
Artificial Intelligence
in Engineering Design
VOLUME I

DESIGN REPRESENTATION AND
MODELS OF ROUTINE DESIGN

EDITED BY

CHRISTOPHER TONG

DEPARTMENT OF COMPUTER SCIENCE
RUTGERS UNIVERSITY
NEW BRUNSWICK, NEW JERSEY

DUVVURU SRIRAM

INTELLIGENT ENGINEERING SYSTEMS LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers

Boston San Diego New York
London Sydney Tokyo Toronto

This book is printed on acid-free paper. ©

Copyright © 1992 by Academic Press, Inc.

All rights reserved.

No part of this publication may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopy, recording, or any information storage
and retrieval system, without pemiission in writing from the publisher.

A C A D E M I C PRESS, INC.
1250 Sixth Avenue
San Diego, CA 92101-4311

United Kingdom Edition published by
A C A D E M I C PRESS LIMITED
2Φ-28 Oval Road, London NW1 7DX

I S B N 0 - 1 2 - 6 6 0 5 6 1 - 0

Printed in the United States of America

92 93 94 95 BB 9 8 7 6 5 4 3 2 1

C. TONG DEDICATES THIS EDITORIAL WORK TO

HEART-MASTER SRI DA AVABHASA,

WITH LOVE AND GRATITUDE

D. SRIRAM DEDICATES THIS EDITORIAL WORK TO

SUCHI, Ν AGI, AND RAVI,
WITH FOND MEMORIES OF CHILDHOOD

Contents of Volume II

1. INTRODUCTION
C. Tong and D. Sriram

PART III: M O D E L S O F INNOVATIVE DESIGN

2. Automated Reuse of Design Plans in BOGART
/. Mostow, M. Barley, T. Weinrich

3. ARGO: An Analogical Reasoning System for Solving Design Problems
M. Huhns and R. Acosta

4. Retrieval Strategies in a Case-Based Design System
K. Sycara and D. Navinchandra

5. Case-Based Design: A Task Analysis
A. Goel and B. Chandrasekaran

6. Function Sharing in Mechanical Design
K. Ulrich and W. Seering

1. ALADIN: An Innovative Materials Design System
M. Rychener, M. Farinacci, I. Hulthage, and M. Fox

8. The ADAM Design Planning Engine
D. Knapp and A. Parker

9. Using Exploratory Design to Cope with Problem Complexity

C. Tong

PART IV: R E A S O N I N G ABOUT PHYSICAL SYSTEMS

10. Temporal Qualitative Analysis: Explaining How Physical Systems Work

B. Williams

ix

χ CONTENTS OF VOLUME II

P A R T V: REASONING A B O U T GEOMETRY

11. Studies of Heuristic Knowledge-Based Approaches for Automated
Configuration Generation and Innovation
G. Nevill

12. A Case-Based Approach to the Design of Mechanical Linkages
G. Kramer and H. Barrow

13. Mechanism Comparison and Classification for Design
L. Joskowicz

14. How and Why to Get an AI or CAD/CAM System to Look at Your Objects
L. LeffandD. Yun

Contents of Volume III

1. INTRODUCTION
C. Tong and D. Sriram

PART VI: K N O W L E D G E ACQUISITION

2. A Knowledge Transfer Methodology in Selection of Mechanical Design Components
M. Waldron and K. Waldron

PART VII: C O M M E R C I A L APPLICATIONS

3. ESKIMO: An Expert System for Kodak Injection Molding

R. Gammons

4. Product and Forming Sequence Design for Cold Forging

K. Sevenler

5. An Open-Architecture Approach to Knowledge-Based CAD

D. Mishelevich, M. Katajamâki, T. Karras, A. Axworthy, H. Lehtimaki, A. Riitahuhta,
and R. Levitt

6. Knowledge-Based Engineering Design at Xerox

L. Heatley and W. Spear

PART VIII: I N T E G R A T E D ENVIRONMENTS

7. An Intelligent CAD System for Mechanical Design

N. Chao

8. The Expert Cost and Manufacturability Guide: A Customizable Expert System

P. London, B. Hankins, M. Sapossnek, and S. Luby

9. Engineous: A Unified Method for Design Automation, Optimization, and Integration

S. Tong, D. Powell, and D. Cornett

10. A Unified Architecture for Design and Manufacturing Integration

S. Kim

11. Dual Design Partners in an Incremental Redesign Environment

M. Silvestri

xi

xii CONTENTS OF VOLUME III

12. DICE: An Object-Oriented Programming Environment for Cooperative Engineering Design
D. Sriram, R. Logcher, N. Groleau, and J. Cherneff

P A R T IX: T H E S T A T E O F T H E FIELD

13. Creating a Scientific Community at the Interface Between
Engineering Design and AI: A Workshop Report
D. Steier

Contributors

Numbers in parentheses refer to the pages on which the authors'contributions begin.

ARAYA, AGUSTIN (273), Expert Systems Group Metaphor Computer Systems, 1965 Charleston Road,
Mountain View, California 94043.

BAYKAN, CAN A. (395), Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, Pennsylvania 15213.

BOETTNER, DAISEE (135), 21 Willis Avenue, Cornwall-on-Hudson, New York 15250.

BREWER, FORREST D. (357), Department of Electrical and Computer Engineering, University of
California at Santa Barbara, Santa Barbara, California 93106.

BROWN, DAVID C. (221), Department of Computer Science, Worcester Polytechnic Institute,
100 Institute Road, Worcester, Massachusetts 01609.

CHANDRASEKARAN, B. (221), Laboratory for Artificial Intelligence Research, Department of Computer
and Information Sciences, Ohio State University, 2036 Neil Avenue, Columbus, Ohio 43210-1277.

DYER, MICHAEL (193), Artificial Intelligence Laboratory, 3531 Boelter Hall, University of California at
Los Angeles, Los Angeles, California 90024.

FLOWERS, MARGOT (193), Artificial Intelligence Laboratory, 3531 Boelter Hall, University of
California at Los Angeles, Los Angeles, California 90024.

FOX, MARK S. (395), Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
Pennsylvania 15213.

GAJSKI, DANIEL D. (357), Department of Computer Science, University of California at Irvine, Irvine,
California 92717.

GOSSARD, DAVID (71), Computer Aided Design Laboratory, Department of Mechanical Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

HODGES, JACK (193), Department of Computer Science, San Francisco State University, 1600 Holloway
Street, San Francisco, California 94312.

LIN, JIANG (117), Department of Computer Science, Wayne State University, Detroit, Michigan 48202.

MARCUS, SANDRA (317), Computing Management Organization, Boeing Commercial Airplanes,
P.O. Box 3707, Seattle, Washington 98124.

MCDERMOTT, JOHN (317), Artificial Intelligence Research Center, Digital Equipment Corporation,
290 Donald Lynch Boulevard, Marlborough, Massachusetts 01752.

xiii

xiv CONTRIBUTORS

MITTAL, SANJAY (273), Expert Systems Group Metaphor Computer Systems, 1965 Charleston Road,
Mountain View, California 94043.

NADEL, BERNARD A. (117), Department of Computer Science, Wayne State University, Detroit,
Michigan 48202.

SERRANO, DAVID (71), Department of Mechanical Engineering, University of Puerto Rico at
Mayaguez, Mayaguez, Puerto Rico 00708.

SILETTI, CHARLES A. (295), Mobil Research and Development Corporation, Engineering Department,
P.O. Box 1026, Princeton, New Jersey 08540.

SRIRAM, DUVVURU (1), Intelligent Engineering Systems Laboratory, Department of Civil Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

STEINBERG, LOUIS I. (251), Department of Computer Science, Rutgers University, New Brunswick,
New Jersey 08903.

STEPHANOPOULOS, GEORGE (295), Department of Chemical Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139.

STOUT, JEFFREY (317), Advanced Technology Center, Boeing Computer Services, P.O. Box 24346,
Seattle, Washington 98124.

SUBRAHMANYAM, P.A. (57), AT&T/Bell Laboratories, 101 Crawfords Corner Road, Holmdel,
New Jersey 07733.

TONG, CHRISTOPHER (1), Department of Computer Science, Rutgers University, New Brunswick,
New Jersey 08903.

WARD, A L (135), Department of Mechanical Engineering, University of Michigan, Ann Arbor,
Michigan 48109.

WEITZMAN, LOUIS (433), Media Laboratory, Massachusetts Institute of Technology, 20 Ames Street,
Cambridge, Massachusetts 02139.

Preface

The three-volume collection, "Artificial Intelligence in Engineering Design",
has been put together incrementally over the course of the last six years. Most of
the research efforts described herein are ongoing and thus chapters originally
written early on in the enterprise are still representative of the state of the field.
Some of these chapters additionally include updates that indicate the current
status of the work.

For a variety of reasons, the order of the editors' names was chosen at random
and fixed to be the same for each of the three volumes. However, both editors
contributed equally to the making of all three volumes.

The editors would like to gratefully acknowledge the support and computa­
tional resources provided by the Computer Science Department of Rutgers
University and the Intelligent Engineering Systems Laboratory at MIT, during
the making of this collection.

XV

Chapter 1
INTRODUCTION

Chris Tong and Duvvuru Sriram

1.1. WHAT THIS BOOK IS ABOUT

What is design! Design is the process of constructing a description of an ar­
tifact that satisfies a (possibly informal) functional specification, meets certain
performance criteria and resource limitations, is realizable in a given target tech­
nology, and satisfies criteria such as simplicity, testability, manufacturability,
reusability, etc.; the design process itself may also be subject to certain restric­
tions such as time, human power, cost, etc.

Design problems arise everywhere, and come in many varieties. Some are
born spontaneously amidst the circumstances of ordinary human lives: design a
dish for dinner that uses last night's leftovers; design some kind of hook-like ar­
tifact that will enable me to retrieve a small object that fell down a crack; design
a "nice-looking" arrangement of the flowers in a vase. Other design problems
are small but commercial in nature: design a paper clip-like device that doesn't
leave a mark on the paper; design a lamp whose light can be turned to aim in
any particular direction; design an artifact for storing up to twenty pens and pen­
cils, in an easily accessible fashion. Still other design problems are formidable,
and their solutions can require the efforts and coordination of hundreds of
people: design a space shuttle; design a marketable electric car; design an inter­
national trade agreement; etc.

Because design is so ubiquitous, anything generic we can say about the design
process - the activities involved in actually solving a design problem ~ can
have great impact. Even better would be to provide active help to designers.

This book is all about how ideas and methods from Artificial Intelligence can
help engineering designers. By "engineering design", we primarily mean the
design of physical artifacts or physical processes of various kinds. In this book,
we will see the design of a wide variety of artifacts exemplified, including: cir-

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

1 Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

2 TONG A N D SRIRAM

cuits and chips (Volume I, Chapters 2, 8, 12 and Volume Π, 2, 8, 9, 10), swing­
ing doors (Volume I, Chapter 6), copying machines (Volume I, Chapter 9 and
Volume ΠΙ, Chapter 6), cantilever beams (Volume I, Chapter 3), space tele­
scopes (Volume Π, Chapter 5), air cylinders (Volume I, Chapter 7), protein
purifaction processes (Volume I, Chapter 10), fluid-mechanical devices
(Volume Π, Chapters 4 and 6), new alloys (Volume II, Chapter 7), graphics in­
terfaces (Volume I, Chapter 14), automobile transmissions (Volume I, Chapter
4), spatial layouts (Volume I, Chapter 13), elevators (Volume I, Chapter 11),
light-weight load-bearing structures (Volume II, Chapter 11), mechanical
linkages (Volume II, Chapter 12), buildings (Volume ΙΠ, Chapter 12), etc.

What you will not find in this book is anything on ΑΙ-assisted software
design. On this point, our motivation is twofold: no book can (or should try to)
cover everything; and AI and software engineering has already been treated in a
number of edited collections (including [15, 30]).

This book is an edited collection of key papers from the field of AI and
design. We have aimed at providing a state of the art description of the field that
has coverage and depth. Thus, this book should be of use to engineering desig­
ners, design tool builders and marketeers, and researchers in AI and design.
While a small number of other books have surveyed research on AI and design
at a particular institution (e.g., [12,31]) , this book fills a hole in the existing
literature because of its breadth.

The book is divided into three volumes, and a number of parts. This first
chapter provides a conceptual framework that integrates a number of themes that
run through all of the papers. It appears at the beginning of each of the three
volumes. Volume I contains Parts I and II, Volume Π contains Parts ΠΙ, IV, and
V, and Volume ΠΙ contains Parts VI through IX.

Part I discusses issues arising in representing designs and design information.
Parts II and ΠΙ discuss a variety of models of the design process; Part Π dis­
cusses models of routine design, while Part HI discusses innovative design
models. We felt that creative design models, such as they are in 1991, are still at
too preliminary a stage to be included here. However, [11] contains an interest­
ing collection of workshop papers on this subject. Parts IV and V talk about the
formalization of common sense knowledge (in engineering) that is useful in
many design tasks, and the reasoning techniques that accompany this
knowledge; Part IV discusses knowledge about physical systems, while Part V
gives several examples of formalized geometry knowledge. Part VI discusses
techniques for acquiring knowledge to extend or improve a knowledge-based
system. Part VII touches on the issue of building a knowledge-based design sys­
tem; in particular, it presents a number of commercially available tools that may
serve as modules within a larger knowledge-based system. Part VIII contains
several articles on integrating design with the larger engineering process of
which it is a part; in particular, some articles focus on designing for manufac-
turability. Finally, Part IX contains a report on a workshop in which leaders of
the field discussed the state of the art in AI and Design.

INTRODUCTION

1.2. WHAT DOES AI HAVE TO OFFER TO
ENGINEERING DESIGN?

In order to answer this question, we will first examine the nature of engineer­
ing design a little more formally. Then we will briefly summarize some of the
major results in AI by viewing AI as a software engineering methodology. Next
we will look at what non-ΑΙ computer assistance is currently available, and thus
what gaps are left that represent opportunities for AI technology. Finally, we
outline how the AI software engineering methodology can be applied to the con­
struction of knowledge-based design tools.

1.2.1. Engineering Design: Product and Process

Engineering design involves mapping a specified function onto a (description
of a) realizable physical structure — the designed artifact. The desired func­
tion of the artifact is what it is supposed to do. The artifact's physical structure is
the actual physical parts out of which it is made, and the part-whole relation­
ships among them. In order to be realizable, the described physical structure
must be capable of being assembled or fabricated. Due to restrictions on the
available assembly or fabrication process, the physical structure of the artifact is
often required to be expressed in some target technology, which delimits the
kinds of parts from which it is built. A correct design is one whose physical
structure correctly implements the specified function.

Why is design usually not a classification task [6], that is, a matter of simply
looking up the right structure for a given function in (say) a parts catalog? The
main reason is that the mapping between function and structure is not simple.
For one thing, the connection between the function and the structure of an ar­
tifact may be an indirect one, that involves determining specified behavior (from
the specified function), determining actual behavior (of the physical structure),
and ensuring that these match. For another, specified functions are often very
complex and must be realized using complex organizations of a large number of
physical parts; these organizations often are not hierarchical, for the sake of
design quality. Finally, additional non-functional constraints or criteria further
complicate matters. We will now elaborate on these complications.

Some kinds of artifacts — for example, napkin holders, coat hangers, and
bookcases — are relatively "inactive" in the sense that nothing is "moving" in­
side them. In contrast, the design of a physical system involves additionally
reasoning about the artifact's behavior, both external and internal. The external
behavior of a system is what it does from the viewpoint of an outside observer.
Thus, an (analog) clock has hands that turn regularly. The internal behavior is

4 TONG A N D SRIRAM

based on observing what the parts of the system do. Thus, in a clock, we may
see gears turning. Behavior need not be so visible: electrical flow, heat transmis­
sion, or force transfer are also forms of behavior.

In a physical system, behavior mediates function and structure. The function
is achieved by the structure behaving in a certain way. If we just possessed the
physical structure of a clock, but had no idea of how it (or its parts) behaved, we
would have no way of telling that it achieves the function of telling time.

Not only in a physical system but also in designing a physical system, be­
havior tends to act as intermediary between function and structure. Associated
with a specified function is a specified behavior, we would be able to tell time if
the angle of some physical structure changed in such a way that it was a function
of the time. Associated with a physical structure is its producible behavior, for
example, a gear will turn, provided that some rotational force is applied to it. In
rough terms then, designing a physical system involves selecting (or refining) a
physical structure (or description thereof) in such a way that its producible be­
havior matches the specified behavior, and thus achieves the desired function.
Thus, we could successfully refine the "physical structure whose angle is a func­
tion of the hour" as either the hand on an electromechanical clock, or as the
shadow cast by a sundial.

Complex functions often require complex implementations. For example, a jet
aircraft consists of thousands of physical parts. Parts may interact in various
ways. Thus the problems of designing the parts also interact, which complicates
the design process. Such interactions (among physical parts or among the
problems of designing those parts) can be classified according to their strength.

For instance, many parts of the aircraft (the wings, the engine, the body, e t c)
must, together, behave in such a way that the plane stays airborne; thus the sub-
problems of designing these parts can be said to strongly interact with respect to
this specification of global behavior. Non-functional requirements such as
global resource limitations or optimization criteria are another source of strong
interactions. For example, the total cost of the airplane may have to meet some
budget. Or the specification may call for the rate of fuel consumption of the
plane to be "fairly low". Not all ways of implementing some function may be
equally "good" with respect to some global criterion. The design process must
have some means for picking the best (or at least a relatively good) implemen­
tation alternative. Good implementations often involve structure-sharing, i.e.,
the mapping of several functions onto the same structure. For example, the part
of the phone which we pick up serves multiple functions: we speak to the other
person through it; we hear the other person through it; and it breaks the phone
connection when placed in the cradle. Important resources such as "total amount
of space or area" and "total cost" tend to used more economically through such
structure-sharing. On the other side of the coin, allowing structure-sharing com­
plicates both the representation of designs and the process of design.

That neighboring parts must fit together - both structurally and behaviorally

INTRODUCTION 5

— exemplifies a kind of weak or local interaction. Thus the wings of the plane
must be attachable to the body; the required rate of fuel into the engine on the
left wing had better match the outgoing rate of fuel from the pump; and so forth.
The design process must be capable of ensuring that such constraints are met.

1.2.2. Artificial Intelligence as a Software Engineering
Methodology

Now that we've briefly examined engineering design, we will equally briefly
examine (the most relevant aspects of) Artificial Intelligence (AI).

Problem-solving as search. The late 1950s and the 1960s saw the development
of the search paradigm within the field of Artificial Intelligence. Books such as
"Computers and Thought" [10], which appeared in 1963, were full of descrip­
tions of various weak methods whose power lay in being able to view the solv­
ing of a particular kind of problem as search of a space. In the late 1960s, the
notion of heuristic search was developed, to account for the need to search large
spaces effectively.

Knowledge as power. Nonetheless, most of the problems considered in those
early days were what are now commonly called "toy problems". As the 1970s
began, many practitioners in the field were concerned that the weak methods,
though general, would never be powerful enough to solve real problems (e.g.,
medical diagnosis or computer configuration) effectively; the search spaces
would just be too large. Their main criticisms of the earlier work were that solv­
ing the toy examples required relatively little knowledge about the domain, and
that the weak methods required knowledge to be used in very restrictive and of­
ten very weak ways. (For example, in state space search, if knowledge about the
domain is to be used, it must be expressed as either operators or evaluation func­
tions, or else in the choice of the state space representation.) Solving real
problems requires extensive knowledge. The "weak method" critics took an en­
gineering approach, being primarily concerned with acquiring all the relevant
knowledge and engineering it into some usable form. Less emphasis was placed
on conforming the final program to fit some general problem-solving schema
(e.g., heuristic search); more concern was placed on just getting a system that
worked, and moreover, that would produce (measurably) "expert level" results.
Thus was born the "expert systems" paradigm.

Evolution of new programming paradigms. Several list-processing languages
were developed in the late 1950s and early 1960s, most notably, LISP. The

6 TONG A N D SRIRAM

simple correspondence between searching a space for an acceptable solution and
picking an appropriate item in a list made the marriage of AI (as it was at that
time) and list-processing languages a natural one. Various dialects of LISP
evolved, and the developers of the main dialects began evolving programming
environments whose features made LISP programming more user-friendly (e.g.,
procedural enrichments of a language that was originally purely functional;
debuggers; file packages; windows, menus, and list structure editors).

At the same time as the "expert systems" paradigm was developing, a new
wave of programming languages (often referred to as "AI languages") was arriv­
ing. Like the evolution of expert systems, this development phase seemed to be
motivated by the need for less general (but more powerful) languages than LISP.
Many of these languages were (part of) Ph.D. theses (e.g., MICROPLANNER
[42,47] and Guy Steele's constraint language [35]). Often these languages

were built on top of the LISP language, a possibility greatly facilitated because
of the way LISP uniformally represents both data and process as lists. Often
these languages were never used in anything but the Ph.D. dissertation for which
they were developed, because they were overly specialized or they were not
portable.

Exploring tradeoffs in generality and power. During the 1970s, at the same
time as many researchers were swinging to the "power" end of the "generality-
power" tradeoff curve in their explorations, others were striking a middle
ground. Some researchers, realizing the limitations of the weak methods, began
enriching the set of general building blocks out of which search algorithms
could be configured. New component types included: constraint reasoning sub­
systems, belief revision subsystems, libraries or knowledge bases of various
kinds; a variety of strategies for controlling problem-solving, etc. Other pro­
gramming language designers than those mentioned previously developed new,
specialized (but not overly specialized), and portable programming paradigms,
including logic programming languages, frame-based and object-oriented lan­
guages, and rule-based languages. Rule-based languages such as OPS5 arrived
on the scene at an opportune moment. In many cases, their marriage to "expert
systems" seemed to work well, because the knowledge acquired from observing
the behavior of domain experts often took the simple associational (stimulus-
response) form: "IF the problem is of type P, then the solution is of type S."

Synthesis, consolidation and formalization. AI researchers of the late 1950s
and the 1960s posed the thesis, "Generality is sufficient for problem-solving."
1970s researchers criticized this thesis, claiming the resulting methods were in­
sufficient for solving real problems, and responded with the antithesis, "Power is
sufficient." However, that antithesis has been critiqued in turn: "Expert systems
are too brittle"; "special languages only work for the application for which they
were originally developed"; e t c

INTRODUCTION 7

Since the early 1980s, AI seems to be in a period of synthesis. One useful
tool for illustrating the kind of synthetic framework that seems to be emerging
out of the last few decades of research is depicted in Figure 1-1. Rather than pit­
ting generality against power, or the "search paradigm" against the "expert sys­
tems" or "knowledge-based paradigm", the framework unifies by providing
three different levels of abstraction for viewing the same "knowledge-based sys­
tem": the knowledge level; the algorithm level; and the program level.

Knowledge Level

Cartifacts *N
Cdomain

theory _J>^

iesign probl
spec. (D,

oblem * \ (design solution \

Function Level

controller

Program Level

operator procedures

(^controller procedure~^^>

Figure 1-1: Rationally Reconstructed Knowledge-Based System Development

These three levels directly reflect the history of AI as we have just rationally
reconstructed it. The "knowledge level" view of a knowledge-based system
describes the knowledge that is used by and embedded in that system. The "al­
gorithm level" view describes the system as a search algorithm, configured out
of standard component types (e.g., generators, testers, patchers, constraint

8 TONG A N D SRIRAM

propagators, belief revisers, etc.). Finally the "program level" view expresses
the system in terms of the elements of existing programming paradigms (rules,
objects, procedures, etc.). Within the "algorithm level", a spectrum of search al­
gorithms — ranging from weak to strong methods — can be created depending on
the choice of component configuration, and the choice of how knowledge (at the
knowledge level) is mapped into the search algorithm components. A similar set
of choices exists relative to the mapping of the "algorithm level" search al­
gorithms into "program level" knowledge-based systems.

Many of the ideas and insights of this period of synthesis can be viewed as ei­
ther: stressing the importance of distinguishing these levels (e.g., [6]); introduc­
ing criteria for evaluating systems at the different levels (e.g., epistemological
adequacy [17] at the knowledge level; (qualitative) heuristic adequacy [17] at
the algorithm level; and (quantitative) heuristic adequacy at the program level);
fleshing out the primitives at each level (e.g., ATMSs [7] or constraint
propagators [36] at the algorithm level); understanding and validating es­
tablished correspondences between entities at different levels (e.g., between
search algorithms and list-processing languages; or expert knowledge and rule-
based languages), or on discovering new correspondences.

AI as a software engineering methodology. Viewed as a software engineer­
ing methodology, AI works best for developing those knowledge-based systems
whose construction is usefully aided by creating explicit knowledge level and
function level abstractions. More specifically, the AI methodology works well
when:

• the problems addressed by the desired knowledge-based system are
ill-structured, and involve large or diverse types of knowledge
(when expressed at the knowledge level);

• that knowledge can be incorporated into an efficient search algo­
rithm, that can be viewed as a configuration of standard building
blocks for search algorithms;

• that search algorithm, in turn, can be implemented as an efficient
program, using currently available programming paradigms.

INTRODUCTION 9

1.2.3. Computer-aided Design

1.2.3.1. Opportunities for AI in computer-aided design

In many design areas (e.g., VLSI design or mechanical design), progress in
automating the design process passes through a sequence (or partial ordering) of
somewhat predictable stages (see Table 1-1). As we see it, design tool
developers proceed through the following stages: permitting design capture;
automating specific expert tasks; constructing unifying representations and sys­
tem architectures; modeling and automating the complete design process;
automatically controlling the design process; automatically re-using design ex­
perience; automatically improving tool performance. The central intuition is
that, with the passage of time, design tools play an increasingly more active role
in the design process. Note that the sequence is not meant to imply that the user
is (or should ever be) removed from the design process; instead, the user
receives increasingly greater assistance (and a more cooperative and powerful
design environment) with time. Table 1-2 lists some particular technological
contributions that have been made to design automation by academia and by in­
dustry.

Permitting design capture. In the beginning, graphical editors are created that
allow the user to enter, visualize, modify, and store new designs, as well as
retrieve old designs, in a simple manner. This is such a universal starting point
for design automation in any new area that "CAD/CAM" (Computer-Aided
Design/Computer-Aided Manufacturing) tends to be used as a synonym for
fancy graphical, object-oriented interfaces. The development of these tools is
largely aided by techniques drawn from graphics and database management (in­
cluding such ΑΙ-related areas as deductive or object-oriented databases).

Automating the execution of expert tasks. As time passes, tool users become
less satisfied with a purely passive use of CAD. CAD tool builders identify
specific analysis and synthesis tasks which have been carefully delimited so as
to be automatically executable (e.g., placement, routing, simulation). AI
research can make a contribution at this stage; the software engineering
methodology mentioned in Section 1.2.2 can facilitate the incremental creation,
testing, and development of knowledge-based systems which carry out the more
ill-structured analysis and synthesis tasks. (Well-structured tasks are carried out
by algorithms.)

Constructing unifying representations and system architectures. A problem
of integration arises; the set of available CAD tools is growing increasingly
richer, but the tools are diverse, as are the design representation languages they

10 TONG A N D SRIRAM

DESIGN AUTOMATION GOAL PROBLEM AI ISSUE

Permit design capture What functions does the
user interface provide?

Deductive or
object-oriented
databases

Build tools
for specific tasks

How to automate specialized
types of reasoning?

Inference;
Expert systems

Integrate tools How to communicate
between tools?

Representation;
Architectures

Manage versions Which task, tool, parameters? Search space

Model design process Which model is right
for the task?

Taxonomy of tasks and
corresponding methods

Find good design fast How to guide choices? Control

Improve design system Where and how to improve? Machine learning

Reuse design knowledge How to acquire?
How to re-use?

Machine learning,
Case-based reasoning

utilize. AI can enter again to contribute ideas about unifying representation lan­
guages (e.g., object-oriented languages) that enable the creation of "design
toolboxes", and unifying system architectures (e.g., blackboard architectures).

Modeling the design process. Having a single unified environment is good but
not sufficient. How can we guarantee that we are making the most of our avail­
able tools? AI contributes the notion of the design process as a search through a
space of alternative designs; the synthesis tools are used to help generate new
points in this space; the analysis tools are used to evaluate the consistency, cor­
rectness, and quality of these points; the idea of search is used to guarantee that
systematic progress is made in the use and re-use of the tools to generate new
designs or design versions.

Table 1-1: Stages in the Evolution of Design Automation

INTRODUCTION 11

Table 1-2: Increasingly More Sophisticated Technological Contributions
From Industry and Academia

Technology University Industry Design
Automation
Goal

Interactive graphics Sketchpad
(ΜΓΓ, 1963)

DAC-1
(GM, early 60s)

design
capture

Drafting (2D)

Solid modelers (3D)
(CSG,BREP)

BUILD (UK)
PADL (Rochester)
(see [29])

Autocad™
ADE™

I-IDEAS™
ACIS™

MicroStation™

design
capture

design
capture

+ specific tools
etc.

Solid modelers
(super-quadrics, nonmanifold)

Physical modelers
(spatial + physics)

Parametric modelers
(variational geometry
+ constraint management)

Semantic modeling +
geometry (mostly wire frame) +
constraint management +
layout

Logic synthesis
(ECAD)[18,27]

Concept generators
(routine design)

ThingWorld [28]
Noodles (CMU)

ThingWorld

Work at
ΜΓΓ-CAD Lab
PADL-2
(U. Rochester)

VEXED
DSPL
CONGEN

DesignView™ (2D)
ICONEX™(2D)
PRO/ENGINEER™ (3D)
Vellum™

ICAD™
WISDOM™
DESIGN++™

Logic Synthesizer

7

PRIDE
(in-house)

design
capture

design capture
+ specific tools

design
capture +
specific
tools

design capture
+ specific tools

design process
model
(algorithmic)

design process
model

Concept generators
(innovative design)

BOGART
CADET
EDISON
KRITIK
ALADIN
DONTE
etc.

ARGO
(in-house)

design process
model
+ control

Integrated frameworks
(cooperative product
development
[33])

DICE (ΜΓΓ, WVU)
PACT (Stanford)
IBDE(CMU)

PACT
(HP, ΕΓΓ, Lockheed)
Falcon™

integrate tools,
version
management

12 TONG A N D SRIRAM

Controlling the design process. The priced paid for search is efficiency, as the
search space is generally quite large. Exhaustive search of the space is usually
intractable; however, a search which focuses its attention on restricted but
promising subspaces of the complete design space may trade away the guarantee
of an optimal solution (provided by exhaustive search), in return for an exponen­
tial decrease in overall design time.

How can a knowledge-based system control its search of a large design space
so that a satisfactory solution is produced in a reasonable amount of time? Good
control heuristics help.

Control heuristics may either be domain-specific or domain-independent.
"Spend much of the available design time optimizing the component that is a
bottleneck with respect to the most tightly restricted resource" is an example of a
domain-independent heuristic, while "Spend much of the available design time
optimizing the datapath" is a domain-specific version of this heuristic that ap­
plies to certain situations in the microprocessor design domain. Control heuris­
tics may address different control questions. Some address the question: "Which
area of the design should be worked on next?" while others address the question,
"What should I do there? How should I refine that area of the design?"

Automatically improving performance and automated reuse of design
experience. At this stage in the evolution of design automation in a design area,
most of the burden of routine design has been lifted from the end user; this has
been accomplished by reformulating this burden as one for the knowledge en­
gineers and system programmers. In turn, techniques from machine learning can
make life easier for the system builders themselves. In particular, they can build
a design tool that is incomplete or inefficient, the design tool can be augmented
by machine learning and case-based reasoning techniques that can extend the
knowledge in the system, or use its knowledge with ever greater efficacy.

1.2.3.2. The differing goals of CAD tool and AI researchers

A misunderstanding frequently arises between AI researchers who develop
experimental Computer-aided Design (CAD) tools, and traditional CAD tool
developers in a particular design area (e.g., VLSI or mechanical design) who
specialize in developing new design tools that will be usable in production mode
in the near-term future. The CAD tool developers accuse the AI researchers of
being too general, and of creating inefficient or toy knowledge-based systems.
On the other hand, the AI researchers criticize the traditional CAD tool resear­
chers of creating overly brittle systems.

Confusion arises because these two types of researchers (each of whom is
likely to be reading this book) do not share quite the same research goals, and

INTRODUCTION 13

each tends to judge the other with respect to their own community's values.
Traditional CAD tool developers seek to reduce the effort in creating new
designs. Most AI researchers aim at reducing the effort in developing new
design tools.

Both research programs are worthy enterprises. The former goal requires the
design tools to be powerful. The latter requires the methodology for constructing
the tool (e.g., instantiation of a particular shell) to be general, and thus some­
times requires the design tool itself to be an instance of a general form rather
than a custom-built tool. This book describes results from both enterprises.

1.2A. A Methodology for Building a Knowledge-based Design
Tool

In Section 1.2.1, we described the problem of design, and mentioned features
of the problem that indicate design is generally an ill-structured problem. We
then described AI as a three-level, software engineering methodology for
developing knowledge-based systems for solving ill-structured problems. In the
last section, we identified specific design automation tasks where such a
methodology can be most usefully applied. We now describe what the general
methodology looks like, when restricted to building knowledge-based design
systems.

The steps involved in the development of AI tools for engineering design are
shown in Table 1-3. The rest of this chapter will go into these steps in greater
detail. We indicate which levels are involved in each step (knowledge, function,
or program level), and which sections of this chapter will elaborate on that step.

The next few sections flesh out basic ideas relevant to understanding the
phases of this methodology. They also relate the later chapters of this book to
this methodology.

1.3. FORMALIZING THE DESIGN SPACE AND THE
DESIGN KNOWLEDGE BASE

Algorithms can be decomposed into passive data structures and active access
and update operations on these data structures. Similarly, models of design can
be partitioned into passive components — the design space and the knowledge
base; and an active component — the process that (efficiently) navigates through
that space, guided by the knowledge in the knowledge base. This section

14 TONG A N D SRIRAM

PHASE LEVEL SECTION

Identify design task

Formalize design space

Formalize knowledge base

Configure appropriate model
of design process, based on
properties of design task
and design space

Instantiate by acquiring
and operationalizing
knowledge

Implement

Test

(validate and verify)

Deploy
Improve

knowledge level

algorithm level

algorithm level

algorithm level,
knowledge level

knowledge level,
algorithm level

algorithm level,
program level

all levels

all levels

1.5.1

1.3

1.3

1.4,
1.5.2

1.5.2

1.5.3

covered in
individual chapters

covered in
individual chapters

covered in
individual chapters

focuses on the nature and organization of design spaces and design knowledge
bases, while the next section explores the spectrum of design processes that
search such a space.

1.3.1. What Distinguishes a Design Search Space?

In order to characterize a (dynamically generated) search space, we must
define the nature of the points in that space, the relationships that can exist be­
tween points in the space, and how to generate new points from old ones.

Points in the design space. In a design space, the points can be design

Table 1-3: Phases of Knowledge-based Tool Construction

INTRODUCTION 15

specifications
1
 or implementations. They can be at varying levels of abstraction.

Some points may only correspond to parts of a design (specification or im­
plementation). A single such point PI might have associated with it:

• its parts: {P l l , . . . ,P ln} . In the simplest case, these parts are simple
parameters; in general, they can be arbitrarily complex structures.

• constraints on it and its parts.

• information about how its parts are connected.

Chapter 3 in Volume I considers the case where a design can be represented
as a constraint graph, whose nodes are parameters, and whose arcs represent
constraint relationships. Several design operations are easy to implement (in a
domain-independent manner), given such a representation: automatic generation
of parameter dependencies; evaluation of a constraint network; detection of
over- and under-constrained systems of constraints, and the identification and
correction of redundant and conflicting constraints. A few commercial tools,
such as Cognition's M C A E ™ and Des ignView™ (see Volume ΙΠ, Section
4.3.1), incorporate variations of Serrano's constraint management system.
Chapter 4 in Volume I goes on to discuss how such a constraint network
representation can be used to design automobile transmissions. The application
of interval calculus methods to constraint satisfaction problems is treated in
Volume I, Chapter 5. These interval methods are used in a mechanical design
compiler, which accepts generic schematics and specifications for a wide variety
of designs, and returns catalog numbers for optimal implementations of the
schematics.

The design space as a whole. Some of the most basic relationships that can ex­
ist between points in the design space include:

• P2 is a part of PI.

• P2 is a refinement of PI (where PI and P2 are both specifications).
P2 consequently may be at a lower level of abstraction than PI.

• P2 is an implementation of PI (where PI is a specification for and
P2 is a description of an artifact in the target technology).

*We use the word specification to denote a function or a goal that needs to be realized or
satisficed in the final design, e.g., "Design a land vehicle capable of going at least 100 mph
over sand."

16 TONG A N D SRIRAM

• P2 is an optimization of PI (i.e., P2 is better than PI with respect to
some evaluatable criterion).

• P2 is a patch of PI (i.e., PI contains a constraint violation that P2
does not).

These points can also be clustered into multiple levels of abstraction; for ex­
ample, in VLSI design, there might be a system level, a logic level, and a
geometric layout level. Figure 1-2 illustrates some of these relationships.

(Pesign(House) 3

(pesign(SleepingAreaj) (PesignQEatingArea)) (Design(SocialAreay) (pcsign(BathroomArca)

(Design(Kitchcn))

^
 1

-Implemented' ÇRefined^

(pesign(DiningRoom)

^RefinedZ>~ -Implemented-

solid door open
[C3]

pos:
<4,5>

open door solid

pos:
<4,5>

CI: Kitchen and Dining room should be adjacent
C2: Kitchen is adjacent to left side of house
C3: Kitchen and Dining room should share a common open space

Figure 1-2: The Design Space as an AND/OR Tree

Dynamically generating the design space. Some of the most basic operations
for generating new points in the design space from old ones include:

INTRODUCTION 17

• refining PI into P2.

• implementing PI as P2 in target technology T.

• decomposing PI into {P l l , . . . ,P ln} .

• optimizing PI into P2 with respect to criteria O.

• patching constraint violation V in PI , yielding P2.

Chapter 2 in Volume I discusses the issues involved in representing all these
aspects of a design space. The points are illustrated in the context of VLSI
design.

13.2. What Distinguishes a Design Knowledge Base?

Often the parts that occur in designs (at any level of abstraction) can be
viewed as instances of a generic class. For example, microprocessors are usually
composed of generic parts such as ALUs, registers, busses, etc.

Such regularity can be exploited by maintaining a knowledge base of design
object classes, and then viewing designs as configurations of instances of par­
ticular classes (e.g., a new microprocessor instance is constructed by creating an
instance of ALU5, Datapath3, Bus4, etc. and then connecting these object in­
stances together in a particular fashion). Design objects are also often
parameterized. A complete instance of such a parameterized object class is
created by assigning values to all the parameters.

In the standard object-oriented fashion, such design object classes may be or­
ganized hierarchically, thus reaping the standard benefits of inheritance. Design
process operations (such as refinement, optimization, etc.) may also be indexed
in a class-specific fashion (as methods), and thus, may also be inheritable.

The relation between a design space, a design knowledge base (of the kind
just described), and a design process is as follows. A design process operation
such as refinement, patching, or optimization may generate a new point in the
design space from one or more old ones; the operation itself may involve creat­
ing new instances of design object classes from the design knowledge base.

Based on such an object-oriented representation of a design knowledge base,
Chapter 2 (Volume I) discusses how to represent parameterized designs, design
histories, and task-specific experts. As examples of desirable properties for
design representations, it suggests modularity, compactness, flexibility permitted
in the design process (e.g. in allowing both top-down and bottom-up design, and
concurrent execution of design tasks), and extensibility; it describes how these
properties may be achieved.

18 TONG A N D SRIRAM

How does the design process know which design object class(es) should be
instantiated to carry out a particular design operation (e.g., refinement of part
PI)? One answer is to hardcode the association. For example, a specific
refinement rule might express the knowledge that whenever a part of type PI is
being refined, it should be decomposed into parts of type {P l l , . . . ,P ln} . Or a
specific patching rule might fix a specific type of constraint violation that com­
monly occurs in a specific kind of object. The design process models in Part II
of this book take this hardcoded approach.

Another answer is to treat this question as a problem that must be solved ex­
plicitly by the design process. For example, the process of patching a constraint
violation might actually involve solving the problem of recognizing that a par­
ticular object in the design is an instance of (or similar to) some object in the
knowledge base, and then recognizing that the specified function of that object
has been disabled in some way (by the context of the object). Available patch­
ing methods associated with that object class can then be applied (or adapted).
Chapter 6 (Volume I) discusses how to organize a design knowledge base so
that this kind of "innovative" patching can occur.

1.4. MODELS OF THE DESIGN PROCESS

1.4.1. The Nature of Design Tasks

1.4.1.1. Design task dimensions

Design tasks can be classified along several dimensions, including:

• available methods and knowledge;

• amount of unspecified (physical) structure;

• gap in abstraction levels between specification and implementation;

• complexity of interactions between subproblems; and

• amount and type of knowledge a system user can provide.

Available methods and knowledge. Is an appropriate method and/or suf­
ficient knowledge always available for choosing what task to address next in the
design process (e.g., what part to refine, what bug to fix, etc.)? Is knowledge or
a method available for executing that next task? If there is more than one way of
executing that task, is knowledge or a method available for selecting the alter-

INTRODUCTION 19

native that will have the (globally) best outcome? The more (appropriate)
knowledge and methods are available, the more routine the design task is. We
will focus our discussion on two basic types of knowledge and methods:
generative knowledge and methods, for generating new points in the design
space; and control knowledge and methods, for helping the design process to
converge efficiently on an acceptable design solution.

If sufficient knowledge and methods are available for always directly (i.e.,
without problem-solving) generating the next point in the design space and for
converging on an acceptable design with little or no search, we will call the task
a routine design task.

If the available knowledge and methods do allow for fairly rapid generation of
an acceptable solution, but only by:

• indirect generation of new points in the design space ~ i.e., finding
a way to generate the next point in the design space involves a
problem-solving process; and/or

• indirect control of the search, i.e., via problem-solving.

that is ~ by itself, the available (directly applicable) knowledge generates un­
acceptable designs - we will call the task an innovative design task.

Finally, if a problem-solving process is required to construct the design space
in the first place, or if the best method available (given our current understand­
ing) is an unguided search through a very large space, we will call the task a
creative design task.

We will call design process models capable of handling these three types of
design tasks routine, innovative, and creative design process models, respec­
tively. We discuss routine design processes in Section 1.4.2, and innovative
design processes in Section 1.4.3. We feel that creative design models, such as
they are, are still at too preliminary a stage to be included here. However,
[11] contains an interesting collection of workshop papers on this subject. Since

we have tied creative design to the creation of the proper design space, creative
design can also be viewed as a search through a space of design space represen­
tations, and thus work on problem reformulation and representation design can
be seen as relevant here (see, e.g., [1]).

The terms "routine", "innovative", and "creative design" were introduced in
[3], but were used in a somewhat different sense. Note that we use these terms

in reference to the task and the process, but not the product. Thus, an innovative
design process (e.g., replay of design plans) might not necessarily produce a
product that is innovative with respect to the current market.

Amount of unspecified structure. Design maps function into (physical) struc­
ture. A design task often provides part of the (physical) structure of the design.

20 TONG A N D SRIRAM

Since the design process involves creating a complete (physical) structure, it is
also useful to identify what of the physical structure is left to be determined as a
measure of design task complexity [39]. Design tasks are usefully distinguished
according to what the unspecified structure looks like [40].

In structure synthesis tasks, the unspecified structure could potentially be any
composition of primitive parts, which may not exist in the knowledge/data base.
For example, the specified function might be a boolean function such as (and
(or χ y) (not z)). The physical structure might be any gate network

that implements the boolean function; no part of the gate network is given a
priori.

In structure configuration tasks, the unspecified structure is a configuration of
parts of pre-determined type, and connectors of pre-determined type. For ex­
ample, the physical structure might be a house floorplan containing some num­
ber of rooms, that can be connected by doors. For a particular floorplanning
problem, the number of rooms and the size of the house might be given. In this
case, the unspecified structure would be the configuration of rooms and doors,
plus the values for room and door parameters.

Finally, in parameter instantiation tasks, the unspecified structure is the set of
values for the parameters of each part. For example, the physical structure might
be the part decomposition for all air cylinders (Volume I, Chapter 7). For a par­
ticular air cylinder design problem, the values for particular parameters (e.g., the
length of the cylinder) might be given. Then the unspecified structure would be
the values for all the remaining parameters.

Gap in abstraction levels between specification and implementation. In the
simplest case, the design specification and the design implementation are at the
same level of abstraction. This occurs, for example, when the only unspecified
structure is parameter values. In other cases, a single level separates the func­
tional specification from the target implementation level. That is, knowledge and
methods are available for directly mapping the pieces of the specification into
implementations; implementing a boolean function as a gate network is a simple
example. In the worst case, the design may have to be driven down through
several levels of abstraction before it is completed. For instance, in VLSI design,
the initial specification might be of a digital system (e.g., a calculator or a
microprocessor), which is first refined into a "logic level" description (a gate
network), and then into a "layout level" description (of the actual geometry of
the chip).

Complexity of interactions between subproblems. On one extreme (independ­
ent subproblems), the subproblems can all be solved independently, the solu­
tions can be composed easily, resulting in an acceptable global design. On the
other extreme, the subproblems strongly interact: a special (relatively rare) com­
bination of solutions to the subproblems is required, and combining these solu-

INTRODUCTION 21

tions into an acceptable global solution may not be easy or quick. Complexity
increases when the number of interactions increases or when the type of inter­
action becomes more complex.

Two major types of design interactions are worth distinguishing.
Compositional interactions arise when not all choice combinations (for refining
or implementing the different parts of the design) are (syntactically) compos-
able. For example, in VLSI design, the output of one part may be "serial", while
the input of another may be "parallel"; if the output of the one must feed the in­
put of the other, then the parts are not syntactically composable. Syntactic inter­
actions may be further subdivided into functional interactions index(Functional
interactions) among parts of a functional decomposition (e.g., in VLSI design,
the "serial output/input" interaction) and physical interactions among parts of
the implementation (e.g., in VLSI design, wirel and wire3 on the chip must be
at least 3 lambda units apart).

Resource interactions arise when different choice combinations lead to dif­
ferent overall usage of one or more global resources (e.g., delay time, power, or
area in VLSI design). Different resources "compose" in different ways: e.g.,
global part counts are related to local part counts by simple addition; global
delay time involves critical path analysis; etc.

Each interaction can be represented by a constraint. A local constraint only
constrains a single part; a semi-local constraint constrains a relatively small
number of parts; and a global constraint constrains a relatively large number of
parts. Compositional interactions tend to be represented by semi-local con­
straints (because the syntax rules for correctly composing parts tend to refer to a
small number of parts). Resource interactions tend to be represented by global
constraints (since the global resource usage tends to be a function of the whole
design).

Compositional interactions are typically weak interactions; they are usually
representable by semi-local constraints. In contrast, resource interactions are
typically strong interactions, representable by global constraints.

Amount and type of knowledge a system user can provide. In considering the
nature of a design task, we will consider human users as knowledge sources, and
thus classify the design tasks addressed by a particular knowledge-based design
system as "routine" or "innovative" depending on how much knowledge (and
method) the system and the user together can provide during the overall design
process. Thus, even if the design system itself has no directly applicable control
knowledge, if the user makes choices at every decision point in a manner that
leads to rapid convergence on an acceptable solution, then the task is "routine".

22 TONG A N D SRIRAM

1.4.1.2. Design task decomposition

While sometimes the terms we have just introduced are appropriately applied
to the design task as a whole, it is often the case that "the design task" is a col­
lection of (themselves sometimes decomposable) subtasks. Whether a task is
considered a "routine design task" really depends on whether the subtasks are all
routine and on how strongly the subtasks interact; the same design task may
have relatively more and less routine parts to it. A category such as "parameter
instantiation task" may be aptly applied to one subtask, and be inappropriate for
another. Reference [5] makes some further points about task decomposition and
associating different methods with different types of subtasks.

1.4.2. Models of Routine Design

1.4.2.1. Conventional routine design

In many cases, knowledge-based models of design are simply inappropriate,
or would constitute overkill; conventional methods suffice for solving the task
(or subtask). Some design tasks can be cast as a set of linear constraints C(s) on
a set of real-valued variables, plus an objective function O(s) on these variables;
for such problems, the methods of linear programming apply. Other simple
design tasks can be cast as constraint satisfaction problems (CSPs) when: only
parameter values are left unspecified; each parameter has a discrete, finite range
of values; the constraints are unary or binary predicates on these parameters; and
there are no optimization criteria. In such a case, the constraint satisfaction
methods of [9] apply. Similarly, other types of design tasks are well-fitted to
other standard methods (integer programming, multi-objective optimization
techniques, AND/OR graph search [26], numerical analysis techniques, etc.).
Many of these conventional methods have performance guarantees of various
sorts: linear programming and AND/OR graph search are guaranteed to find a
global optimum; if the constraint network is a tree, constraint satisfaction
methods are guaranteed to run in polynomial time; etc.

1.4.2.2. Knowledge-based routine design

Viewed as a knowledge-based search, a routine design process is comprised
of several different types of basic operations: refinement, constraint processing,
patching and optimization. Refinement and implementation operations generate
new, and less abstract points in the search space; constraint processing

INTRODUCTION 23

operations prune inconsistent alternatives from consideration by the search;
patching operations convert incorrect or sub-optimal designs into correct or
more nearly optimal designs; optimization operations convert sub-optimal
designs into designs that are more nearly optimal, with respect to some op­
timization criterion. Such operations might be stored as rules whose application
requires pattern-matching (e.g., as in the VEXED system - Volume I, Chapter
8); or as plans or procedures that are directly indexed by the type of design part
to which they apply (e.g., as in the AIR-CYL system - Volume I, Chapter 7).

1.4.2.3. Non-iterative, knowledge-based routine design

For some design tasks, sufficient knowledge or methods are available that a
single pass (more or less) of top-down refinement - possibly aided by constraint
processing, patching, and directly applicable control knowledge - is generally
sufficient for converging on an acceptable design. This kind of design process
model is demonstrated in several systems discussed in this book, including AIR-
CYL (Volume I, Chapter 7) and VEXED (Volume I, Chapter 8). In the best
case, applying this model requires running time linear in p*l, where ρ is the
number of parts in the original specification, and / is the number of levels of
abstraction through which each such part must be refined. However, constraint
processing can slow things down, particularly if relatively global constraints are
being processed [13].

1.4.2.4. Iterative, knowledge-based routine design

In other cases, the same kind of basic operations (refinement, constraint
processing, etc.) are involved, but several (but not an exponential number of)
iterations are generally required before an acceptable design is found. The need
for iteration often arises when multiple constraints and objectives must be
satisfied. A move in the design space that is good with respect to one constraint
or objective may impair the satisfaction of another; tradeoffs may be necessary,
and quickly finding a reasonable tradeoff (e.g., something close to a pareto-
optimal solution) generally requires extensive domain-specific knowledge.

Several forms of iteration are possible:

• Chronological backtracking. A knowledge-poor method that is
generally not acceptable for guaranteeing rapid convergence unless
the density of solutions in the design space is very high, or the
design space is very small. (Note, though, that "very small" need

24 TONG A N D SRIRAM

not mean a space of tens of designs, but ~ given the speed of
modern-day computing ~ could be one containing thousands of
designs. See, e.g., Volume I, Chapter 4, where an acceptable design
for an automobile transmission is found using chronological back­
tracking.

• Knowledge-directed backtracking. Dependency-directed backtrack­
ing possibly aided by advice or heuristics. PRIDE (Volume I,
Chapter 9) and VT (Volume I, Chapter 11) both illustrate this kind
of iteration.

• Knowledge-directed hillclimbing. Iterative optimization or patching
of a design until all constraint violations have been repaired, and an
acceptable tradeoff has been met among all global optimality
criteria (e.g., area, power consumption, delay time, in VLSI design).
The knowledge used to select among different possible modifica­
tions could be an evaluation function, or a set of domain-specific
heuristics (CHIPPE, Volume I, Chapter 12), or the choice could be
made by the user (DESIGNER, Volume I, Chapter 14).

• Knowledge-directed problem re-structuring. It is not only possible
to change the design solution but also the design problem, e.g., by
adding new constraints or objectives, or retracting or relaxing old
ones. As the original problem poser, the user is often made respon­
sible for such changes [BIOSEP (Volume I, Chapter 10) and
WRIGHT (Volume I, Chapter 13)1.

In the best case, applying this model requires running time polynomial in /?*/,
where ρ is the number of parts in the original specification, and 1 is the number
of levels of abstraction through which each such part must be refined; i.e., the
number of iterations is polynomial in p*/. In the worst case, the number of itera­
tions is exponential because whatever knowledge is guiding the search turns out
to be inadequate or inappropriate.

1.4.2.5. Routine design systems covered in this volume

Table 1-4 classifies along the dimensions we have been discussing the various
routine design systems described in later chapters of this book. Notice that most
of these routine design systems address design tasks involving parameter value
assignment or structure configuration (but not "from scratch" synthesis of the
entire structure).

INTRODUCTION 25

Table 1-4: Categorization of Systems and Methods
for Performing Routine Design

SYSTEM DESIGN CHAPTER UNSPECIFIED DIRECTLY SUBPROBLEM ABSTRACT­
OR TASK (VOL.1) STRUCTURE APPLICABLE INTERACTIONS ION LEVEL
METHOD OR PAPER KNOWLEDGE GAP

conventional many
optimization simple
techniques tasks

parameter
values

generative;
control

algebraic
constraints
(global)

0

CSP
methods

many
simple
tasks

Ref.
[8]

parameter
values

generative;
some control

works best for
semi-local
constraints

0

AIR-CYL air
cylinders

7 parameter
values

generative;
patching

weak
interactions

1

VT elevators 11 parameter
values

generative;
knowledge-
directed
backtracking

strong
interactions

0

PRIDE copier
paper
paths

9 structure
configuration

generative;
knowledge-
directed
backtracking

works best for
weak
interactions

η

VEXED circuits 8 entire structure generative weak
interactions

η

BIOSEP protein
purification
processes

10 structure
configuration

generative weak
interactions
+ cost function

η

CHIPPE VLSI 12 structure
configuration

generative;
knowledge-
directed
hillclimbing

weak
interactions
+ global resource
budgets

η

WRIGHT spatial
layouts

13 structure
configuration

generative;
user control

algebraic
constraints
+ evaluation
function

1

DESIGNER graphic
interfaces

14 structure
configuration

generative;
user control

mostly
semi-local
constraints

1

26 TONG A N D SRIRAM

In innovative design tasks, routine design is not possible because of missing
design knowledge. The missing knowledge might either be knowledge for
directly generating new points in the design space, or knowledge for directly
controlling the design space search. In this section, we will examine four dif­
ferent classes of innovative design. The first three focus (primarily) on missing
generative knowledge, while the last deals with missing control knowledge:

• Innovation via case-based reasoning

• Innovation via structural mutation

• Innovation by combining multiple knowledge sources

• Search convergence by explicit planning of the design process

The first three approaches can be used to create innovative designs; the last ap­
proach involves creating innovative design plans, or innovative reformulations
of the design problem.

1.4.3.1. Missing design knowledge

Why might relevant design knowledge be missing? One reason is that the
most naturally acquirable knowledge might not necessarily be in a directly ap­
plicable form. This is often so in case-based reasoning; old designs and design
process traces can be stored away fairly easily (if stored verbatim) in a case
database, but then this leaves the problem of how to use these old cases to help
solve a new design problem.

A second reason is that it generally is impossible to store the large amount of
specific knowledge that would be necessary to adequately deal with all possible
design variations (e.g., varying functional specifications, objective criteria, etc.).
While some of this knowledge could be generalized, generalization often incurs
a price of some sort; e.g., the generalized knowledge is not quite operational and
must be made so at run-time; the (overly) generalized knowledge is not quite
correct in all the circumstances to which it appears to be applicable; etc. Ad­
ditionally, some of the knowledge simply is idiosyncractic, and thus not
generalizable.

For this reason, deliberate engineering tradeoffs usually must be made in how
much directly applicable design knowledge to build into the system, and how
much to leave out, letting the system (or the user) cope with the missing
knowledge.

1.4.3. Models of Innovative Design

INTRODUCTION 27

A third reason is that human beings themselves may not have the relevant
knowledge. Sometimes this is because the "structure to fonction" mapping is too
complex to invert; methods may be available for analyzing the behavior and
function of a given device, but not for taking a specified function and directly
producing a structure that realizes that function. A case-based approach is often
taken for such design tasks.

1.4.3.2. Case-based reasoning

Any case-based model of design must address the following issues:

• design case representation and organization

• design case storage

• design case retrieval

• design case adaptation and reuse

We will now say how three systems described in Volume Π — the BOGART
circuit design system (Chapter 2), the ARGO circuit design system (Chapter 3),
and the CADET system for designing fluid-mechanical devices (Chapter 4) —
handle these different issues. Chapter 5 (Volume II) analyzes case-based models
of design in greater detail.

Design case representation. In BOGART, the stored cases are design plans,
i.e., die steps used to incrementally refine a functional specification of a circuit
into a pass transistor network are recorded verbatim. In ARGO, the same design
session can yield several design cases, each at a different level of generality.
Cases are stored as rules ("macrorules"), wherein the precise conditions for
reuse of that case are stated explicitly. In CADET, each case involves four dif­
ferent representations: linguistic descriptions (i.e., <object attribute value>
tuples); functional block diagramming; causal graphs; and configuration spaces.

Design case storage. In BOGART, the cases were automatically stored ver­
batim (when the user so chose) after a session with the VEXED design system
(Volume I, Chapter 8). In ARGO, the design plan (a network of design steps and
dependencies among them) is partitioned into levels. By dropping away more
levels, more general plans are produced. Explanation-based generalization
[19] of these design plans is used to determine the conditions under which each

of these plans is applicable (which are then cached, along with the correspond­
ing plans). In CADET, the cases were manually entered (since the focus of the
CADET research was on case retrieval, and not case storage).

28 TONG A N D SRIRAM

Design case retrieval. Because ARGO stores cases in such a way that the con­
ditions for precise re-use are associated with them, retrieval of applicable cases
is not an issue; ARGO uses a heuristic to restrict its retrieval to maximally
specific cases. In BOGART, the user selects a case conceived as being similar
to the current problem. In CADET, if no case directly matches the current
specification, transformations are applied to the specification of device behavior
until it resembles some case in the case database (e.g., some previously design
artifact actually produces the desired behavior or something similar to it). In
CADET, the specification may also be transformed in such a way that different
parts of it correspond to different cases in the case database; all these cases are
then retrieved (and the designs are composed).

Design case adaptation and reuse. In ARGO, reuse is trivial; a macrorule that
matches is guaranteed to be directly applicable to the matching context. The
transformations performed by CADET prior to retrieving a design permit direct
use of the designs in the retrieved cases. In a case retrieved by BOGART (a
design plan), some steps may apply to the current problem, while other parts
may not; replay of the design plan is used to determine which steps apply.
[23] is worth reading as a framework for case-based models of design such as

BOGART, whose modus operandi is design plan replay.

Summary. BOGART's main innovation is in its method for design case reuse
(via replay); ARGO's is in design case storage (macrorules with conditions of
applicability); CADET's contribution is its method for design case retrieval (via
transforming the design problem). All of these systems make contributions to
the representation and organization of design cases that support their primary
contribution.

1.4.3.3. Innovation via structural mutation and analysis

Most directly applicable knowledge for generating new points in the design
space (either via refinement or modification) guarantees that something is being
held invariant; most commonly, the functionality of the old design is preserved.
If functionality-preserving transformations are not available, a weaker approach
is to apply transformations that modify the artifact's (physical) structure in some
manner, and then analyze the resulting functionality. Such analysis may then
suggest further directions for modification until the desired functionality is
(re)achieved. Such modifications are also guided by performance criteria and
resource limitations.

One such approach is described in Volume Π, Chapter 6. Here the problem is

INTRODUCTION 29

to find a way to simplify a given, modular design (modular in that each struc­
tural part implements a different function) by identifying and exploiting
structure-sharing opportunities (i.e., ways to make a given structure achieve
multiple functions). Here the transformation for modifying the artifact's struc­
ture is one that deletes some part of the structure. After a part has been deleted
(and hence a function has been unimplemented), other features of the remaining
structure are identified that can be perturbed to achieve the currently
unimplemented function (while not ceasing to achieve the function(s) they are
already implementing). The identified features are then perturbed in the direc­
tion of better achieving the unimplemented function. For example, the handle of
a mug could be safely deleted if the remaining cylinder were sized and shaped in
such a way that it could be grasped by a human hand easily, and were made of a
material that was heat-insulating (and hence would not burn the hand) - e.g., a
styrofoam cup. Essential to this approach is knowledge that associates changes
in particular physical features of an artifact to the functions these (might)
achieve.

If associations between (change of) physical structure and (change of) func­
tion are not hardcoded, then they may have to be derived. Qualitative modeling
and reasoning of various kinds (e.g., qualitative simulation: see Volume Π,
Chapter 10) can sometimes be used to derive such associations.

1.4.3.4. Exploiting multiple knowledge sources

We have just described systems that use a case database to generate new
designs, and other systems that use associations between structure and function
to do the same. For some design tasks, multiple sources of (such indirectly us­
able) knowledge may be available, and all potentially useful; it might even be
the case that solving the design problem requires integrating the advice of
several knowledge sources.

Chapter 7 (Volume Π) describes the ALADIN system, which helps design
new aluminum alloys that meet specified properties. ALADIN draws on several
sources of expertise to generate new points in the design space:

• a case database of previously designed alloys and their properties.

• if-then rules which associate structural changes (e.g., adding mag­
nesium to the alloy) with functional changes (e.g., the value of the
"strength" property increases).

• mathematical models of physical properties.

• statistical methods for interpolation and extrapolation.

30 TONG A N D SRIRAM

1.4.3.5. Planning the design process

In a simple routine design scenario, the control questions that must be
answered along the way take relatively simple forms: which part of the design to
work on next? What to do there (refine, implement, optimize, patch)? Of
several possible ways to do that, which to pick? Acquirable control knowledge
may be sufficient for answering the control questions as they arise.

However, for several reasons, a design process model can be more complex,
thus giving rise to new control questions, and hence to the need for a more com­
plex controller:

• More methods and knowledge sources. Innovative design systems
can involve a diverse range of activities and draw on many sources
of knowledge. For example, the ALADIN system draws on multiple
knowledge sources, and consequently must also answer new control
questions: which knowledge source to consult next? How to com­
bine the outputs of several knowledge sources? etc.

• Multiple objectives. Another source of control problems arises when
multiple objectives must be satisfied. New control questions in­
clude: With respect to which objective should the design be im­
proved next? Which part of the design should be redesigned to ef­
fect the improvement?

• Expensive design operations. Operations such as simulation (e.g.,
VLSI chip simulation) or analysis (e.g., finite element analysis) can
be sufficiently costly that their use should be carefully planned.

A global view: Control as planning. To be operational, any control strategy
must provide answers to specific, local control questions of the kind just
described. However, the problem of control has a global goal in mind: Utilize
knowledge and methods so as to most rapidly converge on an acceptable solu­
tion. Hence we can think of the problem of control as a planning problem: con­
struct a relatively short design plan whose steps invoke various design methods
and draw on design knowledge, and which, when completely executed, results in
the creation of an acceptable design.

Stefik [36, 37] and Wilensky [45] gave the name meta-planning to this ap­
proach to control, since the design process itself is being explicitly represented
and reasoned about. Stefik's MOLGEN system represented the design (a plan
for a molecular genetics experiment) at multiple levels of abstraction. MOL­
GEN took a least commitment approach to refining the design through these
levels of abstraction. It also used a multi-layered control strategy, explicitly

INTRODUCTION 31

representing and modifying the design plan. The ALADIN system (Volume Π,
Chapter 7) uses a very similar approach to managing the navigation through its
multiple spaces for designing aluminum alloys.

Control as top-down refinement of design plans. When design operations
(such as VLSI simulation) are expensive, one response is to create abstractions
of these operations and much more cheaply construct plans for the design
process in the space of abstract operations, pick the best abstract plan, and then
refine it into an actual design plan (one whose execution would produce com­
plete designs, and accurate analyses). This approach can be viewed as a special
kind of meta-planning in which the planning method is top-down refinement
(often also called "hierarchical planning"). This approach has been applied to
VLSI design in the ADAM system (Volume Π, Chapter 8).

But what is the "best" abstract plan? In ADAM, "best" means the one which
when executed, creates a design that comes closest to satisfying all of several
resource limitations (on area, speed, power, and design time). ADAM uses a
single weighted evaluation function of all the resource usages:

wl * area + w2 * speed + w3 * power + w4 * design time

where wl+w2+w3+w4=l

to guide its search. ADAM first finds plans that construct designs which are op­
timal with respect to each of the individual resources; for instance, to do so for
"area" would involve setting w l = 1, and w2 = w3 = w4 =0. Based on the the
difference between the costs of the resulting designs and the specified budgets,
A D A M uses linear interpolation to readjust the weights on the evaluation func­
tion. It then replans.

Exploratory design: Control as hillclimbing in the space of problem
formulations. The following hypothesis (we will call it the routine design
hypothesis) is one way of viewing the relationship between an innovative design
problem and a routine design problem:

If the design problem is appropriately structured and contains enough
detail (i.e., if we are "looking at the problem right"), then a single pass of a
simple routine design process should produce an acceptable design (if one
exists).

The control strategy we will next describe, called exploratory design, is ap­
propriate for those problems where the initial design problem is not ap­
propriately structured or annotated (i.e., it is an innovative design problem). We

32 TONG A N D SRIRAM

1.4.3.6. Innovative design systems covered in this volume

Table 1-5 classifies along the dimensions we discussed earlier the various in­
novative design systems described in later chapters of this book. Notice that
most of these innovative design systems address design tasks involving syn­
thesis of the entire structure.

1.4.4. Qualitative Reasoning about Artifacts during Design

The mapping of a knowledge level specification of a design system into am
algorithm level search algorithm can draw on formally represented bodies of
generally useful "common sense" knowledge and procedures relevant to reason­
ing about the physical artifacts being designed. We now describe two kinds of
such knowledge: knowledge about physical systems; and knowledge about
geometry. With respect to codification of "common sense" knowledge, the CYC
project [14] represents an alternate and possibly complementary approach to
those described here.

call this "exploratory design" because our intuition is that human designers
handle problems that are complex in novel ways by spending their initial time
finding a good way to look at the problem.

Models of routine design involve a search purely in the space of designs. In
exploratory design, the problem and the solution co-evolve. Exploratory design
hillclimbs in the space of problem formulations (the "outer loop" of the method),
getting feedback for adjusting the problem formulation from analyzing how the
candidate designs generated so far (by the "inner loop" of routine design) fail to
be acceptable.

The DONTE system (Volume Π, Chapter 9) performs such hillclimbing in
the space of circuit design problem formulations using top-down refinement,
constraint processing, and design patching operations in its "inner loop". The
kind of problem reformulation operations it performs there are: macro-decision
formation, which imposes a hierarchical structure on a relatively flat problem
decomposition; budgeting, which adds a new budget constraint to every design
component; re-budgeting, which may adjust such constraints in several com­
ponents; rough design, which assigns estimates of resource usage to various
parts of the design; and criticality analysis which (re)assesses how (relatively)
difficult the various subproblems are to solve (given their current budgets, etc.).

INTRODUCTION 33

Table 1-5: Categorization of Systems and Methods
for Performing Innovative Design

SYSTEM DESIGN CHAPTER UNSPEC. ABSTR. GENERATION CONTROL WHAT
OR TASK (VOL.11) STRUC. LEVEL PROBLEMS PROBLEMS IS INN-
METHOD GAP ADDRESSED ADDRESSED OVATIVE

BOGART circuits

ARGO circuits

CADET fluid- 4
mechanical
devices

FUNCTION fluid- 6
SHARING mechanical

devices

entire 1
structure

entire 1
structure

entire η
structure

how to replay retrieved case design

how to store design
cases so
generation
is easy

how to design
identify
similar cases

how to design
identify
function-sharing
possibilities

ALADIN aluminum
alloys

ADAM VLSI

DONTE circuits

enure η
structure spaces

entire η
structure

enure η
structure

how to use multiple knowledge design
sources to generate new design

how to find design
promising plan
design plan

how to find design
good problem problem
decomposition, reformula-
budget allocation, tion
resource usage
estimations

1.4.4.1. Qualitative reasoning about physical systems during design

Functional specifications for physical systems often take the form of stipulat­
ing a particular relationship between behavioral parameters, e.g., the output rota­
tion of a rotation transmitter must be 30 times as fast as the input rotation. It is
rarely the case that a single part (e.g., a single gear pair) is capable of directly
achieving the specified relationship. Instead, a series of interacting components
may be needed. This is especially the case when the type of the behavioral
parameter changes: e.g., the input is a rotational speed, but the output is a rate of

34 TONG A N D SRIRAM

up-and-down movement. The network of interacting behavioral parameters may
necessarily include feedback loops, e.g., when the specified relationship defines
a self-regulating device (e.g., a change in one variable should result in a cor­
responding change in the other).

Williams has proposed a design process model for such problems called
interaction-based invention:

Invention involves constructing a topology of interactions that both
produces the desired behavior and makes evident a topology of physical
devices that implements those interactions [46].

One of the key steps in this process is verifying that the interactions in the
constructed interaction topology actually "compose" to produce the specified in­
teraction. Carrying out this step (and satisfying its representational needs, i.e.,
providing an adequate representation of the causal and temporal features of each
interaction) is particularly difficult when the topology is complex (e.g., as in
most circuits that contain feedback loops). Chapter 10 (Volume Π) discusses
how to adequately represent such interactions in complex physical systems (such
as analog circuits with feedback loops), and how to qualitatively analyze the
global behavior of these systems.

1.4.4.2. Qualitative reasoning about geometry in design

Geometry-constrained synthesis. Many design tasks involve geometry in
one way or another in their functional specifications or domain knowledge. In
the simplest of cases, the role geometry plays is purely static, placing restrictions
on the boundaries of the artifact, points of attachment of parts of the artifact, etc.
The WRIGHT system described in Chapter 13 (Volume II) handles a subclass
of such spatial placement problems.

The synthesis of small load-bearing structures illustrates a more complex role
of geometry: forces (i.e., the loads) are positioned at certain points in space; a
single structure must be synthesized that is both stable and capable of bearing
the loads (and that does not occupy any "obstacle" regions of space). Chapter 11
(Volume II) describes the MOSAIC system, which synthesizes such load-
bearing structures using a design process model that performs problem abstrac­
tion, problem decomposition, and iterative re-design.

Another geometric complication shows up in kinematic synthesis, the syn­
thesis of physical structures that move in ways that satisfies certain restrictions
on motion in space. Chapter 12 (Volume II) considers the problem of designing
linkages (e.g., door hinges, aircraft landing gear, cranes, etc.), given constraints
on specific points through which the linkage must pass (perhaps in a particular
order), number of straight line segments in the path of motion, etc. In the TLA
system, the user selects a linkage from a case database of four-bar linkages,

INTRODUCTION 35

looking for those that have features resembling the problem specifications. Op­
timization techniques are then used to adapt the known case to the current
problem; user intervention helps such techniques avoid getting stuck in local
minima.

Joskowicz (Volume Π, Chapter 13) also describes an approach to kinematic
synthesis. Mechanisms, retrieved from either a catalog or a case database, are
considered during artifact redesign. Retrieved mechanisms should ideally be
kinematically equivalent to the current design. Joskowicz describes a method for
comparing two mechanisms for kinematic equivalence, that involves trying to
find a common abstraction of both. This same mechanism comparison technique
is used to organize the case database (for the purpose of efficient retrieval) into
classes of kinematically equivalent mechanisms.

Geometry-based analysis. That designed artifacts have geometric features
means that some of the analysis processes performed during design will involve
geometric reasoning, including: static and dynamic analysis of stresses (based
on shape), and kinematic simulation of mechanisms.

The conventional approach to analyzing stress is finite element analysis.
However, this method requires a grid as an input, and which grid is best varies
with the problem. In contrast, Chapter 14 (Volume Π) describes an approach to
stress analysis that geometrically partitions an object into regions in such a way
that the object parts have shapes (e.g., a plate with a hole in it) resembling
known cases (e.g., a plate without a hole in it). These known cases have as­
sociated (pre-computed) stress analyses, which are then used as part of the stress
analysis data for the overall object.

One method for kinematic simulation is described in Chapter 13 (Volume II).
First, local behaviors are computed from two-dimensional configuration spaces,
defined by the objects' degrees of freedom. Global behaviors are then deter­
mined by composing pairwise local behaviors.

1.5. BUILDING A KNOWLEDGE-BASED DESIGN
TOOL

The actual construction of a new knowledge-based design tool goes through
three basic phases:

• Identify the design task

• Configure and instantiate the design process model

36 TONG A N D SRIRAM

• Implement the design process model

1.5.1. Identifying the Design Task

Identifying the design task involves defining the task and classifying it.

1.5.1.1. Knowledge acquisition to define the design task

To define a design task, we must acquire knowledge defining:

• the class of problems that can be solved;

• the class of candidate solutions that contains a set of acceptable
solutions to the problem;

• the domain theory, the body of domain-specific knowledge that is
accessed in solving such problems, and constrains what is con­
sidered to be an acceptable solution.

How can such design knowledge be either easily acquired from domain ex­
perts, or otherwise automatically added to the knowledge base?

Graphical interfaces. Chapter 2 (Volume ΠΙ) discusses the advantages of using
graphical interfaces in acquiring design knowledge from experts. In particular,
the knowledge is acquired in the form of decision trees. These trees are then
mapped into expert rules in OPS5. The complete process is illustrated by ac­
quiring and compiling knowledge from experts for bearing selection.

Knowledge acquisition for specific design process models. Another way to
simplify knowledge acquisition is to tailor a particular knowledge acquisition
method to a specific design model. For example, the SALT system (Volume I,
Chapter 11) specializes in acquiring knowledge for a design system that itera-
tively modifies a design.

SALT first acquires a graph whose nodes are design inputs, design
parameters, or design constraints and whose edges express various relationships
between these. SALT then acquires three types of knowledge that are indexed
off the graph nodes: knowledge for proposing a design extension (specifying a
design parameter), knowledge for identifying a constraint, and knowledge for
proposing a fix to a constraint violation. SALT has a schema for each type of

INTRODUCTION 37

1.5.1.2. Classifying a design task

As mentioned earlier, design tasks can be classified along several dimensions,
including:

• available methods and knowledge

• gap in abstraction levels between specification and implementation

• amount of unspecified (physical) structure

• complexity of interactions between subproblems; and

• amount and type of knowledge a system user can provide

1.5.2· Configuring and Instantiating the Design Process Model

Classification of a design task identifies important features of that task. Dif­
ferent features suggest different design process models. Tables 1-4 and 1-5 sug­
gest, by example, some of the correspondences.

knowledge, and prompts the user with questions whose answers fill in the ap­
propriate schema. SALT also has techniques for analyzing the completeness and
consistency of the knowledge base. The SALT system was used to acquire the
knowledge in the VT system.

Case-based reasoning. In Section 1.4.3.2, we described case-based reasoning
as a particular model of innovative design. Because case-based reasoning in­
volves storage of design cases from previous design system sessions, it
represents another way of adding "new" knowledge to the knowledge base.

As mentioned previously, the stored knowledge can range in generality from
design plans that are stored verbatim (as in the BOGART system, Volume Π,
Chapter 2), to automatically generalized knowledge (as in the ARGO system of
Volume Π, Chapter 3).

38 TONG A N D SRIRAM

1.5.3. Implementing the Design Process Model

Once a design process model is determined, the next step is to map the design
process model onto the program level (see Figure 1-1). "Maxims" pertinent to
carrying out this mapping include:

l . C o d e in an appropriate programming language, such as C++,
LISP, OPS5, K E E ™ . Most of the papers in Volume I and Volume
II, as well as Chapter 7 in Volume ΙΠ, take this approach.

2. Use a commercial tool that provides some support for design ar­
tifact representation; implement appropriate extensions. Chapters
3, 4, 5, and 6 in Volume ΙΠ follow this path.

3. Develop a domain-independent shell that implements the design
process model(s) and instantiate the shell for a particular applica­
tion.

4. Use a knowledge compiler to generate special-purpose procedures
for efficiently processing particular (and generally domain-
specific) subtasks of the overall design task.

1.5.3.1. Commercially available tools

There are two kinds of tools available in the commercial market place for
civil/mechanical engineering applications (see Table 1-2):

1. Parametric modelers, which provide constraint processing
capabilities to geometric modelers. An application utilizing a
parametric modeler (DesignView™) and a knowledge-based pro­
gramming tool (NEXPERT™) for designing a product and form­
ing sequence for cold forging is described in Chapter 4 (Volume
ΙΠ). We have included a list of commercial tool vendors in Ap­
pendix A at the end of this chapter.

2. Design representation frameworks, which provide additional
layers over knowledge representation languages. Typically these
layers support the following activities:

• Representation of engineering entities, including composite
objects;

• Geometric modeling;

INTRODUCTION 39

• Constraint management;
• Access to external programs, such as engineering databases;
• Programming language support (current tools are im­

plemented in LISP); and
• Rule-based inferencing.

Applications implemented in three commercially available tools
are described in Volume ΙΠ, Chapters 3 (IC A D ™), 4
(Des ignView™ and NEXPERT Object™), 5 (Design++™), and
6 (Concept Modeller™).

1.5.3.2. Domain-independent shells

Domain-independent shells, in addition to representation and programming
language support, provide design process models as problem solving strategies.
Applications can be built by adding domain-specific knowledge. Many of the
routine design systems described in Volume I have evolved into domain-
independent shells. These systems view design as:

Hierarchical Refinement + Constraint Propagation + ..

and provide knowledge editing facilities for inputting design plans, goals, ar­
tifacts, and constraints. Table 1-6 summarizes several domain-independent
shells, developed in the United States. Several organizations in other countries
are attempting to build such tools, e.g., L E O S Y S ™ , developed by Olivetti
Computers, Italy.

1.5.3.3. Knowledge compilers

In principle, knowledge compilers can be used to create (at compile time)
those components of the design system that are not easily viewable as instantia­
tions of domain-independent "shell" components, and that are not one of the
commercially available tools (e.g., parametric modellers or design represen­
tation frameworks). Often the compiled components handle particular, domain-
specific tasks such as maze routing [32], house floorplanning [44], or synthesis
of gear chains [24]. It is also possible to use knowledge compilers to optimize
components that originated as shell instantiations.

Some compilers are quite specialized; for example, the ELF system

40 TONG A N D SRIRAM

Table 1-6: Domain-Independent Shells that Implement
Hierarchical Refinement and Constraint Propagation

SHELL/ PREDECESSOR/ REP. LANGUAGE/ MACHINE DEPARTMENT/
REFERENCE DOMAIN BASE LANG. OR OS PLACE

DESCRIBE PRIDE LOOPS XEROX Only Inhouse
[20] Paper Handling LISP

EDESYN HI-RISE FRAMEKIT Unix Civil Engrg.
[16] Buildings LISP CMU

DSPL AIR-CYL LISP Unix Comp. Sci.
[4] Air Cylinders OSU&WPI

EVEXED VEXED STROBE XEROX Comp. Sci.
[38] VLSI LISP Rutgers

DIDS MICON C++ Unix EECS
[2] Computers C Univ. Michigan

CONGEN ALL-RISE C++ Unix Civil Engrg.
[34] Buildings C M.I.T.

[32] specializes in compiling global routers, for varying VLSI technologies.
The KBSDE compiler [44] and the constraint compiler of the WRIGHT system
(Volume I, Chapter 13) address a different and somewhat broader class of
knowledge-based systems for spatial configuration tasks. The DIOGENES
compiler [24] addresses the still broader class of heuristic search algorithms.
These compilers appear to obey the standard power/generality tradeoff. The
models of knowledge compilation also grow progressively weaker as the breadth
widens, culminating in such weak (i.e., relatively unrestricted) models as: a
transformational model of knowledge compilation [22] or a model of knowledge
compilation as formal derivation.

All the compilers just mentioned are research prototypes, and are thus not
commercially available. Nonetheless, we mention this technology because of its
potential importance in the not too distant future. In the meantime, human pro­
gramming skills will have to suffice.

INTRODUCTION 41

1.6. DESIGN AS PART OF A LARGER ENGINEERING
PROCESS

It is important to view design in the perspective of the overall engineering
process, which involves several phases: market studies, conceptualization,
research and development, design, manufacturing, testing, maintenance, and
marketing (see Figure 1-3). In this process people from various disciplines inter­
act to produce the product.

MARKET
SURVEY

1
DESIGN

MANUFACTURING

MAINTENANCE

H CONCEPTUALIZATION

TESTING

MARKETING

RESEARCH &
DEVELOPMENT

Figure 1-3: Engineering a Product

(Bent arrows indicate that the process is iterative)

42 TONG A N D SRIRAM

In traditional product development, the lack of proper collaboration and in­
tegration between various engineering disciplines poses several problems, as ex­
pounded by the following Business Week (April 30, 1990, Page 111) clip [see
Figure 1-4 for a typical scenario in the AEC industry].

The present method of product development is like a relay race. The
research or marketing department comes up with a product idea and hands it
off to design. Design engineers craft a blueprint and a hand-built prototype.
Then, they throw the design "over the wall" to manufacturing, where produc­
tion engineers struggle to bring the blueprint to life. Often this proves so
daunting that the blueprint has to be kicked back for revision, and the relay
must be run again - and this can happen over and over. Once everything
seems set, the purchasing department calls for bids on the necessary
materials, parts, and factory equipment ~ stuff that can take months or even
years to get. Worst of all, a design glitch may turn up after all these wheels
are in motion. Then, everything grinds to a halt until yet another so-called
engineering change order is made.

Figure 1-4: Over the Wall Engineering

INTRODUCTION 43

Several companies have addressed the above problem by resorting to a more
flexible methodology, which involves a collaborative effort during the entire life
cycle of the product. It is claimed (Business Week, April 1990) that this
approach

2
 results in reduced development times, fewer engineering changes, and

better overall quality. The importance of this approach has been recognized by
the Department of Defense, which initiated a major effort — the DARPA Initia­
tive in Concurrent Engineering (DARPA DICE) - with funding in the millions
of dollars.

It is conceivable that the current cost trends in computer hardware will make
it possible for every engineer to have access to a high performance engineering
workstation in the near future. The "over the wall" approach will probably be
replaced by a network of computers and users, as shown in Figure 1-5; in the
figure we use the term agent to denote the combination of a human user and a
computer.

The following is a list of issues that we consider important for computer-aided
integrated and cooperative product development.

1. Frameworks, which deal with problem solving architectures.

2. Organizational issues, which investigate strategies for organizing
engineering activities for effective utilization of computer-aided
tools.

3. Negotiation techniques, which deal with conflict detection and
resolution between various agents.

4. Transaction management issues, which deal with the interaction
issues between the agents and the central communication medium.

5. Design methods, which deal with techniques utilized by in­
dividual agents.

6. Visualization techniques, which include user interfaces and
physical modeling techniques.

Several papers in Volume ΠΙ address some of the above issues; [33] contains ad­
ditional papers in this area. Chapters 7 and 8, Volume ΠΙ, discuss the DFMA
and the ECMG frameworks, respectively, that bring manufacturability
knowledge into the early design phases. The manufacturing knowledge is
tightly integrated into the the design framework. The Engineous system,
described in Volume ΠΙ, Chapter 9, is a generic shell that combines knowledge-

2
"Concurrent engineering", "collaborative product development", "cooperative product

development", "integrated product development" and "simultaneous engineering" are different
phrases used to connote this approach.

44 TONG A N D SRIRAM

Figure 1-5: Modern View of Product Development

based expert systems, numerical optimization, and genetic algorithms for
product design.

While the above systems are closely coupled architectures, the systems
described in Chapters 10, 11, and 12 (Volume ΙΠ) are loosely coupled and
reflect the architecture shown in Figure 1-5. A multi-level and a multi-modal ar­
chitecture, DMA, that supports easy integration of various design/manufacture
CAD systems is proposed in Chapter 10 (Volume ΙΠ). The design module sup­
ports an axiomatic approach to design [41]. The manufacture module contains
manufactability knowledge, such as assembly sequencing, etc.

A dual design partner scheme is proposed in Chapter 11 (Volume ΙΠ). This
scheme supports two competing system behaviors. One expert machine ~ the
stabilizer — resists change and always presents a conservative hypothetical
model of the product. The other expert machine - the innovator ~ strives for
well calculated and justified alternative hypothetical models of the product. The
dual partner scheme is being implemented using the blackboard architecture
[25].

INTRODUCTION 45

The DICE project (Volume ΠΙ, Chapter 12) implements a blackboard ar­
chitecture over an object-oriented database management system; thus the black­
board and the object-store are tightly integrated. In addition, the objects in the
blackboard have behavior associated with them. Hence, the need for a sophis­
ticated scheduler ~ as provided in the traditional blackboard systems — is ob­
viated. The DICE project also incorporates comprehensive transaction and ver­
sion management mechanisms. The DICE version described in this volume was
implemented in Common LISP. Other implementations also exist in the
OPAL/GEMSTONE and C++/ONTOS environments.

Table 1-7 summarizes the various efforts in integrated design systems.

Table 1-7: Summary of Integrated Design Frameworks

SYSTEM CHAPTER
(VOL. ΙΠ)

FEATURES NO. LEVELS STATUS

DFMA 7 Tightly coupled 1 In-house use

ECMG 8 Tightly coupled;
Domain-independent

1 Commercially
available

Engineous 9 Tightly coupled
expert systems;
genetic algorithms;
optimization

1 In-house use

Dual Partner 11 Loosely coupled;
Blackboard; database

η Prototype

DMA 10 Loosely coupled η Prototype

DICE 12 Loosely coupled;
Blackboard; object-oriented
databases; negotiation;
transaction management

η Prototype

46 TONG A N D SRIRAM

In this overview chapter, we have presented a framework for helping to un­
derstand the field of "AI in Engineering Design" in general, and the papers in
this collection, in particular.

Applying AI software engineering methodology to Engineering Design
problems. We first considered "Engineering Design" and "Artificial Intel­
ligence" as separate disciplines, the former providing special kinds of ill-
structured problems, and the latter providing a methodology for developing
knowledge-based systems that effectively solve certain types of ill-structured
problems.

Design problems are ill-structured in that the mapping of desired functionality
onto a (physical) structure that correctly implements it is generally not
straightforward. Furthermore, most design problems call for not only a correct
design but a good design — good with respect to one or more (possibly ill-
defined) metrics (e.g., cost, area, volume, power consumption, etc.); this further
complicates the mapping, thereby decreasing the likelihood that a simple (poly­
nomial time) algorithm will suffice for carrying out the mapping, and increasing
the likelihood that some degree of search (e.g., generate-and-test) will be neces­
sary. Finally, the design problem representation itself may begin its life as an ill-
structured set of "requirements" and only gradually (enabled by feedback from
actual design experience) evolve into a set of formal "specifications".

For the purposes of this book, we have described Artificial Intelligence as a
discipline that provides a multi-level methodology for engineering knowledge-
based problem-solving systems. In particular, a knowledge level specification of
the system (and the class of problems it must solve) is mapped into an algorithm
level description of an efficient search algorithm for efficiently and acceptably
solving that class of problems. That (simulatable) algorithm description is then
mapped into an actual piece of code at the program level, using one or more
programming paradigms (e.g., procedural programming, rule-based program­
ming, object-oriented programming), shells (e.g., VP-EXPERT™), or commer­
cially available subsystems (e.g., an ATMS in KEE™) . The application of AI
to Engineering Design thus looks like a specialization of this software engineer­
ing methodology to: design tasks (specified at the "knowledge level"); design
process models (described at the "algorithm level"); and design programs built
from shells, commercially available design subsystems, and manually con­
structed code (implemented at the "program level").

Mapping a knowledge level specification for a design system into a
algorithm-level search algorithm. In considering mapping a knowledge level
specification for a design system into an algorithm-level search algorithm, it is

1.7. SUMMARY

INTRODUCTION 47

useful to decompose the algorithm into passive and active components. One pas­
sive component is the design space to be searched. The active design com­
ponents are the various functional components of the design process model (e.g.,
refinement, hillclimbing, constraint propagation, backtracking, etc.), which, in
effect, generate the design space and navigate through it. These active com­
ponents draw upon another passive component, declaratively represented design
knowledge, interpreting this knowledge at run time (e.g., to estimate the cost of a
particular design, to choose between several design alternatives, etc.).

The same piece of knowledge can be embedded into an algorithm in a variety
of ways, with varying degrees of effectiveness. The most effective way to map
available design knowledge into the algorithm-level search algorithm is to care­
fully engineer the design space itself, so that it ~ a priori -- will contain (when
generated at run-time) as few incorrect or poor designs as possible. The next
most effective way to use design knowledge is to compile it into the active com­
ponents of the search algorithm (e.g., creating customized routines for ef­
ficiently performing special tasks such as routing, placement, estimation,
simulation, etc.) The least effective (though sometimes easiest, and sometimes
necessary) way to use design knowledge is to represent it declaratively (e.g., as
is often the case in shells), and then interpret it at run time.

Other factors also come into consideration when mapping a knowledge level
specification of a design system into an algorithm-level search algorithm.
Design tasks can be categorized along various dimensions; different search al­
gorithms will be appropriate for different types of design tasks. Useful dimen­
sions for taxonomizing design tasks include: available methods and knowledge
(addressing that task); gap in abstraction levels between specification and im­
plementation; amount of unspecified (physical) structure; and amount and type
of knowledge a system user can provide.

Of primary importance in distinguishing types of design tasks is the amount
and types of available knowledge (and the form in which the knowledge is avail­
able). The more design knowledge available in the right form, the more routine
(or "direct") a design process can be used (involving a top-down refinement
and/or hillclimbing process that converges on an acceptable design with little or
no search). Any missing knowledge or knowledge in the wrong form or incor­
rect knowledge must be compensated for. Such innovative design problems can
be addressed by various "indirect" techniques such as case-based reasoning,
structural mutation, combining multiple knowledge sources, and explicit plan­
ning of the design process.

Design processes can be non-routine and indirect in the sense that generating
new points in the design space may require an explicit problem-solving process,
rather than the direct application of a single procedure or the direct interpretation
of a single piece of knowledge. Using case-based reasoning to generate new
points in the design space is usually indirect in that it requires nontrivial
processes of design case selection, adaptation, and reuse. Using structural muta-

48 TONG A N D SRIRAM

tion to generate new points can be indirect in the sense that the quality and even
the functionality of the mutations may not be knowable a priori, may require a
problem-solving process (e.g., qualitative or numerical simulation) to determine,
and may lead to a search through the space of possible mutations for a correct
and good one. Using multiple knowledge sources to generate new points in the
design space is usually indirect in that integrating partial solutions is a nontrivial
problem-solving process.

Design processes can also be non-routine and indirect in the sense that control
of the search is indirect - it requires an explicit problem-solving process, rather
than merely the direct application of a simple control procedure or the direct in­
terpretation of a single piece of control knowledge to decide what to do next.
The design search control problem can be usefully viewed as a planning
problem, and various planning techniques can be applied: forward or backward
planning, "hierarchical planning" (i.e., top-down refinement of design plans), or
"exploratory design" (i.e., hillclimbing in the space of problem formulations).

The mapping of a knowledge level specification of a design system into an
algorithm-level search algorithm can draw on formally represented bodies of
generally useful "common sense" knowledge and procedures relevant to reason­
ing about the physical artifacts being designed. Much has been learned regard­
ing qualitatively reasoning about physical systems in general. We have initial
answers to such questions as: how to qualitatively simulate certain classes of
physical systems; how to derive aggregate system behavior from the behavior of
the parts; how to determine the function of the system given its aggregate be­
havior and a description of the system's context; etc. Much also has learned
about (qualitatively) reasoning about the geometry of physical objects in
general: how to satisfy placement and sizing constraints; how to satisfy con­
straints involving forces being applied at various points in space; how to satisfy
kinematic constraints on how physical structures can move; how to analyze
stresses based on shape; and how to simulate a mechanism's movement through
space.

Mapping an algorithm-level search algorithm into a program. Implement­
ing a design search algorithm can involve several types of tasks: coding in an
appropriate programming language, such as C++, LISP, OPS5, KEE™; using
commercially available tools for representing design artifact representations
(e.g., parametric modellers) and for processing common tasks (e.g., constraint
managers, geometric modellers and constraint managers, engineering
databases); instantiating a domain-independent, design process shell (e.g., for
hierarchical refinement and constraint propagation); and creating customized
procedures or algorithms for special purpose tasks, either by hand, or by running
a knowledge compiler.

Design as part of a larger engineering process. Design is only one phase or

INTRODUCTION 49

aspect of a larger engineering process that also includes market studies, concep­
tualization, research and development, manufacturing, testing, maintenance and
marketing. The more the design process can be integrated with the other en­
gineering phases, the more cost-effective the entire process will be. Approaches
to computer-aided support of an integrated engineering process can range from
loose couplings of the phases (facilitated by electronic mail, or shared files, or
blackboard architectures), to tight couplings that constrain earlier phases (e.g.,
design) with requirements anticipated in later phases (e.g., manufacturing con­
straints) and reformulated so that they are expressed in the language of the ear­
lier phases.

Other summary references. We have intended this chapter as a brief but com­
plete summary of the state of the field of AI in Engineering Design. Other use­
ful summary references worth reading include [3] (which introduced the
"routine", "innovative", and "creative" design distinction), [21] (which distin­
guishes different design process models on the basis of types of design goal in­
teractions), and [43] (which introduced the distinction between the "program
level" and the "algorithm level", which was called the "function level" in that
paper).

1.8. APPENDIX A: VENDORS OF SOME AI-BASED
TOOLS FOR COMPUTER-AIDED ENGINEERING

Ashlar, Inc.
1290 Oakmead Pkwy.
Sunnyvale, CA 94806
Tool: V e l l u m ™

Integraph Corp.
Mail Stop WYLE3
Huntsville, AL 35894-0001
Tool: MicroStation™

Cognition Inc.
900 Tech Park Drive
Bellerica, M A 01821
Tool: E C M G ™ and M C A E ™

Mentor Graphics
8500 South West Creek Side Place
Beaverton, OR 97005
Tool: A D E ™ , Logic Synthesizer^ .TM

ICAD Inc.
1000 Massachusetts Avenue
Cambridge, MA 02138
Tools: I C A D ™

Parametric Technology Corp.
128 Technology Sr.
Waltham, MA 02154
Tool: Pro/ENGINEER™

50 TONG A N D SRIRAM

ComputerVision
55 Wheeler Street
Cambridge, MA 02138
Tool: D e s i g n V i e w ™

Spatial Technology
2425, 55th Street, Bldg. A
Boulder, CO 80301
Tool: A C I S ™

Wisdom Systems
Corporate Circle
30100 Cagrin Blvd.
Suite 100
Pepper Pike, OHIO 44124
Tool: Concept Model ler™

1.9. BIBLIOGRAPHY

[1] Benjamin, P., Ed., Change of Representation and Inductive Bias, Kluwer
Publishing, 1990.

[2] Birmingham, W. and Tommelin, I., 'Towards a Domain-Independent
Synthesis System," in Knowledge Aided Design, Green, M., Ed.,
Academic Press, 1991.

[3] Brown, D. and Chandrasekaran, B., ''Expert systems for a class of
mechanical design activity," Proc. IFIP WG5.2 Working Conf. on
Knowledge Engineering in Computer Aided Design, IFIP, September
1984.

[4] Brown, D. and Chandrasekaran, B., Design Problem Solving: Knowledge
Structures and Control Strategies, Morgan Kaufmann, San Mateo, CA,
1989.

[5] Chandrasekaran, B.,
 4

'Design Problem Solving: A Task Analysis," AI
Magazine, 1990.

[6] Clancey, W., ''Classification problem-solving," AAAI, August 1984.

[7] De Kleer, J., "An assumption-based TMS," Artificial Intelligence,
Vol. 28, No. 2, pp. 127-162, March 1986.

INTRODUCTION 51

[8] Dechter, R. and Pearl, J., "Network-based heuristics for constraint satis­
faction problems," Artificial Intelligence, Vol. 34, pp. 1-38, 1988.

[9] Dechter, R., "Enhancement Schemes for Constraint Processing: Back-
jumping, Learning, and Cutset Decomposition," Artificial Intelligence,
Vol. 41, pp. 273-312, January 1990.

