

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2003 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
MCSA/MCSE/MCDBA Self-Paced Training Kit: Microsoft SQL Server 2000 System

Administration, Exam 70-228 / Microsoft Corporation.--2nd ed.
p. cm.

Includes index.
Rev. ed. of: MCSE training kit: Microsoft SQL Server 2000 system administration /

2001.
ISBN 0-7356-1961-1
 1. Electronic data processing personnel--Certification. 2. Microsoft

software--Examinations--Study guides. 3. SQL server. I. Title: Microsoft SQL Server
2000 system administration, 70-228. II. MCSE training kit: Microsoft SQL Server 2000

 system administration. III. Microsoft Corporation.

QA76.3.M326573 2003
005.75'85--dc21

2003045875

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to tkinput@microsoft.com.

ActiveX, JScript, Microsoft, Microsoft Press, Visual Basic, Visual C++, Visual Studio, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Other product and company names mentioned herein may be the trademarks of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Kathy Harding
Project Editor: Valerie Woolley

Body Part No. X09-59433

xxvii
About This Book

Welcome to MCSA/MCSE/MCDBA Self-Paced Training Kit: Microsoft SQL Server
2000 System Administration, Exam 70-228, Second Edition. This book provides
you with the knowledge and skills required to install, configure, administer, and
troubleshoot Microsoft SQL Server 2000. The contents of this book reflect the sig-
nificant changes in the product from previous versions and provide a task-oriented
discussion of all of the important features that SQL Server 2000 provides for data-
base administrators.

Note For more information on becoming a Microsoft Certified Systems Engineer
or a Microsoft Certified Database Administrator, see the “The Microsoft Certified
Professional Program” section later in this introduction.

Before You Begin Part 1
Each chapter in Part 1 is divided into lessons. Most lessons include hands-on pro-
cedures that allow you to practice or demonstrate a particular concept or skill. Each
lesson ends with a short summary, and each chapter ends with a set of review ques-
tions to test your knowledge of the chapter material.

The “Getting Started” section of this introduction provides important setup instruc-
tions that describe the hardware and software requirements for completing the pro-
cedures in this book. Read through this section thoroughly before you start the
lessons.

Intended Audience
This book has been developed for information system (IS) professionals and data-
base administrators who need to install, administer, and support Microsoft SQL
Server 2000 or who plan to take the related Microsoft Certified Professional exam
70-228: Installing, Configuring, and Administering Microsoft SQL Server 2000
Enterprise Edition.

Prerequisites
Before you begin to work with the material in the Training Kit, it is recommended
that you have

■ Experience using the Microsoft Windows 2000 operating system. The skills
you should be comfortable with include:

■ Connecting clients running Windows 2000 to servers running Windows
2000

xxviii Microsoft SQL Server 2000 System Administration, 70-228
■ Configuring the Windows 2000 environment

■ Creating and managing user accounts

■ Managing access to resources by using groups

■ Configuring and managing disks and partitions, including disk striping and
mirroring

■ Securing data by using NTFS

■ Securing access to Windows 2000

■ Optimizing Windows 2000 server performance

■ An understanding of basic relational database concepts. These concepts
include:

■ Logical and physical relational database design

■ Data integrity

■ Relationships between tables and columns (primary and foreign keys, one-
to-one, one-to-many, and many-to-many)

■ How data is stored in tables (rows and columns)

■ Knowledge of basic Transact-SQL syntax (SELECT, INSERT, and
UPDATE statements)

■ An understanding of the role of a database administrator

Reference Material
You might find the following reference material useful:

■ SQL Server white papers and case studies, available online at http:
//www.microsoft.com/sql/techinfo/default.asp

■ SQL Server Books Online, available on the product CD-ROM

About the CD-ROM
This book contains a Supplemental Course Materials CD-ROM and a CD with a
120-day Evaluation Edition of Microsoft SQL Server 2000.

The Supplemental Course Materials CD-ROM contains files required to perform the
hands-on procedures contained in the lesson material in this book.

Features of This Book
Each chapter begins with a “Before You Begin” section, which prepares you for
completing the chapter. Whenever possible, lessons contain procedures that give
you an opportunity to use the skills being presented. The “Review” section at the

About This Book xxix
end of each chapter allows you to test what you have learned in the lesson. The
Appendix, “Questions and Answers,” contains all of the book’s review questions
and the corresponding answers.

■ Characters or commands that you type appear in bold type.

■ Italic in syntax statements indicates placeholders for variable information.
Italic is also used for book titles.

■ Names of files and folders appear in Title Caps, except when you are to type
them directly. You can use all lowercase letters when you type a filename in a
dialog box or at a command prompt.

■ Acronyms appear in all uppercase.

■ Monospace type represents code samples, examples of screen text, or entries
that you might type at a command prompt or in initialization files.

■ Square brackets [] are used in syntax statements to enclose optional items. For
example, [filename] in command syntax indicates that you can choose to type a
filename with the command. Type the information within the brackets, not the
brackets themselves.

■ Braces { } are used in syntax statements to enclose required items. Type only
the information within the braces, not the braces themselves.

Keyboard Conventions
■ A plus sign (+) between two key names means that you must press those keys at

the same time. For example, “Press ALT+TAB” means that you hold down the
ALT key while you press the TAB key.

■ You can choose menu commands with the keyboard. Press the ALT key to acti-
vate the menu bar, and then sequentially press the keys that correspond to the
highlighted or underlined letter of the menu command name. For some com-
mands, you can also press a key combination listed in the menu.

■ You can select or clear check boxes or option buttons in dialog boxes with the
keyboard. Press the ALT key, and then press the key that corresponds to the
underlined letter of the option name. Or you can press the TAB key until the
option is highlighted, and then press the SPACEBAR to select or clear the check
box or option button.

■ You can cancel the display of a dialog box by pressing the ESC key.

Chapter and Appendix Overview
This book combines text, hands-on procedures, and review questions to teach you
database administration using SQL Server 2000. It is designed to be completed
from the beginning to the end, but you can choose to complete only those sections
that interest you. If you choose the customized track option, see the “Before You

xxx Microsoft SQL Server 2000 System Administration, 70-228
Begin” section in each chapter. Any hands-on procedures that require preliminary
work from preceding chapters refer to the appropriate chapters.

This self-paced training book is divided into the following chapters:

■ The “About This Book” contains a self-paced training overview and introduces
the components of this training. Read this section thoroughly to get the greatest
educational value from this self-paced training and to plan which lessons you
will complete.

■ Chapter 1, “Overview of SQL Server 2000,” introduces SQL Server 2000. It
defines some of the important characteristics of SQL Server 2000 and
explains the environments in which it is designed to work. You will be intro-
duced to the different parts of the product and given some idea as to the role
played by these parts.

■ Chapter 2, “Installing SQL Server 2000,” explains how to install SQL Server
2000. It lists the hardware and software requirements of the program, and it
explains the specific information you have to supply and the decisions you have
to make during the installation process. This chapter covers using default,
named, and multiple instances of SQL Server 2000. The chapter also covers
performing unattended and remote installations of SQL Server 2000.

■ Chapter 3, “Preparing to Use SQL Server 2000,” reviews the results of install-
ing SQL Server 2000. This chapter explains starting, stopping, and pausing
SQL Server services. The chapter also covers working with OSQL, SQL Query
Analyzer, and SQL Server Enterprise Manager.

■ Chapter 4, “Upgrading to SQL Server 2000,” shows you how to perform a ver-
sion upgrade of a complete SQL Server 6.5 or 7.0 installation to SQL Server
2000. This chapter also explains how to perform an online database upgrade
from SQL Server 7.0.

■ Chapter 5, “Understanding System and User Databases,” explains SQL Server
2000 databases. This includes the structure of a data file and the architecture of
the transaction log. This chapter concludes with a discussion about system
tables, including the querying of system and database catalogs.

■ Chapter 6, “Creating and Configuring User Databases,” teaches how to create a
new user database, set database options for new or existing databases, and
manage the size of data and transaction log files. This chapter concludes with a
discussion about placing database files on multiple disks for recovery, fault tol-
erance, and performance.

■ Chapter 7, “Populating a Database,” discusses the population of user databases
with existing data. It shows you how to transfer and transform data. This chapter
focuses on the use of DTS, Bcp, and the BULK INSERT Transact-SQL statement.

■ Chapter 8, “Developing a Data Restoration Strategy,” presents an overview of
the SQL Server 2000 backup and restore processes and discusses the issues that
you should consider when planning a backup and restore strategy for a SQL
Server 2000 installation.

About This Book xxxi
■ Chapter 9, “Backing Up and Restoring SQL Server,” teaches you how to per-
form database backups using disk and tape. It also teaches you how to perform
database restorations. This chapter explains how to use SQL Server Enterprise
Manager and Transact-SQL statements.

■ Chapter 10, “Managing Access to SQL Server 2000,” discusses controlling
access to SQL Server 2000, including the authentication process and the autho-
rization process. The chapter concludes by showing you how to create and man-
age logins.

■ Chapter 11, “Managing SQL Server Permissions,” shows how to grant data-
base-specific permissions. It also discusses the use of application roles. The
chapter concludes by teaching you how to design an access and permissions
strategy.

■ Chapter 12, “Performing Administrative Tasks,” teaches you how to perform a
variety of configuration tasks and setup tasks. These include the configuration
of the SQL Server service, the SQL Server Agent service, SQL Mail,
SQLAgentMail, and XML. The chapter concludes with a discussion of the per-
formance of periodic maintenance tasks.

■ Chapter 13, “Automating Administrative Tasks,” shows you how to automate rou-
tine tasks using operators, jobs, and alerts. It also teaches the creation of a data-
base maintenance plan. It concludes by teaching you to create multiserver jobs.

■ Chapter 14, “Monitoring SQL Server Performance and Activity,” discusses the
development of a performance monitoring methodology. This chapter intro-
duces each of the monitoring tools and shows you how to use each tool. The
chapter concludes by teaching you how to perform specific monitoring tasks,
such as for memory use or slow-performing queries.

■ Chapter 15, “Using SQL Server Replication,” introduces planning for, imple-
menting, monitoring, and administering replication. This includes covering the
types of replication that are available for automatically replicating data between
instances of SQL Server or with heterogeneous data sources.

■ Chapter 16, “Maintaining High Availability,” discusses the use of standby serv-
ers, including the use of log shipping to automate the process of maintaining a
standby server. The chapter also discusses the use of SQL Server failover clus-
ters using the Microsoft Cluster Service.

Following Part 2 you will find:

■ The Appendix, “Questions and Answers,” lists all of the review questions from
the book, showing suggested answers.

■ The Glossary provides definitions for many of the terms and concepts presented
in this training kit.

xxxii Microsoft SQL Server 2000 System Administration, 70-228
Where to Find Specific Skills in This Book
The following tables provide a comprehensive list of the skills measured on the
Microsoft Certified Professional Exam 70-228, Installing, Configuring, and
Administering Microsoft SQL Server 2000 Enterprise Edition. The table lists the
skill and indicates where in this book you will find the lesson relating to that skill.
For sample questions to help gauge your readiness for exam 70-228, see Part 2,
“Preparation for MCP Exam 70-228.”

Note Exam skills are subject to change without prior notice at the sole discretion
of Microsoft.

Table A-1. Installing and Configuring SQL Server 2000

Skill Being Measured Location in Book

Install SQL Server 2000 Chapter 2

Upgrade to SQL Server 2000 Chapter 4

Create a linked server Chapter 12

Configure SQL Mail and SQLAgentMail Chapter 12

Configure network libraries Chapter 2

Troubleshoot failed installations Chapter 2

Table A-2. Creating SQL Server 2000 Databases

Skill Being Measured Location in Book

Configure database options for performance Chapter 6

Attach and detach databases Chapter 6

Create and alter databases Chapter 6

Table A-3. Managing, Monitoring, and Troubleshooting SQL Server 2000 Databases

Skill Being Measured Location in Book

Optimize database performance Chapter 6, Chapter 14

Optimize data storage Chapter 6

Modify the database schema Chapter 5, Chapter 6

Perform disaster recovery operations Chapter 8, Chapter 9, Chapter 15

Perform integrity checks Chapter 12, Chapter 13

Troubleshoot transactions and locking Chapter 14

About This Book xxxiii
Getting Started
This self-paced training manual contains hands-on procedures to help you learn
about Microsoft SQL Server 2000.

Table A-4. Extracting and Transforming Data with SQL Server 2000

Skill Being Measured Location in Book

Set up Internet Information Services (IIS) virtual directories to
support XML

Chapter 12

Import and export data Chapter 7

Develop and manage Data Transformation Services (DTS) pack-
ages

Chapter 7

Manage linked servers Chapter 12

Configure, maintain, and troubleshoot replication services Chapter 15

Table A-5. Managing and Monitoring SQL Server 2000 Security

Skill Being Measured Location in Book

Configure mixed security modes or Windows Authentication Chapter 2, Chapter 10

Create and manage logins Chapter 10

Create and manage database users Chapter 11

Create and manage security roles Chapter 10, Chapter 11

Enforce and manage security Chapter 10, Chapter 11

Set permissions in a database Chapter 11

Manage security auditing Chapter 11, Chapter 14

Table A-6. Managing, Monitoring, and Troubleshooting SQL Server 2000

Skill Being Measured Location in Book

Create, manage, and troubleshoot SQL Server Agent jobs Chapter 13, Chapter 15

Configure alerts and operators by using SQL Server Agent Chapter 13

Optimize hardware resource usage Chapter 6, Chapter 14,
Chapter 16

Optimize and troubleshoot SQL Server system activity Chapter 14

xxxiv Microsoft SQL Server 2000 System Administration, 70-228
Caution These procedures require a computer configured as a Windows 2000
domain controller. If you must perform these procedures on a server that is part of
an existing domain in a larger network, you will not be able to perform some proce-
dures at all. Other procedures will require modification of steps and scripts. Con-
sult with your Network Administrator before you attempt any of these procedures
in a larger network.

Hardware Requirements
The computer used for these hands-on procedures must have the following mini-
mum configuration. All hardware should be on the Microsoft Windows 2000
Server Hardware Compatibility List.

Software Requirements
The following software is required to complete the procedures in this course:

■ Microsoft Windows 2000 Server

■ Microsoft SQL Server 2000 Evaluation Edition

A copy of the SQL Server 2000 Evaluation Edition is included with this training kit.

Note The SQL Server 2000 Evaluation Edition provided with this training kit is
provided only for the purposes of training and evaluation. Microsoft Technical
Support does not support this edition. For additional support information regarding
this book and the CD-ROM (including answers to commonly asked questions
about installation and use), visit the Microsoft Press Technical Support Site at
http://www.microsoft.com/mspress/support/. You can also e-mail TKIN-
PUT@MICROSOFT.COM, or send a letter to Microsoft Press, Attn: Microsoft
Press Technical Support, One Microsoft Way, Redmond, WA 98052-6399.

Component Requirement

Processor Intel or compatible processor, Pentium 166 MHz or higher

Memory 128 MB minimum, 256 MB recommended

Hard disk space 400 MB of free hard disk drive space

CD-ROM drive Required to install SQL Server 2000 from the compact disc

Network card Optional

Sound card and speakers Optional

About This Book xxxv
Setup Instructions
Configure your computer according to the following instructions.

1. Set up your computer according to the manufacturer’s instructions.

2. Install Windows 2000 Server on the C drive, formatted as an NTFS partition,
and using a NetBIOS name of SelfPacedCPU.

3. Configure your server as a domain controller in the SelfPacedSQL.MSFT
domain.

4. Insert the Supplemental Course Materials CD-ROM into your CD-ROM drive.

5. Execute the Setup.exe file in the \Setup folder of the CD-ROM. This will copy
the exercise files that you will need to complete the hands-on procedures in
this book.

About the eBook
The Supplemental Course Materials CD-ROM includes an electronic version of the
book that you can view on screen using Adobe Acrobat Reader. For more informa-
tion, see the README.TXT file included in the root folder of the Supplemental
Course Materials CD-ROM.

Before You Begin Part 2
Part 2 helps you evaluate your readiness for the MCP Exam 70-228, Installing,
Configuring, and Administering Microsoft SQL Server 2000 Enterprise Edition.
When you pass this exam, you earn core credit toward Microsoft Certified Data-
base Administrator (MCDBA) certification and elective credit toward Microsoft
Certified Systems Engineer (MCSE) certification. In addition, when you pass this
exam you achieve Microsoft Certified Professional status.

Note You can find a complete list of MCP exams and their related objectives on
the Microsoft Certified Professional Web site at http://www.microsoft.com
/traincert/mcp/default.asp.

The Components of Part 2
An electronic assessment program for Exam 70-228 is provided on the Supple-
mental Course Material CD-ROM. This program is a practice certification test
that helps you to evaluate your skills. It provides instant scoring feedback, so you
can determine areas in which additional study may be helpful before you take the
certification exam. Although your score on the electronic assessment does not
necessarily indicate what your score will be on the certification exam, it does
give you the opportunity to answer questions that are similar to those on the
actual certification exam.

xxxvi Microsoft SQL Server 2000 System Administration, 70-228
Part 2 is organized by the exam’s objectives. Each chapter of the book pertains to
one of the six primary groups of objectives on the actual exam, called the Objective
Domains. Each Objective Domain lists the tested skills you need to master to ade-
quately answer the exam questions. Because the certification exams focus on real-
world skills, the Tested Skills and Suggested Practices lists provide practices that
emphasize the practical application of the exam objectives. Each Objective Domain
also provides suggestions for further reading or additional resources to help you
understand the objectives and increase your ability to perform the task or skills
specified by the objectives.

Within each Objective Domain, you will find the related objectives that are covered
on the exam. Each objective provides you with the following:

■ Key terms you must know to understand the objective. Knowing these terms
can help you answer the objective’s questions correctly.

■ Several sample exam questions with the correct answers. The answers are
accompanied by explanations of each correct and incorrect answer. (These
questions match the questions on the electronic assessment.)

You use the electronic assessment to determine the exam objectives that you need to
study, and then use Part 2 to learn more about those particular objectives and dis-
cover additional study materials to supplement your knowledge. You can also use
Part 2 to research the answers to specific sample test questions. Keep in mind that to
pass the exam, you should understand not only the answer to the question, but also
the concepts on which the correct answer is based.

MCP Exam Prerequisites
No exams or classes are required before you take the Installing, Configuring, and
Administering Microsoft SQL Server 2000 Enterprise Edition exam. However, in
addition to the skills tested by the exam, you should have a working knowledge of
the operation and support of hardware and software on SQL Server 2000 comput-
ers. This knowledge should include:

■ Installing and configuring SQL Server 2000.

■ Creating and maintaining SQL Server 2000 databases.

■ Configuring and administrating replication under SQL Server 2000.

■ Knowledge of SQL Server 2000 security concepts.

■ Managing linked servers.

■ Optimizing SQL Server performance.

Note After you determine that you are ready for the exam, use the Get MCP
Information link provided on the home page of the electronic assessment tool for
information on scheduling the exam. You can schedule exams up to six weeks in
advance, or as late as one working day before the exam date.

About This Book xxxvii
Know the Products
Microsoft’s certification program relies on exams that measure your ability to per-
form a specific job function or set of tasks. Microsoft develops the exams by ana-
lyzing the tasks performed by people who are currently working in the field.
Therefore, the specific knowledge, skills, and abilities relating to the job are
reflected in the certification exam.

Because the certification exams are based on real-world tasks, you need to gain
hands-on experience with the applicable technology in order to master the exam. In
a sense, you might consider hands-on experience in an organizational environment
to be a prerequisite for passing an MCP exam. Many of the questions relate directly
to Microsoft products or technology, so use opportunities at your organization or
home to practice using the relevant tools.

Using the Electronic Assessment and Part 2
Although you can use the Part 2 in a number of ways, you might start your studies
by taking the electronic assessment as a pretest. After completing the exam, review
your results for each Objective Domain and focus your studies first on the Objec-
tive Domains for which you received the lowest scores. The electronic assessment
allows you to print your results, and a printed report of how you fared can be useful
when reviewing the exam material in this book.

After you have taken the electronic assessment, use the Part 2 to learn more
about the Objective Domains that you find difficult and to find listings of appro-
priate study materials that may supplement your knowledge. By reviewing why
the answers are correct or incorrect, you can determine if you need to study the
objective topics more.

You can also use Part 2 to focus on the exact objectives that you need to master.
Each objective in the book contains several questions that help you determine if
you understand the information related to that particular skill. The book is also
designed for you to answer each question before turning the page to review the cor-
rect answer.

The best method to prepare for the MCP exam is to use the Part 2 in conjunction
with the electronic assessment and other study material. Thoroughly studying and
practicing the material combined with substantial real-world experience can help
you fully prepare for the MCP exam.

Understanding the Conventions for Part 2
Before you start using Part 2, it is important that you understand the terms and con-
ventions used in the electronic assessment and book.

xxxviii Microsoft SQL Server 2000 System Administration, 70-228
Question Numbering System
The electronic assessment and Part 2 contain reference numbers for each question.
Understanding the numbering format will help you use Part 2 more effectively.
When Microsoft creates the exams, the questions are grouped by job skills called
Objectives. These Objectives are then organized by sections known as Objective
Domains. Each question can be identified by the Objective Domain and the Objec-
tive it covers. The question numbers follow this format:

Test Number.Objective Domain.Objective.Question Number

For example, question number 70-228.02.01.003 means this is question three (003)
for the first Objective (01) in the second Objective Domain (02) of the Installing,
Configuring, and Administering Microsoft SQL Server 2000 Enterprise Edition
exam (70-228). Refer to the “Exam Objectives Summary” section later in this
introduction to locate the numbers associated with particular objectives. Each ques-
tion is numbered based on its presentation in the printed book. You can use this
numbering system to reference questions on the electronic assessment or in Part 2.
Even though the questions in the book are organized by objective, questions in the
electronic assessment and actual certification exam are presented in random order.

Notational Conventions
■ Characters or commands that you type appear in bold type.

■ Variable information and URLs are italicized. Italic is also used for book titles.

■ Acronyms, filenames, and utilities appear in FULL CAPITALS.

Using the Electronic Assessment
The electronic assessment simulates the actual MCP exam. Each iteration of the
electronic assessment consists of 50 questions covering all the objectives for the
Installing, Configuring, and Administering Microsoft SQL Server 2000 Enterprise
Edition exam. (MCP certification exams consist of approximately 50–70 ques-
tions.) Just like a real certification exam, you see questions from the objectives in
random order during the practice test. Similar to the certification exam, the elec-
tronic assessment allows you to mark questions and review them after you finish
the test.

To increase its value as a study aid, you can take the electronic assessment multiple
times. Each time you are presented with a different set of questions in a revised
order; however, some questions may be repeated.

If you have used one of the certification exam preparation tests available from
Microsoft, the electronic assessment should look familiar. The difference is that
this electronic assessment gives you the opportunity to learn as you take the exam.

About This Book xxxix
Installing and Running the Electronic Assessment Software
Before you begin using the electronic assessment, you need to install the software.
You need a computer with the following minimum configuration:

■ Multimedia PC with a 75 MHz Pentium or higher processor

■ 16 MB RAM for Windows 95 or Windows 98, or

■ 32 MB RAM for Windows NT, or Windows Me

■ 64 MB RAM for Windows 2000, or Windows XP

■ 128 MB RAM for Windows Server 2003

■ Internet Explorer 5.01 or later

■ 17 MB of available hard disk space (additional 70 MB minimum of hard disk
space to install Internet Explorer 6 from this CD-ROM)

■ A double-speed CD-ROM drive or better

■ Super VGA display with at least 256 colors

� To install the electronic assessment

1. Insert Supplemental Course Materials CD-ROM into your CD-ROM drive.

A starting menu will display automatically, with links to the resources included
on the CD.

Note If your system does not have Microsoft Internet Explorer 5.01 or later,
you can install Internet 6 now by selecting the appropriate option on the menu.

2. Click the link to the exam you want to install.

A dialog box appears indicating you will install the MCSE Readiness Review
to your computer.

3. Click Next.

The License Agreement dialog box appears.

4. To continue with the installation of the electronic assessment engine, you must
accept the License Agreement by clicking Yes.

5. The Choose Destination Location dialog box appears showing a default instal-
lation folder. Either accept the default or change the installation folder if
needed. Click Next to copy the files to your hard disk.

6. A Question dialog box appears asking whether you would like Setup to create a
desktop shortcut for this program. If you click Yes, an icon will be placed on
your desktop.

7. The Setup Complete dialog box appears. Select whether you want to view the
Readme.txt file after closing the Setup program, and then click Finish.

The electronic assessment software is completely installed. If you chose to
view the Readme.txt file, it will launch in a new window. For optimal viewing,
enable word wrap.

xl Microsoft SQL Server 2000 System Administration, 70-228
� To start the electronic assessment

1. From the Start menu, point to Programs, point to MCSE Readiness Review, and
then click MCSE RR Exam 70-228.

The electronic assessment program starts.

2. Click Start Test.

Information about the electronic assessment program appears.

3. Click OK.

Taking the Electronic Assessment
The electronic assessment consists of 50 multiple-choice questions, and as in the
certification exam, you can skip questions or mark them for later review. Each
exam question contains a question number that you can use to refer back to Part 2
of the book.

Before you end the electronic assessment, make sure you answer all the questions.
When the exam is graded, unanswered questions are counted as incorrect and will
lower your score. Similarly, on the actual certification exam you should complete
all questions or they will be counted as incorrect. No trick questions appear on the
exam. The correct answer will always be among the list of choices. Some questions
may have more than one correct answer, and this will be indicated in the question.
A good strategy is to eliminate the most obvious incorrect answers first to make it
easier for you to select the correct answer.

You have 75 minutes to complete the electronic assessment. During the exam you
will see a timer indicating the amount of time you have remaining. This will help
you to gauge the amount of time you should use to answer each question and to
complete the exam. The amount of time you are given on the actual certification
exam varies with each exam. Generally, certification exams take approximately
100 minutes to complete, but they can vary from 60 to 300 minutes.

Ending and Grading the Electronic Assessment
When you click the Score Test button, you have the opportunity to review the ques-
tions you marked or left incomplete. (This format is not similar to the one used on
the actual certification exam, in which you can verify whether you are satisfied
with your answers and then click the Grade Test button.) The electronic assessment
is graded when you click the Score Test button, and the software presents your sec-
tion scores and your total score.

Note You can always end a test without grading your electronic assessment by
clicking the Home button.

After your electronic assessment is graded, you can view the correct and incorrect
answers by clicking the Review Questions button.

About This Book xli
Interpreting the Electronic Assessment Results
The Score screen shows you the number of questions in each Objective Domain
section, the number of questions you answered correctly, and a percentage grade
for each section. You can use the Score screen to determine where to spend addi-
tional time studying. On the actual certification exam, the number of questions and
passing score will depend on the exam you are taking. The electronic assessment
records your score each time you grade an exam so that you can track your
progress over time.

� To view your progress and exam records

1. From the electronic assessment Main menu, click View History. Each test
attempt score appears.

2. Click on a test attempt date/time to view your score for each objective domain.

Review these scores to determine which Objective Domains you should study
further. You can also use the scores to determine your progress.

Using Part 2 of this Book
You can use Part 2 of this book as a supplement to the electronic assessment, or
as a stand-alone study aid. If you decide to use the book as a stand-alone study
aid, review the Contents or the list of objectives to find topics of interest or an
appropriate starting point for you. To get the greatest benefit from the book, use
the electronic assessment as a pretest to determine the Objective Domains for
which you should spend the most study time. Or, if you would like to research
specific questions while taking the electronic assessment, you can use the ques-
tion number located on the question screen to reference the question number in
Part 2 of the book.

One way to determine areas in which additional study may be helpful is to care-
fully review your individual section scores from the electronic assessment and note
objective areas where your score could be improved. The section scores correlate to
the Objective Domains listed in Part 2 of the book.

Reviewing the Objectives
Each Objective Domain in the book contains an introduction and a list of practice
skills. Each list of practice skills describes suggested tasks you can perform to help
you understand the objectives. Some of the tasks suggest reading additional mate-
rial, whereas others are hands-on practices with software or hardware. You should
pay particular attention to the hands-on practices, as the certification exam reflects
real-world knowledge you can gain only by working with the software or technol-
ogy. Increasing your real-world experience with the relevant products and technol-
ogies will improve your performance on the exam.

xlii Microsoft SQL Server 2000 System Administration, 70-228
After you choose the objectives you want to study, turn to the Contents to locate the
objectives in Part 2 of the book. You can study each objective separately, but you
might need to understand the concepts explained in other objectives.

Make sure you understand the key terms for each objective. You will need a thor-
ough understanding of these terms to answer the objective’s questions correctly.
Key term definitions are located in the Glossary of this book.

Reviewing the Questions
Each objective includes questions followed by the possible answers. After you
review the question and select a probable answer, turn to the Answer section to
determine if you answered the question correctly. (For information about the
question numbering format, see “Question Numbering System,” earlier in this
introduction.)

Part 2 briefly discusses each possible answer and explains why each answer is cor-
rect or incorrect. After reviewing each explanation, if you feel you need more
information about a topic, question, or answer, refer to the Further Readings sec-
tion for that domain for more information.

The answers to the questions in Part 2 are based on current industry specifications
and standards. However, the information provided by the answers is subject to
change as technology improves and changes.

Exam Objectives Summary
Installing, Configuring, and Administering Microsoft SQL Server 2000 Enterprise
Edition certification (70-228) exam measures your ability to implement, adminis-
ter, and troubleshoot SQL Server 2000 Enterprise Edition.

Before taking the exam, you should be proficient with the job skills presented in
the following sections. The sections provide the exam objectives and the corre-
sponding objective numbers (which you can use to reference the questions in the
electronic assessment and book) grouped by Objective Domains.

Objective Domain 1: Installing and Configuring SQL Server
2000
The objectives in Objective Domain 1 are as follows:

■ Objective 1.1 (70-228.01.01)—Install SQL Server 2000.

■ Objective 1.2 (70-228.01.02)—Upgrade to SQL Server 2000.

■ Objective 1.3 (70-228.01.03)—Create a linked server.

■ Objective 1.4 (70-228.01.04)—Configure SQL Mail and SQLAgentMail.

■ Objective 1.5 (70-228.01.05)—Configure network libraries.

■ Objective 1.6 (70-228.01.06)—Troubleshoot failed installations.

About This Book xliii
Objective Domain 2: Creating SQL Server 2000 Databases
The objectives in Objective Domain 2 are as follows:

■ Objective 2.1 (70-228.02.01)—Configure database options for performance.

■ Objective 2.2 (70-228.02.02)—Attach and detach databases.

■ Objective 2.3 (70-228.02.03)—Create and alter databases.

■ Objective 2.4 (70-228.02.04)—Create and manage objects.

Objective Domain 3: Managing, Monitoring, and
Troubleshooting SQL Server 2000 Databases
The objectives in Objective Domain 3 are as follows:

■ Objective 3.1 (70-228.03.01)—Optimize database performance.

■ Objective 3.2 (70-228.03.02)—Optimize data storage.

■ Objective 3.3 (70-228.03.03)—Modify the database schema.

■ Objective 3.4 (70-228.03.04)—Perform disaster recovery operations.

■ Objective 3.5 (70-228.03.05)—Perform integrity checks.

■ Objective 3.6 (70-228.03.06)—Troubleshoot transactions and locking by using
SQL Profiler, SQL Server Enterprise Manager, or Transact-SQL.

Objective Domain 4: Extracting and Transforming Data with
SQL Server 2000
The objectives in Objective Domain 4 are as follows:

■ Objective 4.1 (70-228.04.01)—Set up Internet Information Services (IIS) vir-
tual directories to support XML.

■ Objective 4.2 (70-228.04.02)—Import and export data.

■ Objective 4.3 (70-228.04.03)—Develop and manage Data Transformation Ser-
vices (DTS) packages.

■ Objective 4.4 (70-228.04.04)—Manage linked servers.

■ Objective 4.5 (70-228.04.05)—Convert data types.

■ Objective 4.6 (70-228.04.06)—Configure, maintain, and troubleshoot replica-
tion services.

Objective Domain 5: Managing and Monitoring SQL Server
2000 Security
The objectives in Objective Domain 5 are as follows:

■ Objective 5.1 (70-228.05.01)—Configure mixed security modes or Windows
Authentication.

■ Objective 5.2 (70-228.05.02)—Create and manage logons.

xliv Microsoft SQL Server 2000 System Administration, 70-228
■ Objective 5.3 (70-228.05.03)—Create and manage database users.

■ Objective 5.4 (70-228.05.04)—Create and manage security roles.

■ Objective 5.5 (70-228.05.05)—Enforce and manage security by using stored
procedures, triggers, views, and user-defined functions.

■ Objective 5.6 (70-228.05.06)—Set permissions in a database.

■ Objective 5.7 (70-228.05.07)—Manage security auditing.

Objective Domain 6: Managing, Monitoring, and
Troubleshooting SQL Server 2000
The objectives in Objective Domain 6 are as follows:

■ Objective 6.1 (70-228.06.01)—Create, manage, and troubleshoot SQL Server
Agent jobs.

■ Objective 6.2 (70-228.06.02)—Configure alerts and operators by using SQL
Server Agent.

■ Objective 6.3 (70-228.06.03)—Optimize hardware resource usage.

■ Objective 6.4 (70-228.06.04)—Optimize and troubleshoot SQL Server system
activity.

Getting More Help
A variety of resources are available to help you study for the exam. Your options
include instructor-led classes, seminars, self-paced kits, or other learning materials.
The materials described here are created to prepare you for MCP exams. Each
training resource fits a different type of learning style and budget.

Microsoft Official Curriculum (MOC)
Microsoft Official Curriculum (MOC) courses are technical training courses devel-
oped by Microsoft product groups to educate computer professionals who use
Microsoft technology. The courses are developed with the same objectives used for
Microsoft certification, and MOC courses are available to support most exams for
the MCSE certification. The courses are available in instructor-led, online, or self-
paced formats to fit your preferred learning style.

Self-Paced Training
Microsoft Press self-paced training kits cover a variety of Microsoft technical prod-
ucts. The self-paced kits are based on MOC courses, feature lessons, hands-on
practices, multimedia presentations, practice files, and demonstration software.
They can help you understand the concepts and get the experience you need to take
the corresponding MCP exam. Part 1 is a fine example.

About This Book xlv
MCP Approved Study Guides
MCP Approved Study Guides, available through several organizations, are learning
tools that help you prepare for MCP exams. The study guides are available in a
variety of formats to match your learning style, including books, compact discs,
online content, and videos. These guides come in a wide range of prices to fit your
budget.

Microsoft Seminar Series
Microsoft Solution Providers and other organizations are often a source of infor-
mation to help you prepare for an MCP exam. For example, many solution provid-
ers will present seminars to help industry professionals understand a particular
product technology, such as networking.

The Microsoft Certified Professional
Program
The Microsoft Certified Professional (MCP) program provides the best method to
prove your command of current Microsoft products and technologies. Microsoft,
an industry leader in certification, is on the forefront of testing methodology. Our
exams and corresponding certifications are developed to validate your mastery of
critical competencies as you design and develop, or implement and support, solu-
tions with Microsoft products and technologies. Computer professionals who
become Microsoft certified are recognized as experts and are sought after
industry-wide.

The Microsoft Certified Professional program offers five certifications, based on
specific areas of technical expertise:

■ Microsoft Certified Professional (MCP). Demonstrated in-depth knowl-
edge of at least one Microsoft operating system. Candidates may pass addi-
tional Microsoft certification exams to further qualify their skills with
Microsoft BackOffice products, development tools, or desktop programs.

■ Microsoft Certified Systems Administrator (MCSA) on Microsoft Win-
dows 2000. Individuals who implement, manage, and troubleshoot existing
network and system environments based on Microsoft Windows 2000 and Win-
dow Server 2003 operating systems.

■ Microsoft Certified Systems Engineer (MCSE). Qualified to effectively
analyze the business requirements, and design and implement the infrastructure
for business solutions based on Microsoft Windows 2000 platform and
Microsoft .NET Enterprise Servers.

xlvi Microsoft SQL Server 2000 System Administration, 70-228
■ Microsoft Certified Database Administrator (MCDBA). Individuals who
derive physical database designs, develop logical data models, create physical
databases, create data services by using Transact-SQL, manage and maintain
databases, configure and manage security, monitor and optimize databases, and
install and configure Microsoft SQL Server.

■ Microsoft Certified Solution Developer (MCSD). Qualified to design and
develop custom business solutions with Microsoft development tools, technolo-
gies, and platforms, including Microsoft Office and Microsoft BackOffice.

■ Microsoft Certified Trainer (MCT). Instructionally and technically quali-
fied to deliver Microsoft Official Curriculum through a Microsoft Certified
Technical Education Center (CTEC).

Microsoft Certification Benefits
Microsoft certification, one of the most comprehensive certification programs
available for assessing and maintaining software-related skills, is a valuable mea-
sure of an individual’s knowledge and expertise. Microsoft certification is awarded
to individuals who have successfully demonstrated their ability to perform specific
tasks and implement solutions with Microsoft products. Not only does this provide
an objective measure for employers to consider; it also provides guidance for what
an individual should know to be proficient. And as with any skills-assessment and
benchmarking measure, certification brings a variety of benefits to the individual,
and to employers and organizations.

Microsoft Certification Benefits for Individuals
Microsoft Certified Professionals receive the following benefits:

■ Industry recognition of your knowledge and proficiency with Microsoft prod-
ucts and technologies.

■ Microsoft Developer Network (MSDN) subscription. MCPs receive rebates or
discounts on a one-year subscription to the Microsoft Developer Network
(http://msdn.microsoft.com/subscriptions/) during the first year of certification.
(Fulfillment details will vary, depending on your location; please see your
Welcome Kit.)

■ Access to technical and product information directly from Microsoft through a
secured area of the MCP Web site (go to http://www.microsoft.com/traincert
/mcp/mccpsecure.asp/).

■ Access to exclusive discounts on products and services from selected companies.
Individuals who are currently certified can learn more about exclusive discounts
by visiting the MCP secured Web site (go to http://www.microsoft.com/traincert
/mcp/mccpsecure.asp/ and select the “Other Benefits” link) upon certification.

■ MCP logo, certificate, transcript, wallet card, and lapel pin to identify you as a
Microsoft Certified Professional (MCP) to colleagues and clients. Electronic
files of logos and transcript may be downloaded from the MCP secured Web
site upon certification.

About This Book xlvii
■ Invitations to Microsoft conferences, technical training sessions, and special
events.

■ Free access to Microsoft Certified Professional Magazine Online, a career and
professional development magazine. Secured content on the Microsoft Certified
Professional Magazine Online Web site includes the current issue (available
only to MCPs), additional online-only content and columns, an MCP-only data-
base, and regular chats with Microsoft and other technical experts.

■ Discount on membership to PASS (for MCPs only), the Professional Associa-
tion for SQL Server. In addition to playing a key role in the only worldwide,
user-run SQL Server user group endorsed by Microsoft, members enjoy unique
access to a world of educational opportunities (go to http://www.microsoft.com
/traincert/mcp/mcpsecure.asp/).

An additional benefit is received by Microsoft Certified Systems Engineers
(MCSEs):

■ 50 percent rebate or discount off the estimated retail price of a one-year sub-
scription to TechNet or TechNet Plus during the first year of certification. (Ful-
fillment details will vary, depending on your location. Please see your Welcome
Kit.) In addition, about 95 percent of the CD-ROM content is available free
online at the TechNet Web site (http://www.microsoft.com/technet/).

An additional benefit is received by Microsoft Certified System Database Adminis-
trators (MCDBAs):

■ 50 percent rebate or discount off the estimated retail price of a one-year sub-
scription to TechNet or TechNet Plus during the first year of certification. (Ful-
fillment details will vary, depending on your location. Please see your Welcome
Kit.) In addition, about 95 percent of the CD-ROM content is available free
online at the TechNet Web site (http://mail.microsoft.com/technet/).

■ A one-year subscription to SQL Server Magazine. Written by industry experts,
the magazine contains technical and how-to tips and advice—a must for anyone
working with SQL Server.

Microsoft Certification Benefits for Employers and
Organizations
Through certification, computer professionals can maximize the return on invest-
ment in Microsoft technology. Research shows that Microsoft certification pro-
vides organizations with:

■ Excellent return on training and certification investments by providing a stan-
dard method of determining training needs and measuring results.

■ Increased customer satisfaction and decreased support costs through improved
service, increased productivity and greater technical self-sufficiency.

■ Reliable benchmark for hiring, promoting and career planning.

xlviii Microsoft SQL Server 2000 System Administration, 70-228
■ Recognition and rewards for productive employees by validating their expertise.

■ Retraining options for existing employees so they can work effectively with
new technologies.

■ Assurance of quality when outsourcing computer services.

Requirements for Becoming a Microsoft Certified
Professional
The certification requirements differ for each certification and are specific to the
products and job functions addressed by the certification.

To become a Microsoft Certified Professional, you must pass rigorous certification
exams that provide a valid and reliable measure of technical proficiency and exper-
tise. These exams are designed to test your expertise and ability to perform a role or
task with a product, and are developed with the input of professionals in the indus-
try. Questions in the exams reflect how Microsoft products are used in actual orga-
nizations, giving them “real-world” relevance.

■ Microsoft Certified Product candidates are required to pass one operating sys-
tem exam. Candidates may pass additional Microsoft certification exams to fur-
ther qualify their skills with other Microsoft products, development tools, or
desktop applications.

■ Microsoft Certified Systems Engineers are required to pass five core exams and
two elective exams. Microsoft Certified Database Administrators are required
to pass three core exams and one elective exam that provide a valid and reliable
measure of technical proficiency and expertise.

■ Microsoft Certified Systems Administrators are required to pass three core
exams and one elective exam that provide a valid and reliable measure of tech-
nical proficiency and expertise.

■ Microsoft Certified Database Administrators are required to pass three core
Microsoft Windows operating system technology exams and one elective that
provide a valid and reliable measure of technical proficiency and expertise.

■ Microsoft Certified Solution Developers are required to pass three core
Microsoft Windows operating system technology exams and one elective that
provide a valid and reliable measure of technical proficiency and expertise.

■ Microsoft Certified Trainers are required to meet instructional and technical
requirements specific to each Microsoft Official Curriculum course they are
certified to deliver. The MCT program requires ongoing training to meet the
requirements for the annual renewal of the certification. For more information
on becoming a Microsoft Certified Trainer, visit http://www.microsoft.com
/traincert/mcp/mct/.

About This Book xlix
Technical Support
Every effort has been made to ensure the accuracy of this book and the contents of
the Supplemental Course Materials CD-ROM. If you have any comments, ques-
tions, or ideas regarding this book or the Supplemental Course Materials CD-ROM,
please send them to Microsoft Press, using either of the following methods:

Microsoft Press provides corrections for books through the World Wide Web at the
following address:

http://www.microsoft.com/mspress/support

To query the Technical Support Knowledge Base about a question or issue that you
may have, go to:

http://www.microsoft.com/support/search.asp

E-mail:
TKINPUT@MICROSOFT.COM

Postal mail:
Microsoft Press
Attn: Microsoft Training Kit Series Editor
One Microsoft Way Redmond, WA 98052-6399

SQL Server 2000 Evaluation Edition Software Support
The SQL Server 2000 Evaluation Edition included with this book is unsupported
by both Microsoft and Microsoft Press, and should not be used on a primary work
computer. For online support information related to the full version of SQL Server
2000 (much of which will also apply to the Evaluation Edition), you can connect to
http://www.microsoft.com/support/.

For information about ordering the full version of any Microsoft software, please
call Microsoft Sales at (800) 936-3500 or visit http://www.microsoft.com. Informa-
tion about issues related to the use of the SQL Server 2000 Evaluation Edition with
this training kit is posted to the Support section of the Microsoft Press Web site
(http://mspress.microsoft.com/support).

P A R T 1

Self-Paced Training for Microsoft
SQL Server 2000 System
Administration

3

C H A P T E R 1

Overview of SQL Server 2000

Lesson 1: What Is SQL Server 2000? . 4

Lesson 2: What Are the SQL Server 2000 Components?. 16

Lesson 3: What Is the Relational Database Architecture? 23

Lesson 4: What Is the Security Architecture? . 27

Review . 31

About This Chapter
This chapter introduces you to the breadth of Microsoft SQL Server 2000 and sets
the framework for understanding the environments in which the SQL Server 2000
installation you are administering might be running. The details of administering
SQL Server 2000 and its databases are covered in the remaining chapters of this
book. This chapter discusses the various components of SQL Server 2000 and the
relationships between them. It discusses the editions in which SQL Server 2000 is
available. It also introduces the various ways in which SQL Server 2000 is used, as
well as how SQL Server 2000 integrates with the Microsoft Windows 2000 and
Windows NT 4.0 operating systems. Finally, it provides an overview of the rela-
tional database and security architecture of SQL Server 2000.

4 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: What Is SQL Server 2000?

SQL Server 2000 is a family of products designed to meet the data storage require-
ments of large data processing systems and commercial Web sites, as well as meet
the ease-of-use requirements of individuals and small businesses. At its core, SQL
Server 2000 provides two fundamental services to the emerging Microsoft .NET
platform, as well as in the traditional two-tier client/server environment. The first
service is the SQL Server service, which is a high-performance, highly scalable
relational database engine. The second service is SQL Server 2000 Analysis Ser-
vices, which provides tools for analyzing the data stored in data warehouses and
data marts for decision support.

After this lesson, you will be able to
■ Describe the SQL Server 2000 environment

■ Describe the SQL Server 2000 relational database engine

■ Describe SQL Server 2000 Analysis Services

■ Describe SQL Server 2000 application support

■ Describe the various editions of SQL Server 2000 and understand their differences

■ Describe how SQL Server 2000 integrates with Windows 2000 and Windows
NT 4.0

■ Describe the database and security architecture of SQL Server 2000

Estimated lesson time: 45 minutes

The SQL Server 2000 Environment
The traditional client/server database environment consists of client applications
and a relational database management system (RDBMS) that manages and stores
the data. In this traditional environment, the client applications that provide the
interface for users to access SQL Server 2000 are intelligent (or thick) clients, such
as custom-written Microsoft Visual Basic programs that access the data on SQL
Server 2000 directly using a local area network.

The emerging Microsoft .NET platform consists of highly distributed, loosely con-
nected, programmable Web services executing on multiple servers. In this distrib-
uted, decentralized environment, the client applications are thin clients, such as
Internet browsers, which access the data on SQL Server 2000 through Web ser-
vices such as Microsoft Internet Information Services (IIS).

Figure 1.1 illustrates each of these types of clients accessing SQL Server 2000.

Chapter 1 Overview of SQL Server 2000 5
<< “F01ST01.EPS” >>

Figure 1.1. The SQL Server 2000 environment.

SQL Server 2000 Components
SQL Server 2000 consists of numerous components. An administrator of SQL
Server 2000 servers and databases must understand each of the components that
comprise SQL Server 2000. Figure 1.2 illustrates the major components of SQL
Server 2000 and their relationships.

6 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F01ST02.EPS” >>

Figure 1.2. SQL Server 2000 components.

SQL Server 2000 Relational Database Engine
The SQL Server 2000 relational database engine is an RDBMS that manages and
stores data in relational tables. Each table represents some object of interest, such as
customers, employees, or products. Each table has columns that represent an
attribute of the object modeled by the table (such as customer number, customer
name, address, and phone number), and rows that represent a single occurrence of
the type of object modeled by the table (such as customer number 1374281). The
relational database engine relates tables to each other when requested by an applica-
tion (such as a request for a list of all customers who purchased blue trucks in 1999).

The relational database engine is designed to store detailed records of transactions
generated by online transaction processing (OLTP) systems, as well as handle the
online analytical processing (OLAP) requirements of data warehouses. The rela-
tional database engine is responsible for maintaining data security, providing fault
tolerance, dynamically optimizing performance, using locking to provide concur-
rency, and ensuring data reliability.

SQL Server 2000 Analysis Services
SQL Server 2000 Analysis Services provides tools for analyzing the data stored in
data warehouses and data marts on SQL Server 2000. Certain analytical processes,
such as getting a summary of the monthly sales by product of all the stores in a
region, take a long time if run against all the detail records of an OLTP system. To
speed up these types of analytical processes, you can use SQL Server 2000 to peri-
odically summarize and store data from an OLTP system in fact and dimension

Chapter 1 Overview of SQL Server 2000 7
tables. This storage of summarized data for analysis is called a data warehouse. A
subset of this data (such as for a region or a division of a company) is called a data
mart. SQL Server 2000 Analysis Services presents the data from these fact and
dimension tables as multidimensional cubes that can be analyzed for trends and
other information that is important for making informed business decisions. Pro-
cessing analytical queries on SQL Server 2000 Analysis Services multidimensional
cubes is substantially faster than attempting the same queries on the detail data
recorded in OLTP databases.

Application Support
Application developers write client applications that access SQL Server 2000 in a
number of different ways.

A client application can submit Structured Query Language (SQL) statements to
the relational database engine, which returns the results to the client application in
the form of a tabular result set. The specific dialect of SQL supported by SQL
Server 2000 is called Transact-SQL. Transact-SQL supports the Entry Level of the
SQL-92 ANSI standard. Transact-SQL also supports many custom extensions, as
well as some features from the Intermediate and Full Levels of SQL-92.

A client application can also submit either Transact-SQL statements or XPath que-
ries and request that the database engine return the results in the form of an Exten-
sible Markup Language (XML) document. XML is an emerging Internet protocol
for exchanging information between systems by using self-describing data sets.

A client application can use any of the common Windows data access interfaces,
such as Microsoft ActiveX Data Objects (ADO), OLE DB, or Open Database Con-
nectivity (ODBC) to send Transact-SQL statements or XPath queries to the rela-
tional database engine using a native OLE DB provider or ODBC driver. A client
application can also use Hypertext Transfer Protocol (HTTP) to send Transact-
SQL statements or XPath queries to the relational database engine. A client appli-
cation can also use the multidimensional extensions of either ADO or OLE DB to
send Multidimensional Expressions (MDX) queries to SQL Server 2000 Analysis
Services multidimensional cubes for decision support queries.

An application developer can also use any of the following administrative Applica-
tion Programming Interfaces (APIs) to incorporate SQL Server 2000 administra-
tion functionality directly into a custom application to manage SQL Server 2000
and create, configure, and maintain databases, data warehouses, and data marts.

■ SQL Distributed Management Objects (SQL-DMO) This API is a set of
Component Object Model (COM) objects that encapsulates the administration
functions for all of the entities in the relational database engine and databases.

■ Decision Support Objects (DSO) This API is a set of COM objects that
encapsulates the administration functions for all of the entities in SQL Server
2000 Analysis Services engine and multidimensional cubes.

8 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
■ Windows Management Instrumentation (WMI) This API is an object-ori-
ented API that enables management applications and scripts to monitor, config-
ure, and control the Windows operating system and devices, services, and
applications in a Windows network. SQL Server 2000 provides a SQL Server
2000 WMI provider that enables WMI applications to retrieve information on
SQL Server 2000 databases and instances.

Additional Components
SQL Server 2000 provides additional components to support the needs of large
enterprises. As a database administrator, you will make use of the first two of these
components. Application developers primarily use the last two components.

SQL Server 2000 Data Transformation Services (DTS)
You can use SQL Server 2000 Data Transformation Services (DTS) to retrieve data
from one data source, perform simple or complex transformations on the data (such
as summarizing data), and then store it in another data source, such as a SQL
Server database or an Analysis Services multidimensional cube. DTS can work
with any data source that can be accessed using OLE DB, including SQL Server,
Oracle, Informix, DB2 and Microsoft Access databases, Microsoft Excel spread-
sheets, and SQL Server multidimensional cubes. Using DTS, you can simplify and
automate the process of building and maintaining data warehouses. You can also
use DTS for the initial population of an OLTP database.

SQL Server 2000 Replication
You can use SQL Server 2000 replication to keep data close to individuals or work-
groups in order to optimize performance or autonomy, while at the same time mak-
ing sure that all copies of the data stored on separate computers are kept
synchronized with one another. For example, a regional sales office can maintain
the sales data on a local server, and replicate the sales data to a SQL Server 2000
database in the national headquarters. Mobile users using laptop computers or Win-
dows CE devices can disconnect from the network, work throughout the day, and at
the end of the day use merge replication to merge their work records back into the
main database. You can also use SQL Server 2000 replication to replicate data to a
data warehouse, and to replicate data to or from any data source that supports OLE
DB access.

SQL Server 2000 English Query
SQL Server 2000 English Query provides a system for developing client applica-
tions that enable end users to pose questions in English instead of forming a query
with a Transact-SQL statement or an XPath query. English Query can be used to
access data in OLTP databases or in SQL Server 2000 Analysis Services multidi-
mensional cubes. For example, given a car sales database, an application can send
English Query a string containing the question, “How many blue trucks were sold
in 1999?”

Chapter 1 Overview of SQL Server 2000 9
The application developer specifies database information so that English Query can
process English questions about the database’s particular tables, fields, objects, and
data. For example, English Query must know that a question about customers is
related to data in a Customers table. English Query translates a question into a
Transact-SQL SELECT statement that is then executed against the SQL Server
2000 database to get the answer.

Meta Data Services
SQL Server 2000 Meta Data Services is a set of services that allows meta data
about databases and client applications to be stored and managed. Meta data is
information about the properties of data, such as the type of data in a column
(numeric, text, and so on) or the length of a column. In a data warehouse environ-
ment, meta data can be information about the design of objects such as multidi-
mensional cubes or dimensions, the quality and lineage of the data in the
warehouse, the source and target databases, data transformations, data cleansing,
data marts, and OLAP tools.

SQL Server 2000, SQL Server 2000 Analysis Services, SQL Server 2000 English
Query, and Microsoft Visual Studio use Meta Data Services to store meta data, to
interchange meta data with other tools, and to add versioning capability to tools
that support meta data creation. Meta Data Services supports three open standards:
the Meta Data Coalition Open Information Model (MDC OIM), COM interfaces,
and XML encoding.

SQL Server 2000 Editions
SQL Server 2000 is available in six different editions. Four of these editions are for
production systems, one edition is for application development, and one edition is
for evaluation only. In addition, the SQL Server 2000 Desktop Engine component
is available for distribution with applications.

SQL Server 2000 Enterprise Edition
The SQL Server 2000 Enterprise Edition supports all SQL Server 2000 features.
This edition is for medium and large production database servers and scales up and
out to support the performance levels required for the large Web sites, enterprise
OLTP, and large data warehousing systems (OLAP).

SQL Server 2000 Standard Edition
The SQL Server 2000 Standard Edition supports many SQL Server 2000 features,
but lacks the features required to scale up and out to support very large databases,
data warehouses, and Web sites. This edition is for small workgroups or depart-
ments. Relational database engine features not supported on this edition are

■ Failover clustering

■ Failover Support in SQL Server Enterprise Manager

10 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
■ Parallel CREATE INDEX

■ Parallel DBCC

■ Log shipping

■ Enhanced read-ahead and scan

■ Indexed views

■ Federated Database Server

■ System Area Network (SAN) Support

■ Graphical utilities support for language settings

SQL Server 2000 Analysis Services features not supported on this edition are

■ User-defined OLAP partitions

■ Linked OLAP cubes

■ Real-time OLAP

■ Partition Wizard

■ Relational OLAP (ROLAP) dimension support

■ HTTP Internet support

■ Calculated cells

■ Writeback to dimensions

■ Very large dimension support

■ Distributed partitioned cubes

SQL Server 2000 Personal Edition
The SQL Server 2000 Personal Edition supports all of the SQL Server 2000 fea-
tures supported by the SQL Server 2000 Standard Edition, except for transactional
replication, which is subscriber-only supported. In addition, full-text search is not
supported when this edition is installed on Windows Millennium Edition (ME) and
Windows 98.

This edition is for standalone applications and mobile users requiring local data
storage on a client computer. The SQL Server 2000 Personal Edition has a concur-
rent workload governor that limits the performance of the relational database
engine when more than five batches are executed concurrently.

SQL Server 2000 Windows CE Edition
The SQL Server 2000 Windows CE Edition (SQL Server CE) is used as the data
store on Windows CE devices. The memory footprint for SQL Server CE is
approximately 1 MB. SQL Server CE is implemented as a set of dynamic-link
libraries (DLLs) that operate as an OLE DB CE provider. This implementation
allows SQL Server CE to support the ActiveX Data Objects for Windows CE
(ADOCE) and OLE DB CE APIs in the Windows CE–based versions of Visual

Chapter 1 Overview of SQL Server 2000 11
Basic and Microsoft Visual C++. Also, it means that multiple applications running
at the same time can share a common set of DLLs and save space.

Windows CE devices connected to the network can use the Remote Data Access
(RDA) feature of SQL Server CE to

■ Connect to instances of SQL Server 2000 on other Windows platforms

■ Execute a SQL statement and pull in the result set as a recordset

■ Modify a recordset and push the modifications back to an instance of SQL
Server 2000 on another Windows platform

■ Subscribe to merge replication as an anonymous subscriber to keep Windows
CE data synchronized with a primary database

The SQL Server CE connectivity options are well suited for use on wireless net-
works through networking features such as data compression and messaging to
reduce data transmissions, and robust recovery from lost connections.

SQL Server 2000 Developer Edition
The SQL Server 2000 Developer Edition supports all of the SQL Server 2000 fea-
tures, other than graphical utilities support for language settings. This edition is for
programmers developing applications that use SQL Server 2000 as their data store.
This edition is licensed for use only as a development and test system, not a pro-
duction server.

SQL Server 2000 Enterprise Evaluation Edition
The SQL Server 2000 Enterprise Evaluation Edition is a full-featured version avail-
able by a free download from the Web. This edition is for use in evaluating the fea-
tures of SQL Server 2000 and will stop running 120 days after downloading.
Support for language settings in SQL Server graphical tools is not available in the
Evaluation Edition.

SQL Server 2000 Desktop Engine
The SQL Server 2000 Desktop Engine is a redistributable version of the SQL
Server 2000 relational database engine. This edition is for applications to use to
store data without requiring any database administration from the end user. The
Desktop Engine is designed to manage its configuration and resource usage
dynamically, minimizing the requirement for administration of the engine after it
has been installed. The Desktop Engine does not include any of the SQL Server
2000 utilities or tools that have graphical user interfaces. Standard SQL Server
2000 APIs must be used to create and configure the database, and the application
must use the SQL Server 2000 APIs to perform any needed administration.

The Desktop Engine supports the same relational database engine and replication
features as the Personal Edition, other than full-text search and the graphical
administration and developer tools and wizards. However, the Desktop Engine

12 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
does not support SQL Server 2000 Analysis Services. The size of Desktop Engine
databases cannot exceed 2 GB and the Desktop Engine has a concurrent workload
governor that limits the performance of the database engine when more than five
batches are executed concurrently.

Installing SQL Server Editions on Various Windows
Operating Systems
Table 1.1 sets forth the operating system platforms on which each SQL Server edi-
tion may be installed.

Integration with Windows 2000 and Windows NT 4.0
When an instance of SQL Server 2000 is running on any version of Windows 2000
or Windows NT 4.0, the following features and capabilities of these operating sys-
tems are leveraged and integrated.

Table 1-1. Operating Systems Supported by SQL Server Editions

Operating
System Enterprise Standard Personal

Enterprise
Evaluation

Desktop
Engine Developer

Windows
CE

Windows 2000
Data Center

Supported Supported Supported Supported Supported Supported N/A

Windows 2000
Advanced Server

Supported Supported Supported Supported Supported Supported N/A

Windows 2000
Server

Supported Supported Supported Supported Supported Supported N/A

Windows 2000
Professional

N/A N/A Supported Supported Supported Supported N/A

Windows NT 4.0
Server,
Enterprise
Edition

Supported Supported Supported Supported Supported Supported N/A

Windows NT
4.0 Server

Supported Supported Supported Supported Supported Supported N/A

Windows NT
4.0 Workstation

N/A N/A Supported Supported Supported Supported N/A

Windows
Millennium
Edition

N/A N/A Supported N/A Supported N/A N/A

Windows 98 N/A N/A Supported N/A Supported N/A N/A

Windows CE N/A N/A N/A N/A N/A N/A Supported

Chapter 1 Overview of SQL Server 2000 13
Windows Authentication
An instance of SQL Server 2000 running on Windows 2000 or Windows NT 4.0
can use Windows authentication and allow the operating system to control access
to SQL Server 2000 using only trusted connections. In this environment, a user can
connect to an instance of SQL Server 2000 without providing additional authenti-
cation credentials to SQL Server 2000 if that user has successfully logged on to the
Windows operating system by using a valid Windows 2000 or Windows NT 4.0
user account. Allowing the operating system to handle authentication provides
additional security, including the use of Kerberos authentication.

Memory Management
An instance of SQL Server 2000 running on Windows 2000 or Windows NT 4.0
dynamically uses available physical memory as a data buffer to minimize disk I/O
and maximize performance. Each instance of SQL Server 2000 coordinates with
Windows 2000 or Windows NT 4.0 to dynamically acquire and release memory as
needed by instances of SQL Server 2000 and other server applications running on
the same computer.

SQL Server 2000 Enterprise Edition uses the Microsoft Windows 2000 Address
Windowing Extensions (AWE) API to support memory up to 64 GB of RAM on
Windows 2000 Data Center and up to 8 GB on Windows 2000 Advanced Server.
This allows instances of SQL Server 2000 Enterprise Edition to cache large numbers
of rows in memory, which reduces overhead and speeds the processing of queries.

Active Directory
When SQL Server 2000 is installed on a Windows 2000 Server computer where
Active Directory directory services are available, you can publish information about
SQL Server 2000 in Active Directory. This information can include information
about names and locations of SQL Server 2000 systems and their database names,
locations, sizes, and most recent backup dates. Replication publications can also be
published. In addition, with SQL Server 2000 Analysis Services, you can publish
information about available data warehouses and data marts. Client applications can
be coded to search Active Directory for information that has been published.

Additionally, security account delegation is supported on an instance of SQL
Server 2000 installed on a Windows 2000 computer where Active Directory direc-
tory services and Kerberos authentication are available. Security account delega-
tion is the ability to connect to multiple servers, and with each server change, to
retain the authentication credentials of the original client.

An instance of SQL Server 2000 running on Windows 2000 or Windows NT 4.0
leverages the security and encryption facilities of these operating systems to imple-
ment secure data storage. This includes the option to enable the use of Secure
Sockets Layer (SSL) to encrypt all data between client applications and SQL
Server 2000.

14 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Failover Clustering
An instance of SQL Server 2000 Enterprise Edition running on Windows 2000 or
Windows NT 4.0 supports failover clustering to provide immediate failover to a
backup server with no disruption in operation. Windows 2000 Data Center supports
up to four failover nodes.

Microsoft Distributed Transaction Coordinator
An instance of SQL Server 2000 running on Windows 2000 or Windows NT 4.0
integrates with Microsoft Distributed Transaction Coordinator (MS DTC) to pro-
vide support for distributed transactions. MS DTC allows applications to extend
transactions across two or more instances of SQL Server 2000 either on the same
computer or across different computers.

SMP
An instance of SQL Server 2000 running on Microsoft Windows 2000 Data Center
can scale effectively on up to 32 processors, and on Windows 2000 Advanced
Server can scale effectively on up to 8 processors on symmetric multiprocessor
(SMP) computers.

Asynchronous and Scatter-gather I/O
An instance of SQL Server 2000 running on Windows 2000 or Windows NT 4.0
takes advantage of asynchronous I/O and scatter-gather I/O to maximize through-
put to support many concurrent users. Scatter-gather I/O allows a read or a write to
transfer data into or out of discontiguous areas of memory. Asynchronous I/O
allows instances of SQL Server 2000 to maximize the work done by individual
threads while processing a batch. The scatter-gather I/O algorithm has been signif-
icantly improved on Windows 2000. In addition, SQL Server 2000 on Windows
2000 can benefit from the use of Intelligent Input/Output (I2O) hardware to offload
I/O from the system processors to a dedicated processor.

Event Logs
Instances of SQL Server 2000 running on Windows 2000 or Windows NT 4.0 use
event logs to record significant system, application, and security events related to
SQL Server 2000.

System Monitor Counters
Instances of SQL Server 2000 running on Windows 2000 or Windows NT 4.0 pro-
vide objects and counters that can be used by System Monitor (Performance Moni-
tor in Microsoft Windows NT 4.0), SQL Server Enterprise Manager, and SQL
Server Agent to monitor SQL Server 2000 activity.

Chapter 1 Overview of SQL Server 2000 15
Lesson Summary
SQL Server 2000 is a relational database management system providing services to
OLTP and OLAP environments. SQL Server 2000 is available in a number of dif-
ferent editions to meet the needs of a variety of users and environments, and can be
installed on a variety of Windows operating system platforms. It is tightly inte-
grated with Windows 2000 and Windows NT 4.0 to fully leverage their capabilities
and maximize the performance of SQL Server 2000.

16 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: What Are the SQL Server 2000
Components?

SQL Server 2000 provides a number of different types of components. At the core
are server components. These server components are generally implemented as 32-
bit Windows services. SQL Server 2000 provides client-based graphical tools and
command-prompt utilities for administration. These tools and utilities, as well as
all other client applications, use client communication components provided by
SQL Server 2000. The communication components provide various ways in which
client applications can access data through communication with the server compo-
nents. These communication components are implemented as providers, drivers,
database interfaces, and Net-Libraries. An additional component is SQL Server
2000 Books Online, which is implemented as Hypertext Markup Language
(HTML) pages.

After this lesson, you will be able to
■ Describe the SQL Server 2000 server components, how they are implemented,

and their function

■ Describe the various SQL Server 2000 administrative tools and their function

■ Describe SQL Server 2000 client communication components and how they are
implemented

■ Describe SQL Server 2000 Books Online

Estimated lesson time: 30 minutes

Server Components
The server components of SQL Server 2000 are normally implemented as 32-bit
Windows services. The SQL Server and SQL Server Agent services may also be
run as standalone applications on any supported Windows operating system
platform.

Table 1.2 lists the server components and briefly describes their function. It also
specifies how the component is implemented when multiple instances are used.
Multiple instances are covered in more detail in Chapter 2.

Chapter 1 Overview of SQL Server 2000 17
Note The SQL Server and SQL Server Agent services must be run as applications
on Windows Millennium Edition and Windows 98. The Microsoft Search service and
the MS DTC service do not run on Windows Millennium Edition or Windows 98.

Client-Based Administration Tools and Utilities
The SQL Server 2000 administration tools and utilities are implemented as clients,
meaning that they must establish a local or network connection to SQL Server
2000 using client communication components.

Graphical Tools
Table 1.3 lists the 32-bit graphical tools provided by SQL Server 2000 and briefly
describes their function.

Table 1-2. Server Components and Their Functions

Server Component Description

SQL Server service MSSQLServer service implements the SQL Server 2000 database
engine. There is one service for each instance of SQL Server 2000.

Microsoft SQL Server
2000 Analysis Services
service

MSSQLServerOLAPService implements SQL Server 2000 Analy-
sis Services. There is only one service, regardless of the number of
instances of SQL Server 2000.

SQL Server Agent
service

SQLServerAgent service implements the agent that runs scheduled
SQL Server 2000 administrative tasks. There is one service for
each instance of SQL Server 2000.

Microsoft Search ser-
vice

Microsoft Search implements the full-text search engine. There is
only one service, regardless of the number of instances of SQL
Server 2000.

Microsoft (MS DTC)
service

Distributed Transaction Coordinator manages distributed transac-
tions between instances of SQL Server 2000. There is only one ser-
vice, regardless of the number of instances of SQL Server 2000.

Table 1-3. Graphical Tools in SQL Server 2000

Graphical Tool Description

SQL Server Enterprise
Manager

The primary server and database administration tool, it provides a
Microsoft Management Console (MMC) snap-in user interface.

SQL Query Analyzer Used for creating and managing database objects and testing
Transact-SQL statements, batches, and scripts interactively.

SQL Profiler Used to monitor and capture selected SQL Server 2000 events for
analysis and replay. Supports C2 security-level auditing.

SQL Server Service
Manager

A taskbar application used to start, stop, pause, or modify SQL
Server 2000 services.

18 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Command-Prompt Utilities
Table 1.4 lists the most frequently used command-prompt utilities provided by
SQL Server 2000 and briefly describes their function.

Client Communication Components
Users access SQL Server 2000 through client applications. SQL Server 2000 sup-
ports two main types of client applications. The first type is relational database
applications, which are the more traditional type of client applications used in two-
tier client/server environments. These client applications send Transact-SQL state-
ments to the relational database engine and receive results as relational result sets.

The second type is Internet applications, which are part of the emerging
Microsoft .NET platform. These client applications send either Transact-SQL
statements or XPath queries to the relational database engine and receive XML
documents in return.

Client Network Utility Used to manage the client Net-Libraries and define server aliases
containing custom server connection parameters, if needed.

Server Network Utility Used to manage the server Net-Libraries, including enabling SSL
encryption.

Table 1-4. Command-Prompt Utilities in SQL Server 2000

Command-Prompt
Utility Description

Osql This utility allows you to query an instance of SQL Server 2000
interactively using Transact-SQL statements, system procedures,
and script files. This utility replaces Isql, which was used with edi-
tions of SQL Server before SQL Server 7.0.

Scm This utility (Service Control Manager) is used to start, stop, pause,
install, delete, or modify SQL Server 2000 services. It also can
start, stop, or pause SQL Server running as an application.

Sqldiag This utility gathers and stores diagnostic information to expedite
and simplify information gathering by Microsoft Product Support
Services.

Bcp This utility copies data between an instance of SQL Server 2000
and a data file in a user-specified format.

Dtsrun This utility executes packages created using DTS.

Sqlmaint This utility performs a specified set of maintenance operations on
one or more databases. These include performing DBCC consis-
tency checks, backing up data and transaction log files, updating
distribution statistics, and rebuilding indexes.

Table 1-3. Graphical Tools in SQL Server 2000 (continued)

Graphical Tool Description

Chapter 1 Overview of SQL Server 2000 19
Each of these types of client applications connects to SQL Server 2000 in different
ways. It is important for you, as the database administrator, to have a basic under-
standing of how client applications access SQL Server databases. Certain configu-
ration tasks are related to client communication components that you choose
during installation or configure after installation. These tasks are covered in Chap-
ter 2 and Chapter 12.

Relational Database Application Programming Interfaces
Relational database applications access SQL Server 2000 through a database API.
A database API defines how to code an application to connect to an instance of
SQL Server 2000 and pass commands to a SQL Server 2000 database. SQL Server
2000 provides native support for two main classes of database APIs, OLE DB and
ODBC.

OLE DB is an API that allows COM applications to consume data from OLE DB
data sources. SQL Server 2000 includes a native OLE DB provider. An OLE DB
provider is a COM component that accepts calls to the OLE DB API and does
whatever is necessary to process that request against the data source. The provider
supports applications written using OLE DB, or other APIs that use OLE DB, such
as ADO.

ODBC is a Call-Level Interface (CLI) that allows C and C++ applications to access
data from ODBC data sources. SQL Server 2000 includes a native ODBC driver.
An ODBC driver is a DLL that accepts calls to the ODBC API functions and does
whatever is necessary to process that request against the data source. The driver
supports applications or components written using ODBC, or other APIs using
ODBC, such as Data Access Objects (DAO), Remote Data Objects (RDO), and the
Microsoft Foundation Classes (MFC) database classes. ADO is generally replacing
DAO and RDO.

SQL Server 2000 also supports the DB-Library (for backward compatibility only)
and Embedded SQL APIs.

Net-Libraries
The OLE DB provider or ODBC driver uses a client Net-Library to communicate
with a server Net-Library on an instance of SQL Server 2000. The communication
can be on the same computer or across a network. Net-Libraries encapsulate
requests between clients and servers for the transmission using the underlying net-
work protocol. The communication between client and server Net-Libraries can be
encrypted using the Secure Sockets Layer (SSL). SQL Server 2000 clients and a
SQL Server 2000 server can be configured to use any or all of the Net-Libraries
listed in Table 1.5.

20 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Open Data Services
Server Net-Libraries communicate with the Open Data Services layer of the rela-
tional database engine, which is the interface between the relational database
engine and the server Net-Libraries. Open Data Services transforms packets
received from server Net-Libraries into events that it passes to the appropriate part
of the relational database engine. The relational database engine then uses Open
Data Services to send replies back to SQL Server 2000 clients through the server
Net-Libraries.

Client–Server Communication
Figure 1.3 shows the client communication components when the client application
and the instance of SQL Server are on the same computer.

Table 1-5. Net-Libraries Employable with SQL Server 2000

Net-Library Description

Shared memory Used to connect to SQL Server 2000 on the same computer using a
segment of memory. This is one of the default protocols for SQL
Server 2000.

Named pipes Used to connect to SQL Server 2000 using named pipes. A pipe is a
file-system mechanism used for communication between processes.
This is one of the default protocols for SQL Server 2000.

TCP/IP Sockets Used to connect to SQL Server 2000 using TCP/IP. This is one of
the default protocols for SQL Server 2000.

NWLink IPX/SPX Used in the Novell network environment, primarily legacy Novell
environments that do not support TCP/IP.

VIA GigaNet SAN Used to support the new, high-speed SAN technology on GigaNet’s
cLAN server farm network.

Multiprotocol Supports any available communication method between servers
using Windows NT RPCs over any available network protocol. In
earlier versions of SQL Server, this Net-Library was required to
enable encryption and support Windows authentication. Today, it is
mainly used for backward compatibility.

AppleTalk ADSP Used in the Macintosh and Apple network environment. ADSP
enables Apple Macintosh clients to connect to SQL Server 2000
using native AppleTalk.

Banyan VINES Used in the Banyan VINES network environment. This protocol
runs at the SQL Server 7.0 level of funtionality for clients and serv-
ers running Windows NT 4.0 and will not be further enhanced.

Chapter 1 Overview of SQL Server 2000 21
<< “F01ST03.EPS” >>

Figure 1.3. SQL Server on the same computer as the client application.

Figure 1.4 shows a simplified version of the client communication components when
the client application and the instance of SQL Server are on separate computers.

<< “F01ST04.EPS” >>

Figure 1.4. SQL Server on a separate computer from the client application.

Internet Applications
Internet applications access SQL Server 2000 by means of a virtual root defined on
an IIS server that points to an instance of SQL Server 2000. SQL Server 2000 pro-
vides an ISAPI DLL (sqlisapi.dll) that makes this possible. These applications can
use a Uniform Resource Locator (URL), the ADO API, or the OLE DB API for
executing XPath queries or Transact-SQL statements.

22 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
When the IIS server receives an XPath query or Transact-SQL statement, the IIS
server loads the ISAPI DLL. The ISAPI DLL uses the OLE DB Provider for
SQL Server (SQLOLEDB) to connect to the instance of SQL Server 2000 spec-
ified in the virtual root and pass the XPath query or Transact-SQL statement to
SQL Server.

SQL Server Books Online
SQL Server Books Online is the online documentation provided with SQL Server
2000 and is implemented as HTML pages. SQL Server Books Online provides
numerous methods of finding information. You can navigate through SQL Server
Books Online by

■ Using the contents pane

■ Typing a keyword in the index

■ Typing a word or phrase in the search engine

■ Clicking the Help button in any of the graphical tools to bring up related infor-
mation

■ Pressing F1 in dialog boxes and interface elements to bring up related information

■ Selecting a Transact-SQL statement, function, stored procedure, or other Trans-
act-SQL element in SQL Query Analyzer and pressing SHIFT+F1 to view infor-
mation about the selected text

Note In addition to the default subsets of SQL Server Books Online provided
with SQL Server 2000, you can also define custom subsets of the entire SQL
Server Books Online against which to perform searches. To create a custom subset,
click Define Subset on the View menu.

Lesson Summary
SQL Server 2000 has a number of server components that are normally imple-
mented as services on Windows 2000 and Windows NT 4.0. SQL Server 2000 pro-
vides a plethora of client-based graphical and command-prompt tools and utilities
to perform administration tasks. These administrative tools and utilities, as well as
all other client applications, use a number of different client communication com-
ponents to establish a local or a network connection to SQL Server 2000.

Chapter 1 Overview of SQL Server 2000 23
Lesson 3: What Is the Relational Database
Architecture?

SQL Server 2000 data is stored in databases. Physically, a database consists of two
or more files on one or more disks. This physical implementation is visible only to
database administrators, and is transparent to users. The physical optimization of
the database is primarily the responsibility of the database administrator. This topic
is discussed in Chapter 6.

Logically, a database is structured into components that are visible to users, such as
tables, views, and stored procedures. The logical optimization of the database (such
as the design of tables and indexes) is primarily the responsibility of the database
designer. The topic of logical optimization is beyond the scope of this book but is
covered in Designing Relational Database Systems (Microsoft Press, 1999, ISBN
0-7356-0634-X) by Rebecca M. Riordan.

After this lesson, you will be able to
■ Describe the SQL Server 2000 system databases

■ Describe the SQL Server 2000 physical database architecture

■ Describe the SQL Server 2000 logical database architecture

Estimated lesson time: 15 minutes

System and User Databases
Each instance of SQL Server 2000 has four system databases. Table 1.6 lists each
of these system databases and briefly describes their function.

Table 1-6. System Databases in SQL Server 2000

System Database Description

master Records all of the system-level information for a SQL Server
2000 system, including all other databases, login accounts, and
system configuration settings.

tempdb Stores all temporary tables and stored procedures created by
users, as well as temporary worktables used by the relational
database engine itself.

model Serves as the template that is used whenever a new database is
created.

msdb SQL Server Agent uses this system database for scheduling
alerts and jobs, and recording operators.

24 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
In addition, each instance of SQL Server 2000 has one or more user databases. The
pubs and Northwind user databases are sample databases that ship with SQL
Server 2000. Given sufficient system resources, each instance of SQL Server 2000
can handle thousands of users working in multiple databases simultaneously. See
Figure 1.5.

<< “F01ST05.EPS” >>

Figure 1.5. SQL Server working with multiple user databases.

Physical Structure of a Database
Each database consists of at least one data file and one transaction log file. These
files are not shared with any other database. To optimize performance and to pro-
vide fault tolerance, data and log files are typically spread across multiple drives
and frequently use a redundant array of independent disks (RAID).

Extents and Pages
SQL Server 2000 allocates space from a data file for tables and indexes in 64-KB
blocks called extents. Each extent consists of eight contiguous pages of 8 KB each.
There are two types of extents: uniform extents that are owned by a single object,
and mixed extents that are shared by up to eight objects.

A page is the fundamental unit of data storage in SQL Server 2000, with the page
size being 8 KB. In general, data pages store data in rows on each data page. The
maximum amount of data contained in a single row is 8060 bytes. Data rows are
either organized in some kind of order based on a key in a clustered index (such as
zip code), or stored in no particular order if no clustered index exists. The begin-
ning of each page contains a 96-byte header that is used to store system informa-
tion, such as the amount of free space available on the page.

Transaction Log Files
The transaction log file resides in one or more separate physical files from the data
files and contains a series of log records, rather than pages allocated from extents.
To optimize performance and aid in redundancy, transaction log files are typically
placed on separate disks from data files, and are frequently mirrored using RAID.

Chapter 1 Overview of SQL Server 2000 25
Logical Structure of a Database
Data in SQL Server 2000 is organized into database objects that are visible to users
when they connect to a database. Table 1.7 lists these objects and briefly describes
their function.

Table 1-7. Database Objects in SQL Server 2000

Database Object Description

Tables A table generally consists of columns and rows of data in a format
similar to that of a spreadsheet. Each row in the table represents a
unique record, and each column represents a field within the record.
A data type specifies what type of data can be stored in a column.

Views Views can restrict the rows or the columns of a table that are visible,
or can combine data from multiple tables to appear like a single
table. A view can also aggregate columns.

Indexes An index is a structure associated with a table or view that speeds
retrieval of rows from the table or view. Table indexes are either
clustered or nonclustered. Clustering means the data is physically
ordered based on the index key.

Keys A key is a column or group of columns that uniquely identifies a
row (PRIMARY KEY), defines the relationship between two tables
(FOREIGN KEY), or is used to build an index.

User-defined data
types

A user-defined data type is a custom data type, based on a pre-
defined SQL Server 2000 data type. It is used to make a table struc-
ture more meaningful to programmers and help ensure that columns
holding similar classes of data have the same base data type.

Stored procedures A stored procedure is a group of Transact-SQL statements compiled
into a single execution plan. The procedure is used for performance
optimization and to control access.

Constraints Constraints define rules regarding the values allowed in columns
and are the standard mechanism for enforcing data integrity.

Defaults A default specifies what values are used in a column in the event
that you do not specify a value for the column when you are insert-
ing a row.

Triggers A trigger is a special class of stored procedure defined to execute
automatically when an UPDATE, INSERT, or DELETE statement is
issued against a table or view.

User-defined functions A user-defined function is a subroutine made up of one or more
Transact-SQL statements used to encapsulate code for reuse. A
function can have a maximum of 1024 input parameters. User-
defined functions can be used in place of views and stored proce-
dures.

26 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Optimizing Logical Database Design
The logical design of the database, including the tables and the relationships
between them, is the core of an optimized relational database. Optimizing logical
database design begins with a normalized database design. Normalization is the
process of removing redundancies from the data. Normalization often involves
breaking data from a single file into two or more logical tables in a relational data-
base. For example, you can place customer detail information in one table and
place order information in another table, and then relate the two tables based on a
customer number. Transact-SQL queries can then recombine the table data by
using relational join operations, when needed. By avoiding the need to update the
same data in multiple places, normalization improves the efficiency of a client
application and reduces the opportunities for introducing errors due to inconsistent
data. Some of the benefits of normalization include

■ Faster sorting and index creation

■ A larger number of clustered indexes

■ Narrower and more compact indexes

■ Fewer indexes per table, which improves the performance of INSERT,
UPDATE, and DELETE statements

■ Fewer null values and less opportunity for inconsistency, which increase data-
base compactness

However, there are tradeoffs to normalization. A database that is used primarily for
decision support (as opposed to update-intensive transaction processing) might not
have redundant updates and might be more understandable and efficient for queries
if the design is not fully normalized. Nevertheless, data that is not normalized is a
more common design problem in database applications than overnormalized data.

Database administrators can detect problems caused by poor database design and
must work with database designers, and sometimes client and server application
designers, to optimize the overall performance of a database on an instance of SQL
Server 2000. Performance monitoring is discussed in Chapter 14.

Lesson Summary
SQL Server consists of system and user databases that are organized physically
into data and log files for each database that are placed on one or more disks. SQL
Server is organized logically into objects, such as tables, indexes, and views. Data-
base administrators optimize the physical design and database designers optimize
the logical design of databases.

Chapter 1 Overview of SQL Server 2000 27
Lesson 4: What Is the Security Architecture?

SQL Server 2000 uses two levels of security when validating a user. The first level
of security is authentication. Authentication determines whether the user has a
valid login account to connect to an instance of SQL Server 2000. The second level
of security is authorization, which is also called permission validation. Authoriza-
tion determines what activities the user can perform in which databases after being
authenticated by SQL Server 2000. Security is discussed in Chapters 10 and 11.

After this lesson, you will be able to
■ Describe the SQL Server 2000 authentication process

■ Describe the SQL Server 2000 authorization process

■ Describe the types of SQL Server 2000 logins, and when each is used

Estimated lesson time: 15 minutes

Authentication
A user cannot connect to an instance of SQL Server 2000 without first specifying a
valid login identifier (ID). A login ID is the account identifier that controls access
to an instance of SQL Server 2000. Instances of SQL Server must verify that the
login ID supplied on each connection request is authorized to access the instance.
Verification of the login ID is called authentication. SQL Server 2000 uses two
types of authentication: Windows authentication and SQL Server authentication.
When a user attempts to connect to SQL Server 2000, the user specifies the type of
authentication the connection is requesting.

Windows Authentication
A database administrator can grant permission to connect to an instance of SQL
Server 2000 to Windows 2000 and Windows NT 4.0 users and groups. If an
attempted connection specifies Windows authentication, SQL Server 2000 uses
Windows-based facilities to determine the validated network user name. SQL
Server verifies the user’s identity, and then permits or denies login access based on
that network user name alone, without requiring a separate login name and pass-
word. This is called a trusted connection.

Windows authentication leverages the Windows 2000 and Windows NT 4.0 secu-
rity system, including such features as secure validation and encryption of pass-
words, auditing, password expiration, minimum password length, and account
lockout after multiple invalid login requests.

28 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
SQL Server Authentication
A database administrator can create SQL Server login accounts and passwords.
These accounts are completely independent of any Windows 2000 or Windows NT
4.0 user account or group. If an attempted connection specifies SQL Server authen-
tication, SQL Server 2000 performs the authentication itself by checking to see
whether the SQL Server login account specified exists and whether the specified
password matches the one previously recorded in SQL Server 2000.

Note SQL Server authentication is required on instances of SQL Server 2000
installed on Windows Millennium Edition and Windows 98, and for connections by
clients not being validated by Windows 2000 and Windows NT 4.0.

Authentication Modes
SQL Server 2000 can operate in two authentication modes. The default authentica-
tion mode is Windows Authentication Mode. When SQL Server 2000 is operating
in this mode, a user can connect to SQL Server 2000 only with a previously authen-
ticated Windows 2000 or Windows NT 4.0 user account. SQL Server 2000 can also
operate in Mixed Mode. When SQL Server 2000 is operating in this mode, a user
can connect to SQL Server 2000 with either a previously authenticated Windows
2000 or Windows NT 4.0 user account, or with a valid SQL Server login account
and password. Figure 1.6 illustrates the SQL Server 2000 security decision tree.

<< “F01ST06.EPS” >>

Figure 1.6. SQL Server 2000 security decision tree.

Authorization
Once SQL Server 2000 authenticates a user, SQL Server 2000 determines whether
that login ID has been authorized to perform any activities in any databases. A
login ID by itself does not give a user permission to access objects in a database. It

Chapter 1 Overview of SQL Server 2000 29
only allows a user to proceed to the next step, which is authorization or permission
validation. This prevents a login from automatically accessing all databases on an
instance of SQL Server 2000.

User Accounts
In general, a database administrator must associate a login ID with a user ID in a
database before anyone connecting with that login ID can access objects and per-
form activities in that database. A database administrator applies security permis-
sions for the objects (for example, tables, views, and stored procedures) in a
database to user accounts. See Figure 1.7.

<< “F01ST07.EPS” >>

Figure 1.7. SQL Server database access security.

Guest User Account
If a login ID has not been explicitly associated with any user ID in a database, it is
associated with the guest user ID in that database, if one exists. If a database has a
guest user account, the login is limited to those rights granted to the guest user. If a
database has no guest user account, a login cannot access the database unless it has
been associated with a valid user account. By default, all newly created user data-
bases have no guest user account.

Roles
A database administrator uses roles to collect users into a single unit against which
to set permissions. Roles are used in much the same way as Windows 2000 and
Windows NT 4.0 groups. SQL Server 2000 provides fixed server roles and fixed
database roles with predefined server-wide or database-specific permissions. A
database administrator can also create custom user-defined database roles.

Every user in a database belongs to the public database role and has whatever per-
missions have been assigned to the public role, unless the user has been specifically
denied certain permissions. Additional rights must be granted explicitly to the user
or to a group to which the user belongs.

30 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson Summary
SQL Server uses two levels of security. The first level of security is authentication,
which controls access to SQL Server through login IDs. Two types of authentica-
tion may be used: Windows authentication and SQL Server authentication. The
second level of security is authorization, which controls access to each database.
Login IDs are mapped to user IDs in each database. These user IDs are granted per-
missions to objects at the database level.

Chapter 1 Overview of SQL Server 2000 31
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You are planning to deploy SQL Server 2000 to support Internet-based sales of
your products. You need this installation to handle a large volume of transac-
tions and be available 24 X 7. Which edition of SQL Server 2000 should you
choose?

2. You want to allow users to query SQL Server 2000 using their Internet browser
via the Internet. What components of SQL Server 2000 are required?

3. The SQL Server 2000 database environment has a physical design component
and a logical design component. As a database administrator, one of your tasks
is to optimize the performance of SQL Server 2000. With respect to which type
of database design do you have the most ability to affect performance?

4. You have an existing server application that uses SQL Server 2000 running on
Windows 2000 servers. You have clients who access this server application
using Windows 95 and Windows 98 client applications. You want to extend this
server application to clients using an existing Novell network. What type of
authentication decisions must you make?

33
C H A P T E R 2

Installing SQL Server 2000

Lesson 1: Planning to Install SQL Server 2000 . 35

Lesson 2: Deciding SQL Server 2000 Setup Configuration Options 40

Lesson 3: Running the SQL Server 2000 Setup Program 47

Lesson 4: Using Default, Named, and Multiple Instances of SQL
 Server 2000 . 58

Lesson 5: Performing Unattended and Remote Installations of
 SQL Server 2000 . 62

Lesson 6: Troubleshooting a SQL Server 2000 Installation 68

Review . 71

About This Chapter
This chapter prepares you to install SQL Server 2000. This includes determining
the computer hardware on which you will install SQL Server; determining which
SQL Server 2000 setup configuration options to select; and learning how to per-
form interactive, remote, and unattended installations of default, named, and multi-
ple instances of SQL Server 2000. It also provides you with assistance in
troubleshooting SQL Server 2000 installation problems.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of this chapter.

34 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
■ Microsoft Windows 2000 Server running on your computer on an NTFS partition.

■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ At least 400 MB of unused hard disk space available on your computer.

Chapter 2 Installing SQL Server 2000 35
Lesson 1: Planning to Install SQL Server 2000

Once you have decided to install SQL Server 2000, you need to select the appropri-
ate computer hardware for your SQL Server 2000 installation. It is important to
understand the minimum hardware requirements for each of the SQL Server 2000
editions on each supported Windows operating system edition. You must recog-
nize, however, that these minimum hardware requirements will be insufficient in
many production environments to meet either actual current or anticipated future
SQL Server requirements. This knowledge will assist you in selecting appropriate
computer hardware to optimize SQL Server 2000 performance to meet current
needs, as well as to help eliminate costly computer upgrade decisions later.

After this lesson, you will be able to
■ Describe the minimum hardware requirements for the installation of each of the

SQL Server 2000 editions on each supported Windows operating system edi-
tion

■ Determine which hardware resources are likely to be insufficient to meet the
current and anticipated future needs of your SQL Server 2000 environment

Estimated lesson time: 15 minutes

What Is the Minimum Hardware Required?
In most SQL Server 2000 production environments, actual hardware requirements
will exceed the minimum hardware requirements. However, it is still important to
understand these minimum hardware requirements as a baseline. In addition, in
some SQL Server 2000 desktop environments, meeting the minimum hardware
requirements will be sufficient to meet the needs of these environments. Table 2.1
lists the minimum hardware requirements that are common among all SQL Server
editions (other than the Windows CE edition) regardless of the Windows operating
system used.

Table 2-1. Hardware Requirements

Resource Requirement

Computer Intel or compatible

Processor Pentium 166

Display 800 X 600 for SQL Server 2000 graphical tools 640 x 480 if SQL
Server 2000 graphical tools are not used

Pointing Device Microsoft Mouse or compatible

Network Card Optional (but required for network access)

CD-ROM Required if installing from compact disc (otherwise optional)

36 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
The minimum amount of memory required varies depending upon the SQL Server
2000 edition and the Windows operating system edition used. Table 2.2 lists the
recommended minimum memory requirements based on the SQL Server edition
and the Windows operating system edition used.

Note Microsoft Internet Explorer 5.0 or later is also required for all operating
systems.

The amount of hard drive space required for an installation of any edition of SQL
Server 2000 on any Windows operating system depends upon the installation
options selected during setup. If you are upgrading from an earlier version of SQL
Server, additional space will be required to update the existing user databases.
Chapter 4 of this book covers the upgrading of earlier versions of SQL Server to
SQL Server 2000.

Table 2.3 lists the amount of hard drive space required for the installation of vari-
ous SQL Server 2000 components. These numbers assume that SQL Server must

Table 2-2. Recommended Minimum Memory Requirements for SQL Server

Enterprise
Edition

Standard
Edition

Evaluation
Edition

Developer
Editions

Personal and Desk-
top Engine Editions

Any edition
of Windows
2000 Server

256 MB
(128 MB
supported)

256 MB
(128 MB
supported)

256 MB
(128 MB
supported)

256 MB
(128 MB
supported)

256 MB
(128 MB
supported)

Any edition
of Windows
NT 4.0
Server with Ser-
vice Pack5 (SP5) or
later

128 MB
(64 MB
supported)

64 MB 128 MB
recommended
(64 MB
supported)

64 MB 32 MB

Windows
2000
Professional

N/A N/A 128 MB
recommended
(64 MB
supported)

64 MB 64 MB

Windows
NT 4.0
Workstation,
with SP5
or later

N/A N/A 128 MB
recommended
(64 MB
supported)

64 MB 32 MB

Windows
ME

N/A N/A N/A N/A 32 MB

Windows
98

N/A N/A N/A N/A 32 MB

Chapter 2 Installing SQL Server 2000 37
install all software required. Frequently, some of the required software, such as
Microsoft Data Access Components (MDAC) 2.6, is already installed. In these
cases, less actual hard drive space might be required. However, even if less actual
hard drive space is required, SQL Server 2000 setup will still enforce the hard drive
space requirements set forth in Table 2.3 and will require you to have at least this
much free hard drive space in order to successfully complete the installation of
SQL Server 2000.

When selecting the computer hardware to use for your SQL Server 2000 installa-
tion, check the Microsoft Hardware Compatibility List (HCL). SQL Server 2000
does not have its own HCL. SQL Server 2000 will run on any hardware that is cer-
tified for the Windows operating system upon which you plan to install SQL Server
2000. To obtain the most recent HCL, go to www.microsoft.com/hcl. If the com-
puter hardware used for your SQL Server 2000 installation is not on the HCL, you
risk the integrity of your data (and possibly your job). Isolating and solving prob-
lems related to computer hardware and device driver failures is far easier with
name-brand systems than it is with systems put together piece by piece. Any
money saved through the purchase of cheap computer hardware on the front end
will probably be spent many times over on the back end in resolving problems
relating to computer hardware and device driver failures.

Exceeding Minimum Computer Hardware Requirements
So far, we have talked about meeting the minimum hardware requirements for var-
ious SQL Server 2000 editions and Windows operating systems editions. In most
production SQL Server 2000 database environments, your computer hardware will
be considerably in excess of these requirements. Even if you do not exceed these
minimum hardware requirements immediately, as your databases grow, you will

Table 2-3. Hard Drive Space Requirements for SQL Server 2000

Installation Option
Selected

Hard Drive Space Required

Server and client tools 95–270 MB depending on the installation options selected

Typical installation 250 MB (178 MB on the system drive, plus 72 MB for pro-
gram and data files)

Minimum installation 110 MB (73 MB on the system drive, plus 37 MB for program
and data files)

Management tools 113 MB (system drive only)

Books Online 30 MB (system drive only)

Analysis Services 47 MB minimum 120 MB typical

English Query 80 MB

Desktop Engine only 44 MB

38 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
exceed them. It is important to understand areas in which your computer hardware
will need to be more robust.

Table 2.4 describes the four primary areas in which you will probably exceed these
minimum hardware requirements. Chapter 14 covers how to determine when your
SQL Server 2000 environment will benefit from using more robust computer hard-
ware. Chapters 5 and 6 cover how to optimize performance by using multiple
drives and RAID.

Finally, beware of using write-caching disk controllers. Unless the write-caching
disk controller is specifically designed for use with a database, you risk corrupting
your database. SQL Server 2000 relies on the Windows operating system to notify
it when an I/O operation has completed. If the write-caching disk controller notifies
the Windows operating system that a write operation has completed that never
actually completes, your database can become corrupt. This can occur if the power
fails or the reset switch is pressed on your computer before a write operation of
data that is in the cache of the disk controller has actually been written to the hard
drive. Write-caching disk controllers that are designed for databases use a number
of mechanisms to prevent this from occurring.

Table 2-4. Hardware Areas for Optimization

Hardware Considerations

Memory SQL Server 2000 uses memory to optimize performance. Having ade-
quate memory is one of the most important factors in optimizing SQL
Server 2000 performance. Adding more memory is generally one of
the quickest ways to improve performance. The upper limit on the
amount of memory you can add is generally determined by the com-
puter hardware you select. SQL Server 2000 can address up to 64 GB
of memory on appropriate computer hardware using Windows 2000
Data Center (up to 8 GB using Window 2000 Advanced Server).

Processor SQL Server 2000 can scale out to 32 processors and can scale up to
the fastest Intel processors available in the marketplace. Planning for a
fast multiprocessor system is a wise investment. SQL Server 2000 can
be very processor-intensive, depending on the nature of the queries
being processed.

Data Storage SQL Server 2000 can benefit from fast drives, from multiple drives
for different uses, and from the use of RAID. Most large production
systems use RAID to improve performance and provide fault toler-
ance.

Network SQL Server 2000 can benefit from fast network adapters and from
high-speed networks, including system area network (SAN) protocols
for very large databases. Lack of sufficient network bandwidth can be
overlooked in optimizing SQL Server 2000 performance.

Chapter 2 Installing SQL Server 2000 39
Lesson Summary
The minimum computer hardware requirements for SQL Server 2000 depend upon
the SQL Server edition and Windows operating system edition you select. In addi-
tion, selecting hardware that is certified for the Windows operating system on
which you plan to install SQL Server 2000 is critical. Finally, most SQL Server
2000 production databases will run on hardware that substantially exceeds the min-
imum hardware requirements.

40 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Deciding SQL Server 2000 Setup
Configuration Options

During the installation of SQL Server 2000, you must make a number of decisions
in determining the configuration of your SQL Server 2000 installation. This lesson
discusses each of these decisions, and provides the information required to under-
stand and choose the configuration option most appropriate for your SQL Server
2000 environment.

After this lesson, you will be able to
■ Determine the appropriate user account for the SQL Server and SQL Server

Agent services

■ Choose an authentication mode for SQL Server 2000

■ Determine when to modify default collation settings

■ Select the network libraries to use with SQL Server 2000

■ Decide on a client licensing mode

Estimated lesson time: 15 minutes

Determining the Appropriate User Account for the SQL
Server and SQL Server Agent Services
Each SQL Server 2000 service runs in the security context of a user account. Dur-
ing SQL Server 2000 setup, you will be asked to specify the user account for the
SQL Server and SQL Server Agent services. Two choices are available. You can
select either the local system account or a domain user account. Generally, each of
these services will use the same user account. Rarely can a case be made for using
different accounts for each of these services.

The local system account is a Windows 2000 or Windows NT 4.0 operating system
account with full administrator rights on the local computer. However, this account
has no network access rights. This account is appropriate for use in many testing
environments, as well as in production environments where SQL Server 2000 does
not need to be integrated with other Microsoft server applications such as
Microsoft Exchange Server or need to access any network resources, such as file
shares. This account is used by default for the Distributed Transaction Coordinator
service and the Microsoft Search service. Most Windows 2000 and Windows NT
4.0 operating system services also use this account.

However, in most client/SQL Server 2000 production environments, you will cre-
ate and use a dedicated domain user account for the SQL Server and SQL Server
Agent services. Selecting a dedicated domain user account allows these SQL

Chapter 2 Installing SQL Server 2000 41
Server 2000 services to communicate with other SQL Server installations, access
Microsoft Exchange Server, and access network resources (such as file shares) on
other computers in your domain environment. In addition, you should generally
use the same domain user account for all SQL Server installations that will need to
communicate with each other. This will simplify the administration of all SQL
Server 2000 computers in your domain.

Using a dedicated user account means creating a domain user account that is used
solely for the SQL Server and SQL Server Agent services. This domain user
account should be configured with the Password Never Expires option. The domain
user account you create needs certain special access rights on the local computer,
but does not need to be a member of the Administrators local group and does not
need to be a domain administrator. These special access rights include the right to
log on as a service, the right to access and change the SQL Server folder, the right
to access and change database files, and read and write access to certain keys in the
Windows registry. The SQL Server 2000 Setup program grants these rights auto-
matically to the domain user account you specify. Certain additional rights might
be required for specific tasks, such as performing certain types of jobs or register-
ing your SQL Server 2000 installation with Active Directory directory services.
These rights, and the tasks that require them, will be covered in Chapters 12 and
13. You will need to grant these additional rights manually, if you require these fea-
tures.

Note Windows ME and Windows 98 do not support the use of Windows services.
SQL Server and SQL Server Agent run as executable programs on these Windows
platforms. A domain user account is not required in these environments.

Practice: Creating a Dedicated Windows 2000 User Account
In this practice you use Active Directory Users And Computers to create and con-
figure a dedicated Windows 2000 user account.

� To configure a dedicated domain user account

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Administrative Tools, and then click
Active Directory Users And Computers.

3. The Active Directory Users And Computers window appears.

4. In the console tree, expand SelfPacedSQL.MSFT.

5. Right-click Users, point to New, and then click User.

The New Object - User dialog box appears.

6. In the First Name text box, type SQLService.

7. In the User Logon Name text box, type SQLService, and then click Next.

42 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
8. In the Password and Confirm Password text boxes, type sql.
9. Select the Password Never Expires check box, and then click Next.

10. Click the Finish button.

11. In the console tree, click Users.

The details pane displays a list of all users in the Users container.

12. Verify that the SQLService domain user account has been created.

13. Close Active Directory Users And Computers.

Choosing an Authentication Mode
SQL Server 2000 supports two authentication modes, Windows Authentication
Mode and Mixed Mode. The default authentication mode for SQL Server 2000 is
Windows Authentication Mode. When this mode is used, the only users who can
connect to SQL Server 2000 are users who have been previously authenticated by
the Windows operating system. This is called Windows Authentication. When Win-
dows Authentication is used, SQL Server accepts trusted connections from the
Windows operating system.

The alternative authentication mode is Mixed Mode. This means that SQL Server
2000 will use one of two methods of authentication. The first method is to rely on
the Windows operating system to authenticate users. The second method is for
SQL Server 2000 to authenticate users directly based on the submission of a user
name and password to SQL Server 2000 by the client application attempting to
gain access. This is called SQL Server Authentication.

Note When the Personal Edition of SQL Server 2000 is installed on Windows
ME or Windows 98, SQL Server authentication must be used. This is because the
server side of the trusted connection API is not supported on these Windows oper-
ating systems.

For most SQL Server 2000 environments, Windows Authentication Mode should
be used. It provides the highest level of security, including password encryption,
and is easier to administer in a domain environment. The SQL Server 2000 authen-
tication mode can be changed after installation, as well as during setup. Managing
SQL Server 2000 security is covered in Chapter 10. This includes a discussion of
environments in which the use of Mixed Mode security might be necessary.

Determining Collation Settings
The default collation for SQL Server 2000 is defined during setup. A collation is
used to determine how non-Unicode character data is stored and also governs how
SQL Server 2000 sorts and compares Unicode and non-Unicode data. A SQL
Server 2000 collation consists of a Windows collation and a SQL collation.

Chapter 2 Installing SQL Server 2000 43
Tip Unicode allows data from most languages to be recorded, but takes twice as
much space as non-Unicode data. Non-Unicode data only supports 256 characters,
and is specific to a particular language.

The place to start in understanding SQL Server 2000 collations is the Windows
operating system. When you install a Windows operating system, you install a ver-
sion for the language you want to use, such as English, Greek, or Russian. Differ-
ent languages require different characters, and therefore different code pages (also
referred to as character sets), to support these character sets and associated key-
board layouts. Based on the version of the Windows operating system that you
have installed, a Windows locale is set. The Windows locale also determines set-
tings for numbers, currencies, times, and dates. When you install SQL Server 2000,
the Setup program determines a default Windows collation for SQL Server 2000
based on the Windows locale of the Windows operating system on which you are
installing SQL Server 2000.

Although this might initially seem complicated, determining the Windows colla-
tion to use for SQL Server 2000 is generally quite straightforward. Allow the SQL
Server 2000 Setup program to determine the default Windows collation based on
the Windows locale of the Windows operating system unless:

■ The primary language being supported by the SQL Server 2000 instance you
are installing is different from the Windows locale of the computer on which
you are installing SQL Server 2000, or

■ The SQL Server 2000 instance you are installing will be participating in a repli-
cation scheme with SQL Server 2000 instances supporting a different collation.
You need to ensure, in this case, that the collation selected by Setup uses the
same code page as the other instances of SQL Server included in the replication
scheme. In this environment, setting collation at the database level is also an
option.

The next step is to understand that SQL Server 2000 uses a SQL collation to match
settings used in previous versions of SQL Server. This is necessary because earlier
versions of SQL Server specified code page number, character sort order, and Uni-
code collation separately. A SQL collation specifies three collation attributes:

■ The non-Unicode code page. Tells SQL Server 2000 how to store non-Uni-
code character data.

■ The non-Unicode sort order. Tells SQL Server 2000 how to sort non-Uni-
code character data types, such as sensitivity to capitalization.

■ The Unicode sort order. Tells SQL Server 2000 how to sort Unicode data
types.

44 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
When the SQL Server 2000 Setup program detects that SQL Server 2000 is being
installed on a computer with an English locale setting in the Windows operating
system and on which no prior version of SQL Server has been installed, the Setup
program automatically chooses the dictionary order, case-insensitive character sort
order, for use with the 1252 character set. These match the default settings for SQL
Server 7.0.

If you are installing an instance of SQL Server 2000 on a computer that has SQL
Server 6.5 or 7.0 installed, the SQL Server 2000 Setup program will determine a
SQL collation for SQL Server 2000 based on the code page, sort order, and Uni-
code collation settings in the earlier version of SQL Server (including collations
that are obsolete). Most combinations of these settings are supported, but not all.
Use a Custom setup to modify the collation setting selected by the SQL Server
2000 Setup program.

The final step is to understand that SQL Server collations are settable at multiple
levels. You set a default collation (which consists of a Windows collation and a
SQL collation) for an instance of SQL Server 2000. This default collation is the
collation setting for all system databases. The model database, all user databases,
and all other SQL Server 2000 objects inherit this default collation setting, unless a
different collation is specified for the database or object. In international environ-
ments, having different collations for different databases can solve numerous issues
involving the use of multiple languages and character sets.

Practice: Determining Your Windows Collation
In this practice, you use Control Panel to determine your Windows collation.

1. To determine your Windows collation

2. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

3. Click Start, point to Settings, and then click Control Panel.

The Control Panel window appears.

4. Double-click the Regional Options icon.

5. The Regional Options dialog box appears with the General tab selected.

6. In the Your Locale (Location) drop-down list, determine your Windows locale.

English (United States) is the locale used by the author.

