of the forward and backward Kolmogorov operators, i.e., of
L and L�. In this section, we shall therefore determine these eigenvalues and
eigenfunctions.

For later purposes, we shall present these results not only for the top-dimensional
simplex �n, but also for all simplices �k, as these results are the same in all
dimensions. In particular, the subsequent formulae will then apply to the various
boundary strata @k�n. The corresponding index scheme will be used throughout:
n refers to the top-dimensional component (corresponding to n C 1 alleles in the
Wright–Fisher model), whereas for any (specific) boundary stratum of dimension
smaller than n, we usually use k.

We shall construct solutions of the forward and backward Kolmogorov equations
by the method of separation of variables. That is, we first consider a solution of
(4.2.10),

ut D Lku in �k (8.1.1)

of the form

u.x; t/ D X.x/T.t/: (8.1.2)

This entails

Tt

T
D LkX

X
D �
 : (8.1.3)


 then is a constant1 which is independent of T;X. From Proposition (8.1.4) below,
we shall then obtain the local2 solution of Eq. (8.1.1) as a linear combination

uk.x; t/ D
1X

mD0

X

j˛jDm

cm;˛Xm;˛.x/e
�
mt;

where


m D .k C m/.k C m C 1/

2

1The convention with the minus sign is used to make the eigenvalues nonnegative, as Lk is a
nonpositive operator.
2“Local” here means that the boundary conditions are not yet included.
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is the eigenvalue of Lk and

Xm;˛.x/; j˛j D m

are the corresponding eigenvectors of Lk. We now enter the details. The reader
should be alerted to the fact that the same construction will in fact work on every
face of our simplex �k. Later, on each such face, we shall have to compare the
process inherited from�k with the corresponding intrinsic process on that face with
fewer alleles. We shall subsequently utilize this principle for building up a global
solution from the local solutions on �k and on all its faces.

Proposition 8.1.1 For each multi-index ˛ D .˛1; : : : ; ˛k/ with j˛j D ˛1 C � � � C
˛k D m, the polynomial of degree m in k variables x D .x1; : : : ; xk/ in �k

Xm;˛.x/ D x˛ C
X

jˇj<m

am;ˇxˇ; (8.1.4)

where the am;ˇ are inductively defined by

am;˛ D 1; am;ˇ D 0; 8ˇ ¤ ˛ with jˇj D m;

am;ˇ D �

kP
iD1
.ˇi C 2/.ˇi C 1/am;ˇCei

.m � jˇj/.m C jˇj C 2k C 1/
; 8jˇj < m;

is an eigenvector of Lk for the eigenvalue 
m D .mCk/.mCkC1/
2

.

Proof We have

LXm;˛.x/ D 1

2

X

i

@2

.@xi/2

"
xi.1� xi/

�
x˛ C

X

jˇj<m

am;ˇxˇ
�#

�
X

i¤j

@2

@xi@xj

"
xixj
�

x˛ C
X

jˇj<m

am;ˇxˇ
�#

D 1

2

X

i

@2

.@xi/2

"
x˛Cei � x˛C2ei C

X

jˇj<m

am;ˇxˇCei

�
X

jˇj<m

am;ˇxˇC2ei

#

�
X

i¤j

@2

@xi@xj

"
x˛CeiCej C

X

jˇj<m

am;ˇxˇCeiCej

#



198 8 The Forward Equation

D 1

2

X

i

"
.˛i C 1/˛ix˛�ei � .˛i C 2/.˛i C 1/x˛

C
X

jˇj<m

.ˇi C 1/ˇiam;ˇxˇ�ei �
X

jˇj<m

.ˇi C 2/.ˇi C 1/am;ˇxˇ

#

�
X

i¤j

"
.˛i C 1/.˛j C 1/x˛ C

X

jˇj<m

.ˇi C 1/.ˇj C 1/am;ˇxˇ

#

D
"

� 1

2

X

i

.˛i C 2/.˛i C 1/ �
X

i¤j

.˛i C 1/.˛j C 1/

#
x˛

C 1

2

X

i

.˛i C 1/˛ix˛�ei C 1

2

X

i

X

jˇj<m

.ˇi C 1/ˇiam;ˇxˇ�ei

C
X

jˇj<m

"
� 1

2

X

i

.ˇi C 2/.ˇi C 1/ �
X

i¤j

.ˇi C 1/.ˇj C 1/

#
am;ˇxˇ

D
"

� 1

2

�X

i

˛i C k
��X

i

˛i C k C 1
�#

x˛

C 1

2

X

j�j<mC1

X

i

.� i C 1/� iam;� x��ei ( here am;� D 0 for j�j D m and � ¤ ˛/

C
X

jˇj<m

"
� 1

2

�X

i

ˇi C k
��X

i

ˇi C k C 1
�#

am;ˇxˇ

D � .m C k/.m C k C 1/

2
x˛

C 1

2

X

jˇj<m

X

i

.ˇi C 2/.ˇi C 1/am;ˇCeix
ˇ

�
X

jˇj<m

.jˇj C k/.jˇj C k C 1/

2
am;ˇxˇ

By equating coefficients we obtain the eigenvalue


m D .m C k/.m C k C 1/

2
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and

am;ˇ D �

kP
iD1
.ˇi C 2/.ˇi C 1/am;ˇCei

.m � jˇj/.m C jˇj C 2k C 1/
; 8jˇj < m:

This completes the proof. ut
Remark For k D 1, Xm;m.x1/ is the mth Gegenbauer polynomial (up to a constant).
Thus, the polynomials Xm;˛.x1; : : : ; xk/ can be considered as generalizations of the
Gegenbauer polynomials to higher dimensions.

The following propositions describe the relations between the two operators.

Proposition 8.1.2 If X 2 C1.�k/ is an eigenvector of Lk corresponding to 
 then
!kX is an eigenvector of L�

k for the same eigenvalue 
.

Proof Looking for a function !k with L�
k .!ku/ D !kLk.u/ (and hence for Lk-

eigenfunctions ' consequently L�
k .!k'/ D !kLk.'/ D 
!k'), we have on the one

hand

Lku D �k.k C 1/

2
u C

X

i

.1 � .k C 1/xi/
@

@xi
u C 1

2

X

i;j

xi.ıi
j � xj/

@

@xi

@

@xj
u

(8.1.5)

and

L�
k .!ku/ D 1

2

X

i;j

xi.ıi
j � xj/

@

@xi

@

@xj
u (8.1.6)

D 1

2

X

i;j

xi.ıi
j � xj/

�� @
@xi

@

@xj
!k

�
u C 2

@

@xj
!k

@

@xi
u C !k

@

@xi

@

@xj
u
�

(8.1.7)

on the other hand. Thus, it is sufficient if such a function !k satisfies

(P
i;j xi.ıi

j � xj/ @
@xi

@
@xj!k D �k.k C 1/!kP

j xi.ıi
j � xj/ @

@xj!k D .1 � .k C 1/xi/!k for all i;
(8.1.8)

which is the case for !k as can easily be verified by direct computation. ut
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Proposition 8.1.3 Let 
 be the exterior unit normal vector of the domain�k. Then
we have

X

j

aij
 j D 0 (8.1.9)

for each i on the corresponding boundary simplex.

Proof In fact, on the surface .xs D 0/, for some s 2 f1; : : : ; kg we have 
 D �es,
and hence

P
j

aij
 j D �ais D �xs.ısi � xi/ D 0. On the surface .x0 D 0/ we have


 D 1p
k
.e1 C : : :C ek/, hence

P
j

aij
 j D 1p
k

P
j

aij D 1p
k
xix0 D 0. This completes

the proof. ut
Proposition 8.1.4 Lk and L�

k are (formal) adjoints in the sense that

.LkX;Z/ D .X;L�
k Z/ for all X 2 Hk;Z 2 H0

k :

Proof We put Fi.x/ WD P
j

@.aij.x/X.x//
@xj . Since Z vanishes on the boundary of our

simplex, we can use the second Green formula and Proposition 8.1.3 to obtain

.LkX;Z/ D 1

2

X

i;j

Z

@k�n

@2.aij.x/X.x//

@xi@xj
Z.x/d

k.x/

D 1

2

X

i

Z

@k�n

@Fi.x/

@xi
Z.x/d

k.x/

D 1

2

X

i

Z

@.@k�n/

Fi.x/
iZ.x/d

k�1.x/� 1

2

X

i

Z

@k�n

Fi.x/
@Z.x/

@xi
d

k.x/

(8.1.10)

D �1
2

X

i

Z

@k�n

Fi.x/
@Z.x/

@xi
d

k.x/

D �1
2

X

i;j

Z

@k�n

@.aij.x/X.x//

@xj

@Z.x/

@xi
d

k.x/

D �1
2

X

i;j

Z

@.@k�n/

aij.x/
jX.x/
@Z.x/

@xi
d

k�1.x/C �

X;L�
k Z
�

D �
X;L�

k Z
�
:

ut
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More generally, from the preceding proof, in particular (8.1.10), we obtain

Proposition 8.1.5

.LkX;Y/ D .X;L�
k Y/C 1

2

Z

@.@k�n/

YF � 
d

k�1 for all X;Y 2 Hk: (8.1.11)

Proposition 8.1.6 fXm;˛gm�0;j˛jDm is a basis of L2.�k/ for which the members
corresponding to different eigenvalues are orthogonal with respect to the weight
!k, i.e.,

�
Xm;˛; !kXj;ˇ

� D 0; 8j ¤ m; j˛j D m; jˇj D j:

Proof The proof is standard. fXm;˛gm�0;j˛jDm is a basis of L2.�k/ because
fx˛g˛ is a basis of this space. To prove the orthogonality we apply the
Propositions 8.1.1, 8.1.2, 8.1.4 (noting that !k vanishes on the boundary of �k)
as follows

�
m
�
Xm;˛; !kXj;ˇ

� D �
LkXm;˛; !kXj;ˇ

�

D �
Xm;˛;L

�
k .!kXj;ˇ/

�

D � 
j
�
Xm;˛; !kXj;ˇ

�

Because 
m ¤ 
j, this finishes the proof. ut
Proposition 8.1.7 The spectra of the operators Lk and L�

k , where in the latter case
we require vanishing boundary values, are

Spec.Lk/ D Spec.L�
k / D

[

m�0

	

m D .m C k/.m C k C 1/

2



DW ƒk

and the eigenvectors of Lk corresponding to 
m are linear combinations of the Xm;˛,
and those of L�

k are linear combinations of the !kXm;˛. Hence, the eigenspace
corresponding to 
m is of dimension

�kCm�1
k�1

�
. In addition, L�

k possesses the
eigenvalue 0 with eigenfunctions 1 and pi; i D 1; : : : ; k.

Proof For Lk, this follows from Proposition 8.1.1 and the fact that the Xm;˛ consti-
tute a basis by Proposition 8.1.3. For L�

k , this then follows from Proposition 8.1.4.
ut

From the fXm;˛g, we can then construct a basis fYm;˛g of L2.�k/ of eigenfunc-
tions of Lk for the eigenvalues 
m with

�
Ym;˛; !kYj;ˇ

� D
(
1 if m D j;˛ D ˇ;

0 else.
(8.1.12)
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Let us summarize the findings of this section. We have obtained all the eigenvalues
and eigenvectors of Lk and L�

k . The idea of the method was quite simple. Since
we are taking the partial derivatives w.r.t. xi and xj of a function multiplied by
�xixj, we should expect the eigenfunctions to be polynomials. Moreover, by this
simple algebraic observation, we should be able to have any monomial x˛ as the
leading term. For the lower terms, we then can determine the appropriate coefficients
recursively. In particular, since the monomials x˛ constitute an L2-basis of our
function space, so then should these eigenfunctions. Thus, we can be sure to find all
of them by this method. Moreover, since the problem is invariant under permutations
of the alleles, the eigenspaces should be representation spaces for this permutation
group. In particular, this yields the multiplicities of the eigenspaces. More simply,
the multiplicity of the eigenvalue 
m can also be obtained by counting how many
different monomials there are for degree m in k variables.

Finally, we have observed that the operators Lk and L�
k are formal adjoints. In fact,

in the proof of Proposition 8.1.4, one of the boundary terms arising from integration
by parts vanishes because suitable coefficients aij vanish on the boundary, whereas
the other boundary term vanished by assumption. Below, we shall investigate the
relationship between these operators for arbitrary boundary values.

As a consequence of our results about the eigenvalues and eigenfunctions of the
operators Lk and L�

k , we can write down local solutions for the forward and backward
Kolmogorov equations as expansions in terms of the eigenfunctions. We shall now
move on to the construction of global solutions by combining the local solutions in
the interior of the simplex �k and on all of its boundary simplices.

8.2 A Local Solution for the Kolmogorov Forward Equation

Knowing the eigenfunctions as constructed in Proposition 8.1.1, it is straightforward
to reconstruct the local solution of [14, 80] (for details cf. [113, 118]).

Proposition 8.2.1 For n 2 N and any initial condition f 2 L2.�n/, the Kolmogorov
forward equation corresponding to the diffusion approximation of the n-dimensional
Wright–Fisher model (8.0.2) always allows a unique solution uW ��n

�
1 �! R with

u 2 C1.�n � .0;1//. Furthermore, this solution (and all its spatial derivatives)
may be extended continuously to the boundary @�n.

The regularity, which follows from the regularity of the generalized Gegenbauer
polynomials (see the discussion in Sect. A.1, in particular Proposition A.1.1), of
course agrees with standard PDE theory (cf. e.g. [72]).

Thus, we know the existence (and uniqueness) of a solution in the interior �n.
The more difficult question is the behavior of the process near the boundary. After
all, the appropriate inclusion of the boundary in terms of a probability density
describing the entire evolution of the process is crucial for a complete account of
the model. Thus, we will establish a solution scheme which includes the behavior
of the process on the boundary. For this purpose, we have to extend the solution to
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the boundary in a regular manner. More precisely, we want an extension of at least
class C2 with respect to the spatial variables. In the interior, we have the regularity
result of Proposition 8.2.1. In order to start the investigation of the regularity at the
boundary, we observe that by the proposition, the solution and its spatial derivatives
extend continuously to @�n.

8.3 Moments and the Weak Formulation of the Kolmogorov
Forward Equation

The solution of Eq. (8.0.2) in �n lacks conservation properties: As the smallest
eigenvalue of Ln is 
.n/0 D n.nC1/

2
> 0, a solution vanishes everywhere in �n for

t ! 1, which in particular implies that the total mass and other moments are not
preserved. However, again these properties are an important aspect of the validity of
the model, and what disappears in the interior of the simplex should accumulate in
its boundary. After all, the process should continue after the loss of one or several
alleles. We shall therefore introduce a suitable extended solution on the entire �n.
This solution will be derived from the conservation of the moments of the process.

The moments of the n-dimensional process as obtained as limits of those from
the underlying discrete model satisfy the moment evolution equations (2.3.17)

@

@t
m˛.t/ D �j˛j.j˛j � 1/

2
m˛.t/C

nX

iD1

˛i.˛i � 1/
2

m˛�ei.t/; (8.3.13)

for ˛ D .˛1; : : : ; ˛n/, j˛j � 1, whereas @
@t m0.t/ D 0 (with ei denoting the multi-

index .0; : : : ; 0; 1; 0; : : : ; 0/ with 1 appearing at the i-th position). These moments
can be defined as

m˛.t/ WD �
U; x˛



n

�
nX

kD0

Z

@k�n

U.x; t/x˛ 

k.dx/; (8.3.14)

for t � 0, ˛ D .˛1; : : : ; ˛n/. Here, we utilize the hierarchical product as introduced
in Eq. (2.11.21). This now involves an integration over �n, that is, including
the boundary @�n of the state space, which corresponds to configurations of the
model where some allele frequencies may be zero. Correspondingly, the capitalized
UW .�n/1 �! R is introduced as an extended solution which is assumed to be
the probability density function of the diffusion approximation of the n-dimensional
Wright–Fisher process on the entire �n (thus in particular Uj�n is a solution of the
Kolmogorov forward equation (8.0.2) in �n).

We shall now discuss the consistency between the moment evolution equa-
tion (8.3.13) and the Kolmogorov backward operator L� in �n as defined in
Eq. (8.0.3); however, the following considerations also hold for a generic product
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Œ � ; � �: Since L� has polynomial coefficients, it maps polynomials to polynomials,
and we have

L�x˛ D 1

2

nX

i;jD1

�
xi.ıi

j � xj/
� @2

@xi@xj
x˛

D 1

2

nX

iD1
˛i.˛i � 1/.x˛�ei � x˛/ � 1

2

X

i¤j

˛i˛jx
˛

D 1

2

nX

iD1
˛i.˛i � 1/x˛�ei � 1

2
j˛j.j˛j � 1/x˛ for x 2 �n; (8.3.15)

which yields, using the notation of Eq. (8.3.14),

�
U.t/;L�

n x˛



n
D 1

2

nX

iD1
˛i.˛i � 1/m˛�ei.t/ � 1

2
j˛j.j˛j � 1/m˛.t/ (8.3.16)

with the right-hand side being equal to that of Eq. (8.3.13). Thus, if the moments
equation is satisfied for some probability density function U, we may equivalently
write

@

@t
m˛.t/ D

�
@

@t
U.t/; x˛

�

n

D �
U.t/;L�

n x˛



n
for t 2 .0;1/: (8.3.17)

Since the x˛ generate the space of all polynomials and since the polynomials are
dense in C1, we therefore also have such relations for arbitrary test functions ',

�
@

@t
U.t/; '

�

n

D �
U.t/;L�

n'



n
for ' 2 C1.�n/ and all t 2 .0;1/: (8.3.18)

This is our weak formulation of the Kolmogorov forward equation (8.0.2). We may
also write the initial condition3 weakly as

�
U. � ; 0/; '


n
D �

f ; '



n
for all ' 2 C1.�n/; (8.3.19)

which requires no explicit regularity towards the boundary (yet, we will need that
its restriction to interior strata is continuously extendable to the corresponding

3As the integration is over�n, f may now also be formulated as an extended initial condition on the
entire �n. Then, f j@�n ¤ 0 would correspond to the process (partially) already starting on certain
boundary strata. However, since there can be flux into the boundary, but not from the boundary into
the interior (alleles can get lost, but then cannot reappear), these boundary contributions will not
affect our considerations. For this reason, we will usually assume f j@�n 	 0 or that f is extended
that way if it is only given on �n.
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boundary). Only, an integrability condition applies, which is U. � ; t/; @
@t U. � ; t/; f 2

L2
�Sn

kD0 @k�n
�

for t � 0.
Summarizing our findings, we have:

Lemma 8.3.1 A function UW ��n
�

1 �! R, U. � ; t/; @
@t U. � ; t/ 2 L2

�Sn
kD0 @k�n

�

for t � 0 with corresponding moments m˛.t/ D ŒU.t/; x˛�n, ˛ D .˛1; : : : ; ˛n/, t � 0

satisfying the moment evolution equation (8.3.13) also solves the weak formulation
of the Kolmogorov forward equation (8.3.18) and conversely.

8.4 The Hierarchical Solution

The operator L�
n , if restricted to subsimplices �.l/

k Š �k of �n of any dimension k,
coincides with the corresponding differential operator L�

k for that simplex:

Lemma 8.4.1 L�
n satisfies

L�
n

ˇ̌
�k

D L�
k : (8.4.1)

Proof We consider
�k D �

.i0;:::;ik/
k D f.x1; : : : ; xn/

ˇ̌
xi > 0 for i D i0; : : : ; ik; xi D 0 else;

Pn
iD0 xi D

1g.

L�
n

ˇ̌
�k

D 1

2

nX

i;jD1

�
xi.ıi

j � xj/
� @2

@xi@xj

ˇ̌
ˇ
�k

(8.4.2)

D 1

2

X

i;jDi0;:::;ik

�
xi.ıi

j � xj/
� @2

@xi@xj
� L�

k

ut
We may therefore omit the index k in L�

k whenever convenient.
In contrast, the operator Ln does not satisfy such a restriction property: If

restricted to some �k D �
.i0;:::;ik/
k , it does not correspond to Lk, which describes

a .k C 1/-allelic process in �k. We rather have

Lnu.x; t/ D �n.n C 1/

2
u.x; t/C

nX

iD1
.1 � .n C 1/xi/

@

@xi
u.x; t/C L�

n u.x; t/

(8.4.3)

This expanded equation may be interpreted as follows. In order to obtain the
boundary relations for Ln, we need to go through the adjoint operator L�

N which
differs from Ln by a first and zero order term. The second order derivatives (D L�

n )
then represent the contribution of diffusion, while the first order derivatives may be
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interpreted as (directed) drift from the center
�

1
nC1 ; : : : ;

1
nC1

�
of�n to the boundary.

The reaction term � n.nC1/
2

u expresses the total loss of mass due to the flux into
the boundary (see Proposition 8.1.5). Now restricting Eq. (8.4.3) to some �n�1 by
putting xk D 0 for some k and subtracting the corresponding equation for Ln�1 on
�n�1, we obtain

.Ln � Ln�1/u.x; t/
ˇ̌
�n�1

D �nu.x; t/C
X

i¤k

.�xi/
@

@xi
u.x; t/C @

@xk
u.x; t/: (8.4.4)

Thus, a distribution on �n�1 inherited from the process on the higher-dimensional
simplex�n satisfies a different differential equation. On one hand, we see additional
first order derivatives, which may be interpreted as the flux from the interior of �n

into its boundary part�n�1. On the other hand, we have an additional reaction term
with the factor �n, which arises from the larger number of possibilities to lose an
allele in the higher-dimensional solution.

We now wish to construct a global solution by piecing together the local solutions
on the various open simplices, from the top-dimensional simplex �n, to the trivial
solution at the corners�.fjg/

0 ; j D 0; : : : ; n. We shall utilize the results of Sect. 8.1.
On the basis of (8.3.18), we now explicitly formulate the definition of our

solution

Definition 8.4.1 u 2 H is a solution of the forward Kolmogorov (or Fokker–
Planck) equation associated with the Wright–Fisher model if

ut D Lnu in �n � .0;1/; (8.4.5)

u.x; 0/ D ıx0 .x/ in �nI (8.4.6)

Œut; '�n D Œu;L�
n'�n; 8' 2 Hn: (8.4.7)

In fact, this definition is somewhat redundant, as (8.4.7), the weak formulation
(8.3.18) introduced above, already implies (8.4.5). Nevertheless, it might be helpful
for understanding the meaning of the definition to include the latter equation
explicitly.

We shall make the fundamental ansatz of representing a solution as a super-
position of solutions of the form (8.1.3). We can then use the eigenvalues 

and the corresponding eigenfunctions, the generalized Gegenbauer polynomials,
determined in Sect. 8.1.

Step 1: We start with the general local solution, i.e., the solution of (8.4.5), on the
open simplex�n which by Proposition 8.1.4 [recalling (8.1.12)] is of the form

un.x; t/ D
1X

mD0

X

j˛jDm

c.n/m;˛Y.n/m;˛.x/e
�
.n/m t;
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with coefficients c.n/m;˛, where


.n/m D .n C m/.n C m C 1/

2

is an eigenvalue of Ln and

Y.n/m;˛.x/; j˛j D m

are the corresponding eigenvectors of Ln.
For m � 0; jˇj D m, we conclude from Proposition 8.1.2 that

L�
n

�
!nY.n/m;ˇ

�
D �
.n/m !nY.n/m;ˇ :

It follows that the moment condition

Œut; !nY.n/m;ˇ�n D
h
u;L�

n

�
!nY.n/m;ˇ

�i

n

is satisfied for the !nY.n/m;ˇ , hence for all smooth functions vanishing on the boundary
of �n. Therefore, because !n vanishes on the boundary,

.un; !nY.n/m;ˇ/n D .un.�; 0/; !nY.n/m;ˇ/ne�
.n/m t

D !n.x0/Y
.n/
m;ˇ.x0/e

�
.n/m t:

We can thus determine the coefficients by the initial condition. In fact,

!n.x0/Y
.n/
m;ˇ.x0/e

�
.n/m t D .un; !nY.n/m;ˇ/n

D
X

j˛jDm

c.n/m;˛.Y
.n/
m;˛; !nY.n/m;ˇ/ne�
.n/m t;

and hence with (8.1.12)

c.n/m;˛ D !n.x0/Y
.n/
m;˛.x0/:

Step 2: We now make the ansatz for the global solution u 2 H, i.e., satisfying all
the conditions in Definition 8.4.1, in particular (8.4.7),

u.x; t/ D
nX

kD0
uk.x; t/�@k�n.x/: (8.4.8)

Here, �@k�n is the characteristic function of @k�n.
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We use the condition (8.4.7) to iteratively obtain the values of uk; k D n �
1; : : : ; 0. The solution un in the interior of the simplex �n is already known from
Step 1. We next turn to un�1, the solution on the .n � 1/-dimensional faces. For
instance, let us consider u.f0;:::;n�1g/

n�1 .x1; � � � ; xn�1; 0; t/.
We note that, if we choose

'.x/ D x1 � � � xnY.n�1/
k;ˇ .x1; : : : ; xn�1/; jˇj D k:

then '.x/ vanishes on all faces except for the face�.f0;:::;n�1g/
n�1 . Therefore,

Œu; '�n D .un; '/n C .u.f0;:::;n�1g/
n�1 ; '/n�1: (8.4.9)

The left hand side can be calculated easily by the condition (8.4.7)

Œut; '�n D Œu;L�
n .'/�n D �
.n�1/

k Œu; '�n: (8.4.10)

It follows that

Œu; '�n D '.x0/e
�
.n�1/

k t:

Since we have already determined un, the first part of the right hand side of (8.4.9)
is

.un; '/n D
X

m;˛

c.n/m;˛

 Z

�n

Y.n/m;˛.x/'.x/dx

!
e�
.n/m t:

Therefore we can then determine the coefficients c.n�1/
m;l;˛ in the expansion of

u.f0;:::;n�1g/
n�1 .x1; � � � ; xn�1; 0; t/.

Similarly we shall obtain un�1 on the other faces. Iteratively, we shall obtain all
uk; k D n � 1; : : : ; 0. Thus, we obtain the global solution

u.x; t/ D
nX

kD0
uk�@k�n.x/

D
nX

kD0

X

m�0

X

l�0

X

j˛jDl

c.k/m;l;˛Y.k/l;˛ .x/e
�
.k/m t�@k�n.x/:

(8.4.11)

By construction, u is a solution of our Kolmogorov forward (Fokker–Planck)
equation.
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Step 3: This solution is unique. In fact, if u1; u2 are two solutions, then u D u1�u2
will satisfy

ut D Lnu in �n � .0;1/;

u.x; 0/ D 0 in �nI
Œut; '�n D Œu;L�'�n; 8' 2 Hn:

It follows that

Œut; 1�n D Œu;L�
n .1/�n D 0;

Œut; x
i�n D Œu;L�

n .x
i/�n D 0;

Œut; !
.fi0;:::;ikg/
k Y.k/j;˛ �n D Œu;L�

n .!
.fi0;:::;ikg/
k Y.k/j;˛ /�n

D Œu;L�
k .!

.fi0;:::;ikg/
k Y.k/j;˛ /�n

D �
.k/j Œu; !
.fi0;:::;ikg/
k Y.k/j;˛ �n:

Therefore

Œu; 1�n D Œu.�; 0/; 1�n D 0;

Œu; xi�n D Œu.�; 0/; xi�n D 0;

Œu; !.fi0;:::;ikg/
k Y.k/j;˛��.fi0;:::;ikg/

k
�n D Œu.�; 0/; !.fi0;:::;ikg/

k Y.k/j;˛��.fi0;:::;ikg/
k

�ne�
.k/j t D 0:

Since
n
1;
˚
xi
�

i
; f!.fi0;:::;ikg/

k Y.k/j;˛��k
.fi0;:::;ikg/g1�k�n;fi0;:::;ikg;j�0;j˛jDj

o
is also a basis of

Hn it follows that u D 0 2 H.
In conclusion, we have established

Theorem 8.4.1 The forward Kolmogorov (Fokker Planck) equation associated with
the Wright–Fisher model with n C 1 alleles possesses the unique solution

u.x; t/ D
nX

kD0
uk�@k�n.x/

D
nX

kD0

X

m�0

X

l�0

X

j˛jDl

c.k/m;l;˛Y.k/l;˛ .x/e
�
.k/m t�@k�n.x/:

(8.4.12)
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8.5 The Boundary Flux and a Hierarchical Extension
of Solutions

We shall now investigate the flux from the interior into the boundary in more detail.
This will also yield an alternative proof of the existence and uniqueness of a global
solution of the Kolmogorov forward equation.