[10] Feigenbaum, E. and Feldman, J., Ed., Computers and Thought, McGraw-
Hill, New York, 1963.

[11] Gero, J., Ed., Preprints of the international round-table conference on
modelling creativity and knowledge-based creative design, University of
Sydney, 1989.

[12] Coyne, R., Rosenman, M., Radford, Α., Balachandran, M., and Gero, J.,
Knowledge-Based Design Systems, Addison-Wesley, Reading, Mass.,
1990.

[13] Kelly, Kevin M., Steinberg, Louis I., and Weinrich, Timothy M.,
Constraint Propagation in Design: Reducing the Cost, unpublished
working paper, March 1988, [Rutgers University Department of Com­
puter Science ΑΙ/VLSI Project Working Paper No. 82].

[14] Guha, R. and Lenat, D., "Cyc: A Mid-Term Report," The AI Magazine,
Vol. 11, No. 3 , pp. 32-59, Fall 1990.

[15] Lowry, M. and McCartney, R., Ed., Automated Software Design, MIT
Press, Cambridge, MA 02139, 1991.

[16] Maher, M. L., "Engineering Design Synthesis: A Domain-Independent
Approach," Artificial Intelligence in Engineering, Manufacturing and
Design, Vol. 1, No. 3, pp. 207-213, 1988.

[17] McCarthy, J. and Hayes, P., "Some philosophical problems from the
standpoint of artificial intelligence," in Readings in artificial
intelligence, Webber, B. and Nilsson, N., Ed., Morgan Kaufmann, Los
Altos, CA., 1981.

[18] Meyer, E., "Logic Synthesis Fine Tunes Abstract Design Descriptions,"
Computer Design, pp. 84-97, June 1 1990.

[19] Mitchell, T. M. and Keller, R. M. and Kedar-Cabelli, S. T.,
"Explanation-Based Generalization: A Unifying View," Machine
Learning, Vol. 1, No. 1, pp. 47-80, 1986.

[20] Mittal, S. and Araya, Α., " A Knowledge-based Framework for Design,"
Proceedings AAAI86, Vol. 2, Philadelphia, PA, pp. 856-865, June 1986.

[21] Mostow, J., "Toward better models of the design process," AI
Magazine, Vol. 6, No. 1, pp. 44-57, Spring 1985.

52 TONG A N D SRIRAM

[22] Mostow, J., " A Preliminary Report on DIOGENES: Progress towards
Semi-automatic Design of Specialized Heuristic Search Algorithms,"
Proceedings of the ΛΑΑΙ88 Workshop on Automated Software Design,
St. Paul, MN, August 1988.

[23] Mostow, J., "Design by Derivational Analogy: Issues in the Automated
Replay of Design Plans," Artificial Intelligence, Elsevier Science
Publishers (North-Holland), Vo l .40 , No. 1-3, pp. 119-184, September
1989.

[24] Mostow, J., "Towards Automated Development of Specialized Al­
gorithms for Design Synthesis: Knowledge Compilation as an Approach
to Computer-Aided Design," Research in Engineering Design, Amherst,
MA, Vol. l , N o . 3, 1989.

[25] Nii, P., "The Blackboard Model of Problem Solving: Part I," AI
Magazine, Vol. 7, No. 2, pp. 38-53, 1986.

[26] Nilsson, N., Principles of Artificial Intelligence (second edition), Morgan
Kaufmann, 1984.

[27] Ohr, S., CAE: A Survey of Standards, Trends, and Tools, John Wiley and
Sons, 1990.

[28] Pentland, Α., "ThingWorld: A Multibody Simulation System with Low
Computational Complexity," in Computer-Aided Cooperative Product
Development, Sriram, D., Logcher, R., and Fukuda, S., Ed., Springer-
Verlag ,pp. 560-583, 1991.

[29] Requicha, A. and Voelcker, H., "Solid Modeling: Current Status and
Research Directions," Solid Modeling: A Historial Summary and Con­
temporary Assesment, pp. 9-24, March 1982.

[30] Rich, C. and Waters, R. C , Eds., Readings in Artificial Intelligence and
Software Engineering, Morgan Kaufmann, Los Altos, CA, 1986.

[31] Rychener, M., Ed., Expert Systems for Engineering Design, Academic
Press, Inc., Boston, 1988.

[32] Setliff, D. and Rutenbar, R., "ELF: A Tool for Automatic Synthesis of
Custom Physical CAD Software," Proceedings of the Design Automa­
tion Conference, IEEE, June 1989.

[33] Sriram, D., Logcher, R., and Fukuda, S., Eds., Computer-Aided
Cooperative Product Development, Springer Verlag, Inc., 1991.

[34] Sriram, D., Cheong, K., and Kumar, M. L., "Engineering Design Cycle:
A Case Study and Implications for CAE," in Knowledge Aided Design,
Green, M., Ed., Academic Press, 1992.

INTRODUCTION 53

[35] Steele, G., The Definition and Implementation of a Computer Program­
ming Language Based on Constraints, unpublished Ph.D. Dissertation,
Massachusetts Institute of Technology, August 1980.

[36] Stefik, M., "Planning and Meta-Planning (MOLGEN: Part 2) ,"
Artificial Intelligence 16:2, pp. 141-169, May 1981.

[37] Stefik, M., "Planning with Constraints (MOLGEN: Part 1) ," Artificial
Intelligence 16:2, pp. 111-140, May 1981.

[38] Steinberg, L., Langrana, N., Mitchell, T., Mostow, J., Tong, C , A
Domain Independent Model of Knowledge-Based Design, unpublished
grant proposal, 1986, [ΑΙ/VLSI Project Working Paper No. 33, Rutgers
University].

[39] Steinberg, L., "Dimensions for Categorizing Design Tasks," AAA!
Spring 1989 Symposium on AI and Manufacturing, March 1989,
[Available as Rutgers ΑΙ/Design Project Working Paper Number 127.].

[40] Steinberg, L. and Ling, R., A Priori Knowledge of Structure vs. Con­
straint Propagation: One Fragment of a Science of Design, unpublished
Working paper, March 1990, [Rutgers ΑΙ/Design Group Working Paper
164].

[41] Suh, N., The Principles of Engineering Design, Oxford University Press,
200 Madison Ave., NY 10016, 1990.

[42] Sussman, G., A Computer Model of Skill Acquisition, Amçrican-Elsevier,
New York, 1975.

[43] Tong, C , "Toward an Engineering Science of Knowledge-Based
Design," Artificial Intelligence in Engineering, special issue on AI in
Engineering Design, Vol. 2, No. 3, pp. 133-166, July 1987.

[44] Tong, C , " A Divide-and-Conquer Approach to Knowledge Compila­
tion," in Automating Software Design, Lowry, M. and McCartney, R.,
Eds., AAAI Press, 1991.

[45] Wilensky, R., Planning and Understanding, Addison-Wesley, Mass.,
1983.

[46] Williams, B, "Interaction-based Invention: Designing novel devices
from first principles," Proceedings of the Seventh National Conference
on Artificial Intelligence (AAAI90), Boston, MA, pp. 349-356, 1990.

[47] Winograd, T., Understanding Natural Language, Academic Press, New
York, 1972.

Chapter 2
REPRESENTATION AND CONTROL

FOR THE EVOLUTION OF VLSI DESIGNS:
AN OBJECT-ORIENTED APPROACH

(EXTENDED SUMMARY)

The information involved in the development of hardware (and software)
designs is both vast and conceptually complex. This paper summarizes an
object-based representation of the information needed to support design
development processes. In this representation, attributes that are invariant under
certain classes of design operations are identified and grouped into objects. The
resulting structure allows different implementations to be simultaneously and
compactly maintained; it also supports parameterized designs. Although we
believe that the representation applies quite generally, the specific examples
presented are concerned with the design of VLSI systems.

The information involved in the development of VLSI designs (and more,
generally, software and hardware designs) is both vast and conceptually com­
plex. This paper summarizes an object-based representation for the information
needed to support design development processes, while allowing for a mix of
tools that span the spectrum from rule-based to algorithmic. Although we
believe that the representation applies quite generally, the specific examples
presented are concerned with the design of VLSI systems. In particular, the
taxonomy and vocabulary of the representation is taken from the VLSI arena.
We first present an overview of the representation in order to establish a context
for the summary in Section 2.4.

P. A. Subrahmanyam

Abstract

2.1. INTRODUCTION

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

57 Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

This chapter is a revised summary of 'Representation and Control for the Evolution of VLSI Designs,'
by John D. Gabbe and P.A. Subrahmanyam, in Artificial Intelligence in Engineering (1987), 2, 4, pp. 204 - 223.

58 SUBRAHMANYAM

Design is the process of converting a set of functional (behavioral) and perfor­
mance specifications for an artifact into an acceptable realization (or implemen­
tation). Transformation-based design converts the specifications into realiza­
tions through a series of incremental refinement steps, each of which produces a
description of the artifact. The descriptions are called versions.

The versions may be arranged in a hierarchy, as shown in Figure 2-1. The
architectural level determines the way in which the function or artifact is
decomposed into subfunctions or parts (modules). The environmental level im­
poses additional specifications (such as technological characteristics or
geometrical placement constraints) that restrict the implementation. For ex­
ample, the environmental level may be used to specify that a standard cell layout
must be used for a submodule that appears in several places in a design. The
final realization level contains various (possibly partial) implementations (e.g.,
mask layouts) of the modules and the constraints that they satisfy. Thus, each
module, as shown in Figure 2-2, contains decompositions, which are associated
with architectures; decompositions contain contexts, which are associated with
environments; and contexts contain refinements, which are associated with
realizations of the artifact.

DESIGN-ROOT

Figure 2-1: The Hierarchy of Versions of a Design

REPRESENTATION A N D CONTROL 59

FUNCTION SPECS

DECOMPOSITION 1 DECOMPOSITION Ν

CONTEXT N l CONTEXT N M

REFINEMENT N i l REFINEMENT N I L

Figure 2-2: Components of a Module

(Versions of Designs are made of these Pieces)

Starting with the overall functional and performance specifications, the design
process builds architectures (hierarchies of decompositions), environments (cor­
responding hierarchies of contexts), and realizations (corresponding hierarchies
of refinements) that constitute acceptable implementations. In the object-
oriented programming paradigm [6]adopted in this work, these hierarchies are
made up of objects. Objects are data abstractions that contain both values and
the operations that transform the values. The interface among objects is defined
by the messages through which they communicate. Objects are created during
the design process. Modules (and their component decompositions, contexts,
and refinements) are created from defining objects ~ disembodied modules and
module superclasses — that contain appropriate structures, operations, and
default values. These defining structures and operations are part of the
knowledge of the design domain (e.g., VLSI design techniques) built into the
representation.

To provide flexibility in the control of the design process, it is broken down
into rather general tasks; and operations in the objects are specified in terms of
these tasks. The selection of the agent, the procedure that executes the task, is
the province of the tasker, which has at its disposal a control object (controller)
for each task. The controller has access to the agents, to information about the

60 SUBRAHMANYAM

agents and the state of the design, and to the user. This arrangement provides
the opportunity for separately customizing and preserving control regimes; for
maintaining, massaging, and analyzing information about the design process;
and for dynamically manipulating the design process itself.

Design information is separated into three categories by the representation.
The first category provides for the various aspects of artifact description; from
functional specifications through architectural descriptions, circuits, and
topological layouts to the details of masks; and assertions about design states,
design goals, design history, etc. This design-value information is contained in
the instances of the modules that make up artifacts. The second category
provides the structures and default values for the modules and the various
procedures that convert specifications to realizations (e.g., masks). The items
(disembodied modules, module superclasses, and agents) in this category com­
prise the domain knowledge. The last category contains the procedures that
decide which task to perform and which agent to designate to perform the
selected task. This category, which comprises the control knowledge, contains
the tasker and the controllers (one for each task).

In addition to providing a basic structure, it is essential for any useful
representation to provide the ability to expand gracefully. Thus, the represen­
tation has been designed keeping in mind support for the acquisition of domain
and control knowledge (i.e., the long term development of a design methodol­
ogy) as well as for the transformation-based design (and redesign) of artifacts.
The first activity implies support for the abstraction of information during the
design process (e.g., the creation of disembodied modules); the modification of
module superclasses; the tailoring, abstraction, and preservation of control
regimes; the addition of agents during design; and the collection, analysis, and
application of information regarding the design process. The second activity im­
plies support for the maintenance and utilization of design histories as well as
the entry, display, transformation, and storage of specifications and realizations.

2.1.1. Evolution of the Representation

The basic concepts underlying both the representation and its derivation do
not depend on the language in which the objects are implemented. However, the
computing environment that prevailed, Lisp machines with objects implemented
both as flavors provided in Common Lisp [5] and as frames provided in the
K E E ™ system [4] ,

2
 influenced some of the details of the representation.

Another concern was our desire to support an interface to variants of formal
methods and tools.

2
K E E ™ is a trademark of IntelliCorp.

REPRESENTATION A N D CONTROL 61

2.2. MODULES AND DESIGN PHILOSOPHY

A module realizes a function. It is composed of other (typically simpler)
modules or primitive modules. A root module is a module that is not contained
in any other module. In the VLSI arena a module is composed of a network of
other modules and/or primitives (e.g., transistor, input-output pads, wires).
Modules are represented by objects.

Figure 2-3.1(a) is a diagram of a root module, showing its composition struc­
ture. Every module in the example is regarded as being distinct, so the structure
corresponds to the tree shown in Figure 2-3.1(b). When describing trees and
(later) directed acyclic graphs, the usual meanings are ascribed to root, ancestor,
parent, child, descendant, sibling, cousin, and leaf modules.

Two basic kinds of information arise in the process of design: specifications

Reference [3] enunciates the use of the invariance of attributes over design
operations as a primary factor influencing representational considerations. The
representation focuses primarily on the design development process itself, rather
than the underlying artifact values, i.e., the designed objects. Among other
salient features of the current representation are its use of the object-based
paradigm and associated inheritance mechanisms, and the attempt at modulariz­
ing the control involved in design. The module superclass hierarchy that allows
design techniques to be inherited is similar in spirit to [2]. The representation
supports design paradigms that are top-down, bottom-up, and combinations
thereof ([1] and [7])

Section 2.2 describes the general design process, notes the role played by
modules, and categories design information as specifications or results. Refer­
ence [3] elaborates on the motivation for the rather complex representation that
has been constructed. This was done by evolving the representation rather than
presenting it as a. fait accompli. The evolution begins with the assumption of a
one-pass, non-iterative design process and a correspondingly simple represen­
tation. An iterative design process is then considered, and the representation is
expanded accordingly. As the design process is made more realistic, the
representation evolves to keep pace. Issues of consistency, design history, and
the propagation of specifications are also addressed. Changes in the represen­
tation are then introduced that allow a module to be used in more than one con­
text. The next major expansion of the representation, provides means for deal­
ing with more than one architecture for a module. Multiple architectures imply
that the representation should also provide for parameterized modules. The
resulting representation is summarized in Section 2.4.

SUBRAHMANYAM

(a) Block Representation

ROOT-MODULE

A A
1

Β A B B ^

(b) Tree Representation

Figure 2-3: Example of a Root Module

REPRESENTATION A N D CONTROL 63

and results. Specifications are the input to a particular step in the design process
and results are the output. Some of the results of one step may be the specifica­
tions for another. Aside from identifying its children, a module contains explicit
information only about itself and its parents, that is, about only two levels in the
overall hierarchy. The representation is built by separating this information into
categories that are associated with various operations in the design process.
This is done by identifying the information that is invariant during different
design steps.

The representation depends on the design philosophy as well as on the struc­
ture of artifacts of which Figure 2-3.1 is a simple example. While developing
the representation, we begin with a top-down design paradigm. Later, to resolve
the situation that arises when a design step cannot produce results that meet its
specifications, we extend the design paradigm to allow iterations, e.g., by intro­
ducing methods that attempt to negotiate new specifications by making local ad­
justments. (Some specifications, such as the external specification of the root
module, may be considered non-negotiable.) More global changes come into
play only if local adjustments are ineffective, or if experiments with different
solutions seem desirable. The structure of the resulting representation is
layered, with layers corresponding to information that is invariant over their sub­
structures. It accords well with the structure of artifacts, stores information
compactly, and is easily manipulated by the design process.

2.3. THE MODULE STRUCTURE: A SUMMARY

This section briefly summarizes the module structure, as well as some nota-
tional and representational issues. Motivations for these may be found in [3].

An artifact is composed of modules, that is, of subassemblies and parts.
Viewed externally, a module is a named instance of a class of objects. It
responds to messages and may also send messages. Internally, a module is a
compound object, and many of the messages sent it will have to specify the sub­
structure for which they are ultimately intended. The concept of a world allows
much of this substructure identification to be done automatically.

The structure of a compound module object is shown in Figure 2-4. It is com­
posed of a tree whose root is the module-kernel. Module-kernels hold the func­
tional specifications for the module and certain performance and interface
specifications. The second level of the tree contains one or more decomposi­
tions; the third level contains one or more contexts, and subsequent levels con­
tain refinements.

64 SUBRAHMANYAM

MODULE

L

MODULE-KERNEL

- to- and from-parent specifications
invariant over decompositions

- auxiliary information

I
DECOMPOSITION-1

- categories of the realization
invariant over refinements
eg., submodule list,
connections

- to- and from-parent specifications
invariant over refinements

- auxiliary information

• · · ·

DECOMPOSITION-J
- categories of the realization

invariant over refinements
eg., submodule list,
connections

- to- and from-parent specifications
invariant over refinements

- auxiliary information

CONTEXT-1-1 • · CONTEXT-1-N1 CONTEXT-J-1 • · CONTEXT-J-NJ

1 1 1 •
REFN-1-1-1 REFN-1-N1-1 REFN-J-1-1 REFN-J-NJ-1

• • • • •
• • •

• • •
R E F N - M - M 1 1 REFN-1-N1-M1N REFN-J-1-MJ1 REFN-J-NJ-MJNJ

Figure 2-4: A Complex Module Object

REPRESENTATION A N D CONTROL 65

SUPERCLASSES

DESIGN-METHODS

STRUCTURES

BASIC DEFAULTS I Ζ Ζ Γ
DISEMBODIED-MODULES
EXTRACTS FROM PREVIOUSLY DESIGNED ARTIFACTS

; ')
INSTANCES OF MODULES

DESIGN V A L U E S

Figure 2-5: The Module-Classification Hierarchy

Decompositions are concerned with the division of a module into submodules
and, ultimately, primitives. An instance of a module may have several decom­
positions (associated with different architectures). In addition to specifying a set
of submodules that implements the module and the connections among them, the
decomposition provides for specifying the to- and from-parent specifications as­
sociated with the architectural level. Architectures are closures of decomposi­
tions that have compatible to- and from-parent specifications.

Contexts are concerned with the environment in which a module will be used.
A decomposition may have several contexts each of which specifies different
sets of to- and from-parent specifications that all the subordinate refinements
must meet. Contexts include provision for the coordination of from-parent
specifications from multiple parents, and thus allow for replication (i.e., the use
of a refinement in more than one parent module). Environments are closures of
contexts that belong to the same architecture and have compatible to- and from-
parent specifications. Thus each context must also provide for the specification
of the parent and child contexts in the environmental hierarchy.

Refinements are concerned with the realization of a module. A refinement
contains an implementation (e.g., floorplan, layout) and the realization-
dependent to- and from-parent interface specifications associated with it. A con-

66 SUBRAHMANYAM

2.4. AN OBJECT-ORIENTED REPRESENTATION: A
SUMMARY

Reference [3] examined the general design problem with particular emphasis
on the development of a representation for the evolution of custom VLSI
designs. A number of orthogonal perspectives associated with the design
problem were considered, that we briefly recapitulate below:

• Nonprimitive circuit functions are decomposed into subfunctions,
which may be in turn decomposed. The functions correspond to
modules in the hardware implementation. Modules are related
through a directed acyclic graph that specifies the inclusion of
modules within other modules.

• The design process is partitioned into transactions. Each transaction
represents a major step (e.g., floorplan, layout) in the design of a
module. The design philosophy is similar to that of CADRE [1],
That is: design specifications come from the parents and children of
the module; the children are not designed in the transaction; if the
specifications cannot be met, they are negotiated with the parent;

text may have many refinements, proposing different (possibly incomplete) im­
plementations for the module. The to- and from-parent interface specifications
of a refinement apply to specific refinements in the same environment. A
realization of an artifact is composed of a set of consistent refinements (i.e., one
for every context in the environment). A set of refinements is consistent when
their to- and from-parent interface specifications are compatible.

A realization contains the values generated by the design process when it at­
tempts to satisfy a particular set of interface specifications. Protection
categories in the representation provide for transactionalizing the design process.
Narrowly applied, this allows design steps to be aborted, more broadly applied it
allows modules to be designed concurrently. The history categories provide
data that can be used to prevent the repetition of unsuccessful design paths in the
current design, and unsuccessful design strategies in general.

The design process, which creates module-kernels, decompositions, contexts
and refinements, is concerned with resolving conflicts (both obvious and subtle)
among their to- and from-parent specifications. This conflict resolution may
lead to the creation of additional module-kernels, decompositions, and contexts
before producing those refinements that constitute the end product of a success­
ful design process.

REPRESENTATION A N D CONTROL 67

ancestor modules may have to be redesigned to arrive at mutually
satisfactory sets of specifications; and previously designed children
of redesigned ancestors may have to be reworked. The purpose of
transactionalizing the design process is to allow modules to be
designed concurrently, and to maintain the integrity of the data base
when errors or a user decision terminate a design step.

• Transactions are partitioned into tasks. Tasks are design operations,
and there may be inore than one way of performing a task.

• Tasks are performed by agents. There are two kinds of agents:
design agents carry out the actual design operations; control agents
(meta-agents) select the appropriate design agents. The selection of
the appropriate agent depends on the state of the design process, the
details of the specifications, and the goals of the user.

• Each task is associated with a controller. Configuring the con­
trollers allows the design process to be customized.

• Modules are composed of a module-kernel, decompositions, con­
texts, and refinements. This partitioning uses the principle of col­
lecting together attributes that are invariant under a class of design
operations.

• A module-kernel (1) contains the (decomposition independ­
ent) module behavior, which specifies the relation between
the inputs and outputs, and (2) identifies the inferior decom­
positions (i.e., the existing set of decompositions for the
module).

• A decomposition delineates a particular implementation of
the module in terms of elements (child modules) and the rela­
tions (connections) among them, contains the architectural
constraints associated with the decomposition, and identifies
the inferior contexts. A set (graph) of compatible decomposi­
tions constitutes an architecture. Thus decompositions allow
for different architectures for a module.

• A context specifies a set of constraints that apply to all the in­
ferior refinements. A set (graph) of compatible contexts con­
stitute an environment. Different (sets of) contexts may
specify different replications (of modules) that are to be used
when implementing an architecture; thus contexts allow a
particular refinement to be incorporated into many parts of a
realization. A context provide for merging constraints collec­
tively imposed on the module by its parents, and identifies the
refinements that depend upon it.

68 SUBRAHMANYAM

• A refinement contains the details of a proposed implemen­
tation at the level of the module as well as to- and from-
parent constraints imposed on the implementation. Succes­
sive refinements represent successive proposed (possibly par­
tial) solutions to the design problem. The details of a
proposed implementation may depend (through the con­
straints) on particular proposed implementations for the
parents and children. Thus a refinement must be associated
with the parent and child refinements with which it is consis­
tent. Consistent sets of refinements (one for each context in
the environment) comprise a realization of the artifact.

•Disembodied modules contain module-kernels, decompositions,
contexts, and refinements that have been stripped of the information
that associates them with a particular artifact. These collections of
specifications and (partial) implementations form a pool of
knowledge that can be inherited to serve as a starting point for the
design process.

• Module superclasses provide a hierarchy of structures and defaults
from which modules may be constructed, and supply design
strategies in the form of methods that initiate design tasks.

• Design knowledge is decomposed into three categories, which are
stored separately. The domain knowledge contains the module-
superclass hierarchy, disembodied modules, and the agents that
carry out design operations. The artifact values contains the in­
stance modules that specify the architectures, environments, and
realizations of particular designs, the goals that they fulfill, and their
development history. Control knowledge contains the task control
knowledge that guides the design process by selecting particular
agents (or meta-agents) to accomplish various design tasks.

An outcome of these considerations has been the development of an object-
base representation of information that supports general transformation-based
incremental design paradigm; is modular, compact, flexible, transparent, and
uniform; provides for separation of categories of knowledge, modification of
design strategy and classification structure, customization of control; and con­
tains facilities on which to base redesign, planning, and learning. An initial ver­
sion of the representation has been implemented in Common Lisp and KEE (a
frame-based object-oriented expert-system shell), and interfaced to tools that in­
clude a leaf cell layout program, and a floorplanner. It is intended for use in ex­
perimental VLSI design tools that are simultaneously evolving.

69

This paper is a summary of the paper that appeared under the title "An
Object-Based Representation for the Evolution of VLSI Designs" in Artificial
Intelligence in Engineering,(4), pp. 204-223, 1987. For copyright reasons, it
could not be reproduced here.

We would like to thank Bryan Ackland, Allen Ginsberg and Chris Tong for
helpful feedback on an earlier version of this paper, as well as D. Sriram for his
patience.

2.6. BIBLIOGRAPHY

[1] Ackland, B., Dickenson, Α., Ensor, R., Gabbe, J., Kollaritsch, P., Lon­
don, T., Poirer, C , Subrahmanyam, P., and Watanabe, H., ''CADRE: A
system of cooperating VLSI design experts," 1985 IEEE International
Conference on Computer Design: VLSI in Computers, LEEE, pp. 99-104,
October 1985.

[2] Brown, H., Tong, C. and Foyster, G., ''Palladio: An exploratory environ­
ment for circuit design," IEEE Computer Magazine, pp. 41-56, Decem­
ber 1983.

[3] Gabbe, J. and Subrahmanyam, "An Object-Based Representation for the
Evolution of VLSI Designs," International Journal for Artificial Intel­
ligence in Engineering, Vol. 2, No. 4, pp. 204-223, 1987.

[4] IntelliCorp, ''KEE Version 3.0 Software Manuals,'' 1986.

[5] Steele, G. L., Common Lisp - The Language, Digital Press, 1987.

[6] Stefik, M. and Bobrow, D., 'Object-oriented programming: themes and
variations," AI Magazine, Vol. 6, No. 4, pp. 40-62, Winter 1986.

[7] Subrahmanyam, P. Α., "SYNAPSE: An Expert System for VLSI
Design," IEEE Computer, Vol. 19, No. 7, pp. 78-89, July 1986.

2.5. ACKNOWLEDGMENTS

Chapter 3
TOOLS AND TECHNIQUES

FOR CONCEPTUAL DESIGN

David Serrano and David Gossard

ABSTRACT

Engineering design is constraint-oriented; much of the design process in­
volves the recognition, formulation and satisfaction of constraints. Constraints
are continually being added, deleted and modified throughout the development
of a new device. Of particular interest are the constraints that relate to a design's
performance (i.e., function), physical laws it must obey (i.e., physics) and to its
geometrical and topological properties (i.e., form). The management of these
constraints throughout the evolving design is a non-trivial task and existing
computational tools are not adequate.

Effective tools for constraint management will be of great importance in
knowledge-based systems for conceptual design. They will provide designers
with assistance during the early stages of design and will help close the gap be­
tween novice and experienced designers.

This paper presents a graph-theoretical approach to constraint management.
Constraint networks are represented as directed graphs, where nodes represent
parameters and arcs represent constraint relationships. Parameter dependencies
are generated automatically. Techniques are presented for the evaluation of con­
straint networks, the detection of over- and under-constrained systems of con­
straints, as well as the identification and correction of redundant and conflicting
constraints.

The constraint management techniques were implemented in The Concept
Modeler, a system for conceptual design. The Concept Modeler allows the
designer to interactively construct models of a design using iconic abstractions
of common machine elements.

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

71 Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

72 SERRANO A N D GOSSARD

Design is constraint-oriented; much of the design process involves the recog­
nition, formulation and satisfaction of constraints. There are many sources of
constraints ranging from "soft" constraints imposed by aesthetic or economic
considerations to "hard" constraints imposed by physical laws. Of particular in­
terest are constraints that relate to a design's performance (i.e., function), physi­
cal laws it must obey (i.e., physics) and to its geometrical and topological
properties (i.e., form).

Constraints are continually being added, deleted and modified throughout the
development of a new product. Design begins with a functional specification of
the desired product: a description of properties and conditions that the product
should satisfy (i.e. constraints). The original set of functional requirements are
augmented, changed and/or refined as the design solution evolves. The resulting
constraint set may contain conflicting and/or unrealizable requirements.

The management of these constraints throughout the evolving design is a non-
trivial task. The constraints are often numerous, complex and contradictory. Par­
ticularly in more complex designs where form, function and physics interact
strongly, it is difficult to keep track of all relevant constraints and parameters,
and to understand the basic design relationships and tradeoffs.

Effective tools for constraint management will be of great importance in
knowledge-based system for conceptual design. They will provide designers
with assistance during the early stages of design. In addition, they will help
close the gap between novice designers and experienced designers.

This paper presents a framework for a highly-automated conceptual design
system and requisite techniques for constraint management. These computa­
tional methods have proven to be very effective for the management and visual
feedback of constraints during design. The following sections will present an
overview on previous work on constraints highlighting the requirements for a
constraint manager for design, and then present the framework for a constraint
manager in the context of a constraint-based system for conceptual design.

3.2. RELATED WORK ON CONSTRAINTS

One of the first attempts to manage constraints for automation of computa­
tion in engineering applications was the work done by Harary [15] and Steward
[30, 31] . Their primary concern was the partitioning (i.e., "tearing") of large

systems of equations to reduce computational effort. They assumed the systems

3.1. INTRODUCTION

TOOLS A N D TECHNIQUES 73

of equations were self-consistent and did not consider inequalities. Friedman
and Leondes [9], [10, 11] provide a mathematical basis for a constraint theory.
Other work followed in the area of chemical process design. Soylemez [26],
Sutherland [33], Steele [27], deKleer and Sussman [6], Borning [3], among
others, describe computational implementations in domains of geometry, com­
putation, electronics and simulation. Stefik's MOLGEN system was developed
to aid in the design of molecular genetic experiments [28]. MOLGEN is a
hierarchical planner; it propagates constraints arising at different levels of plan­
ning abstraction to generate plans for gene-splicing experiments. MOLGEN also
meta-plans, i.e., it reasons about its own reasoning plan.

A substantial amount of work has dealt exclusively with geometric con­
straints. Sutherland [33] was one of the first to use a system of constraint equa­
tions to compute changes in geometry corresponding to changes in a set of
dimensional parameters. Light [18, 19] used row and column operations on the
jacobian of the constraint equations to detect overconstrained and under-
constrained dimensioning schemes. Given a dimensional change, Lin's method
[20] attempted to reduce computation by segmenting the system of constraints

into two groups; one group contained those constraints affected by a dimen­
sional change and the second containing the remaining constraints. He ac­
complished this by two different methods: one an extension of Light's approach,
which used the jacobian to determine the sensitive constraints in an iterative
fashion; and the second, a constraint propagation approach which found con­
straints sensitive to a dimensional change. Since the main objective of Lin's
work was to reduce computation, the issue of maintaining consistency by detect­
ing redundancies and conflicts was not addressed. Chyz [5] proposed a 2D con­
straint manager for geometric constraints. His constraint manager would make
use of the structure of a limited number of geometric constraints in order to
resolve conflicts and maintain consistency in the system; it therefore lacked the
generality required in a general constraint manager for design.

Chang [4] and Pabon [21] dealt with the problem of re-design, i.e., modifying
an existing design to meet new requirements by reevaluating its constraint
relationships. Using standard optimization techniques, their systems could
handle inequalities, and cases in which there were more unknowns than con­
straints. Garret [13] focussed on the problem of selecting selecting applicable
constraints to a design situation, using a rule-based approach. Once the set of ap­
plicable constraints was selected, he used numerical optimization techniques to
solve the constraints. The systems lacked facilities for modifying the causality of
constraint relationships or determining the existence of a solution space (i.e.,
identifying problems with a null solution space).

Gosling [14] and Holtz [16] developed constraint-based systems based on
symbolic algebraic manipulations. Gosling's system, MAGRITTE, was an an
editor for line drawings and his treatment of constraints was similar to that
presented by Steele. Holtz developed a system called CONMAN, which in-

74 SERRANO A N D GOSSARD

eluded inequality constraints as well as equalities and was capable of performing
interval arithmetic. The system provided no interactive facilities nor means for
design iteration; its primary function was to evaluate and check designs using
standard design codes. No work was reported on identifying redundant or con­
flicting constraints.

In all of these systems, it was not possible to change the geometry and
evaluate the resulting change in dimensional parameters (i.e., to reverse the
causality of the constraint equations). Serrano [23 ,24 ,25] developed a system
called MATHPAK for preliminary design which included non-geometrical "en­
gineering" constraints as well as geometric constraints. Serrano's MATHPAK
allowed the user to reverse causality in the constraint relationships. Gallagher's
system [12] and a commercial system developed by Steinke [29] are based on
the MATHPAK concept. This past work made clear the need for efficient con­
straint management methods in more advanced design tools, and identified some
of the more important functions of a general constraint manager.

3.3. CONSTRAINT MANAGEMENT FUNCTIONS IN
CONCEPTUAL DESIGN

The key features of the constraint manager include: consistency (detection of
conflicts and redundancies), completeness (identification of missing infor­
mation, i.e., unconstrained degrees of freedom), efficient evaluation of the con­
straint networks (selection of applicable sets of constraints for evaluation), and
providing guidance and support for the decision-making process (qualitative
analysis). The next sections present the graph-based representation for con­
straints as well as constraint networks. The major advantages of such a
representation are: it is a very general domain independent representation; and it
allows both qualitative and quantitative operations. An additional advantage of
choosing a graph representation is that it has allowed us to draw upon a number
of existing graph-theoretic algorithms.

A constraint manager with the above functionality is the foundation of a
knowledge-based system for conceptual design currently being developed by the
authors. A typical display from the system is shown in Figure 3-1. The system
provides the user with a menu of predefined concept models of common
mechanical engineering components. The components of the system may be
added to the database as needed and may include power sources (e.g. electric
motors, internal combustion engines, hydraulic motors), power transmission ele­
ments (e.g. gears, belts, chains, ropes) and other basic machine elements (e.g.
springs, dampers, shafts, bearings, couplings).

Figure 3-1: Sample Screen for Concept Modeller
Adapted from 'Constraint Management in Conceptual Design,' by David Serrano, © 1987 Massachusetts Institute of Technology.

T
O

O
L

S A
N

D
 T

E
C

H
N

IQ
U

E
S

76 SERRANO A N D GOSS ARD

Each model is an object with the following properties: a set of constraints
which predict its performance, establish its physical limits, and define its
topological (connectivity) restrictions. In addition each object has an iconic
representation for user interaction.The user can interactively select individual
components from the menu, and then specify the connectivity and the causality
among these components in the resulting aggregate "concept model." The sys­
tem creates the aggregate model by fusing the individual models. It evaluates
the aggregate model given the known parameters and identifies redundant or
conflicting constraints. Concepts may be stored and retrieved, and may be used
as components in higher-level concepts.

This finite set of common machine elements restricts the scope of the system
so as to be manageable, yet retains the essential characteristics of the generic
design process. While the individual machine elements are well understood, they
offer the possibility for interesting combinations, and they may be used in a
variety of conceptual design situations.

Section 3.4 presents the general definitions of the graph representation. Ter­
minology will be defined as needed and simple examples will be used to
demonstrate the key issues. Section 3.5 discusses the representation of constraint
networks. Evaluation of these constraint networks is described in Section 3.6.
Detection of redundant constraints and conflict resolution are addressed in Sec­
tion 3.7. Section 3.8 illustrates this strategy on a cantilever beam example. The
integration of the constraint manager in a MCAE system is described in Section
3.9.

3.4. GRAPH THEORY TERMINOLOGY

A brief introduction to the terminology used in the paper follows. For more
details see [8, 17, 22],

A directed graph (digraph) is the ordered pair D = { V, Ε }, where V is a non­
empty set of nodes (points, vertices) and Ε is a set of ordered pairs, which are
called arcs (also known as edges, lines, or pointers). Directed graphs are also
called networks. If certain members of Ε can be placed in the sequence
P={(v1,V2) , (v2 ,V3) , . . . , (vn - 1,vn)} , then the set Ρ is a path from V j to v n in D. For
example, P={(a,b)(b,c)(c,d)} is a path in Figure 3-2.

A node is said to reachable from another node if their exists a path from the
second to the first. A path becomes a cycle when the starting node and the last
node correspond to the same node. The path Ρ is a cycle if V | and v n are the
same. The nodes on a cycle are mutually accessible (reachable) in the sense that
there exists a path from every node in the cycle to any other node in the cycle.

TOOLS A N D TECHNIQUES 77

b e d

Figure 3-2: A Directed Graph
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

The nodes of a graph may be partitioned into sets called strongly connected
components. A strongly connected component of a digraph is a maximal
strongly connected subgraph. Strongly connected components in a digraph have
the property that all nodes within a strong component are mutually accessible,
but not all nodes belonging to different strong components are mutually acces­
sible. Nodes that are not part of a cycle are strong components because they
satisfy the definition as well. A formal definition follows [2]:

•Definition 1: A digraph is strongly connected if every node in the
digraph is reachable from every other node in the digraph.

• Definition 2: Subdigraph D ' = { Χ, (X 4 X) G E'} of D = { V, Ε }
is a strongly connected component (strong component) of D if it is
strongly connected and there exists no pair of nodes a € X, b € X
such that a and b lie on the same cycle, where X is a nonempty
proper subset of V and Ε is the set of edges in D.

The paths P1={(c,d)(d,f)(f,c)} and P2={(b,c)(c,d)(d,f)(f,b)} shown in Figure
3-2 are cycles; P 2 is a strong component as well. It is maximal because it con­
tains both P j and P 2. The node a is a strong component by Definition 2; be­
cause it is possible to go from Sj= {a} to S 2 = { b,c,d,f } but not from S 2 to S 1?
each is a distinct strong component of the digraph.

78 SERRANO A N D GOSSARD

Directed graphs with no directed cycles are called directed acyclic graphs
(DAGs). A tree is a special case of a digraph; trees are acyclic graphs in which
exactly one node has indegree of zero and every other node has indegree of one.
The indegree of a node is defined as the number of arcs entering the node. The
node with indegree of zero is the root of the tree and nodes with zero outdegree
are terminal nodes (the "leaves" of the tree). The outdegree of a node is defined
as the number of arcs leaving the node. Node χ is the root for the tree in Figure
3-3. Nodes t, u, v, and w are the terminal nodes for the tree. Forests are sets of
trees.

Χ Root Node

y

Λ
^ ζ

/ Ο
t u ν w Terminal Nodes

Figure 3-3: Tree (Directed Acyclic Graph)
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

A bipartitle graph is a graph D = {V , E} which has its set of nodes V as the
union of two subsets Β and C such that Β n C = Φ and Ε is a set of arcs such
that every member of Ε has one element in Β and the other in C. Bipartite
graphs are useful in constraint management and will be used as an auxiliary aid
to transform the undirected graphs into directed graphs. Figure 3-4 shows a

TOOLS A N D TECHNIQUES 79

bipartite graph, where V =B u C = {a,b,c} u {f l , f2 ,B} and Ε =
{(a , f l) (a ,0)(b,0)(c , f l) (c , f3)}

c O ^ - — f 3

Figure 3-4: Bipartite Graph
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

3.5. CONSTRAINT NETWORK REPRESENTATION

A constraint, as defined previously, is a relation among several objects stat­
ing something that should be true among them. This broad definition allows
constraints to take on a large number of forms. The constraints of interest in this
article are equalities, inequalities, and functions or procedures. The following
are valid constraints:

x2 + y2 - c2 = 0 (fi)
3x + y < 0 <f2)
g = F(χ y ζ) <f3)

where (f l) and (f2) are equality and inequality constraints respectively; in
general, these constraints may be any nonlinear algebraic expression. (f3)

80 SERRANO A N D GOSS ARD

represents a constraint which is defined in terms of a lisp function, or a proce­
dure in any language. The scope of our implementation was limited to these
three basic types of relationships, but the theory applies to other representations.
For example, if the constraints were differential or integral relations, they can be
included as well in the graph representation. Functional constraint (f3) was
selected to demonstrate the generality of the approach. A constraint may also
have multiple inputs and multiple outputs (ΜΙΜΟ), such as those found in
database queries. As an example, consider the case where, in (f3), g = S 0 = { a l9
. . . , a n} ; S 0 is a set of η parameters which depend on the set Sj = { x, y, ζ }. Sj is
the input set and S 0 is the output set for the constraint. An example of this may
be the selection of a standard component from a database, which is chosen given
a set of parameters Sj and that its description is given by the set S 0. The treat­
ment of ΜΙΜΟ constraints is analogous to that of the supernodes discussed in
Section 3.6.2. The graph representation is general and productions can be en­
coded as a graph structure. In the graph representation, the actual functional
relationship among the parameters in a constraint is not explicitly represented.
However, the fact that they are related or "connected" by the constraint depicts
this relationship abstractly. For example, (f l) , (f2), and (f3) may be represented
as in Figure 3-5 [(a),(b) and (c), respectively]. The nodes represent the
parameters and the arcs (or edges) represent the existence of a constraint be­
tween the parameters. The arcs are labeled according to the constraint.

(a) c (c)

χ y

(b)

χ f2
y
•θ

Figure 3-5: Graph Representation for Constraints (fl),(f2) and (f3)
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

TOOLS A N D TECHNIQUES 81

A set of constraints may form a network relating a larger set of parameters. If
the parameters x, y and ζ are common to (fl),(f2) and (f3) then the constraint set
may be represented as a network, as shown in Figure 3-6. The nodes and the
arcs retain their original meaning. A constraint network is therefore a declara­
tive structure which expresses the existence of relations among the parameters
of more than one constraint. The declarative structure, such as that in Figure 3-6,
is an undirected graph (because its edges have no direction associated to them).
This implies that information may flow or propagate in either direction. There­
fore, a single representation may be used to solve a large number of problems
depending on the desired flow of information.

Figure 3-6: Network Graph Representation for a Constraint Set
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano. © 1987 Massachusetts Institute of Technology.

A particular problem is defined by selecting a set of parameters with known
values { Κ } and a set of parameters with unknown values { U }. The set of
parameters with known values may be thought of as the inputs to the system and
the set of parameters with unknown values as the desired outputs from the sys­
tem (Figure 3-7). The status of a parameter is defined by its membership in one
of these two sets. Therefore a parameter may have a status of known or un­
known depending on whether it is given or it is to be computed. By defining and
redefining the status of the parameters, various aspects of a given design situa­
tion may be studied, with a minimum of data manipulation from the user.

82 SERRANO A N D GOSSARD

Input
Knowns

Output

Unknowns

Figure 3-7: Defining a Problem using a Constraint Network
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano. © 1987 Massachusetts Institute of Technology.

3.5.1· Causality and Dependency

Initially the constraint network or graph is undirected, that is, information is
allowed to flow in any direction. In order to obtain a particular solution from
the constraint network, the user specifies the input parameters { Κ } and the out­
put parameters { U }. This choice of inputs and outputs converts the network
into a directed graph. The direction of the flow of information is known as the
causality of the constraint network. For example, suppose χ is a member of { Κ
}, y is a member of { U }, and they are related by a constraint. If changing the
value of χ causes that of y to change, the causality is directed from χ to y. The
dependency relationship is the inverse of the causality relationship, therefore it
may be said that y "depends on" x, and the dependency is directed from y to x.
Throughout the paper only the dependency notation will be used, unless stated
otherwise. Therefore, a directed arc will denote "depends on" and is read from
tail to head; for example "y —> x", is read "y depends on x."

TOOLS A N D TECHNIQUES 83

3.5.2. Representing Constraint Networks as Directed Graphs

Before we can check for consistency or evaluate a constraint network, we
must determine the interdependencies among the various parameters. The
dependencies establish the flow of information, and allow us to detect abnor­
malities in the topology of the network. Existing rule-based systems generally
require that the dependency information be coded as part of the rules, requiring
the user to figure them out beforehand. The method that follows generates the
dependency information automatically. Once the status of the parameters is
defined, the dependency relationships can be determined (as well as the
causality). This requires an assignment or matching of every unknown
parameter to a constraint. This assignment is the key to the automatic depen­
dency generation, which is required for constraint propagation and constraint
management.

A bipartite graph G={V,E} is constructed from a constraint set where V = Ν
u F is the set of vertices. Ν = { nl 9.. . ,np } is a set of ρ nodes (which correspond
to the parameters which have been defined as unknowns), and F = { f j , f r} is
the set of r edges (which correspond to the constraints). Ε is the bipartite edge
set wherein no member of Ν is connected to another member of Ν and no mem­
ber of F is connected to another member of F. The set of edges Ε = { e l v. . . , e k }
connect the elements of Ν with those of F. Therefore each edge e p (η fj) in Ε
corresponds to a node (variable) in the original network and a corresponding
edge leaving it. In other words, the edges in the bipartite graph indicate which
unknown parameters are present in each constraint; therefore constraints are not
directly related among themselves and cannot be connected in a bipartite
representation. Similarly, the unknown parameters are not directly connected
among themselves but through the constraints.

Given the above representation, we would like to find a maximum matching
between the elements of Ν and those of F, subject to E; that is, find the largest
subset of Ε with the property that no two pairs have the same η or f in common.
A maximum matching is complete when its cardinality (number of matchings)
equals INI = IFI, where INI is the number of nodes in the parameter set and IFI is
the number of nodes in the constraint set of the bipartite graph. For example,
consider the simple network consisting of constraints (fl),(f2) and (f3) and the
parameters {c,g,x,y,z}. If the system status were defined such that U = {c,g,y}
and Κ = {χ,ζ} , then we can construct the bipartite graph in Figure 3-8 a. The
assignment is created in such a way that a maximum number of connections is
made between the sets Ν and F. In this example, the maximum number of
matchings is three and the resulting assignments are shown in Figure 3-8 b as
the bold lines. The dotted lines indicate the assignments which were not used.
Once the assignments are made, we can apply the results to the original network;
all nodes which have been defined as knowns are shown as squares, while those

84 SERRANO A N D GOSS ARD

nodes defined as unknowns are represented as circles, and only those edges in­
cident on their assigned node are kept. For example, both f l and f2 are incident
on node y (see Figure 3-6) before the matching; after the matching y is assigned
to f2. Hence the edge f l is removed (Figure 3-8 b), and only the edge cor­
responding to the assigned constraint f2 is used. In general, only those edges
which connect their assigned node to another node are kept. The directions on
the arcs are assigned using the following rule: nodes defined as unknowns have
the arcs labeled with the matched constraint, with the arrow pointing away from
the node. For example, in Figure 3-8 b, g was matched to Ο therefore the arrows
on β point away from g. Similarly y was matched to f2; therefore the arrow on
f2 is away from y. Using this rule, all knowns (terminal nodes) have all edges
incident on them with the arrow pointing at the node. This assignment makes
sense, because the direction of the arrow was defined to read "depends on."
Therefore no known quantities (terminal nodes) have any dependencies, and all
other nodes adjacent to the terminal nodes depend on them.

Consider a different status for the same simple network of Figure 3-6. Let U
= {g,x,y} and Κ = {c,z}. The bipartite matchings are shown in Figure 3-9 (a, c).
Notice that there exists more than one possible solution to the assignment
problem, a situation which is generally true except in the most trivial cases.

(a)

Figure 3-8: Bipartite Matching and Directed Graph
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

TOOLS A N D TECHNIQUES 85

Therefore the matchings are not unique; if the system is consistent, it does not
matter which set of assignments is chosen because the final result will be the
same. In cases where the constraint network is not consistent or complete, the
matching process may be used to identify redundant and conflicting constraints,
as well as unspecified parameters required in order to solve the problem. In par­
ticular, when the constraint network contains inequalities, the results from the
matching can be used to generate multiple feasible solutions. Another feature
that shows up in the resulting directed graph is the presence of cycles, e.g., χ
depends on y which in turn depends on x. The next section is dedicated to the
evaluation of constraint networks and some more examples.

86 SERRANO A N D GOSSARD

The matching problem (or the marriage problem as it is also known) seems
straightforward at first but subtleties quickly become apparent [1, 2, 6] , Al­
gorithms which solve the problem can be considered as an application of the
concept of augmentation used in the solution of network flow problems.
However, in the case of matching, detecting and performing augmentations ef­
ficiently can become extremely subtle. There are, in general, too many pairings
to try all possibilities, and the solution algorithm must be carefully designed to
try as few possibilities as possible. The problem has been studied extensively
[1 ,7 , 8, 17] and a number of solution techniques exist. The majority are net­

work flow techniques, either heuristic (Ford-Fulkerson) or based on optimiza­
tion techniques such as linear programming. The matching problem is concep­
tually simple and the details are described in the literature [1, 7, 8, 17, 25]. In or­
der to avoid distractions in the discussion, we have presented only the basic
ideas of the matching process and its use in generating parameter dependencies.

3.6. CONSTRAINT NETWORK EVALUATION

After matching, the resulting network is a tree-like structure which may or
may not have cycles. For many applications involving directed graphs, cyclic
subgraphs do arise. Areas in which directed graphs appear naturally include
manufacturing process planning, general problem solving strategies, design and
causal reasoning. These are areas in which plans are sought and events are
sorted based on their interdependencies. In some cases, cyclic behavior is not al­
lowed, while in other situations there is a physical explanation for the
phenomenon. For example, if a graph modeled a manufacturing line, a cycle
would be inconsistent and therefore is not allowed. In an analytic constraint net­
work, a cycle represents a set of parameters (specified by the nodes on the path)
which are coupled and must be solved simultaneously. Therefore they must be
allowed. The presence of cycles cause problems in local constraint propagation
and the use of backtracking techniques during the solution process does not
solve the constraint propagation problem when the cycles are inherent to the be­
havior of the system being modelled by the constraint. The strategy is to locate
the cycles before any propagation is attempted and then collapse them into a su-
pernode, rendering the network acyclic. For constraint propagation and many
other applications, such as manufacturing, directed graphs with no directed
cycles are called for. Such graphs are called directed acyclic graphs (DAGs).

This section presents the details of the evaluation process for constraint net­
works. The first subsection presents the traversal techniques used on directed
graphs. The second subsection discusses the process of rendering a cyclic graph

TOOLS A N D TECHNIQUES 87

acyclic by identifying strong components and collapsing them into supernodes.
The third subsection presents how the evaluation plan is generated given the
acyclic digraph, and the fourth subsection presents how the digraph can be used
to perform a sensitivity analysis on a constraint network. Finally the last section
presents some special cases and limitations of the evaluation procedure.

3.6.1· Topological Sorts on DAGs

Although graphs, DAGs behave very much like trees. Their special structure
may be used efficiently in their processing. Viewed from any vertex, a DAG
looks like a tree in the sense that the depth-first search forest for a DAG has no
return edges to a visited node (cycles). A fundamental operation on DAGS is to
process the vertices of the graph in such an order that no vertex is processed be­
fore any vertex that points to it is processed. This operation is called topological
sorting. The sorting may be based on either a depth-first search or a breadth-first
search. In general, the vertex order produced by a topological sort is not unique.
The nonuniqueness is because one task or event may have no direct or indirect
dependence on another and can be processed in any order. Figure 3-10 shows a
typical directed acyclic graph, for which two valid topological orderings may be:
(i) Topological ordering based on a depth-first search: b-a-d-c-g-f-e, and
b-g-f-e-d-c-a, (ii) Reverse topological ordering based on a breadth-first search:
e-f-g-c-a-d-b and e-f-c-g-a-d-b.

It is useful to find an ordering with the property that every term (assigned to a
constraint) is defined (evaluated) before it is used in any other definition. This
particular ordering corresponds to an inverse topological sort. Performing a
reverse topological sort on a graph is equivalent to performing a topological sort
on a graph obtained by reversing all the edges. For example e-f-g-c-a-d-b, is ob­
tained by performing a breadth-first search in the DAG of Figure 3-10, as fol­
lows: start with node b, expand its dependents in a breadth first fashion a-d-g,
expand a (no dependents-nil), expand d: a-c-g, expand g: f. Expand the descen-
dents of the next level (i.e. c and f) , expand c (no dependents-nil), expand f: e.
Expand e (no dependents-nil). Thus we have visited:
b-a-d-g-nil-a-c-g-nil-f-e-nil; reverse the order and remove repeated elements:
e-f-g-c-a-d-b. This ordering will be used in determining the solution sequence
for a constraint network.

88 SERRANO A N D GOSS ARD

on

Figure 3-10: Directed Acyclic Graph
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

3.6.2. Cycles and Strong Components

Constraint networks may have cycles imbedded within, as mentioned
previously. This section describes how to detect cycles and what is done with
them when they are detected. A graph contains a directed cycle if we can get
from a node back to itself by following edges in the indicated direction. A graph
containing a cycle cannot be topologically sorted. It was mentioned previously
that in some applications, cycles indicate inconsistencies (e.g., in the manufac­
turing process line), but in others (e.g., in constraint networks and causal net­
works), they imply that a subset of the constraints need to be solved simul­
taneously or that a subset of the events happen in parallel with certain level of
interaction. In order to process a constraint network, it is necessary to eliminate
the cyclic nature. This may be accomplished by identifying the cycles in the net­
work and collapsing them into "super nodes" forming a new digraph which has
no cycles. The nodes on a cycle are mutually accessible in the sense that that
there is a way to get from every node on the cycle to another node on the cycle
and back. Therefore the nodes may be partitioned into sets called strongly con­
nected components. A strongly connected component of a digraph is a maximal
strongly connected subgraph. Strongly connected components have the property
that all nodes within a component are mutually accessible, but there is no way to
get from a node in one component to a node in another, and back. Hence nodes

TOOLS A N D TECHNIQUES 89

in a DAG also satisfy these conditions and by considering a set of nodes belong­
ing to a strong component as a super node it is possible to render a graph acyclic
for topological sorting.

Figure 3-11 a shows an example of a cyclic directed graph representing a con­
straint network, G = {V,E}. Figure 3-11 b shows its strong components S j , S j =
{D,E,F}, S 2 = {K}, S 3= {B}, S 4 = {A,C,GJ,L,M} and S 5 = {H,I} and Figure
3-11 c shows the equivalent condensed graph G' = { V , E'} , where V has five
elements and the edge SjSj is in Ε ' if and only if there is an edge in Ε from some
vertex in Si to some vertex in Sj.

Strong components are located essentially by search-based algorithms which
traverse the network labelling the visited nodes and storing the cycles as they are
encountered.The details of the algorithm that generates the strong components
given the directed graph are presented in [1, 7, 8, 17, 25].

3.6.3. Solution Plan

The plan for a solution sequence which solves for the unknowns in the net­
work is determined by a reverse topological sort on the resulting network with
the strong components collapsed. Figure 3-11 shows the subsets S j = {D,E,F},
S 2= { K } , S 3= { B } , S 4 = {A,C,G,J,L,M} and S5={H,I} which form the strong
components for the network. Each subset corresponds to a set of constraints that
must be solved simultaneously. The subsets are collapsed and the resulting DAG
with super nodes is shown in Figure 3-11 c.

An inverse topological sort based on a breadth-first search yields the desired
solution sequence for the cyclic network as follows: S1-S2-S3-S4-S5. This in­
dicates that the constraints matching the set { D,E,F } are to be solved simul­
taneously then along with the evaluation of Β and Κ the set of constraints
belonging to {A,C,G,J,L,M} are to be solved simultaneously and finally the set
{H,I } is to be solved for. In terms of the parameters it would look like
{{D,E,F},{B},{K},{A,C,G,J,L,M},{HJ}}. Notice that the order in which S 3, S 2
and are processed is not important because they are independent components;
therefore another valid solution would be {{B},{K},{D,E,F},
{A,C,GJ,L,M},{H,I}} .

Actually the components S 3, S 2 and S j may be evaluated in parallel. Consider
the example presented in Figure 3-8. The directed acyclic graph for the defined
status is a tree. Therefore no cycles or strong components are present and a
topological sort can be readily applied. Figure 3-12 shows the tree and the solu­
tion sequence is y-g-c, obtained by expanding the dependents in a breadth-first
manor as shown by the dotted line. Note that the unknown parameters are the
circle nodes and the known parameters are the square nodes. Square nodes do

90 SERRANO A N D GOSSARD

Κ

(a) Cyclic Directed Network

SI Ε Ο ,

S2

(b) Strong Components for Digraph

(c) Equivalent Network with the Strong Components Collapsed

Figure 3-11: Examples of Directed Graphs
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

TOOLS A N D TECHNIQUES 91

not expand, because they are terminal nodes and therefore are not included in
the resulting topological sort. When the same network has a different status,
such as shown in Figure 3-9, the resulting directed graph is not acyclic and the
strong components must be identified before a solution sequence is generated, as
shown in Figure 3-13. Notice that, for a consistent system (i.e., one where the
number of constraints equals number of unknowns and there are no redun­
dancies or conflicts) the solution sequence is effectively the same no matter
what the matching assignments. The solution sequence for the network in Figure
3-13 is (x,y)-g regardless of the matching selected.

Figure 3-12: Solution Sequence for a Cyclic Network
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

In addition to providing a degree of parallelism, the directed graph represen­
tation allows the computation mechanism to be efficient as well. Consider once
again the network of Figure 3-12. If the value of ζ were changed, it is not neces­
sary to reevaluate the complete network because ζ only affects (causes) g.
Therefore by looking at the causality, it is possible to determine the exact num­
ber of parameters that need be recomputed for given change (or changes). In
large sparse networks, the advantages of this capability are of great value.
Similarly consider the network of Figure 3-11. If either Β or Κ need to be
recomputed, the simultaneous set within S j need not be evaluated, saving com­
putation time. In addition, the solution sequence may be stored and used as long

92 SERRANO A N D GOSSARD

Figure 3-13: Solution Plan for a Consistent Constraint Network with
Multiple Matchings

Adapted from 'Constraint Management in Conceptual Design,'
by David Serrano, © 1987 Massachusetts Institute of Technology.

as the network status is not changed (that is, the sets U and Κ are not redefined);
this saves the computational time in the réévaluation as well. This approach is
applicable regardless of the nature of the constraints, i.e., whether they are linear
or nonlinear.

The solution sequence is of help not only to the computational efficiency of
the system, but it may also be used as an explanation facility to inform the user
of the solution procedure for a given problem. Using the information from the
matching, each unknown parameter is assigned a constraint, which is used in its
evaluation. Therefore if the solution sequence is augmented with this infor­
mation it is possible to inform the user which constraints were selected for
evaluation, the order in which the constraints were used and for which parameter
was each constraint used. For example, using the example of Figure 3-12, the
solution trace for the reverse topological sort may look like:

solved for y using f2
solved for g using f3
solved for c using f1.

For the example in Figure 3-13, the solution trace may look like:

solved for (x,y) using (fl,f2) simultaneously
solved for g using f3

TOOLS A N D TECHNIQUES 93

For the example in Figure 3-14, the solution trace may look like:

solved for j using f8
solved simultaneously for (f,g) using (f6,f7)
solved for e using f5
solved for d using f4
solved for c using f3
solved for b using f2
solved for a using fl

/ f l \

(c)

' f 3 \ f 4 l f5
(e)

f 5 V

f6

k

à) h

f7

1

i CD
f 8 / \

/ β \
m η

Figure 3-14: Directed Graph, Solution Sequence: j-(f,g)-e-d-c-b-a
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

The dependency information is useful for the designer as a qualitative aid as
well; it is possible to query the network for dependency information in order to
help the designer's decision-making process. It is also possible to inform the
designer of which known parameters directly or indirectly affect an unknown
parameter he is trying to evaluate. For example, in Figure 3-14, it might be
desirable to determine which known parameters affect b. By traversing the tree

94 SERRANO A N D GOSSARD

starting at node b in a breadth-first fashion until the terminal nodes are reached,
it is found that the set {h j , m , n } affects b. This is important when the number of
constraints increases beyond a reasonable number and it is not possible to men­
tally keep track (bookkeeping) of all the dependencies and associations among
the parameters. Similarly, it is possible to inform the user of the system which
unknown parameters depend on a given input parameter of his selection. For ex­
ample if j is to be changed, the user may want to know which parameters get af­
fected. This may be accomplished by performing a traversal as before, but using
the parents of the nodes rather than the children in the expansion. A change in j
will affect only e and b in the network.

3.6.4. Sensitivity Analysis

It is sometimes not enough to know which parameters affect others but also
desirable to have an order of magnitude sensitivity analysis indicating how one
or more parameters affect another. The dependency information may be used in
the sensitivity analysis of a system of constraints as well. Therefore when setting
up the sensitivity analysis, the only input that is required is the parameter of in­
terest. The dependencies are used to generate all the input parameters which af­
fect it, and to determine all those intermediate constraints which need to be in­
cluded as well.

For a single constraint fjCx^x^ = 0 in two variables, the sensitivity analysis is
performed by taking the partial derivatives with respect to x j and x 2:

-:—άΧγ+ —dx2 = 0

Then if it is desired to know how X j varies with respect to x 2, use the expres­
sion:

dx

In general, for a constraint in m parameters:
m df

TOOLS A N D TECHNIQUE S 95

The constrain t ma y hav e variou s know n an d unknow n parameter s an d i t ma y b e
rewritten as :

y ÈLdu: = y ^ - d X u
pi duj

 J
 h dx k

where th e du j ar e th e unknow n parameter s an d th e d x k ar e th e know n
parameters. Th e dx ^ ar e se t t o on e i f th e variatio n wit h respec t t o x k i s o f inter ­
est, an d t o zer o otherwise . Whe n th e variation s o f on e paramete r wit h respec t t o
another i s no t direc t (i.e. , the y ar e no t member s o f th e sam e constraint) , o r th e
value i s dependen t o n highl y couple d constraints , i t i s necessar y t o tak e int o ac ­
count th e effec t o f othe r constraints . I n thi s case , th e las t expressio n i s bette r
written i n term s o f matrices :

Jnxn

 du =
 " J'nx c

 dx

where d u i s th e vecto r o f th e unknow n parameter s foun d i n th e η constraints and
dx is the vector of the c parameters which have been defined as knowns.

In general, when the sensitivity of a parameter is requested, two lists are
generated. The first list contains all the terminal nodes under the node cor­
responding to the desired parameter. The second list contains all the inter­
mediate nodes between the desired parameter and the terminal nodes. The inter­
mediate parameters form the du vector and the associated η constraints are used
to generate the jacobians J and J'. The terminal nodes form the dx vector. By
assigning a value of one to each parameter k in dx and zero to all others, it is
possible to determine the sensitivity of any parameter j in du. The results are
returned qualitatively in the form of a sign. If the variation is increasing then (+)
is returned, else if it is decreasing, then (-) is returned.

Using the dependency information, it is possible to determine all the relevant
constraints that must be included in the analysis automatically, thus avoiding the
need to include the entire network in the analysis. As an example, consider the
network in Figure 3-14. If we are interested in the sensitivities for parameter c,
we first find terminal nodes for c, i.e., {k,I}. Next, we determine all other depen­
dents of c excluding the terminal nodes {f,g}. Then, from the set {c} u {f,g} =
{c,f,g} the appropriate constraints are determined using the results of the match­
ing, in such a way that the constraint set is {f3,f6,f7 }. Therefore the vectors are:
du = {dc df d g }

f
a n d d x = {dk d I }

T
.

96 SERRANO A N D GOSSARD

The jacobians become:

3D 3D 3D
3c 3f 3g
3f6 3f6 3f6
3c 3f 3g
3f7 3f7 3f7
3c 3f 9g

3f3 3f3
3k 31

3f6 3f6
~5k ~
3f7 3f7
3k 31

The jacobians for the sensitivity analysis as well as those required for the
Newton-Raphson iterative solution are generated symbolically. An overview of
symbolic manipulation of constraints is available in the literature. For more in­
formation see [23 ,25 , 32, 3 5] .

2

3-6.5. Evaluation of Constraints: Some Special Cases

In Section 3.5, it was mentioned that the graph representation can accomodate
constraints of the form: g = F(x,y,z), where F may be computed represent using
a lookup table or any other procedure. This is indeed true for all the represen­
tational issues presented so far, but care must be taken at the evaluation stage
because it is possible that the functions described by these functional or
procedural constraints are not differentiable and will cause problems when they
are part of a strong component. In many cases, these "procedural constraints"
have a fixed flow of information and the causality may not be reversed. When
they are present outside a strong component they behave exactly as any other
node. The treatment of these types of constraints in a domain-independent,
generic fashion is still to be resolved. However, our approach can handle such
constraints, so long as they are used with the above restriction.

Finally a few words on Multi-Input, Multi-Output (ΜΙΜΟ) nodes. It may be
possible to define functions or procedures with multiple outputs. An example of
a ΜΙΜΟ function is the selection of a standard component from a database.
When such a selection is made, the result is a complete description of the com­
ponent, in general, consisting of multiple parameters and corresponding values.
For example, in bearing selection, the function may return all the bearing's
dimensions (e.g., its inside diameter (ID), outside diameter (OD), and width).
Once again these may be dealt with readily, as long as they are not part of a
strong component.

2
Editors' note: For related work on matrix evaluation of constraints see [34] .

TOOLS A N D TECHNIQUES 97

3.7. DETECTION OF REDUNDANT AND
CONTRADICTORY CONSTRAINTS

For any given constraint set, we would like to find a maximum matching, i.e.,
to find the largest possible subset of E. A maximum matching is complete when
the cardinality of Ν and F are equal, i.e. INI = IFI, and no elements remain un­
matched in either Ν or F.

Although a complete matching is obviously not possible when INI * IFI, a
maximum matching may not be complete even when INI = IFI; unmatched vari­
ables and unmatched constraints may arise.

An unmatched subset in Ν indicates an underconstrained subsystem in which
there are more variables than constraints on those variables. It should be noted
that this situation cannot be identified by simply considering the number of con­
straints and unknowns, since a system may be underconstrained with respect to a
particular subset of its variables even when IFI ^ INI. An important benefit of
the matching process is that it identifies unconstrained variables, bringing to the
attention of the designer (or of the knowledge-based system) areas in which ad­
ditional (constraint) information is required.

An unmatched subset in F indicates an overconstrained system in which
there are unmatched constraints. The importance of these unmatched constraints
can be determined by first evaluating the constraints which were successfully
matched. The parameter values resulting from this evaluation can then be used
to evaluate the unmatched constraints. If an unmatched constraint is satisfied,
then it does not affect the solution or the other constraints and is said to be
redundant. If the unmatched constraint is not satisfied, it is in conflict with (vio­
lates) the matched constraints and is said to be contradictory constraints.

Redundant constraints are common in handbooks and other sources of en­
gineering knowledge and they usually appear as constraints which are combina­
tions of other constraints, rewritten for the user's benefit. In general they are
harmless; although they provide no new information they should not hinder the
solution process if the overall system is not underconstrained. Redundant con­
straints are troublesome when they occur within a strong component (set of
simultaneous equations) because they cause singular jacobians, which are
sources of numerical difficulties. Contradictory (conflicting) constraints not only
cause numerical difficulties but require modifications in the constraint set before
evaluation. This situation will be discussed more fully in the following section.

98 SERRANO A N D GOSSARD

3.7.1. Redundancies and Conflicts within Strong Components

As mentioned previously both redundant and conflicting constraints cause
numerical difficulties when simultaneous constraints must be solved; therefore it
is necessary to check the strong components for redundancies and conflicts due
to functional interactions between constraints. Two alternatives exist for this
checking. The first method depends on explicit symbolic manipulations on the
constraints; the second method linearizes the constraints and requires the use of
the jacobian matrix.

Using the symbolic approach, the different constraints represented in the
strong component are combined, eliminating variables until either one variable's
value may be determined and propagated back to find all others (in which case
the set of constraints is consistent), or an invalid result is obtained.

The second approach is a modification of that presented by Light and Gossard
[19]. The method uses Newton-Raphson's method for solving nonlinear equa­

tions in conjunction with a variation of Gaussian elimination.
If the set of constraint equations constituting a strong component is solved by

the Newton-Raphson technique, we obtain the system of equations shown
below:

η χ η
J Δχ -f

where J j , the jacobian, is the matrix of partial derivatives of the constraint equa­
tions with respect to their matching unknown parameters evaluated at X Q , Δ Xj is
the vector (Xj- x^), XJ is the vector of unknowns, XQ is the initial estimate, and ft
is the vector of the constraints evaluated at X Q .

3

The system of equations is then solved using Gaussian elimination. The
jacobian is reduced to upper triangular form. If it is non-singular, the strong
component is consistent and the equations may be solved simultaneously. If on
the other hand, the jacobian is singular, the constraints in the set are not consis­
tent and must be corrected by the user before they can be solved.

It is also important to know whether the constraints corresponding to rows r+1
to η are in conflict with the rest of the set or are merely redundant. Any row of

3
In the constraint manager, the jacobian is generated symbolically.

TOOLS A N D TECHNIQUES 99

the jacobian containing all zeros represents a redundant constraint if its residual
is also zero. The problem may be corrected in one of two ways: by replacing the
constraints in rows r+1 through η with unmatched constraints (if any exist) con­
taining the variables represented by the corresponding columns; or by specifying
values for the variables represented by columns r+1 through n.

If the residuals corresponding to the constraint with zero coefficients are not
zero, the constraint conflicts with the other constraints in the strong component.
When such a conflict is encountered, the unknown parameters associated with
the strong component can be presented to the user instead of simply signalling
failure. The user may then resolve the conflict by examining the conflicting set
and eliminating one or more constraints.

Both methods have advantages and disadvantages. The first requires a rela­
tively sophisticated symbolic algebra package which may not be able to solve all
possible cases, i.e., it may not be possible to explicitly solve for a given variable
in a particular constraint. The second method is relatively straightforward to im­
plement but is subject to numerical difficulties. The second method requires a
good initial guess for the variables. It is possible that a particular set of starting
values may initially produce a nonsingular jacobian (indicating no problems
within the strong component) but as the iterative numerical process continues,
the jacobian may become singular. Conversely, the starting values may indicate
problems within a strong component when a solution to the subsystem actually
exists.

The principal difference between the method presented here and the method
described by Light and Gossard [19], is that the method presented here uses the
jacobian only for the smallest set of constraints which must be solved simul­
taneously. This is possible because the search for conflicting constraints is
limited to constraints which are members of strong components. The strong
components also guarantee that the jacobian is square.

3.8. AN EXAMPLE

The purpose of this section is to illustrate the various techniques presented in
this paper with a complete example. The following example uses the familiar
cantilever beam formulae to demonstrate the process of transforming an un­
directed network to a directed graph using the bipartite matching approach. The
solution sequence plan will be generated for more than one variation of the con­
straint network. The geometry and the constraints are shown in Figure 3-15 a.
The constraints are shown in Figure 3-15b where: σ is the bending stress in the
beam, I is the cross sectional area moment of inertia, M is the maximum bend-

100 SERRANO A N D GOSS ARD

ing moment due to the load F, Y is the distance from the neutral axis to a fiber
on the surface of the beam and Κ is the stiffness of the beam. L, Η and Β are the
length, height and width of the beam. The undirected graph corresponding to the
constraints and all the parameters is shown in Figure 3-15 c. The nodes cor­
respond to the parameters and the arcs are labelled with the corresponding con­
straint they represent. Initially the graph is undirected because the status of the
system is not specified. There is an arc for each constraint relating any two
parameters. Constraint f l relates σ, M, Y and I, therefore there is an arc labelled
f l between (σ,Μ), (σ,Υ), (σ,Ι), (Μ,Υ), (Μ,Ι) and (Υ,Ι).

In order to evaluate the constraint network the status must be defined. The
status specifies which parameters will be used as inputs (knowns) and which
parameters are to be evaluated (unknowns). The same constraint network can be
used to solve various different problems by redefining the status of the
parameters in the constraint network. To illustrate the formulation of the bipar­
tite matching problem and the solution sequence given a constraint network and
a status consider the status defined by the sets U = {I, L, Η, Β, Y} and Κ = {σ,
F, Κ, Μ, Ε } . The matching problem in this example is formulated in terms of
G={ V,E} such that V =N u F, where N={ I, L, Η, Β, Y } and F ^ f ^ f ^ ^ }
and E={(I,f1),(I,f3),(I,f5),(H,f3),(H,f4),(B,f3),(L,f2), (I,f5), (Y,fx), (Y, f4)} .
Figure 3-16 a shows the bipartite matching graph where the bold lines are the
maximum matching assignments. The dotted lines are the assignments not used
by the matching. In this example there is only one possible matching assign­
ment and no parameters or constraints are left unmatched. Using the results of
the matchings, the dependencies are created, which transforms the undirected
graph into a directed graph. The dependencies are assigned such that only the
arcs incident on matching nodes are kept. For example, Y was assigned to fj;
therefore only the edges labelled f̂ with one end on Y are kept and the arrows
are directed away from the node, indicating that Y depends on the adjacent
nodes Μ, σ, and I through constraint fj . The resulting directed graph is shown in
Figure 3-16 b and redrawn in a tree-like fashion in Figure 3-16 c. The solution
plan may be generated using an inverse topological sort on the digraph. The
breadth-first search (without including the terminal nodes in the list) is:
B-I-H-L-Y-I-L. Reversing the BFS and removing repetitions from left to right
yields the solution plan: L-I-Y-H-B.

Consider a second example using the same constraint network of Figure 3-15
as follows; in this example rather than specifying the stress level σ and calculat­
ing the dimensions Β, Η and L, the dimensions will be given and the stress will
be computed. The status of the system is defined by Κ = {F,L,H,B,E} and U
={σ,Μ,Ι,Υ,Κ }. The bipartite matching is shown in Figure 3-17 a and the
directed graph is shown in Figure 3-17 b. The tree-like digraph is shown in
Figure 3-17 c from which the solution plan is obtained using a reverse topologi­
cal sort as before. The BFS is σ-Κ-Μ-Υ-Ι, reversing yields the order
Ι-Υ-Μ-Κ-σ which is the evaluation order required to solve for the unknowns.

TOOLS A N D TECHNIQUES

Figure 3-15: Cantilever Beam Example:
(a) Geometry (b) Constraints (c) Constraint Graph
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

102 SERRANO A N D GOSS ARD

The constraints used in the evaluation are f ^ ^ ^ - f ^ , corresponding to
Ι-Υ-Μ-Κ-σ according to the matchings. If the designer is interested in which
parameters affect another, the affecting parameters can be determined using a
search in the digraph. For example in order to determine which parameters af­
fect the stiffness K, a search for the terminal nodes below Κ is made. From
Figure 3-17 c using a breadth-first search starting at Κ and only reporting the
terminal nodes yield the list {H,B>E,L}. The elements of the list are the
parameters which the designer has specified as inputs which affect the stiffness
K.

The parameter sensitivities are determined by selecting the set of constraints
and parameters which affect the desired parameter. For example, in the case of
the stiffness K, only constraints f5 and f3 are required. The required constraints
are determined by listing all the nodes descendants of the desired parameter (ter­
minal nodes excluded); the constraints matching these nodes are the constraints
that must be included in the sensitivity analysis. For Κ the nodes are Κ (itself)
and I; the corresponding constraints are f5 and f3 (from the matching). The
parameters to be included in the analysis are all those parameters corresponding
to nodes that are descendants of the desired parameter. For example, the sen­
sitivity analysis for the stiffness involves the parameters K,I,H>B,E and L. And
the jacobians are:

_
3f5 ae 9f5 3f5 àf5 3f5

J = "3Γ f = ~3B Hë ~3L
9 β 5f3 ao ao 5f3 ao
"5ÏC ΗΓ "3B "3 Ê "3 T

As a fina l example , t o demonstrat e th e solutio n proces s whe n th e digrap h i s
cyclic, a n additiona l constrain t i s adde d t o th e constrain t networ k o f Figur e 3-15 .
The ne w constrain t f ^ introduce s th e slop e o f th e bea m φ. The constraints are
shown in Figure 3-17 a, and the new undirected graph is shown in Figure 3-17 b.
Figure 3-17 shows two possible matchings. The matchings are not always
unique. For a consistent system, as in this example, the matching selected does
not affect the solution, but in inconsistent systems or systems with INI IFI each
matching may represent a different solution. The first matching of Figure 3-17 c
is used in the current example, and the resulting digraph is shown in Figure 3-17
d. The digraph is redrawn in a tree-like form in Figure 3-17 e, where the cycles
are clearly shown. The strong component is composed of the cycles L-F-L and
I-L-F-I. If the strong component is collapsed (meaning that it will be solved

TOOLS A N D TECHNIQUES

(a)

Figure 3-16: Cantilever Beam Example:
Knowns (L,H,BJ,Y), Unknowns (a,F,K,M,E)
(a) Bipartite Matching (b) Digraph (c) Tree

Adapted from 'Constraint Management in Conceptual Design,'
by David Serrano, © 1987 Massachusetts Institute of Technology.

SERRANO A N D GOSSARD

Figure 3-17: Coupled Constraints:
(a) Constraints (b) Undirected Graph (c) Non-unique Matchings

Adapted from 'Constraint Management in Conceptual Design,'
by David Serrano, © 1987 Massachusetts Institute of Technology.

TOOLS A N D TECHNIQUES 105

Figure 3-17, Coupled Constraints (Continued):
(d) Directed Graph (e) Tree-like Representation (f) Directed Acyclic Graph

with Strong Components Collapsed
Adapted from 'Constraint Management in Conceptual Design,'

by David Serrano, © 1987 Massachusetts Institute of Technology.

106 SERRANO A N D GOSSARD

simultaneously), the digraph is rendered acyclic as shown in Figure 3-17 f. The
reverse topological sort may be applied to the DAG and the solution plan is:
SC-Y-H-B or (I,L,F)-Y-H-B. The parentheses indicate that the set will be
solved simultaneously. The constraints to be used in the simultaneous solution
are those matching (I,L,F): (f5,f2,f6).

3.9. CONCEPT MODELLING: DESIGNPAK

The constraint management techniques form part of a MCAE system which
allows the designer to interactively construct models of his/her design using a
"building block" metaphor.

4
 In this metaphor, a chest contains elementary

building blocks and a work bench. Each of the building blocks contains its own
set of properties which describe its physical nature (form, size, materials, etc.)
and its behavior (physical laws, possible interactions, etc.). Each object or
building block will be referred to as an icon. The building blocks may be com­
bined to form more complex objects defined as concepts. The resulting object
inherits properties of its constituent building blocks.

In DESIGNPAK, the components or building blocks are common machine
elements and other engineering abstractions which form the natural language of
engineers. Machine elements include, but are not limited to: shafts, gears, bear­
ings, kinematic links, springs, motors, concentrated loads, edge supports,
grounds, vectors, etc. Each element is represented as a frame. Each frame en­
codes a set of constraints which predict its performance, establish its physical
limits, and define its topological (connectivity) restrictions. In addition, graphi­
cal icons and other physical properties (e.g., geometrical characteristics) are in­
cluded in each frame. The implementation of a building block metaphor allows
the interactive creation of design concepts by assembling a concept using basic
elements. The connectivity between mating icons is specified interactively.
Figure 3-1 shows various concepts constructed from the basic icons. The con­
cept is represented graphically as an aggregation of icons and normally cor­
respond to the contents of a window. Computationally, the concept is also a
frame and it is represented as a hierarchical structure of a concept and its sub­
components which may either be concepts themselves or icons. The icon-
concept window is an attempt to implement the building block metaphor.

Figures 3-18 through 3-20 show sample screens in the process of constructing
a gear reducer concept using icons. Figure 3-18 shows the selection of a gear

4
S e e also chapter 6, which relies on a similar metaphor.

TOOLS A N D TECHNIQUES 107

element to be connected to the previously selected shaft. Figure 3-19 shows the
gear connected to the shaft and Figure 3-20 shows the completed gear reducer
concept. In addition, Figure 3-20 illustrates some of the characteristics of the
user interface which include multiple windows for text and graphics, scroll bars
(input valuators), thermometers (output valuators), plots and menus. Figure 3-21
shows the solution plan for the gear reducer example. The solution plan was
presented in Section 3.6.3. Figure 3-22 shows the results of the sensitivity
analysis with respect to the shaft diameter (OD_shl) and Figure 3-23 shows the
advice for correcting a constraint violation (f34). Sensitivity analysis and con­
straint violations were discussed in Sections 3.6.4 and 3.7, respectively.

3.10. SUMMARY

A digraph representation for constraint networks was presented. Methods for
the evaluation both qualitative and quantitative of constraint networks was also
presented and examples given.

One of the advantages of the directed graph representation is that the
topological properties of digraphs may be used to identify certain conditions in
the constraint model (such as highly coupled constraints). The information on
the topology of the constraint network is useful in planning a solution sequence
for the evaluation of the network; for example, by locating and collapsing the
strong components in the graph a cyclic graph is rendered acyclic and a standard
topological sort may be applied. Topological information is useful for efficiency
because it allows the selection of the relevant constraints for evaluation and sen­
sitivity analysis. Another advantage of the digraph representation is that the
same constraint network may be used to focus on various aspects of the problem
depending on the designer's designation of known and unknown parameters.
Bipartite matching not only provides the information required to assign the
dependencies, but also provides useful information about the constraints before
a solution is requested. The bipartite matching will identify parameters which
need to be constrained and constraints which are not included in the matching
are possible sources of conflict.

DESIGNPAK allows the interactive generation and evaluation of engineering
concepts. Incomplete, inconsistent and redundant constraint sets are handled and
assistance is provided in order to resolve conflicts. Causal order may be reversed
while maintaining consistency in the constraint set. DESIGNPAK provides an
interactive environment which supports multiple objectives, alternative designs,
iteration, evolution, and refinement. The system provides both qualitative and
quantitative support.

.CONCEPT E d i t C o n ç u t .

=AVAILABLE GEARS Ξ

Spur Gear

[j H e ! i c a l Gear

• O t h e r

NAME VALUE
1 1 - s h l 0
l Z . s h l 3Θ.Θ
x f . s h l 1 5 . 0
H p _ s h l 1 .Θ
r p m _ s h l 36Θ0
L e . s h l 1 5 . 0
S h e a r _ s h l 6 0 0 0 . 0
T h e t a _ s h l 0 . 0 0 0 1
S t r e s s _ s h l 8 0 0 0 . 0
G . s h l l e + 0 7
l _ s h l 1 3 0 . 0
x c _ s h l Z 3 2
y c „ s h l 3 4 8 . 0
a z _ s h l 0 . 0

U N I T S

DO NéHi_Concept Cortgtrua i n t s

- R l . s h l * (x f . s h l - l l . s h l l
- R l _ s h l - R 2 _ s h l * 0
* F l _ s h l - l l _ s h l * R l _ s h l

• 6 3 0 2 5 * H p . s h l / r p m . s h l
* (M _ s h l Λ 2 + T _ s h l Λ 2) Λ
» (H _ s h l + T e _ s h l) / 2
> - (3 2 * T _ s h l * L e . s h l /
> » (1 6 * T e . s h l / (3 . 1 4 1 6
>« (3 2 * H e _ s h l / (3 . 1 4 1 6

1 2 _ s h l * R 2 _ s h d

0 . 5

(3 . 1 4 1 6 * G . s h l
* S h e a r _ s h l » * 1 |
* S t r e s s . s h l)) Λ

P l e a s e S t a n d By : A d d i n g g e a r ! t o New_Concept

Figure 3-18: Selecting Gear from Concept-Base

Adapted from 'Constraint Management in Conceptual Design,' by David Serrano, © 1987 Massachusetts Institute of Technology.

ο 00

Ρ
Ο

Ο
Ο ζ /3

G â r S a g e * t o i i e c v i n g . . . r i e a s e s i an a t>y

Figure 3-19: Shaftl-Gear 1 Connection

Adapted from 'Constraint Management in Conceptual Design,' by David Serrano, © 1987 Massachusetts Institute of Technology.

ο

ε
ο

ο

8

-SVSTEH ICONS PTS J i t Cone C o n s t r a i n t s

f 3 ?

I f 4 0

| f 4 3
Γη 4

1/////// wijun

New_Concept C o n s t r a i n t s
y c _ 5 n z s y e _ 3 e z

i f ; B U t _ g e l • U t _ 9 e 2
i K H x c _ 9 e 2 • x c _ 9 e l

»"P«_gel * P i t D i a _ g e l • rpe»_ge2 * P i t D i a _ g e 2
y c _ s h 2 « y c _ . s h l + (P i t D i a _ g e l + P i t D i a _ g e 2) / 2 . 0

H P. s h i ι M l i l l ι j ι I

0 . Z 5 3 . 0 1 0 - 0

r p * . s h l I J [j j I] I 1 Τ I

1 0 0 . 0 3 6 0 0 . 0 4 0 0 0 . 0

OD_sh l
0 . 0 Θ Τ 4 Τ" 1 0 . 0

OD.shZ
0 . 0 Ζ - 4 4 3 7 ? 1 0 . 0

D _ s h 2 < - I D _ b e 4
r p « _ s h Z m r p « J b e 4
yc_be4 • y c _ s h Z
D _ s h 2 < - I D _ b e 3
r p « _ s h Z « r p » _ b e 3
y c _ b e 3 • yc_shZ
D _ s h l < - I D J > e 2
r p m _ s h l » r p e _ b e 2
y c _ b e 2 « y c „ s h l
0 D _ s h l - I D . b e l
r p » _ s h l « r p m j b e l
y c _ s h l m y c _ b e l

-> 0 - 0

-> 0 . 0

•> 0 .Θ

Nen_Concept P a r e m e t l
n _ s m 0
1 2 _ s h l 1 0 0 . 0
x f . s h l 5 0 . 0 O D _ s h l χ Ι Θ - 0
H p . s h l 3 . 0 3 . 6 5 4
r p m _ s h l 3 6 0 0 . 0 3 . 1 0 3
L e _ s h l 1 0 0 . 0

3 . 1 0 3

S h e a r _ s h l 6 0 0 0 . 0 2 - 5 5 3

T h e t a . s h l 0 . 0 0 0 1 2 . 0 0 3
S t r e s s . s h l 8 0 0 0 . 0 1 . 4 5 3
G . s h l l e + 0 7 0
l . s h l 1 3 0 . 0 H p _ s h l χ ΐ θ + ΐ
x c _ s h l Z3Z
y c _ s h l 3 4 8 . 0
a z _ s h l 0 . 0
F I _ 9 e l 0 . 2 5 3 0 7 3

Garbage C o l l e c t i n g . . . P l e a s e s t a n d by

Figure 3-20: Completed Gear Reducer Concept

Adapted from 'Constraint Management in Conceptual Design,' by David Serrano, © 1987 Massachusetts Institute of Technology.

ο

Ρ
Ο

Ό
Ο Ο οο

SYSTEM

f Z 9 - > rpm_ge2
f l 3 •.•-> r p « _ g e l
f Z 0 - > T_shZ
f 3 S - > P i t D i a _ g e 2
f 3 0 - > T o _ g e 2
f Z 7 - > Wt_ge2
f 3 3 - > W t . g e l
f l 0 - > fcLgel
f l Z - > F l _ s h l
f 2 , f 3 , - > R l _ s h l , R 2 _ s h l ,
f l - > I l . s h l
f 4 - > T _ s h l
f S - > T e _ s h l
f G - > h e _ s h l
f ? - > DD_j5hl
f l l - > T o . g e l
f l 5 - > x c _ g e l
f l G - > y c _ g e l
f Z G - > W_geZ
f 2 8 - > F l _ s h 2
f l 8 , f l 9 , - > R l _ s h Z , R Z _ s h Z ,
f l ? - > f1„sh2
f Z l - > Te_shZ

Me_sh2
OD.shZ
x c _ g e 2
y c _ s h Z
y c _ g e 2

3 . 1 4 1 6 * G_sh2 * 1
S h e a r _ s h 2)) Λ 1
S t r e s s _ s h 2 » Λ 1

f 3 4 x c _ g e 2 « x c . g e l - > - 2 . 0
OS rp ra_ge l * Ρ i t D . i a _ g e l : • -rpm_ge2 P i t D i a _ 9 e Z

y c _ s h Z » y c _ s h l + (P i t D i a _ g e l + P i t D i a _ g e Z) / 2 - 0

Figure 3-21: Solution Plan

Adapted from 'Constraint Management in Conceptual Design,' by David Serrano, © 1987 Massachusetts Institute of Technology.

i

ο

f 3 ?

f 4 0

f 4 1
M ?
f 4 3

I f 4 6

TÏÏÏIÏÏW

yi -
Ht J E!

Sens i t i ν i t i e s : H p _ s h l + » r p m _ s h l - , L e _ s h l + . G _ s h l -

-JU-

x c _ 9 e 2 * xc_àcr-——
r p e . g e l * P i t D i a _ 9 e l · r p n i g e Z * P i t D i a _ g e 2
y c _ s h 2 - y c _ s h l + (P ί t D i a ^ g e l + P î t D i a _ g e 2) / 2 . 0
D _ s h Z < - I D _ b e 4 - > Θ.Θ
r p w . s h Z « r p « _ b e 4
y c _ b e 4 · y c _ s h 2
D _ s h 2 < - I D _ b e 3 - > 0 . 0
r p m . s h Z • r p * _ b e 3
y c _ b e 3 * y c _ s h 2
D _ s h l < « I D _ b e 2 - > Θ.Θ
r p « _ s h l m rpm^beZ
y c _ b e 2 « y c _ s h l
OD_shl - I D . b e l
r p » _ s h l * r p « _ b e l
y c „ s h l a yç__bel

12_shl 108.0
x f _ s h l 5 0 . 0
H p _ s h l 1 - 0
r p * i _ s h l 3 6 0 0
L e . s h l 1 0 0 . 0
S h e a r _ s h l 6 0 0 0 . 0
T h e t a _ s h l 0 . 0 0 0 1
S t r e s s . s h l 8 0 0 0 . 0
G_sh l l e + 0 ?
l _ s h l 1 3 0 . 0
x c _ s h l 2 3 2
y c _ s h l 3 4 8 . 0
a z _ s h l 0 . 0

Figure 3-22: Sensitivity Analysis with Respect to Shaft Diameter (OD_shl)

Adapted from 'Constraint Management in Conceptual Design,' by David Serrano, © 1987 Massachusetts Institute of Technology.

to

Ρ
Ο

α
ο
ο 00 00

Figure 3-23: Suggested Parameter Modifications to Correct Constraint Violation in f34

Adapted from 'Constraint Management in Conceptual Design,' by David Serrano, © 1987 Massachusetts Institute of Technology.

T
O

O
L

S A
N

D
 T

E
C

H
N

IQ
U

E
S

113

114 SERRANO A N D GOSSARD

The system has potential as a design tool, an educational tool, and asa
research vehicle in design methodology.

3.11. ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the National
Science Foundation, the Control Data Corporation and the University of Puerto
Rico during various stages of this work.

3.12. BIBLIOGRAPHY

[1] Baase, S., Computer Algorithms: Introduction to Design and Analysis,
Addison-Wesley, Reading, MA, 1978.

[2] Berztiss, A. T., Data Structures: Theory and Practice, Academic Press,
New York, 1975.

[3] Borning, Α., "Thinglab - An Object-Oriented System for Building
Simulations using Constraints," Proc. Fifth International Joint Con­
ference on Artificial Intelligence, Morgan Kaufman, pp. 497-498, 1977.

[4] Chang, D., "Automatic Scaling of Assemblies for Computer-Aided
Design," M. S. Thesis, Dept. of Mechanical Eng., M.I.T., Cambridge,
MA 02139, 1983.

[5] Chyz, G. W., "Constraint Management for Constructive Geometry,"
M. S. Thesis, Dept. of Mechanical Eng., M.I.T., Cambridge, MA 02139,
1985.

[6] de Kleer, J. and Sussman, G.J., Propagation of Constraints Applied to
Circuit Synthesis, Technical Report AI Memo 485, AI Laboratory,
M.I.T., September 1978.

[7] Even, S. and Tarjan, R.E., "Network Flow and Testing Graph Connec­
tivity," SIAMJ. Comput., pp. 507-518, December 1975.

[8] Even, S., Graph Algorithms, Computer Science Press, 1979.

TOOLS A N D TECHNIQUES 115

[9] Friedman, G.J., and Leondes, C.T., "Constraint Theory, Part I: Fun­
damentals," IEEE transactions on Systems Science and Cybernetics,
Vol. SSC-5, pp. 48-56, January 1969.

[10] Friedman, G.J., and Leondes, C.T., "Constraint Theory, Part II: Model
Graphs and Regular Relations," IEEE transactions on Systems Science
and Cybernetics, Vol. SSC-5, No. 2, pp. 132-140, April 1969.

[11] Friedman, G.J., and Leondes, C.T., "Constraint Theory, Part ΙΠ: In­
equality and Discrete Relations," IEEE transactions on Systems Science
and Cybernetics, Vol. SSC-5, No. 3, pp. 191-200, April 1969.

[12] Gallagher, D., "Variational Systems in Computer Aided Design,"
M. S. Thesis, Dept. of Mechanical Eng., M.I.T., Cambridge, M A 02139,
1984.

[13] Garrett, J. and Fenves, S. J., A Knowledge-Based Standards Processor
for Structural Component Design, R-86-157, Dept. Civil Engineering,
CMU, Pittsburgh, PA 15213, September 1986, [See also AI in Engineer­
ing Journal, Vol. 1, No. 1, 1986].

[14] Gosling, J., Algebraic Constraints, unpublished Ph.D. Dissertation, Dept.
of Computer Science, CMU, Pittsburgh, PA 15213,1983.

[15] Harary, F., " A Graph Theoretic Approach to Matrix Inversion by Par­
titioning," Numerische Mathematik, Vol. 4, pp. 128-135, 1962.

[16] Holtz, N., Symboloc Manipulation of Design Constraints, unpublished
Ph.D. Dissertation, Dept. of Civil Engineering, CMU, Pittsburgh, PA
15213, 1982.

[17] Hopcroft, J.E., and Karp, R.M., "An N**5/2 Algorithm for Maximum
Matchings in Bipartite Graphs," SI AM /. Comput., V o l . 2 , No. 4,
pp. 225-231, 1973.

[18] Light, R., "Symbolic Dimensioning in Computer-Aided Design,"
M. S. Thesis, Dept. of Mechanical Eng., M.I.T., Cambridge, MA 02139,
1980.

[19] Light, R.A. and Gossard, D.C., "Variational Geometry: A New Method
for Modifying Part Geometry for Finite Element Analysis," Computers
and Structures, Vol. 17, No. 5-6, pp. 903-909, 1983.

[20] Lin, V. C , "Variational Geometry in Computer Aided Design,"
M. S. Thesis, Dept. of Mechanical Eng., M.I.T., Cambridge, MA 02139,
1981.

[21] Pabon, J., "Basic Steps Towards Computer Aided Scaling of As­
semblies," M. S. Thesis, Dept. of Mechanical Eng., M.I.T., Cambridge,
MA 02139, 1985.

116 SERRANO A N D GOSSARD

[35; Winston, P. H. and Horn, Β. K. P., LISP, Addison-Wesley Publishing
Company, Massachusetts, 1984.

Sedgewick, R., Algorithms, Addison-Wesley Publishing Co., 1984.

Serrano, D., "MATHPAK: An Interactive Preliminary Design Pack­
age," M. S. Thesis, Dept. of Mechanical Eng., M.I.T., Cambridge, MA
02139, 1984.

Serrano, D. and Gossard, D. C , "Combining Mathematical Models with
Geometric Models in CAE Systems," ASME, Proceedings of 1986 Inter­
national Computers in Engineering Conference, July 1986.

Serrano, D., Constraint Management in Conceptual Design, unpublished
Ph.D. Dissertation, Dept. of Mechanical Eng., M.I.T., Cambridge, MA
02139,1987.

Soylemez, S. and Seider, W. D., " A New Technique for Precedence-
Ordering Chemical Process Equation Sets," AIChE, Vo l .19 , No. 5,
1973.

Steele, Jr., G. L., The Definition and Implementation of a Computer Pro­
gramming Language Based on Constraints, Technical Report AI-
TR-595, AI Laboratory, August 1980.

Stefik, M., "Planning with Constraints (MOLGEN 1)," Artificial
Intelligence, Vol. 16, pp. 111-140, 1981.

Steinke, G. C. and Shussel, M. D., "Engineering by the Book ... And
On-line," Mechanical Engineering, pp. 56-59, November 1985.

Steward, D. V., "On an Approach to Techniques for the Analysis of the
Structure of Large Systems of Equations," SI AM Review, Vol. 4, No. 4,
1962.