7. Click OK to close the Regional Options dialog box. Do not change your Win-
dows locale.

8. Close the Control Panel window.

Chapter 2 Installing SQL Server 2000 45
Selecting Network Libraries
SQL Server 2000 uses network libraries to send network packets between clients
and a server running SQL Server 2000. These network libraries are implemented as
DLLs and perform network operations using specific interprocess communication
(IPC) mechanisms (such as shared memory, named pipes, and RPCs). There are
client-side network libraries and server-side network libraries. These client and
server network libraries support specific underlying network protocols. For exam-
ple, the TCP/IP sockets network library allows SQL Server 2000 to communicate
using Windows sockets as the IPC mechanism across the TCP/IP network protocol.
The installation of these network protocols is part of your Windows operating sys-
tem configuration and should be completed prior to installing SQL Server 2000.

A server running SQL Server 2000 monitors all configured network libraries
simultaneously for incoming communication from clients seeking to gain access.
By default, SQL Server 2000 installed on any Windows 2000 or Windows NT 4.0
operating system monitors TCP/IP sockets and named pipes (and shared memory
for local clients). All additional network libraries are installed during setup, but are
not configured for use, unless specified during a Custom setup. For a complete list
of supported network libraries, see Chapter 1. If you need to configure server net-
work libraries after setup, use the Server Network Utility from the Microsoft SQL
Server program group or from the SQL Server properties dialog box in SQL Server
Enterprise Manager. Configure additional server network libraries only if they are
needed in your network environment, such as to support clients on a Novell net-
work.

Note Server-side named pipes are not supported on Windows ME and Windows
98. Clients must use TCP/IP sockets to connect to SQL Server 2000 running on
these operating systems.

SQL Server 2000 clients initiate communication with a server running SQL Server
2000 using a specific network library. You can configure multiple network libraries
on SQL Server 2000 clients, and you can define the order in which the Windows
operating system will attempt to use each network library when connecting with
SQL Server 2000. By default, all SQL Server 2000 clients running Windows 2000,
Windows NT 4.0, Windows ME, or Windows 98 use the TCP/IP sockets as the pri-
mary network library and named pipes as the secondary network library. If you
need to manually configure a client-side network library to communicate with a
specific SQL Server installation, use the Client Network Utility from the Microsoft
SQL Server program group (provided the client software has been installed on the
computer).

The SQL Server 2000 client software handles the complexities of establishing a
connection with a server running SQL Server 2000 automatically. The network
name of the computer on which the SQL Server 2000 instance is running (and
instance name if applicable) is all that is needed to establish the connection, assum-
ing matching network libraries exist.

46 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
More Info If a SQL Server 2000 client needs to connect to a named instance of
SQL Server 2000, TCP/IP sockets, named pipes, or NWLink IPX/SPX must be
used. Named instances are covered in Lesson 4 of this chapter.

You can use the Server Network Utility to enable SSL encryption over all enabled
network libraries. SQL Server 2000 can then use the SSL to encrypt all data trans-
mitted over any network library between a SQL Server 2000 client and a server
running SQL Server 2000. The encryption level, 40-bit versus 128-bit, depends on
the level of encryption supported by the Windows operating system involved. The
multiprotocol network library supports its own encryption using the Windows RPC
encryption API rather than SSL. This encryption mechanism is primarily for back-
ward compatibility and multiprotocol encryption does not support named
instances. Use the more secure SSL, rather than multiprotocol encryption, when-
ever possible.

Deciding on a Client Licensing Mode
SQL Server 2000 supports two client licensing modes: per processor and per seat.
With per-processor licensing, you need a license on the server running SQL Server
2000 for each processor on the computer. If this client licensing mode is selected, no
additional licenses are needed for any clients connecting to this installation of SQL
Server 2000. This client licensing mode is intended to be most cost-effective for
installations with large numbers of users, particularly anonymous Internet users.

With per-seat licensing, each client connecting to an installation of SQL Server
2000 must have a separate Client Access License (CAL). This client licensing
mode is intended to be most cost-effective for installations with a small to medium
number of defined users connecting to more than one server.

Lesson Summary
During the installation of SQL Server 2000, you must decide the appropriate user
account to use for the SQL Server and the SQL Server Agent services. Generally, a
domain user account is used if either of these services must communicate across
the network. You must also decide the authentication mode for SQL Server 2000.
Window Authentication Mode is the default configuration, where SQL Server 2000
will only accept trusted connections from the Windows operating system. In addi-
tion, you must decide if the default collation determined by the SQL Server 2000
Setup program is appropriate for your environment. In most cases, you will not
modify the default collation. You might also want to configure additional network
libraries in certain environments. Finally, you must elect to use per-processor or
per-seat licensing for your SQL Server 2000 installation. Your choice will gener-
ally be determined based on the type and quantity of clients accessing your SQL
Server 2000 installation.

Chapter 2 Installing SQL Server 2000 47
Lesson 3: Running the SQL Server 2000 Setup
Program

After you have selected your SQL Server 2000 edition, and installed the Windows
operating system you have decided to use, you are ready to install SQL Server
2000 by running the SQL Server 2000 Setup program. This lesson covers running
the SQL Server 2000 Setup program interactively to install an instance of SQL
Server 2000 on the local computer. The details of default, named, and multiple
instances are covered in Lesson 4 of this chapter. Remote and unattended installa-
tions are covered in Lesson 5 of this chapter. Upgrading from earlier versions of
SQL Server is covered in Chapter 4, and installing SQL Server 2000 on a virtual
server for failover clustering is covered in Chapter 16.

After this lesson, you will be able to
■ Understand how to start the SQL Server 2000 Setup program

■ Understand the difference between the Client Tools Only, the Server and Client
Tools, and Connectivity Only installation types

■ Describe the components that are installed and the software configuration
options that are selected when a Typical or a Minimum setup is selected

■ Determine when to select a Custom setup

Estimated lesson time: 30 minutes

Running the SQL Server 2000 Setup Program
There are several ways to start the SQL Server 2000 Setup program for an interac-
tive installation of SQL Server 2000. The easiest way to begin is to simply insert
the SQL Server 2000 compact disc into the CD-ROM drive. From the initial dialog
box, you can install SQL Server 2000, Analysis Services, or English Query by
clicking on SQL Server 2000 Components. The initial dialog box presents a num-
ber of additional options, including providing access to the setup/upgrade portion
of Books Online, the Release Notes, and SQL Server Web site at Microsoft. Dou-
ble-clicking on Autorun.exe in the root of the CD-ROM also accesses this initial
dialog box. After clicking SQL Server 2000 Components, click Install Database
Server to start the SQL Server 2000 Setup program. See Figure 2.1.

Note You can also start the SQL Server 2000 Setup program by double-clicking
on Setupsql.exe in the \X86\Setup folder.

48 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F02ST01.EPS” >>

Figure 2.1. Selecting SQL Server 2000 components to install.

Understanding Installation Types
After you choose to create a new instance of SQL Server 2000 on your local com-
puter (instances and remote installations are covered later in this chapter and
upgrades are covered in Chapter 4), you can select Client Tools Only, Server and
Client Tools, or Connectivity Only. MDAC 2.6 is installed with each of these
installation types. MDAC 2.6 is required to connect to named instances of SQL
Server 2000. Choose Connectivity Only to install network libraries for client con-
nectivity. This requires approximately 50 MB of hard drive space. If you select this
option, you have no choice to install any client management tools, Books Online,
or any server components. See Figure 2.2.

Chapter 2 Installing SQL Server 2000 49
<< “F02ST02.EPS” >>

Figure 2.2. Defining the installation type.

Choose Client Tools Only when you need to install client management tools, as
well as connectivity software, to connect to and administer an existing server run-
ning SQL Server 2000. Selecting this option installs all the client management
tools, the client connectivity components, Books Online, and an interface for stored
procedure debugging. If you select the Client Tools Only option, you can choose to
install additional development tools and code samples. You can also choose not to
install Books Online or some of the client management tools. See Figure 2.3.

Choose Server and Client Tools when you need to install a server running SQL
Server 2000, as well as connectivity software and client management tools. Select-
ing this option allows you to install SQL Server 2000 in its entirety with all avail-
able tools and components.

50 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F02ST03.EPS” >>

Figure 2.3. Selecting components of SQL Server.

Selecting a Setup Type
When you select an installation of Server and Client Tools, you can select to install
a Typical, Minimum, or Custom setup. The default location for program and data
files for each of these setup types is \Program Files\Microsoft SQL Server. If this
default location is low on available hard drive space, consider moving the program
and data files to another location. Click Browse to specify a new location for pro-
gram files and for data files. They do not need to be in the same location. See Fig-
ure 2.4.

If you select Typical or Minimum, you are presented with these three additional
choices. The SQL Server 2000 Setup program makes all other choices for you.

Chapter 2 Installing SQL Server 2000 51
<< “F02ST04.EPS” >>

Figure 2.4. Choosing the setup type.

Choice Options

Services Accounts Select the local system account or a domain user account for the SQL
Server and SQL Server Agent services. You can also select whether
you want either or both of these services to start automatically with
the operating system (Windows 2000 and Windows NT 4.0 only).
See Figure 2.5.

Authentication Mode Windows Authentication Mode (default) or Mixed Mode. If Mixed
Mode is selected, you are prompted to provide a password for the sa
login account. This account is a SQL Server login account that has
full system administration privileges. You should never install SQL
Server in Mixed Mode without setting (and recording in a secure
location) the password for the sa login. See Figure 2.6.

Choose Licensing
Mode

Per Seat or Processor License. See Figure 2.7.

52 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F02ST05.EPS” >>

Figure 2.5. Selecting the logon account for services.

<< “F02ST06.EPS” >>

Figure 2.6. Choosing the authentication mode.

Note The Licensing Mode option is not available when installing the Enterprise
Evaluation edition. Per seat is the licensing mode for the Enterprise Evaluation
edition.

Chapter 2 Installing SQL Server 2000 53
<< “F02ST07.EPS” >>

Figure 2.7. Choosing the licensing mode.

If you choose a Custom setup, additional choices are available to you. Through the
use of a Custom installation, you can

■ Install additional development tools (headers and libraries, MDAC SDKs, and
backup/restore APIs)

■ Install code samples (15 different types of code samples are available)

■ Choose specific components to install or not install

■ Change the default collation settings to match the collation of another instance
of SQL Server or the Windows locale of another computer

■ Select and configure additional network libraries for use with a default SQL
Server instance

■ Change the default named pipe (default is \\ \pipe\Mssql\sql\query <file://
\\pipe\Mssql\sql\query> for the default instance)

■ Change the default TCP/IP sockets port number (default is 1433 for the default
instance and is dynamically assigned at startup for named instances)

■ Define the proxy server address, if you set SQL Server to listen on a proxy
server

See Figures 2.8, 2.9, and 2.10.

54 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F02ST08.EPS” >>

Figure 2.8. Selecting components in a Custom setup.

<< “F02ST09.EPS” >>

Figure 2.9. Changing default collation settings.

Chapter 2 Installing SQL Server 2000 55
<< “F02ST00.EPS” >>

Figure 2.10. Selecting network libraries.

Table 2.5 lists the components installed with each setup type.

Table 2-5. Installed Components

Component Minimum Typical Custom

Database server Yes Yes Optional

Upgrade tools No Default instance only Optional

Replication support Yes Yes Optional

Full-text search Yes Yes Optional

Management tools None Yes Optional

Client connectivity Yes Yes Optional

Books Online No Yes Optional

Development tools None Stored procedure debugger
only

Choice of tools

Code samples None None Choice of samples

Collation settings Determined by setup Determined by setup Choice of collation settings

Network libraries TCP/IP sockets and named
pipes

TCP/IP sockets and named
pipes

Choice of additional network
libraries

56 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Practice: Installing a Default Instance of SQL Server 2000
In this practice you install a default instance of SQL Server 2000, using the
Microsoft SQL Server 2000 Evaluation Edition.

� To install a default instance of SQL Server 2000

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Insert the SQL Server 2000 compact disc into the CD-ROM drive.

The Microsoft SQL Server 2000 Evaluation Edition page appears.

3. Click SQL Server 2000 Components, and then click Install Database Server.

The Welcome page for the Microsoft SQL Server Installation Wizard appears.

4. Click Next.

The Computer Name page appears with Local Computer selected.

5. Click Next.

The Installation Selection page appears with Create A New Instance Of SQL
Server, Or Install Client Tools selected.

6. Click Next.

The User Information page appears.

7. Type your name in the Name text box (if it does not already appear there), and
then click Next.

The Software License Agreement page appears displaying the 120-day Evalua-
tion License for Microsoft SQL Server 2000.

8. Click the Yes button.

The Installation Definition page appears with Server And Client Tools selected.

9. Click Next.

The Instance Name page appears with the Default check box selected.

10. Click Next.

The Setup Type page appears with Typical selected.

11. Click Next.

The Services Accounts dialog box appears with Use The Same Account For
Each Service. Auto Start SQL Server Service. selected. Use A Domain User
Account is also selected.

12. In the Username text box, type SQLService.

13. In the Password text box, type sql.
14. In the Domain text box, verify SelfPacedSQL appears, and then click Next.

The Authentication Mode page appears with Windows Authentication Mode
selected.

Chapter 2 Installing SQL Server 2000 57
15. Click Next.

The Start Copying Files page appears.

16. Click Next.

The SQL Server 2000 Setup program will start installing SQL Server 2000
beginning with the MDAC. When the SQL Server 2000 Setup program is com-
plete, the Setup Complete page will appear.

17. Click the Finish button.

Lesson Summary
The SQL Server 2000 Setup program provides installation types for Client Tools
Only, Server and Client Tools, and Connectivity Only. Use Connectivity Only to
install only MDAC 2.6 and network libraries. Use Client Tools Only to install
MDAC 2.6, client management tools, connectivity, and Books Online. Use Server
and Client Tools to install a server running SQL Server 2000, MDAC 2.6, all client
management tools, connectivity, and Books Online.

The SQL Server 2000 Setup program provides a Typical, Minimum, or Custom
setup type when the server and client tools installation type is selected. Selecting a
Typical or Minimum setup type makes most of the installation decisions for you.
Select a Custom setup type if you want full control of which components are
installed and how they are configured.

58 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 4: Using Default, Named, and Multiple
Instances of SQL Server 2000

SQL Server 2000 supports the installation of multiple instances (or copies) of SQL
Server 2000. This capability allows you to have sets of system and user databases
that are independent of each other. This capability allows you to work with earlier
versions of SQL Server already installed on your computer, to test development
software, and to operate instances of SQL Server 2000 independent of each other.
This lesson teaches you how to install and work with default and named instances
of SQL Server 2000. This lesson also covers what components are shared between
instances of SQL Server.

After this lesson, you will be able to
■ Install multiple named instances of SQL Server 2000

■ Understand when the use of multiple instances is recommended

■ Understand what components are unique between instances and what compo-
nents are shared

■ Work with default and named instances of SQL Server 2000

Estimated lesson time: 15 minutes

Installing Multiple Instances of SQL Server 2000
When you install SQL Server 2000, you have the option to define the installation as
the default instance or as a named instance. A named instance simply means that
you define a name for an instance during installation and that you access that
instance using this name. You can only have one default instance, but you can have
many named instances. A default instance can be an installation of SQL Server 6.5,
SQL Server 7.0, or SQL Server 2000. A named instance can only be an installation
of SQL Server 2000.

When you run the SQL Server 2000 Setup program, it will detect whether a default
instance already exists on the computer. If a default instance is not detected, the
Setup program allows you to choose to install a default or a named instance. To
install a named instance, clear the Default check box. See Figure 2.11.

Chapter 2 Installing SQL Server 2000 59
<< “F02ST11.EPS” >>

Figure 2.11. Installing a named instance.

If a default instance already exists, you have several choices depending upon the
version of SQL Server that is installed as the default instance. Upgrading from ear-
lier versions of SQL Server is covered in Chapter 4.

■ If the default instance is a SQL Server 2000 installation, you can install a
named instance of SQL Server 2000.

■ If the default instance is a SQL Server 7.0 installation, you can choose to
upgrade the default instance to SQL Server 2000 or install a named instance of
SQL Server 2000.

■ If the default instance is a SQL Server 6.5 installation, you can install SQL
Server 2000 as the default instance or as a named instance. If you install it as
the default instance, you can use the version switch (Vswitch.exe) utility to
switch between SQL Server 6.5 and SQL Server 2000. You must install SQL
Server 6.5 SP5 to any instance of SQL Server 6.5 before you install an instance
of SQL Server 2000 on the same machine.

Using Multiple Instances of SQL Server 2000 Effectively and
Appropriately
Using multiple instances of SQL Server 2000 increases administration overhead
and causes a duplication of components. These additional instances of the SQL
Server and SQL Server Agent services require additional computer resources,
namely memory and processing capacity. Running multiple databases in a single
instance will provide superior performance compared to running a similar number
of databases in multiple instances.

Using multiple instances is appropriate when testing multiple versions of SQL
Server on the same computer. It is also appropriate when testing service packs and
development databases and applications. Using multiple instances is also particu-
larly appropriate when different customers each require their own system and user

60 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
databases along with full administrative control of their particular instance. Finally,
when the desktop engine is embedded in applications, each application can install
its own instance independent of instances installed by other applications.

Understanding Shared Components Between Instances
Table 2.6 lists the components that are shared between all instances when you install
multiple instances of SQL Server. These components are shared regardless of
whether the default instance is SQL Server 6.5, SQL Server 7.0, or SQL Server 2000.

Understanding Unique Components Between Instances
When you install multiple instances of SQL Server 2000 (or SQL Server 2000 and
either SQL Server 6.5 and 7.0), system and user databases are unique and com-
pletely independent of each other. There is no direct connection between system or
user databases in one instance and system and user databases in another instance.
These databases function as if they were residing on separate SQL Server installa-
tions.

Each instance has its own SQL Server and SQL Server Agent services. For the
default instance, the names of these services are MSSQLServer and SQLServer-
Agent. For named instances, the names of these services are MSSQL$instance-
name and SQLAgent$instancename. The database engine for each instance is
configured completely independently of any other instance. Jobs on one instance
have no knowledge of and do not interact with jobs on any other instance.

Table 2-6. Shared Components in Multiple Instances of SQL Server

Component Description

Client management tools
and utilities (and their
associated registry keys)

All instances of SQL Server on a computer share the same version of all client man-
agement tools and utilities (and their associated registry keys). These tools and util-
ities work with all instances. The version of the tools and utilities will be the
version from the first SQL Server 2000 version installed on the computer. If SQL
Server 6.5 or 7.0 is already installed on the computer that you install SQL Server
2000 on, the SQL Server 6.5 or 7.0 client management tools and utilities are
upgraded to SQL Server 2000 client management tools and utilities.

Books Online All instances of SQL Server on a computer share the same version of SQL Server
Books Online and that will be the one from the first version of SQL Server 2000
installed. If instances from multiple languages are installed, Books Online will be
in the language of the first SQL Server 2000 version installed. If any earlier version
of SQL Server was on the computer, that version of Books Online will be upgraded.

Microsoft Search service
Distributed Transaction
Coordinator

There is only one instance of the Microsoft Search service. There is only one
instance of the Distributed Transaction Coordinator service.

Chapter 2 Installing SQL Server 2000 61
Working with Default and Named Instances of SQL
Server 2000
Each instance of SQL Server 2000 listens on a unique set of network addresses.
The default instance listens on the same network address as earlier versions of SQL
Server. Therefore, client applications using client connectivity components from
earlier versions of SQL Server can connect to SQL Server 2000 without an upgrade
of those connectivity components. However, in order to connect to named
instances, client applications must use the SQL Server 2000 connectivity compo-
nents, or the client connectivity components must be configured to connect to alter-
nate addresses appropriate to the particular named instance involved. The SQL
Server 2000 connectivity components allow client applications to automatically
detect the network libraries and network addresses required to connect to default or
named instances. The only information that must be provided by the client applica-
tion is the name of the computer, and the instance name if applicable.

Lesson Summary
SQL Server 2000 supports the installation of multiple instances of SQL Server
2000. This means that multiple instances of the SQL Server and SQL Server Agent
services, as well as system and user databases, are supported. This allows multiple
versions of SQL Server to coexist. However, only one version of SQL Server tools
and utilities is supported. SQL Server 2000 tools and utilities replace tools and util-
ities from earlier versions of SQL Server, even if the earlier version is not
upgraded. Use multiple instances only where appropriate, such as testing new ver-
sions of SQL Server or development databases and applications.

62 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 5: Performing Unattended and Remote
Installations of SQL Server 2000

SQL Server 2000 supports unattended installations of SQL Server 2000, as well as
installations of SQL Server 2000 on remote computers. Each of these installation
options uses the same underlying structure. This lesson teaches how to use the SQL
Server 2000 Setup program to perform each of these types of installations.

After this lesson, you will be able to
■ Perform an unattended installation of SQL Server 2000

■ Create setup initialization files for SQL Server 2000

■ Perform a remote installation of SQL Server 2000

Estimated lesson time: 45 minutes

Performing an Unattended Installation of SQL Server 2000
Performing an unattended installation of SQL Server 2000 has been made very
simple with SQL Server 2000. The process involves running a batch file that calls a
setup initialization (ISS) file. The .ISS file contains all setup entries for the options
you require for your SQL Server 2000 installation. The command-prompt syntax
for performing an unattended setup and calling a setup initialization file is as fol-
lows:

Start /Wait D:\X86\Setup\Setupsql.exe k=SMS –s –m –SMS –f1
“C:\Setup.iss”

Note The preceding command must be entered as a single line. Change the drive
letter, if required, to refer to your CD-ROM drive.

Creating Setup Initialization Files for SQL Server 2000
There are three ways to create setup initialization files for SQL Server 2000 unat-
tended installations. First, the SQL Server 2000 Setup program provides an option
in the Advanced Options page to record an unattended .ISS file. If you select this
option, you then proceed through the interactive Setup program and select the
installation options you want. See Figure 2.12. These options are then recorded in
this .ISS file and stored in the \Winnt folder.

SQL Server 2000 is not actually installed during this process. This .ISS file can
later be used as is, or can be modified by any text editor. SQL Server 2000 Books
Online provides detailed information regarding each entry in an .ISS file.

Chapter 2 Installing SQL Server 2000 63
<< “F02ST12.EPS” >>

Figure 2.12. Selecting Advanced Options.

The second way to create a setup initialization file is to use one of the three .ISS
files provided on the SQL Server 2000 compact disc (in the root directory). You
can use these files as is, or you can modify them using any text editor. Microsoft
has provided the following files.

The third way to create a setup initialization file is to modify the Setup.iss file that
is automatically recorded each time you install SQL Server 2000. This file is
placed in the \Winnt directory. This file is a complete record of the choices you
made when you installed SQL Server 2000. In order to use this file, you must mod-
ify it using any text editor and add the [SdFinish-0] section. Refer to any of the
setup initialization files on the SQL Server 2000 compact disc or use SQL Server
2000 Books Online for examples of how to complete this section. This corresponds
to the Setup Complete dialog box in the interactive setup.

Setup Initialization
File Name

Calling Batch
File Name

Type of
Installation

Sqlins.iss Sqlins.bat Typical installation of SQL Server 2000

Sqlcli.iss Sqlcli.bat Installation of client tools only

Sqlcst.iss Sqlcst.bat Custom installation of SQL Server 2000
including all components

64 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Practice: Performing an Unattended Installation of a Named
Instance of SQL Server 2000
In this practice you perform an unattended installation of a named instance of SQL
Server 2000.

� To perform an unattended installation of a named instance of SQL Server
2000

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Insert the SQL Server 2000 compact disc into the CD-ROM drive.

The Microsoft SQL Server 2000 Evaluation Edition page appears.

3. Click SQL Server 2000 Components, and then click Install Database Server.

The Welcome page for the Microsoft SQL Server Installation Wizard appears.

4. Click Next.

The Computer Name page appears with Local Computer selected.

5. Click Next.

The Installation Selection page appears with Create A New Instance Of SQL
Server, Or Install Client Tools selected.

6. Select Advanced Options and then click Next.

The Advanced Options page appears with Record Unattended .ISS File
selected.

7. Click Next.

The User Information page appears with your name in the Name text box.

8. Click Next.

The Software License Agreement page appears displaying the 120-day Evalua-
tion License for Microsoft SQL Server 2000.

9. Click the Yes button.

The Installation Definition page appears with Server And Client Tools selected.

10. Click Next.

The Instance Name page appears with the Default check box grayed out.

11. In the Instance name text box, type MyNamedInstance, and then click Next.

The Setup Type page appears with Typical selected.

12. Click Next.

The Services Accounts page appears with Use The Same Account For Each
Service. Auto Start SQL Server Service. selected. Use A Domain User Account
is also selected.

13. In the Username text box, type SQLService.

14. In the Password text box, type sql.

Chapter 2 Installing SQL Server 2000 65
15. In the Domain text box, verify that SelfPacedSQL appears, and then click Next.

The Authentication Mode page appears with Windows Authentication Mode
selected.

16. Click Next.

The Setup Information page appears.

17. Click Next.

18. Click Per Seat for 1 device and then click Continue.

The Setup Complete page appears stating that the unattended installation file is
ready to be created.

19. Click the Finish button.

20. Using Windows Explorer, locate the Setup.iss file in C:\Winnt.

21. Right-click Setup.iss, point to Open With, and then click Notepad.

22. Review the entries and then close Setup.iss.

23. Right-click the Windows 2000 taskbar and then click Task Manager.

The Windows Task Manager dialog box appears.

24. Click the Performance tab to observe the CPU Usage and MEM Usage bar
graphs during the installation.

25. Click Start, point to Accessories, and then click Command Prompt.

The command Prompt window appears.

26. At the command prompt, type start /wait d:\x86\setup\setupsql.exe k=SMS –
s –m –SMS –f1 “c:\winnt\setup.iss”.
These paths assume that your CD-ROM drive is D and that your Windows 2000
installation is C:\Winnt. If your paths are different, change the pathnames
accordingly.

27. Click OK.

A command-prompt window appears and an unattended installation of a named
instance of SQL Server 2000 commences. Setup is complete when the com-
mand-prompt window closes. This should take between five and ten minutes. If
the command-prompt window closes very quickly, you have typed the com-
mand incorrectly.

28. Close the Windows Task Manager dialog box when setup is complete.

Performing a Remote Installation of SQL Server 2000
SQL Server 2000 supports performing an installation of SQL Server 2000 onto a
remote computer by running the SQL Server 2000 Setup program on the local
computer and identifying the computer on which you want SQL Server 2000 to be
installed. The remote computer is specified on the Computer Name page during
installation. See Figure 2.13.

66 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F02ST13.EPS” >>

Figure 2.13. Installing an instance of SQL Server 2000 on a remote computer.

The Setup program must be able to establish a connection to this remote computer.
You must be logged on using a domain user account that has permission to access
the remote computer. After the SQL Server 2000 Setup program establishes a con-
nection to this remote computer, you must specify a logon account that has permis-
sion to install SQL Server 2000 on the remote computer, namely an account with
full administrative permissions on the remote computer. You must also specify a
target path for the installation files and a source path for the setup files. You enter
this information on the Remote Setup Information page during installation. See
Figure 2.14.

Chapter 2 Installing SQL Server 2000 67
<< “F02ST14.EPS” >>

Figure 2.14. Entering Remote Setup information.

The SQL Server 2000 Setup program records all of your installation choices into a
Setup.iss file. It then copies all necessary files to the remote computer and per-
forms an unattended setup on the remote computer using this Setup.iss file. To the
administrator running the Setup program, installing SQL Server 2000 on a remote
computer is substantially the same as installing SQL Server 2000 on the local com-
puter using the interactive Setup program.

Lesson Summary
SQL Server 2000 supports performing unattended installations of SQL Server
2000. This is convenient if you need to install identical (or similar) installations on
numerous computers. The SQL Server 2000 Setup program provides an option to
record a Custom setup initialization file for use in unattended installations. The
SQL Server 2000 compact disc also provides several customized setup initializa-
tion files. SQL Server 2000 supports remote installations of SQL Server 2000
using the same structure used for unattended installations.

68 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 6: Troubleshooting a SQL Server 2000
Installation

The SQL Server 2000 Setup program is designed to detect potential problems dur-
ing installation and prompt the administrator to solve them. This includes shutting
down certain programs that interfere with installation, detecting insufficient disc
space, and restarting the computer if certain files are locked. The Setup program
will display informational messages as necessary during setup and wait for the
problem to be solved by the administrator. However, problems can still occur dur-
ing an installation of SQL Server. This lesson covers where to look to find the
source of these errors. This includes reviewing all relevant log files and accessing
SQL Server 2000 troubleshooter information online.

After this lesson, you will be able to
■ Review SQL Server 2000 Setup program log files

■ Access SQL Server 2000 troubleshooting information online

■ Review the SQL Server error log and Windows application log

Estimated lesson time: 15 minutes

Reviewing SQL Server 2000 Setup Program Log Files
The SQL Server 2000 Setup program generates several informational files that may
be used in isolating problems relating to a failed setup. These are the Sqlstp.log, the
Setup.log, and the SearchSetup.log files. Any text editor can read these files. The
Sqlstp.log file is located in the \Winnt or \Windows folder and logs errors encoun-
tered during the configuration portion of the Setup program. The Setup.log file is
also located in the \Winnt or \Windows folder and logs the completion or failure of
setup, and records any relevant information. The SearchSetup.log file is located in
the \Winnt\Temp folder and logs errors encountered during the configuration of the
Microsoft Search service. These three files are primarily useful for Microsoft Prod-
uct Support; however, reviewing them might give you some clue regarding where
setup is failing.

Note Installing (or partially installing) an instance of SQL Server 2000 on your
computer overwrites any existing versions of these information files.

Chapter 2 Installing SQL Server 2000 69
Accessing SQL Server 2000 Troubleshooting Information
Online
Microsoft’s Product Support Services (PSS) provides online troubleshooters that
are designed to help you resolve problems you might encounter when installing an
edition of SQL Server 2000. The online troubleshooter leads you through a series
of questions to attempt to isolate the problem and provide you with up-to-date
information regarding solving the problem. These troubleshooters cover a wide
range of problems, not just problems related to setup. These online troubleshooters
are available from the Microsoft Web site at http://Support.Microsoft.com /Support/
SQL/Tshooter.asp. The Microsoft Web site, MSDN, and TechNet also contain
Knowledge Base articles that contain up-to-date information regarding SQL Server
2000 setup problems.

Reviewing the SQL Server Error Log and the Windows
Application Log
The SQL Server 2000 error log is frequently the most useful place to look for error
messages related to SQL Server 2000 setup problems. Many SQL Server 2000 sys-
tem events and user-defined events are logged in the SQL Server 2000 error log.
This includes information related to setup. The Setup program starts and stops SQL
Server 2000 during installation and logs this process, including any errors. Each
instance of SQL Server 2000 has its own log file. A new log file is created each
time SQL Server 2000 starts. For the default instance, the current log file is \Pro-
gram Files\Microsoft SQL Server\Mssql\Log\Errorlog. For a named instance, the
current log file is \Program Files\Microsoft SQL Server\Mssql$Instance-
Name\Log\Errorlog. You can view these logs using SQL Server Enterprise Man-
ager or any text editor. By default, the six most recent error log files are saved with
extension numbers reflecting the most recent file. You can modify the number of
previous logs saved by right-clicking SQL Server Logs in SQL Server Enterprise
Manager and then clicking Configure. You can also cycle the error log file without
stopping and restarting the SQL Server service by using the sp_cycle_errorlog sys-
tem stored procedure. This is useful on a busy system where the error log file can
become quite large.

The Windows application log in Event Viewer is also a useful place to look for
error messages related to SQL Server 2000 setup problems. The Windows applica-
tion log records information, warning, and error messages related to applications
running on the Windows operating system. Information in the Windows application
log combined with information in the SQL Server 2000 error log, each of which
time-stamps all recorded events, can help you narrow down and isolate the proba-
ble cause of problems. You can isolate SQL Server events in the Event Viewer
application log by clicking on the View menu, pointing to Filter Events, and then
selecting MSSQLSERVER in the Source list.

70 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Note It is useful to become familiar with the pattern of information in each of
these logs when SQL Server 2000 has been installed successfully to quickly differ-
entiate events that indicate a problem.

Practice: Reviewing the SQL Server Error Log and the
Windows Application Log
In this practice you review the SQL Server Error log and the Windows Application
log.

� To review the SQL Server error log and the Windows application log

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Using Windows Explorer, locate the Errorlog file in the C:\Program
Files\Microsoft SQL Server\Mssql\Log folder.

3. Right-click Errorlog and then click Open With.

The Open With dialog box appears.

4. Click Notepad and then click OK.

The contents of the current error log appear in Notepad. Review the entries
related to the startup of SQL Server 2000. Become familiar with typical entries.

5. Click Start, point to Programs, point to Administrative Tools, and then click
Event Viewer.

6. In the console root, click Application.

In the details pane, the contents of the Application Log appear. Review the
entries related to the startup of SQL Server 2000. Become familiar with typical
entries. Notice that entries for both of your SQL Server 2000 instances appear
here.

7. Close Windows Explorer, Notepad, and Event Viewer.

Lesson Summary
A SQL Server installation does not fail frequently. When it does fail, several log files
record information to help determine the source of the failure. The SQL Server error
log and the Windows application log are the most useful of these log files to the data-
base administrator. Microsoft also provides online troubleshooters and Knowledge
Base articles to help an administrator determine and resolve problems.

Chapter 2 Installing SQL Server 2000 71
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You have decided to install SQL Server 2000 on a test computer to evaluate the
new features available. You have a Pentium III 400-MHz laptop with 96 MB of
memory. Will this laptop be sufficient for testing the new features of SQL
Server 2000?

2. You are installing SQL Server 2000. You want SQL Server 2000 to be able to
use your Microsoft Exchange Server to notify you when jobs succeed or fail.
What type of account should you use for the SQL Server and SQL Server
Agent services?

3. You are installing SQL Server 2000. You have a mixed network of computers
including Windows NT servers and Novell servers. Your network supports both
TCP/IP and NWLink IPX/SPX. Should you perform a typical or a Custom
setup?

4. You are installing SQL Server 2000. You have heard that SQL Server 2000 allows
you to install SQL Server 2000 side by side with SQL Server 7.0. If you install
SQL Server 2000 as a named instance, what issues should you be aware of?

72 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
5. You are installing SQL Server 2000. You plan to install identical configurations
on multiple computers to test the configuration’s performance on different
hardware platforms. You do not want to click your way through the SQL Server
2000 interactive Setup program each time you install SQL Server 2000. What
should you do?

6. You have installed SQL Server 2000 on a test computer for evaluation. You had
a problem initially starting the SQL Server service due to a logon failure. You
solved the problem. You want to review the SQL Server error log related to the
failure to start the SQL Server service. Can you do this, and if so, how?

73
C H A P T E R 3

Preparing to Use SQL Server 2000

Lesson 1: Reviewing the Results of Installation . 74

Lesson 2: Starting, Stopping, Pausing, and Modifying SQL Server
 2000 Services . 85

Lesson 3: Working with Osql, SQL Query Analyzer, and SQL Server
 Enterprise Manager . 93

Review . 105

About This Chapter
This chapter prepares you to use instances of SQL Server 2000 after an installation.
You will begin with reviewing the results of the installation of SQL Server 2000.
Next, you learn about controlling (starting, stopping, pausing, and modifying) the
SQL Server services. Finally, you learn to work with the main graphical and com-
mand-prompt administration tools. After you have completed these tasks, you will
be ready to begin administering SQL Server 2000.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS partition.

■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default and at least one named instance of SQL Server 2000 (see
Chapter 2).

74 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Reviewing the Results of Installation

After you have installed SQL Server 2000, it is important to familiarize yourself
with the results of the installation. This includes reviewing the SQL Server 2000
files and folders in the file system, the SQL Server 2000 registry entries in the Win-
dows registry, and the SQL Server 2000 programs in the Microsoft SQL Server
program group on the Start menu. It also includes understanding the installation
result differences between a default instance and a named instance at both the file
system and the Windows registry levels. Perhaps most importantly, it is critical to
understand the default security permissions set on the NTFS file system file struc-
ture and Windows registry keys. Improper or inadequate permissions can cause
problems that you might need to troubleshoot.

After this lesson, you will be able to
■ Use Windows Explorer to examine the files and folders added to the file system

for the default or a named instance of SQL Server 2000

■ Use Registry Editor to examine the registry entries that were added to the Win-
dows 2000 registry for the default or a named instance of SQL Server 2000

■ Understand the default security permissions set on folders and registry keys for
the domain user account used for the SQL Server and SQL Server Agent ser-
vices

■ Know which SQL Server 2000 programs are available from the Start menu

Estimated lesson time: 45 minutes

What Files and Folders Were Added?
After a new installation of SQL Server 2000 (not an upgrade), the default folder
location for all files and folders added to the Windows file system is the \Program
Files\Microsoft SQL Server folder on the same partition as the Windows operating
system. Within this folder, two subfolders are created. The first subfolder is called
80. This folder and its subfolders contain the shared files that are common between
all instances of SQL Server 2000. The location for this folder cannot be changed.
This folder contains tools, utilities, and SQL Server 2000 Books Online. Table 3.1
lists these shared folders and briefly describes their contents.

Note Deleting any of the files or folders listed in Table 3.1 might cause SQL
Server 2000 to lose functionality or data, and might require that you uninstall and
then reinstall SQL Server 2000 to regain that functionality.

Chapter 3 Preparing to Use SQL Server 2000 75
The SQL Server 2000 Setup program also creates a second folder containing pro-
gram and data files that are unique for each SQL Server 2000 instance. The default
location for this folder is \Program Files\Microsoft SQL Server; however, you can

Table 3-1. Contents of the Shared Folders in the \Program Files\Microsoft
 SQL Server\80 Folder

Folder Contents Description

\Program Files\Microsoft
SQL Server\80\Com

Contains DLLs for COM objects, including the replication
DLLs and executable programs.

\Program Files\Microsoft
SQL
Server\80\Com\Resources

Contains Run Length Limited (RLL) resource files used by
the DLLs in the Com folder. The subfolder number within this
folder will vary depending upon the localized version; 1033 is
for U.S. English.

\Program Files\Microsoft
SQL Server\80\Tools\Binn
and \Program Files\Microsoft
SQL Server\80\Tools\Binn\
Resources

Contains all of the shared SQL Server 2000 client administra-
tive executable programs and their associated DLLs, RLLs,
and Help files. It also contains a few miscellaneous shared
files, such as the default SQL Server Enterprise Manager
MMC console.

\Program Files\Microsoft
SQL Server\80\Tools\Books

Contains SQL Server 2000 Books Online files, including SQL
Server 2000 online Help files.

\Program Files\Microsoft
SQL Server\80\Tools\Dev-
Tools

Contains files and sample programs for use by developers.
The exact contents of this folder will vary depending upon the
choices you made during installation. You can choose to
install additional files and programs for developers during a
custom setup.

\Program Files\Microsoft
SQL Server\80\Tools\Html

Contains HTML, JScript, and Graphics Interchange Format
(GIF) files used by SQL Server 2000 Books Online and by
SQL Server Enterprise Manager.

\Program Files\Microsoft
SQL Server\80\Tools\Scripts

Contains Transact-SQL scripts by SQL Query Analyzer for
object searches.

\Program Files\Microsoft
SQL Server\80\Tools\Tem-
plates\Dts

Contains the DTS demonstration template file, Template
Demo.dtt. This is a partially configured DTS package for
copying data between an OLE DB data source and an OLE
DB data destination. Templates are read-only files for use in
creating packages.

\Program Files\Microsoft
SQL Server\80\Tools\Tem-
plates\SQL Profiler

Contains default template files with a variety of trace defini-
tions for use with SQL Profiler. These template files have a
.tdf file extension.

\Program Files\Microsoft
SQL Server\80\Tools\Tem-
plates\SQL Query Analyzer

Contains boilerplate files with Transact-SQL scripts for per-
forming a variety of administrative tasks, such as creating a
table or managing linked servers. These template files have a
.tql file extension.

76 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
change this default during setup. This is also the default location for all newly cre-
ated user databases for the SQL Server instance. The folder name for the default
instance is Mssql and for a named instance is Mssql$InstanceName. Program file
settings and databases for each instance are unique and are contained in this sepa-
rate subfolder tree.

Table 3.2 lists the program and data folders that are unique to each instance and
briefly describes their contents. For convenience, the folder paths for the default
instance installed in the default location are used in this table. For a named
instance, substitute Mssql$InstanceName for Mssql in the folder path.

Table 3-2. Program and Data Folders That Are Unique to Each Instance of
 SQL Server 2000

Folder Contents Description

\Program Files\Microsoft SQL Server
\Mssql\

Contains information required to properly
uninstall SQL Server 2000. It also includes the
subfolders described below.

\Program Files\Microsoft SQL Server
\Mssql\Backup

Contains all backup files that were saved to the
default location.

\Program Files\Microsoft SQL Server
\Mssql\Binn and \Program Files \Microsoft
SQL Server\Mssql\Binn \Resources

Contains all of the unique SQL Server 2000
executable programs and their associated
DLLs and RLLs. This folder also contains
DLLs for extended stored procedures.

\Program Files\Microsoft SQL Server
\Mssql\Data

Contains the SQL Server 2000 system and
sample user database files. This is also the
default location for all user-created databases.

\Program Files\Microsoft SQL Server
\Mssql\Ftdata

Contains the SQL Server 2000 full-text search
catalog files.

\Program Files\Microsoft SQL Server
\Mssql\Install

Contains all of the Transact-SQL scripts used
by the SQL Server 2000 Setup program. This
includes the scripts to reinstall the Northwind
or Pubs databases, if desired. It also contains a
Setup.iss file that captured the interactive
installation choices you made during setup.

\Program Files\Microsoft SQL Server
\Mssql\Jobs

The storage location for temporary job output
files.

\Program Files\Microsoft SQL Server
\Mssql\Log

Contains the SQL Server and SQL Server
Agent error log files. This folder contains the
current logs, as well as a number of previous
error log files.

\Program Files\Microsoft SQL Server
\Mssql\Repldata

The default working location for replication
tasks, including the storage of snapshot files
used in replication tasks.

Chapter 3 Preparing to Use SQL Server 2000 77
Figure 3.1 shows the hierarchy of the folder structure explained in Table 3.2.

<< “F03ST01.EPS” >>

Figure 3.1. Hierarchy of the program and data folders that are unique to each instance of
SQL Server 2000.

What Permissions Were Set in the NTFS File System
When SQL Server 2000 is installed on an NTFS partition, the Setup program sets
access permissions to the Mssql or Mssql$InstanceName subfolder structure that
holds the program and data files for each instance. The Setup program ensures that
only the SQL Server and SQL Server Agent domain user accounts and members of
the local Administrators group have read or write access to this folder structure.
See Figure 3.2.

The SQL Server services domain user account requires Full Control permission on
all files and folders in this subfolder tree for these SQL Server services to function
properly. The SQL Server services using the local system account have Full Con-
trol permission because the local system account, by design, is a member of the
local Administrators group. Only the SQL Server services domain user account and
members of the local Administrators group have modify, write, or delete permis-
sions to this folder structure, so unauthorized users are prevented from tampering

\Program Files\Microsoft SQL Server
\Mssql\Repldata\Ftp

The working location for the storage of repli-
cation snapshot files when using the Internet
and supporting anonymous subscribers.

\Program Files\Microsoft SQL Server
\Mssql\Upgrade

Contains the files required for a version
upgrade from SQL Server 6.5 to SQL Server
2000. Only the default instance contains this
folder and these files.

Table 3-2. Program and Data Folders That Are Unique to Each Instance of
 SQL Server 2000

Folder Contents Description

78 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
with the program and data files. This is another one of many good reasons to use
the NTFS file system.

<< “F03ST02.EPS” >>

Figure 3.2. Permissions set for the Mssql$MyNamedInstance subfolder.

Note By default, authenticated users can read and execute all files in the Program
Files folder tree, but have no permission to write, modify, or delete any of these
files. The Setup program modifies this default, but only for the Program and Data
Files folders, granting Full Control permissions on these folders to the domain user
account used by the SQL Server services.

Practice: Reviewing the Files and Folders That Were
Created
In this practice you use Windows Explorer to review the files and folders that were
created by the SQL Server 2000 Setup program, and their permissions.

� To review the files and folders that were created

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Accessories, and then click Windows
Explorer.

The Windows Explorer window appears.

Chapter 3 Preparing to Use SQL Server 2000 79
3. In the console tree, expand My Computer, expand Local Disk (C), expand Pro-
gram Files, and then expand Microsoft SQL Server.

Notice that there are three subfolders named 80, Mssql, and Mssql$MyNamed-
Instance. The 80 folder holds the common files. The other two folders contain
the program and data files for the default instance and the named instance that
we called MyNamedInstance.

4. In the console tree, expand 80, expand Tools, and then click Binn.

5. On the View menu, click Details.

Notice that the full details of all files in the Binn folder appear in the details
pane.

6. On the Tools menu, click Folder Options.

The Folder Options dialog box appears with the General tab selected.

7. On the View tab, click the Like Current Folder button.

The Folder Views message box appears.

8. Click the Yes button.

All folders will now display all file details by default.

9. Click OK to close the Folder Options dialog box.

10. In the details pane, click the Type column to sort by type and then review the
client administrative tools executable programs (applications).

Most of these tools will be covered in detail later in this book.

11. In the console tree, expand Mssql and then click Binn.

12. In the details pane, click the Type column and then review the SQL Server 2000
executable programs (applications).

Most of these programs will be covered in detail later in this book. Notice the
Sqlservr.exe and Sqlagent.exe programs. These are the executable versions of
the SQL Server and the SQL Server Agent services.

13. In the console tree, expand Mssql$MyNamedInstance.

Compare this folder structure to the folder structure for Mssql. Notice that there
is no Upgrade folder. This folder only exists for the default instance.

14. In the console tree, right-click Mssql and then click Properties.

The Mssql Properties dialog box appears with the General tab selected.

15. Click the Security tab.

Notice that only the SQLService domain user account that we are using as the
service account for the SQL Server and SQL Server Agent services for this
instance and members of the local Administrators group have permissions to
this folder and its subfolders.

16. Click Cancel to close the Mssql Properties dialog box.

17. In the console tree, right-click 80 and then click Properties.

The 80 Properties dialog box appears with the General tab selected.

80 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
18. Click the Security tab.

Notice that all authenticated users have permission to read, list, and execute
files in this folder and all subfolders, but have no permission to write, modify,
or delete files. This includes the SQL Server services domain user account.
Only members of the Administrators and Server Operators local group, the Cre-
ator Owner group, and the System group have additional rights to this folder
and its subfolders.

19. Click Cancel to close the 80 Properties dialog box, and then close Windows
Explorer.

What Registry Keys Were Added
When you install SQL Server 2000, the Setup program adds registry keys to the
Windows registry related to the shared files and services, and related to the unique
program and data files for each instance. Registry keys related to the shared files
and services are added to the following locations for all SQL Server 2000
instances:

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL
Server\80

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSDTC

■ HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\MSSQLServerADHelper

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client

Registry keys relating to the unique program and data files for the default instance
are added at and under the following locations:

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer

■ HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\MSSQLServer

Registry keys relating to the unique program and data files for a named instance are
added at and under the following locations:

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL
Server\InstanceName

■ HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\MSSQL$Instancename

Figure 3.3 shows some of these registry keys.

Chapter 3 Preparing to Use SQL Server 2000 81
<< “F03ST03.EPS” >>

Figure 3.3. The MSSQLServer registry key added by the SQL Server Setup program.

What Permissions Were Set on Registry Keys
When adding these registry keys, the SQL Server Setup program generally limits
read or write access to these keys to the SQL Server services domain user account
and members of the local Administrators group (and sometimes the System group).
For certain keys, read access is granted to authenticated users and members of the
local Power Users group. In addition, owners of objects may have access to sub-
keys through the Creator Owner group if they are granted permission to create
objects. By default, the SQL Server services domain user account and members of
the local Administrators group have Full Control access to these registry keys and
their subkeys. For the default instance, the Setup program specifically limits access
to all registry keys at or under the following registry keys:

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer
\MSSQLServer

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer \Provid-
ers

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Setup

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer \Replica-
tion

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer
\SQLServerAgent

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer \Track-
ing

■ HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\MSSQLServer

82 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
For a named instance, the Setup program similarly limits access to all registry keys
at or under the following registry keys:

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ Microsoft SQL
Server\InstanceName

■ HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
MSSQL$InstanceName

Note Because the registry structure for the default instance is different than for a
named instance (for compatibility with previous versions of SQL Server), the
Setup program has to set permissions on more individual keys for the default
instance than for a named instance. For a named instance, it only has to set permis-
sions on two keys and let the permissions flow down to all keys under those keys.

Figure 3.4 shows permissions on the MYNAMEDINSTANCE registry key.

<< “F03ST04.EPS” >>

Figure 3.4. Permissions on the MYNAMEDINSTANCE registry key.

Note You must use the Regedt32.exe version of the Registry Editor to view the per-
missions on registry keys, rather than the Regedit.exe version of Registry Editor.

Finally, for any instance of SQL Server 2000, the SQL Server services domain user
account requires read and write access to the following existing registry keys. The
Setup program grants the SQL Server services domain user account read and write
permissions to all registry keys at or under the following existing registry keys:

■ HKEY_LOCAL_MACHINE\SOFTWARE\Clients\Mail

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\Current-
Version\Perflib

Chapter 3 Preparing to Use SQL Server 2000 83
Inadequate permissions to these registry keys will cause mail-related and perfor-
mance monitoring-related failures.

Practice: Reviewing Permissions on Registry Keys
In this practice you use Registry Editor to verify the permission set by the SQL
Server 2000 Setup program on certain registry keys.

� To review permissions on registry keys

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start and then click Run.

The Run dialog box appears.

3. In the Open drop-down combo box, type regedt32 and then click OK.

The Registry Editor appears.

4. On the Window menu, click HKEY_LOCAL_MACHINE on Local Machine.

5. In the console tree, expand SOFTWARE, expand Microsoft, and then expand
Microsoft SQL Server.

Notice the 80 registry key. This key is common to the default and all named
instances. This key relates to the shared files. Also notice the MyNamedIn-
stance key. This key relates to the unique program and data files for your named
instance.

6. In the console tree, click MyNamedInstance.

7. On the Security menu, click Permissions.

The Permissions For MyNamedInstance dialog box appears. Notice that only
the SQLService domain user account and the local Administrators group have
full control access to this registry key.

8. Click Cancel.

9. In the console tree under SOFTWARE\Microsoft, expand Windows NT, expand
CurrentVersion, and then click Perflib.

10. On the Security menu, click Permissions.

Notice that only the local Administrators group, the SQLService domain user
account, and the System group have permission to write to this registry key.
The Interactive and Server Operators group has permission to read this registry
key. In addition, owners of objects may have permission on subkeys through the
Creator Owner group.

11. Click Cancel.

12. Close the Registry Editor.

84 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
What Programs Were Added to the Start Menu
When you install SQL Server 2000, the Setup program adds the SQL Server 2000
programs used most frequently to the Start menu. See Figure 3.5. Most of these
programs were introduced in Chapter 1. Chapter 2 covered the use of the Client
Network Utility and the Server Network Utility. SQL Server Service Manager,
SQL Server Enterprise Manager, and SQL Query Analyzer are covered in Lessons
2 and 3 of this chapter. Configuring SQL XML support will be discussed in Chap-
ter 12. Importing and exporting of data will be discussed in Chapter 7, and SQL
Profiler will be discussed in Chapter 14.

<< “F03ST05.EPS” >>

Figure 3.5. SQL Server 2000 programs added to the Start menu by the Setup program.

Lesson Summary
The SQL Server 2000 Setup program installs SQL Server 2000 files into a number
of different folder structures. One folder structure (\Program Files\Microsoft SQL
Server\80) contains the files common to all SQL Server 2000 instances on the com-
puter. Another folder structure (either \Program Files\Microsoft SQL
Server\MSSQL or \Program Files\Microsoft SQL Server\Mssql$InstanceName)
contains the program and data files unique to the particular SQL Server 2000
instance. On an NTFS partition, the Setup program secures the folder structure
containing the program and data file folders by limiting access permissions to this
folder structure to the SQL Server services domain user account and members of
the local Administrators group. In addition, the Setup program adds and limits
access to a number of keys in the Windows registry. It also ensures that the SQL
Server services domain user account has write access to two existing registry keys.
Finally, the Microsoft SQL Server program group is created containing shortcuts to
the most commonly used SQL Server 2000 executable programs and wizards, as
well as to Books Online.

Chapter 3 Preparing to Use SQL Server 2000 85
Lesson 2: Starting, Stopping, Pausing, and
Modifying SQL Server 2000 Services

During the installation of SQL Server 2000 on Windows 2000 or Windows NT 4.0,
the SQL Server services were installed and configured. After setup is complete, it
is important to familiarize yourself with the default configuration of these SQL
Server services. A number of tools are provided by SQL Server 2000 as well as by
Windows 2000 or Windows NT 4.0 for this purpose. These tools are also used to
start, stop, pause, and modify these SQL Server services. You need to become pro-
ficient in the use of these tools. Finally, changing the SQL Server or SQL Server
Agent service account after setup must be done properly, or you might have NTFS
permissions problems or Windows registry permissions problems.

After this lesson, you will be able to
■ Understand the default configuration for each SQL Server 2000 service

■ Use several different tools to start, stop, pause, and modify SQL Server services

■ Change the service account after setup

Estimated lesson time: 45 minutes

What Is the Default Configuration for Each SQL Server
Service?
During the installation of SQL Server 2000, the Setup program gave you the option
to define parameters for the SQL Server and SQL Server Agent services. Remem-
ber that each instance of SQL Server 2000 has its own version of each of these two
services, each with its own parameters. The first parameter defined for each of
these services is the startup type. By default, the SQL Server service is configured
to start automatically with the Windows operating system, whereas the SQL Server
Agent service is configured to be started manually. The second parameter defined
for each of these services during setup is the service account for each service. By
default, the same defined domain user account is used for each of these services.
The domain user account of the administrator installing SQL Server 2000 is the
default of the Setup program; however, using a dedicated domain user account is
highly recommended.

The Setup program configures the parameters of the MS DTC and Microsoft
Search services automatically. Remember that there is only one version of each of
these services for all instances of SQL Server 2000. By default, each is configured
to start automatically with the Windows operating system and to use the local sys-
tem account. A domain user account is not required because neither of these ser-
vices needs authentication beyond the local server.

86 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Note There is one additional service called the MSSQLServerAdHelper service.
This service is used to communicate with Active Directory directory services and
is covered in Chapter 12.

Starting, Stopping, and Pausing SQL Server 2000 Services
Before you can use a SQL Server 2000 service, the service must be started. The
SQL Server 2000 Setup program starts the MS DTC and Microsoft Search services
if they are not already running, and leaves them running. It starts the SQL Server
service during installation to configure this instance of the SQL Server service, but
leaves this service stopped when installation is complete. The Setup program does
not start the SQL Server Agent service during installation.

Note The terms SQL Server service and SQL Server Agent service are used to
refer generically to these services, regardless of whether the services of the default
instance or a named instance are being referred to. The names of these services for
the default instance are MSSQLServer and SQLServerAgent. The names of these
services for each named instance are MSSQL$InstanceName and
SQLAgent$InstanceName.

There are several different tools to start, stop, or pause SQL Server services. SQL
Server Service Manager is perhaps the most commonly used tool. SQL Server Ser-
vice Manager is located in the Microsoft SQL Server program group, as well as the
Windows Startup group. When this application is launched, it installs itself as a
taskbar application, and appears to the left of the taskbar clock. Once started, SQL
Server Service Manager will always appear on the taskbar unless you right-click its
icon and click Exit. The SQL Server Service Manager always displays the state of
the default service when initially started. Services are polled, by default, every five
seconds to verify their current state.

When you double-click the SQL Server Service Manager taskbar tray icon, you can
start, stop, or pause SQL Server services on each instance of SQL Server 2000
installed on the computer. See Figure 3.6.

Notice that by setting or clearing a check box, you can also configure whether a
given service starts automatically when the Windows operating system starts.
When you choose to pause or stop a service, you receive a confirmation box.

Chapter 3 Preparing to Use SQL Server 2000 87
<< “F03ST06.EPS” >>

Figure 3.6. The SQL Server Service Manager dialog box.

You can disable this confirmation box by right-clicking the icon, clicking Options,
and then clearing the Verify Service Control Action check box. See Figure 3.7.

<< “F03ST07.EPS” >>

Figure 3.7. The SQL Server Service Manager Options dialog box.

Notice that you can also change the default service that is displayed when SQL
Server Service Manager starts, as well as modify the polling interval in seconds.

Note The SQL Server Service Manager taskbar icon changes slightly to reflect
the SQL Server service being displayed. Also, if you look closely, you can see a
red pulse flash on and off at the lower right of its icon corresponding to how often
the service is being polled.

There are a number of additional methods of controlling the state of SQL Server
services. SQL Query Analyzer and SQL Profiler provide a check box option in the
Connect To SQL Server dialog box to start a selected SQL Server instance if it is
stopped. See Figure 3.8.

SQL Server Enterprise Manager allows you to start, stop, or pause a registered
SQL Server 2000 instance by right-clicking on the instance and selecting the
desired state. See Figure 3.9.

The Services MMC in Windows 2000 and the Services applet in Windows NT 4.0
also allow you to start, stop, or pause any SQL Server 2000 service. Finally, SQL
Server Enterprise Manager, the Services MMC, and the Services applet also allow
you to configure whether a particular SQL Server service starts automatically, as
well as other configuration parameters.

88 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F03ST08.EPS” >>

Figure 3.8. Starting a stopped SQL Server instance when connecting.

<< “F03ST09.EPS” >>

Figure 3.9. Options on the context menu for starting, stopping, or pausing SQL Server.

You can also use the NET command to start, stop, and pause SQL Server services
from a command prompt; for example, NET START MSSQLServer or NET
START SQLServerAgent. You can also start an instance of SQL Server or SQL
Server Agent as an application by double-clicking on it in Windows Explorer or by
typing the name of the executable at a command prompt (provided it is not already
running as a service). The names of these applications are: Sqlservr and Sqlagent.
To stop either of these services running as an application, press CTRL+C in the
Command Prompt window.

Note Any of the preceding tools can also be used to control the state of SQL
Server services on remote computers that you have permission to administer.

Chapter 3 Preparing to Use SQL Server 2000 89
Practice: Starting SQL Server Services
In this practice you start several SQL Server services using different tools.

� To start SQL Server services

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Service Manager.

The SQL Server Service Manager dialog box appears. In the Server drop-down
combo box, SelfPacedCPU appears with SQL Server displayed in the Services
drop-down list as the default service. This dialog box shows that the SQL
Server service is configured to auto-start when the operating system starts, and
the status line indicates that it is stopped.

Note The service will not be stopped if you have rebooted your computer
since you installed SQL Server 2000.

3. Click the Start/Continue button (green triangle) to start the SQL Server service.

The status line indicates that the SQL Server service on your computer is start-
ing, and then indicates that it is running.

4. In the Services drop-down list, change the displayed service to SQL Server
Agent.

The dialog box changes to display the status of the SQL Server Agent service.
Notice that this service is not configured to start automatically, and that the sta-
tus line indicates this service is stopped.

5. Select the Auto-Start Service When OS Starts check box.

6. Click the Start/Continue button to start the SQL Server Agent service.

The status line indicates that the SQL Server Agent service on your computer is
starting, and then indicates that it is running.

7. In the Server drop-down combo box, change the server to display your named
instance.

The dialog box changes to display the status of the SQL Server Agent service
for SelfPacedCPU. The service is stopped and is not configured to start auto-
matically.

8. Select the Auto-Start Service When OS Starts check box, but do not start the
SQL Agent service.

9. Close the SQL Server Service Manager dialog box.

Notice that the SQL Server Service Manager icon remains on the taskbar.

10. Click Start, point to Programs, point to Accessories, and then click Command
Prompt.

The Command Prompt window appears.

90 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
11. Type net start and then press ENTER.

A list of all started Windows 2000 services is displayed. Notice that
MSSQLSERVER and SQLSERVERAGENT are both started. Also notice that
the Distributed Transaction Coordinator and Microsoft Search services are also
started.

12. Type net start sqlagent$mynamedinstance and then press ENTER.

Notice that the SQL Server Agent service for your named instance starts. The
SQL Server service is also started because the SQL Server Agent service
requires the SQL Server service to also be running. Finally, notice that the SQL
Server Service Manager icon on the taskbar indicates that the SQL Server
Agent service for this instance is started.

13. Close the Command Prompt window.

14. On the taskbar, right-click the SQL Server Service Manager icon, and then
click Options.

The SQL Server Service Manager Options dialog box appears.

15. Clear the Verify Service Control Action check box, and then click OK.

Changing the SQL Server or SQL Server Agent Service
Account After Setup
If you want to change the service account used by the SQL Server or SQL Server
Agent services after setup, you must use SQL Server Enterprise Manager to ensure
the proper functioning of these SQL Server services and SQL Server 2000. You
launch SQL Server Enterprise Manager by clicking Start, pointing to Programs,
pointing to Microsoft SQL Server, and then clicking Enterprise Manager. When
you use SQL Server Enterprise Manager to change the service account of the SQL
Server or SQL Server Agent services, SQL Server Enterprise Manager ensures that
proper permissions are set in the NTFS file system and in the Windows registry for
this new service account. SQL Server Enterprise Manager also ensures that this
service account is granted the following required user privileges: log on as a ser-
vice, lock pages in memory (used for AWE), and enable trusted for delegation
(required for impersonation). If you use the Services MMC in Windows 2000 or
the Services applet in Windows NT 4.0, some of these permissions and privileges
are not set.

Note When you change the service account, the permissions in the NTFS file sys-
tem and the Windows registry held by a domain user account previously used are
not removed. You should either remove them manually, or disable (or delete) the
domain user account previously used if no other service is using this domain user
account.

Chapter 3 Preparing to Use SQL Server 2000 91
If you are running the SQL Server service under a non-administrator account, when
you attempt to change either the SQL Server or the SQL Server Agent service
account (or its password), you are prompted to supply the name and password of an
administrator account. This account is used to apply the required permissions and
privileges to the NTFS file system and the Windows registry. See Figure 3.10.

<< “F03ST10.EPS” >>

Figure 3.10. Supplying the name, password, and domain of an administrator account.

In addition, changing the SQL Server service domain user account in SQL Server
Enterprise Manager is required for proper use and administration of the Microsoft
Search service by SQL Server 2000. Although this service runs in the security con-
text of the local system account, the SQL Server service must be registered as an
administrator of the Microsoft Search service for SQL Server 2000 to use and
administer the Microsoft Search service. For this relationship to be maintained
when a change occurs in the service account used by the SQL Server service, the
change in the service account must be made using SQL Server Enterprise Manager.

92 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson Summary
The SQL Server 2000 Setup program configures the SQL Server service to start
automatically when the Windows operating system starts, but configures the SQL
Server Agent service to start manually. To use SQL Server 2000 after installation,
you must manually start the SQL Server service (unless you restart the Windows
operating system). Several tools are provided that you can use to start any of the
SQL Server services. SQL Server Service Manager is the tool used most fre-
quently. Finally, changing the service account used by the SQL Server or SQL
Server Agent service should only be done using SQL Server Enterprise Manager.
This ensures the proper setting of all permissions and privileges in the NTFS file
system and the Windows registry.

Chapter 3 Preparing to Use SQL Server 2000 93
Lesson 3: Working with Osql, SQL Query
Analyzer, and SQL Server Enterprise Manager

After you have installed SQL Server 2000, reviewed the results of the installation,
and started the SQL Server service, you are ready to begin working with the pri-
mary SQL Server 2000 administration tools and utilities. These are Osql, the pri-
mary command-prompt utility, and SQL Query Analyzer and SQL Server
Enterprise Manager, the primary graphical tools for querying and administering
SQL Server 2000. As a database administrator, you will use these tools daily and
need to become very familiar with their use.

After this lesson, you will be able to
■ Use Osql to connect to, query, and administer SQL Server 2000

■ Use SQL Query Analyzer to connect to, query, and administer SQL Server
2000

■ Use SQL Server Enterprise Manager to connect to and administer SQL Server
2000

Estimated lesson time: 45 minutes

Working with Osql
Osql is a 32-bit command-prompt utility used to query an instance of SQL Server
2000 interactively using Transact-SQL statements, system procedures, and script
files. It is also used to submit batches and jobs, including operating system com-
mands, to SQL Server 2000. Use the GO command to signal the end of a batch and
tell the SQL Server service to process the batch. By default, results are formatted
and returned to the console, but can also be sent to a text file. Use QUIT or EXIT to
close Osql and return to a command prompt. Osql uses the ODBC API to commu-
nicate with SQL Server 2000. Osql is frequently used to test basic connectivity to
SQL Server 2000.

Note Osql replaces Isql, which was used by SQL Server 6.5 and earlier versions
of SQL Server. Isql uses the DB-Library API rather than the ODBC API. Although
Isql ships with SQL Server 2000, it is used mainly for backward compatibility and
does not support all features supported by Osql, including named instances.

When using Osql to connect to SQL Server 2000, there are many arguments that
you can pass as part of your connection string. Be aware that arguments passed to
Osql are case-sensitive. Also, be aware that a dash (-) and a slash (/) are used inter-
changeably. SQL Server Books Online provides the syntax for all arguments sup-
ported by Osql, along with some examples. The two most important arguments for

94 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
getting started are the authentication method and the server/instance to which you
want to connect.

If you want to connect using Windows authentication using your Windows 2000 or
Windows NT 4.0 user account, use the –E argument. Otherwise, use the –U and the
–P arguments to pass a valid SQL Server user login ID and password. Be aware
that both the login ID and the password are case-sensitive. If you want to use a
SQL Server user login ID, SQL Server must be configured for Mixed Mode
authentication. Use the –S argument to specify the server/instance to which you
want to connect. If no server name is specified or no instance is specified, Osql
connects to the default instance on the local server, or the named server. You can
use Osql to connect to local and remote servers. Use the –L argument to display a
list of all local instances and all remote instances broadcasting on the network. To
connect to a named instance on a local or remote server, you must specify the
server name followed by the instance name. For example, to connect to a named
instance on your local computer using Windows authentication, use the following
command: OSQL –E –S YourServerName\YourInstanceName. See Figure 3.11.

<< “F03ST11.EPS” >>

Figure 3.11. Using the Osql command with the –E switch.

Note You must be using the SQL Server 2000 version of Osql to connect to a
named instance. The version of Osql that shipped with SQL Server 7.0 can only be
used to connect to the default instance.

Practice: Using Osql to Query SQL Server 2000 Instances
In this practice you use Osql to connect to SQL Server 2000 instances.

� To use Osql to connect to SQL Server 2000 instances

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start and then click Run.

The Run dialog box appears.

Chapter 3 Preparing to Use SQL Server 2000 95
3. In the Open drop-down combo box, type cmd and then press ENTER.

The Command Prompt window appears.

4. Type OSQL –E and then press ENTER.

Osql connects to the default instance of SQL Server 2000 on your local server
(SelfPacedCPU) and then displays a 1> prompt, waiting for more input from
you. If you cannot connect, you will receive an ODBC error message. A com-
mon error at this point is typing a lowercase “e” rather than an uppercase “E”.

5. At the 1> prompt, type SELECT @@SERVERNAME and press ENTER to
query the SQL Server 2000 instance using the @@SERVERNAME configura-
tion function.

Notice that the 2> prompt appears. The first command is not executed because
you have not informed SQL Server 2000 of the end of a batch.

6. At the 2> prompt, type SELECT @@VERSION and then press ENTER to
query the SQL Server 2000 instance using the @@VERSION configuration
function.

Notice that the 3> prompt appears. Neither command is executed.

7. At the 3> prompt, type GO and then press ENTER to submit the batch to SQL
Server 2000 for processing.

SQL Server 2000 is queried and returns the name of your local server (Self-
PacedCPU) and the version (including the edition) of SQL Server (SQL Server
2000 – Enterprise Evaluation Edition) that is installed on your computer. In
addition, the version of your Windows operating system is displayed. It also
returns you to a 1> prompt for a new query.

8. Type EXIT and then press ENTER.

Osql exits and returns you to a command prompt.

9. Type OSQL –L and then press ENTER.

Osql returns the names of the instances of SQL Server installed on your local
computer, or broadcasting on your network.

10. Type OSQL –E –S SelfPacedCPU\MyNamedInstance and then press ENTER.

Osql connects to the named instance of SQL Server 2000 you installed on your
local server and then displays a 1> prompt, waiting for more input from you.

11. Type SELECT SYSTEM_USER and then press ENTER.

SYSTEM_USER is a niladic function used to return the current system user-
name.

12. Type GO and then press ENTER.

Osql returns your current security context within SQL Server 2000. Because
you connected to SQL Server 2000 using a trusted connection, your current
security context is SelfPacedSQL\Administrator. Osql then displays a 1>
prompt, waiting for more input from you.

13. Type QUIT and then press ENTER.

14. Close the Command Prompt window.

96 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Working with SQL Query Analyzer
SQL Query Analyzer is used for creating and managing database objects and test-
ing Transact-SQL statements, batches, and scripts interactively. SQL Query Ana-
lyzer is one of the programs in the Microsoft SQL Server program group, and is
available from the Start menu. When you launch SQL Query Analyzer, you can
choose to connect to local or remote instances of SQL Server 2000 (as well as ear-
lier versions of SQL Server). In the Connect To SQL Server dialog box, you can
type or browse to select an instance of SQL Server to which to connect. This
includes connecting to earlier versions of SQL Server. Be aware that (local) refers
to the default instance on the local server and that using a period or a blank entry in
the SQL Server drop-down combo box also refers to the default instance on the
local server. After selecting the instance to which you want to connect, you select
the authentication method you want to use to connect. You can choose either Win-
dows authentication or SQL Server authentication. Finally, if the SQL Server
instance to which you want to connect is not started, you can choose to start it.

After you connect to SQL Server using SQL Query Analyzer, you need to become
familiar with the SQL Server Query Analyzer interface. See Figure 3.12.

Multiple query windows can be displayed. Each query window can be a connection
to a different instance of SQL Server 2000 (or earlier version of SQL Server), or
simply a different query window using the same connection. The title bar for each
query window displays connection information specifying the instance, the data-
base, and the user security context for the connection. Each query window contains
a Query pane and a Results pane. You execute a query by clicking the Execute
Query button on the toolbar or by pressing the F5 key or CTRL+E. You can high-
light a specific Transact-SQL statement to execute just a selected statement from a
number of statements within a query window. You can also highlight a specific
Transact-SQL statement or portion thereof, and then press SHIFT+F1 to display
SQL Server Books Online for that particular statement or portion of statement. The
results of a query are displayed in the Results pane. The Results pane contains mul-
tiple windows. The Grids tab displays the result set or sets from the query or que-
ries. By default, the results are displayed as a grid, but can also be displayed as
free-form text. The Message tab displays information and error messages related to
the query. The Query status line also provides information regarding the query,
including how long it has been running if it is still running, the number of rows
returned, and the current row number if you are navigating the result set.

Chapter 3 Preparing to Use SQL Server 2000 97
<< “F03ST12.EPS” >>

Figure 3.12. The SQL Query Analyzer interface.

You can configure SQL Query Analyzer to display or hide the object browser.
Either press the F8 key or click the Tools menu, point to Object Browser, and click
Show/Hide. The Object Browser is a powerful tool used to navigate and work with
the objects in a database. The Object Browser provides object scripting, stored pro-
cedure execution, and access to table and view objects. It is used primarily by data-
base developers, but can be very useful for database administrators as well.

Each connection has connection properties. You can view the current connection
properties by clicking the Current Connection Properties button on the toolbar or
by clicking Options from the Tools menu. This allows you to set the connection
properties for all new connections made with SQL Query Analyzer. Do not modify
these properties without fully understanding the consequences. In general, the
details of the connection properties are beyond the scope of this book. Use SQL
Server Books Online for more information.

Object browser Query pane

Inactive query window title bar
Execute query
button

Active query
window title barCurrent database Toolbar

Results pane tabs Results pane Query status line

SQL Query Analyzer status line

98 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Practice: Using SQL Query Analyzer to Query SQL Server
2000 Instances
In this practice you use SQL Query Analyzer to query SQL Server 2000 instances.

� To use SQL Query Analyzer to query SQL Server 2000 instances

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

SQL Query Analyzer appears displaying the Connect To SQL Server dialog
box.

3. Verify that Windows Authentication is selected and then click OK.

You are connected to the default instance of SQL Server 2000 on your com-
puter using your Windows user account. Verify this by reviewing the active
query window title bar.

4. Press the F8 key to toggle the Object Browser. Leave the Object Browser visi-
ble.

5. In the Query pane, type SELECT * FROM
INFORMATION_SCHEMA.SCHEMATA.

This query will use information schema views to query this instance of SQL
Server 2000 for all databases in this instance. Information schema views will be
covered in Chapter 5. Notice the color coding. Blue indicates a keyword and
gray indicates an operator. Refer to SQL Server Books Online for more infor-
mation regarding color coding.

6. On the toolbar, click the Execute Query button.

Notice that the result set from the query is displayed in the Results pane in the
form of a grid. Information regarding all six databases is returned.

7. In the Object Browser, expand Master and then expand Views.

8. Right-click INFORMATION_SCHEMA.SCHEMATA and then click Open.

Notice that the Open Table window displays the same information as the previ-
ous query.

9. Close the Open Table window.

10. In the Results pane of the original query, click the Messages tab.

An informational message regarding the number of rows affected by the query
(6 rows affected) is displayed.

11. In the Query pane, select INFORMATION_SCHEMA.SCHEMATA and then
press SHIFT+F1.

SQL Server Books Online appears displaying information regarding
INFORMATION_SCHEMA.SCHEMATA in the console tree.

Chapter 3 Preparing to Use SQL Server 2000 99
12. In the SQL Server Books Online console tree, double-click
INFORMATION_SCHEMA.SCHEMATA view and then review the informa-
tion in the details pane for Schemata.

13. Close SQL Server Books Online.

14. In the Query pane of SQL Query Analyzer, type SELECT @@SERVER-
NAME on a new line.

Notice that the color of @@SERVERNAME changed to magenta when SQL
Query Analyzer recognized this character string.

15. Select this new query only, and then press CTRL+E to execute just this query.

Notice that you can select and execute a single query in a query window. The
name of your server (SelfPacedCPU) is returned.

16. On the toolbar, click the Clear Window button.

The contents of the Query pane are erased.

17. On the toolbar, click the Show Results Pane button.

This toggles the Results pane, hiding the Results pane.

18. Press CTRL+R.

This toggles the Results pane again, restoring the Results pane to visibility.

19. On the toolbar, click the New Query button.

A new query window appears. Compare the two Query panes. Notice that you
are connected to the same database in the same instance of SQL Server 2000
using the same security context.

20. In the active query window, type USE Northwind and then execute the query.

Notice that the current database displayed on the toolbar changed to Northwind.
Also notice that the active query window title bar now indicates a connection to
the Northwind database rather than the Master database.

21. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

22. Next to the SQL Server drop-down combo box, click the ellipsis (…) and select
SelfPacedSQL\MyNamedInstance and then click OK.

Notice that this named instance now appears in the SQL Server drop-down
combo box.

23. Click OK to connect to your named instance.

A new query window appears. The title bar indicates that you are connected to
the Master database in your named instance. Notice that the current database on
the toolbar is Master.

24. Close SQL Query Analyzer.

25. A SQL Query Analyzer message box appears.

26. Click the No To All button. Do not save any queries.

100 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Working with SQL Server Enterprise Manager
SQL Server Enterprise Manager is the primary tool for server and database admin-
istration. SQL Server Enterprise Manager is one of the programs in the Microsoft
SQL Server program group, and is available from the Start menu. When you launch
SQL Server Enterprise Manager from the Start menu, a preconfigured Microsoft
Management Console (MMC) console appears in user mode containing a snap-in
for the administration of SQL Server 2000. If you open this MMC console in
author mode, you can add additional snap-ins to this console (such as a snap-in for
Event Viewer) to facilitate performing multiple common administration tasks using
a single MMC console. To open the SQL Server Enterprise Manager MMC console
in author mode, right-click the SQL Server Enterprise Manager.msc file in the
\Program Files\Microsoft SQL Server\80\Tools\Binn folder and click Author. For
more information regarding MMC consoles, use Windows 2000 Books Online.

After you open SQL Server Enterprise Manager, you need to become familiar with
the interface. See Figure 3.13.

<< “F03ST13.EPS” >>

Figure 3.13. The SQL Server Enterprise Manager interface.

The left pane of an MMC console is the console root container that contains sepa-
rate console trees for each snap-in. A console tree is a hierarchical structure con-
taining folders, extension snap-ins, monitor controls, tasks, wizards, and
documentation. The SQL Server Enterprise Manager console contains the
Microsoft SQL Servers console tree in the left pane. The Microsoft SQL Servers

MMC toolbar Console root toolbar Details pane

Microsoft SQL Servers
console tree

Event Viewer (Local) console tree

Chapter 3 Preparing to Use SQL Server 2000 101
console tree contains the SQL Server Group container. This is the default group (or
container) for all SQL Servers registered in this console for administration. When
you install an instance of SQL Server 2000, the Setup program automatically regis-
ters that instance for administration on the local computer and places it in this
default group. Each SQL Server 2000 instance has its own container. You can cre-
ate separate groups containing selected servers for administrative convenience
when administering many servers.

Note Registering additional SQL Server 2000 instances is covered in Chapter 12.

When you click an object in a console tree, the right pane of the MMC console
(called the details pane) displays additional subcontainers or the contents of that
object, depending upon the object. You can specify and customize the view of the
details pane, including modifying the items that appear on the toolbar when the
object is selected. Some objects in the console tree have preconfigured taskpad
views for that object. These views include preconfigured report information and
shortcuts to relevant wizards to make it easier for you to perform certain tasks.
Taskpad views are HTML pages. By default, the taskpad views are not enabled.

An MMC console contains two types of toolbars. The first is the MMC toolbar.
This is primarily used when you are in author mode. The second type of toolbar is
specific to each console tree. If your focus is within the Microsoft SQL Servers
console tree, the console root toolbar (directly beneath the MMC toolbar) will con-
tain menu items and tools specific to SQL Server Enterprise Manager. If your focus
is within another console tree within the MMC console (such as Event Viewer), the
console root toolbar will be specific to that console tree. The console root toolbar
for SQL Server Enterprise Manager contains three context-sensitive menus:
Action, View, and Tools. These menu items allow you to perform a variety of tasks,
including launching other SQL Server 2000 tools, such as SQL Query Analyzer
and SQL Profiler. The items that are available from each menu vary depending
upon your focus within the console tree. For example, most items on the Tools
menu are unavailable until your focus is on a specific instance of SQL Server 2000,
because these tools act upon a particular instance.

To establish a connection to an instance of SQL Server 2000 that is registered in
SQL Server Enterprise Manager, simply expand the container for that instance.
You can also right-click an instance of SQL Server 2000 to start, stop, pause, or
disconnect from that instance. By default, SQL Server Enterprise Manager will
connect using Windows authentication and will start SQL Server 2000 if it is not
already started. You can change these registration configuration defaults by right-
clicking the container for an instance of SQL Server 2000 and editing the proper-
ties of the registration. For example, you can choose to connect to SQL Server
2000 using SQL Server authentication using the sa account. You can also choose to
hide all system databases and objects as part of the registration configuration.

102 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Finally, be aware that SQL Server Enterprise Manager connects to an instance of
SQL Server 2000 as a client. By default, the SQL Server Enterprise Manager client
polls the SQL Server service every 10 seconds to verify its state. In addition,
changes to objects displayed in SQL Server Enterprise Manager after you establish
a connection to a SQL Server 2000 instance generally will not be reflected immedi-
ately. This can include changes made by SQL Server Enterprise Manager and by
SQL Query Analyzer. To update a particular object and its contents, right-click the
object and click Refresh. To refresh all objects in a SQL Server instance, discon-
nect from the instance and then reconnect.

Practice: Working with the SQL Server Enterprise Manager
MMC Console
In this practice you work with the SQL Server Enterprise Manager MMC console.

� To work with the SQL Server Enterprise Manager MMC console

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears displaying the Microsoft SQL Servers
console tree in the console root. No other console trees appear.

3. On the MMC toolbar, click Console.

Notice the only option available is Exit. No other menu options are available
because SQL Server Enterprise Manager was opened in user mode.

4. Click Exit to close SQL Server Enterprise Manager.

5. Click Start, point to Search, and then click For Files Or Folders.

The Search Results dialog box appears.

6. In the Search For File Or Folders Named: text box, type *.msc and then click
the Search Now button.

Notice that a plethora of preconfigured MMC consoles appear. Most are sepa-
rate MMC consoles each for a specific Windows 2000 administrative task.

7. Right-click SQL Server Enterprise Manager.msc and then click Author.

The SQL Server Enterprise Manager MMC console appears in author mode.

8. On the MMC toolbar, click Console and then click Add/Remove Snap-in.

The Add/Remove Snap-in dialog box appears.

9. Click the Add button.

The Add Standalone Snap-in dialog box appears displaying all of the available
standalone snap-ins that may be added.

10. Select Event Viewer and then click the Add button.

The Select Computer dialog box appears.

Chapter 3 Preparing to Use SQL Server 2000 103
11. Click the Finish button to accept the default configuration, which is to always
manage the local computer.

12. Click the Close button to close the Add Standalone Snap-in dialog box and then
click OK to close the Add/Remove Snap-in dialog box.

The SQL Server Enterprise Manager MMC console now displays two separate
console trees, Microsoft SQL Servers and Event Viewer (Local).

13. On the Console menu, click Exit.

A Microsoft Management Console message box appears.

14. Click the Yes button to save these new console settings to the default SQL
Server Enterprise Manager MMC console.

15. Close the Search Results dialog box.

16. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears displaying the Microsoft SQL Servers
and the Event Viewer (Local) console trees in the console root.

17. Click the Event Viewer (Local) console tree container.

The logs available within Event Viewer appear in the details pane. Notice that
the menu items and tools on the console root toolbar change when you change
console trees. The console root title bar indicates your focus within the console
root.

18. Click the Microsoft SQL Servers console tree container.

Notice that the menu items and tools on the console root toolbar specific to
SQL Server Enterprise Manager appear in place of the items on the Event
Viewer toolbar.

19. Expand the Microsoft SQL Servers container and then expand the SQL Server
Group container.

The default instance (SelfPacedCPU) and your named instance (MyNamedIn-
stance) appear in the Microsoft SQL Servers console tree, each in their own
container and displaying the state of the SQL Server service for that instance.
Each instance also displays the authentication method used to connect to the
instance, enclosed in parenthesis (namely Windows authentication).

Note If the named instance is not registered, right-click SQL Server Group
and then click New SQL Server Registration. Follow the instructions in the
wizard to complete the registration.

Notice that your focus in the console tree remains the Microsoft SQL Servers
container and that the contents of the details pane do not change when you
expand an item in the console tree. The details pane changes only when your
focus changes.

104 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
20. Click the container for your default instance.

Notice that the details pane displays the contents of this container. We will
cover each of these objects in detail throughout the course of this book. Also
notice that the icon indicating the state of the SQL Server service changed from
a green triangle in a white circle to a white triangle in a green circle. This indi-
cates that you have established a connection to this instance.

21. On the SQL Server Enterprise Manager toolbar, click the View menu.

Notice the available options, including Taskpad. The container object that is
your current focus contains a preconfigured view.

22. Click Taskpad.

Notice that the details pane changes to display the taskpad view for this con-
tainer object. The taskpad contains two tabs, General and Wizards. The General
tab displays information regarding your computer and your server configura-
tion. The Wizards tab displays the wizards that are available for your use. These
wizards are also available from the Tools menu. We will use these wizards in
exercises in later chapters of this book.

23. In the Microsoft SQL Servers console tree, right-click the container for your
default instance and then click Edit SQL Server Registration Properties.

Notice the configured registration properties.

24. Click Cancel.

25. Close SQL Server Enterprise Manager.

Lesson Summary
SQL Server 2000 contains a number of client tools and utilities to administer SQL
Server 2000. Osql is the primary command-prompt utility used for the submission
of batches of Transact-SQL statements to SQL Server 2000. SQL Query Analyzer
is the primary graphical tool used for interactive testing of Transact-SQL state-
ments and batches. It is also used to create and administer objects within SQL
Server 2000. SQL Server Enterprise Manager is the primary graphical tool used to
graphically administer objects in SQL Server 2000. SQL Server Enterprise Man-
ager is a preconfigured MMC console that you might want to customize. Becoming
familiar with each of these tools is an essential task for a database administrator
because he or she will use these tools daily.

Chapter 3 Preparing to Use SQL Server 2000 105
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You have installed SQL Server 2000 on a test computer for evaluation. Gloria,
another database administrator at your company, logged on to the SQL Server
2000 computer and attempted to review the new files that were added. She
reports that she cannot view all of the files that were installed. Why might this
be happening? Is there a problem?

2. You have installed SQL Server 2000 on a test computer for evaluation. During
installation, you used the local system account as the service account for the
SQL Server and SQL Server Agent services. You have decided you need to
configure and use a dedicated domain user account for these services. How
should you change the service account for these services?

3. You have installed SQL Server 2000 on a test computer for evaluation. You
want to verify that you can connect to SQL Server 2000 and begin configuring
objects in SQL Server 2000. What tool would you start with and why?

107
C H A P T E R 4

Upgrading to SQL Server 2000

Lesson 1: Preparing to Upgrade . 108

Lesson 2: Performing a Version Upgrade from SQL Server 7.0 114

Lesson 3: Performing an Online Database Upgrade from
SQL Server 7.0 . 117

Lesson 4: Performing a Version Upgrade from SQL Server 6.5 124

Review . 133

About This Chapter
This chapter prepares you to upgrade an existing SQL Server 6.5 or 7.0 installation
to SQL Server 2000. In this chapter, you will learn the upgrade options available to
you, including how to keep an existing version of SQL Server intact and usable.
You will learn the hardware and software requirements for an upgrade. You will
also learn how to prepare for an upgrade. Then, you will learn two separate pro-
cesses for upgrading from SQL Server 7.0, performing a version upgrade and per-
forming an online database upgrade. Finally, you will learn how to perform a
version upgrade from SQL Server 6.5.

Before You Begin
There are no prerequisites for completing the lessons in this chapter.

108 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Preparing to Upgrade

If you are using either SQL Server 6.5 or 7.0 in production, you will need to plan
and prepare to upgrade your existing installation to SQL Server 2000. For this pro-
cess to be successful and as painless as possible, you first need to understand the
upgrade options available to you. This includes determining whether you need to
keep your existing installation intact. You also need to determine how to minimize
downtime. Next, you need to understand the hardware and software requirements
for an upgrade. Finally, you need to prepare your existing installation for the actual
upgrade.

After this lesson, you will be able to
■ Work with multiple versions of SQL Server

■ Choose the appropriate upgrade process and method

■ Determine whether any hardware or software upgrades are necessary

■ Prepare your existing installation for the actual upgrade

Estimated lesson time: 30 minutes

Working with Multiple Versions of SQL Server on the Same
Computer
SQL Server 2000 is designed to support multiple versions of SQL Server simulta-
neously on the same computer. It accomplishes this in two different ways. The first
method is through the use of version switching, and the second method is through
the use of multiple instances. Through the use of these two methods, SQL Server
6.5, SQL Server 7.0, and SQL Server 2000 can coexist on the same computer,
although only two versions may be running at any given time (one of which must
be SQL Server 2000).

Version Switching
Version switching allows SQL Server 7.0 or SQL Server 2000 to be installed as the
default instance on a computer on which SQL Server 6.5 is already installed. You
can then use the Vswitch.exe utility to switch between SQL Server 6.5 and either
SQL Server 7.0 or SQL Server 2000 (but not both). Using version switching allows
you to switch between default instances, controlling which version of SQL Server
(including any version-specific tool) is running as the default instance at any given
point in time. It does not allow multiple instances or versions to run simulta-
neously. The Vswitch utility is available from the Start menu, in the Microsoft SQL
Server – Switch program group. It is also available in the \Program Files\Microsoft
SQL Server\Mssql\Binn folder.

Chapter 4 Upgrading to SQL Server 2000 109
Note You cannot version-switch between SQL Server 7.0 and SQL Server 2000.
Version switching is available only between SQL Server 6.5 and either SQL Server
2000 or SQL Server 7.0.

Named Instances
Using a named instance allows you to install and run SQL Server 2000 as a named
instance on a computer on which either SQL Server 6.5 or SQL Server 7.0 is
installed without performing a version upgrade of that installation. This allows you
to keep your existing version of SQL Server intact and running while also running
SQL Server 2000 on the same computer. Installing SQL Server 2000 as a named
instance on a computer on which SQL Server 7.0 is installed is the only way to
maintain the default instance of SQL Server 7.0 on that computer. When you install
SQL Server 2000 as a named instance on a computer on which SQL Server 7.0 is
also installed, all SQL Server 7.0 client tools are upgraded to SQL Server 2000 cli-
ent tools for all instances.

Note You can install SQL Server 6.5 or 7.0 only as default instances. Only SQL
Server 2000 can be installed as a named instance.

Choosing the Appropriate Upgrade Process and Method
When you decide to upgrade SQL Server 6.5, you have only one upgrade process
available. However, you have several methods to choose from. Your need to have
SQL Server 6.5 running simultaneously with SQL Server 2000 after the upgrade
might determine this decision. When you decide to upgrade SQL Server 7.0, you
have two separate upgrade processes to choose between. Your need to migrate
server and replication settings, as well as the need to minimize server downtime,
might determine this choice. You must also determine whether to use a default or a
named instance for your SQL Server 2000 installation. Your need to have multiple
versions of SQL Server running simultaneously on the same computer might deter-
mine this choice.

SQL Server 6.5
If you are using SQL Server 6.5 and you want to upgrade your installation to SQL
Server 2000, you must perform a version upgrade using the SQL Server Upgrade
Wizard (this requires SQL Server 6.5 SP5). When you perform a version upgrade,
you can choose to upgrade some or all of your user databases along with the system
databases. The SQL Server Upgrade Wizard can transfer replication settings, SQL
Executive settings, and most server configuration settings. The upgrade process
includes built-in recovery methods to restart and resume an upgrade if it fails dur-
ing the upgrade process. During this upgrade process, SQL Server 6.5 must be
offline and unavailable to users. To perform an upgrade from SQL Server 6.5, you
must also install SQL Server 6.5 SP5.

110 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Note If you merely want to migrate your data to SQL Server 2000 rather than
upgrade your installation, you can use the DTS graphical tool, use the bulk copy
program (Bcp) command-prompt utility, or perform a query between linked serv-
ers. These data transfer methods are covered in Chapter 7.

The SQL Server Upgrade Wizard can upgrade a computer running SQL Server 6.5
to SQL Server 2000 using either the local hard drive or a local tape drive. Using the
local hard drive gives the best performance and is the most reliable. Use a tape
drive only when you do not have sufficient hard drive space. The SQL Server
Upgrade Wizard can also upgrade from one computer running SQL Server 6.5 to
another computer running SQL Server 2000. Regardless of the method you choose,
the SQL Server Upgrade Wizard can only upgrade to the default instance; it cannot
upgrade SQL Server 6.5 to a named instance.

After the SQL Server Upgrade Wizard finishes the upgrade, you will have two
independent installations of SQL Server with two independent sets of identical data
(at least initially). SQL Server 6.5 is not removed during the upgrade process
(although all client tools are upgraded). You should verify the success of the
upgrade before you remove the SQL Server 6.5 installation.

Note If you want to have SQL Server 6.5 running simultaneously with the SQL
Server 2000 installation after the upgrade is complete (in order to verify the
upgrade), you must upgrade SQL Server 6.5 from one computer to another.

SQL Server 7.0
If you are using SQL Server 7.0 and you want to upgrade your installation to SQL
Server 2000, you have a choice of two processes. Your first choice is to perform a
version upgrade of SQL Server 7.0 to SQL Server 2000 using the SQL Server 2000
Setup program. Version switching back to SQL Server 7.0 after the upgrade is not
an option. During the version upgrade process, the Setup program replaces and
overwrites your SQL Server 7.0 installation. All program files (including all tools
and utilities) are upgraded and all databases are converted to SQL Server 2000.
Replication settings, SQL Server Agent settings, and most server configuration set-
tings are retained. However, SQL Server 7.0 Profiler traces and servers registered
with SQL Server Enterprise Manager are not retained. During (and after) this
upgrade process, SQL Server 7.0 must be offline and unavailable to users.

Your second choice is to use the Copy Database Wizard to perform an online data-
base and associated meta data upgrade of selected SQL Server 7.0 user databases.
Meta data information includes such things as logon information and user-specific
objects associated with user databases. Performing an online database upgrade
allows you to upgrade any or all of your user databases without having to shut
down SQL Server 7.0 during the upgrade. In addition, your SQL Server 7.0 instal-
lation remains intact after the upgrade. If you plan to use this process, you can
install SQL Server 2000 as a named instance on the same computer that is running

Chapter 4 Upgrading to SQL Server 2000 111
SQL Server 7.0 as the default instance. In addition, the Copy Database Wizard can
upgrade databases from remote servers. Finally, you can also schedule the online
database upgrade to occur at a specified time because the Copy Database Wizard
creates a DTS package that is scheduled as a job. DTS packages and jobs are cov-
ered in Chapter 7.

Note An online database upgrade does not upgrade SQL Server Agent or server
configuration settings, and cannot be used with databases involved in replication.

Replication Issues
When upgrading servers involved in replication, you must upgrade the server func-
tioning as the Distributor first, followed by the Publisher and finishing with the
Subscribers. If you update servers in this sequence, you can continue to publish and
replicate data during this process even though servers are running different ver-
sions of SQL Server. If you are using the immediate updating functionality or are
using File Transfer Protocol (FTP), additional upgrade steps are required. Refer to
“Replication and Upgrading” in SQL Server Books Online for more detail.

Note For databases involved in replication, you must perform a version upgrade;
on SQL Server 6.5, it must be a single computer version upgrade.

Determining Hardware and Software Requirements
The process of upgrading an existing SQL Server installation to SQL Server 2000
has certain hardware and software requirements, in addition to the hardware and
software requirements for installing SQL Server 2000. These requirements differ
depending on the version of SQL Server being upgraded, and on the type of
upgrade process being performed.

SQL Server 6.5
If you are upgrading a SQL Server 6.5 installation running on Microsoft Windows
NT 4.0 and plan to upgrade on the same computer, you must apply Service Pack 5
or later and Internet Explorer 5.0 or later to Windows NT 4.0 before upgrading to
SQL Server 2000. You must also apply SQL Server 6.5 Service Pack 5 or later to
your SQL Server 6.5 installation. However, if you are performing a computer-to-
computer upgrade, you need only apply SQL Server 6.5 Service Pack 3 or later to
your SQL Server 6.5 installation. Regardless of the upgrade method, the SQL
Server Upgrade Wizard uses named pipes. SQL Server 6.5 and SQL Server 2000
must be set to use the default pipe (\\.\pipe\sql\query). Finally, upgrading SQL
Server 6.5 to SQL Server 2000 requires available hard drive space equal to approx-
imately 1.5 times the size of the SQL Server 6.5 user databases. This additional
hard drive space is required only during the upgrade process. You can use the SQL
Server Upgrade Wizard to estimate the amount of space required to complete the
upgrade.

112 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
SQL Server 7.0
If you are upgrading a SQL Server 7.0 installation running on Windows NT 4.0 and
plan to perform a version upgrade, you must apply Service Pack 5 or later and
Internet Explorer 5.0 or later to Windows NT 4.0 before upgrading to SQL Server
2000. You do not need to apply any service packs to SQL Server 7.0 prior to
upgrading to SQL Server 2000. Performing a version upgrade of SQL Server 7.0
requires the use of named pipes. SQL Server 7.0 and SQL Server 2000 must be set
to use the default pipe (\\.\pipe\sql\query). However, an online database upgrade
(using the Copy Database Wizard) does not require named pipes; rather, it will use
any available Net-Library. Finally, an upgrade of SQL Server 7.0 to SQL Server
2000 does not require any additional hard drive space, although the Copy Database
Wizard might require additional space if the database is copied rather than moved.

Preparing for the Actual Upgrade
You must perform the following tasks on your SQL Server installation prior to
commencing the upgrade:

■ Terminate all user activity in the database and obtain exclusive use of all files in
the database.

■ Back up all system and user databases (including master) to ensure recoverabil-
ity.

■ Run the appropriate Database Console Commands (DBCC) to ensure database
consistency (such as DBCC CHECKDB).

■ For SQL Server 6.5, set the tempdb system database size to at least 10 MB (25
MB is recommended).

■ For SQL Server 6.5, verify that the master database has at least 3 MB of free
space.

■ For SQL Server 6.5, verify that the master database contains logon information
for all users.

■ For SQL Server 6.5, disable any startup stored procedures. If you do not disable
them, the upgrade process might stop responding.

■ Disable all jobs.

■ Close all open applications, particularly all that are dependent on SQL Server.

■ Stop replication and ensure that the replication log is empty.

■ Ensure that there is enough hard disk space available to perform the upgrade.

■ Make sure that you upgrade all databases that have cross-database dependen-
cies at the same time. This will ensure that, for example, logon information for
owners of objects with cross-database dependencies will be created, which, in
turn, will ensure that their objects can also be created.

Chapter 4 Upgrading to SQL Server 2000 113
Lesson Summary
You can perform a version upgrade of SQL Server 6.5 to SQL Server 2000 on a
single computer or between computers. You must upgrade to the default instance;
you cannot upgrade to a named instance. When installing SQL Server 2000 on the
same computer, you can use the version switch utility to switch between versions
to verify the upgrade. You can perform either a version upgrade of SQL Server 7.0
on a single computer or an online database upgrade of one or more databases
between instances on a single computer from a remote computer. If you perform an
online database upgrade, SQL Server 7.0 remains available to users during the
database upgrade process. However, an online database upgrade does not upgrade
server settings and cannot be used when replication is involved. Finally, you need
to prepare the production databases for the upgrade and make backups to ensure
recoverability in case of a failure.

114 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Performing a Version Upgrade from
SQL Server 7.0

When you install SQL Server 2000 on a computer running SQL Server 7.0, you are
given the option during setup to upgrade your SQL Server 7.0 installation to SQL
Server 2000. After installation, there are several tasks that you should perform to
ensure maximum performance from your upgraded installation. Finally, you need
to understand that certain items are not upgraded at all and that other items must be
upgraded separately.

After this lesson, you will be able to
■ Perform a version upgrade of SQL Server 7.0 to SQL Server 2000

■ Understand the tasks you should perform after the version upgrade is complete

■ Manually upgrade the Meta Data Services Information Models and repository
database

Estimated lesson time: 15 minutes

Performing a Version Upgrade
You perform a version upgrade by running the SQL Server 2000 Setup program.
When the Setup program detects an installed version of SQL Server, you are given
the option to upgrade, remove, or add components to an existing instance of SQL
Server on your computer. See Figure 4.1.

<< “F04ST01.EPS” >>

Figure 4.1. Upgrade, remove, or add installation option.

Chapter 4 Upgrading to SQL Server 2000 115
To upgrade your SQL Server 7.0 installation, choose the default instance on your
computer and then choose to upgrade your existing installation. See Figure 4.2.

<< “F04ST02.EPS” >>

Figure 4.2. Upgrade option.

After you choose to upgrade your SQL Server 7.0 installation, you define the
authentication mode for the Setup program to use to connect to SQL Server 7.0.
The Setup program verifies that it can successfully connect using this connection
information (starting SQL Server 7.0 if necessary). Next, you must choose the
licensing mode (see Chapter 2). Thereafter, SQL Server 7.0 is upgraded to SQL
Server 2000. The system databases are upgraded using a series of scripts and the
registry is updated. MDAC 2.6 and client tools are also upgraded at this point,
unless a previously installed SQL Server 2000 named instance already performed
this task.

Performing Post-Upgrade Tasks
After the Setup program completes the upgrade process, there are a number of
tasks that the database administrator should perform. These are:

■ Review the SQL Server error logs and the Sqlstp.log file if troubleshooting is
necessary.

■ Repopulate all full-text catalogs if full-text search is being used. The upgrade
process disables all full-text catalogs because of a format change that occurs
during the upgrade. Repopulation can be time-consuming, so planning an
appropriate amount of time is important. Maintaining full-text catalogs is cov-
ered in Chapter 12.

■ Update statistics. This process can also be time-consuming on large databases,
but using SQL Server 7.0 statistics with SQL Server 2000 could result in poor
query performance. Updating statistics is covered in Chapter 12.

116 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
■ Register servers. Servers registered with SQL Server Enterprise Manager for
SQL Server 7.0 are not registered with the new SQL Server Enterprise Manager
for SQL Server 2000 (other than the local instance that was upgraded). Regis-
tering servers is covered in Chapter 12.

Manually Upgrading Meta Data Services Tables and the
Repository Database
When you upgrade your SQL Server 7.0 installation to SQL Server 2000, the Meta
Data Services Information Models required by DTS are not updated as part of this
process. You must perform a manual update of the information to save and retrieve
DTS package versions to and from Meta Data Services. This update modifies the
Meta Data Services table structure to support the new functionality and features
available with SQL Server 2000 and preserves existing repository data in the new
table structure. The precise commands and syntax for manually upgrading the
information model are available in the DTS Information model section of Books
Online.

In addition, the repository database used by Meta Data Services must also be
upgraded manually to take advantage of the new repository engine 3.0 installed
during the upgrade to SQL Server 2000. The precise commands and syntax for
manually upgrading the repository database are available in the “Upgrading and
Migrating a Repository Database” section of Books Online. DTS packages, Meta
Data Services, and the Meta Data Services repository are covered in Chapter 7.

Lesson Summary
The SQL Server 2000 Setup program is used to perform a version upgrade of SQL
Server 7.0 to SQL Server 2000. After the upgrade is complete, SQL Server 7.0 is
completely replaced by SQL Server 2000. The database administrator should
update statistics and repopulate all full-text catalogs if full-text search is being
used, to optimize the performance of the upgraded installation. Finally, the infor-
mation models and the repository used by Meta Data Services must be upgraded
manually to take advantage of the new features and functionality provided by SQL
Server 2000.

Chapter 4 Upgrading to SQL Server 2000 117
Lesson 3: Performing an Online Database
Upgrade from SQL Server 7.0

When you choose to perform an online database upgrade, you use the Copy Data-
base Wizard to upgrade one or more SQL Server 7.0 databases to an instance of
SQL Server 2000. You can upgrade databases from instances on the local computer
or from a remote computer. The database being upgraded can be copied or moved.
After installation, there are several tasks that you should perform to ensure maxi-
mum performance from your upgraded installation.

After this lesson, you will be able to
■ Perform an online database upgrade from SQL Server 7.0 to SQL Server 2000

■ Understand the tasks you should perform after the database upgrade is complete

Estimated lesson time: 15 minutes

Performing an Online Database Upgrade
The Copy Database Wizard is used to perform an online database upgrade. It is
available from several locations within SQL Server Enterprise Manager. You can
launch it from the Tools/Wizards menu, by right-clicking an instance of SQL
Server 2000 and clicking All Tasks, or by clicking the Wizards tab from the task-
pad (if you have enabled the taskpad). See Figure 4.3.

When you run the Copy Database Wizard, follow these steps:

1. Launch the Copy Database Wizard, using one of the methods described previ-
ously. When the Welcome To The Copy Database Wizard appears, click Next.

2. From the Select A Source Server page, select a source server from which you
want to move or copy a database.

Note Because the database upgrade process is transparent and the Copy Data-
base Wizard is also used to copy and move SQL Server 2000 databases, termi-
nology in the wizard only makes reference to copying and moving databases.

118 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F04ST03.EPS” >>

Figure 4.3. Launching the Copy Database Wizard from the All Tasks menu.

On the Select A Source Server page, you can connect to any SQL Server
instance on the network (including any local instance). To list the currently
active instances of SQL Server, click its associated ellipse button. When the
Select Server dialog box is displayed, select the desired active server. Finally,
you must connect using either a Windows or SQL Server login account that has
system administrator privileges on the source server. See Figure 4.4.

3. After you have selected the source server, you must select the destination server
from the Select A Destination Server page. Again, to list the currently active
instances, click its associated ellipse button. The destination server does not
have to be the instance of the server from which you are running the Copy
Database Wizard. However, when you are copying or moving a database
between servers, the service account used by the SQL Server service on the
destination server must be a domain user account to have the rights to copy files
over the network. The local system account has no such rights and therefore can
only be used when the source and destination servers are on the same computer.
Finally, you must connect using either a Windows or SQL Server login account
that has system administrator privileges on the destination server. See Figure 4.5.

Chapter 4 Upgrading to SQL Server 2000 119
<< “F04ST04.EPS” >>

Figure 4.4. Selecting a source server.

<< “F04ST05.EPS” >>

Figure 4.5. Selecting a destination server.

4. Next, you must select a user database to move or copy on the Select The Data-
bases To Move Or Copy page. You can move or copy multiple databases in one
operation, by selecting the associated check boxes under the Move or Copy col-
umns. However, you cannot move or copy a database if a database with the
same name exists on the destination server. You must resolve any name conflicts
prior to running the Copy Database Wizard, because database names cannot be
renamed during a move or copy operation. In addition, you cannot move system
databases (only user databases are available to be moved). See Figure 4.6.

120 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F04ST06.EPS” >>

Figure 4.6. Selecting a user database.

5. After you have selected the database you want to move or copy, you can change
the default location for the data and log files on the Database File Location
page. You select a new location by clicking the Modify button. When the Data-
base Files dialog box appears, you click the ellipse button next to the destina-
tion you want to change. When the CDW dialog box appears, select the new
default location for the files. You are also given the option, in the Destination
Files column, to change the filename for the destination database files (but not
the name of the database itself). The default location for the files is the Data
folder for the instance to which the database is being copied or moved. The
Database Files dialog box also informs you regarding available disk space on
the destination drive. See Figure 4.7.

6. By default, all logins for the databases being copied or moved, along with all
logins for stored procedures, jobs, and user-defined error messages, are copied
along with the database. However, you can modify this default to selected spe-
cific logins only on the Select Related Objects page. See Figure 4.8.

7. Finally, on the Schedule The DTS Package page, you can schedule the copy or
move operation to occur immediately, to run once at a specified date and time,
or as a scheduled DTS package at a later time. Be aware that the DTS package
must be able to place the source database in single-user mode prior to copying
or moving it, or it will terminate the processing of the DTS package with an
error message. If SQL Server Enterprise Manager (or any other client) is con-
nected to the source server at the time the package runs, this open connection
will prevent the package from running. See Figure 4.9.

Chapter 4 Upgrading to SQL Server 2000 121
<< “F04ST07.EPS” >>

Figure 4.7. Changing the default location for the data and log files.

<< “F04ST08.EPS” >>

Figure 4.8. Selecting database objects to upgrade.

122 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F04ST09.EPS” >>

Figure 4.9. Scheduling the DTS package.