In order to construct suitable boundary values as required for an extended
solution UW ��n

�
1 �! R, we shall now introduce the concept of the boundary

flux. The investigation of the boundary flux as the basis for a hierarchical solution
scheme is the main technical contribution of this chapter.

The flux GuW .�n/1 �! R
n of a solution uW .�n/1 �! R

n of Eq. (8.0.2) is
given in terms of its components

Gi
u.x; t/ WD �1

2

nX

jD1

@

@xj
.xi.ıi

j � xj/u.x; t// D �1
2

nX

jD1

@

@xj
.aiju.x; t//; i D 1; : : : ; n:

(8.5.13)

Again, this concept directly extends to boundary strata of�n if u is extendable to the
boundary such that the extension is of class C2 with respect to the spatial variables
(which is the case for a solution as in Proposition 8.2.1).

The boundary flux is related to the Kolmogorov forward operator via

div Gu D
nX

iD1

@

@xi
Gi

u D �Lnu D �ut; (8.5.14)

and therefore, it shall naturally appear in integration by parts formulae. In particular,
we can now extend the adjointness relation for the Kolmogorov operators Ln and L�

n
of Proposition 8.1.4 to the case of non-vanishing boundary terms.

Proposition 8.5.1 For n 2 NC and u; ' 2 C2
�
�n
�
, we have

.Lnu; '/n D �
Z

@n�1�n

' Gu � 
 d

n�1 C .u;L�
n'/n (8.5.15)

where .:; :/n is the L2-product (see (2.11.20)), Gu is the boundary flux of u and 
 is
the outward unit normal vector to @�n.

Proof For a domain	 with piecewise continuous boundary @	 and u; ' 2 C1.	/,
we have the integration by parts formula

Z

	

@u

@xi
' d	 D

Z

@	

'u 
 i d@	 �
Z

	

u
@'

@xi
d	; (8.5.16)
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where 
 i is the i-th component of the outward unit normal vector to @	. This yields

.Lnu; '/n D �
Z

�n

X

i

@

@xi
Gi

u' d

n

D �
Z

@�n

X

i

Gi
u


i' d

n�1 C
Z

�n

X

i

Gi
u

@

@xi
' d

n: (8.5.17)

Since
Sn�2

kD0 @k�n is a null set with respect to 

n�1, it suffices to evaluate the
boundary integral on @n�1�n. We then integrate the last term once more by parts
(again, with a boundary integral on @n�1�n):

Z

�n

X

i

Gi
u

@

@xi
' d

n D �

Z

@n�1�n

1

2

X

i;j

xi.ıi
j � xj/u
 j @

@xi
' d

n�1

C
Z

�n

1

2

X

i;j

aiju
@2

@xi@xj
' d

n: (8.5.18)

We have @n�1�n D Sn
lD0 �

.Innflg/
n�1 , and 
 j D �ıj

l on �.Innflg/
n�1 ; l D 1; : : : ; n and


 j D 1p
n

on�.Innf0g/
n�1 , which yields

X

j

xi.ıi
j � xj/u
 j D �xi.ıi

l � xl/u D 0 on �.Innflg/
n�1 D ˚

xl D 0
�

(8.5.19)

and

X

j

xi.ıi
j � xj/u
 j D 1p

n

X

j

xi.ıi
j � xj/u

D 1p
n

xi
�
1 �

X

j

xj
�

u D 0 on �.Innf0g/
n�1 D

n
1 �

X

j

xj D 0
o
:

(8.5.20)
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Thus, the boundary integral in (8.5.18) vanishes. From (8.5.17) and (8.5.18), we
therefore obtain

.Lnu; '/n D �
Z

@n�1�n

X

i

Gi
u


i' d

n�1 C
Z

�n

u
1

2

X

i;j

aij @2

@xi@xj
' d

n (8.5.21)

D �
Z

@n�1�n

Gu � 
' d

n�1 C .u;L�
n'/n:

ut
We now want to integrate (8.5.15) over time. If 'W�n �! R is a polynomial of

degree less than 2, we have L�' D 0. Integrating the flux Gu on @n�1�n over time as
boundary values for a solution u of Eq. (8.0.2) (resp. for its continuous extension to
@�n), Proposition 8.5.1 already yields the behavior for the 0th and the 1st moment
which is prescribed by the moment evolution equation (8.3.14). Thus, the total mass
and the expectation value of the process are preserved.

This concept of a solution in�n plus accumulated flux on the boundary @n�1�n,
however, does not yet suffice for our purposes. It does not yield the desired evolution
laws for moments of degree 2 or higher, nor does @n�1�n account for the full
boundary @�n. To resolve this, instead of accumulating the incoming flux on @n�1�n

for n � 2 statically, we assume that it rather evolves as if it were an .n � 1/-
dimensional Wright–Fisher process, i.e. as a subsolution on @n�1�n. We therefore
consider the boundary flux on the next lower strata, that is, on @n�2�n�1. We then
iterate the construction to go down to lower and lower dimensional strata. This leads
us to

Definition 8.5.1 For �.In/
n with In D f0; 1; : : : ; ng and a solution uW ��.In/

n
�

1 �!
R of the Kolmogorov forward equation (8.0.2) for given f W�.In/

n �! R as in
Proposition 8.2.1, a hierarchical extension

UW ��.In/
n
�

1 �! R with U.x; t/ WD
nX

kD0
Uk.x; t/�@k�

.In/
n
.x/ (8.5.22)

is given by

UkW
�
@k�

.In/
n

�
1�! R with Uk.x; t/ WD

8
ˆ̂<

ˆ̂:

u.x; t/ for x 2 �.In/
n � @n�

.In/
n

Uk;Ik .x; t/ for x 2 �.Ik/
k � @k�

.In/
n ; Ik � In

0 else

(8.5.23)
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for all 0 � k � n and

Uk;Ik W
�
�
.Ik/
k

�
1 �! R with Uk;Ik .x; t/ WD

tZ

0

u�k;Ik
.x; t � �/ d� (8.5.24)

for 0 � k � n � 1 and for all subsets Ik � In. Here, u�k;Ik
.x; t/W ��.Ik/

k

�
1 �! R is a

solution of
8
<

:
Lku.x; t/ D @

@t u.x; t/ .x; t/ 2 ��.Ik/
k

�
1

u.x; 0/ D P
IkC1
Ik

G?
UkC1;IkC1

.x; �/ x 2 �.Ik/
k

(8.5.25)

for all � > 0 as in Proposition 8.2.1 and G?
UkC1;IkC1

is the normal component of the

flux of the continuous extension of UkC1;IkC1
to �

.IkC1/

kC1 .

Remark 8.5.1 It is important to realize that for a solution u of Eq. (8.0.2), the
induced boundary functions Uk on @k�

.In/
n for 0 � k � n � 1 in general do not

satisfy the equation @
@t Uk D LkUk in some �.Ik/

k � @k�
.In/
n and therefore are not

solutions of the corresponding k-dimensional problem (8.0.2) in�.Ik/
k . This equation

is an intrinsic equation on�.Ik/
k � @k�

.In/
n , but the Uk here contain not only intrinsic

contributions of those boundary strata, but also include what flows in from higher
dimensional strata.

8.6 An Application of the Hierarchical Scheme

For the hierarchically extended solution and the product Œ � ; � �n, we may now
continue the line of reasoning of Propositions 8.1.4 and 8.5.1.

Proposition 8.6.1 A hierarchical extension UW ��.In/
n
�

1 �! R (cf. Defini-
tion 8.5.1) of a solution u of the Kolmogorov forward equation (8.0.2) in �n

satisfies the weak formulation (8.3.18), that is,

�
@

@t
U.t/; '

�

n

D �
U.t/;L�'



n

(8.6.26)

for ' 2 C1��.In/
n
�

and for all t 2 .0;1/.
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Proof By Proposition 8.5.1 we have for Un � u and arbitrary ' 2 C1��.In/
n
�

�
@

@t
Un; '

�

n

D �
LnUn; '

�
n

D �
Z

@n�1�
.In/
n

' G?
Un

d

n�1 C �
Un;L

�
n'
�

n
(8.6.27)

with G?
Un

D GUn � 
 denoting the (normal) flux of the continuous extension of Un

to @n�1�.In/
n . The boundary integral may be expressed in terms of the evolution of

the boundary function Un�1 that lives on @n�1�.In/
n . As this implies a hierarchical

dependence on the particular subprocesses, we directly start our consideration for
arbitrary k 2 f1; : : : ; ng. Then we have by Proposition 8.5.1 and for all Ik � In

Z

�
.Ik /
k

.LkUk;Ik /' d

k D �
Z

@k�1�
.Ik/
k

' G?
Uk;Ik

d

k�1 C
Z

�
.Ik /
k

Uk;Ik L�
k ' d

k (8.6.28)

where GUk;Ik
again denotes the flux of the continuous extension of Uk;Ik to @k�1�.Ik/

k

(not to be confused with the proper boundary function Uk�1 on @k�1�.In/
n ). In

order to account for the whole k-dimensional boundary @k�
.In/
n of �.In/

n , we simply
sum over all �.Ik/

k � @k�
.In/
n resp. all subsets Ik � In. This yields (because ofS

Ik�In
�
.Ik/
k D @k�

.In/
n and the definition of Uk)

Z

@k�
.In/
n

.LkUk/' d

k D
X

Ik�In

Z

@k�1�
.Ik/
k

' G?
Uk;Ik

d

k�1 C
Z

@k�
.In/
n

UkL�
k ' d

k: (8.6.29)

Transforming the boundary term using
S

Ik�In
@k�1�.Ik/

k D S
Ik�1�In

�
.Ik�1/
k�1 and

employing the product notation, we get

�
LkUk; '

�
k

D
X

Ik�1�In

Z

�
.Ik�1/
k�1

'
X

Ik
Ik�1

G?
Uk;Ik

d

k�1 C �
Uk;L

�
k '
�

k
: (8.6.30)

Now, the sum of fluxes appearing here may be expressed in terms of the evolution
of the associated boundary function Uk�1;Ik�1 on �.Ik�1/

k�1 for every Ik�1 � In. By the
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chain rule, we have on �.Ik�1/
k�1

@

@t
Uk�1;Ik�1 .x; t/ D @

@t

tZ

0

u�k�1;Ik�1
.x; t � �/ d�

D u�k�1;Ik�1
.x; t � �/ˇ̌

�Dt C
tZ

0

@

@t
u�k�1;Ik�1

.x; t � �/ d�

D ut
k�1;Ik�1

.x; 0/C
tZ

0

Lk�1u�k�1;Ik�1
.x; t � �/ (8.6.31)

by the solution property of u�k�1;Ik�1
. Interchanging Lk�1 with the �-integration and

substituting ut
k�1;Ik�1

.x; 0/ by the initial values as prescribed altogether yields

�
X

Ik
Ik�1

G?
Uk;Ik

.x; t/ D � @

@t
Uk�1;Ik�1 .x; t/C Lk�1Uk�1;Ik�1 .x; t/: (8.6.32)

Multiplying this with ', integrating over �.Ik�1/
k�1 and summing over all Ik�1 � In

results in

�
X

Ik�1�In

Z

�
.Ik�1/

k�1

'
X

Ik
Ik�1

G?
Uk;Ik

d

k�1

D �
X

Ik�1�In

Z

�
.Ik�1/

k�1

'
@

@t
Uk�1;Ik�1 d

k�1 C

X

Ik�1�In

Z

�
.Ik�1/

k�1

' Lk�1Uk�1;Ik�1 d

k�1

D �
�
@

@t
Uk�1; '

�

k�1
C �

Lk�1Uk�1; '
�

k�1 (8.6.33)

because of
S

Ik�1�In
�
.Ik�1/
k�1 D @k�1�.In/

n . Combining this with Eq. (8.6.30), we get

�
LkUk; '

�
k D �

�
@

@t
Uk�1; '

�

k�1
C �

Lk�1Uk�1; '
�

k�1 C �
Uk;L

�
k '
�

k; (8.6.34)
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which—by assumption—holds for all k 2 f1; : : : ; ng. Hence, this formula may be
iterated over k, yielding

�
@

@t
Un; '

�

n

D �
LnUn; '

�
n

,
�
@

@t
Un; '

�

n

C
�
@

@t
Un�1; '

�

n�1
D �

Un;L
�
n'
�

n
C �

Ln�1Un�1; '
�

n�1

:::

,
nX

kD0

�
@

@t
Uk; '

�

k

D
nX

kD1

�
Uk;L

�
k '
�

k
C �

L0U0; '
�
0
:

(8.6.35)

The last summand on the right-hand side may (formally) be replaced by
�
U0;L�

0 '
�
0

as they both vanish due to L0 D L�
0 D 0, thus proving the assertion. ut

By Lemma 8.3.1 we immediately obtain:

Corollary 8.6.1 All moments m˛.t/, t � 0 as defined in Eq. (8.3.14) of a

hierarchical extension UW ��.In/
n
�

1 �! R (cf. Definition 8.5.1) of a solution u
of the Kolmogorov forward equation (8.0.2) in �n satisfy the moment evolution
equation (8.3.13).

Proof For ' D 1 and ' D xi, we have L�.'/ D 0, thus by Eq. (8.6.26)

nX

kD0

�
@

@t
Uk; '

�

k

D 0:

ut
Thus, the hierarchical extension of a solution of the Kolmogorov forward

equation (8.0.2) via the flux of the solution yields the ‘right’ boundary values on the
entire @�n in the sense that all moments of the process defined via the hierarchical
product Œ � ; � �n in Eq. (8.3.14) do behave like the limit of the moments of the original
discrete processes. This also justifies our choice of the hierarchical product Œ � ; � �n.

Moreover, we may show that any extension of a solution of the Kolmogorov
forward equation (8.0.2) to �n that yields the correct moments already coincides
with the hierarchical extension as in Definition 8.5.1. This is due to Lemma 8.3.1
and the following proposition:

Proposition 8.6.2 For any initial condition f 2 L2.�n/, a solution UW ��n
�

1 �!
R of the weak Kolmogorov forward equation (8.3.18) is uniquely defined on �n.
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Corollary 8.6.2 For any initial condition f 2 L2.�n/, a solution UW ��n
�

1 �! R

of the weak Kolmogorov forward equation (8.3.18) coincides with the hierarchical
extension UW ��n

�
1 �! R (cf. Definition 8.5.1) of a solution u of the (strong)

Kolmogorov forward equation (8.0.2) in �n.

For the proof of Proposition 8.6.2, we need the following lemma:

Lemma 8.6.1 The linear span of
˚
!n' 2 C1

0

�
�n
�ˇ̌
' eigenfunction of Ln

�
is dense

in C1
c .�n/.

Proof From Proposition 8.1.1 we already see that the linear combinations of the
eigenfunctions of Ln are dense in C1.�n/. Dividing a function f 2 C1

c .�n/ by !n

(cf. Proposition 8.1.2) again yields a function in C1
c .�n/ � C1

0 .�n/ as !n is in
C1
0 .�n/ itself and positive in the interior �n. ut

Proof of Proposition 8.6.2 Assume that U0W ��n
�

1 �! R is another solution of
Eq. (8.3.18) for a given initial condition f . We need to show that U and U0 agree on
all @k�n � �n for k D n; : : : ; 0. We start with @n�n � �n. For an eigenfunction' 2
C1.�n/ of Ln (corresponding to the eigenvalue 
), we obtain by Proposition 8.1.2
that  WD !n' is an eigenfunction of L�

n corresponding to the eigenvalue 
 and,
by the properties of !n, that  2 C1

0 .�n/. For such a  , the weak Kolmogorov
forward equation (8.3.18) then reduces to

�
@

@t
U;  

�

n

D .U;L�
n /n � �
.U;  /n (8.6.36)

and

�
@

@t
U0;  

�

n

D .U0;L�
n /n � �
.U0;  /n (8.6.37)

respectively. Integrating these differential equations yields

.U.t/;  /n D e�
t.U.0/;  /n; (8.6.38)

.U0.t/;  /n D e�
t.U0.0/;  /n; (8.6.39)

and since U.0/ D U0.0/ D f

.U.t/;  /n D .U0.t/;  /n for t � 0 (8.6.40)

and for all eigenfunctions  . Since the linear span of these functions is dense in
C1

c .�n/ (cf. Lemma 8.6.1), U and U0 agree in �n, indeed.
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Now, we proceed inductively. Assume that we have already shown that U and U0
agree on all @k�n � �n with k > m. Then for an eigenfunction 'W�m �! R of
Lm (corresponding to the eigenvalue 
), then, see Proposition 8.1.7,  WD !m' is
an eigenfunction of L�

m corresponding to the same eigenvalue 
 and  2 C1
0 .�m/.

Given such a  W�m �! R, we may construct a function W�.In/
n �! R as follows.

We copy  to �.Im/
m � @m�n for all Im � In and form convex combinations of the

boundary values to extend it to all higher dimensional (boundary) strata, and we put
 WD 0 on all lower dimensional boundary strata. Of course,  is in general not
an eigenfunction of L� in �n, but we still have .L� /

ˇ̌
�
.Im/
m

D L�
m D �
 for all

�
.Im/
m � @�n.
For such a  , the weak Kolmogorov forward equation (8.3.18) is converted into

�
@

@t
U;  

�

m

D ��U;L�
n 
�

m
C

nX

kDmC1

��
@

@t
U;  

�

k

� �
U;L�

k 
�

k

�
(8.6.41)

and

�
@

@t
U0;  

�

m

D ��U0;L�
n 
�

m
C

nX

kDmC1

��
@

@t
U0;  

�

k

� �
U0;L�

k 
�

k

�
(8.6.42)

where the sums on the right are the same as U D U0 on all @k�n with k > m, hence

�
@

@t
.U � U0/;  

�

m

D �
U0 � U;L�

n 
�

m
� 


�
U0 � U;  

�
m
; (8.6.43)

which yields—analogously to our considerations above—U D U0 in @m�n on
account of the completeness of the  ’s and the initial condition. ut

Thus, with the additional assumption that the moments of the process coincide
with the limits of the moments of the underlying discrete processes, we altogether
have an alternative approach to Theorem 8.4.1 with a more precise understanding
of the boundary transitions.

Theorem 8.6.1 For n 2 N and an initial condition f 2 L2.�n/, the Kolmogorov
forward equation corresponding to the diffusion approximation of the n-dimen-
sional Wright–Fisher model (8.0.2) always allows a unique extended solution
UW ��n

�
1 �! R in the sense that Uj�n is a solution of Eq. (8.0.2) and that its

moments m˛.t/ WD �
U.t/; x˛



n
, t � 0 (cf. Eq. (8.3.14)) satisfy the n-dimensional

moments evolution equation (8.3.13).



Chapter 9
The Backward Equation

The backward solution u. p; t/ expresses the probability of having started in some
p 2 �n at the negative time t conditional upon being in a certain state u. p; 0/ D
f . p/ at time t D 0, i.e. having reached the corresponding (generalised) target set.
It becomes a parabolic equation upon time reversal, that is, replacing t by �t. We
can then treat u. p; 0/ D f . p/ as the initial condition at time t D 0. In view of
the biological model behind the Kolmogorov backward equation, however, we shall
work with negative time and call u. p; 0/ D f . p/ a final condition.

Now, there is an asymmetry between the forward and the backward equation.
When we look at how the forward solution evolves from some initial condition
supported in the interior of the simplex, then some of the probability will move
into the boundary, and asymptotically, nothing will be left in the interior. When, in
contrast, we solve the backward equation and look at which probability distribution
in the past may have lead to a current final condition, then that past probability
distribution has to be contained entirely in the interior of the simplex, as nothing can
move into the interior from the boundary. However, that past probability distribution
likewise could have moved into the boundary. Therefore, if we only specified a final
condition in the interior, but not on the boundary, the flow into the boundary would
be undetermined, and therefore, no uniqueness of the solution could be expected.
Thus, in order to get uniqueness, we also need to specify a final condition on the
boundary. But then, what we see in the boundary at such an final condition, could
also have come from the boundary instead of from the interior. In other words,
whatever in the past could have lead to a current distribution in the interior of the
simplex could also have lead to a distribution in the boundary. Therefore, when we
want to follow a current distribution back into the past, we need to look in turn
at all distributions in the closure of the simplex to which an ancestral distribution
could have lead. Thus for a solution, we also need to take the configuration on
the boundary into account in order to properly assess its influence on the interior.
Technical issues then arise for the lower dimensional boundary strata, that is, those
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220 9 The Backward Equation

that correspond to the loss of more than one allele. We shall treat this by a blow-up
procedure. Also, the issue of the order of allele loss will arise.

This again illustrates the fundamental difference between the forward and the
backward equation: For the forward equation, as we have seen in the preceding
chapter, it sufficed to specify an initial condition in the interior. The reason for this is
that the boundary is independent from the interior in the sense that its configuration
has no effect on the interior. However, conversely, the interior influences the
configuration on the boundary; this was the major difficulty in constructing the
global solution in the preceding chapter.

With the backward equation, the situation is the converse: As hinted in Chap. 1,
a backward solution describes ancestral distributions, and those do not interfere,
regardless of the numbers of alleles they involve. This indicates that we have
some superposition principle, and hence, a solution in the interior extends to the
boundary. However, going in the opposite direction, this means that a solution in
the interior always is influenced by the boundary. Hence for any solution, the role
of the boundary, i.e. its contribution to the interior, needs to be clarified, which also
requires the extended final condition. Eventually, this applies to the entire stratified
boundary of the domain. Thus, analyzing the contribution of each of the strata of the
domain and thereby establishing the uniqueness of a solution is what will occupy us
in this chapter.

9.1 Solution Schemes for the Kolmogorov Backward
Equation

The Kolmogorov backward equation and of the Kolmogorov forward equation
are linked by the adjointness of the Kolmogorov operators Ln and L�

n proved
in Proposition 8.1.4. Therefore, there also exists a relationship between their
corresponding solutions, and known solution schemes (cf. [14, 80]) can be applied
to either equation. Nevertheless, there is a subtle difference between these two
equations caused by the different boundary behavior. This is reflected in the fact that
the spectra of Ln and L�

n don’t match (cf. [118]). All eigenfunctions of L�
n derived

from the adjointness with Ln in Proposition 8.1.2 are in C1
0 .�n/, but L�

n in �n

possesses additional eigenfunctions (in particular for smaller eigenvalues) that do
not correspond to eigenfunctions of Ln. The reason is that all eigenfunctions of L�

k
in �k for some 0 � k < n also occur as eigenfunctions of L�

n in �n, e.g. for some
eigenfunction ' of L�

k in �k, simply put N'.Np/ WD '. p/ for Np WD . p; p0/ 2 �n,
p 2 �k to obtain an eigenfunction N' of L�

n . In case �k is a boundary stratum
of �n which lacks the 0th-coordinate, i.e. �0

k WD f. p1; : : : ; pkC1/jPkC1
iD1 pi D 1g

as a face of �n D f. p1; : : : ; pn/jPn
jD1 pj < 1g, we have for Np 2 �n that

p WD .Np1;:::;NpkC1/
PkC1

iD1 Npi
2 �0

k , and hence we may put N'.Np/ WD '. p/ as an extension of

the eigenfunction ' to �n.
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The construction of a solution of Eq. (4.2.13) in�n in terms of the eigenfunctions
(e.g. the generalised Gegenbauer polynomials, cf. [113]) is rather straightforward.
However, the, when compared with the forward case, larger set of eigenfunctions
causes ambiguities when decomposing a final condition, which prevents uniqueness
results for the solution. But if we restrict the choice of eigenfunctions to the
‘proper’ eigenfunctions in the domain,1 i.e. those in C1

0 .�n/, which correspond to
eigenfunctions of Ln, the same existence and uniqueness scheme as in the forward
case applies. Thus, for such a solution by proper eigenfunctions (which will be
called a proper solution of the Kolmogorov backward equation in �n), we have the
result of e.g. [86]:

Proposition 9.1.1 For n 2 N and a given final condition f 2 L2.�n/, the
Kolmogorov backward equation corresponding to the diffusion approximation of
the n-dimensional Wright–Fisher model (4.2.13) possesses a unique proper solution
uW ��n

�
�1 �! R with u 2 C1

0 .�n � .�1; 0//

By construction, such proper solutions do not cover the boundary. In the next
section, the non-proper components will be interpreted as originating from (proper)
solutions on lower-dimensional boundary strata.

9.2 Inclusion of the Boundary and the Extended Kolmogorov
Backward Equation

We shall now include the boundary and its contribution into the model. We enlarge
the domain of Eq. (4.2.13) such that it comprises the entire �n.

This yields the extended Kolmogorov backward equation

(
� @
@t U. p; t/ D L�U. p; t/ in

�
�n
�

�1 D �n � .�1; 0/

U. p; 0/ D f . p/ in �n; f 2 L2�Sn
kD0 @k�n

� (9.2.1)

for U. � ; t/ 2 C2
p

�
�n
�

for each fixed t 2 .�1; 0/ and U. p; � / 2 C1..�1; 0// for

each fixed p 2 �n. Here, f is the extended final condition which is defined on �n.
Thus, any boundary stratum of the boundary of the simplex may also belong to the
target set considered.

Our problem now is different from standard final-boundary value problems. This
is because in our case, the configuration on the boundary is no longer static, but

1This is also sufficient as their linear span is already dense in C1

c .�n/ and consequently also in
L2.�n/: Linear combinations of the generalised Gegenbauer polynomials as eigenfunctions of Ln

(cf. [113]) are dense in C1.�n/; dividing a function f 2 C1

c .�n/ by !n (cf. Proposition 8.1.2)
again yields a function in C1

c .�n/ � C1

0 .�n/ as !n is in C1

0 .�n/ itself and positive in the
interior �n.
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evolves itself according to the various L�
k where k is the dimension of a subsimplex

of the boundary of our simplex. We have already observed, that such an L�
k simply is

the restriction of L�
n to the corresponding domain (cf. Lemma 8.4.1). Hence, we may

omit the index k and simply write L� (for dimension 0, we formally put L� D L�
0 WD

0). In terms of the underlying Wright–Fisher model, this means that the boundary
is subject to the same type of evolution, merely in a different dimension, justifying
the choice of Eq. (4.2.13).

The key point now is to connect the different boundary strata, by requiring
U 2 C2

p.�n/ w. r. t. the spatial variables: Clearly, inside each boundary stratum the
solution needs to be sufficiently regular for L�, but regarding the boundary, we also
ask for such regularity for simple boundary transitions, i.e. when the dimension
decreases by one. For higher order transitions, however, singularities may occur.
This corresponds to the degeneracy behaviour of the operator at the boundary. This
leads us to a much wider class of global solutions, which are not artificial, but
correspond to natural scenarios in the underlying Wright–Fisher model.

9.3 An Extension Scheme for Solutions of the Kolmogorov
Backward Equation

We want to construct the class of global solutions of the Kolmogorov backward
equation (4.2.13) by successive backward extension of local solutions in different
boundary strata. For this, we first look at single extensions of solutions from a facet
in the boundary of our domain to the interior. The extensions are confined by2:

Definition 9.3.1 (Extension Constraints) Let Id be an index set with jIdj D
d C 1 � 2, 0; s 2 Id and �

.Id/
d D f. pi/i2Idnf0gjpi > 0 for i 2 Idg with

p0 WD 1 � P
i2Idnf0g pi. For d � 2 and a solution uW ��.Idnfsg/

d�1
�

�1 �! R of the

Kolmogorov backward equation (4.2.13), i.e. u. � ; t/ 2 C1��.Idnfsg/
d�1

�
for t < 0,

u. p; � / 2 C1..�1; 0// for p 2 �.Idnfsg/
d�1 and

� @

@t
u D L�u in

�
�
.Idnfsg/
d�1

�
�1; (9.3.2)

a function NuW ��.Id/
d

�
�1 �! R with Nu. � ; t/ 2 C1��.Id/

d

�
for t < 0 and Nu. p; � / 2

C1..�1; 0// for p 2 �
.Id/
d is said to be an extension of u satisfying the extension

2Note the dimension index conventions as in the forward case: n refers to the top-dimensional
component (corresponding to n C 1 alleles in Wright–Fisher model), whereas k or d denotes the
dimension of any (specific) boundary stratum. Specifically, d will be used as running index for
iterations over dimension.
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constraints if

(i) for t < 0 Nu. � ; t/ is continuously extendable to the boundary @d�1�.Id/
d such that

it coincides with u. � ; t/ in�.Idnfsg/
d�1 resp. vanishes on the remainder of @d�1�.Id/

d

and is of class C1 with respect to the spatial variables in �.Id/
d [ @d�1�.Id/

d ,
(ii) it is a solution of the corresponding Kolmogorov backward equation in�

�
.Id/
d

�
�1, i.e. � @

@t Nu D L� Nu in
�
�
.Id/
d

�
�1.