Steward, D. V., "Partitioning and Tearing Systems of Equations," / .
SIAMNumer. Anal , Vol. 2, No. 2, 1965.

Sussman, G.J. and Abelson, H., Structure and Interpretation of Com­
puter Programs, McGraw Hill/MIT Press, 1985.

Sutherland, I., Sketchpad -A Man -Machine Graphical Interface, un­
published Ph.D. Dissertation, Dept. of Computer Science, M.I.T.,
Cambridge, MA 02139, 1963.

Wang, P. T. R., Bandwith Minimization, Reducibility Decomposition,
and Traiangularation of Sparse Matrices, unpublished Ph.D. Disser­
tation, Computer and Information Science Research Center, The Ohio
State University, Columbus, Ohio 43210, 1973.

Chapter 4
AUTOMOBILE TRANSMISSION DESIGN

AS A CONSTRAINT SATISFACTION
PROBLEM: FIRST RESULTS

Bernard A. Nadel and Jiang Lin

ABSTRACT

This paper describes our preliminary results with a system we call TRANS­
FORM that uses constraint satisfaction techiques in automating the process of
designing automatic automobile power transmissions. The work is being con­
ducted in collaboration with the Ford Motor Company Advanced Transmission
Design Department in Livonia, Michigan. Our current focus is on the design of
the mechanical subsystem, but we anticipate extending this later to the electrical
and hydraulic subsystems as well. In this paper we concentrate on the particular
problem of designing a transmission of four forward speeds and one reverse
speed, using two planetary gearsets, cross-connected by two permanent links.
Results to date indicate that design of the mechanical subsystem is an applica­
tion very naturally formulated as a constraint satisfaction problem. So far, two
classic transmissions, known as Axod and HydraMatic, have been rediscovered
by our program. Future extensions to more general versions of the search space
are expected to lead to the discovery of totally new transmissions.

4.1. INTRODUCTION

The Constraint Satisfaction Problem (CSP) is ubiquitous in Artificial Intel­
ligence. It has received intensive study from many researchers and many al­
gorithms have been developed for solving this class of problems. Surveys of
these algorithms appear in [7] and [9]. Mathematical complexity analyses of
some of these algorithms appear in [4] and [15]. The importance of CSP is due

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

117 © 1991 IEEE. Reprinted, with permission, from
Proceedings of the 7th Conference on Artificial Intelligence

Applications, Miami, 1991, pp. 248-256.

118 N A D E L A N D L I N

to the wide range of practical problems it can be used to model. A survey of
some of these applications appears in [12]. A variety of natural CSP formula­
tions are in fact usually possible for a given real-world application. This is dis­
cussed in [10].

This paper presents our preliminary results with a system we call TRANS­
FORM that uses the CSP framework for the apparently new application of
designing automatic automobile power transmissions. This is a project we have
now been pursuing for about six months in collaboration with Ford Motor Com­
pany. In particular, we are working with the Ford Advanced Transmission
Design Department in Livonia, Michigan, where our principal "domain expert"
is Robert Roethler. Our basic result is that we have been able to rediscover
(somewhat abstracted versions of) two well-known 4R-speed

2
 automatic trans­

missions, Axod [1] and HydraMatic 700 [2],
Section 4.2 presents background material for this work, Section 4.3 describes

the variables and their domains that we use in formulating transmission design
as a constraint satisfaction problem, and Section 4.4 describes the corresponding
constraints we use. The results of our current preliminary study are given in
Section 4.5. Expected future extensions are discussed in Section 4.6. A fuller
presentation of the engineering aspects of this work is available in [13]. A dis­
cussion of the implementation of our system in Prolog appears in [14]. An
analysis of the complexity of solving arbitrary constraint satisfaction problems
in Prolog appears in [11].

4.2. BACKGROUND

Our work involves the application of constraint satisfaction techniques to
transmission design. In this section we present background material for both
components: (i) the constraint satisfaction problem and (ii) the transmission
design problem.

2
W e call a transmission «R-speed if it has η forward speeds (or gear ratios or "gears") and

1 reverse speed. The description /i-speed, without an R, refers to a transmission with η for­
ward speeds but no reverse.

AUTOMOBILE TRANSMISSION DESIGN 119

Constraint satisfaction problems involve three components: variables, values
and constraints. The goal is to find all assignments of the values to the vari­
ables such that all the constraints are simultaneously satisfied. More specifi­
cally, there is a set Ζ = { z± z2 ... zn } of η variables Zj. Each variable takes
values from an associated finite domain d7 of values. There is a set C =
{ Ci C 2 ... Cc } of c constraints. A constraint Cj is some way of specifying for a
given set Zj ç Ζ of argument variables, which values for those variables
together "satisfy" the constraint - where values for a variable are chosen only
from the corresponding domain. Thus each constraint Cj specifies a subset
Tj <Ξ Dj of satisfying-tuples from the cartesian product Dj = x z e z. dz. of the
domains of the constraint's arguments. A constraint may thus be specified
canonically as a pair of the form Cj = (Zj Tj). Formally, the goal in solving a
given CSP instance is to find all value-tuples in the overall cartesian product x
z e Ζ dz. that (have projections which) satisfy all c constraints.

4.2.2. The Transmission Design Problem

4.2.2.1. Planetary gearsets

An automobile must deliver torque or "turning power" from the engine, via
what is called the drive train, to the driving wheels. The main component of the
drive train is the transmission. It acts as a torque multiplier (and divider) for ad­
justing the amount and direction of torque delivered from the engine to the drive
wheels under varying engine operating conditions and driving conditions. The
torque multiplication factor is known as the transmission's gear ratio p.

Most automatic automobile transmissions are made from various combina­
tions of planetary gearsets. A planetary gearset is a combination of sun, ring
and planet gears arranged somewhat like a miniature solar system. Good intro­
ductions to automatic transmissions and planetary gearsets are found in [2] and
[5]. A more advanced treatment can be found in [8]. Figure 4-1 shows an ex­

ample of a simple planetary gearset with four planets. The planets ρ are at­
tached to an arm a which can rotate with the planets about a central sun gear s.
Each planet rotates about its own center as the group of planets on the arm
revolves about the sun. At the perimeter of the gearset is a ring gear r whose
teeth are on the inside so as to mesh with the planets.

An important parameter for our purposes will be the ratio of the number of
teeth Tr on the ring to the number Ts on the sun in a gearset,

4.2.1. Constraint Satisfaction Problem

120 N A D E L A N D L I N

front view side view

planet gear
Ring

Planet

Sun

Planet

Ring

There are Ts - 18 teeth on the sun, Tp = 6 on each planet and Tr = 30 on the ring.

Figure 4-1: A Planetary Gearset with 4 Planet Gears.

β = Tr/Ts (4.1)
The assumptions we make in the current formulation of the transmission design
problem (see [13] for details) allow gearsets corresponding to

7/5 <, β <, 7/2. (4.2)

A basic requirement in meshing gears is that the tangential velocities of the
points of contact must be equal. From this one can derive [5] the following
kinematic equation relating ω 5 , ωα and ωΓ , the angular velocities of the sun
gear, arm and ring gear respectively

ω, - (β + 1) ω α + β ω Γ = 0 (4.3)

A planetary gearset provides the basis for a remarkably flexible mechanism
for changing angular velocity (and torque). Each of the three parts - sun s, arm
a and ring r - may be conveniently linked to an input, output or ground, so as to
act respectively as a driving, driven or fixed member of the gearset. These
choices can be modeled as linear equations, which, in conjunction with equation
(4.3), allow one to solve for the corresponding gear ratio, ρ = COQuî / ωίη , the
ratio of the angular velocity of the output part to that of the input part. Seven
different types of gear ratios are found to be possible for a single planetary
gearset: a direct drive ratio (p = 1) and six non-direct drive ratios, two being

AUTOMOBILE TRANSMISSION DESIGN 121

reverse ratios (p < 0), two being under drive ratios (0 < ρ < 1) and two being
overdrive ratios (p > 1). We will see examples of such ratios and their deriva­
tion below in connection with Table 4-1, for the 2-gearset case.

The classic Sturmey Archer bicycle transmission [3] was the first to take ad­
vantage of this capability. It is a 3-speed transmission which, by allowing
switching between three of the seven kinematic states achievable with a
planetary gearset, is able to incorporate an underdrive, a direct drive and an
overdrive ratio. Not all seven ratios of a planetary gearset could be incorporated
into the Sturmey Archer transmission because topological constraints on the net­
work needed to switch between the corresponding states make this impossible.

4.2.2.2. Two linked planetary gearsets

Coupling together two or more planetary gearsets provides a wider range of
achievable kinematic states and gear ratios and hence more flexibility in over­
coming topological, and other, constraints in designing a transmission. In
automobiles, transmissions with two and three gearsets are common. For our
present initial study we restrict ourselves to two gearsets, which we distinguish
as gearset 1 and gearset 2. Their relevant component sets are respectively
Ρ arts γ = {si, al, rl} and Parts^ = {s2, a2, r2], where si, ai and ri of course
denote respectively the sun, arm, and ring of gearset L For the purposes of or­
dering our computer search we assume that these six components of our two
gearsets have the following (purely arbitrary) relative ordering:

s\ < al < r\ < s2 < a2 < r2. (4.4)

In linking two gearsets together, it is possible to use various numbers of hard
(or permanent) links. We currently restrict ourselves to exactly two hard links.
Such a pair of hard links may be configured in many ways. It turns out that of
these, there are only 18 pairs that satisfy the constraints of our domain. Table
4-1 shows the kinematic states achievable for one of these 18 cases using output
part Out = r2. The hard link pair shown is LI = (al, r2) and L2 = (rl, a2),
where Li = (x, y) denotes a link between components χ and y.

The diagrams used to denote planetary gearsets in Table 4-1 (and in Table
4-2) below, are intended as schematics of the top half of the side view of a
planetary gearset such as shown at the right in Figure 4-1. Note however that,
unlike what is depicted in such a top-half gearset side view, the middle squares
of our schematic diagrams do not denote a planet per se, but rather the arm
which connects to planets. The schematic diagrams use inwards and outwards
arrows to denote the input and output components respectively, and use gray
shading to denote the braked component.

Note the six kinematic equations given (in matrix form) for each state in
Table 4-1. Each state involves six relevant unknowns: the angular velocities

Table 4-1: Gear Ratios Achievable Using Two Planetary Gearsets with two
Links L I = (al,r2) and L2 = (rl , al), and Fixed Output Out = rl (or al).

State In Braked Out Diagram Kinematic Equations Gear Ratio ρ =
Win

Ratio
Type

it si rl (a2) r2 (al)

Gea rse

i f

si

t l G

X
ear
7Γ

i2

set 2 " 1 -βι-1 0ι 0 0 0
0 0 0 1 - A - l ft
0 1 0 0 0 - 1
0 0 1 0 - 1 0
0 0 1 0 0 0

_ 1 0 0 0 0 0

Wol
Wrl

ωα2

=

" 0 "
0
0
0
0

_ 1 _

ΓΤΑ *

1 /3
under
drive

2t si s2 r2 (al) X
" 1 -βι - 1 0i 0 0 0

0 0 0 1 - 0 2 - 1 02
0 1 0 0 0 - 1
0 0 1 0 - 1 0
0 0 0 1 0 0
1 0 0 0 0 0

Wji
ω»ι
ωΓΪ UJs2
ωα2

=

" 0 "
0
0
0
0

_ 1 _

1 + 02
 - 3 "

1 + 0Χ+02

under
drive

3* rl (a2) si r2 (al) - X
' 1 - f t - 1 βι 0 0 0

0 0 0 1 - 0 2 - 1 02
0 1 0 0 0 - 1
0 0 1 0 - 1 0
1 0 0 0 0 0
0 0 1 0 0 0

ω.ι

Uri

ωα2 ωΓ2

" 0 "
0
0
0
0

_ 1 _

under
drive

4't rl (o2) s2 r2 (al) X
" 1 -0X - 1 0! 0 0 0

0 0 0 1 -02 - 1 02
0 1 0 0 0 - 1
0 0 1 0 - 1 0
0 0 0 1 0 0
0 0 1 0 0 0

ω,ι
ωαι
ω42 ωα2
ωΓ2

=

" 0 '
0
0
0
0

_ 1

over
drive

5* s2 si r2 (al) X
" 1 -01 - 1 0! 0 0 0

0 0 0 1 -02 - 1 02
0 1 0 0 0 - 1
0 0 1 0 - 1 0
1 0 0 0 0 0
0 0 0 1 0 0

Γ
 ωβχ

ωΓΐ ω*2
ωβ2

_ ωΓ2 _

' 0 "
0
0
0
0
1

1 + 0 ! + 0 2 ~

2 /5
under
drive

6 ' t s2 rl (o2) r2 (al) X
' 1 - 0 ! - 1 0! 0 0 0

0 0 0 1 - 0 2 - 1 02
0 1 0 0 0 - 1
0 0 1 0 - 1 0
0 0 1 0 0 0
0 0 0 1 0 0

ωβ1 ωαι ωΓι ω,2 ωα2
u;r2

=

' 0 "
0
0
0
0

_ 1

-1 .-1/2
reverse
under
drive

122
N

A
D

E
L

 A
N

D

LIN

AUTOMOBILE TRANSMISSIO N DESIG N 123

(ùsi, iù ai an d ωπ· for the sun, arm and ring respectively of both gearsets i = 1 and
i = 2. Since there are six variables, we require six equations for a well-defined
system. Equation (4.3) provides the first two of these for each state, one version
for each of the two gearsets, giving:

The βι and β 2 here are, of course, just Pi = Γγ1 / 7 5l and β 2 = Tr2 I Ts2, the
respective gearset 1 and 2 counterparts of β, the single gearset tooth-ratio
defined in (4.1). Equations (4.5) and (4.6) apply to all states of Table 4-1 since
the corresponding two gearsets are present in each case. The next two equations
for each state reflect its pair of hard links. The first link LI = (a l , r2) restricts
the angular velocity of a l to equal that of r2, which contributes equation ω
αΙ "

 ω
Γ2

 =
 0· Similarly the second hard link L2 = (rl , al) contributes equa­

tion corl - ωα2 = 0. All states of Table 4-1 also have these two as their third and
fourth equations because all these states are for the same hard link pair. The
remaining two equations for a state reflect its unique combination of input part
and braked part. For instance, since state 1 of Table 4-1 has braked and input
parts rl and s i respectively, we add the corresponding equations corl = 0 and
ω 5ΐ = 1. The latter value of 1 is convenient here since we are only interested in
the ratio of output to input velocity.

In the above manner, we can model any state of a pair of linked gearsets using
a set of six simultaneous linear equations in six unknowns. Solving these equa­
tion sets allows us to obtain symbolic expressions for the transmission states'
gear ratios ρ = (OQuî I coIn in terms of Pi and β 2, as seen for example in the
rightmost column of Table 4-1. Our algorithm dynamically generates the equa­
tion set and obtains the corresponding symbolic expression for ρ for each
kinematic state that it generates in its search. Note the numerical approxima­
tions for ρ given in the right column of Table 4-1. These are based on a nominal
value of 2 for β! and β 2, which is within our assumed range (4.2). We now look
at how the design of two-planetary transmissions is made possible by formulat­
ing it as a constraint satisfaction problem.

ω * 1 ~ Φΐ + νωα1 + $ΙωΓΐ=0 (4.5)
ω
*2 - (P2+

 A
)
 ω

α2 + Ê 2 ωΓ2 = °· (4.6)

124 N A D E L A N D L I N

4.3. VARIABLES AND THEIR DOMAINS

This section describes the variables and their domains of candidate values that
we have employed in formulating transmission design as a constraint satisfac­
tion problem. The section after this will treat the corresponding constraints
used. The domains and constraints given in these two sections correspond to
common practice in designing full-sized passenger vehicles in the United States.
In the interest of brevity, detailed explanations of the domains and constraints
are not provided. Fuller explanation appears in [13]. Here we are interested in
the design of 4R-speed transmissions. We use index 0 to denote reverse speed,
and indices 1, 2, 3 and 4 for the four forward speeds, in increasing order of gear
ratio. Speed / = 3 will be the direct drive speed, which in the general case we
denote by index value d. At this stage of the formulation we in fact ignore the
direct drive state, and concentrate on finding only compatible states for speeds
/ = 0, 1 ,2 and 4. We will see that ten CSP variables suffice for our present for­
mulation.

Hard Links (2 variables): A hard, or permanent, link is a link built into the
transmission so as to remain permanently in effect at all speeds. A soft, or
clutchable or temporary link is one that may be established via clutch changes
just to achieve a specific speed, and is not in effect at all speeds. We assume
here that the transmissions we are designing have exactly two planetary gearsets
linked by exactly two hard links, LI and L2, and have no soft links. For each of
the hard links, we need to decide what gearset components it joins together. The
parts of gearset 1 that may constitute an end of a link are Ρ arts ± - { s i , a l , rl },
and the parts of gearset 2 are Parts2 = { s2, al, rl}. The two ends of a hard link
must be in different gearsets. The domains for link variables LI and L2 are thus

d^i = dL2
 =

 Ρ arts χ x Parts^ =

{ (s l , s 2) , (s l , a 2) , (s l , r 2) , (a l ^

Outputs (0 variables): In general, for each of the η forward speeds (in our
case, η = 4) and the 1 reverse speed that we want our transmission to realize, we
need to decide on the part to output from. This would introduce η +1 new vari­
ables, Outi for 0 <> i <, n, into our CSP formulation. Since we ignore the direct
drive case / = d, this gives η variables. But actually it is common practice in
automobile transmissions to have the same output component for each speed.
Thus a single output variable Out will suffice.

The domain of Out might a priori be thought to be d 0 ut = Ρ art s γ u Parts2 =
{ s i , α ϊ , r l , si, al, rl}. However, output from a sun is not used in practice due
to stress considerations [13]. Thus the domain of Out is reduced to
d 0 ut = {al, rl, al, rl}. Symmetry considerations allow us to reduce this further

AUTOMOBILE TRANSMISSION DESIGN 125

to d 0 ut = {a2,r2}, and for simplicity in this initial formulation, we restrict our­
selves even further to simply dQut = {r2}. Since Out is thus allowed only a
single value, it is actually no longer a CSP variable as such, and need not be ex­
plicitly instantiated at some given level of the search tree. It thus will not appear
in the trace of Figure 4-2 below, where Out = r2 is assumed to hold globally.

Inputs (4 variables): For each of the non-direct-drive speeds that we want our
transmission to realize, we need to decide on the part to which we input. This
introduces η new variables In^ for 0 <. i * d <, n, into our CSP formulation. A
priori, any of the combined six parts of the two gearsets is a potential input at
each speed so that the domain of each variable is thus

dJn. = Parts^ u PartS2 = { s i , al, rl, s2, a2, r2\ for 0 <, i * d <, n.

Brakes (4 variables): For each of the non-direct-drive speeds that we want our
transmission to realize, we need to decide on the braked part. (Direct drive
speed is usually achieved without resort to a braked part, but this is irrelevant
here since we are ignoring the direct drive speed.) This introduces η new vari­
ables Br ι for 0 <, i * d <> n, into our CSP formulation. As with the inputs, any
of the combined six parts of the two gearsets is a priori a potential braked com­
ponent at each speed. The domain of each variable Brt is thus

dBr. = Partsi u Parts2 = {s i , a l , r l , s2, a2, r2\ for 0 <, i * d <, n.

4.4. CONSTRAINTS

This section describes the constraints that we use in connection with the vari­
ables of the previous section, in obtaining a CSP formulation of the transmission
design problem. The constraints are labeled below as Cj for various j values.
These Cj labels will be useful in our later sample trace in Figure 4-2, to identify
which constraint is being applied where in the search process. The states in
Table 4-1 above (and in Table 4-2 below) all satisfy the constraints of this sec­
tion, and thus provide useful examples to help in understanding the constraints
better.

Non-Connecting Links: The two hard links joining our two gearsets are not al­
lowed to have a common end. If the two hard links are LI = (x1? y±) and
L2 = (x2, ̂ 2) then we can express this constraint as

x2 and y± * y2.

126 N A D E L A N D L I N

Link Renaming Equivalence: In linking gearsets using two links it does not
matter which link we call LI and which we call L2. That is, having two links
LI = (jq, y{) and L2 = (x2, y2) *

s
 physically the same as having the two links

LI = (x2, y2)
 a n

d L2 = (jq, y{). This kind of redundancy can be avoided by re­
quiring say link L2 to be lexographically greater than link LI, with respect to the
underlying order of parts given in (4.4). For hard links LI = (x1? y±) and
L2 = (x2, y2) we write this constraint as

(xi,yi) < (*2>y2)- (
C
2>

Using constraints C± and C 2 reduces the a priori 8 1 = 9 x 9 possible pairs of
links for two planetaries down to only 18 pairs (one of which was seen in
Table 4-1).

Link End Equivalence: Since two parts joined by a link are by definition con­
strained to move together, braking one end of a link also brakes the other end.
Similarly, inputing to one end of a link is like inputing to the other end, and the
same applies for outputing. This kind of functional redundancy can be avoided
by choosing say the gearset 1 end of a link as the preferred part, and not allow­
ing the gearset 2 end as legal for the input In^ or brake Brt at any speed /. If the
two hard links are LI = (jq, y γ) and L2 = (x2, y2), then we can express these
constraints as

Int € { yi ,y2 } for 0 <; i <; n. (C3)

B r fi iyi,y2) for 0<,i<,n. (C4)

Don't Brake the Output: It is obvious that a brake should not be applied to the
output part, else we get no output torque. Thus we have the constraints

Brt * Out for 0 ^ / <. n. (C5)

Since braking a part that is linked to the output causes the same problem - no
output torque - we interpret C 5 to mean that neither the output part, nor a part
joined to it by a link, may be braked.

Don't Brake the Input: As with not braking the output above, we also cannot
brake the input, else we effectively get no input torque. Thus we have:

Brt * In(for 0 £ 1 £ / ! . (C6)

Don't Input to the Output: When the input part is the same as the output part,
the gear ratio ρ = ω0ιιί / ωΙη must of course be ρ = 1, so we get a direct drive

AUTOMOBILE TRANSMISSION DESIGN 127

speed. Thus for all non-direct-drive speeds / * d this possibility must be ex­
cluded. We therefore have:

ln{ * Out for 0 <, ι: * d <. n. (C7)

Since inputing to a part that is linked to the output causes the same result - a
direct drive ratio - we interpret C 7 to mean that neither the output part, nor a
part joined to it by a link, may be the input part.

Different Ratios in Different Gears: By definition, different speeds or
"gears" must have different gear ratios. Since we are assuming a fixed output
Out in each speed /, the gear ratio in speed / (for a given pair of hard links)
varies only with the input 1^ and the braked element Brt. To avoid the same
ratio at different speeds / and j , we thus require at least one of these variables to
be different, so that

(Irii * Irij) or (Βη * Βη) for 0 ^ / < j' <. n. (Cg)

Gear Ratio Ranges: The most basic attributes of a transmission are how many
speeds it provides and the corresponding gear ratio values at those speeds. As
mentioned, we are assuming here a transmission with 1 reverse speed (p < 0)
and η = 4 forward speeds consisting of two underdrives (0 < ρ < 1), a direct
drive (p = 1) and an overdrive (p > 1) speed. The following constraints specify
the ranges we will consider acceptable for the gear ratios p; at these speeds.

Reverse Gear Ratio: -2 /5 <> p 0 ^ -1 /5 (C9)
First Gear Ratio: 1/3 <L px <> 1/2 (C 1 0)

Second Gear Ratio: 3/5 <; p 2 ^ 4/5 (C n)

Third Gear Ratio: p 3 = 1 (C 1 2)

Fourth Gear Ratio: 5/4 £ p 4 <. 5/3 (C 1 3)

Our algorithm computes ρ symbolically as a function of β} and β 2, for each
kinematic state it generates. (Examples were seen in Table 4-1.) Thus once we
have assigned specific values to β± and β 2 we can obtain the corresponding
value for a given ρ (β 1? β 2) as a way of testing for the given speed under con­
sideration, whether the applicable constraint from C 9 to C 13 is satisfied. But
like the gear ratios p; themselves, the teeth ratios Pi and β 2 are not CSP vari­
ables per se, whose values are known directly by instantiation. Rather, the latter
are functions of the teeth numbers Trl, Tr2, Tsl and Ts2. Thus values for Ργ and
β 2, and hence for pz-, could be obtained by instantiating those teeth number vari­
ables. This would be a natural approach, but in our current formulation we do
not wish to go to this level of detail and corresponding search complexity. So

128 N A D E L A N D L I N

teeth numbers on gears are not features (CSP variables) of our design, and the
above ratio-range constraints must be tested less directly.

3

The indirect test we use is based on the work of Ward [16] (see also Chapter
5). Given a function ζ =f(x,y), which is monotonie in both χ and y, it is possible
to bound the variation in ζ given bounds on the variation in χ and y. In par­
ticular, if a <, χ <, b and c <, y <. d then

mm{f(a,c)/(a4)Â^c)f(b,d)} <; ζ ^ maxlf^Ma^Ab^^d)}' (4.7)
Given that we have bounds on and β 2 from (4.2), we can use (4.7) to

bound the value of ρ(β^, β 2) for a given kinematic state. If there is no overlap
between this derived range for ρ and that required by the ratio-range constraint
above for a given speed /, then the ratio-range constraint is violated and the cor­
responding state cannot serve to provide that speed.

Simplicity-of-Switching Constraints: An important class of constraints are
what we call the simplicity-of-switching constraints. These are to ensure that
only simple changes of braking and clutching are required in switching between
adjacent speeds / and / + 1. We ensure this by requiring that at most one of the
braked part and the input part may change in an adjacent-speed transition. This
gives us the following simplicity-of-switching constraints:

(Ini+l = In{) or (BrM = Bri) for 1 <L i <, η - 1. (C 1 4)

4.5. OUR RESULTS

The previous two sections showed how the transmission design problem can
be formulated as a constraint satisfaction problem. In particular, Section 4.3
specified the CSP variables and domains which we use, and Section 4.4
specified the CSP constraints. Part of the Backtrack tree [9, 15] corresponding to
our formulation of the previous two sections is given in Figure 4-2. The ten
CSP variables we use correspond to the ten levels of the search tree, with cor­
respondences as indicated in the "Variables" column at the left of the figure.
At a given level the figure shows all possible assignments of that level's vari­
able, corresponding to all values from the domain of that variable as described in
Section 4.3.

3
 Even if we did consider teeth numbers, it would be preferable in terms of combinatorial

explosion to postpone instantiation of the corresponding variables till the last levels of the
search tree - and an initial application of our indirect scheme for testing the ratio-range con­
straints would still be desirable to allow some earlier pruning higher up in the tree.

AUTOMOBILE TRANSMISSION DESIGN 129

For extra clarity we include, in the "Constraints" column at the left of the
figure, the list of constraints (using the constraint labels of Section 4.4) that are
checkable at each level. These are listed top to bottom in the order in which they
are checked by our algorithm. Under each tree node, we show for each of the
checkable constraints whether the corresponding constraint test succeeds (shown
by a check mark) or fails (shown by a cross). As an aid to the reader, at nodes in
Figure 4-2 where the processing gets as far as checking a ratio-range constraint
(C9 to C 1 3) , we precede the result of that check by a row, shown enclosed in a
rectangle, giving the corresponding symbolic expression computed by our algo­
rithm for the ratio ρζ·. Of course, once the first constraint-check failure occurs
down the list of constraints at a node, no further constraints need be checked and
the corresponding path through the tree is "pruned off." Only nodes at which
all checkable constraints are satisfied can be used to sprout descendant nodes at
the next level.

Figure 4-2 shows two branches leading to solutions in our search tree. The
left branch shown leads to the discovery of a 4R-speed extension of the classic
3R-speed Simpson transmission [2, 5] and the right branch leads to discovery of
the well-known 4R-speed Axod transmission [1]. Interestingly, these two trans­
missions, although made up of different sets of states, have the same gear ratios
at corresponding speeds.

The full set of solutions found by our search is shown in Table 4-2. Ten solu­
tions are found. In fact, only the last two actually correspond to known trans­
missions, the HydraMatic 700 and Axod. It is possible that some of the other
eight solutions we found are actually new discoveries (we haven't had time to
check thoroughly), but it is more likely they will all be eliminated when the
other applicable constraints are added.

For instance, the switching network (which we are ignoring here) required to
build the "extended Simpson" transmission, solution 5, is known to not be
topologically realizable. Also, solution 7 is obviously unacceptable because no
matter what are the values for β 1 and β 2, the ratio for speed 2,
p 2 = (β ι β 2 - 1) / (β 2 + β ι β 2) , will be less than the ratio obtained for speed 1,
Pi

 =
 (βΐβ2 — 1) / Ριβ2» because of the extra β 2 in the denominator of the

former. Solution 7 slips by here because we have not yet implemented the class
of "step" constraints, which ensure acceptable ratios between the gear ratios.
The closest we get are the ratio-range constraints, C 9 to C 1 3. The symbolic
(non-numeric) way we are testing these, using (4.7), ensures only that for each
speed tested independently, there are possible values for βι and β 2 that allow the
gear ratio to be in the necessary range. This does not ensure proper relative
sizes of ratios at different speeds, nor even that the desirable ranges for the set of
ratios are achievable using the same pair of β 1 and β 2 values, as is of course re­
quired since the gears in our gearsets (and hence βι and β 2) do not change with
speed for a given transmission. The latter problem will disappear once we start

130 N A D E L A N D L I N

(Sl,s2)(il,fl2)(sl,r2)(al,52)(al,û2)(ûl,r2)(rl,s2)(rl,a2)(rl,r2) (sl ,s2)(il.fl2)(slj2)(el.j2)(fll,e2)(el,r2)(rl,s2)(rl,e2)(rl,r2)

Drn

Ce

y
y

y
x x

i l a l r l si al
y y y y χ
y x >/ ^

i l al rl $2 a2
y y y y x
y x y y
y y x

- l / f c βι/(1+βι+βϊ) -ΐίβι
x y

Dr,

si al rl i2 a2 r2 ν/ ν/ ν/ X
 X

ν / x y y

fl/q+fl) fl/q+fl+ft)

i l al rl i2 a2
y y ν ν / x
χ/ x y y

0i/(l+j3i+fo)
y

Ce

si al rl si a2 rl
y y y X y X
y x y y

al rl si al
y y y x

y x y y

si
y

rl
X

si
y
y
y
y
y

rl si
y y
y y
x y

y
χ

al
X

P2 ft/q+ft) ft/q+ft)
y~

i l al rl j2 a2
y y y y x
y x y y

i l al rl si al rl i l al rl si al rl
y y y χ y x y y y y x x

c5 y x y y y X y y C
6 y y x y x y

y y x y

1 P4 q+jfc)/j 32 (l+/fc)/(1+01+02) (l+02)/02 1
Cl3 y X y

Extended Simpson l i e i
Figure 4-2: Search Tree

Table 4-2: Solution Table

Speed 0 Speed 1 Speed 2 Speed 4

Solution LI L2 Out Diagram (reverse) (low underdrive) (high underdrive) (overdrive)

ITIQ Br0 Po Ιπι Pi In2 B r 2 P2 BrA PA

1 si al
1

02
rl al 0i

02
rl s i 01+0102

02+0102
al si 1 + 02

02

2 (si, a2) (a l ,a2) r2
-+

si rl βι-βι rl al 0i rl s i 01+0102 al si 1 + 02 2 (si, a2) (a l ,a2) r2 si rl
02 + 0102

rl al
02

rl s i
02 + 0102

al si
02 02 + 0102 02

3 al rl 02-01
02

rl al 0i
02

rl s i 01 + 0102
02+0102

al si 1 + 02
02

4 si a2
1

si rl
1

a2 r l 1 + 02 a2 si 1 + 02 4

(s l , s 2) (a l , r2) r2 -*
si a2

02
rl

1 + 01
a2 r l

1+01+02
a2 si

02
(s l , s 2) (a l , r2) r2

5 1 a
Λ 1 + 02 (Extended

Simpson)
1 si a2

1
r l o2 01 rl s i 01 a2 si 1 + 02 (Extended

Simpson)
si a2

02
r l o2

1 + 01 + 02
rl s i

1 + 01
a2 si

02

6 rl al
1

s i a l
1

si r l 1 + 02 a l rl 1 + 02 6 rl al
02

s i a l
0102

si r l
02+0102

a l rl
02

7 (o l ,a2) (r l ,«2) r2 rl al
1

a l s i 0102 - 1 rl s i 0102 - 1 a l rl 1 + 02 7 (o l ,a2) (r l ,«2) r2 rl al
"'02

a l s i
0102

rl s i
02+0102

a l rl
02

8 rl al
1

02
r l s i 0102 - 1

02 + 0102
al s i 0102 ~ 1

0102
a l rl 1 + 02

02

9
s2 rl

1
s i r l

1
si s2 1 + 02 r l s2 1 + 02

(HM 700)
(o l , r2) (r l , o2) r2 X

s2 rl
02

s i r l
1 + 01

si s2
1 + 01 + 02

r l s2
02

(o l , r2) (r l , o2) r2 X
10

s2 rl
1

s2 s i 0i rl s i 01 r l s2 1 + 02
(Axod)

s2 rl
02

s2 s i
1 + 01 + 02

rl s i
1 + 01

r l s2
02

132 N A D E L A N D L I N

to explicitly consider teeth number for gears. We will then be able to use the
corresponding fixed numerical values for $i and β 2 in testing the set of ratio-
range constraints. Being able to test the step constraints also depends on having
numerical values for and β 2. A recent preliminary run of an extended for­
mulation allowing explicit consideration of teeth numbers does, in fact, result in
removal of about half of the eight unlikely solutions of Table 4-2.

4.6. EXTENSIONS

There are many ways in which our work to date may be extended. The fol­
lowing is a partial list.

A. As mentioned in Section 4.5, eight of the ten transmission design solutions
found by our program (Table 4-2) are probably not physically realizable. This is
because we have not yet formulated the problem at a sufficient level of detail
nor incorporated all relevant constraints even for the current level of detail.
Among other things, our future formulations will need to consider (i) teeth num­
ber on gears and the corresponding gearing constraints, (ii) the specific nature of
the transmission's switching network and the corresponding topological con­
straints, (iii) the step constraints on the ratios between gear ratios, and (iv) the
nature of the transmission's direct drive and neutral states with corresponding
full use of the applicable simplicity-of-switching constraints.

B. Apart from adding detail to our designs, as discussed in item A, we also need
to broaden the design space being searched. The current search is restricted to
transmissions of four forward speeds and one reverse speed, made of two simple
planetary gearsets joined by two hard links and no soft (or clutchable) links. In
our future formulations we expect to allow (i) an arbitrary number g of gearsets,
rather than just two as here, (ii) an arbitrary number h of hard links, rather than
just two as here, (iii) an arbitrary number s of soft (or clutchable) links, rather
than none as here, (iv) an arbitrary number η of (forward) speeds, rather than
just four as here, and (v)

 4
'compound" planetary gearsets, rather than just

simple planetary gearsets. A description of compound gearsets is beyond the
scope of this paper. See for example [5] or [6].

C. Automobile automatic transmissions consist of three interacting subsystems:
mechanical, hydraulic and electronic, the latter two being needed to control the
former. Our present work concentrates exclusively on the mechanical subsys­
tem. In the long run we expect to extend our transmission design task to include
the integrated design of all three subsystems.

AUTOMOBILE TRANSMISSION DESIGN 133

Basically the present "first pass" at transmission design has been encourag­
ing. We have been able to automate the rediscovery of the known transmissions
within the class we have delimited, and to avoid the discovery of most unaccept­
able solutions. The space we have used has been relatively well explored
manually by human designers in the past. However, the space corresponding to
the above anticipated refinements and extensions has not been manually ex­
plored to the same extent. The distinct possibility exists of discovering new and
better transmissions in an automated search of such broader design spaces.

4.7. ACKNOWLEDGMENTS

This work has been made possible by a research grant, and generous co­
operation, from the Ford Motor Co. In particular, thanks to Bob Roethler and
the rest of the Ford Advanced Transmission Design Department in Livonia,
Michigan, for extensive discussions on the engineering aspects of this work.
Access to the Ford library in Dearborn, Michigan, was also very helpful.

4.8. BIBLIOGRAPHY

[1] "AXOD Automatic Overdrive Transaxle - Operation and Diagnosis,"
Ford Parts and Service Division, Training and Publications Dept., 1985
[order no. 1701-205].

[2] Ellinger H. E., Automechanics, Prentice Hall, Englewood Cliffs, New
Jersey, 1983 (third edition).

[3] Hadland T., The Sturmey Archer Story, Pinkerton Publishing Co., Lon­
don, England, 1987.

[4] Haralick R. M. and Elliot, "Increasing Tree Search Efficiency for Con­
straint Satisfaction Problems," Artificial Intelligence, Vol. 14,
pp. 263-313, 1980.

[5] Husselbee W. L., Automatic Transmissions: Fundamentals and Service,
Prentice-Hall, Englewood Cliffs, New Jersey, 1986 (second edition).

[6] Lynwander P., Gear Drive Systems: Design and Application, Marcel
Dekker Inc., New York, NY, 1983.

134 N A D E L A N D L I N

[7] Mackworth A. K., "Constraint Satisfaction," in Encyclopedia of Artifi­
cial Intelligence, S. Shapiro, Ed., Wiley, New York, 1987.

[8] Muller H. W., Epicyclic Drive Trains - Analysis, Synthesis and
Applications, Wayne State University Press., Detroit, Michigan, 1982.

[9] Nadel Β. Α., "Constraint Satisfaction Algorithms," Computational
Intelligence, Vol. 5, No. 4, pp. 188-224, November 1989, [A preliminary
version appeared as 'Tree search and arc consistency in constraint satis­
faction algorithms', in Search in Artificial Intelligence, edited by
L. Kanal and V. Kumar, Springer-Verlag, New York, 1988].

[10] Nadel Β. Α., "Representation Selection for Constraint Satisfaction: a
case study using rc-queens," IEEE Expert, Vol. 5, No. 3, June 1990.

[11] <Nadel Β. Α., "The Complexity of Constraint Satisfaction in Prolog,"
Proc. Eighth Nat. Conf on Artificial Intelligence (AAAI-90), Boston,
Mass., pp. 33-39, August 1990, [An expanded version is available as
technical report CSC-89-004, 1989, Dept. Computer Science, Wayne
State University, Detroit, Michigan].

[12] Nadel Β. Α., "Some Applications of the Constraint Satisfaction
Problem," 1990 [in review. Available as technical report CSC-90-008,
Dept. Computer Science, Wayne State University, Detroit, Michigan].

[13] Nadel B. A. and Lin J., "Automobile Transmission Design as a Con­
straint Satisfaction Problem: Modeling the Kinematic Level," Artificial
Intelligence for Engineering Desing, Analysis and Manufacturing (AI
EDAM), Vol. 5, No. 2, 1991.

[14] Nadel B. A. and Lin J., "Automobile transmission design: a constraint
satisfaction formulation and Prolog implementation," 1991 [in review].

[15] Nudel Β. Α., "Consistent-labeling Problems and their Algorithms:
Expected-complexities and Theory-based Heuristics," Artificial Intel­
ligence (special issue on search and heuristics), V o l . 2 1 , nos. 1 and 2,
pp. 135-178, March 1983, [Also in Search and Heuristics, North-
Holland, Amsterdam, 1983].

[16] Ward A. C , " A Theory of Quantitative Inference for Artifact Sets, Ap­
plied to a Mechanical Design Compiler," Dept. Mechanical Engineer­
ing, MIT, 1988, Doctor of Science dissertation (See also Chapter 5,
Volume I).

Chapter 5
DESIGN COMPILERS AND THE LABELED

INTERVAL CALCULUS: A TUTORIAL

Daisie D. Boettner and Allen C. Ward

Abstract

Compilers accept descriptions of wide range of designs in high level, easy to
use languages, and translate them into detailed, implementable descriptions.
They have been proven useful in software and digital hardware design. The
mechanical design compiler discussed here appears to be the first of its kind: it
accepts a schematic, specifications and a utility function, and returns catalog
numbers for an implementation.

The mechanical domain involves a high degree of interaction between parts,
and a strong requirement for near optimal performance and cost. These issues
are addressed in the compiler through the use of a novel mathematical for­
malism, the labeled interval calculus, which enables the compiler to draw in­
ferences about sets of possibilities. This chapter provides a tutorial introduction
to the theory underlying both the compiler and the calculus.

5.1. INTRODUCTION

5.1.1. Background

The "compiler" metaphor is a natural way to think about automating design.
Compilers provide the human designer with a high-level language in which to
describe the design. They can then transform this high-level description into a
detailed, implementable description. This approach has had great success in
computer programs and Very Large Scale Integrated (VLSI) circuits (see, e.g.,
Chapter 12).

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

135 Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

136 BOETTNER A N D W A R D

In the mechanical domain it is natural to think of this "high-level language" as
being composed in part of "components" and/or "features": abstract or general­
ized parts of machines which are to be connected to form the complete machine.
However, in the programming and VLSI domains, the instantiation (transfor­
mation from high level to detailed level) of the elements of the high-level lan­
guage is relatively independent of the circumstances. In the mechanical domain,
there are normally many possible instantiations, and a major function of the
program is to choose the right one. This choice is largely quantitative - a matter
of selecting the lowest "cost" (by some measure) of the possible instantiations
which is satisfactory under the circumstances. The machine code produced by a
programming language compiler may be a few times less efficient than that
produced by hand, but remains acceptable. Such losses are rarely acceptable in
mechanical design.

MOTOR 1 P U M P 1 CYLINDER

Figure 5-1: Design Schematic

Hence, a mechanical design compiler must focus at least as much on the
relationships between components (as in the example design schematic shown in
Figure 5-1) as on the transformation or formulation of the individual component.
It is natural to think in terms of the propagation of constraints between the
components; and equally natural to consider propagating real number values
through algebraic equations. Once a system of equations has been defined for
each component, the equations can be connected to one another by the identify­
ing interface variables when the components are connected. This characterizes
(in part) the work of Serrano (Chapter 3), Popplestone [4], and Bahler [1]. See
Figure 5-2.

When the designer or some other mechanism has decided a sufficient number
of the values for the variables in the equations, these programs can compute the
remaining values. They are in themselves analysis rather than synthesis
programs. Bahler [1] has annotated such programs with optimization sugges­
tions, which change the variable values to try new combinations based on the
results of the current analysis. S. Tong has constructed an environment for such
heuristic optimization which relies on general analysis codes rather than equa­
tions; it is discussed in Volume 3, Chapter 9. However, it is not clear to us

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 137

Pun^Speed

^ î o w = (Speed χ Displacement)/23^^

Figure 5-2: Connection-of-Variables

whether such distributed and heuristic optimization procedures can perform sig­
nificantly better than traditional, formal optimization techniques. In particular,
it is not clear how such a program could be confident of finding the best avail­
able solution rather than a purely local optimum.

138 BOETTNER A N D W A R D

This paper describes a tool for making choices, rather than for analyzing the
consequences of the choices. In order to accomplish this, we have changed the
way the equations are used. That is, instead of propagating single values, we
propagate information about sets of values; these sets are most commonly inter­
vals of real numbers. The "constraint propagation of intervals" or the "interval
arithmetic" is fairly well understood; see Davis [2] and Moore [3]. Somewhat
to our surprise, this standard notion of interval constraint propagation is by no
means sufficient for even simple design problems. Treating these problems for­
mally requires expanding the interval constraint propagation ideas so dramati­
cally as to constitute a new formalism, which we have dubbed the "labeled inter­
val calculus."

In particular, we hold that design descriptions represent sets of components
functioning under sets of operating conditions. Traditionally, reasoning about
sets has been quantitative, but informal. The Labeled Interval Calculus (LIC)
formalizes a system for reasoning about sets.

LIC defines a number of operations on intervals and equations, some of which
can be thought of as inverses to the usual notion of interval propagation. These
are discussed in Section 5.2.2.

Section 5.2.3 turns to the question, "What do the intervals mean?" or more
precisely, "What kinds of relationships are possible between a set of values, a
variable, and a set of artifacts, each subject to a set of operating conditions?"
We will find that the usual notion of an interval constraint must be sup­
plemented in the design context by a system of labels to indicate which is meant
of several possible relationships between the interval and the set.

Section 5.2.4 then defines a set of inferences that use the operations defined in
Section 5.2.2 and the labeled intervals of Section 5.2.3 to reason about sets of
artifacts and operating conditions.

Finally, Section 5.3 discusses how these inferences are employed in a
mechanical design compiler, which accepts generic schematics and specifica­
tions for a wide variety of designs, and returns catalog numbers for optimal im­
plementations of the schematics.

5.1.3. Unanswered Issues

The LIC raises issues of causality and independence of variables still not fully
understood. This lack of full understanding is apparent when considering some
of the inference rules under development. The problems with this issue are ad­
dressed more fully in Section 5.2.4.

5.1.2. Purpose

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 139

5-2.1. Introduction

In order to examine LIC more closely, LIC can be subdivided into three areas:
operations, labels, and inferences. Ordinary arithmetic operations manipulate
numerical values. LIC operations manipulate assignment intervals (variable fea­
tures with their corresponding interval of values). Three kinds of LIC labels
describe how a variable feature is constrained with respect to its interval of
values, represent information about entire sets of artifacts, and show causality.
LIC inferences are rules based on operations and labels. The MDC uses in­
ferences to draw conclusions about sets of artifacts under consideration for a
design.

This is an informal introduction to the LIC. For a more rigorous exposition,
see Ward [5].

5.2.2. Operations

LIC operations are analogous to ordinary mathematical operations. For ex­
ample, the operation, plus, takes two numerical values, 2 and 3, and produces a
numerical value, 5. On the other hand, the operations of LIC take two assign­
ment intervals (each consisting of a variable and an interval of numerical values)
and produce a new assignment interval.

5.2.2.1. Some basic operations definitions

1. LIC involves intervals of assignments, consisting of a variable fea­
ture and an interval of values. For example, let Ρ be the interval of
pressures, p (psi). We will write this interval as Ρ = <p 1000
3000>. Other intervals used in subsequent examples describing
operations are F, the interval of forces, /(lb), and A, the interval of
areas, a (sq in). The following examples demonstrate the math­
ematical manipulation of the LIC operations. The design aspect of
these operations is discussed in later sections.

2. G is an implicit relationship among three variables; for example
pressure (p) - force (/)/area (a) = 0. Throughout this tutorial, we

5.2. LABELED INTERVAL CALCULUS

140 BOETTNER A N D W A R D

assume that the relationships are continuous and satisfy "unique­
ness" throughout the intervals of interest; that is G(xj, yj, zf) = 0
and G(x2, yj, zf) = 0 implies xj = x2 (and similar for y and z).

3. gx(y, ζ) = χ is relationship G solved for x, given 3; and z. For ex­
ample:

G s ρ -f/a = 0, ρ = 1000 psi, and a = 5 sq in; gj(p,a)=fi=5000lb.

The uniqueness property implies that G always can be solved for any of the
three variables, and that the resulting functions are strictly monotonie, that is,
the partial derivatives are never zero and have the same sign throughout the in­
terval of interest.

5.2.2.2. LIC operations

LIC has nine operations. They are Intersection (n) , Subset (£) , Union (u) ,
Filled-Union (y) , Corners, Central, Range, Domain, and Sufficient Points
(SufPt). The first three operations listed are described in elementary set theory.

Filled-Union combines two intervals and X 2 into a new interval X3 such
that the endpoints of X3 are the overall lowest value and the highest value from
intervals X± and X 2. For example, given: X± = < χ 2 4 > and X 2 = < χ 6 8 >,
then (X 1y X 2) = X 3 = < x 2 8 >.

The five remaining operations require a relationship G and two known inter­
vals. Detailed discussion of these operations follows.

5.2.2.3. Corners operation

Given a relationship G, an interval X, and an interval Y, the Corners operation
determines 4 discrete values. Substitution of all combinations of the endpoints
of the given intervals X and Y into relationship G produces 4 discrete values for
the variable z.

By definition, Corners (G, X, Y) = {zj, z2, z3, z4] = {gz(xlf yfi, gz(xh, yfr

8ζ(
χ
1> y h)> 8zi

x
h> y fi»*

w h e r e Xj = l o w e s t v a l u e o f χ i n i n t e r v a l Χ .
xh = h i g h e s t v a l u e o f χ i n i n t e r v a l X .
y I = l o w e s t v a l u e o f y i n i n t e r v a l Y .
yh = h i g h e s t v a l u e o f y i n i n t e r v a l Y .

Example: Corners (G, A, F)

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 141

Given:

1. G: p -f la, a relationship among pressure, force, and area.

2. A = < a 2 5 >, interval of areas (sq in).

3. F = <f 1000 3000 >, interval of forces (lb).

Computation:
a{ = 2 sq in, ah = 5 sq in , / , = 1000 \b,fh = 3000 lb
Corners (G, A, F) = {pj, p2, p3, p4] = {1000/2, 1000/5, 3000/2, 3000/5} (psi)
Corners (G, A, F) = {500, 200, 1500, 600} (psi)

5.2.2.4. Central interval operation

The Central Interval is defined as the interval bounded by the two middle
values obtained from the result of the Corners operation. From the previous
Corners example, Central (G, A, F) = < ρ 500 600 > (psi).

5.2.2.5. Range operation

Given the relationship G, an interval X, and an interval Y, the Range opera­
tion determines an interval Ζ. Ζ is the interval containing all possible values of ζ
which can be obtained by computing gz(x, y) for every choice of value χ in inter­
val X and every choice of value y in interval Y. Range (G, X, Y) always exists.

Computation of Range. The Range is computed by applying the Corners opera­
tion to X and Y and forming an interval bounded by the lowest and the highest
values obtained from the result of the Corners operation.

It is shown in Ward [5] that Range (G, Χ, Υ) = Ζ = < min (Corners (G, Χ, Y))
max (Corners (G, X, Y)) >.

Example: Range (G, A, F)
Given:

l . G : p=f/a

2. A = < a 2 5 > (sq in)

3 . F = < / 1 0 0 0 3000 >(lb)

142 BOETTNER A N D WARD

Computation:
Corners (G, A, F) = {500, 200 ,1500 , 600} (psi)
Range (G, A, F) = Ρ = < ρ 200 1500 > (psi)
This is shown graphically in Figure 5-3.

5.2.2.6. Domain operation

Given a relationship G, an interval Z, and an interval X, the Domain operation
determines an interval Y. Y is the smallest continuous interval such that for
every value χ in interval X there is a value ζ in interval Ζ which satisfies
relationship gy(x, z) = y. The Domain operation is a partial inverse of the Range
operation. By definition, Domain (G, Ζ, X) = Y if and only if Range (G, X, Y) =
Z.

Computation of Domain. Domain (G, Ζ, X) is computed in two steps. First,
apply the Central Interval operation to Ζ and X to form interval Y. Check
whether Range (G, Χ, Υ) = Z: if so, then Domain (G, Ζ, X) = Y; if not Domain
(G, Ζ, X) does not exist.

Example 1: Domain (G, P, A)
Given:

l . G : p=f/a

2 . P = < p 2 0 0 1500 > (psi)

Figure 5-3: Range (G, A, F) = P Figure 5-6: Central (G, A, P) = F

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 143

3. A = < a 2 5 > (sq in)

Computation:

Comers (G, P, A) = {(200 χ 2), (1500 χ 2), (200 χ 5), (1500 χ 5)} (lb)
Corners (G, Ρ, A) = {400, 3000, 1000,7500} (lb)
Central (G, Ρ, A) = F = <f 1000 3000 > (lb)
Now check whether Range (G, A, F) = Ρ = < ρ 200 1500 >.
Given:

l . G : p=f/a

2. A = < a 2 5 > (sq in)

3 . F = < / 1 0 0 0 3000 > (lb)

Computation:
Corners (G, A, F) = {500, 200, 1500, 600} (psi)
Range (G, A, F) = < ρ 200 1500 > (psi)
Since Range (G, A, F) = < ρ 200 1500 > = Ρ, Domain (G, Ρ, A) = F.
Domain (G, Ρ, A) = F is shown graphically in Figure 5-4.

a
(sq in) Ρ

2 0 0 (psi)

A

1500

0
4 0 0 1000 3 0 0 0 5 0 0 0 7 0 0 0 7 5 0 0 (lb)

Figure 5-4: Domain (G, P, A) = F

Verification that Range (G, A, F) = Ρ is shown graphically in Figure 5-5.

Example 2: Domain (G, A, P)

144 BOETTNER A N D WARD

Figure 5-5: Range (G, A, F) = Ρ

Given:

l.G: p=f/a

2. A = < a 2 5 > (sq in)

3 . P = </>200 1500 > (psi)

Computation:
Corners (G, A, P) = {(2 χ 200), (5 χ 200), (2 χ 1500), (5 χ 1500)} (lb)
Corners (G, Α, Ρ) = {400, 1000, 3000, 7500} (lb)
Central (G, A, Ρ) = F = <f 1000 3000 > (lb)
Now check whether Range (G, P, F) = A = < a 2 5 >.
Given:

l . G : p=fla

2 . P = </>200 1500> (psi)

3. F = < / 1 0 0 0 3000 > (lb)

Computation:
Comers (G, P, F) = {5, .67, 15, 2} (sq in)
Range (G, P, F) = < a .67 15 > (sq in)

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 145

Verification showing that Range (G, P, F) does not equal < a 2 5 > is shown
graphically in Figure 5-7.

5.2.2.7. Sufficient points operation

Given the relationship G, an interval X, and an interval Z, the Sufficient
Points operation determines an interval Y. For each y in Y, computation of gx(y,
Z) using every value ζ in interval Ζ produces an interval X^ which includes the
entire interval X as a subset.

By definition, SufPt (G, X, Z) is the set of assignments y such that X is a sub­
set of Range (G, Z, y). SufPt (G, X, Z) exists only if X is a subset of X ! =
Range (G, Z, y).

Computation of Sufficient Points. Sufficient Points is computed in two steps.
First, apply the Central Interval operation to X and Ζ to form interval Y. Check
whether X is a subset of Range (G, Z, y) for y = each endpoint of interval Y. If
so, then SufPt (G, X, Z) = Y; otherwise, SufPt (G, X, Z) does not exist.

Since Range (G, P, F) does not equal A = < a 2 5 >, Domain (G, A, P) does
not exist.

Central (G, A, P) = F is shown graphically in Figure 5-6.

Figure 5-6: Central (G, A, P) = F

146 BOETTNER A N D WARD

Example 1: SufPt (G, A, P)
Given:

l . G : p=fla

2. A = < a 2 5 > (sq in)

3 . P = < p 2 0 0 1500 > (psi)

Computation:
Corners (G, A, P) = {(2 χ 200), (5 χ 200), (2 χ 1500), (5 χ 1500)} (lb)
Corners (G, Α, Ρ) = {400, 1000, 3000, 7500} (lb)
Central (G, A, Ρ) = F = <f 1000 3000 > (lb)
For any value fin interval <f 1000 3000 >, interval Ρ = < ρ 200 1500 >, and

relationship ρ =f/a, A = < a 2 5 > must be a subset of Range (G, P , /) for SufPt
(G, A, P) to exist.

We can verify this by checking both endpoints of F. L e t / = 1000. Range (G,
P , /) = A 1 = < < 2 . 6 7 5 > which includes the entire interval A = < a 2 5 > a s a
subset. Similarly, l e t / = 3000. Range (G, Ρ , /) = Αλ = < a 2 15 > which in­
cludes the entire interval A = < a 2 5 > a s a subset.

In this example, for any value fin the interval <f 1000 3000 >, the resulting
interval A j = Range (G, P , /) always contains at least the interval A = < a 2 5 >.
Consequently, SufPt (G, A, P) = F.

Figure 5-7: Range (G, P, F) Does Not Equal < a 2 5 >

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 147

a ρ
(sq in) 2 00 (psi)

Figure 5-8: SufPt (G, A, P) = F

Verification that A = < a 2 5 > i s a subset of each endpoint of interval F is
shown graphically in Figure 5-9.

Example 2: S u f P t (G , P , A)
Given:

Lp=f/a

2 . P = < p 2 0 0 1500 > (psi)

3. A = < a 2 5 > (sq in)

Computation:
Corners (G, P, A) = {(200 χ 2), (1500 χ 2), (200 χ 5), (1500 χ 5)} (lb)
Corners (G, Ρ, A) = {400, 3000, 1000, 7500} (lb)
Central (G, Ρ, A) = F = <f 1000 3000 > (lb)
For any value / in interval < / 1000 3000 >, interval A = < a 2 5 >, and

relationship ρ =f/a, Ρ = < ρ 200 1500 > must be a subset of Range (G, A , /) for
SufPt (G, P, A) to exist.

Check both endpoints of F. L e t / = 1000. Range (G, A , /) = P x = < ρ 200 500
> which does not include the entire interval Ρ = < ρ 200 1500 >. Similarly, l e t /
= 3000. Range (G, A , /) = Ρ 2 = < ρ 600 1500 > which also does not include the
entire interval Ρ = < ρ 200 1500 >.

SufPt (G, A, P) = F is shown graphically in Figure 5-8.

In this example, for any value fin interval < / 1 0 0 0 3000 >, interval A = < a 2
5 >, and relationship ρ =f /a, the resulting interval = Range (G, A , /) does
not contain at least the interval Ρ = < ρ 200 1500 >. Consequently, SufPt (G, P,
A) does not exist.

Central (G, A, P) = F is shown graphically in Figure 5-10.
Verification that Ρ = < ρ 200 1500 >is not a subset of each interval Pj formed

using each endpoint of interval F is shown graphically in Figure 5-11.

5.2.3. LIC Labels

LIC uses a system of labels to describe relationships between variable fea­
tures and value intervals, relationships among sets of assignment intervals, and

Figure 5-9: A is a subset of Range (G, P,f) = Aj

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 149

2 0 0 5 0 0

Figure 5-11: Ρ is not a subset of Range (G, A,f) = Pj

causality or origin of value intervals for a variable feature. There are three types
of labels used in LIC. They are constraint labels, set labels, and causality labels.

Figure 5-10: Central (G, P, A) = F

150 BOETTNER A N D WARD

5.2.3.1. Some basic label definitions

1. A = a set of artifacts or objects under consideration for a design.

2. A s = a selectable subset of artifacts or objects in set A.

Note: In design, there is a distinguishable difference between a
selectable subset, A s, and a non-selectable subset. The following
examples demonstrate this point.

a. The ACME Gear Pump Catalog contains a list of several
different gear pumps, each with its own part number and
description. The set of gear pumps contained in the ACME
Gear Pump Catalog is the set of artifacts, A, being con­
sidered. Gear pump Part #GP100 is a selectable subset, A s,
of ACME Gear Pump Catalog, A. Each A s is unique be­
cause each gear pump listed in catalog A has a different
part number and description. Each part number in a
catalog represents a smallest selectable subset, A s.

b. In the ACME Warehouse there is a bin which contains the
gear pumps with Part #GP100. Each part in the bin is
unique due to manufacturing tolerances. The set of gear
pumps in the bin is the set of artifacts, A. The gear pump in
the front right corner of the bin is a subset of the set of gear
pumps in the bin, but it is not a selectable subset, A s, for
the designer. Individual parts are non-selectable because
the designer cannot select individual parts when he creates
his design. Since designers cannot select individual parts,
designers cannot reason about individual parts.

3. A Variable feature is a component physical or operational charac­
teristic which can have different values (i.e., pressure range of a
gear pump, diameter of a cylinder considering tolerances, etc.).

4. A State Set, S, is the set of states or conditions, s, under which a
component operates (i.e., normal operation, start-up, stall, etc.). S
= {s}.

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 151

The constraint label describes how the variable feature is constrained with
respect to the given interval of values. The constraint label describes what is
known about the values that a variable feature of an artifact or object can have
under a single set of operating conditions such as a gear pump (Part #GP100)
which operates under normal operating conditions at pressures ranging from 200
to 1500 psi. There are four constraint labels: only, every, some, and none.

Only. < only ρ 200 1500 > means that the pressure, under the specified operat­
ing conditions, takes values only in the interval of 200 psi to 1500 psi. Pressure
does not take any values outside this interval. Only can be represented graphi­
cally as shown in Figure 5-12.

3 -
2 0 0 1500

Figure 5-12: < only ρ 200 1500 >

Every. < every ρ 200 1500 > means that the pressure, under the specified
operating conditions, takes every value in the interval 200 psi to 1500 psi. Pres­
sure may or may not take values outside the given interval; that information is
not available from this labeled interval. Every can be represented graphically as
shown in Figure 5-13.

Η Η p

2 0 0 1500

Figure 5-13: < every ρ 200 1500 >

Some. < some ρ 200 1500 > means that the pressure, under the specified
operating conditions, takes at least one of the values in the interval 200 psi to
1500 psi. Pressure may or may not take values outside the given interval. Some
can be represented graphically as shown in Figure 5-14.

None. < none ρ 200 1500 > means that the pressure, under the specified

5.2.3.2. Constraint labels

152 BOETTNER A N D WARD

Ρ

2 0 0 1500

Figure 5-14: < some ρ 200 1500 >

operating conditions, never takes any of the values in the interval 200 psi to
1500 psi. None can be represented graphically as shown in Figure 5-15.

In design practice, the none constraint label is not used since it is redundant
with respect to the only label. < only χ X}Xh> implies < none χ xh°° > and <
none χ -°° >. Consequently, further discussion of LIC will not include the
none constraint label.

5.2.3.3. Set labels

The set label consolidates information about the variable feature values for
the entire set of artifacts or objects under consideration. There are two set
labels: All-Parts and Some-Part.

All-Parts. All-Parts means the constraint interval is true for every artifact
(manufactured part) in each selectable subset (part number) of the set of artifacts
(catalog) under consideration.

For example, for a pump catalog we have < All-Parts only pressure 0 3000 >.
Every pump manufactured for each part number in the catalog operates only un­
der pressures between 0 and 3000 psi under the specified operating conditions.

Some-Part. Some-Part means the constraint interval is true for at least some ar­
tifact (some manufactured part) in each selectable subset (part number) of the set
of artifacts (catalog) under consideration.

For example, for a shaft catalog we have < Some-Part every diameter 49.99
50.01 >. At least one shaft manufactured for each part number in the catalog has

2 0 0 1500

Figure 5-15: <none ρ 200 1500 >

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 153

a diameter between 49.99 and 50.01 inches under the specified operating con­
ditions.

The catalog writer uses the some-part label to describe part numbers which
may have tolerances on some variable features.

Example: Set Labels. To describe the set of shafts represented in Figure 5-16,
we could use either the All-Parts label or the Some-Part label depending on the
information we wish to represent.

If we wish to describe the interval of diameters of the shafts in the entire
catalog, we write < All-Parts only diameter 49 51 >. None of the shafts has a
diameter less than 49 inches or a diameter greater than 51 inches.

If we wish to describe the precision of the diameters of the shafts in the entire
catalog, we write < Some-Part every diameter 49.99 50.01 >. We cannot from
this catalog obtain any shaft with a diameter more precisely specified than be­
tween 49.99 inches and 50.01 inches.

5.2.3.4. Causality labels

Causality labels describe how the values that the variable feature takes are
achieved. There are two causality labels: parameter and state-variable:

1. Parameter means that the value of the variable feature is set at
manufacture and does not change during operation of the entire
system (i.e., the diameter of a cylinder).

2. State-Variable means that the value of the variable feature is not
fixed and may change during the operation of the entire system
(i.e., pressure in a cylinder under varying loads).

Part# Process Tolerance (X) Diameter (d)
5501 Cold Rolled 1.0 4 9 - 5 1
5502 Turned .1 49 .9-50 .1
5503 Ground .01 49.99-50.01

Figure 5-16: Catalog of Shafts

154 BOETTNER A N D WARD

5.2.4. Labeled Interval Inferences

We have defined a method (labeled intervals) for describing sets of artifacts
being considered for a design. We have also defined operations that can be ap­
plied to these intervals. We can use these labeled intervals and operations to
create inference rules which draw conclusions about the sets of artifacts under
consideration.

There are five types of inferences used in LIC: Abstraction Rules, Elimination
Conditions, Redundancy Conditions, the Translation Rule, and Propagation
Rules. Based on specifications built into its catalogs, connections defined by a
schematic, and user specifications, the Mechanical Design Compiler (MDC)
uses the five kinds of labeled interval inferences to reach a conclusion about a
design.

5.2.4.1. Some basic inferences definitions

l . A Catalog-Entry-Level labeled interval is a labeled interval
created by the catalog writer for an individual set of selectable ar­
tifacts, As. The catalog writer creates these intervals when he
writes labeled intervals describing variable features for specific
part numbers in a catalog.

2. A Component-Level labeled interval is a labeled interval which
describes a complete set of artifacts, A. The designer creates these
intervals when he enters a specification for a component in his
design. The MDC also creates these intervals when it abstracts the
catalog-entry-level labeled intervals for part numbers into a
labeled interval describing the entire catalog.

The following example distinguishes catalog-entry-level labeled intervals
from component-level labeled intervals.

Given:

Gear Pump Catalog

Part Number min RPM max RPM

GP100
GP200
GP300

1000
900
700

4000
3600
3000

From the catalog data, the catalog writer creates the following catalog-entry-
level labeled intervals:

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 155

< A l l - P a r t s o n l y r p m 1 0 0 0 4 0 0 0 >
< A l l - P a r t s o n l y r p m 9 0 0 3 6 0 0 >
< A l l - P a r t s o n l y r p m 7 0 0 3 0 0 0 >

To describe the interval of RPM's at which the gear pumps in the entire
catalog operate, the MDC (using Abstraction Rule 1 below) creates the
component-level labeled interval < All-Parts only rpm 700 4000 >.

5.2.4.2. Abstraction rules

Abstraction rules take information about individual catalog entries and form a
description of the entire catalog. The MDC applies the abstraction rules to
catalog-entry-level labeled intervals to create a component-level labeled interval
for the entire set of selectable artifacts (the catalog). These component-level
descriptions can then be used to reason about the design at a high level, before
decisions on particular catalog numbers have been made.

These rules apply either to All-Parts inputs to produce All-Parts outputs or to
Some-Part inputs to produce Some-Part outputs. If the rules produce a false in­
terval such that the "lowest" value is greater than the "highest" value, then the
MDC does not make an abstraction. There are three abstraction rules.

Abstraction Rule 1.

< only X{ > (Asi, S{) -> < only χ mir^ xl{ max^ xhi > (A, n{ S{)
where
i = index over the set of catalog entries.
X represents a variable feature or operational quality interval.
Xi = X interval for the ith catalog entry.
A = catalog of items being examined (i.e., gear pump catalog).
A si = ith selectable subset within catalog A (i.e., gear pump #GP100).
Sj = set of states or conditions under which the ith catalog entry operates (i.e.,

normal operating conditions, start-up conditions, etc.).
χ represents a variable feature or operational quality.
X/ i = the lowest value of χ in interval X of the ith entry.
mini *j j = the minimum lowest value of χ over all entries i.
xhi = the highest value of χ in interval X of the ith entry.
maxj xhi = the maximum highest value of χ over all entries i.
n A Sj = the intersection over all entries i of the set of states under which

catalog entries operate.
Example: Abstraction Rule 1
Given:

156 BOETTNER A N D W A R D

Gear Pump Catalog
Part Number min RPM

1
2
3

GP100
GP200
GP300

1000
900
700

max RPM
4000
3600
3000

From the catalog data, the catalog writer creates the following catalog-entry-
level labeled intervals:

X1 = < All-Parts
X2 = < All-Parts
X3 = < All-Parts

Computation:

xlfl = 1000 x
l 2 ~

 9 00
x
l 3

 = 7 00

min Χι ± = 700
Abstraction Rule Result:

Labeled Interval S±
only rpm 1000 4000 > (normal)
only rpm 900 3600 > (normal)
only rpm 700 3000 > (normal)

x hl = 4000
xh'2 = 3600
xh'3 = 3000

max xh L = 4000

< All-Parts only rpm 700 4000 > (normal)
A graphical interpretation is shown in Figure 5-17.

îiïïJ

(Juo ^ (

Jooo

ίϋο ϊΐκ)

ίϋο ÏJo o
Figure 5-17 : Abstractio n Rul e 1

R P M P a r t # G P 1 0 0

R P M P a r t # G P 2 0 0

RPM P a r t # G P 3 0 0

Abstracted RP M

Physical Interpretation :
The gea r pump s i n thi s catalo g unde r norma l condition s wil l onl y operat e a t

an RP M betwee n 70 0 RP M an d 400 0 RPM . Th e MD C create s thi s ne w

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 157

component-level labeled interval to describe the RPM interval for the entire
catalog of gear pumps.

Abstraction Rule 2

(every) (A s i, Sj) -> (every χ maxj xifi m i ^ xhi) (A,
Example: Abstraction Rule 2
Given:

Labeled Interval

Xx = < All-Parts every efficiency
X2 = < All-Parts every efficiency
X3 = < All-Parts every efficiency

.75

.80

.70
Computation:
maxj Χι ι = .80 min^ xh i = .85
Abstraction Rule Result:
< All-Parts every efficiency .80 .85 > (normal)
A graphical interpretation is shown in Figure 5-18.

.90 > (normal)

.95 > (normal)

.85 > (normal)

.75 .90

.80 .95

.70

4,
.85

Efficiency P a r t # G P 1 0 0

Efficiency Part # G P 2 0 0

Efficiency Part # G P 3 0 0

Abstracted Efficiency

.80 .85

Figure 5-18: Abstraction Rule 2

Physical Interpretation:
Regardless of the pump catalog number selected, the pump may exhibit, and

the design must work at, every efficiency between 80% and 85%. The MDC
creates this new component-level LI to describe the efficiency interval for the
entire catalog of gear pumps; this LI can be used to make design decisions be­
fore the pump is selected.

158 BOETTNER A N D WARD

Abstraction Rule 3

< some Xi) (A s i, Ŝ) -> (some χ m i ^ xl{ maxt xh-x > (A, n{ S{)
Example: Abstraction Rule 3
Given:

Labeled In te rva l

Xx = < Some-Part
X2 = < Some-Part
X3 = < Some-Part

some rpm 998 4005 > (normal)
some rpm 890 3595 > (normal)
some rpm 701 3000 > (normal)

Computation:
mir^ xi i = 701 maxi xhi = 4005
Abstraction Rule Result:
< Some-Part some rpm 701 4005 > (normal)
A graphical interpretation is shown in Figure 5-19.

890 3595

4,
3000

R P M P a r t # G P 1 0 0

R P M Part # G P 2 0 0

R P M P a r t # G P 3 0 0

^ . j Abstracted RPM

701 4005

Figure 5-19: Abstraction Rule 3

Physical Interpretation:
Under normal conditions some of the gear pumps designated by each catalog

number in this catalog will operate at at least one RPM between 701 RPM and
4005 RPM. The MDC creates this new component-level labeled interval to
describe the RPM interval for the entire catalog of gear pumps.

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 159

5.2.4.3. Elimination conditions

The elimination conditions redefine catalogs by determining individual
catalog entries which do not meet given specifications (whether user specifica­
tions or internally generated specifications) and eliminating those entries. In or­
der for these conditions to apply, at least one interval must have an All-Parts
label and the state sets must intersect. There are three elimination conditions.
Each condition is formatted such that there are two labeled intervals and a con­
dition. One labeled interval is a variable feature requirement placed on the en­
tire catalog (component-level LI) while the other labeled interval describes a
variable feature of a selectable subset or individual catalog entry within the
catalog (catalog-entry-level LI). The MDC looks for conflicts between the
given requirement and the known information about the individual entry by ap­
plying the condition to the two labeled intervals. If the condition is true, the
MDC eliminates the catalog entry from the catalog.

Elimination Condition 1

(only Χλ) and (every X 2) and Not (X 2 £ χχ)
Example 1:
Given:
Gear Pump Requirement: < All-Parts only efficiency .80 1.00 >
Gear Pump Part #GP100: < All-Parts every efficiency .75 .90 >
Computation:
Xx = < efficiency .80 1.00 >
X 2 = < efficiency .75 .90 >
Condition: Not (X 2 C X{) ==> true for this example
Elimination Condition Result:
Eliminate Part #GP100 from the gear pump catalog since X 2 is not a subset of

Xl (the condition is met).
A graphical representation is shown in Figure 5-20.

Efficiency Requirement

.80 1.00

.75

Part # G P 1 0 0 Efficiency

Figure 5-20: Example 1, Elimination Condition 1

160 BOETTNER A N D W A R D

Physical Interpretation:
When the efficiency of gear pump part #GP100 is .75 to .79, the gear pump

requirement is not met. Since it is known that part #GP100 will not meet the re­
quirement, the MDC eliminates it from further consideration for the design.

Example 2:
Given:
Gear Pump Requirement: < All-Parts every efficiency .70 .90 >
Gear Pump Part #GP400: < Some-Part only efficiency .60 .90 >
Computation:
Xx = < efficiency .60 .90 >
X 2 = < efficiency .70 .90 >
Condition: Not (X 2 £ Χχ) ==> false for this example
Elimination Condition Result:
Do not eliminate Part #GP400 from the gear pump catalog since X 2 is a sub­

set of Χι (the condition is not met).
A graphical representation is shown in Figure 5-21.

| ^ ^ j Efficiency Requirement

.70 .90

£ ^ Part # G P 4 0 0 Efficiency
.60 .90

Figure 5-21: Example 2, Elimination Condition 1

Physical Interpretation:
Since gear pump part #GP400 only has efficiencies in the interval .60 to .90,

it may meet the requirement that the efficiency have every value in the interval
.70 to .90. The specific efficiency values within the interval .60 to .90 that Part
#GP400 takes are not known. Since information available does not prove that
Part #GP400 will not meet the requirement, the MDC does not eliminate this
part from consideration at this point in the design process.

Elimination Condition 2

< only Xl) and < only X 2 > and Not (Χλ η X 2)
Example 1:
Given:
Cylinder Requirement: < All-Parts only diameter 1 3 >
Cylinder Part #C400: < All-Parts only diameter 3.25 3.25 >
Computation:

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 161

Xl = < diameter 1 3 >
X 2 = < diameter 3.25 3.25 >
Condition: Not (Xj η X 2) ==> true for this example
Elimination Condition Result:
Eliminate Part #C400 from the cylinder catalog since X± and X 2 do not inter­

sect (the condition is met).
A graphical representation is shown in Figure 5-22.

Diameter Requirement

| j Part # C 4 0 0 Diameter
3.25

Figure 5-22: Example 1, Elimination Condition 2

Physical Interpretation:
The diameter of part #C400 is too large for the given requirement. The MDC

eliminates it from further consideration for the design.
Example 2:
Given:
Gear Pump Requirement: < All-Parts only pressure 0 2900 >
Gear Pump Part #GP100: < All-Parts only pressure 0 3000 >
Computation:
Xl = < pressure 0 2900 >
X 2 = < pressure 0 3000 >
Condition: Not (X^ η X 2) ==> false for this example
Elimination Condition Result:
Do not eliminate Part #GP100 from the gear pump catalog since X 1 and X 2

do intersect (the condition is not met).
A graphical representation is shown in Figure 5-23.

Pressure Requirement

Part # G P 1 0 0 Pressure

Figure 5-23: Example 2, Elimination Condition 2

162 BOETTNER A N D WARD

Physical Interpretation:
Part #GP100 may meet the requirement to operate at pressures only between 0

and 2900 psi since it only operates at pressures between 0 and 3000 psi. The
specific pressures within the interval 0 and 3000 at which it will operate are not
known; the values may fall in the interval 0 to 2900. Since information avail­
able does not prove that Part #GP100 will not meet the requirement, the MDC
does not eliminate this part from consideration at this point in the design
process.

Elimination Condition 3

(only) and (some X 2) and Not (Xj η X 2)
Example 1 :
Given:
Cylinder Requirement: < All-Parts only diameter 1 3 >
Cylinder Part #C400: < Some-Part some diameter < 3.15 3.35 >
Computation:
Xj = < diameter 1 3 >
X 2 = < diameter 3.15 3.35 >
Condition: Not (Xj η X 2) ==> true for this example
Elimination Condition Result:
Eliminate Part #C400 from the cylinder catalog since X j and X 2 do not inter­

sect (the condition is met).
A graphical representation is shown in Figure 5-24.

Diameter Requirement

\ + + * \ Part # C 4 0 0 Diameter
3.15 3.35

Figure 5-24: Example 1, Elimination Condition 3

Physical Interpretation:
The diameter of part #C400 takes some value that is too large for the given

requirement. The MDC eliminates it from further consideration for the design.
Example 2:
Given:
Gear Pump Requirement: < All-Parts only pressure 0 2900 >
Gear Pump Part #GP100: < Some-Part some pressure 0 3000 >
Computation:

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 163

Xl = < pressure 0 2900 >
X 2 = < pressure 0 3000 >
Condition: Not (Xj η X 2) ==> false for this example
Elimination Condition Result:
Do not eliminate Part #GP100 from the gear pump catalog since X x and X 2

do intersect (the condition is not met).
A graphical representation is shown in Figure 5-25.

Pressure Requirement

2900

| ^ Part # G P 1 0 0 Pressure

3000

Figure 5-25: Example 2, Elimination Condition 3

Physical Interpretation:
Part #GP100 may meet the requirement to operate at pressures only between 0

and 2900 psi since it operates at some pressure between 0 and 3000 psi. The
specific pressure within the interval 0 and 3000 at which it will operate is not
known; the value may fall in the interval 0 to 2900. Since information available
does not prove that Part #GP100 will not meet the requirement, the MDC does
not eliminate this part from consideration at this point in the design process.

5.2.4.4. Redundancy conditions

Redundancy conditions determine if a newly generated component-level
labeled interval (X{) is not needed because its information is contained in
another component-level labeled interval (X2) that has already been processed
by the MDC. If the newly generated labeled interval is redundant, the MDC
does not process it.

In order for the redundancy conditions to apply, the artifact set and the state
set of the newly generated labeled interval (X{) must be subsets of the artifact
set and the state set of the previously processed labeled interval (X2) . X j having
either an All-Parts label or a Some-Part label can be redundant with respect to
X 2 having an All-Parts label; Xj having a Some-Part label can be redundant
with respect to X 2 having a Some-Part label. Redundancy conditions do not
apply, however, to X± having an All-Parts label while X 2 has a Some-Part label.

164 BOETTNER A N D WARD

There are five redundancy conditions. Each condition is formatted such that
there are two component-level labeled intervals and a condition. The first
labeled interval refers to the newly generated labeled interval (Xj) while the
second labeled interval refers to the previously processed labeled interval (X2) .
The MDC applies the condition to the two labeled intervals. If the condition is
true, the MDC does not process X j since Xj is redundant with respect to X 2.

Redundancy Condition 1

(every X j) and (every X 2) and (Xj ^ X 2)
Example 1:
Given:
X j : < All-Parts every efficiency .80 .85 >
X 2: < All-Parts every efficiency .75 .90 >
Computation:
Condition: (Xj £ X 2) ==> true for this example
Redundancy Condition Result:
X j is redundant with respect to X 2 since Xj is a subset of X 2 (the condition is

met).
A graphical representation is shown in Figure 5-26.

Xl

.80 .85

.75 .90

Figure 5-26: Example 1, Redundancy Condition 1

Physical Interpretation:
Any part which satisfies requirement X 2 (efficiency takes every value in the

interval .75 to .90) automatically satisfies requirement Xj (efficiency takes
every value in the interval .80 to .85). The MDC does not process the Xj re­
quirement since Xj is redundant with respect to X 2.

Example 2:
Given:
X j : < All-Parts every efficiency .70 .85 >
X 2: < All-Parts every efficiency .75 .90 >
Computation:
Condition: (Xj ^ X 2) ==> false for this example

DESIGN COMPILERS AND LABELED INTERVAL CALCULUS 165

Redundancy Condition Result:
Xl is not redundant with respect to X 2 since Xj is not a subset of X 2 (the con­

dition is not met).
A graphical representation is shown in Figure 5-27.

ι • { Xi
.70 .85

L* * J X2

.75 .90

Figure 5-27: Example 2, Redundancy Condition 1

Physical Interpretation:
Any part which satisfies requirement X 2 (efficiency takes every value in the

interval .75 to .90) does not necessarily satisfy requirement Xj (efficiency takes
every value in the interval .70 to .85). X 2 does not require the part to have ef­
ficiency values in the interval .70 to .74. Consequently, the MDC processes the
Xj requirement since Xj places a requirement additional to that of X 2 on the
chosen part.

Redundancy Condition 2

(some Xi) and (every X 2) and (Xj η X2)
Example 1 :
Given:
X x: < All-Parts some rpm 3000 5000 >
X2: < All-Parts every rpm 0 4500 >
Computation:
Condition: (Xj η X2) ==> true for this example
Redundancy Condition Result:
Xj is redundant with respect to X 2 since Xj and X 2 intersect (the condition is

met).
A graphical representation is shown in Figure 5-28.
Physical Interpretation:
Any part which satisfies requirement X 2 (rpm takes every value in the interval

0 to 4500) automatically satisfies requirement Xj (rpm takes some value in the
interval 3000 to 5000). The MDC does not process the Xj requirement since Xj
is redundant with respect to X2.

Example 2:

166 BOETTNER A N D WARD

3000 5000

0 4500

Figure 5-28: Example 1, Redundancy Condition 2

Given:
X j : < Some-Part some rpm 3500 4000 >
X 2: < All-Parts every rpm 0 3000 >
Computation:
Condition: (Xj η X 2) ==> false for this example
Redundancy Condition Result:
Xj is not redundant with respect to X 2 since Xj and X 2 do not intersect (the

condition is not met).
A graphical representation is shown in Figure 5-29.

Figure 5-29: Example 2, Redundancy Condition 2

Physical Interpretation:
Any part which satisfies X 2 (rpm takes every value in the interval 0 to 3000)

does not necessarily satisfy requirement Xj (rpm takes some value in the inter­
val 3500 to 4000). X 2 does not require the part to have any rpm values in the
interval 3500 to 4000. Consequently, the MDC processes the Xj requirement
since X j places a requirement additional to that of X 2 on the chosen part.

Redundancy Condition 3

< only X j) and (only X 2 > and (X 2 C Xj)
Example 1 :
Given:

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 167

Xx: < All-Parts only rpm 700 4000 >
X 2: < All-Parts only rpm 1000 3000 >
Computation:
Condition: (X 2 £ X^) ==> true for this example
Redundancy Condition Result:
Xl is redundant with respect to X 2 since X 2 is a subset of X j (the condition is

met).
A graphical representation is shown in Figure 5-30.

— Ε 3 -
 Xl

700 4000

Ε — 3 —
 K

1000 3000

Figure 5-30: Example 1, Redundancy Condition 3

Physical Interpretation:
Any part which satisfies requirement X 2 (rpm takes only values in the interval

1000 to 3000) automatically satisfies requirement Xj (rpm takes only values in
the interval 700 to 4000). The MDC does not process the Xi requirement since
Xl is redundant with respect to X 2.

Example 2:
Given:
Xf < All-Parts only rpm 1500 4000 >
X 2: < All-Parts only rpm 1000 3000 >
Computation:
Condition: (X 2 Q Xj) ==> false for this example
Redundancy Condition Result:
Xj is not redundant with respect to X 2 since X 2 is not a subset of X j (the con­

dition is not met).
A graphical representation is shown in Figure 5-31.
Physical Interpretation:
Any part which satisfies requirement X 2 (rpm takes only values in the interval

1000 to 3000) does not necessarily satisfy requirement Xi (rpm takes only
values in the interval 1500 to 4000). Any part which satisfies X 2 by having an
rpm value anywhere in the interval 1000 to 1499 would not satisfy X ^ Con­
sequently, the MDC processes the X j requirement since Xj places a requirement
additional to that of X 2 on the chosen part.

168 BOETTNER A N D WARD

Ε 3 - χ'
1500 4000

—Ε 3 — fi

1000 3000

Figure 5-31: Example 2, Redundancy Condition 3

Redundancy Condition 4

(some Xj > and (only X 2 > and (X 2 ^ Xj)
Example 1 :
Given:
X j : < All-Parts some rpm 700 4000 >
X 2: < All-Parts only rpm 1000 3000 >
Computation:
Condition: (X 2 £ Xj) ==> true for this example
Redundancy Condition Result:
X j is redundant with respect to X 2 since X 2 is a subset of X j (the condition is

met).
A graphical representation is shown in Figure 5-32.

X i

700 4000

—Ε 3 X 2

1000 3000

Figure 5-32: Example 1, Redundancy Condition 4

Physical Interpretation:
Any part which satisfies requirement X 2 (rpm takes only values in the interval

1000 to 3000) automatically satisfies requirement Xj (rpm takes some value in
the interval 700 to 4000). The MDC does not process the X j requirement since
X j is redundant with respect to X 2.

Example 2:
Given:
X j : < All-Parts some rpm 3000 5000 >

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 169

X 2: < All-Parts only rpm 1000 3000 >
Computation:
Condition: (X 2 £ Xj) ==> false for this example
Redundancy Condition Result:
X j is not redundant with respect to X 2 since X 2 is not a subset of X j (the con­

dition is not met).
A graphical representation is shown in Figure 5-33.

H- -H— Xl

3000 5000

-E—3 *
1000 3000

Figure 5-33: Example 2, Redundancy Condition 4

Physical Interpretation:
Any part which satisfies requirement X 2 (rpm takes only values in the interval

1000 to 3000) does not necessarily satisfy requirement X j (rpm takes some
value in the interval 3000 to 5000). Any part which satisfies X 2 by having an
rpm value anywhere in the interval 1000 to 2999 would not satisfy X j . Con­
sequently, the MDC processes the X j requirement since Xj places a requirement
additional to that of X 2 on the chosen part.

Redundancy Condition 5

(some X j) and (some X 2) and (X 2 C Xj)
Example 1 :
Given:
X j : < All-Parts some rpm 700 4000 >
X 2: < All-Parts some rpm 1000 3000 >
Computation:
Condition: (X 2 £ Xj) ==> true for this example
Redundancy Condition Result:
X j is redundant with respect to X 2 since X 2 is a subset of Xj (the condition is

met).
A graphical representation is shown in Figure 5-34.
Physical Interpretation:
Any part which satisfies requirement X 2 (rpm takes some value in the interval

1000 to 3000) automatically satisfies requirement Xj (rpm takes some value in
the interval 700 to 4000). The MDC does not process the X j requirement since
Xj is redundant with respect to X 2.

170 BOETTNER A N D WARD

Xi
700 4000

X 2

1000 3000

Figure 5-34: Example 1, Redundancy Condition 5

Example 2:
Given:
X x: < All-Parts some rpm 3000 5000 >
X 2: < All-Parts some rpm 1000 3000 >
Computation:
Condition: (X 2 £ X{) ==> false for this example
Redundancy Condition Result:
Xl is not redundant with respect to X 2 since X 2 is not a subset of X x (the con­

dition is not met).
A graphical representation is shown in Figure 5-35.

1000

Figure 5-35: Example 2, Redundancy Condition 5

Physical Interpretation:
Any part which satisfies requirement X 2 (rpm takes some value in the interval

1000 to 3000) does not necessarily satisfy requirement Xj (rpm takes some
value in the interval 3000 to 5000). Any part which satisfies X 2 by having an
rpm value anywhere in the interval 1000 to 2999 would not satisfy X j . Con­
sequently, the MDC processes the X 1 requirement since Xj places a requirement
additional to that of X 2 on the chosen part.

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 171

5.2.4.5. Translation rule

The translation rule generates new labeled intervals from old based on the in­
terrelationships among components. When ports are connected in a schematic,
the connecting ports establish equivalence between matching variables in each
component. Then, when a labeled interval is created for one of the variables in
one port, a matching labeled interval in the other port is created by the trans­
lation rule.

Some components have variable features which are directional (i.e., torque: a
motor produces torque-out while a transmission accepts torque-in; RPM: a
motor produces RPM-out while a pump accepts RPM-in; HP: a motor produces
HP-out while a transmission accepts HP-in). When a component (i.e., motor)
has a labeled interval being processed, the translation rule determines whether
this labeled interval should be translated to a connected component (i.e., trans­
mission).

If:

1. The connected components (i.e., motor and transmission) have a
matching variable name (i.e., torque); and

2. The labeled interval (for the motor) is new information for the
connected component (transmission). Note: Information is new if
the labeled interval was not previously translated from the con­
nected component (transmission) to the component under con­
sideration (motor).

then
Translate the labeled interval to the connected component.
Example:
Given:
Transmission: < All-Parts every input-rpm 0 1800 >
Transmission is connected to a motor.
Translation Rule Result:
Create LI for motor: < All-Parts every rpm 0 1800 >

5.2.4.6. Propagation rules

Propagation rules generate new labeled intervals based on previously
processed labeled intervals and a given relationship G, which is implicit among
three variables. Each rule is formatted such that there are two antecedant
component-level labeled intervals, a given relationship G, and a resultant

172 BOETTNER A N D WARD

component-level labeled interval. There may be additional causality require­
ments. The resultant labeled interval contains a constraint label and labeled in­
terval calculus operation — one of Range, Domain, or Sufficient Points.

The MDC determines the resultant labeled interval by applying the operation
to the variables. If the operation on the variables produces a labeled interval, the
MDC propagates this new labeled interval. If the operation on the variables
does not produce a labeled interval (i.e., the labeled interval does not exist), the
propagation rule is not valid.

The artifact set and the state set of the new labeled interval are the intersection
of the artifact set and the state set of the two antecedant labeled intervals. If
both of the antecedant labeled intervals have an All-Parts set label, the new
labeled interval will have an All-Parts set label. If the two antecedant labeled
intervals have any other combination of set labels (i.e., one with a Some-Part set
label and the other with an All-Parts set label or both with a Some-Part set
label), then the new labeled interval will have a Some-Part set label.

Propagation Rule 1

(only X) and < only Y) and G ==> (only Range (G, X, Y))
Example: Hydraulic Pump
Given:
G: flow (GPM) = (displacement χ rpm)/231
< All-Parts only displacement .32 3.80 > (CIR)
< All-Parts only rpm 700 4000 > (RPM)
Displacement is the volume of fluid that moves through a hydraulic line per

revolution of the pump motor. RPM is the speed of the motor driving the pump.
The flow is the rate at which the fluid moves through the lines.

Computation:
Corners (G, Displacement, RPM) = {.97, 11.52, 5.54, 65.80} (GPM)
Range (G, Displacement, RPM) = < flow .97 65.80 > (GPM)
Propagation Rule Result:
< All-Parts only flow .97 65.80 >
A graphical representation is shown in Figure 5-36.
Physical Interpretation:
We know that the pumps run at an rpm only in the interval 700 to 4000 RPM

and that the pumps have a displacement capability only in the interval .32 to
3.80 cubic inches per revolution. Consequently, the pumps can only produce
flows in the interval .97 to 65.80 GPM.

Propagation Rule 2

Independent « every X), < every Y » and G ==> (every Range (G, X, Y))
We define X and Y as Independent unless:

DESIGN COMPILERS AND LABELED INTERVAL CALCULUS 173

L U 71

0 .97
5.54 flow

(GPM)

3.80

11.52 65.80

Ε
Flow

3

Figure 5-36: < only Range (G, Displacement, RPM) > = < only flow
.97 65.80 >

1. The designer designates X and Y as dependent

2. The process determines that the labeled intervals, X and Y, have a
common source in their histories.

Example: Transmission
Given:
G: t0 = ratio χ tt
< All-Parts every ratio 2 4 >
< All-Parts every tt 1 2 > (ft-lb)
ti is the torque that the transmission accepts from the motor. tQ is the torque

that the transmission provides to its load. Ratio is a parameter fixed by the
transmission design.

Computation:
Corners (G, Ratio, Ί{) = { 2 , 4 , 4, 8} (ft-lb)
Range (G, Ratio, T{) = < tQ 2 8 > (ft-lb)
Propagation Rule Result:
< All-Parts every t0 2 8 >
A graphical representation is shown in Figure 5-37.
Physical Interpretation:
We know that the ratio will take every value in the interval 2 to 4. We also

know that the transmission will receive every torque in the interval 1 to 2 ft-lb,
independent of the ratio. Consequently, the transmission will provide every
torque in the interval 2 to 8 ft-lb.

174 BOETTNER A N D WARD

Propagation Rule 3

(every X) and (only Y) and (State-variable (z) or Parameter (x)) and G
==> (every Domain (G, X, Y))

Example 1 : Head Loss in a 90° Bend Pipe
Given:
G: hi (Head Loss) = [kb χ (velocity)

2
]/64.4

< All-Parts every velocity 4 8 > (ft/sec)
< All-Parts only kb .16 .35 >
kb is the bending coefficient for a 90° smooth bend pipe. The value of kb is

based on the ratio between the radius of curvature of the pipe to the diameter of
the pipe. As such, the value for kb is fixed when the pipe is manufactured and is
a parameter. K b corresponds to Y in the rule. The head loss (hi) depends on the
velocity of the fluid which can change as the system operates. Consequently, hi
varies as the system operates and is a state-variable, hi corresponds to ζ in the
rule.

Computation:
Corners (G, Velocity, K b) = {.04, .16, .09, .35} (ft)
Central (G, Velocity, K b) = < hi .09 .16 > (ft)
Verify Range (G, Kb, HL) = Velocity.
Corners (G, Kb, HL) = {5.9, 4, 8 ,5 .4} (ft/sec)
Range (G, Kb, HL) = < velocity 4 8 > (ft/sec)
Since Range (G, Kb, HL) = < velocity 4 8 >, Domain (G, Velocity, Kb) = HL.
Propagation Rule Result:
< All-Parts every hi .09 .16 >

Figure 5-37: < every Range (G, Ratio, T/) > = < every t0 2 8>

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 175

A graphical representation is shown in Figure 5-38.

velocity

Figure 5-38: < every Domain (G, Velocity, Kb) > = < every hi .09 .16 >

Physical Interpretation:
We know that velocity in the pipe will take every value between 4 and 8

ft/sec. We also know that the pipes available have bending coefficients only be­
tween .16 and .35. Since hi varies as the system operates, hi will take every
value in the interval .09 to .16 ft. N o matter which pipe is chosen, the hi still
takes every value in the interval .09 to .16 ft.

Example 2: Fitting a Shaft in a Hole
Given:
G: dfr- ds = c
< All-Parts only c .000875 .002 > (in)
< Some-Part every ds 5.9995 6.0005 > (in)
ds is the diameter of the shaft to be put in a hole. The value for ds is fixed

when the shaft is manufactured and is therefore a parameter. D s corresponds to
X in the rule. dh is the diameter of the hole. The value for dh is fixed when the
hole is created and is therefore a parameter. D h corresponds to Ζ in the rule, c
is the clearance between the hole and the shaft, c is a parameter because it is
fixed by the diameter of the shaft in combination with the diameter of the hole.
C corresponds to Y in the rule.

Computation:

176 BOETTNER A N D WARD

Corners (G, D s, C) = {6.00125, 6.0035, 6.00225, 6.0045} (in)
Central(G, D s, C) = <dh 6.00225 6.0035 > (in)
Verify Range (G, C, D h) = D s.
Corners (G, C, D h) = {6.0005, 6.00175, 5.99825,5.9995} (in)
Range (G, C, D h) = <ds 5.99825 6.00175 > (in)
Since Range (G, C, D h) does not equal D s, Domain (G, D s, C) does not ex i s t -

however, see Propagation Rule 4, Section 5.2.4.6.
Propagation Rule Result:
No propagation occurs.

Propagation Rule 4

(every X) and < only Y) and Parameter (z) and G ==> (only SufPt (G, X,
Y))

Example 1 : Fitting a Shaft in a Hole
Given:
G: dft - ds = c
< All-Parts only c .000875 .002 > (in)
< Some-Part every ds 5.9995 6.0005 > (in)
ds is the diameter of the shaft to be put in a hole. The value for ds is fixed

when the shaft is manufactured and is therefore a parameter. D s corresponds to
X in the rule. dh is the diameter of the hole. The value for dh is fixed when the
hole is created and is therefore a parameter. D h corresponds to Ζ in the rule, c
is the clearance between the hole and the shaft, c is a parameter because it is
fixed by the diameter of the shaft in combination with the diameter of the hole.
C corresponds to Y in the rule.