8. Depending upon whether you are copying or moving the files, either the Com-
pleting The Copy Database Wizard page or the Completing The Move Data-
base Wizard page appears. Verify that the options listed there are correct, and
then click the Finish button. See Figure 4.10.

<< “F04ST10.EPS” >>

Figure 4.10. Completing the Copy Database Wizard.

9. The Log Detail dialog box, shown in Figure 4.11, appears when the actual move
or copy takes place. This dialog box displays information about the status of
each file and also displays any error messages that occurred during the transfer.

Chapter 4 Upgrading to SQL Server 2000 123
<< “F04ST11.EPS” >>

Figure 4.11. The Log Detail dialog box displays information about the upgrade.

Note A move between servers or disk drives does not remove the underlying
data and log files from the file system, but simply detaches the database from
the source server and reattaches it to the destination server.

Performing Post-Upgrade Tasks
After the Copy Database Wizard successfully completes the online database
upgrade, there are a number of tasks that the database administrator should per-
form. You should perform the following tasks:

■ Repopulate all full-text catalogs if full-text search is being used. The upgrade
process disables all full-text catalogs because of a format change that occurs
during the upgrade. Repopulation can be time-consuming, so planning an
appropriate amount of time is important. Maintaining full-text catalogs is cov-
ered in Chapter 12.

■ Update statistics. This process can also be time-consuming on large databases,
but using SQL Server 7.0 statistics with SQL Server 2000 could result in poor
query performance. Updating statistics is covered in Chapter 12.

■ Delete the underlying data and log files after verification of the upgraded
database.

Lesson Summary
The Copy Database Wizard is used to upgrade SQL Server 7.0 databases to a SQL
Server 2000 installation. After the upgrade, the SQL Server 7.0 installation remains
intact. The upgraded databases can be copied or moved. In the event of a move, the
underlying data and log files are generally not removed and should be removed
manually. Finally, the database administrator should update statistics and repopu-
late all full-text catalogs if full-text search is being used to optimize the perfor-
mance of the upgraded installation.

124 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 4: Performing a Version Upgrade from
SQL Server 6.5

You upgrade a SQL Server 6.5 installation by running the SQL Server Upgrade
Wizard on a computer that has SQL Server 2000 installed as the default instance.
An upgrade from SQL Server 6.5 to SQL Server 2000 is more involved than an
upgrade from SQL Server 7.0 and is therefore more likely to have objects that
could not be upgraded properly. This might require some troubleshooting. Finally,
you need to be aware that because of changes in features, you might need to use
backward compatibility levels to make the transition to SQL Server 2000 smooth.

After this lesson, you will be able to
■ Perform a version upgrade of SQL Server 6.5 to SQL Server 2000

■ Troubleshoot a SQL Server 6.5 upgrade

■ Specify backward compatibility levels for upgraded databases

Estimated lesson time: 30 minutes

Performing a Version Upgrade
To perform a version upgrade of SQL Server 6.5 to SQL Server 2000, you must run
the SQL Server Upgrade Wizard from a computer on which you have installed
SQL Server 2000 as the default instance. You start the SQL Server Upgrade Wizard
from the Microsoft SQL Server – Switch program group. This wizard is available
on any computer that has SQL Server 2000 installed as the default instance. This
wizard (Upgrade.exe) is also in the Upgrade folder of your SQL Server 2000 instal-
lation. The upgrade folder location is \Program Files\Microsoft SQL
Server\Mssql\Upgrade. See Figure 4.12.

Note You must use SQL Server authentication to connect to the SQL Server 2000
server. Because the default authentication mode of SQL Server 2000 allows only
Windows authentication, you might need to change the SQL Server 2000 configu-
ration to permit SQL Server authentication. This requires a restart of the SQL
Server service. Changing authentication modes is covered in Chapter 10.

When you run the SQL Server Upgrade Wizard you perform the following steps:

1. When you start the SQL Server Upgrade Wizard, using one of the methods
described above, it begins by recommending that you read the Upgrading topics
online carefully. The major issues are discussed in this lesson, but you should
definitely read the Upgrading topics in Books Online as well. The changes from
SQL Server 6.5 to SQL Server 2000 are substantial. See Figure 4.13.

Chapter 4 Upgrading to SQL Server 2000 125
<< “F04ST12.EPS” >>

Figure 4.12. Starting the SQL Server Upgrade Wizard.

<< “F04ST13.EPS” >>

Figure 4.13. Welcome to the SQL Server Upgrade Wizard.

2. Next, on the Data And Object Transfer page, the wizard prompts you to select
the upgrade method you will use. You can perform a direct upgrade on the same
computer using either named pipes or a tape device for the transfer of data (the
tape device option will be available only if a tape device is detected on the local
computer). You can also choose to perform additional verification options. If
you choose to have the SQL Server Upgrade Wizard validate the successful

126 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
transfer of data objects, the wizard prepares a list of all objects in the SQL
Server 6.5 databases and the number of rows in each table before the upgrade
and then compares this list to a similar list after the upgrade. The wizard reports
any discrepancies. This verification is in addition to the reporting of any prob-
lem in the creation of database objects that is recorded by default in the output
logs. Selecting this initial level of verification is highly recommended. The next
level of verification is to perform an exhaustive byte-by-byte checksum verifi-
cation on each column in each table to verify that no data values have changed.
This level of verification substantially increases the time required for the
upgrade. Errors occur only rarely, but if the time is available, this additional
level of verification is also recommended. See Figure 4.14.

<< “F04ST14.EPS” >>

Figure 4.14. Selecting the upgrade method and options.

3. Next, on the Logon page, you specify the name of the SQL Server 6.5 computer
you want to upgrade (called the export server). The default is the computer on
which you are running the wizard, but you can specify any other computer in
the same domain. The server you are upgrading to must be the server on which
you are running the wizard (called the import server).

Note If you are upgrading a database involved in replication, you must per-
form a single computer upgrade, and the database compatibility level must be
set to 70 during the upgrade.

In addition, you must specify the password for the SQL Server administrator
account (sa) for both the export and the import server. You can also provide
optional startup arguments for the export and the import server. See Figure
4.15.

Chapter 4 Upgrading to SQL Server 2000 127
<< “F04ST15.EPS” >>

Figure 4.15. Specifying logon information for the export and import servers.

4. After you provide the name of the server being upgraded and provide the
authentication information and optional startup arguments for both the servers,
the wizard displays a SQL Server Upgrade Wizard dialog box warning that
both of the SQL Server installations need to be stopped and then restarted,
using these authentication and startup parameters. During this verification pro-
cess, the wizard also obtains the code page used by SQL Server 6.5 from the
master database.

Next, the Code Page Selection page appears. The Upgrade Wizard requires
the selection of a scripting code page, which is used to create the upgrade
scripts. Most users can accept the default code page. The code page used in
the upgrade scripts must match the code page of the database being upgraded.
See Figure 4.16.

<< “F04ST16.EPS” >>

Figure 4.16. Code page selection for upgrade scripts.

128 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
5. You then select databases to upgrade on the Upgrade Databases To SQL Server
2000 page. You can choose to upgrade some or all user databases. Notice that
the master, msdb, publication, pubs, and Northwind databases are not available
for selection. Only the model database and any user-created user databases can
be selected for upgrading. It is recommended that you upgrade all databases at
the same time. See Figure 4.17.

<< “F04ST17.EPS” >>

Figure 4.17. Selecting databases to upgrade.

After you select the databases to upgrade, the wizard examines the layout of
SQL Server 6.5 devices. It uses this information to create database files in SQL
Server 2000.

6. Next, the Database Creation page appears. The wizard creates data and log files
for the databases being upgraded. The data files are sized to hold all transferred
objects and data, with no allowance for additional free space. The log files are
sized based on the size of the SQL Server 6.5 log files. The locations of the data
and log files are the same as for the first device for data and logs in SQL Server
6.5. If multiple devices were used in SQL Server 6.5, multiple files will be cre-
ated in SQL Server 2000, but the initial file is sized to contain the objects and
data with additional files sized minimally. On the Database Creation page, you
can specify a custom configuration of database files and logs by editing this
default configuration, using databases previously created for this purpose in
SQL Server 2000, or by using Transact-SQL scripts. See Figure 4.18. When
you click the Edit button on the Database Creation page, the SQL Server
Upgrade Wizard dialog box appears. In this dialog box, you can modify the
name, file path, and initial size of the file, as well as the autogrow increment.
See Figure 4.19.

Chapter 4 Upgrading to SQL Server 2000 129
<< “F04ST18.EPS” >>

Figure 4.18. Specifying the database configuration for the upgrade.

<< “F04ST19.EPS” >>

Figure 4.19. Modifying the database configuration.

7. Next, on the System Configuration page, you select system objects to transfer.
These include server configuration information (such as local information and
remote logon registrations), replication settings (including all articles, publica-
tions, and subscriptions) and SQL Executive settings (including all tasks and
schedules). In addition, you must set the ANSI_NULLS and the
QUOTED_IDENTIFIER settings. The wizard uses these settings for all data-
base objects it creates. Refer to the topic “System Configuration” in Books
Online for more information regarding these advanced settings. The choices
you make for these settings will vary based on your existing SQL Server 6.5
databases and how you created objects within them. See Figure 4.20.

130 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F04ST20.EPS” >>

Figure 4.20. Selecting system objects to transfer.

8. Finally, the Completing The SQL Server Upgrade Wizard page appears. A
summary of your choices and any warning messages are listed here. Click the
Finish button to begin the upgrade. See Figure 4.21.

<< “F04ST21.EPS” >>

Figure 4.21. Completing the SQL Server Upgrade Wizard.

While the upgrade is in process, the wizard displays each step in the process in
the SQL Server Upgrade Script Interpreter dialog box and then notifies you
when the upgrade is complete. If an error occurs, details of the error are dis-
played. See Figure 4.22.

Chapter 4 Upgrading to SQL Server 2000 131
<< “F04ST22.EPS” >>

Figure 4.22. Notification of your completed upgrade.

Troubleshooting a SQL Server 6.5 Upgrade
If the SQL Server Upgrade Wizard encounters problems during the upgrade, either
you are notified during the upgrade of the problem or you must look in the upgrade
logs created by the wizard specifying any problems it encounters. Typical problems
are an inability to create objects and tables (you will have to create these manually
after the upgrade). The possible reasons for this include:

■ Text is missing from the syscomments table.

■ Objects were renamed using sp_rename (the syscomments entry is not updated
when the object is renamed).

■ Stored procedures were embedded within other stored procedures (no entry
exists in syscomments for these stored procedures).

■ Table and views have NULL column names (the wizard cannot script these
objects).

■ Tables were created on behalf of a user that does not have CREATE permis-
sions.

■ A stored procedure modifies a system table or references a system table that
does not exist in SQL Server 2000.

Another problem that can occur is having a computer name that does not match the
server name returned by @@SERVERNAME. Use the sp_dropserver and
sp_addserver system stored procedures to change the server name returned by
@@SERVERNAME to match the computer name.

132 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Specifying a Backward Compatibility Level for Upgraded
Databases
When you upgrade databases from SQL Server 6.5 to SQL Server 2000, it is likely
that you will have objects in the upgraded databases that use features that have
changed. Most applications are not affected by the changes in behavior. However,
in some cases, applications will need to be upgraded. SQL Server 2000 allows you
to set a backward compatibility level to retain the earlier behavior while retaining
almost all of the performance enhancements of SQL Server 2000. This allows time
for applications to be upgraded. The backward compatibility setting affects only a
small number of Transact-SQL statements. As always, test your applications thor-
oughly after the upgrade. If you need to set a backward compatibility level for an
upgraded database, use the sp_dbcmptlevel system stored procedure. Valid levels
are 60, 65, 70, and 80. You can also set the compatibility level using SQL Server
Enterprise Manager by right-clicking the desired database, clicking Properties,
clicking the Options tab, and then selecting the desired compatibility level.

Note Microsoft might drop the 60 and 65 backward compatibility levels in future
versions of SQL Server.

Lesson Summary
The SQL Server Upgrade Wizard allows you to upgrade a SQL Server 6.5 installa-
tion to the default instance of SQL Server 2000. The default instance can be on the
same computer as the SQL Server 6.5 installation, or it can be on a second com-
puter. After the upgrade is complete, SQL Server 6.5 will be upgraded to SQL
Server 2000, and your SQL Server 6.5 installation will remain intact. This allows
you to verify the upgrade. Check the upgrade logs to determine whether certain
objects were not upgraded. Finally, test your applications and use backward com-
patibility levels where necessary until you can upgrade the applications.

Chapter 4 Upgrading to SQL Server 2000 133
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You are planning to upgrade your SQL Server 7.0 installation running on Win-
dows NT 4.0 Server to SQL Server 2000. You want to test SQL Server 2000 on
the same computer on which you currently have SQL Server 7.0 installed, and
you need to keep the SQL Server 7.0 installation available for users. What
issues do you need to consider?

2. You have recently performed a version upgrade of SQL Server 7.0 to SQL
Server 2000. Although overall performance has improved, full-text searches are
not working. Why might this be?

3. You have decided that you cannot afford the downtime associated with a ver-
sion upgrade of your SQL Server 7.0 installation and have decided to perform
an online database upgrade of your production databases. What settings and
objects will you have to re-create manually?

4. You have been testing SQL Server 2000 on the same computer on which you
have been running your SQL Server 6.5 installation. You decide to upgrade
your SQL Server 6.5 installation. However, you cannot locate the SQL Server
Upgrade Wizard. It is not located on the Start menu and you cannot find it on
your hard drive. Why?

135
C H A P T E R 5

Understanding System and User Databases

Lesson 1: Understanding the Database Architecture 136

Lesson 2: Understanding the Transaction Log Architecture 142

Lesson 3: Understanding and Querying System and
 Database Catalogs . 149

Review . 158

About This Chapter
Before you begin creating and configuring user databases for your data, you need
to achieve an understanding of the physical structure of SQL Server 2000 data-
bases. Next, you need to understand how the transaction log is organized and func-
tions. Finally, you need to become familiar with the most commonly used and
queried system tables within the system and database catalogs. This includes how
to query these catalogs for meta data regarding system and user databases.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS
partition.

■ A computer configured as a server or a domain controller in the SelfPacedSQL
domain.

■ Installed a default and at least one named instance of SQL Server 2000 (see
Chapter 2).

136 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Understanding the Database
Architecture

As discussed earlier in this book, each SQL Server 2000 database (system or user)
consists of at least one data file and at least one transaction log file. This lesson
covers the architecture of these data files, including the allocation and management
of space and the organization of data and index pages within data files.

After this lesson, you will be able to
■ View the properties of data files

■ Understand how SQL Server 2000 allocates and manages space within a data
file

■ Understand how SQL Server 2000 organizes data and index pages within a data
file

Estimated lesson time: 15 minutes

Introducing Data Files
Each SQL Server 2000 database has one primary data file and can have secondary
data files, each of which is used only by that database. Each data file is a separate
operating system file. The primary data file generally has the .MDF filename
extension (this extension is not required but is useful for identification). This pri-
mary data file stores data in tables and indexes and contains the startup information
for the database. It contains system tables that track objects in the database, includ-
ing file location information about all additional files in the database (secondary
data files and transaction log files). Each secondary data file generally has the
.NDF filename extension (this extension is also not required). Secondary data files
are used primarily when a database spans multiple disk drives.

SQL Server 2000 records the locations of all the database files in two places: in the
master database and in the primary file for the database. Most of the time, the data-
base engine uses the file location information found in the master database. The
exception to this rule occurs when you perform operations that cause the database
engine to use the file location information found in the primary file to initialize the
file location entries in the master database. These operations are upgrading from
SQL Server 7.0 to SQL Server 2000, restoring the master database, and attaching a
database to SQL Server 2000 using the sp_attach_db system stored procedure.

Each data file (primary and secondary) has a logical filename (logical_file_name)
used in Transact-SQL statements and a physical filename (os_file_name) used by
the Microsoft Windows operating system. The logical filename must be unique to

Chapter 5 Understanding System and User Databases 137
the specified database and must also conform to the SQL Server identifier rules.
For further information about logical filename identifiers, see “Using Identifiers”
in SQL Server Books Online. The physical filename must conform to the rules of
file-naming conventions for the particular operating system you are using.

Additional data file properties include the file ID, initial file size, file growth incre-
ment (if any), and maximum file size. These data file properties are stored in the
File Header page, which is the first page of each data file. SQL Server uniquely
identifies pages in a data file by file ID and page number. Pages in a data file are
numbered sequentially starting at zero. Defining and altering the properties of a
data file are covered in Chapter 6.

Note SQL Server data and log files cannot be stored on compressed file systems.

Practice: Viewing the Properties of a Data File
In this practice you use SQL Server Enterprise Manager to view some of the prop-
erties of a data file.

� To view the properties of a data file

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears, displaying the Microsoft SQL Servers
and the Event Viewer (Local) console trees in the console root.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, expand the default instance, and then expand
Databases.

4. In the console tree, right-click Master and then click Properties.

The Master Properties dialog box appears with the General tab selected, dis-
playing various properties of the master database, such as the database status,
date of last backup, and collation name.

5. Click the Data Files tab.

The File Name column on the Data Files tab displays the logical filename of the
master database.

6. Expand the width of the Location column by sliding the column bar to the right.

The name and complete file path of the operating system file are displayed.

7. Reduce the width of the Location column so you can view the Space Allocated
(MB) column.

138 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
The current space allocated is displayed. Most systems will display 12 MB.
This is the initial size of the master database (which is rounded to the nearest
whole number).

8. Click Cancel to close the Master Properties dialog box.

9. Close SQL Server Enterprise Manager.

Allocating Space for Tables and Indexes
Before SQL Server 2000 can store information in a table or an index, free space
must be allocated from within a data file and assigned to that object. Free space is
allocated for tables and indexes in units called extents. An extent is 64 KB of space,
consisting of eight contiguous pages, each 8 KB in size. There are two types of
extents, mixed extents and uniform extents. SQL Server 2000 uses mixed extents to
store small amounts of data for up to eight objects within a single extent and uses
uniform extents to store data from a single object.

When a new table or index is created, SQL Server 2000 locates a mixed extent with
a free page and allocates the free page to the newly created object. A page contains
data for only one object. When an object requires additional space, SQL Server
2000 allocates free space from mixed extents until an object uses a total of eight
pages. Thereafter, SQL Server 2000 allocates a uniform extent to that object. SQL
Server 2000 will grow the data files in a round-robin algorithm if no free space
exists in any data file and autogrow is enabled.

When SQL Server 2000 needs a mixed extent with at least one free page, a Second-
ary Global Allocation Map (SGAM) page is used to locate such an extent. Each
SGAM page is a bitmap covering 64,000 extents (approximately 4 GB) that is used
to identify allocated mixed extents with at least one free page. Each extent in the
interval that SGAM covers is assigned a bit. The extent is identified as a mixed
extent with free pages when the bit is set to 1. When the bit is set to 0, the extent is
either a mixed extent with no free pages, or the extent is a uniform extent.

When SQL Server 2000 needs to allocate an extent from free space, a Global Allo-
cation Map (GAM) page is used to locate an extent that has not previously been
allocated to an object. Each GAM page is a bitmap that covers 64,000 extents, and
each extent in the interval it covers is assigned a bit. When the bit is set to 1, the
extent is free. When the bit is set to 0, the extent has already been allocated.

Note SQL Server 2000 can locate GAMs and SGAMs quickly because they are
the third and fourth pages in the first extent allocated within a data file. The first
page in the first extent is the File Header page and the second page is the Page Free
Space (PFS) page.

When SQL Server 2000 allocates a page within a mixed extent or a uniform extent
to an object, it uses an Index Allocation Map (IAM) page to track all pages allo-
cated to a table or an index. Each IAM page covers up to 512,000 pages, and IAM

Chapter 5 Understanding System and User Databases 139
pages are located randomly within the data file. All IAM pages for an object are
linked together, the first IAM page pointing to the second IAM page, and so on.

When SQL Server 2000 needs to insert data into pages allocated for an object, it
uses the PFS page to locate an allocated page with available space. PFS pages
within a data file record, using a bitmap, whether a page has been allocated and the
amount of free space on an allocated page (empty, 1–50 percent full, 51–80 percent
full, 81–95 percent full, or more than 95 percent full). Each PFS page covers 8,000
contiguous pages. The second page in the first extent in a data file contains the first
PFS page, and every 8000th page thereafter contains a PFS page.

Storing Index and Data Pages
In the absence of a clustered index, SQL Server 2000 stores new data on any
unfilled page in any available extent belonging to the table into which the data is
being inserted. This disorganized collection of data pages is called a heap. In a
heap, the data pages are stored in no specific order and are not linked together. In
the absence of either a clustered or a nonclustered index, SQL Server 2000 has to
search the entire table to locate a record within the table (using IAM pages to iden-
tify pages associated with the table). On a large table, this complete search is quite
inefficient.

To speed this retrieval process, database designers create indexes for SQL Server
2000 to use to find data pages quickly. An index stores the value of an indexed col-
umn (or columns) from a table in a B-tree structure. A B-tree structure is a bal-
anced hierarchal structure (or tree) consisting of a root node, possible intermediate
nodes, and bottom-level leaf pages (nodes). All branches of the B-tree have the
same number of levels. A B-tree physically organizes index records based on these
key values. Each index page is linked to adjacent index pages.

SQL Server 2000 supports two types of indexes, clustered and nonclustered. A
clustered index forces the physical ordering of data pages within the data file based
on the key value used for the clustered index (such as last name or zip code). The
leaf level of a clustered index is the data level. When a new data row is inserted into
a table containing a clustered index, SQL Server 2000 traverses the B-tree structure
and determines the location for the new data row based on the ordering within the
B-tree (moving existing data and index rows as necessary to maintain the physical
ordering). See Figure 5.1.

140 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F05ST01.EPS” >>

Figure 5.1. Structure of a clustered index.

The leaf level of a nonclustered index contains a pointer telling SQL Server 2000
where to find the data row corresponding to the key value contained in the nonclus-
tered index. When a new data row is inserted into a table containing only a non-
clustered index, a new index row is entered into the B-tree structure, and the new
data row is entered into any page in the heap that has been allocated to the table and
contains sufficient free space. See Figure 5.2.

Root node

Index rows

Previous Next

Index rows

Previous Next

Index rows

Previous Next

Index rows

Previous Next

Leaf nodes/Data pages

. . .

Rows of data

Previous Next

Rows of data

Previous Next

Rows of data

Previous Next

Intermediate level

Chapter 5 Understanding System and User Databases 141
<< “F05ST02.EPS” >>

Figure 5.2. Structure of a nonclustered index.

Lesson Summary
SQL Server 2000 uses one or more data files to store information in tables and
indexes. Data files are operating system files. Tables and indexes are allocated indi-
vidual pages from mixed extents or uniform extents based on the number of pages
used by these objects. A number of special pages are used to track free space
within a data file, the pages and extents that have been allocated to an object, and
the amount of available space on allocated pages. Data pages are stored in a disor-
ganized heap unless a clustered index exists on a table. Nonclustered indexes are
used to point to data pages in a heap or in a clustered index structure. If a clustered
index exists, data pages are physically ordered based on the index key and stored in
a B-tree structure. Index pages are always stored in a B-tree structure.

Root node

Leaf nodes

Index rows

Previous Next

Index rows

Previous Next

Index rows

Previous Next

Index rows

Previous Next

Data pages

Previous Next

Rows of dataRows of data

Previous Next.

142 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Understanding the Transaction Log
Architecture

Each database contains at least one transaction log file. The transaction log records
changes made to a database and stores sufficient information to allow changes to be
undone (rolled back) or redone (rolled forward). This lesson covers the architecture
of the transaction log, including the organization of transaction log files. This les-
son also covers how the transaction log works and how the various recovery mod-
els affect the transaction log.

After this lesson, you will be able to
■ Understand the organization of transaction log files

■ Understand how the transaction log functions

■ Understand SQL Server 2000 recovery models

■ View the properties of transaction log files

Estimated lesson time: 30 minutes

Introducing Transaction Log Files
Each SQL Server 2000 database has at least one transaction log file and can have
multiple transaction log files spread across a number of disks. Each transaction log
file is a separate operating system file and is used by only one database. Each trans-
action log file generally has the .ldf filename extension (this extension is not
required).

Each transaction log has a logical filename that is used in Transact-SQL statements
and a physical filename that is used by the Windows operating system. Additional
file properties include the file ID number, initial file size, file growth increment (if
any), and maximum file size. Unlike data files that contain pages, transaction log
files contain a series of transaction log records. A sequential log sequence number
(LSN) identifies each transaction log record. Regardless of the number of physical
log files, SQL Server 2000 treats the transaction log as one continuous log.

SQL Server 2000 logically divides each physical transaction log file into a number
of virtual log files (VLFs). The number and size of virtual log files are determined
dynamically based on the size of each transaction log file. Each transaction log file
has at least two VLFs. Each growth increment (if any) is treated as a separate phys-
ical file with its own VLFs. The number or size of VLFs cannot be configured or
set directly by the database administrator. SQL Server 2000 tries to maintain a
small number of virtual file logs because it operates most efficiently with a small
number of VLFs.

Chapter 5 Understanding System and User Databases 143
Tip You should create a transaction log large enough to prevent the need for fre-
quent growth. If automatic growth is required, you should set a reasonable growth
increment to prevent many small growth increments because small growth incre-
ments will result in many small virtual log files, which can slow down recovery.

When a database is created, the logical transaction log begins at the start of the first
physical log file, which is also the beginning of the first virtual log file. The logical
transaction log is made up of the portion of the transaction log that is required for
recovery and backup. The portion of the transaction log required for recovery and
backup will vary with the recovery model chosen. Backup and restore strategies are
covered in Chapter 8.

How the Transaction Log Works
SQL Server 2000 uses a buffer cache, which is an in-memory structure, into which
it retrieves data pages from disk for use by applications and users. Each modifica-
tion to a data page is made to the copy of the page in the buffer cache. A modified
buffer page in the cache that has not yet been written to disk is called a dirty page.
The modification is recorded in the transaction log before it is written to disk. For
this reason, the SQL Server 2000 transaction log is called a write-ahead transaction
log. SQL Server 2000 has internal logic to ensure that a modification is recorded in
the transaction log before the associated dirty page is written to disk.When SQL
Server writes the dirty page in the cache to the disk, it is called flushing the page.

A transaction log record contains sufficient information to roll any database modifi-
cation back or forward if necessary, including any extent allocations or index modi-
fications. This ensures that any modification written to disk (such as a change to a
data page or the creation of a new database object) can be rolled back in case the
transaction that caused the modification fails to complete for any reason (such as a
server failure or a rollback command), or rolled forward in case a completed trans-
action is not completely written to disk for any reason (such as a server failure).

Note Because of this rollback capacity, a backup of the transaction log allows a
database to be rebuilt when a drive containing a data file fails. The rollback capac-
ity is also the reason that the transaction log file for a database should be on a dif-
ferent drive than the data file.

SQL Server 2000 periodically writes dirty pages to disk from the buffer cache.
These writes occur either when a database checkpoint process occurs or when an
operating system thread (either an individual worker thread or a lazywriter thread)
scans for dirty pages, writes the dirty pages to disk, and then clears space in the
buffer cache to hold new data pages. Operating system threads may write dirty
pages to disk before SQL Server 2000 knows whether the transaction is complete.
However, if a transaction rolls back or never completes, the transaction log ensures
that modifications made to disk by transactions that did not complete will be rolled

144 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
back either via a rollback command or when the server restarts in the case of a
server failure.

Checkpoint Process
The checkpoint process is designed to minimize the recovery time if the server
fails, by minimizing the number of pages in the buffer cache that have not been
written to disk. Checkpoints occur whenever

■ A CHECKPOINT statement is issued.

■ The ALTER DATABASE statement is used.

■ An instance of SQL Server 2000 is stopped normally.

■ An automatic checkpoint is issued. Automatic checkpoints are generated peri-
odically based on the number of records in the active portion of the transaction
log, not on the amount of time that has elapsed since the last checkpoint.

The checkpoint process records the lowest LSN that must be present for a success-
ful rollback of an incomplete transaction. This number is called the minimum LSN
(MinLSN). The MinLSN is based on the lowest LSN of the oldest active transac-
tion, the beginning of the oldest replication transaction that has not been replicated
yet to all subscribers, or the start of the checkpoint. The portion of the transaction
log from the MinLSN to the most recent transaction log record is the active portion
of the transaction log and must be present to ensure a successful rollback, if neces-
sary. Whenever SQL Server 2000 starts (either normally or after a failure), a recov-
ery process occurs on each database. The recovery process checks the transaction
log for completed transactions that were not written to disk and rolls them forward.
It also checks the transaction log for incomplete transactions and makes sure they
were not written to disk. If they were written to disk, they are removed from the
disk. The MinLSN from the most recent checkpoint identifies the earliest LSN that
SQL Server 2000 must look at during this recovery process.

All transaction log records lower than the MinLSN are no longer active (the check-
point ensures that records older than the MinLSN have been written to disk). To
reuse this space, the transaction log records must be truncated (deleted) from the
transaction log file. The smallest unit of truncation is an individual VLF file. If any
part of a VLF is part of the active log, that VLF cannot be truncated. If the Simple
Recovery model is used, the checkpoint process simply truncates each VLF within
the inactive portion of the transaction log (allowing these VLFs to be reused). If the
Full Recovery or Bulk-Logged Recovery models are used, you must back up the
transaction log to truncate the inactive portion of the transaction log. Chapters 8
and 9 cover transaction log backups.

Note Log truncations must be performed from the parts of the log before the
MinLSN and can never be performed on any part of the active log.

Chapter 5 Understanding System and User Databases 145
Figure 5.3 illustrates the transaction log after a checkpoint has occurred and the
inactive portion of the transaction log has been truncated. Notice that the MinLSN
is earlier than the LSN of the checkpoint.

The checkpoint process frees space from the physical transaction log file so that the
logical log file can reuse space when it reaches the end of the last physical transac-
tion log file. When the end of the logical transaction log reaches the end of the last
physical transaction log file, the logical transaction log wraps to the beginning of
the first physical file (provided that the first VLF has been truncated). If the first
VLF has not been truncated and the transaction log is not set to autogrow (or the
drive is out of disk space), SQL Server 2000 cannot continue to function. Figure 5.4
illustrates this wrapping of the logical log to the beginning of the first physical
transaction log file.

<< “F05ST03.EPS” >>

Figure 5.3. The transaction log after truncation of the inactive portion.

<< “F05ST04.EPS” >>

Figure 5.4. Wrapping of the logical log.

Operating System Threads
SQL Server 2000 uses individual worker threads and a lazywriter thread to period-
ically scan the memory buffer, schedule dirty pages for asynchronous writes to
disk, and free inactive buffer pages for reuse. A thread is an operating system com-
ponent that allows multiple processes to execute using separate asynchronous exe-
cution paths. The write of each dirty page is recorded in the transaction log before

Virtual log 1 Virtual log 2 Virtual log 3 Virtual log 4 Virtual log 5

Truncated

Start of
logical log

Last
checkpoint

End of
logical log

Unused

MinLSN

Virtual log 1 Virtual log 2 Virtual log 3 Virtual log 4

Truncated

Start of
logical log

Next to last
checkpoint

Last
checkpoint

MinLSN
End of

logical log

146 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
the write to disk can occur. Individual worker threads are threads from other SQL
Server 2000 processes, such as an asynchronous read request by a user. These indi-
vidual worker threads scan the buffer cache while waiting for their primary task to
complete. A SQL Server 2000 lazywriter thread also periodically scans the free
buffer list. If the free buffer list is below a certain point (dependent on the size of
the cache), the lazywriter thread scans the buffer cache to free buffer space. The
term “lazywriter” refers to the fact that this lazywriter thread sleeps for an interval
of time, awakes and scans the memory buffer, and then goes back to sleep.

Note The individual worker threads and the lazywriter thread write most of the
dirty pages to disk between checkpoints, and the checkpoint process generally
finds few dirty pages to write to disk. The difference between the threads and the
checkpoint process is that checkpoints do not place the buffer pages back on the
free list. These three processes work together to smooth out the writing of data to
disk in order to minimize disk bottlenecks and optimize performance.

Introducing Recovery Models
SQL Server 2000 provides a choice of three recovery models: Simple, Full, and
Bulk-Logged. Each database has a recovery model. The model chosen affects the
size of the transaction log and the backup and recovery choices. Backup and recov-
ery strategies are covered in Chapter 8.

Full Recovery Model
The Full Recovery model gives you the ability to recover a database to the point of
failure or to a specific point in time. When a database uses the Full Recovery
model, all operations are fully logged. This includes full logging of all large-scale
operations (such as index creation and bulk loading of data using SELECT INTO,
Bcp, or BULK INSERT). These large-scale operations frequently use a substantial
amount of transaction log space. If you use this recovery model, you must make
sure that the transaction log does not run out of space (particularly during a large-
scale operation). Regular and frequent backups of the transaction log are required
to ensure that the transaction log is regularly truncated to free up space for more
records.

Bulk-Logged Recovery Model
When a database uses the Bulk-Logged Recovery model, all operations except cer-
tain large-scale operations are fully logged. Index creation and bulk load operations
are minimally logged. The transaction log does not record sufficient detail of these
large-scale operations to recover in case of a media failure after one of these opera-
tions. This helps reduce the amount of transaction log space used, but increases
exposure to data loss after these large-scale operations. A full database backup
after a large-scale operation is not required for recoverability. With the Bulk-
Logged Recovery model, regular backups of the transaction log are still required to

Chapter 5 Understanding System and User Databases 147
truncate the transaction log to free up space for more records, but these backups
need to occur less frequently than with the full recovery model.

Note Point-in-time recovery is not supported in the Bulk-Logged Recovery
model.

Simple Recovery Model
When a database uses the Simple Recovery model, all operations are fully logged
(including all large-scale operations). However, because this recovery model does
not rely on transaction log backups for database recovery, each checkpoint process
truncates the inactive portion of the transaction log. This prevents the transaction
log from running out of space in most circumstances. However, long-running trans-
actions and unreplicated transactions marked for replication can still cause the
transaction log to fill up. This recovery model is rarely used in production data-
bases because the risk of loss of recently written changes is simply too great. When
you use the Simple Recovery model, the database can be recovered only to the
point of the last backup.

Note The tempdb system database always uses the Simple Recovery model. The
sample user databases, Northwind and pubs, use the Simple Recovery model by
default, but this can be changed.

Practice: Viewing the Properties of a Transaction Log and a
Database
In this practice you use SQL Server Enterprise Manager to view some of the prop-
erties of a transaction log file and a database.

� To view the properties of a transaction log file and a database

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears, displaying the Microsoft SQL Servers
and the Event Viewer (Local) console trees in the console root.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, expand the default instance, and then expand
Databases.

4. In the console tree, right-click Northwind and then click Properties.

The Northwind Properties dialog box appears, with the General tab selected,
displaying various properties of the Northwind database.

148 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
5. Click the Transaction Log tab.

The File Name column displays the logical filename of the Northwind database.

6. Expand the size of the Location column by sliding the column bar to the right.

The name and complete file path of the operating system file are displayed.

7. Reduce the size of the Location column so you can view the Space Allocated
(MB) column.

The current space allocated is displayed. Most systems will display 1 MB. This
is the initial size of the Northwind transaction log file (which is rounded to the
nearest whole number).

8. Click the Options tab.

Notice that the Northwind database is using the Simple Recovery model.

9. Click Cancel to close the Northwind Properties dialog box.

10. Close SQL Server Enterprise Manager.

Lesson Summary
SQL Server 2000 uses one or more transaction log files to record modifications
made by transactions ahead of writing these data modifications to disk. This
ensures that a transaction can be rolled forward or rolled back if needed, such as in
the case of a server failure. SQL Server 2000 uses the checkpoint process and oper-
ating system threads to ensure that data modifications are written to disk. The
checkpoint process also identifies the portion of the transaction log that is no
longer active. The inactive portion of the transaction cannot be reused until it is
truncated. The recovery model in use determines whether the checkpoint process
truncates the inactive portion of the transaction log, or a transaction log backup is
required to truncate the transaction log. Finally, the recovery model chosen deter-
mines the extent of logging for bulk operations, which dictates the frequency of
transaction log backups.

Chapter 5 Understanding System and User Databases 149
Lesson 3: Understanding and Querying
System and Database Catalogs

SQL Server 2000 uses a variety of system tables to manage an instance of SQL
Server 2000 and its associated databases. These tables hold meta data about the
system as a whole and about objects in each database. This lesson covers the most
frequently used system tables, including the use of system-stored procedures, sys-
tem functions, and Information Schema Views to query these tables.

After this lesson, you will be able to
■ Understand the most frequently used system tables

■ Use system-stored procedures to query system tables

■ Use system functions to query system tables

■ Use Information Schema Views to query system tables

Estimated lesson time: 15 minutes

Introducing System Tables
The system tables used by SQL Server 2000 consist of two groups of tables: the
system catalog and the database catalog. Changing or deleting a system table can
cause SQL Server 2000 to lose functionality, function erratically, or be unable to
function at all.

Tip System tables begin with the sys prefix.

System Catalog
The system catalog consists of the set of system tables SQL Server 2000 uses to
manage the entire instance, and exists only in the master database. These system
tables record meta data about the entire instance (such as all users and all data-
bases) and system configuration settings (such as server configuration settings).

Table 5.1 describes some of the most frequently queried system tables in the sys-
tem catalog.

150 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Database Catalog
The database catalog consists of a set of system tables used to manage a particular
database. Each database has a set of these system tables. The system tables contain
sufficient information for a user database to be detached from one instance of SQL
Server 2000 and attached to another instance with the same or different database
name. Table 5.2 describes some of the most frequently queried system tables in the
database catalog.

Table 5-1. Frequently Queried System Tables in the System Catalog

System Table Description

Sysaltfiles Contains a row of information for each file in the database, including the
file ID, database ID (dbid), physical and logical filenames, location, size,
and growth characteristics.

Sysconfigures Contains a row of information for each server option set by an administra-
tor before SQL Server 2000 started, plus dynamic configuration options
set since startup.

Sysdatabases Contains a row of information for each database, including the dbid, secu-
rity identifier (SID) of the database owner, creation date, database com-
patibility level, location of the primary file, and database configuration
options that have been set.

Sysdevices Contains a row of information for each permanent backup device that has
been created, including the physical and logical filenames, file size, and
controller type for the device (such as disk or tape).

Syslockinfo Contains a row of information for each waiting, converting, and granted
lock request, including the ID of the user or process requesting the lock
and the object being locked.

Syslogins Contains a row of information for each login account, including the sid,
login ID, encrypted password (may be NULL), default database, and
server role.

Sysmessages Contains a row of information for each system error or warning that SQL
Server 2000 can return, including the error number, severity level, and
description.

Sysperfinfo Contains a row of information for each SQL Server performance counter,
including the object name, counter name, and counter value. These
counters are used in Windows System Monitor (or Windows2000 Perfor-
mance Monitor) and performance condition alerts.

Chapter 5 Understanding System and User Databases 151
Retrieving System Information
You can query system tables directly, but querying system tables by using scripts is
not recommended because Microsoft might change system tables in future releases
to add new functionality. These changes in a new release of SQL Server could
break any scripts that query system tables directly. SQL Server 2000 provides a
number of mechanisms to query system tables that you can embed in scripts that
will not be affected by future changes to system tables. These mechanisms include
system stored procedures, system functions, and information schema views.

Note System tables can also be queried using OLE DB schema rowsets and
ODBC catalog functions.

Practice: Querying System Tables Directly
In this practice you use SQL Query Analyzer to query system tables directly.

� To query system tables directly

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

SQL Query Analyzer appears displaying the Connect To SQL Server dialog box.

3. Connect to your default instance using Windows authentication.

4. SQL Query Analyzer appears, displaying a new query window.

5. In the query pane, type SELECT * FROM sysdatabases.

Table 5-2. Frequently Queried System Tables in the Database Catalog

System Table Description

Syscomments Contains a row of information for each view, rule, default, trigger,
CHECK constraint, DEFAULT constraint, and stored procedure. The text
column contains the original Transact-SQL definition statement used to
create the object. None of the entries in this table should be modified or
removed. You can hide stored procedure definitions by using the
ENCRYPTION keyword when the stored procedure is created.

Sysindexes Contains a row of information for each index and table in the database,
including the index ID (indid), type, original fill factor, and index name.

Sysobjects Contains a row of information for each object in a database, including
object name, object ID, user ID (uid) of the object owner, and creation
date.

Sysusers Contains a row of information for each Windows user, Windows group,
SQL Server user, and SQL Server role in the database, including the user
ID, username, group ID (gid), and creation date.

152 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
6. On the toolbar, click the Execute Query button, or press the F5 key, or press
CTRL-E to execute the query.

Notice that the results pane displays information regarding each database in this
instance of SQL Server 2000.

7. On the toolbar, click the Clear Window button or press CTRL+SHIFT+DEL
simultaneously.

8. In the query pane, type SELECT * FROM sysaltfiles.

Notice that the results pane displays information regarding each data and trans-
action log file used by this instance of SQL Server 2000.

9. Close SQL Query Analyzer.

10. Click the No button if a SQL Query Analyzer dialog box appears asking if you
want to save the changes.

System-Stored Procedures
System-stored procedures are prewritten Transact-SQL statements that ship with
SQL Server 2000. System-stored procedures work with system tables to provide
system information to and perform administrative tasks for database administrators.

Note System-stored procedures begin with an sp_.

Table 5.3 describes some of the most frequently used system-stored procedures for
querying system tables.

Practice: Querying System Tables Using System-Stored
Procedures
In this practice you use system-stored procedures in SQL Query Analyzer to query
system tables.

� To query system tables using system-stored procedures

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

SQL Query Analyzer appears, displaying the Connect To SQL Server dialog
box.

3. Connect to your default instance using Windows authentication.

SQL Query Analyzer appears, displaying a new query window.

4. In the query pane, type sp_helpdb.

Chapter 5 Understanding System and User Databases 153
5. On the toolbar, click the Execute Query button.

Notice that the results pane displays information regarding each database in this
instance of SQL Server 2000.

6. In the query pane, type a space and then Northwind to modify your query to
read sp_helpdb Northwind.

Notice that the results pane displays information regarding the Northwind data-
base only, including an additional result set showing the file allocation for the
Northwind database.

7. On the toolbar, click the Clear Window button.

8. In the query pane, type sp_spaceused.

9. On the toolbar, click the Execute Query button.

Table 5-3. System-Stored Procedures Used for Querying System Tables

System-Stored Procedure Description

Sp_configure [‘name’, ‘value’] Reports (or changes) configuration settings for a
SQL Server 2000 instance.

Sp_dboption [‘database’,
‘option’, ‘value’]

Reports (or changes) database options for a
particular database.

Sp_help [‘object’] Reports information about a particular database
object or data type.

Sp_depends [‘object’] Reports information about dependencies of data-
base objects, such as views or procedures that
depend on a particular table.

Sp_helpdb [‘database’] Reports information about a particular database (or
all databases if no database is specified).

Sp_helpfile [‘name’] Reports the physical names and attributes of files
associated with the current database.

Sp_lock [‘spid1’, ‘spid2’] Reports information about current locks.

Sp_monitor Reports information about how busy SQL Server
2000 has been since it started and since
sp_monitor was last run.

Sp_spaceused [‘object’,
‘updateusage’]

Reports information about the number of rows,
disk space reserved, disk space used by a table or
database, and whether the DBCC UPDATE-
USAGE command should be run.

Sp_statistics [‘table_name’,
‘owner’, ‘qualifier’, ‘index_name’,
‘is_unique’, ‘accuracy’]

Reports information about all indexes and statistics
on a table or view.

Sp_who [‘login’] Reports information about current SQL Server
2000 users and processes, and can be filtered using
the ACTIVE keyword to display only processes
that are not idle.

154 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Notice that the results pane displays information regarding space used by the
current database, which is master.

10. On the toolbar, click the drop-down list and then change the current database to
Northwind.

11. On the toolbar, click the Execute Query button.

Notice that the results pane displays information regarding space used by the
current database, which is now Northwind.

12. In the query pane, type ‘customers’ to modify your query to read sp_spaceused
‘customers’.

13. On the toolbar, click the Execute Query button.

Notice that the results pane now displays information regarding space used by
the customers table in the Northwind database.

14. Close SQL Query Analyzer.

15. Click the No button if a SQL Query Analyzer dialog box appears asking
whether you want to save the changes.

System Functions
System functions are a set of built-in functions that ship with SQL Server 2000 that
query system tables from within Transact-SQL statements and return specific infor-
mation about values, objects, and settings. Table 5.4 describes some of the system
functions used most frequently by database administrators to query system tables.

Table 5-4. System Functions Used to Query System Tables

System Function Description

DATABASEPROPERTYEX
(‘database’,’property’)

Returns a value regarding a database option or prop-
erty (such as Recovery).

DB_ID (‘database’) Returns the ID number of a database.

DB_NAME (database_id) Returns the name of a database.

FILE_ID (‘file_name’) Returns the ID number of a logical filename.

FILE_NAME (file_ID) Returns the logical file name of a file.

FILEPROPERTY (‘file_name’,
‘property’)

Returns a value regarding a file property (such as
SpaceUsed).

GETDATE () Returns the current system date and time in the SQL
Server 2000 format for datetime values.

HOST_NAME () Returns the name of the host computer.

STATS_DATE (table_id, index_id) Returns the date that statistics for an index were
updated.

USER_ID (‘user_name’) Returns the database ID of a user.

USER_NAME (id) Returns the database name of a user (such as dbo).

Chapter 5 Understanding System and User Databases 155
Practice: Querying System Tables Using System Functions
In this practice you use system functions in SQL Query Analyzer to query system
tables.

� To query system tables using system functions

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

SQL Query Analyzer appears displaying the Connect To SQL Server dialog box.

3. Connect to your default instance using Windows authentication.

SQL Query Analyzer appears displaying a new query window.

4. In the query pane, type SELECT DB_ID (‘Northwind’)
5. On the toolbar, click the Execute Query button. Notice that the results pane dis-

plays the database ID for the Northwind database in this instance of SQL
Server 2000.

6. On the toolbar, click the Clear Window button.

7. In the query pane, type SELECT FILEPROPERTY (‘Northwind’,
‘SpaceUsed’)

8. On the toolbar, click the Execute Query button.

Notice that the results pane displays the number of pages allocated in the
Northwind database.

9. On the toolbar, click the Clear Window button.

10. In the query pane, type SELECT USER_NAME (2).
Notice that the results pane displays the name for the user with a user ID of 2
(this is the Guest account).

11. Close SQL Query Analyzer.

12. Click the No button if a SQL Query Analyzer dialog box appears asking
whether you want to save the changes.

Information Schema Views
Information schema views are views of system and database catalog information
based on the ANSI SQL-92 standards. These views are independent of the imple-
mentation of catalogs by any particular vendor, and thus applications using infor-
mation schema views are portable between heterogeneous systems that comply
with ANSI SQL-92. They are also independent of any changes to the underlying
system tables.

Table 5.5 describes some of the most frequently used information schema views for
querying system tables.

156 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Practice: Querying System Tables Using Information
Schema Views
In this practice you use information schema views in SQL Query Analyzer to query
system tables.

� To query system tables using information schema views

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

SQL Query Analyzer appears displaying the Connect To SQL Server dialog box.

3. Connect to your default instance using Windows authentication.

SQL Query Analyzer appears displaying a new query window.

4. On the toolbar, click the drop-down list and then change the current database to
Northwind.

5. In the query pane, type SELECT * FROM
INFORMATION_SCHEMA.SCHEMATA.

6. On the toolbar, click the Execute Query button.

Notice that the results pane displays information regarding all databases in this
instance of SQL Server 2000.

7. On the toolbar, click the Clear Window button.

8. In the query pane, type SELECT * FROM INFORMATION
_SCHEMA.TABLES.

Table 5-5. Information Schema Views for Querying System Tables

Information Schema View Description

Information_schema.columns Contains a row of information for each column
accessible to the current user in the current database.

Information_schema.schemata Contains a row of information for each database in
which the current user has permissions.

Information_schema.tables Contains a row of information for each table in
the current database in which the current user has
permissions.

Information_schema.table_privileges Contains a row of information for each table privi-
lege granted to or by the current user in the current
database.

Information_schema.view_table_usage Contains a row of information for each table in the
current database used in a view.

Chapter 5 Understanding System and User Databases 157
9. On the toolbar, click the Execute Query button.

Notice that the results pane displays information regarding tables in the current
database.

10. On the toolbar, click the Clear Window button.

11. In the query pane, type SELECT * FROM INFORMATION
_SCHEMA.TABLE_PRIVILEGES.

12. On the toolbar, click the Execute Query button.

Notice that the results pane displays information regarding privileges on all
tables in the Northwind database.

13. Close SQL Query Analyzer.

14. Click the No button if a SQL Query Analyzer dialog box appears asking
whether you want to save the changes.

Lesson Summary
The system catalog and database catalog contain system tables used by SQL Server
2000 to manage the entire instance and each particular database. Although you can
query these system tables directly using SQL Query Analyzer, you should not
embed direct queries into Transact-SQL scripts because the system tables might
change in future releases of SQL Server. If you want to embed queries in Transact-
SQL scripts, you should use one of several methods that are guaranteed to work
with future versions of SQL Server. These include system-stored procedures, sys-
tem functions, and information schema views.

158 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. Describe the difference in the ordering of data pages from a table caused by
using either a clustered index or a nonclustered index.

2. Which recovery model does not require regular backups of the transaction log?

3. Why should you not create scripts that use Transact-SQL statements to directly
query system tables?

159
C H A P T E R 6

Creating and Configuring User Databases

Lesson 1: Creating a User Database . 161

Lesson 2: Setting Database Options . 179

Lesson 3: Managing User Database Size. 181

Lesson 4: Placing Database Files on Multiple Disks 188

Review . 196

About This Chapter
This chapter prepares you to create and configure user databases. The chapter
begins with learning the mechanics of creating a user database, using either SQL
Server Enterprise Manager or Transact-SQL statements in SQL Query Analyzer.
Next you learn about the various database options that you can set and how to set
them, either at the time of creation or after the database is in production. Next you
learn about manual and automatic methods of managing the size of user databases,
including both data and transaction log files. Finally you learn how to optimize
your disk subsystem by placing data and transaction log files on multiple disks,
using a combination of RAID, filegroups, and multiple disks. After you have com-
pleted these tasks, you will be ready to begin loading data into your SQL Server
2000 installation.

160 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS
partition.

■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

Chapter 6 Creating and Configuring User Databases 161
Lesson 1: Creating a User Database

Now that you have installed SQL Server 2000, you are ready to create user data-
bases to hold your data. In this lesson, you will learn the mechanics of creating a
user database using SQL Server Enterprise Manager and using the CREATE DATA-
BASE Transact-SQL statement in SQL Query Analyzer. You will also learn how to
use SQL Server Enterprise Manager to generate a Transact-SQL script that will re-
create a database object (for example, in a disaster recovery situation).

After this lesson, you will be able to
■ Understand the process of creating a user database

■ Create a user database using SQL Server Enterprise Manager

■ Create a user database using the CREATE DATABASE Transact-SQL statement
in SQL Query Analyzer

■ Create a Transact-SQL script of a database object using SQL Server Enterprise
Manager

Estimated lesson time: 45 minutes

Creating a User Database
When you create a new user database, you define it by selecting a database name
that is unique to the current instance of SQL Server 2000. No other properties of a
user database need be defined explicitly. The database name you choose should
conform to SQL Server 2000 rules for identifiers (although this is not required).
These rules state that for identifier names

■ The first character must begin with a letter, the underscore (_), the “at” sign
(@), which signifies a local variable or parameter, or the number sign (#),
which signifies a temporary table or procedure.

■ Subsequent characters in the name can also include numbers and the dollar
sign ($).

■ Embedded spaces and special characters cannot be included.

■ A SQL Server 2000 reserved keyword in uppercase or lowercase (examples:
BACKUP or PLAN) cannot be used.

Note If an identifier does not follow these rules, you must reference the identifier
using double quotation marks or brackets (for example, sp_helpdb “My Database”
or sp_helpdb [My Database] if you use a database name that includes a space).

Additional properties that you will define frequently are the size, physical and log-
ical filename, and physical location of both the primary data file and the initial

162 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
transaction log file. You can specify multiple data files and multiple transaction log
files (generally on separate disks) when you create the database (or you can add
them later). You can also group data files into filegroups and change the default
filegroup. Lesson 4 of this chapter covers placing database files on multiple disks,
using multiple files, and creating user-defined filegroups for a database. Next, for
each data file and transaction log file you create, you can specify whether the file
autogrows when it runs out of space, how large each growth increment is, and the
maximum size to which it can grow. Lesson 3 of this chapter covers managing
database growth.

If you do not define these additional file properties, SQL Server 2000 uses default
values. Table 6.1 lists the default properties for a database (in the default instance)
with a database name of SelfPaced.

When SQL Server 2000 creates a database, it performs this task in two steps. First
it copies the model database to the primary data file to initialize the new user data-
base and its meta data. The objects that are copied include system database objects
and any user-defined database objects that have been placed in the model database
(such as tables, views, stored procedures, and user-defined data types). Next SQL

Table 6-1. Example Default Database Properties for Database Name SelfPaced

Database Property Value

Logical primary data filename SelfPaced_Data

Physical primary data filename SelfPaced_Data.mdf

Physical primary data file location C:\Program Files\Microsoft SQL Server\Mssql\Data

Physical size of the primary data
file

The actual size of the model data file (640 KB by
default) if created with a Transact-SQL script or the
actual size of the model data file rounded up to the
nearest whole number (1 MB) if created with SQL
Server Enterprise Manager

Physical primary data file growth
properties

Autogrowth enabled, with a growth increment of
10%, and no maximum file growth size Logical trans-
action log filename SelfPaced_Log

Physical transaction log filename SelfPaced_Log.ldf

Physical transaction log file
location

C:\Program Files\Microsoft SQL Server\Mssql\Data

Physical size of the transaction log
file

The actual size of the model transaction log file (512
KB by default) if created with a Transact-SQL script
or the actual size of the model transaction log file
rounded up to the nearest whole number (1 MB) if
created with SQL Server Enterprise Manager

Physical transaction log file
growth properties

Autogrowth enabled, with a growth increment of
10%, and no maximum file growth size

Chapter 6 Creating and Configuring User Databases 163
Server 2000 fills the rest of each data file with empty pages, except those special-
ized pages used to track allocation of space (such as GAMs, SGAMs, and IAMs).
This primary data file must always have room to add new catalog information to
the system tables. System tables are always contained in the primary data file.

Note The tempdb database is re-created each time you start SQL Server 2000
(using the model database meta data).

In addition to inheriting database objects from the model database, each new user
database inherits database option settings from the model database (tempdb does
not inherit database option settings). Change these settings for the model database
to change the database option settings for all new databases. You can also change
these settings after a user database has been created. Setting and changing database
options are covered in Lesson 2 of this chapter.

Finally, by default, each new database inherits the default collation setting from the
model database. The default collation for the model database is the same as for all
system databases (the default collation is defined during setup). The default colla-
tion for system databases cannot be changed easily—you must have access to all
scripts and information needed to recreate the user databases and their objects, all
user data must be exported, all user databases must be dropped, the system data-
bases must be rebuilt, and all user data must be reloaded. In international environ-
ments, having user databases with collation settings that are different from each
other’s settings and from the system databases’ settings can be quite useful. To
change the default collation for a new user database, specify a different collation
when you create the new database. It is also possible to change the default collation
after you have created a user database, loaded data, and created objects, but this is
not an easy task. To change the default collation at that stage, you must first export
all user data, recreate all database objects, and reload all user data.

Note You must be a member of the Sysadmin or Dbcreator role (or be specifically
granted the permission) to create a user database. Permissions are covered in Chap-
ters 10 and 11.

Using SQL Server Enterprise Manager to Create a User
Database
You can create a user database in two separate ways with SQL Server Enterprise
Manager. The first way is by using the Create Database Wizard. The second way is
to create a database directly by right-clicking Databases and then selecting New
Database in the console tree. The Create Database Wizard is useful for novices, but
limits the complexity of your physical database design. If you plan to use multiple
disks and multiple files, you cannot use the Create Database Wizard.

164 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Using the Create Database Wizard
The SQL Server Enterprise Manager wizards are available from the Tools menu,
and are also available from any taskpad view. Figure 6.1 displays the Select Wizard
dialog box, from which you can select a variety of wizards, including the Create
Database Wizard.

<< “F06ST01.EPS” >>

Figure 6.1. The Select Wizard dialog box.

After you start the Create Database Wizard, you are asked to select a name for your
new database in the Name The Database And Specify Its Location page. You can
also choose to change the default location for the data file and the transaction log
file (when you are using the Create Database Wizard, both files must be in the same
location). See Figure 6.2.

<< “F06ST02.EPS” >>

Figure 6.2. Selecting a name and location for the database.

Chapter 6 Creating and Configuring User Databases 165
Next, in the Name The Database Files page, you define both the logical filename
and the physical filename for each data file (when you are using the Create Data-
base Wizard, both names must be the same). You can also add additional data files
in the default location and can specify the initial size for each data file. The default
is 1 MB. See Figure 6.3.

<< “F06ST03.EPS” >>

Figure 6.3. Naming the database files.

Next, in the Define The Database File Growth page, you specify the growth charac-
teristics of all data files. Notice that the default is to grow each data file in incre-
ments of 10 percent and to allow unlimited growth. Notice that you cannot specify
different growth characteristics for each data file using the Create Database Wiz-
ard. Lesson 3 of this chapter covers setting appropriate growth characteristics. See
Figure 6.4.

<< “F06ST04.EPS” >>

Figure 6.4. Specifying the growth characteristics of data files.

166 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Next, in the Name The Transaction Log Files page, you define both the logical file-
name and the physical filename for the transaction log file (when you are using the
Create Database Wizard, both names must be the same). You can also add addi-
tional transaction log files in the default location and can specify the initial size for
each transaction log file. The default is 1 MB. See Figure 6.5.

<< “F06ST05.EPS” >>

Figure 6.5. Naming the transaction log file.

Next, in the Define The Transaction Log File Growth page, you specify the growth
characteristics of all transaction log files. Notice that the default is to grow each
transaction log file in increments of 10 percent and to allow unlimited growth.
Notice also that you cannot specify different growth characteristics for each trans-
action log file when you use the Create Database Wizard. Lesson 3 of this chapter
covers setting appropriate growth characteristics. See Figure 6.6.

<< “F06ST06.EPS” >>

Figure 6.6. Specifying the growth characteristics of transaction log files.

Chapter 6 Creating and Configuring User Databases 167
Next, in the Completing The Create Database Wizard page, you are given the
opportunity to review the selections you have made before you actually create the
new database. You can click the Back button to change any parameter you want to
change. Click the Finish button to create the new database. See Figure 6.7.

<< “F06ST07.EPS” >>

Figure 6.7. Reviewing the database parameters that you have selected.

After the new database is successfully created, a Create Database Wizard dialog
box appears to give you the opportunity to create a maintenance plan for this new
database. Click the No button. Creating a maintenance plan for a database is cov-
ered in Chapter 13.

Practice: Creating a Database Using the Create Database
Wizard in SQL Server Enterprise Manager
In this practice you create a database using the Create Database Wizard in the SQL
Server Enterprise Manager.

� To create a database using the Create Database Wizard in SQL Server Enter-
prise Manager

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears displaying the Microsoft SQL Servers
and the Event Viewer (Local) console trees in the console root.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, and then click the default instance.

4. On the Tools menu, click Wizards.

The Select Wizard dialog box appears.

168 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
5. Expand Database and then double-click Create Database Wizard.

The Welcome To The Create Database Wizard page appears.

6. Click Next.

The Name The Database And Specify Its Location page appears.

7. In the Database Name text box, type WizardDB.

8. Review the default locations for the database file and the transaction log file,
and then click Next.

The Name The Database Files page appears. Notice the default logical database
primary data file name and default initial size for the primary data file. Also
notice that you can add additional data files, but only in the default location.

9. In the Initial Size (MB) text box, type 10, and then click Next.

The Define The Database File Growth page appears. Notice the default settings.

10. In the Grow The Files By Percent: spin box, type 25.

11. Click the Restrict File Growth To MB: option button, and then in the Restrict
File Growth To MB: spin box, type 30.

12. Click Next.

The Name The Transaction Log Files page appears. Notice the default name
and initial size. The default initial size is the same size as the initial data file
size.

13. In the Initial Size (MB) text box, type 4 and then click Next.

The Define The Transaction Log File Growth page appears.

14. Click the Grow The Files In Megabytes (MB): option button, and then in the
Grow The Files In Megabytes (MB): spin box, type 3.

15. Click the Restrict File Growth To MB: option button, and then in the Restrict
File Growth To MB: spin box, type 15.

16. Click Next.

The Completing The Create Database Wizard page appears.

17. Click the Finish button.

A Create Database Wizard message box appears letting you know that the data-
base was successfully completed.

18. Click OK.

A Create Database Wizard dialog box appears asking whether you want to cre-
ate a maintenance plan for this database.

19. Click the No button.

20. In the SQL Server Enterprise Manager console tree, expand your default
instance and then expand Databases.

Notice that the WizardDB database appears in the list of databases.

Chapter 6 Creating and Configuring User Databases 169
21. Right-click WizardDB, and then click Properties.

The WizardDB Properties dialog box appears, with the General tab selected.

22. Click the Data Files tab and review the properties of the data file for the
WizardDB database.

23. Click the Transaction Log tab and review the properties of the transaction log
file for WizardDB database.

24. Click Cancel to close the WizardDB Properties dialog box.

25. Do not close SQL Server Enterprise Manager.

Using SQL Server Enterprise Manager Directly
To create a database directly using SQL Server Enterprise Manager, right-click the
Databases container in the console tree and then click New Database. The Database
Properties dialog box appears with the General tab selected, as in Figure 6.8.
Notice that you can change the collation for this new database.

On the Data Files tab, you can create multiple data files, each with differing prop-
erties. You can also create user-defined filegroups and place secondary data files in
specific filegroups. Placing database files is covered in Lesson 4 of this chapter.
See Figure 6.9.

<< “F06ST08.EPS” >>

Figure 6.8. The General tab of the Database Properties dialog box.

170 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F06ST09.EPS” >>

Figure 6.9. The Data Files tab of the Database Properties dialog box.

On the Transaction Log tab, you can create multiple transaction log files, each with
differing properties. See Figure 6.10.

<< “F06ST10.EPS” >>

Figure 6.10. The Transaction Log tab of the Database Properties dialog box.

Chapter 6 Creating and Configuring User Databases 171
Practice: Creating a Database Directly Using SQL Server
Enterprise Manager
In this practice you create a database directly using SQL Server Enterprise Manager.

� To create a database directly using SQL Server Enterprise Manager

1. In the SQL Server Enterprise Manager console tree, expand the Microsoft SQL
Servers container, expand the SQL Server Group container, and then expand the
default instance.

2. Right-click Databases and then click New Database.

The Database Properties dialog box appears with the General tab selected.

3. In the Name text box, type SSEMDB and then click the Data Files tab.

Notice the default logical filename, physical name and location, initial size,
filegroup, and growth properties.

4. In the File Name column, overwrite the default primary filename by typing
SSEMDB_Data1 in the first cell of the column.

Notice that the physical filename in the corresponding Location cell changes to
SSEMDB_Data1_Data.mdf.

5. In the corresponding Initial Size (MB) cell, type 50.

6. In the File Growth group box, type 15 in the By Percent: spin box.

7. In the Maximum File Size group box, click the Restrict File Growth (MB):
option button, and then in the Restrict File Growth (MB): spin box, type 150.

8. In the File Name column, click the second line and then type SSEMDB_Data2.

Notice the default parameters for this new data file. In particular, notice that the
default name for this secondary data file ends with the .NDF suffix.

9. Change the physical location for this secondary data file to
C:\SSEMDB_Data2_Data.ndf.

In a production system, you would not place a secondary data file on the same
physical drive as the primary data file. If you have a second physical drive in
your practice system, place this secondary file on that drive.

10. In the corresponding Initial Size (MB) cell, type 50.

11. In the File Growth group box, type 15 in the By Percent: box.

12. In the Maximum File Size group box, click the Restrict File Growth (MB):
option button, and then in the Restrict File Growth (MB): spin box, type 100.

13. Click the Transaction Log tab.

Notice the default parameters for this new transaction log file.

14. In the Initial Size (MB) cell, type 20 to replace the default parameter.

15. In the File Growth group box, type 25 in the By Percent: spin box.

16. In the Maximum File Size group box, click the Restrict File Growth (MB):
option button, and then in the Restrict File Growth (MB): spin box, type 75.

172 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
17. Click OK to create the new database.

In the console tree, notice that the SSEMDB database appears in the list of
databases.

18. Right-click SSEMDB, and then click Properties.

The SSEMDB Properties dialog box appears, with the General tab selected.

19. Click the Data Files tab and review the properties of the data files for the
SSEMDB database.

20. Click the Transaction Log tab and review the properties of the transaction log
file for the SSEMDB database.

21. Click Cancel to close the SSEMDB Properties dialog box.

22. Do not close SQL Server Enterprise Manager.

Using the CREATE DATABASE Transact-SQL Statement to
Create a User Database
The CREATE DATABASE Transact-SQL syntax for creating a user database
requires only a database name. All other parameters are optional. The Transact-
SQL syntax allows you to define the properties of multiple data files, create user-
defined filegroups, place secondary data files in specific filegroups, and define the
properties of multiple transaction log files. The CREATE DATABASE topic in SQL
Server Books Online provides the complete syntax with a number of examples.

Tip When you are first learning a new Transact-SQL command, use the examples
in SQL Server Books Online to help decipher the syntax. This is frequently the eas-
iest way to learn a new command.

Creating a Simple Database Using Transact-SQL
The following example, run in SQL Query Analyzer, creates a database called
TSQLDB without specifying any data files or transaction log files.

CREATE DATABASE TSQLDB

Creating a Multiple File Database Using Transact-SQL
The following example creates a database called TSQLDB, which consists of a
100-MB primary data file, a 500-MB secondary file, and a 250-MB transaction log
file. The properties of the primary data file in this example include an initial size of
100 MB, a growth increment of 25 MB, and a maximum data file size of 250 MB.
The properties of the secondary data file include an initial size of 500 MB, a
growth increment of 50 MB, and a maximum data file size of 1000 MB. The prop-
erties of the transaction log file in this example include an initial size of 250 MB, a
growth increment of 40 percent, and a maximum transaction log size of 500 MB.

Chapter 6 Creating and Configuring User Databases 173
CREATE DATABASE TSQLDB
ON
(NAME = TSQLDB1 ,

FILENAME = ’D:\SQL_Data\TSQLDB1.mdf’ ,
SIZE = 100 ,
MAXSIZE = 250 ,
FILEGROWTH = 25) ,

(NAME = TSQLDB2 ,
FILENAME = ’E:\SQL_Data\TSQLDB2.ndf’ ,
SIZE = 500 ,
MAXSIZE = 1000 ,
FILEGROWTH = 50)

LOG ON
(NAME = TSQLDB_Log ,

FILENAME = ’F:\SQL_Log\TSQLDB2.ldf’ ,
SIZE = 250,
MAXSIZE = 500 ,
FILEGROWTH = 40%)

Practice: Creating a Database in SQL Query Analyzer Using
the CREATE DATABASE Transact-SQL Statement
In this practice you create a database in SQL Query Analyzer using the CREATE
DATABASE Transact-SQL statement in SQL Query Analyzer.

� To create a database in SQL Query Analyzer using the CREATE DATABASE
Transact-SQL statement

1. On the SQL Server Enterprise Manager Tools menu, click SQL Query Analyzer.

SQL Query Analyzer appears.

2. On the toolbar, click the Load SQL Script button or press CTRL+SHIFT+P.

The Open Query File dialog box appears.

3. Browse to the C:\SelfPacedSQL\CH_6 folder and open the CreateDB.sql script.

4. Review this script. The script is shown below.

CREATE DATABASE TSQLDB
ON
(NAME = TSQLDB_DATA ,

FILENAME =
’C:\Program Files\Microsoft SQL Server\MSSQL\Data\TSQLDB.mdf’ ,
SIZE = 10 ,
MAXSIZE = 25 ,
FILEGROWTH = 5)

LOG ON
(NAME = TSQLDB_LOG ,

FILENAME =
’C:\Program Files\Microsoft SQL Server\MSSQL\Data\TSQLDB.ldf’ ,
SIZE = 4 ,

174 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
MAXSIZE = 12 ,
FILEGROWTH = 40%)

5. Execute the CreateDB.sql script.

Notice that the results pane displays the results of the creation of the TSQLDB
database. The TSQLDB_DATA file was allocated 10 MB and the
TSQLDB_LOG file was allocated 4 MB.

6. On the toolbar, click the Clear Window button.

7. In the query pane, type EXEC sp_helpdb TSQLDB and then press CTRL+E
(to execute the query) on your keyboard.

8. Review the output in the results pane to verify the properties of the TSQLDB
database.

9. On the toolbar, click the Clear Window button.

10. Minimize SQL Query Analyzer.

Scripting Databases and Database Objects Using SQL
Server Enterprise Manager
Using SQL Server Enterprise Manager, you can generate a Transact-SQL script to
document existing database objects (such as databases, tables, indexes, views,
users, groups, and logins). You can use these scripts to re-create any of these data-
base objects at a later time (for disaster recovery) in the same or different database.
You can generate a single script that will re-create all database objects, or create
separate scripts for each object.

To generate a Transact-SQL script, right-click the object for which you want to
generate a script, point to All Tasks, and then click Generate SQL Script. See
Figure 6.11.

<< “F06ST11.EPS” >>

Figure 6.11. General tab in the Generate SQL Scripts dialog box.

Chapter 6 Creating and Configuring User Databases 175
You can select objects to be scripted. If no objects have been created within the
database, no objects will appear.

Click the Formatting tab to display formatting options. Depending on the object
you are scripting, you will have a variety of scripting options. By default, the script
will contain the CREATE and DROP statement for each object being scripted. See
Figure 6.12.

Click the Options tab to display security scripting options, table scripting options,
and file options. See Figure 6.13.

Note You can script the database schema and all database objects into a single
script or create multiple scripts for multiple objects.

<< “F06ST12.EPS” >>

Figure 6.12. Formatting tab in the Generate SQL Scripts dialog box.

176 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F06ST13.EPS” >>

Figure 6.13. Options tab in the Generate SQL Scripts dialog box.

Practice: Generating a Transact-SQL Script to Re-create the
TSQLDB Database
In this practice you use SQL Server Enterprise Manager to generate a Transact-
SQL script to re-create the TSQLDB Database.

� To generate a Transact-SQL script to re-create the TSQLDB database

1. In the SQL Server Enterprise Manager console tree, expand the Microsoft SQL
Servers container, expand the SQL Server Group container, expand the default
instance, and then expand Databases.

Notice that the TSQLDB database does not appear in the database list. The rea-
son is that this database was created by using a different client management
tool.

2. Right-click Databases and then click Refresh.

Notice that the TSQLDB database now appears in the database list.

3. Right-click TSQLDB, point to All Tasks, and then click Generate SQL Script.

The Generate SQL Scripts – SelfPacedSQL\TSQLDB dialog box appears, with
the General tab selected.

4. Click the Options tab.

5. In the Security Scripting Options group box, select the Script Database check
box and then click OK.

The Save As dialog box appears.

6. In the Save In drop-down list, change the folder to C:\SelfPacedSQL\CH_6.

7. In the File Name text box, type TSQLDB and then click the Save button.

8. Click OK to close the Scripting message box.

Chapter 6 Creating and Configuring User Databases 177
9. Switch to SQL Query Analyzer.

10. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

11. Browse to the C:\SelfPacedSQL\CH_6 folder and open the TSQLDB.sql script.

Notice that the script begins with a DROP DATABASE Transact-SQL statement
and a CREATE DATABASE Transact-SQL statement. Notice also that it con-
tains the database option settings for the TSQLDB database. These settings will
be covered in Lesson 2 of this chapter.

12. Close SQL Query Analyzer.

Lesson Summary
You can create user databases using either SQL Server Enterprise Manager or
using Transact-SQL scripts in SQL Query Analyzer. If you are a novice, you can
use the Create Database Wizard in SQL Server Enterprise Manager to create sim-
ple databases. To create more complex databases, use either the direct method in
SQL Server Enterprise Manager or write a Transact-SQL script for execution in
SQL Query Analyzer. When you create a user database, SQL Server 2000 will use
default values for all data file and transaction log properties that you do not specifi-
cally define. Finally, when you create a new user database, it inherits the system and
user database objects in the model database, as well as its database option settings.

178 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Setting Database Options

In addition to the properties of each data file and transaction log file in a user data-
base, you can set a number of database options that determine various characteris-
tics of a user database. In this lesson, you will be introduced to these settings and
learn how to view and modify these settings for an existing database, including the
model database.

After this lesson, you will be able to
■ Describe the database options that you can set

■ View the database settings

■ Modify the database settings

Estimated lesson time: 15 minutes

Introducing Database Options
Database option settings for a database determine various default behaviors for the
database. These settings for a user database are inherited from the model database
when the user database is created. Database options fall into five categories:

■ Control of certain automatic behaviors (such as automatically creating statis-
tics, automatically updating statistics, and automatically shrinking database
files)

■ Cursor behavior and scope (such as local or global)

■ Recovery options (Full, Bulk-Logged, or Simple)

■ ANSI compliance options (such as ANSI nulls and quoted identifiers)

■ State options (such as read-only and dbo access only)

In most environments, you will rarely modify more than a few of these settings.
Setting the recovery model for a database and restricting the level of user access to
a database are the settings that you will change periodically. Recovery settings
were covered in Chapter 5 and will also be covered in Chapter 8. You restrict
access to a user database to perform various administrative tasks (such as restoring
a database) or to create a read-only database. Options include setting a database to
read-only, allowing only database owners and members of the Dbcreator and
Sysadmin server roles to connect to the database, and setting a database to allow
only a single user to connect. Refer to the Setting Database Options topic in SQL
Server Books Online for full details on other settings.

Chapter 6 Creating and Configuring User Databases 179
Viewing Database Option Settings
You view the current settings for database options using SQL Server Enterprise Man-
ager or using the DATABASEPROPERTYEX system function. SQL Server Enterprise
Manager displays the most commonly modified settings. To view them, right-click a
database, click Properties, and then click the Options tab. See Figure 6.14.

<< “F06ST14.EPS” >>

Figure 6.14. Viewing the database option settings.

To view the current recovery model for the TSQLDB database using the DATA-
BASEPROPERTYEX system function, use the following statement in SQL Query
Analyzer.

SELECT DATABASEPROPERTYEX (‘TSQLDB’, ’RECOVERY’)

Modifying Database Options
You set the most common database options by clicking a check box in SQL Server
Enterprise Manager, or you can set any database option using the ALTER DATA-
BASE Transact-SQL statement. For example, to set the TSQLDB database to Bulk-
Logged Recovery model using the ALTER DATABASE statement, use the following
statement.

ALTER DATABASE TSQLDB SET RECOVERY BULK_LOGGED

Note The sp_dboption system-stored procedure can also be used to display or
change certain database option settings. However, this system-stored procedure is
only supported for backward compatibility with previous versions of SQL Server.
It does not allow you to view (or set) options that are new to SQL Server 2000.

180 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson Summary
Database options control the default behavior of a database. These settings are
inherited from the model database. In general, change only the database recovery
setting or restrict access to a database to perform administrative tasks or create a
read-only user database. To view the current settings of a database, use SQL Server
Enterprise Manager or the DATABASEPROPERTYEX system function. To change
these settings for all new databases, change the database option settings for the
model database. To change these settings for an existing database, use SQL Server
Enterprise Manager or the ALTER DATABASE Transact-SQL statement.

Chapter 6 Creating and Configuring User Databases 181
Lesson 3: Managing User Database Size

After you create a user database, you need to manage the size of the user database.
Data stored in the data files normally grows over time, and systems tend to get
busier over time, resulting in transaction logs that fill more rapidly. Occasionally,
you will need to reduce the size of data or transaction log files. SQL Server 2000
provides a number of mechanisms for managing database growth (and shrinkage).
In this lesson you learn how to use the automatic methods provided by SQL Server
2000 appropriately. You also learn how to manually increase the size of data files
and transaction log files, and how to add additional files. Finally you will learn how
to shrink data files and transaction log files.

After this lesson, you will be able to
■ Use the autogrow capability appropriately

■ Use the autoshrink capability appropriately

■ Manually grow and shrink data files

■ Manually grow and shrink transaction log files

■ Add data files and transaction log files

Estimated lesson time: 30 minutes

Using Automatic File Growth Appropriately
When you create a user database, by default each data file and transaction log file is
set to grow automatically when the particular file becomes full. Autogrowth is par-
ticularly useful for embedded applications and small installations where there is no
database administrator to regularly monitor free space, such as in desktop installa-
tions. However, in a dedicated SQL Server 2000 environment, autogrowth should
only be used as a safety valve because of performance issues. Each time a file must
grow, your system suffers a performance hit. In addition, disk fragmentation will
occur if your disk grows frequently, particularly on a drive shared with other appli-
cations and data. Rather than relying on autogrowth, you should regularly monitor
your data and transaction log files and manually increase (or decrease) their size as
needed at a time when the database is not busy.

Note There is also a constant small performance hit when autogrowth is enabled
because your system must continually monitor the size of each file to determine if
and when it needs to grow.

In general, you should plan the size of your data and transaction log files so that
autogrowth is needed rarely, if at all. If you use autogrowth, set a growth increment
large enough so that growth occurs infrequently. Furthermore, you should always

182 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
set a maximum size to which a file can grow so the file does not fill up the entire
disk (if the file is sharing the disk with other files). To monitor file growth and
available free space, you should set an alert to notify you when a file automatically
grows and when free space falls below a set value. Configuring alerts is covered in
Chapter 13.

Use SQL Server Enterprise Manager or the ALTER DATABASE Transact-SQL
statement to modify autogrowth settings. For example, to disable autogrowth for
the primary data file in the TSQLDB database, use the following statement.

ALTER DATABASE TSQLDB MODIFY FILE (NAME = ’tsqldb_data’ , FILEGROWTH =
0)

Note Setting FILEGROWTH equal to zero prevents the database files from
expanding beyond their initial size. When the data files fill with data, no more data
can be added until the existing data files are expanded or until more data files are
added to the database. When the transaction log files fill with log records, no more
transactions can complete until the existing transaction log files are expanded,
more transaction log files are added, or the transaction log files are backed up (and
truncated).

Practice: Configuring Automatic Filegrowth Settings Using
SQL Server Enterprise Manager
In this practice you configure automatic filegrowth settings using SQL Server
Enterprise Manager.

� To configure automatic filegrowth settings using SQL Server Enterprise
Manager

1. In the SQL Server Enterprise Manager console tree, expand the Microsoft SQL
Servers container, expand the SQL Server Group container, expand the default
instance, and then expand Databases.

2. In the console tree, right-click Northwind and then click Properties.

The Northwind Properties dialog box appears with the General tab selected,
displaying various properties of the Northwind database.

3. Click the Data Files tab.

Notice that the primary data file for the Northwind database is set to grow auto-
matically in 10 percent increments. Also notice that no maximum size is set.

4. In the Maximum File Size group box, click the Restrict File Growth (MB):
option button and then type 25 in the Restrict File Growth (MB): spin box.

5. Click the Transaction Log tab.

6. In the File Growth group box, click the In Megabytes: option button and then
type 5 in the In Megabytes: spin box.

Chapter 6 Creating and Configuring User Databases 183
7. Click OK to apply these changes to the Northwind database.

Using Automatic File Shrinkage Appropriately
In addition to autogrowth, you can configure a user database to shrink automati-
cally whenever a data file or transaction log file has a large amount of free space.
By default, this database option setting is set to false (disabled). Although this
option is sometimes useful for desktop installations and embedded applications,
you should never set this option to true in a regular production system, for the same
performance reasons discussed for autogrowth. You should plan the size of your
data files and transaction log files to use an appropriate amount of space. If you
need to shrink a file, you should perform that task manually at a time when your
system is not busy. Also, automatically shrinking a file that will have to autogrow
later is inefficient. Use SQL Server Enterprise Manager or the ALTER DATABASE
Transact-SQL statement to modify autoshrink settings.

Controlling Data File Size Manually
Monitoring the amount of free space in your data files allows you to anticipate the
need to increase the size of your data files. You can then perform this task at a time
when your system is not busy. Use SQL Server Enterprise Manager or the ALTER
DATABASE Transact-SQL statement to increase the size of a data file. For exam-
ple, to set the size of the primary data file for the TSQLDB database to 15 MB, use
the following statement.

ALTER DATABASE TSQLDB
MODIFY FILE (NAME = ’tsqldb_data’ , SIZE = 15)

If you need to shrink the size of a data file manually, use SQL Server Enterprise
Manager or the DBCC SHRINKFILE statement. For example, to reduce the size of
the primary data file in the TSQLDB database, use the following statement to spec-
ify a target size of 7 MB.

USE TSQLDB
DBCC SHRINKFILE (’tsqldb_data’ , 7)

DBCC SHRINKFILE applies to the current database only. When you shrink a data
file, the data file is shrunk from the end of the file. By default, all used pages in the
part of the data file being shrunk are relocated to available free space toward the
beginning of the data file to shrink the data file to the desired size. You can also
shrink a data file to the last allocated extent without relocating pages, or you can
relocate pages without shrinking the data file. You cannot shrink a data file smaller
than the amount of data it contains or the size of the model database. DBCC
SHRINKFILE will shrink a data file smaller than the original size. In addition, you
can shrink a data file while users are working in the database, but not while the
database or transaction log is being backed up.

184 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
You can use the DBCC SHRINKDATABASE to shrink an entire database, including
all data files and all transaction log files, to a specified percent of the current size.
Using DBCC SHRINKDATABASE, you cannot shrink a database to a size smaller
than its size at creation.

Note ALTER DATABASE cannot be used to shrink the size of a file (only to
increase the size of a file).

Practice: Modifying Data File Size Using SQL Server
Enterprise Manager
In this practice you modify the size of a data file using SQL Server Enterprise
Manager.

� To modify data file size using SQL Server Enterprise Manager

1. In the SQL Server Enterprise Manager console tree, expand the Microsoft SQL
Servers container, expand the SQL Server Group container, expand the default
instance, and then expand Databases.

2. In the console tree, right-click Northwind and then click Properties.

The Northwind Properties dialog box appears with the General tab selected,
displaying various properties of the Northwind database.

3. Click the Data Files tab.

In the Space Allocated (MB) column, notice that the primary data file for the
Northwind database is set to 3 MB.

4. In the Space Allocated (MB) cell, type 7.

5. Click OK to apply this change to the Northwind database.

Controlling Transaction Log File Size Manually
In addition to monitoring the amount of free space in your data files regularly, you
should monitor the free space available in your transaction log files. When using
the Full and Bulk-Logged Recovery models, you must perform regular transaction
log backups to truncate the transaction log files to free up space for additional
records. When you are using the Full Recovery model, large-scale operations and
bulk load operations can fill up the transaction log quickly. If you find your trans-
action log files filling up more rapidly than you want, you must either perform
more frequent transaction log backups, allow SQL Server 2000 to automatically
grow the transaction log files whenever they run out of space (when SQL Server
2000 is already busy), or manually increase the size of your transaction log files.
Use SQL Server Enterprise Manager or the ALTER DATABASE Transact-SQL
statement to increase the size of a transaction log file in the same manner you
increase the size of a data file.

Chapter 6 Creating and Configuring User Databases 185
Caution If SQL Server 2000 runs out of transaction log space, SQL Server 2000
will stop.

If you need to shrink the size of a transaction log file manually, use SQL Server
Enterprise Manager or the DBCC SHRINKFILE statement. You can use SQL
Server Enterprise Manager or the DBCC SHRINKDATABASE statement to shrink
all data files and transaction log files at once. Like a data file, a transaction log file
is shrunk from the end of the file. The unit of shrinkage is the VLF. If the transac-
tion log file being shrunk contains inactive VLFs at the end of the file, the transac-
tion log file will be reduced by the size of these inactive VLFs at the end of the file
to reduce the file to as close as possible to the requested size. The requested size is
rounded up to the next highest virtual log file boundary. For example, if you spec-
ify a target size of 150 MB and the transaction log file size is currently 300 MB
with six VLFs, the new size for this transaction log file will be 180 MB (if the
VLFs at the end of the transaction log file are empty).

If there are not sufficient empty VLFs at the end of the transaction log file to free
up the desired space, SQL Server 2000 frees up as much space as possible. It fills
the last active VLF at the end of the file with dummy records so that the MinLSN
can move to the beginning of the file (after long-running transactions and unrepli-
cated transactions replicate). See Figure 6.15.

<< “F06ST15.EPS” >>

Figure 6.15. Shrinking the transaction log by adding dummy records.

SQL Server 2000 then sends an information message telling you to perform a
transaction log backup to truncate the VLFs at the end of the file. After you per-
form this action, you perform the DBCC command again to shrink the transaction
log file to your desired size. See Figure 6.16.

Virtual log 1 Virtual log 2 Virtual log 3 Virtual log 4

Dummy log records

MinLSN
End of

logical log
Start of

logical log

Target_size

186 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F06ST16.EPS” >>

Figure 6.16. Transaction log after shrinking.

Creating Additional Data and Transaction Log Files
If you need to create additional data files or transaction log files (either because the
additional space is on a separate drive or to enhance performance by spreading
database files among multiple disks), you can use SQL Server Enterprise Manager
or the ALTER DATABASE Transact-SQL statement. When creating additional data-
base files using SQL Server Enterprise Manager, you simply add the desired file in
the Properties dialog box for the database. By default, all additional data files are
added to the primary filegroup. Lesson 4 of this chapter covers the use of user-
defined filegroups. See Figure 6.17.

The following example adds a file to the TSQLDB database using the ALTER
DATABASE Transact-SQL statement.

ALTER DATABASE TSQLDB
ADD FILE
(NAME = ’TSQLDB2_DATA’ ,

FILENAME =
’C:\Program Files\Microsoft SQL Server\MSSQL\Data\TSQLDB2.ndf’ ,
SIZE = 10 ,
MAXSIZE = 25 ,
FILEGROWTH = 5)

Virtual log 1 Virtual log 2 Virtual log 3 Virtual log 4

End of
logical

log

Start of
logical

log

Chapter 6 Creating and Configuring User Databases 187
<< “F06ST17.EPS” >>

Figure 6.17. Adding new database files.

Lesson Summary
Over time, your SQL Server 2000 installation will need additional space for data
files and transaction log files. You can allow SQL Server 2000 to add this addi-
tional space automatically, but in most production environments, you should only
use this as a safety valve. For better performance, you should monitor your data
files to anticipate when they are getting low on available space and increase their
size manually. This allows you to grow your database files when your system is not
busy. If your transaction log files are running low on space, you can either increase
their size or perform the transaction log backups more frequently. In addition to
increasing the size of existing database files, you can add additional data files and
transaction log files. You can also shrink database files automatically or manually.
For best performance, shrink database files manually, if at all.

188 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 4: Placing Database Files on
Multiple Disks

Most production systems use multiple disks to ensure recoverability, increase per-
formance, and add fault tolerance. Multiple disks are also used for maintenance
reasons. This lesson covers the various options available to accomplish these goals.
These options range from simply placing each of your data files and transaction log
files on separate disks to utilizing a combination of RAID and filegroups for very
large databases (VLDBs).

After this lesson, you will be able to
■ Determine the appropriate RAID-level system to optimize performance and

provide fault tolerance

■ Describe how to use RAID with filegroups for VLDBs

■ Plan file placement for performance and recoverability

■ Move database files

Estimated lesson time: 30 minutes

Introducing RAID
A RAID system consists of two or more disk drives that provide greater perfor-
mance and fault tolerance than a single large drive at a lower cost. RAID support is
provided by software on the disk storage system (hardware RAID) or by the Win-
dows operating system (software RAID). Because software RAID requires SQL
Server 2000 to share processor resources with RAID, hardware RAID is generally
used for maximum performance. However, software RAID will provide better per-
formance than no RAID at all.

Note Hardware RAID also supports hot swappable drives, which allow you to
replace a faulty drive without shutting down the system. Some implementations
also support hot standby drives (extra drives already installed). Also RAID 10 is
only available with hardware RAID.

RAID levels 0, 1, 5, and 10 (also known as 1+0) are typically used with SQL
Server 2000. A RAID system appears as a single drive to SQL Server 2000 on
which a single file can be placed. Table 6.2 briefly describes each of these RAID
levels and their performance characteristics.

Chapter 6 Creating and Configuring User Databases 189
Introducing Filegroups
There are three types of filegroups—primary, user-defined, and default. Each data-
base can have a maximum of 256 filegroups. SQL Server 2000 always contains at
least one filegroup, the primary file group. A filegroup can consist of multiple data
files spread across multiple drives. Transaction log files cannot be part of a file-
group. The primary filegroup contains the primary data file containing the system
tables. When you create secondary data files within a database, by default, these
additional data files are placed in the primary filegroup. When you create database
objects (such as tables and indexes) and add data to these objects, SQL Server 2000
uses the space within each of the data files within the filegroup proportionally,
rather than allocating space from and writing data to one data file until it is full
before writing to the next data file. This proportional fill method allows a database
to be created that spans across multiple disks, with associated performance bene-
fits. For example, if your SQL Server 2000 system has four disks, you could use
one disk for the transaction log and the remaining three disks for the data files (one
per disk).

Rather than placing all secondary data files in a single filegroup, you can create
user-defined filegroups into which to place these secondary data files. On a system

Table 6-2. RAID Levels and Their Performance

RAID Level Description Advantage/Disadvantage

0 Consists of two or more disks.
Data writes are divided into
blocks and spread evenly across
all disks. Known as disk striping.
This level is the easiest level to
implement.

Fastest read and write performance;
uses 100% of disk capacity. Not fault
tolerant. The failure of one drive will
result in all data in an array being lost.
It is not advisable to use level 0 for
data in mission-critical environments.

1 Generally consists of two disks
(some RAID implementations
support more than two disks).
Data writes are written com-
pletely to both disks. Known as
disk mirroring (or disk duplexing
if two controllers are used).

Read performance almost twice as
fast as a single disk, and fault toler-
ant. Relatively slow write perfor-
mance, and uses only 50% of disk
capacity.

5 Consists of three or more disks.
Data writes are divided into
blocks and written across all disks
along with a parity stripe for data
recovery.

Fast read performance, efficient use
of disk space, and fault tolerant. Slow
write performance. Uses 1/n of disk
capacity for parity information where
n equals the total number of disks.

10 (1+0) Consists of four or more disks.
Data writes are striped across two
or more disks and then mirrored
across the same number of disks.
Known as mirroring with striping.

Fastest read and write performance
and fault tolerant. Uses only 50% of
disk capacity.

190 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
with multiple filegroups, you can specify the filegroup into which a newly created
database object will be placed. This can have performance benefits, but also
requires more administrative overhead and performance-tuning expertise. If no file-
group is specified when a database object is created, it is placed in the default file-
group. The default filegroup is the primary filegroup until the default is changed. To
change the default filegroup, use the ALTER DATABASE Transact-SQL statement.

Note Changing the default filegroup to a user-defined filegroup can prevent the
primary data file from running out of space. When the primary data file runs out of
space, it prevents system tables from accepting new information.

Configuring Your SQL Server 2000 Disk Subsystem for
Performance, Fault Tolerance, and Recoverability
Configuring your SQL Server 2000 disk subsystem for performance, fault toler-
ance, and recoverability means achieving the best read and write performance you
can afford for the transaction log, the data files, and the tempdb database, while not
sacrificing fault tolerance or recoverability.

Note For performance, use a Small Computer System Interface (SCSI) disk sub-
system rather than an Integrated Drive Electronics (IDE) or Enhanced Integrated
Drive Electronics (EIDE) subsystem. SCSI controllers are more intelligent, can
work multiple channels simultaneously, and are not affected by slower devices on
the channel (such as CD-ROMs).

Transaction Log
You should choose your disk subsystem for your transaction log to reflect the fact
that the primary function of the transaction log is to provide for recoverability of
your data in case one or more of the disks containing your data files should fail.
Next, the disk subsystem should reflect the fact that transaction log records are
written serially on a continuous basis (sequentially and synchronously), but are
only read for backups, to perform transaction rollbacks, and during database recov-
ery when SQL Server 2000 starts. When the transaction log is read for backups, the
load can be heavy.

Based on the primary function of the transaction log, the disks containing the
transaction log files should not be shared with the data files for the database.
Obviously, if your data files and your transaction log files share a common physi-
cal disk, you cannot completely recover your data if that disk fails. If your SQL
Server 2000 installation contains multiple databases, at a minimum, place the
database files from one database on the same physical disk as the transaction log
file from another database. This will ensure recoverability of each database if any
single disk fails.

Chapter 6 Creating and Configuring User Databases 191
The next level in optimizing your transaction log performance is to use dedicated
disks for the transaction log files for each database. If you use a disk dedicated to a
single transaction log, you can ensure that the disk head remains in place from one
write operation to the next. Also read requests will be faster because the data will
be laid down sequentially on the disk. Thus, using separate disks for the data files
and the transaction log files has a transaction log performance benefit as well as
being essential for recoverability.

The next level in optimizing your transaction log performance is to implement a
RAID 1 system. This is more expensive (50 percent of your disk space is redun-
dant), but yields significant performance and recoverability benefits. RAID 1 offers
almost double the throughput on disk reads (for better backup performance) and
minimizes downtime (if one disk fails, the data access shifts to the other). Data
writes are somewhat slower, although faster than RAID 5. You can minimize the
cost of this solution by minimizing the size of your transaction log (and thereby the
size and cost of the disks) and by performing frequent transaction log backups.

Data Files
You should choose your disk subsystem for your data files to reflect the fact that
data loss and downtime are generally unacceptable. As discussed in the preceding
section, the first step in improving the performance and recoverability of your data-
base is to place the data files and the transaction log files on separate disk sub-
systems, and to use dedicated disks (if possible) for your data files so that data read
and write (I/O) requests are not competing with other I/O requests on those disks.

The next level in optimizing your disk system is to improve I/O performance.
Although one large disk can store as much data as a number of small disks, split-
ting your data among a number of disks results in increased I/O performance (par-
ticularly when multiple controllers are used). This increased I/O results from the
ability of SQL Server 2000 to perform parallel scans for data using separate operat-
ing system threads when the data is spread across multiple disks. There are a num-
ber of ways to spread data across multiple disks.

Using multiple data files to spread across multiple disks in a single filegroup is one
way to accomplish this. Using RAID to spread a single file (and its data) across
multiple disks will also accomplish this, and can achieve superior performance.
Using RAID can also provide fault tolerance. If you understand the data access pat-
terns on your system, you can also use multiple filegroups rather than RAID (or in
addition to RAID) to place heavily accessed tables and indexes on separate disks to
improve I/O performance. However, in most cases, RAID provides most of the ben-
efits of filegroups without the administrative overhead of multiple filegroups. When
you have VLDBs, using multiple RAID systems and grouping RAID files in file-
groups may be necessary for both performance and database maintenance reasons.

Given the administrative complexity of filegroups, database administrators usually
choose RAID for their data files rather than filegroups. RAID 5 is frequently the

192 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
first choice because of its efficient use of disk space and its fault tolerance. The
downside of RAID 5 is relatively poor write performance. RAID 5 is a good choice
for systems requiring high read performance and moderate write performance.
However, if you need high write performance, choose either RAID 0 or RAID 10.

Note With RAID 5, if a single drive fails, performance is miserable while the par-
ity stripe is used to reconstruct the lost data (although the system does continue to
function while this recovery is occurring).

When you are choosing between RAID 0 and RAID 10, the lower reliability and
slower recovery of RAID 0 dictate choosing RAID 10. However, short-term cost
factors may make RAID 0 a necessary choice. Although RAID 10 is initially an
expensive solution, it provides the performance of RAID 0 and the reliability and
recoverability of RAID 1 (the cost of downtime when a drive fails may justify
RAID 10).

If you need to use multiple RAID systems, you can choose to place each data file
(each RAID system is generally a single data file) in the same filegroup, or you can
use multiple filegroups. If you really understand the data access patterns in your
database and are very good at performance tuning, you may be able to achieve
some performance gain by using different filegroups. In a VLDB environment,
using separate filegroups for maintenance reasons may determine how you config-
ure your data files. For example, you may need to back up files or filegroups sepa-
rately on a VLDB to be able to achieve an effective backup and restore strategy.
Backup and restore strategies are covered in Chapter 8.

Tempdb
You should choose your disk subsystem for the tempdb database to reflect the fact
that this database is used only for temporary storage for work files (such as inter-
mediate result sets used in complex queries and DBCC operations). Optimizing the
tempdb database means enabling it to handle a high volume of reads and writes.
Recoverability is not an issue because tempdb is rebuilt each time SQL Server
2000 starts.

You should begin by placing the tempdb data file on its own disk so that it is not
competing with other database objects for disk access. Next, consider using a dedi-
cated disk controller for this separate disk. Finally, if tempdb is known to be a bot-
tleneck, use RAID 0. The lack of fault tolerance is irrelevant to tempdb. No data is
permanently stored in the tempdb database.

Chapter 6 Creating and Configuring User Databases 193
Moving Data and Transaction Log Files
You can detach data and transaction log files from an instance of SQL Server 2000
and reattach them to the same instance or a different instance. Detachment is useful
for moving a database to another instance or another server. It is also used to move
data and transaction log files to different physical drives. You can use SQL Server
Enterprise Manager or Transact-SQL to detach and reattach a database and its
associated physical files.

Note When you move or place data files and transaction log files to an NTFS par-
tition, ensure that the service account used by the SQL Server service has full
access to these files.

Detaching and Attaching Databases Using SQL Server
Enterprise Manager
To detach a database using SQL Server Enterprise Manager, right-click the data-
base you want to detach, point to All Tasks, and then click Detach Database. See
Figure 6.18.

<< “F06ST18.EPS” >>

Figure 6.18. The Detach Database dialog box.

If users are connected to this database, you can click the Clear button to disconnect
them and complete the detachment process. You also have the option to update sta-
tistics before you detach. Updating statistics before detaching is used when you are
moving the database to read-only media (such as a CD-ROM).

After a database has been detached, you can move one or more of the physical files
to a new location (such as a dedicated disk or a RAID drive). To reattach a database
using SQL Server Enterprise Manager, right-click Databases, point to All Tasks,
and then click Attach Database. Figure 6.19 displays the dialog box that appears.

194 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F06ST19.EPS” >>

Figure 6.19. The Attach Database dialog box.

In the Attach Database dialog box, you must enter the complete name and path of
the primary data file (the Browse button is available). The primary data file con-
tains the information necessary to find the other files that make up the database.
SQL Server 2000 reads this primary file and displays any secondary data files and
the transaction log file to attach. If SQL Server 2000 does not find any of these
files, it will place a red X in the check box next to that physical file. See Figure
6.20. This will occur whenever you move the secondary or transaction log files to a
different location from the primary file. Edit the Current File(s) Location column
for each file that has moved. You can also change the database name at this point.
Finally, specify the owner of the database being attached and click OK.

<< “F06ST20.EPS” >>

Figure 6.20. Reattaching a database using SQL Server Enterprise Manager.

Note If you have more than 16 files to reattach, you must use the Transact-SQL
CREATE DATABASE statement with the FOR ATTACH clause.

Chapter 6 Creating and Configuring User Databases 195
Detaching and Attaching Databases Using Transact-SQL
To detach a database using Transact-SQL, use the sp_detach_db system-stored pro-
cedure. For example, to detach the TSQLDB database without updating statistics,
use the following statement.

Sp_detach_db TSQLDB, TRUE

To reattach a database using Transact-SQL, use the sp_attach_db system-stored
procedure. When you use this stored procedure, you can specify up to 16 filenames
that are included in the database that you want to attach. The filename list must
include at least the primary file, because this file contains the system tables that
point to the other files contained in the database. The filename list must also
include any files that were moved after the database was detached. For example, to
attach the TSQLDB database, use the following statement:

sp_attach_db TSQLDB1 ,
@filename1 =
’C:\Program Files\Microsoft SQL Server\MSSQL\Data\TSQLDB.mdf’

Lesson Summary
The first step in using multiple disks to optimize your SQL Server 2000 produc-
tion environment is to use separate disks for your transaction log files and your
data files. This separation will ensure recoverability in case of a disk failure. Use
dedicated disks for all SQL Server 2000 files where possible. Next, use RAID 1
for your transaction log. Use RAID 10 if possible for your data files. Consider
using either RAID 0 or RAID 5 if you cannot justify RAID 10 because of financial
constraints.

196 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You want to create a user database containing multiple data files on separate
physical disks. You are not experienced at writing Transact-SQL statements.
What is the simplest method you can use to create this database?

2. Describe the two methods you can use to change the database recovery model
for a database.

3. You created a new database on your system. You used the default properties for
the transaction log file. You backed up the new database and the master data-
base. After you performed a bulk load of data into your new database, you
notice that the transaction log is quite large. Why did it grow so large and what
must you do to reduce the size of the transaction log?

4. You are managing a small database system running on Windows 2000 Server.
Although the database is under 1 GB in space, it is very busy (primarily per-
forming writes), and you want to improve its performance. You do not have the
budget for a hardware RAID system and are not aware of specific database
access patterns. You have already placed the transaction log file on a separate
disk from the data file. What is an inexpensive solution?

197
C H A P T E R 7

Populating a Database

Lesson 1: Transferring and Transforming Data 199

Lesson 2: Introducing Microsoft Data Transformation
 Services (DTS) . 202

Lesson 3: Transferring and Transforming Data with DTS
 Graphical Tools . 210

Lesson 4: Working with DTS Packages. 235

Lesson 5: Using the Bulk Copy Program (Bcp) and the
 BULK INSERT Transact-SQL Statement 239

Review . 244

About This Chapter
This chapter prepares you to populate your database from an existing data source.
The chapter begins with a discussion of the data transformation, consistency, and
validation issues you will encounter when you import data from one or multiple
sources into a SQL Server 2000 database. Next, you are introduced to the primary
SQL Server 2000 tools used for populating a database. Finally, you learn how and
when to use each of these tools.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1 in the Lesson 1 section of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS partition.

198 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

Chapter 7 Populating a Database 199
Lesson 1: Transferring and Transforming Data

After you have created your user database, you need to populate it with data. Fre-
quently, this consists of importing and transforming existing data from one or more
external data sources (such as another database system) to SQL Server 2000. In this
lesson, you learn the issues you will face when you choose to import data from
another data source. This lesson will also introduce you to the primary tools used to
import and transform data, including a brief discussion of the capabilities of each
tool. These tools include DTS, Bcp, and the BULK INSERT Transact-SQL statement.

After this lesson, you will be able to
■ Describe the process of evaluating the quality and consistency of data in an

external data source prior to data import

■ Understand the types of data transformations that may be necessary when
importing data from existing data sources

■ Describe the tools provided by SQL Server 2000 for importing data

Estimated lesson time: 15 minutes

Importing Data
Populating your SQL Server 2000 user database frequently consists of the process
of importing existing data from external data sources to a newly created destination
database. These external data sources include Microsoft or third-party databases,
spreadsheets, or text files. Before you can import this data, you must perform the
following preliminary tasks to evaluate the external data and determine the steps
that will be involved in the import process. These preliminary steps will also help
you select the appropriate tool to use.

■ Determine the consistency of the existing data within the external data source.
The external data source may not have enforced consistency when data was ini-
tially input (for example, if the names of states were entered as two-letter
abbreviations in some instances and were fully spelled out in other instances).

■ Determine whether additional columns must be added. The existing data may
be internally consistent but not include necessary columns because these values
were assumed (such as values for country or an international telephone area
code).

■ Determine whether the existing data format should be modified. The existing
data may be internally consistent but not be represented in the manner you want
to use in the destination database (for example, requiring a change in the date
format or the conversion of numerical values to more readable string values,
such as 1, 2, and 3 being converted to poor, average, and excellent).

200 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
■ Determine whether existing data columns should be modified. The existing
data may be internally consistent but contain columns that need to be aggre-
gated or separated (such as separating first and last names into separate col-
umns or summarizing daily data into weekly or monthly data).

■ Determine whether the import of data will be a one-time task or a task that must
be performed periodically. The existing data may need to be migrated from an
existing legacy system that will be retired or may need to be extracted from an
existing system from which you will extract data on a weekly or monthly basis.

■ Determine how to access the existing data. Is the external data source directly
accessible, and do you have permission to access the data directly? (If not, the
data will have to be exported into a format that SQL Server 2000 can work
with, such as a delimited text file.)

DTS Data Transformations
After you have evaluated the data in each external data source, you need to deter-
mine how to proceed. Occasionally, changes to data can be made in the external
data source, but usually these changes cannot be made in the external data source
without either breaking existing applications (for example, adding columns or
changing data formats) or consuming too much time (for example, manually
enforcing data consistency where none existed previously). These changes can
either be made after the data has been imported into SQL Server, using temporary
tables and using Transact-SQL statements to scrub and cleanse the data, or can be
made during the import process itself. Changes to the data made during the import
and export process are referred to as DTS transformations. A DTS transformation
occurs when one or more operations or functions are applied against data before
that data arrives at the destination. The data at the source is not changed. Transfor-
mations make it easy to implement data scrubbing, conversions, and complex data
validations during the import and export process.

The type and extent of modifications that must be made will help determine the
SQL Server 2000 data transfer tool that you will use, and when you will perform
the modifications. Also, whether the data import is a one-time task or a periodic
task will frequently determine the tool you will use and how much you automate
the necessary transformations. Planning and testing (using data subsets) is essen-
tial, particularly for large data sets.

Introducing the Data Transfer Tools
SQL Server 2000 provides a number of tools for importing and exporting data.
These tools have differing capabilities to extract subsets of data from an existing
data source and to transform data. Table 7.1 briefly describes each of these primary
data transfer tools and their capabilities.

Chapter 7 Populating a Database 201
Note There are a number of other methods of moving data between data sources,
but they are not normally used to initially populate a database. These additional
methods include backup and restore (see Chapters 8 and 9), replication (see Chap-
ter 15), ActiveX scripts, and the INSERT and SELECT INTO Transact-SQL state-
ments using distributed queries (see Chapter 12).

Lesson Summary
When you are populating a database from existing data stored in an external data
source, you must evaluate that data to determine what transformations, if any, must
be performed on that data prior to or during importation. You must determine
whether the import is a one-time task or will be a periodic task. You must also
determine how you will access this data, either directly or through an exported text
file. These factors will determine the data transfer tool you use, and when you
transform the data.

Table 7-1. Data Transfer Tools and Their Functions

Tool Description

DTS DTS is a graphical tool used to import, export, and transform data.
DTS can work directly with a wide variety of data sources. DTS
creates packages that can be scheduled. DTS can also import and
export database objects schema (meta data) between SQL Server
instances.