For d D 1, this analogously applies to functions u with � @
@t u D 0 (since L�

0 � 0),
and consequently the equation in condition (ii) is replaced by L� Nu D 0. An extension
that involves multiple extension steps is said to satisfy the extension constraints if
this holds for every extension step.

Remark 9.3.1 In case of d � 2, if u for t < 0 extends smoothly to the boundary
@d�2�.Idnfsg/

d�1 such that this extension vanishes everywhere on @d�2�.Idnfsg/
d�1 , the

above definition means that .u�
�
.Idnfsg/
d�1

C Nu�
�
.Id /
d
/ 2 C1

p0 .�
.Idnfsg/
d�1 [ �

.Id/
d / with

respect to the spatial variables for t < 0 (cf. equality (2.11.24)).

We shall first investigate the existence of such extensions that obey Defini-
tion 9.3.1. After that, we shall turn to the issue of their uniqueness. Since our
construction is based on a separation ansatz (cf. Proposition 9.1.1), we shall have to
construct extensions of the eigenmodes:

Lemma 9.3.1 (Extension of Eigenfunctions) Let Id be an index set with jIdj D
d C 1 � 2, 0; s 2 Id and �.Id/

d D f. pi/i2Idnf0gjpi > 0 for i 2 Idg with p0 WD
1 �P

i2Idnf0g pi. For d � 2 and an eigenfunction  2 C1��.Idnfsg/
d�1

�
of L�

d�1 for the
eigenvalue � � 0, i.e.

L�
d�1 D �� in �.Idnfsg/

d�1 � @�
.Id/
d ; (9.3.3)

a linear interpolation N D N r;sW�.Id/
d �! R of  from �

.Idnfsg/
d�1 (source face)

towards�.Idnfrg/
d�1 � @d�1�.Id/

d for some r 2 Id n fsg (target face) is given by

N r;s. p/ WD  .�r;s. p// � pr

ps C pr
for p 2 �.Id/

d (9.3.4)

with �r;s. p1; : : : ; pd/ D .Qp1; : : : ; Qpd/ such that Qps D 0, Qpr D ps C pr and Qpi D pi for
i 2 Id n fs; lg.



224 9 The Backward Equation

The regularity of N corresponds to that of  in �.Id/
d (i.e. it is of class C1) and

N satisfies

L�
d

N D �� N in �.Id/
d : (9.3.5)

Moreover, N extends smoothly to �.Idnfsg/
d�1 and �.Idnfrg/

d�1 , and there we have

N j
�
.Idnfsg/
d�1

D  ; N j
�
.Idnfrg/

d�1

D 0: (9.3.6)

If furthermore  extends smoothly to �.Idnfs;qg/
d�2 � @d�2�.Idnfsg/

d for some q 2
Id nfr; sg, then N likewise extends smoothly to�.Idnfqg/

d�1 . In particular, N satisfies the

extension constraint 9.3.1 (i) if  extends smoothly to @d�2�.Idnfsg/
d�1 n�.Idnfr;sg/

d�2 and
vanishes there.

For d D 1, the preceding statements analogously hold for arbitrary
 W�.I1nfsg/

0 �! R as eigenfunction of L�
0 � 0 for the eigenvalue 0; then,

N is of class C1 in �
.I1/
1 , and such an extension always obeys the extension

constraint 9.3.1 (i).

Since the eigenfunctions are the building blocks for a solution scheme, the pre-
ceding lemma directly extends to solutions of the Kolmogorov backward equation:

Proposition 9.3.1 (Extension of Solutions) Let Id be an index set with jIdj D
d C 1 � 2, 0; s 2 Id and �.Id/

d D f. pi/i2Idnf0gjpi > 0 for i 2 Idg with p0 WD
1 � P

i2Idnf0g pi. For d � 2, a given final condition f 2 L2��.Idnfsg/
d�1

�
and a given

extension target face index r 2 Id n fsg, a solution uW ��.Idnfsg/
d�1

�
�1 �! R of the

Kolmogorov backward equation (4.2.13), u. � ; t/ 2 C1��.Idnfsg/
d�1

�
for t < 0 and

u. p; � / 2 C1..�1; 0// for p 2 �.Idnfsg/
d�1 , may be extended to a function

Nu D Nur;sW ��.Id/
d

�
�1 �! R (9.3.7)

with Nu. � ; t/ 2 C1��.Id/
d

�
for t < 0 and Nu. p; � / 2 C1..�1; 0// for p 2 �

.Id/
d and

which satisfies

� @

@t
Nu D L� Nu in

�
�
.Id/
d

�
�1: (9.3.8)

Furthermore, for t < 0 Nu. � ; t/ smoothly extends to the boundary in �.Idnfsg/
d�1 with

Nu. � ; t/j
�
.Idnfsg/
d�1

D u; in particular Nu. � ; 0/j
�
.Idnfsg/
d�1

D f j
�
.Id nfsg/
d�1

(9.3.9)
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and in �.Idnfrg/
d�1 with Nu. � ; t/j

�
.Idnfrg/
d�1

D 0. If furthermore u. � ; t/ for q 2 Id n fr; sg
extends smoothly to �.Idnfq;sg/

d�2 � @d�2�.Idnfsg/
d for some t, then Nu. � ; t/ likewise

extends smoothly to�.Idnfqg/
d�1 . In particular, Nu satisfies the extension constraints 9.3.1

if u. � ; t/ extends smoothly to @d�2�.Idnfsg/
d�1 n�.Idnfr;sg/

d�2 and vanishes there for t < 0.

For d D 1, the preceding analogously holds for functions uW ��.I1nfsg/
0

�
�1 �! R

with u. p; � / 2 C1..�1; 0// and @
@t u D 0; then, Nu. � ; t/ is of class C1 in �.I1/

1

for every t as well as Nu. p; � / 2 C1..�1; 0// for p 2 �
.Id/
d with @

@t Nu D 0, and
Eq. (9.3.8) holds correspondingly. Furthermore, this extension always satisfies the
extension constraints 9.3.1.

Remark 9.3.2 The extension of a solution of the Kolmogorov backward equation
for a final condition f 2 L2��.Idnfsg/

d�1
�

as in Proposition 9.3.1 is also applicable for

t D 0, yielding an analogously extended final condition Nf D Nf r;s 2 L2��.Id/
d

�
. We

then have Nu. � ; 0/ � Nf in �.Id/
d by continuous extension as we have u. � ; 0/ D f in

�
.Idnfsg/
d�1 ; however, for d � 2 this extension of f need not be regular at the boundary

because f is not necessarily regular (and hence in general, it does not satisfy the
extension boundary constraint 9.3.1 (i)).

In addition to the preceding proposition, it should be noted that Nu does not
necessarily extend continuously to the entire �d, in particular not to the remaining
boundary parts of dimension d � 2 and less. This is due to the fact that on
components of @d�2�.Id/

d , which are shared boundaries of higher-dimensional faces
of the simplex, continuous extensions from each of those faces may exist, but do not
necessarily coincide.

Proof of Lemma 9.3.1 The regularity assertion for N in �
.Id/
d follows from the

regularity of � and of the projection and from pr

psCpr being of class C1 on �.Id/
d .

The boundary behaviour is similarly straightforward as �r;s D id and pr

psCpr D 1 on

�
.Idnfsg/
d�1 , whereas pr

psCpr D 0 on �.Idnfrg/
d�1 . Both boundary extensions are smooth

in the sense described, which is again due to the regularity of the projection
and of pr

psCpr when approaching �.Idnfsg/
d�1 resp. �.Idnfrg/

d�1 . Analogous considerations

yield the assertion for other boundary faces of @d�1�.Id/
d : The projection �r;s maps

@d�1�.Id/
d n ��.Idnfrg/

d�1 [ �
.Idnfsg/
d�1

�
smoothly onto @d�2�.Idnfsg/

d�1 , which together with
pr

psCpr being of class C1 on @d�1�.Id/
d (via ps C pr > 0) yields the stated regularity;

the value of this boundary extension of N of course coincides with the one of the
corresponding extension of  .
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To prove Eq. (9.3.5), w. l. o. g. let Id D f0; 1; : : : ; dg; summation indices,
however, run from 1 to d unless indicated otherwise. To begin with, we have

L�
d

�
 .�r;s. p// � pr

ps C pr

�
D �

L�
d .�

r;s. p//
� pr

ps C pr

C
X

i;j

pi.ıi
j � pj/

�
@

@pi
 .�r;s. p//

��
@

@pj

pr

ps C pr

�

C 1

2
 .�r;s. p//

X

i;j

pi.ıi
j � pj/

�
@

@pi

@

@pj

pr

ps C pr

�
:

(9.3.10)

Next, we will show that the first summand equals �� N , whereas the two other
summands vanish on �.Id/

d .

For the first summand, we use L�
d�1 D �� in �.Idnfsg/

d�1 , which holds by

assumption. To extend this statement to �.Id/
d , the interplay of the operator with

the projections �r;s needs to be analysed, for which several cases have to be
distinguished. That is, for s ¤ 0, r D 0, the projection �0;s yields Qps D 0 and
Qpi D pi for i 2 f1; : : : ; dg n fsg, hence @Qpm

@pi D ım
i .1 � ım

s /, and we have

L�
d .�

0;s. p// D 1

2

X

i;j

pi.ıi
j � pj/

@

@pi

@

@pj
 .�0;s. p//

D 1

2

X

m;n

X

i;j

pi.ıi
j � pj/ım

i .1 � ım
s /ı

n
j .1 � ın

s /
@

@Qpm

@

@Qpn
 .Qp/

D 1

2

X

m;n¤s

Qpm.ım
n � Qpn/

@

@Qpm

@

@Qpn
 .Qp/ D L�

d�1 .Qp/ � �� .Qp/:

(9.3.11)

If s D 0, r ¤ 0 and hence �
.Idnf0g/
d�1 D ˚

.Qp1; : : : ; Qpd/
ˇ̌Qpi > 0 for i D

1; : : : ; d;
Pd

iD1 Qpi D 1
�
, we have Qpi D pi for i 2 f1; : : : ; dg n frg and Qpr D pr C p0,

thus @Qpm

@pi D ım
i � ım

r . We get:

L�

d  .�
r;0. p// D 1

2

X

m;n

X

i;j

pi.ıi
j � pj/.ım

i � ım
r /.ı

n
j � ın

r /
@

@Qpm

@

@Qpn
 .Qp/

D 1

2

X

m;n

pm.ım
n � pn/

@

@Qpm

@

@Qpn
 .Qp/� 1

2

X

n

X

i

pi.ıi
n � pn/

@

@Qpr

@

@Qpn
 .Qp/

� 1

2

X

m

X

j

pm.ım
j � pm/

@

@Qpr

@

@Qpn
 .Qp/C 1

2

X

i;j

pi.ıi
j � pj/

@2

.@Qpr/2
 .Qp/
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D 1

2

X

m;n

pm.ım
n � pn/

@

@Qpm

@

@Qpn
 .Qp/� 1

2

X

n

p0pn @

@Qpr

@

@Qpn
 .Qp/

� 1

2

X

m

pmp0
@

@Qpm

@

@Qpr
 .Qp/C 1

2
p0.1 � p0/

@2

.@Qpr/2
 .Qp/: (9.3.12)

When replacing the remaining p-coordinates by Qp (except for p0, which is missing
in �.Idnf0g/

d�1 ) via pi D Qpi � p0ıi
r for i D f1; : : : ; dg, the expression transforms into:

L�

d  .�
r;0. p// D 1

2

X

m;n¤r

Qpm.ım
n � Qpn/

@

@Qpm

@

@Qpn
 .Qp/C 1

2

X

n¤r

.�Qpr C p0/Qpn @

@Qpr

@

@Qpn
 .Qp/

C 1

2

X

m¤r

Qpm.�Qpr C p0/
@

@Qpm

@

@Qpr
 .Qp/C 1

2
.Qpr � p0/.1 � Qpr C p0/�

@2

.@Qpr/2
 .Qp/� 1

2

X

n¤r

p0 Qpn @

@Qpr

@

@Qpn
 .Qp/� 1

2

X

m¤r

Qpmp0
@

@Qpm

@

@Qpr
 .Qp/

� p0.Qpr � p0/
@2

.@Qpr/2
 .Qp/C 1

2
p0.1 � p0/

@2

.@Qpr/2
 .Qp/

D 1

2

X

m;n

Qpm.ım
n � Qpn/

@

@Qpm

@

@Qpn
 .Qp/ D L�

d�1 .Qp/ � �� .Qp/: (9.3.13)

The next-to-last equality is due to the fact that in�.Idnf0g/
d�1 one coordinate is obsolete

and consequently  is formulated in d � 1 coordinates (which may be chosen
freely). It is straightforward to show that, independently of the choice of the omitted
coordinate r, we have L�

d�1 D 1
2

P
m;n¤r Qpm.ım

n � Qpn/ @
@Qpm

@
@Qpn on �.Idnf0g/

d�1 .
Finally, if s ¤ 0, r ¤ 0, the projection �r;s yields Qps D 0, Qpr D ps C pr and

Qpi D pi for the remaining indices, hence @Qpm

@pi D ım
i .1 � ım

s /C ım
r ı

i
s. Then we have:

L�

d  .�
r;s. p//D 1

2

X

i;j

pi.ıi
j � pj/

@

@pi

@

@pj
 .� r;s. p//

D 1

2

X

m;n;
i;j

pi.ıi
j � pj/.ım

i .1 � ım
s /C ım

r ı
i
s/.ı

n
j .1 � ın

s /C ın
r ı

j
s/
@

@Qpm

@

@Qpn
 .Qp/

D 1

2

X

m;n¤s

pm.ım
n � pn/

@

@Qpm

@

@Qpn
 .Qp/� 1

2

X

n¤s

pspn @

@Qpr

@

@Qpn
 .Qp/

� 1

2

X

m¤s

pmps @

@Qpm

@

@Qpr
 .Qp/C 1

2
ps.1 � ps/

@2

.@Qpr/2
 .Qp/: (9.3.14)
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Replacing the p-coordinates works as shown in the preceding case, and thereupon
we obtain

L�
d .�

r;s. p// D 1

2

X

m;n¤s

Qpm.ım
n � Qpn/

@

@Qpm

@

@Qpn
 .Qp/ D L�

d�1 .Qp/ � �� .Qp/;

(9.3.15)

thus in total

L�
d .�

r;s. p// D L�
d�1 .Qp/ � �� .Qp/ D �� .�r;s. p// (9.3.16)

for arbitrary r; s, which is the desired equality result for the first summand.
To show that the two remaining summands vanish, an analogous case-by-case

analysis is necessary. If s D 0, r ¤ 0, we have pr

p0Cpr D pr

1�Pl¤r pl . Due to (remember
@Qpm

@pi D ım
i � ım

r )

@

@pr
 .�r;0. p// D

X

m

@Qpm

@pr

@

@Qpm
 .Qp/ D 0; (9.3.17)

the second summand is

X

i¤r

pi

�
@

@pi
 .�r;0. p//

�X

j

.ıi
j � pj/

 
@

@pj

pr

1 �P
l¤r pl

!

„ ƒ‚ …

(9.3.18)

D �
1 �

X

j¤r

pj/
pr

�
1�P

l¤r pl
�2 � pr 1

1 �P
l¤r pl

D 0;

and so is the third summand,

1

2
 .�r;0. p//

X

i¤r

 
X

j¤r

pi.ıi
j � pj/

 
@

@pi

@

@pj

pr

1 �P
l¤r pl

!

� 2pipr

 
@

@pi

@

@pr

pr

1 �P
l¤r pl

!!

D 1

2
 .�r;0. p//

X

i¤r

 
pi.1 �

X

j¤r

pj/
2pr

�
1 �P

l¤r pl
�3 � 2pipr 1

�
1 �P

l¤r pl
�2

!
D 0:

(9.3.19)

Thus, they both vanish.
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Similarly, if s ¤ 0, r D 0, thus p0

psCp0
D 1�Pl pl

1�Pl¤s pl and again (with @Qpm

@pi D
ım

i .1 � ım
s /)

@

@ps
 .�0;s. p// D

X

m

@Qpm

@ps

@

@Qpm
 .Qp/ D 0; (9.3.20)

the second summand is

X

i¤s

pi

�
@

@pi
 .�0;s. p//

�X

j

.ıi
j � pj/

 
@

@pj

1 �P
l pl

1 �P
l¤s pl

!

„ ƒ‚ …

D �
1 �

X

j

pj/
�1

1 �P
l¤s pl

C �
1 �

X

j¤s

pj� 1 �P
l pl

�
1 �P

l¤s pl
�2 D 0;

(9.3.21)

and the third summand via

X

i;j

pi.ıi
j � pj/

@

@pi

@

@pj

1 �P
l pl

1 �P
l¤s pl

D
X

i;j

pi.ıi
j � pj/

 
.ıi

s � 1/C .ıj
s � 1/

�
1 �P

l¤s pl
�2 C 2.1� ıi

s/.1 � ıj
s/

1 �P
l pl

�
1 �P

l¤s pl
�3

!

D �2
�P

i¤s pi
��
1 �P

j¤s pj
�

�
1 �P

l¤s pl
�2 C 2

�X

i¤s

pi
��
1 �

X

j¤s

pj
� 1 �P

l pl

�
1 �P

l¤s pl
�3 D 0

(9.3.22)

also vanishes.
Ultimately, if s ¤ 0, r ¤ 0, we have

pj @

@pj

pr

ps C pr
D pspr

. ps C pr/2
.ıj

r � ıj
s/: (9.3.23)

Using this property for the second summand, we obtain

X

i;j

pi.ıi
j � pj/

�
@

@pi
 .�r;s. p//

��
@

@pj

pr

ps C pr

�

D
X

i

�
@

@pi
 .�r;s. p//

�
pi

�X

j

ıi
j

�
@

@pj

pr

ps C pr

�
�
X

j

pj

�
@

@pj

pr

ps C pr

��

D
X

i

@

@pi
 .�r;s. p//

pspr

. ps C pr/2
.ıi

r � ıi
s/ D 0: (9.3.24)
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The last equality is due to the fact that the sum over i in the last line vanishes
because of the symmetry of � in the coordinates ps and pr, i.e. we have @Qpm

@pi D
ım

i .1 � ım
s /C ım

r ı
i
s and consequently

@

@ps
 .�r;s. p// D @

@Qpr
 .Qp/ D @

@pr
 .�r;s. p//: (9.3.25)

For the third summand, we use

@

@pi

@

@pj

pr

ps C pr
D 2

ıi
j.ı

i
sp

r � ıi
rp

s/

. ps C pr/3
C ıi

sı
j
r.1 � ıi

j/. pr � ps/

. ps C pr/3
(9.3.26)

and get

X

i;j

pi.ıi
j � pj/

@

@pi

@

@pj

pr

ps C pr
D 2ps.1 � ps/pr � 2pr.1 � pr/ps � 2pspr. pr � ps/

. ps C pr/3
D 0:

(9.3.27)

Altogether, we have

L�
d

N D L�
d

�
 .�r;s. p// � pr

ps C pr

�
D � � .�r;s. p//

pr

ps C pr
D �� N (9.3.28)

for arbitrary r; s 2 Id, thus proving Eq. (9.3.5). ut

9.4 Probabilistic Interpretation of the Extension Scheme

Before proceeding with an iteration of the extension scheme, we should like to
discuss the meaning of the extension constraints 9.3.1. A target set on the space
of d �1 alleles can not only be reached from a constellation of d �1 alleles, but also
from one of d alleles by allele loss. That is, the ancestral populations might have
possessed more alleles than the current one.

Therefore, we need to analyze how such a target set can also attract contributions
from the space of d alleles. A natural assumption for such an extension is that the
probability density at the transition from the d-allelic domain to the .d � 1/-allelic
domain stays regular, i.e. small alterations of the allelic configuration should only
affect the probability in a controlled way. This is formulated in condition (i) and
implies the C1

p regularity (cf. equality (2.11.23)) for the corresponding domains.
Moreover, a boundary condition enters, as for transitions to domains of a different
set of d � 1 alleles, the corresponding probability should also stay regular with
the additional requirement that in the limit it vanishes on those other .d � 1/-
allelic domains; this is also part of condition (i) and correspondingly implies the
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C1
p0 regularity (cf. equality (2.11.24)). We also wish to link the evolution of the

original probability density and its extension by requiring that both are subject to
the same type of evolution in the corresponding domain, i.e. are governed by the
corresponding Kolmogorov backward equation in the relevant formulation, which is
condition (ii). The extension Proposition 9.3.1 then states that any (proper) solution
of the Kolmogorov backward equation, which describes the evolving attraction
of some target set via the final condition f , may be extended to a corresponding
solution of the Kolmogorov backward equation in the domain of subsequent higher
dimension with both conditions above applying. In the context of a Wright–Fisher
model, this loss of the extra allele s is modelled as if it was in competition with just
one other allele r dependent on the index chosen (fibration property) . Thus, we say
that allele s is lost over allele r.

However, as may be observed by Remark 9.3.2, this extension actually yields
the solution to a different problem, namely the attraction generated by the target
set itself plus an induced (generalised) target set in the bigger domain which are
given by f and its corresponding extension Nf . If one wishes to return to the original
problem, the attraction of the original target set only located in the .d � 1/-allelic
domain, the induced target set needs to be compensated for by a proper solution in
(the interior of) the d-allelic domain for a corresponding final condition.

As may also be seen in Proposition 9.3.1, for d � 2 the given extension scheme
involves a potential ambiguity regarding the choice of the extension target face
index r. However, in case of iterations, the boundary condition in Definition 9.3.1 (i)
limits this to a unique appropriate value as will be demonstrated in the next section;
for a simple extension from a 0-dimensional domain or if the starting distribution
smoothly vanishes towards all boundaries of subsequent lower dimension (as with
proper solutions), an extension is always in accordance with the boundary condition.

9.5 Iterated Extensions

A repeated application of Proposition 9.3.1 yields the existence of iterated exten-
sions (generalising the corresponding result for n D 2 in [85] and the (less explicit)
result stated in [87] without proof):

Proposition 9.5.1 (Pathwise Extension of Solutions) Let k; n 2 N with 0 �
k < n, fik; ikC1; : : : ; ing � In WD f0; 1; : : : ; ng with ii ¤ ij for i ¤ j and
Ik WD In n fikC1; : : : ; ing, and let uIk be a proper solution of the Kolmogorov

backward equation (9.2.1) in �
.Ik/
k for some final condition f 2 L2��.Ik/

k

�
as

in Proposition 9.1.1. For d D k C 1; : : : ; n and Id WD Ik [ fikC1; : : : idg, an

extension of Nuik;:::;id�1

Ik
in
�
�
.Id�1/
d�1

�
�1 to Nuik;:::;id

Ik
WD �Nuik;:::;id�1

Ik

�id�1;id
in
�
�
.Id/
d

�
�1

as by Proposition 9.3.1 is compatible with the extension constraints 9.3.1 if (and for
d � kC2 and Œ f � ¤ 0 in L2

�
�
.Ik/
k

�
also only if) putting r.d/ D id�1 for the extension
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target face index, and we respectively have

Nuik;:::;id
Ik

. p; t/ D uIk.�
ik ;:::;id. p/; t/

d�1Y

jDk

pij

Pd
lDj pil

; . p; t/ 2 ��.Id/
d

�
�1 (9.5.29)

with p0 D 1�Pi2Idnf0g pi and � ik ;:::;id . p/ D .Qp1; : : : ; Qpn/ such that Qpik D pik C : : :C
pid , QpikC1 D : : : D Qpid D 0 and Qpj D pj for j 2 Id n fik; : : : ; idg.

Thus, the resulting combination of all extensions to a function NUik;:::;in
Ik

in�S
k�d�n�

.Id/
d

�

�1 is obtained by putting

NUik;:::;in
Ik

. p; t/ WD uIk. p; t/�
�
.Ik /
k
. p/C

X

kC1�d�n

Nuik;:::;id
Ik

. p; t/�
�
.Id /
d
. p/

D uIk . p; t/�
�
.Ik/
k
. p/C

X

kC1�d�n

uIk.�
ik ;:::;id . p/; t/

d�1Y

jDk

pij

Pd
lDj pil

�
�
.Id /
d
. p/

(9.5.30)

with p0 D 1 � P
i2Innf0g pi is in C1

p0

�S
k�d�n�

.Id/
d

�
with respect to the spatial

variables for t < 0 as well as in C1..�1; 0// with respect to t, and we have

8
<

:
L� NUik;:::;in

Ik
D � @

@t
NUik;:::;in

Ik
in
�S

k�d�n�
.Id/
d

�

�1
NUik;:::;in

Ik
. � ; 0/ D NFik;:::;in

Ik
in
S

k�d�n�
.Id/
d

(9.5.31)

where NFik;:::;in
Ik

2 L2
�S

k�d�n�
.Id/
d

�
is an analogous extension of the final condition

f D fIk in �.Ik/
k as in Remark 9.3.2; in particular, we have NUik;:::;in

Ik

ˇ̌
�
.Ik /
k
. � ; 0/ D f

in �.Ik/
k .

Corollary 9.5.1 For n 2 NC, k D 0 and ufi0g � 1 in �.fi0g/
0 � @0�n, Eq. (9.5.29)

resp. Equation (9.5.30) restricted to �n and with the t-coordinate suppressed
coincides with Littler’s formula in �n (cf. [87]):

NUi0;i1:::;in
fi0g

ˇ̌
�n
. p/ � Nui0;i1:::;in

fi0g . p/ D pi0 � pi1

1 � pi0
� : : : � pin�1

1 �Pn�2
lD0 pil

: (9.5.32)

Proof of Proposition 9.5.1 The result is basically an application of Proposi-
tion 9.3.1, which yields the regularity and the solution property (cf. Eq. (9.5.31))
in every �.Id/

d . It only remains to show inductively that the boundary behaviour
in each extension step respects the extension constraints 9.3.1 as well as the
formula (9.5.29).
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Clearly, a proper solution uIk of the Kolmogorov backward equation in
�
�
.Ik/
k

�
�1

as in Proposition 9.1.1 satisfies Eq. (9.5.29) and is of class C1
0

�
�
.Ik/
k

�
w. r. t. the

spatial variables for t < 0 (which in particular implies that it is smoothly extendable
to @k�1�.Ik/

k ). Extending uIk to
�
�
.IkC1/

kC1
�

�1 via Proposition 9.3.1 with s.k C 1/ D
ikC1 and r.k C 1/ D ik yields a function Nuik;ikC1

Ik
of type (9.5.29), which for t < 0

smoothly extends to all boundary faces @k�
.IkC1/

kC1 and vanishes there except for�.Ik/
k

(where it coincides with uIk ) by the assumed boundary behaviour of uIk . We may thus
assume that for k < d � 1 < n an assembled extension NUik;:::;id�1

Ik
(corresponding to

Eq. (9.5.30)) in C1
p0

�S
k�m�d�1 �

.Im/
m
�

with respect to the spatial coordinates exists

whose top-dimensional component NUik;:::;id�1

Ik

ˇ̌�
�
.Id�1/

d�1

�
�1

DW Nuik;:::;id�1

Ik
satisfies

Eq. (9.5.29).
We may then perform an extension of Nuik;:::;id�1

Ik
in
�
�
.Id�1/
d�1

�
�1 to Nuik;:::;id

Ik
in

�
�
.Id/
d

�
�1 via Proposition 9.3.1 with s.d/ D id and r.d/ D id�1. By the assumed

boundary behaviour of Nuik;:::;id�1

Ik
(i.e. NUik;:::;id�1

Ik
being of class C1

p0
), Nuik;:::;id

Ik
smoothly

extends to all boundary faces @d�1�.Id/
d n �.Idnfid�1g/

d�1 and vanishes there except for

�
.Id�1/
d�1 (where it coincides with Nuik;:::;id�1

Ik
) for t < 0. By putting r.d/ D id�1, this

in particular also holds for �.Idnfid�1g/
d�1 , which in turn would otherwise be violated

if f ¤ 0 almost everywhere as may be seen from the proof of Proposition 9.3.1.
Then, the boundary behaviour respects the extension constraints 9.3.1, and we
correspondingly have NUik;:::;id

Ik
WD NUik;:::;id�1

Ik
C Nuik;:::;id

Ik
�
�
.Id /
d

2 C1
p0

�S
k�m�d �

.Im/
m
�

w. r. t. the spatial variables for t < 0.
To show Eq. (9.5.29), we obtain for Nuik;:::;id

Ik
by Eq. (9.3.4) when plugging in the

formula (9.5.29) for Nuik;:::;id�1

Ik

Nuik;:::;id
Ik

. p; t/ D Nuik;:::;id�1

Ik
.� id�1;id . p/; t/

pid�1

pid�1 C pid

D uIk .�
ik ;:::;id�1 .� id�1;id . p//; t/

d�2Y

jDk

.� id�1;id. p//ij
Pd�1

lDj .�
id�1;id . p//il

pid�1

pid�1 C pid

D uIk .�
ik ;:::;id . p/; t/

d�1Y

jDk

pij

Pd
lDj pil

in
�
�
.Id/
d

�
�1 (9.5.33)

as .� id�1;id . p//ij D pij for ij D ik; : : : ; id�2 and .� id�1;id . p//id�1 D pid�1 C pid .
If some index ij equals zero (w. l. o. g. i0 D 0) corresponding to .� id�1;id. p//0,

this expression gets replaced by p0 2 �
.Id/
d as we have .� id�1;id . p//0 D 1 �Pd�1

jD1 .� id�1;id . p//ij D 1 � Pd
jD1 pij � p0. Furthermore, � ik ;:::;id�1 .� id�1;id. p// D

� ik ;:::;id . p/ directly follows from the definitions, thus proving Eq. (9.5.29) for Nuik;:::;id
Ik

in
�S

k�m�d �
.Im/
m

�

�1. ut
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Remark 9.5.1 Geometrically, the choice of the extension target face indices s.d/ D
id and r.d/ D id�1 signifies that the extension source face �.fi0;:::;id�2;id�1g/

d�1 and the

target face�.fi0;:::;id�2;idg/
d�1 are adjacent faces to the highest degree, as they share d �1

vertices (for d � 2). Furthermore, their intersection �.fi0;:::;id�2g/
d�2 is the extension

source face of the previous step.