Computation:
Corners (G, D s, C) = {6.00125, 6.0035, 6.00225, 6.0045} (in)
Central(G, D s, C) = <dh 6.00225 6.0035 > (in)
Verify Range (G, C, dh) contains at least < ds 5.9995 6.0005 >
Let dh = 6.00225. Range(G, C, dh) = (Ds)1 = < ds 5.99825 6.0005 > which

contains < ds 5.9995 6.0005 > as a subset. Similarly, let dh = 6.0035. Range(G,
C, dh) = (Os)x =<ds 5.9995 6.00175 > which contains < ds 5.9995 6.0005 > as
a subset. Consequently, SufPt (G, D s, C) = D h.

Propagation Rule Result:
< Some-Part only dh 6.00225 6.0035 > (in)
A graphical representation is shown in Figure 5-39.
Physical Interpretation:
Due to manufacturing tolerances, we know that the 6 inch shafts have a

tolerance of ± .0005 inch indicating that some shaft diameter has every value in
the interval 5.9995 to 6.0005 inches. We also know that the clearance is only in
the interval .000875 to .002 inch. Since the diameter of the hole is a parameter
and every shaft must fit in the hole, we can only have holes with a diameter in

the interval 6.00225 to 6.0035 inches. If we have a hole diameter outside the in­
terval 6.00225 to 6.0035 inches, the clearance requirement will not be met.

Example 2: Cylinder with Load
Given:
G: ρ =f/a
< All-Parts e v e r y / 9 0 0 0 12000 > (lb)
< All-Parts only ρ 1500 3000 > (psi)
fis the force of the load the hydraulic cylinder is required to lift, ρ is the pres­

sure at which the system operates, a is the cross-sectional area of the piston.
Computation:

Figure 5-39: < only SufPt (G, Ds, C) > = < only dh 6.00225 6.0035 >

DESIGN COMPILERS AND LABELED INTERVAL CALCULUS 177

178 BOETTNER A N D WARD

Corners (G, F, P) = {6, 8, 3 , 4 } (sq in)
Central (G, F, P) = < a 4 6 > (ft-lb)
Verify Range (G, P, a) contains at least < / 9 0 0 0 12000 >.
Let a = 4; Range (G, P, a)=Fl= < / 6 0 0 0 12000 > which contains < f 9000

12000 > as a subset. Similarly, let a = 6; Range (G, Ρ, a) = ¥λ = < / 9 0 0 0 18000
> which contains < f 9000 12000 > as a subset. Consequently, SufPt (G, F, P) =
A.

Propagation Rule Result:
< All-Parts only a 4 6 >
A graphical representation is shown in Figure 5-40.

a

Figure 5-40: < only SufPt (G, F, P) > = < only a 4 6 >

Physical Interpretation:

We know that the cylinders can operate under pressures only between 1500
and 3000 psi. We also know that the the cylinders must lift loads at every value
between 9000 and 12000 lb. The diameter and thus the area of our cylinder does
not vary as the cylinder functions. Consequently, any cylinder that will operate
within the specified pressure interval and will handle the loads given must have
an area only in the interval 4 to 6 in.
Propagation Rule 5

< every X > and < only Y) and G ==> (some SufPt (G, X, Y))
Example: Variable Speed Transmission
Given:

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 179

G: tQ = ratio χ *,·
< All-Parts every ratio 2 4 >
< All-Parts every tt 1 8 > (ft-lb)
tj is the torque that the transmission accepts from the motor. tQ is the torque

that the transmission provides to its load. The ratio is determined by the trans­
mission setting.

Computation:
Corners (G, Ratio, = {2, 4, 16, 32} (ft-lb)
Central (G, Ratio, T{) = < tQ 4 16 > (ft-lb)
Verify Range (G, Ti? tQ) = at least < ratio 2 4 >.
Let t0 = 4; Range (G, Ίν t0) = (Ratio)! = < ratio .5 4 > which contains < ratio

2 4 > as a subset. Similarly, let t 0- \ 6 \ Range (G, Ίν tQ) = (Ratio) x = < ratio 2
16 > which contains < ratio 2 4 > as a subset. Consequently, SufPt (G, Ratio,
Τ Λ = Τ
1
 ν

 1
 ο*

Propagation Rule Result:
< All-Parts some tQ 4 16 >
A graphical representation is shown in Figure 5-41.

Physical Interpretation:
We know that the transmission will be adjusted over every ratio in the interval

2 to 4. We also know that the transmission will receive torques only in the inter­
val 1 to 8 ft-lb. Consequently, the transmission must produce some torque in the
interval 4 to 16 ft-lb.

Propagation Rule 6

< only X) and < some Y) and G ==> < some Range (G, X, Y))

Figure 5-41: < some SufPt (G, Ratio, T{) > = < some t0 4 16 >

180 BOETTNER A N D WARD

Example: Fluid Flow in Hydraulic Line
Given:
G: flow = 3.117 χ velocity χ area
< All-Parts only area 1 2 > (sq in)
< Some-Part some flow 12.5 100 > (GPM)
Area is the cross-sectional area of the hydraulic line. Flow is the rate at which

fluid flows from the hydraulic pump. Velocity is the speed at which the fluid
moves through the lines.

Computation:
Corners (G, Diameter, Flow) = {4.0, 2.0, 32.1, 16.0} (ft/sec)
Range (G, Diameter, Flow) = < velocity 2 32.1 > (ft/sec)
Propagation Rule Result:
< Some-Part some velocity 2 32.1 > (ft/sec)
A graphical representation is shown in Figure 5-42.

flow area

Velocity

Figure 5-42: < some Range (G, Area, Flow) > = < some velocity 2 32.1 >

Physical Interpretation:
We know that we have pipe cross-sectional areas only in the interval 1 to 2 sq

in. The flow into the pipe will take at least some value in the interval 12.5 to
100 GPM. We know then that the velocity of the fluid in the pipe will take at
least some value in the interval 1 to 32.1 ft/sec.

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 181

5.2.4.7. Issues of causality

We have used the Parameter and State-Variable labels to describe how vari­
able features achieve their operating values. We initially assumed that we cap­
tured all of the information that we need about causality by representing vari­
able features with either of these two labels. However, problems with some ex­
amples for Propagation Rules currently under development indicate this descrip­
tion of causality is not complete. Research on this problem continues.

5.3. THE MECHANICAL DESIGN COMPILER (MDC)

5.3.1. Introduction

Based on a schematic, component specifications, and a cost expression
provided by the user, the MDC uses the operations and inference rules of labeled
interval calculus to produce an optimal design. It progressively narrows the
space containing possible designs down to one design rather than testing every
possible design.

This is a recursive process. The question, "What is the best feasible design in
this set of designs?" is answered by first asking, "What subsets can we easily
and correctly eliminate as infeasible?" The remaining set is split into subsets,
and attention is focused on the subset with the best design regardless of
feasibility. The same process of elimination and splitting continues until the
subset containing the best design has only the best design - this is the best
feasible design in the original set.

2

More precisely, it achieves the optimal design by first reasoning about
component-level specifications in order to determine which catalog-entry level
specifications will not work. Once the MDC eliminates all catalog-entry-level
specifications which will not work, the MDC conducts a search for the optimal
design. It searches by splitting component catalogs and creating "daughter
designs." The MDC uses the cost expression to determine the more promising
daughter design. Pursuing the most promising design, the MDC again identifies
catalog-entry-level specifications that will not work. This iterative process con­

c l u s is a form of A* search -- it is guaranteed to find the optimum design provided es­
timates of the best design are always optimistic and never become less accurate as the design
space is divided.

182 BOETTNER A N D WARD

tinues until the MDC either determines that no design will work or identifies the
optimal design.

5.3-2· Operation of the MDC

5.3.2.1. General operation

The general operation of the MDC consists of the following steps:
1. Formulate the initial Design, and add it to the (empty) list of active

designs.

2. Until

Active designs is empty (the design problem is shown to be impossible, or

A single solution remains for each component of the Most Promising
active design and it has no pending specifications

Do for the most promising of the active designs

If

The design has Pending Specifications,

Then

Process Specifications to eliminate catalog entries which
can be proven active not to work.

Else

Split the Design into daughter designs; add the daughter
designs to the active designs; remove the design from the
active designs.

5.3.2.2. Formulate design

1. Until the schematic is complete, Do

a. User enters the name of a component type,

1. Create an "in-box" for the component.

2. Create a "component-level specification table" for the
component.

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS

and

b. If there is a previous component,

1. Verify common port types of connected components.

2. Verify complementary port directions of connected
components.

2. User enters cost expression.

3. User enters specifications for components, which are placed in their
in-boxes.

5.3.2.3. Pending specifications

Specifications are pending if

The MDC has eliminated catalog-entry-level specifications from any
component catalogs.

or

The MDC has split a component and formed "daughter designs."

or

Any component has a specification in its in-box.

5.3.2.4. Process specifications

While there are pending specifications, Do

1. Abstract any component catalogs which have been split or under­
gone eliminations since the last abstraction to formulate
component-level specifications. Place the resulting (abstracted)
specifications in the in-box.

2. While any in-box is not empty, pick a component with a non­
empty in-box. Call it comp. Pop one specification from comp's
in-box. Call it spec.

Check spec for redundancy with respect to specifications in
comp's component-level specification table.

If redundant, then discard spec.

BOETTNER A N D W A R D

Else if spec conflicts with a specification in comp's
component-level specification table, remove the design
from active designs.

Else,

a. For each equation in comp's equation table with the same
variable as in spec,

For each specification contained in comp's
component-level specification table with
another variable in the equation chosen

For each propagation rule pattern that
matches the specifications.

If

The propagation rule
produces a new
specification,

Then

Put the new specification
in comp's in-box.

b. Eliminate part numbers that do not work using elimination
conditions to check if any catalog-entry-level specifications
conflict with the spec.

c. For each connected component, apply the translation rule,
and place any resulting specifications in the connected
component's in-box.

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 185

5.3.2.5. Split design

l . T h e user designates which component to split. The component
designated must have more than one part number remaining.

2. Split the component's catalog into two sub-catalogs.

3. Create two "daughter designs" using only one sub-catalog in each
daughter design for this component; the remaining parts of the
daughters are copies of the parent.

5.3.2.6. Most promising

1. Determine for each component in each design the maximum and
minimum possible values for all variables appearing in the cost ex­
pression.

2. Determine the minimum possible value of the cost expression for
each component based on these values.

3. Sum the minimum values for the components in each design to
form a value for each design.

4. Pick the design with the minimum value.

5.3.3· Guide for Use of the Mechanical Design Compiler

This section describes how a user interacts with the MDC to create a design.

5.3.3.1. Background

Once the MDC has been loaded, the screen should look like the screen in
Figure 5-43.

The menu bar contains the menu title, "Design", which has the following
menu commands:

d. Add spec to the comp's component-level specification
table.

186 BOETTNER A N D WARD

File Edit Eval Tools Windows Design

Design Window

Figure 5-43: Initial Screen

New Design
Form-Cost-Expression
Add Specifications
Search

5.3.3.2. Procedure

Step 1:
Highlight the menu command, "New Design", within the "Design" menu title

and click once. "Select an Item" window as shown in Figure 5-44.
Step 2:
Highlight "Electrical Supply" and click "OK." The electrical supply appears

in the "Design Window" as shown in Figure 5-45.
Step 3:
Double click on the port of the electrical supply to add another item to the

design. The "Select an Item" window as shown in Figure 5-46 appears.
Step 4:
Highlight the desired item in the "Select an Item" window and click "OK."

The MDC adds the item selected to the design in the "Design Window" as
shown in Figure 5-47.

Step 5:
Double click on the port of the last item in the design to add another item to

the design. The "Select an Item" window appears. Highlight the desired item in
the "Select an Item" window and click "OK." The MDC adds the item selected

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 187

Select an Item

Electrical Supply

Θ ^ Cancel ^

Figure 5-44: Select an Item Window - Initial Component

Design Window

Electrical Supply 0
7 \

Port

Figure 5-45: Design Window with First Component

to the design in the "Design Window." Continue this process until the complete
design desired appears in the "Design Window" as shown in Figure 5-48.

Step 6:
Highlight the menu command, "Form-Cost-Expression", within the "Design"

menu title and click once. The "Enter the Utility Function" window as shown in
Figure 5-49 appears.

Step 7:
Enter the desired utility function. Click "OK."
Example: For a utility function based on price, enter (+ (* price 1) (* 0 1)).

This is interpreted as (price x l) + (0 x l) = price.
Step 8:
Highlight the menu command, "Add Specifications", within the "Design"

menu title and click once. The screen remains the same.

BOETTNER A N D WARD

Select an Item

Electrical Supply
Motor
Gear Pump
Cylinder
Transmission
Valve
Pipe-T

Q Cancel ^

Figure 5-46: Select an Item Window - Additional Components

Design Window

Electrical Supply 0
7

Motor 0
1 30 30

Figure 5-47: Design Window with Second Component

Design Window

Electrical Supply 0 Motor 0 Gear Pump 0 Cylinder 0
7 1 30 . 1 13 1 14

Figure 5-48: Design Window with All Components

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 189

. . . . , OK

Enter the utility function

Q Cancel J

(+ (*)(*))

Figure 5-49: Utility Function Window

Step 9:
Within the "Design Window", place the cursor on the item for which you

have a specification. Click once on that item. The "Select Keys and Bounding
Values" window as shown in Figure 5-50 appears.

Select Keys and Bounding Values

Diameter
Flow
Force
HP
Pressure
Speed
Stock N o .

All-Parts
Some-Part

only
every
some
none

All-states
normal
start-up
impact
stall

()

0 G * infinity

^ O K ^ ^ Cancel ^

Figure 5-50: Select Keys and Bounding Values Window

Step 10:
Refer to Figure 5-50, "Select Keys and Bounding Values Window." With the

cursor highlight the appropriate one item in each area, A, B, C, and D. If the

190 BOETTNER A N D WARD

specification has only discrete values, enter these values separated by a comma
in area E. If the specification does not have discrete values, leave area Ε blank.
If the specification has only a continuous range of values, enter the lowest value
in area F and the highest value in area G. If the specification does not have a
continuous range of values, leave areas F and G blank. Click "OK." The "Lis­
tener" window will list any parts killed along with the labeled interval conflicts
causing elimination of the part number. The "Design Window" displays the
number of part numbers of the item remaining and the cost interval of those part
numbers within the box for each item. If only one part number remains for an
item, the item box contains a "1", the cost of the remaining part number, and the
part number of that part. See Figure 5-51.

Design W i n d o w

Electrical Supply 0 Motor 0 Gear Pump 0 Cylinder 0
1 48 .59 US-3PH-220 21 (81.31 295.14) 1 8 (134.0 141.0) 3 (51.25 82.40)

Figure 5-51: Design Window Showing Components with Several
Part Numbers Remaining

Step 11:
To add another specification, within the "Design Window" place the cursor on

the item for which you have a specification. Click once on that item. The
"Select Keys and Bounding Values" window appears. Repeat Step 10.

Repeat Step 11 until all specifications for any parts have been entered.
Step 12:
Highlight the menu command, "Search", within the "Design" menu title and

click once.
Step 13:
Within the "Design Window", you can search (split the design into daughter

designs) on any item with more than one part number remaining. Place the cur­
sor on the item to be searched and click once. It does not matter which item is
searched first. The results of the search appear in the form of daughter designs
(with the most promising daughter design in bold face type) in the "Search Data"

DESIGN COMPILERS A N D LABELED INTERVAL CALCULUS 191

window. Any parts killed during the search process appear in the "Listener"
window along with the labeled interval conflicts causing elimination of the part
number. The updated status of the number of part numbers remaining for each
item is contained in the box for each item within the "Design Window."

Repeat Step 13 for each item with more than one part number remaining until
each item has only one part number remaining.

Upon completion of this process, the design in the "Design Window" is the
optimal design. Each item within the design appears with a "1", the price of the
item, and the part number for the item. See Figure 5-52.

Design Window

Electrical Supply 0 Motor 0 Gear Pump 0 Cylinder 0
1 48 .59 US-3PH-220 1 85.68 2N983 1 134.00 PF-107 1 69 .50 C108J

Figure 5-52: Design Window Showing Final Design

The daughter design in bold face type in the "Search Data" window is the
same optimal solution listing the price range in parentheses for the overall
design. See Figure 5-53.

Search Data

D O NTL (215.31 436 .14) 504
D 0 2 MOTOR0 (215.31 377.79) 48

D 0 2 1 MOTOR0 (352.78 359.78) 24
D 0 2 2 MOTOR0 (370.79 377.79) 24

D O l MOTOR0 (234.9 436.14) 2
DOl l MOTOR0 (337.77 337.77) 1
D 0 2 1 MOTOR0 (352.78 359.78) 24
D 0 2 2 MOTOR0 (370.79 377.79) 24
D 0 1 2 MOTOR0 (436.14 436.14) 1

Figure 5-53: Search Data Window

192 BOETTNER A N D W A R D

5.4. BIBLIOGRAPHY

[1] Bahler, D., Bowen, J., O'Grady, P. and Young, R., Constraint Networks
for Life-Cycle Engineering: Project Summary, Technical Report, LIS-
DEM Technical Report, 1990.

[2] Davis, E.,
 4

'Constraint propagation with interval labels," Artificial
Intelligence, Vol. 32, pp. 281-331, 1987.

[3] Moore, R., Mt 'hods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

[4] Popplestone, R. J., "The Edinburgh Designer system as a framework for
robotics: the design of behavior," AI EDAM, Vol. 1, pp. 25-36, 1987.

[5] Ward, A. C , Lozano-Perez, T. and Seering, W. P., "Extending the Con­
straint Propagation of Intervals,' ' AI EDAM, Vol. 4(1), pp. 47-54, 1990.

Chapter 6
KNOWLEDGE REPRESENTATION

FOR DESIGN IMPROVISATION

Jack Hodges, Margot Flowers, and Michael Dyer

ABSTRACT

This chapter briefly reports on the representational strategy used in EDISON,
a program currently being designed to (1) invent novel mechanical devices
through heuristic strategies of mutation, combination and analogy, and (2) to
comprehend descriptions of invented device representations. The represen­
tational constructs required to support these tasks include: (a) intentional struc­
tures such as goals, plans and settings, which organize relationships between
device use and context, (b) physical entities such as regions and materials, (c)
behavioral process relationships, such as object motion, connection and defor­
mation, which relate objects to their physical states, (d) function relationships,
which relate primitive devices to expected applications, and (e) mechanical
dependencies and inferences. Invented and comprehended device represen­
tations are indexed and generalized into a memory of design episodes. The or­
ganization of such a memory supports the use of cross-contextual reminding and
analogy during problem solving.

6.1. INTRODUCTION

EDISON is a project created to explore the processes of comprehension
[15] and creativity [8 ,9] in naive mechanics [6]. These tasks require basic

research in: the representation of physical knowledge, memory organization,
inference and dependency structures, planning, problem-solving, and learning.
The overall approach has been to build a prototype process model and to test the
limitations of various comprehension and invention heuristics, along with the
representational constructs over which they operate.

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

193 Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

194 HODGES, FLOWERS, A N D DYER

The situations we are interested in are those relating to the development of a
preliminary design, resulting from an idea or goal and the associated context,
rather than design optimization or performance. This approach is exemplified
by the following scenario:

Example 1: Swinging Door

Joe Pizzamaker finds himself repeatedly having to carry pizzas through a doorway
in both directions. In one direction he merely pushes the door while in the other he
must open the door. At some point of discomfort Joe might say "surely there must
be a better way!". He already knows the ease of door use in one direction and so he
might have the idea to redesign the door into a swinging door by modifying the
existing door to "close" in both directions. The problem-solving for this scenario
utilizes memory retrieval and combinational strategies.

Swinging Door is an example of naive invention, a design methodology
which uses naive, or common sense mechanical reasoning to solve problems and
generate novel devices. Common Sense reasoning is particularly suited to the
representation and processing of Swinging Door for three reasons. The first is
motivation. Joe is motivated to invent, and his idea originates from a need to
reduce his discomfort. The second is feasibility. Joe is first interested in whether
the idea will work in general, rather than how well it works. His understanding
of door use, function, and behavior need only be detailed enough to associate the
door with the context of its use, recognize the conditions which will enable and
disable its functionality, and predict resulting door behavior. The third is naive
evaluation. Joe is interested in a simple solution, and evaluates the new door by
comparison to other (known) devices.

Common Sense reasoning supports invention in situations such as Swinging
Door through the application of experiential knowledge, which requires the in­
tegration of intentional and physical knowledge constructs organized into a
memory of design episodes.A process model for naive invention is comprised of
two major components: a representation and memory which support common
sense reasoning, and a creative component which both recognizes serendipitous
situations for change and can follow through with a first-cut design approach.

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 195

6.2. SYSTEM ARCHITECTURE

The EDISON system is composed of eleven elements (Figure 6-1). In this
figure thin lines with arrows indicate flow of information through the system;
thin dotted lines without arrows indicate semantic links between knowledge
structures; thick lines indicate knowledge access between knowledge bases
(squares) and interpretation subsystems (squares with rounded corners).
EDISON accepts three types of natural language input: (a) a device description,
(b) a question, or (c) a goal specification and context. A detailed discussion of
natural language (NL) comprehension in the EDISON system can be found in
Reference [15].

JZQ Natural Language Μβιη, & Representation Invention/Memory Management

Figure 6-1: EDISON Process Model

196 HODGES, FLOWERS, A N D DYER

6 3 . NAIVE MECHANICS REPRESENTATION

A naive mechanics representation (NMR) must support comprehension,
problem-solving, learning and invention. The general approach of the EDISON
representation is to represent physical, relational, behavioral, and functional
device attributes as conceptual dependencies, focusing on how device charac­
teristics support device function in the different contexts in which devices are
used.

Briefly, a goal specification given as input to EDISON is passed to the con­
ceptual analyzer ((1) in Figure 6-1).

The CA coordinates the analysis of input text and generates a conceptual
representation (c-REP in Figure 6-1) of the goal statement. The c-REP is then
utilized by the invention management subsystem to interpret the goal and invent
a device.

If the goal is to create a novel device of a given type, then the c-REP is
handed directly to the brainstorming component ((10) in Figure 6-1).
Brainstorming consists of heuristics which attempt to create novel devices by
four general strategies: (1) interpretation of setting and actor intentions to
generate design constraints, (2) retrieval and combination of known devices
which satisfy, or partially satisfy design constraints, (3) analogy, where some at­
tribute of the device representation is generalized and a device is retrieved (from
another episode and/or context) which shares features with the given device at
the abstract level, and (4) mutation, where a given device representation is al­
tered along some device property. The door redesign in Swinging Door ex­
emplifies the use of mutation in EDISON.

If the goal specification already includes design constraints, the c-REP is
passed first to the problem-solving component of the invention management
subsystem ((9) in Figure 6-1). The problem-solver attempts to apply rules and
principles of mechanics to satisfy physical constraints. When the problem-
solver cannot recall a solution from memory, it calls upon the brainstorming
heuristics to improvise a solution to the planning failure.

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 197

hinge

hinge
doorjam

- latch
/

hinge

(a) (b)

Figure 6-2: Examples of Non-functional Doors:
a) attribute-based, and b) process-based motion disablements

Comprehending the bugs in Figure 6-2 requires that EDISON be able to (1)
receive a conceptual representation of a door as input, (2) recognize it as a door
(either from a label or by comparing its representation to that of a device in
memory), and (3) realize that this particular representation disables a door func­
tion. Figures 6-2(a) and 6-2(b) illustrate two ways in which motion can be dis­
abled. In Figure 6-2(a) motion capability is disabled from the placement of
hinges. In Figure 6-2(b) existing door motion is disabled by a path restraint
(doorjam).

We believe that the processes of invention and comprehension share high-
level, abstract features across a variety of task domains. In order to detect
device errors, EDISON must be able to analyze a device in terms of the goals its
use accomplishes. In story understanding and invention domains the relevant
goals are those of the characters and include hunger, health, achievement, etc.

6.4. THE NEED FOR INTENTIONAL KNOWLEDGE IN
PROBLEM SOLVING

Consider the doors in Figure 6-2. Most people easily recognize that the door
in Figure 6-2(a) simply won't work, and that the door in Figure 6-2(b) cannot be
opened in the direction shown. It takes a little longer to realize exactly why the
normal function of these doors is disabled. This comprehension process often
requires that they re-examine how a working door actually functions.

198 HODGES, FLOWERS, A N D DYER

In the naive mechanics domain, goals involve physical transformations, such as
connection and separation. Physical goals are achieved by the use of devices.
For example, use of the door represented in Figure 6-3 is instrumental to achiev­
ing the intentional goal (D-PROX[18]) of moving (PTRANSing) between
rooms. Door use, and the function with which a use is associated, thus depends
on the context of actor goals.

goal g:d-prox.1
actor hum:human.1
from st:loc-room.1
to st:loc-room.2

Ρ :USE-DOOR

ι
Achieved with Device 0 :DOOR. l
and plan Ρ :USE-DOOR

plan p:find(o:door.1)
function func:open(o:door.1)

act:grasp(reg :door-knob)
act:propel-turn(reg:door-knob)
act:propel-pull(reg:door-knob)

act:ptrans(hum:human.l to o:room.2)
function func:close(o:door.1)

act:grasp(reg :door-knob)
act:propel-push(reg :door-knob)

Figure 6-3: Use of Intentional Representation in Device Comprehension

The intentional use of objects is represented as a series of events,2 and how
those events achieve particular goals. For example, door function (e.g. opening)
is initiated by a combination of actions: GRASPing the knob and turning it (a
PROPEL resulting in door latch release from the door jam), and pushing the
door (a PROPEL resulting in door rotation about its hinges).

-Dyer views an event as an action-state pair, or causal primitive [7]

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 199

In story domains, goals are achieved through the application of plans, and a
number of plans may exist which are able to achieve a single goal. Likewise, in
naive mechanics, goals are also achieved through the application of abstract
plans, but here realized through the operation of physical devices. For example,
using the door of Figure 6-3 requires release of an (implied) door latch. Door
mobility can be realized by executing the processes used to achieve latch release
(e.g. unbolting and untying are acceptable plans for un-restraining parts).

6.5. DEVICE TAXONOMY FOR REPRESENTING
FUNCTIONAL COMPREHENSION

A simple door is comprised of many devices (a doorslab, doorway, latch and
hinges). Each device is used for different purposes, and functions in different
manners. If every device has a unique representational form, EDISON would
never be able to distinguish one device from another, nor recognize similarities.
On the other hand, if all devices are decomposed to a primitive set of devices,
then similarities can easily be traced, supporting both device retrieval and
analysis. In the mechanical domain, all basic machines [2, 3] manifest the prin­
ciple of mechanical advantage [19]; and all devices in EDISON decompose to
the interaction of simple mechanisms, called machine primitives [14], which ex­
hibit mechanical advantage.

Notice that one can understand the function of a door and recognize when a
door will fail to work (such as those in Figure 6-2) without knowing the exact
principles behind leverage. We only need a shallow model of what components
do, and not exactly why they do it. In terms of door hinges we need only know
that hinges realize mechanical advantage, how their use is enabled and disabled,
and how hinges interact with other devices. In EDISON, the representation of
device physical and relational properties directly supports the comprehension of
(a) physical behavior which the device exhibits, (b) the device function which
describes sequenced behavior and produces observable states,and (c) device use
and interaction.

Mechanical comprehension and representing behavioral processes. Each
mechanical device interacts with other devices, objects, and the environment. In
EDISON mechanical interactions, (e.g. motion and connection) are represented
as qualitative behavioral processes similar to Forbus' Qualitative Process (QP)
theory [11]. Processes represent causal state sequences relating perturbations to
physical state changes, and are used to predict and comprehend device behavior.
There are two differences between process representation in EDISON and QP
theory.

200 HODGES, FLOWERS, A N D DYER

First, EDISON has no relationships or influences that can be used to explicitly
simulate device behavior. Instead, processes are represented as frames: by their
behavioral and quantity enablements, and by the states an enabled process
results in. A process can be used to predict the resutling state given the proper
enabling conditions, or to explain a failed process, but not to simulate spatial be­
havior. Nor can EDISON processes by used to simulate or predict transient be­
havior. Second, in EDISON all mechanical behavior can be decomposed to one
of five behavioral process primitives: BPP-Motion, BPP-Restrain, BPP-
Transform, BPP-Store, or BPP-Deform. Each BPP results in a unique change in
state: BPP-Motion to location, BPP-Restrain to restraint, BPP-Transform to
force, BPP-Store to stored energy, and BPP-Deform to size/shape. Moreover,
BPPs can be combined to describe arbitrarily complex mechanical behavior, so
analysis of mechanical behavior is somewhat simplified.

Despite differences in representational detail, the EDISON methodology is
directed at understanding function through context. The approach is best suited
to integrating a device with the context of its use; for conceptual or preliminary
design, rather than optimization. Clearly both points of view play significant
roles in a complete representational model, and one intention of this project has
been to maintain predictive continuity with qualitative representation models.

To illustrate how a theory of mechanisms and processes can be useful in crea­
tive device interpretation (and generation), let us decompose the representation
of door-use that was introduced in Figure 6-3. Early intentional (object) models,
e.g. Lehnert [16], represented device use in context but didn't associate use and
function, or use and behavior. The Lehnert representation could infer what the
device was used for, but not how or why. We are interested in how the door ac­
tually behaves as a result of an intentional act, and how device behavior is inter­
preted. Figure 6-4 shows how the open and close functions of a door-use plan
are represented in EDISON. Device function is represented as the observable
input to a device, as perturbations, and by the observable states which the device
produces. Device function can be described as a sequence of behavioral
processes which causally relate user/device input to the function terminating
states. The function terminating state is the state associated with the original
purpose for which the device was chosen. Each device may have multiple func­
tions, associated with different properties, mechanisms, or combinations therein,
and these may be used together or separately in different contexts. A door has
two simple functions: open and close. Each door function consists of an initial
action, a motion (or motions), and a resulting position (state).

The close function shown in Figure 6-4 describes a simplified (black box)
version of the key steps in door closing. The contact between latch (reg:linkage-
doorknob) and doorway, sliding and compressing of the spring, and the resulting
linkage containment in the doorway have been omitted. The open function
shown, on the other hand, describes enough detail so that all but the most
specific relationships are represented. Decomposing door-use representation to

'stale st:loc-closed-door
prop location
obj o.doorslab-door

N^val 0
or.1 /

enables

termina ted-by

function f une: close-door
obj o.door.1

state-initiates
/action act:propeI-push y
I obj o:doorknob-door.ll

state-enables
/action act:grasp-hold γ
I obj o:doorknob-door.lJ

action act:grasp-hold
obj reg:doorknob-door.

function func:open-door
obj o:door.1

state-Initiates

process bpp-restrain : interfere
sre reg:linkage-doorknob
dst reg:8haft-doorknob

state-enables

/actio
I obj

action act: pro pel-pull
reg :doorknob-door.1

state-enables

enables
state 8t:loc-open-door

prop location
obj o:door.1

^val +10

state-enables

action act:propel-turn
obj reg :doo rte nob-door.

state-enables

process bpp-traneform-transmit
sre reg: s haft-doorknob
dst reg: linkage-door knob J

state-enables

process bpp-motion:slide
reg: linkage-doorknob ù

state-disables

process bpp-restrain:contac t
sre reg:linkage-doorknob
dst reg: s lot-doorwa y

state-enables

process bpp-motion:rotat e
sre o:doorsla b

Figure 6-4 : Representin g Doo r Functions : Openin g an d Closin g

K
N

O
W

L
E

D
G

E
 R

E
P

R
E

SE
N

T
A

T
IO

N
 F

O
R

 D
E

SIG
N

 IM
P

R
O

V
ISA

T
IO

N

20
1

202 HODGES, FLOWERS, A N D DYER

this level is useful for (a) constraining processing, (b) making inferences and
predictions about gross device behavior, (c) integrating the intentional and
physical representations, and (d) presenting limiting, or bounding, information
for device fonction. The information obtained from Figure 6-4 enables EDISON
to recognize motion of the door toward (direction is not shown in the figure) the
doorway as a closing function, and to predict that the door will very likely reach
a closed state (processes are scriptal). EDISON can also make the inference that
someone, or some thing, was responsible for the motion of the door, and that its
closing will satisfy one of their goals. (This is only implied in the figure through
reference to the actions of actors, and hence to their higher level goals and plans;
see [12 ,13] for complete examples and taxonomy.)

Although Figure 6-4 shows how processes interact in a device function, noth­
ing specific has been said about what processes do, or how. Bounding the door-
use plan enables some inference and prediction for cyclic behavior, however,
predicting and explaining door behavior requires some representation at the
process level. Figure 6-5 details the process representation level representation
in EDISON, and how it supports understanding the BPP-Restrain processes in
Figure 6-4.

Figure 6-5 shows the representational form for EDISON processes and how
different BPP-Restrain processes are realized by different role bindings. The
representation of processes is very similar to that of Schank's actions [18], but
there are three differences: (a) processes have no agent, (b) processes are
context-free, and (c) processes are more predictive. The rationale for introduc­
ing processes over new actions is that processes occur in a physical world which
parallels the intentional world. To illustrate, consider an action such as push
(propel) as applied by an actor to a ball. The action may result, at the intentional
level, in the ball flying through the air (ptrans) from one location (the actor) to
another. People generally do not think of the lower level processes of how the
impulse is transmitted from the actor to the ball, the storage of energy in the
ball, the restraints on the ball, whether or not the ball can move, or what path the
ball will take. However, these processes all occur as the object is propelled.
Processes have been introduced to maintain the ability to address both represen­
tational levels independently. Processes do not have an agent because the forc­
ing function can be supplied by another mechanism (such as a device, or
gravity). Processes are context-free because they have specific conditions
which, when met, result in their expected behavior. These conditions are situa­
tion independent, and do not index directly to any intentional knowledge struc­
tures. Finally, processes are more predictive because the physical world
(process dependencies) is well defined. That is, states resulting from enabled be­
havioral processes are true physical states.

In EDISON, all mechanical behavior is represented with five behavioral
process primitives: BPP-Motion, BPP-Restrain, BP Ρ-Transform, BPP-Store,
and BPP-Deform. The process BPP-Restrain describes object interactions

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 203

BPP-Restrain Representation
(state st:prox-ol-ra

obj ?REG:RA-01|
prop POSITION
dimr 7DIMR
v a l 7PVAL)

(state st:prox-o2-rc
obj ?REG:RC-02
prop POSITION
dimr 7DIMR
v a l 7PVAL)

enables

enables

sre to
dst from
dimr BPP-Restrain dimr
from dst
to sre

f results-in

, results-in

(state st:restraint-ol-ra
ob j ?REG:RA-01
prop RESTRAINT
dimr 7DIMR1)

(state st:restraint-o2-rc
obj ?REG:RC-02
prop RESTRAINT
dimr 7DIMR2)

Specializations to BPP-Restrain

one dimension, one direction

dimr

0:01 0:02
dimr2 V M / \ • dimrl

reg:ra-o1 — — reg:rc-o2

(a) "contact"

vertical below one dimension, both directions one dimension, both directions, medium

*

I

(b)"hang" (c) "interfere" (d) "connect"

Figure 6-5: Representing BPP-Restrain Process in EDISON

204 HODGES, FLOWERS, A N D DYER

which produce mutual restraint states, thus disabling motion, which is
represented with the process BPP-Motion. BPP-Motion and BPP-Restrain are
sufficient to enable the transmission and transformation of force between ob­
jects, represented with the process BPP-TRANSFORM, the storage of elastic
energy in objects, represented with the process BPP-STORE, and the plastic
deformation of objects, represented with the process BPP-DEFORM. From
Figure 6-5, BPP-Restrain can be seen to require two parts, a dimension and
direction, and potentially some medium (e.g. a connector) for holding the ob­
jects together. All processes have enablements, and BPP-Restrain requires that
the parts be in physical contact to one another. Processes, like actions, cause
state changes. Once enabled, BPP-Restrain results in a restraint state on each ob­
ject, in equal dimensions but opposite directions.

BPP-Restrain:Interfere describes object contact in which object motion is dis­
abled along an entire dimension axis.-* The meaning of BPP-Restraimlnterfere
can now be interpreted. OiLinkage-DoorKnob and Reg.Slot-DoorWay instan­
tiate the process roles src (the source or reference object) and dst (the destina­
tion object). The object which fills the src role determines the process dimen­
sion. The dimension (ALONG-RADIUS) refers to the OiLinkage-DoorKnob
radial dimension. The process from and to roles refer to the state change
produced by the enabled process. BPP-Restrain processes describe restraint
states, which are defined by the process dimension and direction, so the from
and to roles are uninstantiated. The interference between OiLinkage-DoorKnob
and RegiSlot-DoorWay causes a set of restraint states for eachi along the
OiLinkage-DoorKnob radial dimension.

Two basic process assumptions are made in the EDISON representation ap­
proach: (a) parts are free to move unless specifically restrained, and (b) enabled
processes will continue unless otherwise acted upon. These assumptions, and
other basic knowledge for processes and process interactions, are formulated as
process enablements, and take the place of more formalized relations and in­
fluences in QP theory, the intention being to make a reasonable accounting for a
depth of representation which is beyond the scope of the EDISON project. The
assumptions do, however, enable similar types of reasoning, and support limited
process prediction, diagnosis, and explanation.

Machine primitives and function comprehension. Behavioral Process Primi­
tives underlie the representation of complex device behavior and device func­
tion. Nevertheless, devices, as physical objects, play the central representational
role in EDISON, because they index directly to both why the device is used (in­
tentional representation), and how it produces the desired effect (function and

3
 A s compared to BPP-Restrain:Contact or BPP-Restrain:Support, which act on specif ic

directions along a dimension.

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 205

behavior representation). The more compact the device representation, the
easier it is to associate device use and behavior, and less computational effort
will be required to do so. Because we are indexing devices by their use, it is in­
appropriate to decompose devices to the most primitive known physical
mechanisms [1]. Instead, we decompose all devices to a set of eleven com­
monly accepted basic machines [2], called Machine Primitives: MP-Linkage,
MP-Lever, MP-Wheel-Axle, MP-Gear, MP-Pulley, MP-Bearing, MP-Spring,
MP-Container, MP-Plane, MP-Blade, and MP-Screw. Machine primitives
represent simple devices which have a single expected function. For example,
MP-Linkage is associated with objects which are used to extend force over some
distance by transmission. The objects which can be involved in this function are
those which can transmit force in at least one dimension and direction. The
roles of the primitive are those regions where applied forces are applied, called
appl, and reacted, called react. All mechanical devices can be decomposed to
combinations of machine primitives, and by understanding them EDISON has
the capacity to understand, reason about, and generate, more complex devices.

Figure 6-6(a) presents the EDISON representation for BPP-Lever, which is
instantiated by simple lever-objects. A lever-object is a linkage-object with the
addition of a pivot location. Thus MP-Lever specializes MP-Linkage with the
addition of a pivot role (i.e., MP-Lever has three roles; appl, pivot, and react).
The pivot location, as with the locations associated with the appl and react MP
roles, represents a generalized location directly associated with device function.
Generalized locations are represented with a physical characteristic called a
region [10]. Whereas MP-Linkage is used to transmit or translate forces and
velocities, the function of MP-Lever (Figure 6-6(b)) is to magnify force or
speed; both of which enable specializations of the process BPP-Transform.

4

MP-Lever is realized in different ways depending on how the remaining MP-
Lever roles are instantiated: (a) type of applied input, (b) relative locations
(represented as relations) of the input, fulcrum, and reaction regions, and (c)
relative magnitudes of input and reaction (whether velocity or force). The
resulting state change is effected through the representation of BPP-Transform,
and BPP-Transform:Magnify in particular. The bindings for door-hinge in
Figure 6-6(c) are shown as they apply to the function representational form. The
doorhinge is really two simple lever-objects pinned together. However, the ef­
fect of the MP-Lever instantiated by 0:Platel-DH is nullified because BPP-
Motion enables MP-Lever use, and the doorway is grounded.

The significance of physical and relational characteristics is that all device-
related knowledge structures index directly to device use, device function, or to
a process which the characteristic enables. The representation for a device thus

4
A11 E D I S O N machine primitives, except MP-Spring and MP-Container, enable B P P -

Transform. MP-Spring enables BPP-Store, and MP-Container enables BPP-Restrain.

o:pin-dh

o:plate1

o:plat«l-dh o:pl*t«2-dh
react appl- .. outside inside

M P - L i n k a g e boundary M P - C o n t a l n e r boundary
appl react inside outside

inside outside!
boundary M P - C o n t a i n e r boundary4-j
outside inside I

react appl
M P - L i n k a g e

appl react

ο:pin-dh
surface surface
center M P - B e a r i n g center
surface surface

pivot appl
react M P - L e v e r react
appl pivol

appl pivot
react M P - L e v e r react
pivot appl

(function MP-LEVER
appl REG:END-DH-PLATE1-CON
react REG:END-DH-PLATE1-CNTR
pivot REG:CG-DH-PIN
initiated-by ST:FORCE-DH-PLATE1-CON
terminated-by ST:FORCE-DH-PLATE1-CNTR)

reg :end-dh-plate1 -cntnr
o :p la te1 -dh

reg:end-dh-plate1 -con

(dimrl fval)

Figure 6-6: A Door hinge MP-Lever Representation. Simple mechanisms can
be used to reason about mechanical interactions and device use:

(a) MP-Lever representation, (b) MP-Lever function,
(c) Doorhinge Representation

8

X
Ο
υ
ο

S

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 207

indexes into both intentional (e.g plans) and physical (e.g processes) knowledge
types. EDISON will always be able to say which device characteristic is respon­
sible for a particular use, or why an intended use failed. For example, regions
describe generalized locations on a device, and instantiate the roles of a machine
primitive. By representing only those device regions which directly affect a par­
ticular device function, the complexity of spatial descriptions is reduced, thereby
aiding in differentiating uses and processes. How do we recognize the futility of
trying to cut a metal rod with a rolling pin? People recognize that cutting re­
quires an object with a sharp edge, where edge is a region, and sharp is called a
property attribute. An attribute describes a simple comparison between the
property values of objects used in a particular context. Both the edge and its
sharpness are associated with the cutting of objects by the machine primitive
MP-Blade and the process BPP-Deform. A rolling pin simply doesn't have a
sharp edge, so most people do not consider it in the light of cutting. The door-
hinge fulcrum (instantiated by the object 0:Pin-DH) is a pivot region which al­
lows the hinge plates to rotate relative to one another. The fulcrum location and
implementation are actually unimportant in relation to the knowledge that either
plate can carry the door weight.

The combination of process and device knowledge, with primitives, enables a
broad view of physical interactions. EDISON can now make predictions and
explanations of device behavior given only limited knowledge. For example,
when a door is mentioned in text we expect some reference to dooor open or
door close. Given an event in either the open or close function of door-use, we
can predict the processes, and events within the processes, which are temporally
local to the known event. EDISON can also explain behavior which deviates
from that expected either at the device or process level. This kind of behavioral,
and functional, analysis is used during comprehension of text describing
mechanical situations. Consider the inferences required to understand the text of
Broken Foot(figure 6-7).

The inferences required in building a conceptual representation of Broken
Foot utilize knowledge in the door-closing function not ;explicitly mentioned in
the text. The lexical entry for "door" sets up expectations for the functions as­
sociated with door use [15]. The phrase "would have...but" indicates a failure to
achieve a given state, followed by an explanation. An explanation for the failure
leads to a consideration of how the door-closing function is disabled. Closing is
disabled either by restraining door motion or by eliminating the propelling force
(see Figure 6-4). The conjunction "but" is a causal indicator linking foot place­
ment with the disabled closing function. "Would have" and "closed" enable the
inference that the door was being closed. Foot placement is thus assumed to
restrain door motion, since motion once enabled can only be disabled by direct
behavioral interaction. Thus, the foot must be positioned somewhere along the
door's path of motion.

The integration of process and machine knowledge from the last two sections

The door I
— ί —

would have

Y 1
? aux

mode NEG
expect ?STATE
expect 7EXPLANATI0N

closed
1 —

but his
_ 4 —

foot ι
— I —

was I
— I —

there

t

conjunction I
type DISABLE I

phys-obj O-.BP-FOO"
expect ? HUMAN

phys-obj 0 : D O O R . l
type DOOR
expect ?G:D-PROX
expect ?G:D-CONT
expect FUNC: OPEN
expect FUNC:CLOSE

state S T : R E S T - C L O S E D
prop RESTRAINT
-expect ?PHYS-OBJ
expect FUNC:CLOSE

S T : L O C - R E F
type LOC
expect ?PHYS-OBJ

pronoun
gender MALE
expect ?PHYS-OBJ

aux
mode PAST
expect ?STATE

*-cauaal-b«for«
»-cauaal-b«twMn

nction FUNC : CLOSE
expect ?PROPEL

(disables
(state S T : R E S T-DO0R . l -
obj OrDOOR.l
prop RESTRAINT
val 0
results-from (function FUNCrCLOSE))

clause-causal
expect ?STATE1

-expect ?STATE2 - (s ta te S T : L O C - B P - F O O T
prop LOCATION
actor (human H U M : M A L E - B P

gender MALE
body-part 0:BP-FOOT))

(disables
(stale S T : L O C - B P - F O O T

obj 0: BP-FOOT
prop LOCATION)

(state S T : R E S T - D O O R . l
obj 0:DO0R.l
prop RESTRAINT
results-from (function FUNC:CL0SE>))

Figure 6-7: Comprehending Broken Foot using Process Theory

208
H

O
D

G
E

S, F
L

O
W

E
R

S, A
N

D
 D

Y
E

R

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 209

enables an explanation to be constructed for the buggy doors in Figure 6-2. Be­
havioral process primitives and machine primitives are instantiated to describe
the configurations depicted. The knowledge captured by these representations
can be formulated as rules such as H I and C1-C4 below:

HI: If object 0 1 is a hinge, then the plates of 01 can rotate relative to each
other about the long axis of 0 1 .

CI: If two objects 0 1 and 0 2 are connected along direction D, then if one
moves in D the other moves in D.

C2: If two objects 01 and 0 2 are in contact, then if either moves toward the
other the other will also move.

C3: If two objects 0 1 and 0 2 are connected in multiple points, then the
global restraint on the objects is the union of restraints along each dimen­
sion.

C4: If two objects 0 1 and 0 2 are connected in more than one location but
do not share a common axis, then the connection is rigid.

H I is a simple statement that hinges transmit forces in all dimensions except
about their longitudinal axis. That is, relative rotation between the plates is the
only motion that a hinge is capable of. H I is loaded onto a rule agenda when a
hinge is recognized and retrieved from memory. When the agenda is cycled the
rule is applied to knowledge in working memory. C1-C4 can all be derived
from the simple relationship that two objects connected along a dimension share
the restraints of the connection type, minimally along that dimension. Process
rules are applied in the same manner as device rules. The result of applying
these rules to the devices in Figure 6-2 is a global (device) restraint state which
disables motion.

Device representation and episodic comprehension. Naive mechanics reason­
ing in EDISON is experience-based. The potential for making interesting device
comparisons and combinations is directly related to (a) the amount of ex­
perience, and (b) the number of possible connections between representational
constructs. However, representational complexity, which is directly related to
the number of possible connections, is inversely related to comprehension, and
to the ease of comparison. EDISON organizes device knowledge behaviorally,
functionally and intentionally to account for this contrast. Behaviorally, device
characteristics, represented as states, index to behavioral processes. Function­
ally, device behavioral sequences index to the observed behavior associated with
device use. Intentionally, device functions must index to the context which
motivates device use. The relatively small number of machine and behavioral
primitives, combined with the use/functional nature of the model, provide an en­
vironment where comprehension and diverse comparisons can coexist.

210 HODGES, FLOWERS, A N D DYER

People tend to learn about, remember, and retrieve devices in terms of
attributes associated with a situation. A device attribute is a comparison be­
tween a device property value and its boundary values, or with property values
of other devices. For example, we may consider a faucet leaky if it won't close
all the way. The comparative property is position, and the bounding values are
open and closed. Were we to make the same kind of comparison, only w.r.t. the
open position, then we might say that the faucet is clogged or restricted. The at­
tribute thus tells us the point of view whereby device function is evaluated.
Property attributes can index to any contextual component, and so device use
can be interpreted in context. Also, because the physical property is directly as­
sociated with a behavioral process, EDISON can infer the function to which the
situational context refers.

Design episodes in EDISON are comprised of four components: (1) an en­
vironmental context, represented as states, (2) a problem solver's goals,
motivated by the environmental context, (3) the problem solver's planning, re­
lated to the goal, which includes the devices applied, and (4) the observable
states resulting from the executed plans. Each component adds a contextual ele­
ment to the episode and serves as a point of view for episodic interpretation. To
illustrate this concept consider the doors in Figure6-8. One door may be used in
a bank vault as security, while the other door is used in a flood for flotation.

The environmental state of flooding motivates a not-drown (G:Preserve-
Health) goal. One way to avoid drowning is to stay-afloat, and staying afloat is
associated with devices which float, and to materials capable of floating. Be­
cause the door is wooden, it may well be used to stay afloat. In contrast, a
$banking script

5
 builds expectations for money containment (G:D-Preserve-

Wealth). This goal suggests a default (prototypical) door use with emphasis on
material strength (for security), which is also met with a material (metal)
property.

6.6. NAIVE INVENTION IN EDISON

In EDISON the point of view is taken that the creative process requires the
ability to (a) address and interpret a situation from multiple perspectives, (b)
select an interpretation among many, and (c) visualize the environmental effect
of the interpretation. If a problem-solver resolves each new problem by simply
recalling a past solution, then inventiveness should diminish as the number of

5
T h e use of $ fo l lows the convent ion used by Schank and Abe l son [18] for scripts.

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 211

Figure 6-8: Contextual Determination of Door Use in Flooding and Bank Vault

212 HODGES, FLOWERS, A N D DYER

devices and experiences grows. However, with human inventors the acquisition
of a novel device serves as a platform for coming up with more devices.
Debono found, in his research with children [5], extensive use of analogy and
combination when the task given to the children was to create novel devices.
Making device comparisons this way is supportive of the idea that growth in
episodic memory increases the potential of inventiveness rather than diminish­
ing it.

The representation presented uses design episodes to support the ability to
make and comprehend comparisons. The creative utilization of design episodes
introduces four issues important to the study of naive invention: (1) the motiva­
tion for invention, (2) preliminary design and invention, (3) methods for
generating new designs, and (4) assessing the ingenuity and worth of new
devices.

Failure motivates invention. The quote "necessity is the mother of invention"
has popularized a basic tenet in recognizing the potential for invention: goals are
significant motivators for change. Goal successes rarely lead to inventions, but
goal failures point out planning limitations, conflict, and/or competition between
goals. These are good indicators that an invention process will be useful. When
invention is initiated, past design failures can be reviewed in the light of new
knowledge, and may result in a successful design. Likewise knowledge
generated from remindings

6
 may result in more goals being achieved by a single

design.

Invention and conceptual designs. Invention is customarily associated with the
early, conceptual, stages of design; inventors identify factors which are in­
strumental to a successful design, and build prototypes to demonstrate the con­
cept. EDISON is a model of conceptual design. We seek contextual interpreta­
tions which lead to the understanding, and development, of design constraints.
The invention itself results from the interaction of constraint and relaxation
based methods applied to the design constraints. The device representation is
fundamental for interpreting context and developing constraints, and thus fits
into the creative strategy of this model.

Design generation. Devices can be generated by the application of three simple
invention heuristics, (1) combining known devices, each of which partially
satisfy a design constraint, (2) analogically mapping a known device (and source
domain) to a new device and target domain, and (3) mutating known devices.
Mindless generation of devices, however, is anything but creative. Each inven­
tion heuristic has its place, and the inventor knows when best to apply them. An

6
R e m i n d i n g s are spontaneous similarity-based retrievals, see Schank [17] .

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 213

example illustrating an appropriate use of analogy for invention is the door
redesign in Swinging Door. Once Joe has decided to make a door which opens
both ways he runs into the problem that standard door hinges only open in one
direction. If Joe analogizes swinging horizontally to swinging in any dimension
he can be reminded of a clock radio with numbers on flash cards which flap as
their axis is turned. The cards use an axial hinge to enable swinging in both
directions. Making the comparison between the two doors Joe can now consider
whether the axial hinge will work on a door in the vertical dimension.

Design ingenuity and uselessness. Two kinds of knowledge constrain
EDISON's processing. First, physical knowledge constrains the generation of
novel but useless devices. A good example is the use of physical orientations
between objects. In Figure 6-2 the door wouldn't secure were the linkage and
slot not coaxial, a state which would render the device useless for door restraint.
Second, the interaction of planning metrics constrains the design process.

Many problems arise in designing a door, including the selection of hinge
type and placement, latch type and placement, even the material out of which
the door is made. Each of these details is significant in arriving at an overall
door design. Achieving the intended use, however, will generally have priority
over satisfying more detailed design constraints. In EDISON new designs are
created using simple heuristics such as mutation and combination. Similarly,
the design process is both constrained and evaluated using invention planning
metrics. EDISON has six invention metrics: (1) functional cost, (2) elegance
(physical and functional simplicity), (3) utility, (4) performance, (5) novelty, and
(6) efficiency. Invention metrics oversee the invention process and compete for
priority in the design. A device is considered ingenious if multiple invention
metrics are satisfied in its design.

In some cases only one planning metric may be activated, resulting in a
natural focus. One such case arises in improvisation, in which the only metric
involved is utility (i.e. will the device work). In such cases any invention
heuristic resulting in a design contradicting the desired use will be avoided. In
other cases competition between metrics forces the design process. Swinging
Door is a good example of competition between planning metrics. Joe has a
goal to get Pizzas from one room to the next; this involves utility. Simul­
taneously, Joe has a personal goal to maximize personal comfort; this involves
ease and simplicity. The two goals conflict, the result of which is a conflict be­
tween the design metrics. Depending on the strength of Joe's goals the door
design will vary.

214 HODGES, FLOWERS, A N D DYER

6.7. FUTURE WORK IN EDISON

The EDISON representation is designed to support the creative process, but
the creative capacity suggested by this model leaves many issues unanswered.
Some of these issues have been addressed to some extent but remain
unimplemented, others are just too difficult to consider at the present stage of
model development. We present here a few interesting concepts which we
would like to pursue further.

Throwing in the towel. Designers and inventors alike tend to get an idea and
milk it to death, oftentimes ignoring simple and more elegant solutions. The is­
sue of competing models, the importance which a creator gives to a partially-
successful invention, and what the creator does with a partial invention when the
evidence points against it (in terms of processing) is interesting. The same com­
ments can be made of device interpretation. Often times there may be many
mechanisms in a device, and understanding one may be requisite to understand­
ing another. Perhaps some processing stack exists and invention (and com­
prehension) processes can be shuttled to and from the stack, depending on the
context and available information.

Interpreting failure in an inventive memory. We have seen, above, that
failures motivate invention scenarios. But what is the role of failure in memory?
Schank [17] has argued that failures are important because learning occurs at
failure points. Dyer [7] has shown that plan failures represented at an abstract
level serve as an indexing structure to cross-contextual memories. If every
trivially bad design is stored in EDISON's episodic memory, then problem-
solving efficiency may suffer, as a result of recalling bad designs. However, if
failures are never stored in memory, then EDISON will be doomed to repeat its
mistakes. Therefore, along with design successes EDISON must store design
failures. The generalization of specific instances, whether success or failure,
leads to abstract experiences in memory. Situations which are not generalized
remain salient as episodes. The overall effect is that EDISON will later be able
to apply a bad design to resolve a different problem, or will be able to re-explore
the bad design in lieu of new knowledge, in the same ways that successful
designs are used.

Interference and invention. A conflict exists between the use of reminded ex­
periences during invention and the interference [4] of reminded experiences
upon invention. Creative people use their broad experience as a platform for
creating new designs because their experience can be applied across domain
boundaries when the context is similar. In this respect remindings aid invention.
During invention, however, continual reminding of old solutions can detract

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 215

from being creative. The inventor must be able to override reminded memory in
order to invent. Inventors don't seem to block remindings but, rather, make
decisions as to what knowledge is pertinent. The EDISON model is being
designed to address this fundamental issue in design creativity. The current ap­
proach is to consider the active goals being processed. When an active goal is
associated with device use, remindings are not used as direct solutions. Thus if
EDISON is trying to invent a better bicycle, a bicycle may be retrieved for com­
parison purposes, or to generate new indices into memory, but won't be used as
a solution. Nominally, if the bicycle is the only item retrieved, then mutation of
some bicycle attribute would be applied. When remindings are associated with
non-primary design goals direct use is acceptable. One example are the screws
used to connect a hinge to a door/doorway. Why reinvent a screw unless the
mode of connection is of interest. We hope that this initial approach will lead to
further insight into the problem of interference in creative design.

6.8. CONCLUSIONS

Naive mechanics comprehension and invention can be modeled in terms of
symbolic manipulations on representational constructs. Invention and creative
design can be motivated from an interpretation of situational context in terms of
actor goals and plans. Interpreting design episodes results in the development of
conceptual design constraints. Invention heuristics then enable us to combine,
analogize and/or mutate representations so as to achieve constraint driven goals;
resulting in a preliminary design. The representational approach stresses the in­
teraction of intentional and physical knowledge structures in memory, as applied
to the creative process. The resulting designs are indexed into memory by fea­
tures common across domains, increasing the amount of knowledge potentially
applicable to future design goal achievement.

The model emphasizes the role of episodic memory in creativity, and lacks
the ability to simulate device behavior as some qualitative, and all quantitative,
representation models. The difference lies in the approach. EDISON is directed
at reasoning about multiple device uses, and emphasizes a simple representation
for behavior and function through the introduction of knowledge primitives as­
sociated with each. This limits the ability of EDISON to simulate device be­
havior, but enables us to describe entire problem-solving scenarios and to ex­
press similarities between devices used for different purposes, in different con­
texts. We believe that this representational outlook is a necessary component to
an overall representational scheme which can support creativity.

216 HODGES, FLOWERS, A N D DYER

6.9. ACKNOWLEDGMENTS

The research reported in this section was funded in part by a grant from the
Office of Naval Research (contract no. N00014-86-0615)

6.10. BIBLIOGRAPHY

[1] Alonso, Marcello and Finn, Edward J., Physics, Series in Physics,
Addison-Wesley Publishing Company, Inc., Reading, MA, 1970.

[2] Bureau of Naval Personnel, Ed., Basic Machines and How They Work,
Dover Publications, Inc., 1971.

[3] Bramwell, Martyn and Mostyn, David, How Things Work, Usborne
Publishing, 1984.

[4] Crowder, R.G., Principles of Learning and Memory, Lawrence Erlbaum
Associates, Hillsdale, N.J., 1976.

[5] DeBono, Edward, Children Solve Problems, Penguin, 1980.

[6] Dyer, Michael G. and Flowers, Margot, "Automating Design Inven­
tion," Autofact 6, Anaheim, CA, 1984.

[7] Dyer, Michael G., In-Depth Understanding: A Computer Model of In­
tegrated Processing For Narrative Comprehension, Artificial Intel­
ligence Series, MIT Press, Cambridge, MA, 1983.

[8] Dyer, Michael G., Flowers, Margot, and Hodges, Jack, "Naive
Mechanics Comprehension and Invention in EDISON," Tenth Inter­
national Joint Conference on Artificial Intelligence, Morgan-Kaufmann,
Milan, Italy, August 1987.

[9] Dyer, Michael G., Flowers, Margot, and Hodges, Jack, "EDISON: An
Engineering Design Invention System Operating Naively," International
Journal of Artificial Intelligence in Engineering, Vol. 1, No. 1, July
1986.

[10] Dyer, Michael G., Flowers, Margot and Hodges, Jack, "EDISON: An
Engineering Design Invention System Operating Naively," Applications
of Artificial Intelligence in Engineering Problems, Vol. 1, Sriram, D. and
Adey, R., Eds., First International Conference, Springer Verlag, Sou­
thampton, United Kingdom, pp. 327-342, April 1986.

KNOWLEDGE REPRESENTATION FOR DESIGN IMPROVISATION 217

[11] Forbus, Kenneth, "Qualitative Process Theory," Artificial Intelligence,
Vol. 24, pp. 85-168, July 1983.

[12] Hodges, Jack,
 4

'Device Representation for Modeling Improvisation in
Mechanical Use Situations," Proceedings of the Eleventh Annual Con­
ference of the Cognitive Science Society, Lawrence Erlbaum associates,
Hillsdale, NJ, pp. 643 - 650, August 1989.

[13] Hodges, J.B., "NAIVE MECHANICS: A Computational Model of
Device Use and Function in Design Improvisation," IEEE-Expert spe­
cial track on Functional Representation, Vo l . , p p . , 1992.

[14] Hodges, Jack, Naive Mechanics: Computational Experiments in
Representing and Reasoning about Simple Mechanical Devices, un­
published Ph.D. Dissertation, University of California at Los Angeles,
1992.

[15] Dyer, Michael G., Hodges, Jack, and Flowers, Margot,' 'Computer Com­
prehension of Mechanical Device Descriptions," in Knowledge-Based
Systems in Engineering and Architecture, Gero, John, Ed., Addison-
Wesley, 1987.

[16] Lehnert, Wendy G., The Process of Question Answering, Lawrence
Erlbaum Associates, 1978.

[17] Schank, Roger, Dynamic Memory, Cambridge University Press, 1982.

[18] Schank, Roger and Abelson, Robert, Scripts, Plans, Goals, and
Understanding, The Artificial Intelligence Series, Lawrence Erlbaum,
Hillsdale, NJ, 1977.

[19] Weiss, Harvey, Machines and How They Work, Thomas Y. Crowell,
1983.

Chapter 7
INVESTIGATING

ROUTINE DESIGN PROBLEM SOLVING

David C. Brown and B. Chandrasekaran

ABSTRACT

We have been investigating the knowledge and control structures that charac­
terize design as a generic problem-solving activity. In particular we have studied
a subclass that we call routine design, and have constructed a high-level lan­
guage called DSPL that allows task-level expression of design knowledge and
makes appropriate control behaviors available. We have tested our approach by
implementing a routine mechanical design expert system for air cylinders. We
propose an architecture where a hierarchical collection of design "specialists"
solve the design problem in a top-down distributed manner, where each
specialist chooses from sets of design plans and "refines" the design. This paper
provides a general introduction to the research, shows a trace from the expert
system, and discusses ongoing DSPL research at OSU and WPI.

7.1. INTRODUCTION

7.1.1. Our Research

Most first-generation expert systems have been rule-based with a separate in­
ference engine. A large unstructured collection of rules clearly lacks validity as
a cognitively realistic model of design, as reducing all knowledge to a single
form does not recognize that there are many different types of knowledge used
in any design problem-solving activity. It also does not recognize that design
knowledge forms into clusters, nor does it specify where or when this

Artificial Intelligence in Engineering Design 221 Based on 'Knowledge and Control for the Mechanical
Volume I Design of an Expert System,' by D. Brown and
Design Representation and Models of Routine Design B. Chandrasekaran, which appeared in IEEE Computer,

19, 7, 92 - 100; July 1986. © 1986 IEEE.
Appendices A, B, and C copyright © 1992 by Academic Press, Inc.

222 BROWN A N D CHANDRASEKARAN

knowledge is to be applied, as different clusters of knowledge are applicable at
different times during design. Similarly, by using a single central "all purpose"
inference engine, the richness of design problem-solving has been ignored.
Another problem is that there is a potential for unfocused system behavior, as all
the rules have equal status in the system and have equal potential for use.

Many systems structure rules into sets. These sets are based on domain-
dependent subproblems rather than domain-independent types of knowledge
[1 , 1 8 , 2 0] . In addition, the problem-solving method is uniform and not

knowledge-based. The authors' claim is that the subproblems can be solved
linearly with no backtracking between them and only minimal backtracking
within them. This approach tells us more about the nature of their domain than
about design, as it is clear that design decisions of any kind can often be wrong
and, if so, will lead to attempts to recover from failure. The uniform rule
representation and the lack of knowledge dependent structure does not provide
us with any clear predictions about an expert's failure recovery behavior.

These problems stem mainly from a basic mismatch between the level of the
tools available to build systems and the level of abstraction of the design task.
Consequently, for handling more complex forms of expert problem solving,
there is a need for tools that are at the "task" level. That is, tools related to the
type of problem-solving being done, such as design (as opposed to diagnosis).
Such tools will have to provide a rich set of design-related task-level constructs.
They should be helpful in capturing more structured forms of knowledge and
should be such that they help organize both knowledge and problem-solving be­
havior for more focused problem-solving.

The Laboratory for AI Research at Ohio State has been developing a
framework in which investigation of generic tasks in knowledge-based reason­
ing plays a fundamental role. For a summary of the approach see [11]. For each
generic task, appropriate families of knowledge structures and control regimes
are constructed. In this perspective, design as a generic task calls upon and uses
distinctly different types of knowledge and control from, say, diagnosis, predic­
tion, or selection.

The above point of view naturally leads to families of high-level languages
for the construction of expert systems. These languages have the property that
domain knowledge can be captured much more perspicuously by using primi­
tives appropriate to the task and that appropriate classes of control behavior are
made available to the designer. For a subclass of design that we have called
"routine design", we have developed a task-level language called DSPL [4].

Design itself is a complex activity and AI has relatively weak theories of it,
especially for more creative design activity. In routine design the structure of
the artifact under design is presumed fixed and standard methods of completing
the design of various parts are known. However, there is still a complex
problem-solving activity involving integrating and satisfying all the constraints
of the particular design problem. Rough design and backtracking are observed

ROUTINE DESIGN PROBLEM SOLVING 223

in this design process, but much of the problem solving is piecing together the
design, rather than creation of new methods. In our view, a substantial part of
design activity in industry is of this type, and thus our approach could be of wide
applicability.

We have use the domain of mechanical components (air cylinders in par­
ticular) to motivate our research. Our initial discussion of a simple prototype
system is described in [2], while a more recent and more complete account is
available in [8].

In this paper we present an outline of a theory of routine design, describe the
types of knowledge involved, and briefly discuss the handling of failures during
design. Air cylinder design is presented as an example of routine design
problem-solving.

7.1.2· Other Work in Design

There has been considerable discussion in Artificial Intelligence about the na­
ture of design. An analysis of this literature is outside the scope of this paper.
Circuit design has been a domain where somewhat more sophisticated issues
regarding the structure of knowledge and control in design have been discussed,
but systems that consider design problems in a principled way are relatively few
in number - see, for example, [15, 1 9 , 2 1 , 2 3] and the other chapters in this
Volume. In the domain of mechanical systems we should mention the work of
[13] and Chapter 9 as having interesting points of contact. In addition, an im­

portant view of design is presented in [22].
However, for the most part this other design research did not lead to generic

languages and architectures to support design as a problem-solving activity,
which is at least partly our aim. Because of this aim we have deliberately sought
a level of design where the complexity of knowledge and control can be kept
limited, but more powerful building blocks than are currently available can be
provided in return. On the other hand the complexity of the design problems
that can be solved by our framework is still higher than those that have been
solved using the rule-based paradigm [18, 20].

224 BROWN A N D CHANDRASEKARAN

7.2. DESIGN

7.2.1. Design in General

Design is a highly creative activity involving diverse problem-solving tech­
niques and many kinds of knowledge. Clearly, as we don't know many of the
problem-solving components of general design, and as we poorly understand
those components we do know about, a comprehensive, detailed model of
design is currently out of reach.

However, knowledge-based design researchers appear to agree about many
components of design activity. Refinement is one such component. That is,
descriptions get refined into less abstract forms. Plans are used in recognizable
situations. Such plans are the result of past planning and validation by repeated
use. Design activity often has a rough design phase followed by design proper.
That is, an approximate or partial design is done first, before attempting to com­
plete the design. Design activity is organized in ways that reflect the structure
or functionality of the entity being designed. Similarly the representation of the
design is also structured. During the design various restrictions on what is al­
lowable for this kind of entity will be checked at appropriate points, and the in­
itial conditions (i.e., requirements) form a starting set of restrictions.

7.2.2. Routine Design

We have been concentrating on routine design. However, we do not claim
that all design problems are of this type. In routine design, the designer
proceeds by selecting among previously known sets of well-understood design
alternatives. At each point in the design the choices may be simple, but overall
the task is still too complex for it to be done merely by looking it up in a data­
base of designs, as there are just too many possible combinations of initial re­
quirements. Simple choices do not imply simple designs or a simple design
process. Many engineers share our view that a significant portion of design ac­
tivity is routine.

In our work, we use the architecture of a hierarchically organized community
of design agents called specialists. This hierarchy reflects the hierarchical struc­
ture of the artifact under design. Our view of routine design is that it is a largely
top-down activity. We hypothesise that the specific problem-solving behavior
corresponding to it can be captured as follows - each specialist has a repertoire
of design plans to accomplish certain design tasks at its level of abstraction, it

ROUTINE DESIGN PROBLEM SOLVING 225

chooses from among the plans, makes some commitments, and directs
specialists at lower levels of abstraction to "refine" the design. Failures cause
different kinds of actions, such as choice of alternative plans, transfer of control
to a parent specialist, etc.

The upper levels of the hierarchy are specialists in the more general aspects of
the component, while the lower levels deal with more specific subsystems or
components. A hierarchy is used not because we are arguing that design is in­
trinsically hierarchical, but rather that people use hierarchies to manage com­
plexity. The specialists chosen, their responsibilities, and their hierarchical or­
ganization will reflect the mechanical designer's underlying conceptual structure
of the problem domain.

7.3. AN APPROACH TO ROUTINE DESIGN

7.3.1. Introduction

We will first describe the design agents, and then their interaction. By the
term "Agent" we mean any active module of the problem-solver, such as a
specialist. An agent represents a collection of knowledge about how to design a
portion of the object.

7.3.2. Design Agents

7.3.2.1. Specialists

A Specialist is a design agent that will attempt to design a section of the com­
ponent. The top-most specialist is responsible for the whole design. A
specialist lower down in the hierarchy will be making detailed decisions. Each
specialist has the ability to make design decisions about the part, parts or func­
tion in which it specializes. Those decisions are made in the context of previous
design decisions made by other specialists. A specialist can do its piece of
design by itself, or can utilize the services of other specialists below it in the
hierarchy. We refer to this cooperative design activity of the specialists as
Design Refinement.

226 BROWN A N D CHANDRASEKARAN

7.3.2.2. Plans

Each specialist has a collection of plans. A Plan consists of sequence of calls
to Specialists or Tasks (see below), possibly with interspersed Constraints. It
represents one method for designing the section of the component represented
by the specialist. The specialists below will refine the design independently,
tasks produce further values themselves, constraints will check on the integrity
of the decisions made, while the whole plan gives the specific sequence in which
the agents can be invoked.

7.3.2.3. Steps, Tasks, and Constraints

A Step is a design agent that can make one design decision given the current
state of the design, taking into account any constraints. For example, one step
would decide on the material for some subcomponent, while another would
decide on its length.

A Task is a design agent expressed as a sequence of steps, possibly with inter­
spersed constraints. It is responsible for handling the design of one logically,
structurally, or functionally coherent section of the component; for example a
seat for a seal, or a hole for a bolt.

Every specialist has some local design knowledge, some of which is ex­
pressed in the form of constraints. The constraints capture those major things
that must be true of the specialist's design before it can be considered to be suc­
cessfully completed. Other constraints, embedded in the specialist's plans, are
used to check the correctness of intermediate design decisions, and do sub-
problem solution compatibility checking.

A Constraint is an agent that will test for a particular relationship between
two or more attributes at some particular stage of the design. Constraints can
occur at almost any place in the hierarchy. For example, a constraint might
check that a hole for a bolt is not too small to be machinable given the material
being used. See [6] for more on constraints in routine design.

7.3.3. The Four Phases

The design activity falls into four phases. Initially, the requirements are col­
lected from the user and are verified both individually and collectively. For ex­
ample, the MTBF required might be quite unacceptable. Alternatively, it might
appear acceptable when considered by itself, but can be seen to be unreasonable
when considered in the context of the required materials. This is a knowledge-

ROUTINE DESIGN PROBLEM SOLVING 227

based activity. Acceptable requirements do not necessarily mean that the design
is achievable. Once it has been established that the requirements are acceptable,
a rough-design is attempted.

Rough-design is poorly understood at present, but it serves at least two pur­
poses. First, those values on which much of the rest of the design depends will
be decided and checked. The actual attributes decided depends on the com­
ponent and the domain, but, for example, it is likely that a value for the attribute
"Material" will be chosen in this phase.

If these attributes can't be achieved then there is little point going on with the
rest of the design. This also has the effect of pruning the design search space, as
once the overall characteristics of the design are established it reduces the num­
ber of choices of how to proceed with the rest of the design. Second, as any
mutually dependent attributes can prevent a design from progressing (i.e., A
depends on B, and Β depends on A), rough-design can, as human designers do,
pick a value for one of the attributes and use that as if the dependencies didn't
exist.

Specialists have both design and rough-design plans to select from depending
on the current phase. Not all specialists will need both. It is entirely feasible
that phases could be intermixed during problem-solving, but we have chosen to
restrict the rough phase to be first, followed by the design phase.

Once rough-design is complete the Design phase can proceed. Design starts
with the topmost specialist and works down to the lowest levels of the hierarchy.
A specialist begins by receiving a design request from its parent specialist. It
refers to the specification data-base for relevant specifications. A plan is selected
using these data and the current state of the design. For more on plan selection
see [3]. Our current form for plans is described in [4].

The specialist can fill in some of the design, and can call its successors in a
given order with requests for refinement of the design of a substructure. The
knowledge in the specialist prioritizes the plans, and invokes alternative plans in
case of failure by one of the successors. When all of a specialist's plans fail the
specialist communicates that to its parent.

If any failures occur during design, then a Redesign phase is entered. If that
succeeds then the design phase can be re-entered. The system attempts to handle
all failures at the point-of-failure before admitting defeat and passing failure in­
formation up the hierarchy. A step, for example, may be able to examine the
failure and then produce another value, in order to satisfy a failing constraint,
while still retaining local integrity. This local attention to failure is an essential
element of failure handling behavior. Section 7.5 discusses failures during
design in more detail.

228 BROWN A N D CHANDRASEKARAN

7.3.4· Communication

The main means of communication in the system is by passing information
and control messages between specialists across the connections forming the
hierarchy. In this way the flow of control is restrained and the system exhibits
clear, well-focused problem-solving activity.

Messages can request action, report failure, ask for assistance, and make sug­
gestions. This rich variety of messages is the key to handling subsystem inter­
actions. One part of the emerging theory of design problem-solving is the form
and content of these design oriented messages. The design trace in Appendix C
gives some indication of the types of messages used.

7.3.5. Other Agents

In general, in addition to the specialists in the hierarchy, other specialists out­
side the hierarchy may be needed. These are specialists in somewhat more
general activities commonly needed by a number of the specialists in the hierar­
chy. For example, they may be certain kinds of stress calculation modules or
data-base functions.

In a more general design system, requests could be made to other types of
problem-solvers [10]. A human user could act as a problem-solver, as requests
for assistance will occur at well defined points in the design. The expert system
can subsequently check the acceptability of the results provided.

7.4. AN EXAMPLE OF ROUTINE DESIGN

7.4.1. The Air Cylinder

In the company that cooperated with us, an air cylinder (intended for accurate
and reliable backward and forward movement of some component) had to be
redesigned for every new customer. This was done in order to take into account
the particular space into which it had to fit or the intended operating tempera­
tures and pressures. We selected this air cylinder (AC) as a suitable object for
our studies of design problem-solving. The AC has about 15 parts (See Figure
7-1).

ROUTINE DESIGN PROBLEM SOLVING 229

The AIR-CYL design problem-solving system was developed using DSPL,
which was in turn developed using Rutgers ELISP on a DEC system-20. AIR-
CYL was used to investigate the viability of our theory of routine design. We
are now working on extending the theory and examining the issues that arose
while using the AC as our test case.

TUBE
_ ,

I
\ I I I I I
I / / SPRING / /
\ I I I I I

CAP|-

I I I
I I

I I
I I

•I HEAD

PISTON & ROD

Spring return
> Air actuated

<

Figure 7-1: Air cylinder

7.4.2. The Conceptual Structure

An air cylinder designer was interviewed. The protocols were analyzed and
the "trace" of the design process was obtained. This was analyzed to establish
the underlying conceptual structure. For example, the head was clearly treated
as a separate conceptual entity. Spring design was an essentially parallel ac­
tivity, while the rest of the design was treated by the designer as the third major
activity. The fact that the specialists can be fairly easily identified, and that the
plans for each specialist are also identifiable and small in number strongly con­
firms that this is a routine design activity.

7.4.3. Design Agents

In the examples that follow we have used a simplified form of the DSPL lan­
guage.

A plan consists of a set of actions, possibly with some in parallel. For ex­
ample, in Figure 7-3 we show a Plan, where "Validate and Process Require-

230 BROWN A N D CHANDRASEKARAN

AIR CYLINDER
/

I
I

SPRING

I

HEAD

\
\

/
CAP

\
\

REST
/ \

\
P&R
/ \

/
PISTON

\
ROD

DATA-BASE
/ \

/ \
/ \

SPECS PARTS
D-B D-B

Figure 7-2: Partial AIR-CYL Structure

PLAN
NAME Air Cylinder Design Plan
TYPE Design
USED BY Air Cylinder SPECIALIST
USES Spring Head Rest SPECIALISTS
QUALITY Reliable BUT Expensive
FINAL CONSTRAINTS Design details OK?
TO DO

Validate and Process Requirements
ROUGH DESIGN Air Cylinder
PARALLEL DESIGN Spring AND Head
TEST Head and Spring Compatible?
DESIGN Rest

Figure 7-3: A Plan

ments" is the name of a Task, "Head and Spring Compatible?" is the name of a
constraint, and "Rest" is the name of a Specialist. Note that this is a design plan.
Some specialists will also have rough-design plans.

A task consists of the sequential use of a number of steps, and a step consists
of obtaining required information followed by calculations and a decision about
the value of a single attribute.

Figure 7-4 shows a step to decide on the width of the seat for the piston seal,
where "Piston Seal" is the name of a task, "Seal Seat Width" is what is being

ROUTINE DESIGN PROBLEM SOLVING 231

STEP
NAME
USED BY
COMMENT
ATTRIBUTE NAME
FAILURE SUGGESTION
REDESIGN
TO DO

Piston Seal Seat Width
Piston Seal
Written by DCB
Seal Seat Width
INCREASE Piston Thickness
NOT POSSIBLE

KNOWNS FETCH FETCH Piston Thickness
FETCH Piston Material
FETCH Minimum Thickness

OF Piston Material

DECISION
FETCH Spring Seat Depth
Available IS
(Piston Thickness

MINUS DOUBLE Minimum Thickness)
Seal Seat Width IS 0.156
COMMENT Using one size only
TEST Available > Seal Seat Width?
STORE Seal Seat Width

decided, "INCREASE Piston Thickness" is what the step will suggest if it's not
possible to make a decision, "Redesign not possible" means redesign is not pos­
sible for this step, "Piston Thickness" is an attribute that should already have
been decided, and "Available > Seal Seat Width" is the name of a constraint.

One view of failure handling considers all relevant knowledge to be im­
mediately available at failure time. Our view is that data and control knowledge
in human problem-solving is structured and probably incomplete, thus restrict­
ing the kinds of information available for handling failures. The structure of the
design problem-solving system (i.e., specialists, plans, tasks and steps) provides
the context in which to structure failure handling.

In our theory, all design agents detect their own failure, attempt to determine
what went wrong, attempt to fix it locally, do so if they can, and report failure
only if all attempts fail. Agents which have some control over other agents can
use those agents when attempting to correct the detected problem. By using

Figure 7-4: A Step

7.5. HANDLING FAILURES

232 BROWN A N D CHANDRASEKARAN

these ideas, our goal is to establish what is essential for failure handling in this
kind of design activity. We believe that DSPL, and as a consequence AIR-CYL,
is distinguished by its context-sensitive and knowledge-based treatment of
failure. See Chapter 11 for a discussion of this claim. A detailed discussion of
failure handling can be found in [5].

7.5.1· Redesign

Each kind of agent can have different kinds of reasons for failing. For ex­
ample, a step finds that a decision violates some constraint, a task discovers that
a step's failure can't be handled locally, a plan can fail if it is discovered that it's
not applicable for the situation, while a specialist can fail if all of its plans fail.

For every kind of failure a message giving details is generated and passed
back to the calling agent. The message includes, wherever possible, suggestions
about what might be done to alleviate the problem. As there are usually many
kinds of problems that can occur, an agent will first look at the message to
decide what went on below. This is done by the Failure Handler associated
with the agent. For some conditions immediate failure can be specified, for
others an attempt to redesign might be attempted. A Redesigner is associated
with an agent. It contains knowledge of how to change a design according to
suggestions.

Appendix C presents an edited trace of the AIR-CYL system in operation. It
shows recovery from constraint failures. It also shows a plan failing and a new
and successful plan being selected.

7.6. THEORETICAL AND PRACTICAL RESEARCH
ISSUES

7.6.1. Improvements to AIR-CYL

We feel that while the idea of design refinement captures the essence of
design problem solving, at least in its relatively routine aspects, there are several
important aspects of problem solving and the use of plans that need more
research. DSPL is being studied and refined in order to make it more powerful,
flexible, and easy to use. In addition we hope to improve the interface with the

ROUTINE DESIGN PROBLEM SOLVING 233

system to allow others to use it. Eventually we expect to provide a graphical in­
terface to show the development of the design as it progresses.

7.6.2. Relaxation of Requirements

One possible way to deal with failures is to attempt to relax one or more of
the constraints or requirements. Clearly some can be "softer" than others, and as­
king the user for some relaxation may clear the way to a successful design. If a
lot of effort has been expended on a design by machine and human this makes a
lot of sense. It may be possible for the system to choose what to relax, but a lot
of special knowledge would be necessary to implement that. Even knowing
when to ask for a relaxation will be difficult. This is a matter for future
research.

7.6.3. Limitations of Approach

We are quite aware that there are bound to be other examples of routine
design tasks that cannot be brought under the plan refinement paradigm in a
natural way. Even if it is true that design is a process of choosing plans and
refining designs, our ability to construct expert systems for design is very much
a function of the types of design knowledge that we are able to capture and
manipulate. We would like, as a result of our research, to be able to characterize
the kinds of design problems for which our approach will lead to effective ex­
pert systems.

7.7. CONCLUDING REMARKS

We have presented an approach to building expert systems for routine design
activity in the domain of mechanical components. Much work remains to be
done in this area before we can understand what design is and how best to build
systems to do it. We feel that there is great need for tools that express
knowledge at the task level. DSPL is an example of such a tool. We feel that our
approach of using a hierarchically structured system with plan selection captures
the essential qualities of routine design.

234 BROWN A N D CHANDRASEKARAN

7.8. ACKNOWLEDGMENTS

Much of this work was supported at Ohio State by AFOSR grant #82-0255.
Some of this work was supported by NSF grant DDM-8719960. We would also
like to acknowledge the cooperation during the AIR-CYL research of the Ac-
cuRay Corporation, Dave Herman and Pete Schmitz. Dave Herman was respon­
sible for Appendix A. This research owes much to our colleagues in the Lab for
AI Research at OSU, and in the AI Research Group at WPI.

This paper is essentially the same as that in IEEE Computer, Vol.19, No.7,
July 1986, but it contains some additional material.

ROUTINE DESIGN PROBLEM SOLVING 235

7.9.1. Introduction

In this appendix we will present DSPL-related activity taking place at the Lab
for AI Research at Ohio State University. Since the development of AIR-CYL,
the DSPL system has progressed in several dimensions. First, DSPL has been
reimplemented in a more interactive Lisp environment. Second, DSPL has been
used as a testbed for exploring certain facets of the generic task theory, such as
explanation of problem solving behavior and the integration of multiple generic
tasks in a single environment. Finally, DSPL has been successfully applied to
several new design and planning domains.

7.9.2. Implementation

Initially, the DSPL system was implemented on a DEC system-20 in ELISP,
with a version of FRL used for the design data-base. The syntax of the original
version was very Lisp-like, and addition and modification of design knowledge
was somewhat awkward. A new version of DSPL has been implemented in
Interlisp-D. Although the architecture and language syntax of the new version
are essentially identical to the ELISP version, the user interface to the system is
much improved.

Considerable effort was spent creating a more friendly interface which takes
full advantage of the Interlisp-D mouse/window environment. In particular, all
design knowledge in a DSPL problem solver may be browsed via a single, top-
level window which displays the specialist hierarchy of the problem solver.
Design knowledge may be inserted or deleted through simple mouse actions,
and a syntax checking editor ensures correct input to the system. Also, the flow
of control of the design system may be graphically traced during execution.

In addition to the Interlisp-D version, DSPL is also being ported to
Intellicorp's KEE, as part of an integrated toolbox which will incorporate
several of the generic task tools in a single, unified environment. In as effort to
further simplify the use of DSPL, this implementation will dispense with the
Lisp-like syntax in favor of a form-based input.

Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

7.9. APPENDIX A: DSPL RESEARCH AT OHIO STATE
UNIVERSITY

236 BROWN A N D CHANDRASEKARAN

7.9.3. Extensions and Applications of DSPL

As mentioned above, our laboratory is developing a toolbox based on the
Generic Task architecture for knowledge based systems. The toolbox will be a
collection of expert system shells, such as DSPL, each of which captures a dif­
ferent generic task. The toolbox can be used to create complex expert systems
that utilize several different generic tasks to solve a single problem. A portion
of our ongoing research is concerned with investigating the issues raised when
multiple problem solving strategies are used within a single expert system.
Other research is concerned with developing explanation facilities which can
best take advantage of the knowledge and control strategies associated with each
generic task.

The development of the Mission Planning Assistant (MPA) [16] has aided our
understanding of the generic task toolbox, as well as the DSPL system itself.
MPA is an expert system in the domain of tactical mission planning which was
written in DSPL. It was developed with two goals in mind. First, we wished to
examine the use of DSPL in the domain of routine planning. Second, we were
interested both in exploring the particular explanation facilities necessary for
planning systems and expanding our general theory of explanation within the
generic task framework.

The first goal, that of applying DSPL to a routine planning domain, was ach­
ieved without any modification to the DSPL architecture. The basic MPA
problem solving was directly implemented in the vocabulary of the DSPL shell.
We discovered that certain types of routine planning can be conceived of as be­
ing analogous to routine design: certain types of plans can be decomposed into
sub-problems just as certain mechanical design problems can be decomposed
into the design of sub-components. Further, details of the plan were selected in
a fashion similar to the selection of attributes in a particular component. The
MPA system successfully demonstrated the applicability of the DSPL strategy to
a simple planning domain.

The second goal of the MPA system, that of exploring necessary explanation
facilities, required some extension to the DSPL shell. The basic DSPL architec­
ture was unchanged, but facilities were added to allow simple queries to be
directed at the system's output. Explanation of the system's output was
generated by combining a trace of the system's behavior with the knowledge in
the MPA system coded in DSPL. Since the use of knowledge in the DSPL sys­
tem is closely associated with the particular control strategy embedded in DSPL,
a more cogent explanation of the system's behavior is generated. In the
Interlisp-D version of DSPL, the explanations are derived directly from the
DSPL source code by re-parsing the source code using a translator which
generates English text, rather than executable code.

Other applications of DSPL have not involved breaking new theoretical

ROUTINE DESIGN PROBLEM SOLVING 237

ground. One application in the domain of chemical engineering designs distil­
lation columns from specifications of the components of the feed to the column
and certain parameter's describing the column's environment. In this case the
system takes advantage of the results of mathematical models of the column's
behavior at various points during the design of the column. Notice that DSPL
does not embrace a model of the column's behavior to focus problem solving,
but rather uses the results of various models to produce a behavior similar to that
of a human expert in the domain.

7.9.4. Summary

The DSPL shell for building routine planning and design expert systems is the
focus of several important research issues at the OSU LAIR. We believe that it
can play an important role in the creation of many practical and useful expert
systems. We are taking several steps to expand its usefulness and theoretical in­
terest.

238 BROWN A N D CHANDRASEKARAN

7.10.1. Introduction

In this appendix we will present DSPL-related activity taking place in the AI
Research Group at Worcester Polytechnic Institute. Since the development of
AIR-CYL, the DSPL research has been proceeding more or less independently
at WPI and OSU. At WPI, research is progressing on two main fronts. The first
is an extended study of the ways in which routine design knowledge becomes
routine. That is, how it becomes organized for the efficient solution of a small
class of design problems. The second is to improve the interaction with the sys­
tem by providing acquisition and explanation systems.

7.10.2. Compilation

By knowledge compilation we mean the process by which knowledge
gradually becomes efficiently organized so that problem-solving based on that
knowledge becomes routine. This can logically be divided into formation and
adjustment phases. We are currently concentrating on the adjustment of the
design knowledge and strategies that occurs once they have been collected
together by significant use. We are concentrating on small improvements only,
leaving larger changes for later study.

We hypothesize that there are several mechanisms for making small changes.
One mechanism is the replacement of simulations by constraints, either of which
may be used to verify design decisions. One type of constraint can replace the
sort of simulation that occurs when a person reasons about whether two sub-
problem solutions will fit together. Another type of mechanism is the adjust­
ment of constraints in the design knowledge. In particular we are looking at the
ways in which constraints might migrate to a position earlier in the design
knowledge.

7.10.2.1. Reasoning about fit

To study the formation of constraints about subproblem compatibility we are
investigating the process of qualitatively reasoning about whether two com-

Copyright © 1992 by Academic Press,
All rights of reproduction in any form reser

ISBN 0-12-6605<

7.10. APPENDIX B: DSPL RESEARCH AT
WORCESTER POLYTECHNIC INSTITUTE

ROUTINE DESIGN PROBLEM SOLVING 239

ponents might fit together [14]. The stages are the grouping of features on the
objects to characterize their potential for match, orientation of the objects into a
position of potential match, matching of clusters of features, and confirmation
on a feature-by-feature basis within clusters. A prototype implementation has
been written in VAXLISP.

All reasoning is done without using any numbers. The result of the process is
a decision about qualitative fit, which can be interpreted as a statement about the
potential for actual fit. It also results in a description of the fit that isolates the
key dimensions of key features. This could then be used to control a test for fit
using actual lengths, which can then be turned into one or more constraints.

7.10.2.2. Adjustment of constraints

In the adjustment phase of compilation, constraints can appear, disappear and
move. Movement of constraints to earlier points in the design process has the
aim of catching design problems earlier. This movement will occur in response
to repeated constraint failure and subsequent analysis. As constraints move they
need to be changed. We are studying the nature of this movement and change
[7].

7.10.2.3. Analogy

Another way that routine design knowledge gets formed is by analogy with
existing design knowledge. We are investigating the process of getting "new
DSPL from old" by analogy, given slightly different design requirements.

7.10.3. Interfaces

In order to improve the interface to the DSPL interpreter we are working on a
collection of tools with which the user can interact. The two main ones are the
DSPL Acquirer and the Explanation facility.

240 BROWN AND CHANDRASEKARAN

7.10.3,1. Acquisition

The Acquirer uses the structure of DSPL, as well as an explicit acquisition
strategy, to control a question and answer session with the user [12]. In
response to questions the user gives fragments of design knowledge which the
Acquirer converts to DSPL and assembles. The result is a file of DSPL that can
act as the knowledge-base of a design expert system.

7.10.3.2. Explanation

We assaume that the user of a DSPL-based design expert system can interrupt
the action of the system at any major break in the design activity and ask one of
a set of standard low-level questions. The Explainer has explanation routines for
every DSPL agent [17]. A focusing mechanism, initially set to the interrupt
point, determines which agent will be used to answer the question. If that agent
is unable to provide the answer, the focus is moved up the agent hierarchy. This
explanation research has concentrated on producing explanation using the min­
imum of trace information.

7.10.4· Conclusion

Other new work in progress is a study of failure handling, constraint relaxa­
tion and the use of dependency knowledge. A more detailed survey of recent
research can be found in [9].

In summary, research into the use of DSPL for the representation of routine
design knowledge is providing the focus for many investigations into design
problem-solving. Our work has concentrated on the compilation of routine
design knowledge and on interfaces for the DSPL system.

ROUTINE DESIGN PROBLEM SOLVING 241

7.11. APPENDIX C: AN ANNOTATED TRACE OF
AIR-CYL

This is a trace generated by the AIR-CYL system. It has been highly edited
for brevity, and for presentation in this format. The trace is of a successful
design with step redesign and selection of alternative plans. We have omitted the
reporting of the final design.

***** AIR-CYL Air-cylinder Design System *****

*** Requirements input
From file DCB:AC-Requirements-Test

There are about 20 values given as requirements, including the maximum
operating temperature and pressure, and the size of the envelope in which
the air-cylinder must fit.

* Do you wish to alter the requirements? »>????>yes

EnvelopeLength —
EnvelopeHeight —
EnvelopeWidth —
MaxTemperature —
OperatingMedium —
OperatingPressureMax —
OperatingPressureMin —
RodLoad —
Stroke —
RodThreadType —
RodThreadLength —
RodDiameter —
Environment —
Quality —
MTBF —
AirlnletDiameter —
MountingserewSize —
MountingHoleToHole —
MaxFaceToMountingHoles

7.83
1.5
1.75
250
Air
60
30
1.4
1.75
UNF24
1.031
(LNGTH 0.312 0.0 2.e-3)
Corrosive
Reliable
100000
0.374
(LNGTH 0.19 5.e-3 5.e-3)
(LNGTH 0.625 5.e-3 5.e - 3)
(LNGTH 0.31 5.e-3 5.e-3)

* Alterations from user

System name for requirement is »>????>EnvelopeWidth
Current value is 1.75
New value is >»????>!.35

We have cut down the width of the envelope
without altering any other requirement
in order to make the design harder.

System name for requirement is »>????>quit

Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

242 BROWN A N D CHANDRASEKARAN

* End of alterations from user
*** Requirements Input Complete

Entering Specialist
...AirCylinder... Mode = Design

Entering Plan
...AirCylinderDPl... Type = Design

Entering Task
...CheckRequirements

Entering Step
...CheckEnvelope

Leaving Step
....CheckEnvelope...Result= Success Msg

Here the system continues to check requirements. Next the design plan
being followed specifies the use of the AirCylinder specialist in Rough
Design mode. A rough design plan is selected and followed, leading to a
successful rough design. The AirCylinder specialist then leaves rough
design mode and continues in design mode. After quite a lot of decision
making involving sub-specialists we get to this point.

Entering Specialist
...Rest... Mode = Design

Entering Plan
...RestDPI... Type = Design

Entering Specialist
...PistonAndRod... Mode = Design

At this point the system is working on the
design of the piston and rod assembly.
This is where the trouble starts.

Entering Plan

...PistonAndRodDPl... Type = Design

! ! ! etc ! ! !

Entering Task
...PistonSeal
Entering Step
...PistonSealType

Leaving Step
....PistonSealType
...Result= Success Msg

Entering Step
...PistonSealSeatWidth

The constraint test that follows will discover that there isn't enough

ROUTINE DESIGN PROBLEM SOLVING

space in the piston for the seat for the seal that will go around the
piston. Its failure produces a message which shows in detail how the
failure occurred. Here we show only part of the message. It suggests
two alternative ways to attempt to fix the problem.

Entering TEST-CONSTRAINTS
. . . (Available>Width)

Leaving TEST-CONSTRAINTS
(Available>Width)...Result=

Failure "Constraint failure"
Explanation "Seal width is greater than

available space in piston"
Suggest (INCREASE PistonThickness

BY 1.517e-2)
Suggest (DECREASE PistonSealSeatWidth

BY 1.517e-2)

The failure handlers for a step which are built into the system determine
that a domain specific failure handler will be able to decide what to do.
Domain specific failure handlers are written in DSPL by the expert or
knowledge engineer.

Entering FailureHandler
...PistonSealSeatWidthFH

The failure handler says to try redesign.

Entering Redesigner
...PistonSSWRedesigner

Step = PistonSealSeatWidth
Suggest = (DECREASE PistonSealSeatWidth

BY 1.517e-2)

Leaving Redesigner
....PistonSSWRedesigner
...Result= Success Msg

The piston seal seat width redesigner was able to decrease the width as
suggested.

Leaving FailureHandler
....PistonSealSeatWidthFH
...Resuit= Success Msg

We leave the failure handler and return to the step. The redesign was
successful, so the step is successful and acts as if no problems were
encountered.

Leaving Step
....PistonSealSeatWidth
...Resuit= Success Msg

! ! ! etc ! ! !

Leaving Plan

244 BROWN A N D CHANDRASEKARAN

....PistonAndRodDPl

...Resuit= Success Msg

Leaving Specialist
....PistonAndRod...Result= Success Msg

Entering Specialist

...Cap... Mode = Design

Now we attempt design of the cap, and discover another problem.