Bcp Bcp is a command-prompt utility used to copy data from a text file
to a SQL Server 2000 table or view (or from a SQL Server 2000
table or view to a text file) using ODBC. The transformation capa-
bilities of Bcp are limited and require cryptic format files. Working
with Microsoft or third-party databases is a two-step process.

BULK INSERT
Transact-SQL
statement

BULK INSERT is a Transact-SQL command used to copy data
from an ASCII text file to a SQL Server 2000 table or view (but
not from SQL Server 2000 to a text file) using OLE DB. The
BULK INSERT statement provides the same functionality of Bcp
(and has the same limitations) in a Transact-SQL statement and
can be embedded in a DTS package.

202 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Introducing Microsoft Data
Transformation Services (DTS)

DTS is a powerful set of graphical tools (and programmable objects) that you can
use to import, export, and transform data to and from a wide variety of data sources
and destinations. In this lesson, you learn about the components of DTS packages,
including connections, tasks, transformations, and workflow. You are also intro-
duced to storage options for DTS packages. Finally, this lesson introduces the DTS
tools, including the DTS Import/Export Wizard (Dtswiz.exe), DTS Designer, and
the DTS package execution utilities. Subsequent lessons will teach you how to use
each of these tools.

After this lesson, you will be able to
■ Describe the components of a DTS package

■ Describe the data sources to which DTS can establish direct connections

■ Describe the type of data transformations that are available

■ Describe the DTS workflow options

■ Describe the DTS package storage options

■ Describe each of the DTS tools

Estimated lesson time: 15 minutes

Understanding a DTS Package
You can create a DTS package to connect to a data source, copy and manage data
and database objects, run tasks as jobs from within a package, transform the data,
and then store the transformed data and the database objects to the same data
source or to a different data destination. You can also notify a user (or process) of
the success or failure of the package, including attaching a file to an e-mail mes-
sage. You define these tasks as discrete steps (known as DTS tasks) and control the
execution using precedence constraints (such as performing a certain task if a task
succeeds and a different task if the task fails). You create a DTS package in the
DTS Import/Export Wizard, in DTS Designer, or programmatically.

DTS Connections
A DTS package must have a valid data source and a valid data destination to which
it connects. It can connect to additional data sources during execution (such as
lookup tables located on a third data connection). Table 7.2 describes the variety of
connections that you can establish during the package creation process.

Chapter 7 Populating a Database 203
DTS Tasks
A DTS package can perform a plethora of tasks, either sequentially or in parallel.
Parallel tasks run independently of each other (using separate operating system
threads to enhance performance), whereas sequential tasks execute in a defined
order based on the success, failure, or completion of predecessor tasks. A DTS task
is a discrete unit of work that is part of a data movement and transformation pro-
cess (such as copying the contents of a text file to a SQL Server 2000 table). DTS
tasks that transform data (such as the Parallel Data Pump, the Transform Data, and
the Data Driven Query tasks) are based on an architectural component called the
DTS data pump. The DTS data pump is an OLE DB service provider that provides
the interfaces and the means to import, export, and transform data from an OLE
DB data source to an OLE DB destination.

SQL Server 2000 provides a number of DTS tasks that transform data, copy and
manage data and meta data, and function as jobs. These tasks are accessed through
the DTS Designer tool (except the Parallel Data Pump task, which can only be
accessed programmatically). Table 7.3 describes the tasks that are available
through DTS Designer (all of which are also accessible programmatically).

DTS can perform column-level transformations on data during the importation pro-
cess. These transformations can be as simple as changing column names and as
complex as your transformation process requires. Using DTS Designer, you can
use the Transform Data task or the Data Driven Query task, or you can write an

Table 7-2. Connection Types

Connection Type Description

Data source connection A connection to a standard database (such as Microsoft SQL
Server 2000, Microsoft Access 2000, Oracle, dBase, or Para-
dox), an OLE DB connection to an ODBC data source, a
Microsoft Excel 2000 spreadsheet, an HTML source, or any
other OLE DB provider. The properties of the data source con-
nection specify the necessary connection parameters.

File connection A connection to a text file (normally delimited). The properties
of the file connection specify the format of the text file. There
are multiple formats you can use. For example, the text file for-
mat can be either a delimited or a fixed field format.

Data link connection A connection to an intermediate file (.UDL file) that stores a
connection string to create an OLE DB connection that is
resolved at run time. The data link connection allows you to
encapsulate the connection properties into a separate .UDL data
link file. You can then edit the connection string in the data link
file (from one data source to another) without changing the
SQL Server 2000 DTS package.

204 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
ActiveX script. Using Visual Basic or Visual C++, you can also write transforma-
tions programmatically and use the Parallel Data Pump task. You perform a trans-
formation by mapping a relationship between one or more columns in the data
source with one or more columns in the data destination. You then define the trans-
formations you want to occur during importation.

Table 7-3. Tasks Available through DTS Designer

Category Task Description

Tasks that copy and
manage data and
meta data

Bulk Insert task Runs the BULK INSERT Transact-SQL state-
ment from within a DTS package. This task
provides the fastest way to copy information
into a table or view, but it does not log error-
causing rows. If you need to capture error-
causing rows to an exception file, use the
Transform Data task instead.

Execute SQL task Runs Transact-SQL statements during pack-
age execution. You can perform a number of
operations with Execute SQL task, which
include dropping a table and running stored
procedures.

Copy SQL Server
Objects task

Copies SQL Server database objects (meta
data) from one SQL Server instance to
another. This task can transfer objects from
one instance of SQL Server 7.0 to another;
from an instance of SQL Server 7.0 to SQL
Server 2000; or from one instance of SQL
Server 2000 to another instance of SQL
Server 2000.

Transfer Database
Objects tasks

A collection of tasks that copy server-wide
information (the Copy SQL Server Objects
task copies only database-specific informa-
tion) from one SQL Server instance to
another. These tasks include the Transfer
Database task, the Transfer Error Messages
task, the Transfer Logins task, the Transfer
Jobs task, and the Transfer Master Stored
Procedures task. These tasks are used by the
Copy Database Wizard.

Tasks that transform
data

Transform Data task Copies, transforms, and inserts data from a
data source to a data destination. This task is
the most basic implementation of the data
pump engine in DTS.

Chapter 7 Populating a Database 205
Table 7.4 describes the types of transformations that are available.

Data Driven Query
task

Selects, customizes, and executes one of sev-
eral Transact-SQL operations (such as an
update or a delete) on a row based on the data
in the row. Use this task if the Transform
Data task and the Bulk Insert task do not meet
the requirements of your application.

Tasks that function
as jobs

ActiveX Script task Runs an ActiveX script. You can use this task
to write code to perform functions that are not
available in DTS Designer.

Dynamic Properties
task

Retrieves data from an outside source and
assigns values retrieved to selected package
properties. External sources can be an .INI
file, data file, query, global variable, environ-
mental variable, or a constant.

Execute Package
task

Runs other DTS packages as part of a work-
flow. Do not use this task recursively because
it could generate a stack overflow, which
could result in MMC shutting down.

Execute Process task Runs an executable program or batch file.
This task can be used to open any standard
application, such as Microsoft Excel, but it is
used primarily to run batch files or business
applications that work against a data source.

File Transfer
Protocol task

Downloads data from a remote server or an
Internet location using FTP. The FTP task
and Ftp.exe use the same connection method.

Send Mail task Sends an e-mail message as a task. For exam-
ple, notification can be sent to an administra-
tor about the success or failure of a backup
operation. In order to use this task, you need
to install a MAPI client on the instance of
SQL Server you are running.

Table 7-3. Tasks Available through DTS Designer

Category Task Description

206 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
DTS Package Workflow
DTS uses steps and precedence constraints to order tasks within a DTS package.
Steps define the sequence in which tasks within a package execute. In DTS
Designer (or programmatically), you use precedence constraints to control this
sequence. Precedence constraints sequentially link each task within a package. A
task can have multiple precedence constraints. Tasks without precedence con-
straints operate in parallel. There are three types of precedence constraints, as
shown in Table 7.5.

Table 7-4. Available Types of Transformations

Transformation Type Description

Copy Column Copies data from a single column to a single column (or mul-
tiple column to multiple column). By default, allows all pos-
sible data type conversions and automatically truncates text
(when necessary) without error notification. ActiveX Script
uses an ActiveX script to transform (and truncate) data
between one or more source and destination columns on a
row-by-row basis.

Date Time String Converts a date or time value in a source column to a differ-
ent format in the destination column. Both columns must be
a string data type.

Lowercase String Converts string data to lowercase characters and to the desti-
nation data type (if necessary) from a source column to the
destination column, truncating data as necessary. Both col-
umns must be a string data type.

Uppercase String Converts string data to uppercase characters and to the desti-
nation data type (if necessary) from a source column to the
destination column, truncating data as necessary. Both col-
umns must be a string data type.

Middle of String Extracts a substring of string data from a source column and
copies it to a destination column, truncating data if neces-
sary. Can also perform case conversion. Both columns must
be a string data type.

Trim String Removes leading, trailing, and embedded white space from
string data in a source column and copies it to a destination
column, truncating data if necessary. Can also perform case
conversion. Both columns must be a string data type.

Read File Opens and copies the contents of a file specified in the source
column to a destination column. The source column must be
a string data type. The destination column must be a string or
binary data type.

Write File Copies the contents of a source column to a file specified in
the destination column. The source column must be a string
or binary data type.

Chapter 7 Populating a Database 207
For example, assume Task 1 is a Drop Table task, Task 2 is a Create Table task,
Task 3 is a Populate Table task, and Task 4 is a Restore Table task. If the table does
not exist, Task 1 will fail and Task 2 will create the table. If the table does exist,
Task 1 will drop the table and Task 2 will create the table. Next, if Task 2 creates
the table successfully, Task 3 will populate the table. However, if Task 2 fails to
create the table successfully, Task 4 will restore the table.

DTS Package Storage
You can store a DTS package to SQL Server 2000, SQL Server 2000 Meta Data
Services, a Microsoft Visual Basic file, or a structured storage file. When you save
a DTS package, all DTS connections, tasks, transformations, and workflow steps
are saved. Table 7.6 describes each of these storage options.

Introducing DTS Tools
You create a DTS package using the DTS Import/Export Wizard, DTS Designer, or
programmatically. The DTS Import/Export Wizard is the simplest way to create
DTS packages to copy data between data sources, but it limits the complexity of
the transformations, the addition of multiple DTS tasks, and the complexity of DTS
task workflows. The DTS Import/Export Wizard is available through SQL Server
Enterprise Manager and from the Start menu in the Microsoft SQL Server program
group. DTS packages created using the DTS Import/Export Wizard can be further
customized using DTS Designer, Visual Basic, or Visual C++.

Table 7-5. Precedence Constraints and Their Functions

Precedence Constraint Description

Unconditional If Task 2 is linked to Task 1 by an Unconditional con-
straint, Task 2 will wait until Task 1 completes and then
will execute, regardless of the success or failure of Task
1.

On Success If Task 3 is linked to Task 2 by an On Success con-
straint, Task 3 will wait until Task 2 completes, and
then will only execute if Task 2 completed successfully.

On Failure If Task 4 is linked to Task 2 by an On Failure con-
straint, Task 4 will wait until Task 2 completes and then
will only execute if Task 2 failed to complete success-
fully.

208 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
DTS Designer allows you to modify existing DTS packages or create new DTS
packages using graphical objects to help build DTS packages containing complex
workflows (such as multiple connections and event-driven logic). DTS Designer is
available through the Data Transformation Services container in the SQL Server
Enterprise Manager console tree.

You can also create DTS packages using Visual Basic and Visual C++. This
method is useful for developers who need to access the DTS object model directly
and exert a fine degree of control over package operations. Packages created pro-
grammatically can be further customized using DTS Designer. Model templates
designed for specific solutions are available for customization (such as data driven
queries).

DTS also includes package execution utilities to run and schedule DTS packages
from a command prompt. These utilities include the DTS Run (Dtsrunui.exe) util-
ity and the Dtsrun command. The DTS Run utility is an interactive command
prompt utility that uses a dialog box to execute a DTS package (and create a Dtsrun
batch file), whereas Dtsrun can execute a DTS package from a command prompt
using command switches (frequently stored in a batch file).

Table 7-6. DTS Storage Options

Storage Location Description

SQL Server 2000 Stored as a table in the msdb database on any instance of SQL
Server 2000. This is the default save option. Multiple packages
and multiple versions can be stored. When you save a package
to SQL Server 2000, you have the option of securing the pack-
ages with one or more passwords.

Meta Data Services Stored in the repository database in Meta Data Services on your
computer. Allows tracking of columns and tables used in the
source and destination, including the lineage (ancestry or origi-
nal source) of data in a particular row. You can secure a package
saved to Meta Data Services by using its own security.

Visual Basic file Stored in Visual Basic code that you can later open and modify
using Visual Basic or Visual C++. You can secure packages
saved to a Visual Basic file using a system such as Microsoft
Visual SourceSafe.

Structured storage file Stored in an operating system file. Allows storage and transfer
of a DTS package independent of any SQL Server database.
Multiple packages and multiple versions can be stored in a sin-
gle file. When you save a package to a structured storage file,
you have the option of securing the packages with one or more
passwords.

Chapter 7 Populating a Database 209
Lesson Summary
DTS uses packages to connect to and move data between a wide variety of OLE
DB data sources. A DTS package can extract data from one or more of these data
sources, perform simple or complex transformations on this data, and then store the
transformed data to one or more of these data destinations. You can use workflow
logic (precedence constraints) within the DTS package. The DTS package itself
can be stored in SQL Server 2000, in SQL Server Meta Data Services, as a Visual
Basic file, or as a structured storage file. You can create a DTS package using the
DTS Import/Export Wizard, DTS Designer, Visual Basic, or Visual C++.

210 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 3: Transferring and Transforming Data
with DTS Graphical Tools

DTS provides two graphical tools that you can use to create DTS packages that
transfer and transform data. In this lesson, you will learn to use each of these. First,
you will learn to use the DTS Import/Export Wizard to create simple transforma-
tions. Then, you will learn to use DTS Designer to create more complex transfor-
mations and workflows. You will also learn to save these packages in a variety of
formats. Finally, you will learn about extending the functionality of DTS packages.

After this lesson, you will be able to
■ Use the DTS Import/Export Wizard to create a DTS package

■ Use DTS Designer to create a DTS package

■ Save DTS packages to a variety of formats

■ Describe additional functionality that can be added to DTS packages

Estimated lesson time: 60 minutes

Using the DTS Import/Export Wizard
The DTS Import/Export Wizard can be started from the Microsoft SQL Server pro-
gram group on the Start menu and from within SQL Server Enterprise Manager.
Within SQL Server Enterprise Manager, you can start this wizard by clicking the
Tools menu and then pointing to Wizards, or by right-clicking the Data Transfor-
mation Services container in the console tree, pointing to All Tasks, and then click-
ing either Import Data or Export Data (both bring up the same wizard). The DTS
Import/Export Wizard guides you through the steps to import or export data
between many different formats.

The first step in this process is selecting the data source in the Choose A Data
Source page. The default data source is the Microsoft OLE DB Provider for SQL
Server. This data source is used to connect to an instance of SQL Server. Select the
data-specific driver for the data storage format from which you want to copy data
(such as a text file or an Oracle database) from the Data Source drop-down list. The
remaining properties you will define on this page depend upon the data source
selected. For example, if your data source is SQL Server, you provide the server
name, authentication type, and database. See Figure 7.1.

Chapter 7 Populating a Database 211
<< “F07ST01.EPS” >>

Figure 7.1. Selecting the data source in the DTS Import/Export Wizard.

If you are using a different data source, other connection information is required.
For example, if you are copying data from a text file, you must provide the file-
name on the Choose A Data Source page, followed by file format information
(including fixed or delimited fields, file type, row and column delimiters, and text
qualifiers), which you select on the Select File Format page and the Specify Col-
umn Delimiter page. See Figures 7.2, 7.3, and 7.4.

<< “F07ST02.EPS” >>

Figure 7.2. Specifying a text file as the data source.

212 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F07ST03.EPS” >>

Figure 7.3. Selecting the file format, field type, and text qualifier.

<< “F07ST04.EPS” >>

Figure 7.4. Specifying the column delimiter.

The next step in this process is selecting the data destination in the Choose A Des-
tination page. Again, the default data source is the Microsoft OLE DB Provider for
SQL Server, for which you must provide a server name and connection informa-
tion. You can select from a wide variety of data destinations. Both your data source
and your data destination can be products other than SQL Server 2000. See Figure
7.5. For example, you could use DTS to copy data from Oracle to dBase. With SQL
Server 2000, you can create a new database on the fly. If you create a new database,
the physical location will be the same disk and folder as the master database. The
only database properties you can choose in the Create Database dialog box are the
name of the database and the sizes of the data file and the transaction log file. See
Figure 7.6.

Chapter 7 Populating a Database 213
<< “F07ST05.EPS” >>

Figure 7.5. Selecting a destination for your data.

<< “F07ST06.EPS” >>

Figure 7.6. Specifying the name and properties of the new database.

After selecting your data source and your data destination, you specify or filter the
data you will copy in the Specify Table Copy Or Query page. (This page will not
appear if you are creating a new database.) Your choices will vary depending upon
the data source and the data destination. If the data source is a database, you can
perform a simple copy of data (unfiltered and unordered) by selecting the Copy
Table(s) And View(s) From The Source Database option button, or you can per-
form a more complex copy requiring a Transact-SQL query (selecting only rows
matching specified selection criteria and in a certain order) by selecting the Use A
Query To Specify The Data To Transfer option button. In addition, if both the data
source and destination are SQL Server 7.0 or SQL Server 2000 databases, you can
copy database objects (such as stored procedures and logins) by selecting the Copy
Objects And Data Between SQL Server Databases option button. See Figure 7.7.

214 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F07ST07.EPS” >>

Figure 7.7. Specifying the type of copy operation.

Copying Entire Tables and Views
If you choose to copy entire tables or views, you then select all or some of the
tables or views for copying in the Select Source Tables And Views page. By
default, the destination name for each table or view will be the name of the table or
view being copied. You can create new table or view names, or select different
existing tables or views. See Figure 7.8.

<< “F07ST08.EPS” >>

Figure 7.8. Selecting source tables and views.

If you perform no other action, the contents of each selected table or view will be
copied without changes. If the destination table exists, by default, the data being
copied will be appended to the existing data. If the destination table does not exist,
the table will be created using the specified name. If you want to change these
defaults, on the Select Source Tables And Views page, click the ellipsis in the
Transform column for each table or view you want to transform. On the Column

Chapter 7 Populating a Database 215
Mappings tab of the Column Mappings And Transformations dialog box, you can
specify the mappings between source and destination columns, create a new desti-
nation table, edit the CREATE TABLE Transact-SQL statement (if a new table or
view is being created), choose to delete or append rows in the destination table (if
an existing table is detected), enable insert identity (if an identity column is
detected), and change the data type (if a valid data conversion is available). See
Figure 7.9.

<< “F07ST09.EPS” >>

Figure 7.9. Changing the column mappings and transformations.

You can also specify unique transformations using either VBScript or JScript
(VBScript is the default) on the Transformations tab of the Column Mappings And
Transformations dialog box. To transform data while it is being copied, edit the
script in the test area to customize columns before copying them to the destination.
See Figure 7.10. Although you can perform some customized transformations
using the DTS Import/Export Wizard, DTS Designer is more appropriate for com-
plex scripting through the use of ActiveX scripting.

Querying to Specify the Data
If you choose to use a query to specify the data to transfer, you can write your own
Transact-SQL script in the space provided in the Type SQL Statement page,
browse and import an existing script, or click the Query Builder button to graphi-
cally create a script using DTS Query Designer. DTS Query Designer is a graphical
query-building tool. A Parse button is provided to test the syntax of your script. See
Figure 7.11.

216 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F07ST10.EPS” >>

Figure 7.10. Specifying transformation options.

<< “F07ST1.EPS” >>

Figure 7.11. Creating a script using the Query Designer.

After you enter your Transact-SQL script and click Next, you can select and then
preview your results by clicking the Preview button in the Select Source Tables
And Views page (see Figure 7.8) to verify whether the query produces the results
you intend. If you perform no other action, the results of the query are copied to a
new table called Results. You can modify this name. You can also click the ellipsis
in the Transform column in the Select Source Tables and Views page (see Figure
7.8) to modify the column mappings and specify custom transformations in a man-
ner similar to that discussed earlier. See Figure 7.12.

Chapter 7 Populating a Database 217
<< “F07ST12.EPS” >>

Figure 7.12. Modifying the column mappings and transformations for your query.

Copying Objects and Data Between SQL Server Databases
If you choose to copy objects and data between SQL Server databases, you can
specify which objects you want to transfer between SQL Server instances in the
Select Objects To Copy page. You can only copy between SQL Server 7.0
instances or SQL Server 2000 instances or from a SQL Server 7.0 instance to a
SQL Server 2000 instance (not from SQL Server 2000 to SQL Server 7.0). By
default, destination objects are created for all objects being copied (all objects are
copied by default), all corresponding destination objects are dropped before the
new ones are created, and all dependent objects are included in the transfer of data.
In addition, by default, all data is copied and all existing data on the destination is
deleted. See Figure 7.13. You can limit the objects being copied (such as only cer-
tain tables or stored procedures, or no indexes).

Saving and Scheduling Packages
The final step in the DTS Import/Export Wizard for any of the types of transforma-
tions described so far is to choose to run the package immediately, or to choose to
save or to schedule the package on the Save, Schedule, And Replicate Package
page. See Figure 7.14. By default, the package will run immediately and will not be
saved or scheduled. You can choose to schedule it to run at a later time as a job
under the auspices of SQL Server Agent. Jobs and scheduling are covered in Chap-
ter 13. You can also choose to save the package in any of the supported formats.
Choosing between these formats is covered in Lesson 4.

218 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F07ST13.EPS” >>

Figure 7.13. Selecting objects to copy.

<< “F07ST14.EPS” >>

Figure 7.14. Choosing to save or schedule the package.

Practice: Transferring Tables and Data from the Northwind
Database Using the DTS Import/Export Wizard
In this practice you transfer tables and data from the Northwind database to a new
database using the DTS Import/Export Wizard. Then, you modify these tables and
summarize data in the NorthwindReportData database.

Chapter 7 Populating a Database 219
� To transfer tables and data from the Northwind Database using the DTS
Import/Export Wizard

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain server as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Import And Export Data.

The DTS Import/Export Wizard appears.

3. Click Next.

The Choose A Data Source page appears.

4. In the Data Source drop-down list, verify that the selected data source is
Microsoft OLE DB Provider for SQL Server.

5. In the Server drop-down list, select SelfPacedCPU\MyNamedInstance.

6. Verify that the Use Windows Authentication option button is selected.

7. In the Database drop-down list, select Northwind and then click Next.

The Choose A Destination page appears.

8. In the Destination drop-down list, verify that the selected data destination is
Microsoft OLE DB Provider for SQL Server.

9. In the Server drop-down list, select SelfPacedCPU.

10. Verify that the Use Windows Authentication option button is selected.

11. In the Database drop-down list, select <New>.

The Create Database dialog box appears.

12. In the Name text box, type NorthwindReportData and then click OK.

The Choose A Destination page reappears displaying the new database.

13. Click Next.

The Specify Table Copy Or Query page appears.

14. Verify that the Copy Table(s) And View(s) From The Source Database option
button is selected and then click Next.

The Select Source Tables And Views page appears.

15. Click the Select All button.

Notice that the name for each destination table is automatically filled in using
the same name as the source table.

16. Click Next.

The Save, Schedule, And Replicate Package page appears.

17. Verify that the Run Immediately check box is selected.

18. Select the Save DTS Package check box, verify that the SQL Server option but-
ton is selected, and then click Next.

The Save DTS Package page appears.

220 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
19. In the Name text box, type NorthwindTableCopy and then click Next.

The Completing The DTS Import/Export Wizard page appears.

20. Click the Finish button.

The Executing Package dialog box appears displaying the status of the package
execution, showing each step. When the package finishes executing, a DTS
Import/Export Wizard message box appears stating that 29 tables were success-
fully copied from Microsoft SQL Server to Microsoft SQL Server.

21. Click OK.

22. In the Executing Package page, briefly review the successfully completed steps
and then click the Done button.

23. In the SQL Server Enterprise Manager console tree, expand the default instance
and then expand Databases.

Notice that the NorthwindReportData database appears (you might need to
press the F5 key to refresh the console tree).

� To modify tables and summarize data in the NorthwindReportData database
using the DTS Import/Export Wizard

1. Right-click NorthwindReportData, point to All Tasks, and then click Import
Data.

The DTS Import/Export Wizard appears.

2. Click Next.

The Choose A Data Source page appears.

3. In the Data Source drop-down list, verify that the selected data source is
Microsoft OLE DB Provider for SQL Server.

4. In the Server drop-down list, select SelfPacedCPU.

5. Verify that the Use Windows Authentication option button is selected.

6. In the Database drop-down list, select Northwind and then click Next.

The Choose A Destination page appears.

7. In the Destination drop-down list, verify that the selected data destination is
Microsoft OLE DB Provider for SQL Server.

8. In the Server drop-down list, verify that SelfPacedCPU is selected.

9. Verify that the Use Windows Authentication option button is selected.

10. In the Database drop-down list, verify that NorthwindReportData is selected
and then click Next.

The Specify Table Copy Or Query page appears.

11. Select the Use A Query To Specify The Data To Transfer option button and
then click Next.

The Type SQL Statement page appears.

Chapter 7 Populating a Database 221
12. Click the Browse button.

The Open dialog box appears.

13. Using the Look In drop-down list, browse to C:\SelfPacedSQL\CH_7 and open
the Query.sql script.

The contents of the Query.sql script appear in the Query Statement box.

14. Click Next.

The Select Source Tables And Views page appears.

15. Click the Results cell in the Destination column and type TotalValue.

Make sure you type TotalValue as a single word with no spaces.

16. Click the Preview button.

The View Data dialog box appears displaying the results of the query.

17. Click OK.

The Select Source Tables And Views page reappears.

18. Click the ellipsis in the Transform column.

The Column Mappings And Transformations dialog box appears.

19. Click the Edit SQL button.

The Create Table SQL Statement dialog box appears.

20. Review the Transact-SQL statement.

Notice that the TotalValue column allows nulls.

21. Click OK to close the Create Table SQL Statement dialog box.

The Column Mappings And Transformations dialog box reappears.

22. In the Mappings grid, clear the Nullable check box for the TotalValue row.

23. Click the Edit SQL button to review the Transact-SQL statement.

The Create Table SQL Statement dialog box appears. Notice that the Total-
Value column no longer allows nulls.

24. Click OK to close the Create Table SQL Statement dialog box.

25. Click OK to close the Column Mappings And Transformations dialog box.

The Select Source Tables And Views page reappears.

26. Click Next.

The Save, Schedule, And Replicate Package page appears.

27. Verify that the Run Immediately button is selected.

28. Select the Save DTS Package check box.

29. Select the SQL Server Meta Data Services option button, and then click Next.

The Save DTS Package page appears.

30. In the Name text box, type NorthwindTableTransform and then click Next.

The Completing The DTS Import/Export Wizard page appears.

222 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
31. Click the Finish button.

The Executing Package dialog box appears displaying the status of the package
execution, showing each step. When the package finishes executing, a DTS
Import/Export Wizard message box appears stating that one table was success-
fully copied from Microsoft SQL Server to Microsoft SQL Server.

32. Click OK.

33. Briefly review the successfully completed steps in the Executing Package dia-
log box and then click the Done button.

34. In the SQL Server Enterprise Manager console tree, expand the default
instance, expand Databases, expand NorthwindReportData, and then click
Tables.

35. In the details pane, right-click TotalValue, point to Open Table, and then click
Return All Rows.

The Data In Table ‘TotalValue’ In ‘NorthwindReportData’ On ‘SelfPaced-
CPU’ window appears displaying the contents of this newly created and popu-
lated table.

36. Close the Data In Table ‘TotalValue’ In ‘NorthwindReportData’ On ‘Self-
PacedCPU’ dialog box.

37. Do not close SQL Server Enterprise Manager.

Using DTS Designer
To create a new package using DTS Designer, in the SQL Server Enterprise Man-
ager console tree, right-click Data Transformation Services and then click New
Package. The method of opening an existing package within the Data Transforma-
tion Services container depends on how the DTS package was stored. If the DTS
package was saved as a structured storage file, right-click Data Transformation
Services, and then click Open Package to open the file from disk. If the DTS pack-
age was saved to SQL Server, click the Local Packages container in the console
tree (in the Data Services container) and then double-click the DTS package in the
details pane. If the DTS package was saved to SQL Server Meta Data Services,
click the Meta Data Services container in the console tree (in the Data Services
container) and then double-click the DTS package in the details pane.

DTS Designer allows you to graphically create connections to data sources and
destinations, configure DTS tasks, perform DTS transformations, and specify pre-
cedence constraints. You use the drag-and-drop method and you complete the dia-
log boxes for objects in order to create DTS packages within the design sheet.
Figure 7.15 displays the user interface for DTS Designer.

Chapter 7 Populating a Database 223
<< “F07ST15.EPS” >>

Figure 7.15. The DTS Designer user interface.

When creating a DTS package using DTS Designer, the first step is to select a data
source. You can either drag a data source object from the Connection toolbar to the
design sheet or select a data source from the Connection menu item. The Connec-
tion Properties dialog box that appears varies based on the data source selected.
Complete the dialog box to configure the data source. This dialog box is similar to
the dialog box displayed by the DTS Import/Export Wizard. Figure 7.16 displays
the dialog box for a connection to SQL Server using the Microsoft OLE DB Pro-
vider for SQL Server.

<< “F07ST16.EPS” >>

Figure 7.16. The Connection dialog box.

Menu bar Design sheet Toolbar

Connection
toolbar

Task
toolbar

224 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
The next step is to select and configure a data destination in the same manner as
described above. Figure 7.17 displays a design sheet consisting of three data
sources: two connections to Microsoft OLE DB Provider for SQL Server and one
connection to a Text File (Source).

<< “F07ST17.EPS” >>

Figure 7.17. Configuring a data destination.

Note A connection to a text file specifies that the text file is either a data source or
a data connection.

Next, you need to define the tasks that you want to occur using either the Task menu or
the Task toolbar. If you select the Transform Data task, you are prompted to select the
data source and the data destination. If you select any other task, a dialog box will
appear to prompt you to configure the properties of the task (such as configuring the
Execute SQL Task to create a table using an existing data connection). If you select
the Transform Data task, a dark gray arrow appears pointing from the data source to
the data destination. If you select any other task, it simply appears in the design sheet
as an icon. Figure 7.18 displays two Transform Data tasks and an Execute SQL task
that creates a table (in addition to three data connections).

To edit and customize a Data Transformation task, double-click the dark gray
arrow between the data source and the data destination to open the dialog box for
that task. On the Source tab, if the data source is a database, you can filter the data
being copied by selecting specific tables or views or by using a Transact-SQL
query. Figure 7.19 displays a Transact-SQL query being used to filter the data
being imported.

Chapter 7 Populating a Database 225
<< “F07ST18.EPS” >>

Figure 7.18. Partial DTS Package without workflow control.

<< “F07ST19.EPS” >>

Figure 7.19. Using a query to filter the imported data.

On the Destination tab, you can define information about the data being imported
(such as column definitions). Your choices will vary depending on the data destina-
tion. If the data destination is a database, you can create and define a new table or
select an existing table for each table being imported.

On the Transformations tab, you can configure custom transformations. By default,
the source columns are copied to the destination columns without modification. If
you want to modify column data between the data source and the data destination,
select the column you want to have modified either in the Name drop-down list or
by clicking the arrow between the source and the destination (the arrow between
the source and the destination for the selected column will appear bold). Next, click

226 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
the New button or the Edit button to create a new transformation or modify an
existing transformation (double-clicking the black arrow modifies the existing
transformation). If you click the New button, you can choose the type of transfor-
mation you want from a list of available transformations in the Create New Trans-
formation dialog box. See Figure 7.20.

<< “F07ST20.EPS” >>

Figure 7.20. Creating a new transformation.

If you select ActiveX Script from the Create New Transformation dialog box, you
can create a new transformation script to perform more complex transformations.
See Figure 7.21.

On the Lookups tab, you can define a lookup query. A lookup query requires a data
connection to run queries and stored procedures against, in addition to a data
source and data destination. Use a lookup query to look up tabular information,
perform parallel updates on multiple database systems, validate input before load-
ing, invoke stored procedures in response to input conditions, and use global vari-
able values as query parameters.

On the Options tab, you can define a number of additional properties for the trans-
formation. You can define one or more exception files to be used for recording
exception records during package execution. This file can be on either a local drive
or a network drive. The file can be written in a SQL Server 7.0 format for backward
compatibility. You can split source and destination errors into separate files. You can
also define a maximum number of errors allowed before the execution of the pack-
age will cease. Finally, you can also define specific execution properties when the
destination connection is the Microsoft OLE DB Provider for SQL Server. These
properties include specifying high-speed bulk-copy processing, constraint checking
during package execution, lock type, batch size, and identity insert properties.

Chapter 7 Populating a Database 227
<< “F07ST21.EPS” >>

Figure 7.21. Creating a new transformation script.

Once you have configured the Data Transformation task and any other DTS tasks
your DTS package will perform, you must configure precedence constraints. In our
simple example, we have data from two separate data sources being copied to a
data destination. We also have a Create Table task. You use precedence constraints
to determine the order of execution of each task. To establish workflow prece-
dence, select two or more tasks in the order the tasks will execute, and then select
the type of workflow from the Workflow menu. For example, if the Create Table
task must execute before the data copy to the data destination, select the On Suc-
cess precedence constraint from the Workflow menu. See Figure 7.22.

You could create a Send Mail task and configure an On Failure precedence con-
straint between the Create Table task and the Send Mail task. This would send an e-
mail notification to an administrator if the Create Table task failed. When you are
using fully automated and scheduled DTS packages to perform database opera-
tions, failure notification is essential.

228 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F07ST22.EPS” >>

Figure 7.22. Selecting the On Success precedence constraint.

Practice: Creating a Data Transfer and Transform Package
Using DTS Designer
In this practice you create a data transfer and transform package using DTS
Designer.

� To create a data transfer and transform package using DTS Designer

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain server as
Administrator.

2. In the SQL Server Enterprise Manager console tree, expand the Microsoft SQL
Servers container, expand the SQL Server Group container, and then expand the
default instance.

3. Right-click Data Transformation Services and then click New Package.

DTS Designer appears.

4. On the Connection menu, click Text File (Source).

The Connection Properties dialog box appears.

5. In the New Connection text box, type New Products.

6. In the File Name text box, type C:\SelfPacedSQL\CH_7\NewData.txt and
then click OK.

The Text Files Properties dialog box appears displaying the Select File Format
page.

7. Verify that the Delimited Columns Are Separated By Character(s) option but-
ton is selected and then click Next.

The Specify Column Delimiter page appears.

Chapter 7 Populating a Database 229
8. Verify that the Comma option button is selected and then click the Finish but-
ton.

The Connection Properties dialog box reappears.

9. Click OK.

The New Products icon appears on the design sheet.

10. On the Connection menu, click Microsoft OLE DB Provider for SQL Server.

The Connection Properties dialog box appears.

11. In the New Connection text box, type Northwind Report Data.

12. In the Server drop-down list, verify that SelfPacedCPU is selected.

13. In the Database drop-down list, select NorthwindReportData and then click
OK.

The New Products and Northwind Report Data icons both appear on the design
sheet.

14. On the Task menu, click Transform Data Task.

Your mouse pointer changes and displays the words Select Source Connection
and has an arrow attached to it.

15. Click the New Products icon.

Your mouse pointer changes and displays the words Select Destination Connec-
tion and has an arrow attached to it.

16. Click the Northwind Report Data icon.

A dark gray arrow appears pointing from the New Products icon to the North-
wind Report Data icon.

17. Double-click the dark gray arrow.

The Transform Data Task Properties dialog box appears with the Source tab
selected.

18. In the Description text box, type Adding New Products.

19. Click the Destination tab.

20. Click the Create button to create a new table into which to insert data.

The Create Destination Table dialog box appears displaying a CREATE TABLE
statement.

21. Delete the entire CREATE TABLE statement.

22. Using Notepad, open the NewProducts.sql file in C:\SelfPacedSQL\CH_7.

23. Copy the contents of this file and paste the contents into the SQL Statement
box, and then click OK.

The Transform Data Task Properties dialog box reappears.

24. Click the Transformations tab.

Notice the default mappings of source columns to destination columns. In par-
ticular, notice that there are more columns in the destination than there are in
the source. The reason is that we have added a column entitled TotalValue,

230 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
which will be an aggregated column from two existing columns. Also notice
that columns 8–10 are incorrectly mapped because of the addition of this new
column.

25. Right-click the mapping arrow between Col010 and ReorderLevel and then
click the Edit button.

The Transformation Options dialog box appears with the General tab selected.

26. Click the Destination Columns tab.

27. In the Selected Columns list, click the < button to remove ReorderLevel.

28. From the Available Columns list, click Discontinued, click the > button and
then click OK.

Notice that the mapping has now changed for Col010 to Discontinued.

29. Right-click the mapping arrow between Col009 and UnitsOnOrder and then
click the Edit button.

The Transformation Options dialog box appears with the General tab selected.

30. Click the Destination Columns tab.

31. In the Selected Columns list, click the < button to remove UnitsOnOrder.

32. From the Available Columns list, click ReorderLevel, click the > button and
then click OK.

Notice that the mapping has now changed for Col009 to ReorderLevel.

33. Right-click the mapping arrow between Col008 and TotalValue and then click
the Edit button.

The Transformation Options dialog box appears with the General tab selected.

34. Click the Destination Columns tab.

35. In the Selected Columns list, click the < button to remove TotalValue.

36. From the Available Columns list, click UnitsOnOrder, click the > button and
then click OK.

Notice that the mapping has now changed for Col008 to UnitsOnOrder.

37. In the Source column, click Col006, and then press Ctrl and click Col007.

Notice that both Col006 and Col007 are selected.

38. In the Destination column, click TotalValue.

39. Click the New button.

The Create New Transformation dialog box appears.

40. Click ActiveX Script and then click OK.

The Transformation Options dialog box appears with the General tab selected.

41. Click the Properties button.

The ActiveX Script Transformation Properties dialog box appears.

Chapter 7 Populating a Database 231
42. Modify the line of code that reads

DTSDestination(“TotalValue”)=DTSSource(“Col006”)

to read

DTSDestination(“TotalValue”)=DTSSource(“Col006”)*DTSSource(“Col007”)

43. Click the Parse button.

A DTS Designer message box appears stating that the ActiveX script was suc-
cessfully parsed.

44. Click OK.

45. Click the Test button.

A testing Transformation dialog box appears to test the Transformation and a
Package Execution Results message box appears stating that the package was
successfully executed.

46. Click OK.

47. Click the Done button in the Testing Transformation dialog box.

48. Click OK in the ActiveX Script Transformation Properties dialog box.

The Transformation Options dialog box reappears.

49. Click OK in the Transformation Options dialog box.

Notice that the mappings now show Col006 and Col007 combined and being
mapped to TotalValue.

50. Click OK in the Transform Data Task Properties dialog box.

51. On the Task menu, click Execute SQL Task.

The Execute SQL Task Properties dialog box appears.

52. In the Description text box, type Drop Table.

53. In the Existing Connection drop-down list, click Northwind Report Data.

54. In the SQL Statement box, type DROP TABLE NewProducts and then click
OK.

The Drop Table task icon appears on the design sheet.

55. On the Task menu, click Execute SQL Task.

The Execute SQL Task Properties dialog box appears.

56. In the Description text box, type Create Table.

57. In the Existing Connection drop-down list, click Northwind Report Data.

58. Click the Browse button.

The Select File dialog box appears.

59. Using the Look In drop-down list, browse to C:\SelfPacedSQL\CH_7 and then
open the NewProducts.sql script.

The saved CREATE TABLE statement appears in the SQL statement box.

232 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
60. Click OK.

The Create Table task icon appears on the design sheet.

61. On the Task menu, click Execute SQL Task.

The Execute SQL Task Properties dialog box appears.

62. In the Description text box, type Backup Northwind Report Data.

63. In the Existing Connection drop-down list, click Northwind Report Data.

64. Click the Browse button and then open the BackupNorthwindReportData.sql
script in C:\SelfPacedSQL\CH_7.

The saved BACKUP DATABASE statement appears in the SQL statement box.
Change the drive path in this script if you are not using the C drive for your
SQL Server 2000 program and data files.

65. Click OK.

The Backup Northwind Report Data task icon appears on the design sheet.

66. Click the Drop Table task icon and then press Ctrl and click the Create Table
task.

Notice that both task icons are selected.

67. On the Workflow menu, click On Completion.

A blue-and-white striped arrow appears between the Drop Table and the Create
Table task icons. The Create Table task will execute whenever the Drop Table
task completes, regardless of the success of the Drop Table task. If the New-
Products table does not exist, the Drop Table task will fail and the Create Table
task will create the table.

68. Click the Create Table task icon and then press Ctrl and click the New Products
icon.

69. On the Workflow menu, click On Success.

A green-and-white striped arrow appears between the Create Table task and the
New Products to Northwind Report Data task icons. The New Products to
Northwind Report Data task will only execute when and if the Create Table task
creates the NewProducts table.

70. Click the Northwind Report Data icon and then press Ctrl and click the Backup
Northwind Report Data icon.

71. On the Workflow menu, click On Success.

A green-and-white striped arrow appears between the New Products to North-
wind Report Data task icon and the Backup Northwind Report Data task icon.
The Backup Northwind Report Data task will only execute when and if the
New Products to Northwind Report Data task completes successfully.

72. On the Package menu, click Save.

The Save DTS Package dialog box appears.

73. In the Package Name text box, type Lesson 2 and then click OK.

Chapter 7 Populating a Database 233
74. On the toolbar, click the Execute button.

The Executing DTS Package: Lesson 2 dialog box appears displaying the
progress of the execution of the DTS package. When the DTS package is com-
plete, a Package Execution Results message box appears stating that the execu-
tion of the package was successful.

75. Click OK and then click the Done button.

76. Close DTS Package: Lesson 2 by clicking the Close button for the DTS
Designer window.

77. In the SQL Server Enterprise Manager console tree, expand the Microsoft SQL
Servers container, expand the SQL Server Group container, expand the default
instance, expand Databases, expand NorthwindReportData, and then click
Tables.

78. In the details pane, right-click NewProducts, point to Open Table, and then
click Return All Rows. You might need to press F5 to refresh the display.

The Data In Table ‘NewProducts’ In ‘NorthwindReportData’ On ‘SelfPaced-
CPU’ dialog box appears. Notice that the new table is populated and the aggre-
gated column, TotalValue, exists.

79. Close the Data In Table ‘NewProducts’ In ‘NorthwindReportData’ On ‘Self-
PacedCPU’ window.

80. Do not close SQL Server Enterprise Manager.

Extending DTS Package Functionality
You can extend the capabilities of your DTS packages in a variety of ways. It is
beyond the scope of this book to cover all of the ways you can incorporate the
plethora and complexity of DTS tasks into DTS packages. However, the following
extended functionality deserves specific mention.

Transaction Support
DTS packages support distributed transactions using functions provided by
Microsoft Distributed Transaction Coordinator (DTC). To obtain this functionality,
DTC must be running on the computer executing the DTS package. Distributed
transactions are used to ensure that DTS tasks within a package that occur in paral-
lel are all committed successfully or none are committed. This is particularly useful
when a DTS package spans multiple database servers or when multiple DTS pack-
ages run under the control of a single DTS package.

Message Queue Task
The Message Queue task allows you to use Message Queuing to send and receive
messages between DTS packages. These messages can be text, files, or global vari-
ables and their values. Message queuing allows these messages to be sent when the

234 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
destination DTS package is unavailable (such as when various laptop computers
are disconnected). When a destination DTS package becomes available, the origi-
nating DTS package continues until complete. Other available options include
sending data files to the computer responsible for processing them, distributing
files throughout the enterprise, and splitting a large job into several component
parts and then parceling them out to different computers in the network.

Note There are two types of message queuing, transactional and non-transac-
tional. Using transactional message queuing provides assurance that each message
is delivered only once.

To use the Message Queue task, you must install Message Queuing server software
on your network and Message Queuing client software on the computer running
the Message Queue task. For Windows 2000, you install Message Queuing server
software on a Windows 2000 domain controller running Active Directory. Thereaf-
ter, you can install Message Queuing client software on your computer. For Win-
dows NT, you install MSMQ from the Windows NT 4.0 Option Pack.

Send Mail Task
The Send Mail task allows a DTS package to notify an administrator about its
progress (such as the success or failure of a database backup). The Send Mail task
can also send attachments, which can consist of dynamically updated files. The
Send Mail task requires the installation of Messaging Application Programming
Interface (MAPI) on the local computer with a valid user profile for the domain
user account used by the SQL Server service.

Programming Templates
SQL Server 2000 also ships with a wide variety of programming samples for
Visual C++ and Visual Basic. These samples are located on the SQL Server 2000
compact disk in the \DevTools\Samples\Dts folder in a self-extracting zip file and
can be installed during a Custom setup (by default to the C:\Program
Files\Microsoft SQL Server\80\Tools\DevTools\Samples\Dts folder).

Lesson Summary
You can use the DTS Import/Export Wizard to copy and transform data and data-
base objects. It is most useful for copying data and database objects between one
data source and one data destination with minimal transformations. Use DTS
Designer for more complex transformation packages. DTS Designer allows you to
create packages to and from multiple data sources and destinations using workflow
logic, message queuing, and transaction control. You can also use Visual Basic and
Visual C++ to extend the complexity and more finely control the workflow logic of
DTS packages.

Chapter 7 Populating a Database 235
Lesson 4: Working with DTS Packages

Now that you understand how to create and execute a DTS package, you will learn
about storing and securing DTS packages. In addition, you will learn additional
methods for executing a saved DTS package, as well as using DTS package logs to
troubleshoot problems that occur during the execution of a DTS package. You will
also learn about editing DTS packages when data sources and destinations are
unavailable. Finally, you will learn about browsing and sharing meta data about
DTS packages.

After this lesson, you will be able to
■ Understand the different storage options for DTS packages

■ Secure a DTS package

■ Execute DTS packages from the command prompt

■ Edit a DTS package when a data source or destination is unavailable

Estimated lesson time: 15 minutes

Understanding DTS Package Storage Options
As discussed earlier, you can store a DTS package using SQL Server 2000, SQL
Server Meta Data Services, a structured storage file, or a Visual Basic file. You use
each storage format to accomplish different objectives, based on their capabilities.

SQL Server 2000
Saving a DTS package to SQL Server 2000 allows you to save a DTS package as a
binary object in the sysdtspackages table in the msdb database on any SQL Server
2000 instance in your organization. You can keep an inventory of DTS packages in
one location on your network. Each version of a DTS package is saved, preserving
the development history of a package. This allows you to retrieve and edit any ver-
sion of a DTS package you choose, not just the most recent version.

When you save a DTS package to SQL Server 2000, you can set both an owner
password and a user password. These passwords are used in addition to the Win-
dows Authentication or SQL Server Authentication used to connect to SQL Server
2000. Users with access to the user password can run a DTS package, but cannot
open or edit a package. Users must have access to the owner password to open or
edit a DTS package. This extra level of security is strongly recommended, particu-
larly on a SQL Server 2000 instance that permits SQL Server Authentication.

236 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Meta Data Services
Saving a DTS package to SQL Server Meta Data Services allows you to track
package version, meta data, and data lineage (original data source and transforma-
tions) information. You can view version history for packages saved to Meta Data
Services in SQL Server Enterprise Manager and can open the version you want.
DTS uses the DTS Information Model to store meta data transformation informa-
tion in Meta Data Services. The DTS Information Model describes the data trans-
formations, how they are grouped, and the types of data accessed. This meta data
information can be stored, browsed, and reused.

Saving a DTS package in Meta Data Services allows you to record and track two
types of data lineage, row-level and column-level. Row-level data lineage records
the source of the data in each row and the transformations that were applied to it.
This is useful for providing an audit trail of package execution and row-level trans-
formations. You must specifically enable row-level data lineage by creating a col-
umn in each row to contain a lineage identifier. Column-level data lineage provides
information regarding the package version and the database tables and columns
used. You can browse packages and versions to determine whether any package
saved in Meta Data Services uses a particular table or column. This can be particu-
larly useful if a data source is later determined to be of questionable value (such as
corrupt or inaccurate data). You enable column-level data lineage by scanning and
saving the meta data once a DTS package has been saved to Meta Data Services.

Note Meta Data Services does not support package-level security.

Structured Storage File
Saving a DTS package to a structured storage file allows you to copy, move, and
send a package across the network (such as in a mail message) without storing the
package in a database or a repository. Multiple versions and multiple packages can
be stored within a single file. Saving to a structured storage file also supports owner
and user passwords. You can use the command-prompt DTS package execution
utilities to execute a DTS package saved as a structured storage file. A DTS pack-
age saved as a structured storage file has a .DTS extension.

Visual Basic File
Saving a DTS package to a Visual Basic file allows the DTS package to be edited
using Visual Basic or Visual C++. This allows developers to incorporate DTS
packages into Visual Basic programs or used as prototypes to reference the compo-
nents of the DTS object model. A DTS package saved as a Visual Basic file cannot
be reopened and edited with DTS Designer.

Chapter 7 Populating a Database 237
Using DTS Package Execution Utilities
DTS provides two command-prompt package execution utilities: the DTS Run util-
ity and the Dtsrun command. Using either of these utilities, a user can execute a
DTS package without opening it. If the DTS package was saved using an owner or
a user password, you must provide the appropriate password. If the DTS package
was saved to a structured file, you must specify the filename. If the DTS package
was saved to SQL Server, you must specify connection information to the SQL
Server instance containing the DTS package.

DTS Run Utility
The DTS Run Utility is an interactive utility that allows you to connect to a server
or specify a file, specify scheduling options, identify and enable an event log, add
new global variables and change the properties of existing variables, and create a
Dtsrun command with either clear or encrypted arguments for later use. To access
the DTS Run utility, execute Dtsrunui from a command prompt.

Dtsrun
The Dtsrun command allows you to run a DTS package from a command prompt
using arguments and embed this command in a batch file. For example, to execute
the DTS package named MyPackage saved to C:\DTSPackages\DTS1.dts with an
owner password of Password, you would type the following command:

dtsrun /FC:\DTSPackages\DTS1.dts /NMyPackage /MPassword

Note A DTS package normally executes using the security context of the user
executing it. However, if a DTS package is scheduled for execution, it is run in the
security context of the owner of the SQL Server Agent job that runs the DTS pack-
age. Jobs are covered in Chapter 13.

Using DTS Package Logs and Exception Files
DTS records information about the success or failure of each step in the execution
of a package in the DTS package log. This includes start and end times for each
step and the length of execution. If a step was not run, this is also recorded. Pack-
age logging occurs only when SQL Server 2000 is running on a Windows 2000
server. DTS also uses DTS exception files to save error information about rows of
data that were not copied and to save the actual source and destination rows that
failed.

Performing Disconnected Edits
You can use DTS Designer to open and edit an existing DTS package. Normally,
connectivity to each data source and destination is required to protect against set-
ting invalid properties. However, sometimes those connections are not available.

238 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
DTS Designer contains a Disconnected Edit feature that allows you to modify a
DTS package when you cannot connect to the original data sources and destina-
tions (such as a DTS package created on a test system for use on a production sys-
tem in a different site). You can also use this feature to view and modify properties
that are not exposed through DTS Designer (such as task names, step names, and
connection names).

Note Disconnected Edit edits properties directly and so should only be used by
advanced users when there are no alternate methods of modifying values.

Lesson Summary
DTS packages can be stored in several different ways. Storing a DTS package
either in SQL Server 2000 or in a structured storage file allows you to set a user
password as well as an owner password. This allows a user to run a DTS package
from a command prompt using one of the DTS package execution utilities without
being able to view or edit the package. However, storing a DTS package using SQL
Server Meta Data Services allows extensive row-level and column-level tracking of
data lineage and transformation of meta data information. This is particularly use-
ful when data is being imported and transformed from a wide variety of sources.
Finally, DTS Designer provides the Disconnected Edit feature, which allows you to
edit a DTS package when the underlying data connections are unavailable.

Chapter 7 Populating a Database 239
Lesson 5: Using the Bulk Copy Program (Bcp)
and the BULK INSERT Transact-SQL Statement

The BULK INSERT Transact-SQL statement and the Bcp command-prompt utility
are used to import data into SQL Server 2000 from a text file. These methods are
designed to efficiently transfer large amounts of data. In this lesson you will learn
how to use each of these commands.

After this lesson, you will be able to
■ Describe how SQL Server 2000 copies data in bulk using text files

■ Describe how to optimize bulk copy operations

■ Use the Bcp command-prompt utility to import and export data

■ Use the BULK INSERT Transact-SQL statement to import data

Estimated lesson time: 30 minutes

Copying Data in Bulk Using Text Files
In addition to using DTS, SQL Server 2000 can import data from text files using
the BULK INSERT Transact-SQL statement or using the Bcp command-prompt
utility. Each is designed to import large quantities of data with minimal transforma-
tion during the process at very high speed. The BULK INSERT statement is gener-
ally faster. The Bcp program has been used for many years (DTS is a recently
introduced tool), and veteran database administrators frequently have generated
numerous scripts that they use to import data. For this reason, you need to under-
stand Bcp. SQL Server 2000 supports all of those existing Bcp scripts. However, if
you need to create new scripts, DTS is much easier to use. It has identical perfor-
mance because the BULK INSERT statement has been encapsulated in the Bulk
Insert task and the graphical interface painlessly walks you through the formatting
issues.

The text files are generally tab-delimited files (but other delimiters can also be
used, such as commas). You must specify the format of this file during the import
process. You can specify the format as part of the Bcp command or BULK INSERT
statement. You can also specify it in a reusable format file. The text files you will
use to import from are frequently generated by earlier versions of SQL Server, by
other database programs, or by spreadsheets. The data in the text file can be stored
in character mode or in binary mode (for SQL Server to SQL Server transfers).

Note Bcp and the BULK INSERT Transact-SQL statement can use the same for-
mat file.

240 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Using Bcp
When using Bcp to import data from a data file, you must specify each parameter.
The Bcp syntax is quite cryptic and must be entered precisely or the command will
fail. Table 7.7 lists the more commonly used parameters. Bcp parameters are case-
sensitive.

The following example imports data from the NewData text file to the NewData
table on New Database with a column delimiter of a comma, a row delimiter of a
new line, using character data, with a batch size of 250, an error size of 50, using
the NewData.err error file, connecting using a trusted connection, and specifying a
TABLOCK hint:

bcp NewDatabase..NewData in C:\SelfPacedSQL\CH_7\NewData.txt –c –t",” –
r\n /e C:\SelfPacedSQL\CH_7\NewData.err –b250 –m50 –T –h “TABLOCK”

Note You must enter the code in the preceding example as a single line without a
line break.

Table 7-7. Commonly Used Parameters for Bcp

Argument Description

Database_name The database into which the data is being inserted. If not specified,
the default database for the specified user is used.

Table_name The name of the table into which the data is being inserted or from
which the data is copied.

"Query" The query used to filter the data being copied out of SQL Server.

In | Out The direction of the bulk copy operation.

Format Used to create a format file.

Data_file The data file used as the source or the destination of the bulk copy
operation.

-m The maximum number of errors that can occur before the bulk
copy operation is cancelled. Default is 10.

-f Specifies the full path of the format file. This parameter is
optional.

-e Specifies the full path of the error file used to record all rows Bcp
is unable to transfer to the database. If this option is not used, no
error file is created.

-b Specifies the number of rows per batch of data copied. Each batch
is copied to the SQL Server 2000 instance as a single transaction.

-c Specifies the bulk copy operation using a character data type.

-t Specifies the field terminator. The default is tab.

-r Specifies the row terminator. The default is new line.

Chapter 7 Populating a Database 241
Practice: Importing Data Using Bcp
In this practice you import data to SQL Server 2000 using the Bcp command-
prompt utility.

� To import data using Bcp

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain server as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

SQL Server Analyzer appears displaying the Connect To SQL Server dialog
box.

3. In the Connect To SQL Server dialog box, select SelfPacedSQL from the SQL
Server combo box, and use Windows authentication.

4. Click OK.

5. On the File menu, click Open.

The Open Query File dialog box appears.

6. Select NewData.sql in the C:\SelfPacedSQL\CH_7 folder.

A CREATE TABLE statement appears that will create a table called NewData
into which you will import data using the Bcp command and bulk copy data.

7. Click the Execute Query button on the toolbar to execute the NewData.sql
statement.

8. Click Start, point to Programs, point to Accessories, and then click Command
Prompt.

A Command Prompt window appears.

9. Type bcp and press ENTER.

Notice the display of available arguments.

-S server_name
[/instance_name]

Specifies the server name (and instance name if applicable) to
which Bcp will connect. Default instance on the local server is the
default.

-U Specifies the login ID.

-P Specifies the password for the login ID. NULL is the default.

-T Specifies the use of a trusted connection, using the security creden-
tials of the current user.

-h “hint" Hints such as TABLOCK, ROWS_PER_BATCH=nn and ORDER
ASC | DESC. These hints tell SQL Server how to process the
imported data most efficiently.

Table 7-7. Commonly Used Parameters for Bcp

Argument Description

242 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
10. Type the following command on a single line:

bcp NorthwindReportData..NewData in C:\SelfPacedSQL\CH_7\NewData.txt
–c –t",” –r\n /e C:\SelfPacedSQL\CH_7\NewData.err –b250 –m50 –T –h
“TABLOCK”

Note You must enter the code in the preceding example as a single line with-
out a line break.

11. Press ENTER.

Notice that 1343 rows are copied in batches of 250 rows. The packet size used
and the elapsed clock time are also displayed. An empty NewData.err file now
appears in the C:\SelfPacedSQL\CH_7 folder.

12. Close the Command Prompt window.

13. In SQL Query Analyzer, click the Clear Window button on the toolbar.

14. In the Query pane, type SELECT * FROM NewData.

15. Click the Execute Query button on the toolbar.

Notice that 1343 rows are displayed from the NewData table.

16. Close SQL Query Analyzer.

Using the BULK INSERT Transact-SQL Statement
The BULK INSERT Transact-SQL statement requires information similar to that
required by the Bcp command to perform a bulk copy operation. The following
example uses identical information to that used in the preceding Bcp example,
except using Transact-SQL.

BULK INSERT NewDatabase..NewData
FROM ’C:\SelfPacedSQL\CH_7\NewData.txt’
WITH
(
BATCHSIZE = 250 ,
DATAFILETYPE = ’char’ ,
FIELDTERMINATOR = ’,’ ,
ROWTERMINATOR = ’\n’,
MAXERRORS = 50 ,
TABLOCK)

Optimizing Bulk Copy Operations
When you perform a bulk copy operation that imports data into SQL Server 2000, the
recovery mode of the destination database affects performance. If the database
receiving the data is set for full recovery, all row insertions are fully logged. This gen-
erates a substantial number of log records during a large bulk copy operation, which
can fill up the transaction log and negatively affect performance. For optimum perfor-
mance during a bulk copy operation, setting the database to bulk-logged recovery is

Chapter 7 Populating a Database 243
recommended. When you use bulk-logged recovery, the transaction log captures the
results of bulk operations, but does not capture row-by-row insertions.

In addition, if you are loading a large amount of data from a single client into an
empty table, you should specify the TABLOCK hint (rather than having SQL
Server 2000 start with row locks and escalate them to table locks) and use a large
batch size using the ROWS_PER_BATCH hint (large batch sizes are generally
more efficient than small batch sizes). If the table into which you are importing the
data has indexes, it is generally faster to drop all nonclustered indexes and re-create
them after the data insertion. If the table has clustered indexes, it is generally faster
to order the data in the text file to match the order in the clustered index and specify
the ORDER hint.

If the table into which you are importing data is not empty and contains indexes,
the decision on whether to drop indexes depends upon the amount of data being
inserted compared to the amount of data existing in the table. The greater the per-
centage of new data, the faster it is to drop all indexes and re-create them after the
data is loaded.

Lesson Summary
In addition to DTS, SQL Server 2000 provides the command-prompt utility Bcp
and the Transact-SQL BULK INSERT statement for importing data from text files.
These methods are particularly suited to high-speed insertions of data into a data-
base. Bcp has been used for years as the only method for inserting large amounts of
data into SQL Server, and many existing scripts will be in use for many more years.
Database administrators must be familiar with Bcp to work with existing scripts
(even if the database administrator is not creating any new scripts). The BULK
INSERT statement can be used from within SQL Query Analyzer, and it is encap-
sulated within the DTS Bulk Insert task. There are a number of ways to optimize
the speed of insertions of large amounts of data using these methods, including
using bulk-logged recovery and dropping nonclustered indexes.

244 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You are analyzing the data in a text file containing data that you want to import
into your database. You have determined that the data is internally consistent,
but contains fields that are inconsistent with existing data in your database. The
text file is representative of data that you will be importing weekly. What is
your best solution for achieving the necessary data consistency? You have
already determined that you cannot change the original data source.

2. Describe the difference between the On Success precedence constraint and the
On Completion precedence constraint.

3. You have created and saved a simple data import and transform package that
imports data from the spreadsheets maintained by your salespeople for expense
reports. However, you want to add additional functionality to the package,
including notifying an administrator after the entire sales staff has uploaded
their expense reports. How might you accomplish this?

4. You have created a package that collects completed sales information from sev-
eral different spreadsheet files used by salespeople in your company. After it
collects this information, it inserts the collected information in one of your
sales reporting databases. You want to distribute this package to your salespeo-
ple to execute regularly as part of their weekly reports. However, you do not
want them to be able to open or edit the package. How should you save this
package and how should you secure it?

Chapter 7 Populating a Database 245
5. You want to import a large amount of data from a text file into a table that con-
tains a clustered and a nonclustered index. The data being inserted exists in the
text file in the same order as the clustered index. As part of the process, you
first truncate the existing table to replace it with this new data. Should you drop
each of the indexes before you insert the new data?

247
C H A P T E R 8

Developing a Data Restoration Strategy

Lesson 1: Understanding Data Restoration Issues 248

Lesson 2: Understanding the Types of Database Backups. 254

Lesson 3: Understanding the Restoration Process 258

Review . 264

About This Chapter
One of the primary responsibilities of a database administrator is to secure the
information contained in the user databases. This responsibility consists of several
different tasks, including designing for fault tolerance, developing a data restora-
tion strategy that anticipates disaster, and securing the data. This chapter covers
developing a data restoration strategy, which includes a backup and restore plan.
Chapter 9 covers the mechanics of performing backups and restorations. Chapters
10 and 11 cover data security. This chapter prepares you to select the appropriate
backup and restore strategy for your database environment. First, you need to
understand the issues involved in preparing for disaster. Next, you will learn about
the types of database backups that are available to you. Finally, you will learn about
how the data restoration process works, and what restoration options are available
given the types of database backups and the recovery model you use.

Before You Begin
There are no prerequisites for completing the lessons in this chapter.

248 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Understanding Data Restoration
Issues

In this lesson you will learn about the design goals of a successful data restoration
strategy. Next, you will learn about the available types of database backups and res-
toration options from which you must develop your data restoration strategy. Next,
you learn about the system databases that you need to back up (in addition to user
databases) to recover successfully from a disk or system failure. Finally, you learn
about the components of a successful data restoration plan.

After this lesson, you will be able to
■ Describe the goals of a data restoration strategy

■ Understand the types of database backups and the restoration options

■ Understand the system and user databases that must be backed up

■ Develop a successful data restoration plan

Estimated lesson time: 15 minutes

What Are the Goals of a Data Restoration Strategy?
A data restoration strategy must acknowledge that all databases will require data
restoration at some point in their life cycle. As a database administrator, you need
to minimize how frequently you need to employ data restoration, monitor for prob-
lems before they occur, anticipate the full range of possible disasters, increase the
speed of restoration when disasters do occur, and quickly verify that the restoration
was successful.

Provide Fault Tolerance
You should plan for fault tolerance, where affordable and possible, to keep your
SQL Server 2000 installation running in spite of hardware failures. This includes
using RAID to provide fault tolerance for your disk subsystem. Beyond your disk
subsystem, this also includes protecting your Windows server against failure.
Although the full range of these options is beyond the scope of this book, protect-
ing your Windows server should include selecting reliable hardware, using power
conditioning and power interruption devices, performing regular system backups,
and being prepared for server hardware failures. Hardware failures will occur. You
should also consider Windows clustering for high availability. Chapter 16 covers
the use of SQL Server 2000 failover clustering using Windows clustering as a high
availability solution for your critical 24x7 databases.

Chapter 8 Developing a Data Restoration Strategy 249
Monitor Your Database
You should continually monitor your database to detect problems before they
occur. Chapter 14 covers system and database monitoring. In general, this includes
using Database Consistency Checker (DBCC) statements to monitor your database
for consistency, using SQL Server performance condition alerts to notify you of
potential problems (such as transaction log files running out of space), and using
SQL Server Agent to automate routine tasks (such as backing up the transaction
log regularly).

Plan for All Forms of Failure and Disaster
You should anticipate all forms of possible disasters and develop plans to recover
from each. The following is a partial list of some of the disasters that can occur
during the life cycle of a database system.

■ Loss of a disk containing a data file

■ Loss of a disk containing a transaction log

■ Loss of the disk containing the system files

■ Server failure

■ Natural disaster (flood, earthquake, or fire)

■ Loss, theft, or destruction of the entire server

■ Theft of backup media

■ Faulty backup media

■ Faulty restoration device

■ Inadvertent user error (such as deleting an entire table by accident)

■ Malicious employee behavior (such as inserting inaccurate information inten-
tionally)

Determine Acceptable Data Restoration Times
You need to determine the acceptable length of time for data restoration from each
type of disaster. The absolute minimum length of time possible will vary depending
upon the type of disaster and the size of the database. The acceptable length of time
will vary based upon the use of the database. A database being used for Web-based
order entry for a large corporation has much stricter data restoration requirements
than a decision support database that is updated weekly from an OLTP database.
Also, acceptable data restoration time should take into account the fact that the data
in the order entry database is much more difficult (if not impossible) to regenerate
than the data in the decision support database. For critical databases, consider high-
availability solutions such as hot standby servers and failover clustering, covered in
Chapter 16. Your knowledge of acceptable data restoration times will help you to
make the decisions in your data restoration strategy.

250 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
When planning recovery from each type of potential disaster, you need to ask the
appropriate questions to plan for all contingencies. For example, if a disk contain-
ing a data file fails, ask yourself the questions in the following list (which also sug-
gests some contingencies for which you need to plan).

■ What is the true cost of having your database down?

■ Is the time required to replace a data disk (assuming you have one on hand) and
restore the data from a database backup acceptable?

■ Do you need to implement RAID so that a single disk failure does not take your
database down?

■ How long will the restoration of the data from database backups actually take?

■ Will more frequent backups significantly reduce this restoration time?

■ What if your tape drive fails during restoration; do you have another tape drive
available?

Note You should periodically test how quickly you can perform a database resto-
ration assuming various types of disasters (such as a natural disaster).

Be Able to Quickly Verify Proper Database Functionality
You must be able to quickly verify that your database is up and functioning prop-
erly before you allow users to access the restored database. You can usually accom-
plish this by using a Transact-SQL script to query the database to determine
whether it is working as intended.

What Types of Backups Are Available?
Now that you understand the types of disasters that you need to plan for and the
acceptable data restoration time, you can begin to develop a database backup strat-
egy as part of your data restoration plan. First, you need to understand the types of
SQL Server 2000 backups that are available to you to protect your data from disk
and system failures. Table 8.1 briefly describes the types of backups that you can
use in your data restoration plan.

Note You must use SQL Server 2000 or third-party database backup programs to
back up online database files. Microsoft Windows 2000 and Windows NT 4.0
backups cannot back up files that are in use and for this reason cannot back up
online SQL Server 2000 database files.

What Types of Data Restorations Are Available?
Table 8.2 briefly describes the types of data restorations that are possible based
upon different types of database backups.

Chapter 8 Developing a Data Restoration Strategy 251
Table 8-1. Types of Backups

Backup Type Description

Full database backup Full copy of the database.

Differential database backup Copy of all modified data pages since the last full data-
base backup.

Filegroup backup Full copy of all files in a filegroup.

Differential filegroup backup Copy of all modified data pages since the last full file-
group backup.

File backup Full copy of a data file.

Differential file backup Copy of all modified data pages in a data file since the
last full file backup.

Transaction log backup Copies the active portion of the transaction log (which
also truncates the log).

Snapshot backup and restore Full database copy in a very short time (measured in sec-
onds) using third-party hardware and/or software ven-
dors. Can be used with conventional differential and
transaction log backups.

Table 8-2. Types of Data Restorations

Restoration Option Description

Full database restore A complete restoration of an entire database using a full
database backup, the most recent differential database
backup (if any), and all transaction log backups in
sequence since the most recent full or differential data-
base backup.

File or filegroup restore with
full recovery

A complete restoration of a file or filegroup using a file
or filegroup backup, the most recent differential file or
filegroup backup (if any), and all transaction log back-
ups in sequence since the most recent file or differential
file or filegroup backup.

Recovery to a point in time A recovery of an entire database to a specified earlier
point in time using fully logged transactions in transac-
tion log backups, along with database, file, or filegroup
backups.

Recovery to a named
transaction

A restoration of an entire database to a specified named
mark (such as immediately before or after a specific
transaction) using fully logged transactions in transac-
tion log backups, along with database, file, or filegroup
backups.

252 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Note You can also perform a partial restoration of a database to a secondary
server to extract needed data. A partial restoration restores only the needed file-
groups.

Back Up All Necessary Databases
You need to back up all databases necessary to recover completely from any form
of disaster. In addition to the applicable user databases, this includes backing up the
appropriate system databases. You must back up the master database regularly
using a full database backup (this is the only backup type available for master). The
master database contains essential server-wide database objects, such as logins,
backup devices, custom system and user error messages, and linked server defini-
tions. You should also back up the msdb database regularly, generally using full
database backups (although transaction log backups are sometimes used as well).
The msdb database contains SQL Server Agent jobs, the Meta Data Services repos-
itory, and the history (and logic) of all database backups performed. Finally, if rep-
lication is involved, you must also back up the distribution database. SQL Server
2000 replication is covered in Chapter 15.

Develop and Implement a Data Restoration Plan
After you understand the types of database backups and the restoration options that
are available to you, and after you determine the acceptable data restoration times,
you need to develop and implement a data restoration plan (which includes a data-
base backup component). Your plan should be in writing and should be reviewed
periodically to determine whether the underlying data restoration requirements
have changed. The plan should contain a variety of elements, including the follow-
ing tasks:

■ Document each SQL Server 2000 (and SQL Server 6.5 or 7.0) installation,
including operating system version, operating system service packs, SQL
Server version, SQL Server service packs, data and transaction log file names
(and locations), server names, network libraries, collation (character set and
sort order for earlier SQL Server versions), and service account name. Store
this information in a secure location and keep it current.

■ Document what databases are being backed up, how frequently, and using
which types of backups. Consider documenting the reasons for the frequency
and type of backups. The underlying reasons could change over time.

■ Determine what level of automation to implement. Consider implementing reg-
ularly scheduled backup jobs and using SQL Server performance condition
alerts to back up the transaction log at a certain threshold. Jobs and alerts are
covered in Chapter 13.

■ Determine who will be responsible for backups and who will verify that the
backups actually occur.

Chapter 8 Developing a Data Restoration Strategy 253
■ Determine how you will verify the quality of the backups. Consider periodi-
cally testing backups by performing restores on a spare server. This is a good
practice of your restoration skills, which will be tested when a disaster occurs.

■ Determine where to store backup media. Backup media should be secured, and
some backup media should be stored offsite (such as in a safe deposit box or
with a tape-vault company) to prepare for natural disaster and theft. Consider a
fireproof safe onsite where you store several weeks’ worth of backups.

■ Determine how long to store backup media. Check legal requirements for tax
records and similar data.

■ Document the backup and the server hardware.

Lesson Summary
Developing a data restoration plan involves determining your organization’s
acceptable level of database downtime for various types of disasters. Your job as a
database administrator is to determine how to use RAID, implement backup and
restore strategies, and use standby servers and clustering to achieve this acceptable
level of downtime. As part of the backup and restore strategy, you need to deter-
mine the frequency and type of database backups to achieve desired speed of data
restorations. You need to perform test restorations to verify that this speed can be
achieved (and to keep your skills honed). Finally, you need to fully document how
each part of this restoration plan will be implemented.

254 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Understanding the Types of
Database Backups

To develop a data restoration plan, you need to understand each of the SQL Server
2000 backup types that are available. In this lesson, you will learn about each data-
base backup type, including what is backed up with each, how they are different,
and when to use each type. In Lesson 3 you will learn how to use these different
backup types together for various types of data restorations. Once you understand
both components, you can develop your data restoration plan.

After this lesson, you will be able to
■ Describe the differences between each of the SQL Server 2000 backup types

■ Understand when to use each type of backup

Estimated lesson time: 15 minutes

Understanding Full Database Backups
A full database backup is a copy of all data files in a database, including all data-
base activity that occurred while the full database backup was in process. All user
data and all database objects, including system tables, indexes, and user-defined
tables, are included. A full database backup generally takes more space and more
time than any other type of backup. A full database backup is the starting point for
a complete database restoration in the event data restoration is required.

You should perform a full database backup after you populate your database with
data for the first time. Thereafter, you should perform additional full database
backups on a regular basis and after a major population of new data. How fre-
quently you perform a full database backup depends upon the size of your data and
how frequently it changes. As a general rule, perform full database backups as fre-
quently as once a day and as infrequently as once a week. If your database is too
large to perform a full database backup regularly, you must use file and filegroup
backups.

Although SQL Server 2000 backups generally have little impact on database per-
formance, it is still a good idea to schedule full database backups at a time when
the database is least busy (such as overnight). However, you must coordinate the
timing of a full database backup with scheduled bulk inserts of new data (if any),
which are also frequently scheduled to occur overnight.

Chapter 8 Developing a Data Restoration Strategy 255
Understanding Differential Database Backups
A differential database backup is a copy of all changes that have occurred to all
data files since the last full database backup, including all database activity that
occurred while the differential database backup was in process. This includes all
changes to data and database objects. A differential database backup records only
the most recent change to a data record if a particular data record has changed more
than once since the last full database backup (unlike a transaction log backup,
which records each change). A differential database backup takes less time and less
space than a full database backup, and is used to reduce database restoration times.

To enhance the speed of differential database backups, SQL Server 2000 tracks all
extents that have changed since the last full database backup using a Differential
Changed Map (DCM) page. The differential database backup process scans each
DCM page to identify (and then back up) all changed extents (each full database
backup resets the DCM pages). If the bit for an extent is 0, the extent has not
changed since the last full database backup. If the bit is 1, the extent has changed.
Through the use of DCM pages, the length of time required to perform a differen-
tial backup is proportional to the number of extents modified, not the size of the
database.

Note Because each differential backup records all changes since the last full data-
base backup, only the most recent differential backup is required for restoration of
data.

Use differential database backups with medium to large databases in between
scheduled full database backups. As the length of time required to perform a full
database backup increases, performing differential database backups between each
full database backup becomes more useful. Using a recent differential database
backup reduces the number of transaction log backups that must be used for a data
restoration. Therefore, differential database backups are particularly useful in
speeding up data restoration times in medium and large databases where a subset of
data changes frequently and results in large transaction log sizes.

Understanding File and Filegroup Backups
A file backup is a copy of a single data file, and a filegroup backup is a copy of
each data file in a single filegroup, including all database activity that occurred
while the file or filegroup backup was in process. This type of backup takes less
time and space than a full database backup. It is used for VLDBs when there is not
enough time to back up the entire database in a reasonable amount of time (such as
in a 24-hour period). In a VLDB, you can design the database so that certain file-
groups contain data that changes frequently and other filegroups contain data that
changes infrequently (or perhaps is read-only data). Using this design, you can use
a file or filegroup backup to perform frequent backups of the data that changes fre-
quently and perform occasional backups of the infrequently changing data. By

256 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
splitting the backup into segments, you can perform the necessary backups in the
available backup window and achieve acceptable restoration times. With VLDBs, a
single file or filegroup can be restored much faster than an entire database.

File and filegroup backups require careful planning so that related data and indexes
are backed up (and restored) together. In addition, a full set of transaction log back-
ups is required to restore file and file group backups to a state that is logically con-
sistent with the rest of the database. Finally, you can perform file and filegroup
backups in parallel to multiple physical devices to significantly increase backup
performance. However, because of the administrative complexity (including the
need for sophisticated database design), file and filegroup backups are generally
used only for VLDBs.

Understanding Differential File and Differential Filegroup
Backups
A differential file backup or a differential filegroup backup is a copy of all changes
that have occurred to a file or a filegroup since the last file or filegroup backup,
including all database activity that occurred while the differential file or filegroup
backup was in process. Differential file and differential filegroup backups are con-
ceptually identical to differential database backups. They take less time and less
space than making a complete copy of a file or filegroup, and are used to speed the
restore process by reducing the number of transaction log backups that must be
applied.

Understanding Transaction Log Backups
A transaction log backup is a sequential record of all transactions recorded in the
transaction log since the last transaction log backup. Transaction log backups
enable you to recover the database to a specific point in time, such as prior to enter-
ing incorrect data. Transaction log backups are only used with the Bulk-Logged
Recovery and Full Recovery models. The Simple Recovery model does not use
transaction log backups for database restoration and recovery.

When the Bulk-Logged Recovery model is used for bulk-logged operations,
changes made by these bulk operations to data files are tracked using a Bulk
Changed Map (BCM) page. A transaction log backup scans each BCM page to
identify and back up all extents modified by bulk-logged operations since the most
recent transaction log backup. This allows bulk-logged operations to be quickly
backed up along with the transaction log when bulk-logged recovery is used. How-
ever, only the net change of the bulk operation is recorded, not each individual
operation. BCM pages are not required when the Full Recovery model is used,
because with this recovery model the bulk-logged operation is fully logged in the
transaction log.

The length of time required to back up the transaction log will vary significantly
depending upon the rate of database transactions, the recovery model used, and the

Chapter 8 Developing a Data Restoration Strategy 257
volume of bulk-logged operations. On databases with very high transaction rates
and fully logged bulk operations, the size of a transaction log backup can be bigger
than a full database backup and require very frequent transaction log backups to
regularly truncate the inactive portion of the transaction log.

Note Because a transaction log backup records only changes since the previous
transaction log backup, all transaction log backups are required for restoration of
data.

When SQL Server 2000 completes a transaction log backup (unless specified oth-
erwise), it truncates each virtual log file (VLF) that does not contain an active por-
tion of the transaction log. This allows these VLFs to be reused. The active portion
of the transaction log includes any portion of the transaction log containing an
active transaction or a transaction marked for replication that has not yet replicated.
In a production database, you will always be using either the Bulk-Logged Recov-
ery or Full Recovery model and must perform regular transaction log backups to
truncate the transaction log. If the transaction log is not regularly truncated, it can
fill up. If the transaction log runs out of space, SQL Server 2000 will shut down.
You should truncate the transaction log file through regular transaction log backups
rather than manually truncating the transaction log file, because truncating it manu-
ally breaks the log backup chain. The only time you will back up the transaction
log without truncation is when a data file fails and the current active transaction log
must be backed up. In this scenario, it cannot be truncated, because the data file is
damaged or nonexistent.

How often you need to perform transaction log backups depends upon the rate of
transactions, the size of the transaction log file, the type of fault tolerance, and the
acceptable data restoration times. It could be as frequent as every 10 or 15 minutes,
or it could be only once every two or three hours (or longer if few transactions are
occurring). Remember, if a data file disk and a transaction log file disk both fail
and no fault tolerance is employed, any data more recent than the most recent trans-
action log backup must be regenerated using other means, which might not be pos-
sible.

Lesson Summary
After you populate a database and before you place it in production, you should
make a full database backup. Thereafter, you should perform a full database
backup on a regular basis. In addition, you must perform regular transaction log
backups to have a record of all changes to the database and to truncate the transac-
tion log so that it can store new transaction log records. In larger databases, use dif-
ferential database backups between regularly scheduled full database backups to
reduce the number of transaction log backups (and the time) that you must use to
restore a database. In VLDBs, you must use file and filegroup backups, differential
file and differential filegroup backups, and transaction log backups to have an
effective data restoration strategy.

258 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 3: Understanding the Restoration
Process

To implement an effective backup and restore strategy, you must understand the
SQL Server 2000 restoration process. In this lesson, you learn how SQL Server
2000 performs automatic and manual restorations of data. You will learn about
using various types of backups to perform full restorations quickly. You will also
learn about partial restoration options that are available with certain types of data-
base backups. Finally, you will review the restoration process given several disaster
scenarios.

After this lesson, you will be able to
■ Describe the automatic recovery process

■ Describe the manual recovery process

■ Understand how different types of database backups can increase data restora-
tion speed

■ Understand the full and partial data restoration options

■ Understand data restoration paths for different disaster scenarios

Estimated lesson time: 15 minutes

Understanding the Recovery Process
SQL Server 2000 has two recovery processes: an automatic process that occurs
each time you start SQL Server 2000 and a manual recovery process that you ini-
tiate. Understanding the automatic recovery process will help you understand the
manual recovery process.

Automatic Recovery Process
The automatic recovery process is designed to ensure that once SQL Server 2000
has started, the data in each database is logically consistent, regardless of how or
why SQL Server 2000 was shut down. SQL Server 2000 accomplishes this task by
using the transaction log. It reads the active portion of the transaction log for each
database and examines all transactions that have occurred since the most recent
checkpoint. It identifies all committed transactions and rolls them forward. This
means reapplying them to the database. It then identifies all uncommitted transac-
tions and rolls them back. This means ensuring that any uncommitted transactions
that were partially written to the database are removed. This process ensures that a
logically consistent state exists for each database. The automatic recovery process
then issues a checkpoint to mark the transaction log as consistent as of this point.

Chapter 8 Developing a Data Restoration Strategy 259
SQL Server 2000 begins by recovering the master database. The master database
contains the information it needs to locate, open, and recover the remaining data-
bases. Next, it recovers the model and msdb databases (and the distribution data-
base if it exists). Next, it recovers each user database. It finishes with clearing and
starting the tempdb database. You can examine the restoration process by review-
ing the SQL Server error log, a sample of which is shown in Figure 8.1.

<< “F08ST01.EPS” >>

Figure 8.1. The SQL Server error log.

You cannot control this automatic recovery process directly. However, you can
control the maximum amount of time SQL Server 2000 will take to perform the
automatic recovery. The default value is 0, which means that SQL Server 2000 will
dynamically determine how often it issues a checkpoint. The more frequently
checkpoints are issued, the smaller is the portion of the transaction log that must be
rolled forward and rolled back. In general, you should rarely need to adjust this
value. As with most SQL Server 2000 settings, letting SQL Server 2000 adjust
itself dynamically will generally yield the best performance over time.

Manual Recovery Process
The manual recovery process involves applying one or more database backups and
then manually recovering them either completely or to a specified point. At the end
of the manual recovery process, the database will be logically consistent. The
recovery might consist of applying a full database backup, optionally applying the
most recent differential database backup, and then applying several transaction log
backups. As each database backup is applied, it is marked for no recovery. This
means that additional restoration will occur before recovery occurs. After recovery
occurs, no further restoration is possible. When the final restoration occurs, it is
marked for recovery and SQL Server 2000 rolls forward and rolls back appropriate
transactions using the transaction log.

260 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
In between the application of each backup, the database is not recovered and is
generally not usable. However, you can restore a database to standby (read-only)
mode without performing recovery. This allows you to view the state of the data
after the application of each backup to identify a point in the transaction log where
data restoration should stop (such as the point where a user or application error
occurred). Once the point of restoration is identified, recovery must occur to bring
the database online in a logically consistent state. After recovery has occurred, no
further restoration can occur.

Understanding Manual Recovery Options
All of the database backup types allow you to recover a database, a file, or a file-
group to the end of the most recent transaction log backup. In addition, certain
types of backups allow you to recover your data to some point earlier in time than
the end of the most recent transaction log backup (such as before unwanted data
was entered or before certain data was deleted).

Restoring Databases
When you want to restore a database to the end of the most recent transaction log
backup, you start with your most recent full database backup. You can restore this
full database backup to any instance of SQL Server 2000, not just to the instance
from which it was backed up. If you are using differential database backups, you
then restore the most recent differential database backup. Finally, in sequence, you
then restore each transaction log backup that is more recent than the most recently
restored full or differential database backup. As part of the restoration of the final
transaction log backup, SQL Server 2000 performs a manual recovery (you must
specify this), rolling forward and rolling back outstanding transactions as appropri-
ate. Your database is restored with no data loss.

Note You can restore SQL Server 7.0 backups to a SQL Server 2000 instance (but
not vice versa).

If the most recent full database or differential database backup is damaged or miss-
ing, you can still restore using earlier transaction log backups. Thus, if you main-
tain a complete chain of transaction log backups, you can always recover as long as
a single full database backup exists along with all of your transaction log backups.
Obviously, applying these additional transaction log backups will take additional
time. You perform regular full and differential database backups to reduce the
recovery time by requiring the application of fewer transaction log backups. Keep-
ing and securing (and duplicating) a full chain of transaction log backups provides
additional fault tolerance in case of damaged or lost backup media.

Chapter 8 Developing a Data Restoration Strategy 261
Restoring Files and Filegroups
When you want to restore a file or a filegroup to the point of the most recent trans-
action log backup, you start with the most recent backup of the file or filegroup.
This recent backup can be either from a file or filegroup backup, or from a full
database backup. Restoring a single file from a full database backup takes longer
than restoring a file from a file backup. If you are using differential file or filegroup
backups, you restore the most recent differential file or filegroup backup. Finally,
in sequence, restore each transaction log backup that is more recent than the most
recently restored differential file or filegroup backup. As part of the restore of the
final transaction log backup, SQL Server 2000 performs a manual recovery (you
must specify this), rolling forward and rolling back outstanding transactions as
appropriate. Your file or filegroup is restored with no data loss.

Unlike full and differential database backups, file and filegroup backups must have
transaction log backups applied to them to make the restored file or filegroup logi-
cally consistent with the rest of the database. If you are restoring an entire database
using file or filegroup backups, the loss of any single backup media can render the
entire database unrecoverable.

Note Restoring all data files or all filegroups and applying all transaction logs is
functionally equivalent to restoring an entire database.

Restoring and Recovering to an Earlier Point in Time
Sometimes you might want to recover to an earlier point in time because of some
type of user or application error. You can accomplish this by recovering a database
either to a specific point in time within the transaction log or to a named mark
within the transaction log.

To recover to a specific point in time, you restore the full database backup and
optionally a differential database backup. You then restore the transaction log back-
ups in sequence to the point in time you want to recover to. When you restore the
final transaction log that you want to restore, you specify recovery only to a spe-
cific point in time within that transaction log backup. Through the use of either the
header information of each transaction log backup or the information in the
backupset table in the msdb database, you can easily identify the transaction log
backup that contains the time to which you want to recover.

Note Point-in-time recovery is recovery of the database. Once you recover to a
specific point in time, you cannot recover to a more recent point in time. This
means that you cannot use point-in-time recovery to restore a database to standby
mode, view that state of the database as of a certain time, and then apply additional
transactions.

262 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
To recover to a named mark, you must insert marks into the transaction log as part
of a transaction. The mark is recorded as a row in the logmarkhistory table in the
msdb database. During recovery, you can recover and roll forward to the mark and
either include or exclude the mark.

However, recovery to a specific point in time or a named mark is not supported if
the final transaction log backup you want to restore contains a bulk-logged transac-
tion that was logged using the Bulk-Logged Recovery model. In addition, you can-
not restore a single file or filegroup to a point in time or named mark without
restoring the entire database to that particular point.

Recovery from Several Different Disaster Scenarios
Understanding the restoration process from the following disaster scenarios will
help you determine backup and restore (and fault tolerance) strategies you will use
in your data restoration plan.

User Data Disk Failure
If a disk that contains a data file fails, your restoration path will depend upon
whether you have employed RAID for fault tolerance. If you have, you simply
replace the disk that failed, reset the RAID configuration, and let RAID rebuild the
data. You measure your downtime by the length of time required to replace the disk
and reconfigure RAID. If your implementation of RAID supported hot swapping or
hot standby, there will be no downtime.

If you have not employed RAID or have employed RAID 0, you must restore your
data using database backups. First, you must back up the currently active transac-
tion log using the no truncate option to restore your data completely. Next, you
restore the full database backup and optionally the most recent differential backup,
specifying no recovery for each restoration. Finally, you restore each necessary
transaction log in sequence, specifying no recovery for each restoration until the
final transaction log backup. On the final transaction log, restore it specifying
recovery. SQL Server 2000 will roll forward and roll back appropriate transactions,
and your database will be restored with no data loss.

If your data file and your transaction log file are on the same disk, you can only
restore up to your most recent transaction log backup. All other data will have to be
regenerated using other means.

User Transaction Log Disk Failure
If a disk that contains a transaction log file fails, no data restoration is needed
unless the transaction log file and a data file share the same disk. However, if the
transaction log file was not mirrored using RAID 1, you have lost your ability to
completely restore your database should a disk containing a data file also fail. In
this case, you should immediately back up the entire database using either a full or
a differential backup (and make a copy of the backup media). Then, you should
replace the failed disk.

Chapter 8 Developing a Data Restoration Strategy 263
Master Database Disk Failure
If a disk containing the master database fails and the master database was not mir-
rored using RAID 1, you must restore the master database from backup followed
by a restoration of each of the necessary system databases. Next, you can either
restore each user database from backup or reattach them if their data and transac-
tion log files are intact on other disks.

Lesson Summary
Restoring a database, file, or filegroup from backup requires the database to be
recovered to a logically consistent state. SQL Server 2000 uses transaction log
backups to perform this task in a manner similar to the way SQL Server 2000
employs automatic recovery each time SQL Server 2000 starts. You can use a full
and a differential database backup along with all applicable transaction log files in
sequence to completely restore your data from a disk or system failure. For larger
databases, you can use file and filegroup backups (and differential file and file-
group backups) along with all applicable transaction log files to completely restore
your data from a disk or system failure in a reasonable length of time. You can also
recover an entire database to a specific point in time or a named mark in the trans-
action log provided that the final transaction log backup you want to apply does not
contain minimally logged bulk operations.

264 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You are using RAID 1 for your transaction log and RAID 10 for your database.
With this level of fault tolerance, why is it still critical to have a data restoration
plan?

2. You are developing your data recovery plan. You have tested the length of time
required to perform a full database backup and determined that you can back up
the entire database in six hours. You have decided to perform full database
backups every night. You have also determined that you need to perform trans-
action log backups every 15 minutes to minimize the risk of data loss. Should
you also use regular differential database backups as part of your data recovery
plan?

3. You are responsible for maintaining and restoring, if needed, a decision support
database. Several different data sources regularly populate this database using
DTS packages. What is the restoration benefit, if any, to using the Full Recov-
ery model for this database given the substantial increase in the number and
size of the transaction log backups required?

265
C H A P T E R 9

Backing Up and Restoring SQL Server

Lesson 1: Understanding Backup Terms, Media, and Devices. 267

Lesson 2: Backing Up Databases, Files, Filegroups, and
Transaction Logs . 273

Lesson 3: Restoring a User Database . 289

Lesson 4: Restoring and Rebuilding System Databases 310

Review . 314

About This Chapter
This chapter prepares you to perform each type of SQL Server 2000 database
backup and restore. First, you learn about backup terms, media, and devices. Next,
you learn to perform each type of database backup, using SQL Server Enterprise
Manager and Transact-SQL. You then learn to restore databases and database files
using SQL Server Enterprise Manager and Transact-SQL. Finally, you learn how to
restore or rebuild system databases. After you have completed these tasks, you will
be ready to apply database security and place your SQL Server 2000 databases into
production.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in the Lesson 1 section of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS parti-
tion.

■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

266 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

■ Created the SSEMDB database using the CreateDB.sql script (see Chapter 6).

Chapter 9 Backing Up and Restoring SQL Server 267
Lesson 1: Understanding Backup Terms,
Media, and Devices

Before you learn to back up your database, you need to become familiar with some
terms that are used with SQL Server 2000 backups and restorations. Next, you will
learn about the types of backup media on which you can store your backups,
including how to choose among them. You will then learn how to create reusable
backup devices.

After this lesson, you will be able to
■ Understand SQL Server 2000 backup terms

■ Select appropriate backup media

■ Create backup devices

Estimated lesson time: 15 minutes

Defining Terms
You should become familiar with a variety of terms that are important to under-
stand when performing database backups and restorations. Table 9.1 explains the
most important terms.

For example, if two backup devices (such as tape drives) are used to record a
backup of a database and the backup set uses three tapes per backup device, there
are six tapes in the media set (consisting of three tapes in each media family). A
media set can contain multiple backup sets, for example, the appending of one
backup set to another backup set on the same tape or set of tapes.

Selecting Backup Media
You can elect to use either disk or tape for your backup media. The SQL Server
2000 backup program supports local tape drives, local disk drives, network disk
drives, and named pipes. Named pipes provide an interface for use by third-party
backup solutions.

268 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Tape
Traditionally, administrators have used tape for database backups because it was
cheaper than hard disk space. However, tape drives are relatively slow and have
limited capacity. The limitation for SQL Server 2000 backup speed is usually the
tape drive itself. You can improve tape backup performance by writing to two tape
drives simultaneously. This will effectively cut your backup time in half because
the backup is written in parallel to the tape drives. The problem with limited tape
capacities for large databases is that if your backup will not fit on a single tape,
someone must be there to switch tapes (and insert the correct tape). If not, the
backup never completes. Simultaneously writing to multiple tapes helps solve the
problem of limited capacity per tape for large databases.

Note Using a SCSI tape drive attached to the local computer is generally faster
than using a remote tape drive using third-party software because you are limited
by the speed and contention of the network.

Table 9-1. Backup Terminologies

Term Description

Backup A full or partial copy of a database, transaction log, file, or filegroup
forming a backup set. The backup set is recorded on backup media
(either tape or disk) using a backup device (a tape drive name or
physical filename).

Backup device The physical file (such as C:\SQLBackups\Full.bak) or specific tape
drive (such as \\.\Tape0) that you use to record a backup onto backup
media.

Backup file A file that stores a backup set.

Backup media The actual physical media (either disk or tape) used to store a backup
set using a backup file. Backup media can store multiple backup sets
(such as from multiple SQL Server 2000 backups and from Windows
2000 backups).

Backup set The backup from a single backup operation that resides on backup
media. The backup set may reside on a single backup media, a media
family, or a media set.

Media family All media (physical files or tapes) in a media set written by a single
backup device for a single backup set.

Media header Provides information about the contents of the backup media. A
media header must be written before a backup set can be recorded on
the backup media (this is also called initializing the backup media).
Usually, the media header is written one time and remains on the
media for the life of the media.

Media set All media involved in a backup operation. Examples of media sets
are: a single tape, a single disk file, one backup device writing a set
of tapes, or a set of tapes written by more than one backup device.

Chapter 9 Backing Up and Restoring SQL Server 269
Disk
In the past, disk space was too expensive to use for database backups. However,
this is no longer the case. Backup to a local disk is frequently the backup method of
choice because it is generally the fastest method. Backup times as fast as eight min-
utes for a 20-GB database have been reported. If you do back up your data to a
local disk, be sure to use a separate physical disk from your data or transaction log
files. After being backed up to a local disk, backup files are generally themselves
automatically backed up regularly (for example, nightly) to tape to be archived.

For smaller databases, performing a backup to a network drive is also a common
scenario. For additional performance in this scenario, administrators sometimes
segment the network to minimize or eliminate network contention. You may use
the network drive for multiple databases and by multiple SQL Server 2000 installa-
tions. This network drive will generally be regularly (and automatically) backed up
to tape for archiving. This allows the archiving of backup files to tape from multi-
ple SQL Server 2000 instances to be consolidated to one network location.

Creating Permanent Backup Devices
You can create one or more permanent backup devices that you can use for regular
backups, or you can create a new backup file each time you perform a database
backup. Generally, you will want to create backup devices that you can reuse, par-
ticularly for automation of database backups. Having permanent backup devices
allows you to refer to them in backup and restore commands using only a logical
name, rather than the complete physical name. Backup devices are recorded in the
sysdevices table in the master database. Backup files created on the fly are not
recorded in the sysdevices table and thus are not reusable, but rather must be speci-
fied each time they are referred to.

SQL Server Enterprise Manager
To create a backup device using SQL Server Enterprise Manager, expand the Man-
agement container, right-click Backup, and then click New Backup Device. In the
Backup Device Properties – New Device dialog box, specify a logical name for the
backup device and define a tape drive name or a filename for the backup device.
See Figure 9.1.

To delete a backup device using SQL Server Enterprise Manager, click the Backup
container in the console tree (in the Management container) to display a list of all
backup devices in the details pane. Right-click the backup device and then click
Delete to drop the device.

Note Backup devices are not specific to any database.

270 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F09ST01.EPS” >>

Figure 9.1. Creating a backup device using SQL Server Enterprise Manager.

Transact-SQL
To create a reusable backup device using Transact-SQL, use the sp_addumpdevice
system stored procedure.

Sp_addumpdevice ’disk’ , ’FullBackupDevice’ , ’E:\SQLBackups\Full.bak’

The preceding example creates a disk backup device with a logical name of Full-
BackupDevice using a file on the local disk.

Sp_addumpdevice ’tape’ , ’TLogTapeBackupDevice’ , ’\\.\Tape0’

This example creates a tape backup device with a logical name of TLogTapeBack-
upDevice using tape drive 0 (this refers to the first tape drive on the system).

Sp_addumpdevice ’disk’,’TLogBackupDevice’ , ’\\NetSrv\SQLBak\TLog.bak’

The preceding example creates a disk backup device with a logical name of TLog-
BackupDevice using a network file referenced using a Universal Naming Conven-
tion (UNC) path.

With Transact-SQL, you can create and save a script that creates all of your backup
devices at one time. Saving the script is important because you can use it to re-cre-
ate the backup devices in the master database if you need to (or duplicate this
backup device structure on other SQL Server 2000 computers in your enterprise).

To use Transact-SQL to view a list of all devices on your SQL Server instance, use
the sp_helpdevice system stored procedure. To drop a backup device using Trans-
act-SQL, use the sp_dropdevice system stored procedure.

Sp_dropdevice ’FullBackupDevice’

The preceding example drops the FullBackupDevice backup device, but does not
drop the associated physical file.

Sp_dropdevice ’FullBackupDevice’ , ’DELFILE’

Chapter 9 Backing Up and Restoring SQL Server 271
The preceding example drops the FullBackupDevice backup device and also drops
the associated physical file.

Practice: Creating Backup Devices Using Transact-SQL
In this practice you use a Transact-SQL script to create multiple backup devices
using the sp_addumpdevice system stored procedure.

� To create backup devices using Transact-SQL

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

3. In the Connect To SQL Server dialog box, connect to SelfPacedSQL using
Windows authentication.

4. Click OK.

5. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

6. Open BackupDevices.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears that will create five backup devices using the
following logical names: MasterFullBackup, MSDBFullBackup, SSEMDB-
FullBackup, SSEMDBDiffBackup, and SSEMDBTLogBackup. The specified
physical path does not yet exist. You will create this folder in just a few
moments.

7. Click the Execute Query button to execute the BackupDevices.sql statement.

Notice that the script added five disk devices. SQL Server 2000 does not verify
the physical path for a backup device until you are ready to use the backup
device.

8. On the toolbar, click the Clear Window button.

9. In the query pane, type sp_helpdevice and then click the Execute Query button
on the toolbar.

Notice that the five disk devices appear, along with information regarding the
master, model, and tempdb databases.

10. Close SQL Query Analyzer. Do not save any changes.

11. Open Windows Explorer.

12. Create a folder on the C drive called SQLBackups.

13. Close Windows Explorer.

272 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson Summary
Learning backup terminology is important before you start working with backups,
backup sets, and media sets. You need to decide which backup media you will use
for your backups, tape or disk. Frequently, administrators make backups to disk for
performance and then archive them to tape. Once you have determined your
backup media, you need to create permanent backup devices that you will use for
your backups. Creating reusable backup devices is useful for automating backups,
and for referring to backup files in Transact-SQL scripts.

Chapter 9 Backing Up and Restoring SQL Server 273
Lesson 2: Backing Up Databases, Files,
Filegroups, and Transaction Logs

After determining your backup media and creating backup devices, you are ready
to back up your data. In this lesson, you will learn to perform each type of database
backup using SQL Server Enterprise Manager and Transact-SQL. You will learn
all of the backup options that are available to you when you perform these types of
backups using SQL Server Enterprise Manager, and you will learn the equivalent
options using Transact-SQL.

After this lesson, you will be able to
■ Perform full database backups using SQL Server Enterprise Manager and

Transact-SQL

■ Perform differential database backups using SQL Server Enterprise Manager
and Transact-SQL

■ Perform transaction log backups using SQL Server Enterprise Manager and
Transact-SQL

■ Perform file or filegroup backups using SQL Server Enterprise Manager and
Transact-SQL

Estimated lesson time: 60 minutes

Perform Backups Using SQL Server Enterprise Manager
SQL Server Enterprise Manager provides a simple graphical interface to interac-
tively perform database backups. Using SQL Server Enterprise Manager is a good
way to begin performing database backups, allowing you to become familiar with
backup terms and options. Understanding backup options through SQL Server
Enterprise Manager will help you understand the Transact-SQL syntax for back-
ups. You can perform a backup directly with SQL Server Enterprise Manager, or
you can use the Create Database Backup Wizard.

Using the Create Database Backup Wizard
The SQL Server Enterprise Manager wizards are available from the Tools menu,
and from any taskpad view. Figure 9.2 displays the Select Wizard dialog box, from
which you can select a variety of wizards, including the Backup Wizard.

274 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F09ST02.EPS” >>

Figure 9.2. The Select Wizard dialog box.

After you start the Backup Wizard, you select a database to back up in the Create
Database To Backup page. You can browse and select any database on the current
server. See Figure 9.3.

<< “F09ST03.EPS” >>

Figure 9.3. Selecting a database to back up.

After you select the database you want to back up, you must select a name for this
backup set in the Type Name And Description For Backup page. Select a descrip-
tive name, such as Northwind Full Backup. You can also provide a description for
this backup set. The description is optional, but quite useful when distinguishing
between multiple backups. See Figure 9.4.

Chapter 9 Backing Up and Restoring SQL Server 275
<< “F09ST04.EPS” >>

Figure 9.4. Naming the backup set.

Next, in the Select Type Of Backup page, you select the type of backup you want to
perform. Using the Create Database Backup Wizard, you can perform full data-
base, differential database, and transaction log backups (you cannot perform file
and filegroup backups). If a particular backup type is grayed out, this means that
you cannot perform this type of backup with the database you have chosen. For
example, you can only perform a full database backup of the master database, and
you cannot perform a transaction log backup of a database that is using the Simple
Recovery model. See Figure 9.5.

<< “F09ST05.EPS” >>

Figure 9.5. Selecting the type of backup.

Note You cannot perform a differential database backup of a database until you
perform a full database backup of the database.

276 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Next, in the Select Backup Destination And Action page, you select the backup
device you want to use for this backup set. You can select a tape, a file, or a previ-
ously created backup device. Notice that the default location for a file is the
Backup folder for your SQL Server 2000 instance (such as C:\Program
Files\Microsoft SQL Server\Mssql\Backup). You can choose to append this backup
set to any existing backup sets on the backup media you have selected, or overwrite
any existing backup sets on the backup media. You can also choose to have SQL
Server 2000 read and verify the integrity of the backup after completing the
backup. This does not verify the structure of the data itself, but rather verifies that
the backup files have been written and are readable. See Figure 9.6.

<< “F09ST06.EPS” >>

Figure 9.6. Selecting the backup destination and its properties.

More Info Performing database consistency checks is covered in Chapter 14.

Next, in the Initialize Media page, if you chose to overwrite the backup media, you
can choose to initialize the media (write a media header) by providing a media set
name and description. A media set name can be very useful for identifying backup
media. For example, if you have a backup tape and you do not know what is on the
tape, you can use SQL Server Enterprise Manager or Transact-SQL to retrieve the
media header from the tape to help identify its contents (provided that you created
a good label in the first place). See Figure 9.7.

Chapter 9 Backing Up and Restoring SQL Server 277
<< “F09ST07.EPS” >>

Figure 9.7. Initializing the backup media.

Next, in the Backup Verification And Scheduling page, unless you have chosen to
initialize the backup media and provide a new media set name, you can choose to
verify that you are writing to a specified media set and that the backup set expira-
tion date (if any) has passed. You can use this capability to prevent the overwriting
of a backup set that has not yet expired or the writing of a backup set to the wrong
tape or file. Mistakes such as inserting the wrong tape or clicking the wrong device
in the graphical interface are easy to make and can have severe consequences. For
example, if you accidentally overwrite a tape storing part of a striped set of backup
tapes from a parallel backup or any one of those tapes is damaged, the entire media
set is unusable. You can also choose to skip this check of media set names and
backup set expiration dates.

Note SQL Server 2000 only uses the expiration date on the first backup set on the
backup media to determine whether the entire backup media can be overwritten.

You have the option to set an expiration date on a backup set when you create it.
For example, you may keep one week’s worth of backups on disk, each in separate
backup devices, and archive these to tape regularly. You could use an expiration
date to protect against accidentally overwriting a backup set before the expiration
of seven days. Finally, you can also create a job and schedule the backup that you
just defined to occur on a regular basis. See Figure 9.8. Jobs and schedules are cov-
ered in Chapter 13.

278 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F09ST08.EPS” >>

Figure 9.8. Setting an expiration date and scheduling the backup.

Next, in the Completing The Create Database Backup Wizard page, you are given
the opportunity to review the selections you have made before you actually back up
the database. You can click the Back button to change any parameter you want to
change. Click the Finish button to back up the database. See Figure 9.9.

<< “F09ST09.EPS” >>

Figure 9.9. Completing the Create Database Backup Wizard.

Chapter 9 Backing Up and Restoring SQL Server 279
Practice: Backing Up the Master Database Using the Create
Database Backup Wizard
In this practice you use the Create Database Backup Wizard to back up the master
database.

� To back up the master database using the Create Database Backup Wizard

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears displaying the Microsoft SQL Servers
and the Event Viewer (Local) console trees in the console root.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, and then click the default instance.

4. On the Tools menu, click Wizards.

The Select Wizard dialog box appears.

5. Expand Management and then double-click Backup Wizard.

The Welcome To The Create Database Backup Wizard page appears.