Sticking to the preceding probabilistic interpretation, Nuik;ikC1;:::;in
Ik

depicts the

iterated ‘attraction’ of an (analogously extended) target set in �
.Ik/
k along a

corresponding extension path specified by ik; : : : ; in resp. the corresponding index
sets Ik � : : : � In. Thus, Nuik;ikC1;:::;in

Ik
gives the total probability for all paths in �n

starting in �.In/
n , passing through the (sub)simplices

�
.In�1/
n�1 �! �

.In�1/
n�2 �! : : : �! �

.IkC1/

kC1 �! �
.Ik/
k (9.5.34)

and reaching the eventual target set, which, in the setting of the Wright–Fisher
model, corresponds to eventually losing n � k of originally n C 1 alleles in such
a manner that from dimension n � 1 down to k exactly the allele sets

In �! In�1 �! : : : �! IkC1 �! Ik (9.5.35)

are present until reaching the eventual target set.
As depicted, these pathwise extensions are a consequence of the boundary

condition of the extension constraints 9.3.1: On the one hand, there is only one
allele which is lost at a certain time; on the other hand, as this loss is modelled as
if it was in competition with just one other allele, the corresponding allele always
is the one which is lost next. Thus allele id is lost over id�1; merely in the last step,
i.e. the loss of allele ikC1, the index ik determines which of the alleles in Ik is the
one ikC1 is lost over. Other extensions which may likewise be constructed by the
extension Lemma 9.3.1 will not be considered here.

However, the corresponding extensions in Proposition 9.5.1 lack a global
(pathwise) regularity property on the entire �n, i.e. are not in C1

p w. r. t. the spatial
variables, as this applies only along the corresponding extension path. Outside this
path, generally no continuous, and a fortiori no smooth extensions exist. This is
caused by the incompatibilities involved by this construction (cf. also Sect. 9.4): For

example on�
.QIkC1/

kC1 with QIkC1 WD Ik [fQ{kg and Q{k 2 In nIkC1, a positive hit probability

for the target set in �.Ik/
k by a direct loss of allele Q{k would exist, yet the considered

solution necessarily vanishes on�
.QIkC1/

kC1 as this is a boundary face of�
.IkC2/

kC2 outside
the specified path.

This defect is overcome by mounting these extensions into a global solution
covering all possible extensions paths, each one of them corresponding to a certain
ordering of the indices in In n Ik. As in the first extension step, the extension
target face is not defined for a given extension path and a non-empty target set
by the extension boundary condition (i) in Definition 9.3.1 (except for k D 0;
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cf. Proposition 9.5.1), correspondingly all indices in Ik may serve as target face
index. This is taken into account by additionally summing over all possible first
stage extensions and normalising, yielding in total:

Proposition 9.5.2 (Global Extension of Solutions) Let k; n 2 N with 0 � k < n,
Ik � In WD f0; 1; : : : ; ng with jIkj D k C 1, and let uIk be a proper solution of
the Kolmogorov backward equation (9.2.1) in �.Ik/

k for some final condition f 2
L2��.Ik/

k

�
as in Proposition 9.1.1. Then we assemble all pathwise extensions of uIk

as by Proposition 9.5.1 into a function NUIk 2 ��n
�

�1 by putting3

NUIk. p; t/ WD uIk . p; t/�
�
.Ik/
k
. p/

C 1

jIkj
X

ik2Ik

X

kC1�d�n

X

ikC12InnIk

: : :
X

id2Inn.Ik[
fikC1;:::;id�1g/

Nuik;:::;id
Ik

. p; t/�
�
.Ik[fikC1;:::;idg/

d

. p/

(9.5.36)

for . p; t/ 2 �S
Ik�Id�In

�
.Id/
d

�
�1 and NUIk . p; t/ WD 0 in the remainder of

�
�n
�

�1.

Then this function NUIk 2 ��n
�

�1 is in C1
p

�
�n
�

with respect to the spatial variables
for t < 0 as well as in C1..�1; 0// with respect to t. Furthermore, NUIk is a solution
of the corresponding Kolmogorov backward equation in

�
�n
�

�1 and for t D 0

matches an analogously assembled extension NFIk of f D fIk in�.Ik/
k as final condition

in �n (cf. Remark 9.3.2).

Proof The asserted global regularity directly follows from properties of the applied
extension scheme as stated in Lemma 9.3.1 and Proposition 9.5.1 and the construc-
tion of NUIk , which is such that potential discontinuities are ruled out by assembling
all extensions along arbitrary paths. The solution property and the compliance with
the analogously constructed final condition likewise straightforwardly extend from
Proposition 9.5.1. ut

Returning again to the probabilistic interpretation, NUIk now depicts the full
iterated ‘attraction’ of some eventual target set in�.Ik/

k and its (successively) induced

target sets in �.Id/
d � �n with Id � Ik, which may now be reached along arbitrary

paths. Thus, NUIk gives the total probability for all paths from �
.In/
n to eventually

�
.Ik/
k —with no assumptions on possible intermediate stages made. In the setting of

the Wright–Fisher model, this corresponds to eventually losing n � k of previously
n C 1 alleles irrespective of any order of loss.

3The last sum actually only comprises a single summand; this notation is used to illustrate the
choice of the index id , however.
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Since NUIk represents the most general extension of a given solution uIk in �.Ik/
k

to �n, the general solution scheme for solutions of the extended Kolmogorov
backward equation (9.2.1) may now be developed.

9.6 Construction of General Solutions via the Extension
Scheme

We now consider a general final condition of the form f D Pn
dD0 fd�@d�n 2

L2�Sn
dD0 @d�n

�
. Our aim is to construct a solution of the extended Kolmogorov

backward equation (9.2.1) that captures the full dynamics of the process on the entire�
�n
�

�1. This will be achieved by global extensions of a (proper) solution of the
Kolmogorov backward equation in every face of the domain as in Proposition 9.5.2;
these globally extended solutions then will be superposed in a way that eventually
the given final condition is met in the entire �n. The probabilistic interpretation of
this process was described in Sect. 9.4.

The procedure works as follows. First, Eq. (9.2.1) is solved in each
�
�
.fi0g/
0

�
�1 �

.@0�n/�1 for the final condition f0, and afterwards, these solutions are iteratively
extended to

�
�n
�

�1 with the help of Proposition 9.5.2, which analogously gener-
ates an iteratively extended final condition in �n for t D 0.

Subsequently, a (proper) solution in each
�
�
.I1/
1

�
�1 � .@1�n/�1 for the final

condition f1 minus the extension of f0 is determined, which is then iteratively
extended to

�
�n
�

�1 (again likewise generating an analogously extended final
condition). This procedure is repeated until after finding a (proper) solution in
.�n/�1 an extended solution in the entire

�
�n
�

�1 is determined.
A solution of the extended Kolmogorov backward equation (9.2.1) restricted to

some
�
�
.fi0g/
0

�
�1 � .@0�n/�1 is—of course—trivial, i.e. ufi0g. p; t/ D f0. p/ for

. p; t/ 2 �
�
.fi0g/
0

�
�1, and by Proposition 9.5.2 we obtain NUfi0g as an extension to

�
�n
�

�1. Summing over all �.fi0g/
0 yields

NU0 WD
X

fi0g�In

NUfi0g in
�
�n
�

�1 (9.6.37)

with NU0 in C1
p

�
�n
�

with respect to the spatial variables as well as in C1..�1; 0//

with respect to t and

(
L� NU0 D � @

@t
NU0 in

�
�n
�

�1
NU0. � ; 0/ D NF0

0 in �n

(9.6.38)
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where NF0
0 is a corresponding superposed global extension of all f 0

0 � f0 in @0�n

as described above for the ufi0g (cf. also Remark 9.3.2); in particular, we have
NU0j@0�n. � ; 0/ D f0.

For the next step, proper solutions in .@1�n/�1 are determined and likewise
extended to

�
�n
�

�1. However, as this extension procedure will be repeated
for all d-dimensional faces of .�n/�1 for d D 1; : : : ; n, we directly assume
that suitable solutions in

�Sd�1
mD0 @m�n

�
�1 already have been determined and

extended to
�
�n
�

�1. Thus
Pd�1

mD0 NUm solves the extended Kolmogorov backward
equation (9.2.1) in

�
�n
�

�1 and matches the final condition f for t D 0 inSd�1
mD0 @m�n (still, with NU0. � ; 0/; : : : ; NUd�1. � ; 0/ in �n respectively matching a

corresponding superposed global extension NF0
m of the final condition f 0

m in @m�n

modified as below). Then, a proper solution uId by Proposition 9.1.1 in each�
�
.Id/
d

�
�1 � .@d�n/�1, Id � In is determined which matches the modified final

condition

f 0
d WD fd �

d�1X

mD0
NF0

mj@d�n in @d�n; (9.6.39)

correspondingly restricted to the relevant�.Id/
d . For each Id, the solution uId is then

extended to
�
�n
�

�1 via Proposition 9.5.2 each leading to a function NUId . Clearly,
these extensions do not interfere with the solutions on lower dimensional faces by
definition.

Summing over the extensions of all uId , Id � In, we obtain

NUd WD
X

Id�In

NUId in
�
�n
�

�1 (9.6.40)

as the global extension of all (proper) solutions in .@d�n/�1. By Proposition 9.5.2
and the linearity of the differential equation, NUd is in C1

p

�
�n
�

w. r. t. the spatial
variables as well as in C1..�1; 0/ with respect to t and solves the extended
Kolmogorov backward equation and for t D 0 matches a corresponding super-
posed global extension NF0

d of the final condition f 0
d in @d�n, thus in particular

NUd. � ; 0/j@d�n D f 0
d. Consequently, the sum of all solutions that we have extended

so far also is in C1
p

�
�n
�

w. r. t. the spatial variables as well as in C1..�1; 0/ with
respect to t and satisfies

8
<

:
L�
�Pd

mD0 NUm

�
D � @

@t

�Pd
mD0 NUm

�
in
�
�n
�

�1�Pd
mD0 NUm

�
jSd

mD0 @m�n
. � ; 0/ D f jSd

mD0 @m�n
in
Sd

mD0 @m�n:
(9.6.41)

Iterating the preceding step, we eventually arrive at
Pn�1

mD0 NUm. For the remaining
.�n/�1, finally a (proper) solution uIn DW NUn by Proposition 9.1.1 is determined
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matching the modified final condition

f 0
n WD fn �

n�1X

mD0
NF0

mj�n in �n: (9.6.42)

Then the sum of all globally extended (proper) solutions in all strata of the domain

NU WD
nX

jD0
NUj (9.6.43)

is in C1
p

�
�n
�

w. r. t. the spatial variables as well as in C1..�1; 0// with respect
to t and satisfies

(
L� NU D � @

@t
NU in

�
�n
�

�1
NU. � ; 0/ D f in �n;

(9.6.44)

and thus is a solution of the extended Kolmogorov backward equation (9.2.1).
Altogether, we have obtained the following existence result.

Theorem 9.6.1 For a given final condition f 2 L2�Sn
dD0 @d�n

�
, the extended Kol-

mogorov backward equation (4.2.13) corresponding to the n-dimensional Wright–
Fisher model in diffusion approximation always has a solution NUW ��n

�
�1 �! R

with NU. � ; t/ 2 C1
p

�
�n
�

for each fixed t 2 .�1; 0/ and NU. p; � / 2 C1..�1; 0//

for each fixed p 2 �n.

Below, we shall show that for f 2 L2�@0�n
�
—and under some additional

regularity assumptions—the solution obtained, i.e. NU0, also is the unique solution
given the described extension scheme. For this, we will employ a regularising blow-
up scheme, which will be the subject of the next section.

9.7 A Regularising Blow-Up Scheme for Solutions
of the Extended Backward Equation

In the present section, we continue the detailed investigation of the boundary
behavior of solutions of the (extended) Kolmogorov backward equation (9.2.1).
In analytical terms, the issue is the regularity of solutions at singularities of the
boundary, that is, where two or more faces of the simplex �n meet. The particular
extension paths from the boundary into the interior of the simplex may result
in boundary singularities at certain strata of the boundary the domain. We are
interested in the directions in which the singularities of the boundary of the simplex
are approached from the interior, because our aim is to resolve these boundary
singularities.
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What we want to achieve in this section is the global regularity in the closure
of the domain by resolving any incompatibilities between different boundary strata.
For that purpose, we shall construct an appropriate transformation of the relevant
part of the domain (i.e. the simplex �n, cf. below) which transports the whole
problem to the corresponding image domain of a product of a simplex and a
cube. Through this procedure, the iteratively extended solutions are turned into
corresponding solutions of the transformed equation, which are then of sufficient
global regularity, in particular, they are globally continuous. For generic iteratively
extended solutions this does not yet yield global continuity. It seems, however, that
their transformation image may be extended that way as well.

In Sect. 9.8, we shall also apply this to the stationary case. In the stationary case,
such regularised solutions are uniquely defined by their values on the vertices of
the domain (analogous to a globally continuous solution of the original problem in
�n, cf. Sect. 9.8). It just needs to be shown that there is sufficient (unique) boundary
data.

9.7.1 Motivation

The current section is the technically most involved one of this book. Therefore,
it might be helpful for the reader to have some motivation for our technical
constructions. To illustrate the motivation for the regularisation scheme, we use the

example of NUik;:::;in
Ik

in �.In/
n as in Eq. (9.5.30): When we analyze the geometry of the

respective incompatibilities we see that for every t < 0 the critical set for the top-
dimensional component Nuik;:::;in

Ik
resp. its continuous extension actually only consists

of the domain where we have pin C pin�1 D 0, hence �.In�2/
n�2 . On all other boundary

strata of arbitrary dimension, Nuik;:::;in
Ik

as in Eq. (9.5.29) is continuously extendable
and of class C1 with respect to the spatial variables there. Thus, at first there is
only one connected component of the boundary gap which needs to be addressed.

However, as will turn out, the full hierarchical solution NUik;:::;in
Ik

actually comprises

a nested incompatibility in �.In�2/
n�2 in the sense that also Nuik;:::;in�1

Ik
does not extend

continuously to �.In�3/
n�3 and so forth until Nuik;ikC1;ikC2

Ik
not extending continuously

to �.Ik/
k . This implies that the desired transformation needs to affect all relevant

dimensions, which will be accomplished by an iterative procedure: In each step,
one dimension from the simplex is removed and converted into a dimension of
the corresponding cube component, i.e. the corresponding coordinate is released
from the simplex property

P
i pi � 1. In doing so, the solution gains the required

regularity at the corresponding level with each iteration, i.e. eventually each of its
components is transformed such that it extends smoothly to the boundary. Thus,

after n � k � 1 of these steps, the relevant component of �.In/
n is converted into

a cube of dimension n � k � 1, and the correspondingly transformed solution is
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sufficiently regularised. In particular, we shall show that it smoothly extends to the
full boundary.

9.7.2 The Blow-Up Transformation and Its Iteration

We shall now present the details of the blow-up transformation and derive all
necessary results. We start with the basic transformation and then proceed to
the results for a suitably iterated application of this blow-up transformation (see
Fig. 9.1). For the notation, we refer to Sect. 2.11, in particular to Sect. 2.11.4 for the
cube notation.

Lemma 9.7.1 (Blow-Up Transformation) Let Id D f0; 1; : : : ; dg. A blow-up
transformation ˆr

s with r; s 2 Id n f0g mapping

�
.Id/
d n�.Idnfr;sg/

d�2 D ˚
. p1; : : : ; pd/

ˇ̌
pi � 0 for i 2 Id; p

r C ps > 0
�

(9.7.45)

with p0 WD 1 �P
i2Idnf0g pi C1-diffeomorphically onto

�
�
.Idnfsg/
d�1 n�.Idnfr;sg/

d�2
�

� �.fsg/
1

D ˚
.Qp1; : : : ; Qpd/

ˇ̌Qpi � 0 for i 2 Id n fsg; Qpr > 0I Qps 2 Œ0; 1�� (9.7.46)

Fig. 9.1 An illustration of the blow-up transformation for d D 2
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with Qp0 WD 1 �P
i2Idnf0;sg Qpi and altogether

�
.Id/
d 7�!

�
�
.Idnfsg/
d�1 � �.fsg/

1

�
n Nr (9.7.47)

with

Nr WD �
.Idnfr;sg/
d�2 � f0g.frg/ � �.fsg/

1 ; (9.7.48)

appearing as an additional .d � 1/-dimensional face of �.Idnfsg/
d�1 � �.fsg/

1 , is given
by

Qpi WD pi for i ¤ r; s; (9.7.49)

Qpr WD pr C ps; (9.7.50)

Qps WD
(

ps

prCps for pr C ps > 0

0 for pr C ps D 0:
(9.7.51)

Corollary 9.7.1 While we obtain Nr D �
.Idnfr;sg/
d�2 � �.fsg/

1 as an additional .d � 1/-
dimensional face with ˆr

s, the existing .d � 1/-dimensional faces of �.Id/
d including

their boundaries are mapped as follows:

�
.Idnfsg/
d�1 7�! �

.Idnfsg/
d�1 � f0g.fsg/; (9.7.52)

�
.Idnfrg/
d�1 n�.Idnfr;sg/

d�2 7�!
�
�
.Idnfsg/
d�1 n�.Idnfr;sg/

d�2
�

� f1g.fsg/ (9.7.53)

and

�
.Idnfig/
d�1 n�.Idnfi;r;sg/

d�3 7�!
�
�
.Idnfi;sg/
d�2 n�.Idnfi;r;sg/

d�3
�

� �.fsg/
1 for i 2 Id n fr; sg:

(9.7.54)

Remark 9.7.1 If the Qps in Lemma 9.7.1 is chosen differently with

Qps WD pr

pr C ps
; (9.7.55)

this flips the orientation of the Qps-coordinate in �.fsg/
1 as Qps now need to be replaced

by 1 � Qps wherever it occurs. This, however, does not affect the statements of

Lemma 9.7.1, whereas in Corollary 9.7.1 the images of �.Idnfrg/
d�1 n �.Idnfr;sg/

d�2 and

�
.Idnfsg/
d�1 n�.Idnfr;sg/

d�2 are interchanged. Thus, unless stated otherwise, in the following
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we shall always assume that the Qps-coordinate is chosen with an orientation as given
in Lemma 9.7.1.

Proof of Lemma 9.7.1 The transformation corresponds geometrically to a scaling of
the domain into the Qps-direction with scaling factor given by 1

Qpr . The assertion about

the transformation domains is straightforward since we have 0 � ps

prCps � 1 on

�
.Id/
d n�.Idnfr;sg/

d�2 . Likewise, the C1-diffeomorphism property follows from the fact
that ˆr

s is smoothly differentiable as long as Qpr D pr C ps > 0 and the smoothness
of the inverse transformation .ˆr

s/
�1, given by

pr D Qpr.1 � Qps/; (9.7.56)

ps D Qpr Qps; (9.7.57)

pi D Qpi for i ¤ r; s: (9.7.58)

By this, it also becomes obvious that .ˆr
s/

�1 maps
�
�
.Idnfsg/
d�1 n �.Idnfr;sg/

d�2
�

� �.fsg/
1

onto�.Id/
d n�.Idnfr;sg/

d�2 . ut
The next lemma is concerned with the transformation behaviour of the operator

L�
n ; all considerations apply to L�

n in its domain�n as well as, taking the restriction
property of L�

n (cf. Lemma 8.4.1) into account, in the closure �n resp. to the trans-
formed operator QL�

n in the subsequent transformed images of the domain (the domain
in question will not be stated explicitly—this will be done in Proposition 9.7.1):

Lemma 9.7.2 Let I0
n WD f1; : : : ; ng be an index set with r; s 2 I0

n and let fi1; : : : ; ing
be an ordering of I0

n such that r; s 2 fi1; : : : ; img for some m � n. When changing
coordinates . pi/i2I0

n
7! .Qpi/i2I0

n
by ˆr

s, the operator

L�
n D 1

2

nX

i;jD1
aij. p/

@

@pi

@

@pj
(9.7.59)

with aij. p/ D pi.ıi
j � pj/ for i; j 2 fi1; : : : ; img, aij D 0 else for i ¤ j is transformed

into

QL�
n D 1

2

kX

k;lD1
Qakl.Qp/ @

@Qpk

@

@Qpl
(9.7.60)

with Qakl.Qp/ D Qpk.ık
l � Qpl/ for k; l 2 fi1; : : : ; img n fsg, Qass.Qp/ D Qps.1�Qps/

Qpr , Qasl D
Qals D 0 for l ¤ s and Qakl.Qp/ D akl. p/ (with the coordinates yet to be replaced) for
all remaining indices. This also holds if the Qps-coordinate is chosen with opposite
orientation (cf. Remark 9.7.1).
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Proof As we have derived in Lemma 3.10.1, under a change of coordinates . pi/ 7!
.Qpi/, the coefficients of the 2nd order derivatives aij transform as

Qakl D
X

i;j

aij @Qpk

@pi

@Qpl

@pj
; (9.7.61)

while we may get additional first order terms with coefficients
P

i;j aij @2Qpk

@pi@pj .
For the transformation at hand, we have (cf. Eqs. (9.7.50) and (9.7.49))

@Qpk

@pi
D ık

i C ık
r ı

s
i for k ¤ s (9.7.62)

and (cf. Eq. (9.7.51))

@Qps

@pi
D pr

. pr C ps/2
ıs

i � ps

. pr C ps/2
ır

i D 1 � Qps

Qpr
ıs

i � Qps

Qpr
ır

i : (9.7.63)

Therefore, (9.7.61) yields

Qakl.Qp/ D
X

i;j

aij. p/.ık
i C ık

r ı
s
i /.ı

l
j C ıl

rı
s
j / (9.7.64)

for k; l ¤ s, that is,

Qakl.Qp/ D akl. p/C aks. p/ıl
r C asl. p/ık

r C ass. p/ık
rı

l
r

D pk.ık
l � pl/� pkpsıl

r � psplık
r C ps.1 � ps/ık

r ı
l
r

D Qpk.ık
l � Qpl/ (9.7.65)

for k; l 2 fi1; : : : ; imgnfsg using the given form of the aij, whereas for all other index
pairs not containing the index s, we always have

aks. p/ıl
r D asl. p/ık

r D ass. p/ık
rı

l
r D 0 (9.7.66)
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and hence

Qakl.Qp/ D
X

i;j

aij. p/ık
i ı

l
j D akl. p/; (9.7.67)

thus proving the last statement. Furthermore, we have for arbitrary l ¤ s

Qasl.Qp/ D
X

i;j

aij. p/

�
1 � Qps

Qpr
ıs

i � Qps

Qpr
ır

i

�
.ıl

j C ıl
rı

s
j /

D 1 � Qps

Qpr
.asl. p/C ass. p/ıl

r/� Qps

Qpr
.arl. p/C ars. p/ıl

r/

D
�

� 1 � Qps

Qpr
Qpr Qps Qpl C Qps

Qpr
.1 � Qps/Qpr Qpl

�
�fi1;:::;img.l/

� Qps

Qpr
Qpr.1 � Qps/ıl

r C
�1 � Qps

Qpr
Qpr Qps.1 � Qpr Qps/C Qps

Qpr
Qpr.1 � Qps/Qpr Qps

�
ıl

r D 0

(9.7.68)

as well as Qals D 0 (l ¤ s) by symmetry and finally

Qass.Qp/ D
X

i;j

aij. p/

�
1 � Qps

Qpr
ıs

i � Qps

Qpr
ır

i

��
1 � Qps

Qpr
ıs

j � Qps

Qpr
ır

j

�

D ass. p/

�
1 � Qps

Qpr

�2
C arr. p/

� Qps

Qpr

�2
� 2arr. p/

Qps.1 � Qps/

.Qpr/2

D Qps.1 � Qpr Qps/
.1 � Qps/2

Qpr
C .1� Qps/.1 � Qpr C Qpr Qps/

.Qps/2

Qpr

� 2Qpr Qps.1 � Qps/
Qps.1 � Qps/

Qpr
D Qps.1 � Qps/

Qpr
: (9.7.69)

Thus, all Qakl have the desired expression.
Possible additional first order terms would have to contain second derivatives

of Qp; the only component for which they do not obviously vanish is Qps. But we have
(cf. Eq. (9.7.63))

@

@pj

@

@pi
Qps D 2

. pr C ps/3
. psır

i � prıs
i /.ı

r
j C ıs

j /C 1

. pr C ps/2
.ıs

i ı
r
j � ır

i ı
s
j /

(9.7.70)
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and subsequently

X

i;j

aij @

@pi

@

@pj
Qps D 2

. pr C ps/3

�
ps.arr C ars/� pr.arr C ass/

�C 1

. pr C ps/2
.arr � ars/

D 2

. pr C ps/3

�
pspr.1 � pr � ps/C prps. pr � 1C ps/

� D 0;

(9.7.71)

for which again the particular expression for the aij is needed.
If Qps is chosen with different orientation as in Remark 9.7.1, instead of

Eq. (9.7.63) we then have

@Qps

@pi
D Qps

Qpr
ıs

i � 1 � Qps

Qpr
ır

i : (9.7.72)

This means that in the respective formulae the indices r and s are swapped, which
in turn is matched by the corresponding inverse transformation which now yields
pr D Qpr Qps and ps D Qpr.1 � Qps/. ut

Combining the preceding results, we obtain for an iterated application of the
blow-up transformation:

Proposition 9.7.1 Let k; n 2 N with 0 � k � n � 2, fik; ikC1; : : : ; ing � In WD
f0; 1; : : : ; ng with ii ¤ ij for i ¤ j and Id WD In n fidC1; : : : ; ing for d D k; : : : ; n � 1.
A repeated blow-up transformation ˆrn�k�1

sn�k�1
ı : : : ıˆr1

s1
with ˆrm

sm
as in Lemma 9.7.1

with rm D in�m and sm D in�mC1 for m D 1; : : : ; n � k � 1 maps �
.IkC1/

kC1 onto itself
and

�
.Id/
d 7�! �

.IkC1/

kC1 � �.IdnIkC1/

d�k�1 for d D k C 2; : : : ; n (9.7.73)

and altogether

�
.In/
n 7�!

�
�
.IkC1/

kC1 � �.InnIkC1/

n�k�1
�

n
n�1[

jDkC1
Nj: (9.7.74)

The n � k � 1 additional .n � 1/-dimensional faces NkC1; : : : ;Nn�1 of �
.IkC1/

kC1 �
�.InnIkC1/

n�k�1 are given by

NkC1 D �
.Ik/
k � f0g.fikC1g/ � �.InnIkC1/

n�k�1 (9.7.75)
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and

Nj D �
.IkC1/

kC1 � �.Ij�1nIkC1/

j�k�2 � f0g.fijg/ � �.InnIj/

n�j (9.7.76)

for j D k C 2; : : : ; n � 1. At the same time, the operator L� D P
pi.ıi

j � pj/ @
@pi

@
@pj in

�
.In/
n is transformed into4

QL� D 1

2

kC1X

j;lD1
Qpij.ı

j
l � Qpil/

@

@Qpij

@

@Qpil
C 1

2

nX

jDkC2

Qpij.1 � Qpij/
Qj�1

lDkC1 Qpil

@2

.@Qpij/
2

(9.7.77)

in
�
�
.IkC1/

kC1 � �.InnIkC1/

n�k�1
�

nSn�1
jDkC1 Nj.