Entering Plan

...CapDPl... Type = Design

! ! ! etc ! ! !

Entering Task
...Caplnternal
Entering Step
. . . CapIntemalDiameter

The constraint tests to see if the internal diameter of the cap is larger
than the outside diameter of the spring, as one must fit in the other. It
fails. Two alternative suggestions are provided.

Entering TEST-CONSTRAINTS
...(CapID>SpringOD)

Leaving TEST-CONSTRAINTS
....(CapID>SpringOD)...Result=
Failure "Constraint failure"
Explanation "Cap internal diameter

too small for spring"
Suggest (DECREASE SpringOD

BY 9.9e-2)
Suggest (INCREASE CapIntemalDiameter

BY 9.9e-2)

Entering FailureHandler
...CapIDFH

The domain specific failure handler says to try redesign.

Entering Redesigner
...CapIDRedesigner

Step = CapIntemalDiameter
Suggest = (INCREASE CapIntemalDiameter

BY 9.9e-2)

Entering TEST-CONSTRAINT
...(CapID>SpringOD)

Leaving TEST-CONSTRAINT
....(CapID>SpringOD)
...Result= Success Msg

Leaving Redesigner
....CapIDRedesigner

ROUTINE DESIGN PROBLEM SOLVING

...Result- Success Msg

The redesign is successful. The suggested increase could be made, and the
constraint was satisfied.

Leaving FailureHandler
CapIDFH

...Result= Success Msg

The step is successful, as the failure was handled.

Leaving Step
. . . . CapIntemalDiameter
...Result= Success Msg

! ! ! etc ! ! !

Leaving Plan
....CapDPl...Result= Success Msg

Leaving Specialist
....Cap...Result= Success Msg

!!! etc !!!

Entering Specialist

...Bumper... Mode = Design

The bumper is being designed here. More problems are encountered.

Entering Plan
...BumperDPl... Type = Design
Entering Task
...BumperFlange

Entering Step
...BumperFlangeDiameter

The bumper flange diameter must be large enough to support the spring. The
constraint tests that, but fails.

Entering TEST-CONSTRAINTS
...(BFD>SpringOD)

Leaving TEST-CONSTRAINTS
(BFD>SpringOD)

...Resuit=
Failure "Constraint failure"
Explanation "Bumper flange is too

small for spring"
Suggest (DECREASE SpringOD

BY 2.995e-2)
Suggest (INCREASE BumperFlangeDiameter

BY 2.995e-2)

Entering FailureHandler
...BumperFDFH

The domain specific failure handler says to try redesign.

246 BROWN A N D CHANDRASEKARAN

Entering Redesigner
...BumperFDRedesigner

Step = BumperFlangeDiameter
Suggest = (INCREASE BumperFlangeDiameter

BY 2.995e-2)

The redesigner fails as there is no knowledge
about increasing the value of that attribute.

Leaving Redesigner
....BumperFDRedesigner
...Result=
Failure "Redesigner action

section fails"

The failure handler reports failure and
eventually the step gets told of the bad news.

1 Leaving FailureHandler
....BumperFDFH...Result=
Failure "Redesigner action

section fails"

! ! ! etc ! ! !

Leaving Step
....BumperFlangeDiameter
...Result=
Failure "Step failure"

The task passes the failure message from the step to
its failure handler. It will determine if
the task can do anything about the step failure.

Entering FailureHandler
...BumperFlangeFH

The failure handler for the task discovers that no suggestions have been
passed up from below. This means that no redesign can be considered. The
failure handler fails as it couldn't handle the problem.

Leaving FailureHandler
....BumperFlangeFH
...Result=
Failure "No relevant suggestions

for task redesigner"

The step failure and subsequent failing redesign attempt leads to a failure
in the task.

Leaving Task
....BumperFlange
...Result=
Failure "Task failure"

And the plan fails due to the failing task.

ROUTINE DESIGN PROBLEM SOLVING

Leaving Plan
....BumperDPl
...Resuit=
Failure "Plan failure"

The next plan is selected, as the last one failed.

Entering Plan
...BumperDP2... Type = Design

Entering Task
...BumperFlange2

Entering Step
...BumperFlangeDiameter2

Entering TEST-CONSTRAINTS
...(BFD<CapID)

This is the same constraint that failed in the last plan. This time it is
OK. The step succeeds.

Leaving TEST-CONSTRAINTS
(BFD<CapID)

...Resuit= Success Msg

Leaving Step
....BumperFlangeDiameter2
...Result= Success Msg

! ! ! etc ! ! !

Leaving Plan
....BumperDP2
...Result= Success Msg

Leaving Specialist
....Bumper...Result= Success Msg

Leaving Plan
....RestDPI...Result= Success Msg

Leaving Specialist
....Rest...ResuIt= Success Msg

Leaving Plan
....AirCylinderDPl...Result= Success Msg

Leaving Specialist
....AirCylinder...Resuit= Success Msg

*** Design attempt succeeds
***** AIR-CYL Air Cylinder Design System *****

248 BROWN A N D CHANDRASEKARAN

7.12. BIBLIOGRAPHY

[I] Birmingham, W. and Siewiorek, D., "MICON: A Knowledge Based
Single Board Computer Designer," Proceedings of the 21st Design
Automation Conference (IEEE), pp. 565-571, 1984.

[2] Brown, D. C. and Chandrasekaran, B., "An Approach to Expert Systems
for Mechanical Design," IEEE Computer Society, Trends and Applica­
tions '83, pp. 173-180, May 1983.

[3] Brown, D. C. and Chandrasekaran, B., "Plan Selection in Design
Problem-Solving," Proceedings of the AISB85 Conference, April 1985.

[4] Brown, D. C , "Capturing Mechanical Design Knowledge,"
Proceedings of the 1985 ASME International Computers in Engineering
Conference, ASME, August 1985.

[5] Brown, D. C , "Failure Handling in a Design Expert System,"
Computer-Aided Design, November 1985.

[6] Brown, D. C. and Breau, R., "Types of Constraints in Routine Design
Problem-Solving," Ρ roc. of the First Int. Conf on Applications of AI to
Engineering Problems, CM Publications, Southampton, UK, April 1986.

[7] Brown, D. C , and Sloan, W. N., "Compilation of Design Knowledge for
Routine Design Expert Systems: an Initial View," Proceedings of the
1987 ASME Conference on Computers in Engineering, August 1987.

[8] Brown, D. C. and Chandrasekaran, B., Design Problem Solving:
Knowledge Structures and Control Strategies, Morgan Kaufmann
Publishers, Inc., 1989.

[9] Brown, D. C , "Research into Knowledge-based Design at WPI," Fifth
International Conference on Applications of AI in Engineering, Gero, J.,
Ed., Springer- Verlag, July 1990.

[10] Chandrasekaran, B., "Towards a Taxonomy of Problem-solving
Types," AI Magasine, Vol. 4, No. 1, pp. 9-17, 1983.

[I I] Chandrasekaran, Β. , "Generic Tasks in Knowledge-Based Reasoning:
Characterizing and Designing Expert Systems at the Right Level of
Abstraction," Proceedings IEEE Computer Society International Con­
ference on Artificial Intelligence Applications, December 1985, [Key
Note Presentation].

[12] Chiang, T. T-L., " A System for the Acquisition of Routine Design
Knowledge," M.S. Thesis, Computer Science Department, WPI, Wor­
cester, MA 01609, March, 1987.

249

Dixon, J. R., Simmons, M. K., and Cohen, P. R., "An Architecture for
Application of Artificial Intelligence to Design," Proceedings of the
IEEE 21st Design Automation Conference, pp. 634-640, 1984.

Green, D. S., and Brown, D. C , "Qualitative Reasoning during Design
about Shape and Fit: A Preliminary Report," in Experts Systems in Com­
puter Aided Design , Gero, J., Ed., North-Holland Publishing Company,
1987.

Grinberg, M. R., " A Knowledge-based Design System for Digital
Electronics," Proceedings 1st Annual National Conference on AI, Mor­
gan Kaufman Publishers, pp. 283, 1980.

Herman, D., Josephson, J. and Hartung, R., "Use of DSPL for the
Design of a Mission Planning Assistant," Proceedings of the IEEE Ex­
pert Systems in Government Symposium, October 1986.

Kassatly, Α., "Explanation for Routine Design Problem Solving," M.S.
Thesis, Computer Science Department, WPI, Worcester, MA 01609,
March, 1987.

Kowalski, T. and Thomas, D., "The VLSI Design Automation Assistant:
Prototype System," Proceedings of the IEEE 20th Design Automation
Conference, pp. 479-483, 1983.

McDermott, D. V. , "Circuit Design as Problem Solving," in AI and
Pattern Recognition in CAD, Latombe, J -C , Ed., North-Holland,
pp. 227-245 , 1978.

McDermott, J., " R l : A Rule-Based Configurer of Computer Systems,"
Artificial Intelligence, Vol. 19, pp. 39-88, 1982.

Mitchell, T. M., Steinberg, L. I., and Shulman, J. S., " A Knowledge-
Based Approach to Design," IEEE Trans, on Pattern Analysis and
Machine Intelligence, Vol. PAMI-7, pp. 502-510, September 1985.

Stefik, M., "Planning with Constraints (MOLGEN: Part 1) ," Artificial
Intelligence 16:2, pp. 111-140, May 1981.

Sussman, G. J., "Electrical Design: A Problem for Artificial Intelligence
Research," Proceedings Fifth IJCAI, pp. 894-900, 1977.

Chapter 8
DESIGN AS TOP-DOWN REFINEMENT

PLUS CONSTRAINT PROPAGATION

Louis I. Steinberg

Abstract

Underlying any system that does design is a model of the design process and a
division of labor between the system and the user. One appealing model views
design as the result of top-down decomposition plus constraint propagation.
We have studied this model by embodying it in VEXED, a design aid for
NMOS digital circuits, and by experimenting with this system. In this chapter,
we describe the VEXED circuit design system. We also discuss EVEXED, a
domain-independent shell extracted from the VEXED system, and MEET, a
mechanical design system built using EVEXED. A number of conclusions can
be drawn from our experience with these systems, including the need for certain
extensions to this model of design and some limits on its applicability.

8.1. INTRODUCTION

There is a large and growing interest in the use of knowledge-based ap­
proaches to building computer systems that aid in the process of design. Some
of this work, including [1, 2, 5, 6] as well as the work described in Chapter 8
(Volume II) and Chapter 12 (Volume I) of this book, is aimed at specific design
tasks in specific domains (e.g., the physical placement task in the domain of
VLSI digital circuits). In contrast to this, our primary aim in the AI/Design
group at Rutgers is to develop an understanding of principles and techniques that
are domain-independent, that is, that apply to as broad as possible a range of
design tasks and domains.

The ideal would be to find principles that apply to all tasks and domains.

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

251 Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

252 STEINBERG

However, it quickly became clear to us that, designing, say, a spoon is quite dif­
ferent from designing a circuit. Only a small fraction of design knowledge will
apply to all domains, and that knowledge will be at a very abstract level and thus
hard to apply to any given specific task.

On the other hand, it has also become clear that some domains are not so dif­
ferent from each other, e.g., circuit design and programming. Even if a piece of
knowledge does not apply to all possible domains, it may still apply to a range
of similar domains.

Thus, our broad goals are to:

• develop a set of design principles and techniques that apply to a
range of related domains;

• understand what that range of domains is;

• learn what it is about domains that lead them to be similar (or dif­
ferent) in terms of which principles apply.

One way to capture a group of ideas about design in some domain is in terms
of a model of the design process. Such a model is intended to capture the se­
quence of states a design goes through from initial specifications to final
product, the operations that move it from state to state, and the decision process
that selects which operation to apply when.

Since all existing systems require some human participation in the process, at
least to provide the initial specifications, it is also useful to think about the
division of labor (between system and human(s)), that is, how the task is to be
divided between the user and the system.

Having described our broad goals, we now turn to the specific research that
will be described in this chapter. Our strategy, like that of the researchers whose
work is described in Chapter 7 (Volume I) and Chapter 9 (Volume Π), has been
to focus on a specific model of the design process and a specific division of
labor. The model we have chosen can be summarized by the equation,

D E S I G N = TOP-DOWN REFINEMENT
+ CONSTRAINT PROPAGATION

In designing a complex structure, one attractive design method is to use top-
down refinement: first decompose the structure into a few main pieces and
completely define the interfaces between the pieces, so that the design of each
piece becomes a totally independent sub-problem. Each can be designed
separately, and the pieces simply plugged together to solve the original problem.
Unfortunately, until we explore the space of possible designs for the pieces, it is
often impossible to know exactly what the interfaces should be.

DESIGN AS TOP-DOWN REFINEMENT 253

One solution to this is common practice among human designers, and has also
been used by Stefik in the MOLGEN system [10]: leave the interfaces only par­
tially specified. As you proceed with the design, decisions you make while
working on one piece will further constrain what the interfaces of that piece
must be, and thus constrain the alternatives for designing other pieces. We refer
to this process of inferring how decisions at one place put constraints on options
elsewhere as "constraint propagation."

Within this model of the design process, the division of labor we chose to
study can be summarized as having the system decide what is possible and the
user decide what is wise. That is, the system keeps track of which modules need
refining and what the alternative refinements are for a given module. It carries
out the refinement chosen by the user and also does constraint propagation. The
user chooses which piece to refine next, out of all those still needing further
refinement, and also chooses which way to refine it, out of all the alternatives
that the system knows about that are consistent with the current constraints.

We first tested the model by using it as the basis for a specific design aid,
V E X E D ,

2
 in a specific domain, digital MOS circuit design. More recently, we

have extended the test by using the same model (and indeed almost entirely the
same code, but with different knowledge bases) to build MEET, a design aid in
another domain - mechanical design [7, 11]. This chapter will focus on results
from the circuit design domain, but will also briefly describe the MEET system.

In short, the results are that this model is appealing, but too simple. In the fol­
lowing two sections we will first describe our experience with VEXED, and
then discuss the conclusions that can be drawn from this experience about this
model of design.

8.2. THE VEXED CIRCUIT DESIGN SYSTEM

This section will discuss our experience with VEXED. First we will describe
the way VEXED embodies this model of design: how it represents the circuit
being designed, how it does refinement and how it does constraint propagation.
Then we will show an example of VEXED's use and then discuss the implemen­
tation status of VEXED and describe the experiments we have done. Finally we
will briefly discuss EVEXED, a domain-independent version of VEXED, and
MEET, a system for mechanical design built using EVEXED.

2
V E X E D stands for V l s i EXpert EDitor.

254 STEINBERG

To embody our model of design, VEXED must represent both the structure
and operation of the partially-designed circuit, and must be able carry out refine­
ment and constraint propagation. We will deal with these issues in that order.

VEXED represents the structure of a circuit in a fairly standard way. A
module represents either a single component or a group of components being
viewed as a functional block. A data-path similarly represents either a single
wire or a group of wires. The operation of a circuit is represented in a somewhat
less standard way. The signal on a given data-path is called a "data-stream", and
is thought of as a sequence of "data elements", e.g., a sequence of bits or charac­
ters. An individual data element is referred to by its "subscript", i.e. its position
in the sequence. Elements have a number of "features", including Type (e.g.
Boolean), Data-Value (e.g. FALSE), Encoding (how the abstract data-type is en­
coded as voltages), and various timing-related features. For a further discussion
of these representations, see [4].

VEXED's knowledge of refinement methods is embodied in a set of "refine­
ment rules", e.g., INCLUDE-MEMORY:

IF the output at time t2 depends on an input at time tl, THEN one way to
refine the module is into a memory, which holds the value from tl to t2, and
another module, which uses this stored value at time t2 to compute the
output.

3

The IF part of the rule describes the class of modules that this refinement
method applies to. The THEN part describes how to do the refinement: the sub-
modules, their initial specifications,

4
 and how they are connected. It is impor­

tant to note that these refinement rules describe legal, correct implementations,
but not necessarily optimal or even preferred implementations. They define the
"legal moves" in the search for possible circuit implementations, but not a
strategy for choosing among alternatives.

It is also worth noting that in VEXED, refinement involves structural decom­
position, breaking a module into its pieces, while in MOLGEN [10] refinement
involves going from a more abstract operation to a more specific one.

Constraint propagation in VEXED is done by the CRITTER system [4]. Crit­
ter does two kinds of propagation.

• Firstly, CRITTER does a form of goal regression [13]. Given a
specification on the data-stream output by a module, and given the

3
This is, of course, an English paraphrase of the formal notation.

*To be augmented later by constraint propagation.

8.2.1. How VEXED Embodies the Model of Design

DESIGN AS TOP-DOWN REFINEMENT 255

behavior of this module, CRITTER can determine what must be
true of the inputs to the module to ensure that the output specifica­
tion will be met.

• Secondly, CRITTER does a form of symbolic evaluation. Given a
(possibly partial) description of the behavior of a module's inputs,
and given the module's behavior, CRITTER can infer a description
of the module's outputs.

Because of our representations, constraint propagation is simply a matter of
symbol substitution (see [3]). However, this process results in very large, com­
plex expressions. Therefore, CRITTER also has an expression simplifierthat
uses a set of rewrite rules to simplify the resulting expressions as much as it can.

Finally, CRITTER is capable of verifying that the specifications on a data-
stream are satisfied by that data-stream's behavior. Again, this is done by a
process of symbol substitution and simplification.

8.2.2. Example

Figure 8-1 shows the user interface for VEXED, at the beginning of a typical
design session; VEXED is implemented for Xerox Interlisp-D machines using
the Strobe object-oriented programming system from Schulmberger-Doll
Research. The circuit being designed is named TEST1. The screen is divided
into several regions, or windows. The largest window is the region in which the
circuit will be designed, and initially contains a large rectangle representing the
circuit TEST1 to be designed. The user has already entered the specifications
for this circuit. These specifications include a description of the inputs and out­
puts of TEST1, as well as a description of the function to be implemented.
Figure 8-2 gives part of these specifications: the value of the output OUT at each
clock cycle must equal two times the sum of the values of the inputs at that
cycle, and for this output the numbers are represented by 4 parallel bits, with
high voltage representing 1 and low representing 0; VEXED can also handle se­
quential circuits. Various features of the signal timing could also have been
specified.

Attached to the main window is a list of commands and a list of pending
tasks. As shown in the figure, the only pending task at this point is to refine
TEST1. This list of pending tasks will be updated as the design proceeds, and
new circuit submodules are introduced. In general, the user controls which por­
tion of the design to focus on next by selecting one of the pending tasks from
this list.

In the current example, the user selects the (REFINE TEST1) task, and the

Quit
Do Agenda Item
Do Selected Rule
Show Hierarchy

Check Specifications
Backtrack

Replay
Make Primitive

Combine
Jump

Vexed Editor
Create Rule

Create CIRCUIT
Change depth

Figure 8-1: The VEXED Interface

256
ST

E
IN

B
E

R
G

DESIGN AS TOP-DOWN REFINEMENT 257

((I (ALL I))
(EQUAL
(DATA-VALUE OUT I)
(TIMES (PLUS (DATA-VALUE MATCH I)

(DATA-VALUE DATA-IN I))
2)))

(EQUAL
(ENCODING OUT I)
(INTEGER (BITS 4) (WIRES 4)

(BIT-ENCODING (NMOS—BOOLEAN (FALSE LOW)
(TRUE HIGH)))))

Figure 8-2: Part of the Specifications for TEST1

system then considers its collection of rules to determine which ones apply to
this module. In this case, the advice offered by the system is that there are four
rules, each suggesting an alternative method for refining TESTl. The user may
select one of these rules to be executed or, alternatively, may elect to ignore the
system's advice, and manually edit the circuit.

Figure 8-3 shows the result of the user selecting the rule TIMES-AS-SHIFT
for the system to carry out. This rule implements multiplication by two as a
shift. Execution of this rule has lead to a refinement of TESTl into three
modules. F:A1167 computes the argument to be shifted, in this case the sum of
the inputs. TX1.A1152 and TX2.A1161 implement the shift. They "convert"
the four-wire bus coming out of F:A1167 into four separate wires and then back
into a bus; they do not represent any real components, but rather are "pseudo-
modules" representing a change in the way we view the signals.

TX1.A1152 and TX2.A1161 are modules instantiated from primitives defined
in VEXED's library. F.A1167 is a non-primitive, still requiring further refine­
ment. The rule has given it some specifications and other specifications may be
derived from constraint propagation. E.g., TX1.A1152 requires parallel input,
so F.A1167 must produce parallel output. The list of pending tasks has also
been updated.

Refinement of the circuit continues in this fashion. The user directs the focus
of attention by selecting which module is to be refined next. The system ex­
amines its rule base to determine applicable rules, and presents these to the user.
The user may then select one of these, or may ignore this advice and elect in­
stead to refine the module by editing it manually.

Figure 8-3: Result of Executing Rule TIMES-AS-SHIFT

258
ST

E
IN

B
E

R
G

DESIGN AS TOP-DOWN REFINEMENT 259

8.2.3. Status

VEXED has been implemented and documented. It has 50 to 100 refinement
rules covering most of the standard NMOS design techniques for boolean func­
tions, and also for a few latches and a few arithmetic functions.

Furthermore, VEXED has been used by students in our VLSI design class to
do a homework assignment. The assignment was done by about ten teams of
students, mostly two students per team. Each team designed one of three small
circuits; one circuit was a full adder, and the others were of about the same size.
The students were given no more documentation and other help (lecture, hands
on help, etc.) than they are typically given for any other design aid used in the
course. Nevertheless, they did succeed in specifying and designing their cir­
cuits. The few who did not finish were those who were halted by one or another
of the minor

5
 bugs left in VEXED.

Thirdly, VEXED has had a number of capabilities added to it beyond refine­
ment and constraint propagation.

• One facility any real system needs is a backtrack or "undo" facility
that allows the user to retract decisions that turn out not to have the
desired effect. VEXED has a chronological backtracking facility
that allows the user to return the circuit to the state it was in at any
previous time.

• It turns out that when a module is refined into sub-modules, a sub-
module may occasionally need a signal as input that was not
originally among the inputs of the parent module. Typically this
happens with signals like clocks, ground, etc. To handle this situa­
tion, VEXED has "Get Signal" tasks, which are automatically en­
tered on the task agenda when needed, and are handled by the user
manually specifying where the needed signal should come from.

• A facility has been added for "Module Combining Rules." These
specify how two modules can be combined into one simpler one,
and provide for a kind of peephole optimization. For instance, two
inverters in series can be combined into just a simple wire (as long
as this change does not violate some timing constraint). Since it is
always appropriate to try to combine modules, and since the circuit
can be considered complete even if no combinations are done, these
tasks do not go on the agenda. Rather, the user can point to a
module and request that an attempt be made to combine it with each
of its neighbors. There are currently only a few such rules, and this
facility was not used by the VLSI students.

"Minor" in the sense that w e were able to quickly fix them.

260 STEINBERG

• Finally, there is now a "replay" facility for VEXED. This takes the
sequence of refinements applied previously to some other circuit, or
even to other parts of the current circuit, and applies them to the
current module. To the extent that the refinement operations used
previously are general, and apply in somewhat new circumstances,
this is a way to reuse the ideas of a previous design even when the
specific circuit is not applicable. See Chapter 2 (Volume Π) for a
further discussion of this facility.

8.2.4· Testing Generality: EVEXED and MEET

In order to test the degree to which our model of design is in fact domain-
independent, we took the development of VEXED one step further: we
modified VEXED to produce EVEXED,

6
 a domain-independent shell for im­

plementing VEXED-like systems, and used this shell to implement MEET, a
system for the design of rotation transmitters, in particular, gear chains.

The process of producing EVEXED from VEXED turned out to be almost
trivial. VEXED already allowed the user to load a different set of rules and
primitive modules, and the representations used in VEXED were tuned much
more to the model of design than to the specific circuit design domain.

We chose rotation transmission as the next problem domain specifically be­
cause of its similarity to digital circuit design. We viewed a "rotation" as being
quite similar to a "signal" - instead of having features like start-time, value, and
encoding, a rotation has features like speed, direction (e.g. "clockwise"), and
power. A module such as a gear pair takes a rotation as input and produces
another as output.

A small number of rules were implemented for MEET, enough to test the
general feasibility of the idea and to come to some conclusions about the
generality of our model of design. These are discussed below and, at greater
length, in [11].

6
The name was chosen by analogy with EMYCIN [12], an expert system shell based on

MYCIN without its domain-specific (medical) knowledge.

DESIGN AS TOP-DOWN REFINEMENT 261

As mentioned above, we began with a model of the design process and of the
division of labor between the user and the system, and we implemented VEXED
to test these models. Our conclusions can be seen as dealing with four broad
questions:

1. Can a design aid embodying these models be implemented? Is it
possible for a system to have a sufficient body of refinement
methods to find those applicable to a given module, to carry out
the one selected by the user, and to do the constraint propagation?

2. If such a system were implemented, could designers, especially
those with no AI or even computer science background, use it to
produce designs? The concern here was both whether the users
could understand and use this design process, and also whether
they could learn our specification language, which is quite dif­
ferent from standard hardware specification languages in its LISP-
like syntax, in its data-flow style semantics, and in its represen­
tation of a data-stream as a sequence of values.

3. What, if anything, is missing from the model? Are there opera­
tions we need to do besides decomposition and constraint propaga­
tion?

4. How general are these models of the design process and of the
division of labor? What must be true of a design task for them to
be useful?

We will discuss each of these issues in turn.

8.3.1. Can VEXED be Implemented?

The fact that VEXED has been brought to the point where students in our
regular VLSI class could successfully use it is evidence that it has indeed been
implemented, at least on a small scale. Two issues need to be considered in
regard to scaling up to larger problems, however. One is the size and coverage
of the set of refinement rules, and the other is the cost of constraint propagation.

As noted above, the current refinement rules cover most boolean combina­
tional circuits for the NMOS circuit technology, and some latches. A truly use­
ful system would require more complete coverage of combinational circuits and

8.3. CONCLUSIONS

262 STEINBERG

latches, as well as rules for a number of other kinds of circuits, e.g. multiplexors,
and rules for higher level data-types such as integers and characters. However,
in principle there seems no reason why these rules could not be added to
VEXED. Based on the number of current rules and the coverage they give, we
estimate that a version of VEXED that would be useful for real designers would
need less than 1000 rules, and so would be within the scope of current technol­
ogy for building and maintaining rule-based systems.

Remember also that user can step in and do a refinement manually whenever
the system does not have a rule for the desired refinement method. This helps in
two ways. First of all, it means that there need not be as many rules before the
system is useful; it probably takes far fewer rules to cover 90% of the refinement
steps in each of a range of designs that it would take to cover 100% of the steps.
Secondly, since the rules do not have to contain any control information, i.e. any
information on which of the locally plausible refinements to actually do in a
given design, it turns out that it is relatively easy to observe the user doing such
manual refinements, and infer general rules. We have built a system called
LEAP [8, 9] that will do just this.

Finally, VEXED uses an indexing structure to find relevant rules for refining
a given module without testing the left hand sides of every rule, so the time to
find relevant rules should grow less than linearly with the number of rules, and
the time to find relevant rules is currently fairly short. Thus we do not expect
the time to find relevant rules to be a major problem even with many more rules.

While the size of the rule set does not seem to be a problem, the cost, both in
terms of memory space and in terms of time, to do constraint propagation does
seem to be a major issue. In a circuit such as a full adder described at the tran­
sistor level, with about 20 modules, it takes five to ten minutes on a Xerox 1109
(DandeTiger) to do the constraint propagation after each refinement. Based on
some initial studies (see [14]), the cost of propagation in the current VEXED
grows quadratically with circuit size in most cases and, for certain kinds of cir­
cuits, exponentially. So, to design anything much larger it will be necessary to
reduce this cost.

One simple answer, of course, is to optimize our code, which is currently not
very optimal, or to get a faster machine. In particular, the task of constraint
propagation seems inherently parallel, since each constraint can be propagated
along each path more or less independently; thus it would seem a natural ap­
plication for a parallel machine. Another answer is to find a way to do less
propagation. At the moment, VEXED propagates every constraint everywhere it
can as soon as it can. Perhaps limiting or delaying some of this propagation can
reduce the cost.

DESIGN AS TOP-DOWN REFINEMENT 263

8.3.2. Can VEXED be Used?

Given that VEXED can be implemented, can it be used? Can non-AI people
learn our specification language, and can they successfully do design with such
a design aid as VEXED? Again, the answer is, "Yes, but."

About half of the class were students from the Electrical Engineering Depart­
ment with no AI background and indeed relatively little Computer Science back­
ground, and even the Computer Science students included some who had not
had any AI courses. The students were given no more documentation and other
help (lecture, hands on help, etc.) than they are typically given for any other
design aid used in the course. Nevertheless , they did succeed in specifying and
designing their circuits. As mentioned before, the few who did not finish were
those who were halted by one or another of the minor bugs left in VEXED.

On the other hand, the circuits some students designed were wildly sub-
optimal. They took many more transistors than were necessary. That is, when
they chose which refinement rule to use, they did not choose wisely. Partly this
may be due to their inexperience as VLSI designers in general. Partly it may be
due to their difficulty in understanding what each rule did. Each rule had a
canned English description that said what its effect was, and another that tried to
give advice on when to use it, but a major complaint from the students was that
it was hard to understand this documentation and to figure out what the rules
did.

Finally, the difficulty in choosing rules may be inherent in the structure of a
system like VEXED. I am a better designer than the students, and I understand
the rules quite well, and thus I can get much better designs out of VEXED.
However, I have to think very hard to do so. The problem is that VEXED's con­
straint propagation tells you the effects of previous refinement decisions in
limiting the choices for the current decision, but it does not show you how each
current alternative will limit the choices you will have on later decisions. To get
a good circuit out of VEXED, the user has to have a clear global strategy in
mind, and has to weigh each decision in the light of how it will contribute to that
strategy.

Perhaps VEXED could try the constraint propagation that would result from
each alternative, and inform the user what the effects of each would be on the
remaining alternatives elsewhere. However, given the cost of constraint
propagation, this may not be practical, and anyway it would show the effect on
tasks already on the agenda, but not the effect on tasks that will be put there in
the future. The basic problem seems to be that since VEXED leaves the control
issues entirely up to the user, it has no internal representation of the goals and
plans that go into a strategy for designing the circuit, and thus cannot offer the
user any support in deciding which module to work on next or which refinement
to make. The DONTE system developed in our research group by Chris Tong,

264 STEINBERG

and described in Chapter 9 (Volume Π), is an attempt to study some of the issues
of how a system based on top-down refinement and constraint propagation
might also make these control decisions.

In addition to the problems with choosing the right rule that the students ac­
tually had, there are two problems that did not come up but might have had they
been designing larger circuits. One is that certain kinds of circuit are quite dif­
ficult to specify in our language. These are the circuits whose output at a given
time depend on the entire past history of their inputs, or at least on an un­
bounded set of past inputs. These are not easy to express in a data flow oriented
form. The solution here is either to find a more algorithmic specification lan­
guage that can be translated into the data flow form, or to find a way to do con­
straint propagation directly with the more algorithmic language.

The second potential problem with larger circuits is that design really does in­
volve more kinds of operations than just decomposition and constraint propaga­
tion. This is discussed next.

8.3.3. Extensions to the Model

It turns out that with just decomposition and constraint propagation, there are
certain kinds of designs that cannot be produced, or at least that do not seem
reachable without contorting the process in ways that seem unnatural. Several
additional kinds of operations are needed. It is useful to be able to undo and
redo decomposition steps. It is useful to be able to rearrange the functionality in
various ways. And it is useful if different parts of the circuit can share either
designs or actual hardware. We discuss each of these kinds of operations in
turn. Finally we discuss problems that arise because VEXED equates design
goals with modules to be refined.

It should be noted that the following list is probably not complete; it simply
contains the things that have become apparent to us so far from the work on
VEXED.

8.3.3.1. Undoing and redoing

Even if all you are really doing to the circuit is decomposition, there are two
useful facilities to have.

Firstly, one facility any interactive system needs is a backtrack or "undo"
facility that allows the user to retract decisions that turn out not to have the
desired effect. VEXED has a chronological backtracking facility that allows
the user to return the circuit to the state it was in at any previous time. It would

DESIGN AS TOP-DOWN REFINEMENT 265

be nicer to allow the user to "undecompose" any module, that is, to retract the
decompositions applied to it and to all its submodules and return it to being
simply a black box, but to leave untouched other decompositions that may have
been done since the ones you are undoing. To do this requires being careful
about which constraints get retracted - not only constraint originating from the
retracted decisions, but also constraints propagated through the retracted sub-
modules must be deleted. However, this seems to be a straightforward matter of
bookkeeping.

Secondly, a "replay" facility is useful. This takes the set of decompositions
applied previously to some other module

7
 and its descendants, and applies these

decompositions to the current module. To the extent that the refinement opera­
tions used previously are general, and apply in somewhat new circumstances,
this is a way to reuse the ideas of a previous design even when the specific cir­
cuit is not applicable. The BOGART system provides just such a facility for
VEXED. See Chapter 2 (Volume II) for a further discussion.

8.3.3.2. Rearranging

A number of useful operations can best be seen not as decompositions but as
rearrangements of various kinds. First, there are several kinds of rearrange­
ments that VEXED can do, at least somewhat.

• It turns out that when a module is refined into sub-modules, a sub-
module may occasionally need a signal as input that was not
originally among the inputs of the parent module. Typically this
happens with signals like clocks, ground, etc. One way this arises is
when a function is implemented as a more general function with a
constant for some input, e.g. an incrementer implemented as an ad­
der with a constant 1 as one addend. Another way it arises involves
encodings. To compute, say, a boolean function of input signals it
is really necessary to interpret the input voltage waveform as a
stream of bits, and then compute the boolean function on these bits.
Usually the interpretation of a waveform as bits can be done im­
plicitly, but occasionally explicit circuitry is required and some­
times this circuitry needs an input such as a clock.

To handle such situations, VEXED has "Get Signal" tasks in ad­
dition to "Decompose" tasks. Get Signal tasks are entered on the
task agenda by the rules that create the need for them, and are

^Either in the current circuit or in another one.

266 STEINBERG

handled by the user manually specifying where the needed signal
should come from.

• Sometimes an operation can best be seen not as a decomposition but
rather as a transformation or recasting. For instance, a complex
boolean expression may be converted to sum-of-products form so
that a particular standard circuit structure may be used to implement
it. VEXED currently can only handle these via "decompositions"
that decompose a module into a single sub-module.

• Often it is possible to optimize a circuit by combining modules that
arise from quite different parts of the decomposition tree but happen
to be connected. E.g., the last primitive in one main module and the
first primitive on the next may both be inverters. If these inverters
are not needed for timing or current driving purposes, then the two
inverters in series amount to a no-op, and may both be removed.
This kind of operation is similar to peephole optimization in a com­
piler.

VEXED has a facility for such "Module Combining Rules." Since
it is always appropriate to try to combine modules, and since the
circuit can be considered complete even if no combinations are
done, these tasks do not go on the agenda. Rather, the user can
point to a module and request that an attempt be made to combine it
with each of its neighbors. There are currently only a few such
rules, and this facility was not used by the VLSI students.

There are also two kinds of rearrangements for which VEXED does not yet
have any facilities at all, largely because of the way such facilities would inter­
act with constraint propagation.

• First of all, there is the operation we call "exporting functionality."
For example, we might have an AND gate fed by two other
modules, and we might decide to implement the AND as a NOR,
and require the two other modules to output the NOT of what they
were originally supposed to output. VEXED does have a rule
which can decompose (AND expression-1 expression-2) into
modules computing (NOT exp-1), (NOT exp-2), and NOR, but
what it cannot do is change the value computed by submodules that
already exist and already have the value of their outputs specified.
To do so would require the ability to retract or modify constraints.
There appears to be no basic reason this could not be done, but it
will take care in handling interactions between such a facility and
the constraint propagator.

• Secondly, it is sometimes useful to knowingly build a circuit in

DESIGN AS TOP-DOWN REFINEMENT 267

which certain constraints are violated, and then patch it by inserting
a "subgoal" module to resolve the conflict. E.g., it may be desirable
to build part of the circuit to work on parallel signals and part on
serial, and to resolve the conflict by inserting a parallel-serial con­
verter between the modules. The problem for VEXED is that once
the decision was made to do, say, the second module in serial, con­
straints would be propagated which would require the output of the
first module to also be serial. In order to do this style of design,
VEXED will have to be able to hold off on propagating some con­
straints some of the time, or else to temporarily retract some con­
straints. The question is, which constraints and when?

8.3.3.3. Sharing

Finally, there are rearrangements that involve separate modules sharing either
hardware or designs.

The greatest degree of sharing is where the same signal needs to be produced
at two different places in the circuit, and instead is produced once and wired to
both places that need it. VEXED has a simple rule that allows this: to produce
any output, ask the user to find an existing signal that meets the specifications of
the output and wire it to that output.

More complex is timesharing, where a component, say an adder, acts as part
of two different modules at two different times. VEXED has no facilities for
such sharing.

Finally, rather than modules sharing signals or components they can share
designs. It is quite common to notice that a given functionality, say a latch, is
needed several places in a circuit, to make one design of a module that will work
correctly in any of the places, and to simply copy this design each place it is
needed. With VEXED, the user can manually create a set of specifications,
design a module to meet them, and then later copy that module in wherever
needed. However, it would be better if the user could simply indicate a number
of places in the circuit and let the constraint propagator compute a sufficient set
of specifications to satisfy the needs of all the uses.

8.3.3.4. Goals are not modules

All the operations we have mentioned so far apply to either a single module or
to modules that are (or become) directly connected to each other. The hidden
assumption has been that modules interact by passing signals back and forth,
and thus the design problems for two modules only interact if the modules are

268 STEINBERG

directly connected. In other words, every subgoal of the design process can be
associated with some specific connected group of modules.

This breaks down in two ways. First of all, it is possible for two modules to
be connected only indirectly through other modules, but for their designs to
strongly interact, in such a way that most ways of implementing either one rule
out all ways of implementing the other. In such a case, it is best to think of there
being a single design goal, "find a consistent pair of implementations," rather
than two separate goals.

Secondly, the equation of goals and modules breaks down when we consider
constraints on global resources. Suppose there is a maximum power consump­
tion for the circuit as a whole. Then any decision to consume some amount of
power in one module reduces the amount left, and thus interacts with the design
of all other modules. We could imagine a "pseudo-wire" connecting all modules
representing this interaction, but because this wire does connect all modules
rather than just a local group it turns out not to give us very useful constraints.
For instance, the fact that the half of the circuit remaining to be designed may
consume 10 milliwatts does not give much help in deciding how much power
we may consume in a sub-sub-submodule of that half. See Chapter 9 (Volume
II) for some ideas on how to approach this problem.

8.3.4. Generality of the Model

The final set of issues we will discuss involve the generality of the model of
the design process. Our experience has shown us that the model makes at least
three assumptions about the design task, and if any of these are violated the
model is not applicable.

The first assumption is that little is known a priori about the structure of the
artifact to be designed. Consider the spectrum that classifies design tasks ac­
cording to how much is known apriori about this structure, and thus about what
decisions will come up in the process of design. At one end of the spectrum,
systems like AIR-CYL (Chapter 7, Volume I) assume the structure of the ar­
tifact is totally known, and all that is needed is to choose appropriate values for a
predetermined set of parameters (resistances, lengths, materials, etc.). At an in­
termediate point in the spectrum we have tasks such as micro-processor design,
where the major building blocks are known (registers, ALU, controller, etc.), but
some are optional (e.g., caches), and there also exist a set of "glue" components
(e.g., multiplexors) that are used as needed. VEXED addresses tasks that lie still
farther along this spectrum; nothing is assumed a priori about the structure of
the artifact, and thus we know nothing about what values there will be to be con­
strained. Therefore, in VEXED, as the design proceeds and we learn what the
parts will be, both the set of constraints and the set of choices being made grow.

DESIGN AS TOP-DOWN REFINEMENT 269

It would be possible to apply VEXED to problems like those AIR-CYL
tackles, where the structure is known a priori. However, to do so would be to
give up the power that AIR-CYL gains from organizing its specialized
knowledge according to the artifact's structure. For instance, while VEXED has
to propagate constraints to all parts of the circuit where they might have any im­
pact, in AIR-CYL there is specialized knowledge about what constraint to
propagate when to exactly which parameter of which part of the structure.

Another assumption our model of design makes is what we term the meson
model of the artifact. In this model, pieces of the artifact interact by passing
some kind of entity, e.g. signals or rotations, from one piece to the next. We
term these entities mesons, by analogy with the sub-atomic particles which other
particles (such as protons and neutrons) exchange as they interact with each
other. Our model of design assumes that the specifications of a module can be
expressed as constraints on the mesons it inputs and outputs, and that it is easy
to determine which modules those inputs come from and those outputs go to.
Our attempts to transfer VEXED to a mechanical design domain have shown us
that these assumptions are not always true. For instance, some constraints are
constraints not on the input or output of a module, but rather on how it is to be
constructed, e.g. constraints on what metal a gear is to made of. More impor­
tantly, in some tasks it is not at all easy to determine which modules interact,
e.g., through physical interference (i.e. bumping into each other). There often is
nothing analogous to the principle that modules can only interact along wires.

8

Finally, our model of the division of labor assumes that there will be rela­
tively little backtracking or other search involved in the process of design. Con­
trol is left to the user, and people are both too slow to execute massive searches,
and not good at carrying them out in an organized and complete manner.
However, even with constraint propagation, some design tasks will require such
search. This often occurs where there are global constraints, for which con­
straint propagation does not help (see Section 8.3.3.4 above).

8
Even in circuit design, there really are other kinds of interaction, e.g. by one chip heating

an adjacent one.

270 STEINBERG

In summary then, design can be seen as a process of top down decomposition,
constraint propagation, and a number of other kinds of operations. We have il­
lustrated some of these other operations. Preliminary results indicate that it is
possible and useful to base a knowledge based design aid on this model, but
there are a number of remaining questions. It remains to be seen if ways can be
found to help the user choose the right rules, if the cost of constraint propagation
can be controlled, and if the specification language can be improved. It also
remains to be seen if the additional operations which appear to be feasible to add
to EVEXED can indeed be added. The most difficult problem to address ap­
pears to be the implicit identification of design goals with the modules in the
structural decomposition.

8.5. ACKNOWLEDGMENTS

This work is being supported by NSF under Grant Number DMC-8610507,
and by the Rutgers Center for Computer Aids to Industrial Productivity as well
as by DARPA under Contract Numbers N00014-81-K-0394 and N00014-85-
K-0116. The opinions expressed in this chapter are those of the author, and do
not reflect any policies, either expressed or implied, of any granting agency.

Both the programs and the ideas presented here are the work of many people
in the Rutgers ΑΙ/Design group. I particularly want to thank Tom Mitchell, Jack
Mostow, Noshir Langrana, Chris Tong, Jeff Shulman, Tim Weinrich, Mike Bar­
ley, Kevin Kelly, Van Kelly, and Atul Agarwal.

8.6. BIBLIOGRAPHY

[1] Bushnell, M. and Director, S.,
 4

 * VLSI CAD Tool Integration Using the
Ulysses Environment," Proceedings of 23rd Design Automation
Conference, ACM/IEEE, pp. 55-61, 1986.

[2] Joobani, R. and Siewioriek, D., "WEAVER: A Knowledge Based Rout­
ing Expert," Proceedings of the 22rd Annual Design Automation
Conference, June 1985.

8.4. SUMMARY

DESIGN AS TOP-DOWN REFINEMENT 271

[3] Kelly, Van E., ' 'The CRITTER System Automated Critiquing Of Digital
Circuit Designs," Proceedings of the list Design Automation
Conference, IEEE, Albuquerque, New Mexico, pp. 419-425, June 1984,
[ΑΙ/VLSI Project Working Paper No. 13].

[4] Kelly, V., The CRITTER System - An Artificial Intelligence Approach To
Digital Circuit Design Critiquing, unpublished Ph.D. Dissertation, Rut­
gers University, New Brunswick, New Jersey, January 1985.

[5] Kim, J. and McDermott, J., "TALIB: An IC Layout Design Assistant,"
Proceedings ofAAAI-83,pp. 197-201, 1983.

[6] Kowalski, T, An artificial intelligence approach to VLSI design, Kluwer
Academic Publishers, Boston, 1985.

[7] Langrana, N. and Mitchell, T. and Ramachandran, N., Progress Toward
A Knowledge-Based Aid for Mechanical Design, Technical Memo
CAIP-TM-002, Center for Computer Aids for Industrial Productivity,
Rutgers University, jan 1986.

[8] S. Mahadevan, An apprentice-based approach to learning problem-
solving knowledge, unpublished Ph.D. Dissertation, Rutgers University
Computer Science Department, 1989, [Rutgers Computer Science Tech­
nical Report Number ML-TR-30].

[9] Mitchell, T. M. and Mahadevan, S. and Steinberg, L., "LEAP: A Learn­
ing Apprentice for VLSI Design," Proceedings of IJCAI-85, Los An­
geles, CA., August 1985.

[10] Stefik, M., "Planning with constraints (MOLGEN: Part 1) ," Artificial
Intelligence 16:2, pp. 111-140, May 1981.

[11] Steinberg, L., Langrana, N., and Fisher, G., "MEET: Decomposition and
Constraint Propagation in Mechanical Design," Proceedings of the NSF
Engineering Design Research Conference, Amherst, MA, pp. 363-375,
June 1989, [Available as Rutgers ΑΙ/Design Project Working Paper
Number 121.].

[12] Van Melle, W., Scott, A.C., Bennett, J.S., Peairs, M., "The EMYCIN
Manual," Report No. STAN-CS-81-885, also Heuristic Programming
Project report HPP-81-16,1981.

[13] Waldinger, R., "Achieving Several Goals Simultaneously," in Readings
in artificial intelligence, Webber, B. and Nilsson, N., Eds., Morgan
Kaufmann, pp. 250-271, 1981.

STEINBERG

Kelly, Κ., Steinberg, L., and Weinrich, T., Constraint Propagation in
Design: Reducing the Cost, unpublished Working paper, March 1988,
[Rutgers University Department of Computer Science ΑΙ/VLSI Project
Working Paper No. 82].

Chapter 9
A KNOWLEDGE-BASED FRAMEWORK

FOR DESIGN

Sanjay Mittal and Agustin Araya

Abstract

Many design problems can be formulated as a process of searching a "well-
defined" space of artifacts with similar functionality. The dimensions of such
spaces are largely known and are constrained by relations obtained from the im­
plicit functionality of the designed artifact. After identifying the kinds of
knowledge that mediate the search for acceptable designs, a computational
framework is presented that organizes the required knowledge as design plans.
A problem solver is described that executes these plans. The problem solver ex­
tends the notion of dependency-directed backtracking with an advice
mechanism. This mechanism allows information from a constraint failure to be
used as advice in modifying a partial design. An expert system called PRIDE,
for designing paper transports inside copiers, has been successfully built based
on this framework.

9.1. INTRODUCTION

Increasing attention is being paid to the development of knowledge-based sys­
tems for design, especially of mechanical systems [4, 5] . The expectation is that
these computer systems can improve the quality of designs and shorten the time
required to find satisfactory designs.

Some of the major stages in designing a complex system are: i) a definition
stage where precise functional specifications are developed from the require­
ments; ii) a generation stage where many satisfactory designs may be created;
and iii) an evaluation stage where these different designs are compared or op-

Artificial Intelligence in Engineering Design 273 Reprinted from Ά Knowledge-Based Framework for
Volume I Design, ' Proceedings of the AAAI Fifth National
Design Representation and Models of Routine Design Conference on Artificial Intelligence, Volume II,

pp. 856-865. Copyright © 1986 American Association
for Artificial Intelligence.

274 MITT AL A N D ARAYA

timized by some criteria. These stages are not necessarily sequential because the
latter stages can provide feedback to earlier ones. In this paper we shall be
primarily concerned with the middle stage, i.e., the generation of designs that
satisfy some functional specification.

The general problem of designing artifacts that satisfy some arbitrary
functionality is not well understood [9]. However, there seem to be many design
problems where the search space has been largely defined by the expert desig­
ners (or can be obtained from them). This means that the kinds of dimensions of
the design space are by and large known, i.e., the kinds of design parameters are
known. Furthermore, the design parameters of the search space are constrained
to produce artifacts which have the "same" functionality. We shall call problems
with these two properties as well-defined.

In this paper we present a framework for building computer programs that can
assist in the design of systems that have well-defined search spaces. The
framework rests on the key observation that given such spaces, the process of
generating alternative designs is largely a process of searching these spaces.
This is not to suggest that the space is small, or that it does not vary in details, or
that substantial reasoning may not be needed for finding satisfactory designs. On
the contrary, the search process is guided by knowledge about how to define
partial designs in this space and knowledge about how to modify a partial design
when the constraints are violated. Furthermore, the search may be ordered by
heuristic knowledge obtained from experience.

The proposed framework organizes these different kinds of knowledge into
design plans. These plans are carried out by a problem solver that can engage in
exhaustive search if the knowledge is insufficient. The problem solver extends
the notions of dependency-directed backtracking with an advice mechanism.
This mechanism allows advice based on a failed constraint to reorder the
generators at a prior decision point, allowing rapid convergence in many cases.

Based on this framework we have successfully built an expert system called
PRIDE [8] of paper transports inside copiers. In this paper we shall focus on the
ideas behind the design framework and not the expert system itself. We start by
describing an example of an artifact with a well-defined design space. The next
section makes our notion of design-as-search more precise. The subsequent
three sections describe the framework itself. We conclude with a discussion of
some of the questions raised by our work.

A KNOWLEDGE-BASED FRAMEWORK FOR DESIGN 275

9.2.1. An Example of an Artifact

A paper handling system in a copier is used to transport paper from an input
to an output location, avoiding certain obstructions. One kind of paper transports
are built from the pinch-roll technology. In this technology, a "baffle" is used to
guide the paper along a certain path and "roll stations" are placed along this path
to move the paper (see Figure 9-1). Roll stations consist of one or more pairs of
rolls mounted in corresponding shafts. Each pair, in turn, consists of a driver
roll, which is powered, and an idle roll, which spins freely.

A typical design problem specifies the velocity and angle of the paper at the
input and output locations of the transport, maximum acceptable skew of the
paper while being transported, characteristics of the papers that will be trans­
ported (e.g., length, weight, etc), and so on. The problem is to determine the
shape of the baffle, the number, position and kinds of roll stations, the properties
of drivers and idlers, and many other properties of these and other components.

9-2.2· Different Kinds of Knowledge

There might be several kinds of artifacts, based on different technologies, that
can exhibit the "same" functionality. For instance, paper transports can also be
built from belt-transport technology.

For each technology, it is necessary to know the kinds, and numbers, of parts
(or components) and how those parts compose or interact to form the artifact.
Parts might be further decomposed into other parts. Certain parts might have al­
ternative decompositions into subparts, and it is necessary to know the con­
ditions under which each alternative is more suitable.

Parts have "relevant" properties, i.e., properties that can affect the
functionality of the artifact, (e.g. width and diameter of a driver roll, which may
affect the velocity with which the paper moves while passing through the sta­
tion). When parts interact with other parts of an artifact, they can exhibit certain
relevant behaviors (e.g., velocity of a driver, skew of the paper), which depend
on properties and behaviors of these or other parts.

9.2. KNOWLEDGE ABOUT THE ARTIFACT BEING
DESIGNED

We begin with a simplified example taken from the domain of paper handling
systems inside copiers and duplicators.

276 MITT AL A N D ARAYA

Corresponding to each property, one needs to know what the plausible values
are for that property, e.g., the different known diameters of a drive roll may be
10, 20, 40 mm; the width of a driver can be between 5mm and 50mm in incre­
ments of 1mm; the baffle gap can be between 2 and 10mm in increments of 0.5
mm; etc. Certain properties of parts can only take values from a pre-existing set
of values. This is the case when it is desirable to select parts from existing ones.
For other properties it might be known how to design them taking into account
the given specifications and the properties and behaviors of other parts.

9.3. DESIGN AS KNOWLEDGE-GUIDED SEARCH

The process of designing such an artifact can be usefully viewed as a search
of a multi-dimensional space of possible designs. The dimensions of such a
space are the parameters of the artifact such as the properties of the individual
parts and the structural relationships between the parts. For example, in the case
of a paper transport, some of the parameters would be "input velocity of the
paper coming into the transport", "lengths and widths of the different kinds of
paper", "length of the paper path", physical characteristics of each of the driver
and idler roll at each station such as diameter, width, material, and velocity, etc.
The actual number of parameters varies from case to case, depending on the
number and kinds of parts that are needed.

Typically such design spaces are very large and searching for suitable designs
can be very time consuming. Two major factors contribute to this. First, sig­
nificant computation may be involved in defining a point in the space, i.e., as­
signing values to the different parameters. Because the space is quite sparse, in
that there are far fewer acceptable designs than the ones ultimately rejected,
most of the search effort may be expended in finding solutions that will be
rejected later on. One approach to mitigate this problem is to analyze partial
designs as early as possible, instead of waiting for the complete design.

This brings us to the second cost, i.e., the computation in evaluating a design
for suitability. Many of the analysis techniques are time-consuming and a design
may pass one analysis only to be rejected later by another one. By appropriately
ordering the generation of the design and its evaluation for suitability, some of
the wasteful computation may be avoided.

Given this complexity, experienced designers use knowledge of various kinds
to direct their search. As discussed in the previous section, one obviously needs
to have a great deal of knowledge about the artifact itself. Here we will discuss
some of the knowledge used in exploring the space and directing the search.

A KNOWLEDGE-BASED FRAMEWORK FOR DESIGN 277

a) Side v iew of paper path
and roll stations

f
-Driver-

τ -Idler-

1

1
b) Front v iew of roll station

Figure 9-1: Paper Path in PRIDE

> Shaft

278 MITT AL A N D ARAYA

9.3.1. Ordering Knowledge

A simple, yet powerful piece of knowledge is information that creates an or­
der in which decisions get made. Use of such ordering information is quite
prevalent [9]. However, the characteristics of the search space which create
such order are not well understood. The ordering knowledge may be simply
based on the dependencies between decisions. For example, in our sample
problem, decisions about roll station placement depend so intrinsically on the
length of the paper path that they have to be made later.

A different kind of order is created by structuring the space hierarchically. By
this we mean that instead of having the complete space explicitly defined, deci­
sions along some dimension open up sub-spaces. Thus, different choices at some
level could lead to very different sub-spaces being opened up for design. A
simple example from paper transport domain involves choice of technology.
Depending on the technology chosen such as rolls or belts, very different design
spaces are opened up for further exploration.

9.3.2. Constraints between Parameters.

The parameters of the design artifact are not independent. Often, they are con­
strained by relations. Some of these constraints may be derived from the explicit
specifications of the particular design problem. For example, the locations and
angles of the input and output of the paper transport constrain the shape of the
paper path.

A different set of constraints is derived from the intrinsic properties of the
structure and behavior of the artifact being designed. All paper transports must
satisfy some basic constraints on velocities, frictions, and forces acting on a
moving paper, otherwise they will fail in their essential functionality. For ex­
ample, the distance between two consecutive roll stations must be less than the
smallest paper that will be transported by the paper handling system, otherwise
for certain sections of the path the paper will no longer be under the control of
any station. Both kinds of constraints determine the suitability of a design in
terms of providing the desired functionality.

The way these constraints are used is crucial in determining how efficiently
the design process operates. It is well known that a generate-and-test model in
which the constraints are primarily used to test the generated solutions will be
quite inefficient. More powerful problem solvers such as dependency-directed
backtracking [2] also have some well-known deficiencies. Some of these
deficiencies can be compensated by using appropriate knowledge, in terms of
"ordering" information based on how the variables are constrained.

A KNOWLEDGE-BASED FRAMEWORK FOR DESIGN 279

We have found it useful to make a distinction between tight and loose cou­
pling between a set of variables. In the case of tightly coupled variables, a search
procedure that tries to assign a value to one of these variables and then
propagate it over the constraints may have to back up many times before finding
a consistent solution. However, in the case of loosely coupled variables, it is of­
ten possible to find a partial order in which the variables are decided which will
work with relatively small amounts of backtracking.

9.3.3. Advice for Modification

A major piece of knowledge that expert designers seem to use when the
design fails some acceptability condition (constraint) is how to modify the
design. Consider a dependency-directed backtracking problem solver in con-
strast. It knows enough to back up to a relevant decision point but does not have
any way of deciding how to modify its decision. Good designers, on the other
hand, not only know where the relevant prior decision points are but also
analyse the failure to decide how to modify their past decisions. Being able to
advise a prior decision point (and a problem solver in general) is crucial in
reducing the search. In the best case, the advice would enable a previous deci­
sion to be modified in exactly the way needed to fix the current constraint
failure. In general, the advice may only help partially. In the framework we have
developed, and described in the rest of the paper, this ability to advise plays a
central role in problem solving and is an important advance over most of the ear­
lier approaches.

9.4. STRUCTURING DESIGN KNOWLEDGE AS
PLANS

In the previous section we identified four major kinds of knowledge that are
needed during the design process: defining the dimensions of the design space;
choices along each dimension; constraints on these choices; and advice for
modifying some design choice. In addition, there were heuristics on ordering the
decisions, structuring the space, and ordering the choices for some dimension
that aid in making the design process be more effective. These different pieces
of knowledge can be effectively integrated into knowledge structures that we
shall call design plans. In this section we introduce the different plan elements
and describe their structure. The next section discusses how they are used in
problem solving.

280 MITTAL A N D ARAYA

Plans are organized around goals for making design decisions about a set of
design parameters. Each goal is responsible for a few of these parameters, i.e., it
represents one or more decision points from a problem solving viewpoint. A
goal also defines some of the dimensions of the design space. By this we mean
that only by scheduling a goal does the design sub-space defined by that goal be­
come ready for exploration.

In our paper transport domain, some typical goals would be "Design Paper
Transport", "Design Paper Path", "Design Driver Roll", and "Design Driver
Width". The first of these is a top-level goal, which can recursively expand into
a tree of sub-goals (Figure 9-2).

Each of these goals defines a space of partial designs. As we move down the
goal tree fewer dimensions are considered. Thus, the goal "Design Driver
Width" is concerned with only one design parameter, whereas the goal "Design
Driver Roll" is concerned with all parameters of a driver roll. The former is a
sub-goal of the latter. Each goal explicitly specifies the design parameters it is
responsible for. Goals also specify the design parameters on which they depend.
For example, the goal "Decide number and location of roll stations" specifies
that it depends on knowing the paper path length. The dependency information
may be either statically described or dynamically determined from the particular
design method that is being tried or both.

9.4.2. Design Methods

Design goals have different design methods associated with them, which
specify alternate ways to make decisions about the design parameters of the
goal. These methods capture the knowledge about the possible values of
properties of components, as well as knowledge about the behavior of com­
ponents. The role of the design methods is then to generate partial designs.

The knowledge about carrying out a goal may be available in many different
forms. This diversity is reflected by the different kinds of methods that exist in
our representation. One kind of methods are generators which specify a set, or
range of values to be generated. They can also encode heuristics about ordering
the values, initial guesses, etc. For example, a generator method for driver width
is shown in Figure 9-3. It shows both the range of values as well as the initial
choice heuristic.

Another kind of methods are calculations which apply some mathematical
function over a set of previously decided parameters. A calculation may be
viewed as a combination of a generator and an equality constraint. This method

9-4.1. Goals

A KNOWLEDGE-BASED FRAMEWORK FOR DESIGN 281

always produces the same value for the same set of its input parameter values.
Some of the other kinds of methods are procedures (which embed arbitrary com­
putations) and constrained generators (which can look ahead to the constraints
on the goal to generate values).

There is another set of method types which primarily provide control
knowledge on the use of other methods. A simple example are conditional
methods (also called rules) which allow some conditions to be specified on the
suitability of applying a method. The action part of a rule must be a method.
Other examples of such control methods are rule groups and conjunctive
methods. An important property of control methods is that they make explicit
the separation between two kinds of knowledge: one for making design choices
and the other for selecting a suitable set of choices or ordering the different sets
of choices.

9.4.2.1. Subplans

Another kind of control method is called a subplan. These methods specify a
set of goals that must be carried out in order to satisfy the higher level goal. The
actual order in which the goals are carried out is specified by the input and out­
put dependency descriptions attached to a goal. The subplan method is the only
mechanism for creating goal trees. This has some important consequences. First,
alternate plans for decomposing a goal into sub-goals can be easily represented.
For example, very different sub-plans exist for a goal if different technologies
are available for the implementation of the goal's specifications. Second, given
that a subplan method is like any other method, it can be embedded inside con­
trol methods. This allows, for example, plan selection knowledge to be
represented inside control methods.

Finally, subplan methods and other more direct methods can be simul­
taneously specified for the same goal. In other words, a goal may be achieved in
different ways. One way may be to decompose it into smaller sub-problems.
Another way might be to use previously designed pre-packaged solutions. For
example, the goal for "Design driver roll" may have one method which decom­
poses the goal into sub-goals: "design diameter", "design width", "decide
tolerances", "decide material", etc. A driver designed in this way may need to be
manufactured from raw stock. Another method may be a generator which selects
from some standard off-the-shelf driver rolls. Typically, this latter method
would be tried before the more general subplan and be so specified.

Statically no distinction can be made between goals which have sub-goals and
those which have direct methods. During the execution of the plan, however,
some differences arise. The primary difference arises from the fact that a sub-
goal is responsible for a subset of the specifications of its super-goal. In such

282 MITT AL A N D ARAYA

cases, the most specific goal is held responsible for the shared design parameter
during problem-solving, which is described in the next section.

In addition to the method types described above, we also specify an abstract
problem solving protocol that must be followed by a method. Thus, new method
types can be created. In fact, the current set has evolved over the course of
representing the knowledge about paper transports.

9.4.3. Design Constraints

The third major element of a plan are constraints on the design parameters.
These constraints are attached to some goal. Typically, they would be associated
with the goal for the less constrained variable, as heuristically determined by ex­
perts. However, they can be as well attached on separate goals which then
depend on the goals for the constrained parameters. Notice, that much of the or­
dering in the plan arises from where the constraints are attached. This is because
the parameters in a constraint are also used to order the goal during run-time
scheduling. As we discussed in the previous section, this is very appropriate be­
cause much of the ordering seems to come from the constraints on a parameter.

We view a constraint as an object which basically specifies a relation between
a set of design parameters. These relationships may reflect the conditions on the
underlying structure or behavior of the artifact or they may be derived from the
specifications of an individual problem. In the next section we elaborate on how
constraints are used.

9.4.4. Advice for Modification

The last major element of a design plan is advice to the problem solver. We
have identified the need for many different kinds of advice. In this paper we will
focus on only one kind of advice, namely, modify parameter advice. This is the
advice attached to constraints and activated when constraints fail. These advice
descriptions can be obtained in two ways. For certain kinds of constraints one
can analyze the expression and determine which parameters must be modified
and how to satisfy the constraint. In many other cases, the experts know from
experience which parameter may be more easily modifiable and the system can
determine how much to change the parameters in order to satisfy the constraint.

In our framework we can represent both kinds of advice. This implies that
part of the constraint protocol is being able to automatically analyze the failure.
Once a piece of advice is created, no difference is made between the heuristic
(produced by the expert) and direct (produced by the system) advice.

Design Paper
Transport

Design Paper Path Decide Number &
Location of Stations!

Decide Number of
Stations

Generate Range of |
Locations

Generate Location

Design Station

For each station:

Design Driver Design Idler

goal-subgoal relation

goal on right depends on goal on left

Figure 9-2: Goal Hierarchy

A
 K

N
O

W
L

E
D

G
E

-B
A

SE
D

FR

A
M

E
W

O
R

K
 FO

R
 D

E
SIG

N

283

284 MITT AL A N D ARAYA

Idler width generator

parameter
min value
max value :
step :
initial value

Idler width
10mm
100mm
1mm
if driver width known
then 2 * driver width
else 40mm

Figure 9-3: Generator Method

Some of the other kinds of advice we have found useful are processing advice
which advises the problem solver itself to give up or suspend a particular ex­
ploration path; selection advice which causes a particular plan to be aborted in
favor of another; and modify specification advice which advises the user (or
another system) to change some problem specification.

9.5. PROBLEM SOLVING USING THE PLANS

We start by describing the basic problem solver that tries to carry out these
design plans. Later we will briefly describe the more extended version which
supports a more comprehensive design process. The basic problem solver com­
prises three major parts: i) a goal scheduler which uses an agenda to post goals,
try them out, suspend them if needed, and revise them; ii) a dependency net
which is created dynamically (this data structure associates a designed parameter
with the goal which designed it and the goals which directly depend on it); and
iii) a set of protocols which each of the plan elements is expected to follow. The
protocols can be viewed as falling in two groups: initial design and revision.

A KNOWLEDGE-BASED FRAMEWORK FOR DESIGN 285

Before a goal is run, its preconditions are checked. These are computed both
from the input parameter dependencies as well as direct dependency on other
goals. The latter is a heuristic way of ordering goals which reflects processing
considerations.

The activated goal tries methods from its list of design methods to find the
first that runs successfully. A method could cause a goal to suspend by surfacing
some new dependencies. Most methods fail or succeed right away. Subplan
methods, on the other hand, post new goals and suspend the higher goal. If all
methods fail, then the goal fails. Notice, that if the goal was embedded in a sub-
plan method, and all but the top goal are, this failure propagates to the method
and up.

Once a method succeeds, the constraints are tried. If all constraints are
satisfied, the goal succeeds. If a constraint fails, however, the problem solver
(often working with the user) will either relax the constraint or try to satisfy it by
revising the partial design.

9.5.2. Revise Design Protocol

In order to revise the design the problem solver has to: i) determine what
design parameter(s) to modify, ii) determine which goal to backtrack to, and iii)
try to effect the change. The first piece of information comes from the advice at­
tached to constraints. Given the advice, the dependency net is examined to deter­
mine the goal which can handle the advice. This goal is then activated in a
"revise" state.

The revised goal adds the advice as a new constraint. It then asks the
previously executed method to revise itself if it can. Different methods handle
advice differently. A generator tries to generate a different value which con­
forms to the advice. A calculation, on the other hand, can revise itself only by
creating a new piece of advice which may cause the problem solver to backup
further. If the original method fails, then the goal searches among its other
methods for the first method that succeeds. If none of the methods succeed then
the advice has failed and control returns to the original point of failure. Often
there are other pieces of advice that can be tried. If a method does succeed in
producing a value then the constraints are checked again. If the constraints are
satisfied then the advice has succeeded and design will proceed, eventually
reaching the goal which originally failed and continuing beyond if the advice
was appropriate.

9.5.1. Initial Design Protocol

286 MITT AL A N D ARAYA

Notice that at the revised goal, some constraints which originally succeeded
may now fail. This can create new advice causing the problem solver to back up
further. Also, some new constraints may have been added which can fail. In fact
the calculation methods effectively propagate the advice backwards by this
mechanism.

9.5.3. Illustration of the Advice Mechanism

We shall illustrate how the advice mechanism works with the help of a simple
example. Consider the following two constraints on three variables x, y, and z.

Furthermore, let us assume that independent of these constraints, we also know
the sets from which each of the three variables can take values.

One way to represent this problem in our framework is to have separate goals
for x, y, and z. Let us call them Gx, Gy, and Gz, respectively. Each of these
goals will have a single method, which is a generator incorporating the choice
sets in (4) - (6) respectively. Let us name the methods Mx, My, and Mz. Also
assume that there is no knowledge about initial guesses for these variables in the
generators. Constraints CI and C2 can be either attached to one of these goals
or a fourth one. Let us say we adopt the latter representation and call the goal
with the constraints Gc [A discussion of the differences between the two choices
are beyond the scope of this paper].

In the initial design phase, the goals Gx, Gy, and Gz will be trivially satisfied
(because no constraints are attached to them) by making the following choices.

χ + y + ζ > 1 0
χ + y + ζ < 2 0

(Cl)
(C2)

x: { 1 , 3 , 5 }
y: {2, 4 , 6 , 8 }
ζ : { 1 . . 1 0 0 }

(4)
(5)
(6)

x=l; y=2; and z=l

However, goal Gc will fail because while C2 is satisfied, CI is not.

A KNOWLEDGE-BASED FRAMEWORK FOR DESIGN 287

x
A
, > 7 (Al)

y
A
, > 8 (A2)

z
A
, > 7 (A3)

x
A
 & y

A
(A4), etc.

The advice A l means "increase χ such that it is greater than 7". In this ex­
ample, we will only consider advice that tries to change one variable at a time.
The advice A l when sent to the problem solver will cause goal Gx to try to
revise itself. However, the method Mx at Gx cannot find a value for χ that is
greater than 7, so this advice will fail. Goal Gc will then send advice A2, which
also fails. Next A3 is tried which succeeds in modifying ζ to 8 and now the con­
straints are satisfied.

Notice that the revision of ζ will cause all goals dependent on ζ to be "un­
done" and retried. Also, even though we started with arbitrary values for the
three variables, we were able to quickly find a solution. The generators keep
track of the choices they have made, so the same value will not be generated
again in the same context (see section 6 for more on the context mechanism).

Suppose we were to impose a new constraint on ζ at this point:

ζ > 10 (C3)

This constraint will fail creating an advice:

z
A
, > 10 (A5)

This advice will cause the value of ζ to change to 11. The change in ζ will undo
goal Gc which will recheck its constraints. The constraints CI and C2 are still
satisfied, so this new solution will be accepted. Notice, that if wanted to preserve
the previous solution, this new constraint would be imposed in a subcontext, al­
lowing both solutions to be explored further.

9.5.4. Example of Design Revision from Pride

Let us consider another example which is drawn from the paper transport
domain. After the shape of the path to be followed by the paper has been
defined, it is necessary to determine the number of roll stations and their loca-

Constraint CI can generate many different types of advice for modification:

288 MITTAL A N D ARAYA

tions. The placement of the stations has to satisfy various kinds of constraints
[6].

In the design phase, a heuristic is used to propose the number of stations.
Using this information, a method is applied which determines ranges of place­
ments of stations such that the relevant constraints are satisfied. If it turns out
that no such placement exist because for any placements there are constraints
that are not satisfied, then a redesign episode takes place. A piece of advice is
generated indicating, for instance, that the number of roll stations should be in­
creased. This requires undoing the previous decision (and all the decisions that
depended on it) and making a new decision using the advice. This is illustrated
in Figure 9-4.

9.5.5. Discussion

Some important properties of our problem solver are novel and crucial to its
success. Our problem solver augments a weak-method, i.e., dependency-directed
backtracking, with an advice mechanism. In other words, the dependencies be­
tween design parameters are used in determining a relevant decision point to
back up to. Furthermore, the failed constraint(s) is analyzed to determine a piece
of advice for the revised decision. Thus the problem solver is not only capable
of searching its entire design space but still does so intelligently and directed by
advice from failures. Moreover, this general search method is integrated in a
framework which is knowledge-rich. This means that if knowledge exists about
ordering goals or making plausible choices, it can be profitably used. Recourse
is made to the general method only where sufficient knowledge does not exist or
is incomplete.

Finally, notice that our approach avoids another typical shortcoming of purely
knowledge-based approaches which rely on heuristically determined order be­
tween goals. In our scheme even if two goals were ordered the wrong way, the
advice mechanism would produce the correct result in one round of revision.
This is because the advice mechanism allows constraints imposed later in design
to be propagated back as advice. The same mechanism can also be used to do a
rough design followed by a more precise design.

9.5.6. Limitation

Even though the problem solver we have described can perform arbitrary
search, it will clearly be too inefficient in some cases. One such situation arises

A KNOWLEDGE-BASED FRAMEWORK FOR DESIGN

3)
Advice

parameter: # of roll
station

change: increase by
one

f

D
Goal: decide # of roll
stations

Method: divide length of
path by smallest paper
length

Goal: generate range of locations
that satisfy contraints

Methods: contraints compaction
algorithm

Constraint 1: maximum
separation between neighboring
rolls < smallest paper length - Κ

Figure 9-4: Advice Example

290 MITTAL A N D ARAYA

in cases of tightly coupled variables. That is, if there is a set of variables which
are so inter-constrained that no local propagation of values or advice will suffice
to efficiently find a consistent solution, then one might want to look for other
problem solving methods for that subproblem. For example, in the paper trans­
port design, the roll placement problem has this property. It is important to em­
phasize that these special problem solvers can still be embedded in our overall
framework by embedding them inside design methods. The example discussed
earlier illustrated this point. This implies that the overall problem solving may
still proceed as a process of solving loosely-coupled sub-problems with some
backtracking, with the tightly-coupled decisions localized as a single decision-
point, but still capable of being revised from the outside.

9.6. EXTENDED PROBLEM SOLVER

We briefly describe two other components of the problem solver that play a
major role in supporting the overall design process but are not essential in un­
derstanding how the problem solver works.

9.6.1. Multiple Design Contexts

We provide a facility for maintaining multiple design contexts [7]. A design
context contains a complete description of the artifact being designed, a com­
plete description of the state of the design plan corresponding to that design, and
the state of the problem solver.

The advising mechanism makes use of the multiple contexts mechanism.
Specifically, when the design problem solver processes an advice, it can do so in
a separate context. This ensures that if a specific advice fails to revise the design
satisfactorily, the system can back up to the context in which the advice was
originated and continue with a different advice.

The ability to create multiple partial designs and keep them distinct is crucial
in exploring different choices simultaneously. For example, at certain choice
points, one can explore the different choices simultaneously by creating a sub-
context for each choice. We have chosen not to do so because of the size of the
design space, i.e., the number of choice points and choices at each point are far
too many. Ultimately, some incorporation of ATMS [3] ideas may be
worthwhile.

A KNOWLEDGE-BASED FRAMEWORK FOR DESIGN 291

9.6.2. User Control of the Search

Pragmatically, the user and the automated problem solver have to work
together. This is because of the complementary nature of their strengths. Most
automated problem solvers can tirelessly search a design space, manage the
dependencies, selectively undo parts of the design, and consistently check the
constraints. However, they rarely have enough knowledge to avoid unnecessary
work. Human problem solvers, including experts, are rarely systematic in the
above activities, but often have knowledge that lets them avoid or minimize the
search. It seems natural, therefore, that there be a way for the human user to
steer the problem solver in more suitable regions of the search space.

We provide many entry points for a user to interact with the problem solver.
The advice mechanism turns out be quite suitable for many such interactions.
Thus, a user can easily enter a piece of advice. This means that the user can
choose to advise arbitrary goals and thereby affect the course of design.

Another natural place is in the selection of advice. A failed constraint typi­
cally has alternative advices on how to satisfy it. However, it is often hard for
the system to decide which advice is more likely to succeed. We allow the user
to not only change the order of the advice but also change its content in some
cases.

There are many situations where the design methods are incomplete in their
description of the design space. In such situations, it is natural for the user to be
able to make a design decision and let the system do the rest. In fact it is pos­
sible for the user to not only make the decision but also handle the ensuing ad­
vice from a constraint failure at some subsequent goal. On a very pragmatic
basis, these 'hooks', along with the multiple context facility, allow a user to
work with the system in exploring a design space and looking at alternatives
quite rapidly.

9.7. DISCUSSION AND CONCLUSIONS

The framework described in this paper has been successfully used to build a
knowledge-based system, called Pride, for designing paper transports inside
copiers and duplicators [8]. A prototype version of Pride has been ready and in
field test for over a year now. It has been tested on real design problems from
previous and ongoing copier projects. It has been successful in not only produc­
ing acceptable designs but also in analyzing designs produced by engineers and
identifying shortcomings in their designs.

The notion of plans for representing design knowledge was independently

292 MITTAL A N D ARAYA

developed by Brown and Chandrasekaran [1] (see also Chapter 7). Our
framework, however, is more general in many ways. First, we impose fewer
restrictions on the kinds of artifacts we can handle. Second, we provide a
problem solver that can search the design space more thoroughly. Finally, our
multiple contexts mechanism allows different design alternatives to be simul­
taneously explored.

Many interesting research issues are still unresolved in the work we have
presented. For example, we have not explored the limitations of the advice
mechanism. In particular, we have not looked at the general case where many
constraints can simultaneously fail and the problem caused by conflicting ad­
vice. Another area of investigation is a categorization of constraint types and the
constraint satisfaction methods that may be most suitable for each type.

Another interesting issue we are investigating is the relationship between the
structure and function of the artifact on one hand and the design plans on the
other. This seems to be important both from the point of view of acquiring ad­
ditional knowledge as well as generating the design plans more automatically.
As was indicated in the introduction, the proposed framework supports the
"generation of alternative designs" stage of the overall design process. We are
trying to extend the framework to cover the other stages also. In particular, we
want to study the processes involved in the comparison of designs according to a
set of criteria. Also, we want to extend the advice mechanism to support the
feedback processes between the different stages.

9.8. ACKNOWLEDGEMENTS

The Pride project is a joint effort between Xerox PARC and Xerox RBG
(Reprographics Business Group); the work was done when the authors were at
Xerox PARC. Mahesh Morjaria (who is currently with General Electric),
George Roller and many other engineers at RBG have collaborated on this
project from the start. Felix Frayman (who is currently with Hewlett-Packard)
has contributed many ideas and programming effort to the project. Mark Stefik
has supported the work both as the manager of Knowledge Systems Area at
PARC and as a research colleague. Daniel Bobrow, Felix Frayman, Ken Kahn,
Mark Stefik, and the referees provided invaluable feedback on earlier drafts of
the paper.

293

9.9. BIBLIOGRAPHY

[1] Brown, D. and Chandrasekaran, B.,
 4

'Expert Systems for a Class of
Mechanical Design Activity," in Knowledge Engineering in Computer-
Aided Design, Gero, J., Ed., North Holland, pp. 259-290, 1985.

[2] de Kleer, J., J. Doyle, G. L. Steele, and G. J. Sussman, "Explicit Control
of Reasoning," in Artificial Intelligence: An MIT Perspective , Winston,
P. and Brown, R., Ed., M.I.T. Press , 1979.

[3] de Kleer, J.,
 6

 'An Assumption-based TMS," Artificial Intelligence,
Vol. 28, No. 2, pp. 127-162, 1986.

[4] Dym, C. L., Ed., Applications of Knowledge-Based Systems to Engineer­
ing Analysis and Design, A S M E , , 1985.

[5] Gero, J., Ed., Knowledge Engineering in Computer-Aided Design, North
Holland, Amsterdam, 1985.

[6] Mittal, S., and Stefik, M. J., Constraint Compaction: Managing Com­
putational Resources for Efficient Search, Memo, Xerox Palo Alto
Research Center, Palo Alto, April 1986.

[7] Mittal, S., Bobrow, D. G. and Kahn, Κ. , "Virtual Copies: At the Bound­
ary Between Classes and Instances," Object-Oriented Programming
Languages, Systems and Applications (OOPSLA), ACM, 1986.

[8] Mittal, S., Dym, C. L., and Morjaria, M., "PRIDE: An Expert System
for the Design of Paper Handling Systems," IEEE Computer,
pp. 102-114, July 1986.

[9] Mostow, J., "Towards Better Models of the Design Process," AI
Magazine, Spring 1985.

Chapter 10
BIOSEP DESIGNER:

A PROCESS SYNTHESIZER
FOR BIOSEPARATIONS

Charles A. Siletti and George Stephanopoulos

Abstract

Designing a commercial scale protein purification process is a knowledge in­
tensive and nonroutine engineering design task which can be facilitated by com­
puter aids. BioSep Designer is a prototype design program that uses a hierarchi­
cal design procedure with search to automatically generate alternatives for
purification processes.

10.1. INTRODUCTION

10.1.1. The Nature of the Problem

In developing a software system for any engineering application, but espe­
cially for an expert system, one must establish who would use the system and
whether it will be beneficial. The best applications are tasks which are per­
formed frequently, are tedious, time consuming, or require much information
[4]. Many problems in engineering design fit these guidelines, and the design

of purification processes for protein products is no exception. New purification
processes will have to be designed frequently for new products and because
there is a large body of data to consider in developing a design it is difficult for a
human designer to consider all the possibilities for a given purification problem.
Moreover, the current designers of such processes are often protein biochemists

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

295 Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

296 SILETTI A N D STEPHANOPOULOS

who are very familiar with protein biochemistry but who may not be familiar
with the design of large scale chemical processes. There are no established
methods for designing protein purification processes, but the basic physical and
chemical principles behind such processes are understood, and there is a large
body of information about available processing equipment as well as a number
of heuristic guidelines.

In this article, we describe protein purification processes and compare their
design to other engineering design tasks for which automated systems have been
developed. We then explain our design methodology and its computer im­
plementation, BioSep Designer. Finally, we describe how BioSep Designer
generates design alternatives for the large scale recovery and purification of the
recombinant pharmaceutical, urokinase type plasminogen activator.

10.1.2. Protein Recovery

The protein products with which we will be concerned are biochemically ac­
tive compounds like the enzymes found in laundry detergent and food processes
as well as pharmaceuticals such as insulin. Originally found in plant or animal
tissue, the industrial versions of these compounds are produced by micro­
organisms or cultured cells. Although this method yields the product in a more
concentrated form then a natural source, the result of microbial fermentation can
only be described as a dilute solution including the product and a variety of
other substances, such as nucleic acids, salts, sugars, possible toxins, and other
proteins. Most protein products, and especially pharmaceuticals, must meet
stringent purity requirements, so a series of separation steps, as shown in Figure
10-1, is used to purify and concentrate the product. The traditional approach to
designing the processes to achieve this purification has been to scale up the
laboratory procedure for purifying the protein. Using this approach, however, a
designer may overlook alternative processes that would have proven more ef­
ficient on the large scale. BioSep Designer uses knowledge about the properties
of the product, its contaminants, and the operations and equipment used for
purification. The ultimate objective is defined by the user but generally is to
design the most economical process that achieves a required degree of purifica­
tion.

BIOSEP DESIGNER 297

FERMENTOR MICROFTLTER
FILTRATION UNIT

ADSORPTION AND
CHROMATOGRAPHY

Figure 10-1: A Typical Protein Purification Process

10.1.3. Engineering Design and Process Design

A design is a description of a physical artifact that must achieve some
specified functionality within specified constraints, and the process of design is
the way one derives a description of the artifact from some initial set of con­
straints and specifications [9], and design problems may be classified in a
variety of ways. Many types of designs, including chemical process designs,
consist of a series of descriptions of parts or steps. An example might be the
design of an entire chemical process consisting of chemical reactors, distillation
columns, pumps, and compressors [5], the design of a building consisting of
beams, floors, and other building components [12], or a series of procedures
[13]. Often in mechanical engineering problems of this sort, and perhaps most

notably in the elevator design system, VT [8] (See Chapter 11), the various parts
must fit together so closely that they can not be designed independently; trial
and error must be used to find a design that meets all the constraints. Inter­
actions among components in process design are generally much weaker be­
cause the interactions are introduced by the process streams between processing
units, and a given processing unit is good for a range of stream conditions.

298 SILETTI A N D STEPHANOPOULOS

For routine design problems of this nature, the components are known, and
there are well established methods for assembling them to form a satisfactory
design. For example, the design of a distillation column is considered to be a
routine design problem [10]. The design of entire chemical plant (of which a
distillation column may be part) is not, because the designer must first establish
what the processing steps will be before doing the design. This definition, of
course, is more a matter of practice than a true characterization of the problem.
It is certainly possible that someone could develop a new and innovative distil­
lation column, and plant design could be handled in a routine manner, although
in practice the benefits of possible innovations in a plant design far outweigh
those of innovations in a single column.

There is often a multiplicity of designs that meet the initial specifications, and
for some design problems, a design that satisfies the specifications and con­
straints is enough. AIR-CYL, a program that designs pneumatic diaphragms,
succeeds when it finds one solution to the problem [2]. In process design, one
would like to find those solutions that are in some sense optimal, or at least
retain a set of promising solutions. A search for optimal designs, however, is
thwarted by the combinatorial nature of the problem. For example, if we were
to try assembling and analyzing all the combinations of protein recovery
processes, the number of designs could be estimated by the relation,

s = M
N

where S is the number of possible designs, M is the number of separation steps,
and Ν is the number of different types of processes. For a typical protein
purification, there may be 10 separation steps and 30 different separation
methods, giving about 1 0

30
 designs. Thus for real problems, the design space is

too large for a simple search. Furthermore, not even the number of steps re­
quired for a design can be determined a priori.

10.2. DESIGN METHODOLOGY

10.2.1· General Considerations

Neither a biochemical engineer nor a computer program can evaluate, or even
consider, all the possible equipment configurations for all protein recovery
problems. We therefore resort to a design methodology that uses weaker

BIOSEP DESIGNER 299

methods, such as heuristic search, to generate plausible and explainable, if not
optimal, designs. While there is no general theory describing how a design is
constructed, Mostow, in a recent review [9], provides a vocabulary for describ­
ing the issues faced both by designers and automatic design systems. All design
systems either explicitly or implicitly address 1) the state of the design, 2) the
ultimate and intermediate goals in design, 3) decision making, 4) the rationale
behind the decisions, 5) control of the design process, and 6) knowledge acquisi­
tion.

10.2.2. Components of the BioSep Designer Methodology

In an automated design system, the state of design is simply the representation
of descriptions of a partially completed design. This representation is directly
related to the nature of the design problem and to the design methodology to be
used. Some designs, like the elevator designer, VT, must proceed through a
series of approximations of the complete design that are refined until a consis­
tent solution is reached. In BioSep Designer, as in a number of design systems
[10, 12, 13], the states of the design are increasingly detailed descriptions of the

object being designed. BioSep Designer's descriptions of protein recovery
processes are shown in Figure 10-2. The design begins as a hypothetical process
consisting only of the inflowing feed stream and final product streams. As more
detail is added, the state of the design proceeds from the initial specifications, to
a description of the basic unit operations needed to purify the product, to the
equipment selection and finally a fully specified design.

The goal structure is related to the order in which procedures are performed;
some operations must be carried out before others. BioSep Designer must, for
example, determine the cellular location and conformation of the desired
product before it can decide whether cell harvesting or disruption operations are
needed. The goal structure in BioSep Designer is fairly rigid; the ultimate goal
is, of course, to specify equipment for the given recovery problem. The sub-
goals are to develop the basic unit operations, and to select the equipment to
carry them out. These may involve still further subgoals dependent upon the
goals already established. There may be interactions among the subgoals. For
example, selections of equipment for carrying out the basic unit operations can
not be made independently. If one were to include an ammonium sulfate
precipitation in a protein recovery process, the operation immediately following
the precipitation must either be insensitive to ammonium sulfate or include a
step to remove it, and the operations preceding the precipitations should have
removed all particulates such as cell debris. BioSep Designer handles such in-

300 SILETTI A N D STEPHANOPOULOS

teractions by applying domain knowledge to determine the best order in which
to make decisions such as equipment selections.

There is always a rationale behind the making of a decision, and this rationale
should be accessible to the user. BioSep Designer employs sets of if-then rules
the antecedents of which are matched against the current state of the design and
with static information from the database, e.g. protein properties. Rules will be
further described in Section 10.4. The reasoning behind decisions made by
BioSep Designer is a combination of physical "common sense" reasoning,
heuristics that have been published in the open literature, and suggestions from
experts in the field. The wording of the rules and documentation associated with
the rules provides the user with the rationale used. A justification system keeps
track of the reasoning for every change made in the state of the design by
recording which rules brought about each change in the state of the design and
the facts which supported which rules. The explanation system uses this jus­
tification to provide the user with explanations for the presence or absence of
specific features in a given design.

The control mechanism in BioSep Designer is described in Section 10.2.3.
Finally, because a widely recognised value of knowledge based systems is their
ability to capture the specialized knowledge of experts, BioSep Designer must
have facilities for acquiring knowledge from the user. BioSep Designer is
equipped with facilities for editing rules and creating new types of equipment.
Because all the design heuristics and guidelines are represented as rules, the user
may modify and add design knowledge to the system by using the rule editing
facilities, which allow the user to modify existing rules, add new rules, or create
entirely new rule bases. Equipment items are defined in terms of their design at­
tributes, modeling equations and graphical images; the user may modify any of
these for existing equipment. New equipment types may be defined as needed
to introduce new types of technology into the system, and these may be created
as specializations of existing equipment types or as completely new types.

The process of gathering biochemical knowledge and entering it into BioSep
Designer remains a laborious one, however, because to add useful knowledge
one must be intimately familiar with the representation and nomenclature in
BioSep Designer. These difficulties could be reduced, at least in part, by im­
plementing rule and object editors that compare newly entered information to
that already in the system to ensure that the new rules or objects are consistent
with the existing information and are catalogued properly.

BIOSEP DESIGNER 301

10.2.3. The Design Procedure

There must be an orderly mechanism for establishing the goals and making
design decisions, i.e. a control mechanism. Design actions manipulate the state
of the design, activate the evaluation of rules, or perform input/output opera­
tions. These actions are executed in the order in which they appear on the
agenda. Actions may be part of the starting agenda, or they may be added as the
result of other actions or by rules. The overall design procedure, as shown in
Figure 10-2, is established by the starting agenda and consists of the following
steps.

Step 1, Input: The state of the design at this point is merely the problem
specifications. The information specified includes the protein product and its
physical characteristics, the biological source of the product, the contaminants
which may be present, and a statement of the purity and condition required of
the final product. Additional information, such as the physical and chemical
properties of the protein, is either looked up in the system's database or else es­
timated. The user is questioned only when the information is absolutely neces­
sary.

Step 2, Basic operations: In the second step, a purification scheme consisting
of the general operations required, but without specific equipment, is developed
based on the statement of the problem.

Step 3 , Ordering: In this procedure, the order in which to specify equipment
for each of the abstract unit operations is decided upon. Specifying a particular
type of equipment for one of the abstract steps may put constraints on the other
steps. For example, ion exchange chromatography for protein fractionation is
not practical until nucleic acids have been removed from the solution. A reason­
able way to handle this problem is to specify equipment for the most constrained
and most critical processes first allowing any constraints to fall on the remaining
operations.

Step 4, Make selections: Fourth, in the order determined in the third step,
equipment is specified for each of the basic operations. For a given operation in
the abstract process, all the equipment pertinent to that step is screened, and
equipment that would destroy the product or introduce incompatibilities with al­
ready selected equipment are omitted from further consideration. For example,
heat treatment would be omitted from consideration as a means of lysing cells
containing a thermolabile product.

The equipment to perform an abstract operation is selected on the basis of a
preliminary estimate of the performance of the flowsheet. Unless, as in some
situations, there are very strong heuristics to recommend the particular type of
an equipment.

302 SILETTI A N D STEPHANOPOULOS

Step 1 Enter problem specification.

^ Design Specifications ^

Abstract design

c BIOREACTOR x

Step 2 Develop abstract design.

ο
CELL
HARVESTING

Steps 3 & 4
Select equipment.

CELL
DISRUPTION x EXTRACTION)

Abstract design with feasible operations and selected equipment.

(BIOREACTOR^

selected already

CELL
HARVESTING
Feasible equip.

centrifuge
I microfilter |

CELL
DISRUPTION

Feasible equip.
|bead mîï T
homogenizer

C EXTRACTIO N

Feasible equip .
ammonium-

sulfate precip .
hydroxyapatite

adsorption
PEG-salt

extraction

Step 5

Analyze.

v I L

Step 6 Generat e alternat e designs .

Figure 10-2 : Schemati c o f th e Desig n Procedur e

BIOSEP DESIGNER 303

Step 5, Analysis: The sizes and specifications of the equipment are selected to
satisfy the original problem specification, and, if sufficient information is avail­
able, the flowsheet is quantitatively analyzed in terms of performance and cost.

Step 6, Generating Alternatives: Although the equipment selections are the
best that can be made with the available information and heuristics, they are not
guaranteed to be optimal; a user guided search is therefore introduced.

The user may direct the system to generate and test alternative processes by
the following procedures:

1. Backtrack to a specified decision point, e.g., an equipment choice,
make a different choice, and making all subsequent modifications
necessary.

2. Generate all the processes that can be formed, by selecting all the
possible choices for the most important abstract step.

3. D o the above, beginning with the least important abstract step.

4. Execute a bounded search of the feasible processes, using cost as
an objective function.

The first choice allows the user to ask questions like "What would the best
process be if high pressure homogenization was used for cell disruption instead
of bead milling?" The second and third methods are simply automatic ways of
enumerating and evaluating the feasible designs. The analysis of the processes
is done quantitatively if the available information is sufficient; otherwise, alter­
native processes must be evaluated by the user. The fourth procedure
guarantees an optimal solution, but the user must specify an objective function,
such as cost, for which to optimize, and there must be a method for optimis­
tically estimating this objective function for any state of the design. As the
states of alternative designs are developed, those for which the estimated objec­
tive proves worse than that of the initial design may safely be discarded. This,
of course, is simply a version of the A* search algorithm [15].

304 SILETTI A N D STEPHANOPOULOS

10.3. AN EXAMPLE

We illustrate the abilities of the current implementation of BioSep Designer
by designing a recovery process for urokinase a blood clot dissolving enzyme
with a selling price of approximately $400/mg [6]. Human urokinase has been
successfully cloned and produced in the bacteria, E. coli [14], allowing the drug
to be produced by a relatively simple bacterial fermentation.

To design a purification process with BioSep Designer, a biochemical en­
gineer provides the specifications shown in Figure 10-3. This information is en­
tered in a series of successive menus, which can help the user in deciding what
choices to make by offering multiple choices for symbolic information, such as
the product location, and by checking the units and magnitude range of numeri­
cal values. Additional necessary information, such as the physical properties of
the product and information about the micro-organism is read from the database.

If the product is a new protein, the important physical properties are estimated
from the chemical composition of the protein as shown in Figure 10-4. The dis­
tribution of isoelectric points and molecular weights of proteins are estimated
from an O'Farrell gel mapping of cell lysate [11]. This laboratory technique,
which provides a two-dimensional chart of protein isoelectric point versus
molecular weight, has been used to map the proteins in many types of cells in­
cluding E. coli and blood proteins [1, 7] .

After selecting the necessary abstract steps, the system displays the abstract
design as shown in Figure 10-5 and stops to allow the user to query the system
about the current state of the design. In the urokinase design, the user would
find that cell harvesting and cell disruption steps were necessary because the
product is intracellular. The precipitation step was chosen because the product
was also located in cellular inclusion bodies (partially precipitated masses of
protein). The system inferred that because the product was precipitated in an in­
clusion body, it would likely be misfolded, and by examining the amino acid se­
quence of the product, the system further concluded that improper disulfide
bridges were likely. The system therefore added reduction, oxidation, unfold­
ing, and refolding steps. Finally, because inclusion body proteins are never
completely pure, a resolution step was added to ensure a pharmaceutical grade
product would be produced.

Continuing, the system generates an initial design, which appears automati­
cally as shown in Figure 10-6. At this point, the user could ask for explanations
for each of the equipment choices. For example, the system would reveal that
ion exchange and controlled pore glass (CPG) adsorption were selected because
the product has a high isoelectric point, as compared with E. coli proteins and
because CPG is known to be selective for relatively hydrophobic proteins like
urokinase. Furthermore, neither operation will dilute the product.

This is however only an initial flowsheet, and if the user were to examine the

BIOSEP DESIGNER 305

abstract steps shown in Figure 10-7, most of the steps would be found to have a
number of feasible equipment types from which to choose. For example, the
user could ask the system to use centrifugation, as opposed to membrane filtra­
tion, for the cell harvesting step. Whereupon the system would check the deci­
sions made subsequently to cell harvester selection and propagate the effects of
the change. Alternatively, the user might use the interactive design facilities to
add or delete equipment items directly or have the system generate alternative
designs. In either case, alternative designs are simulated and compared on the
bases of purification, yield, and cost.

10.4. REPRESENTATION AND IMPLEMENTATION

The design procedure in BioSep Designer requires the ability to represent
physical entities like proteins or micro-organisms, less tangible entities such as
heuristics or states of the design, and procedures, like equation solving. Physi­
cal entities need to be organized according to their function in the design, and it
is convenient to separate process design information, such as operating tempera­
ture from system information like graphical image position.

10.4.1. Objects

Object-oriented programming provides the above features in BioSep Desig­
ner; everything from a protein to a problem specification is represented as an ob­
ject having attributes with values and methods with procedural abilities. The
knowledge needed to design protein recovery processes is represented in three
basic forms; physical entities are represented as objects; design guidelines and
heuristics are represented as production rules (actually specialized objects); and
the execution of the design procedure is achieved through the application of
procedures taken from a library of design actions. Finally, a set of special ob­
jects is used to record the user's specifications and to manage the design
strategy. Good examples of objects in BioSep Designer are the processing unit
shown in Figure 10-8, and the classification of equipment data in Figure 10-9.