6. Click Next.

The Select Database To Backup page appears.

7. In the Database drop-down list, select master and then click Next.

The Type Name And Description For Backup page appears.

8. In the Name text box, type Full master Database Backup #1.

9. In the Description text box, type Backup Set #1 and then click Next.

The Select Type Of Backup page appears. Notice that you can only perform a
full database backup of the master database.

10. Click Next.

The Select Backup Destination And Action page appears.

11. Click the Backup Device option button and then, in the Backup Device drop-
down list, select MasterFullBackup.

12. Click the Overwrite The Backup Media option button.

13. Select the Read And Verify The Integrity Of The Backup After Backup check
box and then click Next.

The Initialize Media page appears.

14. Select the Initialize And Label Media check box.

15. In the Media Set Name text box, type MasterBackups.

280 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
16. In the Media Set Description text box, type Media for Master Database Back-
ups and then click Next.

The Backup Verification And Scheduling page appears.

17. Click Next.

The Completing The Create Database Backup Wizard page appears. Review
the details of the backup you have defined.

18. Click the Finish button.

The Backup Progress dialog box appears, displaying the progress of the backup
of the master database. Next, the Verify Progress dialog box appears, displaying
the progress of the verification of the master database backup. When the data-
base backup is complete, a Wizard Complete message box appears.

19. Click OK to close the Wizard Complete message box.

20. Do not close SQL Server Enterprise Manager.

Using SQL Server Enterprise Manager Directly
To create a backup using SQL Server Enterprise Manager directly, you can either
click the Databases container and then click Backup Database from the Tools
menu, or you can right-click the Databases container (or the container for any spe-
cific database), point to All Tasks, and then click Backup Database. You can use
SQL Server Enterprise Manager to perform any type of database backup. The Gen-
eral and Options tabs in the SQL Server Backup dialog box allow you to provide
the same type of backup information discussed earlier with respect to the Create
Database Backup Wizard (such as database, backup set name, type of backup,
append or overwrite, and media set name). See Figures 9.10 and 9.11.

<< “F09ST10.EPS” >>

Figure 9.10. Creating a backup in the General tab.

Chapter 9 Backing Up and Restoring SQL Server 281
<< “F09ST11.EPS” >>

Figure 9.11. Selecting backup options in the Options tab.

Note Notice a check box in Figure 9.11 that allows you to choose whether to
remove inactive entries from the transaction log. This check box is grayed out if
you are not backing up the transaction log. If you are backing up the transaction
log, the default is to truncate the transaction log after a backup. Clear the check box
to back up the transaction log without truncation (for example, after a disk failure).

In the General tab, if you are performing a file or filegroup backup, click the ellip-
sis to select the file or filegroup you want to back up. You can select either a single
data file or an entire filegroup in the Specify Filegroups And Files dialog box. If
you select a filegroup, all files in the group are automatically selected. See Figure
9.12.

After you select the backup media (tape or disk), click the Add button to select a
destination for the backup. In the Select Backup Destination dialog box, you can
either specify a backup file (if you selected disk), a tape drive (if you selected tape),
or an existing backup device. See Figure 9.13.

Note If you create backup devices using a Transact-SQL statement in SQL Query
Analyzer while SQL Server Enterprise Manager is open, you may need to discon-
nect and reconnect to your SQL Server 2000 instance in SQL Server Enterprise
Manager to refresh the connection and access this newly created backup device.

282 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F09ST12.EPS” >>

Figure 9.12. Selecting a file or filegroup.

<< “F09ST13.EPS” >>

Figure 9.13. Selecting a backup destination.

After you select a backup device, you can click the Contents button in the General
tab to view the contents of the selected backup device (to determine whether you
want to overwrite the backup sets on the backup device). If it does contain backup
sets, you can view the contents of each backup set in the View Backup Media Con-
tents dialog box. This situation is an example of why using intuitive names and
descriptions for your backup sets can be very useful. See Figure 9.14.

Chapter 9 Backing Up and Restoring SQL Server 283
<< “F09ST14.EPS” >>

Figure 9.14. Viewing the contents of the backup device.

Practice: Backing Up the msdb Database Directly Using
SQL Server Enterprise Manager
In this practice you use the SQL Server Enterprise Manager directly to back up the
msdb database.

� To back up the msdb database directly using SQL Server Enterprise Manager

1. In the SQL Server Enterprise Manager console tree, expand the Microsoft SQL
Servers container, expand the SQL Server Group container, expand the default
instance, and then expand Databases.

2. Right-click msdb, point to All Tasks, and then click Backup Database.

The SQL Server Backup - Msdb dialog box appears with the General tab
selected.

3. In the General tab, in the Name text box, type Full msdb Database Backup #1.

4. In the Description text box, type Backup Set #1.

5. Click the Add button.

The Select Backup Destination dialog box appears.

6. Click the Backup Device option button.

7. Select MSDBFullBackup from the Backup Device drop-down list, and then
click OK.

8. Click the Overwrite Existing Media option button and then click the Options
tab.

9. Select the Verify Backup Upon Completion check box.

10. Select the Initialize And Label Media check box.

11. In the Media Set Name text box, type msdbBackups.

284 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
12. In the Media Set Description text box, type Media for msdb Database
Backups and then click OK.

The Backup Progress dialog box appears displaying the progress of the backup
of the msdb database. Next, the Verify Progress dialog box appears displaying
the progress of the verification of the msdb database backup. When the data-
base backup is complete, a SQL Server Enterprise Manager message box
appears.

13. Click OK to close the SQL Server Enterprise Manager message box.

14. Do not close SQL Server Enterprise Manager.

Perform Backups Using Transact-SQL
You can also perform backups using the Transact-SQL BACKUP DATABASE and
BACKUP LOG commands. You can view the entire syntax, with all possible
options, in SQL Server Books Online. Transact-SQL commands require the same
information discussed earlier using SQL Server Enterprise Manager for database
backups, but the syntax requires practice and a little patience. In addition, Transact-
SQL provides a few additional parameters for additional control of your database
backups. Most are for use only with tape devices, but the following options for all
backup media are available only by using Transact-SQL.

■ You can secure a backup set with a password. You must supply the password to
restore the backup.

■ You can secure a media set with a password. You must supply the password to
restore any backup sets from the media set.

■ You can restart an interrupted backup. This is particularly useful for large data-
bases.

Although the BACKUP DATABASE and BACKUP LOG commands are initially
intimidating, the following examples will help you become more comfortable with
using these commands.

Performing a Full Database Backup
The BACKUP DATABASE command can be very simple or very complex. You
can create a backup file on the fly, or use an existing backup device.

BACKUP DATABASE Northwind TO DISK = ’C:\SQLBackups\Temp.bak’

The preceding example performs a full database backup of the Northwind database
to the C:\SQLBackups\Temp.bak file on disk.

BACKUP DATABASE Northwind TO NorthwindFullBackup
RESTORE VERIFYONLY FROM NorthwindFullBackup

The preceding example performs a full database backup of the Northwind database
to the NorthwindFullBackup backup device, and then verifies the backup.

Chapter 9 Backing Up and Restoring SQL Server 285
BACKUP DATABASE Northwind TO NorthwindFullBackup
WITH FORMAT ,
MEDIANAME = ’NorthwindBackups’ ,
MEDIADESCRIPTION = ’Media for Northwind Database Backups’ ,
NAME = ’Full Northwind Database Backup #1’ ,
DESCRIPTION = ’BackupSet #1’ ,
STATS = 25

The preceding example performs a full database backup of the Northwind database
to the NorthwindFullBackup backup device. It initializes the media, creates the
NorthwindBackups media set with a description of Media for Northwind Database
Backups, and creates the Full Northwind Database Backup #1 backup set with a
description of Backup Set #1. It also reports the progress of the backup in incre-
ments of 25 percent.

BACKUP DATABASE Northwind TO NWindDevice1, NWindDevice2 WITH MEDIANAME =
’Media Set for Northwind Database Backups’

The preceding example performs a full database backup of the Northwind database
to the NwindDevice1 and NwindDevice2 backup devices in parallel. SQL Server
2000 verifies that the media set is labeled Media Set for Northwind Database Back-
ups before it begins writing the backup file to each backup device.

Performing a Differential Database Backup
To perform a differential database backup using the BACKUP DATABASE com-
mand, you simply use the WITH DIFFERENTIAL argument with any of the pre-
ceding examples (provided you have performed a full database backup first).

BACKUP DATABASE Northwind TO NorthwindDiffBackup WITH DIFFERENTIAL

The preceding example performs a differential database backup of the Northwind
database to the NorthwindDiffBackup backup device.

Performing a File or Filegroup Backup
To perform a file or filegroup backup using the BACKUP DATABASE command,
you add the FILE = logical_filename or the FILEGROUP =
logical_filegroup_name argument to the BACKUP DATABASE statement.

BACKUP DATABASE Northwind FILEGROUP = ’SECOND_FG’ TO NorthwindFGBackup

The preceding example performs a filegroup backup of the Second_FG filegroup in
the Northwind database to the NorthwindFGBackup backup device.

286 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Performing a Transaction Log Backup
Perform a transaction XE "transaction log backups:Transact-SQL" log backup
using the BACKUP LOG command, using syntax that is almost identical to that for
the BACKUP DATABASE command.

BACKUP LOG Northwind TO NorthwindTLogBackup

The preceding example performs a transaction log backup of the Northwind data-
base to the NorthwindTLogBackup backup device.

BACKUP LOG Northwind TO NorthwindTLogBackup WITH NO_TRUNCATE

The preceding example performs a transaction log backup of the Northwind data-
base to the NorthwindTLogBackup backup device, but does not truncate the trans-
action log (use this command when a disk containing a data file fails).

Practice: Performing Backups Using Transact-SQL
In this practice you use several Transact-SQL scripts to perform a full database
backup, a differential database backup, and two transaction log backups of the
SSEMDB database.

� To perform backups using Transact-SQL

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

3. In the Connect To SQL Server dialog box, click OK to connect to SelfPaced-
SQL using Windows authentication.

4. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

5. Open SSEMDB_Full.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears, which will create the Customer table in the
SSEMDB database. It will populate the Customer table with 21 customers from
the NewCustomerData1.txt file using a BULK INSERT statement. It will then
perform a full database backup of the SSEMDB database using the SSEMDB-
FullBackup backup device.

6. Press F5 to execute the SSEMDB_Full.sql statement.

In the results pane, notice that the script added 21 customers to this newly cre-
ated Customer table in the SSEMDB database. Also notice (click the Messages
tab) that the SSEMDB database was successfully backed up, including both the
data file and a single page from the transaction log file (there was no database
activity during the backup).

Chapter 9 Backing Up and Restoring SQL Server 287
7. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

8. Open SSEMDB_TLog1.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears, which will add two additional customers to the
Customer table using an INSERT statement. It will then perform a transaction
log backup of the SSEMDB database using the SSEMDBTLogBackup backup
device.

9. On the toolbar, click the Execute Query button to execute the
SSEMDB_TLog1.sql statement.

In the results pane, notice that two new customers (for a new total of 23 cus-
tomers) were added to the Customer table in the SSEMDB database. Also
notice (click the Messages tab) that the SSEMDB transaction log was success-
fully backed up.

10. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

11. Open SSEMDB_Diff.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears, which will add seven additional customers to
the Customer table from the NewCustomerData2.txt file using a BULK INSERT
statement. It will then perform a differential database backup of the SSEMDB
database using the SSEMDBDiffBackup backup device.

12. On the toolbar, click the Execute Query button to execute the SSEMDB_Diff.sql
statement.

In the results pane, notice that the script added seven new customers (for a new
total of 30 customers) to the Customer table in the SSEMDB database. Also
notice (click the Messages tab) that the SSEMDB database was successfully
backed up, including both the data file and one page from the transaction log
file (there was no database activity during the backup).

13. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

14. Open SSEMDB_TLog2.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears, which will add one additional customer to the
Customer table using an INSERT statement. It will then perform a transaction
log backup of the SSEMDB database using the SSEMDBTLogBackup backup
device.

15. On the toolbar, click the Execute Query button to execute the
SSEMDB_TLog2.sql statement.

In the results pane, notice that the script added one new customer (for a new
total of 31 customers) to the Customer table in the SSEMDB database. Also
notice (click the Messages tab) that the SSEMDB transaction log was success-
fully backed up.

288 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
16. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

17. Open SSEMDB_TLog3.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears, which will add one additional customer to the
Customer table using an INSERT statement. It will then perform another trans-
action log backup of the SSEMDB database, again using the SSEMDBTLog-
Backup backup device.

18. On the toolbar, click the Execute Query button to execute the
SSEMDB_TLog3.sql statement.

In the results pane, notice that the script added one new customer (for a new
total of 32 customers) to the Customer table in the SSEMDB database. Also
notice (click the Messages tab) that the SSEMDB transaction log was success-
fully backed up.

19. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

20. Open SSEMDB_Insert4.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears, which will add one additional customer to the
Customer table using an INSERT statement. Notice that this insertion is not
backed up.

21. On the toolbar, click the Execute Query button to execute the
SSEMDB_Insert4.sql statement.

In the results pane, notice that one new customer (for a new total of 33 custom-
ers) was added to the Customer table in the SSEMDB database.

22. Do not close SQL Query Analyzer.

Lesson Summary
You can use the SQL Server Enterprise Manager Create Database Backup Wizard
to perform full database backups, differential database backups, and transaction log
backups. You can also perform backups directly with SQL Server Enterprise Man-
ager. This method allows you to perform any type of database backup. Transact-
SQL allows you to fully script each type of database backup. You can specify a
number of backup options for both the backup media and the backup set. Working
with these properties using SQL Server Enterprise Manager helps you understand
the Transact-SQL syntax for specifying the same options.

Chapter 9 Backing Up and Restoring SQL Server 289
Lesson 3: Restoring a User Database

Now that you have learned how to perform database backups using SQL Server
Enterprise Manager and Transact-SQL, you are ready to use these backups to per-
form data restorations. In this lesson, you will learn how to view database backups
to help determine a restoration sequence. You will learn how to completely restore
user databases using SQL Server Enterprise Manager and Transact-SQL. You will
also learn how to recover a database to a specified point in time.

After this lesson, you will be able to
■ View database and transaction log backup files to determine a restore sequence

■ Perform a complete data restoration of a user database using SQL Server Enter-
prise Manager and Transact-SQL

■ Recover a database to a specified point in time using SQL Server Enterprise
Manager and Transact-SQL

■ Restore a database to standby mode using SQL Server Enterprise Manager and
Transact-SQL to determine its state before applying additional backup files

Estimated lesson time: 60 minutes

Determining the Data Restoration Sequence
When you need to perform a data restoration, you must begin by determining the
most efficient sequence of backup files to use for accomplishing this task in the
shortest time possible. SQL Server Enterprise Manager makes this task easy. Every
time you perform any type of backup or restore, SQL Server 2000 records the
details of the backup and the restore history in the msdb database. These details
include such information as which devices or files the backup is stored on, who
performed the backup, and at what time. When you are ready to perform a restora-
tion of a database using SQL Server Enterprise Manager, it uses the information in
the msdb system tables to tell you which backup files you need to use to perform
the restoration in the quickest time possible. If the msdb database is damaged, you
should restore the msdb database from backup before you restore any user data-
bases. This will restore the backup and restore history for all databases on the SQL
Server 2000 instance (provided you recently backed up the msdb database).

If you do not have a recent backup of the msdb database or are restoring to another
SQL Server 2000 instance, SQL Server 2000 records sufficient information with
each backup set to re-create the backup history in the msdb database. You can use
SQL Server Enterprise Manager to read each backup file and add the information
to the msdb database. SQL Server Enterprise Manager can then use this recon-
structed backup history to identify the proper restoration sequence.

290 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Once you have identified the restoration sequence, you need to identify the actual
backup media that contains each backup set you want to use. If you labeled them
well, this is a simple task. However, occasionally you will need to read the media
set name and description to identify the correct backup media and the backup set
name and description to identify each backup set on the backup media.

To view the contents of a backup device using SQL Server Enterprise Manager,
expand the Management container, click Backup, and then in the details pane, right-
click the backup device you want to view and click Properties. In the Backup Device
Properties dialog box, the filename or tape drive associated with the backup device
will be displayed. Click the View Contents button to display the contents of the
backup device in the View Backup Media Contents dialog box. See Figure 9.15.

<< “F09ST15.EPS” >>

Figure 9.15. Viewing the contents of a backup device using SQL Server Enterprise Man-
ager.

Note If the backup device does not appear in the Backup container, you will need
to re-create the backup history. Re-creating backup history will be covered toward
the end of this lesson.

To view the contents of a backup device with Transact-SQL, three commands are
available to you to retrieve information regarding the media sets and backup sets.
Table 9.2 describes the three commands.

Chapter 9 Backing Up and Restoring SQL Server 291
Practice: Retrieving Backup Media Information
In this practice you will retrieve backup media information from a backup device
using SQL Server Enterprise Manager and Transact-SQL.

� To retrieve backup media information

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. In the SQL Server Enterprise Manager console tree, expand the default
instance, expand the Management container, and then click Backup.

The backup devices for this SQL Server 2000 instance are displayed in the
details pane.

3. In the details pane, right-click SSEMDBTLogBackup and then click Properties.

The Backup Device Properties – SSEMTLogBackup dialog box appears dis-
playing the filename associated with this backup device.

4. Click the View Contents button.

The View Backup Media Contents dialog box appears, displaying the contents
of the SSEMTLogBackup device. Details regarding three transaction log
backup sets appear.

5. Switch to SQL Query Analyzer.

6. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

7. Open QueryHeaders.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears, containing five separate queries, which will
retrieve information from the SSEMDBTLogBackup backup device.

Table 9-2. Information Retrieval Commands in Transact-SQL

Transact-SQL Command Description

RESTORE LABELONLY Retrieves backup media header information, includ-
ing the media set name and description.

RESTORE HEADERONLY Retrieves backup set information, including the
backup set name and description for every backup set
on a particular backup device. This includes internal
information regarding LSNs. SQL Server uses this
information to determine what backup files it needs to
apply and in what order.

RESTORE FILELISTONLY Retrieves a list of each data and log file backed up
within a particular backup set.

292 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
8. On the toolbar, click the Execute Query button to execute the QueryHeaders.sql
statement.

In the results pane, notice five separate result sets. The first result set displays
information regarding the media set itself. The second result set displays infor-
mation regarding each backup set recorded on this backup media. The final
three result sets display information regarding each data and transaction log file
in each of the three backup sets recorded on this backup media.

9. Compare the information available regarding the backup sets using SQL Server
Enterprise Manager and Transact-SQL.

10. Switch to SQL Server Enterprise Manager.

11. Click the Close button to close the View Backup Media Contents dialog box,
and then click Cancel to close the Backup Device Properties – SSEMDBTLog-
Backup dialog box.

12. Do not close SQL Server Enterprise Manager or SQL Query Analyzer.

Performing Restorations Using SQL Server Enterprise
Manager
SQL Server Enterprise Manager provides a simple graphical interface to interac-
tively perform data restorations. You may need to perform a data restoration
because a disk containing a data file failed, because an entire SQL Server 2000
installation failed, or because you want to recover data to an earlier point in time.

Note Before you attempt to restore a backup to a database that is still functioning,
be sure to restrict user access to it.

Restoration of an Entire Database from the Failure of a
Data Disk
If a disk containing a data file fails, SQL Server Enterprise Manager will display
the database containing the damaged data file as suspect (unless you are using
RAID). See Figure 9.16.

Chapter 9 Backing Up and Restoring SQL Server 293
<< “F09ST16.EPS” >>

Figure 9.16. A damaged data file displayed as suspect.

If you discover you have a suspect database, you should immediately back up the
transaction log without truncation before you attempt any restoration of your data
(otherwise, you will lose all changes since the most recent transaction log backup).
Backing up the current transaction log (using the Without Truncation option)
allows you to recover up to the point of failure. See Figure 9.17.

<< “F09ST17.EPS” >>

Figure 9.17. Selecting transaction log backup options.

294 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Next, you should replace the failed disk. If your data is using RAID for fault toler-
ance, all that you need to do is to simply add the new drive to the RAID system. If
you do not have RAID, you must restore your data to the new disk before your
users can access the damaged database. You can either perform a full database res-
toration or perform a file or filegroup restoration (see the following section). In
either case, to begin the restoration, expand the Databases container, right-click the
suspect database in the details pane, point to All Tasks, and then click Restore
Database. SQL Server Enterprise Manager will determine the most efficient com-
plete database restoration path for this database using the backup information
stored in the msdb database. See Figure 9.18.

If one of the backup sets identified by SQL Server Enterprise Manager for use in
the restoration of the database is missing in the Restore Database dialog box, you
can select other combinations of backup sets to accomplish the data restoration
task. SQL Server Enterprise Manager will assist you in selecting a combination of
backup sets that you can use to complete the restoration. For example, if you want
to start with an earlier full backup than the one selected, click the First Backup To
Restore drop-down list and then select an earlier full database backup. SQL Server
Enterprise Manager will quickly determine the requisite backup sets given this ear-
lier starting point for the data restoration and will display them in the list box at the
bottom of the dialog box.

<< “F09ST18.EPS” >>

Figure 9.18. Specifying backup sets to restore.

If you want to view information regarding the content of a particular backup set,
select the backup set in the list box at the bottom of the dialog box and then click
the Properties button. The properties of the backup set will appear in the Backup
Set Properties dialog box, including information you provided when you created
the backup set and information recorded by SQL Server 2000 when it performed
the backup. See Figure 9.19.

Chapter 9 Backing Up and Restoring SQL Server 295
<< “F09ST19.EPS” >>

Figure 9.19. Viewing the properties of a backup set.

If the location of the backup file has moved from the original location recorded in
the msdb database, you can click the Change button in the Backup Set Properties
dialog box and then specify the new location. For example, you may have origi-
nally written the backup file to disk, but it may now be on tape. Or, it may be stored
on a network disk in a different location.

After you have determined which backup sets you want to restore, click the
Options tab in the Restore Database dialog box to set additional data restoration
properties. See Figure 9.20.

<< “F09ST20.EPS” >>

Figure 9.20. Setting additional restoration properties.

296 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
In the Options tab under the Restore As column, you can change the physical loca-
tion of each data file being restored. By default, data files are restored to their orig-
inal location (overwriting any files with the same names located there). You can
also select the recovery completion state. By default, SQL Server 2000 will restore
each backup set you selected, and after the last backup has been applied, it will
recover the database. This is equivalent to the Transact-SQL recovery option. If
you are not applying all of the backups that you want to apply, you must change
this setting to allow you to apply additional transaction logs. You have two choices.

■ You can choose to leave the database nonoperational but able to restore addi-
tional transaction logs. This is equivalent to the Transact-SQL no-recovery
option.

■ You can choose to leave the database read-only and able to restore additional
transaction log files. This is equivalent to the Transact-SQL standby mode
option. Selecting the read-only option requires the specification of an undo file
that will be created during the restoration. This undo file is created by default in
the Backup folder and is named UNDO_DatabaseName.DAT. Use a different
name to avoid overwriting previous undo files, if necessary. This undo file con-
tains rollback changes that are made to the database to allow you to view the
database in a logically consistent state while in standby mode. These consist of
incomplete transactions that SQL Server 2000 does not yet know the comple-
tion status of. If you choose to apply additional transaction logs, these rolled-
back transactions in the undo file will be rolled forward before additional trans-
action logs are applied.

After you click OK, the selected backup sets are restored, and your database is
either recovered or left in a no-recovery state for more transaction logs to be
applied.

Restoring a Data File or Filegroup
If you want to perform a file or filegroup restoration rather than a complete data-
base restoration, click the Filegroups Or Files option button in the General tab of
the Restore Database dialog box to see a display of all files and filegroups that have
been backed up, along with all transaction log files. This includes all data files
backed up as part of a full database backup as well as files backed up explicitly as a
file or filegroup backup. See Figure 9.21.

Chapter 9 Backing Up and Restoring SQL Server 297
<< “F09ST21.EPS” >>

Figure 9.21. Selecting filegroups or files to restore.

Once you select one or more data files to restore, SQL Server Enterprise Manager
selects the transaction log files that must be applied with the data files you selected
in order to bring the entire database to a consistent state.

When you click the Select A Subset Of Backup Sets option button, you can use the
Selection Criteria button to filter the backup sets based on the data file drive, the
date of the backup set, or backup sets of particular files and filegroups only.
Remember, to restore a database using a file or filegroup backup, you must restore
all transaction log files more recent than the data files you are restoring in order to
ensure that your database is in a consistent state. See Figure 9.22.

<< “F09ST22.EPS” >>

Figure 9.22. Filtering the criteria for displaying backup sets.

298 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Practice: Performing a Complete Database Restoration
In this practice you will perform a complete database restoration using SQL Server
Enterprise Manager.

� To perform a complete database restoration

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. In the SQL Server Enterprise Manager console tree, right-click your default
instance and then click Stop.

A SQL Server Enterprise Manager dialog box appears asking if you are sure
you want to stop the SQL Server Service.

3. Click the Yes button.

A Service Control Failure dialog box appears asking if you also want to stop
the SQL Server Agent service.

4. Click the Yes button.

5. Open Windows Explorer.

6. In the Address window, type C:\Program Files\Microsoft SQL
Server\MSSQL\Data and then press ENTER on your keyboard.

7. Move the SSEMDB_Data1_Data.mdf file to your desktop.

8. Close Windows Explorer.

9. In the SQL Server Enterprise Manager console tree, expand your default
instance.

After a few moments, notice that SQL Server Enterprise Manager starts the
SQL Server service and connects to the default instance.

10. In the console tree, click the Databases container.

The databases appear in the details pane, with the SSEMDB database marked
as suspect (because you moved the data file).

11. In the details pane, right-click SSEMDB, point to All Tasks, and then click
Backup Database.

The SQL Server Backup – SSEMDB dialog box appears.

12. Click the Transaction Log option button.

13. In the Destination group box, click the Add button.

The Select Backup Destination dialog box appears.

14. Click the Backup Device option button and then select SSEMDBTLogBackup
in the Backup Device drop-down list.

15. Click OK.

16. Verify that SSEMDBTLogBackup is the only device listed in the Destination
group box.

17. Verify that the Append To Media option button is selected.

Chapter 9 Backing Up and Restoring SQL Server 299
18. Click the Options tab.

19. Clear the Remove Inactive Entries From Transaction Log check box and then
click OK.

The Backup Progress dialog box appears displaying the progress of the backup.
When the backup has completed, a SQL Server Enterprise Manager message
box appears stating the backup operation was a success.

20. Click OK.

21. In the SQL Server Enterprise Manager console tree, right-click SSEMDB,
point to All Tasks, and then click Restore Database.

The Restore Database dialog box appears, displaying the backup sets required
to completely restore the SSEMDB database. Notice that SQL Server Enter-
prise Manager has selected the original full database backup, the differential
database backup, and all transaction log backups since the differential database
backup (a total of three out of four transaction logs are selected).

22. Click OK to completely restore the SSEMDB database.

The Restore Progress dialog box appears displaying the progress of the restora-
tion. When the restoration is complete, a SQL Server Enterprise Manager mes-
sage box appears stating that the restoration of the SSEMDB database was
completed successfully.

23. Click OK.

24. In the console tree, expand SSEMDB and then click Tables.

The tables in the SSEMDB database appear.

25. In the details pane, right-click Customer, point to Open Table, and then click
Return All Rows.

The Data In Table ‘Customer’ In ‘SSEMDB’ On ‘SelfPacedCPU’ window
appears displaying the contents of the Customer table after the restoration.

26. Verify that SQL Server Enterprise Manager restored all 33 rows and then close
the Data In Table ‘Customer’ In ‘SSEMDB’ On ‘SelfPacedCPU’ window.

27. Do not close SQL Server Enterprise Manager.

Restoring a Database to a Different SQL Server 2000
Instance
You may need to restore a database to a different SQL Server 2000 instance for a
variety of reasons. For example, you may want to perform a temporary restoration
of a database to an earlier point in time to recover some data accidentally deleted
without rolling back your entire production database to that point in time and with-
out taking the entire database down.

When restoring a database to a second SQL Server 2000 instance using SQL
Server Enterprise Manager, you must first create the database in SQL Server into
which you will restore the database. Generally, you should use the same database

300 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
name and database file paths as the one you are restoring. If you choose a different
name, you will have to select the Force Restore Over Existing Database check box
in the Options tab of the Restore Database dialog box when you perform the resto-
ration to the second instance of SQL Server 2000. In addition, if you choose to
restore to a different physical path, you will need to adjust the restoration path for
the database files.

After you have created the database in the SQL Server instance into which you will
restore the database, you must use the information stored with each backup set in
the original database to perform the restoration. The reason for this is that the msdb
database in this SQL Server 2000 instance has no knowledge of any backups of the
database you want to restore. You begin by right-clicking the database in the con-
sole tree for the SQL Server 2000 instance that you want to restore, pointing to All
Tasks, and then clicking Restore Database. In the General tab of the Restore Data-
base dialog box, click the From Device option button. See Figure 9.23.

Next, you need to click the Select Devices button to select a backup device from
which to restore data. However, because this instance has no knowledge of any
backup devices for the database being restored, you need to click the type of device
(disk or tape), in the Choose Restore Devices dialog box, and then click the Add
button to point SQL Server Enterprise Manager toward a backup device from
which to read backed up data. See Figure 9.24.

<< “F09ST23.EPS” >>

Figure 9.23. Selecting a device from which to restore.

Chapter 9 Backing Up and Restoring SQL Server 301
<< “F09ST24.EPS” >>

Figure 9.24. Adding a device from which to read.

After you select a file or tape drive from which to restore data, you can choose
among several options. You can view the contents of each backup set on the backup
device; you can restore a specified backup set from the backup device and either
recover or leave the database able to restore additional transaction logs; or you can
choose to read the backup set information from a specified device and add it to the
backup history in the msdb database. See Figure 9.25.

Whichever way you choose to proceed, you must work with one backup set at a
time. Thus, if you want to read backup set information into the msdb database from
a different instance of SQL Server 2000 from three backup devices containing a
total of seven backup sets, you will have to read from seven separate backup sets to
either perform the restoration or to restore information into the msdb database. In
this particular scenario, using Transact-SQL is much quicker than using SQL
Server Enterprise Manager.

<< “F09ST25.EPS” >>

Figure 9.25. Choosing restore method options.

302 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Recovery of a Database to a Point in Time
If you determine that you need to restore a database to a specified point in time,
you may need to restore one or more backup sets and leave the database in no
recovery or standby mode between each transaction log restoration. Standby mode
allows you to view the condition of the database at the end of each restoration
before you apply additional transaction log files. Once you have determined the
point in time to which you need to recover, you select the Point In Time Restore
check box in the General tab of the Restore Database dialog box, and then choose
the date and time at which you need recovery of the database to be halted. See Fig-
ure 9.26.

You cannot select a time earlier than the earliest transaction log that you select. In
addition, you cannot choose to leave a database nonoperational and able to restore
additional transaction logs when you choose point-in-time restore.

Note Although you can recover to a named mark as well as a specific point in
time, you must use Transact-SQL to recover to a named mark.

<< “F09ST26.EPS” >>

Figure 9.26. Selecting a point in time for recovery.

Chapter 9 Backing Up and Restoring SQL Server 303
Practice: Performing a Database Restoration to a Specified
Point in Time
In this practice you will perform a database restoration to a specified point in time
using SQL Server Enterprise Manager.

� To perform a database restoration to a specified point in time

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. In the SQL Server Enterprise Manager console tree, expand your default
instance and then expand Databases.

3. In the console tree, right-click SSEMDB, point to All Tasks, and then click
Restore Database.

The Restore Database dialog box appears.

4. In the Parameters group box, clear all backup sets selected by SQL Server
Enterprise Manager and then select the Full SSEMDB Database Backup #1
backup set check box. Verify that no other backup sets are selected.

5. Click the Options tab.

6. Click the Leave Database Nonoperational But Able To Restore Additional
Transaction Logs option button, and then click OK.

The Restore Progress dialog box appears displaying the progress of the restora-
tion. When the restoration is complete, a SQL Server Enterprise Manager mes-
sage box appears stating that the restoration of the SSEMDB database was
completed successfully.

7. Click OK.

In the console tree, notice the SSEMDB database indicates it is loading. You
cannot view any database objects in the database.

8. In the console tree, right-click SSEMDB, point to All Tasks, and then click
Restore Database.

Notice that you can perform additional transaction log restorations, but you
cannot apply the differential database restoration without restoring the original
full database backup.

9. Clear all backup sets selected by SQL Server Enterprise Manager and then
select the Full SSEMDB Database Backup #1 backup set check box. Verify that
no other backup sets are selected.

10. Click the Options tab.

11. Click the Leave Database Read-Only And Able To Restore Additional Transac-
tion Logs option button, and then click OK.

The Restore Progress dialog box appears displaying the progress of the restora-
tion. When the restoration is complete, a SQL Server Enterprise Manager mes-
sage box appears stating that the restoration of the SSEMDB database was
completed successfully.

304 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
12. Click OK.

In the console tree, notice that the SSEMDB database now indicates it is read-
only.

13. In the console tree, click Tables.

14. In the details pane, right-click Customer, point to Open Table, and then click
Return All Rows.

The Data In Table ‘Customer’ In ‘SSEMDB’ On ‘SELFPACEDCPU’ window
appears displaying the contents of the Customer table after the restoration.

Notice that only 21 rows were restored and then close the Data In Table ‘Cus-
tomer’ In ‘SSEMDB’ On ‘SELFPACEDCPU’ window.

15. In the console tree, right-click SSEMDB, point to All Tasks, and then click
Restore Database.

Notice that SQL Server Enterprise Manager selects the remaining transaction
logs for restoration.

16. Clear all backup sets selected by SQL Server Enterprise Manager and then
select the SSEMDB Transaction Log Backup #1 backup set check box. Verify
that no other backup sets are selected.

17. Click the Options tab.

18. Click the Leave Database Read-Only And Able To Restore Additional Transac-
tion Logs option button, and then click OK.

The Restore Progress dialog box appears displaying the progress of the restora-
tion. When the restoration is complete, a SQL Server Enterprise Manager mes-
sage box appears stating that the restoration of the SSEMDB database was
completed successfully.

19. Click OK.

20. In the console tree, click Tables.

21. In the details pane, right-click Customer, point to Open Table, and then click
Return All Rows.

The Data In Table ‘Customer’ In ‘SSEMDB’ On ‘SELFPACEDCPU’ window
appears displaying the contents of the Customer table after the restoration.

22. Notice that 23 rows were restored (two additional rows added) and then close
the Data In Table ‘Customer’ In ‘SSEMDB’ On ‘SELFPACEDCPU’ window.

23. In the console tree, right-click SSEMDB, point to All Tasks, and then click
Restore Database.

Notice that SQL Server Enterprise Manager selects the remaining transaction
logs for restoration.

24. Clear all backup sets selected by SQL Server Enterprise Manager and then
select the SSEMDB Transaction Log Backup #2 backup set check box. Verify
that no other backup sets are selected.

25. Click the Options tab.

Chapter 9 Backing Up and Restoring SQL Server 305
26. Click the Leave Database Read-Only And Able To Restore Additional Transac-
tion Logs option button, and then click OK.

The Restore Progress dialog box appears displaying the progress of the restora-
tion. When the restoration is complete, a SQL Server Enterprise Manager mes-
sage box appears stating that the restoration of the SSEMDB database was
completed successfully.

27. Click OK.

28. In the console tree, click Tables.

29. In the details pane, right-click Customer, point to Open Table, and then click
Return All Rows.

The Data In Table ‘Customer’ In ‘SSEMDB’ On ‘SELFPACEDCPU’ window
appears displaying the contents of the Customer table after the restoration.

30. Notice that 31 rows were restored (8 additional rows added) and then close the
Data In Table ‘Customer’ In ‘SSEMDB’ On ‘SELFPACEDCPU’ window.

31. In the console tree, right-click SSEMDB, point to All Tasks, and then click
Restore Database.

Notice that SQL Server Enterprise Manager selects the remaining transaction
logs for restoration.

32. Expand the Backup Set Date column so you can view the entire date and time.

33. Select the Point In Time Restore check box.

The Point in Time Restore dialog box appears.

34. Select a time 15 seconds later than the time of the third transaction log backup
and then click OK.

35. Click OK to perform the point-in-time restoration.

The Restore Progress dialog box appears displaying the progress of the restora-
tion. When the process is finished, a SQL Server Enterprise Manager message
box appears stating that the restoration of the SSEMDB database was com-
pleted successfully.

36. Click OK.

Given the small data set we are working with, this practice cannot properly
demonstrate this feature. The choice of 15 seconds later is arbitrary and will not
show any difference compared to restoring through the end of Transaction Log
Backup #3. However, in a production system, it would.

37. In the console tree, click Tables.

38. In the details pane, right-click Customer, point to Open Table, and then click
Return All Rows.

The Data In Table ‘Customer’ In ‘SSEMDB’ On ‘SelfPacedCPU’ window
appears displaying the contents of the Customer table after the restoration.

306 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
39. Notice that 32 rows were restored, and then close the Data In Table ‘Customer’
In ‘SSEMDB’ On ‘SelfPacedCPU’ window. The thirty-third row was not
added.

40. Close SQL Server Enterprise Manager.

Performing Restorations Using Transact-SQL
You can also perform restorations using the Transact-SQL RESTORE DATABASE
and RESTORE LOG commands. You can view the entire syntax for each of these
commands, with all possible options, in SQL Server Books Online. Transact-SQL
commands require the same information discussed earlier with SQL Server Enter-
prise Manager database restorations, but the syntax requires practice and some-
times patience. In addition, Transact-SQL provides a few additional parameters for
additional control of your backup. Most of these parameters are for use only with
tape devices, but the following options for all backup media are available only
using Transact-SQL.

■ You can restrict access to the newly restored database to database administra-
tors as part of the restore process.

■ You can move a database to a new location using the MOVE option.

■ You can supply a password.

■ You can restart an interrupted restore.

■ You can recover to a named mark.

Like the BACKUP commands, the RESTORE DATABASE and RESTORE LOG
commands are initially intimidating. The following examples will help you learn
how to use these commands. Perhaps the most important difference between using
SQL Server Enterprise Manager and Transact-SQL is that you must determine and
specify the correct backup sets in the correct order, including the specification of
the backup set number on the media set.

Restoring a Complete Database
The RESTORE DATABASE and RESTORE LOG commands can be very simple
or very complex.

RESTORE DATABASE Northwind FROM DISK = ’C:\SQLBackups\Temp.bak’

The preceding example restores a full database backup of the Northwind database
from the C:\SQLBackups\Temp.bak file on disk.

RESTORE DATABASE Northwind FROM NorthwindFullBackup WITH NORECOVERY
RESTORE DATABASE Northwind FROM NorthwindDiffBackup WITH FILE = 2,
NORECOVERY
RESTORE LOG Northwind FROM NorthwindTLogBackup WITH FILE = 4,
NORECOVERY
RESTORE LOG Northwind FROM NorthwindTLogBackup2 WITH FILE = 5

Chapter 9 Backing Up and Restoring SQL Server 307
The preceding example restores a full database backup of the Northwind database
from the NorthwindFullBackup backup device, followed by a restoration of a dif-
ferential database backup (backup set 2 on the backup device), and then followed
by the restoration of two transaction log backups (backup sets 4 and 5 on the
backup device). Recovery occurs after the second transaction log is restored.

Restoring a Data File or Filegroup

RESTORE DATABASE Northwind FILE = ’Second_Data_File’
FROM File_Backup WITH RESTRICTED_USER, NORECOVERY, STATS = 25
RESTORE LOG Northwind FROM NorthwindTLogBackup WITH FILE = 2

The preceding example restores a backup of a secondary data file for the North-
wind database from the File_Backup backup device with no recovery and provides
notification of the progress of the restoration after each 25 percent completes. The
restoration of the transaction log backup follows (backup set 2 on the backup
device), and then the database is recovered. After recovery, database access is
restricted to database administrators.

Restoration Using the Move Option

RESTORE DATABASE Northwind FROM NorthwindFullBackup
WITH NORECOVERY ,
MEDIANAME = ’NorthwindBackups’ ,
MEDIAPASSWORD = ’my_password’ ,
MOVE = ’Northwind’ TO ’D:\SQLDATA\NwindNew.mdf’ ,
MOVE = ’NorthwindLog’ TO ’E:\SQLLogs\NwindNewLog.ldf’ ,
RESTORE LOG Northwind FROM NorthwindTLogBackup

The preceding example restores a full database backup of the Northwind database,
followed by a restoration of the transaction log. It specifies that the data file is
moved to D:\SQLDATA\NwindNew.mdf and that the log file is moved to E:\SQL-
Logs\NwindNewLog.ldf. Finally, it also specifies that the media set name, North-
windBackups, must appear on the backup media being restored.

Restoring to Standby Mode

RESTORE DATABASE Northwind FROM NorthwindFullBackup WITH NORECOVERY
RESTORE LOG Northwind FROM NorthwindTLogBackup WITH FILE = 4 ,
NORECOVERY
RESTORE LOG Northwind FROM NorthwindTLogBackup WITH FILE = 5 ,
STANDBY = TO ’D:\SQL\UNDO.tmp’

The preceding example restores a full database backup of the Northwind database
from the NorthwindFullBackup backup device, followed by the restoration of two
transaction log backups (backup sets 4 and 5 on the backup device). Recovery to
standby mode occurs after the second transaction log is restored.

308 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Restoring to a Specified Point in Time

RESTORE DATABASE Northwind FROM NorthwindFullBackup WITH NORECOVERY
RESTORE LOG Northwind FROM NorthwindTLogBackup WITH FILE = 4 ,
NORECOVERY
RESTORE LOG Northwind FROM NorthwindTLogBackup WITH FILE = 5 , RECOVERY,

STOPAT = ’Oct 2, 2000 5:08:32 PM’

The preceding example restores a full database backup of the Northwind database
from the NorthwindFullBackup backup device, and then followed by the restora-
tion of two transaction log backups (backup sets 4 and 5 on the backup device).
Recovery to October 2, 2000 at 5:08:32 P.M. occurs after the second transaction
log is restored.

Practice: Performing Restorations Using Transact-SQL
In this practice you use several Transact-SQL scripts to perform a restoration of a
full database backup, a differential database backup, and two transaction log back-
ups of the SSEMDB database.

� To perform restorations using Transact-SQL

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Switch to SQL Server Query Analyzer.

3. On the SQL Query Analyzer toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

4. Open SSEMDB_Restore1.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears, which will restore the SSEMDB full database
backup, followed by the SSEMDB differential database backup, and then fol-
lowed by the restoration of two transaction log backups. The database is left in
standby mode using an undo file. The script also contains a SELECT statement
to display the results of the restoration.

5. On the toolbar, click the Execute Query button to execute the
SSEMDB_Restore1.sql statement.

In the results pane, notice that 32 customers were restored. Also notice the res-
toration of each backup set (click the Messages tab).

6. Open SQL Server Enterprise Manager.

7. In the console tree, expand SQL Server Group, expand your default instance,
and then expand Databases.

Notice that the SSEMDB database is in standby mode (read-only).

8. Switch to SQL Query Analyzer.

9. On the toolbar, click the Load SQL Script button.

Chapter 9 Backing Up and Restoring SQL Server 309
The Open Query File dialog box appears.

10. Open SSEMDB_Restore2.sql in the C:\SelfPacedSQL\CH_9 folder.

A Transact-SQL script appears, which will restore the final transaction log
backup file and then perform a recovery of the database. The script also con-
tains a SELECT statement to display the results of the restoration.

11. On the toolbar, click the Execute Query button to execute the
SSEMDB_Restore2.sql statement.

In the results pane, notice that all 33 customers were restored. Also notice the
restoration of each backup set (click the Messages tab).

12. Switch to SQL Server Enterprise Manager.

13. In the console tree, expand your default instance, right-click Databases, and
then click Refresh.

Notice that the SSEMDB database is no longer in standby (read-only) mode.

14. Close both SQL Server Enterprise Manager and SQL Query Analyzer.

Lesson Summary
You can use SQL Server Enterprise Manager or Transact-SQL to perform database
restorations. When you use SQL Server Enterprise Manager, you are assisted in
restoring backup files in the correct sequence. When you use Transact-SQL, you
must determine the sequence on your own. Both SQL Server Enterprise Manager and
Transact-SQL provide tools for querying a backup media to determine the contents.

310 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 4: Restoring and Rebuilding System
Databases

If your master database becomes corrupt or if you lose your entire SQL Server
2000 installation, you will need to either restore your master database or rebuild
your system databases. In this lesson you will learn how to restore the backup of
your master database. You will also learn to rebuild your system databases if they
are no longer functioning.

After this lesson, you will be able to
■ Restore the master database from backup

■ Rebuild the system databases

Estimated lesson time: 15 minutes

Restoring the Master Database
If your master database is functioning but damaged in some fashion (such as the
deletion of all logins), you can restore the master database using the most recent
full database backup of the master database. Any changes to the master database
since the most recent database backup will be lost. You should script database
objects when you create them and save the scripts. You should also mirror the sys-
tem databases using RAID 1 where possible.

To restore the master database, start SQL Server 2000 in single-user mode with the
–m option in the Command Prompt window or from the Run dialog box.

Sqlservr –m

The preceding command starts SQL Server 2000 as an application in a command-
prompt window. The text you see when you start SQL Server 2000 as an applica-
tion is the same text you see in the SQL Server error log. See Figure 9.27.

Chapter 9 Backing Up and Restoring SQL Server 311
<< “F09ST27.EPS” >>

Figure 9.27. Starting SQL Server 2000 as an application in a command-prompt window.

Next, start SQL Query Analyzer and restore your most recent backup of the master
database using the same commands you use to restore any user database.

RESTORE DATABASE master FROM MasterFullBackup

The preceding example restores the master database from the MasterFullBackup
backup device. See Figure 9.28.

<< “F09ST28.EPS” >>

Figure 9.28. Restoring the master database.

After the restoration of the master database is complete, the SQL Server 2000
application running in single-user mode will stop. You can then restart SQL Server
2000 normally. Assuming that your backup of the master database was current, you
are back in business. If not, you will need to re-create database objects and perhaps

312 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
reattach user databases. You may also need to restore other system databases,
depending upon the reason for the restoration of the master database.

Rebuilding the System Databases
If your master database has ceased functioning, you cannot recover quite this eas-
ily. In this case, you must rebuild the system databases from scratch (or possibly
reinstall SQL Server 2000). To rebuild the system databases, use the Rebuildm.exe
utility located in the C:\Program Files\Microsoft SQL Server\80\Tools\Binn folder.
When you use the Rebuildm utility, you use the original data files for each of the
system databases to rebuild each system database to their original condition in the
Rebuild Master dialog box. You must have the original installation files available,
either on a local drive or on a network drive. See Figure 9.29.

Note Remove the Read-only attribute from the original installation files, or the
Rebuildm utility will fail.

<< “F09ST29.EPS” >>

Figure 9.29. Rebuilding the master database.

Click the Rebuild button to begin the process. You receive a warning in a Rebuild
Master dialog box that you are about to rebuild and overwrite all of your system
databases. See Figure 9.30.

<< “F09ST30.EPS” >>

Figure 9.30. The Rebuild Master warning dialog box.

Chapter 9 Backing Up and Restoring SQL Server 313
After the rebuild is complete, you will need to restore your master database in the
manner described earlier. Next, restore each system database, particularly the msdb
database. If you have customized the model database, restore it. If you are using
replication, you will need to restore the distribution database. Replication is cov-
ered in Chapter 15. Finally, you may need to restore or reattach any system data-
bases that were affected by the failure of the system databases.

Lesson Summary
If your master database becomes corrupt, you may need to restore or rebuild it.
Restoring the master database requires starting SQL Server 2000 in single-user
mode. Rebuilding the master database requires rebuilding all system databases
using the original installation data files for the system databases. If you must
rebuild the system databases, restore these databases from backup to recover to the
point of your most recent backups. Any system database activity since your most
recent backups will have to be manually regenerated. Finally, reattaching user data-
bases may be required. This is faster than performing a full restore.

314 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You regularly perform full, differential, and transaction log backups to disk.
Are there any other backup tasks that you should perform regularly to protect
your database from data loss?

2. You are a new database administrator. You want to create Transact-SQL scripts
to automate the backup of your database. However, the syntax is imposing.
What are several good methods for familiarizing yourself with the Transact-
SQL syntax and the various backup options?

3. What is a major advantage to using SQL Server Enterprise Manager for per-
forming database restorations, rather than Transact-SQL?

4. What is the major difference between performing a restoration of the master
database and all other databases?

315
C H A P T E R 1 0

Managing Access to SQL Server 2000

Lesson 1: Understanding the Authentication Process 316

Lesson 2: Understanding the Authorization Process 325

Lesson 3: Creating and Managing Logins . 330

Review . 355

About This Chapter
Before you place your SQL Server 2000 database into production, you must con-
figure security to permit appropriate access for users and administrators. In this
chapter, you will learn how SQL Server 2000 controls access to the server itself.
Next, you will learn how SQL Server 2000 controls access to databases, including
an introduction to server-wide and database-level permissions. Finally, you will
learn to create security accounts (logins) for users using Windows authentication
and SQL Server authentication.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS partition.

■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

■ Created the SSEMDB database using the CreateDB.sql script (see Chapter 6).

316 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Understanding the Authentication
Process

Before a user can perform any activities within a database or perform server-wide
tasks, SQL Server 2000 must authenticate the user. In this lesson, you will learn
about the two authentication mechanisms used by SQL Server 2000 for authentica-
tion. You will learn the appropriate use of each mode, including the security impli-
cations of allowing SQL Server logins. Finally, you will learn about passing user
authentication information between SQL Server 2000 instances for distributed que-
ries and file system access.

After this lesson, you will be able to
■ Describe how SQL Server 2000 authenticates users

■ Choose between SQL Server 2000 authentication modes

■ Change SQL Server 2000 authentication modes

■ Enable security account delegation between SQL Server 2000 instances

Estimated lesson time: 15 minutes

Understanding the SQL Server 2000 Authentication Process
Before a user can perform a task or access a database within SQL Server 2000, a
database administrator must first create a login granting that user permission to
access SQL Server 2000 (and then grant that login permissions within SQL Server
2000). A login is either linked to a specific Windows 2000 (or Windows NT 4.0)
user or group, or to a security account created within SQL Server 2000 itself (a
SQL Server login). Lesson 3 covers how to create logins using SQL Server 2000
security accounts and Windows 2000 users and groups. Chapter 11 covers granting
and managing login permissions within SQL Server 2000.

When a user attempts to access a SQL Server 2000 instance, the user (either
directly or through an application) requests a type of authentication and presents
identification credentials. The user can request one of two types of authentication,
Windows authentication or SQL Server authentication. SQL Server 2000 must ver-
ify that the user is a permitted user before allowing access. This means validating
the presented credentials for the user.

Windows Authentication
If the user is already authenticated on the Windows domain as a valid Windows
user, SQL Server 2000 can be requested to trust this authentication by the operating
system and allow the user access to SQL Server 2000 based on those credentials. In

Chapter 10 Managing Access to SQL Server 2000 317
this case, the user requesting access presents (this is invisible to the user) either a
Kerberos ticket (Windows 2000) or access token (Windows NT 4.0) to SQL Server
2000 as verification of his or her identity. SQL Server 2000 verifies the authenticity
of the Kerberos ticket or the access token and then compares the user with the list
of Windows users and groups permitted (but not denied) access. Based on this
information, SQL Server 2000 then either grants or denies access.

Note You call a connection using Windows authentication a trusted connection.

SQL Server Authentication
If the user requesting access either has not been authenticated on the Windows
domain or wants to connect using a SQL Server 2000 security account, the user can
request that SQL Server 2000 directly authenticate the user based upon the submis-
sion of a user name and password (if SQL Server 2000 is configured to permit SQL
Server authentication). If the user requests SQL Server authentication, SQL Server
2000 compares the user name submitted against the list of SQL Server 2000 secu-
rity accounts. If SQL Server finds the submitted user name in the sysxlogins table,
SQL Server 2000 then encrypts the submitted password and compares it with the
encrypted password in this table. Based on this information, SQL Server 2000 then
grants or denies access.

Note The user name and password are submitted to SQL Server 2000 in clear text
unless both the client and the server Net-Libraries are using SSL encryption for the
entire session.

Comparing Windows Authentication and SQL Server
Authentication
Table 10.1 compares the security capabilities of these two types of authentication.

Client Net-Libraries and Authentication
SQL Server 2000 clients use an enabled client Net-Library to communicate with a
server Net-Library on a SQL Server 2000 instance. To support the desired network
protocol, a matching pair of Net-Libraries must be active on the client and server
computers. The TCP/IP Sockets and Named Pipes client Net-Libraries are the
default client Net-Libraries for computers running Windows 4.0 or Windows 2000
and are used in that order. In most environments, you will not need to modify client
Net-Library settings. However, if a user is having difficulty connecting to a SQL
Server 2000 instance, verify the settings for the client Net-Libraries. On the client
computer, use the SQL Server Client Network Utility to enable additional or differ-
ent Net-Libraries, configure custom connection properties for each Net-Library,
and specify the order in which the system will attempt to use each enabled Net-
Library.

318 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
You access the SQL Server Client Network Utility from the Microsoft SQL Server
program group on the Start menu. See Figure 10.1.

<< “F10ST01.EPS” >>

Figure 10.1. Accessing the SQL Server Client Network Utility.

Note You can force protocol encryption using SSL. If you select this check box in
SQL Server Client Network Utility, the SQL Server 2000 instance you are connect-
ing to must also be using encryption. Use the SQL Server Network Utility to force
protocol encryption for the server Net-Libraries.

Table 10-1. Security Capabilities of Windows Authentication Versus SQL
Server Authentication

Windows Authentication SQL Server Authentication

When a user logs into the Windows
domain, the user name and password
are encrypted before being passed to
the Windows domain controller.

The Windows operating system never authenti-
cates the user.

When an authenticated user presents
authentication credentials to a SQL
Server 2000 instance, the Kerberos
ticket or access token submitted is
encrypted.

When a user presents authentication credentials to
a SQL Server 2000 instance, the user name and
password submitted are not encrypted (unless SSL
is enabled for the entire session).

Windows 2000 and Windows NT 4.0
support password policies (such as
enforcing complex passwords and
password expirations).

SQL Server 2000 supports no password policies
(passwords can be of any length or complexity,
and they never expire).

Windows 2000 and Windows NT 4.0
supports account lockout policies
(such as for multiple attempts using
an incorrect password).

SQL Server 2000 supports no account lockout
policy (a user can try an unlimited number of
times until a valid name and password allow
access).

Chapter 10 Managing Access to SQL Server 2000 319
The Named Pipes and Multiprotocol Net-Libraries require an authenticated con-
nection to the Windows domain before a client can connect to a SQL Server 2000
instance (using either Windows authentication or SQL Server authentication). This
means that the user who is requesting authentication must be an authenticated user
on the Windows domain. This is not a problem if you are using a Windows client
and are logged on to the same domain (or a trusted domain) that contains the SQL
Server 2000 computer on which SQL Server 2000 is running. However, if you are
attempting to connect to a SQL Server 2000 instance from a computer that has not
established a trusted connection to the domain, an attempted connection using
either the Named Pipes or the Multiprotocol Net-Libraries will fail (however, TCP/
IP sockets will succeed if valid credentials are presented).

Note The simplest method for establishing an authenticated connection (other
than logging on to the domain) is to connect to an existing share within the domain.

Neither the TCP/IP Sockets Net-Library nor any of the other Net-Libraries require
prior authentication by the Windows domain. A user (or application) can attempt to
connect to an instance of SQL Server 2000 using the TCP/IP network protocol and
the TCP/IP Sockets Net-Library from any location provided that communication
can be established with the SQL Server 2000 computer. For this reason, under-
standing how to secure your Windows domain as well as securing your SQL Server
2000 instance is extremely critical to protecting your data.

Selecting a SQL Server 2000 Authentication Mode
During installation, you selected an authentication mode for your SQL Server 2000
instance. The default mode is Windows Authentication Mode. You can also choose
to operate a SQL Server 2000 instance in Mixed Mode. Selecting the appropriate
authentication mode is critical to securing your SQL Server 2000 installation.

Note An instance of SQL Server 2000 running on Windows Me or Windows 98
only supports SQL Server authentication because of the limitations of these two
operating systems.

Windows Authentication Mode
When SQL Server 2000 is running in Windows Authentication Mode, a user can
only connect to a SQL Server 2000 instance using Windows authentication (a
trusted connection). This is the default security mode for SQL Server 2000. Win-
dows 2000 (and Windows NT 4.0) provide a variety of methods to secure your
Windows environment that are beyond the scope of this book, but are essential to
securing your SQL Server 2000 installation. These methods include using account
policies, group policies, proxy servers, firewalls, routers, and Internet Protocol
Security (IPSec). Using these security mechanisms, requiring a Windows authenti-
cated (trusted) connection provides greater security than using SQL Server 2000
for authentication of users.

320 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Mixed Mode
When SQL Server 2000 is running in Mixed Mode, a user can connect to a SQL
Server 2000 instance using either Windows authentication or SQL Server authenti-
cation. Using this mode is required for users connecting directly to SQL Server
2000 from Novell NetWare, Apple Macintosh, Banyan Vines, UNIX, and Linux
clients. However, using Mixed Mode is inherently less secure than using Windows
Authentication Mode, and you should only use it when absolutely necessary.

Switching Authentication Modes
After installation, you must use SQL Server Enterprise Manager to switch authen-
tication modes. In the console tree, right-click the instance and then click Proper-
ties. On the Security tab of the SQL Server Properties dialog box, click either the
SQL Server And Windows option button or the Windows Only option button to
change the authentication mode, and then click OK. See Figure 10.2.

<< “F10ST02.EPS” >>

Figure 10.2. Switching authentication modes.

After you switch modes, you must stop and then restart the SQL Server service for
this change to take effect. SQL Server Enterprise Manager will prompt you and ask
if you want it to perform this task immediately. See Figure 10.3.

<< “F10ST03.EPS” >>

Figure 10.3. SQL Server Enterprise Manager prompt to stop and restart the SQL Server
service.

Chapter 10 Managing Access to SQL Server 2000 321
Note If the SQL Server Agent service is also running, SQL Server Enterprise Man-
ager will prompt you to stop it as well. However, SQL Server Enterprise Manager
will not restart the SQL Server Agent service. You will need to restart it manually.

Practice: Switching SQL Server 2000 Authentication Modes
In this practice, you switch SQL Server 2000 from Windows Authentication Mode
to Mixed Mode.

� To switch SQL Server 2000 authentication modes

1. In the SQL Server Enterprise Manager console tree, expand the Microsoft SQL
Servers container and then expand the SQL Server Group container.

2. Right-click the default instance and then click Properties.

The SQL Server Properties (Configure) – SelfPacedCPU dialog box appears,
with the General tab selected.

3. Click the Security tab.

4. Click the SQL Server And Windows option button and then click OK.

A SQL Server Enterprise Manager – SelfPacedCPU dialog box appears asking
if you want to stop and restart the server SelfPacedCPU.

5. Click the Yes button.

A second SQL Server Enterprise Manager – SelfPacedCPU dialog box may
appear asking if you want to stop MSSQLServer and all its dependent services.

6. Click the Yes button.

After a few moments, the SQL Server service restarts.

Understanding Security Account Delegation
The SQL Server service has the ability to impersonate an authenticated user when
accessing resources outside of the SQL Server 2000 instance (such as the file sys-
tem or another server). This ability ensures that access to these resources is
restricted or permitted based on the credentials of the authenticated user, rather
than the credentials of the domain user account of the SQL Server service. For the
SQL Server service to pass the credentials of a Windows authenticated user to
another server, you must enable Windows 2000 security account delegation on both
servers.

Security account delegation requires that all servers involved be running Windows
2000, with Kerberos support enabled, and be using the Microsoft Active Directory
directory service. Within Active Directory, the user who is attempting to use secu-
rity account delegation must be trusted for delegation. You select this account
option in the user’s Properties dialog box, which you access with Active Directory
Users And Computers. See Figure 10.4.

322 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F10ST04.EPS” >>

Figure 10.4. Enabling a computer to be trusted for delegation.

Also, the computer on which the SQL Server 2000 instance is running must be
trusted for security account delegation. For a distributed query between two SQL
Server 2000 instances on separate computers, each computer must be trusted. You
select this option in the computer’s Properties dialog box, accessed in Active
Directory Users And Computers. See Figure 10.5.

Finally, to use security account delegation, the SQL Server 2000 instance must
have a Service Principal Name (SPN). You establish an SPN for a SQL Server
2000 instance with the Setspn utility, which is available in the Windows 2000
Resource Kit. You can assign an SPN in two different ways. You can use the Setspn
utility to have a permanent SPN assigned by a Windows 2000 domain administra-
tor to the SQL Server service domain user account based on a port number. Multi-
ple ports and multiple instances require multiple SPNs. To enable delegation, you
must use the TCP/IP Net-Library rather than Named Pipes because the SPN targets
a specified TCP/IP socket.

Chapter 10 Managing Access to SQL Server 2000 323
<< “F10ST05.EPS” >>

Figure 10.5. Property settings for trusted computer accounts.

Setspn –a MSSQLSvc/SelfPacedCPU.SelfPacedSQL.msft:1433 sqlservice

The preceding example adds an SPN on an instance of SQL Server 2000 named
SelfPacedCPU.SelfPacedSQL.MSFT that is listening on port 1433 and using the
SelfPacedSQL\SQLService domain user account.

You can also have a temporary SPN assigned by running the SQL Server 2000 ser-
vice under the local system account. When you run the SQL Service service under
the local system account, SQL Server will automatically register a temporary SPN
at service startup. A temporary SPN expires when the SQL Server service shuts
down. If you decide to change from a permanent SPN to a temporary one, you need
to delete the previously registered SPN.

Setspn –d MSSQLSvc/SelfPacedCPU.SelfPacedSQL.msft:1433 sqlservice

The preceding example deletes an SPN on an instance of SQL Server 2000 named
SelfPacedCPU.SelfPacedSQL.MSFT that is listening on port 1433 and using the
SelfPacedSQL\SQLService domain user account.

Note If you change the SQL Server service account, you will need to delete any
existing SPNs and create new ones.

324 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson Summary
To access SQL Server 2000, a database administrator must either grant access to
existing Windows users and groups, or create SQL Server security accounts. A user
can specify a connection to SQL Server 2000 either using his or her existing Win-
dows credentials or by specifying a SQL Server login ID and password. The latter
method is less secure and is not enabled by default. You must specify Mixed Mode
authentication to permit SQL Server logins. Finally, for Windows authentication
credentials to be passed between servers, you must enable security account delega-
tion in Windows 2000.

Chapter 10 Managing Access to SQL Server 2000 325
Lesson 2: Understanding the Authorization
Process

After SQL Server 2000 has authenticated a user, the user can perform only the
administrative tasks and access only the user databases that have been specifically
authorized (permitted). In this lesson, you will learn the variety of methods by
which an authenticated user receives permissions. First, you will learn about server
roles (sometimes referred to as fixed server roles), which grant permissions to per-
form server-wide tasks. Next, you will be introduced to database-specific permis-
sions, including database owner permissions, database roles, statement
permissions, object permissions, and application roles.

After this lesson, you will be able to
■ Describe the server roles

■ Describe the fixed and user-defined database roles

■ Describe database owner permissions

■ Describe statement and object permissions

Estimated lesson time: 15 minutes

Understanding Server-Wide Permissions
SQL Server 2000 provides a number of predefined server roles with associated
administration permissions. These server roles grant server-wide permissions to
perform various tasks and include permissions that you can only grant to users
through the use of these server roles. You cannot delete server roles and cannot
change their permissions. To grant a user these permissions, you add their login to
the server role. With Transact-SQL, you can add a Windows user or group to a
server role without first creating a login (SQL Server 2000 will create the login
automatically).

Note Server roles are identical in concept to built-in groups in Windows 2000.

Table 10.2 describes the eight server roles that are available with SQL Server 2000.

326 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Note A member of any server role can add other users to that server role.

Understanding Database-Specific Permissions
Access to SQL Server 2000 does not (by itself) grant a user access to any of the
databases within SQL Server 2000. In addition, except for membership in the
sysadmin role, membership in a server role does not grant any database-specific
permissions. Database access rights must be specifically granted by a system
administrator or by a member of an administrator role in the database.

Table 10-2. Server Roles in SQL Server 2000

Server Role Members of This Server Role Can …

sysadmin Perform any task within a SQL Server 2000 instance and within any
database. By default, all members of the Windows built-in Adminis-
trators group, as well as the sa SQL Server security account, belong
to this server role.

serveradmin Configure SQL Server 2000 using the sp_configure system-stored
procedure. Can also shut down the SQL Server service. Members of
the Windows built-in Server Operators group map well to this server
role.

setupadmin Install and configure linked servers, remote servers, and replication.
Can also mark a stored procedure for execution at startup, such as
sp_serveroption. Members of the Windows built-in Server Operators
group map well to this server role.

securityadmin Perform all security-related operations within SQL Server 2000,
including managing CREATE DATABASE statement permissions,
controlling server logins, and reading the SQL Server error log. Help
desk personnel and members of the Windows built-in Server Opera-
tors group map well to this server role.

processadmin Manage processes running in an instance of SQL Server. Can kill
user processes, such as runaway queries. Help desk personnel map
well to this server role.

dbcreator Can create, modify, and delete databases. Senior database administra-
tors who are not members of the sysadmin server role map well to
this server role.

diskadmin Can manage disk files and backup devices. Generally only used for
backward compatibility with SQL Server 6.x.

bulkadmin Can execute BULK INSERT statements. Allows members of the
sysadmin server role to delegate BULK INSERT tasks without grant-
ing sysadmin rights. Use carefully because members must also have
read access to any data being inserted and INSERT permission on any
table into which data will be inserted.

Chapter 10 Managing Access to SQL Server 2000 327
Permissions can be granted, denied, or revoked, and include the right to create
objects, administer the database, execute certain Transact-SQL statements, insert
data to a table, or simply view data within a view. SQL Server 2000 has a number
of mechanisms for granting users specific permissions within a database. The vari-
ous database-specific permissions are described in Table 10.3.

Table 10-3. Database-Specific Permissions

Permission Description

Database owner A user can be specified as the owner of the database, and can per-
form any activity with respect to the database.

DBO role All members of the sysadmin server role are automatically mem-
bers of the dbo role within each database, and can perform any
activity with respect to the database.

User Specified users and groups can be granted user access to a data-
base via their Windows 2000 or SQL Server 2000 security
account. A permitted database user is then granted permissions
within the database through a database role, the public role, and
specific grants of statement and object permissions.

Guest user An authenticated user who has access to an instance of SQL Server
2000 (but who does not have a user account to access a particular
database) can be permitted to access a database as a guest user.
The guest account can be granted specific permissions within the
database (generally to read certain data). By default, a database
does not have a guest user account.

Public role All users permitted to access a database become members of the
public role within each database. The public role can be granted
specific permissions (generally permissions needed by all users of
the database).

Fixed database role Permitted users can be added to fixed database roles within a data-
base. Fixed database roles contain predefined rights within a data-
base to perform database-wide activities.

User-defined database
role

Permitted users can be added to user-defined database roles within
a database. These roles can be created by an administrator and
granted specifically delineated rights and permission within the
database.

Statement permissions Permission to execute administrative statements (such as CREATE
PROCEDURE) can be granted, revoked, or denied to users,
groups, and roles.

328 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Fixed Database Roles
Each database contains nine predefined database roles with associated database-
wide permissions to perform various tasks. You cannot delete these database roles
and cannot change their permissions. To grant a user these permissions within a
database, you add the user’s database user account to the database role. If these
fixed database roles do not grant the combination of rights you need, you can create
user-defined database roles with custom rights (generally more restrictive rights).

Table 10.4 describes the nine fixed database roles that are available with SQL
Server 2000.

Object permissions Permission to access database objects (such as a table or view) can
be granted, revoked, or denied to users, groups, and roles.

Application role Permission to perform specific activities within a database can be
granted to an application, rather than granted to a user. An applica-
tion connects to a database and activates the application role. Users
accessing a database through this connection gain the permissions
associated with the application role for the duration of the connec-
tion. Permissions assigned to a particular user are irrelevant when
the user is accessing the database through an application role.

Table 10-4. Fixed Database Roles in SQL Server 2000

Database Role Members of This Database Role Can …

db_owner Perform any task within a SQL Server 2000 database. Mem-
bers of this role have the same rights as the database owner and
the members of the dbo role.

db_accessadmin Add or remove Windows 2000 or Windows NT 4.0 users and
groups and SQL Server users in a database (using the
sp_grantdbaccess system stored procedure).

db_securityadmin Manage all permissions, roles, role membership, and object
ownership in a database (using the GRANT, REVOKE, and
DENY statements).

db_ddladmin Add, modify, or drop objects in the database (using the CRE-
ATE, ALTER, and DROP statements).

db_backupoperator Run DBCC commands, issue checkpoints, and back up the
database (using the DBCC, CHECKPOINT, and BACKUP
Transact-SQL statements).

db_datareader Read data from any user table or view in the database (you
have SELECT permission on all tables and views).

Table 10-3. Database-Specific Permissions

Permission Description

Chapter 10 Managing Access to SQL Server 2000 329
Lesson Summary
In addition to permitting users access to SQL Server 2000, a user must be granted
authority to perform actions within SQL Server 2000. Server roles are used to grant
different levels of rights to perform server-wide administration functions. Within a
database, you can grant users (and groups) database-wide administration rights
using database roles. They can also be granted statement and object permissions.
User-defined roles can be created with customized rights with respect to statements
and objects. Finally, guest user access can be permitted with certain rights and the
public role can be used to grant general rights to all authorized users.

db_datawriter Modify or delete data from any user table or view in the data-
base (you have INSERT, UPDATE, and DELETE permissions
on all tables and views).

db_denydatareader Not read data from any user table in the database (you do not
have SELECT permission on any objects). Can be used with
the db_ddladmin role to allow an administrator to create data-
base objects owned by the dbo role, but not be able to read sen-
sitive data contained in those objects.

db_denydatawriter Not modify or delete data from any user table in the database
(you do not have INSERT, UPDATE, and DELETE permis-
sions on any object).

Table 10-4. Fixed Database Roles in SQL Server 2000

Database Role Members of This Database Role Can …

330 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 3: Creating and Managing Logins

Before a user can perform tasks within SQL Server 2000, the user must be granted
SQL Server 2000 access through a login and database access through a user
account. In this lesson, you will learn to grant access to SQL Server 2000 and its
databases using SQL Server Enterprise Manager and Transact-SQL statements.
You will also learn to view SQL Server 2000 and database access information
using SQL Server Enterprise Manager and Transact-SQL statements.

After this lesson, you will be able to
■ Use SQL Server Enterprise Manager to create logins

■ Use Transact-SQL statements to create logins

■ View the SQL Server 2000 access information

■ View database access information

Estimated lesson time: 45 minutes

Granting Access Using SQL Server Enterprise Manager
SQL Server Enterprise Manager provides a simple graphical interface to interac-
tively link an existing Windows 2000 (or Windows NT 4.0) user or group to a
login, or to create a SQL Server 2000 login for a SQL Server 2000 security
account. You can create a login directly with SQL Server Enterprise Manager, or
you can use the Create Login Wizard.

Note You can only create one login at a time using SQL Server Enterprise Manager.

Using the Create Login Wizard
The SQL Server Enterprise Manager wizards are available from the Tools menu,
and are also available from any taskpad view. Figure 10.6 displays the Select Wiz-
ard dialog box, from which you can select a variety of wizards, including the Cre-
ate Login Wizard.

Chapter 10 Managing Access to SQL Server 2000 331
<< “F10ST06.EPS” >>

Figure 10.6. Selecting the Create Login Wizard in the Select Wizard dialog box.

After you start the Create Login Wizard, you are asked to select the authentication
mode to use for the login you are creating in the Select Authentication Mode For
This Login page. See Figure 10.7.

<< “F10ST07.EPS” >>

Figure 10.7. Selecting an authentication mode for the login being created.

If you select Windows authentication, you can link this login ID to an existing
Windows 2000 (or Windows NT 4.0) user or group in the Authentication With
Windows page. Notice that you can either grant this user or group access to the
server, or you can deny them access. See Figure 10.8.

332 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F10ST08.EPS” >>

Figure 10.8. Granting or denying a new login access to the server.

If you select SQL Server authentication, you will create a SQL Server 2000 secu-
rity account in the Authentication With SQL Server page. You must specify a login
name and a password. To deny a SQL Server login, you simply remove the login
from the Logins container in SQL Server Enterprise Manager (or the sysxlogins
table in the master database). See Figure 10.9.

<< “F10ST09.EPS” >>

Figure 10.9. Specifying a login name for a SQL Server 2000 security account.

After you specify the type of login and either link or create the security account,
you specify the server role (if any) for this login in the Grant Access To Security
Roles page. If the user will not be a server-wide administrator, do not select any
server roles. See Figure 10.10.

Chapter 10 Managing Access to SQL Server 2000 333
<< “F10ST10.EPS” >>

Figure 10.10. Specifying the server role for the login being created.

Next, you specify the databases (if any) to which this user will have access in the
Grant Access To Databases page. Remember that most server roles do not provide
database access (other than the sysadmin role). See Figure 10.11.

<< “F10ST11.EPS” >>

Figure 10.11. Specifying the databases that the new login may access.

Finally, you are given the opportunity to review the selections you have made
before actually creating this new login in the Completing The Create Login Wizard
page. You can click the Back button to change any parameter you want to change.
Click the Finish button to create the login. See Figure 10.12.

334 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F10ST12.EPS” >>

Figure 10.12. Completing the Create Login Wizard.

Practice: Creating a Login Using the Create Login Wizard
In this practice you use the Create Login Wizard to create a SQL Server login.

� To create a login using the Create Login Wizard

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears displaying the Microsoft SQL Servers
and the Event Viewer (Local) console trees in the console root.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, and then click the default instance.

4. On the Tools menu, click Wizards.

The Select Wizard dialog box appears.

5. Expand Database and then double-click Create Login Wizard.

The Welcome To The Create Login Wizard page appears.

6. Click Next.

The Select Authentication Mode For This Login page appears.

7. Click the SQL Server Login Information That Was Assigned To Me By The
System Administrator (SQL Server Authentication) option button and then
click Next.

The Authentication With SQL Server page appears.

8. In the Login ID text box, type Joe.

Chapter 10 Managing Access to SQL Server 2000 335
9. In the Password and Confirm Password text boxes, type password and then
click Next.

The Grant Access To Security Roles page appears.

10. Click Next. Do not select any security roles.

The Grant Access To Databases page appears.

11. Select the SSEMDB check box to permit access to this database only, and then
click Next.

The Completing The Create Login Wizard page appears. Review the details of
the login you have defined.

12. Click the Finish button.

After the login is created, a Wizard Complete! message box appears.

13. Click OK to close the Wizard Complete! message box.

14. In the console tree, expand the Security container, and then click Logins.

In the details pane, notice that Joe appears as a standard type of login.

15. On the Tools menu, click SQL Query Analyzer.

SQL Query Analyzer appears. You are connected using Windows authentica-
tion.

16. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

17. Click the SQL Server Authentication option button.

18. In the Login name text box, type Joe.

19. In the Password text box, type password and then click OK.

Notice that you can log on to the default instance of SQL Server 2000 using the
SQL Server login Joe. Notice that the title bar indicates that you are connecting
as Joe.

20. On the toolbar, select SSEMDB from the database drop-down list.

Notice that the list contains only those databases to which Joe has access,
including system databases. All other databases are hidden.

21. In the query pane, type SELECT * FROM Customer.

22. Click the Execute Query button.

Notice that although Joe has access to the SSEMDB database, Joe does not
have SELECT permission on the Customer object. Chapter 11 will cover per-
missions in more detail.

23. Close SQL Query Analyzer. Do not save any changes.

24. Do not close SQL Server Enterprise Manager.

336 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Using SQL Server Enterprise Manager Directly to Create a
Login
To create a login using SQL Server Enterprise Manager directly, right-click Logins
in the Security container for the SQL Server 2000 instance, and then click New
Login. The General, Server Roles, and Database Access tabs in the SQL Server
Login Properties – New Login dialog box allow you to provide the same type of
login information discussed in the preceding section with respect to the Create
Login Wizard (such as authentication type, server role, and database access). How-
ever, they also allow you to configure the login with additional information. When
you click the Name ellipsis button in the General tab, an additional SQL Server
Login Properties – New Login dialog box appears enabling you to select a Win-
dows domain from a drop-down list, and then browse the names of users and
groups in the domain. See Figure 10.13.

<< “F10ST13.EPS” >>

Figure 10.13. Browsing domain user accounts when creating a new login account.

You can also select the default database and language in the General tab. The
default database will be the current database when a user logs in. The default for
new logins is master, but you will generally change this to a specific user database.
The default language will be the default language of the SQL Server 2000 instance,
unless specified otherwise (such as Spanish).

Note You can also deny a Windows 2000 (or Windows NT 4.0) user or group
access to SQL Server 2000. This overrides any other access of the user or group
(such as through membership in another group that has a different login).

Chapter 10 Managing Access to SQL Server 2000 337
On the Server Roles tab, you select the server role (if any) for this login. A descrip-
tion of each server role is provided in the Description group box for your conve-
nience. See Figure 10.14.

<< “F10ST14.EPS” >>

Figure 10.14. Selecting the server role for the login being created.

If you select a server role and then click the Properties button, you can view a list
of all logins that are currently members of that role in the General tab of the Server
Role Properties – Sysadmin dialog box. You can also add or remove additional log-
ins to this role from this interface. See Figure 10.15.

<< “F10ST15.EPS” >>

Figure 10.15. Viewing the logins that are members of a role.

338 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Notice that if the System Administrators server role is selected, you can see that the
Windows 2000 built-in Administrator group, and the SQL Server login, sa, are
members of the sysadmin server role. If you click the Permissions tab, you can
view the permissions granted to the sysadmin server role. See Figure 10.16.

<< “F10ST16.EPS” >>

Figure 10.16. Viewing the permissions of a server role.

On the Database Access tab in the SQL Server Login Properties – New Login dia-
log box, you can select the databases to which this login will have access, along
with the database role to which this login will belong. See Figure 10.17.

<< “F10ST17.EPS” >>

Figure 10.17. Selecting the databases that the new login may access.

When you select a database, notice that the login is automatically made a member
of the public role in each database. You cannot remove a login from the public role.

Chapter 10 Managing Access to SQL Server 2000 339
Practice: Creating a Login Directly Using SQL Server
Enterprise Manager
In this practice you use the SQL Server Enterprise Manager directly to create a
login for a Windows 2000 user.

� To create a login directly using SQL Server Enterprise Manager

1. Open Windows Explorer.

2. Double-click Add_AD_Users1.vbs in the C:\SelfPacedSQL\CH_10 folder.

A Windows Script Host message box appears to tell you that the script has
added a single user to the Users container. The Windows Script Host script adds
a single user, Bill, to the Users container in the SelfPacedSQL domain with a
password of Bill (actually, it will create the user in your current domain).

3. Click OK to close the Windows Script Host message box.

4. Switch to SQL Server Enterprise Manager.

5. In the SQL Server Enterprise Manager console tree, expand the Security con-
tainer of the default instance.

6. Right-click Logins, and then click New Login.

The SQL Server Login Properties – New Login dialog box appears, with the
General tab selected.

7. To the right of the Name text box, click the ellipsis (…) button.

8. Click Bill in the Names list box for the SelfPacedSQL domain.

9. Click the Add button and then click OK.

Notice that the Name text box is automatically completed for you.

10. In the Database drop-down list, select SSEMDB.

11. Click the Server Roles tab.

12. Select the Security Administrators check box.

13. Click the Properties button.

The Server Role Properties – Securityadmin dialog box appears, with the Gen-
eral tab selected.

14. Click the Permissions tab.

Notice the commands that members of this server role can execute.

15. Click Cancel and then click the Database Access tab.

16. Select the SSEMDB check box.

17. In the Database Roles For ‘SSEMDB’ list box, select the Db_owner check box
and then click OK.

Notice that SelfPacedSQL\Bill appears in the details pane for the Logins con-
tainer as a Windows user.

18. Switch to Windows Explorer.

340 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
19. Double-click Rights.cmd in the C:\SelfPacedSQL\CH_10 folder.

A Command Prompt window will open briefly to execute the Rights.cmd batch
file. The batch file will grant Windows 2000 users the right to log on locally.
This is required to test user access permissions in the rest of this chapter and in
Chapter 11.

20. Close Windows Explorer and SQL Server Enterprise Manager, and then log off
Windows 2000.

21. Log on to the SelfPacedSQL domain controller with a user name of Bill and a
password of password.

22. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

The Connect To SQL Server dialog box appears.

23. Click the Windows Authentication option button to connect to SelfPacedSQL
using Windows authentication.

24. Click OK.

SQL Query Analyzer appears. Notice that the title bar indicates that you are
connecting as SelfPacedSQL\Bill. Also notice that the current database is
SSEMDB.

25. In the query pane, type SELECT * FROM SSEMDB.dbo.Customer.

26. Click the Execute Query button.

Notice that Bill was able to execute this query because Bill is a member of the
database owner role in the SSEMDB database.

27. Close SQL Query Analyzer. Do not save any changes.

28. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears displaying the Microsoft SQL Servers
container in the console root. Notice that Event Viewer does not appear. Bill has
his own profile, and thus can customize his own version of the SQL Server
Enterprise Manager console.

29. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, expand the default instance container, and then
expand Security.

30. Right-click Logins and then click New Login.

The SQL Server Login Properties – New Login dialog box appears, with the
General tab selected.

31. In the Name text box, type Ana.

32. Click the SQL Server Authentication option button.

33. In the Password text box, type password and then click OK.

The Confirm Password dialog box appears.

Chapter 10 Managing Access to SQL Server 2000 341
34. In the Confirm New Password text box, type password and then click OK.

In the details pane, notice that Ana appears as a standard type of login.

35. In the Security container, right-click Linked Servers.

Notice that Bill is not able to create a linked server. He is able to create a new
login because he is a member of the securityadmin server role and he is not able
to create a new linked server because he is not a member of the setupadmin
server role.

36. Close SQL Server Enterprise Manager and then log off Windows 2000.

37. Log on to Windows 2000 as Administrator with a password of password.

Creating a User-Defined Database Role Using SQL Server
Enterprise Manager
To create a user-defined database role using SQL Server Enterprise Manager,
expand the Databases container for the SQL Server 2000 instance and then expand
the database in which you want to create the new database role. Right-click the
Roles container, and then click New Database Role. When the Database Role Prop-
erties – New Database Role dialog box appears, click the Add button for a list of
members that you can add to this new role. See Figure 10.18.

<< “F10ST18.EPS” >>

Figure 10.18. Creating a user-defined database role.

To create a user-defined database role, simply type the name you want to give the
new database role in the Name text box. You can add users to the role now, or at a
later time by clicking the Add button. Notice also that you can create a standard
role or an application role. Application roles are covered in Chapter 11. Finally,
notice that the Permissions button is grayed out. You cannot assign permissions to
a user-defined database role until after you create it. Assigning permissions to a
user-defined database role is covered in Chapter 11.

342 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Granting Access Using Transact-SQL Statements
You can also grant access to SQL Server 2000 and its databases using Transact-SQL
system stored procedures. The syntax is relatively simple, and you can create multi-
ple logins in a single script. You can also add logins to server roles and database roles
in the same script, as well as create and populate user-defined database roles.

Windows Logins
The system stored procedures shown in Table 10.5 are used to grant, deny, revoke,
or modify a login associated with a Windows user or group. Only members of the
sysadmin or securityadmin server roles can execute these system stored procedures.

Sp_grantlogin ’SelfPacedSQL\Bill’

The preceding example grants the Windows 2000 user, Bill, in the SelfPacedSQL
domain access to SQL Server 2000.

SQL Server Logins
The system stored procedures shown in Table 10.6 are used to grant, revoke, and
modify a login associated with a SQL Server security account. Only members of the
sysadmin or securityadmin server roles can execute these system stored procedures.

Table 10-5. System Stored Procedures for Administering User or Group Logins

System Stored Procedure Description

Sp_grantlogin ‘login’ Creates a login for a Windows 2000 (or Windows NT 4.0)
user or group.

Sp_revokelogin ‘login’ Revokes the login entries from SQL Server for a Windows
2000 (or Windows NT 4.0) user or group. Does not explic-
itly prevent a revoked user or group from accessing SQL
Server 2000, however. For example, if a revoked user is a
member of a Windows 2000 or Windows NT 4.0 group that
has been granted access to SQL Server 2000, that user can
still connect to SQL Server.

Sp_denylogin ‘login’ Prevents a Windows 2000 (or Windows NT 4.0) user or
members of a Windows group from connecting to SQL
Server 2000. Prevents the denied user or group from access-
ing SQL Server 2000 through another login linked to a
Windows user or group.

Sp_defaultdb ‘login’ , ‘data-
base’

Changes the default database for a login.

Sp_defaultlanguage ‘login’,
‘language’

Changes the default language for a login.

Chapter 10 Managing Access to SQL Server 2000 343
Sp_addlogin ’Joe’ , ’Joe123’ , ’Northwind’

The preceding example creates a new SQL Server login, Joe, with a password of
Joe123 and a default database of Northwind.

Server Roles
The system stored procedures shown in Table 10.7 are used to add or drop a login
to a server role. Only members of the sysadmin server role can add logins to any
server role. Members of a server role can add logins to that server role.

Sp_addsrvrolemember ’Joe’ , ’securityadmin’

The preceding example adds the login Joe to the server role Security Administrator.

Database Access
The system stored procedures shown in Table 10.8 are used to add or drop an exist-
ing login or a Windows 2000 user or group as a permitted user in the current data-
base. Unlike using SQL Server Enterprise Manager, you can grant a Windows 2000
(or Windows NT 4.0) group access to a database without first creating an explicit
login entry in the sysxlogins table. Only members of the sysadmin server role, and
the db_accessadmin and db_owner fixed database roles can execute these system
stored procedures.

Table 10-6. System Stored Procedures for Administering Security Account Logins

System Stored Procedure Description

Sp_addlogin ‘login’ ,
[‘password’ , ‘database’ ,
‘language’, ‘sid’,
‘encryption_option’]

Creates a new SQL Server login. Password is NULL if
not specified. The default database is master if not spec-
ified. The default language is the current server language
if not specified. By default, the password is encrypted
before being stored in the sysxlogins table in the master
database.

Sp_droplogin ‘login’ Drops a SQL Server login.

Sp_password ‘old_password’,
‘new_password’, ‘login’

Adds or changes a password for a SQL Server login.

Sp_defaultdb ‘login’,
‘database’

Changes the default database for a login.

Sp_defaultlanguage ‘login’,
‘language’

Changes the default language for a login.

Table 10-7. System Stored Procedures for Adding or Dropping a Login to a
Server Role

System Stored Procedure Description

Sp_ addsrvrolemember ‘login’ , ‘role’ Adds a login as a member of a server role.

Sp_dropsrvrolemember ‘login’ , ‘role’ Drops a login as a member of a server role.

344 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
USE Northwind
EXEC Sp_grantdbaccess ’Joe’

The preceding example grants the login Joe access to the current database, using
the user name Joe in the Northwind database.

Database Roles
The following system stored procedures are used to change the database owner,
add (or drop) a security account to an existing database role, or create (or drop) a
user-defined database role (see Table 10.9).

Use Northwind
EXEC Sp_addrolemember ’db_securityadmin’ , ’SelfPacedSQL\Bill’

The preceding example adds the SelfPacedSQL\Bill security account to the
db_securityadmin database role in the Northwind database.

Table 10-8. System Stored Procedures for Adding or Dropping Logins, Users,
or Groups as Permitted Users

System Stored Procedure Description

Sp_grantdbaccess ‘login’ ,
‘name_in_db’

Adds a login as a user in the current database. Although
the user name in the database can be different from the
login name, this practice is not recommended (gener-
ally too confusing).

Sp_revokedbaccess ‘name’ Removes a login as a user in the current database.

Table 10-9. System Stored Procedures for Changing a Database Owner, Adding or
Dropping a Security Account, or Creating a User-Defined Database Role

System Stored Procedure Description

Sp_changedbowner ‘login’,
remap_alias_flag

Changes the owner of a user database. Only members of the
sysadmin server role or the current database owner can
change a database owner.

Sp_addrolemember ‘role’ ,
‘security_account’

Adds a security account to a database role in the current
database. You can add a user-defined database role to a fixed
or user-defined database role. Only members of the sysad-
min server role and the db_owner and db_security fixed
database roles can add members to any database role. Mem-
bers of a database role can add members to that database
role.

Sp_droprolemember ‘role’ ,
‘security_account’

Drops a security account from a database role in the current
database. Only members of the sysadmin server role and the
db_owner and db_security fixed dababase roles can remove
members from any database role. Members of a database
role can remove members from that database role.

Chapter 10 Managing Access to SQL Server 2000 345
Practice: Granting SQL Server 2000 and Database Access
Using Transact-SQL
In this practice you use the Transact-SQL system stored procedures to grant SQL
Server 2000 and database access to Windows 2000 users and groups.

� To grant SQL Server 2000 and database access using Transact-SQL

1. Open Windows Explorer.

2. Double-click Add_AD_Users2.vbs in the C:\SelfPacedSQL\CH_10 folder.

3. A Windows Script Host message box appears to tell you that the process has
completed. The Windows Script Host script will add a new Organizational Unit
(OU) within Active Directory called SQL Server 2000. Within this new OU, it
will add user accounts and three security groups: SQL Server Users, SQL
Server Administrators, and Accounting Users. Within the SQL Server Users
group, it will add 15 new Windows 2000 users. Within the SQL Server Admin-
istrators group, it will add 2 of the 15 Windows 2000 users. Within the
Accounting Users group, it will add 3 of the 15 Windows users. Click OK to
close the Windows Script Host message box.

4. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

The Connect To SQL Server dialog box appears.

5. Click the Windows Authentication option button to connect to SelfPacedSQL
using Windows authentication.

6. Click OK.

7. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

Sp_addrole ‘role’ , ‘owner’ Adds a new user-defined database role in the current data-
base. Although you can specify an owner of the role, using
the default of dbo is recommended. Members of the sysad-
min server role and the db_securityadmin and db_owner
fixed database roles can create user-defined database roles.

Sp_droprole ‘role’ Drops a user-defined database role in the current database.
Members of the sysadmin server role db_securityadmin and
the db_owner fixed database roles can create user-defined
database roles.

Table 10-9. System Stored Procedures for Changing a Database Owner, Adding or
Dropping a Security Account, or Creating a User-Defined Database Role

System Stored Procedure Description

346 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
8. Open SQL_Access.sql in the C:\SelfPacedSQL\CH_10 folder.

A Transact-SQL script appears, which will create a new database, Accounting,
and a new table, Customer. It will populate the Customer table with 21 custom-
ers from the NewCustomerData1.txt file using a BULK INSERT statement. It
will then grant the Windows 2000 group SQL Server Users permission to log in
to SQL Server 2000. Next, it will add the Windows 2000 group, SQL Server
Administrators, to the sysadmin server role. Next, it will grant access to the
Accounting database to the Windows 2000 group, Accounting Users. Finally, it
will create a user-defined database role, Data Entry Managers, and add the
Windows 2000 user Elba to that role.

9. Click the Execute Query button to execute the SQL_Access.sql statement.

In the results pane, notice that the Accounting database was created and 21
rows added. The SQL Server Users group was granted login access. The SQL
Server Administrators group was added to the sysadmin role. Database access
was granted to Accounting Users. The Data Entry Managers database role was
created and Elba was added to it.

10. Close SQL Query Analyzer.

Viewing Access Information
As a database administrator, you will need to view your SQL Server 2000 installa-
tion to determine the users and groups that have login access, as well as the server
roles to which they belong. In addition, you will need to view the databases to
which they have access, as well as the database roles to which they belong. You
might need to modify access to grant greater or lesser rights as job responsibilities
for users change over time. You can view SQL Server 2000 and database access
information using SQL Server Enterprise Manager and Transact-SQL system
stored procedures.

Using SQL Server Enterprise Manager
When viewing access information using SQL Server Enterprise Manager, start with
the Security container for the SQL Server 2000 instance. This container holds a
Logins container and a Server Roles container. The Logins container displays all
users permitted to access the SQL Server 2000 instance. See Figure 10.19.

Chapter 10 Managing Access to SQL Server 2000 347
<< “F10ST19.EPS” >>

Figure 10.19. Viewing the logins shown in the Logins container.

Notice both SQL Server logins and Windows 2000 users and groups. Also notice
that the SelfPacedSQL\SQL Server Administrators group has access via group
membership. This Windows group has login access because it is a member of the
sysadmin server role. To delete any login, click the login and then press DELETE on
your keyboard. To view or modify the details of any login, including server roles
and database access, double-click the login to access the SQL Server Login Proper-
ties dialog box. See Figure 10.20.

<< “F10ST20.EPS” >>

Figure 10.20. Viewing the details of a login.

Note A system administrator can change the password of any SQL Server secu-
rity account.

The Server Roles container displays the server roles. See Figure 10.21.

348 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F10ST21.EPS” >>

Figure 10.21. Viewing the server roles.

Double-click any server role to list, add, or remove logins from the server role. See
Figure 10.22.

To view database access permissions, you can either view them on a per-user basis
or you can view them on a per-database basis. Expand a database container and
then click the Users container to view the list of all users permitted to access the
database. See Figure 10.23.

<< “F10ST22.EPS” >>

Figure 10.22. Modifying members of a server role.

Chapter 10 Managing Access to SQL Server 2000 349
<< “F10ST23.EPS” >>

Figure 10.23. Viewing the list of users who have access to a database.

In Figure 10.23, notice that members of the Windows SelfPacedSQL\Accounting
Users group, and the Windows user, SelfPacedSQL\Elba, are permitted to access
the Accounting database (in addition to the members of the dbo role). SelfPaced-
SQL\Elba has access via group membership. To determine Elba’s group member-
ship, double-click SelfPacedSQL\Elba to display the Database User Properties -
SelfPacedSQL\Elba dialog box. See Figure 10.24.

In Figure 10.24, notice that Elba has access by virtue of membership in the Data
Entry Managers user-defined database role. Click the Permissions button to view
Elba’s permissions. Select a database role and then click the Properties button to
view each role, its members, and the permissions of the role. Permissions are cov-
ered in Chapter 11.

<< “F10ST24.EPS” >>

Figure 10.24. Determining the database role memberships of a user.

350 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
To review each database role, click the Roles container in the console tree. See Fig-
ure 10.25.

Double-click a database role to list, add, or remove security accounts from the
database role. See Figure 10.26.

Using Transact-SQL
You can also view SQL Server 2000 access information using Transact-SQL sys-
tem stored procedures. The system stored procedures listed in Table 10.10 return
information regarding logins, server role members, database access, and database
role members. Only members of the sysadmin or securityadmin server roles can
execute the sp_helplogins system stored procedure. Members of the public role can
execute all other system stored procedures in this list.

<< “F10ST25.EPS” >>

Figure 10.25. Viewing database roles.

<< “F10ST26.EPS” >>

Figure 10.26. Modifying members of a database role.

Chapter 10 Managing Access to SQL Server 2000 351
Note A Windows user can access SQL Server 2000 through membership in one
Windows group and can access a database through membership in another Win-
dows group.

Practice: Viewing SQL Server 2000 Access Information
In this practice you use SQL Server Enterprise Manager and Transact-SQL system
stored procedures to view SQL Server 2000 access information.

� To view SQL Server 2000 access information

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, expand your default instance, expand the Security
container, and then click Logins.

In the details pane, notice the Windows 2000 users and groups, and the SQL
Server logins, that have access to SQL Server 2000. Only members of the Self-
PacedSQL SQL Server Users group or the SQL Server Administrators group
can log in to this SQL Server 2000 instance.

Table 10-10. System Stored Procedures That Return Access Information

System or Extended
Stored Procedure Description

Sp_helplogins [‘login’] Returns information regarding all logins or a speci-
fied login, including the databases to which a login
has access and database roles of which the login is a
member.

Sp_helpsrvrolemember [‘role’] Returns information regarding all server roles and
their members or all members in a specified server
role.

Sp_helpuser [‘security_account’] Returns information regarding all users or a specified
user in the current database, including all database
role memberships.

Sp_helprolemember [‘role’] Returns information regarding all database roles or
all memberships in a specified database role within
the current database.

Sp_helpntgroup [‘name’] Returns information regarding all Windows 2000 (or
Windows NT 4.0) groups or a specified group within
the current database.

352 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
4. In the details pane, double-click SelfPacedSQL\SQL Server Users.

The SQL Server Login Properties – SelfPacedSQL\SQL Server Users dialog
box appears, with the General tab selected.

5. Click the Server Roles tab.

Notice that this Windows group is not a member of any server role.

6. Click the Database Access tab.

Notice that this Windows group does not have any database access.

7. Click Cancel.

8. On the Tools menu, click SQL Query Analyzer.

9. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

10. Open Logins.sql in the C:\SelfPacedSQL\CH_10 folder.

A Transact-SQL script appears containing the sp_helplogins system stored pro-
cedure.

11. Click the Execute Query button to execute the Logins.sql statement.

In the results pane, notice two result sets. The first set displays the logins with
access to this SQL Server 2000 instance. The second set displays the databases
to which each login has access. Notice that neither the SelfPacedSQL\SQL
Server Users group nor the SelfPacedSQL\SQL Server Administrators shows
any database access.

12. Switch to SQL Server Enterprise Manager.

13. In the details pane, double-click SelfPacedSQL\SQL Server Administrators.

The SQL Server Login Properties – SelfPacedSQL\SQL Server Administrators
dialog box appears. On the General tab, notice that this group has login access
through group membership (in the sysadmin server group).

14. Click the Server Roles tab.

Notice that this Windows group is a member of the System Administrators
server role.

15. Click the Database Access tab.

Notice that this Windows group does not have any database access. No explicit
database access is required because a sysadmin has full access by definition.

16. Click Cancel.

17. Switch to SQL Query Analyzer.

18. On the toolbar, click the Load SQL Script button.

19. Open ServerRoleMembers.sql in the C:\SelfPacedSQL\CH_10 folder.

A Transact-SQL script appears containing the sp_helpsrvrolemember system
stored procedure, which specifies the sysadmin server role.

Chapter 10 Managing Access to SQL Server 2000 353
20. Click the Execute Query button to execute the ServerRoleMembers.sql statement.

In the results pane, notice that the sysadmin server role contains three members,
the two default members and the SelfPacedSQL\SQL Server Administrators
group.

21. Switch to SQL Server Enterprise Manager.

22. In the console tree, right-click the Databases container and then click Refresh.

23. In the console tree, expand the Databases container, expand the Accounting
database, and then click Users.

In the details pane, notice that one SelfPacedSQL group and one SelfPacedSQL
user can access this database. Also notice that neither this user nor this group
has explicit access to this SQL Server 2000 instance. To access this SQL Server
2000 instance, this user and members of this group must belong to the SQL
Server Users group. Although we could have granted this user and this group
explicit permission to log in to this SQL Server 2000 instance, there are good
reasons for this structure. Chapter 11 will cover strategies for using login
groups, data access groups, and permissions.

24. In the details pane, double-click SelfPacedSQL\Elba.

The Database User Properties – SelfPacedSQL\Elba dialog box appears. Notice
that Elba is a member of the public role and the Data Entry Managers role. Also
notice that no login name exists for this user. She must log in by group member-
ship.

25. Click the Permissions button.

Notice that Elba has no permissions. In Chapter 11, you will grant permissions
to the Data Entry Managers role and the public role.

26. Click Cancel.

27. Click Cancel in the Database User Properties – SelfPacedSQL\Elba dialog box.

28. Switch to SQL Query Analyzer.

29. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

30. Open DatabaseAccess.sql in the C:\SelfPacedSQL\CH_10 folder.

A Transact-SQL script appears containing three system stored procedures that
query regarding the Accounting database. The sp_helpuser system stored pro-
cedure queries regarding the SelfPacedSQL\Accounting Users Windows
groups. The sp_helprolemember system stored procedure queries regarding the
Data Entry Managers user-defined database role. The sp_helpntgroup system
stored procedure queries regarding all Windows groups with access to the cur-
rent database.

31. Click the Execute Query button to execute the DatabaseAccess.sql statement.

In the results pane, notice that the SelfPacedSQL\Accounting Users group is a
member of the public role in this database. Also notice that SelfPacedSQL\Elba
is a member of the Data Entry Managers group. Also notice that the SelfPaced-
SQL\Accounting Users group is the only Windows group with database access.

354 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson Summary
You can use SQL Server Enterprise Manager to grant Windows users and groups
access to a SQL Server 2000 instance. As part of the same process, you can grant
them authorization to perform server-wide tasks, grant them access to specific
databases, and add them to database roles. You must perform this process one user
at a time. You can use Transact-SQL system stored procedures to perform the same
tasks for many users in a single script. You can view SQL Server access and data-
base access rights for users with either SQL Server Enterprise Manager or Trans-
act-SQL.

Chapter 10 Managing Access to SQL Server 2000 355
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You are concerned about keeping the data stored within your SQL Server 2000
installation extremely secure. All of the users who will access this data are
Windows 2000 users. Should you permit SQL Server authentication? Why or
why not?

2. A member of the help desk staff has complained that although she can log on to
SQL Server 2000 and access the Northwind and Pubs databases, she cannot
even see the Northwind Reports database. How is this possible?

3. You are creating a new SQL Server 2000 installation. Hundreds of users will
require access to several different databases on this SQL Server 2000 instance.
Should you use SQL Server Enterprise Manager or Transact-SQL system
stored procedures for creating these login and user accounts? Why?

357
C H A P T E R 1 1

Managing SQL Server Permissions

Lesson 1: Granting Database-Specific Permissions 358

Lesson 2: Using Application Roles . 380

Lesson 3: Designing an Access and Permissions Strategy 385

Review . 389

About This Chapter
After you have provided for user access to SQL Server 2000 and its databases
through the use of Microsoft Windows 2000 users and groups, and SQL Server
2000 security accounts where necessary, you must configure permissions for these
users. In this chapter, you will learn how to configure database-specific permis-
sions for users, Windows groups, and user-defined database roles. You will also
learn how to use application roles. Finally, you will learn some strategies for
designing security implementation scenarios combining the use of all these tools.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS partition.

■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

■ Created the SSEMDB database using the CreateDB.sql script (see Chapter 6).

■ Completed the practice exercises in Chapter 10.

358 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Granting Database-Specific
Permissions

Regardless of the authentication method by which a user receives access to SQL
Server 2000, the user must have permissions to perform any activities within a user
database. In the previous chapter you learned how to grant user permissions using
server roles and fixed database roles. In this lesson, you learn about the difference
between the use of fixed roles and the granting of specific statement and object per-
missions to users, groups, and user-defined database roles, including how to grant
statement and object permissions using SQL Server Enterprise Manager and Trans-
act-SQL statements and system stored procedures.

After this lesson, you will be able to
■ Describe each type of database-specific permission

■ Grant, revoke, and deny statement permissions

■ Grant, revoke, and deny object permissions

■ Determine and view effective permissions

Estimated lesson time: 45 minutes

Implementing Permissions
Database users need permission to work with data, execute stored procedures, cre-
ate database objects, and perform administration tasks. Users acquire full or limited
permissions within a database in a variety of ways.

■ Membership in the sysadmin server role

■ Individual ownership of the database

■ Ownership of a database object individually, through a database role, or
through a Windows 2000 (or Windows NT 4.0) group

■ Membership in a fixed database role

■ The granting of specific permissions individually, through a database role, or
through a Windows 2000 (or Windows NT 4.0) group

■ The inheritance of public role permissions as a permitted database user

■ The inheritance of guest user permissions as a user with no permitted database
access

Chapter 11 Managing SQL Server Permissions 359
Inherited Permissions
The database owner, members of the sysadmin server role, and members of the
db_owner fixed database role inherit full permission to perform any activity within
a database. In addition, members of a fixed database role inherit broad permissions
to perform specific types of tasks. For example, members of the db_securityadmin
fixed database role can run GRANT, REVOKE, or DENY statements with respect to
all database objects, but they have no permission to execute any CREATE or
BACKUP statement. Likewise, members of the db_ddladmin fixed database role
can run any CREATE or BACKUP statement, but they have no permission to run
the GRANT, REVOKE, or DENY statements. Furthermore, members of the
db_datareader role can read data from any table or view within the database, and
members of the db_datawriter role can write and modify data within all tables and
views in the database.

An object owner (you must grant a user the right to create an object) inherits all
permissions associated with the object, including the right to grant other users per-
missions to use the object. Members of the sysadmin server role, the db_ddladmin
fixed database role, and the db_securityadmin fixed database role can change own-
ership of any object in the database (and revoke all permissions on the object).

Permission Actions and Conflicts
The broad scope of permissions contained in server roles and fixed database roles,
as well as specifically limited statement and object permissions, can be granted (or
denied) to Windows groups and user-defined roles (in addition to individual users).
Permissions granted to a group or a role apply to all members of the group or role.
The effective permissions of a user that is a member of multiple groups or roles are
the cumulative permissions of the roles and groups.

You can also revoke or deny permission to specific roles, groups, or users. As in
Windows 2000, the denial of permission takes precedence over all other permis-
sions. For example, if you grant permission to a user to view a table, but that user is
a member of a group or role to which you have denied permission, the user is
denied permission to view the table.

Note The grant or denial of permissions to a Windows user or group has no effect
when a connection is established using a SQL Server 2000 security account. SQL
Server 2000 has no knowledge of that Windows user, only of the SQL Server 2000
security account used and its permissions.

360 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Practice: Creating and Testing Permission Conflicts
In this practice you create a permission conflict and then test it.

� To create and test permission conflicts

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears displaying the Microsoft SQL Servers
and the Event Viewer (Local) console trees in the console root.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, expand the default instance, expand the Data-
bases Container, expand the SSEMDB database container, and then click Users.

4. In the details pane, double-click Joe.

The Database User Properties – Joe dialog box appears.

5. In the Database Role Membership group box, select the Db_owner check box
and then click the Apply button.

6. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Query Analyzer.

The Connect To SQL Server dialog box appears.

7. Click the SQL Server Authentication option button.

8. In the Login Name text box, type Joe.

9. In the Password text box, type password and then click OK.

Notice that you are connected as Joe to the master database.

10. On the toolbar, change the current database to SSEMDB in the database drop-
down list.

11. In the query pane, type SELECT * FROM Customer.

12. On the toolbar, click the Execute Query button.

Notice that Joe can view all rows in the Customer table.