If in any step the coordinate Qpsj is chosen with opposite orientation (cf.
Remark 9.7.1), Qpsj , whenever it appears in the above formulae, is replaced by
.1 � Qpsj/.

Thus, the iterated blow-up translates the (extended) Kolmogorov backward

equation in�n into a corresponding differential equation in
�
�
.IkC1/

kC1 � �.InnIkC1/

n�k�1
�

n
Sn�1

jDkC1 Nj. For the iteratively extended solutions of the Kolmogorov backward
equation introduced in the preceding chapter, the transformation behaviour is as
follows:

Proposition 9.7.2 Let k; n 2 N with 0 � k � n � 2, fik; ikC1; : : : ; ing �
In WD f0; 1; : : : ; ng with ii ¤ ij for i ¤ j and Id WD In n fidC1; : : : ; ing for

d D k; : : : ; n � 1, and let uIk in
�
�
.Ik/
k

�
�1 and NUik;:::;in

Ik
in
�S

k�d�n�
.Id/
d

�

�1 as in

Proposition 9.5.1. Then a repeated blow-up transformationˆrn�k�1
sn�k�1

ı : : : ıˆr1
s1 with

ˆrm
sm

as in Lemma 9.7.1 with rm D in�m and sm D in�mC1 for m D 1; : : : ; n � k � 1

converts

NUik;:::;in
Ik

. p; t/ WD uIk . p; t/�
�
.Ik/
k
. p/C

X

kC1�d�n

Nuik;:::;id
Ik

. p; t/�
�
.Id /
d
. p/

D uIk. p; t/�
�
.Ik /
k
. p/C

X

kC1�d�n

uIk .�
ik;:::;id . p/; t/

d�1Y

jDk

pij

Pd
lDj pil

�
�
.Id /
d
. p/

(9.7.78)

4Note that on boundary strata of �.InnIkC1/

n�k�1 , i.e. Qpil D 0 for some l 2 In n IkC1, the corresponding
summands are assumed not to appear in the right sum in Eq. (9.7.77), which may be interpreted as
a result of a successive restriction. The given domain is the maximal domain for the operator as it
is not defined on the exception set

Sn�1
jDkC1 Nj (however, cf. also Lemma 9.8.2 for the stationary

case).
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on
�S

k�d�n�
.Id/
d

�

�1 into

QUik;ikC1IikC2;:::;in
Ik

.Qp; t/ WD uIk.Qp; t/��.Ik /k
.Qp/

C
X

kC1�d�n

Quik;ikC1IikC2;:::;id
Ik

.Qp; t/�
�
.IkC1 /

kC1
��

.Id nIkC1/

d�k�1

.Qp/ (9.7.79)

on
�S

k�d�n�
.IkC1/

kC1 � �.InnIkC1/

n�k�1
�

�1 with

Quik;ikC1IikC2;:::;id
Ik

.Qp; t/ WD Nuik;ikC1

Ik
. Q� ikC1 .Qp/; t/

dY

jDkC2
.1 � Qpij/ for d D k C 2; : : : ; n

(9.7.80)

with Q� ikC1 .Qpij/ WD Qpij for ij 2 IkC1, Q� ik�1 .Qpij/ WD 0 else. The transformed

functions Quik;ikC1IikC2;:::;id
Ik

smoothly extend to
�
�
.IkC1/

kC1 � �.IdnIkC1/

d�k�1
�

�1 respectively;

consequently also QUik;ikC1IikC2;:::;in
Ik

smoothly extends to
�
�
.IkC1/

kC1 � �.InnIkC1/

n�k�1
�

�1.

Furthermore, it may be simplified to

QUik;ikC1IikC2;:::;in
Ik

.Qp; t/ � Quik;ikC1IikC2;:::;in
Ik

.Qp; t/ in
�
�
.IkC1/

kC1 � �.InnIkC1/

n�k�1
�

�1:
(9.7.81)

If in any step the coordinate Qpsj is chosen with opposite orientation (cf.
Remark 9.7.1), Qpsj in the above formulae need to be replaced by .1 � Qpsj/.

For the stationary components, we have in particular:

Corollary 9.7.2 For k D 0 and w. l. o. g. i0 D 0, the transformed function of
Proposition 9.7.2 in Eq. (9.7.81) simplifies to

QUi0;i1Ii2;:::;in
fi0g .Qp/ D ufi0g.1/ �

nY

jD1
.1 � Qpij/ in �.I0

n/

n ; (9.7.82)

while in accordance with Proposition 9.7.1 the domain is mapped

�
.Id/
d 7�! �.I0

d/

d for d D 0; : : : ; n (9.7.83)

and altogether

�
.In/
n 7�! �.I0

n/

n n
n�1[

jD1
Nj: (9.7.84)
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The n � 1 additional .n � 1/-dimensional faces N1; : : : ;Nn�1 of @�.I0

n/

n are given by

N1 D f0g.fi1g/ � �.I0

nnI0

1/

n�1 (9.7.85)

and

Nj D �.I0

j�1/

j�1 � f0g.fijg/ � �.I0

nnI0

j /

n�j (9.7.86)

for j D 2; : : : ; n � 1, whereas the operator L� D P
pi.ıi

j � pj/ @
@pi

@
@pj in �.In/

n is
transformed into

QL� D 1

2

nX

jD1

Qpij.1 � Qpij/
Qj�1

lD1 Qpil

@2

.@Qpij/
2

in �.I0

n/

n n
n�1[

jD1
Nj: (9.7.87)

Proof of Propositions 9.7.1 and 9.7.2 We prove the assertions of both propositions
in parallel: Our aim is to transform NUik;:::;in

Ik
into a function that does not feature

any incompatibilities and hence is of sufficient regularity with respect to the entire
closure of the (transformed) domain. For that purpose, we shall show that the
full blow-up via a repeated application of the coordinate transformation ˆr

s of
Lemma 9.7.1 with the indices r and s to be picked as shown in each step yields the
desired result for QUik;ikC1IikC2;:::;in

Ik
, while the transformation behaviour of the domain

and the operator is as stated in Proposition 9.7.1. For notational simplicity, we will
usually suppress the t-component in the notation for our domains throughout this
proof; for instance, we shall write �.In/

n instead of
�
�
.In/
n
�

�1.

Starting with the top-dimensional component of NUik;:::;in
Ik

, which is

Nuik;:::;in
Ik

. p; t/ D Nuik;:::;in�1

Ik
.� in�1;in. p/; t/ � pin�1

pin�1 C pin

D uIk.�
ik ;:::;in�1 .� in�1;in. p//; t/

n�2Y

jDk

pij
Pn

lDj pil
� pin�1

pin�1 C pin
in �.In/

n

(9.7.88)

with pi0 � p0 D 1 � Pn
jD1 pij (if i0 ¤ 0, one may change the coordinates, i.e.

permute the vertices correspondingly), we initially put5 r1 WD in�1 and s1 WD in.
Changing coordinates . pi/ 7! .Qpi/ by ˆr1

s1 maps �.In/
n onto �.In�1/

n�1 � �.fing/
1 and

5Alternatively, one could also put r1 WD in and s1 WD in�1, which would correspond to inverting the
orientation of the Qps1 -coordinate as in Remark 9.7.1 (cf. also below) plus subsequently swapping
the coordinate indices in and in�1, thus Qpin would get replaced by 1� Qpin�1 and Qpin�1 with Qpin .
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�
.In�1/
n�1 onto �.In�1/

n�1 � f0g.fing/, whereas the entire domain �.In/
n is transformed into�

�
.In�1/
n�1 � �.fing/

1

�
n Nn�1 with

Nn�1 WD �
.In�2/
n�2 � f0g.fin�1g/ � �.fing/

1 (9.7.89)

being an additional .n�1/-dimensional face of�.In�1/
n�1 ��.fing/

1 (cf. Lemma 9.7.1). At

the same time, the .n � 2/-dimensional incompatibility at �.In�2/
n�2 of the continuous

extension of Nuik;:::;in
Ik

to @n�1�.In/
n is removed as the transformation yields

Quik;:::;in�1Iin
Ik

.Qp; t/ WD Nuik;:::;in�1

Ik
. Q� in�1 .Qp/; t/ � .1� Qpin/

D uIk.�
ik ;:::;in�1 . Q� in�1 .Qp//; t/

n�2Y

jDk

Qpij
Pn

lDj Qpil
� .1 � Qpin/

in �.In�1/
n�1 � �.fing/

1 (9.7.90)

by Eq. (9.7.56) et seq. (note Q� in�1 .Qp/ D � in�1;in. p/). Hence, the complete function
NUik;:::;in

Ik
is transformed into

QUik;:::;in�1Iin
Ik

. p; t/ WD
X

k�d�n�1
Nuik;:::;id

Ik
. p; t/�

�
.Id /
d
. p/

C Quik;:::;in�1Iin
Ik

. p; t/�
�
.In�1/

n�1 ��.InnIn�1/

1

. p/ (9.7.91)

with the transformed top-dimensional component Quik;:::;in�1Iin
Ik

.Qp; t/ smoothly extend-

ing to �.In�1/
n�1 � �.fing/

1 with

Quik;:::;in�1Iin
Ik

.Qp; t/ˇ̌
�
.In�1/

n�1 �f0g.fing/ � Nuik;:::;in�1

Ik
.Qp; t/ in �.In�1/

n�1 � f0g.fing/: (9.7.92)

As Nuik;:::;in�1

Ik
itself smoothly extends to @n�2�.In�1/

n�1 , thus Quik;:::;in�1Iin
Ik

now smoothly

extends to the entire .@n�2�.In�1/
n�1 / � �.fing/

1 , in particular to �.In�2/
n�2 � �.fing/

1 �
Nn�1 (however, Nuik;:::;in�1

Ik
resp. its continuous extension to @n�2�.In�1/

n�1 still has an

incompatibility at �.In�3/
n�3 ).

The operator L� D 1
2

Pn
i;jD1 pi.ıi

j � pj/ @
@pi

@
@pj in �

.In/
n transforms into (cf.

Lemma 9.7.2)

QL� D 1

2

X

j;l¤n

Qpij.ı
j
l � Qpil/

@

@Qpij

@

@Qpil
C 1

2

Qpin.1 � Qpin/

Qpin�1

@

@Qpin

@

@Qpin
(9.7.93)



250 9 The Backward Equation

on
�
�
.In�1/
n�1 � �.fing/

1

�
n Nn�1 since we have Qakl.Qp/ D pk.ık

l � pl/ D Qpk.ık
l � Qpl/ for

k; l ¤ in�1; in. If Qpin is chosen with opposite orientation (cf. Remark 9.7.1), then Qpin

needs to be replaced by .1 � Qpin/ everywhere.
As already indicated, the transformed solution is still not smoothly extendable to

the full boundary of the transformed domain: Its .n�2/-dimensional incompatibility
is resolved, but its lower-dimensional incompatibilities persist. Thus, the highest-
dimensional incompatibility now is of dimension n � 3, and hence the situation is
ready for another application of the blow-up transformation.

Thus, we need an iterative procedure to resolve all incompatibilities. For
this purpose, we assume that after the m-th step (m D 1; : : : ; n � k � 2) an
already transformed function QUik;:::;in�mIin�mC1;:::;in

Ik
with (note that we again associate

coordinates p resp. Qp etc. to the domain before/after the .m C 1/-th transition;
furthermore, we will use the convention Nuik

Ik
� uIk to simplify the notation)

QUik;:::;in�mIin�mC1;:::;in
Ik

. p; t/ D
X

k�d�n�m

Nuik;:::;id
Ik

. p; t/�
�
.Id /
d
. p/

C
X

n�mC1�d�n

Quik;:::;in�mIin�mC1;:::;id
Ik

. p; t/�
�
.In�m/
n�m ��.Id nIn�m/

d�nCm
. p/ (9.7.94)

with

Quik;:::;in�mIin�mC1;:::;id
Ik

. p; t/ D Nuik;:::;in�m
Ik

. Q� in�m. p/; t/
dY

jDn�mC1
.1 � pij/ (9.7.95)

for d D n � m C 1; : : : ; n and

Nuik ;:::;in�m
Ik

. p; t/ D Nuik ;:::;in�m�1
Ik

.� in�m�1 ;in�m. p/; t/ � pin�m�1

pin�m�1 C pin�m

D uIk .�
ik ;:::;in�m�1 .� in�m�1;in�m . p//; t/

n�m�2Y

jDk

pij
Pn

lDj pil
� pin�m�1

pin�m�1 C pin�m

(9.7.96)

in �.In�m/
n�m . The corresponding total domain as an image of �.In/

n is given by

�
�
.In�m/
n�m � �.InnIn�m/

m
� n

n�1[

jDn�m

Nj (9.7.97)
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with additional .n � 1/-dimensional faces from previous steps

Nn�m D �
.In�m�1/
n�m�1 � f0g.fin�mg/ � �.InnIn�m/

m (9.7.98)

and

Nj D �
.In�m/
n�m � �.Ij�1nIn�m/

j�nCm�1 � f0g.fijg/ � �.InnIj/

n�j (9.7.99)

for j D n � m C 1; : : : ; n � 1.

The functions Quik;:::;in�mIin�mC1;:::;id
Ik

smoothly extend each to �.In�m/
n�m � �.IdnIn�m/

d�nCm ,
and we have

Quik;:::;in�mIin�mC1;:::;id
Ik

j
�
.In�m/
n�m ��.Id�1nIn�m/

m
D Quik;:::;in�mIin�mC1;:::;id�1

Ik
(9.7.100)

for d D n � m C 2; : : : ; n and

Quik;:::;in�mIin�mC1

Ik
j
�
.In�m/
n�m

D Nuik;:::;in�m
Ik

: (9.7.101)

With Nuik;:::;in�m
Ik

being smoothly extendable to @n�m�1�.In�m/
n�m , also the functions

Quik;:::;in�mIin�mC1;:::;id
Ik

smoothly extend to
�
@n�m�1�.In�m/

n�m

�
� �.IdnIn�m/

d�nCm , in particular

all additional faces are covered.
Furthermore, we assume that the operator L� has the corresponding form

L� D 1

2

n�mX

j;lD1
pij.ı

j
l � pil/

@

@pij

@

@pil
C 1

2

nX

jDn�mC1

pij.1 � pij/
Qj�1

lDn�m pil

@2

.@pij/
2

(9.7.102)

on
�
�
.In�m/
n�m � �.InnIn�m/

m

�
nSn�1

jDn�m Nj.

For the .m C1/-th blow-up step, we first notice that Nuik;:::;in�m
Ik

resp. its continuous

extension to @n�m�1�.In�m/
n�m still has an incompatibility at �.In�m�2/

n�m�2 � �
.In�m/
n�m ,

corresponding to pin�m C pin�m�1 D 0. Consequently, this may be resolved by a
blow-up transformationˆ

rmC1
smC1

with rmC1 D in�m�1 and smC1 D in�m (note that, due
to the stipulation i0 D 0, we always have rmC1; smC1 ¤ 0), mapping the simplex
part of the domain (cf. Lemma 9.7.1)

�.In�m/
n�m 7�! �

.In�m�1/
n�m�1 � �.fin�mg/

1 (9.7.103)

resp.

�
.In�m�1/
n�m�1 7�! �

.In�m�1/
n�m�1 � f0g.fin�mg/ (9.7.104)
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and altogether

�
.In�m/
n�m 7�! �

.In�m�1/
n�m�1 � �.fin�mg/

1 n Nn�m�1 (9.7.105)

with

Nn�m�1 WD �
.In�m�2/
n�m�2 � f0g.fin�m�1g/ � �.fin�mg/

1 (9.7.106)

being an additional .n � m � 1/-dimensional face of �.In�m�1/
n�m�1 � �.fin�mg/

1 .

From this, when gradually adding the cube part �.InnIn�m/
m with coordinates

pin�mC1 ; : : : ; pin , Eq. (9.7.103) turns into

�.In�m/
n�m � �.IdnIn�m/

d�nCm 7�! �
.In�m�1/
n�m�1 � �.IdnIn�m�1/

d�nCmC1 for d � n � m; (9.7.107)

and by applying Eq. (9.7.105) to the previous image of the initial domain �.In/
n in

Eq. (9.7.97), we obtain for the transformed total domain

�
�
.In�m�1/
n�m�1 � �.InnIn�m�1/

mC1
� n

n�1[

jDn�m�1
QNj (9.7.108)

with QNn�m; : : : ; QNn�1 being the images of the previous additional faces: The faces

Nn�mC1; : : : ;Nn�1 are only affected indirectly as they contain the full �.In�m/
n�m as a

factor, and hence only the in�m-th coordinate is moved from the simplex to the cube,
thus

QNj D �
.In�m�1/
n�m�1 � �.Ij�1nIn�m�1/

j�nCm � f0g.fijg/ � �.InnIj/

n�j (9.7.109)

for j D n � m C 1; : : : ; n � 1, whereas Nn�m � QNn�m is virtually not affected
as only pin�m D 0 is transformed into Qpin�m D 0. For the ‘new’ additional .n �
1/-dimensional face QNn�m�1 (resulting from Nn�m�1), we may—having added the
remaining dimensions—relax the condition Qpin�m > 0 in Eq. (9.7.106). This ensures

Nn�m�1 ¤ �
.In�m�2/
n�m�2 , into

Pn
jDn�m Qpij > 0. Hence, we obtain

QNn�m�1 WD �
.In�m�2/
n�m�2 � f0g.fin�m�1g/ � �.InnIn�m�1/

mC1 : (9.7.110)

At the same time, Nuik;:::;in�m
Ik

and Quik;:::;in�mIin�mC1;:::;id
Ik

, d D n � m C 1; : : : ; n get
transformed into

Quik;:::;in�m�1Iin�m ;:::;id
Ik

.Qp; t/ D Nuik;:::;in�m�1

Ik
. Q� in�m�1 .Qp/; t/

dY

jDn�m

.1 � Qpij/ (9.7.111)
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in �.In�m�1/
n�m�1 � �.IdnIn�m�1/

d�nCmC1 for d � n � m, and hence

QUik;:::;in�m�1Iin�m;:::;in
Ik

. p; t/ WD
X

k�d�n�m�1
Nuik;:::;id

Ik
. p; t/�

�
.Id /
d
. p/

C
X

n�m�d�n

Quik;:::;in�m�1Iin�m ;:::;id
Ik

. p; t/�
�
.In�m�1/

n�m�1 ��.Id nIn�m�1/

d�nCmC1

. p/: (9.7.112)

The transformed functions Quik;:::;in�m�1Iin�m ;:::;id
Ik

then each smoothly extend to

�
.In�m�1/
n�m�1 � �.IdnIn�m�1/

d�nCmC1 , and we have

Quik;:::;in�m�1Iin�m;:::;id
Ik

j
�
.In�m�1/

n�m�1 ��.Id�1nIn�m�1/

mC1

D Quik;:::;in�m�1Iin�m ;:::;id�1

Ik
(9.7.113)

for d D n � m C 1; : : : ; n and

Quik;:::;in�m�1Iin�m
Ik

j
�
.In�m�1/

n�m�1

D Nuik;:::;in�m�1

Ik
: (9.7.114)

With Nuik;:::;in�m�1

Ik
being smoothly extendable to @n�m�2�.In�m�1/

n�m�1 , the functions

Quik;:::;in�m�1Iin�m;:::;id
Ik

also smoothly extend to
�
@n�m�2�.In�m�1/

n�m�1
�

� �.IdnIn�m�1/
d�nCmC1 , by

which all additional faces are covered; in particular, Quik;:::;in�m�1Iin�m
Ik

smoothly

extends to Nn�m�1 resp. eventually Quik;:::;in�m�1Iin�m ;:::;in
Ik

extends to QNn�m�1 (however,

Nuik;:::;in�m�1

Ik
resp. its continuous extension to @n�m�2�.In�m�1/

n�m�1 still has an incompati-

bility at �.In�m�3/
n�m�3 ).

To analyse the transformation behaviour of the operator, we first note that the
requirements of Lemma 9.7.2 on aij are met as for i; j 2 fi1; : : : ; in�mg we have
aij. p/ D pi.ıi

j � pj/ by Eq. (9.7.102), while all other non-diagonal coefficients
vanish. Hence, by the lemma, we have for i; j 2 fi1; : : : ; in�mg

Qaij.Qp/ D Qpi.ıi
j � Qpj/; (9.7.115)

while for Qaijij with j D n � m C 1; : : : ; n we obtain

Qaijij .Qp/ D aijij. p/ D pij.1 � pij/
Qj�1

lDn�m pil
D Qpij.1 � Qpij/
Qj�1

lDn�m�1 Qpil
: (9.7.116)

Likewise, Qain�min�m takes the form

Qain�min�m.Qp/ D Qpin�m.1� Qpin�m/

Qpin�m�1
; (9.7.117)
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whereas all other coefficients vanish. Altogether, this yields

QL� D 1

2

n�m�1X

j;lD1
Qpij.ı

j
l � Qpil/

@

@Qpij

@

@Qpil
C 1

2

nX

jDn�m

Qpij.1 � Qpij/
Qj�1

lDn�m�1 Qpil

@2

.@Qpij/
2

(9.7.118)

on
�
�
.In�m�1/
n�m�1 � �.InnIn�m�1/

mC1
�

n Sn�1
jDn�m�1 Nj. If Qpin�m is chosen with opposite

orientation (cf. Remark 9.7.1), then Qpin�m needs to be replaced by .1 � Qpin�m/

everywhere.
Thus, after the .m C 1/-st blow-up step, domain, solution and operator are of

analogous form as before, just with the index m replaced by m C1. Eventually, after
n � k � 1 blow-up steps domain, solution and operator have attained the asserted
form of the corresponding statements. In particular, the remaining uIk as a proper

solution smoothly extends to the entire boundary of�.Ik/
k , and hence so does Nuik;ikC1

Ik

in�.Ik/
kC1, implying that each Quik;ikC1IikC2;:::;id

Ik
smoothly extends to�

.IkC1/

kC1 � �.IdnIkC1/

d�k�1 ,

and eventually QUik;ikC1IikC2;:::;in
Ik

smoothly extends to �
.IkC1/

kC1 � �.InnIkC1/

n�k�1 . Moreover,
the restriction property in Eqs. (9.7.113) and (9.7.114) yields Eq. (9.7.81). ut
Proof of Corollary 9.7.2 In the given setting, we have Nui0;i1

fi0g .Qp/ D ufi0g.Qpi0 C
Qpi1 / Qpi0

Qpi0CQpi1
D ufi0g.1/.1 � Qpi1 / in �.fi0;i1g/

1 D �.fi1g/
1 (and �.fi0g/

0 D f0g.fi0g/), which
proves the asserted form of the (simplified) solution, the domain and the additional
faces. ut

However, the global smoothness of the transformed solution of Proposition 9.5.1
observed in the preceding corollary does not necessarily hold for other functions
in question, i.e. arbitrary iteratively extended solutions U satisfying the extension
constraints 9.3.1 (this corresponds to U particularly being of class C1

p0
). However,

we still have a weaker global regularity assertion for the transformed function QU
on the entire image of the simplex (only formulated for the stationary component
corresponding to the setting of Corollary 9.7.2):

Lemma 9.7.3 Let n � 2, Id WD fi0; i1; : : : ; idg � f0; 1; : : : ; ng for d D 0; : : : ; n with
ii ¤ ij for i ¤ j and ufi0gW�.fi0g/

0 �! R. Then an iterated extension U D Pn
dD0 ud 2

C1
p0

�Sn
dD0 �

.Id/
d

�
of ufi0g obeying the extension constraints 9.3.1 is transformed by

a successive blow-up transformation ˆrn�1
sn�1

ı : : : ı ˆr1
s1

as in Proposition 9.7.1 into

a function QU D Pn
dD0 QudWSn

dD0 �.I0

d/

d �! R with extension to all faces
˚Qpi1 D

1
�
; : : : ;

˚Qpin D 1
�

(which can be considered as boundary strata of any �.I0

d/

d � �.I0

n/
n )

which is of class C1
p and vanishes on the mentioned faces.

For the proof, we trace the extendability of QU towards the additional faces

back to that of U in �.In/
n for approaching the incompatibilities—which will be

accomplished by the next lemma. Note that in the following we will use a disjoint
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formulation of the additional faces by putting

Nj D �.I0

j�1/

j�1 � f0g.fijg/ � �.I0

nnI0

j /

n�j : (9.7.119)

Lemma 9.7.4 In the setting of a full blow-up transformation as in Proposi-

tion 9.7.1, for d D 1; : : : ; n the additional face Nd D �.I0

d�1/

d�1 � f0g.fidg/ �
�.I0

nnI0

d/

n�d � �.I0

n/
n corresponds to �.Id�1/

d�1 � �
.In/
n with additional values existing for

pidC1C:::Cpin

pid CpidC1C:::Cpin
; : : : ;

pin

pin�1Cpin (which can be considered as limits of corresponding

sequences). Furthermore, for j D 1; : : : ; d � 1 the face fQpij D 1g � �.I0

d�1/

d�1
corresponds to pij�1 D 0 in �

.Id�1/
d�1 , in particular its interior corresponds to

�
.Id�1nfij�1g/
d�2 :

Proof To take account of the ‘additional’ faces Nm of �.I0

n/

n produced during
the blow-up transformations, we carry out the full blow-up transformation of
Proposition 9.7.1. This yields

Qpi1 WD pi1 C : : :C pin ; (9.7.120)

Qpi2 WD
(

pi2C:::Cpin

pi1Cpi2C:::Cpin for pi1 C : : :C pin > 0

0 for pi1 C : : :C pin D 0;
(9.7.121)

:::

Qpij WD
8
<

:

pij C:::Cpin

pij�1Cpij C:::Cpin
for pij�1 C : : :C pin > 0

0 for pij�1 C : : :C pin D 0;
(9.7.122)

:::

Qpin WD
(

pin

pin�1Cpin for pin�1 C pin > 0

0 for pin�1 C pin D 0
(9.7.123)

for p 2 Sn
dD0 �

.Id/
d and conversely

pi1 D Qpi1 .1 � Qpi2/; (9.7.124)

:::

pij D Qpi1 � � � Qpij.1 � QpijC1/; (9.7.125)

:::
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pin�1 D Qpi1 � � � Qpin�1.1 � Qpin/; (9.7.126)

pin D Qpi1 � � � Qpin (9.7.127)

for Qp 2 Sn
dD0 �.I0

d/

d (note that we also have pi0 D 1 � Qpi1); however, the given

equations also smoothly extend to the entire �.I0

n/

n . We can therefore also transform
the Nd � �n back to �n, i.e. Qpid D 0 implies pid ; : : : ; pin D 0, whereas 0 <
Qpi1 ; : : : ; Qpid�1 < 1 leads to pi1 ; : : : ; pid�1 > 0. Keeping the values of QpidC1 ; : : : ; Qpin

yields the pivotal allele (limit) ratios pidC1C:::Cpin

pid CpidC1C:::Cpin
; : : : ; pin

pin�1Cpin . If however

Qpij D 1, this corresponds to pij�1 D 0 (and pi1 ; : : : ; pij�1 ; pijC1 : : : ; pid > 0 if
0 < Qpi1 ; : : : ; Qpij�1 ; QpijC1 ; : : : ; Qpid < 1 and QpidC1 D 0). ut
Proof of Lemma 9.7.3 By Lemma 9.7.1 and Proposition 9.7.1 and Corollary 9.7.2,
the full blow-up transformation respectively maps

n[

dD0
�
.Id/
d 7�!

n[

dD0
�.I0

d/

d (9.7.128)

C1-diffeomorphically (cf. Eq. (9.7.83)). By the C1
p0 -regularity of U, un in �.In/

n

smoothly connects with un�1 in �
.In�1/
n�1 , and consequently so does Qun in �.I0

n/
n

with Qun�1 in �.I0

n�1/

n�1 ; an analogous statement holds for all lower dimensions. Thus

it remains to show that QU extends those faces of �.I0

n/
n given by fQpij D 1g for

j D 1; : : : ; n such that the extension is of class C1
p .

By Lemma 9.7.4, the interior of fQpij D 1g � �.I0

n/
n corresponds to pij�1 D 0

and pil > 0 for l ¤ j � 1 in �.In/
n , thus to �

.Innfij�1g/
n�1 , which is a boundary face

of �.In/
n outside the assumed extension path defined by the (ordered) In. Hence by

the C1
p0 -regularity, the relevant continuous extension of U needs to be zero there,

and this is attained smoothly when coming from the interior �.In/
n . Because of the

diffeomorphism properties of the transformation, this also applies to the cube.