306 SILETTI A N D STEPHANOPOULOS

Product : urokinase

Source: E. coli
Product location: inclusion bodies

% Product in total protein: 10%

Fermentor
Mode of operation batch

Volume 5001
Turnaround time 24 h
Medium yeast extract/sugar
cell concentration 15 gA

General Specifications
Selection emphasis: purity
product use pharmaceutical

Figure 10-3: Specifications for Urokinase Purification

BIOSEP DESIGN lEtttine -AtTIOfff, ut^niui BIOSEP DESIGN i ÏEFOLDABILITY s Τ
[Ή—UPPERi 12 !>H-LOWER; 1
10LECULAR-UE1CHT: M833 .θ

UTMTion or U M K I N I SE DENATURRTIOM-TEMPERATURE) 5β.β DEC C
7 · . · I U M B E R - O F - S U B U N I T SI ι 0 M ·

ISOELECTRIC-POINTs 8.306814
ï «ASURED-ISOELECTRIC-ΡΟΙΝΤί MIL
δ M. ·

fYDROPHOBICITYs 1.4497811
k «ECOrtCMDED-FRftCTIOHRTORS» MIL
* 4 · . · \ tlIHO-flCID-SEQUENCE ι
c (SER RSM GLU L£U HIS CLH VAL PRO SER RSM CYS ASP C YS LEU ASM CLY THR CYS VAL SER ASM LYS TYR P HE SER

8 Μ . · - ^% ASN ILE HIS TRP CYS ASN CYS PRO LYS LYS PHE CLY CLY CLM HIS CYS CLU ILE ASP LYS SER LYS THR CYS T YR
g CLU CLY RSM CLY HIS PHE TYR ARC CLY LYS A LA SER THR ASP THR MET CLY ARC PRO CYS LEU PRO TRP ASM SER
i ' >_ ALA THR VAL LEU CLH THR T YR HIS ALA HIS ARC SER ASP ALA LEU CLM LEU CLY LEU CLY LYS HIS ASM TYR CYS

1 · . ·
ARC RSM PRO ASP RSM ARC HRC A RC PRO TRP CYS TYR VAL CLM VAL CLY LEU LYS PRO LEU VAL CLM CLU CYS MET
VAL HIS ASP CYS ALA ASP CLY LYS LYS PRO SER SER PRO CLU LEU LYS PHE CLM CYS CLY CLM LYS THR LEU ARC

·.· PRO ARC PHE LYS ILE ILE CLY CLU PHE T HR ILE CLU RSM CLM PRO TRP PHE ALA ALA ILE TYR ARC ARC HIS ARC

-1 ·. CLY SER VAL T HR TYR VAL CYS CLY CLY SER LEU ILE SER PRO CYS TRP VAL ILE SER ALA THR HIS CYS PHE ILE -1 ·. ASP TYR PRO LYS CLU ASP TYR ILE VAL TRP LEU CLY ARC SER ARC LEU ASM SER ASM THR CLM CLY CLU MET LYS
PHE CLU VAL CLU ASM LEU ILE LEU HIS LYS ASP TYR SER ALA ASP THR LEU ALA HIS HIS A SM ASP ILE ALA LEU

* LYS ILE HIS ASM ASP ILE ALA LEU LEU LYS ILE ARC SER LYS CLU CLY ARC CYS ALA CLM PRO SER ARC THR ILE
-ji. CLN THR ILE CYS LEU PRO SER MET TYR RSM ASP PRO CLM PHE CLY THR SER CYS CLU ILE THR CLY PHE CLY LYS

CLU ASM SER THR ASP T YR LEU TYR PRO CLU CLM LEU LYS MET THR VAL VAL LYS LEU ILE SER HIS ARC CLU CYS -4 ·. _ \ CLH CLN PRO HIS TYR TYR CLY SER CLU VAL THR THR LYS MET LEU CYS ALA ALA ASP PRO CLM TRP LYS THR ASP
SER CYS CLM CLY ASP SER CLY CLY PRO LEU VAL CYS SER LEU CLN CLY ARC MET THR LEU THR CLY ILE VAL SER

-«·. Τ­ TRP CLY ARC C LY CYS ALA LEU LYS ASP LYS PRO CLY VflL TYR THR ARC VAL SER H IS PHE LEU PRO TRP ILE ARC - M. Ι ^ % SER HIS THR LYS CLU CLU ASM CLY LEU ALA LEU)

,-7#.
. ι . ι . ι . ι . ι . ι . ι . ι . 1 . 1 . I , I ΛΤ̂ ΙΜ

liAMEl UROKINASE

Blosep connand: T i t r a t e Selected Prote in
Biosep connand: fl

Protein Analysis" Main Mena
Clear Plot

Clone A Protein
Display Current Protein

Enter Amino Acid Sequence
Estimate Hydrophobic!ty

Estimate Isoelectric Point
Estimate Molecular Weight

Find Aa Frequencies
Recall Protein Data

Recall Protein Database
Save Protein Data

Save Selected Proteins
Select Protein

Set Up Ped Display
Titrate Selected Protein

Clear Display
Clear Flowsheet
Converge Flowsheet
Describe Design
Display Economic Report
Display Rule Hierarchy
Display Stream Report
Explain
Initialize Design
Lisp Eval
Reset Design History
Run Design
Solve Flowsheet Once
Typeout Fonts

Automatic Design
(Contaminant Characterization

General Configuration
Interactive Design

Protein Data
Regression Analysis

[Wed 13 Jan 12:49:30] cha r l i e

Figure 10-4: Properties of Urokinase

B
IO

SE
P

 D
E

SIG
N

E
R

307

BIOSEP DESIGN

Interaction
IJBiosep connand: Display Abstract Desi
JBIosep connand:
iBiosep connand: |

Interactive Design
Add Unit Operation
Connect
Copy Flowsheet
Delete Equipment
Disconnect Stream
File A Flowsheet
Recall Flowsheet

Main Menu
Clear Display
Clear Flowsheet
Converge Flowsheet
Describe Design
Display Economie Report
Display Rule Hierarchy
Display Stream Report

^General Configuration
Interactive Design

Protein Data
Regression Analysis

Automatic Design
IContaminant Characterization

User Input

Figure 10-5: Abstract Design for Urokinase Recovery

308
SIL

E
T

T
I A

N
D

 ST
E

PH
A

N
O

PO
U

L
O

S

Ο Ο Ο Ο Ό
BIOREACTOR CELL-HARVESTIN Û CEIL-DISRUPTIO N REFRA C TILE-PROTEIN-PRECIPITATIO N 0ISULFI0E-REDUCTIO N
ABSTRACT-PROCESS ABSTRACT-PROCES S ABSTRACT-PROCES S ABSTRACT-PROCES S ABSTRACT-PROCES S

o — ο — ο — ο
HIGH-RESOLUTION OISULFIDE-OXIDATION RENATURATION UNFOLDING
ABSTRACT-PROCESS ABSTRACT-PROCESS ABSTRACT-PROCESS ABSTRACT-PROCESS

BIOSEP DESIGN

Interactive Design- Main Menu Interaction
OBîosep connand: Add Unit Operation

Connect
Copy Flowsheet
Delete Equipment
Disconnect Stream
File A Flowsheet
Recall Flowsheet

Clear Display
Clear Flowsheet
Converge Flowsheet
Describe Design
Display Economic Report
Display Rule Hierarchy
Display Stream Report

Protein Data
Regression Analysis

Automatic Design
tontaminant Characterization

General Configuration
Interactive Design

[Ued 13 Jan 2:22:42] char He

Figure 10-6: Completed Initial Design

B
IO

SE
P

 D
E

SIG
N

E
R

309

l y s«M
output r t l t mu / ^ I y

 ̂ MF1-F1 BM1-F1 I——• Ρ

if lôFJ » .Λ» Γ . ^ ,Λ„ MICRO-FILTER BEAD-MILL CEN1-F1 r IP1-F1
BATCH-BIOREACTOR CENTRIFUGE · ISOELECTRIC-PRECIPITATOR
»"«Put ^ ou tput . !— (

rULT1-F1 1 J 0IA1-F1 ' - * ' - J • ULTRAFILTER REA3-F1 DIAFILTER REA2-F1 REA1-F1 t REACTOR REACTOR REACTOR
• l u t nt

Il s
IEC1-F1 CA1-F1 ION-EXCHANGE-COLUMN CPG-ADSORBER

I HIGH-RESOLUTION
PROCESS-FUNCTION:
FEED-TYPE:
PRODUCT-TYPE:
FEASIBLE-OPERATIONS:

PREFERABLE-OPERRTIONS:
NECESSARY-OPERATIONS:
UNIT-OPERATIONS:
PREVIOUS-UNIT:
NEXT-UNIT:
SELECTION-PRIORITY:
SELECTION-RULES:
LIST-OF-OUTPUT-STRERN-NAHES:

UNKNOUN
UNKNQUN
UNKNOUN
(PROTOTYPE-PEG-PRECIPITATOR PROTOTYPE-SIZE-EXCLUSION-COLUHN

PROTOTYPE-ION-EXCHRNGE-COLUHN)
(PROTOTYPE-ION-EXCHRNGE-COLUHN PROTOTYPE-SIZE-EXCLUSION-COLUHN)
NIL
(ULT1-F1 IEC1-F1 CRI-F1)
DISULFIOE-OXIDRTION
NIL
8 .5
HIGH-RESOLUTION-RULES
((OUTPUT . HIGH RESOLUTIOHOUT))

DYNAMIC LISP LISTENER 2

Figure 10-7: Description of an Abstract Unit

310
SIL

E
T

T
I A

N
D

 ST
E

PH
A

N
O

PO
U

L
O

S

IEC1-F1
VELOCITY:
LOROIHG-PH:
ELUTION-PH:
DIAMETER:
LOROIHG:
COLUMN-LENGTH:
VOLUHE:
HUHBER-OF-THEORETICRL-PLRTES:
PACKING:
PACKING-TYPE:
HEIGHT-EQUIVALEHT-TO-A-THEORETICRL-PLATE:
BRHO-UIOTH:
NOniNRL-YIELD:
FEED-COHCENTRflTIOH:
PROOUCT-PHRSE:
HIGHER-PROPERTY-PHRSE:
L0UER-PR0PERTY-8TRERH:
HIGHER-PROPERTY-STRERN:
SEPARATION-PRINCIPLE:
RETRINEO-COHTRfllNANT-RRNGE:
NOHINAL-PURIFICRTION:
NOHINRL-COST:
YIELD:
RECOnnENDEO-FOR:
SEPRRRTION-CLRSS:
HRSS-AGEMTS:
CAPACITY:
FEED-PHASE:

18 .8 (en / h)
8
9
2 5 . 8 (cn)
1
288 .8 (cn)
488.8 (1)
1
A DEAE-DEXTRAN
CATION-EXCHANGE
18.8 (cn)
18.8 (1)
8 .85
UNKNOUN
SOLUTION
UNKNOWN
UNKNOWN
UHKNQUH
ISOELECTRIC-POINT
(9.888814 8.888814)
1.8
18888.8 (d)
8.9
proteins
FRACTIONATION
NONE
18 .8 (1 • h)
DESALTEO-SOLUTION

Ion Exchange Colunn

Figure 10-8: A Processing Unit

B
IO

SE
P

 D
E

SIG
N

E
R

311

312 SILETTI A N D STEPHANOPOULOS

:j (EQUIPMENT-DAT AL

MEATERDATA] (MEAT-DISRUPTER)—
[REACTOR DATA J —C REACTOR*)

t PROTOTYPE-MEAT-DISRUPTER }
< PROTOTYPE-REACTOR)

BIOREACTOR-DATA
CONTINUOUS-BIOREACTOR-DATA T~C CONTTNUOUS-BIOREACTOR> fPROTOTYPE-CONTINUOS-BIORI

BATCH-BIOREACTOR-DATA > [BATCH-BIOREACTOR —C PROTOTYPE-Β ATCH-BIORE ACT|

CELL-DISAUPTER-DATA

BEAD-MILL-DATA/* —{ BEAD-MILp— : PROTOTYPE-BEAT-MILL*"

HOMOGEMIZER-DATA] [HOMOGEMIZERjV" fPROTOTYPE-HOMOGEMIZER

OSMOtlC-SMOCK-DlSRUPTER D A T A) - (OSMOTIC-SMOCK-DISRUPTER) (PROTOTYPE-OSMOTIC-SMOCK-

ISTEAM-HEATER-DATÂJ

• MIXING VESSEL-DATA ^MIXING VESSEL Jr

PROTOTYPE-TAMK j

—frROTOTYPE-MKING-VESSEL)

Dynamic Lisp Listener 2

To sec other commands, press Shift, Control, Mcta-shift, or Super
[Wed 13 Jan 11:41:01] charlie Uier Input

Figure 10-9: Organization of Equipment Objects

BIOSEP DESIGNER 313

10.4.2. Rules

In addition to physical objects, a computer design system must have a
representation for die less tangible knowledge of how to design, that is, a set of
criteria for how and when to select the equipment for a given recovery problem.
This includes quantitative criteria such as the material balances, sizing, and cost­
ing for the overall process that are represented by sets of equations, which can
be solved as needed for unspecified variables. Much of the design knowledge,
however, is heuristic or qualitative in nature. Production rules [3] are an ap­
propriate way of handling this sort of knowledge. Production rules are simply
if-then statements which can be used to evaluate and act on the current state of
the knowledge in the system. They allow a modular representation of
knowledge that is easy to comprehend and explain. Rules generally have two
possible outcomes; they may make inferences which change what we know
about the problem, or they may make design decisions which change the state of
the design. Shown below are some example rules.

l . A rule for making a design decision: Denaturing Processes
Rule of Abstract Design Rules. For any equipment in the class
EQUIPMENT-DATA such that the operating-temperature of the
equipment is greater than the denaturation temperature of the
product or the operating-pH of the equipment is outside the stable
pH range of the product, Then add the equipment to the denaturing
processes of the current design.

2. An inference about the nature of the product: Denatured
Product Rule of Abstract Design Rules. If the product-location
of the current-organism is inclusion-bodies, Then assert that the
conformation of the product is denatured.

Rules are grouped into sets or rule bases, such as the Abstract Design rule
base shown above, that are associated with each of the steps in the design
methodology. This precludes any necessity for a "current context" clause in
each rule or for manipulation of the conflict resolution system to impose order in
rule evaluation. Only rules from a single rule base are evaluated at a given time,
though rules may invoke the evaluation of other rule bases. For example, if it is
determined that a cell harvesting step is needed in the process, a specialized rule
base will be called to select an appropriate separator.

The inference engine in BioSep Designer evaluates rule in a forward chaining
breadth first manner during the initial design ensuring that all possibilities are
checked. It uses a depth first, data-driven strategy for evaluating the effect of
changing an existing design, in this case all the inferences must be either a direct
or an indirect result of the initial changes made.

314 SILETTI A N D STEPHANOPOULOS

10.4.3. Design Actions

The assembly of equipment, process streams and the like into a design is
finally accomplished through high level functions termed design actions.
Design actions may appear directly on the agenda or in the antecedents or con­
clusions of rules. Some example design actions are shown below.

Design Actions

assert-that t h e a t t r i b u t e o f an o b j e c t i s some v a l u e .

run-rule-base e x e c u t e t h e r u l e s i n a g i v e n r u l e b a s e .

estimate-
purification f o r a g i v e n d e s i g n .

estimate-
purifi cation-
con tri bution f o r an equipment i t e m .

simulate-flowsheet do s e q u e n t i a l modular s i m u l a t i o n .

10.5. SOFTWARE/HARDWARE NOTE

BioSep Designer has been implemented on a Symbolics 3650. The inference
engine, analysis facilities, and graphical interface have all been developed using
Symbolics CommonLisp. The object-oriented programming system is built on
Symbolics Flavors.

10.6. CONCLUSIONS

The design of commercial scale protein recovery processes is an engineering
design task that requires assembling a large variety of interacting pieces to meet
a number of requirements and constraints. BioSep Designer represents the ele­
ments of a complete computer facility tailored to solving this problem. The sys-

BIOSEP DESIGNER 315

10.7. BIBLIOGRAPHY

[1] Bloch, P.L., T.A. Phillips and G. C. Neidhardt, ' 'Protein Identifications
on O'Farrell Two Dimensional Gels: Locations of 81 E. coli Proteins," J
Bacteriol, Vol. 141, pp. 1407-1420, 1980.

[2] Brown, D. C , Expert Systems for Design Problem-Solving using Design
Refinement with Plan Selection and Redesign, unpublished Ph.D. Disser­
tation, CIS Dept., OSU, Columbus, OH 43210, 1984, [Also Published as
a Book Co-authored with B. Chandrasekaran].

[3] Davis, R., B. Brachaman, and E. Shortliffe,
 6

 'Production Rules as a
Representation Language for a Knowledge-Based Consultation
Program," Artificial Intelligence, Vol. 8, pp. 15-45, 1977.

[4] Davis, R., Expert Systems: Where Are We? And Where Do We Go From
Here, Technical Report Memo No. 665, AI Laboratory, M.I.T., 1982,
[See also AI Magazine].

[5] Douglas, J., M. Malone, and M. Doherty, "The Interaction Between
Separation System Synthesis and Process Synthesis," Computers and
Chemical Engineering, Vol. 9, No. 5, pp. 447-462, 1985.

[6] Dwyer, J. L., "Scaling Up Bio-Product Separation With High Perfor­
mance Liquid Chromatography," Bio/Tech, Vol. 8, pp. 957, 1984.

[7] Garrels, J. Α., "Two-Dimensional Gel Electrophoresis and Computer
Analysis of Proteins Synthesized by Clonal Cell Lines," Journal of
Biological Chemistry, Vol. 254, 1979.

[8] Marcus, S., Stout, J., and McDermott, J., "VT: An Expert Elevator
Designer," AI Magazine, Vol. 8, No. 4, pp. 39-58, 1987.

tern synthesizes processes by using an abstract refinement procedure to generate
the feasible processes, from which the "best" design is selected based on a num­
ber of heuristics. Then the system searches the remaining feasible processes for
improved designs. The user may intervene in the design process by guiding the
search step, by interactively modifying a synthesized design, or by assembling a
completely new one. If all the necessary quantitative values and relations are
known, the system can find an optimal process, but if, as is often the case in
bioprocess engineering, exact values are not known, BioSep Designer makes use
of heuristics as well as the expertise of the user to generate reasonable processes.

316 SILETTI A N D STEPHANOPOULOS

[9] Mostow, J.,
 4

'Towards Better Models of the Design Process," AI
Magazine, Spring 1985.

[10] Myers, D., J. Davis, D. Herman, and B. Chandrasekaran,
 4

'Use of DSPL
for Distillation Column Design," Proceedings Columbia Workshop on
AI in Process Engineering, Venkatasubramanian, V. et al., Eds., Dept.
Chemical Engineering, Columbia University, March 1987.

[11] O'Farrell, P. Z. et al., "High Resolution Two Dimensional
Electrophoresis of Basic as Well as Acidic Proteins," Cell, Vol. 12,
pp. 1133-1142, 1980.

[12] Sriram, D., Knowledge-Based Approaches for Structural Design, CM
Publications, UK, 1987.

[13] Stefik, M., "Planning with Constraints (MOLGEN 1)," Artificial
Intelligence, Vol. 16, pp. 111-140, 1981.

[14] Winkler, M. E. and Blaber, M., "The Purification and Characterization
of Recombinant Single- Chain Urokinase Produced in Escherichia coli ,"
Biochemistry, Vol. 25, pp. 4041, 1986.

[15] Winston, P., Artificial Intelligence, Addison-Wesley Publishing Com­
pany, Massachusetts, 1984.

Chapter 11
VT:

AN EXPERT ELEVATOR DESIGNER THAT
USES KNOWLEDGE-BASED

BACKTRACKING

Sandra Marcus, Jeffrey Stout, and John McDermott

Abstract

VT (vertical transportation) is an expert system for handling the design of
elevator systems that is currently in use at Westinghouse Elevator Company. Al­
though VT tries to postpone each decision in creating a design until all infor­
mation that constrains the decision is known, for many decisions this postpone­
ment is not possible. In these cases, VT uses the strategy of constructing a
plausible approximation and successively refining it. VT uses domain-specific
knowledge to guide its backtracking search for successful refinements. The VT
architecture provides the basis for a knowledge representation that is used by
SALT, an automated knowledge-acquisition tool. SALT was used to build VT
and provides an analysis of VT's knowledge base to assess its potential for con­
vergence on a solution.

11.1. INTRODUCTION

In some cases, plausible guessing combined with the ability to backtrack to
undo a bad guess can be the most efficient way to solve a problem [17]. Even
least commitment systems such as MOLGEN [15, 16] are sometimes forced to
guess. In the course of designing genetics experiments, MOLGEN tries to avoid
making a decision until all constraints that might affect the decision are known.
In some cases, this postponement is not possible, and the system becomes stuck;
none of the pending decisions can be made with complete confidence. In such a

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

317 Reprinted from ' VT: An Expert Elevator Designer That
Uses Knowledge-Based Backtracking,' by Sandra Marcus,

Jeffrey Stout, and John McDermott, AI Magazine, Volume 9,
Number 1, Spring 1988, pp. 95-112. Copyright © 1988

American Association for Artificial Intelligence.

318 MARCUS, STOUT, A N D McDERMOTT

case, a decision based on partial information is needed, and such a decision
might be wrong. In this case, a problem solver needs the ability either to back­
track to correct bad decisions or to maintain parallel solutions corresponding to
the alternatives at the stuck decision point. However, if alternative guesses exist
at each point, and there are many such decision points on each solution path, a
commitment to examine every possible combination of alternatives proves un­
wieldy. Such complexity exists in the VT task domain.

VT performs the engineering task of designing elevator systems. It must use
the customer's functional specifications to select equipment and produce a parts
configuration that meets these specifications as well as safety, installation and
maintenance requirements. Because of the large number of potential part com­
binations and the need for customizing the layout to the space available in in­
dividual buildings, VT must construct a solution. Like MOLGEN, VT tries to
order its decisions so that they are made only when all relevant constraints are
known; it guesses only when stuck. Unlike MOLGEN, V T s decisions about
part selection and placement are so interdependent that plausible reasoning
(guessing) is a major feature of its search for a solution. Thus, VT's problem-
solving strategy is predominantly one of constructing an approximation and suc­
cessively refining it.

Systems that use plausible reasoning must be able to identify bad guesses and
improve on these decisions in a way which helps converge on a solution. VT is
similar to AIR-CYL [1] (See Chapter 7) and PRIDE [12] (See Chapter 9) in that
it uses a knowledge-based approach to direct this search; that is, it uses domain-
specific knowledge to decide what past decisions to alter and how to alter them.
This approach contrasts with EL [14, 19], an expert system which shares many
architectural features with VT but which uses domain-independent strategies to
limit the search during the backtracking phase. As with EL, the VT architecture
makes clear the role that domain-specific knowledge plays in the system and the
interconnections among decisions used to construct and refine a solution. This
architecture provides the basis for VT's explanation facility, which is similar to
that of EL and the related CONSTRAINTS language [20], with some exten­
sions. We have exploited the structure provided by this architecture even further
by using it to manage VT's knowledge acquisition.

VT's architecture provides structure for a representation of its domain-
specific knowledge that reflects the function of the knowledge in problem solv­
ing. This representation serves as the basis for an automated knowledge-
acquisition tool, SALT [8, 9, 18], which has been used to build VT. SALT
elicits from experts all the knowledge VT needs in order to design elevators and
represents that knowledge in a way which enables VT's problem-solving
method to use it. SALT'S knowledge representation can also be used to assess
the adequacy of the knowledge base for convergence on a solution.

The next section presents VT mainly from a user's point of view. Section
11.3 describes the VT architecture in detail, with respect to problem solving, ex-

VT: EXPERT ELEVATOR DESIGNER 319

planation, and knowledge acquisition. Section 11.4 describes how SALT'S
knowledge base analysis supports VT's domain-dependent backtracking.
Section 11.5 compares VT to other expert systems that perform design, plan­
ning, or scheduling tasks. Section 11.6 reports some of VT's performance
characteristics.

11.2. WHAT VT DOES

VT is used by Westinghouse Elevator engineers to design elevator systems to
customer's specifications. VT has enough domain knowledge to perform the
design task unaided. VT also has an interactive capability that allows a user to
directly influence its decisions.

11.2.1. The Engineer's Task

Westinghouse Elevator design experts receive data collected from several
contract documents. These data are transmitted to the engineering operation by
the regional sales and installation offices. There are three main sources of infor­
mation: (1) customer requirement forms describing the general performance
specifications, such as carrying capacity and speed of travel, and some product
selections, such as the style of light fixture in the cab; (2) the architectural and
structural drawings of the building, indicating such elements as wall-to-wall
dimensions in the elevator shaft (hoistway) and locations of rail supports; and
(3) the architectural design drawings of the elevator cabs, entrances, and fix­
tures. Because all this information is not necessarily available at the start of a
contract, the engineer must sometimes produce reasonable guesses for incom­
plete, inconsistent or uncertain data to enable order processing to proceed ten­
tatively until customer verification is received. (These guesses are in addition to
whatever guesses might be required during a problem-solving episode based on
these data.)

Given this information, experts attempt to optimally select the equipment
necessary and design its layout in the hoistway to meet engineering, safety code,
and system performance requirements. This task is a highly constrained one. A
completed elevator system must satisfy constraints such as the following: (1)
there must be at least an 8-inch clearance between the side of the platform and a
hoistway wall, and at least 7 inches between the platform side and a rail separat­
ing two cars; (2) a model 18 machine can only be used with a 15, 20 or 25

320 MARCUS, STOUT, A N D McDERMOTT

horsepower motor; and (3) the counterweight must be close enough to the plat­
form to provide adequate traction but far enough away to prevent collision with
either the platform or the rear hoistway wall (by an amount dependent on the
distance of travel).

The design task also encompasses the calculation of the building load data re­
quired by the building's structural engineers, the reporting of the engineering
and ordering data required for the field installation department and regional
safety code authorities, and the reporting of the mechanical manufacturing order
information.

11.2.2. A Quick Look at VT in Action

VT is comprised of several distinct parts, described briefly in the following
sample interactions. VT prompts appear in boldface. User replies appear in
italics.

Welcome to VT The Elevator Design Expert System

1 . INPUT Enter contract information
2 . RUN Process the input data
3 . SHOW Display output information
4 . EXPLAIN Explain the results of a run
5 . SAVE Save data for the current contract
6 . EXIT End this session with VT

Enter your command [INPUT]: <cr>

The previous display illustrates the top menu, where the user indicates what
VT is to do. The INPUT command allows the user either to enter data on a new
job or to modify data from an existing job. The other modes use previously in­
put data. VT displays a default command in brackets at the bottom of the screen
that the user can issue by hitting a carriage return (<cr>). Users can also issue
single or multiple commands by typing only a portion of a command word or the
number in front of it.

VT's input is menu driven, allowing entire screens of questions to be
answered at once by providing defaults wherever possible. The input mode also
provides consistency checking of data and a general question-asking mechanism
that is used throughout VT. A completed sample input screen follows. Prompts
for data appear on the left, defaults and input on the right.

VT: EXPERT ELEVATOR DESIGNER 321

INPUT GD DUTY GR 24364 ADMINISTRATION & SERVICE CENTER

Car:l
1. Type of loading PASSENGER
2. Machine GEARED
3. Machine location OVERHEAD
4. Power supply 208-3-60
5. Capacity 3000
6. Speed 250
7. Travel 729
8. Platform width 70
9. Platform depth 84
10 .Counterweight location REAR
11 .Counterweight safety NO
12 .Compensation specified NO

Action [EXIT]:

Using a simple command language, the user can confirm some or all values
shown, enter or modify values, or register uncertainty about values. Fourteen of
these data menus currently exist in the INPUT portion of VT. Once all the data
have been entered, the user returns to the top menu, at which point the data can
be saved for future use (SAVE) or used immediately in the design task (RUN).

As VT runs, it tentatively constructs an elevator system by proposing com­
ponent selections and relationships. At the same time, VT specifies constraints
with which to test the acceptability of the resulting design and tests each con­
straint whenever enough is known about the design to evaluate it. Whenever
constraints are violated, VT attempts to alter the design (for example, by select­
ing more expensive equipment) in order to resolve the problem. We refer to
these alterations as fixes. VT reports any such constraint violation and the fix
that is made, as in the following example:

The CAR—RUNBY (estimated to be 6) has been changed to 6.125.

The MACHINE—SHEAVE—HEIGHT (estimated to be 30) has been changed to 26.

The CWT-STACK-WEIGHT (estimated to be 4316.25) has been changed to 4287.
36.

The MAXIMUM—TRACTION—RATIO constraint was violated.
The TRACTION-RATIO was 1.806591, but had to be <= 1.783873.
The gap of 0.2272000E-01 was eliminated by the following action(s):

Decreasing CWT—TO-PLATFORM-FRONT from 4.75 to 2.25
upgrading COMP-CABLE-UNIT-WEIGHT from 0 to 0.5000000E-01

The MINIMUM-MAX-CAR-RAIL-LOAD constraint was violated.
The MAX-CAR-RAIL-LOAD was 6000, but had to be >= 6722.295.
The gap of 722.3 was eliminated by the following action(s):

Upgrading CAR-RAIL-UNIT-WEIGHT from 11 to 16

322 MARCUS, STOUT, A N D McDERMOTT

The MINIMUM-PLATFORM-TO-CLEAR-HOISTWAY-RIGHT constraint was violated.
The PLATFORM-TO-CLEAR-HOISTWAY-RIGHT was 7.5, but had to be >= 8.
The gap of 0.5 was eliminated by the following action(s):

Decreasing CAR-RETURN-RIGHT from 3 to 2.5

The MINIMUM-PLATFORM-TO-CLEAR-HOISTWAY-LEFT constraint was violated.
The PLATFORM-TO-CLEAR-HOISTWAY-LEFT was 7.5, but had to be >= 8.
The gap of 0.5 was eliminated by the following action(s):

Decreasing CAR-RETURN-LEFT from 25.5 to 25

The MAXIMUM-MACHINE-GROOVE-PRESSURE constraint was violated.
The MACHINE-GROOVE-PRESSURE was 149.5444, but had to be <= 119.
The gap of 30.544 was eliminated by the following action(s):

Increasing HOIST-CABLE-QUANTITY from 3 to 4

The MINIMUM-HOIST-CABLE-SAFETY-FACTOR constraint was violated.
The HOIST-CABLE-SAFETY-FACTOR was 8.395078, but had to be >= 10.
The gap of 1.60492 was eliminated by the following action(s):

Upgrading HOIST-CABLE-DIAMETER from 0.5 to 0.625

The MINIMUM-MACHINE-BEAM-SECTION-MODULUS constraint was violated.
The MACHINE-BEAM-SECTION-MODULUS was 24.7, but had to be >= 24.87352.
The gap of 0.1735 was eliminated by the following action(s):

Upgrading MACHINE-BEAM-MODEL from S10X25.4 to S10X35.0

The CHOICE-SET-HOIST-CABLE-DIAMETER constraint was violated.
The HOIST-CABLE-DIAMETER was 0.625, but was constrained to be 0.5.
The HOIST-CABLE-DIAMETER became a member of the set by the following
action(s):

Upgrading MACHINE-MODEL from 28 to 38.

There are two types of fix reports. The report shown for MAXIMUM-
TRACTION-RATIO is the more common version. It mentions the constraint
that was violated, describes the degree of the violation and lists the corrective
action taken. The fix report describing the change to CAR-RUNBY is a special
case. This version is used when VT makes an initial estimate for a value in or­
der to calculate a precise value for it. The value of the constraint is the precise
value; the estimate is simply changed to this value.

During a noninteractive run, VT uses its own knowledge base to decide how
to remedy constraint violations. This knowledge base represents engineering
practices that Westinghouse plans to make standard. The RUN can also be done
interactively, in which case VT asks for confirmation of each fix before it is ac­
tually implemented. If a particular fix is rejected by the user, VT can either find
another fix or provide a list of all possible fixes and ask the user to suggest a
particular one. Records are kept of user overrides. These overrides are taken
into consideration by the system maintainers when modifying the knowledge
base. The overriding of a VT-proposed fix by the user might indicate that a
standard does not yet exist on a decision VT makes. It might also be the result
of outside factors that were too transitory to make it into the VT knowledge or
data base, such as a temporary surplus or shortage of a particular equipment
model.

VT: EXPERT ELEVATOR DESIGNER 323

On completion of the run, control returns to the top menu, at which point the
user normally goes into SHOW mode. SHOW allows users to view data a
screenful at a time. Some of the screens are intended for just such a review, and
others are intended as input data for other Westinghouse systems (such as
manufacturing-oriented programs, cost estimators, and a CAD system). The fol­
lowing two SHOW screens are representative of the sixteen that currently exist;
the user accesses these screens by a tree of menus similar to the input menu, as
depicted in Figure 11-1.

If the user sees something unusual while in SHOW (for example, an un­
expected value), the EXPLAIN mode can be used to determine the cause. EX­
PLAIN can also be used by relative novices to understand how VT performs the
design task.

The user interacts with VT's explanation facility by asking questions. The
type of information given in the explanation depends on the type of question
asked. VT's explanation facility currently provides several types of queries that
can be asked about individual system values. These query types are discussed in
detail in the next section. The following sample interaction demonstrates some
of the tools the explanation facility provides, including the use of VT's lexicon
of synonyms for system value names:

EXPLAIN GR 24364 ADMINISTRATION & SERVICE CENTER

Explain : how car runby

The CAR-RUNBY was determined by a fix.

The CHOICE-SET-CAR-RUNBY constraint was violated.
The CAR-RUNBY was 6, but was constrained to be 6.125.
The CAR-RUNBY was changed from 6 to 6.125.

HOW [CHOICE-SET-CAR-RUNBY]: <cr>

The CHOICE-SET-CAR-RUNBY (6.125) = PIT-DEPTH (72) - [PLATFORM-HEIGHT (
6.625) + SAFETY-HEIGHT (9) + CAR-BUFFER-HEIGHT (28.75) + CAR-FOOTING-
CHANNEL-HEIGHT (3.5) + CAR-BUFFER-BLOCKING-HEIGHT (18)]

HOW [PIT-DEPTH] : <cr>

The PIT-DEPTH (72) was input by Bob Roche on 25-MAR-1985.

HOW [PLATFORM-WEIGHT] : safety height

The SAFETY-HEIGHT (9) was determined by a database lookup.
It was found in the HEIGHT column of the SAFETY table.
It met the following constraints :

MODEL = SAFETY-MODEL (Bl)

HOW [SAFETY MODEL] : <cr>

The SAFETY-MODEL (Bl) was determined by a database lookup.
It was found in the MODEL column of the SAFETY table.
It had the SMALLEST HEIGHT that met the following constraints:

324 MARCUS, STOUT, A N D McDERMOTT

SHOW LAYOUT SPECS GR 24364 ADMINISTRATION & SERVICE CENTER

Loading: PASSENGER
Capacity: 3000

Speed: 250

Operation : 1C-2BC-ERL

Travel: 729
Stops : 6 Openings : 6
Machine: 28 Sheave: 30
Deflector Sheave: 20
Groove: K3269 Pressure: 90.03
Angle of Contact: 159.09
Traction Ratio: 1.79
Machine Load: 11691
Motor H.P.: 20
Power Source:
Power Supply: 208-3-60
Rails Car: 16 Cwt : 11

Guide Shoes..Car: 6-R Cwt: 3-R
Buffer Car: OH-1 Cwt: OH-1
Stroke Car: 8.25 Cwt: 8.25
Safety Car: Bl Cwt:

Governor : B5B Support : STEEL
Governor Cable: 0.375

Length: 2130
Hoist Cables: (3)-0.5

Length: 1089
Compensation: 3/16-CHAIN

Length: 993
Car sling: 2.5B-18
Crosshead Beam: W8X18
Platform Thickness: 6.625
Sling Weight 292
Platform Weight 738
Safety Weight 465
Cab Weight 1668
Misc. Weight 434
Total Car Weight 3609
Counterweight Weight: 4824
Subweight Weight: 4287
Buffer Reaction Car: 26437

Cwt: 19296
Machine Weight: 1700
Heat Emission in M.R.:
Cable Hanger
Safety to Pit: 42

Press RETURN to continue [MENU]: show layout cwt

SHOW LAYOUT CWT GR 24364 ADMINISTRATION & SERVICE CENTER
t 8 5 . 5 t

! Hoistway !
! !
ι ! 28 ! !
! ! Cwt BG ! !

! 9 ! ! !
! ι 12.5 !
! !- ! 7 ! -! ! --!— 18.25
! ! ! ! ! ! ! Cwt Space
! 2.25 ! 5.75 !
t t _ _ f ! -

! ! ! !
! ! Platform ! !
Cwt Assembly Weight 537 Overall Cwt Height 138
Cwt Subweight Weight 4287 Maximum Subweight Weight 5273
Total CWT Weight 4824 Cwt Stack Height 87

Maximum Stack Height 107
Maximum Building Tolerance: 1 Stack Percent 81

Press RETURN to continue [MENU]:

Figure 11-1: Examples of VT's SHOW screens

VT: EXPERT ELEVATOR DESIGNER 325

MAX-SPEED > SPEED (250)
MAX-PLATFORM-WIDTH <= PLATFORM-WIDTH (70)
MIN-PLATFORM-WIDTH <= PLATFORM-WIDTH (70)

HOW [SPEED]: what if safety model B4

The SAFETY-MODEL is currently Bl.
If it were B4, the following major changes would occur:

NAME: ACTUAL: PROPOSED

MACHINE-GROOVE-PRESSURE 114.118 155.563.
TRACTION-RATIO 1.80679 1.76682.
CWT-OVERTRAVEL 49.835 52.835.
CAR-BUFFER-REACTION 26709.4 27652.4.
CWT— S TACK—Ρ ERCENT 84.1122 88.148.
CWT-BUFFER-REACTION 19684 20627.0.
CWT-PLATE-QUANTITY 90 94.3184.
CWT-WEIGHT 4921.0 5156.76.
CAR-BUFFER-LOAD 6677.35 6913.11.
CAR-WEIGHT 3677.35 3913.11.
DEFLECTOR-SHEAVE-DIAMETER 25 20.
CAR-BUFFER-BLOCKING-HEIGHT 18 17.125.
HOIST-CABLE-MODEL (4)-0.5 (3)-0.5.
CAR-RUNBY 6.125 6.
SAFETY-MODEL Bl B4.

Would you like to see ALL values which would change [NO] : <cr>

Would you like to implement this [NO] : <cr>

How [MACHINE-GROOVE-PRESSURE] : safety load

There is more than one SAFETY-LOAD:

1. SAFETY-LOAD-CAR-SIDE-CAR-TOP
2. SAFETY-LOAD-CAR-SIDE-CAR-BOTTOM
3 . SAFETY-LOAD-CWT-SIDE-CAR-TOP
4. SAFETY-LOAD-CWT-SIDE-CAR-BOTTOM
Which would you like to know about? [SAFETY-LOAD-CAR-SIDE-CAR-

TOP] : 2

The only major part of VT that is not visible in the previous examples is VT's
database. The database is read-only and primarily contains data about pieces of
equipment and machinery that VT must configure. Each piece of equipment has
its own table; the rows of each of these tables represent different models of the
equipment from which to choose, and the columns represent attributes relevant
to the type of equipment. These attributes can be restrictions on each model's
use (for example, maximum elevator speed or maximum load supported by the
equipment), values of equipment attributes (for example, height and weight), or
lists of model numbers of compatible pieces of equipment.

Calls to the database indicate which table is to be used and what value is to be
returned. This value can be either the name of the particular model or the value

326 MARCUS, STOUT, A N D McDERMOTT

of one of its attributes. A call might also include an arbitrary number of con­
straints on the values of each column.

In the event that multiple entries in the database satisfy all the constraints in a
call, each table is ordered along an equipment attribute (for example, size) to in­
dicate a preference or priority. The entries in a table are examined from best to
worst, and the first entry satisfying all the constraints is the one from which the
return value is obtained.

11.3. THE VT ARCHITECTURE

VT solves its problem by constructing an approximate elevator design and
successively refining it. The process of constructing an approximate design is
forward-chaining. Each step in this phase extends the design by procedures that
use input data or results of prior decisions to determine a value for a design
parameter. Some of these steps embody heuristic knowledge about how to
propose an approximate design extension. These steps are needed when the
decision is underconstrained or when it must be based on partial information.
As VT builds a proposed design, constraints on the elevator system are specified
whenever enough information is available to determine their values. The control
in this constructive phase is data driven; any step can be taken as soon as the in­
formation called for by the procedure associated with the step is available. As it
extends the design, VT also builds a dependency network that records for each
value which other values were used to derive it.

The dependency network developed during the forward-chaining constructive
phase is enough to identify all contributors to a violated constraint and the value
it constrains. These contributors represent potential points to backtrack to in or­
der to revise the proposed design. However, domain expertise is needed to in­
dicate what changes in the proposed design are least costly in real-world terms.
While it is not possible to assign a dollar cost to each revision, domain
knowledge determines which of the potential alterations are legal as well as the
order of preference among the legal ones.

Demons are used to check for constraint violations; whenever enough is
known about the proposed design to supply values for both a constraint and the
value it constrains, they are compared. Whenever VT detects a constraint viola­
tion, it tests the effectiveness of suggested changes in order of decreasing
preference rating until it finds one that is successful. As VT moves through the
list of potential fixes for a constraint violation, it first tries every individual fix at
a given preference level. Next it tries combining each fix at the current
preference level with those of greater or equal preference. (Constraints can be

VT: EXPERT ELEVATOR DESIGNER 327

numeric or symbolic, and procedures for determining values often involve non­
linear functions such as selections from the database.)

Once VT identifies a change to explore, it first verifies that no constraints on
the changed value itself are violated by the change. It then makes the proposed
change and works through the implications according to its knowledge about
constructing a proposed design. It continues this procedure until it has enough
knowledge to evaluate the originally violated constraint. If a proposed change
violates the constraints, it is rejected and another selection is made. This
lookahead is limited because it only considers constraints on the changed value
and the originally violated constraint. The purpose of this lookahead is to limit
the work done in exploring the implications of a proposed guess until VT has
reason to believe it is a good guess. Once a good guess has been identified, VT
applies a truth maintenance system; that is, it uses the dependency network con­
structed during the forward-chaining phase to identify and remove any values
that might be inconsistent with the changed value. VT then reenters the data-
driven constructive phase for extending the design with the new data.

11.3.1. A Detailed Look at Problem Solving

In order to better illustrate how VT arrives at a solution, we describe the
forward-chaining and backtracking done in a small portion of the sample run.
The detail focuses on steps leading to the specification of MACHINE-
GROOVE-PRESSURE and its constraint MAXIMUM-MACHINE-GROOVE-
PRESSURE and follows the backtracking initiated by a violation of this con­
straint.

A step to extend the proposed design specifies a value for a design parameter,
often using results of decisions already made. For example, the step to select the
model of the machine that moves the elevator car can be given the following
English translation:

(1) MACHINE-MODEL step:

IF a value has been generated for SUSPENDED-LOAD, and

there is no value for MACHINE-MODEL,

THEN Look in the database in the MACHINE table for the entry with the
SMALLEST WEIGHT whose listing for MAX-LOAD is greater than the
SUSPENDED-LOAD.

Retrieve the value under MODEL for that entry and assign
that value to MACHINE-MODEL.

Leave a trace that SUSPENDED-LOAD contributed to MACHINE-MODEL.

328 MARCUS, STOUT, A N D McDERMOTT

Leave a declarative representation of the details of the
database call.

The first line of this step specification sets up the forward-chaining control.
This rule is eligible to fire as soon as a value for SUSPENDED-LOAD is made
available and uses this value to supply MACHINE- MODEL. Leaving a trace of
the contribution adds to the dependency network used by the truth maintenance
system in backtracking. Leaving a declarative representation of the action taken
by this rule is used by the explanation facility.

To see how this step might interact with others, consider the following two
steps:

(2) MACHINE-SHEAVE-DIAMETER step:

IF a value has been generated for MACHINE-MODEL, and

there is no value for MACHINE—SHEAVE-DIAMETER,

THEN Look in the database in the MACHINE table for the entry whose
listing for MODEL is the same as MACHINE-MODEL.

Retrieve the value under SHEAVE-DIAMETER for that entry and
assign that value to MACHINE-SHEAVE-DIAMETER.

Leave a trace that MACHINE-MODEL contributed to MACHINE-SHEAVE-
DIAMETER.

Leave a declarative representation of the details of the
database call.

(3) MACHINE-GROOVE-PRESSURE-FACTOR step:

IF a value has been generated for HOIST-CABLE-DIAMETER, and

there is no value for MACHINE-GROOVE-PRESSURE-FACTOR,

THEN Compute 2 * HOIST-CABLE-DIAMETER.

Assign the result to MACHINE-GROOVE-PRESSURE-FACTOR.

Leave a trace that HOIST-CABLE-DIAMETER contributed to
MACHINE-GROOVE-PRESSURE-FACTOR.

Leave a declarative representation of the details of the
calculation.

According to the control shown here, step 1 must be applied before step 2
since step 1 creates the conditions under which step 2 will be satisfied. If step 3
is satisfied at the same time as either of the other steps, it does not matter which
procedure is applied first.

The machine moves the elevator by turning the machine sheave. The
machine sheave contains grooves that grip the hoist cables which support the

VT: EXPERT ELEVATOR DESIGNER 329

elevator car. Some pressure is required, but if the pressure on each individual
cable is too great, there is excessive wear on the cables. Steps 1 and 2 are on the
inference chain that produces a value for MACHINE-GROOVE-PRESSURE.
This value is the result of a calculation using MAX-TOTAL-LOAD-CAR-SIDE,
MACHINE-SHEAVE-DIAMETER, and HOIST-CABLE-QUANTITY. Step 3
is on the inference chain that produces a value for MAXIMUM-MACHINE-
GROOVE-PRESSURE. This value is a function of the MACHINE-GROOVE-
MODEL, the SPEED the elevator will travel, and MACHINE-GROOVE-
PRESSURE-FACTOR. Once values for both MACHINE-GROOVE-
PRESSURE and MAXIMUM-MACHINE-GROOVE-PRESSURE are avail­
able, they are compared. Because the constraint is a maximum, the constraint is
flagged as violated if the value of MACHINE-GROOVE-PRESSURE is greater
than the value of MAXIMUM-MACHINE-GROOVE-PRESSURE. Flagging
the constraint as violated causes VT to shift control into fix exploration.

As a first step in exploring remedies for the constraint violation, VT proposes
potential remedies. For this particular violation, a propose-fix step for the VT
knowledge base looks as follows. This is an abbreviated listing of fixes for
MAXIMUM-MACHINE-GROOVE-PRESSURE. We return to a complete
treatment of this example in section 11.4.

IF there has been a violation of MAXIMUM-MACHINE-GROOVE-PRESSURE,

THEN Try a DOWNGRADE for MACHINE-GROOVE-MODEL which has a preference
rating of 1 because it CAUSES NO PROBLEM.

Try an INCREASE BY-STEP of 1 of HOIST-CABLE-QUANTITY which has a
preference rating of 4 because it CHANGES MINOR EQUIPMENT SIZING.

Downgrading the MACHINE-GROOVE-MODEL to one that grips the cable
less increases the allowable MAXIMUM-MACHINE-GROOVE-PRESSURE.
Increasing the HOIST-CABLE-QUANTTTY distributes the load and decreases
the actual MACHINE-GROOVE-PRESSURE on each groove. VT's domain
expert felt these two potential fixes would be practical to attempt. Of the two
fixes, the first is preferable.

VT first considers a downgrade of MACHINE-GROOVE-MODEL by trying
to select the next higher groove according to the preference ordering.

2
 If there is

such a preferred groove, VT determines what the MAXIMUM-MACHINE-
GROOVE-PRESSURE for this groove is. If this value is not less than the value
of MACHINE-GROOVE-PRESSURE, VT tries to downgrade the groove model

The "down" in downgrade usually pertains to a decrease in size and/ or cost. In the VT
domain, size tends to vary inversely with preference.

330 MARCUS, STOUT, A N D McDERMOTT

further. When there are no longer any models to try (there are only two groove
models), VT considers an increase of HOIST-CABLE-QUANTITY by adding 1
to its current value. It first checks to see whether this quantity is larger than the
MAXIMUM-HOIST-CABLE-QUANTITY (which in any application is never
more than six cables). If not, VT then recomputes the MACHINE-GROOVE-
PRESSURE using the new HOIST-CABLE-QUANTITY to see if this quantity
brings the pressure under the maximum. If it does not, VT tries adding another
hoist cable and repeats the procedure. If VT exceeds the MAXIMUM-HOIST-
CABLE-QUANTITY before bringing MACHINE-GROOVE-PRESSURE un­
der its maximum, it then attempts a combination of the two fixes. If none of the
specified fixes resolve the violation, VT has reached a dead end (that is, the con­
straint violation cannot be corrected). In the sample run shown previously, the
proposed design already employed the preferred groove at the time of the con­
straint violation; adding a single hoist cable was the selected remedy.

Once VT finds the fix it wants to implement, it uses the dependency network
built during the forward-chaining to remove any values that depended on the one
it changed. It then returns to the forward-chaining phase with the new HOIST-
CABLE-QUANTITY and continues.

11.3.2. A Detailed Look at the Explanation Facility

Every decision VT makes must be justifiable to the user. This condition is
provided for by making a record of each decision as it is made. The dependency
network built for VT's truth maintenance system can provide the foundation for
a very useful explanation facility [5, 20]. This network is augmented by the
details of the contribution relation, for example, a description of an algebraic
formula or the relation between values required by a precondition. In addition,
VT records adjustments to the proposed design that it makes, such as fixes of
constraint violations. The explanation facility pieces these individual actions
together to describe VT's line of reasoning.

VT's explanation facility does more than just examine past decisions; it also
performs some hypothetical reasoning to demonstrate the effect of alternative
decisions the user suggests. Hypothetical explanations are relatively simple to
construct given the VT knowledge representation. What the system must do in
order to answer hypothetical queries is closely related to how it resolves con­
straint violations.

VT: EXPERT ELEVATOR DESIGNER 331

Explaining Past Decisions
The how query is probably the most fundamental and can be thought of as as­

king the question "How did you determine the value of <x>?" First, the ex­
planation facility looks for the appropriate node in the dependency network that
recorded the decision which VT made regarding the value assigned to <x>. This
decision record would include, for example, not only a formula but also any
conditions in the system that made the formula appropriate. The dependency
network provides pointers to the actual values that were used in determining the
value in question.

If the user were to ask how the machine groove pressure was determined, VT
would respond with something like the following:

The MACHINE—GROOVE—PRESSURE (90.0307) = MAX-TOTAL-LOAD-CAR-SIDE
(6752.3042) / [[MACHINE-SHEAVE-DIAMETER (30) * 0.5]

* HOIST-CABLE-QUANTITY (5)]

The machine groove pressure was determined by a calculation, which is dis­
played both in terms of the names of the system values and their values.

If the value being explained was obtained via a database lookup, the explana­
tion facility responds with something like the following:

The MOTOR-MODEL (20HP) was determined by a database lookup. It was
found in the MODEL column of the MOTOR table. It had the LARGEST
HORSEPOWER that met the following constraints:

HORSEPOWER > REQUIRED-MOTOR-HP (18.705574)

The facility reports the name of the table and the column within the table from
which the value was obtained as well as what criterion was used in ordering the
table. It then lists the constraints that were applied to the attributes in the table
which narrowed the choice.

If the method used to calculate the value in question was selected according to
a precondition, the description of the method is followed by a description of the
precondition, as follows:

The CAR-RETURN-LEFT (25) = PLATFORM-WIDTH (70) -
[OPENING-WIDTH-FRONT(42) + CAR-RETURN-RIGHT (3)]

This particular method was used because:
[DOOR-SPEED-FRONT = TWO] AND [OPENING—STRIKE-SIDE-FRONT = RIGHT]

In addition, the how query finds possible reasons why a quantity in the system
might have a value that the expert believes to be out of the ordinary, unexpected,

332 MARCUS, STOUT, A N D McDERMOTT

or just plain incorrect. In VT, several kinds of "unusual" values can occur, as
the following paragraphs illustrate.

• Conflicting input values. Some inputs to VT can come from mul­
tiple sources. If these sources specify different values, one is
chosen (by applying a specified strategy), and a record is made of
the event. Obviously, the choice can be incorrect, which can cause
unusual values to propagate throughout the system.

• Inconsistent input values. This situation occurs when two input
values violate an expected relationship between them. For example,
inputs exist for the number of front openings, number of rear open­
ings, and the total number of openings in an elevator shaft. Ob­
viously, "front" plus "rear" should equal "total," but if such is not
the case, a decision is made about how to make the values consis­
tent, and a record is made of the event.

• Unusual input values. Some inputs have a reasonable range of
values specified. A value outside the reasonable range is allowed
(as long as it does not violate the absolute range) but is an indica­
tion that VT is receiving an input which is out of the ordinary. As
stated earlier, this unusual value can propagate other unusual values
throughout the system.

• Default input values. If the user chooses not to answer a particular
question in the input, a default value is assigned. The chances that
the default chosen is actually the correct value depends on the par­
ticular question.

• Fixed values. A value changed by the fix mechanism can look un­
usual to a user, particularly if the value changed is an input or if a
low-preference fix was required.

When the user makes a how query about a value, unusual occurrences are
reported as well:

Explain : how hoist cable quantity

The HOIST-CABLE-QUANTITY (4) was determined by a fix:

The MAXIMUM-MACHINE-GROOVE-PRESSURE constraint was violated. The
MACHINE-GROOVE-PRESSURE was 149.5444, but had to be <= 119. The gap of
30.544 was eliminated by the following act i o n (s) :

Increasing HOIST-CABLE-QUANTITY from 3 to 4

Of course, it is simplifying the process of extending a design to say that a

VT: EXPERT ELEVATOR DESIGNER 333

value is determined by its direct contributors or unusual decisions which directly
change its value. Everything upstream in the dependency network contributes to
the proposed value. The explanation facility allows the user to step back
through the network by repeated questioning and provides default queries after
each answer to aid in this process, as shown earlier in section 11.2. The facility
also searches the upstream network on its own and in answering any how query
reports any unusual decisions made about upstream contributors. In searching
for reasons why <x> might be unusual, the explanation facility examines all the
items that directly contributed to <x> as well as the items used in evaluating any
preconditions on <x>'s method. This examination is recursive in that each of
these contributors is also examined similarly and so on until the explanation
facility grounds out on either inputs or constants.

The following example illustrates an unusual explanation; the user asks how
TRACTION-RATIO was determined:

Explain : how traction ratio

The TRACTION-RATIO (1.796574) =
MAX [TRACTION-RATIO-CAR-TOP-FULL (1.759741)

TRACTION-RATIO-CAR-BOTTOM-FULL (1.7 96574)
TRACTION-RATIO-CAR-TOP-EMPTY (1.742178)
TRACTION-RATIO-CAR-BOTTOM-EMPTY (1.696701)]

The value for TRACTION-RATIO may be unusual because:
(1) The MACHINE-MODEL was changed due to a constraint on

the HOIST-CABLE-DIAMETER. (Depth = 3)
(2) The CAPACITY was an inconsistent input value. (Depth

= 3)

The depth indicates how far upstream the contributor is.

Hypothetical Reasoning
The data-driven control for the forward-chaining construction of the proposed

design assumes that the dependency network built while the design was ex­
tended is a directed acyclic graph. Because of this assumption, hypothetical
queries can proceed in two directions — upstream and downstream. The two
hypothetical query types — why not and what if — differ in their emphasis on
what direction is of interest to the user. Thus, the answer to the query is
reported differently depending on the query type. However, fixes for constraint
violations can form loops in VT's line of reasoning. Downstream constraint
violations can cause upstream design adjustments that can affect the node from
which the query originated. Thus, when hypothesizing about a change to a node
in the dependency network, the system must be run to quiescence to ensure that
the reported causes or effects are taken from a consistent, acceptable design.

334 MARCUS, STOUT, A N D McDERMOTT

The why not query can be thought of as asking the question "Why wasn't the
value of <x> a particular value?" This question is appropriate if the user ex­
pected (or desired) a certain value, and VT did not produce it. The explanation
facility then suggests what has to be done in order to obtain the desired result.
The how query does a search for reasons why a value might be unexpected, and
the why not query looks for a way to bridge the gap between the system's model
and that of the user.

If the user expected VT to choose a larger safety, the question "Why not
safety model B4?" could be posed, which results in the following:

Explain : why not safety model B4

The SAFETY-MODEL (currently Bl) could be B4, but that is less desirable
because it has a larger HEIGHT. A SAFETY-MODEL of Bl was selected
because it met the following constraints :

Its MAX-SPEED (500) was at least as much as the SPEED (250).
Its MAX-PLATFORM-WIDTH (93) was not less than the PLATFORM-WIDTH (70) .
Its MIN—PLATFORM—WIDTH (54) was not more than the PLATFORM-WIDTH (70) .

Thus, in this case, the user's expectation is possible but not preferred. Here,
the explanation facility locates all constraints in the system that constrained the
safety model (including implicit constraints in database calls) and reports them.

The following case is the opposite. The suggested value is preferred but is
not possible, except perhaps by changing values upstream (for example, intro­
ducing nonpreferred values elsewhere).

Explain : why not safety model Bl

A SAFETY-MODEL of Bl would have been used (instead of B4) if:
The PLATFORM-WIDTH were 84 instead of 86.

In order to handle this second case, VT uses knowledge that was acquired
solely for the purpose of handling hypothetical queries about the value of
SAFETY-MODEL. The form of the knowledge required is the same as that re­
quired for fixing designs that violate constraints. VT must have knowledge of
what contributors to SAFETY-MODEL are changeable, the relative preference
for possible changes, and the nature of the change in a contributor that would
produce the desired difference in SAFETY-MODEL. As mentioned earlier, the
system continues to completion to verify that changes made to produce the
desired SAFETY- MODEL can stay in place regardless of any fixes for sub­
sequent constraint violations. If the proposed changes cannot be incorporated
into an acceptable design — that is, some constraint violation is impossible to fix

VT: EXPERT ELEVATOR DESIGNER 335

- this condition is reported. Otherwise, the explanation facility is poised to
describe the effects of these changes in the same way it does for what //queries,
and VT offers to display this information to the user.

The what / /query can be thought of as asking the question "What would hap­
pen if I changed <x> to be a particular value?" The user then sees the impact
this change would make on the system when VT lists which important system
values would change. (The term "important" is predefined and is part of VT's
knowledge base.) Sixty system values are currently considered to be important
in this context, but usually only a relatively small subset of these 60 change in a
given scenario; thus, the user is not overwhelmed by information.

Here is the what if explanation of the scenario that was shown for the first
why not example:

Explain : what if safety model B4

The SAFETY-MODEL is currently Bl.
If it were B4, the following major changes would occur:

NAME: ACTUAL: PROPOSED

MACHINE-GROOVE-PRESSURE 114.118 155.563
TRACTION-RATIO 1.80679 1.76682
CWT-OVERTRAVEL 49.835 52.835
CAR-BUFFER-REACTION 26709.4 27652.4
CWT-S TACK-PERCENT 84.1122 88.148
CWT-BUFFER-REACTION 19684 20627.0
CWT-PLATE-QUANTITY 90 94.3184
CWT-WEIGHT 4921.0 5156.76
CAR-BUFFER-LOAD 6677.35 6913.11
CAR-WEIGHT 3677.35 3913.11
DEFLECTOR-SHEAVE-DIAMETER 25 20
CAR-BUFFER-BLOCKING-HEIGHT 18 17.125
HOIS T-CABLE-MODEL (4) .5 (3) .5
CAR-RUNBY 6.125 6
SAFETY-MODEL Bl B4

Would you like to see ALL values which would change [NO] : <cr>

Would you like to implement this [NO]:

If the user does wish to examine detailed information, the option is provided
to see all the values that would change. The ability to implement a suggested
change is provided. As was the case with the fix mechanism when run inter­
actively, this option is provided as a way to force VT to produce nonstandard
results (perhaps in response to inventory fluctuations or other transient situa­
tions).

Internally, the why not and what if queries are virtually identical. Because
they both propose a value for a particular quantity, they must be able to go

336 MARCUS, STOUT, A N D McDERMOTT

upstream and modify values in order to make the system consistent with the new
value and then propagate the value downstream. This process is exactly what
the fix mechanism follows, and in fact, these two queries effectively add a
dynamic constraint to the system. As mentioned earlier, VT must have fix
knowledge to go with these constraints, something which is impractical for all
values that VT derives while it constructs a design. When the user asks a why
not or what if query about a value that VT has no fix knowledge for, the user is
so warned. The what if report might still be of interest, but it is then up to the
user to verify upstream consistency.

11.3.3. SALT: A Look at Knowledge Acquisition

VT's problem-solving strategy imposes an organization on the system's
knowledge that can be exploited for knowledge acquisition. Given the assumed
propose-and-revise strategy, domain-specific knowledge must perform one of
three roles with respect to the problem solver: (1) PROPOSE-A-DESIGN-
EXTENSION, (2) IDENTIFY-Α-CONSTRAINT on a design extension, or (3)
PROPOSE-A-FIX for a constraint violation. A representation scheme for a
domain-specific knowledge base such as VT's should recognize these roles and
the interdependencies among them. Understanding knowledge roles and
relationships is crucial to acquisition and maintenance of the knowledge base
and provides the key to how and when the knowledge should be used by the
problem solver.

SALT is an automated knowledge-acquisition tool that assumes the systems it
generates will use a propose-and-revise problem-solving strategy. SALT ac­
quires knowledge from an expert and generates a domain-specific knowledge
base compiled into rules. This compiled knowledge base is then combined with
a problem-solving shell to create an expert system. SALT maintains a per­
manent, declarative store of the knowledge base which is updated during inter­
views with the domain expert and which is the input to the compiler, or rule-
generator. This intermediate representation language seeks to make the function
of domain knowledge explicit.

As with CONSTRAINTS, SALT'S representation scheme is built around the
framework of a dependency network. For SALT, each node in the network is
the name of a value; this name can be that of an input, a design parameter, or a
constraint. Three kinds of directed links represent relations between nodes: (1)
"contributes-to" links A to Β if the value of A is used in a procedure to specify a
value for B; (2) "constrains" links A to Β if A is the name of a constraint and Β
is the name of a design parameter, and the value of A places some restriction on
the value of B; (3) "suggests-revision-of ' links A to Β if A is the name of a con­
straint, and a violation of A suggests a change to the currently proposed value of

VT: EXPERT ELEVATOR DESIGNER 337

B. Each of these links is supported by additional information in the knowledge
base: (1) contributes-to links are supported by details of how contributors are
combined to specify the value of the node pointed to; (2) constrains links are
supported by a specification of the nature of the restriction; and (3) suggests-
revision-of links are supported by a declaration of the nature of the proposed
revision (for example, direction and amount of change) and its relative
preference.

For SALT, the knowledge-acquisition task becomes one of fleshing out the
knowledge base using these representational primitives. SALT allows users to
enter knowledge piecemeal starting at any point. The grain size of the pieces
corresponds roughly to the three knowledge roles for the propose-and-revise
strategy: Users can supply a procedure for specifying a parameter value, iden­
tify a constraint on a parameter value, or suggest a remedy for a constraint viola­
tion. SALT keeps track of how the pieces are fitting together and warns the user
of places where pieces might be missing or creating inconsistencies.

SALT users must first specify which of the three roles each piece of entered
knowledge plays. Once this choice is made, SALT presents a set of prompts for
the detailed knowledge required by this role. For example, a filled-in schema
for PROPOSE-A-DESIGN-EXTENSION for CAR-RETURN-LEFT follows;
SALT prompts appear on the left and user responses on the right:

Name: CAR-RETURN-LEFT
Precondition: [DOOR-SPEED-FRONT = TWO] AND

[OPENING-STRIKE-SIDE-FRONT = RIGHT]
Procedure Type: CALCULATION
Formula: PLATFORM-WIDTH - OPENING-WIDTH-FRONT +

CAR-RETURN-RIGHT

The IDENTIFY-Α-CONSTRAINT schema prompts for similar information to
acquire a procedure for determining a value (or values in the case of a set con­
straint) for the constraint. In addition, the schema requires the user to specify
what parameter is constrained and what kind of constraint it is (for example, a
maximum).

Collection of information to direct backtracking is also highly structured.
Each piece of PROPOSE-A-FIX knowledge is a proposal for remedying the
violation of a particular constraint by changing one of the decisions made while
extending a design. Procedures used in the forward-chaining portion of extend­
ing a design produce values the expert would prefer in an underconstrained case.
Associated with the potential fixes is some reason why they are less preferred
than the originally proposed value. The reasons are drawn from the following
list:

338 MARCUS, STOUT, A N D McDERMOTT

1. Causes no problem
2. Increases maintenance requirements
3 . Makes installation difficult
4. Changes minor equipment sizing
5. Violates minor equipment constraint
6. Changes minor contract specifications
7. Requires special part design
8. Changes major equipment sizing
9. Changes the building dimensions
10. Changes major contract specifications
11. Increases maintenance costs
12. Compromises system performance

These effects are ordered from most to least preferred. The reasons mainly
reflect concerns for safety and customer satisfaction as well as dollar cost to the
company. Relative position on this scale is significant, but absolute position is
not. When more than one fix is suggested to remedy a particular constraint
violation, the most preferred fix of those suggested is attempted first.

In addition, the domain expert must indicate the kind of change that should be
made. This indication can be a perturbation of whatever the current value is, or
it can entail a change that doesn't reference the current value, such as the sub­
stitution of some other system value. An example of a filled-in schema for a fix
for MAXIMUM-MACHINE-GROOVE- PRESSURE is shown as follows:

Constraint Name:
Value to Change:
Change Type:
Step Type:
Step Size:
Preference Rating:
Preference Reason:

MAXIMUM-MACHINE-GROOVE-PRESSURE
HOIST-CABLE-QUANTITY
INCREASE
BY-STEP
1
4
CHANGES MINOR EQUIPMENT SIZING

In addition to providing a language for representing domain-specific
knowledge, SALT analyzes the knowledge base and guides the user's input to
ensure that the knowledge base is complete and consistent. SALT'S overall
design and operation are described in more detail elsewhere [8, 9] . The next
section describes an analysis SALT provides to test any knowledge base it col­
lects for adequacy with respect to the problem-solving method it assumes.

VT: EXPERT ELEVATOR DESIGNER 339

The kind of domain-specific information that SALT initially collects to direct
backtracking is relatively easy to supply because the expert can focus on one
constraint violation at a time. However, a search that relies solely on this local
information and ignores potential interactions among fixes for different con­
straint violations can run into trouble. One naive way to ensure that a system
that uses backtracking converges on a solution, if one exists, is to open the
search completely and try every possible combination of values for every poten­
tial fix before announcing failure. This solution is not practical for domains that
have any significant amount of complexity, such as VT's domain. VT can cur­
rently encounter 52 different constraint violations. Most constraint violations
(37 of 52) have only one fix — one parameter that might be revised. However,
typically there are several or many alternative values a parameter might assume.
This case also exists for the remaining constraints with multiple fixes; 10 have
two fixes each, 3 have three fixes, and 2 have four potential fixes, with multiple
possible instantiations for each fix. A blind search that considered all possible
combinations of these fixes would have a potentially large search space. In fact,
it might be unnecessarily large because it might not be the case that every fix in­
teracts with every other.

SALT helps manage knowledge-based backtracking by mapping out potential
interactions among fixes for different constraint violations. A developer can
then examine cases of interacting fixes for their potential to cause trouble for
convergence on a solution. Nonproblematic fixes can be handled using local in­
formation only. This treatment ignores potential interactions among fixes for
different constraints. Trouble spots are treated as special cases that take into ac­
count global information.

11.4.1. VT's Local Treatment and Its Trouble Spots

In the local treatment, deciding which upstream value is to be modified is
conditioned on individual constraint violations. Potential fixes considered are
only those which the domain expert identified as relevant to the current viola­
tion, and these are selected in order of the expert's preference. Until a remedy is
found for this violation, all possible combinations of these constraint-specific
remedies are tried. If the system reaches a dead end ~ that is, none of these
combinations remedy the local constraint violation, the system announces that
there is no possible solution. If fixes for one constraint violation have no effect
on other constraint violations, this strategy guarantees that the first solution

11.4. MANAGEMENT OF KNOWLEDGE-BASED
BACKTRACKING

340 MARCUS, STOUT, A N D McDERMOTT

found is the most preferred and that the system correctly reports failure if no
successful fix is found for an individual constraint.

However, it is possible that remedies selected for one constraint violation
might aggravate constraint violations that occur further downstream. In some
instances, this situation can result in failure to find a solution when one does
exist.

3
 In these cases, a fix that appears optimal based on local information

would not be preferred if more were known about the search space.
For example, the most preferred fix for one constraint violation might ag­

gravate a downstream constraint violation to such a degree that it reaches a dead
end when exploring its own fixes. If less preferred fixes for the first constraint
do not have the same negative effect downstream, then a solution might be pos­
sible. The undesired behavior of the system in this case would be a premature
announcement of failure.

Another potential problem is that unproductive looping can occur between
fixes for two constraint violations if each has a preferred fix with a counteract­
ing effect on the other. This situation occurs, for example, if fixing one con­
straint violation increases a certain value that leads to the violation of another
constraint whose fix results in decreasing the same value, and so on. Repeated
violations of the same constraint are not necessarily pernicious, but such a case
of antagonistic constraints might result in an infinite loop.

SALT provides a mapping of the interactions among fixes in a knowledge
base. It does this mapping using its understanding of dependencies among
procedures for extending a design plus identification of constraints and fixes.
We used this map to analyze VT's knowledge base for its potential to get into
trouble with a local, constraint-specific search. We then hand coded a special
case treatment for the problem spots we found. We plan to automate this entire
process in SALT.

11.4.2. VT's Fix Interactions and Their Special Handling

The VT knowledge base contains 37 chains of interacting fixes. Eleven of
these chains are short and nonproblematic. The rest represent different entry
points for loops on 8 constraints. Two of these looping constraints represent no
danger for the local treatment. Three pairs of constraints might cause thrashing
under the local treatment and are treated as special cases in VT.

3
 A related but less serious problem is that a remedy not chosen might have an ameliorating

effect on a downstream constraint violation. In such a case, the system might miss a solution
in which the total cost of f ixing the two violations might be less if a more cost ly fix were
chosen for the first.

VT: EXPERT ELEVATOR DESIGNER 341

The 11 short chains each involve at most three constraints and the effects of
only one fix per constraint. The most common scenario for these chains is that
when a constraint violation causes one piece of equipment to be upgraded (or in­
creased in size), the values of constraints on related equipment are affected and
might require that the related equipment be upgraded as well. For example, if
the number of hoist cables needed for a job exceeds the maximum allowable for
the machine model selected, the fix is to choose a larger machine that can ac­
commodate more cables. The machine model's specifications limit what
machine sheave heights it can be used with; larger machines require larger
machine sheaves. If the current machine sheave is too small for the newly
upgraded machine model, a larger machine sheave (the smallest one that meets
constraints) is substituted.

The situation involving the two nonproblematic looping constraints,
CHOICE-SET-HOIST-CABLE-QUANTITY and CHOICE-SET-HOIST-
CABLE-DIAMETER, also involves a rippling effect of upgrading equipment.
Most of the equipment selection in VT depends on the weight of other com­
ponents selected. The hoist cable quantity and diameter depend on hoist cable
quantity and diameter (that is, they must be able to support their own weight) as
well as properties of other parts that require knowledge of hoist cable quantity
and diameter in their selection. The VT strategy estimates the lowest acceptable
value for hoist cable quantity and diameter using rough criteria, selects other
parts using these estimates, and derives from these estimates a constraint on the
quantity and diameter that must be used. If the value of the constraint does not
match the initial estimate, quantity and diameter are increased. Violations of
other constraints on the system derived from this major equipment selection,
such as the MAXIMUM-MACHINE-GROOVE-PRESSURE shown earlier, also
call for changing hoist cable quantity or diameter but always in the direction of
increasing the values. Furthermore, the VT knowledge base also contains
knowledge of MAXIMUM-HOIST-CABLE-QUANTITY and MAXIMUM-
HOIST-CABLE-DIAMETER. (SALT asked for this information when fixes
were entered that called for increasing the quantity and diameter.) Thus, this
loop does not present the danger of infinitely looping. Because the values start
at the lowest possible point and always increase until the maximums are
reached, the system does not thrash.

Three cases, however, might result in infinite loops under the local treatment.
These cases contain a pair of antagonistic constraints that might cause thrashing.
A local treatment of one of these constraints, MAXIMUM-MACHINE-
GROOVE-PRESSURE, was described earlier. Its antagonistic constraint is
MAXIMUM-TRACTION-RATIO. The complete set of potential fixes for each
of these follows:

342 MARCUS, STOUT, A N D McDERMOTT

IF there has been a violation of MAXIMUM-TRACTION-RATIO,
THEN Try a DECREASE BY-STEP of 1 inch of CWT-TO-PLATFORM-DISTANCE

which has a preference rating of 1 because it CAUSES NO
PROBLEM.

Try an UPGRADE of COMP-CABLE-UNIT-WEIGHT which has a preference
rating of 4 because it CHANGES MINOR EQUIPMENT SIZING.

Try an INCREASE BY-STEP of 100 lbs. of CAR-SUPPLEMENT-WEIGHT
which has a preference rating of 4 because it
CHANGES MINOR EQUIPMENT SIZING.

Try an UPGRADE for MACHINE-GROOVE-MODEL which has a preference
rating of 11 because it INCREASES MAINTENANCE COSTS.

IF there has been a violation of MAXIMUM-MACHINE-GROOVE-PRESSURE,

THEN Try a DOWNGRADE for MACHINE-GROOVE-MODEL which has a preference
rating of 1 because it CAUSES NO PROBLEM.

Try an INCREASE BY-STEP of 1 of HOIST-CABLE-QUANTITY which has a
preference rating of 4 because it CHANGES MINOR
EQUIPMENT SIZING.

Try a DOWNGRADE of COMP-CABLE-UNIT-WEIGHT which has a preference
rating of 4 because it CHANGES MINOR EQUIPMENT SIZING.

Try a DECREASE BY-STEP of 10 lbs. of CAR-SUPPLEMENT-WEIGHT
which has a preference rating of 4 because it CHANGES MINOR
EQUIPMENT SIZING.

Figure 11-2 shows the relevant segment of the VT knowledge base as SALT
represents it. Constraints are connected to the values they constrain by the
dotted arrows at the bottom. Above these arrows is the portion of the depen­
dency network that links the constraint-constrained pairs to their potential fix
values. Contributors are linked to the values they contribute to by a solid arrow.
In order to make the figure readable, not all contributors are shown. In addition,
suggests-revision-of links are not shown as arrows. Instead, suggested revisions
in response to a violation of MAXIMUM-MACHINE-GROOVE-PRESSURE
are surrounded by rectangles, and suggested revisions for violations of
MAXIMUM-TRACTION-RATIO are enclosed in ovals.

One scenario can illustrate the potential for thrashing in this part of the net­
work. This scenario uses the knowledge shown in Figure 11-2 plus information
supporting the links, including formulas for combining contributors, the nature
of constraints, and the suggested direction of revisions. Suppose MAXIMUM-
TRACTION-RATIO is violated, and VT responds by increasing CAR-
SUPPLEMENT-WEIGHT. This situation increases CAR- WEIGHT, which, in

> contribute s t o 1 1 MAXIMUM-MACHINE-GROOVE - ^ ^ MAXIMUM-TRACTION-RATI O

• constrain s 1 PRESSUR E suggest s revisio n o f suggests revisio n o f

Figure 11-2 : Segmen t o f V T Knowledg e Bas e Containin g Antagonisti c Constraint s

V
T

: E
X

P
E

R
T

 EL
E

V
A

T
O

R
 D

E
SIG

N
E

R

34
3

(CWT-TO-PLATFORM^ \

HOIST-CABLE-QUANTITY I VZÏ== — Ο K ^ W T A N C E ^
^ 1 (̂ COMP-CABLE-UN^^ / \

HOIST-CABLE- COMP-CABLE- C*7L&1\IP»\ PMFMT W F ^ T S
WEIGHT WEIGHT ^CAR^PLEMENT-WEJGhT^ yf

\
/ CAR-HITCH

/ TO-
CABLE-WEIGHT CAR-WEIGHT CWT-HITCH _

V v * DISTANCE \ ^

\ . r MACHINE-GROOVE-Λ

SUSPENDED- ^ T N G L E /

LOAD χ SHEAVE-ANGLE /

/ \ MAXIMUM- MAXIMUM-

A \····" TRACTION-RATIO MACHINE-GROOVE-

MACHINE-GROOVE- ™, PRESSURE

PRESSURE TRACTION-RATIO ^ .

344 MARCUS, STOUT, A N D McDERMOTT

turn, increases SUPPORTED-LOADS. This condition decreases TRACTION-
RATIO but increases MACHINE-GROOVE-PRESSURE. An increase in
MACHINE-GROOVE-PRESSURE makes it likely for it to exceed its max­
imum. A violation of MAXIMUM-MACHINE-GROOVE-PRESSURE could
call for a decrease of COMP-CABLE-UNIT-WEIGHT, which, in turn, would
decrease COMP-CABLE-WEIGHT, CABLE-WEIGHT and SUPPORTED-
LOADS. Decreasing SUPPORTED-LOADS increases TRACTION-RATIO
making it more likely to violate MAXIMUM-TRACTION-RATIO. At this
point, the scenario could repeat itself.

SALT analyzes the knowledge base for scenarios such as this one and
produces messages such as the following:

MAXIMUM TRACTION RATIO
*

(CWT TO PLATFORM DISTANCE, Down)

(COMP CABLE UNIT WEIGHT, Up)
MAXIMUM MACHINE GROOVE PRESSURE

(MACHINE GROOVE MODEL, D o w n) —
(HOIST CABLE QUANTITY, Up)
(COMP CABLE UNIT WEIGHT, Down)
(CAR SUPPLEMENT WEIGHT, Down)-

(CAR SUPPLEMENT WEIGHT, Up)
MAXIMUM MACHINE GROOVE PRESSURE

(MACHINE GROOVE MODEL, Down) —
(HOIST CABLE QUANTITY, Up)
(COMP CABLE UNIT WEIGHT, Down)
(CAR SUPPLEMENT WEIGHT, Down)-

(MACHINE GROOVE MODEL, Up)
MAXIMUM MACHINE GROOVE PRESSURE

(MACHINE GROOVE MODEL, Down) ** LOOP **•
(HOIST CABLE QUANTITY, Up)
(COMP CABLE UNIT WEIGHT, D o w n) — * * LOOP **•
(CAR SUPPLEMENT WEIGHT, Down) ** LOOP **

The top leftmost constraint, MAXIMUM-TRACTION-RATIO, is an arbitrary
starting point. Potential fixes for its violation appear in parentheses and in­
dented one level. The suggested changes to three of these values — MACHINE-
GROOVE-MODEL, COMP-CABLE-UNIT-WEIGHT, and CAR-
SUPPLEMENT-WEIGHT - would make violation of MAXIMUM-
MACHINE-GROOVE-PRESSURE more likely, as indicated by its appearance
indented below these fixes. Violation of MAXIMUM-MACHINE-GROOVE-
PRESSURE, in turn, could call for changes to these same three fix values. The
LOOP flags indicate that these changes might make a violation of MAXIMUM-
TRACTION-RATIO more likely. As shown by a lack of nesting, decreasing the
CWT-TO-PLATFORM-DISTANCE to fix MAXIMUM-TRACTION-RATIO
does not affect MACHINE-GROOVE-PRESSURE or its maximum. Adding

** LOOP **•

— * * LOOP **·
** LOOP **•

** LOOP **·

— * * LOOP **•
** LOOP **•

VT: EXPERT ELEVATOR DESIGNER 345

hoist cables to fix MAXIMUM-MACHINE-GROOVE-PRESSURE tends to
relieve a problem with MAXIMUM-TRACΉON-RATIO, although the effect is
not substantial enough to warrant its inclusion as a fix for this constraint.

As long as only one of the two constraints is violated, the local search for a
solution based on isolated constraint violations is satisfactory. However, if both
constraints are violated, the system might thrash. We added to the VT shell the
ability to treat this latter situation as a special case and investigate fixes for the
two in tandem. To do this investigation, VT required one additional piece of in­
formation. If both constraints cannot be remedied at the same time, our domain
expert relaxes MAXIMUM-MACHINE-GROOVE-PRESSURE before violating
MAXIMUM-TRACTION-RATIO. If both cannot be fixed, VT tries to min­
imize the violation of MAXIMUM-MACHINE-GROOVE-PRESSURE without
violating MAXIMUM-TRACTION-RATIO.

Whenever a demon detects a violation of one of these constraints, VT checks
to see if the other has been violated. If it has, it resets the values of all potential
fix values to the last value they had before the first violation of either constraint.
It then tries out potential fixes, making sure that it does not repeat a combination
of them, in the following order according to whether the fix: (1) helps both, (2)
helps one and doesn't hurt the other, or (3) helps one but does hurt the other. In
the third case, the system applies the fix in the direction intended to remedy the
constraint most important to fix. If there is asymmetry in the amount of change
in a bidirectional fix, as there was for CAR-SUPPLEMENT-WEIGHT discussed
earlier, after fixing the most desired constraint, VT changes the value in the
other direction by the largest amount that still leaves the first constraint unvio-
lated.

Nowhere in the VT knowledge base did we observe a problem that might
cause the declaration of a premature dead end. In most cases, a failure report
cannot be premature because the fixes that cause downstream violations are the
only possible fix at their point of origin. Thus, any dead end observed at the ag­
gravated downstream point is unavoidable. This situation is true for hoist cable
quantity and diameter. For the other cases, the aggravating fix is the most ex­
pensive alternative for its constraint violation and won't be implemented unless
nothing else works at this point. Again, this situation means that any dead end
downstream would be unavoidable.

If we had identified a chain of interacting fixes that might result in premature
dead end, it would have been relatively simple to provide a customized treat­
ment for the potential site of the dead end. The VT shell could be modified so
that whenever a dead end were found for such a constraint violation, VT would
go back and try more expensive fixes at the relevant prior constraint violation(s).
SALT'S map of interacting fixes could be used to identify the relevant prior
fixes.

For VT then, SALT'S analysis located cases in which fixes for different con­
straints interacted. Our examination showed in most cases the propagation of

346 MARCUS, STOUT, A N D McDERMOTT

changes was such that a search based on fixing one constraint at a time would
either converge on a solution or correctly announce that no solution was pos­
sible. In three cases involving pairs of constraints, the system might thrash if
constraint violations were fixed independently; so, additional knowledge was
used to deal with the interacting constraint violations in combination.

Domain knowledge is needed to specify what revisions are possible in the real
world and what their relative desirability is for fixing particular constraints. As
a first step, SALT asks the domain expert to address each constraint violation in­
dividually. The form of the query relieves the expert from having to anticipate
the ramifications for the rest of the design ~ something that is difficult for a per­
son to do in a complex domain. SALT can help decide whether this approach is
adequate for a problem solver because it has access to the entire knowledge base
and because its representation of the knowledge base makes clear how the
knowledge is to be used. In the case of VT, a search space with hidden mine
fields for a locally based search was much more manageable when sup­
plemented with analysis-based special case treatment. The particular solutions
to knowledge base inadequacies used in VT might not be sufficient for all
constraint-satisfaction tasks. However, SALT'S representation scheme and
analyses still help in addressing inadequacies because they make obvious the
ramifications of problem-solving decisions with a given knowledge base. Thus,
they can identify the need for additional knowledge and identify considerations
that should go into deciding how and when knowledge should be used [cf.
[10, 18]].

11.5. COMPARISON TO OTHER CONSTRUCTIVE
SYSTEMS

The ordering of decisions in VT is in the spirit of the Expert Executive for
aerospace vehicle design described in [2]. The Expert Executive knows the in­
puts required and outputs produced by each of the procedures, or programs, it
must configure. A program is run only when all other programs have been run
whose outputs serve as its inputs. Unlike VT, the Expert Executive and the
programs it configures are intended to be a design aid rather than a design ex­
pert. The Expert Executive and program configurations leave to the human ex­
pert the task of suggesting plausible starting values for free parameters, checking
constraints, and directing revisions. VT performs these functions as well.

VT's architecture is probably most similar to that of EL, an expert system
which performs analysis of electric circuits. EL makes a guess for, say, the cur­
rent at a particular node and uses principles such as Ohm's Law and Kirchoff's

VT: EXPERT ELEVATOR DESIGNER 347

Law to propose values at other points in the circuit. It is similar to VT in that it
builds up a dependency network representing this propagation, backtracks when­
ever constraints are violated (when some point is assigned two different values),
and uses a truth maintenance system. The main difference between EL and VT
is that EL uses a domain-independent strategy of dependency-directed back­
tracking as opposed to VT's domain-specific knowledge-based approach. EL's
decision of where to backtrack to is based solely on the dependency network's
record of what guesses contributed to the conflicting constraints. Furthermore,
EL is committed to a search that tries all possible combinations of all guesses,
although it prevents thrashing by keeping track of combinations already tried
and never repeating a combination. The related CONSTRAINTS language al­
lows the user to direct backtracking and is similar to VT when running in inter­
active mode or performing what-if explanation.

Domain-independent dependency-directed backtracking is not satisfactory for
VT's domain. VT is not simply searching for a single solution that meets con­
straints, where any solution is equally good. Generally, many possible solutions
exist, and these solutions differ in domain-specific disadvantages. These dif­
ferences are expressed in VT by using the expert's most preferred procedure to
determine an initial value and using explicit preferences supplied by the expert
on potential fixes for constraint violations.

GARI [4] does incorporate a notion of domain-specific preference in its
plausible reasoning but in an indirect and difficult to maintain manner. GARI's
task is to devise a plan for machining parts that meets constraints on the order in
which operations should be performed and the orientation of parts with respect
to the machining tools. It employs backtracking whenever constraints conflict,
and the decision about what point to backtrack to is determined by weights taken
from domain experts. GARI backtracks to its most recent, lowest- weight deci­
sion. GARI does not use a dependency network or any relation of contribution
in this decision. The result is that the decision it changes might be irrelevant to
the constraint conflict which has arisen. In addition, although the weights are
taken from domain experts, the designers note that the experts find the weights
difficult to assign and that afterwards, knowledge engineers must adjust these
weights by experimentation. This process must be particularly difficult because
these weights might have evolved to express both a combination of expense in
terms of material, equipment cost, and so on, and of their likelihood to converge
on a solution.

Two other design systems, AIR-CYL (Chapter 7) and PRIDE (Chapter 9),
use a knowledge-based approach to revising designs in response to constraint
violations but differ somewhat from VT in the knowledge used. AIR-CYL has
failure handlers that respond to constraint violations by calling for redesign of
particular parts, or values, of the design. If more than one value might be
revised, AIR-CYL uses a least backup strategy; it attempts revision at the most
recently established relevant value. AIR-CYL moves back to the next most

348 MARCUS, STOUT, A N D McDERMOTT

recently established only if it fails to remedy the violation at the current point,
and so on. Brown wants to restrict the range of backtracking on the grounds
that this is what human design experts do. PRIDE also uses domain expertise to
suggest how to revise parts of the design in response to constraint violations. For
PRIDE, the presence of more than one suggestion about how to respond to a
particular constraint violation causes the system to set up multiple contexts for
exploring each suggestion. The PRIDE user can then select among alternatives.
VT explores design revisions sequentially. In interactive mode, users can deter­
mine the order in which revisions are explored and can suggest revisions of their
own. In the absence of user input, VT has domain expertise regarding the
preference of alternative fixes that it uses to decide the order in which it explores
them.

Rl [11] is a system that constructs a solution but uses a strategy for plausible
reasoning which might be described as lookaround. Whenever a decision based
on partial information is required, R l tries to collect as much information as it
can to ensure that the decision is acceptable. The kind of information it collects
might be the same kind of information that could be used to augment fix
knowledge, that is, information about how close the current solution is to violat­
ing related constraints. Without the kind of dependency network representation
that VT/SALT uses, it is difficult to identify the role of this information. Rl is
currently being revised to more clearly represent the roles that knowledge plays
with respect to its own problem-solving method [21]. This revision should
make it easier to compare the two systems.

As mentioned at the outset, VT does postpone decisions where possible, but
most of its effort goes into plausible guessing combined with backtracking. This
system contrasts with MOLGEN whose main effort is put into managing its least
commitment planning. Although MOLGEN has the ability to backtrack, its
guessing and backtracking capability is underdeveloped, and MOLGEN often
does not recover from bad guesses [16].

ISIS [7, 13] is another constraint-satisfaction planner that uses least commit­
ment in job shop scheduling. ISIS expresses preferences as constraints. When
forced to guess, that is, to choose among constraints it will meet when it can't
meet all of them, ISIS conducts a beam search by maintaining in parallel the
most preferred solutions. If a solution is not found by scheduling in the forward
direction, that is, from first operation in time to last, then a second attempt is
made starting from the last operation. The efficiency and probability of the
search's success depends on the weights assigned to the constraints and the
width of the beam. As with GARI, this architecture can lead to a difficult
problem in credit assignment.

MOLGEN, ISIS, AIR-CYL, and PRIDE share the property of being hierarchi­
cal in that they select a meta-level plan or design and then refine it. In
Friedland's version of MOLGEN especially, selecting which metalevel plan to
refine involves a great deal of search [3]. Although solution paths for extending

VT: EXPERT ELEVATOR DESIGNER 349

a design for an elevator can differ depending on input parameters, these path dif­
ferences are represented in VT as preconditions on individual steps. Nowhere
are the path differences represented as separate metalevel designs. In the hierar­
chical planners, an abstract, metalevel design also serves to split the task into
nearly independent subproblems. Interactions take the form of constraints that
propagate from one subproblem to others. VT does not have a subtask level of
organization to group procedures for extending a design and specifying con­
straints. One benefit of a subdivided architecture might be that it helps the sys­
tem builders keep track of interactions among decisions. SALT'S knowledge
representation and the analysis it does based on the anticipated problem-solving
strategy serves this function for VT (See also [10]).

11.6. VT'S PERFORMANCE

VT is an expert system slated to do real work in industry. It must function
with a large knowledge base and converge on an acceptable solution within a
reasonable amount of time. This section provides a description of its size and
some indication of its performance characteristics.

11.6.1· Rule Characteristics

Because VT is implemented in OPS5 [6], it is appropriate to describe its size
and complexity in terms of rules. VT currently has 3123 total rules. Of these,
2191 are domain-specific rules generated by SALT (70.2 percent). The
remainder belong to the general shell for I/O, explanation, and problem solving
control. There are several types of S ALT-generated rules. Some are not directly
used in problem- solving. These 698 rules (31.9percent of all S ALT-generated
rules) contain domain-specific information required for I/O and the explanation
facility. The remaining 1393 S ALT-generated rules break down into the follow­
ing categories:

• 521 (23.8 percent) are forward-chaining rules for proposing a part
of the elevator design.

• 120 (5.5 percent) are forward-chaining rules for specifying con­
straints on the design.

• 58 (2.7 percent) are rules for proposing potential fixes conditioned
on the violation of particular constraints.

350 MARCUS, STOUT, A N D McDERMOTT

• 44 (2.0 percent) are rules for directing exploration of the implica­
tions of a fix (lookahead).

• 530 (24.2 percent) are lookahead rules for extending a design.

• 120 (5.5 percent) are lookahead rules for specifying constraints.

These rules represent procedures derived from the knowledge SALT collects
in its three knowledge roles. The first three rule types make use of the
knowledge in the roles of PROPOSE-A-DESIGN-EXTENSION, IDENTIFY-A-
CONSTRAINT, and PROPOSE-A-FIX, respectively. The next group, rules for
directing lookahead, define which procedures for proposing design extensions
and identifying constraints are relevant to deciding whether proposed fixes ac­
tually remedy the constraint violation they are intended to fix. The last two
categories employ the same knowledge encoded in the first two groups,
PROPOSE-A-DESIGN-EXTENSION and IDENTIFY-A-CONSTRAINT. They
differ from the first two in that the conditions under which they fire are set up by
the rules that direct the lookahead. They are used to selectively explore implica­
tions of proposed fixes before choosing one to implement. Table 11-1 gives an
impression of rule complexity in each of these categories.

Table 11-1: Rule Complexity

Rule Type
Condition
Elements

Attributes
per CE

Action
Elements

Extend a design 3. .74 2.06 3.48

Identify a constraint 3. .42 2.03 3.74

Propose a fix 2. .24 3.31 1.07

Direct to lookahead 1. .00 1.00 5.36

Extend an exploratory
design 5. .31 1.99 3.23

Identify an exploratory
constraint 5. 39 1.94 3.29

VT: EXPERT ELEVATOR DESIGNER 351

11.6.2. Run Characteristics

Statistics reported here are based on a sample of six test cases that Westin­
ghouse engineers feel are representative of the range of complexity which VT
must handle. A breakdown of these cases on measures that reflect search com­
plexity is given in Table 11-2. All constraint violations are fixed on these runs;
that is, there are no dead ends.

Table 11-2: Complexity Measures On Test Case Runs

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Distinct constraints violated 7

Total constraint violations 9

Fixes explored per constraint 1.0
violation

Nonconstraint values "undone" 18.9
per implemented fix

Constraints "undone" per 3.4
implemented fix

8 8 12 9 12

9 12 16 17 23

1.3 1.0 1.4 1.2 1.3

25.7 26.0 33.7 29.6 40.4

3.9 4.2 12.6 11.2 11.0

The breakdown of rule firings shown in Table 11-3 helps to give an idea of
where the activity is focused during a run. The breakdown for these jobs in
CPU time, as measured on a VAX 11/780 with 20MB of memory, is shown in
Table 11-4.

11.7. CONCLUSION

VT is an expert system whose domain requires plausible guessing. Its
problem-solving strategy incrementally constructs an approximate elevator
design by proposing values for design parameters. At the same time, it iden­
tifies constraints on design parameters. If a constraint is violated, VT uses
domain expertise to figure out how to revise the proposed design. In doing so, it
uses an architecture that makes clear the role that each piece of domain-specific
knowledge plays in proposing, constraining, and revising solutions. This

352 MARCUS, STOUT, A N D McDERMOTT

Table 11-3: Rule Firings Per Run

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

SALT-Generated Rules

Extend a design 821 868 1050 1777 1358 2545

Identify a constraint 239 227 268 360 405 627

Propose a fix 9 9 12 16 17 23

Direct to lookahead 9 11 9 28 27 25

Extend an exploratory design 57 93 52 378 237 356

Identify an exploratory
constraint 5 9 5 6 19 18

Subtotal
1140 1217 1396 2565 2063 3594

General Control Rules
Test a constraint 147 147 189 232 250 422

Control a fix 472 592 594 1393 1251 1664

Maintain consistency 831 1074 1422 2886 2570 4732

Other 222 372 308 806 726 862

Subtotal:
1672 2185 2513 5317 4797 7680

Total
2812 3402 3909 7882 6860 11274

knowledge representation serves as the basis for VT's explanation facility that
can both explain past decisions and hypothesize about alternative solutions. It is
also the foundation of an automated knowledge-acquisition tool, SALT, that can
be used to generate expert systems that use this problem-solving strategy and ex­
planation facility. SALT was used to acquire the knowledge for and to generate
the system described here as well as to map out potential interactions among
fixes. This analysis helps a developer assess the potential for the system to con­
verge on a solution if one exists. Trouble spots located by this analysis can be
given special treatment in the backtracking search. In the future we plan to con­
tinue our exploration of the use of knowledge-based backtracking through the
use of SALT as a tool to acquire the knowledge for other types of constructive
tasks.

VT: EXPERT ELEVATOR DESIGNER 353

Table 11-4: CPU Time Per Run

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Time in
forward-chaining
mode 4:52 4:17 6:23 7:10 7:19 10:40

Time in
fix-exploration
mode 2:16 2:53 3:32 8:39 7:26 11:09

Total
time per
run 7:08 7:10 9:55 15:49 14:45 21:49

11.8. ACKNOWLEDGMENTS

This paper was first published in the Winter 1987 issue of AI Magazine, a
publication of the American Association for Artificial Intelligence. It is
reprinted here by the permission of the publisher.