13. Switch to SQL Server Enterprise Manager.

14. In the Database Role Membership group box, select the Db_denydatareader
check box and then click the Apply button.

Do not close the Database User Properties – Joe dialog box. You will use this
dialog box in the next practice.

15. Switch to SQL Query Analyzer.

Chapter 11 Managing SQL Server Permissions 361
16. On the toolbar, click the Execute Query button to re-execute the SELECT *
FROM Customer query.

Notice that Joe no longer has permission to view any rows in the Customer
table. There is a permission conflict, and the DENY permission supersedes all
grants of permissions.

17. Do not close SQL Server Enterprise Manager or SQL Query Analyzer.

Managing Statement Permissions
Statement permissions are permissions to run particular Transact-SQL statements
that create databases and database objects (such as tables, views, and stored proce-
dures) in that database. Table 11.1 describes the permissions associated with these
statements. Permissions with respect to each of these statements can be granted,
denied, or revoked.

Creating Objects and Chain of Ownership Issues
When a user creates a database object (such as a table or view), the user is the
owner of the object (unless another user, group, or role is specified as the owner).
Allowing a user to own objects can be useful during development of a database, but
it causes problems in production and so you should avoid it for several reasons (as
covered in the rest of this section). It is good practice to have all objects in a pro-
duction database owned by the dbo role.

When a user references an object in a script, the object can be qualified with the
name of the object owner or it can be unqualified. If the object is unqualified as to
the owner, SQL Server 2000 looks for the object in the database as either owned by
the user executing the script or owned by the dbo role. If it is not found as owned
by either, an error is returned.

SELECT * FROM Customer

The preceding example will return the data within the Customer table provided that
the table is either owned by the dbo role or owned by the user executing the script.

SELECT * FROM Joe.Customer

The preceding example will return the data within the Customer table owned by
Joe. If there is another Customer table in the database owned by the dbo role, it will
not be returned. Having multiple tables with the same name and having to specify a
name other than dbo can cause confusion.

In addition, views and stored procedures can be created on tables. When a user
attempts to select information through a view or procedure, SQL Server 2000 must
verify whether the user is permitted to view the data. If the view or procedure is
owned by one user and the underlying table owned by another, SQL Server 2000
must check permissions on each object in the chain. As the chain of ownership

362 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
lengthens, this can affect performance. But perhaps more importantly, it can be
very confusing for an administrator to trace and debug security issues.

When members of the db_owner and db_ddladmin fixed database roles create a
database object, it is good practice to specify the dbo role as the owner of the
object. If no owner is specified, ownership will default to the Windows user or SQL
Server 2000 login account that created the object.

CREATE TABLE Northwind.dbo.CustomerTable
(CustID nchar (5) , CustomerName nvarchar (40))

Table 11-1. Statement Permissions

Transact-SQL
Statement

Permission to Execute the Transact-SQL Statement

CREATE DATABASE Inherited by members of the sysadmin and dbcreator server
roles. Although the sysadmin and securityadmin server roles
can grant permission directly to security accounts to run this
statement, generally the security accounts use the dbcreator
server role if the system administrator delegates permission.
This permission exists only in the master database.

BACKUP DATABASE
BACKUP LOG

Inherited by members of the sysadmin server role and the
db_owner and db_backupoperator fixed database roles.
Although you can grant permission to run these statements
directly to security accounts, generally you will use the
db_backupoperator fixed database role.

CREATE TABLE
CREATE VIEW
CREATE PROCEDURE
CREATE DEFAULT
CREATE RULE
CREATE FUNCTION

Inherited by members of the sysadmin server role and the
db_owner and db_ddladmin fixed database roles. Permission
to create these objects is sometimes granted directly to pro-
grammers (or to a programmers’ group or role) during devel-
opment. By default, objects are owned by the creator of the
object (although objects created by members of the sysadmin
server role are owned by the dbo role). Members of the
db_owner or db_ddladmin fixed database roles can designate
the dbo role as the owner of an object they create. In addition,
members of the sysadmin server role or the db_owner or
db_ddladmin fixed database role can designate any user as the
owner of an object they create. However, users who are not
members of one of these roles cannot designate another user or
the dbo role as the owner of an object they create.

CREATE TRIGGER Inherited by the table owner on which the trigger is defined,
members of the sysadmin server role, and the db_owner and
db_ddladmin fixed database roles. These members cannot
grant permission to run this statement to other security
accounts.

Chapter 11 Managing SQL Server Permissions 363
The preceding example shows the creation of a table granting the ownership to the
dbo role. Only members of the sysadmin server role and the db_owner or
db_ddladmin fixed database roles can successfully execute this statement.

Changing Object Ownership
If a database object exists with an owner other than the dbo role, you might need to
change its ownership. A member of the db_owner, db_ddladmin, or
db_securityadmin fixed database role, or a member of the sysadmin server role can
change the ownership of any object in the database by running the
sp_changeobjectowner system stored procedure.

sp_changeobjectowner ’SelfPacedSQL\Bill.Customer’ , ’dbo’

The preceding example changes the ownership of the Customer table from Self-
PacedSQL\Bill to the dbo role.

Note Changing the owner of an object removes all existing permissions on the
object. If you need to retain the permissions, script out the existing permissions
before running the sp_changeobjectowner system stored procedure. You can then
reapply the permissions by modifying the object owner in the saved script and then
running the saved permissions script.

Using SQL Server Enterprise Manager to Grant, Deny, or
Revoke Statement Permissions
SQL Server Enterprise Manager provides a simple graphical interface for viewing
existing statement permissions and granting, denying, and revoking statement per-
missions. To view statement permissions within a database, right-click the database
and then click Properties. On the Permissions tab in the Properties dialog box, you
can view, grant, revoke, or deny permissions. See Figure 11.1.

Notice that each permitted user and user-defined database role is displayed along
with the specific statement permissions granted that user or role, if any. A green
check means granted, a red X means denied, and a cleared check box means
revoked or neutral. Remember that permissions are generally cumulative, but that a
DENY permission takes precedence. For example, in this figure the role public has
been denied permission to create a table. Therefore, the login Joe will not be able to
create a table although he has been specifically granted that permission. However, a
denial of statement permissions has no effect on a member of the sysadmin server
role (which includes the sa account). Finally, the statement permissions displayed
are only those statement permissions directly granted. Statement permissions
inherited by a user account by virtue of membership in a server role or a fixed data-
base role are not displayed here.

364 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F11ST01.EPS” >>

Figure 11.1. Viewing and changing statement permissions.

Using Transact-SQL to Grant, Deny, or Revoke Statement
Permissions
You can use the GRANT, DENY, and REVOKE statements to manage statement
permissions using Transact-SQL scripts. These statements can be used to grant,
deny, and revoke permission to run specific statements. When these statements are
used with the ALL keyword, permissions on all statements and objects are affected.

GRANT CREATE TABLE TO Joe, SalesManagers,
[SelfPacedSQL\SQLServerAdmins]

The preceding example grants the CREATE TABLE statement permission to Joe (a
SQL Server login), SalesManagers (a user-defined database role), and SelfPaced-
SQL\SQLServerAdmins (a Windows group).

Note Specify BUILTIN rather than the domain or local computer name when ref-
erencing a Windows local built-in group, such as BUILTIN\Backup Operators.

DENY CREATE TABLE TO Joe

The preceding example denies the CREATE TABLE statement permission to Joe.
To remove a DENY permission, use the REVOKE or the GRANT statement.

REVOKE ALL FROM Joe

The preceding example revokes all grants of permissions to Joe and revokes all
denials of permissions to Joe. This includes statement and object permissions.

Chapter 11 Managing SQL Server Permissions 365
Viewing Statement Permissions Using Transact-SQL
You can view existing statement permissions within a database using the
sp_helprotect system stored procedure. All database users have permission to exe-
cute this system stored procedure.

EXEC sp_helprotect NULL, NULL, NULL, ’s’

The preceding example lists all statement permissions in the current database.

Practice: Granting and Testing Statement Permissions
In this practice you grant and test statement permissions.

� To grant and test statement permissions

1. Switch to SQL Query Analyzer.

2. Verify that you are connected as Joe.

3. On the toolbar, click the Load SQL Script button.

A SQL Query Analyzer dialog box appears asking if you want to save the
changes to the previous script.

4. Click the No button.

The Open Query File dialog box appears.

5. Open CreateTestTable1.sql in the C:\SelfPacedSQL\CH_11 folder.

A Transact-SQL script appears that will create a new table called TestTable1
and add a single row of data to the newly created table. Notice that ownership
of the table is not qualified as to owner. Finally, the script queries the newly cre-
ated table.

6. On the toolbar, click the Execute Query button.

Notice that the table is created successfully and one row of data added. Joe can
create the table because he is a member of the db_owner role. However, Joe
cannot view the data because he is a member of the db_denydatareader fixed
database role.

7. Switch to SQL Server Enterprise Manager.

Notice that the Database User Properties – Joe dialog box is still open from the
last practice.

8. In the Database User Properties – Joe dialog box, clear the Db_denydatareader
check box and then click the Apply button.

9. Switch to SQL Query Analyzer.

10. In the query pane, highlight SELECT * FROM TestTable1 and then click the
Execute Query button on the toolbar.

Notice that Joe can now execute the query successfully.

366 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
11. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

12. Click the SQL Server Authentication option button.

13. In the Login Name text box, type sa and then click OK.

Notice that you can connect as sa with no password. In a production environ-
ment, you should never enable Mixed Mode authentication and leave the sa
password blank.

14. On the toolbar, change the current database to SSEMDB in the database drop-
down list.

15. In the query pane, type SELECT * FROM TestTable1 and then click the Exe-
cute Query button on the toolbar.

Notice that the TestTable1 object is not found when the sa user account does not
qualify TestTable1 as to the owner. The reason is that SQL Server 2000 only
looks for this object as owned either by the sa user or by the dbo role. Because
the table is owned by Joe, it is not found.

16. In the query pane, change the query to read SELECT * FROM
Joe.TestTable1 and then click the Execute Query button on the toolbar.

Notice that the contents of the TestTable owned by Joe are displayed.

17. Switch to Joe’s connection in SQL Query Analyzer.

18. Change the CREATE TABLE statement to qualify the owner as the dbo role (the
statement should now begin CREATE TABLE.dbo.TestTable1…), and then click
the Execute Query button on the toolbar.

Notice that the table is created successfully and one row of data added. How-
ever, notice that the data was added to Joe.TestTable1, not to dbo.TestTable1.

19. Switch to SQL Server Enterprise Manager.

20. In the Database User Properties – Joe dialog box, clear the Db_owner check
box and then click OK.

21. In the console tree, right-click the SSEMDB database container and then click
Properties.

The SSEMDB Properties dialog box appears, with the General tab selected.

22. Click the Permissions tab.

23. For the user Joe, select the Create Table, Create View, and Create SP check
boxes and then click OK.

24. Switch to SQL Query Analyzer.

25. Verify that you are connected as Joe.

26. On the toolbar, click the Load SQL Script button.

A SQL Query Analyzer dialog box appears asking if you want to save the
changes to the previous script.

27. Click the No button.

The Open Query File dialog box appears.

Chapter 11 Managing SQL Server Permissions 367
28. Open CreateTestTable2_Proc2View2.sql in the C:\SelfPacedSQL\CH_11
folder.

A Transact-SQL script appears that will create a new table called TestTable2,
add a single row of data to the newly created table, create a stored procedure
that displays three columns from the table, and create a view that displays two
columns from the table. Notice that ownership of each object created is not
qualified as to owner. Finally, the script queries the newly created table.

29. On the toolbar, click the Execute Query button.

Notice that the table, procedure, and view are all created successfully. Joe has
explicit permission to create tables, stored procedures, and views. Joe can dis-
play the contents of the table and the view and execute the stored procedure
because he is the owner of these objects.

30. Switch to SQL Server Enterprise Manager.

31. In the console tree, under the SSEMDB container, click the Stored Procedures
container.

32. Right-click Stored Procedures and then click Refresh.

Notice, in the details pane, that Joe is the owner of the TestTable2_Procedure2
stored procedure.

33. Switch to SQL Query Analyzer.

34. Verify that you are connected as Joe.

35. Change the CREATE TABLE statement to qualify the owner as the dbo role (the
statement should now begin CREATE TABLE.dbo.TestTable2…).

36. Highlight the entire CREATE TABLE statement (but no other statements in the
script), and then click the Execute Query button on the toolbar.

Notice that Joe cannot create the table specifying the dbo role as the owner. The
CREATE TABLE permission does not grant this privilege (unlike membership
in the db_owner fixed database role).

37. Switch to the sa connection in SQL Query Analyzer.

38. On the toolbar, click the Load SQL Script button.

A SQL Query Analyzer dialog box appears asking if you want to save the
changes to the previous script.

39. Click the No button.

The Open Query File dialog box appears.

40. Open TestTable2_ChangeOwner.sql in the C:\SelfPacedSQL\CH_11 folder.

A Transact-SQL script appears that will change the ownership of TestTable2,
TestTable2_Procedure2, and TestTable2View2 to the dbo role. It will then test
the ownership change.

41. On the toolbar, click the Execute Query button.

Notice that the ownership of each of these three database objects is successfully
changed.

368 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
42. Close all connections in SQL Query Analyzer. Do not save any changes.

43. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

44. Click the SQL Server Authentication option button.

45. In the Login Name text box, type Joe.

46. In the Password text box, type password and then click OK.

Notice that you are connected as Joe to the master database.

47. On the toolbar, change the current database to SSEMDB in the database drop-
down list.

48. In the query pane, type SELECT * FROM TestTable2 and then click the Exe-
cute Query button on the toolbar.

Notice that Joe cannot view any rows in the TestTable2 table. The dbo role now
owns the table. Joe has no SELECT permissions on any objects of which he is
not the owner.

49. On the toolbar, click the Clear Window button.

50. In the query pane, type EXEC sp_helprotect NULL, NULL, NULL, ‘s’ and
then click the Execute Query button on the toolbar.

Notice that the three statement permissions granted to Joe are displayed. Any
permissions granted by virtue of membership in a fixed database role are not
displayed.

51. Close all open connections in SQL Query Analyzer, but do not close SQL
Query Analyzer.

Managing Object Permissions
Object permissions are permissions to perform actions with respect to tables,
views, functions, and stored procedures. Table 11.2 describes the type of object
permissions associated with database objects. Permission with respect to each of
these statements can be granted, denied, or revoked by members of the sysadmin
server role or the db_owner and db_securityadmin fixed database roles (or by a
database object owner).

Chapter 11 Managing SQL Server Permissions 369
Notice that you can use the db_datareader and db_denydatareader fixed database
roles to grant or deny the SELECT and REFERENCES object permissions with
respect to all objects in the database. You can also use the db_datawriter and
db_denydatawriter fixed database roles to grant or deny the INSERT, UPDATE,
and DELETE object permissions with respect to all objects in the database. To
grant the EXECUTE object permission to a user, you generally must specifically
grant that permission (to a user, group, or role) because no fixed database role
(other than db_owner fixed database role) grants that permission. In addition, if
you need to grant or deny object permissions on a subset of the database objects in
a database, you must specifically grant or deny those object permissions. You can
grant, deny, or revoke them with respect to a user-defined database role, Windows
group, SQL Server login, or Windows user.

Finally, a user or role can be denied permission to view or update a table directly,
but may be given permissions on the table through a view or a stored procedure.

Table 11-2. Types of Object Permissions Associated with Database Objects

Database Object
Permission

Permission on the Database Object

SELECT Permission to view information in a table, view, column, or certain
user-defined functions. Inherited by members of sysadmin server role
and the db_owner and db_datareader fixed database roles. Denied to
all members of the db_denydatareader fixed database role.

INSERT Permission to add new data to a table or view. Inherited by members
of sysadmin server role and the db_owner and db_datawriter fixed
database roles. Denied to all members of the db_denydatawriter fixed
database role.

UPDATE Permission to update data in a table, column, or view. Inherited by
members of sysadmin server role and the db_owner and db_datawriter
fixed database roles. Denied to all members of the db_denydatawriter
fixed database role.

DELETE Permission to delete data from a table or view. Inherited by members
of sysadmin server role and the db_owner and db_datawriter fixed
database roles. Denied to all members of the db_denydatawriter fixed
database role.

EXECUTE Permission to run stored procedures and user-defined functions. Inher-
ited by members of sysadmin server role and the db_owner fixed data-
base roles.

REFERENCES Permission to refer to a table with a FOREIGN KEY constraint with-
out having SELECT permissions on the table. Inherited by members
of sysadmin server role and the db_owner and db_datareader fixed
database roles. Denied to all members of the db_denydatareader fixed
database role.

370 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
For example, a view can be created that displays only certain columns or rows in a
table. A user can then be permitted to update data through the view (such as certain
employee information without seeing all employee information). Or a stored proce-
dure can be created that displays all employee names, but no other information.

Using SQL Server Enterprise Manager
SQL Server Enterprise Manager provides a simple graphical interface for viewing
existing object permissions and granting, denying, and revoking object permis-
sions. To view object permissions for a table, view, or stored procedure, right-click
the object in the details pane and then click Properties to display the Properties dia-
log box. Click the Permissions button, which displays the Object Properties dialog
box, to view, grant, revoke, or deny permissions. See Figure 11.2.

<< “F11ST02.EPS” >>

Figure 11.2. Viewing and changing object permissions.

As in the graphical interface for statement permissions, each permitted user and
user-defined database role is displayed along with the specific object permissions
granted that user or role. Notice that you can choose to list only the users or roles
that actually have permissions on this object. See Figure 11.3.

You can also click a particular user or role and then click the Columns button,
which displays the Column Permissions dialog box, to view or control permissions
at the column level. For example, you might want to restrict SELECT or UPDATE
permissions on a particular column in a table to which you have granted SELECT
or UPDATE permissions. See Figure 11.4.

Chapter 11 Managing SQL Server Permissions 371
<< “F11ST03.EPS” >>

Figure 11.3. Viewing only users or roles with permissions on the particular object.

<< “F11ST04.EPS” >>

Figure 11.4. Restricting permissions on a specific column.

In addition, from the Object Properties dialog box for any table, view, or stored
procedure, you can change to any other object by clicking that object in the Object
drop-down list. See Figure 11.5.

Notice that a stored procedure is now displayed in Figure 11.5. The only permis-
sion available for a stored procedure is EXECUTE.

In addition to viewing object permissions from the object perspective, you can also
view and manage object permissions from the user or role perspective. In the details
pane of Enterprise Manager, right-click a user-defined database role or a permitted
user, click Properties, and then click the Permissions button. See Figure 11.6.

372 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F11ST05.EPS” >>

Figure 11.5. Changing the object for which you are viewing permissions.

<< “F11ST06.EPS” >>

Figure 11.6. Viewing object permissions from the user or role perspective.

In Figure 11.6, notice that you can either list only the objects with permissions for
this role or list all objects for which you can configure permissions. This interface
eases the task of viewing and configuring permissions from the perspective of a
role or a user.

Note After you have configured permissions with SQL Server Enterprise Man-
ager for database objects, you should use the scripting capability of SQL Server
Enterprise Manager to generate Transact-SQL scripts to enable you to reconstruct
these permissions should the need arise.

Chapter 11 Managing SQL Server Permissions 373
Using Transact-SQL to Grant, Deny, or Revoke Object
Permissions
You can use the GRANT, DENY, and REVOKE statements to manage object per-
missions using Transact-SQL scripts.

GRANT SELECT ON Customer TO Joe, SalesUsers,
[SelfPacedSQL\SQLServerUsers]

The preceding example grants the SELECT object permission on the Customer
table to Joe (a SQL Server login), SalesUsers (a user-defined database role), and
SelfPacedSQL\SQLServerUsers (a Windows group).

DENY INSERT, UPDATE, DELETE TO Joe

The preceding example denies the INSERT, UPDATE, and DELETE object per-
missions to Joe.

When granting object permissions using Transact-SQL statements, you also have
the option to use the WITH GRANT OPTION clause. Through the use of this
option, you can grant a user, role, or group specified object permissions and also
grant that user the right to grant those same permissions to any other permitted
user, role, or group in the database.

GRANT SELECT ON Customer TO SalesManagers WITH GRANT OPTION

The preceding example grants the SELECT object permission on the Customer
table to SalesManagers (a user-defined database role). Any member of the Sales-
Managers role can grant the SELECT object permission on the Customer table. If
the WITH GRANT OPTION clause is granted to a group, a user from this group
attempting to grant this permission to another user, group, or role with the GRANT
statement must use the AS option.

GRANT SELECT ON Customer TO Joe AS SalesManagers

The preceding example grants the SELECT object permission on the Customer
table to Joe. The member of the SalesManagers role executing this GRANT state-
ment references his or her membership in the SalesUsers role by using the AS
option to validate his or her permission to exercise the GRANT permission.

To revoke the WITH GRANT OPTION clause without revoking the underlying
permissions, use the GRANT OPTION FOR clause.

REVOKE GRANT OPTION FOR ON Customer FROM Joe AS SalesManagers

The preceding example revokes the WITH GRANT OPTION clause from Joe
without revoking Joe’s permission on the Customer table. To deny or revoke object

374 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
permissions initially granted using the WITH GRANT OPTION clause, specify the
CASCADE clause to also revoke or deny permissions that were granted from the
original account.

REVOKE GRANT OPTION FOR ON Customer FROM Joe CASCADE AS SalesManagers

The preceding example revokes the WITH GRANT OPTION clause from Joe and
also revokes all permissions granted by Joe to other users.

Note Use the WITH GRANT OPTION clause with extreme caution. The only
future control you have over the security accounts that receive permission is to
revoke or deny object permissions after the fact (and possibly after damage has
occurred).

Viewing Permissions
You can view existing object permissions within a database using the sp_helprotect
system stored procedure. All database users have permission to execute this system
stored procedure.

EXEC sp_helprotect ’Customer’

The preceding example lists all object permissions for the Customer table in the
current database.

EXEC sp_helprotect NULL , ’Joe’

The preceding example lists all statement and object permissions that Joe has in the
current database.

EXEC sp_helprotect NULL , NULL , ’SalesManagers’

The preceding example lists all object permissions granted by members of the
SalesManagers role in the current database.

Practice: Granting and Testing Object Permissions
In this practice you grant and test object permissions.

� To grant and test object permissions

1. Switch to SQL Query Analyzer.

2. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

3. Click the SQL Server Authentication option button.

4. In the Login Name text box, type sa and then click OK.

Notice that you are connected as sa to the master database.

Chapter 11 Managing SQL Server Permissions 375
5. On the toolbar, change the current database to SSEMDB in the database drop-
down list.

6. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

7. Open View_Proc.sql in the C:\SelfPacedSQL\CH_11 folder.

A Transact-SQL script appears that will create a new stored procedure called
Customer_Procedure, grant EXECUTE permissions on this procedure to the
guest group, create a new view called Customer_View1, and grant SELECT
permissions on this view to the public group.

8. On the toolbar, click the Execute Query button.

Notice that the Customer_Procedure was created and EXECUTE permissions
were granted to the guest user role. Notice also that the Customer_view was
created and SELECT permissions granted to the public role.

9. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

10. Click the SQL Server Authentication option button.

11. In the Login Name text box, type Ana.

12. In the Password text box, type password and then click OK.

Notice that you are connected as Ana to the master database.

13. On the toolbar, verify that Ana cannot change the current database to SSEMDB
in the database drop-down list.

Ana is not a user in the SSEMDB database.

14. In the query pane, type EXEC SSEMDB.dbo.Customer_Procedure and then
click the Execute Query button on the toolbar.

Notice that Ana cannot execute the Customer_Procedure in the SSEMDB data-
base, even though she is not a user in the SSEMDB database and EXECUTE
permissions have been granted to the guest user account.

15. Switch to the sa connection in SQL Query Analyzer.

16. On the toolbar, click the Clear Window button.

17. In the query pane, type sp_helpuser ‘guest’ and then click the Execute Query
button on the toolbar.

Notice that there is no guest user account in the SSEMDB database. This is
why Ana cannot access the SSEMDB database.

18. On the toolbar, click the Clear Window button.

19. Type sp_grantdbaccess ‘guest’ and then click the Execute Query button on the
toolbar.

Notice that the guest user role has been granted user access to the SSEMDB
database.

20. Switch to the Ana connection in SQL Query Analyzer.

376 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
21. Re-execute the EXEC SSEMDB.dbo.Customer_Procedure query.

Notice that Ana is now able to execute the Customer_Procedure stored proce-
dure, which displays three of the columns from the Customer table.

22. On a new line, type SELECT * FROM SSEMDB.dbo.Customer_View1.

23. Highlight this new query and then click the Execute Query button on the tool-
bar.

Notice that Ana is able to select information from Customer_View1. She is a
guest user and SELECT permissions have been granted to the public role, of
which the guest user is a member.

24. Switch to the sa connection in SQL Query Analyzer.

25. On the toolbar, click the Clear Window button.

26. Type sp_grantdbaccess ‘Ana’ and then click the Execute Query button on the
toolbar.

Notice that Ana has been granted user access to the SSEMDB database.

27. Switch to the Ana connection in SQL Query Analyzer.

28. On the toolbar, click the Execute Query button to re-execute both queries.

Notice that Ana is no longer able to execute the Customer_Procedure stored
procedure, although she is able to select from the Customer_View1 view. She is
now a user in the SSEMDB database. EXECUTE permissions have only been
granted to the guest user account, not to the public role.

29. Switch to SQL Server Enterprise Manager.

30. In the SSEMDB database container, right-click Users and then click Refresh.

31. In the SSEMDB datasbase container, right-click Roles and then click New
Database Role.

The Database Role Properties – New Role dialog box appears.

32. In the Name text box, type SSEMDB_CustomRole.

33. Click OK.

The SSEMDB_CustomRole appears in the details pane.

34. In the details pane, double-click SSEMDB_CustomRole.

The Database Role Properties – SSEMDB_CustomRole dialog box appears.
Notice that no one is currently a member of this user-defined database role.

35. Click the Add button.

The Add Role Members dialog box appears.

36. Click Ana and then click OK.

Notice that Ana now appears as a member of the SSEMDB_CustomRole.

37. Click the Apply button.

38. Click the Permissions button.

The Database Role Properties – SSEMDB dialog box appears. Notice that this
role has no current permissions.

Chapter 11 Managing SQL Server Permissions 377
39. For the object, Customer_View1, select the Select, Insert, Update, and Delete
check boxes.

Notice that a green check mark appears indicating that this role will be granted
SELECT, INSERT, UPDATE, and DELETE permissions on this object.

40. For the object, Customer_View1, select the Select, Insert, Update, and Delete
check boxes again.

Notice that a red X appears indicating that this role will be denied SELECT,
INSERT, UPDATE, and DELETE permissions on this object.

41. Click OK.

42. Switch to the Ana connection in SQL Query Analyzer.

43. On the toolbar, click the Execute Query button.

Notice that Ana can neither execute the stored procedure nor select from the
view.

44. Switch to SQL Server Enterprise Manager.

45. In the Database Role Properties - SSEMDB_CustomRole dialog box, click Ana
and then click the Remove button.

46. Click OK.

47. In the console tree, click the Stored Procedures container.

48. In the details pane, double-click Customer_Procedure.

The Stored Procedure Properties – Customer_Procedure dialog box appears.

49. Click the Permissions button.

The Object Properties – SSEMDB dialog box appears.

50. For the database user, Ana, select the Exec check box and then click OK.

51. In the Stored Procedure Properties – Customer_Procedure dialog box, click
OK.

52. Switch to the Ana connection in SQL Query Analyzer.

53. On the toolbar, click the Execute Query button.

Notice that Ana can execute the stored procedure and select from the view.

54. Switch to SQL Server Enterprise Manager.

55. Click the Tables container.

56. In the details pane, double-click Customer.

The Table Properties – Customer dialog box appears.

57. Click the Permissions button.

The Object Properties – SSEMDB dialog box appears.

58. For the user, Ana, click the Select check box twice to deny SELECT permis-
sions on the Customer database object and then click OK.

59. In the Table Properties – Customer dialog box, click OK.

60. Switch to the Ana connection in SQL Query Analyzer.

378 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
61. On the toolbar, click the Execute Query button.

Notice that Ana can still execute the stored procedure and select from the view,
although she has been denied direct SELECT permissions on the underlying
table.

62. Switch to SQL Server Enterprise Manager.

63. Click the Roles container.

64. In the details pane, double-click SSEMDB_CustomRole.

The Database Role Properties – SSEMDB_CustomRole dialog box appears.

65. Click the Add button.

The Add Role Members dialog box appears.

66. Select Ana, and then click OK.

67. Click the Permissions button.

The Database Role Properties – SSEMDB dialog box appears.

68. For the object Customer_Procedure, click the Exec check box twice to deny
EXECUTE permissions and then click OK.

69. Click OK.

70. Switch to the Ana connection in SQL Query Analyzer.

71. On the toolbar, click the Execute Query button.

Notice that Ana can neither execute the stored procedure nor select from the
view.

72. Switch to the sa connection in SQL Query Analyzer.

73. On the toolbar, click the Clear Window button.

74. Type sp_helprotect ‘customer_procedure’ and then click the Execute Query
button on the toolbar.

Notice the object permissions on the customer_procedure database object.

75. On the toolbar, click the Clear Window button.

76. Type sp_helprotect ‘customer_view1’ and then click the Execute Query but-
ton on the toolbar.

Notice the object permissions on the customer_view1 database object.

77. Do not close SQL Server Enterprise Manager or the two connections in SQL
Query Analyzer.

Chapter 11 Managing SQL Server Permissions 379
Lesson Summary
Statement and object permissions can be specifically granted to, revoked from, or
denied to users, Windows groups, and user-defined roles. This capability is used to
augment the permissions granted or denied through the use of fixed database roles.
Generally, you will use this capability to extend or limit object permissions. How-
ever, you generally use fixed database roles (in addition to the sysadmin server
role) for statement permissions. You can manage and view permissions using either
SQL Server Enterprise Manager or Transact-SQL. The graphical interface makes
the task quite simple, and Transact-SQL scripts allow you to apply security to
many objects in a single script. When you use SQL Server Enterprise Manager, you
should generate scripts to enable you to reconstruct or copy the security structure
should the need arise.

380 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Using Application Roles

In addition to granting access to users and groups and then assigning them permis-
sions, you can create an application role within a database with specific permis-
sions through which users access data in SQL Server 2000. In this lesson, you will
learn to create application roles using SQL Server Enterprise Manager and Trans-
act-SQL. You also learn the security implications of using application roles.

After this lesson, you will be able to
■ Create application roles

■ Activate and use application roles

Estimated lesson time: 30 minutes

Understanding Application Roles
You use an application role to restrict user access to data in SQL Server 2000
through a specific application (such as Microsoft Excel or a custom accounting
application). Restricting user access to an application prevents users from execut-
ing poorly written queries or attempting to access any sensitive information.

An application role is a database role to which permissions are assigned. An appli-
cation role contains no members and is inactive by default. You cannot add Win-
dows 2000 or Windows NT 4.0 groups, users, or roles to application roles. An
application must submit a password to activate the application role. A password
can be hard-coded into an application, or it can be an encrypted key in the registry
or in a SQL Server 2000 database.

The permissions of a user accessing SQL Server 2000 through an application role
are limited to the permissions granted to the application role. The existing permis-
sions, or the lack of permissions, by the user accessing SQL Server 2000 through
an application role are ignored. In addition, an application role is database-specific,
meaning that any access beyond the database in which the application role exists is
limited to guest user access.

Creating Application Roles
Creating an application role using SQL Server Enterprise Manager is substantially
the same as creating a user-defined database role. Within the database in which you
are creating the application role, right-click the Roles container and then click New
Database Role. In the Database Role Properties – New Role dialog box, enter a
name for the new role in the Name text box, click the Application Role option but-
ton, and then enter a password into the Password text box. See Figure 11.7.

Chapter 11 Managing SQL Server Permissions 381
<< “F11ST07.EPS” >>

Figure 11.7. Creating an application role.

After creating the application role, configure permissions for the role the same way
you configure permissions for a user-defined database role, by clicking the Permis-
sions button. See Figure 11.8.

You can also create an application role using the Transact-SQL sp_addapprole sys-
tem stored procedure.

sp_addapprole ’AccountingAppRole’ , ’AppPassword’

The preceding example creates the AccountingAppRole with a password of App-
Password in the current database. You grant permissions to an application role with
Transact-SQL using the same GRANT, REVOKE, and DENY statements used to
manage user, group, and user-defined database role permissions.

382 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F11ST08.EPS” >>

Figure 11.8. Configuring permissions for the new role.

Activating and Using Application Roles
To activate an application role, use the sp_setapprole system stored procedure.
Once the application role has been activated, the user (using the application that
activated the application role) can perform whatever activities are permitted to the
application role.

EXEC sp_setapprole ’AccountingAppRole’ , {Encrypt N ’AppPassword’} , ’od
bc’

The preceding example activates the AccountingAppRole using the AppPassword.
It uses the ODBC encryption method before sending the password to SQL Server
2000.

Practice: Creating and Testing Application Roles
In this practice you create and test application roles.

� To create and test application roles

1. Switch to SQL Server Enterprise Manager.

2. In the console tree, expand the Databases container for the default instance, and
then expand the SSEMDB database container.

3. Right-click Roles and then click New Database Role.

The Database Role Properties – New Role dialog box appears.

4. In the Name text box, type NewAppRole.

5. Click the Application Role option button.

6. In the Password text box, type pass and then click OK.

Chapter 11 Managing SQL Server Permissions 383
7. In the details pane, double-click NewAppRole.

The Database Role Properties – NewAppRole dialog box appears.

8. Click the Permissions button.

The Database Role Properties – SSEMDB dialog box appears.

9. For the database object Customer_Procedure, select the Exec check box to
grant EXECUTE permissions on this stored procedure.

10. For the database object Customer_View1, select the Select check box to grant
SELECT permissions on this view and then click OK.

11. Click OK.

12. Switch to the Ana connection in SQL Query Analyzer.

13. Execute the two queries in the query pane to verify that Ana can neither execute
Customer_Procedure nor select from Customer_View1.

14. Do not close this original connection for Ana.

15. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

16. Click the SQL Server Authentication option button.

17. In the Login Name text box, type Ana.

18. In the Password text box, type password and then click OK.

Notice that you are connected as Ana to the master database.

19. On the toolbar, change the current database to SSEMDB in the database drop-
down list.

20. In the query pane, type EXEC sp_setapprole ‘NewAppRole’ , ‘pass’ and then
click the Execute Query button on the toolbar.

Notice that the NewAppRole has been activated.

21. On the toolbar, click the Clear Window button.

22. In the query pane, type EXEC customer_procedure and then click the Exe-
cute Query button on the toolbar.

Notice that Ana can now execute this stored procedure through the application
role.

23. On the toolbar, click the Clear Window button.

24. In the query pane, type SELECT * FROM Customer_View1 and then click
the Execute Query button on the toolbar.

Notice that Ana can now select from this view through the application role.

25. Switch to the original Ana connection in SQL Query Analyzer.

26. Execute the queries.

Notice that Ana can neither execute the stored procedure nor select from the
view. She was able to use the permissions of the application role, but these per-
missions are valid only for that connection.

27. Close SQL Query Analyzer. This will also deactivate the application role. Do
not save any changes.

384 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson Summary
Application roles are useful for limiting user access to specific applications only.
You can create an application role and grant it permissions using either SQL Server
Enterprise Manager or Transact-SQL. An application then activates the role by
using the sp_setapprole system stored procedure and passing a password. All rights
of users through the application role are limited to the rights of the application role,
regardless of the rights of the actual user.

Chapter 11 Managing SQL Server Permissions 385
Lesson 3: Designing an Access and
Permissions Strategy

Now that you understand the tools available to you for securing your data within
SQL Server 2000, you must design an access and permissions strategy that works
for your organization. In this lesson, you will learn access and permissions strate-
gies incorporating these tools, and the strengths and weaknesses of each strategy in
different environments.

After this lesson, you will be able to
■ Understand the different access and permissions strategies available to you

■ Evaluate and select an appropriate access and permissions strategy

Estimated lesson time: 15 minutes

Permitting Administrator Access
First, you need to determine which users will need full access to SQL Server 2000.
In general, limit the number of users to whom you grant full access. To grant these
users full access, you have a number of choices. If these users are currently mem-
bers of the local Administrators group on the SQL Server 2000 computer (by
default, domain administrators are members of the local Administrators group),
they already have full access as members of the sysadmin server role. If they are
not members of this local group, you can do one of the following:

■ Add them individually to the local Administrators group.

■ Create a login for each user in SQL Server 2000 using his or her Windows 2000
user account and add this login to the sysadmin server role.

■ Create a Windows 2000 global group containing these users and make the SQL
Server administrator group a member of the local Administrators group.

■ Create a Windows 2000 global group containing these users, create a login for
this global group, and add this login to the sysadmin server role.

In general, as the number of Windows 2000 users who will be SQL Server 2000
system administrators increases and as the number of computers running SQL
Server 2000 increases, the more useful a dedicated Windows 2000 global security
group becomes. Using a Windows group allows you to grant a user administrator
access merely by adding him or her to this Windows group.

In addition, you might not want all members of the local Administrators group to
have full access to SQL Server 2000. In this case, remove the login for the local

386 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
BUILTIN\Administrators group. However, before you remove this login, make
sure you have provided alternate administrator access (generally with a dedicated
SQL Server Administrator group login).

Using Windows Groups and SQL Server 2000 Server Roles
For users that require administrator access to SQL Server 2000, but for whom you do
not want to grant full administrator access, use server roles to grant them the rights
they absolutely require. Use combinations of server roles to grant sufficient permis-
sions. Consider using built-in groups and creating Windows groups in which to place
users and map these Windows groups to SQL Server 2000 server roles to simplify
administration. Remember that adding a user or group to a server role automatically
grants them login access to SQL Server 2000. Also remember that you must use
BUILTIN rather than the domain or computer name to add a built-in group.

Providing SQL Server 2000 Access
First, enable Mixed Mode authentication only if absolutely necessary. If you must
use Mixed Mode authentication, consider enabling SSL encryption for all commu-
nication. Create SQL Server 2000 security accounts for each SQL Server login
required. Add these SQL Server logins to server roles as required, using the mini-
mum permissions necessary.

Next, grant login access to the Windows users that will need access to SQL Server
2000. Consider creating and granting login access to one Windows 2000 group that
will contain all Windows 2000 users requiring access to SQL Server 2000. Also
consider creating a second Windows 2000 group that will contain all users that are
specifically denied access to SQL Server 2000. Create a login for this Windows
2000 group and specifically deny login access to any members of this group. Using
only these two groups will allow you to quickly grant or deny any Windows user
access to SQL Server 2000.

Providing Database Access
First, if one user will have responsibility for a particular database, make that user
the owner of the database. Next, create user accounts in the database for users that
require database access. If you use SQL Server Enterprise Manager, you can only
add users who have SQL Server 2000 logins. If you use Transact-SQL, you can add
any Windows 2000 user or group. Consider creating Windows groups for each type
of user requiring database access with different levels of permissions.

Using Fixed Database Roles for Administrative Access
Add Windows users and groups, and SQL Server logins (if any) to fixed database
roles to provide access rights to perform specific tasks. Create Windows groups as
appropriate and map these to fixed database roles.

Chapter 11 Managing SQL Server Permissions 387
If you plan to use certain fixed database roles in all new databases, consider adding
the roles to the model database and then adding the appropriate users. For example,
consider creating a Windows group for security operators and then adding that
group to the db_securityadmin fixed database role in the model database. Each new
database created will then automatically have the db_securityadmin role automati-
cally populated with this Windows group.

Providing Data Access
There are several levels to consider in providing data access. First, determine
whether you want to provide guest access to the database. You can create a guest
user account in the database and grant the guest user limited rights to view certain
tables, views, columns, and stored procedures. You have no way to audit the activi-
ties of a specific guest user because the user is not accessing the database through
his or her own user account (although you can audit guest user activity). Any rights
granted or denied the guest user account have no impact on permitted users.

Next, determine the data access rights that are required by all permitted users in the
database. Grant these rights to the public role. This gives you a single place to grant
these rights and makes administration easier. All permitted users acquire these
rights by default upon connecting to the database.

Next, if certain users or groups require additional access rights to tables, views,
stored procedures, and functions, you have a number of options.

■ If the users or groups require access to all tables, views, and functions, you can
add each of these users or groups to the db_datawriter and/or db_datareader
fixed database roles.

■ If the users or groups require access to certain tables, views, functions, and
stored procedures, you can grant those object permissions individually to each
user or group. If there are numerous users or groups who require these permis-
sions, this might not be a good choice.

■ If the users or groups require access to certain tables, views, functions, and
stored procedures, you can grant those object permissions to a user-defined
database role and add each user or group to the role. If you are using SQL
Server logins and Windows logins, this allows you to set permissions in a single
location, and then simply add and remove users from the role.

■ If the users or groups require access to most (but not all) tables, views, and
functions, you can add each user or group to the db_datawriter and/or
db_datareader fixed database roles and then specifically deny each of these
users and groups specific permissions on the restricted objects.

■ If the users or groups require access to most (but not all) tables, views, and
functions, you can add each user or group to the db_datawriter and/or

388 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
db_datareader fixed database roles and then place each of these users and
groups in a user-defined role and deny specific permissions to this role. Again,
if you are using SQL Server logins and Windows logins, this allows you to set
permissions in a single location, and then simply add and remove users from
the role.

Note You cannot use the db_datareader and db_datawriter fixed database roles to
grant EXECUTE permissions.

Finally, if you need to limit access to tables based on columns, consider using
views or stored procedures rather than restricting individual columns. This will
generally result in improved performance.

Lesson Summary
SQL Server 2000 provides a myriad of ways to implement security. Choosing the
method most appropriate to your environment depends upon fully understanding
the options available to you with Windows 2000 (or Windows NT) and SQL Server
2000. In general, choose an access and permissions strategy that enables you to set
security in as few places as possible. This will simplify the task of updating and
modifying permissions, as well as debugging security problems should they occur.

Chapter 11 Managing SQL Server Permissions 389
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You created a Windows 2000 security group for users of the SalesReporting
database on your SQL Server 2000 installation and placed the sales managers
in this group. You then granted this group access to SQL Server 2000 and the
SalesReporting database. In addition, you made this group a member of the
db_datawriter and db_datareader fixed database roles. Several members have
complained that although they can access the data in each table and view in the
database, they are only able to execute certain stored procedures, but not all. To
make matters more complicated, one of the members of this group can execute
all of the stored procedures without a problem. What are the likely causes of
this problem?

2. You need to grant certain users the ability to insert new data into a highly secure
database. They also require very limited lookup rights to the data. You are con-
cerned about security for this data. What is the most secure method you can use
to allow the users to perform their task?

3. You are designing a security strategy for your SQL Server 2000 installation.
You are only allowing access to Windows 2000 users and groups. Is there any
advantage to applying permissions to user-defined database groups rather than
directly to Windows groups?

391
C H A P T E R 1 2

Performing Administrative Tasks

Lesson 1: Performing Configuration Tasks . 392

Lesson 2: Setting Up Additional Features . 415

Lesson 3: Performing Maintenance Tasks . 437

Review . 440

About This Chapter
This chapter prepares you to perform a variety of administrative tasks. You will
learn about performing configuration, setup, and maintenance tasks related to SQL
Server 2000. These tasks include configuring the Microsoft Windows operating
system, the SQL Server service, the SQL Server Agent services, and SQL Server
Enterprise Manager. You also learn to set up additional features of SQL Server
2000, including SQLAgentMail, SQL Mail, linked servers, and XML support.
Finally, you learn about performing periodic maintenance tasks.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS partition.

■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

392 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Performing Configuration Tasks

There are a number of tasks you might need to perform to configure the Windows
operating system, the SQL Server service, the SQL Server Agent service, and SQL
Server Enterprise Manager. In this lesson, you will learn how to set various avail-
able configuration options and when the use of each is appropriate. For many envi-
ronments, little or no configuration is required.

After this lesson, you will be able to
■ Verify that Windows 2000 is configured to optimize SQL Server 2000 perfor-

mance

■ Configure properties of the SQL Server service

■ Configure properties of the SQL Server Agent service

■ Register additional SQL Server instances with SQL Server Enterprise Manager

■ Share SQL Server Enterprise Manager registration information

Estimated lesson time: 45 minutes

Configuring Windows 2000 (and Windows NT 4.0)
Optimizing a Windows 2000 (or Windows NT 4.0) server for performance is
beyond the scope of this book. However, there are three specific operating system
settings that affect SQL Server 2000 that you might need to check or configure.

Maximizing Throughput for Network Operations
During the installation of SQL Server 2000 on any Microsoft Windows 2000 (or
Microsoft Windows NT 4.0) server edition, the Setup program automatically con-
figures the operating system (if not already set) to maximize throughput for net-
work applications. This setting optimizes server memory for distributed
applications that perform their own memory caching (such as SQL Server 2000).

Changing the default setting is not recommended, and the Full-Text Search feature
in SQL Server 2000 requires the default setting. To verify this setting in Windows
2000, open Network And Dial-Up Connections, right-click Local Area Connec-
tion, and then click Properties. In the Local Area Connection Properties dialog box,
highlight the File And Printer Sharing For Microsoft Networks check box (this
check box should already be selected) and then click the Properties button. When
the File And Printer Sharing For Microsoft Networks Properties dialog box
appears, verify that the Maximize Data Throughput For Network Applications
option button is selected. See Figure 12.1.

Chapter 12 Performing Administrative Tasks 393
<< “F12ST01.EPS” >>

Figure 12.1. Verifying the Windows 2000 setting for data throughput.

Configuring Server Application Responsiveness
During the installation of SQL Server 2000 on any Windows 2000 (or Windows
NT 4.0) server edition, the Setup program automatically configures the operating
system (if not already set) to run background and foreground services with equal
amounts of processor resources. This setting is optimal for background tasks (such
as Windows services).

If you are connecting to your SQL Server 2000 instance from a local client, you
can improve the responsiveness of the local client (and all other) foreground appli-
cations by optimizing performance for applications. To verify or change this set-
ting, open System in Control Panel, click the Advanced tab in the System
Properties dialog box, and then click the Performance Options button. You then
make your selections in the Performance Options dialog box. See Figure 12.2.

Configuring Virtual Memory
Although SQL Server 2000 generally is designed to minimize hard disk paging
(given sufficient physical memory), Windows 2000 (and Windows NT 4.0) virtual
memory size and configuration can affect SQL Server 2000 performance, particu-
larly on a computer hosting a variety of Windows 2000 server applications. In gen-
eral, consider setting the virtual memory size to 1.5 times the amount of physical
memory on the computer. If you are using the Full-Text Search feature, the virtual
memory size should be set to three times the amount of physical memory for opti-
mal performance.

In addition, placing paging files on multiple disks generally improves performance.
However, avoid placing paging files on disks containing data or transaction log
files. To verify or change virtual memory settings, open System in Control Panel,

394 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
click the Advanced tab, and then click the Performance Options button to display
the Performance Options dialog box. In the Virtual Memory group box, click the
Change button to display the Virtual Memory dialog box and then either verify or
change virtual memory settings. See Figure 12.3.

<< “F12ST02.EPS” >>

Figure 12.2. Configuring Windows 2000 application responsiveness.

<< “F12ST03.EPS” >>

Figure 12.3. Changing Windows 2000 virtual memory settings.

Configuring the SQL Server Service
The SQL Server service is designed to be self-tuning and self-regulating. Although
manual tuning of parameters can improve performance in some environments,
most SQL Server 2000 installations perform optimally using the default settings.

Chapter 12 Performing Administrative Tasks 395
Configuration options to manually control the behavior of the SQL Server service
are available for each of the following:

■ Connections

■ Database

■ Memory

■ Processor

■ Server

Caution Tuning these parameters manually can result in a degradation of perfor-
mance over time rather than an improvement in performance. Use manual tuning
with extreme caution, and monitor performance to determine its effect.

You can view or change most configuration settings using SQL Server Enterprise
Manager. You can view or change all configuration settings using the sp_configure
system stored procedure. Executing the sp_configure system stored procedure with
no parameters displays the current settings for all configuration options. Some
options are not visible unless you enable Show Advanced Options. A setting of
zero for an option indicates that the SQL Server service is managing the option
dynamically. After changing a setting with sp_configure, you must either issue the
RECONFIGURE statement or restart the SQL Server service for the change to take
effect (depending upon the change). When changing a setting using SQL Server
Enterprise Manager, it will prompt you if you must restart the SQL Server service
in order for the setting to take effect.

Note Each option has a running value and a configured value. If an option has
been changed, but not yet activated, the running value and the configured value will
differ.

Connections
To change client connection settings using SQL Server Enterprise Manager, right-
click the instance name in the console tree, click Properties, and then click the Con-
nections tab in the SQL Server Properties (Configure) dialog box. You can also
click SQL Server Configuration Properties from the Tools menu, and then click the
Connections tab. See Figure 12.4.

396 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F12ST04.EPS” >>

Figure 12.4. Changing client connection settings.

Table 12.1 describes these connection settings using the sp_configure option name
for each setting. The option in the SQL Server Enterprise Manager interface is
more descriptive than the option name.

Table 12-1. Connection Settings

Option Name Description When to Use

User connections Specifies the maximum number of
simultaneous user connections, up to
the maximum value allowable. The actual
number of user connections allowed is
dependent upon the version
of SQL Server 2000 you are running
and upon the limitations of your
applications and hardware. Dynamic
by default.

To avoid overloading
SQL Server 2000 with
too many concurrent
connections.

User options Specifies default query-processing
options for all client connections.
No options are set by default.

To set global query-
processing defaults for
client connections.

Remote access Permits or denies access by remote
logins via remote stored procedures.
Default is to allow remote access.

To secure a local
server and prevent
remote access.

Chapter 12 Performing Administrative Tasks 397
Database
To change database settings using SQL Server Enterprise Manager, right-click the
instance name in the console tree, click Properties, and then click the Database Set-
tings tab in the SQL Server Properties (Configure) dialog box. See Figure 12.5.

<< “F12ST05.EPS” >>

Figure 12.5. Changing database settings.

Table 12.2 describes these database settings using the sp_configure option name for
each setting.

The SQL Server Enterprise Manager interface also allows you to specify a new
default data and transaction log directory for all new databases in the Database Set-
tings tab of the SQL Server Properties (Configure) dialog box.

Remote proc trans Enforces the use of distributed transactions
using MS DTC to protect server-to-server
procedures. Default is not to enforce.

To require an MS
DTC distributed trans-
action to protect Ato-
micity, Consistency,
Isolation, and Durabil-
ity (ACID) properties
of transactions.

Remote query time-
out

Specifies the number of seconds before
SQL Server 2000 times out when
processing a remote query. Default is
600 seconds (10 minutes).

To manage the remote
timeout default.

Table 12-1. Connection Settings

Option Name Description When to Use

398 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Memory
To change memory settings using SQL Server Enterprise Manager, right-click the
instance name in the console tree, click Properties, and then click the Memory tab
in the SQL Server Properties (Configure) dialog box. See Figure 12.6.

<< “F12ST06.EPS” >>

Figure 12.6. Changing memory settings.

Table 12-2. Database Settings

Option Description When to Use

Fill factor Specifies how full each index page
should be when creating a new index
using existing data. By default, SQL
Server 2000 will fill each clustered and
nonclustered index page, leaving only a
small amount of space for additional
data before a page split must occur.

Set a value to minimize
future index page splits. Set
at 100% for a read-only
table to which new data is
not added.

Media retention Specifies a default length of time to
retain each backup. Default is 0.

To set a default media reten-
tion value for all backup
sets.

Recovery interval Controls how frequently the check-
point process runs by specifying a maxi-
mum length of time (in minutes) for
automatic recovery to complete. Default
is dynamic based on number of data
modifications and the amount of free
space in the transaction log.

To distribute hard disk
writes more evenly and
avoid spikes of hard disk
activity.

Chapter 12 Performing Administrative Tasks 399
Table 12.3 describes these memory settings using the sp_configure option name for
each setting.

SQL Server 2000 dynamically allocates and deallocates memory within the buffer
cache to optimize performance. It bases the amount of memory used on the SQL
Server 2000 load and competing memory requirements from other server applica-
tions. If all available physical memory is already committed to a server application,
it takes processor cycles to reallocate memory between server applications. To
ensure that physical memory is immediately available for all server applications
running on the Windows computer, you might set a minimum and a maximum
server memory value. In this case, SQL Server 2000 will dynamically allocate and
deallocate memory between these minimum and maximum values.

Note Memory required by the SQL Server service for basic operations is not
dynamically managed and might cause hard disk paging if insufficient physical
memory is available.

On a dedicated SQL Server 2000 computer, setting the minimum and maximum
value to the same high value, and setting a working set size equal to that value,
might slightly improve performance. With these settings, memory will be allocated
to SQL Server 2000 as needed and then remain allocated. It will not be reallocated
to other server applications.

Table 12-3. Memory Settings

Option Description When to Use

Max server
memory

Specifies the maximum amount
of memory SQL Server 2000
can use for its buffer pool.
Default is dynamic memory
allocation.

To limit memory use on a nondedi-
cated computer so other server appli-
cations are more responsive.

Min server memory Guarantees a minimum amount
of memory for SQL Server
2000 to use for its buffer pool.
Default is dynamic memory
allocation.

To guarantee memory use on a non-
dedicated computer so SQL Server
2000 is more responsive.

Set working set size Sets aside a specified amount
of physical memory for SQL
Server 2000. Used with the
max server memory and min
server memory settings.
Default is zero.

To prevent Windows 2000 from
swapping out pages to other server
applications (no matter how much
they might need memory or how idle
SQL Server 2000 is).

Min memory per
query

Specifies a minimum amount
of memory (in kilobytes) allo-
cated to each query. Default is
dynamic.

Increase to improve performance of
small to medium queries.

400 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Note If you are running the Full-Text Search feature, you might need to set a
maximum memory value so that SQL Server 2000 can reserve sufficient memory
for the Microsoft Search service to run optimally. The amount required for the
Microsoft Search service depends on the size of tables that contain full-text indexes
and the level of full-text query activity.

Processor
To change processor settings using SQL Server Enterprise Manager, right-click the
instance name in the console tree, click Properties, and then click the Processor tab
in the SQL Server Properties (Configure) dialog box. See Figure 12.7.

<< “F12ST07.EPS” >>

Figure 12.7. Processor settings.

Table 12.4 describes these processor settings using the sp_configure option name
for each setting.

Server
To change server settings using SQL Server Enterprise Manager, right-click the
instance name in the console tree, click Properties, and then click the Server Set-
tings tab in the SQL Server Properties (Configure) dialog box. See Figure 12.8.

Table 12.5 describes these server settings using the sp_configure option name for
each setting.

Chapter 12 Performing Administrative Tasks 401
<< “F12ST08.EPS” >>

Figure 12.8. Server settings.

Table 12-4. Processor Settings

Option Description When to Use

Affinity mask Excludes a processor on a multiprocessor com-
puter from processing SQL Server 2000
threads. Default is equal distribution of SQL
Server 2000 processes across all processors.

To exclude SQL Server
threads from processors
with specific workloads
from Windows 2000.

Cost threshold
for parallelism

Determines which query plans are considered
long or short. Used by SQL Server 2000 to
determine when it should create and execute
parallel execution plans for queries. Default
value is 5.

To force or limit the use
of parallel query plans on
multiprocessor comput-
ers.

Lightweight
pooling

Specifies the use of fibers (fiber mode schedul-
ing) within threads, rather than separate threads
for each task. Default is thread mode
scheduling.

On multiprocessor com-
puters with excessive
context switching and a
consistently heavy pro-
cessor load.

Priority boost Specifies the SQL Server 2000 processor
scheduling priority. Default is normal priority
(which is 7).

To increase scheduling
priority on a dedicated
SQL Server 2000 com-
puter with multiple pro-
cessors.

Max degree of
parallelism

Specifies the number of processors used in
parallel plan execution. Default is to use all
available processors.

To suppress parallel plan
generation.

Max worker
threads

Specifies the number of worker threads avail-
able to SQL Server 2000 processes. Default is
255.

Set to smaller value on
systems with low num-
bers of connections to
improve performance.

402 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
The SQL Server Enterprise Manager interface also allows you to specify a new
default language for server messages to users and a mail profile name for a mail
session in the Server Settings tab of the SQL Server Properties (Configure) dialog
box. Setting up SQLAgentMail and SQL Mail is covered in Lesson 2.

Integration with Active Directory
If your SQL Server 2000 installation is running in a Windows 2000 Microsoft
Active Directory environment, you can register your SQL Server 2000 instance in
Active Directory. This adds an MS-SQL-SQLServer object as a Service Connec-
tion Point (SCP) object in the container for the computer on which the SQL Server
2000 instance is running. An SCP is an Active Directory object that represents ser-
vices that are available on the network. The MS-SQL-SQLServer object records
information about the SQL Server service, such as connection information. Users
and applications can search Active Directory for information regarding published
SQL Server 2000 instances on the network.

The MSSQLServerADHelper service performs the actual registration task. This
service is dynamically started by an instance of SQL Server or the Analysis Man-
ager when needed and then stopped when it has completed its task. This service
also verifies that the SQL Server service domain user account has sufficient per-
missions to update all Active Directory objects for this SQL Server 2000 instance,
as well as any databases or replication publications. To register (or unregister) an
instance or a database with Active Directory, the SQL Server service domain user
account must be a member of either the Windows 2000 or Windows NT 4.0 local
Administrators or local Power Users group on the SQL Server 2000 computer.

Table 12-5. Server Settings

Option Description When to Use

Allow updates Specifies whether direct updates can be
made to system tables. When Allow
Updates is disabled, updates are not
allowed to the system tables, even if a user
is assigned the appropriate permissions
with the GRANT statement. Default is dis-
abled.

Use only with direction
from Microsoft Product
Support
Services.

Nested triggers Controls whether a trigger can cascade
(initiate another trigger). You can nest
triggers up to 32 levels. Default is to per-
mit cascading of
triggers.

To prevent cascading of
triggers.

Chapter 12 Performing Administrative Tasks 403
You can register (or unregister) an instance using either SQL Server Enterprise
Manager or the sp_ActiveDirectory_SCP system stored procedure. Using SQL
Server Enterprise Manager, right-click the instance name in the console tree, click
Properties, and then click the Active Directory tab in the SQL Server Properties
(Configure) dialog box. To register an instance of SQL Server 2000, click the Add
button. To unregister an instance, click the Remove button. See Figure 12.9.

After registering an instance, you can also register each database using either SQL
Server Enterprise Manager or the sp_ActiveDirectory_Obj system stored proce-
dure. Using SQL Server Enterprise Manager, right-click the database you want to
register, click Properties to display the Properties dialog box, and then click the
Options tab. If you have registered the instance with Active Directory, an Active
Directory group box will appear in the Options tab. In the Active Directory group
box, you select the List This Database In Active Directory check box to enable you
to list the database in Active Directory. If the instance is not registered, you will not
see the Active Directory group box. See Figure 12.10.

Query governor
cost limit

Specifies the maximum length of time (in
seconds) a query can run. Default is to
allow queries to run indefinitely.

To prevent runaway queries.

Two-digit year
cutoff

Specifies either the current century or the
next century when a two-digit date is used.
Default is 2049, meaning that a two-digit
date of 49 is interpreted as 2049 and a
two-digit date of 50 is interpreted as 1950.
Default for OLE Automation objects is
2030.

To provide consistency in
date values between SQL
Server 2000 and client
applications.

Table 12-5. Server Settings

Option Description When to Use

404 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F12ST09.EPS” >>

Figure 12.9. Registering SQL Server in Active Directory.

<< “F12ST10.EPS” >>

Figure 12.10. Registering a database in Active Directory.

Configuring the Service Account
The SQL Server and SQL Server Agent services run under either a domain user
account or the local system account. These services must run under a domain user
account to perform most server-to-server activities. Although this domain user
account does not require any special permissions for most activities, certain SQL

Chapter 12 Performing Administrative Tasks 405
Server 2000 functionality requires the domain user account to have additional per-
missions, as shown in Table 12.6.

If your SQL Server 2000 installation requires the functionality listed in Table 12.6,
you must ensure that the domain user account used by the applicable service has
sufficient permissions or use the local system account (this account has full local
privileges). The details of the functionality mentioned in Table 12.6 are discussed
in context in this chapter and in Chapter 13.

Configuring the SQL Server Agent Service
You configure the properties of the SQL Server Agent service using SQL Server
Enterprise Manager.

General Properties
To configure the general properties of the SQL Server Agent service, expand the
Management container, right-click SQL Server Agent, and then click Properties to
display the SQL Server Agent Properties dialog box. See Figure 12.11.

In the General tab, you can configure the location of the error log file, enable the
recording of execution trace messages (for troubleshooting), and enable the error
file to be written as a non-Unicode file (resulting in a smaller log file size). Record-
ing of execution trace messages can generate large files. You can also configure a
recipient on the network to receive net send pop-up message notification of errors
recorded by the SQL Server Agent service. Configuring a mail session for the SQL
Server Agent service is covered in Lesson 2.

Table 12-6. Additional Permissions Required for Certain SQL Server 2000
 Functionality

Service Permission Functionality

SQL Server
service

Act as part of the operat-
ing system and replace a
process-level token.

Run an operating system command for a user
who is not a member of the sysadmin server
role.

SQL Server
service

Member of the local
Power Users or local
Administrators group.

Publish and manage SQL Server 2000 objects
with Active Directory.

SQL Server
Agent service

Member of the local
Administrators group.

Create operating system and Active Script
jobs not belonging to members of the sysad-
min server role.

SQL Server
Agent service

Member of the local
Administrators group.

Configure the SQL Server Agent service to
autorestart if it stops unexpectedly.

SQL Server
Agent service

Member of the local
Administrators group.

Configure the SQL Server Agent service to
run jobs when the processor is idle.

406 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F12ST11.EPS” >>

Figure 12.11. Configuring the general properties of the SQL Server Agent.

Advanced Properties
To configure advanced properties of the SQL Server Agent service, click the
Advanced tab in the SQL Server Agent Properties dialog box. See Figure 12.12.

<< “F12ST12.EPS” >>

Figure 12.12. Configuring the advanced properties of the SQL Server Agent.

In the Advanced tab, you can configure the SQL Server Agent service to restart
automatically if it stops unexpectedly by selecting the Auto Restart SQL Server
Agent If It Stops Unexpectedly check box. This feature requires local administrator
rights by the SQL Server Agent service account (either granting them to the

Chapter 12 Performing Administrative Tasks 407
domain user account or using the local system account). By default, the SQL
Server service is already configured to restart automatically.

In the SQL Server Event Forwarding group box, you can configure the SQL Server
Agent service to forward some or all SQL Server events to another server. You can
use this feature to enable centralized alert management for a group of servers. Plan
carefully, because this generates additional network traffic, generates additional
load on the centralized server, and creates a single point of failure. To use this fea-
ture, you must use a server that you have registered with SQL Server Enterprise
Manager. Configuring alerts is covered in Chapter 13.

In the Idle CPU Condition group box, you can also define when the processor is
considered to be idle. In Chapter 13, you learn to create jobs that the SQL Server
Agent service runs when the processor is considered to be idle. You define the idle
condition by specifying a percentage below which the average processor usage
must fall for a defined length of time. This feature requires local administrator
rights granted to the SQL Server Agent service account (either granting them to the
domain user account or using the local system account).

Connection Properties
You configure the connection properties of the SQL Server Agent service by click-
ing the Connection tab in the SQL Server Agent Properties dialog box. See Figure
12.13.

<< “F12ST13.EPS” >>

Figure 12.13. Configuring the connection properties of the SQL Server Agent.

By default, the SQL Server Agent service connects to the local SQL Server 2000
instance using the domain user account specified as the service account. However,
in the SQL Server Connection group box, you can specify that all connections to
the local instance use a SQL Server login account that is a member of the sysadmin

408 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
server role. You can also modify the login timeout value from the default of 30 sec-
onds. Finally, if you have configured nondefault client Net-Libraries, you might
need to specify a SQL Server alias that you previously created using the Client
Network Utility.

Registering SQL Server 2000 Instances with SQL Server
Enterprise Manager
Before you can administer and manage SQL Server 2000 (and SQL Server 7.0)
instances with SQL Server Enterprise Manager, you must register those instances.
When you register an instance, you must specify the server name, instance name (if
applicable), the login authentication method, login information if SQL Server
authentication is specified, and the logical group within SQL Server Enterprise
Manager. You can register instances using the Register SQL Server Wizard or
directly with SQL Server Enterprise Manager.

Using the Register SQL Server Wizard
You can select the Register Server Wizard by clicking Wizards from the Tools
menu or by right-clicking a server group or registered instance and then clicking
New SQL Server Registration. See Figure 12.14.

<< “F12ST14.EPS” >>

Figure 12.14. The Register SQL Server Wizard.

You can disable the Register SQL Server Wizard by selecting the From Now On, I
Want To Perform This Task Without Using A Wizard check box in the Welcome To
The Register SQL Server Wizard page. If you disable the wizard, you must access
Register Server Wizard by clicking Wizards from the Tools menu. Click Next to
display the Select A SQL Server page. The wizard displays the available instances
detected on the network. Select the SQL Server instances you want to register. See
Figure 12.15. If an instance is not displayed, you can enter it manually. For exam-
ple, a server might not be displayed because it is not currently running or because it
is not broadcasting its existence.

Chapter 12 Performing Administrative Tasks 409
<< “F12ST15.EPS” >>

Figure 12.15. Selecting an instance of SQL Server to be registered.

Click Next to select the authentication mode to connect to each instance in the
Select An Authentication Mode page. Notice that you must select the same authen-
tication mode for all instances selected. You can configure custom connection
information for specific instances later in the wizard. See Figure 12.16.

<< “F12ST16.EPS” >>

Figure 12.16. Selecting an authentication mode for servers being registered.

If you select SQL Server authentication, you are prompted for connection informa-
tion in the Select Connection Option page. You can supply the SQL Server login
that will be used each time SQL Server Enterprise Manager connects to any of
these instances. You can also configure SQL Server Enterprise Manager to prompt
you for a SQL Server login each time it attempts to connect to an instance. This is
useful if multiple users are sharing registration information and will be connecting
using different SQL Server logins, each with different permissions within an
instance. See Figure 12.17.

410 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F12ST17.EPS” >>

Figure 12.17. Selecting connection options for servers being registered.

Next, in the Select SQL Server Group page, you can choose to add these new
instances being registered to an existing SQL Server group within the management
console or to a new top-level SQL Server group. See Figure 12.18.

<< “F12ST18.EPS” >>

Figure 12.18. Selecting a logical group for servers being registered.

Next, in the Completing The Register SQL Server Wizard page, the Register SQL
Server Wizard verifies that it can connect to each instance using the authentication
method and credentials specified. See Figure 12.19.

Chapter 12 Performing Administrative Tasks 411
<< “F12ST19.EPS” >>

Figure 12.19. Verifying connections to the servers being registered.

If the wizard is unable to connect to any instance using the registration information
provided, you can select the instance that failed and provide custom registration
information for that instance. See Figure 12.20.

<< “F12ST20.EPS” >>

Figure 12.20. Providing custom registration information for specific instances.

If the connection still fails, you have the option to register the instance without ver-
ifying the registration information. This option is useful if the account you want to
use has not yet been created or if the instance is not currently running. See Figure
12.21.

412 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F12ST21.EPS” >>

Figure 12.21. Registering an instance non-verifiable connection information.

Using SQL Server Enterprise Manager
To register instances directly, right-click the SQL Server group or a registered
instance, and then click New SQL Server Registration. If you have not previously
disabled the Register SQL Server Wizard, in the Welcome To The Register SQL
Server Wizard page, select the From Now On, I Want To Perform This Task With-
out Using A Wizard check box to bypass this wizard. Click Next. See Figure 12.22.

<< “F12ST22.EPS” >>

Figure 12.22. Bypassing the Register SQL Server Wizard.

Next, the Registered SQL Server Properties dialog box appears. You can register
individual SQL Server instances by providing the same information discussed in
the previous section. See Figure 12.23.

Additionally, you can choose to change the following defaults for a new instance
being registered (or for an instance that is already registered):

■ Display the SQL Server state (running or not)

■ Display system databases and objects

■ Automatically start a SQL Server instance (if necessary) when SQL Server
Enterprise Manager attempts to connect

Chapter 12 Performing Administrative Tasks 413
<< “F12ST23.EPS” >>

Figure 12.23. Registration properties for a SQL Server instance.

Sharing Registration Information
By default, registration information within the SQL Server Enterprise Manager
management console (as well as customization information) is private to each user.
For example, if a system administrator registers 15 separate SQL Server instances,
another system administrator logging on to the same computer (using her or his
Windows user account) will not see the 15 servers already registered.

However, a system administrator can choose to share this registration information
with other system administrators on the same computer or on other computers.
This is useful when a number of different system administrators are administering
the same instances from a single computer. It is also useful for creating a central
registration store when many instances are being administered. This permits
administrators to use the same registration configuration regardless of the computer
they log in to. To use this capability, the system administrator running SQL Server
Enterprise Manager must be a member of the local Administrators group on the
computer containing the central store and on the local computer.

To share registration information, click Options from the Tools menu and then, in
the SQL Server Enterprise Manager Properties dialog box, clear the Read/Store
User Independent check box. See Figure 12.24.

To read registration information from another server that has cleared the Read/
Store User Independent check box, click the Read From Remote option button and
then, in the Server Name text box, enter the name of the server containing the cen-
tral store.

414 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F12ST24.EPS” >>

Figure 12.24. Settings for sharing registration information.

Lesson Summary
The SQL Server 2000 Setup program configures the Windows operating system for
optimal use by SQL Server 2000 in most environments. However, you should
ensure that disks containing data and transaction log files are not also used for vir-
tual memory. The SQL Server service is generally self-tuning. In some environ-
ments, manually tuning certain configuration settings might improve performance,
but tuning the SQL Server service improperly will negatively affect performance.
The service account used by SQL Server and the SQL Server Agent services needs
additional rights to perform certain advanced functions. Finally, to enable these
advanced functions (such as defining the CPU idle condition), you need to config-
ure advanced properties of the SQL Server Agent service.

Chapter 12 Performing Administrative Tasks 415
Lesson 2: Setting Up Additional Features

SQL Server 2000 can send and receive e-mail, notify pagers, connect with linked
servers for distributed queries, and integrate with IIS for XML support. To take
advantage of each of these features, you must set up these features. In this lesson,
you learn to set up SQLAgentMail and SQL Mail. Next, you learn to set up linked
servers for distributed queries and remote stored procedures. You also learn to cre-
ate ODBC data sources for ODBC clients. Finally, you learn to configure IIS to
permit HTTP access to SQL Server 2000.

After this lesson, you will be able to
■ Set up SQL Mail and SQLAgentMail

■ Set up linked servers

■ Create ODBC SQL Server data sources

■ Set up a virtual directory in IIS to enable XML access to SQL Server 2000

Estimated lesson time: 45 minutes

Setting Up SQL Mail and SQLAgentMail
SQL Server 2000 can connect with Microsoft Exchange Server, Microsoft Win-
dows Mail, or a Post Office Protocol 3 (POP3) server to send and receive messages
using two separate services, SQL Mail and SQLAgentMail. Both services require a
MAPI client application (such as Microsoft Outlook) on the local SQL Server 2000
computer and a MAPI messaging profile. A MAPI messaging profile requires the
use of a domain user account. Generally, SQL Mail and SQLAgentMail use the
same domain user account for administrative convenience.

Using SQL Mail
SQL Mail is the mail service of the SQL Server service. The SQL Server service
uses the xp_sendmail extended stored procedure to send e-mail from Transact-SQL
batches, scripts, stored procedures, and triggers. It establishes a mail session as
needed.

EXEC xp_sendmail ’Gloria@SelfPacedSQL.msft’ ,
@subject = ’Performance Information’ ,
@query = ’SELECT * FROM master.dbo.sysperfinfo’

The preceding example uses the xp_sendmail extended stored procedure to send an
e-mail message to Gloria regarding the current SQL Server 2000 performance.
This query could be scheduled to run periodically.

416 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
The content of an e-mail message can be any of the following:

■ A result set from a query

■ A message string

■ A Transact-SQL statement or batch for execution

■ A page for an electronic pager

The SQL Server service uses the sp_processmail system stored procedure, or the
xp_findnextmsg, xp_readmail, and xp_deletemail extended stored procedures to
process e-mail sent to the domain user account used by the SQL Server service.
This e-mail typically contains a Transact-SQL statement or batch for execution,
with the result set being returned by reply e-mail, including an optional cc: list. For
example, an administrator can execute a stored procedure by e-mail that obtains the
current status of the server and returns the result set by e-mail to the administrator.

Tip Create a regularly scheduled job to periodically process e-mail automatically.

Using SQLAgentMail
SQLAgentMail is the mail service of the SQL Server Agent service. The SQL
Server Agent service starts a mail session upon startup (if a mail session is config-
ured in SQL Server Enterprise Manager) and sends e-mail and electronic pager
notifications to designated users in response to the triggering of an alert or the suc-
cess or failure of a job. Jobs and alerts are covered in Chapter 13.

Configuring a Messaging (Mail) Profile
Both SQL Mail and SQLAgentMail require the installation of a MAPI client (such
as Microsoft Outlook) on the local SQL Server 2000 computer. Next, you must cre-
ate a messaging profile (also called a mail profile) for the domain user account
used by the SQL Server and SQL Server Agent services. You can create the mes-
saging profile by using the MAPI client or the Mail program in Control Panel. If
different domain user accounts are used by each service, you must set up a messag-
ing profile for each domain user account. In general, you must log on to Windows
2000 as the domain user to configure the messaging profile for that domain user. If
the domain user account is not a local administrator, you might need to give this
account permission to log on interactively (locally) so that you can create a mes-
saging profile for this user account. The messaging profile contains the connection
information used by the MAPI client to connect to the Microsoft Exchange Server,
Microsoft Windows Mail, and/or a POP3 server.

Note To verify the installation of a valid messaging profile, log on to Windows
2000 with the domain user account used by the SQL Server and SQL Server Agent
services. Start the MAPI client and verify that it can send and receive e-mail.

Chapter 12 Performing Administrative Tasks 417
When you create a profile using either the MAPI client or the Mail program in
Control Panel, the default messaging profile name in the Profile Name text box for
a domain user is MS Exchange Settings. You can use the xp_get_mapi
_default_profile extended stored procedure to determine the default profile name
(if any) for the SQL Server service domain user account. You can use the Mail pro-
gram in Control Panel to add, review, remove, or change the settings for each mes-
saging profile configured for a domain user account. See Figures 12.25 and 12.26.

Setting Up SQL Mail
After configuring and testing the messaging profile for the SQL Server service
domain user account, you are ready to set up SQL Mail. Using SQL Server Enter-
prise Manager, expand the Support Services container for the instance, right-click
SQL Mail, and then click Properties. The SQL Mail Configuration dialog box
appears as shown in Figure 12.27.

Select the messaging profile name from the Profile Name drop-down list.

<< “F12ST25.EPS” >>

Figure 12.25. Accessing mail settings for messaging profiles.

<< “F12ST26.EPS” >>

Figure 12.26. Changing mail settings for messaging profiles.

418 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F12ST27.EPS” >>

Figure 12.27. Selecting a messaging profile for SQL Mail.

Note If the messaging profile does not appear in SQL Server Enterprise Manager,
verify that the SQL Server service is using the domain user account for which the
messaging profile was created and that the domain user account has full control
permissions on the HKEY_LOCAL_MACHINE\SOFTWARE \Clients\Mail regis-
try key.

Click the Test button to verify whether a mail session can be established. See Fig-
ure 12.28.

<< “F12ST28.EPS” >>

Figure 12.28. Testing the messaging profile.

You can also set up SQL Mail using the xp_startmail system stored procedure.

Setting Up SQLAgentMail
After configuring and testing the messaging profile for the SQL Server Agent ser-
vice domain user account, you are ready to set up SQLAgentMail. Using SQL
Server Enterprise Manager, expand the Management container for the instance,

Chapter 12 Performing Administrative Tasks 419
right-click SQL Server Agent, and then click Properties. The SQL Server Agent
Properties dialog box appears with the General tab selected, as shown in Figure
12.29.

In the Mail Session group box, select the messaging profile from the Mail Profile
drop-down list. Click the Test button to verify whether a mail session can be estab-
lished. By default, messages sent by the SQL Server Agent service are not saved in
the Sent Items folder of the MAPI client. Using SQLAgentMail for jobs and alerts
is covered in Chapter 13.

<< “F12ST29.EPS” >>

Figure 12.29. Selecting the messaging profile for the SQLAgentMail.

Setting Up Linked Servers
SQL Server 2000 can connect to linked servers. The primary use of a linked server
configuration is the execution of distributed queries, joining information from mul-
tiple databases on multiple servers (such as SQL Server 2000, SQL Server 7.0,
Oracle, and Access). You can set up a linked server configuration to any OLE DB
data source by using SQL Server Enterprise Manager. Although the OLE DB data
source is generally another database, it can also be a text file, a spreadsheet, or the
results of full-text content searches. See Figure 12.30.

The configuration information specifies the OLE DB data source and the OLE DB
provider used to communicate with the remote data source. It also specifies the
security context for the connection to the linked server. Although the SQL Server
service on the local instance is making the connection, it is making it on behalf of a

420 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
user with certain permissions. You must configure login mappings between linked
servers specifying the security context between each SQL Server instance to ensure
that the user can only access information he or she has permission to access.

<< “F12ST30.EPS” >>

Figure 12.30. Basics of a linked server configuration.

Note You can also set up a remote server configuration to another SQL Server
instance. However, remote server functionality is provided primarily for backward
compatibility. Linked servers provide all the functionality of remote servers, plus
additional functionality.

Setting Up Linked Servers Using SQL Server Enterprise
Manager
Using SQL Server Enterprise Manager, expand the Security container for the
instance, right-click Linked Servers, and then click New Linked Server to display
the Linked Server Properties – New Linked Server dialog box. See Figure 12.31.

In the General tab, you enter the name of the linked server in the Linked Server text
box. If, in the Server Type group box, you click the SQL Server option button to
create a link to a named instance, the name you specify in the Linked Server text
box must be the network and instance name of the SQL Server instance. You can
select from a list of possible OLE DB providers in the Provider Name drop-down

Database
server tier

OLE DB providers (DLLS)

SQL Server

OLE DB

SQL Server Oracle ODBC Access

Client application

SQL
Server

SQL
Server

Oracle ODBC Access

Client tier

Server tier

Chapter 12 Performing Administrative Tasks 421
list. These providers manage the access to the specified linked server. Notice that
this includes an OLE DB provider for Microsoft Directory Services for querying
Active Directory. If you specify any data source other than a SQL Server instance
by clicking the Other Data Source option button in the Server Type group box, you
must provide additional information specific to that data source (such as product
name, data source, and provider string).

<< “F12ST31.EPS” >>

Figure 12.31. Specifying a Provider Name when creating a new linked server.

Next, click the Security tab to map local logins to remote logins. See Figure 12.32.

<< “F12ST32.EPS” >>

Figure 12.32. Mapping local logins to remote logins for a linked server.

422 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
On this dialog box, define how local users will connect to the remote data source.
You select logins from the local server and define how they will connect to the
remote server under Local Server Login To Remote Server Login Mappings. You
can choose to have the SQL Server service impersonate the logged-in user or map
the logged-in user to a SQL Server login on the remote server. You must provide
the password for the remote login account.

Note For the SQL Server service to impersonate a Windows user between serv-
ers, security account delegation must be enabled. See Chapter 10.

Next, determine how the SQL Server service should handle connection attempts
made by users with no specific security mapping. You can have the SQL Server
service deny all such attempts. You can also have the connection attempt made
without a user security context (using the SQL Server service security context),
using the login’s current security context or using a specified default SQL Server
login account.

Finally, in the Server Options tab, you can configure advanced connection parame-
ters (such as a different collation or a specific query timeout value). See Figure
12.33.

<< “F12ST33.EPS” >>

Figure 12.33. Configuring advanced connection parameters for a linked server.

Setting Up Linked Servers Using Transact-SQL
You can also set up a linked server configuration using the sp_addlinkedserver sys-
tem stored procedure.

sp_addlinkedserver ’SelfPacedCPU\MyNamedInstance’

Chapter 12 Performing Administrative Tasks 423
The preceding example creates a linked server configuration between the current
SQL Server 2000 instance and MyNamedInstance on SelfPacedCPU. No security
mappings are created. By default, this linked server configuration specifies that all
connections use the security context of the logged-in user.

Note SQL Server 2000 Books Online has excellent examples for connecting to
non-SQL Server data sources using the sp_addlinkedserver system stored procedure.

Use the sp_addlinkedsrvlogin system stored procedure to create or update map-
pings between logins on the local SQL Server instance and remote logins on the
linked server.

sp_addlinkedsrvlogin ’SelfPacedCPU\MyNamedInstance’ ,
‘FALSE’ , ’SelfPacedSQL\Bill’ , ’sa’ , ’sa_password’

The preceding example adds a mapping on the local instance between the Windows
user Bill in the SelfPacedSQL domain and the sa login on the linked server.

Use the sp_linkedservers system stored procedure to obtain a list of linked servers
defined for the current instance.

Practice: Setting Up and Testing a Linked Server
Configuration
In this practice you use the SQL Server Enterprise Manager to set up a linked
server configuration.

� To set up and test a linked server configuration

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, expand the default instance, and then expand
Security.

4. Right-click Linked Servers and then click New Linked Server.

The Linked Server Properties – New Linked Server dialog box appears, with
the General tab selected.

5. In the Linked Server text box, type SelfPacedCPU\MyNamedInstance.

6. Under Server Type, click the SQL Server option button and then click the Secu-
rity tab.

424 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
7. In the For A Login Not Defined In The List Above, Connections Will group
box, click the Be Made Using The Login’s Current Security Context option but-
ton and then click OK.

8. On the Tools menu, click SQL Query Analyzer.

SQL Query Analyzer appears.

9. In the query pane, type SELECT * FROM [SelfPacedCPU \MyNamedIn-
stance].Northwind.dbo.Customers and then click the Execute Query button
from the toolbar.

Notice that the contents of the Customer table are displayed in the results pane.

10. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

11. Click the SQL Server Authentication option button.

12. In the Login Name text box, type Joe.

13. In the Password text box, type password and then click OK.

SQL Query Analyzer appears.

14. In the query pane, type SELECT * FROM [SelfPacedCPU \MyNamedIn-
stance].Northwind.dbo.Customers and then click the Execute Query button
from the toolbar.

Notice that the contents of the Customer table are not displayed in the results
pane. There are several reasons why this failed. First, MyNamedInstance does
not permit SQL Server logins. Second, Joe does not have a SQL Server login
within MyNamedInstance.

15. Switch to SQL Server Enterprise Manager.

16. In the console tree, right-click SelfPacedCPU\MyNamedInstance and then
click Properties.

The SQL Server Properties (Configure) – SelfPacedCPU\MyNamedInstance
dialog box appears.

17. Click the Security tab, click the SQL Server And Windows option button, and
then click OK.

18. Click the Yes button to restart the SQL Server service.

19. Switch to SQL Query Analyzer.

20. On the toolbar, click the Execute Query button to re-execute the query for the
user Joe.

Notice that the error message has changed. The reason the distributed query
failed is that the local login Joe is mapped to a login Joe on MyNamedInstance
(which does not yet exist).

21. Switch to SQL Server Enterprise Manager.

22. Expand the SelfPacedCPU\MyNamedInstance container and then expand
Security.

Chapter 12 Performing Administrative Tasks 425
23. Right-click Logins and then click New Login.

The SQL Server Login Properties – New Login dialog box appears.

24. In the Name text box, type Joe.

25. Click the SQL Server Authentication option button.

26. In the Password text box, type password and then click OK.

The Confirm Password dialog box appears.

27. In the Confirm New Password text box, type password and then click OK.

28. Switch to SQL Query Analyzer.

29. On the toolbar, click the Execute Query button to re-execute the query for the
user Joe.

Notice that the contents of the Customer table are displayed in the results pane.
Joe is able to connect to the Northwind database because the guest user account
is present in the Northwind database and has SELECT permissions on the Cus-
tomer table.

30. Switch to SQL Server Enterprise Manager.

31. Expand the SelfPacedCPU container, expand the Security container, and then
click Linked Servers.

32. In the details pane, double-click SelfPacedCPU\MyNamedInstance.

The Linked Server Properties – SelfPacedCPU\MyNamedInstance dialog box
appears.

33. Click the Security tab.

34. In the first row under the Local Login column, click the cell’s drop-down
combo box and then select Ana.

35. In the Remote User cell, type Joe.

36. In the Remote Password cell, type password.

37. In the second row under the Local Login column, type Joe into the cell and then
select the Impersonate check box.

38. Under For A Login Not Defined In The List Above, Connections Will, click the
Not Be Made option button and then click OK.

Only Joe and Ana will be permitted to use this linked server configuration.

39. Switch to SQL Query Analyzer.

40. On the toolbar, click the Execute Query button to re-execute the query for the
user Joe.

Notice that the contents of the Customer table are displayed in the results pane.

41. Switch to your administrator connection in SQL Query Analyzer.

42. On the toolbar, click the Execute Query button to re-execute the query.

Notice that your administrator account can no longer use the linked server con-
nection because no mapping exists.

43. On the File menu, click Connect.

426 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
44. The Connect To SQL Server dialog box appears.

45. Click the SQL Server Authentication option button.

46. In the Login Name text box, type Ana.

47. In the Password text box, type password and then click OK.

SQL Query Analyzer appears.

48. In the query pane, type SELECT * FROM [SelfPacedCPU \MyNamedIn-
stance].Northwind.dbo.Customers and then click the Execute Query button
on the toolbar.

Notice that the contents of the Customer table are displayed in the results pane.
Ana is using the linked server configuration and accessing data within MyNa-
medInstance using the permissions granted to Joe.

49. Close SQL Server Enterprise Manager and SQL Query Analyzer. Do not save
any changes to queries.

Creating an ODBC SQL Server Data Source
Traditionally, clients connect to a SQL Server 2000 instance using either OLE DB
or ODBC. OLE DB clients provide the necessary connection information through
the Microsoft OLE DB Provider for SQL Server. ODBC clients can provide the
necessary connection information through the use of the Microsoft OLE DB Pro-
vider for ODBC, or they can connect to an ODBC SQL Server data source name
(DSN) to make a connection.

A DSN is a stored definition recording the ODBC driver, connection information,
and driver-specific information. The ODBC Data Source Administrator utility is
used to create DSNs. To create a DSN with Windows 2000, open the Data Sources
(ODBC) utility from the Administrative Tools folder in Control Panel. See Figure
12.34.

<< “F12ST34.EPS” >>

Figure 12.34. Creating a DSN.

Chapter 12 Performing Administrative Tasks 427
Notice that you can create User DSNs, System DSNs, and File DSNs. User DSNs
are specific to the user that created them and local to the computer on which the
user created them. System DSNs are available to all login clients and local to the
computer on which the user created them. File DSNs are stored in a file. File DSNs
can be shared among many users on the network, and need not be a local file on the
client computer. After you select the type of DSN (by clicking the appropriate tab)
and driver for the new DSN (by clicking the Add button), the Data Source Wizard
appears. Figure 12.35 illustrates creating a new ODBC data source using the SQL
Server driver.

<< “F12ST35.EPS” >>

Figure 12.35. Creating an ODBC data source for a DSN.

In the first page of the wizard, enter a name for the DSN in the Name text box, a
description for it in the Description text box, and select the SQL Server instance for
which this DSN is storing connection information in the Server drop-down combo
box. Next, in the second page, you specify connection information. See Figure
12.36.

<< “F12ST36.EPS” >>

Figure 12.36. Providing connection information for a DSN.

428 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
You can specify that the SQL Server ODBC driver request a trusted connection or
use the SQL Server login and password supplied by the user. You can also specify
custom client network library parameters for this connection by clicking the Client
Configuration button. Next, you can connect to SQL Server to obtain initial set-
tings for the following screens by selecting the Connect To SQL Server To Obtain
Default Settings For The Additional Configuration Options check box. Standard
defaults are used if you choose not to connect.

Next, in the third page, you can specify a default database by selecting the Change
The Default Database To check box or attach a database when this DSN is used by
selecting the Attach Database Filename check box. In addition, you can specify
ANSI settings for connections using this DSN by selecting the corresponding
check box. Finally, if a clustered environment is detected, you can specify use of
the failover SQL Server 2000 instance by selecting the Use The Failover SQL
Server If The Primary SQL Server Is Not Available check box. See Figure 12.37.

<< “F12ST37.EPS” >>

Figure 12.37. Specifying database settings for a DSN.

Finally, in the fourth page, you can change the language of SQL Server system
messages in the corresponding drop-down list, enable encryption, specify character
set translation, and choose regional settings by selecting the appropriate check
boxes. You can also enable logging of long-running queries (defining what is con-
sidered long-running in milliseconds) by selecting the Save Long Running Queries
To The Log File check box, and ODBC driver statistics by selecting the Log
ODBC Driver Statistics To The Log File check box. See Figure 12.38.

After you have completed the information in the wizard, the ODBC Microsoft SQL
Server Setup dialog box appears. You can review your configuration in the infor-
mation box and test the data source by clicking the Test Data Source button before
actually creating the DSN. Figure 12.39 illustrates a successful test for the ODBC
data source.

Chapter 12 Performing Administrative Tasks 429
<< “F12ST38.EPS” >>

Figure 12.38. Changing regional, language, and logging settings for a DSN.

<< “F12ST39.EPS” >>

Figure 12.39. Reviewing and testing a DSN.

Configuring SQL Server XML Support in IIS
One of the most exciting new features of SQL Server 2000 is XML support. You
can make a SQL Server 2000 instance an XML-enabled database server. To accom-
plish this, you configure an IIS virtual directory linked to SQL Server 2000 sup-
port. This enables SQL Server 2000 to provide for:

■ HTTP access

■ XML-Data schemas and XPath queries

■ Retrieval and writing of XML data

■ The ability to set XML documents as command text and to return result sets as
a stream

430 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
The details about implementing XML from the programming perspective are
beyond the scope of this book. However, the IIS Virtual Directory Management For
SQL Server utility makes the task of creating a virtual directory within IIS easy for
database administrators. You select this utility by clicking Configure SQL XML
Support In IIS in the Microsoft SQL Server program group. Figure 12.40 illustrates
the IIS Virtual Directory Management For SQL Server console.

<< “F12ST40.EPS” >>

Figure 12.40. IIS Virtual Directory Management for SQL Server console.

In the console tree, expand your server, right-click Default Web Site, point to New,
and then click Virtual Directory to begin. The New Virtual Directory Properties
dialog box appears. In the General tab, specify a user-friendly name for the virtual
directory in the Virtual Directory Name group box. In the Local Path group box,
specify a path on the local computer to the files that will be made accessible
through this virtual directory. Generally this will be a subfolder under C:\Inetpub
and will contain XML queries, templates, and style sheets. See Figure 12.41.

Next, in the Security tab, define the authentication method users will use to obtain
access to SQL Server 2000. You can choose to have all users authenticate using
either a dedicated SQL Server login or the IIS local user account (for which you
can configure permissions). Generally, use this method for guest access with lim-
ited permissions. You can also choose to require that each user provide individual
authentication (either Windows or SQL Server authentication). See Figure 12.42.

Next, in the SQL Server group box in the Data Source tab, specify the SQL Server
2000 instance whose data is being published through this virtual directory. In addi-
tion, you define the default database by browsing the instance to retrieve the data-
base from a list of databases in the Database group box (using the credentials
provided on the previous property sheet). See Figure 12.43.

Chapter 12 Performing Administrative Tasks 431
<< “F12ST41.EPS” >>

Figure 12.41. Specifying a name and path for the virtual directory.

<< “F12ST42.EPS” >>

Figure 12.42. Selecting the authentication method for connecting to the virtual directory.

432 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F12ST43.EPS” >>

Figure 12.43. Specifying the server and database published using the virtual directory.

Next, in the Settings tab, specify the type of access to the SQL Server 2000
instance you want to provide by selecting the appropriate check boxes. URL que-
ries allow a user to submit any query, whereas template queries limit the queries
that can be submitted through this virtual directory. XPath queries over SQL views
allow more control over the structure and appearance of the document returned.
XPath queries can be embedded in a URL query or a template. You can also choose
to allow user input for values to be passed to a POST query and choose a limit for
the size of the user input (in kilobytes). See Figure 12.44.

Next, in the Virtual Names tab, specify any virtual names you want to create by
clicking the New button. For example, you might create a virtual name linked to a
physical path that contains XML templates or views. See Figure 12.45.

Finally, in the Advanced tab, you can specify a different location for the
Sqlisapi.dll in the ISAPI Location group box, provide additional user settings in the
Additional User Settings group box, or disable caching in the Caching Options
group box. Generally, leave the defaults in place. See Figure 12.46.

Chapter 12 Performing Administrative Tasks 433
<< “F12ST44.EPS” >>

Figure 12.44. Choosing settings for access to the SQL Server database.

<< “F12ST45.EPS” >>

Figure 12.45. Creating a virtual name for the published data.

434 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F12ST46.EPS” >>

Figure 12.46. Changing default advanced settings for the virtual directory.

Practice: Creating an IIS Virtual Directory
In this practice you create an IIS virtual directory using the IIS Virtual Directory
Management For SQL Server utility.

� To create an IIS virtual directory

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Using Windows Explorer, create a new folder called Northwind under C:\Inet-
pub.

3. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Configure SQL XML Support In IIS.

The IIS Virtual Directory Management For SQL Server console appears, dis-
playing a connection to your server.

4. In the console tree, expand your server, right-click Default Web Site, point to
New, and then click Virtual Directory.

The New Virtual Directory Properties dialog box appears with the General tab
selected.

5. In the Virtual Directory Name text box, type Northwind.

6. In the Local Path text box, type C:\InetPub\Northwind.

Chapter 12 Performing Administrative Tasks 435
7. Click the Security tab.

8. In the User Name text box, type sa.

9. Click the Data Source tab.

A Confirm Password dialog box appears.

10. Click OK to confirm no password for the sa account.

11. In the SQL Server text box, select SelfPacedCPU by clicking the ellipsis button.

12. In the Database text box, select Northwind from the Database drop-down
combo box.

13. Click the Settings tab.

14. Select the Allow URL Queries check box and confirm that the Allow Template
Queries check box is selected.

15. Click the Virtual Names tab.

16. Click the New button.

The Virtual Name Configuration dialog box appears.

17. In the Virtual Name text box, type Queries.

18. In the Type drop-down list, select Template.

19. In the Path text box, type C:\Inetpub\Northwind and then click the Save button.

20. Click OK to create the new virtual directory.

21. Using Notepad, open the XML Query.txt file in the C:\SelfPacedSQL\CH_12
folder.

22. Copy the HTTP query.

23. Open Internet Explorer.

24. Paste the query to the Address drop-down combo box and then click the Go
button.

The contact name and phone number from the Customers table in the North-
wind database is displayed.

25. Close Windows Explorer, Notepad, Internet Explorer, and IIS Virtual Directory
Management For SQL Server console.

Note The SQL Server 2000 compact disc contains additional XML queries
and exercises. They are located in the DevTools\Samples\Xml folder in a self-
extracting ZIP file.

436 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson Summary
Setting up SQL Mail enables the SQL Server service to use e-mail to respond to
queries and notify users of the results of Transact-SQL scripts. SQLAgentMail
enables the SQL Server Agent service to provide notification regarding alerts and
the success or failure of jobs. Setting up linked servers allows users to access data
on remote databases without providing connection information each time they con-
nect. ODBC applications may require DSNs, which a database administrator might
have to configure. Finally, to create an XML-enabled database server, IIS must be
configured with a virtual directory linked to a SQL Server 2000 database and spec-
ifying connection parameters and permitted certain XML access types.

Chapter 12 Performing Administrative Tasks 437
Lesson 3: Performing Maintenance Tasks

In addition to configuration and setup tasks, a database administrator must perform
a variety of maintenance tasks. In this lesson, you will learn to update distribution
statistics, rebuild indexes, and manage full-text indexes. These tasks along with
performing backups and performing internal consistency checks are regular main-
tenance tasks of a database administrator. Backup tasks were covered in Chapter 9
and performing internal consistency checks is covered in Chapter 14.

After this lesson, you will be able to
■ Update distribution statistics

■ Rebuild indexes

■ Maintain full-text indexes

Estimated lesson time: 15 minutes

Updating Distribution Statistics
SQL Server 2000 automatically creates and maintains distribution statistics for all
indexes. Distribution statistics describe the selectivity and distribution of key val-
ues in each index. The SQL Server 2000 query optimizer uses these statistics to
estimate the efficiency of an index in retrieving data in a query. The query opti-
mizer is the component of SQL Server responsible for determining the most effi-
cient method to retrieve data (such as whether to use an index and which index to
use). Distribution statistics can also be created and maintained for unindexed col-
umns. They can be created manually using the CREATE STATISTICS statement or
can be created automatically by the query optimizer.

Although distribution statistics are periodically updated automatically by the SQL
Server service, you should refresh them manually whenever significant numbers of
changes to keys occur in an index or a significant amount of new data is added to a
table. You refresh them manually using the UPDATE STATISTICS statement or by
displaying the Execution Plan for a query in SQL Query Analyzer (you select
Show Execution Plan from the Query menu). Out-of-date and missing statistics are
displayed as warnings in the Execution Plan tab in SQL Query Analyzer, which
you can respond to by creating or updating distribution statistics. You can also
schedule the updating of distribution statistics using the Database Maintenance
Plan Wizard, which is covered in Chapter 13.

To verify that the autocreate and autoupdate statistics options are enabled (the
default) for a database, right-click the database in SQL Server Enterprise Manager,
click Properties, and then click the Options tab. Verify that both of the check boxes
are selected.

438 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Maintaining Indexes
Clustered indexes control the order and placement of data stored in the data pages
of a table. In a clustered index, the physical order of the rows in a table is the same
as the indexed order of the index key values. As new data is entered, SQL Server
2000 might have to reorganize the storage of data to make room for new values in
order to maintain the ordering. Nonclustered indexes also have to be reordered
when new data requires page splits. When SQL Server 2000 needs to enter data on
a page that is full, it allocates a new page and splits the existing data between the
new page and the existing page. Page splitting can impair performance during the
page split and cause data fragmentation that affects future performance.

To minimize the need for page splits, a fill factor for the index is frequently speci-
fied. It can be specified using a server-wide value or on an index-by-index basis.
Creating an index using a fill factor leaves pages partially full at the time of index
creation. However, a fill factor value has no effect when new data is being entered
into tables. When data is added to tables, these partially filled pages become full
and page splits begin occurring.

As a database administrator, when page splitting occurs you might need to re-cre-
ate indexes to reorganize data and re-establish partially filled pages by re-specify-
ing the fill factor. This should only be done when the database is not busy. Creating
or modifying a clustered index is time-consuming because during these operations
the table’s rows are reorganized on disk.

You can rebuild indexes using the Transact-SQL DROP_EXISTING clause of the
CREATE INDEX statement or the DBCC DBREINDEX statement. You can also
schedule the rebuilding of indexes using the Database Maintenance Plan Wizard in
SQL Server Enterprise Manager.

Maintaining Full-Text Indexes
Full-text indexes are indexes of all character data in one or more tables in a data-
base. The indexes are stored in the file system, but administered through the data-
base. Administration consists of several tasks. The full-text engine is implemented
as the Microsoft Search service. At the server level, you can configure the amount
of system resources that can be used by the Microsoft Search service to maintain
current indexes. At the database level, you enable a database and one or more
tables to use the Microsoft Search service. Afterward, you must create (populate)
full-text indexes on each full-text enabled table. These full-text indexes are stored
in catalogs on the local server.

You can use the Full-Text Indexing Wizard in SQL Server Enterprise Manager to
enable full-text indexing for a database, one or more tables, and specified columns
within the tables. You can also create a population schedule in the Full-Text Index-
ing Wizard. To initially populate a full-text index, expand the container for the
database containing the full-text catalog and then click the Full-Text Catalogs con-
tainer. You can right-click Full-Text Catalogs to populate all catalogs, or right-click
an individual catalog in the details pane to populate a single catalog.

Chapter 12 Performing Administrative Tasks 439
Note The design and creation of full-text indexes is generally not the responsibil-
ity of the database administrator. However, you might be responsible for rebuilding
these indexes and regulating the use of resources by the Microsoft Search service
for maintaining these indexes.

After the full-text indexes are populated, you need to determine how to keep them
current. To prevent the maintenance of full-text indexes from consuming resources
when the database is busy, you can repopulate these indexes manually or on a
schedule. You can also configure these indexes to be updated automatically as a
background process that runs during periods of low database activity. The three
repopulation methods for full-text indexes are shown in Table 12.7.

To perform an update of a full-text index manually, right-click the desired Full-Text
Catalog name found in the Full-Text Catalogs container and select either Rebuild
Catalog or Start Incremental Population. To enable change tracking, use the
sp_fulltext_table system stored procedure. To control the amount of resources that
may be used by the Microsoft Search service, use the sp_fulltext_service system
stored procedure.

Lesson Summary
Additional maintenance tasks a database administrator might have to perform
include updating distribution statistics, rebuilding indexes, and updating full-text
indexes. You can update distribution statistics and rebuild indexes manually, or you
can schedule them. You can update full-text indexes manually or on a schedule, or
you can configure them to run as low-priority background tasks.

Table 12-7. Repopulation Methods for Full-Text Indexes

Rebuild Type Description When to Use

Full rebuild A complete rescan of all rows fol-
lowed by a complete rebuild of the
full-text index. Must be performed
manually or on a schedule.

Large amounts of data have
changed.

Timestamp-based
incremental rebuild

A rescan of the rows that have
changed since the last full or incre-
mental rebuild. The table that is
indexed must contain a timestamp
column and this rebuild type only
updates changes that also update the
timestamp column. Must be per-
formed manually or on a schedule.

Use when a large number,
but not a large percentage,
of records have changed.

Change tracking A list of all changes to indexed data is
maintained. Generally performed on a
schedule or as a background task
when processor and memory
resources are available.

With scheduled or back-
ground process updating.

440 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You are running a number of server applications on the same computer. You
observe that the performance of SQL Server 2000 is initially poor after a period
of low activity. What can you do to improve its responsiveness?

2. You want to configure the SQL Server Agent service to send mail to adminis-
trators in response to alerts. What is the first task you must perform?

3. You want to enable one of your databases to be queried using XML. What must
you do?

441
C H A P T E R 1 3

Automating Administrative Tasks

Lesson 1: Defining Operators . 443

Lesson 2: Creating Jobs . 450

Lesson 3: Configuring Alerts . 472

Lesson 4: Creating a Database Maintenance Plan 486

Lesson 5: Creating Multiserver Jobs . 496

Review . 507

About This Chapter
This chapter prepares you to automate a variety of administrative tasks. In this
chapter you will learn about defining operators, implementing jobs, and configur-
ing alerts to automate routine tasks and create programmed responses to antici-
pated events and specified performance conditions. You will also learn to create
database maintenance plans. Finally, you will learn to create multiserver jobs.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS
partition.

■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

442 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
■ Created the SSEMDB database using the CreateDB.sql script (see Chapter 6).

■ Created the Customer table in the SSEMDB database using the
SSEMDB_Full.sql script (see Chapter 9).

Chapter 13 Automating Administrative Tasks 443
Lesson 1: Defining Operators

The first step toward automating administrative tasks is to define operators to be
notified of the success, failure, or completion of an automated task, or on the occur-
rence of specified events or conditions. In this lesson you will learn to define oper-
ators who can be notified by e-mail, pager, or NET SEND notifications. You will
also learn how to create a fail-safe operator to be notified in response to an alert
when the designated operator for the alert cannot be paged.

After this lesson, you will be able to
■ Define operators

■ Create a fail-safe operator

■ Troubleshoot operator notification problems

Estimated lesson time: 30 minutes

Methods of Notification
SQL Server Agent can be configured to send notifications to operators with respect
to jobs, events, and performance conditions. An operator is a user or message
group that is configured to receive notifications from SQL Server Agent using one
of three messaging methods: e-mail, pager, or NET SEND.

E-mail
SQL Server Agent can notify an operator using e-mail provided that SQLAgent-
Mail has been configured. As discussed in the previous chapter, SQLAgentMail
requires that the SQL Server Agent service use a domain user account. This
domain user account must have a MAPI messaging profile on the computer on
which SQL Server Agent is running.

Pager
SQL Server Agent can also notify an operator using a pager. Pager notification is
implemented using e-mail and third-party paging software. Because pager notifica-
tion relies on e-mail, SQLAgentMail must be configured in order to enable pager
notification.

Note SQL Server 2000 does not provide any pager software. It relies on you to
implement a third-party pager solution. If all operators use the same pager solution,
you can provide any special e-mail formatting required for all pager e-mails,
including limiting the size of the message (necessary for some pagers), by elimi-
nating the error text. To access this feature in SQL Server Enterprise Manager,

444 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
expand the Management container for the instance, right-click SQL Server Agent,
click Properties, and then click the Alert System tab in the SQL Server Agent Prop-
erties dialog box.

NET SEND
SQL Server Agent can also notify an operator via network pop-up using NET
SEND. NET SEND is available only with the Windows 2000 and Windows NT 4.0
operating systems. NET SEND uses the Windows Messenger service, which must
be running on the recipient computer as well as the sending computer. Messages
can be sent to users, computers, or messaging names on the network. A messaging
name is an alias that a computer will accept messages for and can be created using
the NET NAME command-prompt utility.

Fail-Safe Operators
SQL Server Agent can be configured to notify a fail-safe operator in response to an
alert if the designated operator cannot be paged or the SQL Server Agent cannot
access system tables in the msdb database. Possible reasons for the inability to
page an operator include an incorrect pager address or the designated operator
being off duty according to the pager’s on-duty schedule that you configured when
you created a new fail-safe operator. A reason for the inability to access the system
tables is disk failure.

Creating Operators
An operator can be an individual, a messaging group, or a computer that can be
contacted using one of the three notification methods. You should create a notifica-
tion plan for all operators, including on-duty schedules and pager addresses. You
can create operators using either SQL Server Enterprise Manager or Transact-SQL
system stored procedures.

Note Using e-mail and pager notifications is only as reliable as your messaging
infrastructure.

Using SQL Server Enterprise Manager
To create an operator using SQL Server Enterprise Manager, expand the Manage-
ment container for the instance, expand the SQL Server Agent container, right-
click the Operators container, and then click New Operator to display the New
Operator Properties dialog box. See Figure 13.1.

Chapter 13 Automating Administrative Tasks 445
<< “F13ST01.EPS” >>

Figure 13.1. Creating a new operator.

Each operator must have a unique name. In the General tab, you can specify
address information for all three types of notifications. You can test the address
information (and the underlying infrastructure) by sending a test message. If the
message is received by the operator using a particular notification method, the
address information for that method is valid and the underlying infrastructure is
functioning. You can also specify pager on-duty schedules, including the length
and hours of the workday.