An analogous observation holds for subcubes �.I0

d�1/

d�1 � �n, d D 1; : : : ; n:

The interior of its face fQpij D 1g corresponds to �
.Id�1nfij�1g/
d0�1 � �

.Id�1/
d�1 when

transformed back to the simplex (cf. Eq. (9.7.128) and Lemma 9.7.4). This is again
outside the assumed extension path, in particular if starting in�.Id�1/

d�1 , and hence the
corresponding boundary extension of ud�1 needs to smoothly attain zero there by
the C1

p0 -regularity, which likewise applies analogously to the cube. ut
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9.8 The Stationary Kolmogorov Backward Equation
and Uniqueness

When we ask for the long-term behaviour of the process, i.e. which alleles are
eventually lost and in which order, we are lead to the stationary Kolmogorov
backward equation. Solutions of this equation have already appeared implicitly in
the preceding section as extensions of solutions in @0�n since the corresponding
operator L�

0 has 0 as its only eigenvalue.
Although we have already developed the extended setting presented in Sect. 9.2,

we start by considering some interior simplex �n, (resp. the corresponding restric-
tion of an extended solution). Then, for a solution in �n, we may argue again
that all eigenmodes of the solution corresponding to a positive eigenvalue vanish
for t ! �1, while those corresponding to the eigenvalue zero are preserved.
This implies that a solution of the Kolmogorov backward equation (4.2.13) in �n

converges uniformly to a solution of the corresponding homogeneous or stationary
Kolmogorov backward equation

(
L�u. p/ D 0 in �n

u. p/ D f . p/ in @�n

(9.8.129)

for u 2 C2.�n/ and with boundary condition f (which needs to be attained smoothly
in a suitable sense).

At first sight, this appears as a boundary value problem (for some suitably chosen
boundary function f , assuring the uniqueness of a solution). However, as may be
expected from the previous considerations, the role of the boundary here is different
from usual boundary value problems and again requires some extra care: On the
one hand, a proper solution in�n always converges to the trivial stationary solution
(� 0), whose (continuous) extension to the boundary also vanishes at all negative
times. On the other hand, any solution which extends to @�n is already strongly
constrained by the degeneracy behaviour of the differential operator if suitable
regularity assumptions on the solution in �n (cf. also equality (2.11.23)) apply:

Lemma 9.8.1 (Stem Lemma) For a solution u 2 C1.�n/ of Eq. (9.8.129) with
extension U 2 C1

p

�
�n
�
, we have

L�U D 0 in �n: (9.8.130)

Proof We shall proceed iteratively: Assuming that L�
k U D 0 for all �.Ik/

k � @k�n,

we show that this property extends to each �.Ik�1/
k�1 � @k�1�.Ik/

k for every �.Ik/
k ,

and hence we obtain L�
k�1U D 0 on @k�1�n. A repeated application then yields

Eq. (9.8.130).
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W. l. o. g. let �.Ik/
k and �.Ik�1/

k�1 � @k�1�.Ik/
k with Ik n Ik�1 D fikg. Then for the

operator L�
k in �.Ik/

k , we have

L�
k D L�

k�1 C pik

� X

ij2Iknf0g
.ı

ij
ik

� pij/
@

@pij

@

@pik

�
(9.8.131)

with L�
k�1 being the restriction of L�

k to �.Ik�1/
k�1 .

We take some p 2 �
.Ik�1/
k�1 and choose a sequence . pl/l2N in �.Ik/

k with pl ! p

and apply this operator to U at pl 2 �.Ik/
k . The resulting expression in the big bracket

is controlled by pik
l ! 0 while approaching p and—with the derivatives of U inside

being bounded on a closed neighbourhood of p because of the regularity of U—is
continuous up to p. Likewise, all derivatives of U within �.Ik�1/

k�1 are continuously

matched by the corresponding ones in�.Ik/
k , thus L�

k�1.U. pl// is also continuous up
to the boundary in p (as the corresponding coefficients are, too). Hence, the whole
expression is continuous up to the boundary in p with L�

k�1U. p/ � L�
k U. p/ D 0,

and since p was arbitrary, this applies to all of �.Ik�1/
k�1 . ut

Assuming the stated pathwise regularity, this confines the boundary values of U
resp. f on @�n D Sn�1

kD0 @k�n and consequently, Eq. (9.8.129) is rather restated as
an extended homogeneous or extended stationary Kolmogorov backward equation6

(
L�U. p/ D 0 in �n n @0�n

U. p/ D f . p/ in @0�n

(9.8.132)

for U 2 C2
p

�
�n
�

with the only ‘free’ boundary values remaining the ones at the
vertices @0�n. If we also assume global continuity of the solution, the values on
@0�n, however, suffice as boundary information determining a solution uniquely
because we can extend the solution iteratively to strata of increasing dimension. In
such a case, a stationary solution and the stationary component of a global extension
as in the preceding section also coincide:

Proposition 9.8.1 A solution U 2 C1
p

�
�n
� \ C0

�
�n
�

of the extended sta-
tionary Kolmogorov backward equation (9.8.132) for some boundary condition
f0W @0�n �! R is uniquely defined and coincides with (the projection of) a solution
of the extended Kolmogorov backward equation (9.2.1) in

�
�n
�

�1 to �n for a final
condition f 2 L2�Sn

dD0 @d�n
�

with f � f0�@0�n as by Theorem 9.6.1. Furthermore,
the space of solutions is spanned by p1; : : : ; pn and 1.

6As already stated, it is without effect whether @0�n is added to the domain of definition of the
differential equation or not. Although @0�n has been included in Eq. (9.8.130), this is not done
here for formal reasons.
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Proof The first assertion may be shown by an iterative application of the maximum
principle: On every face �.Ik/

k � @k�n for all 1 � k � n, the operator L� is
locally uniformly elliptic, and hence, Uj

�
.Ik/
k

is uniquely defined by its values on

@�
.Ik/
k by virtue of the maximum principle. Applying this consideration iteratively

for @0�n; : : : ; @n�n D �n yields the desired global uniqueness.
Next, we will show that a final condition f D �

�
.fi0g/

0

for some i0 2 In gives rise

to an extended solution NU. p; t/ D NU. p/ D pi0 in
�
�n
�

�1 resp. �n proving the
second assertion. With f as described, the extended solution (cf. Theorem 9.6.1) is
solely given by NU � NUi0 , i.e.

NUfi0g. p; t/ D ufi0g. p; t/�
�
.fi0g/

0

. p/

C
X

1�d�n

X

i12Innfi0g
� � �

X

id2Innfi0;:::;id�1g
Ui0;:::;id

fi0g . p; t/�
�
.fi0;:::;idg/
d

. p/ (9.8.133)

(cf. Eq. (9.5.36)). Considering an arbitrary �.Id/
d � �n, Id � In, we obtain for the

restriction of NUi0 to �.Id/
d using Eq. (9.5.30)

NUfi0g. p; t/j
�
.Id /
d

D
X

i12Idnfi0g
� � �

X

id2
Idnfi0;:::;id�1g

Ui0;:::;id
fi0g . p; t/

D
X

i12Idnfi0g
� � �

X

id2
Idnfi0;:::;id�1g

ufi0g.� i0;:::;id . p/; t/
d�1Y

jD0

pij

Pd
lDj pil

(9.8.134)

with ufi0g.� i0;:::;id. p/; t/ � 1 as � i0;:::;id . p/ 2 �
.fi0g/
0 for all p 2 �

.Id/
d and ufi0g D

f D 1 in
�
�
.fi0g/
0

�
�1 by assumption. Since we have

Pd
lD0 pil D 1 in �.Id/

d , we

may replace the expression
Pd

lDj pil by 1 � Pj�1
lD0 pil and rearrange the sum (by

also suppressing the last sum as the index id does no longer occur), which yields
altogether

NUfi0g. p; t/j
�
.Id /
d

D

pi0

 
X

i12
Idnfi0g

pi1

1 � pi0
� � �
 

X

ij2
Idnfi0;:::;ij�1g

pij

1 �Pj�1
lD0 pil

� � �
 

X

id�12
Idnfi0;:::;id�2g

pid�1

1 �Pd�2
lD0 pil

!!!
:

(9.8.135)
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As we have pij C:::Cpid

1�Pj�1
lD0 pil

D 1 for j D d � 1; : : : ; 1, the whole expression reduces to

NUfi0g. p; t/j
�
.Id/
d

D pi0 . Since �.Id/
d was arbitrary, we obtain NUfi0g. p; t/ � NUfi0g. p/ D

pi0 in the entire �n. ut
In terms of the probabilistic interpretation, the extended setting (9.8.132) also

matches the considerations of Sect. 9.2 as Eq. (9.8.132) may be viewed as the limit
equation for t ! �1 of the extended Kolmogorov backward equation (9.2.1)
(which may be shown as previously). This is also reflected in Proposition 9.8.1:
For t ! �1 and any solution, the only target sets with persisting attraction are
of course the vertices (which correspond to configurations of the model where all
but one allele are extinct), and hence the stationary solutions match the stationary
components of the global extensions as in Theorem 9.6.1, which in turn result from
a non-vanishing final condition in @0�n. Then, every�.fig/

0 � @0�n may give rise to
a solution (component) pi—in particular yielding a positive target hit probability on
the entire�n for all times. However, even the stationary component of solutions as in
Theorem 9.6.1 may in principle be perceived as time-dependent and also describing
the transitional attraction of target sets in the entire �n induced by a given ultimate
target set in @0�n.

Altogether, Proposition 9.8.1 under the given restrictions thus already yields
a full description of the stationary model in the entire �n. However, dropping
the global continuity assumption, a much wider class of (stationary) solutions,
i.e. iteratively extended solutions of the Kolmogorov backward equation obeying
the extension constraints 9.3.1, may be obtained as described in the preceding
section. To establish the uniqueness also for this bigger class, we may apply the
blow-up scheme of Sect. 9.7 and demonstrate the uniqueness of solutions of the
correspondingly transformed stationary Kolmogorov backward equation on the cube
(which is basically analogous to the simplex, cf. the preceding considerations). The
eventual result will be obtained by applying the uniqueness result for the cube
to the transformed iteratively extended solutions (assuming sufficient regularity if
necessary). Again, this is limited to the stationary components.

Regarding the uniqueness of stationary solutions on the cube with the trans-
formed Kolmogorov backward operator given by Eq. (9.7.87), we have the cube
version of the simplex result of Lemma 9.8.1.

Lemma 9.8.2 (Stem Lemma, Cube Version) For a solution u 2 C1.�n/ of the
stationary Kolmogorov backward equation QL�

n u D 0 in �n with

QL�
n WD 1

2

nX

iD1

Qpi.1 � Qpi/
Qi�1

jD1 Qpj

@2

.@Qpi/
2

(9.8.136)

and with extension U 2 C1
p .�n/, we have

QL�U D 0 in �n; (9.8.137)
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i.e.

QL�
d U D 0 with QL�

d WD 1

2

nX

iDO{.d/C1
i¤im

Qpi.1 � Qpi/

i�1Q
jDO{.d/C1

j¤im

Qpj

@2

.@Qpi/
2

(9.8.138)

in �d D ˚Qpi1 D bi1 ; : : : ; Qpin�d D bin�d

� � @d�n for all 1 � d � n � 1 and all
i1; : : : ; in�d 2 f1; : : : ; ng, ik ¤ il for k ¤ l with O{ D O{.d/ WD arg max

i1;:::;in�d

fbim D 0g resp.

O{.d/ WD 0 if bim D 1 for all im.

Proof The statement is proven iteratively: Assuming that Eq. (9.8.138) holds in
some (arbitrary) domain �dC1 � @dC1�n, we show that a corresponding formula
also holds for any �d � @d�dC1 � @d�n. A repeated application of the argument
then yields the assertion.

Let �dC1 D ˚Qpi1 D b1; : : : ; Qpin�d�1 D bn�d�1
�

and �d D ˚Qpi1 D b1; : : : ; Qpin�d D
bn�d

�
with in�d ¤ i1; : : : ; in�d�1 and bn�d 2 f0; 1g. If we have in�d < O{.d C1/, then

as Qpin�d ! 0 resp. Qpin�d ! 1, the value of the operator in Eq. (9.8.138) applied to
U—with the occurring derivatives and the coefficients being continuous—depends
continuously on Qp up to the boundary, thus Eq. (9.8.138), which already has the
corresponding form for �d (note O{.d/ � O{.d C 1/), also holds on �d .

If we rather have in�d > O{.d C 1/ and bn�d D 1, then, when choosing some
Qp 2 �d and a sequence .Qpl/l2N in �dC1 with Qpl ! Qp, the expression

1

2

Qpin�d
l .1 � Qpin�d

l /
Qin�d�1

jDO{.d/C1
j¤im

Qp j
l

@2

.@Qpin�d
l /

2
U.Qpl/ (9.8.139)

is controlled by .1 � Qpin�d
l / while approaching Qp and—with the derivatives of U

being bounded on a closed neighbourhood of Qp because of the regularity of U—
is continuous up to Qp. Analogous to the previous case, all other summands of the
operator in Eq. (9.8.138) are also continuous on the boundary, thus proving that the
corresponding form of Eq. (9.8.138) (with the in�d-th summand deleted) holds in
�d (again O{.d/ � O{.d C 1/).

If instead in�d > O{.d C 1/ and bn�d D 0, then we may multiply the whole
Eq. (9.8.138) by Qpin�d . If now Qpin�d ! 0, then by a similar argument as above
all derivatives of the operator that do not contain Qpin�d in the denominator of their
coefficient continuously vanish, whereas the values of all other summands are also
continuous up to the boundary. Thus, Eq. (9.8.138) holds on �d with the index
O{.d C 1/ replaced by O{.d/ D in�d. ut

The obtained Eq. (9.8.137) may again be perceived as an extended version of
the stationary Kolmogorov backward equation on the cube (cf. also Eq. (9.8.132),
although the domains do not fully correspond), and we have (cf. Proposition 9.8.1):
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Proposition 9.8.2 A solution U 2 C1
p .�n/ \ C0

�
�n
�

of the extended stationary
Kolmogorov backward equation

QL�U D 0 in �n (9.8.140)

with QL� as in Eq. (9.8.138) is uniquely determined by its values on @0�n.

Proof The uniqueness may be shown by a successive application of the maximum
principle: In every stratum of the domain �d � @d�n for all 1 � d � n, the
solution Uj�d is uniquely defined by its values on @�d: If Eq. (9.8.138) comprises d
derivative terms, this follows directly from Hopf’s maximum principle (see e.g.
[72]) as the operator is locally uniformly elliptic on �d ; if it only comprises d0 < d
derivative terms, analogous considerations apply for each d0-dimensional fibre of
�d (with corresponding boundary part), thus giving the uniqueness of a solution on
every fibre first and after assembling also on all �d. Applying this consideration
successively for @0�n; : : : ; @n�n D �n yields the desired global uniqueness. ut

With the blow-up scheme of Sect. 9.7 at hand, the preceding uniqueness result
may also be conveyed to the simplex �n, assuming some additional regularity. We
finally arrive at

Theorem 9.8.1 Let n 2 NC, Id WD fi0; i1; : : : ; idg � f0; 1; : : : ; ng for d D 0; : : : ; n
with ii ¤ ij for i ¤ j and ufi0gW�.fi0g/

0 �! R be given. Then an extension
NUi0;:::;in

fi0g WS0�d�n�
.Id/
d �! R as in Proposition 9.5.1 is unique within the class of

extensions U which satisfy the extension constraints 9.3.1, i.e.

(i) are of class C1
p0

�S
0�d�n�

.Id/
d

�
with Uj

�
.fi0g/
0

D ufi0g and

(ii) solve the stationary Kolmogorov backward equation (9.8.132) in
S
0�d�n�

.Id/
d ,

as well as, in case n � 2, whose

(iii) transformation image QUWSn
dD0 �.I0

d/

d �! R by a successive blow-up transfor-
mation ˆrn�1

sn�1
ı : : : ı ˆr1

s1 as in Proposition 9.7.1 has an extension to the entire

boundary @�.I0

n/

n which is of class C1
p

�
�.I0

n/

n

� \ C0
�
�.I0

n/

n

�
.

Consequently, also the global extension NUfi0g as in Proposition 9.5.2 resp. also in
Theorem 9.6.1 is unique.

Proof The assertion for the trivial case n D 1 directly follows, as NUi0;i1
fi0g is

already sufficiently regular in �.I1/
1 � �.I0

1/

1 for an application of the maximum
principle, in particular globally continuous. For n � 2, any function U which is

a solution of the stationary Kolmogorov backward equation (9.8.132) in �.In/
n by

a full blow-up transformation of the domain transforms into a function QU, which

solves the stationary Kolmogorov backward equation (9.7.77) in
Sn

dD0 �.I0

d/

d (cf.
Proposition 9.7.1 and Corollary 9.7.2 and Lemma 9.7.3). Furthermore, with the

assumed regularity after a full blow-up, it has an extension to �.I0

n/

n which is pathwise
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smooth as well as globally continuous and by Lemma 9.8.2 solves the stationary

Kolmogorov backward equation QL� NQU D 0 in �.I0

n/

n with QL� as in Eq. (9.8.138).
Hence, the uniqueness result of Proposition 9.8.2 applies and proves the uniqueness
of the transformed function (and, in view of the injectivity of the blow-up, also the

uniqueness of U)—for specified boundary data on the entire @0�.I0

n/

n . Thus, we only
need to show that these boundary data are uniquely determined by the assumptions.

This is straightforward: In accordance with Lemma 9.7.3, QU or its corresponding

continuous extension vanishes on fQpij D 1g � @�.I0

n/

n , j D 1; : : : ; n. As by

assumption (iii) the continuous extendability applies to the entire �.I0

n/

n , QU or its
extension even vanishes on

˚Qpi1 D 1
�
; : : : ;

˚Qpin D 1
�
: (9.8.141)

In particular, this means that QU or its extension vanishes on any vertex �0 �
@0�.I0

n/

n —which may always be written as

�0 D ˚Qpij D bj for j D 1; : : : ; n
�

with correspondingly bj 2 f0; 1g –
(9.8.142)

except for the vertex �.¿/
0 D f.0; : : : ; 0/g, where it attains the value ufi0g as stated

previously. Thus, the (transformed) boundary data given on all vertices are the
same for any extension in question, and since NUi0;:::;in

fi0g WS0�d�n�
.Id/
d �! R as in

Proposition 9.5.1 satisfies the extension constraints and has an extension to the entire

boundary @�.I0

n/

n which is in C1
p .�

.I0

n/

n /\ C0
�
�.I0

n/

n

�
(this may be seen directly from

Eq. (9.7.82)), it also is the unique extension. ut

9.9 The Backward Equation and Exit Times

In this section, we shall consider the Kolmogorov backward equation and its
stationary solutions. We shall utilize this to derive the general formula for the
absorption times of the Wright–Fisher model, that is, the expected times for loosing
one or several alleles. The relevant differential operator is

L�
n D 1

2

nX

i;jD1
pi.ıij � pj/

@2

@pi@pj
: (9.9.1)
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As we have seen in Sect. 9.8 (see Proposition 9.8.1), the Dirichlet problem for this
operator,

L�
n u.p/ D 0 in �n

u.p/ D  .p/ on @0�n (9.9.2)

is solvable, in contrast to that for Ln, where, instead of boundary values, we had to
impose the moment condition.

We now turn to the inhomogeneous stationary Kolmogorov backward equation,
because from this, the expected first time ��n can be obtained. ��n is the expected
time when one allele gets lost from the population. This expected first exit time is
given by the solution of

L�
n u.p/ D �1 in �n

u.p/ D 0 on @�n D
n�1[

kD0
@k�n: (9.9.3)

From the restriction Lemma 8.4.1, we can then also formulate the equation for the
expected time for losing m alleles,

L�
k u.p/ D �1 in

n[

kDn�mC1
@k�n

u.p/ D 0 on
n�m[

kD0
@k�n: (9.9.4)

From Lemma 3.10.1, we now recall that we can construct such solutions from
the potential of the affine structure. In fact, for the function

'.p/ D
X

iDi0;:::;ik

pi log pi (9.9.5)

of (3.6.14), we have

L�
k ' D k

2
in �.fi0;:::;ikg/

k (9.9.6)

(note the factor 1
2

in the definition of L�
k in contrast to the operator A in

Lemma 3.10.1).
In order to realize the boundary condition u.p/ D 0, we start with m D n, that is,

with the case where n alleles get lost and thus only a single one remains. From the



9.9 The Backward Equation and Exit Times 265

preceding, we observe that

u1.p/ WD �2
nC1X

iD1
.1 � pi/ log.1 � pi/ (9.9.7)

satisfies (9.9.4) for m D n. Therefore, u1.p/ is the expected time for losing n of the
n C 1 alleles in the population when starting at time 0 with allele frequencies given
by p.

Next,

u2.p/ WD �2
� X

1�i1<i2�nC1
.1 � pi1 � pi2 / log.1 � pi1 � pi2 /� .n � 1/

nC1X

iD1
pi log pi

�

(9.9.8)

satisfies (9.9.4) for m D n � 1. To see this, we note that L�
k .
P

1�i1<i2�nC1.1� pi1 �
pi2 / log.1� pi1 � pi2 // D n

2
;L�

k .
P

i.1� pi/ log.1� pi// D 1
2

for all k D 2; : : : ; n and
also check the boundary condition. u2.p/ then yields the expected time for having
only two alleles left, that is, for having lost n � 1 of the n C 1 ones.

Iterating this process, we obtain Littler’s formula [85]

um.p/ D �2
0

@
mX

jD1

.�1/m�j

 
n � j

m � j

! 
X

1�i1<i2<���<ij�nC1

.1�
X




pi
 / log.1�
X




pi
 /

!1

A :

(9.9.9)

In particular, this shows that un.p/.p/ D Ep.��n/, the expected time for the process
Xt to leave �n, is finite. More generally, we can also solve hierarchical Dirichlet
problems on�n [ @n�1�n [ � � � [ @m�n for 0 < m < n.

We can also treat the fixation probabilities, that certain alleles die out and others
remain in the population. The probability �. p1; : : : ; pn/ of the fixation event given
in terms of a boundary condition solves the time independent Kolmogorov backward
equation

L�
n� D 1

2

nX

i;jD1
pi.ıij � pj/

@2�

@pi@pj
D 0: (9.9.10)

The boundary condition specifies that � is 1 on some part of the boundary and 0
on the rest. This simply means that ultimately the process leaves �n on that part of
its boundary where � D 1. For instance, for the probability that eventually allele Aj
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becomes fixed, we have the boundary condition

�. p1; : : : ; pn/ D
(
1 if pj D 1

0 if
P

i¤j pi D 1
(9.9.11)

and impose the PDEs L�
k � D 0 on the remaining parts of the simplex �n and its

boundary. The solution with the boundary condition (9.9.11) is simply given by

� D pj; (9.9.12)

that is, the probability that allele Aj; j 2 f1; : : : ; n C 1g, gets fixed is equal to its
initial relative frequency pj. This can, in fact, also be seen by the following intuitive
argument of Ewens [39]. At any time, any allele in the population is derived from
some ancestral allele at time 0, and the probability for any such allele Aj in the
ancestral population (i.e., that at time 0) to be the ancestor of some given allele
whose identity is not known is equal to its relative frequency pj. This then also
applies to the asymptotic state when only one allele survives. Without knowing
its identity, the probability of it being derived from Aj then is again pj. Turning
this around then yields the probability that Aj is that allele that eventually becomes
fixated is pj.

Moving on, the probability that Aj and A`; j; ` 2 f1; : : : ; n C 1g; j ¤ `, are the
last two surviving alleles leads to the boundary condition

�. p1; : : : ; pn/ D
(
1 if pj C p` D 1

0 if
P

i¤j;` pi D 1:
(9.9.13)

The solution of (9.9.10) with the boundary condition (9.9.13) is (cf. [87, p. 216], or
[39])

� D pjp`.
1

1 � pj
C 1

1 � p`
/: (9.9.14)

The general scheme is as follows. Let Tk.p/ D vk be the expected time for the
process starting at p to have only k alleles left. Let �k be the function of k variables
defined inductively by

�1. p1/ Dp1I

�2. p1; p2/ D p1

1 � p2
�1. p2/C p2

1 � p1
�1. p1/I

�kC1. p1; : : : ; pkC1/ D
kC1X

iD1

pi

1 �P
j¤i

pj
�k. p1; : : : ; pi�1; piC1; : : : ; pkC1/
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Then

Theorem 9.9.1

P

�
XTkC1.p/ 2 �.fi0;:::;ikg/

k

�
D �kC1. pi0 ; : : : ; pik/:

Proof Method 1: By observing that

P

�
XTkC1.p/ 2 �.fi0;:::;ikg/

k jXTk.p/ 2 �k � 1.fi1;:::;ikg/
�

D pi0

1 � pi1 � : : : � pik
:

and elementary combinatorial arguments, see [87].
Method 2: By proving that it is the unique solution of the Dirichlet problem

8
ˆ̂̂
<

ˆ̂̂
:

L�
mu.p/ D 0 in

Sn
mDkC1 @m�n

lim
p!q

u.p/ D 1; q 2 �.fi0;:::;ikg/
k ;

lim
p!q

u.p/ D 0; q 2 @k�nn�.fi0;:::;ikg/
k [Sk�1

mD0 @m�n:

ut



Chapter 10
Applications

In this chapter, we derive explicit formulae for various quantities of interest in
population genetics that have been introduced in Sect. 2.8. In particular, we shall
calculate the expectation and the second moment of the absorption time, fixation
probabilities, the probability of coexistence, ˛th moments, and the probability of
heterozygosity of the process .Xt/t�0.

We shall use two different methods. On one hand, we use the geometric
constructions of Chap. 3; these will give explicit expressions involving in particular
entropy like terms. On the other hand, we shall use the expansions of Chap. 8,
which will yield formulas involving series in terms of the coefficients derived in
the Appendix.

10.1 The Case of Two Alleles

As in previous sections, we begin with the simplest case, that of two alleles A0;A1

and let Xt be the relative frequency of allele A1 at time t.

10.1.1 The Absorption Time

The moments of the sojourn and absorption times were first derived by Nagylaki
[92] for the case of two alleles. Let @0�1 D f0; 1g be the domain representing a
population of 1 allele. Here, 1 corresponds to the loss of A0, that is, the fixation of
A1, and 0 corresponds to the opposite situation. Either of these irreversible events is
called an absorption.

We denote by T12 . p/ D inf ft > 0 W Xt 2 @0�1jX0 D pg the first time when
the population has only 1 allele left, that is, when absorption occurs. T12 . p/ is

© Springer International Publishing AG 2017
J. Hofrichter et al., Information Geometry and Population Genetics,
Understanding Complex Systems, DOI 10.1007/978-3-319-52045-2_10
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a continuous random variable valued in Œ0;1/ with probability density function
denoted by '.t; p/. @0�1 is invariant (absorption set) under the process Xt, i.e. if
Xs 2 @0�1 then Xt 2 @0�1 for all t � s. We have

P.T12 . p/ � t/ D P.Xt 2 @0�1jX0 D p/

It follows that

'.t; p/ D
Z

@0�1

@

@t
u.x; p; t/

1.dx/:

Therefore the expectation of the absorption time for having only 1 allele is (see also
[114]):

E.T12 . p// D
1Z

0

t'.t; p/dt

D
Z

@0�1

0

@
1Z

0

t
@

@t
u.x; t/dt

1

A

1.dx/

D
1X

rD0

Z

@0�1

0

@
1Z

0

te�
r tdt

1

A .�
r/cr
�
Xr.x/�.0;1/.dx/

C ar;0ıe0.dx/C ar;1ıe1 .dx//

D �
1X

rD0

1


r
cr .ar;0 C ar;1/

D
1X

rD0

1


2r
c2r

D
1X

rD0

16p.1� p/.2r C 3=2/X2r. p/

.2r C 1/2.2r C 2/2
;

(10.1.1)
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and its second moment is

E.T12 . p//2 D
Z 1

0

t2'.t; p/dt

D
Z

@0�1

Z 1

0

t2
@

@t
u.x; p; t/dt

1.dx/

D
1X

rD0

Z

@0�1

�Z 1

0

t2e�
r tdt

�
.�
r/cr

�
Xr.x/�.0;1/.dx/

C ar;0ıe0 .dx/C ar;1ıe1 .dx//

D �
1X

rD0

2


2r
cr .ar;0 C ar;1/

D
1X

rD0

2


22r

c2r

D
1X

rD0

64p.1� p/.2r C 3=2/X2r. p/

.2r C 1/3.2r C 2/3
;

(10.1.2)

where Xr. p/ is a Gegenbauer polynomial Xr. p/ D C
3
2

2r.1 � 2p/ and


r D .r C 1/.r C 2/

2
;

ar;0 D �
Z

	1

.1 � x/Xr.x/dx D �1
2
;

ar;1 D �
Z

	1

xXr.x/dx D .�1/rC1 1
2
;

cr Dw. p/Xr. p/

.Xr;wXr/
D 8w. p/Xr. p/.r C 3=2/

.r C 1/.r C 2/
:

(10.1.3)

Remark We already know from Sect. 9.9, see (9.9.7) that

E.T12 . p// D �2 fp ln. p/C .1 � p/ ln.1 � p/g

is the unique solution of the one-dimensional boundary value problem (also see in
[39, p. 140])

(
L�v D �1; in (0,1)

v.0/ D v.1/ D 0:

It can be checked that this agrees with (10.1.1), of course.