This research was sponsored by Westinghouse Elevator Company, Randolph,
New Jersey. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, ei­
ther expressed or implied, of Westinghouse Elevator Company. Many people
have helped with VT's development. We would especially like to thank John
Gabrick, Michael Gillinov, Robert Roche, Timothy Thompson, Tianran Wang,
and George Wood.

11.9. BIBLIOGRAPHY

[1] Brown, D., "Failure Handling in a Design Expert System,"
Computer-Aided Design, Vol. 17, pp. 436-441, 1985.

[2] Chalfan, Κ. M., " A Knowledge System that Integrates Heterogeneous
Software for a Design Application," AI Magazine, V o l . 7 , pp. 80-84,
1986.

354 MARCUS, STOUT, A N D McDERMOTT

[3] Cohen, P. and Feigenbaum, E., The Handbook of Artificial Intelligence,
Vol. 3, William Kaufmann Inc., Los Altos, California, 1982.

[4] Descotte, Y. and Latombe, J.C., "Making Compromises among An­
tagonist Constraints in a Planner," Artificial Intelligence, pp. 183-217,
1985.

[5] Doyle, J., " A Truth Maintenance System," Artificial Intelligence,
Vol. 12, pp. 231-272, 1979.

[6] Forgy, C. L., OPS5 User's Manual, Technical Report CMU-CS-81-135,
Carnegie-Mellon University, July 1981.

[7] Fox, M., Constraint-directed Search: A Case Study of Job-shop
Scheduling, CMU-CS-83-161, Carnegie Mellon University, Department
of Computer Science, 1983.

[8] Marcus, S., McDermott, J., and Wang, T., "Knowledge Acquisition for
Constructive Systems," Proceedings of the Ninth IJCAI, Morgan Kauf­
mann Publishers, Inc., pp. 637-639, 1985.

[9] Marcus, S. and McDermott, J., SALT: A Knowledge Acquisition Tool for
Propose-And-Revise Systems, Technical Report, Carnegie Mellon
University, Department of Computer Science, 1986.

[10] Marcus, S., "Understanding Subtasks from a Piecemeal Collection of
Knowledge," Proceedings of the 1988 AAA! Workshop on Knowledge
Acquisition for Knowledge-Based Systems, Kluwer Publishers, 1988.

[11] McDermott, J., " R l : A Rule-Based Configurer of Computer Systems,"
Artificial Intelligence, Vol. 19, pp. 39-88, 1982.

[12] Mittal, S., and Araya, Α., " A Knowledge-based Framework for
Design," Proceedings of the Fifth National Conference on Artificial
Intelligence, Morgan Kaufman Publishers, Inc., pp. 856-865, 1986.

[13] Smith, S., Fox, M., and Ow, P., "Constructing and Maintaining Detailed
Production Plans: Investigations into the Development of Knowledge-
based Factory Scheduling Systems," AI Magazine, Vo l .7 , pp. 45-60,
1986.

[14] Stallman, R., and Sussman, G. J., "Forward Reasoning and Dependency-
directed Backtracking in a System for Computer-Aided Circuit
Analysis," Artificial Intelligence, Vol. 9, pp. 135-196, 1977.

[15] Stefik, M., "Planning with Constraints (MOLGEN 1)," Artificial
Intelligence, Vol. 16, pp. 111-140, 1981.

[16] Stefik, M., "Planning with Constraints (MOLGEN 2) ," Artificial
Intelligence, Vol. 16, pp. 141-170, 1981.

355

[17] Stefik, M. et al., "The Architecture of Expert Systems," in Building Ex­
pert Systems, Hayes-Roth, F., Waterman, D. Α., and Lenat, D. B., Ed.,
Addison-Wesley Publishing Company, Inc., pp. 89-126, 1983.

[18] Stout, J., Caplain, G., Marcus, S., and McDermott, J., "Toward
Automating Recognition of Differing Problem-Solving Demands,"
International Journal of Man-Machine Studies, Vo l .29 , pp. 599-611,
1988.

[19] Sussman, G. J., "Electrical Design: A Problem for Artificial Intelligence
Research," Proceedings Fifth IJCAI, pp. 894-900, 1977.

[20] Sussman, G. J. and Steel Jr., G. L„ "CONSTRAINTS - A Language for
Expressing Almost-Hierarchical Descriptions," Artificial Intelligence,
Vol. 14, pp. 1-39, 1980.

[21] van de Brug, Α., Bâchant, J. and McDermott, J., "The Taming of R l , "
IEEE Expert, Vol. 1, pp. 1986, 33-38.

Chapter 12
A DESIGN PROCESS MODEL

Forrest D. Brewer and Daniel D. Gajski

Abstract

This paper describes an expert-system paradigm for design of complex VLSI
systems. The paradigm allows iterative refinement of behavioral specifications
to completed designs. The methodology describes how closed-loop execution
and evaluation of the design is achieved using a simple 'Knob' and 'Gauge' ap­
proach. In particular the paradigm can be used for design of expert systems
which control procedural layout generators and silicon compilers.

12.1. INTRODUCTION

In the past, the design process was carried out completely manually. As each
level of the design was completed, it became a specification for the lower levels
of the design. These lower levels were designed to fit the downwardly imposed
design constraints and the upward physical constraints from their own design
components. Failure in one or another level of design resulted in either re­
design of that level or relaxation of the imposed constraints by redesign of a
higher level of the design. The advent of VLSI technology put severe strain on
this manual system by allowing tremendous growth in the design complexity.
Thus the manual cycle time for design went from days to months to years,
necessitating computer aided design systems.

Artificial Intelligence in Engineering Design 357 Copyright © 1992 by Academic Press, Inc.
Volume I All rights of reproduction in any form reserved.
Design Representation and Models of Routine Design ISBN 0-12-660561-0

Sections 12.1 through 12.4 are based on 'Towards Intelligent Silicon Compilation' by Brewer and Gajski, pp. 365-383 of
Design Systems for VLSI Circuits, Proceedings of NATO Advanced Study Institute on Logic Synthesis and Silicon Compilation
for VLSI Design. Copyright © 1987 by Martinus Nijhoff Publishers, Dordrecht, reprinted by permission of Kluwer Academic

Publishers, and also'An Expert System Paradigm for Design,' by Brewer and Gajski, which appeared in the Proceedings of
the 23rd Design Automation Conference, Las Vegas; 1986, pp. 62-68, © 1986 ΓΕΕΕ. Sections 12.5 through 12.12 are adapted
by permission from 'Knowledge-Based Control in Microarchitecture Synthesis,' by Brewer and Gajski, in Proceedings of the

24th Design Automation Conference, Miami 1987; pp. 203-209, © 1987 Association for Computing Machinery.

358 BREWER A N D GAJSKI

12.2. A NEW MODEL OF DESIGN

The design of any complex system is necessarily split into a hierarchy of
design abstractions, with more abstract representations at the higher levels and
less abstract ones at the lower levels. To accommodate the changing rules and
design granularity, each level of abstraction requires its own dedicated designer
or design expert system. The purpose of the expert on a given level is to control
synthesis of a structure out of the design components predefined for that level
and to partition the global design constraints into component constraints. This

Present day design systems use silicon compilers [2 ,4 , 6, 7] to generate
layout for device fabrication, as well as timing, power, and simulation models
for frequently used components (e.g., PLA's, RAM's, ROM's, Data-Path's,
ALU's, Multiplexers, Counters). In addition, such design systems provide
simulation and time verification functions to evaluate the generated design's
performance. In these systems, transformations between levels of the design
hierarchy are performed by fixed algorithms which optimize the design at each
level. Failure analysis and design evaluation must still be done manually, and
corrections to the design specification must be iterated through the entire
process for evaluation.

Rule-based design systems have begun to appear on the CAD horizon [8 ,10] .
These 'expert designers' replace the fixed procedural algorithms of earlier CAD
systems with rule-based expert systems. These systems have great potential in
CAD as they can encapsulate expert design knowledge as well as the rapidly
changing domain knowledge. Since they can be easily extended and modified,
rule-based systems allow limited automated design before general algorithmic
models and techniques appear. At present the rule-based systems are limited to
a single design strategy and must conform to the design methodology of the al­
gorithm they replace. These systems, however, fall short of the goal of com­
pletely automated design since they still require manual performance evaluation
and redesign.

We therefore propose a new design model that simplifies implementation of a
design system as a set of communicating expert systems and associated algorith­
mic tools. This model describes both upward and downward constraint propaga­
tion, and provides for iterative refinement of designs. The iterative refinement
procedure requires a goal directed design strategy and closed-loop evaluation of
the design performance. To close the loop we choose a simple 'Knob and
Gauge' approach with 'Knobs' being downward propagated design constraints,
and 'Gauges' being performance evaluations of the proposed design.

A DESIGN PROCESS MODEL 359

structure implements the behavioral specification produced by the previous
higher level (more abstract) designer.

Conventional models of silicon compilation pursue a straight top-to-bottom
transit of the design hierarchy. Thus, each level of the design is completed, op­
timized and (sometimes) evaluated before the subsequent design proceeds. In
this case, evaluation is performed by a human designer who first determines the
relative priority of the design goals, and selects appropriate performance
measures. He then analyzes the design to produce corrections in the design
specification. Sometimes these changes are made directly to the present level of
design. This results in the possibility that the high-level specification does not
match the final design. In this case the designer is 'on his own' to ensure that
the design change does not violate any other constraints. Usually, however, the
designer must change the high level specification to effect changes in the final
design. Apart from the relatively long turnaround of design changes, the desig­
ner has little direct control of the design process at lower levels. Worse, if he
does change the specification at a lower level, there is no automatic way for the
system to correct the higher-level design.

Design in the proposed model proceeds from top to bottom as each level is
completed, with the provision that each level may fail in its attempt to achieve
its goals. When this occurs, control passes back to the parent in the form of a
failure report. The higher level task may decide to re-allocate constraints, or
change styles, or indeed fail itself. This procedure allows backtracking of earlier
design decisions between levels of the design hierarchy, forcing iterative refine­
ment of the design. In addition, this model supports a constraint handling pro­
cedure which manages both upward and downward propagation of design styles
and parameters. Constraint propagation and failure reporting augment the com­
pleted design specification to provide communication between the different
design levels. This additional information is used by the expert designer to for­
mulate strategies for the completion of the design. In this way a decision made
by the expert is based on much the same design context as that implicitly used
by a human designer.

Closed-loop iteration of the design requires that the refinement of the design
structure be guided by a functional specification at each level. By explicitly
saving the desired function along with the detailed implementation, the process
of evaluating how well a design performs is simplified. Also, this allows the
lower level design procedures greater freedom to select the particular functional
equivalent implied by the specification. As an example one can partition any
digital design into a set of communicating finite state machines (FSM). The
functional decomposition allows the FSM designers to use knowledge about the
intended use and required performance of the sub-systems to drive the selection
of the implementation strategy. In this way the structural design produced by a
more abstract level designer becomes the detailed functional specification
needed by a lower level.

360 BREWER A N D GAJSKI

Within a level of design abstraction there are usually several possible alter­
native structures for a particular desired behavior. Each of these may exhibit
differing cost and performance characteristics and require different refinement
and optimization techniques. These structures can be grouped into sets of
similar characteristics called design styles. Styles reflect various design ap­
proaches forced by different design constraints to achieve the same behavior. A
simple example is the choice of ripple-carry addition versus carry-look-ahead.
The ripple-carry adder is appropriate if space is at a higher premium than delay.

As each level is designed, constraints are produced which must be propagated
to the designers at the lower levels. These constraints reflect design style deci­
sions, or structural partitions of higher-level design constraints. Style decisions
constrain the design styles and strategies of sub-section designers. An example
is the decision to use pre-charged carry addition, forcing the use of appropriate
implementation components. Structural partitioning refers to the dividing of
global constraints such as time, power, or area into local constraints on these
values. A requirement of 175nS as maximum cycle time makes demands on the
critical path of operations in each cycle. As the design is implemented, this puts
a partitioning constraint on the design of each functional component.

Iterative refinement of a design requires continuous performance monitoring
relative to the design goals. This model assumes a simple approach similar to
'Knobs' and 'Gauges'. A human operator monitoring a process closes the loop
manually by reading the appropriate gauges and making adjustments to the
knobs (parameters) controlling the process execution. We apply this same
simple approach to controlling the design process. Each iteration of the design
process results in subtle changes in the design. These changes are keyed to the
desired performance of the structure and to the process constraints. An evalua­
tion of the partial design is performed periodically to determine if the present
style and refinement techniques are driving the performance closer to that
desired. The action taken on an evaluation depends on the options available to
the system. It may try to isolate a problem area and optimize, or change styles,
or fail and try a reallocation of the constraints. In this analogy, the knobs cor­
respond to refinement modifications or style decisions while the gauges cor­
respond to performance evaluations.

Figure 12-1 details the flow of the design paradigm. The proposed paradigm
organizes the design experts at each level into several smaller tasks. These tasks
are: Planning, Refinement, Optimization, Constraint Propagation, and
Evaluation.

Planning refers to the section of the expert system which performs the control
function for the designer. It uses the functional specification and the design con­
straints to 'envision' possible design strategies and then selects the most promis­
ing of these and begins the design process. As the process continues, the plan­
ner evaluates the progress of the design to ensure that the plan is feasible.
Problems are handled by first determining the cause and then envisioning

A DESIGN PROCESS MODEL 361

ι 1
Design Planner

Component
Description
& Constraints

_L

Trade-off

τ

Higher Level
of Design

Failure

Goal Definition

Style Selection

ι
Strategy Selection

Ekplanatioq

Refinement

Optimization

Constraint
Propagation

~~r~
Evaluation

Reallocate
, Constraints

Refined Design

Component
Description
& Constraints

JL
Estimation

ΓΤ
Failure I '

Explanation ψ χ

Refined Design

Lower Level
of Design

Figure 12-1: Design Process
Adapted by permission from 'An Expert System Paradigm for Design,'

by Brewer and Gajski, which appeared in Proceedings of the 23rd Design
Automation Conference; Las Vegas 1986; pp. 62-68. © 1986 IEEE.

362 BREWER A N D GAJSKI

modifications in either the constraints or the partitioning or, if necessary, the
style. The planning section defines the present goals, selects the design styles,
and chooses an appropriate design strategy for the refinement and optimization
tasks. It is important to note that the expert design planner is responsible only
for the quality of the synthesized design, not the correctness. In other expert ap­
proaches this distinction is not made and consequently the expert is far more
complex as it includes rules to implement design refinement and optimization
tasks as well as design planning. The proposed design process model separates
these tasks to allow implementation of efficient design systems.

The 'Envisioning' process estimates performance regimes for the design
styles and uses the constraints to decide on those design styles most likely to
provide workable solutions. Figure 12-2 shows a set of possible design styles to
implement a multiplier. Each style has particular advantages and problems in
addition to the particular trade-off shown. Downward constraints partition the
space of possible designs into regions of acceptability. Goals act to drive the
design in particular directions within these regions subject to the design strategy.
In the figure, a cell array or iterative multiply style is chosen, depending on the
inherited style, constraints and goals. Thus, the envisioning process in the
simplest case is simply forward tree pruning of obviously unacceptable
branches. It seeks to apply simple rules to determine feasibility of different
design styles. More complex envisioners could build a tree of possible design
routes, which is then pruned by estimation techniques. The purpose of these
complex routes is to let the design expert consider designs which may seem un­
acceptable in a cursory evaluation, but which may lead to a better overall design.
In this way the envisioner can use expert knowledge to avoid the pitfalls of lo­
cally minimal designs. This is the same problem addressed by simulated anneal­
ing [9]. An example of this problem would be choice of the cell-array multiplier
to appease a speed goal when the design requires a wide ALU which might en­
hance the iterative multiply approach. Determining which of these designs to
implement and exactly how the refinement will proceed is purpose of the design
strategy.

A strategy is an ordered set of Refinement, Optimization, and Evaluation
steps carried out for a particular design style. The order and character of steps in
the strategy may be quite complex when good strategies are known, or very
simple when they are not. The strategy may also define explicit backtracking
procedures when the design constraints or strategy measures are not met.
Strategic measures refer to special evaluations which don't correspond to design
constraints but give clues of possible design improvements. A possible example
is Function Unit usage statistics over several micro-instructions. These statistics
could be used to determine seldom-used or redundant Function Units. A refine­
ment step may impose constraints that cannot be satisfied. The strategy can use
this information to perform pruning of the possible designs. This increases the
efficiency of the designer by eliminating poor branches early in the design
process.

A DESIGN PROCESS MODEL 363

The design strategy for each style may be quite different since the style im­
poses an order on the possible design performance measures. If, for example a
carry-save multiplier style was chosen, one may assume that speed is of par­
ticular importance and complexity is only of secondary importance. This order­
ing and the constraints imposed by the decision of a particular design style aid
the system in developing a strategy for this level of design. Thus for each
design style decision there is a goal-directed reason which can be propagated up­
wards to higher level designers in the event of a design failure. This information
can be used by the higher-level designer to reallocate design constraints and al­
low the design to continue.

delay

Figure 12-2: Multiplier Styles
Adapted by permission from 'An Expert System Paradigm for Design,'

by Brewer and Gajski, which appeared in Proceedings of the 23rd Design
Automation Conference; Las Vegas 1986; pp. 62-68. © 1986 IEEE.

Refinement is the task of translating the desired behavioral function into a
structure of predefined components from the next lower level of the design

364 BREWER A N D GAJSKI

abstraction. Thus, for a selected style, the refinement consists of building a
structure within the constraints of the style which performs the given function.
An example would be a logic implementation of boolean equations, subject to a
style requirement of 2-level implementation. This implementation would not
necessarily be minimal but would always be functionally correct. Refinement is
separated from Optimization in that refinement builds a structure out of the
design components that corresponds to the behavioral specification, while Op­
timization modifies the structural design without changing the function and tries
to improve the quality. There are four reasons for this separation. The first is
that it is very inefficient to carefully craft and optimize a design which has no
possibility of success. The second is that by analyzing the performance of the
partial design, the expert designer can concentrate its time optimizing the critical
parts of the system. Third, we wish to ensure that the design refinement runs to
completion. If the task includes complex optimizations (e.g., layout compac­
tion) there is no guarantee that the refinement will succeed. Instead, we refine to
an unoptimized (but functionally complete) design and then try possible op­
timizations. Lastly, the planner may not be extensive enough to provide
strategies which match an arbitrary set of constraints. In this case we can use
the refiner to explore possible designs by building functionally correct structures
which can be evaluated, optimized and iteratively modified until the constraints
are met. This iterative approach allows the design paradigm to produce viable
designs in cases where one-pass (non-iterative) systems lack strategic
knowledge and hence produce poor quality designs. In summary, to provide a
time efficient structure generator we simplify the refinement task by:

1. structuring the design rules around a given style;

2. removing time-consuming optimization rules from this task.

Optimizations are those rules which search for methods to improve the im­
plementation without making performance/cost tradeoffs. That is, the task seeks
to improve performance or reduce cost by intelligent modifications of the
design. Optimization routines perform local modifications of the structure
which do not change its function. An example is term minimization or cover
reduction in logic design. The necessary generality of the refinement functions
may lead to implementations with inefficiencies which can often be removed by
pattern matching to known efficient structures. The optimization task may also
include well-known algorithms which simply search the design space for better
implementations. Commonly these algorithms are quite time consuming so
strategically this task allows a design time vs. design quality trade-off. The op­
timization task is style specific in that different patterns and algorithms are
needed for different styles. Sample optimizations include PLA folding, register
merging, and geometric compaction.

A DESIGN PROCESS MODEL 365

Constraint Propagation is the task which manages passing constraint infor­
mation both up and down the design level hierarchy. The major task of the
propagator is to partition the high-level constraints onto the components of the
structural design. The information used by the propagator are estimates of com­
ponent performance updated by actual design performance figures from the
component design level. As the design is iteratively refined, these figures be­
come more accurate allowing better partitioning of constraints.

Non-partitionable design style decisions are another kind of constraint. Ex­
amples are: Process Technology (i.e. CMOS, ECL, BiMOS, GaAs etc.), Layout
Technology (i.e. Std. Cell, Gate-Array, Custom), Packaging Technology (i.e.
Dip, Flat, SOT) and Clocking schemes. These decisions limit the style choices
at lower levels of the design by forcing compatible component selection. Such
decisions are passed by inheritance to the lower levels. This means that all of
the physical partitions of a structure inherit the style decisions made for that
structure.

Evaluation is the task of determining how well the design strategy has worked
so far. The evaluation task consists of rules for evaluating various performance
measures such as power consumption, area, delay time, critical path delay, e t c
These rules provide the 'Gauges' used by the strategy to determine how the
design will proceed, or whether to back-track and change a style decision, or
finally to admit defeat and produce a failure analysis for the next higher level of
design. Because of the simple control approach, the evaluator must be able to
interpret the operation of the structure relative to the desired functional behavior.
This interpretation problem is simplified by requiring that the evaluations be
simple numeric parameters, usually related to a performance measure.

There are certain structural evaluations (strategic measures) which are not re­
lated to performance figures but which are used by the planner to determine pos­
sible design improvements. These are usage statistics, layout density, redun­
dancy and testability figures and other parameters relating various local ef­
ficiency measures of designs. These measures are used to determine areas
where favorable design trade-offs may be made by locating infrequently used or
redundant components, or unused space.

The evaluations commonly depend on accurate estimations of the perfor­
mance of the components at this level of design. The iterative approach of this
paradigm insures that as the lower levels of the design are completed, these bet­
ter performance figures are propagated to the higher level evaluators. Thus the
evaluation at a particular point in the design reflects the best knowledge of the
design performance available to the system.

Trade-off and Estimation provide facilities at the highest and lowest levels of
the design. The estimation task provides design and constraint estimation for
some (arbitrary) low-level of the design. In the simplest case the estimator
merely queries a data-base for component information of already designed com­
ponents. Examples would be Standard Cells or Gate Array modules. A more

366 BREWER A N D GAJSKI

12.3. ADVANTAGES OF THE DESIGN MODEL

The proposed model has several advantages over present implementations of
silicon compilers. Most notably it specifically encourages iterative refinement
of the design, and removes the need for a human to close the design loop. This
allows the computer to complete the entire design process quickly without
tedious and error prone intervention of the human operator. If the operator does
decide to modify the design, his controls are the same 'knobs' that are used by
the design experts. He therefore has control local to each level of the design and
assurance that the internal constraint propagation will enforce a correct final
design.

Since the design model is completely closed-loop, a proposed design can be
implemented in several different styles and the best chosen. In present systems,
long optimizations are required to perform the same refinement. For these op­
timizations, unless the design space is very well explored, most of the time spent
optimizing is spent optimizing bad designs. Worse, if the final design is simply
not good enough the optimization time is wasted. In contrast the proposed
design model gets an approximate design quickly by refinement and then seeks
to improve on it. Since the design behavior is kept throughout the system, local-

complex case could be calls to silicon compiler layout generators. The trade-off
task performs a similar service at the highest level of the design. Its purpose is
to determine what to do when the design task fails; possibilities are to simply
query the user, or to provide a method for constraint relaxation.

In summary, the paradigm divides the expert system into 5 smaller tasks:
Planning, Refinement, Optimization, Constraint Propagation, and Evaluation.
The planner uses the imposed constraints and goals to select appropriate design
styles and strategies for the other tasks. Refinement creates a structural design
out of the indicated components which corresponds to the behavioral specifica­
tion. This structure is conditionally optimized and evaluated to determine if the
constraints have been met. The planning strategy then takes appropriate action
depending on the outcome of the evaluation. The Knob and Gauges approach
reduces the complexity of the planning to that of the global design parameters
and constraints. Thus the local design decisions are made with respect to their
effect on the global design parameters. The style-directed refinement ensures a
functionally correct structure that corresponds to the selected style. The evalua­
tion provides the expert system with a means of determining focus to the
relevant design problem(s). Finally constraint propagation ensures upward and
downward compliance with the imposed constraints and style selections.

A DESIGN PROCESS MODEL 367

ized evaluations can point out areas where special design effort is needed. In
these areas, the optimizations performed enhance the entire design. A pictorial
example of this is shown in Figure 12-3. Although a global optimizing algorithm
will in general produce a slightly better design, the space it has to explore may
be very large. The design model makes use of local evaluations to determine
design choices and by comparison searches a smaller space.

Since the design system at each level is an organized expert, the system is
amenable to changes in strategy or to changes in technology without massive
changes in the structure. In fact, the partitioning of design knowledge into
separate styles reduces the required generality of the rules, and should make sys­
tem design and update easier. Finally, the control structure of the expert system
is quite clear, allowing rule evaluations to become algorithmic when good al­
gorithms are known. This allows the expert designer to make use of rapidly ex­
ecuting programs for certain optimization and evaluation tasks where rule ex­
ecution would be either inefficient or unnecessarily complicated.

12.4. APPLICATION OF THE DESIGN PARADIGM TO
MICRO-ARCHITECTURE

Walker and Thomas define a standard set of design levels of abstraction for
silicon compilation [19]. In this section we will describe how the design
paradigm can be used to implement a rule-based design system for the Micro-
Architecture, Layout, and Logic-Design levels. For another approach to the
micro-architecture level see Chapter 8, Volume Π.

Design at the micro-architecture level entails creating a register-transfer level
design from an algorithmic behavioral specification. The components at this
level of design are registers, memories, PLA's, and functional units such as
ALU's. Usually a direct correspondence exists between the operators of the al­
gorithm and the component functional specifications. Thus, the design task
amounts to creating a network of components interconnected by busses or
muxes that conforms to the behavioral specification. Furthermore, the design
must satisfy all of the imposed constraints such as speed, power consumption,
and area. Common design practice decomposes this problem into the coupled
designs of a Control Unit, and a Data Path.

Style Selection and Strategies. At the micro-architecture level the mapping of
the register-transfer level design to quality and performance measures is highly
complex because performance estimation is strongly dependent on the initial be­
havioral specification. Because of this difficulty, we propose a strategy of local

368 BREWER A N D GAJSKI

Generated D e s i g n Decreas ing Performancea

Figure 12-3: Design Process Comparison
Adapted by permission from 'An Expert System Paradigm for Design,'

by Brewer and Gajski, which appeared in Proceedings of (he 23rd Design
Automation Conference; Las Vegas 1986; pp. 62-68. © 1986 IEEE.

A DESIGN PROCESS MODEL 369

exploration of the design space by iterative refinement of the design. Specifi­
cally, we can simply carry out a design given some style and component con­
straints and then evaluate that design to determine the performance and cost.
The resultant figures (the gauges) are compared to the constraints to determine a
better selection of styles and component limits. This process is shown pic-
torially in Figure 12-4. An initial design is carried out using a simple parallel
style, assuming infinite resources in chip area for the data path. The control is
assumed to be simple and relatively fast. This design is evaluated by using com­
ponent delays and areas to determine the time/area/power of the design (point
1). It is noted that this design satisfies the time and power constraints but ex­
ceeds the area limit. A new design is allocated more limited resources in area,
but since power is already satisfied, these resources could be faster. The evalua­
tion of this design is shown as point 2. As more designs are evaluated, the
resource allocations can be interpolated from those of previous designs. If none
of the designs come close to the desired trade-off, a design style change is in or­
der. Finally, if there are no available styles, the planner should generate a
failure report to try to relax the constraints at the previous higher-level design.
In the example the second design violates the time constraint but does satisfy the
area. This design is further modified to increase its performance with only small
increases in the area. The resulting design evaluation is plotted at point 3.

To achieve the iterative refinement described above, there must be a mapping
of design refinement knowledge into the desired performance changes. For this
purpose we introduce Style Networks, and Strategy Networks. A style network
is an acyclic directed graph with style decisions at the nodes and desired perfor­
mance trade-offs labeling the edges. Similarly, a strategy graph is a directed
tree with refinements at the nodes and trade-offs marking the edges. A
simplified control style network and data path strategy graph are shown in
Figure 12-5. In use the style network indicates the possible styles available from
a particular design state. The styles are selected by evaluating the trade-offs
which label the arcs. Each decision is inherited in the design so that the design
state is the entire path through the graph, not just the last node. Terminal nodes
indicate that no further refinement is possible within the imposed constraints of
earlier decisions (i.e. the design style selection is complete.) If the resulting
design cannot be made to fit the constraints, some of the design decisions will
have to be retracted. As each decision is backtracked, the style network will in­
dicate the new possible styles and will flag the paths which have already been
tried.

After the style selections for a design are complete, the structural design is
generated by the refiner and optimized according to the planning strategy. The
strategic knowledge required by the planner is organized into strategy networks.
The strategy network shown in Figure 12-5 gives the strategies associated with
the distributed data-path style. In general the refinement expert is driven either
by a specific style or by a strategy network selection for a more general style.

370 BREWER A N D GAJSKI

A

Figure 12-4: Iterative Refinement of Performance
Reprinted by permission of Kluwer Academic Publishers, from Towards Intelligent

Silicon Compilation,' by Brewer and Gajski, pp. 365-383 of Design Systems for
VLSI Circuits, Proceedings of NATO Advanced Study Institute on Logic Synthesis

and Silicon Compilation for VLSI Design, © 1987 Kluwer.

A DESIGN PROCESS MODEL

Data-Path Strategy

cut-time

Parallelize
(Add-FU's) merge-time Faster-FU's

Reduce-Clock r Direct-Control
Pipeline

larger-change smaller-change
cut-area

Cut-FU's merge^space
Serialize Slower-FU'

Merge-FU's
larger-change

Encode-Control
smaller-change

Control-Unit Style
cu t - tkne^^^^

Data-Flow Control-Flow
c u t - t i m e ^ ^ \ ^ u t - a r e a

R O M

cut-tim(
A

Fixed-Format-Inst

cut-area

Variable-Format-Inst

Random-Logic

cut-timéV , X , j^cut-area

2-Way-Branch 1 - Way-Branch

Figure 12-5: Knowledge Networks
Adapted by permission from

 4
 An Expert System Paradigm for Design,'

by Brewer and Gajski, which appeared in Proceedings of the 23rd Design
Automation Conference; Las Vegas 1986; pp. 62-68. © 1986 IEEE.

372 BREWER A N D GAJSKI

This is necessary since the design models for data-path design are far more
general than those for design of the control unit. To deal with this increased
generality the strategy network provides a selection of modifications to the
refiner which drive the design in a particular direction.

Strategy Networks are used much like style networks but the nodes are not
exclusive, at each planning step the graph is consulted from the root and the ap­
propriate refinement action is selected. Once selected, the refinement is run
directly on the potential design and new performance figures are calculated.
Thus at each step the trade-off evaluations are based on genuine design quality
measures. This differs from the method proposed by Knapp (see Chapter 8,
Volume LT) who chooses instead to evaluate the plan in a separate planning
space and iterate the design constraints only after the entire plan has been
generated.

Refinement. The tasks for the micro-architecture refiner are: control step par­
titioning, register, bus and function unit allocation, and functional design of the
control module(s). This is commonly done in two steps. The first step is to
build a control/data flow graph for the algorithm [14] and partition the graph
into 'states' for the control synthesizer [17]. This is a simple means of ensuring
that the data and control dependency requirements are met. The next step is to
allocate functional units to the 'operation' graph nodes, busses to the arcs be­
tween units, and registers to those variables in arcs crossing state boundaries.
Finally, the symbolic microcode derived from the last step must be encoded into
the control unit.

Optimization. Optimizations of the register-transfer level structure re-arrange
operations subject to their dependencies to minimize either the hardware (by
making a particular unit unnecessary) or the cycle time (by moving an operation
to an available unit in a previous cycle). This optimization is especially impor­
tant if a pipeline style is chosen to prevent many cycles wasted because of
branching. The optimization may also involve recognizing conditions under
which registers and function units can be shared. These conditions arise when
the registers, busses, or function units are used exclusively on each time step. In
the function unit case the sharing requires that the shared unit is capable of per­
forming both functions. Sharing of registers requires that the variables stored in
them are not simultaneously alive. This can be determined by keeping a table of
register bindings active at each time step. Busses can also be shared. As an ex­
ample several registers used exclusively on a bus can be incorporated into a
register file, saving significant area. In the control unit design, the optimization
usually tries to minimize the size of the ROM or PLA by state encoding [3],
control encoding, PLA and Decoder merging.

Evaluation. The proposed design is evaluated to allow comparisons with the
design constraints and to make measurements which aid the expert system in

A DESIGN PROCESS MODEL 373

determining how to improve the design. The design evaluations can help to
point out critical function units or paths which should be optimized, and put
bounds on the possible performance available from a given structure. An ex­
ample of this for PLA generation is given in [11]. In addition to the normal
area, power, testability figures other useful evaluation measures exist as well.
These measures include: usage statistics for various function units, and critical
path delays keyed to worst-case control steps. The usage figures can detect
operations which are rarely performed or busses which are rarely used. These
items would then be prime candidates for sharing or deletion which would in­
crease the design efficiency. The critical path delays can determine where con­
trol steps should be re-partitioned or which function units are critical in the
design. Thus the evaluator supports the efforts of the planner to close the design
refinement loop.

12.5. THE CHIPPE SYSTEM

Figure 12-6 shows an overview of the basic functions in Chippe [1]. The sys­
tem input is a hardware description language reminiscent of PASCAL with
modifications to allow specification of interface protocols and bit-fields. The
language is translated by the compiler to a control-data-flow-graph CDFG

2

representation with data and operation dependencies inserted. This initial graph
is stored as the starting point for all of the future refinements imposed on the
design. This allows backtracking control-flow refinements to the graph.

12.6. REFINEMENT TOOLS

The Slicer [16] is the scheduler for Chippe, producing a valid set of micro­
instructions for the CDFG. Slicer uses the control-delay and clock-cycle-time
along with estimates of the operation times (from the expert) to partition the
critical path. Operations not on the critical path are assigned to states based on
the dependencies and available hardware. Thus the constraints to Slicer are the
function-unit allocations, the control style, and the clock-time. Slicer correctly

2
A representation similar to the Flow-Graph [14] and D A C O N or Value-Trace [10] with

added control information.

374 BREWER A N D GAJSKI

Figure 12-6: Chippe Block Diagram
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

A DESIGN PROCESS MODEL 375

schedules units with delays longer than the clock and will attempt to chain units
sequentially in a single state if the delays are short enough. In addition, Slicer
can schedule pipelined units and keep track of the position of the scheduled
operations and operands in successive clocks.

Slicer's timing model consists of a control state which is partitioned into one
or more micro-instructions each of which can be partitioned into several chain
slices. The micro-instructions correspond to cycles of the system clock and also
correspond to the time granularity of the design's control unit. To prevent races
in the data path, a register is assumed for each bus crossing a micro-instruction
boundary. Chain slices allow execution of units from data that is not available
in a register at the start of the cycle, but which will be available as output from a
function unit. Figure 12-7 depicts a fragment of the state graph showing several
micro-instructions. In the figure the chain slice allows binding of the subtract
operator to the end of the multiply operation without the addition of a register.
Note that the multiply function was allowed to run over several state boundaries.
To insure the correct operation of the designed machine, such an operation re­
quires either the input busses to be held active for the duration of the operation,
or that the input of the function unit be latched. This input latch is available to
the expert as an optional attribute to set for the function unit. Pipelined units are
treated as operators which become available periodically (not necessarily on
clock boundaries) and whose outputs are delayed by an appropriate number of
clock-times.

Splicer [15] performs the connectivity binding and unit allocation (selection
of which units to use for each operation) for Chippe. Splicer is designed around
a depth-first search using both backtracking and branch bounding to bind opera­
tions to units and connections to busses. Its input will accept an arbitrarily con­
nected partial design and use connections it can find or optionally introduce new
ones if necessary. The use of depth first search allows an initial (greedy) solu­
tion to be found quickly so that Splicer can be used by the expert to explore the
design space for potential design candidates. Splicer uses preset cost heuristics
in calculating the quality of its designs. These costs are selected by the expert to
guide the design search.

12.7. DESIGN STYLE SELECTIONS

There are two major style selection decisions supported by Chippe. These are
selection of the global control unit style and selection of the function units
which are used to implement the design. Other possible style decisions could be
added, most notably connection and layout styles. These would require

376 BREWER A N D GAJSKI

State η \ Q /

y
State n+1 ν

State n + 2 Η /
_ C h a i n _ _ _

State n + 3

State n + 4

 }

Figure 12-7: Fragment of State Graph
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

floorplanning and layout refinement tools which have not been implemented yet.
In the present version, Chippe allows connectivity constrained only by the al­
located function units and area constraints.

Chippe's global control generation is performed by the Cogent
[5] sub-system. Cogent allows the selection of several parameterized control

unit styles and modifies the graph dependencies of the CDFG accordingly. It al­
lows the specification of a control or data-path implementation for each control
signal encountered in the graph. Data path implementations require merging of
control macro-states to increase the available parallelism. Control path im­
plementations require state assignments and transitions in the global control
unit. In addition, Cogent combines all of the state data from Slicer and the al­
location data from Splicer to produce the actual microcode for the control unit.

The function unit data base supports the expert by supplying possible units
and estimates for the operation of those units. The data-base supports several
selectable attributes for function units such as input latching, multi-level pipelin­
ing, and several implementations of each function with different area-time
tradeoffs. It provides insulation between the technology dependent component
data-base and the rule base of the expert system. This allows the function unit
data-base to be easily replaced as required by the application specific design

A DESIGN PROCESS MODEL 377

technology. When the system is interfaced to a structural compiler these es­
timates can be tuned to the lower level structural design.

12.8. DESIGN EVALUATION IN CHIPPE

The evaluator assembles the data from the state graph and the partial design to
produce the quality measures used by the expert. It ensures that each subsystem
has the current version of the data it requires and manages constraint handling
for the system. For example, it insures that the Slicer has the correct estimate of
the control-unit delay. When Chippe is interfaced to a structural silicon com­
piler, the evaluator will manage the data passed back from the actual design
layout to correct these estimations. The last part of the evaluator is a set of func­
tions called from the expert which produce local and global evaluations of the
graph and connectivity. These are used by the expert to focus the design effort
onto specific local trade-offs.

The expert is driven by relating imposed goals for the design to evaluations
made by routines which measure various parameters of the potential design.
The basic measures are estimates of the area, power dissipation and execution
time. These estimates are compiled from the allocated function units, the con­
nections, and the control unit. At present there is no method of including layout
constraints in the design parameters as has been done in BUD [13]. All of the
above quality measures point out problems with the design but do not indicate
how to correct these problems. For this purpose several other quality measures
are used. These include 'overlap', 'dead-time', 'bus-usage', and identification
of components on the critical path.

The overlap function determines the number of scheduled states for which
two units are active at the same time. This measure helps determine the relative
effect of merging or eliminating units on the schedule. If the overlap is zero (i.e.
the units are exclusive) then merging can be done without lengthening the
schedule. Small numbers reflect relatively small changes in the execution time.
Large numbers indicate that the merging will cost a great deal of time and
should only be done if the area must be significantly reduced.

The dead-time and critical path functions are used to determine means of in­
creasing the performance by alterations of the system clock-time and the critical
components respectively. In a case where a small time improvement is needed it
may be possible to substitute a faster (and larger) unit on the critical path. The
dead-time measure collects information on how poorly the system clock fits the
execution time of the function units in the design. That is, how much time ex­
pires for each unit after it has completed its task and is waiting for more inputs.

378 BREWER A N D GAJSKI

This measure quantifies the efficiency of the global control clock granularity to
the present design schedule. Large values of dead-time indicate possible perfor­
mance increase by modification of the system clock. It is important to note that
modifications of the system parameters to modify a measure may change other
measures in ways that are not desired. For example a change in the system
clock to reduce the dead-time may modify the schedule enough so that the per­
formance of a time critical macro-state is decreased. To help avoid these
problems the expert is designed to perform certain simple strategies of design
refinement.

12.9. THE EXPERT

The expert's view of the design process consists of three basic structures.
These are the function unit bindings, the global parameters and goals, and an
abstracted CDFG. The expert maintains a list of function units which are bound
to the operations they can perform. In addition the function units have attributes
such as pipelining, input latching, power dissipation, area, number of clocks to
complete an operation, and flow delay time. The expert maintains its own ver­
sion of the CDFG at the granularity of control-flow blocks. Each block cor­
responds to a straight-line section of the CDFG, with a control condition deter­
mining the next possible blocks. Thus the design's CDFG is modeled as a finite
state machine whose 'states' correspond to (macro-)states of operations of the
machine separated by explicit conditional transitions to other macro-states.
These macro-states reflect the finest granularity of modifications to the graph by
the expert system. Each macro-state has several attributes such as total execu­
tion time, function unit usage and type of control transition. Finally, the expert
has a collection of parameters corresponding to the global state of the design.
These include the system clock time, the systems total area, total power dissipa­
tion, control time delay, and other quality measures for the machine.

The organization of the macro-state graph is determined by the possible
refinements selected by the expert. Modifications of the macro-state blocks,
such as merging two states, results in the corresponding modifications of the
CDFG and global control unit. For example, a state block with two successor
blocks can be merged into a single larger block by the insertion of multiplexors
controlled by the condition. This is shown in Figure 12-8. The actual merging
of the blocks and updating of the state graph is performed by the Cogent subsys­
tem along with local optimizations to increase the design efficiency. This
change amounts to selecting a data-path implementation of the conditional rather
than using the global control unit to select the next state. If the two conditional

A DESIGN PROCESS MODEL 379

blocks use exclusive parts of the machine then the parallelism of execution can
be increased without the addition of significant hardware. Macro-states can of­
ten be merged vertically if the conditions are not dependent; This allows multi-
way selection of next states if the control unit can perform multi-way branches.
Other possible macro-state refinements include the familiar compiler control-
flow changes such as constant folding and loop unwinding.

Figure 12-8: Merging State Blocks
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

The purpose of these modifications is to change the control structure from one
that is easily described by a programming language to one that is efficient for a
potential design. The control of the machine is determined by a control unit
which is selectable by the expert. This selection is based on the goals set for the
final design and the evaluation of the desired behavior. In addition the expert
can select the direct implementation of the control for unique state transitions.
The reasons for this ability is that the changes to the total design from modifica­
tions of the control are not well understood. The coarse granularity of the data
path representation indicates that much better knowledge about the optimization

380 BREWER A N D GAJSKI

of this part of the design exists so that direct rule based control is deemed un­
necessary. Instead, this part of the design is amenable to standard data-flow op­
timizations which are handled in Slicer and Splicer.

Refinements to the control flow are often irreversible after the optimizations
and dependencies are resolved. Since the intended result of the modification
cannot be assured at the outset the expert must have a method for backtracking
its actions on the CDFG. For this purpose the expert maintains a stack of earlier
states and potential operations. If the refinements to the design fail to achieve
the goals the design can be backtracked to an earlier state with knowledge of the
modifications which led to failure.

12.10. DESIGN STRATEGY

The expert maintains control of the system by modification of knobs. These
knobs include modifications in the function unit allocations, the design global
parameters (clock length, type of control, control delay etc.), selection of limits
and heuristics for Slicer, Splicer, and Cogent subsystems. The primary control
of the expert over the data-path is from the function-units which are selected to
be the components of the design. These units are kept in a data base and are
matched by desired functionality and area/time/power characteristics. The ex­
pert can select many parallel fast units for a time constrained design or a few
highly merged units (those performing a large number of operations) for an area
constrained design. Since the system design philosophy is design by iterative
refinement there are rules in which the action part increases the merging of units
as well as rules to split units, adding to the achievable parallelism. This merging
also has a strong effect on the connections needed to complete the design. A
smaller number of function units requires a correspondingly smaller number of
busses for interconnection. Lastly, the selection of individual units performing
identical functions offers additional design tradeoffs. A function unit can be
pipelined or implemented with carry-lookahead or ripple logic. For example, an
adder on the main data-path may be wide enough to require a lookahead func­
tion while a narrower incrementer could be fast enough (and save space) if im­
plemented as ripple-carry.

The decision-making process of the expert is performed in two phases. First
the goals are compared to the evaluations to select a strategy for change. Then
selected rules use local measures to determine possible actions. The action with
most promise is tried first, after which the design is re-evaluated to determine
the changes. Finally, the design can be backtracked if the strategy proves use­
less. An example of a strategy for minimizing the area usage by merging is

A DESIGN PROCESS MODEL 381

shown in Figure 12-9. These rules are arranged in order of increasing change to
the schedule. The first rule which potentially solves the problem is fired and the
schedule and graph are updated.

Rule: Remove-Redundant::
If (N e v e r - u s e d (F U I))
Then (

R e m o v e (F U l))

Rule: Merge-Exclus ive: :
If (Compatible(F U I , F U 2) &&Exc lus ive (F U I , F U 2) & &

Smaller-Area(Merge(F U I , F U 2) , F U 1 + F U 2) & &
Largest-Gain(F U I , F U 2))

T h e n (
Add(Merge(F U I , F U 2)) & & R e m o v e (F U I , F U 2))

Rule: Merge-Trade::
If (Compatible(F U I , F U 2) & &

Smaller-Area(Merge(F U I , F U 2) , F U 1 + F U 2) & &
Overall-Cost(F U I , F U 2) < Largest-Gain(F U I , F U 2))

T h e n (
Add(Merge(F U I , F U 2)) & & R e m o v e (F U I , F U 2))

Figure 12-9: Function Unit Merge Rules
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

A possible strategy for the selection of function units is to first allocate a
unique unit to each operation in the graph. After scheduling, the graph can be
scanned for unused units and for potential merging candidates. The resulting
machine is evaluated and compared to the goals. Since the machine is im­
plemented with many parallel units, if the performance is not high enough then
some of the units will need to be replaced with faster versions. If the area is too
large then the merging candidates can be evaluated for potential gains and the
allocation appropriately modified by pair-wise merging of the candidates. After
a strategy has been selected (for example, cutting the number of instantiations of
a unit), a set of rules for that strategy is activated. This has the effect of induc­
ing a two level control on the rule-base: First the strategy is selected by evaluat­
ing the measures against the desired (global) goals, then the implementation of

382 BREWER A N D GAJSKI

that strategy is activated. The rules that represent the action of a particular
strategy determine the particular (local) change required. If no candidate meets
the requirements of the activation of a given strategy, the activation fails and a
new strategy is chosen. When all strategies for a given desired change fail the
expert can optionally backtrack to earlier design decisions (such as selection of a
control style).

The system clock length has a drastic effect on the final design. The
flexibility of the scheduling algorithm allows clocks which may be either faster
or slower than the execution delay of the units. The faster clocks reduce the
granularity with which the control can be scheduled. This reduces the 'dead-
time' when a unit is unused and awaiting new operands. However, it also in­
creases the number of states which must be encoded in the control unit, thus in­
creasing the unit's size and delay. Longer clock time allocations allow more
units to execute in sequence within a single clock. This can lead to efficient
operation at relatively slow clock speeds. It must be noted that the clock length
should not exceed the execution time of an entire macros-state as no further
operations can be chained in sequence. Thus, designs with many small macro-
states (such as a controller with many ports to service) should use higher clock
rates to reduce the response time.

The design of this system is based on simple tradeoffs controlling fast search
of the design space. For the connections between the function units in the
design several possible cost strategies with different tradeoffs are possible. The
design can be interconnected using sufficient busses to run the schedule as fast
as possible or the units can be merged, slowing the schedule and reducing the
bussing requirements. In addition heuristics which give adequate results for
very short iteration limits are different from those which produce high quality
designs in longer searches [15]. The expert should not spend long searches to
optimize designs which are far from satisfying the goals, so time can be traded
against quality of the design produced. In the final stages of the design process
(when the design is close to the imposed goals) the design can be connected with
high quality minimal connections for the final designs.

12.11. WALK-THROUGH EXAMPLE

Figure 12-10 shows the hardware description for a small loop. This test case
was used by the HAL system [18]. We will examine a run of Chippe on this
fragment and indicate the trade-off decision points. All of the following ex­
amples were produced by Chippe from this one code fragment. The area and
time bounds were set at the beginning and the examples were sampled as the
design progressed.

A DESIGN PROCESS MODEL 383

program diffeq(input.output);
/ * Example from H A L : A Multi-Paradigm Approach to

Automatic Data-Path Synthesis 23rd D A C */
type integer = {0..11};
reg three : integer;

f ive : integer;
var a, dx, x, u, y, y l , u l , u2 , u3 , u4, u5 , u6 : integer;
begin

if (x < a) then
repeat

u l = u * dx;
u2 = f ive * x;
u3 = three * y;
y i = u * dx;
X = χ + dx;
u4 = u l * u2;
u5 = dx * u3;
y = y + y l ;
u6 = u - u4;
u = u6 - u5;

when χ < a
end.

Figure 12-10: Hardware Description Language for HAL Example
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

Figure 12-11 traces the evolution of the small design test case. The goals for
the system were area < 3000 gates and delay < 1.0 uSec. These constraints are
shown as the vertical dashed box in the figure. The figure shows that the first
set of merges (two of the multipliers) reduced the area but did not change the
performance, since these units were not used simultaneously in the schedule.
The later merges required more states to complete the loop but in each case the
trade was in favor of the desired goal. In this case the area bound was first met
and then the time performance goal was attempted. This resulted from the large
difference between the initial area and that of the goal requirement, which led to
the selection of the simple strategy outlined above for area reduction. After the
area constraint was satisfied the controller tried to speed up the machine since
the time bound was now violated. In searching for modifications to speed up the
machine, the rule base used a usage measure to determine where the biggest gain

384 BREWER A N D GAJSKI

could be made by a unit modification. The unit returned was the multiplier
which was used in nearly all states of the loop. A data-base query determined
that this unit could be pipelined. The strategy here was that the system clock
could be shortened, decreasing the loop delay. These changes led to the large
drop in loop delay in the figure. Finally, the change in the clock led to a last
potential merge, producing the final design.

These changes are shown pictorially in Figures 12-12, 12-13, and 12-14. The
tables that appear under each figure are the output symbolic microcode for these
three designs. The symbolic microcode and the micro-architecture contain suf­
ficient data to build the control unit. Estimates of the control unit size based on
implementation and the micro-code are thus quite accurate. Each numbered
block corresponds to a state of the machine while the lines describe which units
are accessed and where the results are placed. The FUxx, rxxx, and bxx are
function units, registers, and busses respectively. Operands are supplied to the
function-units on the indicated busses. In these examples (to conform to the
original HAL paper) the initial values for the registers are assumed to be stored
at the start of the code fragment. In a more realistic case these values could be
loaded from a constant ROM or from external ports in the environment.

Figure 12-12 shows the design after one unit was merged, the adder-
subtractor. In this very parallel version the six multiplies are carried out in just
two states, leaving the other states relatively empty. The area requirement for
this design was far greater than the goal so the expert chose to remove mul­
tipliers as they provide the largest gain in area. This design also made use of the
chaining ability of Slicer/Splicer. Since the clock time set by the expert allows
the multiplies to execute in one cycle, there is sufficient time to perform both
and add and a subtract in a single state.

The design in Figure 12-13 shows the result after several more merges. The
gate usage in this example is still about 5500. Fewer registers are used in this
example since the decrease in parallelism allowed a schedule with one fewer
temporary register. The plethora of muxes in this design are an artifact of the
design strategy (which forbids optimization at this point in the design) and the
Splicer heuristic (picked by the expert to minimize busses at the expense of
muxes). If this design was close to the desired goal, much better optimization
would be used. This design iteration took less than 1% of the total design time
for the code fragment. Optimizations at this step would have simply wasted
design time.

The final design shown in Figure 12-14 shows the design after the inclusion
of a 2-stage piped multiply unit. This design modification occurred because the
number of sequential multiplies became large enough for a pipe to be efficient.
Notice that the two-level muxing structure has resulted in a design with four in­
put busses and two output busses. The optimization of this design clearly splits
the registers into two structural units, R0, R2, R4, and R l , R3, R5, R6. Ad­
ditional rules could create register arrays for these partitions.

A DESIGN PROCESS MODEL

A

Fig. 12-12

2000 3000 4000 5000 6000 7000 8000 9000

Figure 12-11: Design Evolution
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

386 BREWER AND GAJSKI

PLA

t '

MI# ACTIONS Nxt Conditions

1 a FU01(< :i002,b01;r003,b02) 2
1

χ < a : TRUE
χ < a : FALSE

2 a γΟΟΟ,ΒΟΙ = FU02(*:r004,b04;rO05,b05)
rO01,B02 = FU03(*:r001,b02;i002,b03)
r007,B03 = FU04(*:rO00,b01;rO06,b06)
r008,B04 = FU05(*:r004,b04;r005,b05)

3

3 a r007,B03 = FU04(*:r000,b01;r001,b02)
r002,B02 = FU06(-Kr002,b03;r005,b05)
γΟΟΟ,ΒΟΙ = FU02(*:r007,b04;r005,b05)
r006,B04 = FU08(+:r006,b06;r008,b07)

4

4 a

4 b

B05 = FU07(-:r004,b04;r007,b08)
FU01(< :r002,b01;r003,b02)
r004,B04 = FU08(-:B05;r000,b07)

2
1

χ < a : TRUE
χ < a : FALSE

Figure 12-12: The HAL Design After One Merge
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

A DESIGN PROCESS MODEL 387

PLA

t -

. _ I

FU05 FU02
Multiply Multiply

1

ί>γυ03^|»γυ04^
B03

MI# ACTIONS Nxt Conditions

1 a FU01(< :r002,b01;r003,b02) 2
1

χ < a : TRUE
χ < a : FALSE

2 a γ Ο Ο Ι , Β Ο Ι = FU02(*:r004,b03;rO05,b04)
r007,B02 = FU05(*:i001,b01;r002,b02)

3

3 a r002,B02 = FU05(*:i000,b01;i006,b05)
γ Ο Ο Ι , Β Ο Ι =FU02(*:r001,b02;r007,b06)
rO02,B03 = FU03(+:rO02,b03;r005,b04)

4

4 a γ Ο Ο Ι , Β Ο Ι = FU02(*:r005,b05;r004,b04)
rO04,B03 = FU03(-:r004,b04;r001,b01)
r002,B02 = FU05(*:rO02,b02;r005,b05)
FU01(< :r003,b03;rO02,b02)

5

5 a r006,B01 = FU04(+:rO06,b05;rO01,b02)
r004,B03 = FU03(-:r004,b03;r002,b01)

2
1

χ < a : TRUE
χ < a : FALSE

Figure 12-13: Intermediate HAL Design
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

388 BREWER AN D GAJSK I

PLA

t -

Ctl
\ mu x / ^ mu x /

bOl

WQI/ 2-Stage
Pipelined

J B Û I

Multiply
F y) 2

i f

\FU03/
B02

MI# ACTIONS Nxt Conditions
1 a FU01(< :r002,b01;r003,b02) 2

1
χ < a : TRUE
χ < a : FALSE

2 a FU02(*:r004,b01;r005,b02) 3
3 a rOOlJBOl =FU02(*:)

FU02(*:r002,b01;r001,b02)
4

4 a ΓΟΟΟ,ΒΟΙ = FU02(*:)
FU02(*:r000,b01;r006,b02)

5

5 a ΓΟΟΟ,ΒΟΙ = FU02(*:)
FU02(*:r000,b01;r001,b02)
r002,B02 = FU03(+:rO02,b03;rO05,b04)

6

6 a Γ ΟΟΙ ,ΒΟΙ =FU02(*:)
FU02(*:r004,b03;r005,b04)
FU01(< :r002,b01;r003,b02)

7

7 a ΓΟΟΟ,ΒΟΙ = FU02(*:)
FU02(*:r000,b01;r005,b04)
r004,B02 = FU03(-:r004,b03;r001,b02)

8

8 a Γ ΟΟΙ ,ΒΟΙ =FU02(*:)
r006,B02 = FU03(+:rO00,b03;r006,b02)

9

9 a r004,B02 = FU03(-:r004,b03;r001,b02) 2
1

χ < a : TRUE
χ < a : FALSE

Figure 12-14: Final Design for HAL
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

A DESIGN PROCESS MODEL

PLA

Ctl

"HR6

mux

\ f u o i /

7 b02

Pipelined
2-Stage

Multiply
F U 0 4

B01 Έ 0 2

I
ux

b03
*\m u x /

Pipelined
2-Stage

Multiply
FU02

b05 |b04

I — X -

*^\nux/

IB03

MI# ACTIONS Nxt Conditions
1 a FU01(< :r002,b01;r003,b02) 2

1
χ < a : TRUE
χ < a : FALSE

2 a FU02(*:r004,b03;r005,b04)
FU04(*:r001,b02;r002,b01)

3

3 a r001,B02 = FU04(*:) γΟΟΟ,ΒΟΙ = FU02(*:)
FU04(*:r006,b02;r000,b01)
FU02(*:r004,b03;r005,b04)

4

4 a r002,B01 = FU02(*:) r001,B02 = FU04(*:)
FU04(*:r001,b02;r000,b01)
r002,B03 = FU03(+:r002,b05;r005,b04)

5

5 a r005,B02 = FU04(*:)
FU02(*:r001,b03;r005,b04)
r006,B03 = FU03(+:r006,b05;r002,b01)
FU01(< :r002,b01;r003,b02)

6

6 a γΟΟΟ,ΒΟΙ =FU02(*:)
r002,B03 = FU03(-:r004,b05;r005,b04)

7

7 a r004,B03 = FU03(-:rO02,b05;r000,b01) 2
1

χ < a : TRUE
χ < a : FALSE

Figure 12-15: Faster Design
Adapted by permission from 'Knowledge-Based Control in Microarchitecture,'

by Brewer and Gajski, in Proceedings of the 24th Design Automation Conference;
Miami 1987; pp. 203-209. © 1987 Association for Computing Machinery.

390 BREWER A N D GAJSKI

This total sequence of designs took about 6 sec of CPU time on a Pyramid
processor (roughly 2.5 times the speed of a VAX-11/780). About 95% of this
time was spent optimizing the connections in the last design, the other ex­
ploratory designs were not optimized.

Changing the design goals to time < .4 uSec and area < 6000 gates resulted in
the design in Figure 12-15. The evolution to this design started out the same as
in the previous one but deviates as soon as the area goal is satisfied. Several at­
tempts to achieve the required time were made, including pipelining the (two)
multipliers and changing the clock. These changes are depicted in the design
evolution chart as the dashed line moving to Ex4. In this case the design attempt
failed and is the best design found by the expert.

The present version of the function unit data base was implemented around
the LSI Logic: LSI7000 series gate array products [12] as several of the func­
tions needed were already designed and characterized. All of the timings and
gate counts given are estimates based on the units allocated, the control unit
design, and an estimate of the area used by bussing and connections.

12.12. CONCLUSIONS

In this paper we have introduced an expert-system design paradigm. The
paradigm advocates iterative refinement of the design as opposed to forward
design generation. To support this refinement the paradigm describes how to
perform closed-loop evaluation of the proposed design and how to propagate the
changing constraints to ensure correct design. Closing the loop between evalua­
tion and design modification uses a simple Knob and Gauge approach. The
Knobs are design styles and refinement actions applied to the design. The
Gauges are the area, delay time, power consumption, and other performance
parameters which are conventionally determined by simulation. The paradigm
details how the gauges and constraints are used to evaluate trade-offs which
select design styles and strategies to produce the refined design.

The paradigm also emphasizes the distinction between tradeoffs, refinement
and optimization. Tradeoffs are managed by the design strategy of the expert
and are insulated from the processes of creating correct and optimized design.
Refinement is the process of creating a structure to implement a desired be­
havior. Optimization is the process of modifying this structure to improve the
efficiency without changing the function. The separation of refinement and op­
timization guarantees a design solution; first we build the functional structure
and then we optimize it. This technique also makes more efficient use of the
design time by optimizing only where necessary.

A DESIGN PROCESS MODEL 391

The expert control for the Chippe system is presently under development to
add more capabilities in design analysis. Specifically, rules are needed to con­
trol optimization routines for the graph and to optimize the control selection vs.
the system clock time. Lastly, future research is needed in the language used to
initially represent the design behavior.

There are several limitations inherent in the design model; most of these are
related to the knobs and gauges control strategy. The system cannot make direct
changes in the potential design without losing the ability to iterate the refine­
ments. It can only change the knobs which control the refinement process and
run optimization routines on the output design. Limitations in Chippe include
several possible optimizations which could be performed at different stages in
the design, most notably the generation of the initial control data-flow graph,
where variations on compiler optimizations would be very useful.

The present system does show that design refinement can be carried out using
strategies based on simple design tradeoffs. The simplicity of the expert control
stems greatly from the generality of the underlying design model and the as­
sociated design tools. Several designs have been tested using the system and
with few exceptions have all been amenable to the same rules. This gives sup­
port to the idea of a generalized set of design strategies for a wide class of ar­
chitecture design problems.

12.13. ACKNOWLEDGMENTS

This work was supported in part by a grant from AT&T Bell Laboratories.

12.14. BIBLIOGRAPHY

[1] Brewer, F. D., Constraint Driven Behaviorial Synthesis, unpublished
Ph.D. Dissertation, University of Illinois, Urbana-Champaign, June
1988.

[2] Buric, M. R. and Matheson, T. G., "Silicon Compilation Environ­
ments," Proceedings of the Custom Integrated Circuit Conference,
Portland, Oregon, May 20-22, 1985.

[3] De Micheli, G., 'Optimal Encoding of Control Logic," Proceedings
ICCD, Port Chester, New York, 1984.

392 BREWER A N D GAJSKI

[4] DeMan, H., Rabey, J. and Six, P., "CATHEDRAL Π: A Synthesis and
Module Generation System for Multiprocessor Systems on a Chip,"
Proceedings of the Nato Study Institute of Logic Synthesis and Silicon
Compilation for VLSI Design, L'Aqulia, Italy, July 7-18, 1986.

[5] Dutt, N., "COGENT: A Parameterizable Control Generator for Con­
straint Driven Microarchitecture Synthesis," Ph.D. Preliminary
Proposal, University of Illinois, Urbana Champaign, December 1986.

[6] Gajski, D. D., "Silicon Compilation," VLSI Design, November 1985.

[7] Johnson, S. C. and Mayor, S., "Silicon Compiler Lets System Makers
Design their own VLSI Chips," Electronic Design, October 1984.

[8] Joobani, R. and Siewioriek, D., "WEAVER: A Knowledge Based Rout­
ing Expert," Proceedings of the 22nd Annual Design Automation
Conference, June 1985.

[9] Kirkpatrick, S., Gelatt Jr., C. D. and Vecchi, M. P., "Optimization by
Simulated Annealing," Science, Vol. 220, No. 4598, May 13, 1983.

[10] Kowalski, T., An Artificial Intelligence Approach to VLSI Design,
Kluwer Academic Publishers, Boston, 1985.

[11] Kurdahi, F. J. and Parker, A. C. , "PLEST: A Program for Area Estima­
tion of VLSI Integrated Circuits," Proceedings of the 23rd Design
Automation Conference, IEEE, Las Vegas, June 1986.

[12] CMOS Macrocell Manual, LSI Logic Corp., 1985.

[13] McFarland, M. C. and Kowalski, T. J., "Assisting DAA: The Use of
Global Analysis in an Expert System," Proceedings ICCD, 1986.

[14] Orailoglu, A. and Gajski, D. D., "Flow Graph Representation,"
Proceedings of the 23rd Design Automation Conference, LEEE, Las
Vegas, June 1986.

[15] Pangrle, B. M., A Behaviorial Compiler for Intelligent Silicon
Compilation, unpublished Ph.D. Dissertation, University of Illinois,
Urbana-Champaign, July 1987.

[16] Pangrle, Β. M. and Gajski, D. D., "State Synthesis and Connectivity
Binding for Microarchitecture Compilation," Proceedings ICC AD,
1986.

[17] Parker, A. C , ' 'Automated Synthesis of Digital Systems,' ' IEEE Design
and Test of Computers, pp. 75-81, November 1984.

393

[18] Paulin, P.G., Knight, J. P. and Girczyc, E. F., "HAL: A Multi-Paradigm
Approach to Automatic Data Path Synthesis," Proceedings of the 23rd
Design Automation Conference, IEEE, Las Vegas, June 1986.

[19] Walker, R. A. and Thomas, D. E., " A Model of Design Representation
and Synthesis," Proceedings of the 22nd Design Automation
Conference, June 1985.

Chapter 13
WRIGHT:

A CONSTRAINT BASED
SPATIAL LAYOUT SYSTEM

Can A. Baykan and Mark S. Fox

Abstract

WRIGHT formulates the problem of generating two dimensional layouts con­
sisting of rectangular design units as a Boolean constraint satisfaction problem.
Each layout is represented as a constraint satisfaction problem defined by a set
of numerical variables with interval domains and algebraic constraints on them.
A layout problem is defined by Boolean combinations of the algebraic con­
straints. Constraints are used to represent arbitrary amounts of expertise in a
uniform and principled manner, and a function of texture measures, which are
heuristic measures of the topological and other features of the constraint graph,
controls the focus of attention during search in order to implement a fail-first
strategy.

13.1. INTRODUCTION

WRIGHT is a constraint based spatial layout design system. It formulates
layout problems as constrained optimization problems (COP) , and solves them
by constrained heuristic search (CHS) . CHS combines constraint satisfaction
with heuristic search , and adds to the definition of problem space composed of
states, operators and an evaluation function, problem textures which are
measures of problem topology that allows search to be focused in a way that
reduces backtracking [13].

Spatial layout deals with the design of two dimensional configurations, such
as site plans, floor plans, manufacturing facility layouts, and arrangement of

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

395 Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

396 BAYKAN A N D FOX

equipment in rooms. In spatial layout, topological relations such as adjacency,
alignment, grouping, and properties such as shape, dimension, distance, and
other functions of spatial arrangement are a principal concern [8]. Spatial layout
is a design task. It is an important aspect of architectural design and other fields
that deal with physical design.

Design is the process of constructing a description of an artifact that satisfies
a functional specification, meets explicit or implicit performance criteria, is
realizable and satisfies restrictions on the design process itself [20]. There are
requirements on performance in terms of time, space, energy consumption,
simplicity, reliability, maintainability, fabrication and cost. These may either be
specified by the client or by design codes or be implicit in established practice of
good design in the field. Realizability means that the artifact conforms to limita­
tions of the target medium, i.e. is a building that can be built by some means. It
is natural to define design problems in terms of constraints. WRIGHT uses con­
straints to represent arbitrary amounts of expertise in a uniform and principled
manner, and derives an understanding of the problem (search) space that leads to
more efficient search from constraints.

For each design task, the availability of an implicitly specified set of primitive
components and a set of primitive relations between the components can be as­
sumed. For example, in electronics the primitive components are transistor,
capacitor; and the relations are serial and parallel connections. In spatial layout,
the primitive components can be a set of rooms with different functions, and the
relations are topological and geometrical relations such as adjacency, distance
and alignment.

The primitive objects are called design units, and the relations are called
spatial relations in WRIGHT. Design units are rectangular shapes with discrete
orientations pointing in one of the four principal directions. Spatial relations are
topological or geometrical, such as adjacency, distance and overlap. The set of
possible spatial relations is very large. Therefore, instead of defining a complete
and fixed set, we have defined the relations that are required most often, and
supplied a template for defining new spatial relations. WRIGHT formulates
spatial layout as the generation of configurations of design units satisfying
given spatial relations and limits on dimensions. A spatial layout problem is
defined by the following inputs.

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT

c
Γ
c si

Figure 13-1: Plan Showing Initial Configuration of Kitchen

• An initial layout which may be an empty space,

• Design units to locate and/or dimension,

l .S ink
2. Refrigerator
3. Range
4. Sink center
5. Mix center
6. Range center
7. Circulation area

• Constraints specifying spatial relations between design units and
limits on their dimensions.

1. Sink should be inside sink center
2. Sink should be completely next to circulation area
3. Sink should be facing circulation area
4. Sink should be completely next to window
5. Sink length £ 90 cm.

Spatial layout has the following characteristics:

• The variables under consideration such as length, width, area, and
location of objects are continuous. Though dimensions and loca­
tions can be discretized using a grid, this arbitrarily eliminates some
solutions.

398 BAYKAN A N D FOX

• Spatial relations such as inside, non-overlap, next-to specify topol­
ogy. Some of the relations, i.e. next-to, can be satisfied in multiple
topologically distinct ways.

• A selection of "good" solutions are required for the designer to
identify the possibilities and tradeoffs involved in a problem for­
mulation.

Figure 13-2: Components of WRIGHT

The components of WRIGHT are user interface, knowledge base, constraint
Compiler, and search and reasoning module, as seen in Figure 13-2. The
knowledge base contains prototype design units and constraints. The constraint
compiler maps the constraints in the knowledge base into algebraic constraints
on the lines and dimensions of the design unit instances in a particular problem,
creating an and/or graph called the constraint graph. Search module uses the
constraint graph to generate and test alternative configurations. Three modes of
reasoning are used: numerical constraint propagation, path checking, and
reasoning about adjacency graphs. The user interface enables the user to for­
mulate layout problems, solve them interactively, and change the knowledge
base.

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 399

Based on their underlying representations, previous approaches to spatial
layout can be classified as grid based, drawing based and relational. Grid
based representations partition objects to be located into subparts of equal area
and divide the site into a grid of cells where each cell is equal in area to one sub­
part. Drawing based representations use polygons of fixed size and shape to
represent objects. Relational representations use adjacency or incidence be­
tween points, between lines and regions, or between regions to model layouts.

In spatial layout, search operates by selecting a design unit(s) and an operator,
and generates a new configuration by applying the operator to the design unit(s)
in some state. There are two basic variations in search organization:
organize-by-design-unit and priority solution methods [8]. In an organize-by-
design-unit strategy, a design unit is selected to enter the layout, placed at alter­
native locations and tested. All relevant attributes of the design unit are deter­
mined at the time it enters the configuration, and all applicable tests are carried
out to select satisfactory locations. Search continues with the next design unit.
Priority strategy orders search operators as in hierarchical planning systems.
Operators determining the important attributes are applied first, creating macro
objects or configurations in unbounded space. A similar method that has been
proposed is projective location generation [8]. The location of a design unit is
found by intersecting the range of locations allowed by sequences of spatial rela­
tions. In projective location generation, the most efficient sequence for con­
sidering the spatial relations is in increasing order of cost of executing
testlprobability of failure. Some domain heuristics that have been proposed
based on this would be to select spatial relations with smaller projected areas,
spatial relations that can be executed quickly, and design units with large areas.
This is similar in principle to WRIGHT's approach. An advantage of WRIGHT
is that by representing the configuration as a constraint satisfaction problem, it
is possible to consider relations between design units that do not have fixed
locations or fixed dimensions. WRIGHT uses texture measures to order the
spatial relations.

Instead of starting from an empty initial configuration and building-up, search
can operate by changing a configuration in response to failing constraints, or in
order to improve the score of an objective function. This is a hill-climbing ap­
proach.

Quadratic assignment formulation (QAP) [16 ,17] is based on a grid
representation. It is an optimization approach which tries to minimize total
transportation costs of the layout. The representation makes it impossible to
deal with variable sizes, and makes it very hard to deal with issues of shape and
alignment. Both build-up and hill-climbing strategies are used with QAP.

The layout systems considered below use an organize-by-design-unit strategy.

13.2. BACKGROUND

400 BAYKAN A N D FOX

DPS [21] and GSP [8] use drawing based representations. In GSP design units
must be rectangles, and in DPS they can be arbitrary polygons. Dimensions of
the design units must be fixed. In drawing based systems, locations tried for
placing a design unit depends on the existing layout, as seen in Figure 13-3. As
a result of this, configurations generated depend on the order in which design
units enter the layout. Since GSP and DPS try only one ordering, they may miss
possible solutions. Their correctness is not guaranteed.

1 21 3
1
1
I

4 | 5 6

7

1
1
1

8 ι 9
1 0 1 1 1 2

1 3 1 4 1 5 1 6

1 7 1 8 1 9 _ 2 0

2 1 " 2 2

2 3 2 4

Figure 13-3: Locations Considered by GSP for Placing the Next Design Unit

Locations are defined by lines projected by the edges of the space and the
objects that are in place. Placing an object at every location above, in four
possible orientations, results in 96 new configurations.
Reprinted by permission of Elsevier Science Publishers B.V. from 'Automated Space Planning,' by

CM. Eastman, in Artificial Intelligence (Vol. 4; p. 57, 1973).

Relational representations use nodes to denote points, lines, design units or
some combination of these and edges to denote adjacencies between them. One
possible representation is an adjacency graph, where nodes denote design units
and edges between them denote adjacency, as in GRAMPA [15]. Another pos­
sibility is to use adjacencies between design units and the maximal lines border­
ing them in an arrangement. This is called a wall-representation and is used in
DIS [10] and LOOS [12].

The representation used in DIS and LOOS has two steps: determining the
relational structure of an arrangement using north-of and east-of relations and

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 401

<E>-0 3 1

2 4

Figure 13-4: A DIS Structure and Possible Configurations Represented by it
Reprinted by permission of Pion, Ltd., London, from 'Wall Representations of

Rectangular Dissections and Their Use in Automated Space Allocation,' by
U. Flemming, in Environment and Planning Β (Vol. 5; p. 225,1978).

deriving the constraints on the dimensions of the design units based on the
topology defined by the wall-representation.

Figure 13-4 shows a configuration of four design units labeled 1 to 4. The
relational structure is seen at left, where north-of relation is indicated by solid
arrows and east-of relation is shown by dotted lines and arrows. Design units 1
and 3 are north-of 2 and 4, 1 is east-of 3, and 4 is east-of 2. The three configura­
tions in the same Figure show possible layouts that are represented by this rela­
tional structure. This structure gives rise to constraints on the dimensions of the
design units called dependent constraints. Let xt and y. be the χ and y-
dimensions of the i

th
 design unit. The dependent constraints for the configura­

tion seen in Figure 13-4 are xx + x3 = x2 + x4 , yx=y3 , y2 = y4 · Required ad­
jacencies between design units also result in dependent constraints. For ex­
ample, the requirement design unit 3 must be adjacent to design unit 4 for at
least L units results in x3 - x2 ^ L .

Both WRIGHT and DIS/LOOS use constraints to define an equivalence class
of configurations, but WRIGHT uses constraints to define both topology and
dimensions whereas DIS and LOOS use a relational structure to define topology
and to derive dependent constraints. Relational systems have built in assump­
tions that permit only well-formed arrangements to be described. In the three
relational systems above, GRAMPA, DIS and LOOS, well-formedness means
that design units do not overlap. Relational systems use a restricted set of rela­
tions to describe configurations so it may not be possible to describe all aspects
of a configuration we are interested in. For example, adjacency graphs do not

402 BAYKAN A N D FOX

describe alignment or relative location such as north-of or south-of. The wall-
representation does not explicitly describe alignment or adjacencies between
regions using the relations but uses the dependent constraints to represent them.

WRIGHT expresses topology by algebraic relations between the lines of the
design units, which is also how spatial relations spatial relations are defined. A
configuration is represented by a CSP where the variables such as the locations
and dimensions of the design units are interval variables, and the attributes of
the layout such as adjacencies and distances are algebraic constraints on the
variables. Alternative configurations are generated by solving a discrete CSP,
where the variables are the spatial relations to be satisfied and their values are
the distinct ways of satisfying them. WRIGHT employs a priority strategy,
where search operators determine only the attributes specified by the selected
constraint. The topology and dimensions of a configuration can be decided in
any order due to the CSP formulation used.

GSP and DPS implement fail-first using domain heuristics for selecting a
design unit, such as selecting the largest one or the one most strongly connected
to those already located. Since DPS can deal with arbitrary polygons, it also
uses a priority strategy by forming macro design units out of those that are
strongly connected, and then treating it as one object. In DIS and LOOS, the or­
der of entering the design units is given by the user.

Issues in CSP literature relevant to WRIGHT'S method are balancing search
and consistency methods, variable and value selection heuristics, and compar­
ing dynamic versus fixed variable selection. REF-ARF [9] combines constraint
manipulation with assigning values to variables by backtracking search. A vari­
able is selected by first looking at the constraints which have the least number of
free variables. Among that set, it attempts to use constraints which most severly
restrict the values of the variables recurring in them. Constraints are mathemati­
cal equations, inequalities and disjunctions. The relations specified in con­
straints are ordered from most to least restrictive. Equations are assumed to be
most restrictive and disjunctions least restrictive. Among those variables occur­
ring in the most restrictive set of constraints, the one with the smallest range is
selected for assigning a value at that search level. Other heuristics mentioned
are selecting a variable with least number of constraints, selecting a variable
with most number of constraints, and selecting a variable connected most
strongly to previous variables [6]; partitioning constraint graphs into stable sets
[14]. Purdom [22] determined that dynamic variable ordering during search is

efficient only in problems with an exponentially small number of solutions but
that require exponential search.

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 403

13.3. USER INTERFACE

Design is engaged in determining the specifications as much as in searching
for solutions. In descriptive studies of design, it is observed that designers iden­
tify new constraints throughout the design process [1 , 3 , 7] . Thus there are two
aspects to design [1 ,3] :

1. creating an artifact that satisfies the constraints: problem solving,

2. defining or modifying a problem by identifying, refining, relaxing,
and retracting constraints: problem structuring.

A model has been proposed by Simon [23] to account for both types of be­
havior. The model consists of a problem solver which operates in a well-
structured problem space at any given point in time, and a noticing and evoking
mechanism which modifies that problem space. The user interface is based on
the premise that WRIGHT finds the solutions satisfying the set of constraints,
and the designer is the problem structuring agent, even though s/he may also
search for solutions.

Below is a list of possible tasks that may be carried out during design, using
WRIGHT:

1. Defining new design units. It is possible to modify the hierarchy of
design units in the domain, for example to define a new a type of
room or appliance to be used as a primitive at some level of
design.

2. Identifying new spatial relations. Some domains such as site layout
or kitchen layout may require a new spatial relation in order to ex­
press desired configurations. Spatial relations are defined in terms
of algebraic relations and the designer can introduce new ones.

3. Changing the set of design units in a configuration. After looking
at some candidate solutions, the designer may determine that it is
possible to place another bedroom in the house or a that hallway is
needed.

4. Identifying new constraints. Looking at a particular configuration,
the designer may identify additional constraints and need to in­
clude them in the knowledge base.

5. Relaxing constraints. When it is not possible to satisfy all the con­
straints, some have to be relaxed.

6. Maintaining multiple alternatives. These are pareto optimal partial
solutions that are significantly different from each other.

404 BAYKAN A N D FOX

7. Selecting a partial solution to expand.

8. Selecting an operator for generating new alternatives.

The first four operations are carried out only by the designer. Constraints,
design units and spatial relations are defined declaratively and can easily be
changed by the designer during the design process. The changes may become
part of the knowledge base. The system carries out the last four operations,
using the knowledge defined by design units, spatial relations and constraints.

Constraints specifying relations between design units at any level of the class
hierarchy, including particular instances of design units, are posted, relaxed and
retracted by selecting the elements from pop-up menus. The designer can inter­
act with WRIGHT to make the layout decisions. There are commands to create,
size, locate, and orient design units. The designer can define a rectangle by
clicking at its top left and bottom right corners in the graphics window using the
mouse. Rectangles are used to input minimum size, maximum size and bound­
ing box of the location of objects. It is possible to think of a rectangle as a con­
straint, because it indicates bounds. During interactive sizing and locating
operations, WRIGHT will not allow the user to violate existing bounds on a
design unit. For relaxing bounds, one needs to move up in the search tree to a
state where those values have not been determined yet or have looser bounds.

13.4. KNOWLEDGE-BASE

WRIGHT expresses domain knowledge using prototype design units, spatial
relations and constraints. It has knowledge bases for designing kitchens, houses,
manufacturing facilities and for solving bin-packing problems.

13.4.1· Design Unit Hierarchy

The taxonomy of design units in some layout domain are defined by prototype
design units. These are organized hierarchically using is-a links. The design
units used in the design of small home kitchens is seen in Figure 13-5.

Configuration knowledge is expressed as constraints on the prototypes. Con­
straints are inherited through the hierarchy, therefore its structure should
facilitate organizing domain knowledge. A new prototype can be created and
placed at the appropriate point in the hierarchy, so that it inherits constraints and

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 405

design-unit!
^circulation

^equipment

sink
range
refrigerator
dishwasher

• sink-center h
mix-center
» range-center

Figure 13-5: Taxonomy of Kitchen Design Units

values from above, and those below inherit from it. Inheritance of constraints
eliminates duplication.

Abstraction by aggregation combines design units into larger design units,
which are the primitive objects of configurations at another level of aggregation.
A design problem may span more than one level. For example, in the design of a
housing complex, the levels of aggregation are building, apartment, room, and
furniture. The hierarchy in Figure 13-5 contains design units at three levels of
aggregation: spaces, work centers and appliances. A kitchen contains the work
centers and circulation. A sink-center may contain sink and dishwasher.
WRIGHT can represent and solve spatial layout problems involving multiple
levels. There is no difference in the way objects at different levels of aggrega­
tion are treated.

13.4.2. Spatial Relations and Limits on Dimensions

WRIGHT's constraints specify spatial relations between design units or limits
on their dimensions. Spatial relations indicate the location of one design unit
with respect to another. For example, adjacency is a spatial relation. Some spa-

406 BAYKAN A N D FOX

tial relations are purely topological, independent of any dimensions, such as ad­
jacency. Others such as distance involve a dimension. Some spatial relations
are dependent on the orientations of the design units.

There is a very large number of possible spatial relations. Therefore in
WRIGHT, we have defined a set of spatial relations with the goal of expressing
the characteristics of configurations that are of interest in spatial planning. If in
some domain we need to express other relationships, it is possible to define new
spatial relations using a grammar defined for this purpose.

The spatial relations currently defined in WRIGHT are seen in Figure 13-6.
Spatial relations are grouped in two, based on whether the orientation of the
design units is considered, or whether the relations are defined with respect to
the global coordinates of the configuration. Object-centered relations are
defined with respect to the orientation of one of the design units involved.
Global relations are defined with respect to the global coordinates, which has
the y-axis pointing down and the x-axis pointing towards the right.

2

Trie types of global relations are position, spatial-overlap, alignment and ad­
jacency. Position relations indicate the location of one object with respect to
another. Spatial-overlap deals with combinations of overlapping or non-
overlapping of the χ and/or y components of rectangles. Alignment relations
specify that the north, south, east or west lines of two rectangles are equal.
Global relations are seen in Figure 13-7.

Note that the relations are not mutually exclusive. For example, non-overlap,
west-of, completely-next-to, and align-one-side relations can hold at the same
time between two design units. Also some relations are inverses, i.e. inside is
the inverse of has-inside, and east-of is the inverse of west-of. Inverses are seen
under the same picture.

There are object-centered relations corresponding to all global relations ex­
cept spatial-overlap. These are similar to their global counterparts except they
also depend on the orientation of the first design unit. Direction relations are on
the orientations of both design units. Some object-centered relations are seen in
Figure 13-8.

The set of spatial relations are not fixed in WRIGHT. It is possible to define
new relations by specifying the semantics of the relation using a grammar
defined for this purpose.

The second group of constraint types are limits on dimensions. Limits are
greater-than, greater-than-or-equal, less-than, less-than-or-equal, and equal-to.
They are for expressing constraints on dimensions. The use of spatial relations
and limits in constraints are described below.

2
This is based the convention used in most graphics systems today, and is defined for ease

of displaying text by starting from the origin and going from left to right in positive χ direc­
tion and top to bottom in positive y direction.

global-relat ion

object-centered-relation <

spatial-overlap ,

adjacency -

pos it ion -

alignment .

relative-adjacency «

relative-complete-adjacency

 1

relat ive-pos it ion -

relative-alignment'

relat ive-distance.

,inside
, complete-overlap
• overlap
• one-dim-overlap
.non-overlap
• id-non-overlap
.next-to
•completely-next-to
• not-adjacent
• north-of
•west-of
• align-corner
- align-three-sides
• align-two-sides
.align-one-side
" euclidean-distance
• vertical-distance
• horizontal-distance
• cw
• paraile 1
' oppos ite
" perpendicular
• s ide-adjacent
front-adjacent
back-adjacent

• side-completely-next
' front-completely-next
" back-completely-next
" at-side
" at-front
' at-back
. align-front
• align-back
• align-left
' align-right
• s ide distance
• front-distance
» back-distance

Figure 13-6: The Set of Spatial Relations in WRIGHT

W
R

IG
H

T: C
O

N
STR

A
IN

T
 B

A
SE

D
 SPA

TIA
L

 LA
Y

O
U

T

407

408 BAYKAN A N D FOX

• A

Β

A

Β
•

A inside Β A complete-overlap Β A overlap

A one-dim-overlap Β

A

Β

A next-to Β A completely-next-to

• •
A north-of Β A west-of

A

Β

A align-corner B A align-three-sides B A align-two-sides B A align-one-side Β

iVertical

Horizontal

A distance Β

Figure 13-7: Global Relations

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 409

A parallel Β A perpendicular Β
A ccw Β
Β cw A

• Λ Κ

Β Β

A back-adjacent Β A front-complete-adjacent Β

Figure 13-8: Object-centered Relations

13.4.3. Domain Constraints

Constraints express knowledge of the design domain in the form of desired
relations between design units, spatial constraints, or limits on their dimensions,
dimensional constraints.

Spatial constraints specify a relation between two design units. Since con­
straints expressing domain knowledge are posted to prototype design units, they
must also contain quantifiers designating how they apply to instances. The
quantifiers in WRIGHT are all and some. Some spatial relations, such as dis­
tance or next-to may require numerical values specifying a minimum or max­
imum. The following are spatial domain constraints:

All sink completely-next-to some window
All sink next-to some window ^ 50 cm.

410 BAYKAN A N D FOX

Dimensional constraints specify a design unit, a dimension of the design
unit,

3
 and an algebraic relation. Dimensional constraints also contain quan­

tifiers.

Some sink length greater-eq 90 cm.
The constraint above requires that there must be at least one sink longer than 90
cm, while the constraint below requires that all sinks must be longer than 90 cm.
in a layout.

All sink length greater-eq 90 cm.
The dimensional constraints above are unary dimensional constraints. Binary
dimensional constraints specify a limit between two dimensions. There are no
binary dimensional constraints in kitchens, so the following example is from the
domain of house layout:

All masterbedroom area greater-than all bedroom area.
Every domain constraint is assigned an importance value between 0 and 7,

used for rating solutions. Relaxations are tried when a constraint can not be
satisfied. Relaxation of a constraint is another constraint that specifies alter­
native relations, alternative design units, or looser bounds on numerical vari­
ables. Relaxations are specified explicitly, either by denoting one or more con­
straints as relaxations of some constraint, or by specifying that it is possible to
omit the constraint, i.e., the empty relaxation. Constraints that may not be
relaxed cause a configuration to be eliminated when they are violated. Relaxa­
tions have lower importance values than the constraint they relax, and an empty
relaxation contributes an importance of 0.

Design knowledge is expressed in terms of required spatial relations in
WRIGHT. Consider the relationship of the sink to windows: "The average
housekeeper spends nearly 1 and 1/4 hours at the sink each day so there is a
good case for putting the sink at a window for good light and view." [2], p.72.
One way of satisfying the requirements is placing the back of the sink com­
pletely next to the window, which is expressed by the following constraints:

• All sink completely-next-to some window, importance=l
• All sink at-back some window. importance=l

When it is not possible to put the sink completely next to the window, placing it
in front of and perpendicular to the window will allow direct light and a view of

3
Dimensional variables associated with design units are length, width and area. They are

defined in the section on layout representation.

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 411

outside. The sink must also be close enough to the window. The following con­
straints express this case:

• All sink distance some window <, 120 cm., importance=0.8

• All sink one-dim-overlap some window ^ 30 cm., importance=0.6

• All sink perpendicular-to some window, importance=0.8

The second set of constraints are a relaxation of the first two, and have lower
importance values. Distance is measured between closest points, and one
dimensional overlap means overlap in either the vertical direction or the
horizontal direction.

13.5. REPRESENTATION OF CONFIGURATIONS

Configurations are made up of design unit instances and algebraic constraints
which define their relative positions. A design unit instance is a structured vari­
able which consists of 8 variables: north-line, south-line, east-line, west-line,
length, width, area, and orientation. North-line, south-line, east-line and west-
line are the locations of the four lines of the rectangle. Length and width are
dimensions, indicating distances between pairs of lines. Area is another dimen­
sion, equal to length times width. Locations and dimensions are interval vari­
ables defined by a minimum and a maximum value. For locations, the domain
initially is [-°°, °°], and for dimensions [0, °°]. Orientation indicates which way
the front of the design unit is facing. The domain of orientation variables is {0,
90,180, 270}. The algebraic constraints are: =, >, ^ , +, and x .

A design unit defines constraints between its lines, dimensions and area, as
seen in Figure 13-9.

Configurations are defined by algebraic relations between variables. In
Figure 13-10, the sink is south of the window, and adjacent to it for 50 cm. or
longer. The algebraic relations which define this configuration are seen in the
same Figure. Variables vl and v2 are created for expressing the adjacent dis­
tance between sink and window.

A configuration is formed by adding relations and sometimes new variables
incrementally. After each change, local propagation using interval arithmetic
maintains the consistency of the layout.

412 BAYKAN A N D FOX

11 + W = 12
11 < 12
13 + L = 14
13 < 14
L * W = Area

Figure 13-9: Constraining Relations Defined by a Design Unit
Reprinted by permission of Springer Verlag from 'Constraint Satisfaction

Techniques for Spatial Planning,' by Can Baykan and Mark Fox, in intelligent
CAD Systems III: Practical Experience and Evaluation (p. 194, 1991).

13.6. CONSTRAINT COMPILER

The constraint compiler takes the prototype design units, domain constraints
and spatial relations in the knowledge base and the design unit instances in a
given problem, and creates a constraint graph which will be used for generating
and testing solutions.

The constraint graph is an and/or network that refines design knowledge
represented by constraints on prototype design units into a design specification
represented as combinations of algebraic constraints on the components of the
design unit instances.

WRIGHT: CONSTRAIN T BASE D SPATIA L LAYOU T 413

I
I

ln7 |

I n 5
l n 6 / l n l ï::

I
l n 8

l n 2

l n 3

I

ln 4

l n l = Ιηβ
In7 + vl = ln4
In3 + v2 = ln8
vl > 50
v2 > 50

Figure 13-10: A Configuration and the Algebraic Constraints Defining It
Reprinted by permission of Springer Verlag from 'Constraint Satisfaction

Techniques for Spatial Planning,' by Can Baykan and Mark Fox, in Intelligent
CAD Systems III: Practical Experience and Evaluation (p. 194,1991).

13.6.1. Defining Spatial Relations

The prototype design unit hierarchy, spatial relations, domain constraints, and
design unit instances have been defined above. Spatial relations are defined in
terms of and/or combinations of algebraic constraints on the lines of two design
units. The terms used in the grammar are: and, or or algebraic constraint such
as equal-to or less-eq between two components. The first component is from the
design unit listed first in the constraint, and the second component is from the
design unit listed second.

The definition of completely-next-to relation is seen in Figure 13-11. There
are four topologically distinct ways of satisfying the completely-next-to relation.
These alternatives split the domains of location variables into discontinuous in­
tervals, defining topologically different alternatives. The mapping of the spatial
relations must be defined such that the alternatives are exhaustive and mutually
exclusive, because they will be used for generating solutions.

414 BAYKAN A N D FOX

(*OR* (*AND* (equal-to west-line east-line)
(less-eq south-line south-line)
(greater-eq north-line north-line))

(*AND* (equal-to east-line west-line)
(less-eq south-line south-line)
(greater-eq north-line north-line))

(*AND* (equal-to south-line north-line)
(less-eq east-line east-line)
(greater-eq west-line west-line))

(*AND* (equal-to north-line south-line)
(less-eq east-line east-line)
(greater-eq west-line west-line)))

Figure 13-11: Definition of competely-next-to
using WRIGHT'S Mapping Grammar

13.6.2. Constraint Graph

The mapping of the domain constraint

All sink completely-next-to some window
into algebraic constraints on the component lines of sinkl, window 1 and
window2 using the definition of completely-next-to given above is seen in
Figure 13-12.

A constraint graph consists of nodes and links as seen in Figure 13-12. Inter­
nal nodes are of two types: and-nodes and or-nodes. And-nodes are expressed
by connecting the links leaving the node by an arc. The links in the constraint
graph indicate reliance between constraints. Leaf nodes are algebraic con­
straints. The leaf nodes are shown in abbreviated form, where an algebraic con­
straint and the variables it connects, such as linel = line2, are represented by a
single node.

The constraint graph specifies alternative ways of satisfying a constraint.
Prototype design units that have more than one instance and spatial relations that
can be satisfied in different ways introduce disjuncts to the constraint graph.
The top level of the graph is in conjoint normal form.

13.6.3. Abstract Constraints

When there are conditions which hold true in all the alternatives, they can be
used to bound solutions without committing to a specific alternative. These are
called abstract constraints. Abstract constraints exist for adjacency and distance
relations, and for dimensional constraints.

All sink completely-next-ΐο some window and All sink inside some kitchen
to constraints on the components of sinkl, window 1 and kitchen 1.

Figure 13-12: Partial Constraint Graph Mapping the Constraints
Reprinted by permission of Springer Verlag from 'Constraint Satisfaction Techniques for Spatial Planning,' by

Can Baykan and Mark Fox, in Intelligent CAD Systems III: Practical Experience and Evaluation (p. 196, 1991).

416 BAYKAN A N D FOX

The abstract constraints for:

sinkl completely-next-to windowl
where sinkl and windowl are as seen in Figure 13-12, are given below:

ln4 £ ln7
ln8 £ ln3
1η2 £ ln5
1η6 £ lnl

When it is determined that sinkl should be completely-next-to windowl,
these abstract constraints may be used to prune other alternatives without com­
mitting to a particular way of satisfying the sinkl—windowl adjacency.

13-6.4. Formulating Spatial Layout as Constrained Optimization

A constraint satisfaction problem (CSP) [19] consists of a set of variables
with predefined domains, and constraints between them. All variables and con­
straints are given at the start. The goal is to find one or all combinations of
values that are consistent. The COP formulation of WRIGHT extends the CSP
model by assigning importances to the values.

A spatial layout problem can be formulated as a CSP where the variables are
the locations, dimensions and orientations. But location and dimension vari­
ables have continuous values, thus trying possible values using generate and test
is infeasible. Though dimensions and locations can be discretized using a grid,
this arbitrarily eliminates some solutions. Also, solutions found as a result of as­
signing values to interval variables will not be different from each other in sig­
nificant ways.

In WRIGHT's formulation, the variables are the nodes connected to the root
of the constraint graph. The values for the variables are the alternative ways of
satisfying them, as given below them in the constraint graph. The consistency
of the layout is ensured by keeping the interval values for locations and dimen­
sions legal. For example, the variables in the constraint graph in Figure 13-12
are the two nodes connected to the root. The first variable has 8 alternative
values. Four of them are the distinct ways of placing sinkl completely-next-to
windowl, and the other 4 are ways of placing sinkl completely next-to
window2. The second variable has only one value as there is only one way of
placing sinkl inside kitchenl.

The importance of each value is determined by the importance of the domain
constraint it is derived form. When an alternative is due to a relaxation, it will
have the importance of the relaxation. If a null relaxation has been specified for
a constraint, it means that the variable can be removed from the COP, and not
assigned a value. WRIGHT tries to find all pareto optimal solutions.

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 417

This is the dual of the problem where the variables are lines and dimensions,
and the constraints are spatial relations and limits. The advantage of
WRIGHT'S formulation is that it becomes a discrete problem where the alter­
natives are structurally different.

13.7. SEARCH

WRIGHT formulates spatial layout as a COP and solves it by constrained
heuristic search(CHS). CHS combines constraint satisfaction with heuristic
search [13]. It retains heuristic search's synthetic capabilities, and adds to it the
structural capabilities of constraint satisfaction. The CHS model adds problem
textures to the definition of a problem space composed of states, operators and
an evaluation function. Problem textures are based on the topology of the con­
straint graph and they allow search to be focused in a way that reduces back­
tracking.

The problem is solved by backtracking search combined with constraint
propagation. Search operates by selecting a variable and assigning values to it.
In this case, variables are the nodes that are connected to the root of the con­
straint graph, and possible values are the algebraic constraints it maps into.
Satisfying the algebraic constraints removes values from the domains of numeri­
cal variables by constraint propagation. If the minimum of an interval variable
becomes greater than its maximum, then the algebraic constraints are inconsis­
tent. Reducing the domains of lines and dimensions may remove alternatives
from search variables. If the range of a variable becomes empty, then that con­
straint is violated.