Note Always use fully qualified e-mail addresses to avoid name resolution prob-
lems with e-mail aliases. For example, if the display names JohnD and JohnDoe
both exist in your e-mail address book, a notification to JohnD cannot be resolved.

You can immediately configure notifications to be sent to this newly created opera-
tor by clicking the Notifications tab. See Figure 13.2.

Notice that you can select one or more existing alerts and then designate this new
operator to receive notifications with respect to these alerts. You can immediately
send e-mail to the operator detailing the newly assigned alert responsibilities. You
can also view the most recent statistics on notification attempts for this operator.

Note Use the Notifications tab for an existing operator to view the alerts and jobs
for which the operator is designated to receive notification.

446 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST02.EPS” >>

Figure 13.2. Viewing and configuring operator notifications.

Using Transact-SQL
You can create and update operators using the sp_add_operator and
sp_update_operator system stored procedures. You can view information about
currently defined operators using the sp_help_operator system stored procedure.

Note Although you can use Transact-SQL system stored procedures, use of the
SQL Server Enterprise Manager graphical interface is recommended. Use the Gen-
erate Script feature to archive SQL Server objects created with SQL Server Enter-
prise Manager.

Creating a Fail-Safe Operator
To create a fail-safe operator using SQL Server Enterprise Manager, expand the
Management container for the instance, right-click SQL Server Agent, and then
click Properties. In the SQL Server Agent Properties dialog box, click the Alert
System tab. See Figure 13.3.

You can select an existing operator as the fail-safe operator from the Operator
drop-down list, or you can create one on the fly by selecting New Fail-Safe Opera-
tor from the drop-down list. Once you designate an operator as the fail-safe opera-
tor, you cannot delete the operator until you designate a different operator or select
no fail-safe operator.

Chapter 13 Automating Administrative Tasks 447
<< “F13ST03.EPS” >>

Figure 13.3. Creating a fail-safe operator.

Practice: Creating Operators and Setting a Fail-Safe
Operator
In this practice you use the SQL Server Enterprise Manager to create operators and
to set a fail-safe operator. (This practice uses NET SEND because not all readers
will have a MAPI client installed. However, if you have a MAPI client installed,
you might want to configure SQLAgentMail according to the previous chapter and
then create e-mail operators for the practice exercises in this chapter.)

� To create operators and set a fail-safe operator

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Accessories, and then click Command
Prompt.

The Command Prompt window appears.

3. Type net name failsafe /add, and then press ENTER.

The operating system informs you that the message name FailSafe is added
successfully.

4. Close the Command Prompt window.

5. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

6. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, expand the default instance container, expand the
Management container, and then expand the SQL Server Agent container.

448 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
7. Right-click the Operators container, and then click New Operator.

The New Operator Properties – SelfPacedCPU dialog box appears.

8. In the Name text box, type Operator.

9. In the E-Mail Name text box, type E-mail (or use a valid e-mail address).

10. In the Pager E-Mail Name text box, type Pager (or use a valid page address).

11. In the Net Send Address text box, type SelfPacedCPU, and then click the Test
button for this net send address.

A Test Net Send Address dialog box appears stating that a network pop-up
message will be sent to SelfPacedCPU. (The user name, Administrator, is not
being used to send messages to this practice because multiple users named
Administrator may exist on the network in different domains.)

12. Click OK.

A Messenger Service message box appears displaying a message from Self-
PacedCPU to SelfPacedCPU testing the network pop-up notification.

13. Click OK to close the Messenger Service message box.

14. In the Pager On Duty Schedule group box, configure a pager on-duty schedule
such that this operator will be not be on duty when you perform the practice
exercises in this chapter.

15. Click OK to close the New Operator Properties – SelfPacedCPU dialog box.

In the details pane, notice that this operator is now displayed.

16. In the console tree, right-click the SQL Server Agent container, and then click
Properties.

The SQL Server Agent Properties – SelfPacedCPU dialog box appears.

17. Click the Alert System tab.

18. In the Fail-Safe Operator group box, click (New Fail-Safe Operator) from the
Operator drop-down list.

The New Operator Properties – SelfPacedCPU dialog box appears.

19. In the Name text box, type FailSafe.

20. In the Net Send Address text box, type FailSafe, and then click the Test button
for the net send address.

A Test Net Send Address dialog box appears stating that a network pop-up
message will be sent to FailSafe.

21. Click OK.

A Messenger Service message box appears displaying a message from Self-
PacedCPU to FailSafe testing the network pop-up notification.

22. Click OK to close the Messenger Service message box.

23. Click OK to close the New Operator Properties – SelfPacedCPU dialog box.

Chapter 13 Automating Administrative Tasks 449
The SQL Server Agent Properties – SelfPacedCPU dialog box appears display-
ing FailSafe in the Operator drop-down list as the fail-safe operator to be noti-
fied using NET SEND.

24. Click OK.

25. In the console tree, click Operators.

In the details pane, notice that two operators are now displayed.

26. Leave SQL Server Enterprise Manager running.

Lesson Summary
Creating operators is the first part of automating administrative tasks. Operators
can be users, messaging groups, or computers. Operators can be notified using
e-mail, pagers, and network pop-up messages. E-mail and pager notifications
require the domain user account used by the SQL Server Agent service to be con-
figured to use a MAPI messaging profile for SQLAgentMail. NET SEND mes-
sages require the Windows Messenger service, which is available only on the
Windows 2000 and Windows NT 4.0 operating systems.

450 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Creating Jobs

Using SQL Server Agent, you can create and schedule jobs that automate routine
administrative tasks. In this lesson, you learn to create simple and complex jobs.
You learn to configure permissions for jobs owned by users who are not members
of the sysadmin server role. You learn to execute these jobs manually or according
to a schedule. You also learn to use operators for notification of the success, failure,
or completion of a job. Finally, you learn to review job properties and job execution
history.

After this lesson, you will be able to
■ Create jobs using single or multiple step jobs

■ Create schedules for jobs

■ Enable and disable jobs and schedules

■ Use operators with jobs for notification of success, failure, or completion

■ Troubleshoot job execution problems

■ Review jobs and job history

Estimated lesson time: 45 minutes

Implementing Jobs
Database administrators create jobs to perform predictable administrative functions
(such as backing up databases or importing data) either according to a schedule or
in response to events and conditions. Jobs can be simple operations containing only
a single job step or can be extremely complex operations containing many job steps
with control of flow logic. SQL Server Agent is responsible for the management
and execution of all jobs. SQL Server Agent must be running for jobs to be exe-
cuted. Jobs can be created on the local server or on one or more target servers in a
multiserver administration configuration. Multiserver jobs are covered in Lesson 5
of this chapter.

Types of Job Steps
SQL Server 2000 supports jobs containing operating system commands, CmdExec
commands, Transact-SQL statements, Microsoft ActiveX scripts, and replication
tasks. Replication jobs are covered in Chapter 15. A single job can contain all of
these types of commands, although each job step can contain only a single type of
command.

Operating system commands (such as .bat, .cmd, .com, or .exe) must contain the
absolute path to the executables, the executable command (including switches and
options), and a process exit code. All operating system commands issue an exit

Chapter 13 Automating Administrative Tasks 451
code upon completion of execution indicating the success or failure of the com-
mand. An exit code of zero indicates that the command completed successfully.
Any other exit code indicates a type of command failure. Responses to different
types of failures can be programmed into the job logic.

Transact-SQL statements must identify the database in which the statement will
execute and provide the statement, function, stored procedure, or extended stored
procedure to be executed. A single job step can contain multiple batches of Trans-
act-SQL statements with embedded GO commands. Members of the sysadmin role
can write job steps to run on behalf of another database user.

ActiveX scripts must identify the scripting language used by the job step and pro-
vide the ActiveX script commands. An ActiveX script can also be compiled and
run as a CmdExec executable.

Permissions and Ownership of Jobs
By default, jobs are owned by the creator of the job and operate in the security con-
text of that login, regardless of who executes the job. Members of the sysadmin
server role can assign ownership to any valid login. Ownership of a job does not
grant the right to execute any particular job step. Permission to execute each Trans-
act-SQL job step is verified by the SQL Server service using permissions granted
within SQL Server. By default, permission to execute CmdExec and ActiveX job
steps is granted only to jobs owned by members of the sysadmin server role. These
job steps run in the security context of the SQL Server Agent service account. Per-
mission to run CmdExec and ActiveX scripting job steps can be granted to users
who are not members of the sysadmin fixed server role. These job steps owned by
non-sysadmins run in the security context of a specified Windows account called a
proxy account and inherit the rights granted to that account. To configure the proxy
account in SQL Server Enterprise Manager, expand the Management container in
the instance, right-click SQL Server Agent, and then click Properties. In the SQL
Server Agent Properties dialog box, click the Job System tab. When you clear the
check box in the Non-SysAdmin Job Step Proxy Account group box, the SQL
Agent Proxy Account dialog box appears so that you can then configure the proxy
account.

Note SQL Server Agent jobs on Windows Me and Windows 98 always run in the
context of the logged-in user.

Multiple Job Steps and Job Responses
A job step either succeeds or fails. On the success of a job step, you can configure
the job step to continue to the next step or a specific job step. You can also config-
ure the job step to quit and report success or failure. For example, a job step can
succeed in its programmed action and report either success or failure based on the

452 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
logic of the job. On the failure of a job step, you can also configure a subsequent
step or quit the job and report success or failure. See Figure 13.4.

<< “F13ST04.EPS” >>

Figure 13.4. Flow chart showing job step sequence configuration.

Figure 13.4 illustrates the backing up of a database before importing data. If the
initial database backup fails, the job quits reporting the failure. If the initial data-
base backup succeeds, the job continues and imports new data to the database using
DTS (scrubbing and cleansing the data in the process). If the data import job step
succeeds, a statistics update job step executes followed by the execution of another
database backup job step (which backs up the database containing the new data). If
either the data import job step or the update statistics job step fails, a restore data-
base job step executes and a notification of failure is reported. If the job success-
fully imports new data, updates the statistics, and then backs up the database, this
success is reported. Notice that the restore database job step reports failure to a
defined operator regardless of the success or failure of the restore job step. If the
restore job step is executed, the job (whose function is to import new data on a reg-
ular schedule) has failed. The restore job step succeeds only in restoring the data-
base to its condition prior to the attempted data import. A database administrator
must manually determine the cause of the failure at this point.

You must configure operators to be notified of the success, failure, or completion of
the job. Without operators being designated to receive notification, the reports of
success and failure of the job do not get transmitted to users. By default, failure of
a job is automatically logged to the Windows application log, which can be viewed
in Event Viewer.

Back up database

“Scrub” customer data

Update statistics

Back up database

Restore database

Report failure

Report success

On failure

On success

Chapter 13 Automating Administrative Tasks 453
Note If you want to pass data between job steps, you must use permanent tables,
global temporary tables, or operating system files.

Scheduling Jobs
Although you can manually run each job (generally just for testing jobs and job
steps), you normally create one or more schedules for a job to fully automate the
task. Various types of schedules are available. Jobs can be configured to run contin-
uously (such as certain monitoring jobs), whenever the processor is considered idle
(based on your definition), or at recurring intervals (such as hourly, daily, or
weekly). Jobs can also be scheduled to run a single time only or in response to a
defined alert. Alerts are covered in Lesson 3.

Multiple schedules enable you to have jobs execute on a certain schedule during
the workday and on a different schedule in the evening or on weekends. Each
schedule can be enabled or disabled. If all schedules are disabled for a particular
job, a job can still be executed manually or in response to an alert.

Note If a job is disabled, it will not execute in response to any alerts or schedules.
However, it can still be executed manually. When troubleshooting, verify that the
job and all applicable schedules are enabled.

If you configure jobs to execute during periods of low processor utilization, you
must first define the CPU idle condition and verify the local administrator permis-
sions of the service account of the SQL Server Agent service. Next, determine how
much processor resources each job requires using SQL Profiler and Windows 2000
System Monitor. These monitoring tools are covered in Chapter 14. Define the
CPU idle condition to accommodate the processor resources required by all jobs
configured with a CPU idle schedule. All such jobs will execute when the CPU idle
condition is reached.

Note SQL Server Agent must be running at the time a job is scheduled in order
for the job to execute when scheduled.

Creating Jobs
You can create jobs using the Create Job Wizard or directly by using SQL Server
Enterprise Manager. You can also create jobs with Transact-SQL system stored
procedures.

Using the Create Job Wizard
You can start the Create Job Wizard from the Wizards list or by clicking Job Sched-
uling from the Tools menu in SQL Server Enterprise Manager. The Create Job

454 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Wizard is a simple way to begin creating and scheduling jobs. Click Next in the
Welcome To The Create Job Wizard page to begin. See Figure 13.5.

<< “F13ST05.EPS” >>

Figure 13.5. Starting the Create Job Wizard.

In the Select Job Command Type page, you select the type of job you want to create.
You can only create single-step jobs using the Create Job Wizard. See Figure 13.6.

You have a choice between three types of commands that the job can execute. If
you click the Transact-SQL Command option button and then click Next, the Enter
Transact-SQL Statement page appears, which enables you to select the database
and enter the statement. You can click the Parse button to parse the Transact-SQL
statement to verify that the syntax is valid. See Figure 13.7. You can also open a
file containing the statement you want to use.

<< “F13ST06.EPS” >>

Figure 13.6. Selecting the type of command for the job to run.

Chapter 13 Automating Administrative Tasks 455
<< “F13ST07.EPS” >>

Figure 13.7. Entering and then parsing a Transact-SQL command.

If you click the Operating-System Shell Command option button and then click
Next, the Enter Operating-System Shell Command page appears, which enables
you to enter the command for this job to execute. See Figure 13.8.

<< “F13ST08.EPS” >>

Figure 13.8. Entering an operating system shell command.

If you click the Active Script option button and then click Next, the Enter Active
Script Command page appears, which enables you to enter the Visual Basic script
for this job to execute. You can click the Parse button to parse the Visual Basic
script to verify that the syntax is valid. See Figure 13.9. You can also open a file
containing the script you want to use.

456 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST09.EPS” >>

Figure 13.9. Parsing an Active Script command.

After selecting the type of job and entering the job information, you can specify a
job schedule (including running the job immediately) in the Specify Job Schedule
page. See Figure 13.10.

<< “F13ST10.EPS” >>

Figure 13.10. Specifying a job schedule.

If you click the On A Recurring Basis option button, you can click the Schedule
button to define this recurring schedule in the Edit Recurring Job Schedule dialog
box. You can specify daily, weekly, or monthly and select specific hours, days, or
days of the month (such as first Sunday of each month). See Figure 13.11.

Chapter 13 Automating Administrative Tasks 457
<< “F13ST11.EPS” >>

Figure 13.11. Editing a recurring job schedule.

Next, in the Job Notifications page, you can select an operator to notify via either
NET SEND or e-mail. You must select from existing operators. You cannot create
a new operator or use pager notification from within the Create Job Wizard. See
Figure 13.12.

<< “F13ST12.EPS” >>

Figure 13.12. Selecting an operator to notify.

Finally, in the Completing The Create Job Wizard page, you are given the oppor-
tunity to specify a name for the new job and to review the selections you have
made before you actually create the new job. You can click the Back button to
change any parameter you want to change. Click the Finish button to create the
job. See Figure 13.13.

458 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST13.EPS” >>

Figure 13.13. Naming the new job.

Practice: Creating a Job Using the Create Job Wizard
In this practice you use the Create Job Wizard to create a job to back up the master
database.

� To create a job using the Create Job Wizard

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

In the SQL Server Enterprise Manager console tree, the Management container
and the SQL Server Agent container for the default instance should still be
expanded from the previous practice.

2. In the SQL Server Enterprise Manager console tree, click the SQL Server
Agent container for the default instance.

3. On the Tools menu, click Job Scheduling.

The Welcome To The Create Job Wizard page appears.

4. Click Next.

The Select Job Command Type page appears.

5. Verify that the Transact-SQL Command option button is clicked, and then click
Next.

The Enter Transact-SQL Statement page appears.

6. Verify that master is selected in the Database Name drop-down list, and then
type BACKUP DATABASE master TO DISK = ‘C:\SQLBackups\Mas-
terDB.bak’ in the Transact-SQL Statement text box. (If you did not create the
C:\SQLBackups folder in Chapter 9, you must create it now.)

Chapter 13 Automating Administrative Tasks 459
7. Click the Parse button.

A Create Job Wizard message box appears stating that the job command parse
succeeded.

8. Click OK.

9. Click Next.

The Specify Job Schedule page appears.

10. Click the On A Recurring Basis option button, and then click the Schedule
button.

The Edit Recurring Job Schedule – SelfPacedCPU dialog box appears.

11. In the Occurs group box, click the Daily option button, and then click OK.

12. Click Next.

The Job Notifications dialog box appears.

13. In the Net Send drop-down list, click Operator, and then click Next.

The Completing The Create Job Wizard page appears.

14. In the Job Name text box, type Backup Master Job, and then click the Finish
button.

A Create Job Wizard message box appears stating that the job was created suc-
cessfully.

15. Click OK.

16. In the console tree, click the Jobs container.

17. In the details pane, right-click Backup Master Job, and then click Start Job.

After a few moments, a Messenger Service message box appears delivering a
message to SelfPacedCPU stating that the Backup Master Job succeeded and
providing details about the completion of the job.

18. Click OK.

19. In the details pane, right-click Backup Master Job, and then click Refresh Job.

Notice that the Last Run Status column indicates that the job succeeded and
that the Next Run Date is the following day at 12:00:00 AM.

20. Leave SQL Server Enterprise Manager running.

Using SQL Server Enterprise Manager Directly
To create a job using SQL Server Enterprise Manager directly, you can either right-
click SQL Server Agent in the Management container, point to New and then click
Job, or right-click Jobs in the SQL Server Agent container and then click New Job.
The New Job Properties dialog box appears, as illustrated in Figure 13.14.

460 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST14.EPS” >>

Figure 13.14. Specifying properties for a new job.

In the General tab, notice that you can specify the owner of the job (this option will
be grayed out if you are not a member of the sysadmin server role). You can also
specify a category for the job. The default is uncategorized local. However, if you
group jobs into categories, you can locate all jobs in a specified category by click-
ing the ellipsis next to the Category drop-down list. To save the job, you must sup-
ply a name for the job in the Name text box.

Click the Steps tab and then click the New button to display the New Job Step dia-
log box that you use to create job steps. See Figure 13.15.

<< “F13ST15.EPS” >>

Figure 13.15. Creating a new job step.

Enter a step name, select the type of job step (the default is Transact-SQL Script),
and then enter the appropriate statement, script, or command. A step name is
required to continue. Click the Advanced tab to review and set properties of this
job step. See Figure 13.16.

Chapter 13 Automating Administrative Tasks 461
<< “F13ST16.EPS” >>

Figure 13.16. Reviewing properties for a job step.

The default for each job step is to continue to the next step on success and to quit the
job on failure and report a failure. If there is no next step, the job quits with success
and reports success. You can specify a number of retry attempts (to allow for a con-
nection timeout error, for example) and a time interval between retries. You can also
specify an operating system file in which to store the results of a Transact-SQL or
CmdExec job step. You can click the View button to view the contents of any exist-
ing output file when creating the job step and choose to have the job step append or
overwrite the contents of the output file each time the job step runs. You can also
choose to have the results of the Transact-SQL script written to the step history
along with the report of the success or failure of the job. Finally, you can choose to
have this job step run as a user other than the job owner. For example, CmdExec job
steps might need different permissions than Transact-SQL statements.

If you have created multiple job steps, you can then review the steps in the Steps
tab, edit them, insert new steps, and change the order of steps. See Figure 13.17.

<< “F13ST17.EPS” >>

Figure 13.17. Reviewing and modifying job step order.

462 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
You can modify the order of steps and designate a step other than the first step in
the list as the starting step (allowing a step to be skipped temporarily without delet-
ing it). The starting step is indicated by the green start flag and also by the step dis-
played in the Start Step drop-down list. After you complete the job steps, click the
Schedules tab to create one or more schedules for the job. See Figure 13.18.

<< “F13ST18.EPS” >>

Figure 13.18. Creating schedules for the job.

Notice that you can also click the New Alert button to define a new alert that exe-
cutes this job in response to an alert. Alerts are covered in the next lesson. After
completing the schedules (and alerts if applicable), click the Notifications tab to
designate operators for notifications of the completion, success, and/or failure of a
job. See Figure 13.19.

<< “F13ST19.EPS” >>

Figure 13.19. Designating operators for notifications of job status.

Notice that you can select to notify different operators using different mechanisms
whenever the job completes, succeeds, or fails. By default, job failures are also
written to the Event Viewer application log. You can also choose to have the job
automatically deleted after successful completion (such as for a one-time job).

Chapter 13 Automating Administrative Tasks 463
Practice: Creating a Job Using SQL Server Enterprise
Manager Directly
In this practice you use the SQL Server Enterprise Manager to create a job directly.

� To create a job using SQL Server Enterprise Manager directly

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

In the SQL Server Enterprise Manager console tree, the Management container
and the SQL Server Agent container for the default instance should still be
expanded from the previous practice.

2. In the SQL Server Agent container, right-click Jobs, and then click New Job.

The New Job Properties – SelfPacedCPU dialog box appears. Notice that the
default owner for this job is SelfPacedSQL\Administrator.

3. In the Name text box, type Backup SSEMDB Tlog, and then click the Steps
tab.

4. Click the New button.

The New Job Step – SelfPacedCPU dialog box appears.

5. In the Step Name text box, type Backup TLog Step.

6. Verify that the step type is Transact-SQL Script (TSQL), and then click the
Database drop-down list and click SSEMDB.

7. In the Command text box, type BACKUP LOG SSEMDB TO DISK =
‘C:\SQLBackups\SSEMDB.trn’.

8. Click the Parse button.

A New Job Step – SelfPacedCPU message box appears stating that the parse
succeeded.

9. Click OK to close the message box.

10. Click OK to close the New Job Step – SelfPacedCPU dialog box.

11. Click the Schedules tab.

12. Click the New Schedule button.

The New Job Schedule – SelfPacedCPU dialog box appears.

13. In the Name text box, type Workday Schedule.

14. Click the Change button.

The Edit Recurring Job Schedule – SelfPacedCPU dialog box appears.

15. In the Occurs group box, click the Daily option button.

16. In the Daily Frequency group box, click the Occurs Every option button.

17. Click OK to close the Edit Recurring Job Schedule – SelfPacedCPU dialog
box.

18. Click OK to close the New Job Schedule – SelfPacedCPU dialog box.

464 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
19. Click the Notifications tab.

20. Select the Page Operator check box, and then select Operator from the Page
Operator drop-down list.

21. Select Whenever The Job Completes from the drop-down list, and then click
OK.

In the details pane for the Jobs container, notice that two jobs appear.

22. In the details pane, right-click Backup SSEMDB Tlog, and then click Start Job.

23. After a few moments, right-click Backup SSEMDB Tlog, and then click
Refresh Job.

Notice that the Last Run Status column will either display Executing or Suc-
ceeded. Do not continue until the column indicates that the job succeeded.
Click Refresh Job again to update the displayed information, if necessary.
Notice that a network pop-up message was not received. You will review job
history in the next practice to determine why you did not receive a message.

24. Leave SQL Server Enterprise Manager running.

Using Transact-SQL
You can also create jobs using the sp_add_job, sp_add_jobstep,
sp_add_jobschedule, and sp_update_jobstep system stored procedures.

Note Although you can use Transact-SQL system stored procedures, use of the
SQL Server Enterprise Manager graphical interface is recommended.

Configuring the Proxy Account
If you plan to create jobs containing CmdExec and ActiveX job steps that will be
owned by (or executed in the context of) users who are not members of the sysad-
min server role, you must configure the proxy account. Right-click SQL Server
Agent in the Management container for the instance, and then click Properties. In
the SQL Server Agent Properties – SelfPacedCPU dialog box, click the Job System
tab. See Figure 13.20.

Chapter 13 Automating Administrative Tasks 465
<< “F13ST20.EPS” >>

Figure 13.20. Configuring the proxy account.

Clear the check box in the Non-SysAdmin Job Step Proxy Account group box to
allow users without sysadmin privileges to execute CmdExec and ActiveX script-
ing job steps. You are then prompted, in the SQL Agent Proxy Account dialog box,
to provide the name of the proxy account that SQL Server Agent will use to exe-
cute these jobs. All CmdExec and ActiveX scripting job steps for non-sysadmins
will be executed by SQL Server Agent in the security context of this account. You
must provide an existing local or domain user account. Assign this account the per-
missions you want non-sysadmins to inherit when their jobs are run. If the service
account used by the SQL Server service does not have administrator privileges, you
must first provide a valid administrator account to access the security account list.
See Figure 13.21.

466 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST21.EPS” >>

Figure 13.21. Providing a valid administrator account.

Reviewing Jobs and Job History
The details pane of the Jobs container in SQL Server Enterprise Manager displays
information regarding all jobs for the SQL Server 2000 instance. See Figure 13.22.

<< “F13ST22.EPS” >>

Figure 13.22. Displaying job information for the current instance of SQL Server 2000.

Information regarding each job is displayed in columns. Click on a column heading
to sort the jobs based on that column. Notice the Enabled column. If you are trou-
bleshooting a job that does not run, verify that it is enabled. Information is dis-
played regarding the status of a job (such as executing or not running), the last time
a job ran, and the next time it is scheduled.

Chapter 13 Automating Administrative Tasks 467
Note Because SQL Server Enterprise Manager is a client application, information
displayed must be refreshed to view the most recent information (particularly sta-
tus, last run, and next run information).

Job Properties
To view or modify the properties of a job, right-click the job, and then click Proper-
ties (or double-click the job). Users who are not members of the sysadmin server
role can only view or modify jobs they own.

Job History Log
To review the execution history of a job, right-click the job, and then click View
Job History. See Figure 13.23.

<< “F13ST23.EPS” >>

Figure 13.23. Reviewing the execution history of a job.

Information is displayed regarding each time the job was run, its result, who
invoked the job, and operators notified. Select the Show Step Details check box to
view the details of each step. Viewing step details displays important information
for troubleshooting a job. For example, if a job fails because SQL Server Agent
lacked proper permissions, this information will be displayed in the step details.
See Figure 13.24.

468 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST24.EPS” >>

Figure 13.24. Viewing details about each step of a job.

You can control the size of the job history log. Right-click the SQL Server Agent
container, click Properties, and then click the Job System tab. See Figure 13.25.

<< “F13ST25.EPS” >>

Figure 13.25. Controlling the history log size.

Notice that the default size of the job history log for each job is 100 rows, and for
all jobs combined, the default size is 1000 rows. Notice that you can click the Clear
Log button to clear the entire log.

Chapter 13 Automating Administrative Tasks 469
Practice: Reviewing and Modifying a Job and Viewing Job
History
In this practice you use the SQL Server Enterprise Manager to view and modify a
job and to view job history.

� To review and modify a job and view job history

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

In the SQL Server Enterprise Manager console tree, the Management container
and the SQL Server Agent container for the default instance should still be
expanded from the previous practice.

2. In the SQL Server Agent container, click Jobs.

3. In the details pane, double-click Backup Master Job.

The Backup Master Job Properties – SelfPacedCPU dialog box appears.

4. Click the Steps tab.

5. Click the New button.

The New Job Step – SelfPacedCPU\Backup Master Job dialog box appears.

6. In the Step Name text box, type DB Consistency Step.

7. Verify that the step type is Transact-SQL Script (TSQL) and the Database is
master.

8. In the Command text box, type DBCC CHECKDB.

9. Click OK to close the New Job Step – SelfPacedCPU\Backup Master Job dia-
log box.

Notice that two steps now appear. Notice that Step 1 executes first and that the
DB Consistency Step will never execute because Step 1 quits with success and
with failure. Notice also the green start flag that indicating Step 1 is the starting
step. If you attempt to apply or save the job at this point, you will receive a
warning stating that the DB Consistency Step will not execute.

10. Click DB Consistency Step in the Start Step drop-down list.

11. Click the Move Step arrow button to move the DB Consistency Step to the first
step in the list.

12. Click OK to close the Backup Master Job Properties – SelfPacedCPU dialog
box.

13. In the details pane, right-click Backup Master Job, and then click Start Job.

The Start Job On SelfPacedCPU dialog box appears. Notice that you can
choose the step with which to start the job.

14. Verify that the DB Consistency Step is selected, and then click the Start button.

470 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
After a few moments, a Messenger Service message box appears delivering a
message to SelfPacedCPU stating that the Backup Master Job succeeded and
providing details about the completion of the job.

15. Click OK.

16. In the details pane for the Jobs container, right-click Backup Master Job, and
then click View Job History.

The Job History – SelfPacedCPU dialog box appears. Notice that the two jobs
appear in the job history log. Also notice, under Errors And/Or Messages From
The Job/Step, that the most recently completed job had two steps and that the
first time the job ran it only had one step.

17. Select the Show Step Details check box.

Notice that five lines now appear. In the Step ID column, 0 displays the job out-
come information for each time the job ran. Step ID 1 displays information
regarding the details of the first step that ran. Step ID 2 displays information
regarding the details of the second step that ran.

18. Click Step ID 1 from the most recent run of the job.

Notice that information from the DBCC CHECKDB statement is displayed
under Errors And/Or Messages From The Job/Step.

19. Click Close.

20. In the details pane for the Jobs container, right-click Backup SSEMDB TLog,
and then click View Job History.

The Job History – SelfpacedCPU dialog box appears. Notice the details of the
job. In particular, notice that no operators were notified because Operator was
not on duty. The fail-safe Operator was not paged because fail-safe operations
are used only for alerts (not job outcome notifications).

21. Click Close.

22. Leave SQL Server Enterprise Manager running.

SQL Server Agent Error Log
SQL Server Agent records information, warnings, and errors in the SQL Server
Agent error log. SQL Server 2000 maintains up to nine SQL Server Agent error
logs. The default name and location for the SQL Server Agent error log is C:\Pro-
gram Files\Microsoft SQL Server\Mssql\Log\Sqlagent.out. The current error log has
a filename extension of .OUT and each archive has an extension number between
one and nine (with one being more recent than nine). SQL Server Agent recycles
these logs as necessary. To view the error log from within SQL Server Enterprise
Manager, right-click the SQL Server Agent container, and then click Display Error
Log. Figure 13.26 illustrates the SQL Server Agent Error Log dialog box.

Chapter 13 Automating Administrative Tasks 471
In the Type drop-down list, you can filter errors based on the error type (error, warn-
ing, or information) and/or by specific text contained in the error message. In Figure
13.26, notice the last warning message listed in the Contents box for the Sqlagent.out
log, which informs you that an idle CPU condition has not yet been defined.

<< “F13ST26.EPS” >>

Figure 13.26. Viewing the error log.

Note You can use any text editor to view the SQL Server error log.

Transact-SQL
You can also view job properties using the sp_help_job and sp_help_jobstep sys-
tem stored procedures. You can view job history using the sp_help_jobhistory sys-
tem stored procedure.

Lesson Summary
Jobs can be created to automate many routine administrative tasks. You can create
jobs with multiple job steps using Transact-SQL statements, ActiveX scripts, oper-
ating system commands, and replication tasks. Each job step can contain flow logic
that specifies actions based on the success or failure of the step. You can configure
jobs to notify operators of their success, failure, or completion. You can also create
one or more schedules defining when SQL Server Agent will run a job.

472 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 3: Configuring Alerts

Using SQL Server Agent, you can define alerts and configure responses to alerts.
In this lesson, you learn how to create alerts to different types of events, including
SQL Server 2000 error messages, user-defined error messages, and performance
conditions. You also learn to configure operators to be notified and jobs to be run in
response to alerts.

After this lesson, you will be able to
■ Define alerts in response to SQL Server events

■ Define alerts in response to performance conditions

■ Define responses to alerts

■ View alerts and alert history

Estimated lesson time: 30 minutes

Defining Alerts
Database administrators define alerts to provide event and performance condition
notification and to execute jobs in response to specific SQL Server events or per-
formance conditions. For example, whenever the transaction log becomes 80 per-
cent full, an alert can be configured to fire that executes a job to back up and
truncate the transaction log (and to notify an administrator of its success or failure).

SQL Server Agent monitors the Windows application log and compares each SQL
Server event logged with the alerts that have been defined. If a match is found, an
event alert fires. SQL Server Agent can also monitor specific SQL Server perfor-
mance object counters and fire a performance condition alert when the value for the
counter is less than, equal to, or greater than a defined threshold.

Note To define alerts, you must be a member of the sysadmin server role.

SQL Server Event Alerts
The sysmessages table in the master database contains system error messages.
User-defined event messages can also be added to the sysmessages table using
SQL Server Enterprise Manager or the sp_addmessage system stored procedure.
All user-defined event messages are numbered 50,000 or greater. SQL Server
events and messages (errors) have the following attributes:

■ Error number. A unique number for each error.

■ Message string. Diagnostic information regarding the cause of the error,
including the object name.

Chapter 13 Automating Administrative Tasks 473
■ Severity. Low numbers indicate information messages and high numbers
indicate serious errors.

■ State code. Used by Microsoft support engineers to find the source code
location for the error.

■ Procedure name. The stored procedure name if the error occurred in a stored
procedure.

■ Line number. The line number of a statement in a stored procedure that
caused the error.

SQL Server events and messages (errors) can be written to the application log in a
number of ways:

■ Any SQL Server error with a severity number of 19 or greater is automatically
logged.

■ Any SQL Server error can be designated as always logged using the
sp_altermessage system stored procedure (numerous errors have this designa-
tion upon installation).

■ An application can force an error to be logged using the RAISERROR WITH
LOG statement or the xp_logevent extended stored procedure.

Note Make sure to configure the Windows application log to be large enough to
hold all SQL Server events without overwriting existing events or running out of
space. Also, in order for login events to be logged, Windows auditing must also be
enabled.

You define an event alert based on a SQL Server event written to the application
log and meeting specified conditions (such as severity level, error number, or con-
taining specified text). SQL Server 2000 includes a number of preconfigured event
alerts you can modify and use, or you can create your own.

Performance Conditions
SQL Server 2000 provides objects and counters that are used by Windows 2000 Sys-
tem Monitor (and Windows NT 4.0 Performance Monitor). These same objects and
counters can be used by SQL Server Enterprise Manager to define a performance
condition alert. To define a performance condition alert, you define the following:

■ Performance object. SQL Server object.

■ Counter. SQL Server counter.

■ Instance. SQL Server instance.

■ Behavior. Value of the counter that triggers the alert. Can be equal to, greater
than, or less than a specified value.

474 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Note If performance condition alerts are not viewable within SQL Server Enter-
prise Manager, verify that the SQL Server service domain user account has full
control permissions on the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft
\Windows NT\CurrentVersion\Perflib registry key.

Responses
When an event alert or a performance condition alert fires, one or more operators
can be notified using e-mail, pager, or NET SEND. A custom notification message
can be added to the alert notification along with the text of the error. A specified
job can also be executed in response to the alert.

Configuring Alerts
You can create alerts using the Create Alert Wizard or directly by using SQL
Server Enterprise Manager. You can also create alerts with Transact-SQL system
stored procedures.

Using the Create Alert Wizard
The SQL Server Enterprise Manager wizards are available from the Tools menu,
and are also available from any taskpad view. The Create Alert Wizard is a simple
way to create an event alert. Figure 13.27 shows the Welcome To The Create Alert
Wizard page.

<< “F13ST27.EPS” >>

Figure 13.27. The Create Alert Wizard welcome screen.

In the Define The Alert page, you can click the For Any Error Of Severity option
button to specify that an alert fire if the severity level of the SQL Server event
equals or exceeds the severity level you specify in the For Any Error Of Severity
drop-down list. See Figure 13.28.

Chapter 13 Automating Administrative Tasks 475
Note Errors with a severity error below 19 are not automatically logged in the
application log.

You can also click the Only If This Error Occurs option button to specify that an
alert fire if a specific error occurs. You can browse available error numbers and
messages to select the error number by clicking the Only If This Error Occurs ellip-
sis button. Clicking this button displays the Manage SQL Server Messages dialog
box, as illustrated in Figure 13.29.

<< “F13ST28.EPS” >>

Figure 13.28. Defining the severity level at which the alert will fire.

<< “F13ST29.EPS” >>

Figure 13.29. Choosing specific error types for an alert.

Notice that you can search for error messages based on text, error number, and
severity level. Notice that you can also limit your search to include only logged

476 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
messages and/or user-defined messages. After you have defined your search
parameters, you click the Find button to begin the search. Figure 13.30 illustrates
the results of a search.

Next, in the Specify A Database Or Error Keywords page, you can specify that the
event must occur in a particular database or contain specified text. See Figure 13.31.

<< “F13ST30.EPS” >>

Figure 13.30. Searching for error messages.

<< “F13ST31.EPS” >>

Figure 13.31. Specifying a particular database or specified text for your search.

Next, in the Define Alert Response page, you specify the response to the alert. You
can select from among existing operators and specify the type of notification. You
can also select a job to execute, including the option to create a new job on the fly.
See Figure 13.32.

Chapter 13 Automating Administrative Tasks 477
Next, in the Define Alert Notification Message page, you can specify the text of the
message that will be sent to the operator as part of the alert notification message.
You can also choose whether to include the text of the error message in the mes-
sage to the operator. See Figure 13.33.

<< “F13ST32.EPS” >>

Figure 13.32. Specifying the response to the alert.

<< “F13ST33.EPS” >>

Figure 13.33. Defining the alert notification message.

Finally, in the Completing The Create Alert Wizard page, you are given the
opportunity to specify a name for the alert and to review the selections you have
made before you actually create the alert. You can click the Back button to change
any parameter you want to change. Click the Finish button to create the alert. See
Figure 13.34.

478 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST34.EPS” >>

Figure 13.34. Completing the alert creation process.

Practice: Creating an Event Alert Using the Create Alert
Wizard
In this practice you use the Create Alert Wizard to create an event alert.

� To create an event alert using the Create Alert Wizard

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. In the SQL Server Enterprise Manager console tree, verify that your focus is a
container within the default instance.

3. On the Tools menu, click Wizards.

The Select Wizard dialog box appears.

4. Expand Management, and then double-click Create Alert Wizard.

The Welcome To The Create Alert Wizard page appears.

5. Click Next.

The Define The Alert page appears.

6. Click the Only If This Error Occurs option button, and then type 208 in the
Only If This Error Occurs text box.

Notice that the error description for this error indicates an invalid object name.

7. Click Next.

The Specify A Database Or Error Keywords page appears.

8. In the Database Name drop-down list, click SSEMDB, and then click Next.

The Define Alert Response page appears.

9. In the Notify Operator grid, select the Net Send check box for Operator, and
then click Next.

Chapter 13 Automating Administrative Tasks 479
The Define Alert Notification Message page appears.

10. In the Alert Notification Message To Send To Operator text box, type The
object requested does not exist, and then click Next.

The Completing The Create Alert Wizard window appears.

11. In the Alert Name text box, type SQL Server Invalid Object Alert, and then
click the Finish button.

A Create Alert Wizard dialog box appears stating that occurrences of error 208
will not invoke this alert because error 208 is not logged by default. The wizard
then asks whether you want to have the error always invoke this alert.

12. Click the Yes button to always invoke the alert.

A Create Alert Wizard message box appears stating that the alert was created
successfully.

13. Click OK.

14. In the SQL Server Agent container in the console tree, click Alerts.

Notice that SQL Server Invalid Object Alert appears in the details pane along
with the preconfigured alerts.

15. On the Tools menu, click SQL Query Analyzer.

SQL Query Analyzer appears with master as the current database.

16. In the query pane, type SELECT * FROM SSEMDB, and then click the Exe-
cute Query button on the toolbar.

Notice the invalid object name error message in the results pane.

17. Switch to SQL Server Enterprise Manager.

18. Right-click SQL Server Invalid Object Alert in the details pane, and then click
Refresh Alert.

Review the Count column. Notice that no alert fired.

19. Switch to SQL Query Analyzer.

20. On the toolbar, change the current database to SSEMDB in the database drop-
down list, and then click the Execute Query button.

After a few moments a Messenger Service message box appears displaying
information related to this error.

21. Click OK to close the Message Service message box.

22. Switch to SQL Server Enterprise Manager.

23. Right-click SQL Server Invalid Object Alert in the details pane, and then click
Refresh Alert.

Notice that the Count column indicates this alert occurred once and the Last
Occurred column displays the date and time that the alert fired.

24. Leave SQL Server Enterprise Manager and SQL Query Analyzer running.

480 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Using SQL Server Enterprise Manager Directly
To create an alert using SQL Server Enterprise Manager directly, you can either
right-click SQL Server Agent in the Management container, point to New and then
click Alert, or you can right-click Alerts in the SQL Server Agent container and
then click New Alert. The New Alert Properties dialog box appears as illustrated in
Figure 13.35.

<< “F13ST35.EPS” >>

Figure 13.35. Creating an alert using SQL Server Enterprise Manager directly.

In the General tab, notice that you can select either an event alert or a performance
condition alert in the Type drop-down list. The information required to create an
event alert is the same as covered earlier in this chapter for the Create Alert Wizard.
If you select a performance condition alert, you can define the performance condi-
tion that will cause an alert to fire. For example, you can define an alert that will
fire whenever the percentage of the transaction log used for the SSEMDB database
rises above 80 percent. See Figure 13.36.

Next, click the Response tab to define a response to the alert. When you click the
Execute Job check box, you can select from an existing job, or create one on the
fly. Click the ellipsis button to view or modify the details of any job for which you
have sufficient permissions. You can select operators to notify, create new opera-
tors, choose to include the error text in the notification, and provide a message to
include in the notification. You can also configure a delay between responses. Use
this delay to prevent the firing of multiple alerts from overwhelming your system.
For example, if an alert fires and causes a job to execute to resolve the cause of the
alert, delay the firing of a second alert until the job has an opportunity to complete
its task. See Figure 13.37.

Chapter 13 Automating Administrative Tasks 481
<< “F13ST36.EPS” >>

Figure 13.36. Defining a performance condition alert.

<< “F13ST37.EPS” >>

Figure 13.37. Defining a response to the alert.

User-Defined Error Messages
To add user-defined error messages using SQL Server Enterprise Manager, click
Manage SQL Server Messages on the Tools menu, click the Messages tab, and then
click the New button to display the New SQL Server Message dialog box. In this
dialog box, you select the error number you want to use, define its severity level,
provide the text for the message, specify the language, and specify whether it will
be automatically written to the application log whenever raised. The message string
can contain substitution variables and arguments. See Figure 13.38.

482 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST38.EPS” >>

Figure 13.38. Adding user-defined error messages.

You can have a user-defined error message raised when a particular transaction
occurs, which can then trigger a defined alert response. For example, a stored pro-
cedure can be created that is used to add new customers. Within the stored proce-
dure, a RAISERROR statement can raise a user-defined error and pass variables to
the error message providing the name of the new customer and the user adding the
customer. The defined alert can then notify a database administrator that a new cus-
tomer was added.

Practice: Creating a Performance Condition Alert Using
SQL Server Enterprise Manager Directly
In this practice you create a performance condition alert using use SQL Server
Enterprise Manager directly.

� To create a performance condition alert using SQL Server Enterprise Man-
ager directly

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. In the SQL Server Enterprise Manager console tree, expand the SQL Server
Agent container.

3. Right-click Alerts, and then click New Alert.

The New Alert Properties – SelfPacedCPU dialog box appears, with the Gen-
eral tab selected.

4. In the Name text box, type SSEMDB TLog Alert.
5. Click SQL Server Performance Condition Alert in the Type drop-down list.

6. Click SQLServer:Databases in the Object drop-down list.

7. Click Percent Log Used in the Counter drop-down list.

8. Click SSEMDB in the Instance drop-down list.

9. Click Rises Above in the Alert If Counter drop-down list.

10. Type 80 in the Value text box.

11. Click the Response tab.

Chapter 13 Automating Administrative Tasks 483
12. Select the Execute Job check box.

13. Click Backup SSEMDB TLog in the drop-down list.

14. In the Operators To Notify grid, select the Pager check box for Operator.

15. In the Additional Notification Message To Send text box, type Transaction
Log 80% Full.

16. Verify that the Delay Between Responses spin box is set to one minute, and
then click OK.

In the details pane, notice that the SSEMDB TLog Alert appears.

17. Click Start, point to Programs, point to Administrative Tools, and then click
Performance.

The Performance console appears.

18. On the toolbar, click the Add button.

The Add Counters dialog box appears.

19. In the Performance Object drop-down list, click SQLServer:Databases.

20. In the Select Counters From List box, click Percent Log Used.

21. In the Select Instances From List box, click SSEMDB.

22. Click the Add button, and then click the Close button.

A chart displays the Percent Log Used counter for the SSEMDB database.

23. Switch to SQL Query Analyzer.

24. On the toolbar, click the Load SQL Script button.

25. Click the No button if asked to save changes.

The Open Query File dialog box appears.

26. Open TlogOverflow.sql in the C:\SelfPacedSQL\CH_13 folder.

A Transact-SQL script appears, which will shrink the transaction log file and
then will continually update the ContactName column in the Customer table in
the SSEMDB database. Notice that a wait of 10 milliseconds has been speci-
fied. This will prevent the transaction log from filling so quickly that the
backup job does not have time to finish the backup before the transaction log
file automatically grows. Increase this wait time on fast computers and reduce it
for slow computers.

27. Click the Execute Query button to execute the TLogOverflow.sql statement.

28. Switch to the Performance console.

Notice that the transaction log begins to fill up. Several moments after the Per-
cent Log Used counter exceeds 80 percent, a Messenger Service message box
appears. Notice the details of the error message. In particular, notice that the
network pop-up is delivered to FailSafe. This occurs because Operator, who is
designated to receive pager notification when this alert fires, is off duty.

29. Click OK.

484 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
After a few more moments, notice that the chart displaying the Percent Log
Used counter in the Performance console indicates that the job has executed
(the transaction log was truncated).

30. Close the Performance console.

31. Switch to SQL Query Analyzer, and then click the Cancel Query Execution
button on the toolbar.

32. Close SQL Query Analyzer.

33. Leave SQL Server Enterprise Manager running.

Using Transact-SQL
You can also define alerts using the sp_add_alert, sp_update_alert, and
sp_add_notification system stored procedures. You must be a member of the sysad-
min server role to execute these system stored procedures. You can create and man-
age user-defined error messages using the sp_addmessage and sp_altermessage
system stored procedures. You must be a member of the sysadmin or serveradmin
server roles to execute these system stored procedures.

Note Although you can use Transact-SQL system stored procedures to add alerts,
use of the SQL Server Enterprise Manager graphical interface is recommended.

Reviewing Alerts and Alert History
The details pane of the Alerts container in SQL Server Enterprise Manager dis-
plays information regarding all alerts for the SQL Server 2000 instance. See Figure
13.39. You must be a member of the sysadmin server role to view alerts.

Information regarding each alert is displayed in columns. Click on a column head-
ing to sort the alerts based on the column. Notice the Enabled column. If you are
troubleshooting an alert that does not fire when it should, verify that it is enabled. If
an alert is firing too frequently, you might need to disable it before you modify its
properties. Information is displayed regarding the last time the alert fired, the notifi-
cations that were sent, and how many times the alert has fired since it was last reset.

Note Because SQL Server Enterprise Manager is a client application, information
displayed must be refreshed to view the most recent information (such as last
occurred and count information).

Chapter 13 Automating Administrative Tasks 485
<< “F13ST39.EPS” >>

Figure 13.39. Viewing alert information.

Alert Properties
Right-click an alert, and then click Properties (or double-click the alert) to display
the alert’s Properties dialog box, where you can view the details on the alert. Click
the Reset Count button to reset the counter displaying the number of times the alert
has fired.

Transact-SQL
You can also view alert properties using the sp_help_alert system stored procedure.
You must be a member of the sysadmin server role to execute this system stored
procedure.

Lesson Summary
Event alerts can be defined to respond to SQL Server errors that are logged in the
Windows application log. Severe errors are always logged in the Event Viewer
application log and you can configure any error to be logged. Performance condi-
tion alerts can be defined to respond to performance object counter values above,
below, or equal to specified values. Responses to alerts can be the execution of a
specified job and/or notification of one or more operators.

486 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 4: Creating a Database Maintenance
Plan

SQL Server 2000 provides two separate ways to automate all of the core mainte-
nance tasks a database administrator needs to perform. In this lesson you learn to
use the Database Maintenance Plan Wizard to configure the performance of core
maintenance tasks at scheduled intervals. You will also be introduced to the Sql-
maint utility, which performs the same functions from a command prompt.

After this lesson, you will be able to
■ Create a database maintenance plan using the Database Maintenance Plan Wizard

■ Describe the use of the Sqlmaint utility

Estimated lesson time: 15 minutes

Using the Database Maintenance Plan Wizard
The Database Maintenance Plan Wizard allows you to configure the following
tasks to execute automatically according to specified schedules.

■ Rebuilding indexes using a specified fill factor

■ Shrinking a database to a specified size

■ Updating distribution statistics

■ Performing DBCC consistency checks (covered in Chapter 14)

■ Backing up database and transaction log files

■ Setting up log shipping (covered in Chapter 16)

To start the Database Maintenance Plan Wizard, from the Tools menu, click Data-
base Maintenance Planner, or in the console tree, right-click Database Maintenance
Plans, in the Management container, and then click New Maintenance Plan to display
the Welcome To The Database Maintenance Plan Wizard page. See Figure 13.40.

Chapter 13 Automating Administrative Tasks 487
<< “F13ST40.EPS” >>

Figure 13.40. Starting the Database Maintenance Plan Wizard.

Click Next. If this is a master server, the Select Servers page is displayed, where
you select one or more target Servers on which this maintenance plan will be car-
ried out. Multiserver jobs are covered in Lesson 5 of this chapter. See Figure 13.41.

<< “F13ST41.EPS” >>

Figure 13.41. Selecting an instance.

Next, in the Select Databases page, you can select one or more database(s) for
which to create a maintenance plan. You can create a single maintenance plan for
all databases, or separate plans for specific databases and user and system data-
bases. See Figure 13.42.

488 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST42.EPS” >>

Figure 13.42. Selecting a database.

After selecting one or more databases, you can include several types of data opti-
mization in this database maintenance plan, which you select in the Update Data
Optimization Information page. See Figure 13.43.

<< “F13ST43.EPS” >>

Figure 13.43. Choosing types of data optimization.

You can choose to have indexes rebuilt or distribution statistics updated. Indexes
can be rebuilt using the original fill factor, or you can supply a new fill factor. Sta-
tistics can be updated using a sample of 10 percent of the database, or you can sup-
ply your own sampling value. SQL Server 2000 generally determines an adequate
sample size automatically. The higher the sampling percentage, the more accurate

Chapter 13 Automating Administrative Tasks 489
the statistics; however, the higher sampling rates will take more time and use more
resources. You can also choose to shrink the database whenever it grows above a
certain size and specify the amount of free space that will be left in the data file
after the shrink operation. This option is generally used only for small databases
sharing hard disk space with other server applications. Finally, you can specify a
single schedule for these tasks. Notice that the default is every Sunday at 1:00 A.M.

Next, in the Database Integrity Check page, you can include database integrity
checks as part of this database maintenance plan. You can choose to have these
checks perform minor repairs and have them performed before backups (recom-
mended). The default schedule for these tasks is every Sunday at 12:00 A.M. See
Figure 13.44.

Next, in the Specify The Database Backup Plan page, you can include full database
backups as part of this database maintenance plan. Defaults include verifying the
integrity of the backup, storing the backup to disk, and performing the backup
every Sunday at 2:00 A.M. Notice that this backup takes place after any database
optimization and integrity checks have been completed. See Figure 13.45.

Next, in the Specify Backup Disk Directory page, you specify database backup infor-
mation. For example, if backup to disk is selected, you can use the default location or
specify a custom location. You can create subdirectories for each database and
choose to remove any backup files older than a specified amount of time. Finally, you
can choose the backup file extension. The default is BAK. See Figure 13.46.

<< “F13ST44.EPS” >>

Figure 13.44. Including database integrity checks.

490 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST45.EPS” >>

Figure 13.45. Specifying a database backup plan.

Next, in the Specify The Transaction Log Backup Plan page, you can also back up
the transaction log file as part of this database maintenance plan. If you include
transaction log backups, the defaults include verifying the integrity of the backup,
storing the backup to disk, and performing the backups every night (except Sun-
day) at 12:00 A.M. See Figure 13.47.

<< “F13ST46.EPS” >>

Figure 13.46. Specifying database backup information.

Chapter 13 Automating Administrative Tasks 491
<< “F13ST47.EPS” >>

Figure 13.47. Selecting options for backing up the transaction log file.

Next, in the Specify Transaction Log Backup Disk Directory page, you specify
transaction log backup information. For example, if backup to disk is selected, you
can use the default location or specify a custom location. You can create subdirec-
tories for each database and choose to remove backup files older than a specified
amount of time. Finally, you can choose the backup file extension. The default is
TRN. See Figure 13.48.

Next, in the Reports To Generate page, you can specify a file path for a report text
file containing details of steps executed by this database maintenance plan, includ-
ing error information. Each report will add a date to the filename in the form of
MaintenancePlanName_YYYYMMDDHHMM. You can store the report text file in
the default location or specify a custom location. You can choose to remove any
report text files older than a specified amount of time and to e-mail each report to a
specified operator. See Figure 13.49.

<< “F13ST48.EPS” >>

Figure 13.48. Specifying transaction log backup information.

492 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST49.EPS” >>

Figure 13.49. Specifying options for reports.

Next, in the Maintenance Plan History page, by default, the history of activity of
this database maintenance plan is written to the sysdbmaintplan_history table in
the msdb database. After 1000 rows have been filled, by default, older rows are
deleted as new rows are added. You can also choose to have all history added to a
remote server that functions as a central store for collecting report information.
See Figure 13.50.

<< “F13ST50.EPS” >>

Figure 13.50. Choosing options for maintaining history of the maintenance plan.

Finally, in the Completing The Database Maintenance Plan Wizard, you can pro-
vide a name for this plan and review the selections you have made. Click the Back
button to review and modify any choices. Click the Finish button to create the plan.
See Figure 13.51.

Chapter 13 Automating Administrative Tasks 493
<< “F13ST51.EPS” >>

Figure 13.51. Completing the Database Maintenance Plan.

Viewing and Modifying Database Maintenance Plans
After the database maintenance plan has been created, you can view and modify it
in one of two ways. First, you can expand the Management container in the
instance, expand the SQL Server Agent container, and then click the Jobs con-
tainer. In the details pane, one or more database maintenance jobs will appear. See
Figure 13.52.

<< “F13ST52.EPS” >>

Figure 13.52. Viewing and modifying a plan.

In Figure 13.52, notice four new database maintenance jobs that are part of the
SSEMDB Maintenance Plan, including the next run date. You can double-click any
job to review the details of the job.

You can also view database maintenance plans by clicking the Database Mainte-
nance Plans container in the console tree. The details pane displays all database

494 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
maintenance plans. Double-click a plan to view or modify the details of the plan.
Right-click the Database Maintenance Plan container or any specific maintenance
plan, and then click Maintenance Plan History to view the history of the execution
of the entire maintenance plan. See Figure 13.53.

<< “F13ST53.EPS” >>

Figure 13.53. Viewing database maintenance plan history.

Using the Sqlmaint Utility
The Sqlmaint command-prompt utility can also be used to create and execute a
database maintenance plan. Generally, you will use the Database Maintenance Plan
Wizard to create and modify database maintenance plans because of its ease of use.
However, the jobs that are created by the Database Maintenance Plan Wizard actu-
ally execute the Sqlmaint utility using specified parameters. In SQL Server Enter-
prise Manager, expand SQL Server Agent, double-click a maintenance plan job in
the Jobs container, click the Steps tab, and then click the Edit button to view the
actual Sqlmaint command that is being executed. See Figure 13.54.

Chapter 13 Automating Administrative Tasks 495
<< “F13ST54.EPS” >>

Figure 13.54. Viewing a specific Sqlmaint command.

To use the Sqlmaint utility, refer to SQL Server Books Online.

Lesson Summary
The Database Maintenance Plan Wizard provides an easy way to automate core
maintenance tasks by creating jobs and schedules for these tasks. SQL Server
Enterprise Manager also maintains a Database Maintenance Plan History log to
view the execution history of all plans in one location. Finally, the Sqlmaint utility
is the utility that is run in the background for actually performing these tasks.

496 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 5: Creating Multiserver Jobs

SQL Server 2000 allows you to automate administrative tasks across multiple SQL
Server 2000 instances. In this lesson, you learn to create master servers and target
servers. You also learn to create jobs on the master server that propagate to target
servers for execution. Finally, you learn to review remote job history from the mas-
ter server.

After this lesson, you will be able to
■ Create master and target servers

■ Create jobs for target servers

■ Monitor jobs on target servers

Estimated lesson time: 30 minutes

Creating Master and Target Servers
To create multiserver jobs, you must designate a server as a master server and one
or more servers as target servers. This allows you to create jobs on a master server,
which distributes the jobs to and receives events from target servers. The master
server must be a computer running Windows 2000 or Windows NT 4.0. The master
server and all target servers must be running in Mixed Authentication Mode. In
addition, SQL Server Agent must be running on the master and all target servers.
Finally, select a master server that is not a busy production server because target
service traffic can cause a performance hit.

To create a master server, right-click the SQL Server Agent container for the
instance that will function as the master server, point to Multi Server Administra-
tion, and then click Make This A Master. The Welcome To The Make MSX Wizard
page appears as shown in Figure 13.55.

Chapter 13 Automating Administrative Tasks 497
<< “F13ST55.EPS” >>

Figure 13.55. The Welcome to the Make MSX Wizard screen.

First, in the Create ‘MSXOperator’ page, you create an MSXOperator to whom all
notifications related to multiserver jobs will be sent. If no MSXOperator is created,
multiserver jobs cannot send completion notifications. See Figure 13.56.

<< “F13ST56.EPS” >>

Figure 13.56. Creating an MSXOperator.

Next, in the Select Servers To Enlist page, select SQL Server instances to enlist as
target servers from the list of currently registered servers. You must be a member of
the sysadmin server role on each instance you are registering. You cannot enlist an
instance that is not registered. The SQL Server and SQL Server Agent services on
all target servers (as well as on the master server) must be using domain user
accounts for the service account (using the same account for the master and all tar-
get servers will ease administration). You can also register servers on the fly. See
Figure 13.57.

498 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST57.EPS” >>

Figure 13.57. Selecting SQL Server instances to enlist as target servers.

Next, in the Provide Target Server Description page, you can provide a description
for each target server. See Figure 13.58.

<< “F13ST58.EPS” >>

Figure 13.58. Providing a description for the target servers.

Next, in the Completing The Make MSX Wizard page, click the Finish button to
create the MSXOperator and enlist each target server. If the wizard cannot connect
to an instance (or if the SQL Server Agent service is not running on the instance),
you cannot enlist the instance as a target server. See Figure 13.59.

Chapter 13 Automating Administrative Tasks 499
<< “F13ST59.EPS” >>

Figure 13.59. Completing the creation of the MSXOperator.

After the Make MSX Wizard completes, the SQL Server Agent on the master
server is designated with an MSX and the SQL Server Agent on each target server
is designated with a TSX: master_server_name. See Figure 13.60.

<< “F13ST60.EPS” >>

Figure 13.60. Master and target server designations.

500 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Creating Jobs for Target Servers
You can create jobs on the master server and designate one or more target servers
to which these jobs will be distributed. The job definitions are stored on the master
server and a copy is retrieved by each target server. Updates to the central copy are
periodically distributed to the target servers. These jobs cannot be modified on any
target server.

To create a job for target servers, you define the job in the same manner as you did
for a local server job in Lesson 2 of this chapter. However, in the General tab, you
click the Target Multiple Servers option button and then select one or more target
servers by clicking the Change button. The Change Job Target Servers dialog box
appears as shown in Figure 13.61.

Note All database and file system paths used in multiserver jobs must be valid on
each target server for the job to succeed on that target server. Establishing a consis-
tent path and naming convention will make multiserver job administration much
simpler.

You can then select target servers from the list of enrolled target servers. See
Figure 13.62.

<< “F13ST61.EPS” >>

Figure 13.61. Selecting target servers.

Chapter 13 Automating Administrative Tasks 501
<< “F13ST62.EPS” >>

Figure 13.62. Selecting target servers from the list.

On the master server, all multiserver jobs have their own container. The target serv-
ers periodically poll the master server to download new jobs and changes to exist-
ing jobs.

Monitoring Jobs on Target Servers
To monitor jobs on target servers, right-click the SQL Server Agent (MSX) container
on the master server, point to Multi Server Administration, and then click Manage
Target Servers. The Target Servers dialog box appears as shown in Figure 13.63.

In the Target Service Status tab, notice that each target server is listed along with its
local time, the last time the target server polled the master server, the number of
unread instructions, and the status of each target server (blocked, OK, or offline).
You can force a poll by clicking the Force Poll button, defect a target server by
clicking the Force Defection button, or post instructions for one or more target
servers by clicking the Post Instructions button. Instructions you can post include
defecting, setting a polling interval (default is 60 seconds), synchronizing clocks
between the master and target servers, and starting a job. The Post Download
Instructions dialog box is shown in Figure 13.64.

502 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F13ST63.EPS” >>

Figure 13.63. Managing target servers.

<< “F13ST64.EPS” >>

Figure 13.64. Choosing options for posting instructions.

Click the Download Instructions tab to view details regarding instructions that have
been downloaded to one or more target servers. You can also filter displayed
instructions based on a particular job by selecting the job name in the Job drop-
down list. See Figure 13.65.

Chapter 13 Automating Administrative Tasks 503
<< “F13ST65.EPS” >>

Figure 13.65. Viewing and filtering instruction details

To view the job status and job history of multiserver jobs, in the details pane for
the Multi Server Jobs container, right-click the multiserver job, and then click Job
Status. The Multi Server Job Execution Status dialog box appears, as shown in
Figure 13.66.

<< “F13ST66.EPS” >>

Figure 13.66. Viewing job status and history.

Notice that you can view status by job or by server to view the last time a job was
run and whether it was successful. Click the View Remote Job History button to
connect to the remote server and view the history of the job. Click the Target Serv-
ers Status button to view the status of a particular server. Click the Synchronize
Jobs button to resynchronize all jobs on a particular server or a particular job on all
servers.

504 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Practice: Creating a Multiserver Job
In this practice you create a multiserver job.

� To create a multiserver job

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. In the SQL Server Enterprise Manager console tree, expand the SelfPaced-
CPU\MyNamedInstance container, expand the Management container, right-
click SQL Server Agent, and then click Start.

3. In the console tree, right-click SQL Server Agent for the default instance, point
to Multi Server Administrator, and then click Make This A Master.

The Welcome To The Make MSX Wizard page appears.

4. Click Next.

The Create ‘MSXOperator’ page appears.

5. In the Net Send Address text box, type SelfPacedCPU, and then click Next.

The Select Servers To Enlist page appears.

6. Select the SelfPacedCPU\MyNamedInstance check box, and then click Next.

The Provide Target Server Description page appears.

7. Enter a description into the Description cell, and then click Next.

The Completing The Make MSX Wizard page appears.

8. Review the information, and then click the Finish button.

A Make MSX Wizard message box appears stating that SelfPacedCPU was
successfully made an MSX.

9. Click OK.

In the console tree, notice that the SQL Server Agent for the default instance is
designated as an MSX and the SQL Server Agent for the MyNamedInstance is
designated as a TSX.

10. In the console tree, expand the SQL Server Agent container for the default
instance.

11. Right-click Jobs, and then click New Job.

The New Job Properties – SelfPacedCPU dialog box appears.

12. In the Name text box, type Backup All Master Databases.

13. Click the Target Multiple Servers option button, and then click the Change
button.

The Change Job Target Servers – SelfPacedCPU dialog box appears.

14. Click the right-arrow button to select SelfPacedCPU\MyNamedInstance as a
target server for this new job, and then click OK.

15. Click the Steps tab, and then click the New button.

Chapter 13 Automating Administrative Tasks 505
The New Job Step – SelfPacedCPU dialog box appears.

16. In the Step Name text box, type Backup Master Step.

17. Verify that the Type drop-down list displays Transact-SQL Script (TSQL) and
the Database drop-down list displays master.

18. In the Command text box, type BACKUP DATABASE master TO
DISK=‘C:\SQLBackups\master.bak’, and then click OK.

19. Click the Schedules tab, and then click the New Schedule button.

The New Job Schedule – SelfPacedCPU dialog box appears.

20. In the Name text box, type Nightly Schedule.

21. Click the Change button.

The Edit Recurring Job Schedule – SelfPacedCPU dialog box appears.

22. In the Occurs group box, click the Daily option button, and then click OK to
close the Edit Recurring Job Schedule – SelfPacedCPU dialog box.

23. Click OK to close the New Job Schedule – SelfPacedCPU dialog box.

24. Click the Notifications tab.

25. Select the Net Send Operator check box, and then click Whenever The Job
Completes in the drop-down list.

26. Click OK to close the New Job Properties – SelfPacedCPU dialog box.

27. In the console tree, expand the Jobs container for the default instance, and then
click Multi Server Jobs.

In the details pane, notice the new multiserver job. After a few moments, the
Pending Instructions column will indicate zero. This means that the target
server has downloaded the job.

28. In the console tree, expand the SelfPacedCPU\MyNamedInstance container,
expand the Management container, expand the SQL Server Agent (TSX: Self-
PacedCPU) container, and then click Jobs.

29. If the Backup All Master Databases job is not displayed, right-click the Jobs
container, and then click the Refresh button.

30. In the details pane, right-click the Backup All Master Databases job, and then
click Properties.

Notice that you cannot edit a job on a target server.

31. Click the Close button.

32. In the console tree, click the Multi Server Jobs container for the default
instance.

33. In the details pane, right-click Backup All Master Databases, point to Start Job,
and then click Start On All Targeted Servers.

Notice that the Pending Instructions column indicates one pending instruction.
After several moments, the instruction will be downloaded and a Messenger
Service message box appears indicating that the Backup All Master Databases
job was run.

506 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
34. Click OK.

35. Right-click Backup All Master Databases, and then click Job Status.

The Multi Server Job Execution Status – SelfPacedCPU dialog box appears dis-
playing information regarding the Backup All Master Databases job and each
target server.

36. Click the View Remote Job History button.

The Job History – SelfPacedCPU\MyNamedInstance dialog box appears.
Notice the information displayed from the remote server regarding the job.

37. Click the Close button to close the Job History – SelfPacedCPU\MyNamed-
Instance dialog box.

38. Click the Close button to close the Multi Server Job Execution Status – Self-
PacedCPU dialog box.

39. Right-click the Backup All Master Databases job, and then click Refresh Job.

Notice that there are no pending instructions.

40. In the console tree, click the Jobs container for the SelfPacedCPU\MyNamed-
Instance container.

41. In the details pane, right-click the Backup All Master Databases job, and then
click View Job History.

The Job History – SelfPacedCPU\MyNamedInstance dialog box appears.
Notice that the information displayed is identical to that displayed from the
remote server regarding the job.

42. Click the Close button.

43. Close SQL Server Enterprise Manager.

Lesson Summary
You can create jobs that are stored and managed from a central server, called a
master server. Target servers can be enlisted, which periodically download these
multiserver jobs for execution. The target servers report the status of these jobs to
the master server. Using this capability, identical jobs that must be run on multiple
servers can be centrally created and managed.

Chapter 13 Automating Administrative Tasks 507
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. The database administrator who has been designated as the fail-safe operator is
leaving the company. What must you do before you delete this person as an
operator?

2. If a job fails to execute when scheduled, what are some troubleshooting steps
you can follow?

3. You have defined an alert that backs up the transaction log when it is 90 percent
full. However, occasionally the transaction log fills up before the job executes.
Why is this occurring and what can be done to solve this problem?

4. You are in charge of managing a small database for your company. This is a
part-time responsibility. You are also managing your company’s domain con-
trollers, Web site, and e-mail server. You want to automate as many tasks as
possible. Where should you start?

5. You want to create a single job that backs up the system databases nightly on
every SQL Server instance within your company. You want to ensure that this
happens automatically, with notice to you only if there is a problem. Can this be
done?

509
C H A P T E R 1 4

Monitoring SQL Server Performance and
Activity

Lesson 1: Developing a Performance Monitoring Methodology 510

Lesson 2: Choosing Among Monitoring Tools 514

Lesson 3: Performing Monitoring Tasks . 523

Review . 546

About This Chapter
This chapter prepares you to monitor SQL Server 2000 performance and activity.
You will learn about developing a performance monitoring methodology for SQL
Server. You will learn about each of the Microsoft tools that are available for mon-
itoring SQL Server 2000, including when the use of each tool is most appropriate.
Finally, you will learn how to perform specific monitoring tasks using the most
commonly used monitoring tools.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS partition.

■ A computer with a NetBIOS name of SelfPacedCPU, configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

■ Created the SSEMDB database using the CreateDB.sql script (see Chapter 6).

■ Created the Customer table in the SSEMDB database using the
SSEMDB_Full.sql script (see Chapter 9).

510 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Developing a Performance
Monitoring Methodology

Before you begin monitoring SQL Server 2000 performance, you must develop a
performance monitoring methodology. In this lesson, you will learn to establish
performance-monitoring goals. You will learn what activities and resources are
important to monitor. Finally, you will learn how to monitor effectively.

After this lesson, you will be able to
■ Establish appropriate and effective monitoring goals

■ Determine which activities and resources to monitor

■ Develop a long-term monitoring strategy

Estimated lesson time: 15 minutes

Establishing Monitoring Goals
Before you begin monitoring SQL Server 2000 performance, you should determine
your monitoring goals. You must decide what performance characteristics to moni-
tor and how to monitor them effectively. The first step in performance monitoring
is to understand the fundamental performance goals of any SQL Server installation.

■ User perspective. To minimize the response time for each query submitted
by each user. Response time is defined as the length of time required for the
first row of a result set to be returned to the user. This provides visual confirma-
tion that the submitted query is being processed.

■ Server perspective. To maximize the total server throughput of queries sub-
mitted by users. Total server throughput is defined as the total number of que-
ries handled by the server during a given period of time.

Many steps are involved in achieving these performance goals. These steps include
providing adequate hardware resources, properly designing the database to avoid
excessive blocking, and writing applications that submit efficient queries. As a
database administrator, you generally do not have control over all performance fac-
tors. However, you do have the monitoring tools to determine and isolate the source
of performance problems. Once you understand the source of performance prob-
lems, you can determine the best course of action to take to improve query
response time and server throughput. For example, if the cause of poor perfor-
mance is a poorly designed database that is slowed by excessive blocking, throwing
more hardware resources at the problem will provide minimal performance benefit.
Similarly, if you determine that the problem is either a congested network or an
inefficient client application (such as one that generates excessive data roundtrips

Chapter 14 Monitoring SQL Server Performance and Activity 511
between the client and server), improving the hardware resources on the server will
not resolve the problem.

Identifying Performance Bottlenecks
To improve the performance of your SQL Server 2000 installation, you must first
identify the cause of the performance bottleneck. A performance bottleneck is
defined as a performance-limiting condition caused by excessive demand on a sys-
tem resource or database object. A performance bottleneck also causes underuti-
lization of other system resources or database objects. Inadequate hardware
resources, such as memory or processor, are common causes of bottlenecks. You
can generally solve these problems either by adding additional hardware resources
or by moving some of the load to other servers. You can generally detect a hard-
ware resource bottleneck by observing excessive use of one or more hardware
resources. Excessive processor use does not necessarily indicate the need for more
processor resources. Other factors can also cause excess usage. These include inad-
equate memory, which causes hard disk paging, or inefficient queries, which can
generate excessive processor use.

Low numbers can mean that the system is performing better than expected, but
they can also reveal a performance bottleneck. For example, if query response
times are low and the hardware resources on your SQL Server 2000 computer are
not overworked, you must look beyond hardware resources on the server itself. The
problem could be a slow network or congestion preventing queries from reaching
SQL Server 2000, inefficient queries, or a poorly designed database. Performance
monitoring is the process of identifying performance-limiting factors, so they can
be resolved.

Solving one performance bottleneck can reveal another performance bottleneck.
For example, if you solve an I/O bottleneck by adding an additional hard disk, you
might then find you have a processor bottleneck or a need to further optimize some
queries. At some point, the incremental performance gain from solving a bottle-
neck will not be worth the time or cost. For example, the cost required to improve
query response time by 15 percent might not be cost-effective if users consider the
current query response time acceptable. However, what is acceptable today can
change over time as the number of users increases and the database grows. You
might need to optimize queries that were efficient with fewer users and plenty of
hardware capacity as database utilization changes.

Determine Trends
When monitoring SQL Server 2000, you must gain an understanding of the normal
range of values for various counters. This enables you to detect the onset of prob-
lems and take corrective actions before they become critical. You should establish
an evolving performance baseline. This involves recording an initial performance
baseline using a number of different monitoring tools. This will help you understand
how various aspects of your system perform under normal production loads and

512 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
before any problems arise. You should update this baseline periodically using the
same monitoring methods and definitions. Significant changes should be analyzed.

Recording and monitoring the same type of information over time enables the data-
base administrator to recognize values that are far above or far below normal. The
cause of abnormal values will generally reveal the onset of a problem that warrants
additional investigation. Maintaining an evolving baseline assists the database
administrator in determining when additional hardware resources are needed, addi-
tional indexes should be created, or frequently run queries need to be optimized.
An application or a database design that is efficient for a certain number of users
can become inefficient as more users increase competition for server resources.
They can also remain efficient, but simply require additional hardware resources to
handle the increased load. Regularly monitoring the trends will help you to deter-
mine the areas in which you will need to concentrate time and resources.

Note Using an evolving performance baseline also assists the database adminis-
trator in determining peak hours and off-peak hours. This is useful for scheduling
maintenance tasks.

Determining Resources and Activities to Monitor
Factors to monitor that affect SQL Server 2000 performance include hardware
resources, network traffic, database design, and client applications.

■ Hardware resources might be inadequate for the load on the server—for exam-
ple, insufficient processor resources causing processor queuing.

■ Competing server applications on the SQL Server 2000 computer might be
using excessive resources—for example, running Microsoft Exchange Server
and Microsoft SQL server on the same computer.

■ Hardware resource use might be unbalanced—for example, one disk being
overused while another disk is underused.

■ A hardware resource might be malfunctioning—for example, a disk beginning
to fail causing excessive retries.

■ General network congestion might occur—causing connection failures and
excessive retries.

■ Improper use of cursors or ad hoc queries—transferring excessively large
amounts of data between client and server, which might only appear as a prob-
lem over a slow connection.

■ Poor database design—resulting in excessive blocking locks. A blocking lock is
a lock on a resource (such as a row or a table) held by a process that prevents
another process from accessing the same resource until the first process
releases the lock.

Chapter 14 Monitoring SQL Server Performance and Activity 513
■ Poorly written applications—resulting in deadlocks. A deadlock occurs when a
process holds a lock blocking a second process and the second process holds a
lock blocking the first process. When an instance of SQL Server 2000 detects a
deadlock (through the use of an algorithm), it will terminate one of the transac-
tions, allowing the other to continue to process.

Isolating the Problem
Determining the source of a problem is generally a process of using one or more
monitoring tools to identify the symptoms of the problem. Once you identify the
symptoms, you must then perform additional monitoring tasks to obtain more spe-
cific information to isolate the source of the problem. In Lesson 2, you will learn
about each monitoring tool and its capabilities. In Lesson 3, you learn to perform
various monitoring tasks to assist in isolating performance problems with your
SQL Server 2000 installation.

Lesson Summary
The goal of performance monitoring is to maintain and improve the overall perfor-
mance and efficiency of your SQL Server 2000 installation. This consists of
improving response times and server throughput. Maintaining an evolving perfor-
mance baseline enables the database administrator to detect patterns of change
before serious problems occur. Solving performance problems involves identifying
and isolating performance bottlenecks to determine the areas in which to concen-
trate resources and most effectively improve performance.

514 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Choosing Among Monitoring Tools

SQL Server 2000 and Windows 2000 provide a number of tools the database
administrator can use to monitor SQL Server performance and activity. In this les-
son, you are introduced to each of the tools and its use. The two primary tools are
Windows 2000 System Monitor, which is used to monitor overall system resource
use, and SQL Profiler, which is used to monitor selected details regarding selected
SQL Server events.

After this lesson, you will be able to
■ Describe and use each SQL Server 2000 monitoring tool

■ Determine the appropriate tools for each monitoring task

Estimated lesson time: 15 minutes

Using System Monitor
Windows 2000 System Monitor (called Performance Monitor in Windows NT 4.0)
is used to monitor resource usage on either the local computer or a remote com-
puter. Use System Monitor to detect inadequate resources or resource use levels
that warrant additional investigation, such as an excessive number of blocking
locks or a significant increase in memory usage. Because System Monitor can
impact performance, administrators frequently perform monitoring from a remote
computer. If you do run System Monitor from the local computer, you can log the
System Monitor data to another disk or computer to reduce impact on performance.

System Monitor is generally used either to view real-time performance data or to
record data to disk for later review and analysis. System Monitor includes perfor-
mance objects, counters, and instances.

■ Performance objects generally correspond to hardware resources (such as
memory, physical disk, or processor) or Windows services (such as server work
queue or print queue).

■ Counters are data items regarding aspects of each performance object (such as
pages/sec for the memory performance object or writes/sec for the physical
disk performance object).

■ Instances are multiple performance objects of the same type (such as for multi-
ple processors or hard disks).

System Monitor is extensible, enabling server applications (such as SQL Server
2000) to add performance objects, counters, and instances specific to the particular
server application. Table 14.1 describes the performance objects (other than repli-
cation performance objects) added to System Monitor by SQL Server 2000 to track
activity that is specific to SQL Server.

Chapter 14 Monitoring SQL Server Performance and Activity 515
Table 14-1. Performance Objects for Tracking SQL Server Activity

SQL Server Performance Object This Counter Measures… Used to Monitor…

SQL Server: Access Methods Access to and allocation of log-
ical SQL Server database
objects (such as data and index
pages).

Index and query efficiency based on types
of pages accessed, page splits, and page
allocations.

SQL Server: Backup Device Backup and restore perfor-
mance information on a per-
device basis.

Throughput or progress of backup and
restore operations on a per-device basis.

SQL Server: Buffer Manager Memory buffer use, including
free buffer pages and buffer
cache hit ratio.

Lack of physical memory, frequency of disk
reads, and efficiency of query performance.

SQL Server: Cache Manager Memory used for caching
stored procedures, Transact-
SQL statements, and triggers.

Efficiency of plan caching and reuse.

SQL Server: Databases Database activity, including
active transactions, bulk copy
throughput, backup and restore
throughput, and transaction log
activities.

Level of user activity in a database, auto-
growth and autoshrink operations, fullness
of the transaction log, and performance
levels for bulk copy, backup, and restore
operations.

SQL Server: General Statistics General server-wide activity,
including user connections and
logins.

Overall connection activity.

SQL Server: Latches Internal SQL Server resource
locks (called latches).

Performance bottlenecks based on the num-
ber and length of waits for internal resource
locks to be granted.

SQL Server: Locks Individual lock requests made
by SQL Server, including num-
ber of lock timeouts and num-
ber of deadlocks.

Overall number and types of locks. Mini-
mizing locks improves concurrency and
performance.

SQL Server: Memory Manager Overall memory usage, includ-
ing memory used for connec-
tions and locks, available
memory, and granted memory.

Overall memory usage for various objects,
to determine whether a memory shortage
exists.

SQL Server: SQL Statistics Transact-SQL queries, includ-
ing T-SQL compilations, T-
SQL recompilations, and num-
ber of batches received.

Query compilation speed and overall effi-
ciency of the query optimizer. Minimizing
compilation time and re-compilation fre-
quency improves performance.

SQL Server: User Settable Object Custom counters based on
stored procedures or Transact-
SQL statements.

Custom information, such as product inven-
tory or number of orders.

516 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Using Task Manager
Windows 2000 (and Windows NT 4.0) Task Manager is used to provide a snapshot
in real time of the amount of memory and processor resources used by each process
and application running on a computer. This snapshot shows the relative server
loads of competing server applications on the same computer. It also provides an
overview of the total level of memory and processor usage on the computer. You
can use this overview to quickly determine whether inadequate hardware resources
are a problem.

Note Task Manager is not available with Windows Me and Windows 98.

Using SQL Profiler
SQL Profiler is a graphical SQL Server 2000 tool used to monitor (trace) selected
SQL Server events, and save the information to a table or file with a .TRC filename
extension for later analysis. For example, you can monitor slowly executing stored
procedures or events immediately preceding deadlocks. You can create traces and
then replay them (in real time or step by step) on another computer running SQL
Server (a test server) to debug performance and coding problems with Transact-
SQL statements or stored procedures.

Note Certain data columns are required to replay a trace. Use the
SQLProfilerTSQL_Replay preconfigured trace template as a starting point for cap-
turing selected data for replay.

A SQL Server event is any action generated within the SQL Server engine. Events
include logins, Transact-SQL statements, stored procedures, batches, errors, cur-
sors, and security permission checks. For each event, you can choose to monitor
selected information, including computer name, object affected (such as table
name), user name, text of the Transact-SQL statement or stored procedure, and time
started and stopped. This trace definition information is stored in a template with a
.TDF filename extension that defines the information that will be captured into a file
or table. The result of this capture of information is called a trace. Using the same
definitions over time is useful for detecting performance and usage trends.

You should take care to avoid monitoring too many events, which can affect SQL
Server performance. The default maximum size of a trace file is 5 MB. By default,
SQL Profiler creates a new trace file when the current trace file reaches the maxi-
mum size. The new trace filename is the original .TRC filename with a number
appended to it. Limit trace size by limiting the type of events and data collected.
Filters such as like and not like, equals and not equals, and greater than or equal
and less than or equal should also be used to limit event data (such as by database,
application, or user).

Chapter 14 Monitoring SQL Server Performance and Activity 517
Events are grouped into event categories. Within each event category are event
classes for capturing data about selected SQL Server events. Table 14.2 describes
the event categories that can be monitored.

Table 14-2. Event Categories That Can Be Monitored with SQL Profiler

Event Category
Event Classes in This Event Category
Monitor... Used to Monitor…

Cursors Cursor creation, use, and deletion
events.

The actual types of cursors being used, which
is not necessarily the type specified by the call-
ing application.

Database Automatic data and transaction log file
growth and shrinkage events.

Automatic growth of data and transaction log
files, to properly size these files for maximum
performance.

Errors and Warnings Error and warning events, such as stored
procedure compilation errors or missing
column statistics warnings.

The length of waits for resources, which can
indicate contention issues. Also, the efficiency
of query optimizer execution plans.

Locks Lock acquired, canceled, escalated, and
released events.

Contention issues based on type and length of
locks. Also, deadlocks and timeout events. Can
generate large files.

Objects Object creating, opening, closing, drop-
ping, and deleting events.

Ad hoc creation of objects by applications and
users. Can generate particularly large files.

Performance Query optimizer showplan information
and the execution of SQL data manipu-
lation language (DML) operators.

Query execution and query optimizer effi-
ciency by capturing the plan tree, the query
plan cost estimates, the query execution statis-
tics, and the query plan tree.

Scans Tables or indexes scanned. Types of scans being performed on an object.

Security audit Audit events. Logins, logouts, security and permission
changes, password changes, and backup and
restore events.

Server Memory change events. Changes in SQL Server memory usage greater
than 1 MB or 5% of the maximum server
memory, whichever is greater.

Sessions Length of time per user connection and
amount of SQL Server processor time
used by queries submitted using each
connection.

Connected users, database activity, and CPU
time used, for charging for usage and activity.

Stored procedures Stored procedure execution informa-
tion, including cache hits and misses,
order of execution, when aged out of
cache, and when recompiled.

Memory to determine additional memory
needs. Also, use of stored procedures by
applications.

Transactions Transaction execution information. Types of logging activity by applications. Also,
transaction commits and rollbacks, and distrib-
uted transactions.

518 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
With SQL Profiler, you can use the preconfigured trace definitions (called tem-
plates) either as is or as a basis for custom templates. These templates define the
types of event information that SQL Profiler will trace and capture. Table 14.3
describes the preconfigured trace templates that ship with SQL Server 2000.

Note SQL Profiler supports C2-level security auditing for C2-certified systems
(C2 is a government-defined security level). To enable C2 Audit Mode, use the
sp_configure system stored procedure. Refer to the topic “C2 Audit Mode Option”
in SQL Server Books Online for further information.

Using SQL Query Analyzer
You can use SQL Query Analyzer to view and analyze the execution plan for a
query. You use this plan to determine how efficiently queries are being processed
and whether indexes are being used effectively. To view the execution plan for a
query, enter the query in the query pane and then click Show Execution Plan on the
Query menu. The estimated execution plan displays in the results pane. Refer to the
topic “Graphically Displaying the Execution Plan Using SQL Query Analyzer” in
SQL Server Books Online for assistance in interpreting the results displayed. The
details of analyzing query plans are beyond the scope of this book.

TSQL Execution of SQL Server statements and
batch events.

Accuracy of application results compared to
expected results during application testing.
Also, events that take a long time to run,
including the users who submit these queries.

User configurable Custom events. User-defined events, such as application
progress reports at specified points during
application testing.

Table 14-3. Preconfigured Trace Templates in SQL Profiler

Template Name A Trace Using This Definition Captures…

SQLProfilerSP_Counts The number of stored procedures that run; groups the
results by stored procedure name and includes the number
of times the procedure has executed.

SQLProfilerStandard General information regarding SQL batches and stored
procedures executed and their connections, in execution
order.

SQLProfilerTSQL Each Transact-SQL statement issued in execution order
including the time each statement was issued.

Table 14-2. Event Categories That Can Be Monitored with SQL Profiler (continued)

Event Category
Event Classes in This Event Category
Monitor... Used to Monitor…

Chapter 14 Monitoring SQL Server Performance and Activity 519
Using the SQL Server Enterprise Manager Current Activity
Window
The SQL Server Enterprise Manager Current Activity window displays a snapshot
of information regarding processes, user activity, locks held by processes, and
locks held on objects. The current activity window is used to perform ad hoc moni-
toring to determine blocked and blocking transactions. As a system administrator,
you can kill a selected process or send a message to the user who is executing a
transaction that is causing a blocking lock or a deadlock. You can also view cur-
rently connected users and their last executed statement. Finally, you can view all
locks currently in effect on the system based on the database object.

Using Transact-SQL
There are a number of types of Transact-SQL statements that you can issue to mon-
itor SQL Server 2000 activity and performance. These statements can display
either current resource information or performance over a period of time.

System Stored Procedures
The system stored procedures you can use to monitor SQL Server 2000 activity
and performance are described in Table 14.4.

SQLProfilerTSQL_Duration Each Transact-SQL statement issued; groups the results by
duration (in milliseconds).

SQLProfilerTSQL_Grouped Each Transact-SQL statement issued; groups the results by
user submitting them.

SQLProfilerTSQL_Replay Details about each Transact-SQL statement issued, in suffi-
cient detail to be used for replay in SQL Query Analyzer.
Use this preconfigured template as a starting point for cap-
turing data for replay.

SQLProfilerTSQL_SPs Details in execution order about each stored procedure that
executes, including the Transact-SQL commands within
each stored procedure.

SQLProfilerTuning Duration information and binary data about each stored
procedure issued and SQL batch executed. Binary data
includes information such as session level settings, type of
cursor issued, and lock type.

Table 14-3. Preconfigured Trace Templates in SQL Profiler

Template Name A Trace Using This Definition Captures…

520 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
In addition, all of the functions of SQL Profiler can be executed using stored proce-
dures. These include the sp_trace_create, sp_trace_generateevent,
sp_trace_setevent, sp_trace_setfilter, and sp_trace_setstatus system stored proce-
dures.

DBCC
Transact-SQL provides several types of Database Console Commands (DBCCs)
for SQL Server 2000. You use DBCC commands to check physical and logical
database consistency, as well as monitor SQL Server. Most inconsistencies
detected can also be repaired by specifying the repair option. The DBCC state-
ments most commonly used to check database consistency and monitor perfor-
mance statistics are described in Table 14.5.

Built-in Functions
Transact-SQL provides a number of built-in functions (also called T-SQL globals)
that keep track of specific information regarding SQL Server activity, such as per-
formance statistics about activity since SQL Server was last started. This informa-
tion is stored in predefined SQL Server counters and accessed using the SELECT
statement. Table 14.6 describes the most commonly used T-SQL global counters.

Table 14-4. System Stored Procedures for Monitoring Performance

System Stored
Procedure The Procedure Reports… Used to Monitor…

sp_who Snapshot of current users and pro-
cesses, including the currently exe-
cuting command.

Active users and their processes.

sp_who2 Snapshot of current users and pro-
cesses with additional columns
(also more readable).

Active users and their processes.

sp_lock Snapshot of current locks. Blocking locks and deadlocks, and
the process causing them.

sp_spaceused Estimate of current disk space
reserved and used by a table or the
entire database.

Database or object space usage.

sp_monitor Statistics, including CPU use, I/O
use, and idle time since last execu-
tion of sp_monitor.

Volume of work performed during
period of time.

Chapter 14 Monitoring SQL Server Performance and Activity 521
Table 14-5. DBCC Statements Used for Monitoring

DBCC Statement Statement Activity

DBCC CHECKCATALOG Verifies that every data type in the syscolumns table also has an entry in
the systypes table, and that every table and view in the sysobjects table
has at least one column in the syscolumns table.

DBCC CHECKDB Checks the allocation and structural integrity of all objects in a specified
database. Use the repair option to correct minor inconsistencies. Includes
the functionality of the DBCC CHECKALLOC and DBCC CHECK-
TABLE statements.

DBCC CHECKCONSTRAINTS Verifies foreign key and check constraints on a table.

DBCC CHECKFILEGROUP Performs the same function as DBCC CHECKDB, but limited to a single
specified filegroup and required tables.

DBCC CONCURRENCYVIOLATION Checks how many times more than five batches were executed concur-
rently on the SQL Server 2000 Personal Edition or the SQL Server 2000
Desktop Engine. Performance of the database engine is limited when
users execute more than five batches concurrently on these editions.

DBCC DROPCLEANBUFFERS Removes all clean buffers from the buffer pool. You use this statement to
test queries with an empty buffer cache without shutting down and restart-
ing the server.

DBCC OPENTRAN Displays information regarding the oldest active transaction and oldest
distributed and nondistributed replicated transactions within a specified
database.

DBCC PROCCACHE Displays information regarding the contents of the procedure cache,
including number of stored procedures in cache, the number currently
executing, and the size of the procedure cache.

DBCC SHOWCONTIG Displays fragmentation information for the data and indexes of a table.

DBCC SHOW_STATISTICS Displays the current distribution statistics for an index or statistics collec-
tion on a table.

DBCC SQLPERF (LOGSPACE) Displays statistics about transaction log space size and percent used in all
databases for a SQL Server instance.

DBCC UPDATEUSAGE Checks and corrects inaccuracies in space usage reports by the
sp_spaceused system stored procedure for the sysindexes table.

Table 14-6. Commonly Used T-SQL Global Counters

Counter Count Since SQL Server Started

@@CONNECTIONS Number of connections (including attempted connections)

@@CPU_BUSY Time in milliseconds that the processor has spent working

@@IDLE Time in milliseconds that SQL Server has been idle

@@IO_BUSY Time in milliseconds that SQL Server has spent performing
input and output operations

@@PACK_RECEIVED Number of input packets read from the network

522 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Trace Flags
Trace flags are an unsupported feature of SQL Server 2000 and might not be sup-
ported in future releases. You can use them to temporarily enable specified server
characteristics or turn off certain behavior. They leave a record of their activity in
the SQL Server error log, and are therefore useful for debugging. They are gener-
ally used by developers. However, they are also referenced in Knowledge Base arti-
cles. Use DBCC TRACEON to enable a specified trace flag. For example, enabling
trace flag 3205 disables hardware compression on tape drives. For more informa-
tion on this topic, refer to Kalen Delaney’s book, Inside Microsoft SQL Server 2000
(Microsoft Press, 2000).

Using SNMP
You can use Simple Network Management Protocol (SNMP) to send management
information across different operating system platforms. Management information
can include performance statistics and configuration information. SNMP can only
monitor the default instance. SQL Server 2000 support for SNMP is enabled auto-
matically on Windows 2000 and Windows NT 4.0 computers supporting SNMP.

Lesson Summary
System Monitor is used to monitor resources used on the local computer or on
remote computers by various server processes. Task Manager provides a quick
snapshot of per-process usage or overall resource usage. SQL Profiler is used to
monitor events and processes that are specific to SQL Server. SQL Query Ana-
lyzer is used to display estimated execution plans for query efficiency analysis.
The SQL Server Enterprise Manager Current Activity window provides a snapshot
of current user and locking activity, and can be used to terminate a process. Trans-
act-SQL system stored procedures and built-in functions can be used to provide
snapshots of current activity, or to provide statistics regarding resource usage over
a period of time. DBCC statements can be used to check database consistency and
monitor SQL Server. SNMP can be used for centralized reporting across various
operating systems.

@@PACK_SENT Number of output packets written to the network

@@PACKET_ERRORS Number of network packet errors that have occurred on
connections

@@TOTAL_ERRORS Number of disk read/write errors encountered

@@TOTAL_READ Number of disk reads (not cache reads)

@@TOTAL_WRITE Number of disk writes

Table 14-6. Commonly Used T-SQL Global Counters (continued)

Counter Count Since SQL Server Started

Chapter 14 Monitoring SQL Server Performance and Activity 523
Lesson 3: Performing Monitoring Tasks

Monitoring SQL Server 2000 consists of performing various tasks to monitor lev-
els of resource usage and specific SQL Server events. In this lesson, you will learn
to use Windows 2000 System Monitor and Task Manager to monitor memory, I/O,
and processor use. You will also monitor the execution of stored procedures and
SQL batches using SQL Profiler. Finally, you will monitor locks using the SQL
Server Enterprise Manager Current Activity window and system stored procedures.

After this lesson, you will be able to
■ Use System Monitor and Task Manager to monitor resource usage

■ Use SQL Profiler to monitor stored procedures and Transact-SQL batches

■ Use SQL Profiler to monitor user activity

■ Use the SQL Server Enterprise Manager Current Activity window and system
stored procedures to view blocking locks and deadlocks

Estimated lesson time: 45 minutes

Monitoring Resource Usage
You monitor resource use (memory, I/O, and processor) to determine whether ade-
quate resources exist, and also to determine the relative use of resources by differ-
ent server processes. It is useful to test resource usage on a computer with minimal
load to establish the performance baseline before you place a load on the system.

Task Manager
To monitor resource use with Task Manager, right-click the Windows taskbar and
then click Task Manager. You can also press the CTRL+ALT+DEL key combina-
tion and then click the Task Manager button in the Windows Security menu. To
view resource use on a per-process basis, click the Processes tab in Task Manager.
See Figure 14.1.

524 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F14ST01.EPS” >>

Figure 14.1. Task Manager (Processes tab).

In the Processes tab, notice the five default columns of information that are dis-
played. You can sort the information displayed by clicking a column heading.
Notice that in Figure 14.1, the columns are ordered based on the amount of mem-
ory used for each process. Click Select Columns on the View menu to select addi-
tional columns to appear on the Processes page. Figure 14.2 shows the Select
Columns dialog box.

<< “F14ST02.EPS” >>

Figure 14.2. Selecting additional columns within Task Manager.

Chapter 14 Monitoring SQL Server Performance and Activity 525
You can control the frequency with which the information is refreshed (or pause
the display) by clicking Update Speed on the View menu in Task Manager. In the
Options menu, you can control whether Task Manager always appears on top of
other applications on the desktop (this is the default behavior) and also whether
Task Manager appears on the Windows taskbar when minimized (default).

Click the Performance tab to view overall resource use on the computer. See
Figure 14.3.

<< “F14ST03.EPS” >>

Figure 14.3. Task Manager (Performance tab).

Notice, in the Totals group box, that you can view processor use, based on handles,
threads, and processes. You can also view memory use, based on committed mem-
ory (including virtual memory) in the Commit Charge (K) group box, physical
memory in the Physical Memory (K) group box, and kernel memory in the Kernel
Memory (K) group box. In Figure 14.3, notice that the peak committed memory is
higher than the total physical memory on the computer. This indicates that this
computer could benefit from additional memory.

Note When Task Manager is running, the System Tray always displays the over-
all CPU usage value from Task Manager.

System Monitor
To monitor resource use with System Monitor, click Performance in the Adminis-
trative Tools program group. System Monitor is a snap-in within the Performance
console. See Figure 14.4.

526 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F14ST04.EPS” >>

Figure 14.4. Performance MMC with the System Monitor snap-in.

System Monitor displays the counter values for selected performance objects,
counters, and instances. These can be current values, a snapshot of values at a given
point in time, or values from a saved Counter Log. To add counters to System Mon-
itor, click the Add button on the toolbar to display the Add Counters dialog box.
See Figure 14.5. Notice that you can use counters from the local computer, or you
can select a remote computer to monitor.

<< “F14ST05.EPS” >>

Figure 14.5. Adding counters to System Monitor.

You can view counter values as a chart, histogram, or report by clicking the corre-
sponding button on the toolbar. See Figures 14.6, 14.7, and 14.8.

Chapter 14 Monitoring SQL Server Performance and Activity 527
<< “F14ST06.EPS” >>

Figure 14.6. Chart view of System Monitor.

<< “F14ST07.EPS” >>

Figure 14.7. Histogram view of System Monitor.

528 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F14ST08.EPS” >>

Figure 14.8. Report view of System Monitor.

Select a counter and then click the Highlight button on the toolbar (or press
CTRL+H on your keyboard) to highlight the counter in white in the chart or histo-
gram view. You can only highlight one counter at any given time. Click the Freeze
Display button on the toolbar to freeze the counter values at a particular point for
further analysis. Click the Properties button on the System Monitor toolbar (not the
Performance MMC toolbar) to alter the properties of System Monitor. Properties
include update frequency (default is 1 second) and display characteristics.

To create a log for later review, expand Performance Logs And Alerts, right-click
Counter Logs, and then click New Log Settings. You will be prompted to enter the
name of the new log file in the New Log Settings dialog box, and then the
NewLogFile dialog box appears, as shown in Figure 14.9.

You can create a log file definition containing the counters to be logged, the sam-
pling interval, the file size (including enabling file rollover), and a logging schedule.

Memory Objects and Counters
You should monitor your computer to determine whether there is adequate memory
on the computer for the processes that are running. Indications of insufficient mem-
ory are a lack of available memory and hard disk paging. Multiple counters must be
interpreted together. You might also need to determine which processes are using
memory and to isolate the memory used by SQL Server. This information is useful

Chapter 14 Monitoring SQL Server Performance and Activity 529
for setting minimum and maximum memory values for SQL Server when sharing
the computer with other server applications.

<< “F14ST09.EPS” >>

Figure 14.9. Creating a memory counter log in System Monitor.

Table 14.7 describes the most important memory counters to monitor and provides
help in interpreting values received.

Note You might need to use LogicalDisk counters rather than PhysicalDisk
counters if you have multiple logical partitions on a single physical disk. Whereas
physical disk counters are enabled by default, logical disk counters are not. Use the
Diskperf –yv command to enable logical disk counters (and to reboot the system).

I/O Objects and Counters
Overloaded disk subsystems are one of the most common performance problems
with SQL Server installations. I/O-bound disks cause disk queuing and a general
degradation of overall system performance. This problem is solved, in most cases,
by adding additional disks to RAID or by implementing RAID. However, insuffi-
cient memory and inefficient queries can also cause excessive disk I/O. Table 14.8
describes the most important I/O object counters to monitor and provides help on
interpreting values received.

Processor Objects and Counters
Inadequate processor resources are also a common performance problem. Addi-
tional processors or a faster processor can solve the problem. However, inadequate
memory (causing excessive paging and processor use) or inefficient statements

530 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
(generating excessive processor use) can also be the cause of the performance bot-
tleneck. Table 14.9 describes the most important processor object counters to mon-
itor and provides help on interpreting values received.

Table 14-7. Memory Object Counters

Object Counter This Object Counter Reports … How to Interpret…

Memory \ Available
Mbytes

Megabytes of memory currently
available for use.

A low value can indicate a shortage of mem-
ory or an application failing to release
memory.

Memory \ Pages/sec Number of pages retrieved from disk
or written to free space in the work-
ing set on the disk because of hard
page faults.

A high value (above 20) can indicate exces-
sive hard disk paging because of a memory
shortage.

PhysicalDisk \ Avg. Disk
Queue Length

Average number of both read and
write requests that were queued.

If an increase in disk queue length is not
accompanied by a decrease in memory pag-
ing, a memory shortage exists.

Memory \ Page Faults/sec The overall rate that faulted pages are
handled by the processor.

A high value for overall page faults/sec
coinciding with a low value for the SQL
Server instance indicates that SQL Server is
not causing the memory shortage.

Process \ Page Faults/sec
for the SQL Server
instance

The rate faulted pages occur because
of the SQL Server process for a given
SQL Server instance.

A high value for overall page faults/sec
coinciding with a low value for the SQL
Server instance indicates that SQL Server is
not causing the memory shortage.

SQL Server: Memory
Manager \ Total Server
Memory (KB)

Total amount of dynamic memory
SQL Server is currently using for its
memory buffer.

If this value is consistently close to the total
amount of physical memory of the computer
(or the configured maximum memory
value), more memory might be needed.

Process \ Working Set for
the SQL Server instance

Total number of current bytes in the
Working Set for the SQL Server
instance.

Use this value to determine the maximum
memory needed for SQL Server with the
current load.

SQL Server: Buffer Man-
ager \ Buffer Cache Hit
Ratio

Percentage of pages found in the
memory buffer pool without having
to incur a read from disk.

This value should generally be above 90%.
If not, more memory is generally needed.

SQL Server: Buffer Man-
ager \ Total Pages

Total number of pages in the buffer
pool (including data, free, and stolen
pages).

A low value can indicate a shortage of mem-
ory available for the buffer pool.

Chapter 14 Monitoring SQL Server Performance and Activity 531
Table 14-8. I/O Object Counters

Object Counter This Object Counter Reports … How to Interpret…

PhysicalDisk \
% Disk Time

Percentage of elapsed time during
which the hard disk is busy servicing
read or write requests.

A low rate of disk paging coinciding with a high
rate of disk usage and disk queuing indicates a
disk bottleneck. Can be over 100% if using a
RAID device or an intelligent disk controller.

PhysicalDisk \
Avg. Disk Queue
Length

Average number of both read and write
requests that were queued.

A low rate of disk paging coinciding with a high
rate of disk usage and disk queuing indicates a
disk bottleneck. A disk queue above 1.5 to 2 times
the number of disk spindles indicates a disk
bottleneck.

PhysicalDisk \ Cur-
rent Disk Queue
Length

Instantaneous number of both read and
write requests that are queued.

Use in conjunction with the PhysicalDisk \ Avg.
Disk Queue Length to determine whether a disk
bottleneck exists.

PhysicalDisk \
Avg. Disk/sec
Write

Average time to write data to disk (disk
latency).

A disk latency value above 15 to 20 milliseconds
indicates a disk bottleneck.

PhysicalDisk \
Avg. Disk/sec Read

Average time to read data from disk. A disk latency value above 15 to 20 milliseconds
indicates a disk bottleneck.

PhysicalDisk \ Disk
Writes/sec

Rate of write operations. If the rate of disk writes plus disk reads is not
close to the capacity of the hard disk and disk
latency is high, a faulty disk is likely. If the com-
bined rate is close to the capacity, a disk bottle-
neck is likely.

PhysicalDisk \ Disk
Reads/sec

Rate of read operations. If the rate of disk writes plus disk reads is not
close to the capacity of the hard disk and disk
latency is high, a faulty disk is likely. If the com-
bined rate is close to the capacity, a disk bottle-
neck is likely.

Table 14-9. Processor Object Counters

Object Counter This Object Counter Reports … How to Interpret…

Processor \
% Processor Time

Percentage of time the processor spent
executing non-idle threads.

Rates above 75% generally indicate a processor
bottleneck. Systems with values above 60% can
generally benefit from more processor power.

System \ Proces-
sor Queue Length

Number of threads in the processor
queue.

A sustained processor queue above two threads
generally indicates a processor bottleneck.

532 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Practice: Monitoring System Resources Using System
Monitor and Task Manager
In this practice you use System Monitor and Task Manager to monitor system
resource use.

� To monitor system resources using System Monitor and Task Manager

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Minimize all running applications.

3. Right-click the Windows taskbar and then click Task Manager.

Windows Task Manager appears.

4. Click the Performance tab.

Notice the overall values for process and memory use. In particular, note the
delta between Total Physical Memory and both the Total Commit Charge and
the Peak Commit Charge. These indicators will tell you if you have an overall
memory shortage on your computer.

5. On the Options menu, click Hide When Minimized and then minimize Win-
dows Task Manager.

6. Click Start and then click Run.

7. In the Open drop-down combo box, type C:\SelfPacedSQL\CH_14 \
Monitor.msc, and then click OK.

A preconfigured Performance console appears displaying a number of perfor-
mance object counters in the Report view. Review the displayed counters.

8. On the toolbar, click the Freeze Display button.

You will use this frozen display to compare values with a SQL Server load and
without a SQL Server load.

9. Click Start and then click Run.

10. In the Open drop-down combo box, type C:\SelfPacedSQL\CH_14 \
Monitor.msc and then click OK.

A second version of the same preconfigured Performance console appears.

11. Right-click the taskbar and then click Tile Windows Vertically.

The two Performance consoles are displayed side by side.

12. Click Start and then click Run.

13. In the Open drop-down combo box, type C:\SelfPacedSQL\
CH_14\Load.bat, and then click OK.

The OSQL command-prompt utility runs the LoadInLoop.sql command in the
Command Prompt window.

Chapter 14 Monitoring SQL Server Performance and Activity 533
14. Minimize the Command Prompt window.

Notice the effect of the load on the performance object counters. Compare the
counters between the frozen instance of System Monitor and the unfrozen
instance. Notice the load on the disk. Determine whether you have a memory
shortage on your computer or the processor needs additional power.

15. Double-click Task Manager in the system tray.

Windows Task Manager appears. Notice the overall values for process and
memory use. In particular, notice how the delta between Total Physical Mem-
ory and both the Total Commit Charge and the Peak Commit Charge changed.
Does your system have a memory shortage?

16. After the OSQL command in the Command Prompt window finishes, notice the
reduced load on the computer.

17. Close the Windows Task Manager and both copies of the Performance console.

Monitoring Stored Procedures, Transact SQL Batches, and
User Activity
To monitor stored procedures and Transact-SQL batches, click Profiler in the
Microsoft SQL Server program group. See Figure 14.10.