272 10 Applications

10.1.2 Fixation Probabilities and Probability of Coexistence
of Two Alleles

The fixation probability for A1 is

P.Xt D 1jX0 D p/ D
Z

f1g
u.x; t/

1.dx/

D p C
1X

rD0
crar;1e

�
r t

D p � 1

2

1X

rD0
.�1/r 8w. p/Xr. p/.r C 3=2/

.r C 1/.r C 2/
e�
r t:

In particular, for t ! 1, we obtain (2.8.2).
Analogously, the fixation probability of A0 (loss of A1) is

P.Xt D 0jX0 D p/ D
Z

f0g
u.x; t/

1.dx/

D 1 � p C
1X

rD0
crar;0e

�
r t

D 1 � p � 1

2

1X

rD0

8w. p/Xr. p/.r C 3=2/

.r C 1/.r C 2/
e�
r t:

The probability of coexistence of the two alleles A0;A1 therefore is

P.Xt 2 .0; 1/jX0 D p/ D
Z

.0;1/

u.x; t/

1.dx/

D
1X

rD0
cr

Z

.0;1/

Xr.x/dxe�
rt

D
1X

rD0
c2re

�
2r t

D
1X

rD0

8w. p/X2r. p/.2r C 3=2/

.2r C 1/.2r C 2/
e�
2r t:

These three probabilities sum to 1, as they should.
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Fig. 10.1 p D 0:3
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Fig. 10.2 p D 0:5

We consider their behaviour for p D 0:3 and p D 0:5 (see Figs. 10.1 and 10.2):

Remark

(i) P.Xt 2 Œ0; 1�jX0 D p/ D P.Xt D 0jX0 D p/ C P.Xt D 1jX0 D p/ C P.Xt 2
.0; 1/jX0 D p/ D 1;

(ii) P.Xt D 0jX0 D p/ and P.Xt D 1jX0 D p/ increase quickly in t 2 .0; 5/ (10N
generations) from 0 and then tends slowly to 1 � p and p, resp.;
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10.1.3 The ˛th Moments

By induction, it is easy to prove that

Z

.0;1/

x˛Xr�1.x/dx D .�1/r 1
2

	
.˛ � 1/ : : : .˛ � r/

.˛ C 1/ : : : .˛ C r/
� 1



;

where again Xr�1.x/ is a Gegenbauer polynomial Xr�1.x/ D C
3
2

2r�2.1 � 2x/.
Therefore, the ˛th moment is

m˛.t/ D Œu; x˛�1

D
1X

rD0
cr

0
B@
Z

.0;1/

x˛Xr.x/dx

1
CA e�
r t C

 
p C

1X

rD0
crar;1e

�
r t

!

D p C
1X

rD1
cr�1

0

B@
Z

Œ0;1�

x˛Xr�1.x/dx C ar�1;1

1

CA e�
r�1t

D p C
1X

rD1

2.2r C 1/

r.r C 1/
p.1� p/.�1/rXr�1. p/

.˛ � 1/ : : : .˛ � r/

.˛ C 1/ : : : .˛ C r/
e� r.rC1/

2 t:

This formula for the ˛th moment was first derived by Kimura in [79].

10.1.4 The Probability of Heterozygosity

The probability of heterozygosity again was first derived by Kimura (see [79, p. 6],
note our rescaling of time by 2N)

Ht D
Z

Œ0;1�

2x.1 � x/u.x; t/

1.dx/

D 2.u;wX0/

D 2.c0X0;wX0/e
�
0t

D 2w. p/X0. p/e�t

D H0e
�t:

Of course, this goes to 0 for t ! 1, as it should.
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10.2 The Case of n C 1 Alleles

In this section, we consider the case where we initially have n C 1 alleles. We
compute the expectation and the second moment of the absorption time, the
probability distribution of the absorption time for having kC1 alleles, the probability
of having exactly k C 1 alleles, the ˛th moments, the probability of heterozygosity,
and the rate of loss of one allele in a population having k C 1 alleles. Several of our
formulas are known from other methods, see [39, 78–80, 85, 87], but we emphasize
here the general and unifying approach.

10.2.1 The Absorption Time for Having k C 1 Alleles

The moments of the sojourn and absorption times were derived by Lessard and
Lahaie [84] in the multi-allele case. We denote by TkC1

nC1. p/ D inf ft > 0 W Xt 2
@k�njX0 D p

o
the first time when the population has (at most) k C 1 alleles.

TkC1
nC1. p/ is a continuous random variable valued in Œ0;1/ and we denote by '.t; p/

its probability density function. @k�n is invariant under the process .Xt/t�0, i.e. if
Xs 2 @k�n then Xt 2 @k�n for all t � s (once an allele is lost from the population, it
can never again be recovered). We have the equality

P.TkC1
nC1. p/ � t/ D P.Xt 2 @k�njX0 D p/ D

Z

@k�n

u.x; p; t/d�.x/:

It follows that

'.t; p/ D
Z

@k�n

@

@t
u.x; p; t/d�.x/

Therefore the expectation for the absorption time of having k C 1 alleles is (see also
[118])

E.TkC1
nC1. p// D

Z
1

0

t'.t; p/dt

D
Z

@k�n

Z
1

0

t
@

@t
u.x; p; t/dtd�.x/

D
kX

jD1

X

.i0;:::;ij/2Ij

X

m�0

X

j˛jDm

c.j/m;˛

Z

�
.fi0 ;:::;ijg/
j

X.j/m;˛.x/

�Z
1

0

t
@

@t
e�


.j/
m tdt

�
d�

.i0;:::;ij/
j .x/
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C
nX

iD0

nX

kD1

X

m�0

X

j˛jDm

c.k/m;˛a.k/m;˛;i

�Z 1

0

t
@

@t
e�
.k/m tdt

�
;

D
kX

jD1

X

.i0;:::;ij/2Ij

X

m�0

X

j˛jDm

c.j/m;˛

Z

�
.fi0;:::;ijg/
j

X.j/m;˛.x/

�
� 1



.j/
m

�
d�

.i0;:::;ij/
j .x/

C
nX

iD0

nX

kD1

X

m�0

X

j˛jDm

c.k/m;˛a.k/m;˛;i

�
� 1



.k/
m

�
:

and the second moment of this absorption time is

E.TkC1
nC1. p//2 D

Z
1

0

t2'.t; p/dt

D
Z

@k�n

Z
1

0

t2
@

@t
u.x; p; t/dtd�.x/

D
kX

jD1

X

.i0;:::;ij/2Ij

X

m�0

X

j˛jDm

c.j/m;˛

Z

�
.fi0;:::;ijg/

j

X.j/m;˛.x/

�Z
1

0

t2
@

@t
e�


.j/
m tdt

�
d�

.i0;:::;ij/
j .x/

C
nX

iD0

nX

kD1

X

m�0

X

j˛jDm

c.k/m;˛a.k/m;˛;i

�Z
1

0

t2
@

@t
e�


.k/
m tdt

�
;

D
kX

jD1

X

.i0;:::;ij/2Ij

X

m�0

X

j˛jDm

c.j/m;˛

Z

�
.fi0;:::;ijg/
j

X.j/m;˛.x/

 
� 2

.

.j/
m /2

!
d�

.i0;:::;ij/
j .x/

C
nX

iD0

nX

kD1

X

m�0

X

j˛jDm

c.k/m;˛a.k/m;˛;i

 

� 2

.

.k/
m /2

!

:

In order to see what this means, we consider the case of three alleles (n D 2).
First, we construct the global solution:

u.x1; x2I t/ Du2.x
1; x2I t/��2 C u0;11 .x1; 0I t/�

�
.f0;1g/
1

C u0;21 .0; x2I t/�
�
.f0;2g/
1

C u0;01 .x1; 1 � x1I t/�
�
.f0;0g/
1

C u10.t/ı�.f1g/0

C u20.t/ı�.f2g/0

C u00.t/ı�.f0g/0

:

Thus,

Œu; '�2 D .u2; '/2 C .u0;11 ; '.�; 0//1 C .u0;21 ; '.0; �//1 C .u0;11 ; '.�; 1 � �//1
C u10.1; 0I t/'.1; 0/C u20.0; 1I t/'.0; 1/C u00.0; 0I t/'.0; 0/

D
Z

�2

u2.x
1; x2I t/'.x1; x2/dx1dx2 C

Z 1

0

u0;11 .x
1; 0I t/'.x1; 0/dx1
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C
Z 1

0

u0;21 .0; x
2I t/'.0; x2/dx2

C 1p
2

Z 1

0

u1;21 .x
1; 1 � x1I t/'.x1; 1 � x1/dx1

C u10.1; 0I t/'.1; 0/C u20.0; 1I t/'.0; 1/C u00.0; 0I t/'.0; 0/:

By expansion of eigenvectors, we have

u2.xI pI t/ D
X

m�0

X

j˛jDm

c.2/m;˛.p/X
.2/
m;˛.x/e

�
.2/m t:

where c.2/m;˛.p/ is uniquely defined. We represent u1.xI t/ by

u0;11 .x
1; 0I t/ D

X

m�0
a0;1m .x1/e�
.1/m tI (10.2.4)

u0;21 .0; x
2I t/ D

X

m�0
a0;2m .x2/e�
.1/m tI (10.2.5)

u1;21 .x
1; 1 � x1I t/ D

X

m�0
a1;2m .x1/e�
.1/m t; (10.2.6)

where the coefficients a�;�
m.x

1/ are defined as follows: First, putting

 n.x
1/ WD x1.1 � x1/X.1/n .x1/:

we note that  n.0/ D  n.1/ D 0 and

L�
2 n.x

1/ D �
.1/n  n.x
1/:

It follows that
h
ut;  n.x

1/
i

2
D
h
u;L�

2 . n.x
1//
i

2

D �
.1/n

h
u;  n.x

1/
i

2
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Therefore

 n. p1/e�
.1/n t D
h
u.0/;  n.x

1/
i

2
e�
.1/n t D

h
u;  n.x

1/
i

2

D
�

u2;  n.x
1/
�

2
C
�

u1;  n.x
1/
�

1
C .u0;  n.x

1//0

D
X

m�0

X

j˛jDm

c.2/m;˛

�
X.2/m;˛;  n.x

1/
�

2
e�
.2/m t C

X

m�0

�
am.x

1/;  n.x
1/
�

1
e�
.1/m t

where am.x
1/ WD a0;1m .x1/C a1;2m .x1/ and  n.0/ D  n.1/ D 0

D
�

a0.x
1/;  n.x

1/
�

1
e�
.1/0 t

C
X

m�1

(�
am.x

1/;  n.x
1/
�

1
C

X

j˛jDm�1
c.2/m�1;˛

�
X.2/m�1;˛;  n.x

1/
�

2

)
e�
.1/m t

.because of 
.1/m D 

.2/
m�1/

We obtain by equating the coefficients in terms of e�
t

�
a0.x

1/;  n.x
1/
�

1
D ı0;n n. p1/

�
am.x

1/;  n.x
1/
�

1
D ım;n n. p1/�

X

j˛jDm�1
c.2/m�1;˛

�
X.2/m�1;˛;  n.x

1/
�

2
; if m � 1:

(10.2.7)

This implies that we have the formula for am.x/ D a0;1m .x/ C a1;2m .x/. Similarly,
putting

 n.x
2/ WD x2.1 � x2/X.1/n .x2/ and  n.x

0/ WD x0.1 � x0/X.1/n .x0/

we also have the formula for a0
m.x/ D a0;2m .x/Ca1;2m .x/ and a00

m.x/ D a0;1m .x/Ca0;2m .x/.
These formulae imply the formula for each a�;�

m.x/.

Remark The coefficients of u2 occur in the representation of the coefficients of u1
because of the probability flux.

Similarly because of

L�
2 .x

1/ D 0;

h
ut; x

1
i

2
D
h
u;L�

2 .x
1/
i

2
D 0:
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We have

p1 D
h
u.0/; x1

i

2
D
h
u; x1

i

2

D
�

u2; x
1
�

2
C
�

u1; x
1
�

1
C .u0; x

1/0

Thus,

u10.pI t/ D p1 �
X

m�0

X

j˛jDm

c.2/m;˛.p/
�

X.2/m;˛; x
1
�

2
e�
.2/m t

�
X

m�0

�
a0;1m ; x1

�

1
e�
.1/m t

�
X

m�0

�
a1;2m ; x1

�
e�
.1/m t

D p1 �
�

a0.x
1/; x1

�

1
e�
.1/0 t

�
X

m�1

(�
am.x

1/; x1
�

1
C

X

j˛jDm�1
c.2/m�1;˛

�
X.2/m�1;˛; x

1
�

2

)
e�
.1/m t:

Thus, we obtain the explicit global solution, and it easily yields the expectation
and the second moment of the absorption time T13 .p/.

There is an alternative way [118] for calculating the expectation for the absorp-
tion time of having only 1 allele; this works as follows

E.T13 .p// D
Z 1

0

t'.t; p/dt

D
Z 1

0

t
@

@t

�
u10.pI t/C u20.pI t/C u00.pI t/

�
dt:

We first calculate the first term; the other terms will be obtained similarly. To do
this, we expand x1 by  n.x1/

x1 D
X

n�0
dn n.x

1/:

We construct a sequence of entropy functions on Œ0; 1� as follows

• E0.x/ D �x
• Er.x/ is the unique solution of the boundary value problem

(
L�
1 .Er.x// D �rEr�1.x/

Er.0/ D Er.1/ D 0
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By some simple calculations, we obtain the first entropy functions

E0.x/ D �x

E1.x/ D �2.1� x/ log.1 � x/

E2.x/ D �8xz.x/C 8.1 � x/ log.1 � x/

E3.x/ D 48.1� x/u.x/C 96Œxz.x/ � .1 � x/ log.1 � x/�

where

z.x/ D
Z 1

x

ln.1 � y/

y
dy; u.x/ D

Z 1

x

z.y/

1 � y
dy

Lemma 10.2.1 The entropy functions satisfy

�
X.1/m ; x1

�

1



.1/
m

D
�

E1.x
1/;X.1/m

�

1
;

2
�

X.1/m ; x1
�

1�


.1/
m

�2 D
�

E2.x
1/;X.1/m

�

1
;

and more generally,

rŠ
�

X.1/m ; x1
�

1�


.1/
m

�r D
�

Er.x
1/;X.1/m

�

1
; r � 2:

Proof We have


.1/m

�
E1.x

1/;X.1/m

�

1
D
�

E1.x
1/; 
.1/m X.1/m

�

1

D
�

E1.x
1/;�L1

�
X.1/m

��

1

D
�

� L�
1

�
E1.x

1/
�
;X.1/m

�

1
; because of E1.0/ D E1.1/ D 0

D
�

� L�
1

�
E1.x

1/
�
;X.1/m

�

1

D
�

x1;X.1/m

�

1
:
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Similarly we have

�

.1/m

�2�
E2.x

1/;X.1/m

�

1
D
.1/m

�
E2.x

1/; 
.1/m X.1/m;˛

�

1

D
.1/m

�
E2.x

1/;�L1
�

X.1/m;˛

��

1

D
.1/m

�
� L�

1

�
E2.x

1/
�
;X.1/m

�

1
; because of E2.0/ D E2.1/ D 0

D
.1/m

�
� L�

1

�
E2.x

1/
�
;X.1/m

�

1

D
.1/m

�
2E1.x

1/;X.1/m

�

1

D
�
2x1;X.1/m

�

1
; because of the above calculation:

The proof for all r is similar. ut
From the Lemma, we have the expansion of E1.x1/

E1.x
1/ D

X

n�0

dn



.1/
n

 n.x
1/:

Therefore we have

Z 1

0

t
@u10.pI t/

@t
dt

D
�

a0.x
1/; x1

�

1

Z 1

0

t
.1/0 e�
.1/0 tdt

C
X

m�1

(�
am.x

1/; x1
�

1
C

X

j˛jDm�1
c.2/m�1;˛

�
X.2/m�1;˛; x

1
�

2

) Z 1

0

t
.1/m e�
.1/m tdt

D
�

a0.x1/; x1
�

1



.1/
0

C
X

m�1

�
am.x1/; x1

�

1
CP

j˛jDm�1 c.2/m�1;˛
�

X.2/m�1;˛; x1
�

2



.1/
m

D
X

n�0
dn

( �
a0.x1/;  n.x1/

�

1



.1/
0

C
X

m�1

�
am.x1/;  n.x1/

�

1
CP

j˛jDm�1 c.2/m�1;˛
�

X.2/m�1;˛;  n.x1/
�

2



.1/
m

)
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D
X

n�0
dn

(
ı0;n n. p1/



.1/
0

C
X

m�1

ım;n n. p1/



.1/
m

)
; because of (10.2.7)

D
X

m�0

dm



.1/
m

 m. p1/

D E1. p1/:

Thus, we have

E.T13 . p// D E1. p1/C E1. p2/C E1. p3/:

Remark We can obtain the r-th moments of this absorption time by the same
method, i.e.

E.T13 . p//r D Er. p1/C Er. p2/C Er. p3/:

Remark We can generalize the preceding to the case of nC1 alleles by the inclusion-
exclusion technique of Feller [44, p. 109]

E.TkC1
nC1. p//r D

kC1X

sD1
.�1/kC1�s

 
n � s

k C 1 � s

!
X

1�i1<:::<is�nC1
Er. pi1 C � � � C pis/:

For the case of r D 1, such formulas were derived by Littler and Good [87, p. 217];
see also [39, p. 194].

10.2.2 The Probability Distribution of the Absorption Time
for Having k C 1 Alleles

We note that X
TkC1

nC1 . p/
is a random variable valued in @k�n. We consider the

probability that this random variable takes its value in�.fi0;:::;ikg/
k , i.e., the probability

of the population at the first time having at most k C 1 alleles to consist precisely of
the kC1 alleles fAi0 ; : : : ;Aik g. Let gk be a function of k variables defined inductively
by

g1. p1/ Dp1I

g2. p1; p2/ D p1

1 � p2
g1. p2/C p2

1 � p1
g1. p1/I

gkC1. p1; : : : ; pkC1/ D
kC1X

iD1

pi

1�P
j¤i

p j
gk. p1; : : : ; pi�1; piC1; : : : ; pkC1/
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Then we have

Theorem 10.2.1

P

�
X

TkC1
nC1. p/

2 �.fi0;:::;ikg/
k

�
D gkC1. pi0 ; : : : ; pik/:

Proof Method 1: By proving that

P

�
X

TkC1
nC1 . p/

2 �.fi0;:::;ikg/
k jXTk

nC1
. p/ 2 �.fi1;:::;ikg/

k

�
D pi0

1 � pi1 � : : : � pik
:

and elementary combinatorial arguments, we immediately obtain the result (see
[85])

Method 2: We check that gkC1. pi0 ; : : : ; pik/ solves the classical Dirichlet problem

8
ˆ̂̂
<

ˆ̂̂
:

L�
k v. p/ D 0 in @k�n

lim
p!q

v. p/ D 1; q 2 �.fi0;:::;ikg/
k ;

lim
p!q

v. p/ D 0; q 2 @k�n n�.fi0;:::;ikg/
k :

This can be seen as a generalization of Lemma 3.10.1. By the results of Sect. 9.8, it
is the unique solution. ut

10.2.3 The Probability of Having Exactly k C 1 Alleles

The probability of having only the particular allele Ai is (see [51])

P.Xt 2 �.fig/
0 jX0 D p/ D

Z

�
.fig/
0

u.i/0 .x; t/d�
.i/
0 .x/

D u.i/0 .ei; t/

D pi �
nX

kD1

X

m.k/�0

X

l.k/�0

X

j˛.k/jDl.k/

c.k/
m.k/;l.k/;˛.k/

�
xi;X.k/

l.k/;˛.k/

�

k
e

�
.k/
m.k/

t
:
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The probability of having exactly the .k C 1/ alleles fA0; : : : ;Akg (the coexistence
probability of alleles fA0; : : : ;Akg) is (see [78, 87])

P.Xt 2 �.fi0;:::;ikg/
k jX0 D p/ D

Z

�
.fi0;:::;ikg/
k

u.i0;:::;ik/k .x; t/d�.i0;:::;ik/k .x/

D
X

m�0

X

l�0

X

j˛jDl

c.k/m;l;˛

0

BB@

Z

�
.fi0;:::;ikg/
k

X.k/m;˛.x/d�
.i0;:::;ik/
k .x/

1

CCA e�
.k/m t:

10.2.4 The ˛th Moments

The ˛th-moments are (see [78–80])

m˛.t/ DŒu; x˛�n

D
Z

�n

x˛u.x; t/d�.x/

D
nX

kD0

X

.i0;:::;ik/2Ik

Z

�
.fi0;:::;ikg/
k

x˛u.i0;:::;ik/k .x; t/d�.i0;:::;ik/k .x/:

10.2.5 The Probability of Heterozygosity

The probability of heterozygosity is defined in [78] as

Ht D E
�
2
X

j>i

Xj.t/Xi.t/
�
:

By applying the moment evolution equation (4.3.8) for ˛ D ei C ej for i ¤ j we
have

PmeiCej.t/ D �meiCej.t/:

This implies

Ht D 2
X

j>i

meiCej.t/ D 2
X

j>i

meiCej.0/e
�t D H0e

�t:
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10.2.6 The Rate of Loss of One Allele in a Population Having
k C 1 Alleles

We have the solution of the form

u D
nX

kD0
uk.x; t/�@k�n.x/

The rate of loss of one allele in a population with (k+1) alleles equals the rate of
decrease of

uk.x; t/ D
X

m�0

X

l�0

X

j˛jDl

c.k/m;l;˛X.k/l;˛ .x/�@k�n.x/e
�
.k/m t D O.e�
.k/0 t/:

This mean that this rate is 
.k/0 D k.kC1/
2

. This implies that the rate of loss of alleles
in the population decreases as k gets smaller in the course of the process (see [45,
52, 78]).

10.3 Applications of the Hierarchical Solution

In this section, we shall use the hierarchical solution to compute other quantities of
biological interest. To make the computations more transparent, we shall spell out
the details for three alleles.

10.3.1 The Rate of Loss of One Allele in a Population Having
Three Alleles

We have the hierarchically extended solution of Definition 8.5.1

U.x; t/ WD
2X

kD0
Uk.x; t/�@k�

.I2/
2

.x/

D
2X

kD0

X

Ik�I2

Uk;Ik.x; t/��.Ik /k
.x/

D U2.x; t/C U1;f0;1g.x; t/��.f0;1g/1

.x/C U1;f0;2g.x; t/��.f0;2g/1

.x/

C U1;f1;2g.x; t/��.f1;2g/1

.x/

C U0;f1g.x; t/ıe1 .x/C U0;f2g.x; t/ıe2 .x/C U0;f0g.x; t/ıe0 .x/



286 10 Applications

where the local solution U2.x; t/ has the form

U2.x; t/ D
X

m�0
c.2/m X.2/m .x/e�
.2/m t; (10.3.8)

the boundary solutions U1;I1 are given by, for example,

U1;f0;1g.x; t/��.f0;1g/1

.x/ WD
tZ

0

u�1;f0;1g.x
1; 0; t � �/ d� (10.3.9)

and the vertex solutions U0;I0 can be calculated similarly.
It is easy to see from (10.3.8) that the rate of loss of one allele in a population of

three alleles is 
.2/0 .
To calculate the rate of loss of one allele in a remaining population of two alleles,

we consider boundary solutions.
Because of u�

1;f0;1g.x
1; 0; t/W ��f0;1g

1

�
1 �! R is the solution of

(
L1u.x; t/ D @

@t u.x; t/ .x; t/ 2 ��f0;1g
1

�
1

u.x; 0/ D G?
U2
.x; �/ x 2 �f0;1g

1

(10.3.10)

for all � > 0 as in Proposition 8.2.1 and G?
UkC1;IkC1

is the normal component of the

flux of the continuous extension of UkC1;IkC1
to �

.IkC1/

kC1 ,
Note that in this case,

G2
U2
.x1; 0; �/ D 1

2

@

@x1

�
a21.x/U2.x; �/

�
ˇ̌
ˇ

xD.x1;0/

C 1

2

@

@x2

�
a22.x/U2.x; �/

�
ˇ̌
ˇ

xD.x1;0/

D �1
2

U2.x
1; 0; �/

The normal unit vector at �
�
.f0;1g/
1

is


 D .0;�1/:
It implies that

G?
U2 .x; �/ D 1

2
U2.x

1; 0; �/:

We represent X.2/m .x1; 0/ in terms of the basis of X.1/k .x1/ as

X.2/m .x1; 0/ D
mX

kD0
amkX.1/k .x1/:
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This implies

u�1;f0;1g.x
1; 0; 0/ D 1

2
U2.x

1; 0; �/ D
X

m�0

c.2/m

2
X.2/m .x1; 0/e�
.2/m �

D
X

m�0

c.2/m

2
e�
.2/m �

mX

kD0
amkX.1/k .x1/

D
X

k�0

 
X

m�k

c.2/m

2
e�
.2/m �amk

!

„ ƒ‚ …
dk.�/

X.1/k .x1/

D
X

k�0
dk.�/X

.1/
k .x1/:

Therefore

U1;f0;1g.x; t/��.f0;1g/1

.x/ D
tZ

0

u�1;f0;1g.x
1; 0; t � �/ d�

D
tZ

0

X

k�0
dk.�/X

.1/
k .x1/e�
.1/k .t��/ d�

D
X

k�0
X.1/k .x1/

tZ

0

X

m�0

c.2/m

2
amke�
.2/m ��
.1/k .t��/ d�

D
X

k�0
X.1/k .x1/

X

m�k

c.2/m

2
amke�
.1/k t

 
e
�


.1/
k �
m.2/

�
t � 1



.1/
k � 


.2/
m

!

D �
X

k�0
X.1/k .x1/

X

m�k

c.2/m

2

amk



.2/
m � 
.1/k

e�
.2/m t

C
X

k�0
X.1/k .x1/

X

m�k

c.2/m

2

amk



.2/
m � 
.1/k

e�
.1/k t

D O
�

e�
.1/0 t
�
:

This means that the rate of loss of one allele in a population of two alleles is 
10.
More generally, we can prove that the rate of loss of one allele in a population of
k C 1 alleles is 
k

0 D k.kC1/
2

. In particular, the rate of loss of alleles in the population
decreases as k gets smaller.



Appendix A
Hypergeometric Functions
and Their Generalizations

In this appendix, we list the basic properties of the hypergeometric functions used
for the 2-allele case and their generalizations used for the multi-allele case in
Chaps. 8 and 9. These functions are useful tools for solving singular linear second
order ODEs. We refer readers to [1, 108, 111] for hypergeometric functions and to
[6–8, 32, 40, 86] for generalized hypergeometric functions for further details.

A.1 Gegenbauer Polynomials

Definition A.1.1 Gegenbauer polynomials or ultraspherical polynomials (named
after Leopold Gegenbauer [50]) C˛

n .x/ are defined in terms of their generating
function [108, � IV.2]:

1

.1 � 2xt C t2/˛
D
X

n�0
C˛

n .x/t
n:

They generalize the Legendre polynomials and the Chebyshev polynomials, and are
special cases of the Jacobi polynomials.

Proposition A.1.1 (Suetin ’01 [111])

• The Gegenbauer polynomials satisfy the recurrence relation

C˛
0 .x/ D 1 (A.1.1)

C˛
1 .x/ D 2˛x (A.1.2)

C˛
n .x/ D 1

n
Œ2x.n C ˛ � 1/C˛

n�1.x/ � .n C 2˛ � 2/C˛
n�2.x/�: (A.1.3)
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• The Gegenbauer polynomials solve the Gegenbauer differential equation

.1 � x2/y00 � .2˛ C 1/xy0 C n.n C 2˛/y D 0: (A.1.4)

• The Gegenbauer polynomials are special cases of the Jacobi polynomials

C.˛/
n .x/ D .2˛/n

.˛ C 1
2
/n

P.˛�1=2;˛�1=2/
n .x/:

In particular, we see from the recurrence relations that C˛
n .x/ is a polynomial of

degree n, hence in particular smooth. We shall apply these polynomials in the range
�1 < x < 1 where (A.1.4) is nondegenerate and where therefore any solution of
this equation is smooth. The behavior at the boundary points x D ˙1 then is an
important issue.