The cycle repeated in every state is

1. Select a dual variable with alternative values, using texture
measures.

2. Create new states by assigning a different possible value to the
variable in each state.

3. Propagate constraints, changing values of numerical variables.
Test algebraic and orientation constraints, which will determine
the status of nodes above them in the constraint graph. Satisfy
dual variables with one remaining alternative.

The third step itself is a cycle that is repeated until quiescence. The whole cycle
is seen in Figure 13-13.

418 BAYKAN A N D FOX

Figure 13-13: The Cycle of Operations in Every Search State

Given the constraint graph in Figure 13-12, the constraint

Sinkl inside kitchenl
will be satisfied first, because there is one way of satisfying it. The algebraic
constraints at its leaves are satisfied by propagating values. Propagation will
change the location of the sink so that when the active nodes in the constraint
graph are checked, there remains two alternatives for the or-node, which are

1. placing sinkl south-of windowl,
2. placing sinkl west-of window2.

Since it is the only active variable, search continues by trying its two values,
resulting in two alternatives. At this point, all constraints are satisfied and the
problem is solved. There are two equally good and significantly different solu­
tions. When there is more than one active variable at some point in search, tex­
tures are used to select the next variable to assign values.

The search formulation described above constitutes a priority solution
strategy, where operators can create macro objects or configurations in un­
bounded space. Textures select constraints that can be satisfied with high cer­
tainty or those most useful for simplifying search. Textures implement a fail-
first and prune-early strategy.

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 419

• Search is monotonie. States are generated by satisfying new al­
gebraic constraints. Therefore a requirement that is satisfied can
not be violated later.

• Disjuncts specified in the constraint graph are mutually exclusive.
Therefore it is not possible to get duplicate solutions.

• Search efficiency depends on the order constraints are satisfied.
Adding a set of constraints to the CSP in any order leads to the
same solution.

13.7.1. Texture Measures

The philosophy behind this research is to use constraints to understand the
structure of the problem space and make search efficient. The constraint graph
and texture measures help in selecting an efficient ordering of variables. An ef­
ficient ordering reduces backtracking and requires assigning values to fewer
variables before the values of all variables are determined.

Texture measures use two perspectives, a constraint perspective and a vari­
able perspective. Textures using a constraint perspective look at the attributes of
the constraint graph, such as the alternative ways of satisfying a constraint. Tex­
ture measures using a variable perspective evaluate constraints with respect to
attributes of the variable they constrain, such as the number of active constraints
on a design unit.

The heuristic implemented by textures is fail first. We try to pick a variable
which will lead to fewer alternatives and which will eliminate more values from
the domains of remaining variables. Since we are looking for all solutions, only
variable selection heuristics are useful. Value selection heuristics do not come
into play because all values of a selected variable must be tried.

The texture measures used in WRIGHT are reliance, contention and loose­
ness. Contention uses a variable perspective, and reliance and looseness use a
constraint perspective. The textures can be applied in any order and combina­
tion. They are applied lexicographically. The first texture assigns ratings to all
the active variables, and eliminates those with lower values. If only one variable
remains, there is no need to apply other textures. If there are more than one, the
next texture is applied. If after applying all textures more than one variable
remains, one is selected at random. How each texture assigns values to nodes in
the constraint graph, and how these values are combined are described below.

Properties of the search architecture used in WRIGHT are

420 BAYKAN A N D FOX

Textures used in WRIGHT are

• Reliance: looks at the number of remaining values for each vari­
able. The number of values is the number of states that will be
generated at the next level if that variable is selected. This texture
selects a variable with fewer values.

• Contention: looks at design units and as yet undetermined variables.
The contention value for each design unit is the number of variables
expressing a requirement for that design unit, that are not yet as­
signed values. The contention value for a variable is the sum of the
contention values of the design units it is related to. This texture
favors variables related to design units having a large number of re­
quirements.

• Looseness: considers the location and dimension variables involved
in each search variable and averages their domain size resulting
from satisfying the relation. For example: let ll=[100, 200],
12=[150, 180], and altl= 11 £ 12. The resulting domains will be
ll=[150, 200], 12=[150, 180]. The sizes of the domains are 50 and
30, and the average is 40. Looseness values are combined by
averaging at and-nodes and taking the maximum at or-nodes.
Looseness tends to favor larger design units and spatial relations
which project tight locations.

The textures can be applied in any order and any combination. A variable is
selected dynamically at each state, rather than fixing the order of variables be­
fore search starts.

13.7-2· Testing

Nodes in the constraint graph can have one of three values satisfied, violated
or undetermined. Undetermined means that the bounds of the interval variables
are so large that the constraint can be violated or satisfied depending on deci­
sions that will be made later.

An and-node is satisfied when all of the nodes below it are satisfied. It is vio­
lated when one of the nodes below it are violated. An or-node is satisfied when
one of the nodes below it is satisfied and violated when all of the nodes below it
are violated. For example, if all nodes below an or-node are contradicted except
one which is undetermined, the status of the or-node will be undetermined.

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 421

The structure of the constraint graph is such that every node connected to the
root must be satisfied. Therefore when one of these nodes is violated, the rating
of the state needs to be changed.

The result of checking an algebraic constraint is satisfied, violated or
undetermined just as for other nodes in the constraint graph defined earlier. An
algebraic constraint is satisfied when every combination of values in the
domains of the variables satisfy the constraint. A constraint is violated if no
combination of values in the domains of the variables satisfy the constraint.
And when some combinations of values satisfy the constraint, and some don't,
the constraint is undetermined. The conditions where a greater-or-equal con­
straint is satisfied, violated or undetermined is given below.

A greater-or-equal constraint: [minv maxj ^ [min2, max2], is satisfied when
minx ^ max2, and violated when maxx < min2. It is undetermined if maxx ^ min2
and minx < max2.

An orientation constraint is violated if no combination of values in the
domains satisfy the constraint, and satisfied when all combinations of values
satisfy the constraint. For example, parallel requires two orientations to be
equal. The constraint: Orientationl parallel orientation2 is satisfied when
Orientationl={0] and orientation2={0], undetermined when Orientationl={0,
90} and orientation2={0, 90} , and violated when Orientationl={0, 90} and
orientation2={ 180, 270} .

Constraint propagation removes the values that can not be part of any solution
from the domains of variables. Constraint propagation is a least-commitment
formulation. Therefore sometimes a constraint that is satisfied transitively will
not be detected as satisfied by checking values. Selecting it and propagating
values will fail. Thus it is possible to also test constraints by propagation of
markers and checking the existence of constraint paths. This is computationally
expensive.

13.7.3· Constraint Propagation

Constraint propagation is started by selecting a new algebraic or orientation
constraint to satisfy. The values of all variables in the constraint are made con­
sistent. When the value of any variable changes, all of the constraints incident
to it are used to propagate values to their variables. If during propagation, the
range of an orientation becomes empty, or when the lower bound of an interval
exceeds its upper bound, that means the constraint added last is inconsistent with
the previous ones. How propagation is carried out for some orientation and al­
gebraic constraints is given below.

The vl parallel v2 be an orientation constraint, and the domains of the vari­
ables be v i = { 0 , 180} and v2={0, 9 0 } . When the constraint is satisfied, {0, 180}

422 B A Y K A N A N D F O X

is propagated to v2. The range of v2 becomes {0} . Then {0} is propagated to
v l , and the range of v l becomes {0} .

The value of an interval variable vi=[min1, m a x j can change by increasing its
lower bound, minl9 or by decreasing its upper bound, maxl9 until minl=maxv
Therefore, a new lower bound minn, propagated to vl is:

• redundant if minn<>minX9
• contradicting if minn>maxl9
• constraining if minn>mini and minn <> maxv

This is similar for upper bounds. A contradicting value stops propagation by
detecting an inconsistency. A redundant value causes propagation not to spread
from that variable, because its value is already consistent. A constraining value
changes the variable and causes propagation to continue with the new value.

Let vx = [minl9 max J, v2 = [min29 max2\ and v3 = [min3, max3]. The follow­
ing formulas are used for propagation due to the adder constraint: v. + v2 = v3:

1. minl + min2 - 4 min3
2. min3 - maxl -» min2
3. min3 + max2 —> minl
4. maxl + max2 —> max3
5. max3 - minl —» max2
6. max3 + min2 —> maxx

When a value on the left side of the arrow changes, the result of the operation on
the left is propagated to the variable on the right. Thus the first formula is used
for propagating values when either minx or min2 is changed. And when minx
changes, formulas 1 and 5 are used.

Let Λ, Β and C be three interval variables, A=[l, 2] , B=[3, 4] , C=[4, 6] , and
A+B=C. Given values for two of the variables, the values propagated to the
third are

· Λ + £ - > [4 , 6] ,
• C - £ - > [0 , 3] ,
• C - A - > [2 , 5] .

The following formulas are used for propagation when vl <. v2:

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 423

1. minl —> min2
2. max2 —> maxx

The relations that must be maintained by propagation are
minx<, min2 A maxx<> max2, such that Vj <, v2 is not violated.

Constraint propagation is carried out by a local propagation algorithm, also
called the Waltz algorithm and arc consistency algorithm [18]. The algorithm
keeps a list of changed variables. In WRIGHT, there are three lists: one for
orientation variables, one for interval variables which had their lower bounds
changed, and a list for interval variables which had their upper bounds changed.
When an orientation constraint is satisfied, both of its variables are placed on the
list of changed orientation variables. When an algebraic constraint is satisfied,
all of its variables are placed on both the list for variables with changed upper
bounds and the list for variables with changed lower bounds. Order of inserting
and removing variables from the lists is FIFO, but a variable is not placed in a
list again if it is already there. A variable is taken from a list, and all of its con­
straints are used to propagate values to the other variables in the constraint. If
the range of a variable changes, it is inserted into the appropriate list. When the
lists are empty, propagation stops.

The complexity of the Waltz algorithm used, when the domains of variables
are finite sets, is found by [19] to be O(ae) where a is the number of values in
the domains of the variables and e is the number of constraints. This result ap­
plies to the propagation of orientations. In such a system of linear equations and
inequalities with unit coefficients and interval domains, local propagation main­
tains node and arc consistency [5]. In the absence of loops, this is equal to path
consistency. If there is a loop in the constraint graph, path consistency can not
be maintained. Loops cause infinite looping during propagation when an incon­
sistent value is posted, unless the domains of the variables are bounded.

A configuration of two rooms and a corridor, where both rooms must be ad­
jacent to the corridor for longer than 90 cm. is seen in Figure 13-14. The min­
imum width of the corridor is 120 cm.

This configuration results in a loop in the constraint graph, as seen in Figure
13-14. The inference that the minimum width of hall is 180 cm is not made un­
less one of the lines is fixed. When the lines are not fixed, it is possible to as­
sign a value that is less than 180 cm. to hall width. This will cause an infinite
loop if line locations are not bounded i.e. a minimum or maximum location is
±°°. If the lines have bounds that are slack, the contradiction will be eventually
detected. In WRIGHT, bounds for the configuration space are always given as
part of the problem definition to guard against infinite looping. Dimension vari­
ables are redundant in a fully specified configuration, because they can be
derived from the locations. In a layout where locations have slack or missing
bounds, no information about dimensions can be maintained during propagation
unless they also are variables [5].

424 BAYKAN A N D FOX

Figure 13-14: A Configuration and its Constraint Graph Containing a Loop

13.7.4· Adjacency Graph

Another reasoning mechanism is based on an adjacency graph representation.
The nodes of the graph are the design unit instances and the edges denote ad­
jacency. Edges are directed and of two types: horizontal and vertical edges.
The graph representation is created at the time the constraint graph is compiled.
When an adjacency constraint is created, its nodes are marked as vertical or
horizontal edges. This representation is useful for two types of reasoning, as
follows.

When a node corresponding to an edge is satisfied, other edges can be marked
as violated and removed from consideration, based on rules about adjacency
structures of rectangles. This is more efficient than checking constraints, and
removes some alternatives that would not be detected by other tests but only
detected during constraint propagation.

Edges have weights denoting the length of common border between the
design units. The sum of weights going in to a design unit must be equal to its
dimension, and must be equal to the sum of weights of the edges going out.
This provides the additional constraints that maintain path consistency, when
added to a configuration such as the one seen in Figure 13-14

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 425

13.8. PERFORMANCE

WRIGHT has been tested on kitchen layout, house layout and bin-
packing/blocks problems. We have tried five kitchen layout problems that con­
tain 7 design units to be located, have 2-6 solutions and approximately 80 con­
junctive requirements. The house layout problem has 9 design units to locate,
approximately 200 solutions and about 64 conjunctive requirements. The block
problem has 6 design units, 24 and 72 solutions in its two variations, and 21 or
27 requirements.

Figure 13-15: WRIGHT'S Solutions to Five Kitchen Layout Problems

426 BAYKAN A N D FOX

Adequacy of the knowledge representation and solution quality is evaluated
by looking at the solutions WRIGHT generates. Five kitchens with different
dimensions and door and window locations are selected from a kitchen design
handbook [24], These are configured by WRIGHT using the same domain
knowledge. The solutions given by WRIGHT are compared against the solution
given in [24]. WRIGHT finds the solution in the handbook in every case. One
solution found by WRIGHT for each kitchen is seen in Figure 13-15. For the
kitchens seen at top left and bottom, WRIGHT finds three equally good solu­
tions, and for the kitchen seen at top right, it finds two. The design unit with the
diagonals is the mix center. Sink center and range center are the rectangles con­
taining the sink and range respectively.

Rather than applying all textures to all variables and combining the ratings,
we apply textures sequentially, in order to minimize the processing time as­
sociated with dynamic selection. The first texture used assigns a rating to all ac­
tive variables and removes from consideration all but the top rated ones. If more
than one variable remains, the next texture is applied only to those, or if there is
no other texture, one variable is selected at random.

The results of the experiments, as reported previously in [4, 13] are as fol­
lows:

1. A priority strategy is more efficient than an organize-by-design-
unit strategy, leading to 50% fewer search states when solving the
identical problem. Organizing by design unit forces determining
all aspects at the same time, whereas priority strategy enables a
least-commitment approach. Pursuing this strategy in WRIGHT is
possible because of the CSP representation of configurations that
enables incremental addition of constraints in any order.

2. Textures reduce search. Compared to random selection of vari­
ables, using all 3 textures reduces search states by 70% in kitchen
problems and 84% in bin-packing problem.

3. The order textures are applied in has a significant effect on search
efficiency. Since the first texture used eliminates most of the vari­
ables, it has the greatest effect. As a result, we have tried applying
the textures in different orders and combinations. Domain size
was the most useful texture in blocks problem, looseness in house
layout, and contention in kitchen layout.

Figure 13-16 shows the number of search states required for finding all solu­
tions to five kitchen layout problems, under different combinations of texture
measures.

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 427

• method 0: select a constraint at random,
• method 1 : contention
• method 2: reliance,
• method 3: contention and reliance,
• method 4: contention, reliance and looseness.

When a combination of measures is used, they are applied in the order: conten­
tion, reliance and looseness. Each measure eliminates some constraints from
consideration. If more than one constraint remains after applying the texture
measure(s), specified by the method, a constraint is selected at random. The
number of states given for each problem-method combination is the average of
three runs. In the second problem, method 4 reduces search by more than 80%
compared to method 0, and in the third problem by 35%.

1 2 3 4 5 Problems

Figure 13-16: Effectiveness of Texture Measures in Reducing Search

In order to compare the CHS approach with generate and test, WRIGHT is
compared with two space planning programs, DPS [21] which uses a drawing
based representation, and LOOS [11] which uses a relational representation.*

^see Section 13.2 for a discussion of these programs

The combinations tested are

428 BAYKAN A N D FOX

The problem used in the comparison is arranging six fixed size blocks in a box
such that no blocks overlap. Due to the simplicity of the problem, exactly the
same set of constraints can be used by all three programs. The programs are
compared in terms of the number of states and search levels generated when
finding the first solution and when finding all 24 solutions, seen in Figure 13-17;
number of search levels is the number of intermediate states on a path from the
initial state to a solution state.

First Solution All 24 Solutions

WRIGHT 5 levels 14 states 5-6 levels 111 states

LOOS 6 levels 68 states 6 levels 232 states

DPS 6 levels 72 states (not available)

Figure 13-17: Comparison of WRIGHT, DPS and LOOS
in Terms of Search Efficiencv

In DPS and LOOS, the number of search levels is always equal to the number
of objects to be located, as a result of the organize-by-design-unit strategy.
WRIGHT'S performance in terms of number of search levels and number of
search states depends on number and strength of available constraints and their
interactions. Although the constraints in this problem are not as varied as in
kitchen layout, WRIGHT performs better than DPS and LOOS. WRIGHT looks
at a smaller number of search states by selecting decisions with fewer alter­
natives, and by eliminating inferior alternatives earlier.

Performance of the system depends on available constraints. Having ad­
ditional constraints improves performance as they reduce the number of solu­
tions. Once the problem becomes overconstrained, performance degrades. In or­
der to counteract this, explicit relaxations for some constraints are given in the
knowledge base.

In an underconstrained problem, DPS and LOOS find the first solution faster,
but there will be a large number of solutions. WRIGHT also finds the first solu­
tion faster, and will avoid generating a large number of solutions by having solu­
tions at a higher level of abstraction. In an overconstrained problem, DPS will
not be able find any solutions because it rejects a solution that fails any con-

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 429

straint. For LOOS, overconstrained problems pose the same difficulty as under-
constrained ones: too many states with equivalent scores. Finding the first solu­
tion will take much longer too. Overconstrained problems will cause WRIGHT
to search longer before finding the first solution. When all constraints can be
satisfied, solutions are defined by alternative ways of satisfying all constraints.
When all constraints can not be satisfied, combinations of constraints that result
in equal ratings need to be tried. By defining explicit relaxations for some
domain constraints in its knowledge base, WRIGHT avoids searching a large
number of constraint combinations.

13.9. CONCLUSION

WRIGHT defines spatial planning as a constrained optimization problem and
demonstrates the utility of textures and CHS. Advantages of its representation
are as follows:

• Topology and dimensions are solved uniformly using algebraic con­
straints, and constraint propagation.

• Design units at different levels of aggregation can be handled
uniformly by representing both inter-level and intra-level con­
straints explicitly and uniformly.

• Using constraints to guide the generation of significantly different
alternatives permits solutions at a higher level of abstraction than in
other layout systems, but enables determination of relevant aspects
at a very detailed level.

This formulation takes a least-commitment approach by

• selecting constraints to satisfy rather than locations for design units,
and

• removing from variable domains only those values which violate a
constraint.

430 BAYKAN A N D FOX

The abstraction mechanisms it makes possible are

• abstraction by aggregation, and

• abstract constraints.

The philosophy behind this approach is understanding the structure of the
search space to make search efficient. Important points about WRIGHT'S ap­
proach to search efficiency are

• Constraint propagation techniques dramatically narrow the space of
alternative solutions prior to selection/search.

• Properties of the constraint network, known here as textures, can be
used to focus attention of search (i.e., node and value selection),
thereby reducing the amount of backtracking.

• Contention selects a design unit which has a large number of
conjunctive constraints remaining.

• Reliance chooses to satisfy a constraint for which there are
fewer alternative disjunctive decisions.

• Looseness chooses to satisfy a constraint which reduces range
of variables more.

• Both domain independent and dependent knowledge is represented
uniformly as constraints thereby enabling the alteration of search
behavior and the solutions generated by the search alteration or ad­
dition of constraints.

13.10. ACKNOWLEDGMENTS

Work on W R I G H T has been supported by a grant from Digital Equipment Cor­
poration.

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT 431

13.11. BIBLIOGRAPHY

[I] Akin O., Dave B., and Pithavadian S., A Paradigm for Problem Structur­
ing in Design, unpublished working paper, September 1987,
[Department of Architecture, Carnegie Mellon University].

[2] Architects Journal, "Domestic Kitchen Design: Conventional Plan­
ning," Architects Journal, pp. 71-78, 3 October 1984.

[3] Baykan, C.A., Heuristic Methods for Structuring Architectural Design
Problems, unpublished working paper, 1984.

[4] Baykan, C. and Fox, M.S., "Constraint Satisfaction Techniques for Spa­
tial Planning," Preliminary Proceedings of the Third Eurographics
Workshop on Intelligent CAD Systems, CWI, Amsterdam, pp. 211-227,
1989.

[5] Davis, E., "Constraint Propagation with Interval Labels," AI, Vol. 32,
No. 3, pp. 281-331, July 1987.

[6] Dechter, R. and Pearl, J., "Tree Clustering for Constraint Networks,"
AI, Vol. 38, pp. 353-366, 1989.

[7] Eastman, C M . , "On the Analysis of Intuitive Design Processes," in
Emerging Methods in Environmental Design and Planning, Moore, Gary
T., Ed., MIT Press, Cambridge,Mass., 1970.

[8] Eastman, C M . , "Automated Space Planning," AI, V o l . 4 , pp. 41-64,
1973.

[9] Fikes, R.E., "REF-ARF: A System for Solving Problems Stated as
Procedures," AI, Vol. 1, pp. 27-120, 1970.

[10] Flemming, U., "Wall Representations of Rectangular Dissections and
their Use in Automated Space Allocation," Environment and Planning
B, Vol. 5, pp. 215-232, 1978.

[I I] Flemming, U., On the Representation and Generation of Loosely Packed
Arrangements of Rectangles, Technical Report DRC-48-05-85,
Carnegie-Mellon University Design Research Center, 1985.

[12] Flemming, U , "On the Representation and Generation of Loosely
Packed Arrangements of Rectangles," Environment and Planning B,
Vol. 13, pp. 189-205, 1986.

[13] Fox, M.S., Sadeh, N., and Baykan, C , "Constrained Heuristic Search,"
Proceedings ofIJCAI-11, UCAI, pp. 309-315, 1989.

432 BAYKAN A N D FOX

[14] Freuder, E.C. and Quinn, M.J., "Taking Advantage of Stable Sets of
Variables in Constraint Satisfaction Problems," Proc. IJCAI-9, UCAI,
pp. 1076-1078, 1985.

[15] Grason, J., Methods for the Computer-implemented Solution of a Class
of Floor Plan Design Problems, unpublished Ph.D. Dissertation,
Carnegie-Mellon University, May 1970.

[16] Koopmans, J.C., Beckmann, M.J., "Assignment Problems and the Loca­
tion of Economic Activities," Econometrica, Vol. 25, pp. 53-76, 1957.

[17] Liggett, R.S., "The Quadratic Assignment Problem: An Analysis of Ap­
plications and Solution Strategies," Environment and Planning B,
Vol. 7, pp. 141-162, 1980.

[18] Mackworth, A.K., "Consistency in Networks of Relations," AI, Vol. 8,
pp. 99-118, 1977.

[19] Mackworth, A.K., and Freuder, E . C , "The Complexity of some Polyno­
mial Network Consistency Algorithms for Constraint Satisfaction
Problems," AI, Vol. 25, pp. 65-74, 1985.

[20] Mostow, J., "Toward Better Models of the Design Process," AI
Magazine, Vol. 6, No. 1, pp. 44-57, 1985.

[21] Pfeffercorn, C , Computer Design of Equipment Layouts Using the
Design Problem Solver, unpublished Ph.D. Dissertation, Carnegie-
Mellon University, May 1971.

[22] Purdom, P.W., "Search Rearrangement Backtracking and Polynomial
Average Time," AI, Vol. 21, pp. 117-133, 1983.

[23] Simon, H.A., "Structure of Ill-structured Problems," AI, V o l . 4 ,
pp. 181-201, 1973.

[24] Small Homes Council, Handbook of Kitchen Design, University of Il­
linois, Urbana, Illinois, 1950, [Circular C5.32R].

Chapter 14
DESIGNER: A KNOWLEDGE-BASED

GRAPHIC DESIGN ASSISTANT

Louis Weitzman

Abstract

Designer is an interactive tool for assisting with the design of two-
dimensional graphic interfaces for instructional systems. Graphic domain
knowledge, stored in a frame-based representational facility, is coupled to a
domain independent mechanism which analyzes and critiques the user's
original design. The system then supports the synthesis of design alternatives.
These alternative solutions are generated within a design context, or style, and
are based upon graphic constraints. The underlying motivation is to improve the
quality of the interfaces by making them more consistent and visually more ef­
fective.

14.1. INTRODUCTION

Applying technologies from artificial intelligence and cognitive science to the
development of computer-based training and computer-aided design systems can
provide support in areas where developers and users lack expertise. In addition,
these technologies can substantially enhance the process of design. Designer is
a tool to aid users of Simulation Environment's Graphics Editor. The Simula­
tion Environment is a system to aid the construction of instructional environ­
ments for computer-based simulations [17]. Designer is just one tool, or ac­
tivity, in the larger instructional simulation environment. Other activities in this
environment include a model control facility, the Model Controller; a view con­
struction facility, the Graphics Editor; a facility to create new icons with new be­
haviors, the Icon Editor; and a facility to create lessons for students based on
particular views and simulation models, the Lesson Editor.

Artificial Intelligence in Engineering Design
Volume I
Design Representation and Models of Routine Design

433 Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-660561-0

434 WEITZMAN

The original application, Steamer, was created to help students develop an
understanding of the complex domain of steam propulsion [16]. The system
consists of a color graphics interface to the underlying application or simulation.
One can view and manipulate this application at a number of different hierarchi­
cal levels through the color interface. The Steamer system contains over one
hundred color views which range from abstract, high-level representations of the
plant (Figure 14-1) to detailed views of gauge panels quite like the actual gauge
panels in a ship (Figure 14-2). It was apparent from the beginning that an editor
for creating and maintaining this set of views was essential. The Graphics
Editor allows nonprogrammers to graphically create these interactive, dynamic
views of the simulation. Figure 14-3 depicts the black-and-white interface of
the Graphics Editor. This tool has allowed propulsion engineering instructors to
create substantial portions of the student interface to this advanced training sys­
tem. Even though the Editor was originally built for the construction of Steamer
views, the tool is domain independent and has been used to build interfaces in a
wide variety of domains including monitoring the real-time performance of a
computer operating system and controlling remote hardware devices such as a
video switcher.

Views are constructed out of graphic components called icons which
represent elements in the application domain. Icons perform two tasks. First,
they graphically depict the state of the simulation. For example, pumps are red
when stopped and green when operating, dials display their value by positioning
an indicator, and pipes show their value by animating their fluid. Second, the
user can affect the simulation via the icons. When the user positions a cursor
over the icon and clicks the mouse, the state of the icon and its associated value
in the simulation are modified. For example, a pump's state toggles from off to
on and a dial's value is set by positioning the indicator. Figure 14-4 shows a
sampling of the types of icons available to users of this Editor. In creating a
view, the user selects the icons to be added to the view from a menu on the
black-and-white screen. The user then positions and sizes the new icon on the
color display. This icon has its parameters defaulted according to the type of
icon chosen. Then, through a process of incremental refinement, the user
modifies only those attributes that differ in this particular application.

It is unrealistic to assume that instructional designers are facile with graphic
design. Facilities were built into the Graphics Editor to support the construction
of good views. These facilities include various types of grid latching and the
use of default graphic properties for icons. Because of the flexibility of the
Editor, however, these constraints were often overridden by the designer. Even
working within these constraints, users often violate important graphic design
principles and have difficulty maintaining stylistic conventions across sets of
views. Designer is a tool to enhance the Graphics Editor by supplementing the
designer's domain knowledge with the necessary graphic expertise.

DESIGNER: GRAPHIC DESIGN ASSISTANT 435

Figure 14-1: Basic Steam Cycle

The color interface can depict the simulation at many different levels of
abstraction. This high-level, conceptual view illustrates the complete steam
cycle.

436 WEITZMAN

I B D R U M P R E S S U R E I B BOILER L O A D I B S/H O U T L E T T E M P

Ή 2 0 »

1 B 1 F D B R P M

F O T O B U R N E R S

it

V50
45 I

h 40
T35J
jr30

25 i
i o j

l s j
îof
5§f

H - r - r ίο !
·*

Γ 8 \
Γ 6 !
- 4

Γ 2 ^
Ν Η f - O !

P* 2 !

E " 6

L J U . i o

1B2 F D B R P M

AIR C A S I N G P R E S S D R U M L E V E L

0 © © Θ
B U R N E R I N D I C A T O R LIGHTS

Figure 14-2: Boiler Console IB

This view of the boiler console panel illustrates the color interface represent­
ing detailed views of actual engineering stations.

Graphics Editor
I

Create Attribute Flavor Taps Interact
Select Kil List Draw Initialize Activity
Save Probe Reorder Hardcopy Configure

Activity

Vim Simenv

Highlight Delete Move Name Draw
Clear Undelete Copy Color Show

Probe Label
Mark Default Edit Tap Size

Al List Shape Picture
Tapped Draw Points

Untapped Rotate Miscellaneous Diagonal
Type Descrbe Reflect Τ Square
Find Inspect
Mise

Mark Edit Marked Icons Grid

Circle Banner Pipe Biscuit
Rectangle Graph Centrifugal Pump Bar Switch
Lozenge Multi Plot Graph Rotary Pump Knife Switch
Triangle Rotary Switch

Trapezoid Air Ejector Toggle Switch
Diamond Dial
Hexagon Column Y Strainer Stop Valve
Octagon Tank Duplex Strainer Anglestop Valve

Impulse Trap Check Valve
Digital Bar Orifice Relief Valve

Line Force Bar Safety Valve
Spline Bar Sstg Regulator Valve

Polygon Ssdg 3 Way Valve
Circuit Breaker 4 Way Valve

Signal Fusible Link
Text Flame Fuse Other

Lisp Icons
System: Steamer System Model: Steamer Model [stopped] SUB System: All View: Main Engine Lube Oil

UC5D

Figure 14-3: Graphics Editor Interface
The Graphics Editor is a domain-independent tool allowing nonprogrammers to create graphic
interfaces for monitoring and controlling underlying simulations or real-time processes.

D
E

SIG
N

E
R

: G
R

A
P

H
IC

 D
E

SIG
N

 A
SSIST

A
N

T

437

438 WEITZMAN

O D O < O C D
circle square diamond triangle octagon lozenge

digital bar bar force bar

[X3 Off-I

column signal

Cj)"0n

centrifugal rotary air ejector toggle rotary
pump pump switch switch

tank

stop valve check valve regulator valve regulator valve stop valve

graph multi-plot graph

Figure 14-4: Icon Sampler

This view illustrates a sample of the graphic icons available to designers
creating interactive interfaces.

DESIGNER: GRAPHIC DESIGN ASSISTANT 439

14.2. OVERVIEW

Designer provides visual expertise to users of the Graphics Editor inter­
actively constructing new Simulation Environment views or modifying existing
ones. This visual expertise includes principles extracted from the fields of
visual arts [13, 33] graphic design [3, 8, 19] and architecture [9, 30]. These prin­
ciples are concerned with the graphic elements of the composition and how they
interrelate. A typical example is the Principle of Significant Difference which
states that when two elements are significantly different their graphic represen­
tations should also be significantly different (and is discussed in more detail
later). In addition, graphic standards may be enforced by the system. Since the
Editor is flexible enough to create any type of view, Designer can assist by
notifying the user about any design violations. For instance in the Steamer ap­
plication, we desired graphic conventions to be maintained across a set of views.
Typical standards here included color useage of the various icons and the exist­
ence, size, and placement of view titles. These constraints are particular to the
Steamer application and aren't included in the general category of graphic prin­
ciples.

Designer relies on three interrelated processes: 1) parsing the design elements
and relationships of the domain into a representation that it can then; 2) critiqu­
ing based on the contraints of the principles and standards to indicate where the
current design succeeds or fails; and finally 3) generation of design alternatives
satisfying the constraint violations. These all occur within a design context, or
style. These processes are called the Analyzer, the Critiquer, and the
Synthesizer, respectively. Power is gained by the three processes communicat­
ing through a central knowledge-base that maintains the domain-dependent in­
formation of the design. This knowledge base consists of design elements, their
attributes, and the design relationships between them. Techniques for the iden­
tification of this knowledge is also stored in the knowledge-base. Constraints
that establish style for critiquing a design and generative techniques for creating
design alternatives are also maintained. The separation of the three processes
from the knowledge-base provides independence and modularity to the system.
It is the intention that the flexibility of this approach will create a technology
that will be extensible to other design domains as well.

In order to support the internal mechanisms of Designer, a number of generic
subsystems have been incorporated into the system architecture. These tools in­
clude Steamer's frame-based knowledge representation facility (MSG) for stor­
ing domain knowledge, and an Assumption-Based Truth Maintenance System
(ATMS) for maintaining alternative design decisions which define the design
space.

The system is being developed in the object-oriented programming environ­
ment of Flavors on a Symbolics 3600 family processor. The use of object-

440 WEITZMAN

oriented programming techniques of Flavors has greatly facilitated the im­
plementation and is used throughout the system. A preliminary interface used in
the development of the system is shown in Figure 5. The multi-paned interface
provides access to existing Graphics Editor functions and new Designer func­
tions through scrolling command panes (upper right collection of panes) while
access to the domain knowledge is provided in a mouse sensitive graphing pane
(upper left pane). A Lisp interaction pane is provided (lower left pane) along
with a scrolling pane for Designer information (e.g., constraint violations; lower
right pane). A status line, which is consistent throughout all Simulation En­
vironment activities, displays information relevant to the current activity. In
Designer, the status line (near the bottom of the screen) displays the current
values for the system, subsystem, view, and design style. The labels and their
values are all mouse sensitive, providing access to functions on the class of item
(clicking on the label) or operations on the item itself (clicking on the specific
value).

14.3. DOMAIN-DEPENDENT KNOWLEDGE
REPRESENTATION

Much has been written about the knowledge required for graphic design. Un­
fortunately, the literature does not suggest a consistent representation for this
knowledge. Designer attempts to incorporate this knowledge and maintain it in
the frame-based representational system, MSG. Designer concentrates on the
graphic knowledge describing the domain elements, their relationships, con­
straints imposed on both the elements and their relationships, and techniques for
their modification. For general graphic design these domain elements refer to
points, lines, planes, etc. [33]. In Designer, the domain elements are the icons
contained within a Steamer view. These, along with their graphic properties, are
stored in the knowledge-base.

MSG, a flavor enhancer developed as part of the original Steamer project,
provides a class structure on top of the Flavors object-oriented programming
facility. It provides the ability to define classes of objects and create instances
of those classes. Each class provides a set of attributes, or slots, that define the
characteristics of the class. Slots are grouped together in roles. Slots inherited
from the class' abstractions, or parent classes, are included with the locally
defined slots to completely describe the class. When a new class is defined, an
instance of a meta-class is created that will maintain all pertinent information
about the new class. This includes how to create new class instances, where to
store the new instances, how to manipulate them, etc. In addition, when a new

Designer
WÊÊÊÊËÊÊÊKMXMZWFSJMI&M

JROrERTY^—.- LOCATION

^SHAK

SIMILARITY-COLOR
ŜIMILARITY-TYPK

^MMlLARITY-SIIArC
-SIMILARITY-SIZC

.GROUriMG-LOCATIOM
GROUFIftlO-COLOR
GROUPING-TYPE

Draw Style Analyze Clasa
Interact Critique Graph Activity
InltlaMza 8yntheslze

Activity

Viaw DatgntT S/men ν
Delete Move Name

Mark Undelete Copy Color Draw
All Probe Label 61 low

Tapped Default Edit Tap
Mark Edit Harked Icons

Tap
Grid

1ozenne
TiiaiMjIu

Trapezoid
Diamond
lluxanon
Octagon

Multl Plot Graph

Dial
Column
Tank

Rotary Pump

Air Ejector

Y Strainer
Duplex Strainer

Knife Switch
flotary Switch
Toggle 8wltch

8top Valve
Angle»top Valve

System: Designer System* Sub System: Al View: T e s t r Style: STEAMER
fldd conplata.

rpiL UC5D
Bê/lâ/Ôé 16:̂ :3 ? UcUznan

Figure 14-5 : Th e Designer' s Interfac e
The Designe r interfac e provide s acces s t o al l Graphic s Edito r knowledg e i s displaye d i n a graphin g windo w pane . Stat e infor -
commands whil e providin g additiona l command s t o contro l matio n (e.g. , curren t value s fo r system , subsystem , view , an d
the desig n processe s an d relate d functions . Domain-dependen t style) i s provide d i n th e statu s lin e nea r th e botto m o f th e screen .

442 WEITZMAN

class is defined, a new flavor of the same name is also defined. Instances of the
class are actually instances of this new flavor with the instance variables cor­
responding to all slot attributes of the class. The new instances are stored on the
class object. MSG can be used incrementally, so as new domain knowledge is
defined and recorded in the knowledge base, this information will automatically
be included in the analyses. Thus, as the system expands, new knowledge can
be incorporated into the knowledge-base. This ability to incrementally build the
domain knowledge is important in increasing the system's flexibility.

Designer includes a tool to create, maintain, and inspect the knowledge base
as it grows and requires modification. It provides a flexible facility for graphing
the domain-dependent knowledge base. The structure of the graphic class
hierarchy is clearly visible in the window in Figure 14-6. The graph ranges
from more abstract classes on the left to more specific classes on the right. The
ability to edit and inspect classes and their instances can be accessed through
mouse clicks and menu selections. The menu of commands to operate on the
class, its instances, or its flavor is shown in Figure 14-6 for the class elements.

14.3·!· Elements

The MSG class of elements records all domain elements that will be used in
subsequent design analyses. The following is the definition of this class which
includes instance variables for a name, a description, all roles (subdivided into
slots), all abstractions (parent classes), all used-as-abstractions (classes that use
this class as an abstraction), and all of the instances of the class in the current
design.

< C L A S S ELEMENTS 4 6 6 2 2 0 6 2 >
A n o b j e c t o f f l a v o r C L A S S , h a s i n s t a n c e v a r i a b l e v a l u e s :

NAME: ELEMENTS
D E S C R I P T I O N : " a g r a p h i c e l e m e n t "
ROLES : ((P R O P E R T I E S ((COLOR (A COLOR) N I L N I L)

(S I Z E N I L N I L N I L)
(LOCATION N I L N I L N I L)
(TYPE (A TYPE) N I L N I L)
(SHAPE (A SHAPE) N I L N I L)
(DOMAIN-ELEMENT N I L N I L N I L))))

A B S T R A C T I O N S : (GRAPHIC)
USED—AS—ABSTRACTION: N I L
I N S T A N C E S : (#<ELEMENTS D I A L - 1 4 4 6 4 5 2 1 6 >

#<ELEMENTS D I A L - 2 4 4 6 4 4 7 1 0 >
#<ELEMENTS D I A L - 3 4 4 6 4 4 6 7 0 >)

DESIGNER: GRAPHIC DESIGN ASSISTANT 443

PROPERTY.

£L£HEMTS

RELATIONS.

STYLES

TECHNIQUES*

.SIMILARITY

ROXIMTY

6R0UPIHI

EPETITION.

INILARITY-COLOR
SIMLARITY-ΤΥΡΕ
SIMLARITY-SHAPE
SIMILARITY-SIZE

GROUPING-LOCATION
GROUPING-COLOR
GROUPINC-TYPE
GROUPING-SHAPE
^REPETITION-LOCATION

REPETITION-TYPE
REPETITION-COLOR

^REPETITION-SHAPE

TECHNIQUE-SIZE
TECHNIQUE-TYPE
TECHNIQUE-COLOR
TECHNIQUE-TITLE

CONSTRAINT! < CONSTRAINT-PROPERTY

CONSTRAINT-RELATION.

CONSTRAINT-DISCRETE
CONSTRAINT-CONTINUOUS
SIGNIFICANT-DIFFERENCE

-TITLES

Figure 14-6: Domain Knowledge Base

A graphing tool aids the creation and maintenance of the domain knowledge
represented in a frame-based system. Each node in this graph represents a
class in the domain of graphic design. Class inheritance is immediately ap­
parent with classes changing from abstract to more specific as one moves
through the graph from left to right.

Graphics Edj
Create
Select
Save

yP4rations on ELEMENTS:
Opérations on tht CLASS:

IDescribel x
Create
Edit

Rename
Undefine

Move
Highlight
U/hereis
Graph

Graph Supers
Opérations on an INSTANCE:

Describe
List All Instances

Create
Edit

Delete
Opérations ο» 0» FLAVOR:

Describe
Edit

Inspect
Examine

Lttp.

ISyeteoir Dfitifabr Systàq^

Class I

^proxiiiity

-RELBTIOHSK̂ '
Y^̂ CROUPIHC^

Display •

ĈROUPIHC LOCUTION
„CROUPIHC-COLOR
ĜROUPING-TYPE
vCROUPING-SHRPE

Load 8. Saue •

:34:19 UeH I f f Menu Choose

Figure 14-7: Operations on Domain Knowledge
The mouse sensitive graph nodes provide access to operations
on the class, its instances, and its flavor definition through

mouse clicks and menu selections. The menu is presenting
operations for the selected class elements.

DESIGNER: GRAPHIC DESIGN ASSISTANT 445

The slots of this class include graphic properties used to distinguish the ele­
ments. These are the graphic properties of color, size, location, type, and shape
[13, 33] . The values of these properties on an instance are in fact instances of

other MSG classes (see Figure 14-6) that represent valid values for the class.
For example, the class of color includes instances for Steamer's basic colors.
The class size includes instances describing a range of sizes from very-small to
very-large, while the class shape includes instances of basic geometric shapes
like linear, circular, rectangular, etc [13, 33]. Figure 14-8 illustrates the current
set of instances for the classes color, size, type, and shape. In addition, there is a
class slot to store the domain element an instance of this class will represent.

In the above example, three instances of the class elements are stored on the
instance variable instances. All three of these objects represent dial icons in the
current view. One of these three objects representing a small, blue dial is shown
below.

#<ELEMENTS DIAL-1 44645216>
An object of flavor ELEMENTS, has instance variable
values :

IDENTIFICATION:
STRING-FOR-PRINTING :
COLOR:
SIZE:

LOCATION:

TYPE:
SHAPE:
DOMAIN-ELEMENT :

DIAL-1
NIL
#<COLOR BLUE 44644212>
((:X #<SIZE SMALL 44644633>)
(:Y #<SIZE SMALL 44644633>))
((:X 0.846)
(:Y 0.521))
#<TYPE DIAL 44644216>
#<SHAPE CIRCULAR 44644224>
#<DIAL 44644230>

This example (of a class definition and description of one of its instances) il­
lustrates that all class slots (i.e., color, size, location, type, shape, and domain-
element) become instance variables on the flavor representing the class. These
variables have been initialized on the actual instances to the appropriate class
values (e.g., the blue instance of class color is stored on the color instance vari­
able and the actual domain element, #<DIAL 44644230>, is stored on the
domain-element instance variable).

446 WEITZMAN

Tp . i f-anees for class *<CLRSS SIZE 35147417>
χ

bMflLL
MEDIUM
LARGE

VERY-LARGE

[Instances for class 8<CLRI

Instances for class tt<CLRSS SHRPE 33663313>
TRIANGULAR

COMPLEX
IRECTANGULaRI χ

CIRCULAR

Instances for class «<ff-RSS COLOR 351474B6>

X [BLACK!
bEEEN
BLUE

YELLOW
CYAN

MAGENTA
WHITE
GRAY

| s type
RECTANGLE

CIRCLE
LOZENGE
TRIANGLE

TRAPEZOID
DIAMOND
HEXAGON
OCTAGON

LINE
POLYGON
GRAPH

MULTI-PLOT-GRAPH

COCURN
DIGITAL-BAR
FORCE-BAR

BAR
SIGNAL
TANK
PIPE

CENTRIFUGAL-PUMP
ROTARY-PUMP
AIR-EJECTOR
Y-STRAINER

DUPLEX-STRAINER
IMPULSE-TRAP

ORIFICE
STOP-VALVE

ANGLESTOP-VALVE
CHECK-VALVE
RELIEF-VALVE
SAFETY-VALVE

REGULATOR-VALVE
3-U/AY-VALVE
4-WAY-VALVE

SSTG
SSDG

CIRCUIT-BREAKER
FUSIBLE-LINK

FUSE
BISCUIT

BAR-SWITCH
KNIFE-SWITCH

ROTARY-SWITCH
TOGGLE-SWITCH

TEXT
BANNER
FLAME

BEAM-TOT

Figure 14-8: Instances of Graphic Property Classes

Menus list the instances of classes representing the four graphic properties
color, size, shape, and type.

DESIGNER: GRAPHIC DESIGN ASSISTANT 447

14.3.2. Relationships

Currently, the graphic relationships in the knowledge base are similarity,
proximity, grouping, and repetition. As can be seen in Figure 14-6, the relation­
ships of similarity, grouping, and repetition are further classified by the graphic
properties of the elements (e.g., grouping by color, repetition by type, etc.).
These relationships are often discussed in the literature [9 ,13 , 30, 33] and have
been extracted as graphic relationships to be represented in the knowledge-base.
An indication of the certainty of a relationship is also maintained. When parsing
techniques are less exacting, the confidence in the relationship will be
decreased. The following is the description of the MSG class of similarity of
color:

#<CLASS SIMILARITY-COLOR 46622203>
An object of flavor CLASS, has instance variable values:

NAME : SIMILARITY-COLOR
DESCRIPTION: "the graphic

relationship representing elements of the
same color"

ROLES : ((PROPERTIES ((DOMAIN-ELEMENTS NIL NIL NIL)
(CERTAINTY NIL NIL NIL))))

ABSTRACTIONS : (SIMILARITY)
USED—AS—ABSTRACTION : NIL
INSTANCES: (#<SIMILARITY-COLOR SIMILARITY-COLOR-BLACK 44645357>

#<SIMILARITY-COLOR SIMILARITY-COLOR-BLUE 44645350>)
In the above example, there are two instances of the relation class

similarity-color, one for black elements and one for blue elements. The instance
representing the relation of similarity of color blue is illustrated below. Here,
the previously described dials appear since they all have a blue face color.
These elements are stored on the instance variable domain-elements.

#<SIMILARITY-COLOR SIMILARITY-COLOR-BLUE 44645350>,
An object of flavor SIMILARITY—COLOR,
has instance variable values :

IDENTIFICATION : SIMILARITY-COLOR-BLUE
STRING—FOR—PRINTING : NIL
DOMAIN-ELEMENTS: (#<ELEMENTS DIAL-1 44645216>

#<ELEMENTS DIAL-2 44644710>
#<ELEMENTS DIAL-3 44644670>)

CERTAINTY: :HIGH
All relations know how to handle a generic message to identify occurrences in

the design of the relation that they represent. When an occurrence is identified,
a new instance of the class is created, stored on the class object, and initialized
with all the elements participating in the relation. Relations can also build on

448 WEITZMAN

one another. For example, elements in proximity to one another may form
grouping relations, and groupings may form repetition relations (depending on
the elements properties and their layout).

14.3.3. Constraints

Domain constraints consist of both basic graphic design principles important
in the construction of two-dimensional views and view standards that are
adopted for the current application. Principles are those constraints that
transcend view sets and are generally accepted methods of making images con­
sistent, unambiguous, and visually effective. The Principle of Significant Dif­
ference, as previously mentioned, states that when elements are different, they
should be significantly different so as not to create a sense of ambiguity
[30] (Figure 14-9). This principle can be applied to many of the elements

graphic attributes such as size, location, and color. Its application to the size at­
tribute would suggest that elements should be the same size as other, similar ele­
ments in the view. Graphic elements that are larger represent objects that are
more important or physically larger in the real world. In Figure 14-1 of the
Basic Steam Cycle, the dial indicating RPMs is significantly larger than the
others, denoting the fact that it is the most important dial of the set. The prin­
ciple when applied to the location attribute tends to align elements unless there
is a reason (of importance or physical fidelity) to accentuate the differences in
location. The knowledge base represents these principles as individual instances
of the MSG class of significant difference.

Graphic design standards differ from principles because they are special con­
straints that tend to exist only for a given set of designs for a given application.
The use of a title is a typical example of a standard used in Steamer. This stan­
dard employed three separate constraints on the graphic properties of type, size,
and color which were restricted to the values of text, large, and yellow, respec­
tively. Another example of a standard is the restriction of the width of all pipes
to be within an acceptable range.

Constraints can be categorized as restrictions on properties of elements or
restrictions on their relationships. Constraints on properties take the form of dis­
crete constraints, restricting a property to be a specific value, or continuous con­
straints where the value can range between a minimum and a maximum value.
An example of a set of discrete constraints is the title standard while the pipe
width standard illustrates a continuous constraint.

DESIGNER: GRAPHIC DESIGN ASSISTANT 449

ORIGINAL DESIGN

Figure 14-9: The Principle of Significant Difference of Size

This design principle states that when elements are a different size they
should be significantly different so as not to create a sense of ambiguity.
Given an original design consisting of three dials, two alternatives are
presented from a larger solution space. The first alternative suggests no dif­
ference in importance and therefore no difference in size. Alternative 2
takes into account the fact that the right two dials are grouped together. The
other dial, being physically separate and larger, may be perceived as more
important and therefore should be significantly larger.

450 WEITZMAN

14.3.4. Design Context

A design should be sensitive to the context in which it is created. It is this
context that defines the external constraints which shape and guide the final
solution. In Designer, this context is referred to as a style and is constructed by
selecting those constraints (principles and standards) that are to be enforced
within this context. Good design in one style may not necessarily be good
design in another. Modifying the style within which a critique is made ul­
timately affects the final form of the design.

A graphic style is also defined by the visual techniques employed in the com­
munication of information. These visual techniques represent a vocabulary in
which to describe the design and are used in conjunction with the constraints to
suggest a variety of graphic procedures to modify an alternative. These
procedures are similar to Mittal's [23] design methods. A style editor in Figure
14-10 illustrates several techniques adapted from [13]. For example, the visual
technique of Regularity may take on a value of regular, neutral, or irregular,
each suggesting alternatives consistent with its definition. Highly regular
designs will accentuate similiarities of elements and relationships, while ir­
regular designs accentuate the differences. It is the constraints that indicate a
discrepancy in the design, while the interaction of the techniques suggest the
graphic procedures (maybe more than one) that will modify the design. This
editor allows the user to create and edit styles by selecting a name, graphic con­
straints to be active, and appropriate values for the visual techniques.

14.4. DESIGNER PROCESSES

Design involves a cycle of gathering information, making decisions based on
that information, and reviewing the consequences of those decisions. New in­
formation gleaned from this process is incorporated back into the cycle for sub­
sequent refinement of the design. This cycle is a general process used in all
design whether it be for computer interfaces, industrial applications, or architec­
ture. The process is domain independent.

Designer accomplishes the gathering of information in a process called
Analysis. In this phase the system parses the partial design into domain ele­
ments and relationships. In order to make design decisions, the system must go
through a Critique phase in which areas in need of improvement are located.
After the first two steps have occurred, the system is ready to suggest alternative
procedures for modifying the design. This is Designer's Synthesis phase.

Designer

UISUAL TECHNIQUES

Balance
Synnetry
Regular i ty
S i n p l l c i t y
Unity
Monchronatlc
Econony
Understatenent ·
P r e d i c t a b i l i t y
Actlv/eness
Subt le ty
N e u t r a l i t y
Transparency
Consistency
Rccuracy
F l a tnes s
S ingu la r i t y
Sequen t i a l i t y
Sharpness
Repe t i t ion

I n s t a b l i t y
flsynnetry
I r r e g u l a r i t y
Conplexity
Fragnentat ion
Colorfulness
I n t r i c a c y
Exaggeration
Spontaneity
S t a s i s
Boldness
Recent
Opacity
Var ia t ion
Dis to r t ion '
Depth
Jux tapos i t ion
Randonness
Diffusion
Episod ic i ty

GRAPHIC CONSTRAINTS

: BALANCE NEUTRAL INSTABILITY : S Y M M E T RY NEUTRAL A S Y M M E T RY : BEQtM-ARITY NEUTRAL IRREGULARITY
: gkmJCUS NEUTRAL COMPLEXITY : UNITY NEUTRAL F R A G M E N T A T I ON : M O N C H R O M A T IC NEUTRAL COLORFULNESS : E C O N O MY NEUTRAL INTRICACY : U N D E R S T A T E M E NT NEUTRAL EXAGGERATION : PREDICTABILITY NEUTRAL S P O N T A N E I TY : ACTIVENESS NEUTRAL STASIS : SUBTLETY NEUTRAL BOLDNESS : NEUTRALITY NEUTRAL A C C E NT : TRANSPARENCY NEUTRAL OPACITY : CONSISTENCY NEUTRAL V A R I A T I ON : A C C U R A CY NEUTRAL D I S T O R T I ON : FLATNESS NEUTRAL DEPTH : SINGULARITY NEUTRAL JUXTAPOSIT ION : S E Q U E N T I A L LY NEUTRAL R A N D O M N E S8 : SHARPNESS NEUTRAL DIFFUSION : REPETITION NEUTRAL EPISODICITY

Pr 1 nci pi es : SIGNIFICANT-DIFFERENCE-SIZE SIGNIFICANT-DIFFERENCE-TYPE
'Standards: STEAMER-TITLE •

Abort • Define S ty le •

Centrifugal Pump
Rotary Pump

Air Ejector

Bar Switch
Knife Switch

Rotary Switch
Toggle Switch

System: Steamer System Sub System: Al View: Console 1b Style: STEAMER
Systen Steaner-Systen se lec ted

iptb UCSD

Figure 14-10: Style Editor
This menu edits the graphic style, or context, in which a design
critique occurs. A style is defined by the graphic constraints
(i.e., principles and standards) that are active and the values

chosen for the visual techniques. These visual techniques in
combination with the constraints generate the graphic procedures
for modifying the design.

D
E

SIG
N

E
R

: G
R

A
P

H
IC

 D
E

SIG
N

 A
SSIST

A
N

T

451

452 WEITZMAN

Since the overall goal is for the system to be an online assistant and not as­
sume control, review occurs interactively with the user selecting and confirming
decisions presented by the system. Information is incorporated back through the
process as output from one cycle becomes the input for the next cycle of
critique. Each of Designer's processes is described in more detail below.

14.4.1. Analysis

The analysis process parses the design and locates existing domain elements
and relationships. Identifying the elements is straightforward because of the
object-oriented implementation of the iconic interface. An instance of the MSG
class elements is created for each icon and the slots are appropriately initialized.
For example in the original design of Figure 14-9, the three dials would be
represented by three separate elements. Their property values would be
represented by the corresponding MSG object as shown in the earlier descrip­
tion.

Once the domain elements have been created, the system locates instances of
domain relationships. This task is easy for people but very difficult for com­
puters. Much work has been done in the area of image analysis, but seldom with
the goal of beautifying drawings. Pavlidis and Van Wyk [25] created a system
that inferred graphic constraints from simple drawings and then modified the
drawings to satisfy the constraints. Similarly, Designer needs to infer when
graphic relations exist between the elements of the view. To maintain the inde­
pendent nature of the analysis, generic messages are sent to each relation class to
identify instances of the class within the design. When an occurrence is found,
an instance of the MSG relation class is created and initialized. This includes
the recording of the elements that participate in the relation on the appropriate
MSG slot.

14.4.2. Critique

As Christopher Alexander suggests, the notion of a misfit is more compelling
than a. fit and is a driving force behind the ultimate shape of a design [1]. In
Designer, the misfits are identified as violations of the domain constraints and
are the driving force in generating design alternatives. The Critiquer creates a
comment for each unsatisfied design constraint within the current style. These
critique comments are Flavor objects that store their underlying constraint and

DESIGNER: GRAPHIC DESIGN ASSISTANT 453

the elements involved in the violation. These comments, displayed in the lower
right scrolling pane of the black-and-white interface (Figure 14-11), are mouse
sensitive. When clicked on, they can be highlighted (graphically highlighting
those elements involved) and/or described in the lower left pane in terms of their
underlying constraint. Critiques themselves are implemented as flavor objects
that store the object being critiqued (the view), the style in which the critique
takes place, and a list of all the relevant comments for this object in this style.
Figure 14-11 illustrates a critique based on the principle of the Significant Dif­
ference of Size of three dials shown in the original design of Figure 14-9. Two
violations of this principle, one for similar typed elements and one for similar
shaped elements are displayed in the scrolling pane. A description of the first
violation is presented in the Lisp pane.

It thus becomes possible under this paradigm to request multiple critiques,
each based on a different independent style. This is an especially powerful
paradigm for views that may need to be presented in different media, each with
different constraints. For example, a style appropriate for a high resolution color
display may not be appropriate for a black-and-white hardcopy presentation. In
the black-and-white style, text may be constrained to be solid (i.e., not dithered
for different colors) to ensure readability, while a colored display style can sup­
port the distinction of the different colors.

14.4.3. Synthesis: Redesign

Design decisions are made in the synthesis phase in order to incrementally
refine the elements and their relationships. The designs are not synthesized from
high level functional specifications but rather are created as modifications of the
user actions via constraint satisfaction. Knowledge of the elements and their
relationships along with the comments from the critiquing phase forms the basis
for these design modifications. Each comment communicates to the constraint
on which it is based via generic messages in order to determine the graphic
procedures for satisfying the existing violation. More than one procedure may
be available to satisfy the constraint and all possiblities are presented to the user.
These procedures are a result of the interaction of the various visual techniques
and the design constraints which describe the style.

When the user decides to remedy a critique comment, various graphic
procedures are presented when the comment is clicked on with the mouse
(Figure 14-11). These procedures all modify the design in order to satisfy the
constraint, but would do so differently. Since there is no correct solution there
is no attempt to suggest that one alternative generating procedure may be better
than another. The variation of alternatives are based on the definition of the
style's visual techniques. A simple example illustrates how the interaction of

Designer
^ ' « T V ^ - t O C A T I O M

CLEMENTS
- ^ J M I L A M T Y - C O C O a

> i M i t A R i Ty ^ ^ - , , M , L A R I T l r- T v r e
N ^ « i m i l a i i i t v . « i a m :

^ h m i l a b i t y - s i z c

'βοχιμιτυ'

*BLATIOMt£^ -#«"OWMire-LOCATIOy

*Oaot/PlWO^

Draw
Interact
Hlialze

VUw

Mark
AN

Tapped
Mark

GftOUFIUO-COLOIt

onounuo-TYrs

Btyla Analyze
Critique

8yntheslze

Class
Graph

Delete
Undelete

Probe
Defaift

Edit Marked Icons

Move
Copy

Name
Color
Laud
Tap

Lozenge
Triangle

Trapezoid
Diamond
Hexagon
Octagon

Multl Plot Graph Rotary Pump

ActK/ity
Stmeny

Draw
81 tow

\Grid

Dial
Column
Tank

Air Ejector
Y 8trainer

Duplex Strainer

Knife Switch
Rotary 8witch
Toggle 8wltch

8top Valve
Anglestop Valve

"VIOLRTION o f SIGNIFICRNT-DIFFERENCE-SI2E f o r TYPE"

fconstraint ikSIGNIFICRNT-DIFFERENCE SIGNIFICRNT-DIFFERENCE-SI
|2E 3366Θ1Θ3> , ,

R a t i o n a l e "Confus ion e x i s t s between 2 e l e m e n t s when t h e r e
i s o n l y a s l i g h t

p e r c e p t u a l d i f f e r e n c e i n t h e i r s i z e . "
Element - IKELEMENTS 0 I R L - 3 4 P 2 3 2 3 3 34?231Θ4>
Element - IKELEMENTS DIRL-34P22210 34P22361>
Element - IKELEMENTS DIRL-34P21633 31?22ΘΘ4>

Lisp

VIOLATION of SIGNIFICANT-DIFFERENCE-SIZE for TYPE
VIOLATION of SIGNIFICANT-OIFFERENCE-SIZE for SHAPE

Techniques for npdlfvlno the current desion. | t he g r a p h ic t e c h n i q ue of m a k i ng t h i n gs a s i m i l ar s i z e |>

Style; STEAMER [System; Designer System*
Rdd conpleta.

Sub System; Al View: Testr

UCSD

Bè/10/Sé 16:21:4 5 Ueitxna n

Figure 14-11 : Critiqu e o f Thre e Dial s
The Designe r interfac e illustrate s a critiqu e i n progres s o f th e
original desig n fro m Figur e 9 . Thi s critique , bein g execute d i n th e
Steamer Style, ha s generate d tw o critiqu e comment s base d o n th e
Principle o f Significan t Differenc e o f Size . On e commen t refer s

to element s o f a simila r typ e whil e th e othe r refer s t o element s
similar i n shape . A descriptio n o f on e violatio n i s presente d i n th e
lisp pan e an d a men u o f technique s fo r modifyin g th e desig n
based o n thi s violatio n i s presente d i n a pop-u p menu .

454
W

EITZM
A

N

file:///Grid

DESIGNER: GRAPHIC DESIGN ASSISTANT 455

the graphic constraints with the visual techniques will generate alternative solu­
tions. If a style is defined to be simple and regular, the constraint of Significant
Difference of Size will generate a very different solution than if the style is
defined as complex and irregular. Figure 14-12 illustrates alternative solutions
in three different styles all defined with the constraints of Significant Difference
of Size and Location. The only difference between the styles is the articulation
of the visual techniques ranging from simple and regular (Style 1, Figure
14-12a) to complex and irregular (Style 3, Figure 14-12c). With the same initial
design, each style creates different solutions. These solutions satisfy the
constraints but are based on varying procedures of generation from the defined
visual techniques. In Style 1, the system looks for the simplest most regular
solution possible. This results with all dials in each solution being the same size
and aligned on an axis (similar location). Style 3, on the other hand, has chosen
the opposite approach where no two dials in the final solution are the same size
and no alignment occurs. Style 2 (Figure 14-12b) takes a more moderate ap­
proach with two distinct (and significantly different) dial sizes and some align­
ment.

These alternatives are maintained by a new form of truth maintenance system,
an ATMS [10-deKleer86c]. With the ATMS multiple alternatives are main­
tained and can be explored simultaneously. Unlike previous truth maintenance
systems which just manipulated justifications, this system additionally manipu­
lates assumption sets. As a result, inconsistent information can exist and it is
possible to work effectively and efficiently in the problem space. Context
switching is free, and most backtracking and all retraction is avoided. In Desig­
ner, the assumptions that are manipulated are the alternatives created by in­
cremental design decisions. Solutions at any stage in the design process are the
consistent, noncontradictory environments maintained by the ATMS. Any con­
tradictions that arise are handled by the ATMS and will not appear in the same
environment.

This new form of truth maintenance system is well suited for tracking mul­
tiple alternatives in the design space where a reasonable number of the potential
solutions must be examined. Designer interacts with this system by creating an
ATMS class for each domain element. Whenever an element is modified, a new
ATMS node is added to this class. These classes represent the different alter­
natives of the original domain element. Multiple nodes coexist in the solution
space but only one will be present in any ATMS solution. The justifications of
what style is current and what constraint generates the modified element are
added to these nodes to restrict the space of valid solutions.

Because context switching is free, the user can explore the design space by in­
teractively inspecting the individual ATMS environments. Each solution can be
displayed on the color screen and explain itself in terms of the underlying as­
sumptions and justifications. Based on these assumptions and justifications, an
alternative can describe its derivation and individual decisions can be described

456 WEITZMAN

Regularity: I R R E G U L A R

Figure 14-12: Different Styles Generating Different Alternatives (a)

Given the same view as input, three different styles generate three com­
pletely different solutions. All three styles include the principles of Sig­
nificant Difference of Size and of Location. They differ only in the articula­
tion of the visual techniques defined, from simple and regular (a) to complex
and irregular (c). The first level of design decisions is in response to ele­
ment size while the second level is based on location considerations. These
alternatives represent only a small portion of the solution space.

DESIGNER: GRAPHIC DESIGN ASSISTANT 457

Figure 14-12 (b)

WEITZMAN

Regularity: R E G U L A R

Figure 14-12 (c)

DESIGNER: GRAPHIC DESIGN ASSISTANT 459

in terms of their potential contribution to a final solution. The system thus con­
veys design precepts while the user is viewing a specific instantiation of a
design alternative. Hopefully this technique will enhance the user's knowledge
of constructing visual presentations for future designs.

14.5. RELATED WORK

There exists a number of interesting research projects similar in nature to
Designer. They are all knowledge-based systems providing an environment to
aid the creation and verification of design alternatives. Some provide ex­
ploratory environments in well-defined domains (e.g., Palladio, for circuit
design [6]) while others, like Designer, are systems in the ill-defined domain of
graphic design (e.g., ACE: A Color Expert, an expert system for the selection of
colors for synthetic scene imagery [22]; Descriptor, a generative system for
graphic layout based on shape grammars [14]). Some of these systems, like
Designer, try to encode the general process of design and then apply it to a
prototypical domain (e.g., PRIDE, for the design of paper handling systems
(Chapter 9).

Designer is much less rigid in its definition of the design process and future
work may incorporate a more explicit representation of this process. An alter­
native approach would be to incorporate specific plans that would specify the
order in which design steps are to be invoked by the various graphic techniques.
This would be similar to the work done by Brown and Chandrasekaran (Chapter
7) in mechanical design. Redesign and design modification could work through
the hierearchy of design decisions to find alternate solutions.

Designer differs from some systems in that it is a reactive system. It responds
to the user's actions by analyzing and critiquing input. Then, incremental im­
provements are suggested interactively to the user. Some systems use a
top-down refinement approach (e.g., Chapters 7 and 9) creating new designs
based on high-level design goals or specifications. Designer's approach is less
structured but it may support a more user directed exploratory process of design.

460 WEITZMAN

14.7. ACKNOWLEDGMENTS

Earlier versions of this paper appeared in July 1986 as Technical report 8609
from the UCSD Institute for Cognitive Science, and in January 1988 as Tech­
nical Report ACA-HI-017-88 from MCC.

This project began as an Independent Exploratory Development Program
(LED) with the Navy Personnel Research and Development Center in San Diego.
Additional funding for this research was provided by the Personnel and Training
Research Program of the Office of Naval Research (Contract N00014-85-
C-0133, NR 667-541) and the Office of Naval Technology (522-801-018). I
would like to thank all those involved with the UCSD/NPRDC joint program for
making this research possible and those at MCC supporting its continuation. In
particular I would like to thank members of both groups for their support
critiquing early versions of this paper, including Jim Hollan, Mark Rosenstein,
Dave Owen, Larry West, Barbara Morris, and Kathy Farrelly.

14.6. CONCLUSION

An initial implementation of Designer is underway. A functioning system has
been used on existing Steamer diagrams and has provided useful feedback. The
critique comments generated, based on only a handful of design constraints,
were the result of poor size specification. It is very encouraging that even in
views that were carefully crafted, the system was able to note inconsistencies
and suggest improvements.

The perception of a problem and the shape of its solution are both affected by
the depth and range of the design vocabulary [9]. It is therefore important that
the domain knowledge base continue to grow. Only a few constraints currently
exist and as more principles and standards are defined, more complete and
robust alternatives will be presented. As more solutions become available, the
need for better techniques to explore and understand their differences will be
necessary.

It is not known how effective this approach will be representing more com­
plex design problems. How will the system react to include larger sets of con­
straints, larger number of visual techniques, and a wider variety of alternatives?
Even though preliminary use of the ATMS has shown its feasibility for
representing multiple design solutions, how will the ATMS scale as the designs
become more varied and the number of critique comments needing to be tracked
greatly increases? In addition, the generality of this approach and how easily it
will transfer to other domains has yet to be tested. These remain open questions.

DESIGNER: GRAPHIC DESIGN ASSISTANT 461

14.8. UPDATE

This chapter represents work on Designer that was originally done in 1985.
Since then, work has continued on related tools at MCC. The Icon Editor, men­
tioned in the introduction, was redesigned and released to our shareholders in
1988 [28]. The research goals of the Icon Editor were to discover techniques for
the graphical specification of behavior without coding and to develop a foun­
dation for the connection of an application to an interface. It is part of an in­
tegrated set of knowledge-based tools for the construction of collaborative mul­
timedia interfaces, the Human Interface Tool Suite [18]. The Graphics Editor
and Icon Editor continue to support designers in the HITS environment. As tools
of this nature become more powerful, it becomes more imperative to support
designers with online design assistance. Hopefully, I will be able to return to the
many open research questions in supporting interface designers to create graphi­
cally pleasing and effective solutions.

HITS Graphics Editor

Bar Examples

Value: 7

Threshold Bar

Human interface Laboratory
S y s t e n: T e st L i b r a ry E x a n p l es V i e w: Bar E x a r t p l e* f l o d e l: Bar E x a n p le Model [s t o p p e d] Sub S y s t e n: 81 I

Design
Design
Style
Assist
Trace

Mark
Highlight
Clear
Mark
All
Tapped
Untapped
Type
Find
Mise

View
Probe Taps Interact
List Draw Initialize
Reorder Hardcopy Configure

Edit Marked Icons
Delete
Undelete
Probe
Default
List
Draw

Describe
Inspect

Move
Copy

Edit
Shape

Rotate
Reflect

Tap
Name
Co\or
Label
Picture
Mise

Inter view

Tick
Rate

Draw

Size

Points
Diagonal
Τ-Square

Icon Librar ies G e o n e t r ic I c o ns
Circle
Rectangle
Lozenge
Triangle
Trapezoid
Di anond
Hexagon
Octagon
Line
Spline
Polygon
Text
Banner

2: I n s t r u m e n t ât i on I c

Graph
ΠυΙti-Plot-Graph
Dial
Colunn
Tank
Digital-Bar
Force-Bar
Bar
Signal

3: T e s t - L i b r a ry
Basic-Bar
Force-Bar
Threshold-Bar
Basic-Queue
Three-Queue
Lightsuitch
Three-Bar

H a r k ed i c o ns d e l e t e d.

[Thu 26 Oct 1 0 : 3 3 : 1 7] U e i t r n an (-»Wei t z n a n) CL USER :

Figure 14-13: Graphics Editor Interface
This is an update of the interface of the Graphics Editor for monitoring and controlling underlying or real-time
which allows non-programmers to create graphic interfaces processes.

462
W

E
IT

Z
M

A
N

Human Interface Laboratory

Ρ5Γ-

I c on I c on L i b r a r i es Other M e nu T e st
Init Attribute
Draw Prototype
Probe Interact
Set Configure

Reorder

1: Prinitive Ic 2: Prinitive Ic Co\or lap
Mise

Init Attribute
Draw Prototype
Probe Interact
Set Configure

Reorder

R e c t a n g le T r i a n g le C i r c le fire
I R e c t a n g le T r i a n g le ' C i r c le ;Rrc

Co\or lap
Mise

M a rk E d it I c on G r id
Mark Type
Clear Find
Highlight Mise
All

Delete Copy Move
Undelete Draw Edit
Default Describe Shape
List Inspect Rotate

Name Reflect

Draw Points
Show Diagonal
Size T-Square

L i b r a r y: T e st L i b r a ry Icon: T h r e s h o ld Bar

P r i m i t i v es [b o u n d a ry OUTLIME-COLOR »<nap STRTIC-COLOR (: U H I T E - : U H I T E) 5 2 7 14 S I ZE »<Map S T A T I C - S I ZE ((8 . 3 9 9 9 9 9 98 0 . 1 7 5 0 0 00 LOCRTIOM »<nap STHTIC-LOCf lT IOfl ((0 . 3 1 25 0 . 4 6 2 5M V I S I B I L I TY »<Hap S T A T I C - V I S I B I L I TY (: V I S I B L E - » : V I S IB COLOR »<f1«P STRTIC-COLOR (:BLRCK-:BLRCK) 5 2 7 14
i n d i c a t or OUTLINE-COLOR «<nap STRTIC-COLOR (: U H I T E * : U H I T E) 5 2 7 14 S I ZE »<Map S T A T I C - S I ZE ((0 . 0 2 4 9 9 9 9 76 0 . 1 4 9 9 99 LOCATION tt<nap NUf lERIC-L INEAR-LOCATION (0 - » (0 . 3 25 V I S I B I L I TY tt<Hap S T A T I C - V I S I B I L I TY (: V IS IBLE-» : V I S IB COLOR » < « ap NUttERIC-THRESHOLD-COLOR (0 - { 5 } * : BL

A t t r i b u t es • VALUE <Conpose i n d i c a t or LOCATION) . . . > Τ C Π

[Thu 26 Oc t 1 0 : 1 2 : 3 8] W e i t z n an (- U e i t z n a n) CL USER: User I n p ut
Figure 14-14: Icon Editor Interface

The Icon Editor is a tool allowing interface designers to Users specify the icon's dynamic behavior interactively
create new dynamic icons to be used in the Graphics Editor, without coding.

D
ESIG

N
ER

: G
R

A
PH

IC
 D

ESIG
N

 A
SSIST

A
N

T

463

464 WEITZMAN

Additional sources not referenced in the paper are:
[2], [4], [5], [15], [21], [20], [24], [26], [27], [29], [31], [32].

[I] Alexander, C , Notes on Synthesis of Form, Harvard University Press,
Cambridge, Massachusetts, 1974.

[2] Beach, R. and Stone, M., "Graphical style towards high quality illustra­
tions," Computer Graphics, Vol. 17, No. 3, pp. 127-135, August 1983.

[3] Bertin, J., Seismology of Graphics, University of Wisconsin Press,
Madison, Wisconsin, 1983.

[4] Borning, Α., "Defining constraints graphically," In CHI'86
Proceedings, Mantei, M. and Orbeton, P., Eds., Boston, April 13-17,
pp. 137-143, 1986.

[5] Brown, D. C , Expert Systems for Design Problem-Solving using Design
Refinement with Plan Selection and Redesign, unpublished Ph.D. Disser­
tation, CIS Dept., OSU, Columbus, OH 43210, 1984, [Also Published as
a Book Co-authored with B. Chandrasekaran].

[6] Brown, H., Tong, C. and Foyster, G., "Palladio: An Exploratiry En­
vironment for Circuit Design," IEEE Computer, Vo l .19 , No. 7,
pp. 92-100, December 1983.

[7] Brown, D. and Chandrasekaran, B., "Knowledge and control for a
mechanical design expert system," IEEE Computer, July 1986.

[8] Cheatham, F. R., Cheatham, J. H. and Haler, S. Α., Design Concepts and
Applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983.

[9] Ching, F. D. K., Architecture: Form Space & Order, Van Nostrand
Reinhold Company, New York, New York, 1979.

[10] de Kleer, J., "An assumption-based TMS," Artificial Intelligence,
Vol. 28, No. 2, pp. 127-162, March 1986.

[I I] de Kleer, J., "Extending the ATMS," Artificial Intelligence, Vo l .28 ,
No. 2, pp. 163-196, March 1986.

[12] de Kleer, J., "Problem solving with the ATMS," Artificial Intelligence,
Vol. 28, No. 2, pp. 197-224, March 1986.

[13] Dondis, D. Α., A Primer of Visual Literacy, MIT Press, Cambridge, Mas­
sachusetts, 1973.

14.9. BIBLIOGRAPHY

DESIGNER: GRAPHIC DESIGN ASSISTANT 465

[14] Glenn, B., Descriptor: A model for describing shapes that infers rela­
tions for positioning them, unpublished Ph.D. Dissertation, University of
California, Los Angeles, 1986.

[15] Gullichsen, E. and Chang, E., "Generative design in architecture using
an expert system," Graphics Interface '85 Proceedings, Canadian Infor­
mation Processing Society, 1985.

[16] Hollan, J., Hutchins, E. and Weitzman, L., "Steamer: An interactive in-
spectable simulation-based training system," AI Magazine, V o l . 5 ,
No. 2, pp. 15-28, 1984, [Also appeared in Artificial Intelligence and In­
struction: Application and Methods, Greg Kearsley (Ed.)].

[17] Hollan, J., Hutchins, E., McCandless, T., Rosenstein, M. and Weitzman,
L., "Graphical interfaces for simulations," in Advances in Man-Machine
Systems Research, Rouse, W., Ed., Jai Press, Greenwich, Connecticut,
1988.

[18] Hollan, J. et al, An Introduction to HITS: Human Interface Tool Suite,
Technical Report ACA-HI-406-88, Microelectronics and Computer
Technology Corporation, December 1988.

[19] Hurlburt, Α., Layout, The Design of the Printed Page, Watson-Guptill
Publications, New York, New York, 1977.

[20] MacKinlay, J., Automatic design of graphical presentations, unpublished
Ph.D. Dissertation, Stanford University, Stanford, California, 1986.

[21] Marcus, Α., "Graphic design of user interfaces," NCGA 1986 Proceed­
ings, Vol. 1, Tutorials, 1986.

[22] Meier, B., "ACE: A Color Expert," NCGA 1986 Proceedings, 1986.

[23] Mittal, S., Dym, C. and Morjaria, M., "PRIDE: An expert system for the
design of paper handling systems," IEEE Computer, Vol. 19, No. 7,
pp. 102-114, July 1986.

[24] Nelson, G. Juno, " A constraint-based graphics system," Computer
Graphics, Vol. 19, No. 3, pp. 235-243, 1985.

[25] Pavlidis, T. and Van Wyk, C. J., "An automatic beautifier for drawings
and illustrations," Computer Graphics, Vo l .19 , No. 3, pp. 225-234,
1985.

[26] Reilly, S. S. and Roach, J. W., "Improved visual design for graphics dis­
play," IEEE CG&A, February 1984.

[27] Roach, J., Pittman, S. S. and Savarse, J., "A visual design consultant,"
International Conference on Cybernetics and Society, Seattle,
Washington, October 1982.

466 WEITZMAN

[28] Rosenstein, M., Weitzman, L., The HITS Icon Editor, Technical Report
ACT-HI-135-89, Microelectronics and Computer Technology Corpora­
tion, June 1989, [Reprinted in Proceedings of the 23rd Hawaii Inter­
national Conference on System Sciences, January 2-5, 1990.].

[29] Scholl, L., ''Heuristic rules for visualization," Graphics Interface '85
Proceedings, 1985.

[30] Sherwood, R., Principles and Elements of Architecture, University of
Southern California Press, Los Angeles, California, 1981.

[31] Stiny, G. and Gips, J., Algorithmic Aesthetics, Computer Models for
Criticism and Design in the Arts, University of California Press, Los An­
geles, California, 1978.

[32] Taylor, Ι. Α., ''Perception and visual communication," In Research
Principles and Practices in Visual Communication, Ball, J. and Pyres, F.,
Eds., Association for Education, Communication, and Technology, 1960.

[33] Wong, W., Principles of Two-Dimensional Design, Van Nostrand Rein-
hold Co., New York, New York, 1972.

Index

A* search algorithm 181
Abstraction 3 4 , 4 0 5

abstraction by aggregation 405
part-whole 15

Abstraction levels 1 6 , 3 0
gap in 1 8 , 2 0

Abstraction rules 155
A D A M 31
Adaptation and reuse of design cases 27

replay of a design plan 28
Air cylinder, design of 228
AIR-CYL 2 3 , 2 2 8 , 2 6 8 , 3 1 8 , 3 4 7
ALADIN 2 9 , 3 0
Algorithm level of system description 7 , 4 6
Analogical reasoning 196, 239
Analysis 9

finite element 3 0 , 3 5
of criticality 32
of stress 35
sensitivity 94

See also evaluation
AND/OR graph

design space as 16
search of 22

Architectural design 319
Architecture, design process

agenda-based 255
blackboard 1 0 , 4 4

ARGO 2 7 , 3 7
Artifact, designed 3
Artificial Intelligence 5

and Computer-Aided Design 12
as a software engineering methodology 8

ATMS 8 , 4 6 , 4 3 9 , 4 5 5
Automobile transmission design 117, 119

Backtrack tree 128
Backtracking

chronological 2 4 , 2 5 9 , 2 6 4
dependency-directed 24, 274
domain-independent 319
knowledge-directed 24

See also belief revision
Beam design 99
Behavior of an artifact 3

mechanical 200
Belief revision 6

ATMS 8 , 4 6 , 4 3 9 , 4 5 5
See also backtracking

BIOSEP 24
Bipartite graph 7 8 , 8 3
Blackboard architecture 10 ,44
BOGART 2 7 , 3 7 , 2 6 5
Bottom-up design 61
Brainstorming 196

See also invention
Breadth-first search 87, 100
Brown, D. 348
Budgeting 4 , 3 1 , 3 2
Building a knowledge-based design tool 35
Building block metaphor 106
BusinessWeek 42

C++ 3 8 , 4 5
CADET 27
CADRE 66
Case database 2 6 , 3 4

See also part library, knowledge base
Case-based reasoning 12, 26, 2 7 , 3 7

adaptation and reuse of design cases 27
representation/organization of design cases

27, 193, 209
retrieval of design cases 27
storage of design cases 27

Causality 82, 181
labels 153

CHIPPE 24
Chronological backtracking 24
Classification task: why design isn't one 3
Classifying a design task 18,37
Closed-loop evaluation 3 5 8 , 3 9 0
Cognition M C A E ™ 15
Cognitive model of design 221
Collaborative product development 43

467

468 INDEX

Combining rules 259
Commercially available design tools 38

Cognition M C A E ™ 15
Concept Modeller™ 39
Design"

1
-*

1 11
 39

Des ignView™ 15 ,39
I C A D ™ 39
NEXPERT™ 39
vendors for 49
VP-EXPERT™ 46

See also design tools
Common sense knowledge 2 , 3 2 , 193
Compiler

of designs 135
of knowledge 3 8 , 3 9 , 2 3 8
of mechanical designs 154, 136

Completeness of constraints 74
Complexity

exponential design time 24
of subproblem interactions 18
polynomial design time 24

Composition of known cases 196
Compositional interactions 21
Comprehension of a design 197

relation to invention 198
Computer-Aided Design (CAD) 9 , 1 2

and Artificial Intelligence 12
Concept Modeller™ 39
Concurrent engineering 43
Configuration spaces 35
Configuration task 20
Conflicting constraints 7 1 , 9 8
CONMAN 73
Consistency maintenance 7 4 , 4 0 2

See also belief revision, constraint process­
ing

Constrained optimization 395
Constraint graph 81
Constraint 21 ,67 , 72, 7 9 , 1 1 9

geometric 73
global 2 1 , 2 3 , 2 6 9
importance of a constraint 410
local 21
resource limitation 4
semi-local 21
topological 132

Constraint graph 15, 71 , 3 9 8 , 4 0 2 , 4 1 2 , 4 1 4
Constraint management 71, 74
Constraint processing 6 , 2 2

arc consistency 423
constraint propagation 136, 171, 39, 73, 251,

2 5 3 , 3 5 9 , 3 6 0
constraint relaxation 2 3 3 , 4 1 0 , 4 1 1
constraint satisfaction 117, 395, 399 ,417
constraint violations, detecting and resolving

330

early pruning 129,159
path consistency 4 2 3 , 4 2 4
simplification 255
Waltz algorithm 423

See also what if analysis
Constraint satisfaction problem (CSP) 22, 119,

416
overconstrained 97
underconstrained 97

Control heuristic 12
Control knowledge 19
Control mechanism 300
Control strategy for a design process 6 , 1 0

Bottom-up design 61
hierarchical 226
hillclimbing in the space of problem formula­

tions 31
least commitment 30
multi-layered 30
planning the design process 30
top-down refinement of design plans 31

Conventional design methods
AND/OR graph search 22
constraint satisfaction 22
integer programming 22
linear programming 22
multi-objective optimization techniques 22

Conventional routine design 22
Cooperative engineering design 43
Copier paper paths, design of 275
Correctness of a design 3
Creative design 2

See also design process model
Creative design task 19
Criticality analysis 32
Critiques 433
CRITTER 254
CYC 32
Cycle in a graph 76

DAG (Directed Acyclic Graph) 86
DARPA DICE 43
Decomposition, top-down 58, 252
Dependencies, parameter 71 , 82
Dependency-directed backtracking 24, 274
Design 5 8 , 3 9 6

as part of a larger engineering process 41
Design capture 9
Design compiler 135
Design episodes 194
Design evaluation 365
Design exploration 31
Design for manufacturability 2
Design goals 264 ,267
Design of

air cylinders 223 ,228

INDEX 469

aluminum alloys 29
analog circuits 34
automobile transmissions 15, 117, 119
cantilever beams 99
chemical distillation columns 237
copier paper paths 273
gear chains 39
graphic interfaces 433
house floorplans 39
light-weight load-bearing structures 34
mechanical devices 199
mechanical linkages 34
rotation transmitters 260
software 2
spatial layouts 34
swinging doors 194
VLSI chips 9, 16, 17, 20, 21, 31 , 39, 57, 251,

253
Design plan 26, 31 , 224, 229, 274
Design process 1, 72
Design process model 18, 252, 268

creative design 2
first-cut design 194
generate-and-test 278
innovative design 26
routine design 22

Design process operation
adaptation and reuse of design cases 27
constraint processing 22
decomposition 16
implementation 16, 22
optimization 16, 22
patching 16, 22
planning the design process 30
problem re-structuring 24
refinement 15, 16, 22
retrieval of design cases 27
storage of design cases 27
structural mutation of a design 28

See also constraint processing
Design space 14
Design step 230
Design task 1,18, 230, 255

classification of a 18, 3 7 , 4 7
dimensions for classifying a 18
well-defined 274

See also task, design
Design tools

commercially available 38
knowledge-based 3

See also commercially available design
tools

Design tradeoff 365
Design unit 396
D e s i g n

+ + tm
 39

Designed artifact 3

DESIGNER 24
Des ignView™ 1 5 , 3 8 , 3 9
DFMA 43
DFX (Design for Manufacturability, Testability,

etc.) 41
Design for manufacturability 2

DIOGENES 40
Directed graph 76

See also DAG (Directed Acyclic Graph)
Division of labor (between system and user) 252,

253
D M A 44
Domain theory, design 36
Domain-independent backtracking 319
Domain-independent shell 39, 251, 260

Engineous 43
DONTE 3 2 , 2 6 3
Door design 199
DSPL 221

ECMG 43
EDISON 193, 195
Elevator designer 317
ELF 39
Elimination conditions 159
EMYCIN 260
Engineering

over the wall 42
Engineering design 1,3
Engineous 43
Episodic comprehension 209
Epistemological adequacy 8
Evaluation 360

cost of 276
of constraint graphs 86
of design plans 31

See also analysis
EVEXED 251 ,253
Expert systems paradigm 5
Explanation facility 207, 2 4 0 , 3 3 0
Exploratory design 31

See also control strategy for a design
process

Exporting functionality 266

Fail first heuristic 419
Failure handling 2 3 1 , 2 7 9

See also belief revision, patching
Feasibility 194
Features, design 260
Finite element analysis 30, 35
First-cut design 194
Fitting components together 238
Frame-based language 6

See also object-oriented programming
Function of the artifact 3 , 1 9 9

470 INDEX

Function-structure mapping 3
Functionality-preserving transformation 28

GARI 347
Gaussian elimination 98
Gears

gear chain design 260
gear pump 150
gearratio 119 ,120
planetary gearsets 119

Generate-and-test, design as 278
Generative design knowledge 19 ,303
Geometric constraints 73
Geometric reasoning 2 , 4 8

analysis 35
simulation 35
synthesis 34

Global constraint 2 1 , 2 3 , 2 6 8 , 2 6 9
Global objective function 24
Goal regression 254
Goals, design 2 6 4 , 2 6 7 , 2 9 9
Graph

bipartite 78
constraint 1 5 , 7 1 , 4 0 2 , 4 1 2 , 4 1 4

Graph matching problem 85
Graph theory 76
Graphics interface design 433

Hardware description language 261
Heuristic adequacy 8
Heuristic search 395

constrained 395
Heuristics 196

fail first heuristic 419
Hierarchical refinement 39, 295 ,348
Hillclimbing, knowledge-directed 24
Hypothetical reasoning 333

I C A D ™ 39
Icon 106 ,434
Ill-structured problem 8 , 4 6
Implementation (of a design specification) 15,

22, 58
Importance of a constraint 410
Improvisation, modelling 213
Indexing of refinement rules 262
Innovative design 2

correlated with incomplete or incorrect design
knowledge 47

Innovative design task 19 ,47
Integer programming 22
Integrated product development 43
Integration of

design and manufacturing 4 4 , 2
Intention, representation of 197
Interactions

between parts 4
complexity of subproblem 18
compositional 21
functional 21
local 4
of the user with the designed artifact 199
physical 21
represented as constraints 21
resource 21
strong 4, 21
subproblem 4
weak 4, 21

Interface variables 136
Interval arithmetic 15, 74, 138

labeled interval calculus (LIC) 138
Invariant design information 61
Invention

failure-driven 212
interaction-based 34
metrics for 213
naive 194
relation to comprehension 198

See also brainstorming, creative design, in­
novative design

Inverting the structure-function mapping 27
ISIS 348
Iterative refinement 357 ,358 , 359 ,360 , 366 ,367

Joskowicz, L. 35

KBSDE 40
K E E ™ 3 8 , 4 6
K E E ™ 60
Kinematics

kinematic equivalence 35
kinematic modelling 120
kinematic simulation 35
kinematic synthesis 34

Knowledge acquisition 2 , 3 6
SALT 3 1 8 , 3 3 6
tailored for a design process model 36

Knowledge compiler 38, 39, 238
DIOGENES 39
ELF 39
KBSDE 39
WRIGHT 39

Knowledge level of system description 7 , 4 6
Knowledge sources

combining multiple 29
Knowledge-based design tools 3
Knowledge-based paradigm 7
Knowledge-based routine design 22

Labeled interval calculus (LIC) 138
Layout design, VLSI 3 5 8 , 2 0
Learning in design 12

INDEX 471

Least commitment strategy 30
See also control strategy for a design
process

L E O S Y S ™ 39
Levels for describing knowledge-based systems

algorithm level 7
knowledge level 7
program level 7
task level 233

Levels of abstraction 16, 30
Leverage, mechanical 199
Linear interpolation 31
Linear programming 22
LISP 6 , 3 8 , 6 0
Local constraint 21
Logic design, VLSI 2 0 , 3 6 4
Loosely coupled variables 279

Machine primitives 199
Macro-decision formation 32
Macrorules 27
MAGRITTE 73
Management, constraint 71
Manufacturability, design for 2
Marketing, product 41
Matching problem, graph 85
MATHPAK 74
Maximum matching 97
Mechanical advantage 199
Mechanical design 9 , 2 5 3 , 269, 273
Mechanical design compiler (MDC) 154
MEET 2 5 1 , 2 5 3
Memory organization 193
Meson model of an artifact 269
Microplanner 6
Missing design knowledge, compensating for 26
MIT-DICE 44
MOLGEN 3 0 , 7 3 , 2 5 3 , 3 1 8 , 3 4 8
MOSAIC 34
MPA (Mission Planning Assistant) 236
Multi-layered control strategy 30

See also control strategy for a design
process

Multiple knowledge sources, combining 29
Multiple objectives, satisfying 22, 23, 30
Mutation of a design, structural 26, 28, 196

Naive physics 193
See also qualitative reasoning

Natural language processing 195
Newton-Raphson method 96, 98
N E X P E R T ™ 38

Object-oriented database 17
Object-oriented programming 6, 10
Objectives, multiple satisfying 23

OPAL/GEMSTONE 45
Operating conditions for behavior 138
OPS5 6 , 3 6 , 3 8
Optimization 16, 23, 73, 137, 360, 362

peephole 259
Optimization criteria 4
Optimization rule 18
Ordering subproblems 278
Organization of design cases 27, 193, 209
Over the wall engineering 42
Overconstrained problems 97

Parameter instantiation task 20, 22
See also design task

Parametric modeler 38
Pareto-optimal solution 23
Part library 7 4 , 9 6 , 1 5 0 , 1 5 2
Patching 1 6 , 2 3 , 2 7 9 , 3 2 9

antagonistic interactions in 339
innovative 18
patching rule 18

See also mutation
Path 76
Peephole optimization 259
Perspectives, multiple 210
Physical interactions 21
Physical system 33
Pipe 174
Plan, design 2 6 , 3 1 , 2 2 4 , 2 2 9 , 2 7 4
Planetary gearsets 119
Planning the design process 3 0 , 3 6 0

See also control strategy for a design
process

Prediction of artifact behavior 207
Preliminary design 194
Preserving functionality 28
PRIDE 2 4 , 2 7 3 , 3 4 7
Problem re-structuring, knowledge-directed 24
Process for recovering urokinase 304
Process, qualitative 199 ,202
Program level of system description 7 , 4 6
Programming language or environment

C++ 3 8 , 4 5
K E E ™ 3 8 , 4 6
LISP 6 , 3 8
Microplanner 6
OPAL/GEMSTONE 45
OPS5 6 , 3 6 , 3 8

Programming paradigm 6
frame-based language 6
object-oriented programming 6, 10
rule-based language 6

Propagation rules 171
Propagation, constraint 136
Protein purification processes 296
Protein recovery processes 296, 298

472 INDEX

Purification processes for protein products 295

Quadratic assignment formulation 399
Qualitative process theory 199
Qualitative reasoning 2 9 , 3 2 , 1 9 3

Re-budgeting 32
Re-design 3 4 , 6 3 , 7 3 , 1 9 4 , 2 2 7 , 232
Rearrangement of design configurations 265
Rearranging design functionality 265
Redoing a design step 265
Redundancy conditions 163
Redundant constraints 97, 98
Refinement 1 5 , 2 2 , 5 8 , 2 5 1

decomposition vs. specialization 254
Refinement rule 1 8 , 2 5 4 , 2 5 9
Reformulation of the design problem

hierarchical 32
knowledge-directed 24

Region (for representing generalized locations)
205

Regression of design goals 254
Relaxation, constraint 2 3 3 , 4 1 0 , 4 1 1
Replay of a design plan 28, 260, 265
Representation of

design parts 150 ,152
designs 2 7 , 3 8

Resource interactions 21
Resource limitation 4, 268
Retrieval of design cases 27, 196

See also case-based reasoning
Rotation transmitter design 260
Rough design 3 2 , 2 2 4
Routine design problems 298
Routine design 2, 19, 30

conventional 22
hypothesis 31
iterative, knowledge-based 23
knowledge-based 22
non-iterative, knowledge-based 23

See also design process model
Routine design process 224
Routine design task 19, 2 2 , 4 7
Routing 39
Rule-based language 6
Rules, combining 259

SALT 36
Search algorithm 5 , 7 , 8

A* 181
breadth-first 87

Search paradigm 5, 7
Search, design as 14, 274, 276
Semi-local constraint 21
Sensitivity analysis 94
Serendipitous situations 194

Serrano, D. 15
Shell, domain-independent design 39, 260

Engineous 43
Shell, expert system 236
Silicon compiler 357
Simplification 255
Simpson transmission 129
Simulation 3 0 , 4 3 3

qualitative kinematic 35
Simultaneous engineering 43
Software engineering 8
Space, design 14
Spatial layout 395, 396, 399
Spatial relation 396, 3 9 9 , 4 0 3 , 4 0 5 , 4 0 6 , 4 1 3

global relation 406
object-centered relation 406

Specialists, design 224 ,221
Sriram, D. 1
Stealing signals in VEXED 265
Steamer 434
Steele, G. 6
Stefik, M. 30
Step, design 230
Storage of design cases 27

See also case-based reasoning
Strong interactions 21
Strongly connected component 77, 88
Structure of the artifact 3 , 2 6 8
Structure synthesis task 20

See also design task
Structure-sharing 4, 267
Sturmey Archer bicycle transmission 121
Subgoal, design 267
Symbolic evaluation 255
Symbolic manipulation 73, 96
Symbolics 3650 314
Symbolics Flavors 314
Synthesis 9
Systematic progress, guaranteeing 10

Task agenda 255
Task level 233
Task, design 230

decomposition of 22
parameter instantiation task 20
structure configuration task 20
structure synthesis task 20

Tasks, generic 222
Technology, implementation 3
Textures 3 9 5 , 3 9 9 , 4 1 9
Thomas, D. 367
Tightly coupled variables 279
Tong,C. 1
Toolbox, design 10 ,236
Top-down refinement 251, 252
Topological sorting 87

INDEX

Torque 119
Tradeoff, design 23
Transformation rule 58, 266
Transmission design 117 ,119
Tree 78
Truth maintenance system 8 , 4 6 , 4 5 5

Underconstrained problems 97
Undoing a design step 259, 264
Use of an artifact 199
Utility function 187

Vendors of commercial design tools 49
Version, design 10
Vertical transportation 317
VEXED (Vlsi EXpert EDitor) 23, 251, 253
Visualization 43
VLSI design 9, 16, 17, 20, 21, 31 , 39, 57, 251,

253 ,357
VP-EXPERT™ 46
VT 2 4 , 3 7 , 3 1 7

Walker, R. 367
Weak interactions 21
Weak method 5
Well-structured problem 9 , 2 7 4

See also routine design
Westinghouse 317
What if analysis 335
Wilensky,R. 30
Williams, B. 34
WRIGHT 2 4 , 3 4 , 4 0

Xerox 292