Proposition A.1.2 For a fixed ˛, the Gegenbauer polynomials are orthogonal
polynomials on the interval Œ�1; 1� with respect to the weight function .1� x2/˛� 1

2 :

Z 1

�1
.1 � x2/˛� 1

2

�
C.˛/

n .x/

 �

C.˛/
m .x/



dx D ınm

�21�2˛�.n C 2˛/

nŠ.n C ˛/Œ�.˛/�2
: (A.1.5)

For a detail proof, see [28]. Also see [1, p. 774] for the first formula setting.

A.2 Jacobi Polynomials

Definition A.2.1 The Jacobi polynomials are defined as

P.˛;ˇ/n .z/ D �.˛ C n C 1/

nŠ �.˛ C ˇ C n C 1/

nX

mD0

 
n

m

!
�.˛ C ˇ C n C m C 1/

�.˛ C m C 1/

�
z � 1
2

�m

;

(A.2.6)

for n 2 N; ˛; ˇ > �1; z 2 Œ�1; 1�.
Proposition A.2.1

• The Jacobi polynomials satisfy the symmetry relation

P.˛;ˇ/n .�z/ D .�1/nP.ˇ;˛/n .z/I

• The kth derivative of (A.2.6) is

dk

dzk
P.˛;ˇ/n .z/ D �.˛ C ˇ C n C 1C k/

2k�.˛ C ˇ C n C 1/
P.˛Ck;ˇCk/

n�k .z/I
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• The Jacobi polynomial P.˛;ˇ/n is a solution of the second order linear homoge-
neous differential equation

.1 � x2/y00 C .ˇ � ˛ � .˛ C ˇ C 2/x/y0 C n.n C ˛ C ˇ C 1/y D 0I (A.2.7)

• The Jacobi polynomials are special cases of the hypergeometric polynomials

P.˛;ˇ/n .z/ D .˛ C 1/n

nŠ
2F1

�
�n; 1C ˛ C ˇ C nI˛ C 1I 1 � z

2

�
:

Proposition A.2.2 For fixed ˛ > �1 and ˇ > �1, the Jacobi polynomials are
orthogonal polynomials on the interval Œ�1; 1� with respect to the weight function
.1 � x/˛.1C x/ˇ:

Z 1

�1
.1� x/˛.1C x/ˇP.˛;ˇ/m .x/P.˛;ˇ/n .x/ dx

D 2˛CˇC1

2n C ˛ C ˇ C 1

�.n C ˛ C 1/�.n C ˇ C 1/

�.n C ˛ C ˇ C 1/nŠ
ınm

A.3 Hypergeometric Functions

Definition A.3.1 The Gaussian or ordinary hypergeometric function 2F1.a; bI cI z/
is a special function represented by the hypergeometric series,

2F1.a; bI cI z/ D
1X

nD0

.a/n.b/n
.c/n

zn

nŠ
(A.3.8)

provided c is not 0;�1;�2; : : : ; where the Pochhammer symbol is given by

.a/n D a.a C 1/.a C 2/ � � � .a C n � 1/ D �.a C n/

�.a/
; .a/0 D 1: (A.3.9)

For complex values of z it can be analytically continued along any path that avoids
the branch points 0 and 1.

Proposition A.3.1 The hypergeometric function is a solution of Euler’s hypergeo-
metric differential equation

z.1 � z/
d2w

dz2
C Œc � .a C b C 1/z�

dw

dz
� abw D 0: (A.3.10)
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which has three regular singular points: 0; 1 and 1. The generalization of this
equation to three arbitrary regular singular points is given by Riemann’s differential
equation. Any second order differential equation with three regular singular points
can be converted to the hypergeometric differential equation by a change of
variables.

Proposition A.3.2

• The Jacobi polynomials P.˛;ˇ/n and their special cases the Legendre polynomials,
the Chebyshev polynomials, the Gegenbauer polynomials can be written in terms
of hypergeometric functions using the following

2F1.�n; ˛ C 1C ˇ C nI˛ C 1I x/ D nŠ

.˛ C 1/n
P.˛;ˇ/n .1� 2x/

• The Gegenbauer polynomials are given as finite Gaussian hypergeometric series

C.˛/
n .z/ D .2˛/n

nŠ
2F1

�
�n; 2˛ C nI˛ C 1

2
I 1 � z

2

�
:

A.4 Appell’s Generalized Hypergeometric Functions

In 1880, Appell [6, 7] introduced the concept of a generalized hypergeometric
function.

Definition A.4.1

2F2.a; b; b
0I c; c0I x; y/ D

1X

jD0

1X

kD0
.a/jCk

.b/j.b0/k

.c/j.c0/k
xjyk

jŠkŠ

Proposition A.4.1

(i) 2F2.a; b; b0I c; c0I x; y/ is a solution of the equation

x.1 � x/zxx � xyzxy C .c � .a C b C 1/x/zx � byzy � abz D 0I

(ii) 2F2.a; b; b0I c; c0I x; y/ is a solution of the equation

y.1 � y/zyy � xyzxy C .c0 � .a C b0 C 1/x/zy � b0xzx � ab0z D 0I

(iii) 2F2.a; b; b0I c; c0I x; y/ is a solution of the equation

x.1 � x/zxx�2xyzxy C y.1 � y/zyy C .c � .a C b C b0 C 1/x/zx

C .c0 � .a C b C b0 C 1/y/zy � a.b C b0/z D 0:
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Proof Firstly, note that we need only to prove the first assertion. The second follows
immediately by interchanging x and y, b and b0, c and c0 respectively, and the last
assertion is obtained when we add the first two assertions.

We shall prove the first assertion by equating coefficients. We denote by Œv�Œ j; k�
the coefficient of xjyk in the Taylor expansion at .0; 0/ of v. Then for

v D
1X

jD0

1X

kD0
.a/jCk

.b/j.b0/k

.c/j.c0/k
xjyk

jŠkŠ
;

we have

• Œv�Œ j; k� D .a/jCk.b/j.b0/k
.c/j.c0/kjŠkŠ

;

• Œvx�Œ j; k� D .a/jCkC1.b/jC1.b0/k
.c/jC1.c0/kjŠkŠ

;

• Œvy�Œ j; k� D .a/jCkC1.b/j.b0/kC1
.c/jC1.c0/kC1jŠkŠ

;

• Œvxx�Œ j; k� D .a/jCkC2.b/jC2.b0/k
.c/jC2.c0/kjŠkŠ

;

• Œvxy�Œ j; k� D .a/jCkC2.b/jC1.b0/kC1
.c/jC1.c0/kC1jŠkŠ

;

• Œxvx�Œ j; k� D .a/jCk.b/j.b0/k
.c/j.c0/k. j � 1/ŠkŠ

;

• Œyvy�Œ j; k� D .a/jCk.b/j.b0/k
.c/j.c0/kjŠ.k � 1/Š

;

• Œxvxx�Œ j; k� D .a/jCkC1.b/jC1.b0/k
.c/jC1.c0/k. j � 1/ŠkŠ ;

• Œx2vxx�Œ j; k� D .a/jCk.b/j.b0/k
.c/j.c0/k. j � 2/ŠkŠ

;

Therefore,

Œx.1 � x/vxx � xyvxy C .c � .a C b C 1/x/vx � byvy � abv�Œ j; k�

D Œxvxx�Œ j; k� � Œxvxx�Œ j; k� � Œxyvxy�Œ j; k�

C cŒvx�Œ j; k� � .a C b C 1/Œxvx�Œ j; k� � bŒyvy�Œ j; k� � abŒv�Œ j; k�

D .a/jCk.b/j.b0/k
.c/j.c0/kjŠkŠ

(
.a C j C k/.b C j/

c C j
j � j. j � 1/� jk

C c
.a C j C k/.b C j/

c C j
� .a C b C 1/j � bk � ab

)

D 0:
(A.4.11)
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This holds for all j; k � 0, thus

x.1 � x/vxx � xyvxy C .c � .a C b C 1/x/vx � byvy � abv D 0I

i.e. v is the solution of the first equation. This completes the proof. ut

A.5 Lauricella’s Generalized Hypergeometric Functions

Definition A.5.1

2Fn.a; b1; : : : ; bnIc1; : : : cnI x1; : : : ; xn/

1X

m1;:::;mnD0

.a/m1C:::Cmn.b1/m1 : : : .bn/mn

.c1/m1 : : : .cn/mn

.x1/m1

m1Š
� � � .x

n/mn

mnŠ

Proposition A.5.1

(i) 2Fn.a; b1; : : : ; bnI c1; : : : cnI x1; : : : ; xn/ is a solution of the equation

Aiz D
nX

jD1
xi.ıij �xj/zxixj C

�
ci �.aC1/xi

�
zxi �bi

nX

jD1
xjzxj �abiz D 0I 8i D 1; n

(ii) 2Fn.a; b1; : : : ; bnI c1; : : : cnI x1; : : : ; xn/ is a solution of the equation

nX

i;jD1
xi.ıij�xj/zxixj C

nX

iD1

�
ci�.aCb1C� � �CbnC1/xi

�
zxi �a.b1C: : :Cbn/z D 0:

Proof It is easy to see that the second assertion follows by adding the equalities in
the first assertion for varying i. So we need only show the first assertion.

Similar to the case of two variables, for any given .m1; : : : ;mn/, we denote by
Œv� D Œv�Œm1; : : : ;mn� the coefficient of .x1/m1 : : : .xn/mn in the Taylor expansion at
.0; : : : ; 0„ ƒ‚ …

n

/. Then we have

• Œv� D .a/m1C:::mn.b1/m1 : : : .bn/mn

.c1/m1 : : : .cn/mn m1Š : : :mnŠ
;

• Œvxi � D .a/m1C:::mnC1.b1/m1 : : : .bi/miC1 : : : .bn/mn

.c1/m1 : : : .ci/miC1 : : : .cn/mn m1Š : : : .mi � 1/Š : : :mnŠ
;

• Œvxixj � D .a/m1C:::mnC2.b1/m1 :::.bi/miC1:::.bj/mjC1:::.bn/mn

.c1/m1 :::.ci/miC1:::.cj/mjC1:::.cn/mn m1Š:::.mi�1/Š:::.mj�1/Š:::mnŠ
; for i ¤ j

• Œvxixi � D .a/m1C:::mnC2.b1/m1 : : : .bi/miC2 : : : .bn/mn

.c1/m1 : : : .ci/miC1 : : : .cn/mn m1Š : : : .mi � 2/Š : : :mnŠ
;
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• Œxivxixi � D .a/m1;:::;mnC1.b1/m1 : : : .bi/miC1 : : : .bn/mn

.c1/m1 : : : .ci/miC1 : : : .cn/mn m1Š : : : .mi � 1/Š : : :mnŠ
;

• Œ.xi/2vxixi � D .a/m1;:::;mn.b1/m1 : : : .bn/mn

.c1/m1 : : : .cn/mn m1Š : : : .mi � 2/Š : : :mnŠ
;

• Œxixjvxixj � D .a/m1;:::;mn.b1/m1 : : : .bn/mn

.c1/m1 : : : .cn/mn m1Š : : : .mi � 1/Š : : : .mj � 1/Š : : :mnŠ
; for i ¤ j

• Œxivxi � D .a/m1;:::;mnC1.b1/m1 : : : .bi/miC1 : : : .bn/mn

.c1/m1 : : : .ci/miC1 : : : .cn/mn m1Š : : :mnŠ
;

Therefore

Aivt D Œxivxixi � � Œ.xi/2vxixi � �
X

j¤i

Œxixjvxixj �C ciŒvxi �

� .a C 1/Œxivxi � � bi

nX

jD1
Œxjvxj � � abiŒv�

D K

(
.a C m1; : : : ;mn/.bi C mi/

ci C mi
mi � mi.mi � 1/�

X

j¤i

mimj

C ci
.a C m1; : : : ;mn/.bi C mi/

ci C mi
� .a C 1/mi � bi

nX

jD1
mj � abi

)

D 0

This holds for all .m1; : : : ;mn/ so

Aiv D 0;

i.e. v is the solution of the first equation. This completes the proof. ut

A.6 Biorthogonal Systems

In 1881, Appell [8] introduced the polynomials

Fm;n.˛; �; �
0I x; y/ D Œw.x; y/��1

.�/m.� 0/n
@mCn

@xm@yn

 
w.x; y/xmyn.1 � x � y/mCn

!
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in connection with the analysis of polynomials that are orthogonal with respect to
the weight function

w.x; y/ D x��1y� 0�1.1 � x � y/˛���� 0

in the triangle T D �2.
In 1882, he also proved that in the special case ˛ D � C � 0, the two families

Fm;n.�; �
0I x; y/ D Œt.x; y/��1

.�/m.� 0/n
@mCn

@xm@yn

 
t.x; y/xmyn.1 � x � y/mCn

!

and

Em;n.�; �
0I x; y/ D 2F2.� C � 0 C m C n;�m;�nI �; � 0I x; y/

form a biorthogonal system with the weight function

t.x; y/ D x��1y� 0�1;

i.e.
“

T

t.x; y/Fm;n.�; �
0I x; y/Ek;l.�; �

0I x; y/dxdy

D ımkınl�.�/�.�
0/mŠnŠ.m C n/Š

.� C � 0 C 2m C 2n/�.� C � 0 C m C n/.�/m.� 0/n

Definition A.6.1 In n dimensions, we call

w.x1; : : : ; xn/ D .x1/�1�1 : : : .xn/�n�1.1 � x1 � : : : � xn/˛��1�:::��n

the weight function on �n and

Em1;:::;mn.˛; �1; : : : ; �nI x1; : : : ; xn/

D 2Fn.˛ C m1 C : : :C mn;�m1; : : : ;�mnI �1; : : : �nI x1; : : : ; xn/

and

Fm1;:::;mn.˛; �1; : : : ; �nI x1; : : : ; xn/ D Œw.x1; : : : ; xn/��1

.�1/m1 : : : .�n/mn

(
@m1C:::Cmn

@.x1/m1 : : : @.xn/mn

 
w.x1; : : : ; xn/.x1/m1 : : : .xn/mn.1 � x1 � : : : � xn/m1C:::Cmn

!)

the corresponding biorthogonal systems.
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These two families of hypergeometric functions satisfy

Proposition A.6.1 Each

Fm1;:::;mn.˛; �1; : : : ; �nI x1; : : : ; xn/

and

Em1;:::;mn.˛; �1; : : : ; �nI x1; : : : ; xn/

is a solution of the equation

nX

i;jD1
xi.ıij�xj/zxixjC

nX

iD1

�
�i�.˛C1/xi

�
zxiC

�
m1C: : :Cmn

��
˛Cm1C: : :Cmn

�
z D 0:

Proof From Proposition A.5.1, it is easy to see that

Em1;:::;mn.˛; �1; : : : ; �nI x1; : : : ; xn/

is the solution to the equation

nX

i;jD1
xi.ıij�xj/zxixjC

nX

iD1

�
�i�.˛C1/xi

�
zxiC

�
m1C: : :Cmn

��
˛Cm1C: : :Cmn

�
z D 0:

To prove the other assertion we proceed as follows. First, note that by Taylor
expansion at .0; : : : ; 0/„ ƒ‚ …

n

we have

.1 � x1 � : : : � xn/
a D

1X

i1;:::;inD0
.�a/i1C:::Cin

.x1/i1 : : : .xn/in

i1Š : : : inŠ

Therefore

Fm1;:::;mn.˛; �1; : : : ; �nI x1; : : : ; xn/

D Œw.x1; : : : ; xn/��1

.�1/m1 : : : .�n/mn

(
@m1C:::Cmn

@.x1/m1 : : : @.xn/mn

 
w.x1; : : : ; xn/.x1/m1 : : : .xn/mn.1 � x1 � : : : � xn/m1C:::Cmn

!)
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D Œw.x1; : : : ; xn/��1

.�1/m1 : : : .�n/mn

(
@m1C:::Cmn

@.x1/m1 : : : @.xn/mn

 
.x1/m1C�1�1 : : : .xn/mnC�n�1.1 � x1 � : : : � xn/m1C:::CmnC˛��1�:::��n

!)

D Œw.x1; : : : ; xn/��1

.�1/m1 : : : .�n/mn

(
@m1C:::Cmn

@.x1/m1 : : : @.xn/mn

 1X

i1;:::;inD0
.�1 C : : :C �n � m1 � : : : � mn � ˛/i1C:::Cin

� .x1/m1C�1�1Ci1 : : : .xn/mnC�n�1Cin

i1Š : : : inŠ

!)

D Œw.x1; : : : ; xn/��1

.�1/m1 : : : .�n/mn

 1X

i1;:::;inD0
.�1 C : : :C �n � m1 � : : : � mn � ˛/i1C:::Cin

� .�1 C i1/m1 : : : .�n C in/mn

.x1/�1�1Ci1 : : : .xn/�n�1Cin

i1Š : : : inŠ

!

D
1X

i1;:::;inD0
.�1 C : : :C �n � m1 � : : : � mn � ˛/i1C:::Cin

� .�1 C i1/m1 : : : .�n C in/mn

.�1/m1 : : : .�n/mn

.x1/i1 : : : .xn/in

i1Š : : : inŠ
.1 � x1 � : : : � xn/

�1C:::C�n�˛

D
1X

i1;:::;inD0
.�1 C : : :C �n � m1 � : : : � mn � ˛/i1C:::Cin

� .�1 C m1/i1 : : : .�n C mn/in
.�1/i1 : : : .�n/in

.x1/i1 : : : .xn/in

i1Š : : : inŠ
.1 � x1 � : : : � xn/

�1C:::C�n�˛

D .1 � x1 � : : : � xn/
�1C:::C�n�˛

2Fn

�
�1 C : : :C �n � m1 � : : : � mn � ˛;

�1 C m1; : : : ; �n C mnI �1; : : : �nI x1; : : : ; xn
�
:

To simplify the notations, we put

f .x/ D Fm1;:::;mn.˛; �1; : : : ; �nI x1; : : : ; xn/;

g.x/ D 2Fn.�1 C : : :C �n � m1 � : : : � mn � ˛; �1 C m1; : : : ; �n

CmnI �1; : : : �nI x1; : : : ; xn/;
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and

'.x/ D .1 � x1 � : : : � xn/
�1C:::C�n�˛:

Then we have

f .x/ D '.x/g.x/:

It follows that

nX

i;jD1

xi.ıij � xj/fxixj C
nX

iD1

�
�i � .˛ C 1/xi

�
fxi C

�
m1 C : : :C mn

��
˛ C m1 C : : :C mn

�
f

D
nX

i;jD1

xi.ıij � xj/
�
'gxixj C 'xi gxj C 'xj gxi C 'xixj g

�

C
nX

iD1

�
�i � .˛ C 1/xi

��
'gxi C 'xi g

�
C
�

m1 C : : :C mn

��
˛ C m1 C : : :C mn

�
.'g/

D
nX

i;jD1

xi.ıij � xj/'gxixj C
nX

iD1

�
.�i � .˛ C 1/xi/' C 2

nX

jD1

xi.ıij � xj/'xj

�
gxi

C
 

nX

i;jD1

xi.ıij � xj/'xixj C
nX

iD1

��
�i � .˛ C 1/xi

�
'xi

C
�

m1 C : : :C mn

��
˛ C m1 C : : :C mn

�
'

!
g

D '

 
nX

i;jD1

xi.ıij � xj/gxixj C
nX

iD1

�
�i � �

2�1 C : : :C 2�n � ˛ C 1
�
xi
�

gxi

�
�
�1 C : : :C �n � m1 � : : : � mn � ˛

��
�1 C : : :C �n C m1 C : : :C mn

�
g

!

D 0 by Proposition A.5.1

This completes the proof. ut
Proposition A.6.2 The generalized hypergeometric function

Em0

1;:::;m
0

n
.˛; �1; : : : ; �nI x1; : : : ; xn/
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is the sum of a monomial of degree m0
1 C : : :C m0

n

.�1/m0

1C:::Cm0

n
.˛ C m0

1 C : : :C m0
n/m0

1C:::Cm0

n

.�1/m0

1
: : : .�n/m0

n

.x1/m
0

1 : : : .xn/m
0

n

C
(

polynomial of degree < m0
1 C : : :C m0

n

)
:

Proof In fact, from the definition of E we have

Em0

1;:::;m
0

n
.˛; �1; : : : ; �nI x1; : : : ; xn/

D 2Fn.˛ C m0
1 C : : :C m0

n;�m0
1; : : : ;�m0

nI �1; : : : �nI x1; : : : ; xn/

D
1X

i1;:::;inD0
.˛ C m0

1 C : : :C m0
n/i1C:::Cin

.�m0
1/i1 : : : .�m0

n/in

.�1/i1 : : : .�n/in i1Š : : : inŠ
.x1/i1 : : : .xn/in

D
m0

1X

i1D0
: : :

m0

nX

inD0
.˛ C m0

1 C : : :C m0
n/i1C:::Cin

.�m0
1/i1 : : : .�m0

n/in
.�1/i1 : : : .�n/in i1Š : : : inŠ

.x1/i1 : : : .xn/in :

�
because if ik > m0

k then .�m0
k/ik D 0

�

D .˛ C m0
1 C : : :C m0

n/m0

1C:::Cm0

n

.�m0
1/m0

1
: : : .�m0

n/m0

n

.�1/m0

1
: : : .�n/m0

n
m0
1Š : : :m

0
nŠ
.x1/m

0

1 : : : .xn/m
0

n

C
(

polynomial of degree < m0
1 C : : :C m0

n

)

D .�1/m0

1C:::Cm0

n
.˛ C m0

1 C : : :C m0
n/m0

1C:::Cm0

n

.�1/m0

1
: : : .�n/m0

n

.x1/m
0

1 : : : .xn/m
0

n

C
(

polynomial of degree < m0
1 C : : :C m0

n

)
:

This completes the proof. ut
Lemma A.6.1 With a1; : : : ; anC1 given positive numbers, we have

Z

�n

.x1/a1�1 : : : .xn/an�1.1 � x1 � : : : � xn/
anC1�1dx D �.a1/ : : : �.anC1/

�.a1 C : : :C anC1/
:
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Proof Obviously, when a; b > 0

rZ

0

xa�1.r � x/b�1dx D
1Z

0

.ry/a�1Œr.1 � y/�b�1rdy D raCb�1 �.a/�.b/
�.a C b/

:

So we have
Z

�n

.x1/a1�1 : : : .xn/an�1.1 � x1 � : : : � xn/anC1�1dx

D
1Z

0

.x1/a1�1
( 1�x1Z

0

.x2/a2�1

: : :

 1�x1�:::�xn�1Z

0

�
xn
�an�1�

1 � x1 � : : : � xn�1 � xn
�anC1�1dxn

!
: : : dx2

)
dx1

D
1Z

0

.x1/a1�1
( 1�x1Z

0

.x2/a2�1

: : :

 �
1� x1 � : : : � xn�1

�anCanC1�1 �.an/�.anC1/

�.an C anC1/

!
: : : dx2

)
dx1

D � � �

D
1Z

0

.x1/a1�1
( 1�x1Z

0

.x2/a2�1.1 � x1 � x2/a3C:::CanC1�1
�.a3/ : : : �.anC1/

�.a3 C : : :C anC1/
dx2
)

dx1

D
1Z

0

.x1/a1�1.1 � x1/a2C:::CanC1�1
�.a2/�.a3 C : : :C anC1/

�.a2 C : : :C anC1/

�.a3/ : : : �.anC1/

�.a3 C : : :C anC1/
dx1

D
1Z

0

.x1/a1�1.1 � x1/a2C:::CanC1�1
�.a2/ : : : �.anC1/

�.a2 C : : :C anC1/
dx1

D �.a1/�.a2 C : : :C anC1/

�.a1 C : : :C anC1/

�.a2/ : : : �.anC1/

�.a2 C : : :C anC1/

D �.a1/ : : : �.anC1/

�.a1 C : : :C anC1/
:

This completes the proof. ut
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Proposition A.6.3 The system of

Fm1;:::;mn.˛; �1; : : : ; �nI x1; : : : xn/

and

Em1;:::;mn.˛; �1; : : : ; �nI x1; : : : xn/

is a biorthogonal system with the weight function w, i.e.
Z

�n

w.x1; : : : ; xn/Fm1;:::;mnEm0

1;:::;m
0

n
dx1 : : : dxn D Km1;:::;mnım1;m

0

1
: : : ımn;m0

n
:

where

Km1;:::mn D .˛ C m1 C : : :C mn/m1C:::Cmnm1Š : : :mnŠ

Œ.�1/m1 �
2 : : : Œ.�n/mn �

2

� �.m1 C �1/ : : : �.mn C �n/�.m1 C : : :C mn C ˛ � �1 � : : : � �n C 1/

�.2m1 C : : :C 2mn C ˛ C 1/
:

Proof From Proposition A.6.1 we have

nP
i;jD1

xi.ıij � xj/uxixj C
nP

iD1

�
�i � .˛ C 1/xi

�
uxi

C
�

m1 C : : :C mn

��
˛ C m1 C : : :C mn

�
u D 0: (A.6.12)

where

u D Fm1;:::;mn.˛; �1; : : : ; �nI x1; : : : ; xn/

and

nP
i;jD1

xi.ıij � xj/vxixj C
nP

iD1

�
�i � .˛ C 1/xi

�
vxi

C
�

m0
1 C : : :C m0

n

��
˛ C m0

1 C : : :C m0
n

�
v D 0: (A.6.13)

where

v D Em0

1;:::;m
0

n
.˛; �1; : : : ; �nI x1; : : : ; xn/
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Multiplying Eq. (A.6.13) by u and subtracting Eq. (A.6.12) multiplied by v, we
obtain

nX

i;jD1

xi.ıij � xj/
�

uvxixj � uxixjv
�

C
nX

iD1

�
�i � .˛ C 1/xi

��
uvxi � uxiv

�

D
�
˛ C m1 C : : :C mn C m0

1 C : : :C m0

n

��
m1 C : : :C mn � m0

1 � : : : � m0

n

�
uv:

Multiplying both sides of this equation by w and integrating over�n we obtain

Z

�n

�
˛ C m1 C : : :C mn C m0

1 C : : :C m0

n

��
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D
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� nX
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��
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��
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D
Z
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nX

jD1

@

@xj

 
nX

iD1

xi.ıij � xj/w.uvxi � uxiv/

!
dx

D
Z

�n

div F dx; where Fj D
nX

iD1

xi
�
ıij � xj

�
w
�

uvxi � uxiv
�

D
Z

@�n

F � 
 do.�/

D 0; since F
j@�n D 0 follows from w

j@�n D 0:

It follows that if

m1 C : : :C mn ¤ m0
1 C : : :C m0

n

then
Z

�n

wuvdx D 0:
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Now we consider the case m1C : : :Cmn D m0
1C : : :Cm0

n. Applying the integration
by parts to the Proposition A.6.2 and Lemma A.6.1, we obtain
Z

�n

wuvdx

D
Z

�n

w
w�1

.�1/m1 : : : .�n/mn
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Z

�n
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ım1;m
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1
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D ım1;m
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1
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Œ.�1/m1 �
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2
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�.2m1 C : : :C 2mn C ˛ C 1/
:

This completes the proof. ut
When ˛ D 2n C 1; �1 D : : : D �n D 2 we have the result of Littler and Fackerell
[86].

Corollary A.6.1

Km1;:::;mn D .2n C 1C m1 C : : :C mn/m1C:::Cmn m1Š : : :mnŠ

Œ.2/m1 �
2 : : : Œ.2/mn �

2

� �.m1 C 2/ : : : �.mn C 2/�.m1 C : : :C mn C 2/

�.2m1 C : : :C 2mn C 2n C 2/
:
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D .2n C 1C m1 C : : :C mn/m1C:::Cmnm1Š : : :mnŠ

Œ.m1 C 1/Š�2 : : : Œ.mn C 1/Š�2

� .m1 C 1/Š : : : .mn C 1/Š.m1 C : : :C mn C 1/Š

.2m1 C : : :C 2mn C 2n C 1/Š

D 1
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� 1

.m1 C : : :C mn C 2/ : : : .m1 C : : :C mn C 2n/.2m1 C : : :C 2mn C 2n C 1/
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.m1 C 1/ : : : .mn C 1/.m1 C : : :C mn C 2/2n�1.2m1 C : : :C 2mn C 2n C 1/
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