<< “F14ST10.EPS” >>

Figure 14.10. SQL Profiler.

You can create a new trace, create a new template, or open an existing trace file for
analysis and replay. To create a new trace, click the New Trace button on the tool-
bar (or point to New and then click Trace in the File menu) and then, in the Con-
nect To SQL Server dialog box, connect to the SQL Server instance on which you
want to trace SQL Server events. The Trace Properties dialog box then appears, as
shown in Figure 14.11.

534 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F14ST11.EPS” >>

Figure 14.11. SQL Profiler Trace properties (General tab).

In the General tab, you can create a new trace definition or use one of the precon-
figured trace templates. In the Trace Name text box, use a descriptive naming con-
vention for each new trace definition you create. You can choose to save the
captured trace information to a file or table, and set a maximum size for the cap-
tured data. If you save the captured trace information to a file, notice that the
default is to enable file rollover (this creates a new file when the maximum size is
reached). You can also enable a stop time for the trace.

In the Events tab, you can choose SQL Server events (event classes) from various
categories of events. Certain event classes will already be selected based on the ini-
tial template selected. See Figure 14.12.

In the Data Columns tab, you can choose to add (or subtract) to the default data
columns to capture the information you want. You will want different types of
information for different types of traces. By moving one or more data columns up
to the Groups category, you can group the output by that data column. You move
data columns up by clicking the Up button. You can also order the data columns in
the output, by clicking the Up button or the Down button. See Figure 14.13.

In the Filters tab, you can choose to include or exclude various types of events.
Notice that, by default, SQL Profiler events are not captured. See Figure 14.14. You
might also want to exclude all events related to the domain user account of the SQL
Server service.

Chapter 14 Monitoring SQL Server Performance and Activity 535
<< “F14ST12.EPS” >>

Figure 14.12. SQL Profiler Trace Properties (Events tab).

<< “F14ST13.EPS” >>

Figure 14.13. SQL Profiler Trace Properties (Data Columns tab).

536 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F14ST14.EPS” >>

Figure 14.14. SQL Profiler Trace Properties (Filters tab).

You can also select the Exclude System IDs check box to exclude SQL events ref-
erencing system objects. This will generally capture the information you want to
analyze and will significantly reduce the size of your trace because system objects
that are being accessed can result in 50 to 75 percent of the trace events. Click the
Run button to start the trace.

After a trace has been captured, you can search within the trace for specified strings
(by clicking the Find String button on the toolbar). You can also choose to save the
template for later use or save the data captured for later analysis and comparison by
clicking Save As on the File menu.

You should create separate trace templates for different types of traces.

■ Long-running queries. Capture all data columns related to the TSQL and
Stored Procedure event classes and then group by Duration and filter by length
of time.

■ Stored procedure performance. Capture all data columns related to the
selected Stored Procedure event classes for a specified stored procedure (using
the ObjectID event criteria) or for all stored procedures, and then group by
ClientProcessID.

■ Cause of a deadlock. Capture all data columns related to selected TSQL and
Stored Procedure event classes, and group by EventClass. Use the Database ID
event criteria to limit to a specified database.

■ Login and logouts. Capture the EventClass, EventSubClass, LoginSID, and
Login data columns for the Security Audit\Audit Login event class.

Chapter 14 Monitoring SQL Server Performance and Activity 537
■ Individual user activity. Capture all data columns related to the Ses-
sions\ExistingConnection, and TSQL event classes and group by DBUserName.

Practice: Monitoring SQL Batches and Stored Procedures
In this practice you use SQL Profiler to monitor Transact-SQL batches and stored
procedures.

� To monitor SQL batches and stored procedures

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Profiler.

SQL Profiler appears.

3. On the toolbar, click the New Trace button.

The Connect To SQL Server dialog box appears.

4. Make sure that the Windows Authentication option button is selected, and then
click OK to connect to the default instance on SelfPacedCPU.

The Trace Properties dialog box appears.

5. In the Trace Name text box, type Duration.

6. In the Template Name drop-down list, click SQLProfilerTSQL_Duration and
then click the Events tab.

Notice that the only event classes being traced are RPC:Completed and
SQL:BatchCompleted.

7. Click the Data Columns tab.

Notice that the data columns selected are being grouped by EventClass and then
by Duration.

8. Click the Filters tab.

Notice that events generated by SQL Profiler are being excluded.

9. Expand DatabaseName and then expand Like.

10. Type Northwind in the Like text box.

11. Expand Duration and then expand Greater Than Or Equal.

12. Type 100 in the Greater Than Or Equal text box.

13. Click the Run button.

Notice that the Duration trace starts.

14. On the toolbar, click the SQL Query Analyzer button.

The Connect To SQL Server dialog box appears.

15. Make sure that the Windows Authentication option button is selected, and then
click OK to connect to the default instance on SelfPacedCPU.

SQL Query Analyzer appears.

538 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
16. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

17. Open Duration.sql in the C:\SelfPacedSQL\CH_14 folder.

A Transact-SQL script appears that performs a variety of SELECT statements,
which will take differing amounts of time to complete.

18. On the toolbar, click the Execute Query button.

19. Switch to SQL Profiler.

Notice the SELECT statements that appear in the trace.

20. Click the longest-running SELECT statement.

Notice that the Transact-SQL statement executed appears in the lower pane.

21. On the toolbar, click the Properties button.

The Trace Properties dialog box appears, displaying the trace properties for the
Duration trace.

22. Click the Filters tab.

Notice that the existing filters are displayed. Also notice that you cannot mod-
ify a running trace.

23. Click Cancel.

24. On the toolbar, click the Stop Selected Trace button.

25. Close SQL Profiler, but leave the SQL Query Analyzer running.

Monitoring Current Locking and User Activity
To view current locking and user activity in SQL Server Enterprise Manager,
expand the Management container for the instance and then expand the Current
Activity container. See Figure 14.15.

Notice that there are three containers: Process Info, Locks/Process ID, and Locks/
Object. In the console tree, click the Process Info container to view detailed infor-
mation in the details pane regarding all current connections and processes. See Fig-
ures 14.16 and 14.17.

Note To update the information displayed, right-click the Current Activity con-
tainer and then click Refresh.

Chapter 14 Monitoring SQL Server Performance and Activity 539
<< “F14ST15.EPS” >>

Figure 14.15. The Current Activity window.

<< “F14ST16.EPS” >>

Figure 14.16. Current Activity window (Process Info—left half).

540 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F14ST17.EPS” >>

Figure 14.17. Current Activity window (Process Info—right half).

The information available in the Process Info container is described in Table 14.10.

Table 14-10. Information in the Process Info Container

Column Description

Process ID SQL Server Process ID (SPID) of the process.

Context ID Execution context ID (ECID) of a subthread operating on behalf of the
process.

User User ID of the user who executed the command that initiated the
process.

Database Current database context of the process (certain system processes will
have no database context).

Status Process status (running, sleeping, runnable, or background) of the
process.

Open Transactions Number of open transactions for the process.

Command SQL Server command currently executing for the process.

Application Name of the application program being used by the process.

Wait Time Wait time (in milliseconds), if any, for the process.

Wait Type A string indicating the current or last wait type for the process.

Wait Resource Textual representation of a lock resource, such as a row identifier
(RID) of the process.

CPU Cumulative processor time for the process.

Physical IO Cumulative disk reads and writes for the process.

Memory Usage Number of pages in the procedure cache that are currently allocated to
this process. A negative number indicates pages being freed for
another process.

Chapter 14 Monitoring SQL Server Performance and Activity 541
The Locks/Process ID container displays each active process. Expand the Locks/
Process ID container and then click an active process in the console tree to view the
locks held by the process. See Figures 14.18 and 14.19.

Notice that SPID 53 is blocking SPID 56. SPID 53 has been granted an exclusive
row lock on the same resource on which SPID 56 is waiting for a lock. For a com-
plete list of the types and modes of locks, refer to the topic “Monitoring with SQL
Server Enterprise Manager” in SQL Server Books Online. To view the most recent
command issued by the blocking process, right-click the process ID and then click
Properties to display the Process Details dialog box. See Figure 14.20.

<< “F14ST18.EPS” >>

Figure 14.18. Locks/Process ID information for a blocking process.

Login Time Time a client process logged into the server. For server processes, the
time the server started.

Last Batch Last time a client process executed an EXECUTE statement or a
remote stored procedure call. For server processes, the time the server
started.

Host Name of the computer that initiated the process.

Network Library Net-library used by the client to initiate the process.

Network Address Network address (the Message Authentication Code [MAC] address)
for the network interface card (NIC) on the client computer that initi-
ated the process.

Blocked By SPID of a blocking process for the process.

Blocking SPID of process being blocked by the process.

Table 14-10. Information in the Process Info Container

Column Description

542 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F14ST19.EPS” >>

Figure 14.19. Locks/Process ID information for a blocked process.

<< “F14ST20.EPS” >>

Figure 14.20. Last TSQL command by the blocking process.

In Figure 14.20, notice that the most recent TSQL command batch began a transac-
tion but did not complete the transaction because this open transaction is blocking
other processes. To resolve a blocking lock or a deadlock (in the short term), the
database administrator can either click the Send Message button to send a message
to the user who initiated the blocking process or click the Kill Process button to kill
the process directly.

Note In general, applications should be coded to acquire shared locks rather than
exclusive locks when waiting for user input.

The Locks/Object container displays each database object that is locked, from the
row and table level up to the database level. See Figure 14.21.

Notice that three processes have locks on the Customer table in the SSEMDB data-
base. Process ID 53 has an exclusive row lock, and process IDs 55 and 56 are wait-
ing to place exclusive row locks on the same row.

Chapter 14 Monitoring SQL Server Performance and Activity 543
<< “F14ST21.EPS” >>

Figure 14.21. Locks/object information for a locked object.

Practice: Monitoring Blocking Problems Using the Current
Activity Window and System Stored Procedures
In this practice you use the SQL Server Enterprise Manager and system stored pro-
cedures to monitor blocking problems.

� To monitor blocking problems using the Current Activity window and system
stored procedures

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

3. Expand the Microsoft SQL Servers container, expand the SQL Server Group
container, expand the SelfPacedCPU container, expand the Management con-
tainer, expand the Current Activity container, and then click Process Info.

The Process Info details are displayed in the details pane. If you do not see the
details, right-click Process Info, point to View, and then click Detail.

4. In the details pane, click the User column to sort the user processes by user
name.

Notice two user processes for SelfPacedSQL\Administrator: one for the exist-
ing connection by SQL Server Enterprise Manager to the master database and
one for the existing connection by SQL Query Analyzer to the Northwind data-
base. Note the Process ID number for the connection by SQL Query Analyzer.

544 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
5. Switch to SQL Query Analyzer.

6. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

7. Open BlockLock.sql in the C:\SelfPacedSQL\CH_14 folder.

A Transact-SQL script appears that will begin a transaction to update the Con-
tactName for a particular CustomerID. It also executes the sp_lock system
stored procedure.

8. On the toolbar, click the Execute Query button.

Notice the information returned from the sp_lock system stored procedure. In
particular, note the locks granted to the SQL Query Analyzer SPID and note in
particular the exclusive row lock granted to this process.

9. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

10. Make sure that the Windows Authentication option button is selected, and then
click OK to connect to the default instance on SelfPacedCPU.

11. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

12. Open BlockLock2.sql in the C:\SelfPacedSQL\CH_14 folder.

13. The BlockLock2.sql query appears. This query updates the same customer
record, but does not leave the transaction open.

14. On the toolbar, click the Execute Query button.

Notice that the query does not complete its execution.

15. Switch to SQL Server Enterprise Manager.

16. In the console tree, right-click the Current Activity container and then click
Refresh.

17. In the details pane, double-click Locks/Process ID.

Notice that the first process is blocking the second process.

18. Right-click the blocking process and then click Properties.

The Process Details dialog box appears displaying the last TSQL command
batch executed by the blocking process.

19. Click the Send Message button.

The Send Message – SelfPacedCPU dialog box appears.

20. In the Message text box, type Your application is blocking. Please close your
open transaction. Then click the Send button.

A Send Message message box appears stating that the message was success-
fully sent and a Messenger Service message box appears containing the mes-
sage (one message box will appear behind the other message box).

21. Click OK in each of these message boxes to close the message boxes.

22. In the Process Details dialog box, click the Close button.

Chapter 14 Monitoring SQL Server Performance and Activity 545
23. In the console tree, click the process that is blocked.

In the details pane, notice in the Status column that the lock request for a row
lock is waiting.

24. In the console tree, expand the Locks/Object container and then click
SSEMDB.dbo.Customer.

In the details pane, notice the two row locks. The first process was granted an
exclusive row lock and the second process is waiting.

25. Switch to SQL Query Analyzer.

Notice that the second query still has not completed.

26. Switch to the first connection.

27. Highlight ROLLBACK TRAN and then click the Execute Query button on the
toolbar.

Switch to the second query. Notice that it has now executed successfully. Also
notice that the second query does not hold any exclusive locks at the end of the
transaction.

28. Switch to SQL Server Enterprise Manager.

29. In the console tree, right-click the Current Activity container and then click
Refresh.

30. In the details pane, double-click Locks/Process ID.

Notice that no blocking locks or blocked processes appear.

31. Close SQL Server Enterprise Manager and SQL Query Analyzer.

Lesson Summary
When monitoring SQL Server performance and activity, determine the monitoring
task and then select the appropriate tool. Rather than monitoring for everything all at
once, perform specific and limited monitoring tasks. Repeat these same tasks over
time to establish your evolving baseline. Use the SQL Server Enterprise Manager
Current Activity window to manage deadlocks and to view current blocking locks.

546 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You have recently been hired as the new database administrator for a medium-
sized database. You have been tasked with improving the performance of the
database, although no specific problems are apparent. Where should you start?

2. You want to be able to quickly view overall levels of resource use on a com-
puter running SQL Server to determine whether resources are adequate. What
is the most appropriate tool for the task?

3. You have been viewing current server activity through SQL Server Enterprise
Manager. You have noticed a number of blocking locks. What steps should you
take to determine whether this is a serious problem?

547
C H A P T E R 1 5

Using SQL Server Replication

Lesson 1: Introducing Replication . 548

Lesson 2: Planning for Replication . 558

Lesson 3: Implementing Replication. 562

Lesson 4: Monitoring and Administering Replication 611

Review . 629

About This Chapter
This chapter prepares you to use SQL Server replication. You will learn about the
types of replication that are available and physical replication topologies used to
implement them. You will learn about the planning issues involved in setting up
replication to perform efficiently and securely. You will learn to use SQL Server
Enterprise Manager to implement replication, create publications, and configure
Subscribers. Finally, you will learn to monitor replication and configure properties
of Distributors and replication agents.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in the Lesson 1 section of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS parti-
tion.

■ A computer with a NetBIOS name of SelfPacedCPU configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

548 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Introducing Replication

SQL Server 2000 has several different replication solutions to enable you to dis-
tribute data and stored procedures between servers in your environment. In this les-
son, you will learn about uses for replication and the terminology used in
replication. Next, you will learn about each type of replication. You will also learn
about physical replication topologies. Finally, you will learn about the different
tools available for implementing a replication solution.

After this lesson, you will be able to
■ Understand the replication terminology

■ Describe how each type of replication functions

■ Select among physical replication topologies

■ Choose replication implementation tools

Estimated lesson time: 15 minutes

Describing Replication
Replication is the process of automatically distributing copies of data and database
objects among SQL Server instances, and keeping the distributed information syn-
chronized.

Reasons to Replicate Information
There are many reasons to replicate data and stored procedures among servers.
These include

■ Reducing network traffic between separate physical locations. Rather
than requiring users in the New York office of a company to query data on a
server in London across a link with limited bandwidth, the data could be repli-
cated to a server in New York (at a time when the bandwidth was not heavily
used) and accessed locally.

■ Separating OLTP operations from decision support functions. Rather
than having decision support personnel query a busy OLTP server, the data
could be replicated to a dedicated decision support server for querying.

■ Combining data from multiple locations. Data can be entered into a local
SQL Server instance at each of several regional offices of a company and then
replicated to the national (or international) office and merged automatically.

■ Data redundancy. Data can be replicated to a standby server, which can be
used for decision support queries, and provide a copy of data in the event of a
server failure.

Chapter 15 Using SQL Server Replication 549
■ Scaling out. Data that you make available over the Internet can be replicated
to various servers in different geographic regions for load balancing.

■ Supporting mobile users. Data can be replicated to laptop computers, which
can be updated offline. When the mobile users reconnect to the network,
changed data can be replicated to and synchronized with a centralized database.

Types of Replication
SQL Server 2000 supports three types of replication: snapshot, transactional, and
merge. Snapshot replication is the periodic replication of an entire set of data as of
a specific moment in time from a local server to remote servers. You would typi-
cally use this type of replication in databases where the amount of data to be repli-
cated is small and the source data is static. You can grant remote servers a limited
capability to update the replicated data. Transactional replication is the replication
of an initial snapshot of data to remote servers plus the replication of individual
transactions occurring at the local server that incrementally modify data contained
in the initial snapshot. These replicated transactions are applied to the replicated
data at each remote server to keep the data on the remote server synchronized with
the data on the local server. You use this type of replication when you must keep
the data current on the remote servers. You can grant remote servers a limited capa-
bility to update the replicated data. Merge replication is the replication of an initial
snapshot of data to remote servers plus the replication of changes that occur at any
remote server back to the local server for synchronization, conflict resolution, and
re-replication to remote servers. You use merge replication when numerous
changes are made to the same data, or when remote offline computers need to oper-
ate autonomously, such as in the case of a mobile user.

Replication Terminology
SQL Server replication uses terminology from the publishing industry to represent
the components of replication. The server that is replicating stored information to
other servers is called the Publisher. The information being replicated consists of
one or more publications. Each publication is a logical collection of information
from a single database consisting of one or more articles. An article can be one or
more of the following:

■ Part or all of a table (can be filtered by columns and/or rows)

■ A stored procedure or view definition

■ The execution of a stored procedure

■ A view

■ An indexed view

■ A user-defined function

Each Publisher uses a Distributor to assist in the replication process. The Distribu-
tor stores the distribution database, history information, and metadata. The exact

550 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
role of the Distributor varies with the type of replication. The Distributor used by a
Publisher can be either local (the same SQL Server instance) or remote (a separate
SQL Server instance).

Servers that receive replicated information are called Subscribers. Subscribers
receive selected publications (called a subscription) from one or more Publishers.
Depending upon the type of replication being implemented, Subscribers may be
permitted to modify replicated information and replicate the changed information
back to the Publisher. Subscribers can be specifically authorized or can be anony-
mous (such as for Internet publications). With large publications, the use of anony-
mous subscriptions can improve performance.

The replication process is automated through the use of replication agents. A repli-
cation agent is generally a SQL Server Agent job configured by an administrator to
perform specified tasks on a specified schedule. By default, replication agents run
in the security context of the SQL Server Agent domain user account on Windows
2000 and Windows NT 4.0. They run in the security context of the logged-in user
on Windows Me and Windows 98. There are a number of replication agents for dif-
ferent replication tasks. Each agent is configured to run according to a specified
schedule. Different types of replication use one or more of these agents.

■ Snapshot Agent. Creates an initial snapshot of each publication being repli-
cated, including schema information. All types of replication use this agent.
You can have one Snapshot Agent per publication.

■ Distribution Agent. Moves snapshot information and incremental changes
from the Distributor to Subscribers. Snapshot and transactional replication use
this agent. By default, all subscriptions to a publication share one distribution
agent (called a shared agent). However, you can configure each subscription to
have its own distribution agent (called an independent agent).

■ Log Reader Agent. Moves transactions marked for replication from the
transaction log on the Publisher to the Distributor. Transactional replication
uses this agent. Each database that you mark for transactional replication will
have one Log Reader Agent that runs on the Distributor and connects to the
Publisher.

■ Queue Reader Agent. Applies changes made by offline Subscribers to a Pub-
lication. Snapshot and transactional replication use this agent if queued updating
is enabled. This agent runs on the Distributor and only one instance of this agent
exists to service all Publishers and publications for a given Distributor.

■ Merge Agent. Moves snapshot information from the Distributor to Subscrib-
ers. It also moves and reconciles changes to replicated data between the Pub-
lisher and Subscribers. This agent also deactivates subscriptions whose data has
not been updated within a maximum publication retention period (14 days by
default). Merge replication uses this agent. Each subscription to a merge publi-
cation has its own merge agent that synchronizes data between the Publisher
and the Subscriber.

Chapter 15 Using SQL Server Replication 551
■ Agent History Clean Up Agent. Removes agent history from the distribu-
tion database and is used to manage the size of the distribution database. All
types of replication use this agent. This agent runs every 10 minutes by default.

■ Distribution Clean Up Agent. Removes replicated transactions from the dis-
tribution database, and deactivates inactive Subscribers whose data has not been
updated within a specified maximum distribution retention period (72 hours by
default). If anonymous subscriptions are permitted, replicated transactions are
not removed until the maximum retention period expires. Snapshot and transac-
tional replication use this agent. This agent runs every 10 minutes by default.

■ Expired Subscription Clean Up Agent. Detects and removes expired sub-
scriptions. All types of replication use this agent. This agent runs once a day by
default.

■ Reinitialize Subscriptions Having Data Validation Failures
Agent. Reinitializes all subscriptions having data validation failures. This
agent is run manually by default.

■ Replication Agents Checkup Agent. Detects replication agents that are
inactive and logs this information to the Windows application log. This agent
runs every 10 minutes by default.

Note The Snapshot Agent, Distribution Agent, and Merge Agent can be embed-
ded into applications using ActiveX controls.

Understanding the Types of Replication
To implement replication, you must understand how each type of replication func-
tions. Each type of replication provides a replication solution with a different set of
tradeoffs.

Snapshot Replication
With snapshot replication, the Snapshot Agent periodically (according to a speci-
fied schedule) copies all data marked for replication from the Publisher to a snap-
shot folder on the Distributor. The Distribution Agent periodically copies all the
data in the snapshot folder to each Subscriber and updates the entire publication at
the Subscriber with the updated snapshot information. The Snapshot Agent runs on
the Distributor, and the Distribution Agent can run either on the Distributor or on
each Subscriber. Both agents record history and error information to the distribu-
tion database. Figure 15.1 illustrates the snapshot replication process.

552 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST01.EPS” >>

Figure 15.1. The snapshot replication process.

Snapshot replication is most appropriate for data that does not change rapidly, for
small publications that can be refreshed in their entirety without overwhelming the
network, and for information that does not need to be completely current all the
time (such as historical sales information).

With snapshot replication, you can elect to permit Subscribers to update replicated
information using the Immediate Updating and/or Queued Updating options. These
Updatable Subscription options are useful for occasional changes by Subscribers.
If changes are frequent, use merge replication instead. Also, with the Updatable
Subscription options, updates are part of a transaction. This means that the entire
update either propagates or is rolled back if a conflict occurs. With merge replica-
tion, conflicts are resolved on a row-by-row basis.

If the Immediate Updating option is used, a two-phase commit (2PC) transaction is
automatically initiated by the Subscriber with the Publisher whenever a Subscriber
attempts to update replicated data. A 2PC transaction consists of a prepare phase
and a commit phase under the control of the MS DTC service on the Subscriber,
which serves as the transaction manager. During the prepare phase, the transaction
manager coordinates with the SQL Server service on the Publisher and on the Sub-
scriber, each acting as a resource manager, to ensure that the transaction can occur
successfully in both databases. During the commit phase, if the transaction man-
ager receives successful prepare notifications from each resource manager, the

Custom application

Snapshot folder

Publisher

Snapshot agent

Distribution agent

Distributor

Subscriber

Data or transactions

History and errors

Publication
database

Subscription
database

Distribution
database

Chapter 15 Using SQL Server Replication 553
commit command is sent to each resource manager, and the transaction commits at
the Publisher and the Subscriber. If a conflict exists on the Publisher (because of a
conflicting update not yet replicated to the Subscriber), the transaction initiated by
the Subscriber fails. The 2PC transaction ensures that no conflicts occur because
the Publisher detects all conflicts before a transaction is committed.

If the Queued Updating option is used, changes made by a Subscriber are placed in
a queue and periodically updated to the Publisher. Modifications can be made with-
out an active network connection to the Publisher. The queued changes are applied
at the Publisher when network connectivity is restored. Either the queue can be in a
SQL Server database, or you can elect to use Microsoft Message Queuing if you
are running Windows 2000. See “Queued Updating Components” in Books Online
for more information on installing and using Microsoft Message Queuing. Because
updates do not happen in real time, conflicts can occur if another Subscriber or the
Publisher has changed the same data. Conflicts are resolved using a conflict resolu-
tion policy defined when the publication is created.

If you enable both options, Queued Updating functions as a failover in case Imme-
diate Updating fails (such as due to a network failure). This is useful if the Pub-
lisher and updating Subscribers are normally connected, but you want to ensure
that Subscribers can make updates in the event that network connectivity is lost.

Transactional Replication
With transactional replication, the Snapshot Agent copies an initial snapshot of
data marked for replication and copies it from the Publisher to a snapshot folder on
the Distributor. The Distribution Agent applies this initial snapshot to each Sub-
scriber. The Log Reader Agent monitors changes to data marked for replication
and captures each transaction log change into the distribution database on the Dis-
tributor. The Distribution Agent applies each change to each Subscriber in the orig-
inal order of execution. If a stored procedure is used to update a large number of
rows, the stored procedure can be replicated rather than each modified row. All
three of these replication agents record history and error information to the distri-
bution database. Figure 15.2 illustrates the transactional replication process.

The Distribution Agent can be scheduled to run continuously for minimum latency
between the Publisher and Subscribers, or can be set to run on a specified schedule.
Subscribers with a network connection to the Distributor can receive changes in
near real time. After all Subscribers receive replicated transactions, the Distribution
Clean Up Agent removes the transactions from the distribution database. If a Sub-
scriber does not receive replicated transactions before the expiration of a specified
retention period (72 hours by default), the replicated transaction is deleted and the
subscription deactivated. This prevents the distribution database from becoming
too large. A deactivated subscription can be reactivated and a new snapshot applied
to bring the Subscriber current.

554 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST02.EPS” >>

Figure 15.2. Transactional replication process.

Transactional replication can also be configured to support Updatable Subscrip-
tions using the Immediate Updating and/or Queued Updating options discussed in
the preceding section for snapshot replication.

Merge Replication
With merge replication, the Snapshot Agent copies an initial snapshot of data
marked for replication from the Publisher to a snapshot folder on the Distributor.
The Merge Agent applies this initial snapshot to each Subscriber. The Merge Agent
also monitors and merges changes to replicated data occurring at the Publisher and
at each Subscriber. If a merged change results in a conflict at the Publisher, the
Merge Agent resolves the conflict using a resolution method specified by the
administrator. You can choose among a variety of conflict resolvers or create a cus-
tom resolver. Both agents record history and error information to the distribution
database (this is the only function of the distribution database with merge replica-
tion). Figure 15.3 illustrates the merge replication process.

The Merge Agent relies on a unique column existing for each row in a table that is
being replicated in order to identify the row across multiple copies of the table on
multiple servers and to track conflicts between rows. If a unique column does not
exist, the Snapshot Agent adds one when the publication is created. The Snapshot
Agent also creates triggers on the Publisher when the publication is created. These

Custom application

Snapshot folder

Publisher

Snapshot agent

Distribution agent

Distributor

Subscriber

New transactions

History and errors

Publication
database

Subscription
database

Distribution database

Initial data and schema

Transaction
log

Log reader agent

Chapter 15 Using SQL Server Replication 555
triggers monitor replicated rows and record changes in merge system tables. The
Merge Agent creates identical triggers on each Subscriber when the initial snapshot
is applied.

<< “F15ST03.EPS” >>

Figure 15.3. Merge replication process.

The Merge Agent can be scheduled to run continuously for minimum latency
between the Publisher and Subscribers, or can be set to run on a specified schedule.
Subscribers with a network connection to the Publisher can receive changes in near
real time. If a Subscriber does not receive replicated transactions before the expira-
tion of a specified retention period (14 days by default), the subscription is deacti-
vated. A deactivated subscription can be reactivated and a new snapshot applied to
bring the Subscriber current.

Selecting a Physical Replication Model
There are a number of physical replication models that you can implement with
your replication solution. If you are using snapshot or transactional replication, you
will frequently use a remote Distributor. This Distributor may provide replication
services to multiple Publishers and multiple Subscribers. If the amount of data
being replicated is small, the Distributor and the Publisher frequently reside on the
same computer.

Publisher

Snapshot agent

Merge agent

Distributor

Subscriber

New transactions

History and errors

Publication
database

Subscription
database

Distribution database

Initial data and schema

Custom application Custom application

Snapshot folder

Conflict table

556 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
If you are replicating over a link with a limited bandwidth or an expensive commu-
nications link to multiple Subscribers, you can publish to a remote Subscriber that
republishes to other Subscribers on its side of the link. This remote Subscriber is
called a Republisher or a Publishing Subscriber.

With merge replication, a central Subscriber is frequently used to merge informa-
tion from multiple regional Publishers to a central location. This model requires
horizontal partitioning of data to avoid conflicts and generally uses a column to
identify regional data. This central Subscriber model can also be used with snap-
shot and transactional replication. In addition, because merge replication makes
limited use of the distribution database, the Publisher and the Distributor frequently
reside on the same computer.

Choosing Replication Implementation Tools
SQL Server Enterprise Manager is the primary tool used to implement and monitor
replication. A Replication container serves as a central location to organize and
administer publications and subscriptions. Replication Monitor, which is a node
within the Replication container, is used to view and manage replication agents.
Replication Monitor also includes the ability to set alerts on replication events.

In addition, you can implement, monitor, and administer replication using a num-
ber of other methods.

■ ActiveX Controls. Used within custom applications written using Visual
Basic or Visual C++. ActiveX controls enable you to control Snapshot Agent,
Merge Agent, and Distribution Agent activity programmatically. For example,
an application can have a Synchronize button that you can click to activate the
Merge Agent to merge and synchronize data on demand.

■ SQL-DMO. Used to create custom applications to configure, implement, or
maintain a replication environment.

■ Replication Distributor Interface. Provides the ability to replicate data
from heterogeneous data sources (such as Access or Oracle).

■ Stored Procedures. Used primarily to script replication on multiple servers,
based on a replication configuration initially configured using SQL Server
Enterprise Manager.

■ Windows Synchronization Manager. This utility is available with Windows
2000 in the Accessories program group and, with any computer using Internet
Explorer 5.0, on the Tools menu. It is a centralized location for managing and
synchronizing SQL Server publications and other applications (such as Web
pages and e-mail).

■ Active Directory Services. You can publish replication objects to Active
Directory, permitting users to discover and subscribe to publications (if per-
mitted).

Chapter 15 Using SQL Server Replication 557
Lesson Summary
You can use replication to distribute data to multiple locations and automatically
keep the data synchronized between all replication locations. There are three basic
types of replication used to implement a replication solution: snapshot, transac-
tional, and merge. Replication is automated through the use of replication agents
performing tasks according to specified schedules. SQL Server Enterprise Manager
is the primary tool used to implement, monitor, and administer replication solu-
tions. ActiveX controls are also frequently embedded into custom applications to
manage replication.

558 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 2: Planning for Replication

Replication requires planning for a variety of issues, some of which will be covered
in this lesson. In this lesson you will learn about planning replication security. You
will also learn about filtering data for performance and security. Finally, you will
learn about options for storing and applying the initial snapshot.

After this lesson, you will be able to
■ Plan replication security

■ Understand data filtering options

■ Choose among initial snapshot options

Estimated lesson time: 15 minutes

Planning for Replication Security
Replication security is implemented at a number of levels. First, only members of
the sysadmin server role can create and administer Distributors, Publishers, and
Subscribers. This includes enabling a database for replication. At the database
level, only a member of the sysadmin server role or the db_owner fixed database
role in the database being published can create and configure publications and sub-
scriptions. Only members of the sysadmin server role or the replmonitor fixed data-
base role in the distribution database can view replication activity.

When a remote Distributor is used, security can be configured for connections
between the Publisher and the Distributor. The connection uses the
distributor_admin SQL Server login account (Mixed Mode Authentication must be
used). At the remote Distributor, the Publisher can be configured as trusted (no
password required) or nontrusted (requiring a password). Using a nontrusted con-
figuration is recommended.

Note The only ways you should change the distributor_admin password are:
using the Distributor tab in Publisher And Distributor Properties in Enterprise
Manager or using the sp_changedistributor_password system-stored procedure.

By default on Windows 2000 and Windows NT 4.0, the snapshot folder used for
replication is located at C:\Program Files\Microsoft SQL Server\Mssql\Repldata
on the Distributor and uses the hidden administrative share (for example, \\Self-
PacedCPU\C$\Program Files\Microsoft SQL Server\Mssql\Repldata). On Win-
dows Me and Windows 98, the same path is used but no share is created. Each
Snapshot Agent must have full control access to this folder. Each Distribution
Agent and Merge Agent must have read access to the snapshot folder location. By
default on Windows 2000 and Windows NT 4.0, these agents run in the security

Chapter 15 Using SQL Server Replication 559
context of the SQL Server Agent domain user account. Replication agents can only
access this administrative share if the domain user account is a member of the local
Administrators group on the Distributor. If the domain user account is not a mem-
ber of the local Administrators group on the Distributor or if Windows Me and
Windows 98 computers are involved in replication, you should create a share for
the snapshot folder and grant necessary permissions to the share to the domain user
accounts under which these replication agents will run.

Each publication contains a publication access list (PAL) containing the logins per-
mitted to access the publication. By default, the logins included on the PAL for a
new publication are members of the sysadmin server role (this includes the SQL
Server Agent domain user account) and the login of the user creating the publica-
tion (such as a member of the db_owner role). In complex replication environ-
ments, you might need to add additional users to the PAL.

The following permissions are required in order for replication to function properly.

■ The Snapshot Agent must be able to connect to the publication database on the
Publisher and the distribution database on the Distributor (in addition to the
snapshot folder discussed in the section “Transactional Replication”).

■ The Log Reader Agent must be able to connect to the publication database on
the Publisher and the distribution database on the Distributor.

■ The Distribution Agent must be able to connect to the distribution database on
the Distributor and the subscription database on the Subscriber (in addition to
the snapshot folder discussed in the section “Transactional Replication”).

■ The Merge Agent must be able to connect to the distribution database on the
Distributor, the publication database on the Publisher, and the subscription
database on the Subscriber (in addition to the snapshot folder discussed in the
section “Transactional Replication“).

Filtering Published Data
Filtering published data is used for security purposes and to enhance performance.
Filtering allows you to limit published data horizontally (only specified rows) or
vertically (only specified columns). For example, columns containing sensitive
information or large image data can be eliminated from replication. Also, rows
containing information not related to a particular sales region can be eliminated.
Filters can be static or dynamic.

Static filters limit rows or columns for a publication, and all Subscribers receive the
same data (unless transformable subscriptions are used). All types of replication
can use static filters. To create different partitions of data for different Subscribers
using static filters, either separate publications must be created or transformable
subscriptions must be used. Horizontal filtering can significantly affect the perfor-
mance of transactional replication because every row must be evaluated in the pub-
lication database transaction log.

560 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Dynamic filters are used to provide different partitions of data to different Sub-
scribers based on SQL Server functions (such as user name or host name). Join fil-
ters are used to maintain referential integrity between two tables involved in
replication (such as a primary key/foreign key relationship). Dynamic and join fil-
ters are available only for merge replication. When you are using dynamic filters,
dynamic snapshots can also be used to create custom snapshots for each type of
Subscriber. This can significantly improve the performance when applying the ini-
tial snapshot, but does require additional space for the snapshot folder and addi-
tional time to create the initial snapshot.

Transformable subscriptions with a custom filter can be used with snapshot and
transactional replication to dynamically create partitions of data for individual Sub-
scribers. Transformable subscriptions use the capabilities of DTS to customize and
transform data being replicated based on the needs of individual Subscribers. How-
ever, updatable subscriptions are incompatible with transformable subscriptions.

Choosing Initial Snapshot Options
By default, initial snapshot files are copied to the Repldata folder on the Distribu-
tor. However, you can choose to store the snapshot files in an alternate location,
such as a network drive or on a compact disc, instead of or in addition to the default
location. Snapshot files saved to an alternate location can be compressed (using the
Microsoft CAB file format) to fit onto removable media or to speed transmission
over a slow network connection. Compressing snapshot files takes additional time.

By default, either the Distribution Agent or the Merge Agent applies the snapshot
to the subscription database. For large publications, applying the initial snapshot
manually from compact disc or other storage device (such as tape) might be faster
than sending the file over the network.

Finally, because snapshot files can consume substantial hard disk space, you can
choose not to maintain snapshot files. Snapshot files are automatically retained if
you specify that the snapshot be retained or if you enable the publication for anon-
ymous subscriptions. If you choose neither of these options, SQL Server will delete
the snapshot after all Subscribers have applied the initial snapshot. If a new Sub-
scriber attempts to synchronize, the Subscriber will either have to wait until the
next time a snapshot is generated automatically or an administrator will have to
manually start the Snapshot Agent.

Chapter 15 Using SQL Server Replication 561
Lesson Summary
Only members of the sysadmin server role can configure the overall replication
topology. Members of the sysadmin server role and the db_owner fixed database
role in a database can create and configure publications and subscriptions. The
Snapshot Agent must have full control permissions and the Distribution Agent and
the Merge Agents must have read permissions to the snapshot folder (unless the
initial snapshot is applied manually). In addition, the appropriate permissions must
be granted to the replication agents on the publication, distribution, and subscrip-
tion databases. In addition, published data is frequently filtered horizontally and
vertically to improve performance and customize data based on individual Sub-
scriber needs. In addition to static filters, dynamic filters and transformable sub-
scriptions are used to filter data based on custom needs. Finally, the initial snapshot
can be copied to an alternate location (such as a compact disk) and compacted
using the Microsoft CAB file format.

562 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 3: Implementing Replication

Replication is generally implemented using SQL Server Enterprise Manager wiz-
ards. In this lesson, you learn to configure the properties of a Distributor and a Pub-
lisher. You also learn to implement snapshot, transactional, and merge replication.
Finally, you learn to configure push, pull, and anonymous subscriptions.

After this lesson, you will be able to
■ Configure the properties of a Distributor

■ Configure the properties of a Publisher

■ Configure snapshot replication

■ Configure transactional replication

■ Configure merge replication

■ Configure push, pull, and anonymous subscriptions

Estimated lesson time: 45 minutes

Configuring Distributor and Publisher Properties
You can configure the properties of a Distributor and a Publisher using the Config-
ure Publishing And Distribution Wizard. You can also configure the properties of a
Distributor and a Publisher as part of the process of creating a publication using the
Create And Manage Publications Wizard. You can start the Configure Publishing
And Distribution Wizard from the Tools menu by clicking Wizards, expanding the
Replication container in the Select Wizard dialog box, and then double-clicking
Configure Publishing And Distribution Wizard, or by right-clicking the Replication
container and then clicking Configure Publishing, Subscribers, And Distribution.
The Welcome To The Configure Publishing And Distribution Wizard page appears,
as shown in Figure 15.4.

Chapter 15 Using SQL Server Replication 563
<< “F15ST04.EPS” >>

Figure 15.4. Starting the Configure Publishing And Distribution Wizard.

Click Next to either configure the local server as a Distributor or select an existing
Distributor for this Publisher. The Select Distributor page appears, as shown in Fig-
ure 15.5.

<< “F15ST05.EPS” >>

Figure 15.5. Selecting a Distributor.

The default is to use the local server as the Distributor, creating the distribution
database and transaction log file. If you select a remote server, that server must
already be configured as a Distributor. In addition, you must register the remote
server with SQL Server Enterprise Manager before you can select it as the Distrib-
utor. Finally, you must have permission to use the remote Distributor.

Next, if you choose to use the local server as the Distributor, the Specify Snapshot
Folder page appears where you can specify the location of the snapshot folder. The
default location for the snapshot folder on the default instance is C:\Program
Files\Microsoft SQL Server\Mssql\ReplData. See Figure 15.6.

564 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST06.EPS” >>

Figure 15.6. Specifying a snapshot folder.

Notice in the Snapshot Folder text box that the default folder is using the C$
administrative share. The Snapshot Agent must have full control access to this
folder, and the Distribution Agents and the Merge Agents must have read access.
To use a dedicated share at a specified location, you can create the share through
Windows Explorer or by clicking the Snapshot Folder ellipsis button. When the
Browse For Folder dialog box appears, right-click the Repldata folder (or any other
specified folder) and then click Properties. In the Repldata Properties dialog box,
click the Sharing tab. Select the Share This Folder option button and then click the
Permissions button. In the Permissions For Repldata dialog box, remove Everyone
and then add the SQL Server Agent service domain user account, granting Full
Control permissions. In Figure 15.7, a Repldata share is created.

In Figure 15.7, notice that the Repldata share is created and the SQL Server Agent
domain user account granted Full Control permissions through the share. If addi-
tional users (such as Windows Me and Windows 98 users involved in merge repli-
cation) must access this snapshot folder, they can be granted read access to permit
them to download the snapshot files.

Chapter 15 Using SQL Server Replication 565
<< “F15ST07.EPS” >>

Figure 15.7. Creating a share for the snapshot folder and assigning permissions.

Next, in the Customize The Configuration page, you are given the opportunity to
customize the properties of the Distributor or accept the defaults. See Figure 15.8.

<< “F15ST08.EPS” >>

Figure 15.8. Choosing the default settings for the Distributor.

Elect to customize settings if you need to change the default location for the distri-
bution database and transaction log, enable additional Publishers to use this Dis-
tributor (only the local server is enabled by default), enable publication databases,
or to change enabled Subscribers (all registered instances are enabled by default).
Using RAID 1, RAID 10, or a dedicated drive for the distribution database and for
the transaction log is recommended for most production environments.

566 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
If you elect to customize Distributor properties, the Provide Distribution Database
Information page appears. In this page, you can modify the distribution database
name, the location for the database file, and the location for the transaction log file.
See Figure 15.9.

<< “F15ST09.EPS” >>

Figure 15.9. Modifying distribution database properties.

Notice that you must choose a local path for the distribution database. Next, in the
Enable Publishers page, you can enable additional Publishers. See Figure 15.10.

<< “F15ST10.EPS” >>

Figure 15.10. Enabling additional Publishers to use a Distributor.

A Publisher cannot use a Distributor unless the Publisher is enabled on that Distrib-
utor. By default, only the current instance on the local server is enabled. Click a
Publisher’s ellipsis button in the Registered Servers grid to view Publisher proper-
ties for that Publisher. See Figure 15.11.

Chapter 15 Using SQL Server Replication 567
<< “F15ST11.EPS”>>

Figure 15.11. Configuring Publisher properties.

Each Publisher can use a different snapshot folder. You can specify a SQL Server
login account rather than the SQL Server Agent service domain user account for all
replication agents. Finally, if the Publisher and the Distributor are on separate com-
puters, you can require a password for the link between the two (recommended).

Next, in the Enable Publication Databases page, you can enable specific databases
for replication. See Figure 15.12.

<< “F15ST12.EPS” >>

Figure 15.12. Enabling databases for replication.

A member of the sysadmin server role can also enable a database for replication at
the time a publication is created. However, if a member of the db_owner fixed data-
base role in a database will be creating the publications, a member of the sysadmin
server role must first enable the database for replication. In the Trans column of the

568 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Databases grid, click the appropriate Trans check box to enable a database for
snapshot or transactional replication. In the Merge column, click the appropriate
Merge check box to enable a database for merge replication.

Next, in the Enable Subscribers page, you can enable specified servers to subscribe
to publications from this Publisher. See Figure 15.13.

<< “F15ST13.EPS” >>

Figure 15.13. Enabling Subscribers.

All registered servers are enabled by default. Click the ellipsis button to display the
Subscriber Properties dialog box. You use the General tab of this dialog box to con-
figure Subscriber login information and a default synchronization schedule for a
Subscriber. See Figure 15.14.

Similar to other replication agents, a replication agent connecting to a Subscriber
uses the SQL Server Agent domain user account by default. You can elect to use a
SQL Server login account.

Click the Schedules tab to modify the default schedule for each Distribution and
Merge Agent. See Figure 15.15.

Notice that each new Distribution Agent is set to run continuously by default and
that each new Merge Agent is set to run hourly by default. You can change these
defaults. You can also override these default schedules for each new agent when
configuring new subscriptions.

Chapter 15 Using SQL Server Replication 569
<< “F15ST14.EPS” >>

Figure 15.14. General Subscriber properties.

<< “F15ST15.EPS” >>

Figure 15.15. Default schedules for all Distribution Agents and Merge Agents.

Finally, in the Completing The Configure Publishing And Distribution Wizard
page, you can review all of your choices before the distribution database is created
and the Distributor and Publisher configured. See Figure 15.16.

After the Configure Publishing And Distribution Wizard completes, a SQL Server
Enterprise Manager message box appears to notify you that Replication Monitor
has been added to the console tree. Using Replication Monitor is covered in Lesson
4 of this chapter.

570 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST16.EPS” >>

Figure 15.16. Final review of Distributor and Publisher properties.

Practice: Configuring a Distributor
In this practice you create and configure a Distributor using the Configure Publish-
ing And Distribution Wizard in the SQL Server Enterprise Manager.

� To configure a Distributor

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

SQL Server Enterprise Manager appears displaying the Microsoft SQL Servers
and the Event Viewer (Local) console trees in the console root.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, and then expand the default instance.

4. Right-click the Replication container and then click Configure Publishing, Sub-
scribers, And Distribution.

The Welcome To The Configure Publishing And Distribution Wizard page
appears.

5. Click Next.

The Select Distributor page appears.

6. Verify that SelfPacedCPU is selected to be its own Distributor and then click
Next.

The Specify Snapshot Folder page appears.

7. Click the ellipsis next to the Snapshot Folder text box.

The Browse For Folder dialog box appears with the Repldata folder selected.

8. Right-click the Repldata folder and then click Sharing.

The Repldata Properties dialog box appears.

Chapter 15 Using SQL Server Replication 571
9. Click the Share This Folder option button.

10. Click the Permissions button.

The Permissions For Repldata dialog box appears.

11. Click the Remove button to remove Everyone from the Name list box, and then
click the Add button.

The Select Users, Computers, Or Groups dialog box appears.

12. In the Name list box, double-click SQLService and then click OK. In the Per-
missions group box, select the Full Control check box.

13. Click OK to close the Permissions For Repldata dialog box.

14. Click OK to close the Repldata Properties dialog box.

15. Click OK to close the Browse For Folder dialog box.

16. In the Snapshot Folder text box, type \\SelfPacedCPU\Repldata (replacing the
default entry that uses the C$ hidden administrative share), and then click Next.

A SQL Server Enterprise Manager dialog box appears stating that the \\Self-
pacedCPU\Repldata path cannot be verified and asking whether you want to
use it anyway.

17. Click the Yes button.

The Customize The Configuration page appears.

18. Verify that the No, Use The Following Default Settings option button is
selected, review the Distributor properties, and then click Next.

The Completing The Configure Publishing And Distribution Wizard page
appears.

19. Click the Finish button to configure SelfPacedCPU as a Distributor.

A SQL Server Enterprise Manager dialog box appears to show the progress of
the Distributor configuration.

20. When a SQL Server Enterprise Manager message box appears stating that the
SelfPacedCPU was successfully enabled as the Distributor, click OK.

A SQL Server Enterprise Manager dialog box appears stating that Replication
Monitor has been added to the console tree.

21. Click the Close button. Leave SQL Server Enterprise Manager running.

Creating a Publication
To create your first publication, use the Create Publication Wizard. You can start
this wizard from the Tools menu by clicking Wizards, expanding the Replication
container in the Select Wizard dialog box, and then double-clicking Create Publi-
cation Wizard. Alternatively, you can right-click the Publications container in the
console tree (in the Replication container) and then click New Publication. The
Welcome To The Create Publication Wizard page appears as shown in Figure
15.17.

572 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST17.EPS” >>

Figure 15.17. Starting the Create Publication Wizard.

Notice that you can select the Show Advanced Options In This Wizard check box.
Showing advanced options allows the enabling of updatable and transformable
subscriptions.

Next, in the Choose Publication Database page, select the database containing the
data and objects to publish. See Figure 15.18.

<< “F15ST18.EPS” >>

Figure 15.18. Select the publication database.

If a member of the sysadmin server role runs the Create Publication Wizard, all
user databases are displayed and any database selected is automatically enabled for
replication. If a member of the db_owner fixed database role in a database runs the
Create Publication Wizard, the only databases that will appear are databases that
have previously been enabled for replication and with respect to which they are
db_owners.

Chapter 15 Using SQL Server Replication 573
Next, in the Select Publication Type page, you select the type of publication. See
Figure 15.19.

<< “F15ST19.EPS” >>

Figure 15.19. Select the type of publication.

You can select the Snapshot Publication, Transactional Publication, or Merge Pub-
lication option button.

Creating a Snapshot Publication
If you select the Snapshot Publication option button and you opted to view
advanced options, the Updatable Subscriptions page appears. In this page, you can
enable the immediate updating and/or the queued updating options. See Figure
15.20.

<< “F15ST20.EPS” >>

Figure 15.20. Enabling updatable subscriptions.

574 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Notice that if you selected queued updating, changes are queued in a SQL Server
database by default. If you want to use Microsoft Message Queuing, you enable
this after the publication is created.

If you do not enable updatable subscriptions, the Transform Published Data page
appears, and you can choose to permit transformable subscriptions. See Figure
15.21. This is an advanced option that will not appear unless you select the Show
Advanced Options In This Wizard check box (see Figure 15.17).

<< “F15ST21.EPS” >>

Figure 15.21. Permitting transformable subscriptions.

Next, in the Specify Subscriber Types page, you must specify the types of Sub-
scribers that will subscribe to this publication. See Figure 15.22.

<< “F15ST22.EPS” >>

Figure 15.22. Specifying the type of Subscriber.

Chapter 15 Using SQL Server Replication 575
If you specify that a publication will be supporting subscriptions from SQL Server
7.0 and heterogeneous data sources, options that are incompatible with these types
of Subscribers will not be displayed in the wizard. For example, replicating views
to SQL Server 7.0 Subscribers is not supported.

Note If you specify SQL Server 2000 Subscribers, but do not enable any of the
new features, SQL Server 7.0 or heterogeneous data sources will still be able to
subscribe to the publication.

Next, in the Specify Articles page, specify the articles that will be published as part
of this publication. See Figure 15.23.

<< “F15ST23.EPS” >>

Figure 15.23. Specifying articles for publication.

You can select among tables, stored procedures, and views. You might not see all
three types of objects, depending upon choices you made earlier. For example, if
you permit transformable subscriptions, you can only publish tables. With respect
to published tables, stored procedures, or views, click the Article Defaults button to
globally set properties or the ellipsis button for each object to configure properties
specifically for the article. By default, replicated articles have the same name in the
subscription database as in the publication database. In addition, if a database
object with the same name exists in the subscription database, by default it is
dropped and re-created. You can also choose to replicate additional objects (such as
user triggers) or not replicate indexes (they are replicated by default). For example,
click the Article Defaults button to display the Default Article Type dialog box,
double-click Table Articles to display the Default Table Article Properties dialog
box, and then click the Snapshot tab to modify default table article properties. Fig-
ure 15.24 shows the Default Table Article Properties dialog box with the Snapshot
tab selected.

576 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST24.EPS” >>

Figure 15.24. Modifying default table article properties.

Next, in the Article Issues box, depending upon the articles you choose to publish
and the type of subscriptions permitted, you might receive a message regarding
issues involving uniqueidentifier, timestamp, and IDENTITY columns. There are
specific types of issues for each column type depending upon the replication type
and design of the published database. Refer to the topic “Article Issues” in Books
Online for more information regarding these issues. You might also receive a mes-
sage regarding tables, objects, and views referencing objects not included in the
publication. If a database object references other database objects, you must pub-
lish each of these database objects or create them manually at the Subscriber. Fig-
ure 15.25 displays an Article Issues page.

<< “F15ST25.EPS” >>

Figure 15.25. Article issues.

Chapter 15 Using SQL Server Replication 577
In Figure 15.25, notice that an IDENTITY column is being replicated. By default,
the value of the column will be replicated, but not the IDENTITY property of the
column.

Next, in the Select Publication Name And Description page, select a descriptive
name for the publication, describe the publication, and choose whether to list the
publication in Active Directory. The option to list the publication in the Active
Directory will be grayed out if the SQL Server instance has not been listed in the
Active Directory database. See Figure 15.26.

<< “F15ST26.EPS” >>

Figure 15.26. Naming the publication and listing it in Active Directory.

Next, in the Customize The Properties Of The Publication page, you can elect to
customize the publication by defining data filters, enabling anonymous subscrip-
tions, and configuring a custom schedule for the Snapshot Agent. See Figure 15.27.
By default, the Snapshot Agent runs immediately after the publication is created
and weekly thereafter.

578 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST27.EPS” >>

Figure 15.27. Choosing to customize the publication properties.

If you elect to customize the publication, the Filter Data page appears. You can
choose to filter the articles in the publication vertically and/or horizontally. See
Figure 15.28.

<< “F15ST28.EPS” >>

Figure 15.28. Choosing to filter data.

If you chose to filter vertically, the Filter Table Columns page appears. You can
elect to exclude specific columns from any published table. See Figure 15.29.

Chapter 15 Using SQL Server Replication 579
<< “F15ST29.EPS” >>

Figure 15.29. Filtering table columns.

By default, all columns are published. To exclude a column, select an article and
then clear the check box for the column.

If you chose to filter horizontally, the Filter Table Rows page appears. See Figure
15.30. You can elect to limit rows by selecting the article and then clicking the
ellipsis button to display the Specify Filter dialog box. See Figure 15.31. By
default, all rows are published.

<< “F15ST30.EPS” >>

Figure 15.30. Filtering table rows.

580 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST31.EPS” >>

Figure 15.31. Specifying a row filter.

In the Specify Filter dialog box, to filter published rows for a selected article, com-
plete the WHERE clause. Next, in the Allow Anonymous Subscriptions page, you
can choose to permit anonymous subscriptions. See Figure 15.32. This is an
advanced option that will not appear unless you select the Show Advanced Options
In This Wizard check box (see Figure 15.17). This option is used primarily for
Internet publishing or for publications to a large number of Subscribers.

<< “F15ST32.EPS” >>

Figure 15.32. Allowing anonymous subscriptions.

If you choose to filter the publication vertically and horizontally, both the Filter
Table Columns page and the Filter Table Rows page will appear. Next, in the Set
Snapshot Agent Schedule page, you can accept the default schedule or click the
Change button to modify the schedule. By default, the Snapshot Agent generally

Chapter 15 Using SQL Server Replication 581
runs nightly (weekly is the default setting for publications that support anonymous
subscriptions). Also, there is an option to create the first snapshot immediately if
anonymous Subscribers are supported. Otherwise, you generally create the initial
snapshot when you create the first subscription. See Figure 15.33.

<< “F15ST33.EPS” >>

Figure 15.33. Setting the Snapshot Agent schedule.

Finally, in the Completing The Create Publication Wizard page, review the publica-
tion options and then click the Finish button. See Figure 15.34.

<< “F15ST34.EPS” >>

Figure 15.34. Completing the Create Publication Wizard.

Creating a Transactional Publication
Creating a transactional publication is substantially the same as creating a snapshot
publication.

582 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Practice: Creating a Transactional Publication
In this practice you create a transactional publication using the Create Publication
Wizard in the SQL Server Enterprise Manager.

� To create a transactional publication

1. In the SQL Server Enterprise Manager console tree, expand the Replication
container for the default instance.

2. Right-click the Publications container and then click New Publication.

The Welcome To The Create Publication Wizard page appears.

3. Select the Show Advanced Options In This Wizard check box and then click
Next.

The Choose Publication Database page appears.

4. In the Databases list box, click Pubs and then click Next.

The Select Publication Type page appears.

5. Click the option button labeled Transactional Publication – Data Is Usually
Updated At The Publisher, And Changes Are Sent Incrementally To Subscrib-
ers. Updates To Subscribers Preserve Transactional Consistency And Atomic-
ity, and then click Next.

The Updatable Subscriptions page appears.

6. Select both the Immediate Updating – Changes Are Immediately Applied At
The Publisher Using A Two-Phase Commit Approach And Microsoft Distrib-
uted Transaction Coordinator (MS DTC) check box and the Queued Updating –
Changes Are Queued At The Subscriber Until They Can Be Applied At The
Publisher check box, and then click Next.

The Specify Subscriber Types page appears.

7. Verify that only the Servers Running SQL Server 2000 check box is selected
and then click Next.

The Specify Articles page appears.

8. Locate the Tables cell in the Object Type column, and then select the corre-
sponding Publish All check box.

9. Locate the Stored Procedures cell in the Object Type column, and then select
the corresponding Publish All check box.

Notice that tables without primary keys will not be published.

10. Click Next.

The Article Issues page appears.

11. Click Next.

The Select Publication Name And Description page appears.

12. In the Publication Name text box, type PubsSales and then click Next.

The Customize The Properties Of The Publication page appears.

Chapter 15 Using SQL Server Replication 583
13. Verify that the No, Create The Publication As Specified option button is
selected, review the publication properties, and then click Next.

The Completing The Create Publication Wizard page appears.

14. Click the Finish button to create the publication.

Notice that a SQL Server Enterprise Manager dialog box appears to show the
progress of the publication being created.

15. When a second SQL Server Enterprise Manager dialog box appears stating that
the publication was successfully created, click the Close button.

16. Do not close SQL Server Enterprise Manager.

Configuring Merge Replication
When you select the merge publication option in the Select Publication Type page
of the Create Publication Wizard (see Figure 15.19), the Specify Subscriber Types
page appears. In addition to the types of Subscribers supported by other publication
types, you can also choose to support Subscribers with devices running SQL Server
CE. See Figure 15.35.

<< “F15ST35.EPS” >>

Figure 15.35. Specifying Subscribers using SQL Server CE devices.

Note If you choose to support devices running Windows CE, anonymous sub-
scriptions are enabled and cannot be disabled.

In the Specify Articles page (see Figure 15.23), you can customize conflict resolu-
tion settings for a merge publication. Click the Article Defaults button to display
the Default Article Type dialog box, and then click Table Articles to display the
Default Table Article Properties dialog box. See Figure 15.36.

584 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST36.EPS” >>

Figure 15.36. Defining what constitutes a conflict.

By default, in the General tab, when you are merging changes from multiple
sources, changes must be made to the same column to be considered a conflict. You
can change this default to specify that changes to any column in a given row be
considered a conflict. For example, if one Subscriber changes the phone number
for a supplier and another Subscriber changes the contact name for the supplier, by
default this is not considered a conflict.

Click the Resolver tab to permit Subscribers to interactively resolve conflicts dur-
ing on-demand synchronizations. Subscribers cannot use Windows Synchroniza-
tion Manager unless this check box is selected. See Figure 15.37.

<< “F15ST37.EPS” >>

Figure 15.37. Permitting interactive conflict resolution.

Chapter 15 Using SQL Server Replication 585
In the Merging Changes tab, you can choose to add an additional layer of permis-
sions. See Figure 15.38.

You can require that the Merge Agent security account have permissions to per-
form INSERT, UPDATE, and DELETE commands, in addition to the permissions
required to access the publication database. This is used to limit the types of
changes a Subscriber can make. This permission information is stored in the snap-
shot. If these permissions are changed after the initial snapshot is created, a new
snapshot must be created. In addition, by default, multicolumn updates in the same
row are made in a single UPDATE statement.

In addition to changing the default merge conflict properties, you can change the
conflict resolution properties for each article by clicking the ellipsis button next to
the article in the Specify Articles page and then clicking the Resolver tab when the
Table Article Properties dialog box appears. See Figure 15.39.

<< “F15ST38.EPS” >>

Figure 15.38. Requiring additional permissions for the Merge Agent.

586 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST39.EPS” >>

Figure 15.39. Specifying a custom resolver for an article.

By default, conflicts are resolved based on a priority weighting system. With this
default resolver, all Subscribers have equal priority (although you can grant differ-
ent Subscribers different priorities), and the first change to synchronize takes pre-
cedence in the event of a conflict.

Instead of the default resolver, you can select either one of the custom resolvers
that ship with SQL Server 2000 or create your own using stored procedures or
COM objects. The custom resolvers provided with SQL Server 2000 can resolve
conflicts in a number of different ways, including the earliest change, most recent
change, highest value, lowest value, or averaging. See the topic “Microsoft
Resolver Descriptions” in Books Online for a full description of each custom
resolver.

In addition, in the Identity Range tab, for any article containing an IDENTITY col-
umn, you can choose to have SQL Server automatically assign a range of values for
each Subscriber. This allows each Subscriber to add new rows using the IDEN-
TITY property and still ensure that no duplicate values occur. See Figure 15.40.

Chapter 15 Using SQL Server Replication 587
<< “F15ST40.EPS” >>

Figure 15.40. Defining identity ranges for Subscribers.

The next two pages, the Article Issues page and the Select Publication Name and
Description page, are substantially identical to the equivalent pages for a Snapshot
or a Transaction Replication publication. See Figures 15.25 and 15.26.

In the Filter Data page, if you choose to customize the properties of the publication,
you can filter the publication vertically and/or horizontally. See Figure 15.41.

<< “F15ST41.EPS” >>

Figure 15.41. Choosing to filter a publication vertically and/or horizontally.

If you chose to filter data vertically, the Filter Table Columns page appears. See
Figure 15.28. If you choose to filter data horizontally, merge replication permits
you to choose between dynamic and static filters on the Enable Dynamic Filters
page. See Figure 15.42.

588 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST42.EPS” >>

Figure 15.42. Choosing dynamic filters.

Next, in the Generate Filters Automatically page, you can choose to generate either
static or dynamic horizontal filters automatically. See Figure 15.43.

<< “F15ST43.EPS” >>

Figure 15.43. Generating filters automatically.

Using this capability, you specify a table containing a column of the characteristics
on which you want to filter. For example, in Figure 15.43, the initial filter is based
on the LastName column in the Employees table and the name of the logged-in
user. Next, in the Filter Table Rows page, SQL Server uses this initial filter to cre-
ate suggested filters (using join filters) for related tables to limit data being repli-
cated based on the user name. See Figure 15.44.

Chapter 15 Using SQL Server Replication 589
<< “F15ST44.EPS” >>

Figure 15.44. Automatically generated filters.

Next, in the Validate Subscriber Information page, by default SQL Server validates
Subscriber information used in the dynamic filter automatically each time the
Merge Agent reconnects. This page appears only if you have enabled dynamic fil-
ters. See Figure 15.45.

<< “F15ST45.EPS” >>

Figure 15.45. Validating dynamic filter information automatically.

This is used to ensure that information is partitioned consistently with each merge.
Based on the filtering function used in Figure 15.45, if a Subscriber logs in using a
different user name and attempts to synchronize, the synchronization would fail.
Generally this is the desired behavior.

Next, in the Optimize Synchronization page, you can choose to improve synchroni-
zation performance by storing additional information at the Publisher. See Figure
15.46.

590 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST46.EPS” >>

Figure 15.46. Optimizing the synchronization performance setting.

Click the Yes, Minimize The Amount Of Data option button to choose to optimize
synchronization during merge replication. This minimizes network traffic when
determining whether a change at the Publisher is within the partition of data that
needs to be merged with a Subscriber. This is very useful for synchronization over
slow network links, but does require additional storage space at the Publisher.

The next two pages, the Allow Anonymous Subscriptions page and the Set Snap-
shot Agent Schedule page, are substantially identical to the equivalent pages for a
Snapshot or a Transaction Replication publication (see Figures 15.32 and 15.33).
The Allow Anonymous Subscriptions page is an advanced option that will not
appear unless you select the Show Advanced Options In This Wizard check box
(see Figure 15.17). On the Set Snapshot Agent Schedule page, by default, the ini-
tial snapshot is run immediately for merge publications. Finally, the Completing
The Create Publication Wizard appears (see Figure 15.34).

Note If you enable dynamic filters, you can create dynamic snapshots after creat-
ing the normal snapshot by right-clicking the publication and then clicking Create
Dynamic Snapshot Job.

Practice: Creating a Merge Publication
In this practice you create a merge publication using the Create Publication Wizard
in the SQL Server Enterprise Manager.

� To create a merge publication

1. In the SQL Server Enterprise Manager console tree, expand the Replication
container for the default instance.

2. Right-click the Publications container and then click New Publication.

The Welcome To The Create Publication Wizard page appears.

Chapter 15 Using SQL Server Replication 591
3. Select the Show Advanced Options In This Wizard check box and then click
Next.

The Choose Publication Database page appears.

4. In the Databases list box, click Northwind and then click Next.

The Select Publication Type page appears.

5. Click the option button labeled Merge Publication – Data Can Be Updated At
The Publisher Or Any Subscriber. Changes Are Merged Periodically At The
Publisher. This Supports Mobile, Occasionally Connected Subscribers, and
then click Next.

The Specify Subscriber Types page appears.

6. Verify that only the Servers Running SQL Server 2000 check box is selected
and then click Next.

The Specify Articles page appears.

7. Click the Article Defaults button.

The Default Article Type dialog box appears.

8. Verify Table Articles is selected and then click OK.

The Default Table Article Properties dialog box appears.

9. Click the Resolver tab.

10. Select the Allow Subscribers To Resolve Conflicts Interactively During On-
Demand Synchronization check box, and then click OK.

The Specify Articles dialog box reappears.

11. Locate the Tables cell in the Object Type column, and then select the corre-
sponding Publish All check box.

12. Click Next.

The Article Issues page appears.

13. Click Next.

The Select Publication Name And Description page appears.

14. In the Publication Name text box, type NorthwindSales and then click Next.

The Customize The Properties Of The Publication page appears.

15. Click the Yes, I Will Define Data Filters, Enable Anonymous Subscriptions, Or
Customize Other Properties option button and then click Next.

The Filter Data page appears.

16. Select the Horizontally, By Filtering The Rows Of Published Data check box
and then click Next.

The Enable Dynamic Filters page appears.

17. Verify that the No, Use Static Filters option button is selected and then click
Next.

The Generate Filters Automatically page appears.

592 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
18. To create a user-defined function to use for the filter, click Start, point to Pro-
grams, point to Microsoft SQL Server, and then click Query Analyzer.

The Connect To SQL Server dialog box appears.

19. Ensure that the Windows Authentication option button is selected, and then
click OK to connect to the default instance on SelfPacedCPU.

On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

20. Open the UDF.sql file in C:\SelfPacedSQL\CH_15.

The script creates a user-defined function to return rows based on the week
number.

21. On the toolbar, click the Execute Query button.

22. After the script executes successfully, close Query Analyzer to return to the
Create Publication Wizard.

23. In the Table To Filter drop-down list, click [dbo].[Orders].

24. In the text box, complete the WHERE clause in the SELECT statement by typ-
ing dbo.udf_wknum(orderdate) between 1 and 12 and then click Next.

A SQL Server Enterprise Manager dialog box appears to display the progress
of the filters being generated for the publication. When the filters have been
created, the Filter Table Rows page appears.

25. Click Next.

The Optimize Synchronization page appears.

26. Click the Yes, Minimize The Amount Of Data option button and then click
Next.

The Allow Anonymous Subscriptions page appears.

27. Verify that the No, Allow Only Named Subscriptions option button is selected
and then click Next.

The Set Snapshot Agent Schedule page appears.

28. Verify that the Create The First Snapshot Immediately check box is selected
and then click Next.

The Completing The Create Publication Wizard page appears.

29. Review the properties of the publication and then click the Finish button to cre-
ate the publication.

Notice that a SQL Server Enterprise Manager dialog box appears to display the
progress of the publication being created.

30. When a second SQL Server Enterprise Manager dialog box appears stating that
the publication was successfully created, click the Close button.

31. Do not close SQL Server Enterprise Manager.

Chapter 15 Using SQL Server Replication 593
Configuring Push Subscriptions
Once you have created a publication, you can configure push subscriptions on the
Publisher using the Push Subscription Wizard. A push subscription is a subscrip-
tion that is initiated and configured centrally from the Publisher. You can start this
wizard from the Tools menu by clicking Wizards, expanding the Replication con-
tainer in the Select Wizard dialog box, and then double-clicking Create Push Sub-
scription Wizard, or by right-clicking a publication and then clicking Push New
Subscription. The Welcome To The Push Subscription Wizard page appears, illus-
trated in Figure 15.47.

<< “F15ST47.EPS” >>

Figure 15.47. Starting the Push Subscription Wizard.

Notice that you can select the Show Advanced Options In This Wizard check box.
Showing advanced options allows the updatable subscription options to be set and
the configuring of the applicable replication agent to run at the Subscriber rather
than the Distributor.

Next, in the Choose Subscribers page, select the Subscribers to whom you want to
push this publication. See Figure 15.48. You select one or more Subscribers. A
Subscriber must be enabled. If a member of the sysadmin server role runs the Push
Subscription Wizard, a registered instance can be enabled on the fly. If a member
of the db_owner role in a database runs the Push Subscription Wizard, no addi-
tional Subscribers can be enabled.

594 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST48.EPS” >>

Figure 15.48. Choosing Subscribers.

Next, in the Choose Destination Database page, specify a destination database for
the publication. See Figure 15.49.

<< “F15ST49.EPS” >>

Figure 15.49. Choosing a destination database.

By default the name of the destination database (also called the subscription data-
base) is the same as the publication database. The destination database must exist
at each Subscriber prior to initialization. Click the Browse Or Create button to
either verify or create the subscription database.

Next, depending upon the type of publication, specify the location for the Distribu-
tion Agent in the Set Distribution Agent Location page (see Figure 15.50) or the
Merge Agent in the Set Merge Agent Location page (see Figure 15.51). By default,
this agent runs at the Distributor, using the server resources of the Distributor.
However, you can elect to have this agent run at the Subscriber, using the server
resources of the Subscriber (provided the Subscriber is running Windows 2000 or

Chapter 15 Using SQL Server Replication 595
Windows NT 4.0). This is an advanced option that will not appear unless you select
the Show Advanced Options In This Wizard check box (see Figure 15.47).

<< “F15ST50.EPS” >>

Figure 15.50. Setting the Distribution Agent location.

<< “F15ST51.EPS” >>

Figure 15.51. Setting the Merge Agent location.

Next, specify the Schedule for the Distribution Schedule Agent in the Set Distribu-
tion Agent Schedule page (see Figure 15.52) or the Merge Agent in the Set Merge
Agent Schedule page. See Figure 15.53.

596 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST52.EPS” >>

Figure 15.52. Setting the Distribution Agent schedule.

<< “F15ST53.EPS” >>

Figure 15.53. Setting the Merge Agent schedule.

Notice that the default schedule for Distribution Agents is continuous and the
default schedule for Merge Agents is hourly.

Next, in the Initialize Subscription page, specify whether and when to initialize the
subscription. Figure 15.54 illustrates specifying initialization by the Distribution
Agent and Figure 15.55 illustrates specifying initialization by the Merge Agent.

Chapter 15 Using SQL Server Replication 597
<< “F15ST54.EPS” >>

Figure 15.54. Specifying initialization by the Distribution Agent.

<< “F15ST55.EPS” >>

Figure 15.55. Specifying initialization by the Merge Agent.

You can choose to have the Snapshot Agent create the snapshot immediately (if it
has not already done so) and then initialize the subscription (rather than wait for the
next scheduled run of the Snapshot Agent) by clicking the Yes, Initialize The
Schema And Data option button and then selecting the Start The Snapshot Agent
To Begin The Initialization Process Immediately check box. This check box will
not appear if the snapshot files have not already been created. Remember, the snap-
shot files must be created before the Distribution Agent or Merge Agent can initial-
ize the subscription. If you have applied the snapshot files manually (using a
compact disc or other removable media), specify that the Subscriber already has
the schema and data by clicking the No, The Subscriber Already Has The Schema
And Data option button.

598 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Next, in the Updatable Subscriptions page, if you are configuring a subscription for
a snapshot or transactional publication supporting one of the updatable subscrip-
tions options, you can specify the type of updatable subscriptions. The available
options on this page will vary depending on the type of updatable subscriptions
enabled in the publication. See Figure 15.56.

<< “F15ST56.EPS” >>

Figure 15.56. Specifying the type of updatable subscriptions.

Next, in the Specify DTS Package page, if you are configuring a subscription for a
snapshot or transactional publication using transformable subscriptions, you must
specify a DTS package to use with the subscription. Notice that the DTS package
can be located at either the Distributor or the Subscriber. See Figure 15.57.

<< “F15ST57.EPS” >>

Figure 15.57. Specifying the DTS package.

Next, in the Set Subscription Priority page, if you are configuring a subscription for
a merge publication, specify the subscription priority. See Figure 15.58.

Chapter 15 Using SQL Server Replication 599
<< “F15ST58.EPS” >>

Figure 15.58. Setting the subscription priority for conflict resolution.

The Use The Publisher As A Proxy For The Subscriber When Resolving Conflicts
option button is selected by default. This default subscription priority assigns zero
priority to all Subscribers. The Publisher merges changes made by a Subscriber
and, in effect, assumes authorship of these changes (acting as a proxy for the Sub-
scriber). A subscription without an assigned priority is called a local subscription.
However, you can assign a priority to a subscription by clicking the Use The Fol-
lowing Priority Between Zero (Lowest) And 99.99 (Highest), To Resolve The Con-
flict option button. A subscription with an assigned priority is called a global
subscription. In this case, changes made by the Subscriber are merged with data at
the Publisher and the priority of the Subscriber making the change is stored in the
metadata for the change. This assures that a change made by a higher priority Sub-
scriber is not overwritten by a change by a lower priority Subscriber.

Next, in the Start Required Services page, SQL Server Agent verifies that the
required services are running on the Distributor (see Figure 15.59). The SQL
Server Agent service is always required. The MSDTC service is required for updat-
able subscriptions (unless Microsoft Message Queuing has been enabled). If a
required service is not running, by default SQL Server Agent will start the service
when the wizard finishes. Clear the check box if you want to start it manually.

Finally, in the Completing The Push Subscription Wizard page, review the sub-
scription options and then click the Finish button to create the push subscription.
See Figure 15.60.

600 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST59.EPS” >>

Figure 15.59. Starting required services.

<< “F15ST60.EPS” >>

Figure 15.60. Completing the Push Subscription Wizard.

Practice: Creating a Push Subscription
In this practice you create a push subscription using the Create Push Subscription
Wizard in the SQL Server Enterprise Manager.

� To create a push subscription

1. In the SQL Server Enterprise Manager console tree, expand the Replication
container for the default instance and then expand the Publications container.

2. Right-click PubsSales:pubs and then click Push New Subscription.

The Welcome To The Push Subscription Wizard page appears.

3. Select the Show Advanced Options In This Wizard check box and then click
Next.

The Choose Subscribers page appears.

Chapter 15 Using SQL Server Replication 601
4. In the Subscribers list box, click SelfPacedCPU\MyNamedInstance and then
click Next.

The Choose Destination Database page appears.

5. Click the Browse Or Create button.

The Browse Databases On SelfPacedCPU\MyNamedInstance dialog box
appears.

6. Click the Create New button.

The Database Properties dialog box appears.

7. In the Name text box, type PubsPush and then click OK.

8. In the Browse Databases On SelfPacedCPU\MyNamedInstance dialog box,
verify that PubsPush is selected and then click OK.

9. In the Choose Destination Database page, click Next.

The Set Distribution Agent Location page appears.

10. Verify that the Run The Agent At The Distributor option button is selected and
then click Next.

The Set Distribution Agent Schedule page appears.

11. Verify that the Continuously – Provides Minimal Latency Between When An
Action Occurs At The Publisher And Is Propagated To The Subscriber option
button is selected and then click Next.

The Initialize Subscription page appears.

12. Verify that the Yes, Initialize The Schema And Data option button is selected.

13. Select the Start The Snapshot Agent To Begin The Initialization Process Imme-
diately check box and then click Next.

The Updatable Subscriptions page appears.

14. Click the Immediate Updating With Queued Updating As A Standby In Case
Of Failure option button, and then click Next.

The Start Required Services page appears. Notice that the SQL Server Agent
service on SelfPacedCPU is required along with the MS DTC service on both
instances of SQL Server.

15. In the grid, verify that the check box for each listed service is selected and then
click Next.

The Completing The Push Subscription Wizard page appears.

16. Review the properties of the push subscription and then click the Finish button.

Notice that a SQL Server Enterprise Manager dialog box appears to show the
progress of the push subscription being created.

17. When the push subscription is completed successfully, a second SQL Server
Enterprise Manager dialog box appears. Click the Close button.

18. Do not close SQL Server Enterprise Manager.

602 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Configuring a Pull Subscription
To configure a pull subscription using SQL Server Enterprise Manager, it must be
run from a Subscriber using the Pull Subscription Wizard. A pull subscription is ini-
tiated by the Subscriber, based on a schedule set at the Subscriber, and replicated
data is pulled from the Publisher using the resources of the Subscriber. In the case of
a merge publication, a pull subscription pushes data back to the Publisher. You can
start this wizard from the Tools menu by clicking Wizards, expanding Replication in
the Select Wizard dialog box, and then double-clicking Create Pull Subscription
Wizard, or by right-clicking Subscriptions and then clicking New Pull Subscription.
Figure 15.61 shows the Welcome To The Pull Subscription Wizard page.

<< “F15ST61.EPS” >>

Figure 15.61. Starting the Pull Subscription Wizard.

Notice that you can select the Show Advanced Options In This Wizard check box.
Showing advanced options allows the updatable subscription options to be set.

Next, in the Look For Publications page, you can search for publications from serv-
ers registered with SQL Server Enterprise Manager, or you can search the Active
Directory database for publications listed with Active Directory by Publishers run-
ning SQL Server 2000. See Figure 15.62.

Chapter 15 Using SQL Server Replication 603
<< “F15ST62.EPS” >>

Figure 15.62. Selecting where to look for a publication.

If you choose to look at publications in the Active Directory database, you can
enter the publication information in the Specify Publication page without having to
register the server with SQL Server Enterprise Manager. This is useful if you do
not have sufficient permission to register the Publisher, but know the necessary
publication information and have permission to subscribe to the publication. See
Figure 15.63. If you do not know the necessary publication information and want
to search for a publication, click the Browse button. In the Find SQL Server Publi-
cations dialog box, you can search for SQL Server publications based on the publi-
cation name or using advanced search criteria. See Figure 15.64.

<< “F15ST63.EPS” >>

Figure 15.63. Using Active Directory to subscribe to a publication.

604 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST64.EPS” >>

Figure 15.64. Specifying in Active Directory for a publication.

If you choose to search for publications registered with SQL Server Enterprise
Manager, in the Choose Publication page, select the publication to which you want
to subscribe. See Figure 15.65. This page displays publications that are accessible
(using the PAL for each publication) based on the login used to connect to the SQL
Server instance by SQL Server Enterprise Manager and those that allow anony-
mous subscriptions.

<< “F15ST65.EPS” >>

Figure 15.65. Searching registered servers for a publication.

After selecting a publication in the Choose Destination Database page (and being
authenticated based on the PAL), select the database on the destination server in
which to create the subscription. Select an existing database from the list box or
create a new database by clicking the New button. See Figure 15.66.

Chapter 15 Using SQL Server Replication 605
<< “F15ST66.EPS” >>

Figure 15.66. Choosing a destination database.

Next, if you have selected a publication permitting anonymous subscriptions, you
can elect to make the subscription anonymous in the Allow Anonymous Subscrip-
tion page. If a subscription is anonymous, no information about the Subscriber is
retained by the Publisher. See Figure 15.67.

<< “F15ST67.EPS” >>

Figure 15.67. Making a subscription anonymous.

If you have selected a publication that is permitted to have updatable subscriptions,
you can choose the type of updatable subscriptions in the Updatable Subscriptions
page. See Figure 15.68. If you select one of the 2PC types, in the Specify Updating
Subscription Login page, specify the login to be used by the Subscriber to connect
to the Publisher. Choices are using a predefined linked server (or remote server)
login or a SQL Server login. See Figure 15.69.

606 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST68.EPS” >>

Figure 15.68. Setting updatable subscription type.

<< “F15ST69.EPS” >>

Figure 15.69. Specifying an updating subscription login.

Next, in the Initialize Subscription page, you can choose to initialize the subscrip-
tion immediately or specify that the Subscriber already has the snapshot files. This
option is identical to a push subscription (see Figures 15.54 and 15.55). Next, in the
Snapshot Delivery page, specify how to access the snapshot files. See Figure 15.70.

You can use the default snapshot location for the publication or an alternate loca-
tion (such as a compact disc or an FTP address). The replication agent created with
this subscription (either a Distribution Agent or a Merge Agent) must have read
access to the snapshot files.

Chapter 15 Using SQL Server Replication 607
<< “F15ST70.EPS” >>

Figure 15.70. Specify the location to access the snapshot files.

Next, specify a schedule for the replication agent (either the Merge Agent in the Set
Merge Agent Schedule page or the Distribution Agent in the Set Distribution Agent
Schedule page). Options include continuous, according to a set schedule, or on
demand only. The On Demand Only option allows a pull Subscriber to use SQL
Server Enterprise Manager or the Windows Synchronization Manager to synchro-
nize the subscription. Figure 15.71 illustrates the Set Merge Agent Schedule page.

<< “F15ST71.EPS” >>

Figure 15.71. Specifying an agent schedule.

Note To configure an on-demand pull subscription, the domain user account used
by the SQL Server Agent service must have full control permissions on the follow-
ing registry key: HKLM\Software\Microsoft\Microsoft SQL Server\80\Replica-
tion\Subscriptions.

608 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Next, if a merge publication is subscribed to, the Set Subscription Priority Page
appears. This is the same as with a push subscription. See Figure 15.58.

Next, in the Start Required Services page, the necessary services for this subscrip-
tion are displayed. If the On Demand Only option was selected in the Set Merge
Agent Schedule page, the Start Required Services page will not appear. The SQL
Server Agent service will always be one of the options. If a 2PC type of updatable
subscription is selected, the MS DTC service will also be selected. See Figure
15.72.

<< “F15ST72.EPS” >>

Figure 15.72. Starting required services.

Finally, in the Completing The Pull Subscription Wizard page, review the subscrip-
tion options selected and then click the Finish button to create the pull subscription.

Practice: Creating a Pull Subscription
In this practice you create a pull subscription using the Create Pull Subscription
Wizard in the SQL Server Enterprise Manager.

� To create a pull subscription

1. Click the Start button, and the click Run.

2. In the Open box, type Regedt32 and then click OK.

The Registry Editor appears.

3. Expand HKEY_LOCAL_MACHINE, expand Software, expand Microsoft,
expand Microsoft SQL Server, expand 80, expand Replication, and then click
Subscriptions.

4. On the Security menu, click Permissions.

The Permissions For Subscriptions dialog box appears.

5. Click the Add button.

The Select Users, Computers Or Groups dialog box appears.

Chapter 15 Using SQL Server Replication 609
6. Double-click SQLService and then click OK.

The SQLService domain user account is added to the Name list box.

7. In the Name list box, click SQLService, and then in the Permissions group box,
select the Full Control check box.

8. Click OK to close the Permissions for Subscriptions dialog box.

9. Close Registry Editor.

10. In the SQL Server Enterprise Manager console tree, expand the SelfPaced-
CPU\MyNamedInstance container and then expand the Replication container
for MyNamedInstance.

11. Right-click the Subscriptions container and then click New Pull Subscription.

The Welcome To The Pull Subscription Wizard page appears.

12. Select the Show Advanced Options In This Wizard check box and then click
Next.

The Look For Publications page appears.

13. Verify that the Look At Publications From Registered Servers option button is
selected, and then click Next.

The Choose Publication page appears.

14. Expand SelfPacedCPU, click NorthwindSales: Northwind, and then click Next.

The Choose Destination Database page appears.

15. Click the New button.

The Database Properties dialog box appears.

16. In the Name text box, type NWindPull and then click OK.

The NWindPull database is created using default parameters.

17. In the Choose Destination Database page, verify that NWindPull is selected and
then click Next.

The Initialize Subscription page appears.

18. Verify that the Yes, Initialize The Schema And Data option button is selected.

19. Select the Start The Merge Agent To Initialize The Subscription Immediately
check box and then click Next.

The Snapshot Delivery page appears.

20. Verify that the Use Snapshot Files From The Default Snapshot Folder For This
Publication option button is selected and then click Next.

The Set Merge Agent Schedule page appears.

21. Click the On Demand Only – You Can Synchronize This Subscription Using
SQL Server Enterprise Manager Or The Windows Synchronization Manager
and then click Next.

The Set Subscription Priority page appears.

610 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
22. Verify that the Use The Publisher As A Proxy For The Subscriber When
Resolving Conflicts option button is selected and then click Next.

The Completing The Pull Subscription Wizard page appears.

23. Review the properties of the pull subscription and then click the Finish button.

Notice that a SQL Server Enterprise Manager dialog box appears to display the
progress of the pull subscription being created.

24. When the pull subscription is completed successfully, click OK.

25. Do not close SQL Server Enterprise Manager.

Lesson Summary
The first step in implementing a replication solution is to define a Distributor and
enable Publishers, databases, and Subscribers. You can use the Configure Publish-
ing And Distribution Wizard for this task. Use the Create Publication Wizard to
create snapshot, transactional, and merge publications. Configure Subscribers
using the Push Subscription Wizard or the Pull Subscription Wizard.

Chapter 15 Using SQL Server Replication 611
Lesson 4: Monitoring and Administering
Replication

After you have implemented a replication solution, you need to monitor and
administer replication. In this lesson, you will learn to use Replication Monitor to
view the status of replication agents and their tasks. You will also learn to review
and modify the properties of the Distributor, publications, subscriptions, and repli-
cation agents.

After this lesson, you will be able to
■ Monitor replication tasks with Replication Monitor

■ Configure replication alerts

■ Review and modify Distributor properties

■ Review and modify publication properties

■ Review and modify replication agent properties

■ Review and modify subscription properties

Estimated lesson time: 30 minutes

Monitoring with Replication Monitor
Replication Monitor shows up as a container in the SQL Server Enterprise Man-
ager console tree for a SQL Server instance that is enabled as a Distributor when
you are either a member of the sysadmin fixed server role, or a member of the repl-
monitor role in the distribution database. It displays a list of all Publishers using the
Distributor, the status of all publications, and the status of all replication agents. It
can be used to set up and monitor replication alerts. It can also be used to stop and
start replication agents, and reinitialize subscriptions. Finally, you can also config-
ure Replication Monitor as a top-level node in Enterprise Manager to monitor and
administer multiple Distributors (by right-clicking Microsoft SQL Servers in the
console tree and then clicking Show Replication Monitor Group).

To open Replication Monitor for a Distributor, connect to the Distributor (by
expanding a SQL Server instance enabled as a Distributor) and expand the Replica-
tion Monitor container in the Enterprise Manager console tree. When you first
expand Replication Monitor, a SQL Server Enterprise Manager dialog box will
appear informing you that by default Replication Monitor is not automatically
refreshed (to save Distributor resources). See Figure 15.73.

612 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST73.EPS” >>

Figure 15.73. Configuring Replication Monitor refresh properties.

During testing, you might want to select the Yes, Automatically Refresh Replica-
tion Monitor By Polling The Distributor option button to have Replication Monitor
automatically refresh. If you choose automatic refresh, you can click the Set
Refresh Rate button to choose a refresh rate (the default is 10 seconds). However,
during production, you should select the No, I Will Manually Refresh Replication
Monitor option button to save Distributor resources.

Publications
After you open Replication Monitor, you can view the status of various replication
components. See Figure 15.74. Notice that each Publisher authorized to use this Dis-
tributor is displayed. In the details pane, the status of the Snapshot Agent for the
selected publication is displayed along with each replication agent for the publication.
Only the last action is displayed in the details pane. To view the history of any replica-
tion agent for a publication, right-click the replication agent and then select Agent His-
tory as illustrated in Figure 15.75. This displays the Agent History dialog box.

Chapter 15 Using SQL Server Replication 613
<< “F15ST74.EPS” >>

Figure 15.74. Using Replication Monitor.

<< “F15ST75.EPS” >>

Figure 15.75. Displaying agent history for a publication.

Agents
You can also view replication information based on the type of agent rather than
based on the publication. Expand the Agents container in Replication Monitor and
select a type of replication agent. For example, click the Snapshot Agents container
to view the status of all Snapshot Agents. See Figure 15.76.

614 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST76.EPS” >>

Figure 15.76. Displaying the status of all Snapshot Agents.

In this figure, notice that each Snapshot Agent has successfully generated a snap-
shot. If a publication is not replicating successfully, check the status of the Snap-
shot Agent to verify that the initial snapshot has been created.

Alerts
You can also configure Replication Alerts by selecting an alert within the Replica-
tion Alerts container. See Figure 15.77.

<< “F15ST77.EPS” >>

Figure 15.77. Configuring replication alerts.

SQL Server 2000 ships with eight preconfigured replication alerts. To use one of
these alerts, you must enable the alert and configure operators to be notified. You
do this by right-clicking an alert in the Replication Alerts container, clicking Prop-
erties, and then enabling the alert and configuring operators in the Replication
Alert Properties dialog box.

Chapter 15 Using SQL Server Replication 615
Practice: Monitoring Replication
In this practice you monitor publications and subscriptions using SQL Server
Enterprise Manager.

� To monitor replication

1. In the SQL Server Enterprise Manager console tree, expand the Replication
Monitor container.

A SQL Server Enterprise Manager dialog box appears.

2. Click the Yes, Automatically Refresh Replication Monitor By Polling The Dis-
tributor option button and then click OK.

3. Expand the Agents container and then click the Snapshot Agents container.

4. In the details pane, verify that a snapshot was created for each publication by
viewing the Status column.

5. In the details pane, right-click NorthwindSales and then click Agent History.

The Snapshot Agent History dialog box appears.

6. Click the Session Details button.

The Latest History Of Snapshot Agent dialog box appears. In the list box,
notice the steps taken to create the snapshot files.

7. Click the Close button.

8. In the Snapshot Agent History dialog box, click the Agent Profile button.

The Snapshot Agent Profiles dialog box appears.

9. Click the View Details button.

The Replication Agent Profile Details dialog box appears. Notice the parame-
ters for the Snapshot Agent.

10. Click the Close button.

11. In the Snapshot Agent Profiles dialog box, click OK.

12. In the console tree, in the Replication Monitor container, expand Publishers,
expand SelfPacedCPU, and then click PubSales: pubs.

In the details pane, notice the status of each replication agent. Only the Snap-
shot Agent has run because there are no replicated or queued transactions.

13. On the Tools menu, click SQL Query Analyzer.

14. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

15. Open PubsUpdate.sql in the C:\SelfPacedSQL\CH_15 folder.

The script contains an UPDATE statement that updates the last name of the
author, Johnson White, to Johnson Black.

16. On the toolbar, click the Execute Query button.

17. Switch to SQL Server Enterprise Manager.

616 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
18. In the details pane, observe the Log Reader Agent and the Distribution Agent
(named SelfPacedCPU\MyNamedInstance:PubsPush). After about 10 seconds,
each of these agents will run and update the PubsPush database on SelfPaced-
CPU\MyNamedInstance. Each agent will indicate that one transaction with two
commands was delivered. After about 10 more seconds, these agents will indi-
cate that no replicated transactions are currently available.

19. Do not close SQL Server Enterprise Manager or SQL Query Analyzer.

Reviewing and Modifying Distributor Properties
To review and modify Distributor properties, right-click Replication Monitor in the
console tree and then click Distributor Properties. Figure 15.78 shows the Publisher
And Distributor Properties dialog box.

<< “F15ST78.EPS” >>

Figure 15.78. Viewing and modifying Distributor properties.

In the Distributor tab, you can configure properties of the Distributor, including the
replication agent profiles for all new agents (more on agent profiles on the next
page). You can also enable or disable Publishers in the Publishers tab, publication
databases in the Publication Databases tab, and Subscribers in the Subscribers tab.
To configure transaction and history retention periods, click the Properties button
in the Distributor tab. Figure 15.79 shows the Distribution Database Properties dia-
log box.

Chapter 15 Using SQL Server Replication 617
<< “F15ST79.EPS” >>

Figure 15.79. Viewing and modifying retention periods.

Notice that the default maximum retention period for transactions is 72 hours and
the default maximum retention period for replication performance history is 48
hours. These settings help determine the size of the distribution database. For
example, if a Subscriber to a transactional publication fails to retrieve replicated
transactions on schedule, they will remain in the distribution database for 72 hours
by default. The distribution database must have sufficient hard disk space to store
this volume of replicated transactions. After the expiration of this maximum reten-
tion period, a Subscriber will have to reinitialize the subscription. This requires a
current snapshot and will cause a performance hit.

Reviewing and Modifying Publication Properties
To view and modify the properties of a publication, you can select the publication
either in Replication Monitor or from the Publications container for the published
database. Right-click the selected publication and then click Properties. If the pub-
lication has existing subscriptions, you will receive a warning stating that many
properties cannot be modified. The SQL Server Enterprise Manager message box
is shown in Figure 15.80. Although you can modify some properties, you will need
to drop all subscriptions to modify many properties of a subscription. Click OK to
close the SQL Server Enterprise Manager message box.

The Publication Properties dialog box appears, with the General tab selected. Each
publication has many properties that can be viewed and modified. See Figure
15.81.

618 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST80.EPS” >>

Figure 15.80. Modifying a publication with existing subscriptions notice.

<< “F15ST81.EPS” >>

Figure 15.81. Reviewing and modifying publication properties.

In the General tab, notice that the default subscription expiration period for a sub-
scription to a merge publication is 14 days. For some environments, you might
want to configure subscriptions to never expire.

Reviewing and Modifying Replication Agent Profile
Each replication agent has a profile that defines the parameters used by the agent to
perform its task. This includes values such as timeout values and Bcp batch size
parameters. A set of default replication agent profiles is defined for each type of
replication agent when a Distributor is configured and can be modified as a prop-
erty of the Distributor. To modify the profile for an existing replication agent, in the
Agents container, right-click the replication agent and then click Agent Profiles.
The Distribution Agent Profiles dialog box appears, shown in Figure 15.82.

Chapter 15 Using SQL Server Replication 619
<< “F15ST82.EPS” >>

Figure 15.82. Reviewing and modifying replication agent profile details.

The agent profile for a Distribution Agent is displayed in Figure 15.82. Notice that
the default agent profile is being used, and that three other profiles are available for
this agent. One profile specifies that the agent will continue despite data consis-
tency errors. By default, an agent will cease data synchronization if data consis-
tency errors are detected. In some environments you might want to override this
default. You can also configure the agent profile to perform verbose history logging
for troubleshooting purposes or configure the agent profile for use with Windows
Synchronization Manager using a smaller batch size. To view the details of a pro-
file, click the View Details button. The Replication Agent Profile Details dialog
box appears, shown in Figure 15.83.

<< “F15ST83.EPS” >>

Figure 15.83. Reviewing and modifying agent profile details.

Notice the types of parameters that can be set or modified. Each replication agent
has different default settings and different available alternate profiles. You can also
create a new profile for an agent.

620 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Reviewing and Modifying Subscription Properties
To review or modify subscription properties of a publication, right-click the publi-
cation in the Publications container, click Properties, and then click the Subscrip-
tions tab in the Publication Properties dialog box. Each current subscription of the
publication is displayed. See Figure 15.84.

<< “F15ST84.EPS” >>

Figure 15.84. Reviewing subscriptions.

To view the properties of a subscription, click the subscription in the Subscription
container, and then click Properties. The Subscription Properties dialog box
appears, as shown in Figure 15.85.

Click the Synchronization tab to view or modify the location at which the agent
will run. On Windows 2000 and Windows NT 4.0 Subscribers, you can have the
agent run at the Subscriber to reduce the load on the Distributor. See Figure 15.86.

You can review the status of a subscription from the Subscriber side by expanding
the Replication folder in the console tree of Enterprise Manager and then clicking
Subscriptions. See Figure 15.87.

Chapter 15 Using SQL Server Replication 621
<< “F15ST85.EPS” >>

Figure 15.85. Reviewing general properties of a subscription.

<< “F15ST86.EPS” >>

Figure 15.86. Specifying the replication agent location.

622 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST87.EPS” >>

Figure 15.87. Viewing subscription status on a Subscriber.

Each subscription is displayed in the details pane along with the current status of
the subscription.

Viewing and Resolving Merge Replication Conflicts
To view and resolve a merge replication conflict at the Distributor, right-click the
merge publication in the Replication container of Enterprise Manager and then
click View Conflicts. The Microsoft Replication Conflict Viewer dialog box
appears, shown in Figure 15.88.

<< “F15ST88.EPS” >>

Figure 15.88. Viewing replication conflicts.

If any tables have conflicts, they will be displayed. Click the View button to resolve
any conflicts. See Figure 15.89.

Chapter 15 Using SQL Server Replication 623
<< “F15ST89.EPS” >>

Figure 15.89. Microsoft Replication Conflict Viewer.

Notice that you can resolve the conflict by selecting the winner as selected by SQL
Server, you can select the loser, or you can edit the conflicting information. You
can also choose to postpone resolution or log the details for later reference.

Using Windows Synchronization Manager
To use Windows Synchronization Manager on a Subscriber, click Start, point to
Programs, point to Accessories, and then click Synchronize. The Items To Syn-
chronize dialog box appears, illustrated in Figure 15.90.

<< “F15ST90.EPS” >>

Figure 15.90. Windows Synchronization Manager.

624 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Notice that various items can be synchronized using Windows Synchronization
Manager. Select a subscription to a publication, and then click the Synchronize but-
ton to immediately synchronize each item containing a check mark in its check
box. If interactive conflict resolution is enabled for a publication, you will be
prompted to resolve any conflicts that occur during synchronization. Click the
Setup button to display the Synchronization Settings dialog box and to configure
synchronization settings for each item. Items can be synchronized on logon and
logoff, when the processor is idle, or according to a schedule. See Figure 15.91.

<< “F15ST91.EPS” >>

Figure 15.91. Synchronization settings.

Select a subscription to a publication, and then click the Properties button to con-
figure properties of the subscription. The SQL Server Subscription Properties page
appears with the General tab selected (see Figure 15.92). You can synchronize with
the current default Publisher or select a different Publisher with which to synchro-
nize. This is useful if your default Publisher is temporarily offline or if a network
link is temporarily down. You can also select this other Publisher as the new default
Publisher by clicking the Make This Publisher The Default Synchronization Part-
ner check box. You also reinitialize or remove the subscription by clicking either
the Reinitialize Subscription button or the Remove Subscription button.

Click the Subscriber tab to modify the login account that a given push subscription
uses to connect to this Subscriber (see Figure 15.93). Click the Publisher tab to
modify the login account that a given pull subscription uses to connect to the Pub-
lisher (see Figure 15.94). Click the Distributor tab to modify the login account that
a given pull subscription uses to connect to the Distributor (see Figure 15.95). You
can either select the current login account for the user activating Synchronization
Manager, or you can specify a SQL Server login account (see Figure 15.95).

Chapter 15 Using SQL Server Replication 625
<< “F15ST92.EPS” >>

Figure 15.92. Specifying a default Publisher in the General tab of the Subscription prop-
erties page.

<< “F15ST93.EPS” >>

Figure 15.93. Subscriber login properties.

626 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F15ST94.EPS” >>

Figure 15.94. Publisher login properties.

<< “F15ST95.EPS” >>

Figure 15.95. Distributor login properties.

Click the Other tab to enable automatic or interactive conflict resolution. You can
also configure login and query timeout settings. This can be useful for slow links.
The defaults are 15 seconds for logins and 30 seconds for queries (see Figure
15.96).

Chapter 15 Using SQL Server Replication 627
<< “F15ST96.EPS” >>

Figure 15.96. Configuring automatic or interactive conflict resolution.

Practice: Resolving Conflicts Interactively Using Windows
Synchronization Manager
In this practice you resolve conflicts interactively using Windows Synchronization
Manager.

� To resolve conflicts interactively using Windows Synchronization Manager

1. Switch to SQL Query Analyzer.

2. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

3. Open NorthwindUpdate.sql in the C:\SelfPacedSQL\CH_15 folder.

This script updates Employee ID 1, changing the last name and title.

4. On the toolbar, click the Execute Query button.

5. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

6. Click the SQL Server ellipsis button to select an instance of SQL Server.

The Select Server dialog box appears.

7. Click SelfPacedCPU\MyNamedInstance and then click OK.

8. Verify that the Windows Authentication option button is selected, and then
click OK.

9. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

628 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
10. Open NwindPullUpdate.sql in the C:\SelfPacedSQL\CH_15 folder.

This script updates Employee ID 1, changing the last name and title. Notice that
the last name and title for this employee are different from the script in step 3.

11. On the toolbar, click the Execute Query button.

12. To synchronize using Windows Synchronization Manager, click Start, point to
Programs, point to Accessories, and then click Synchronize.

13. Click NwindPull: NorthwindSales and then click the Properties button.

The SQL Server Subscription Properties dialog box appears.

14. Click the Other tab.

15. Click the Resolve Conflicts Interactively (Only Applies To Articles That Sup-
port Interactive Resolution) option button and then click OK.

A Microsoft SQL Server 2000 dialog box appears asking if you are sure you
want to change the conflict resolution mode.

16. Click the Yes button.

17. Clear the My Current Home Page check box, verify that only the NwindPull:
NorthwindSales check box is selected, and then click the Synchronize button.

The Synchronizing dialog box appears. After a few moments, the Microsoft
Replication Conflict Viewer for ‘Northwind’ – ‘[dbo].[Employees]’ dialog box
appears. Notice that you can use pull-down menus to view the data at the Pub-
lisher and at the Subscriber.

18. Click the Resolve With This Data option button.

The Synchronization process completes.

19. In SQL Query Analyzer, in the connection to MyNamedInstance, click the
Clear Window button on the toolbar.

20. In the query pane, type SELECT * FROM Employees WHERE EmployeeID
= 1 and then click the Execute Query button on the toolbar.

Notice that the resolved data has been replicated to MyNamedInstance.

21. Close SQL Server Enterprise Manager and SQL Query Analyzer.

Lesson Summary
Use Replication Monitor to monitor all aspects of replication. You can monitor
using a publication focus or an agent focus. From within Replication Monitor, you
can view the status of any publication or agent. You can start or stop an agent, or
view its history. You can view the details of a publication. Although you can mod-
ify some details of a publication that has existing publications, to modify all details
you must drop all existing subscriptions. You can also review and resolve replica-
tion conflicts for a merge publication using Microsoft Replication Conflict Viewer.
Finally, you can use Windows Synchronization Manager to interactively control
synchronization on a Subscriber, if that publication option is enabled.

Chapter 15 Using SQL Server Replication 629
Review

Here are some questions to help you determine whether you have learned enough
to move on to the next chapter. If you have difficulty answering these questions,
review the material in this chapter before beginning the next chapter. The answers
for these questions are located in the Appendix, “Questions and Answers.”

1. You have a number of users in Brazil that need to access data for the purpose of
sales analysis. The data is stored in a centralized database in New York. They
have been accessing the database in New York over a 56K dedicated link that is
also supporting a variety of other interoffice traffic. You want to implement a
replication solution between your New York office and your Brazil office. What
type of replication would you implement and what additional information do
you need to know?

2. You have implemented a merge replication solution. Each Subscriber running
on Windows 2000 and Windows NT 4.0 is able to initialize the subscription and
replicate data successfully with the Publisher. However, your Windows Me and
Windows 98 Subscribers are unable to successfully replicate with the Publisher.
What is a likely source of this problem? How would you solve this problem?

3. You are planning to implement a merge replication solution. What is the benefit
of using a dedicated Distributor?

4. You have implemented transactional replication. You have been monitoring the
size of the distribution database on the Distributor and notice that its size seems
to be larger than anticipated. What might be the cause of this? What Distributor
setting could you modify to affect its size?

631
C H A P T E R 1 6

Maintaining High Availability

Lesson 1: Using Standby Servers . 632

Lesson 2: Using Failover Clustering . 655

Review . 659

About This Chapter
In previous chapters, you learned about maintaining the availability of your SQL
Server databases by using RAID for storage of data and transaction log files; per-
forming full, differential, and transaction log backups; and implementing replica-
tion. In environments that require the assurance of higher availability, such as Web-
based solutions and 24x7 operations, additional methods for maintaining high
availability are frequently implemented. In this chapter, you will learn about the
function of standby servers and you will learn how to automate the maintenance of
standby servers by using log shipping. Finally, you will be introduced to the use of
SQL Server failover clusters.

Before You Begin
To complete this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements listed
in Table 2.1, “Hardware Requirements,” in Lesson 1 of Chapter 2.

■ Microsoft Windows 2000 Server running on your computer on an NTFS partition.

■ A computer with a NetBIOS name of SelfPacedCPU configured as a domain
controller in the SelfPacedSQL.MSFT domain.

■ Installed a default instance and at least one named instance of SQL Server 2000
(see Chapter 2).

■ Failover clusters to achieve automatic failover to another server node in the
event of server failure.

632 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson 1: Using Standby Servers

A standby server can be maintained to take the place of the primary production
server, if needed. In this lesson, you will learn about setting up and maintaining a
standby server. This includes learning how to automate the maintenance of a
standby server. You will also learn how to bring a standby server online, and how to
bring the primary server back online.

After this lesson, you will be able to
■ Set up a standby server

■ Automate log shipping

■ Monitor log shipping

■ Bring a standby server online

■ Bring a primary server back online

Estimated lesson time: 45 minutes

Using a Standby Server
A standby server is a secondary SQL Server installation that is kept up-to-date with
a primary SQL Server installation through the application of transaction log
backup files. By using standby servers, a database administrator can minimize the
length of time that users are unable to access one or more production database(s) in
case of server failure or the need for server maintenance. The databases on a
standby server can also be used as reporting servers to offload reporting and analy-
sis tasks.

A standby server must maintain an exact copy of one or more production databases
on the primary server. This is initially accomplished through the use of a full data-
base backup on the primary server that is restored to the standby server using either
the NORECOVERY or the STANDBY restoration options. Using one of these two
options leaves the standby database in recovery mode, so that additional transaction
logs can be applied to it.

Next, to maintain an exact copy on the standby server, regular transaction log back-
ups are performed on the primary server and applied to the standby server (again
leaving the standby server in recovery mode). The frequency with which transaction
log backups are performed on the primary server and applied to the standby server
determines the amount of work (and length of time) required to bring the standby
server up-to-date and online in the event the standby server must be promoted.

Chapter 16 Maintaining High Availability 633
To promote the standby server to become the new primary server, all unapplied
transaction log backup files must be applied to the standby server. In addition, the
active portion of the transaction log on the primary server must be backed up and
applied to the standby server. This final restoration is performed using the RECOV-
ERY option. Users can then use the database on the standby server, which contains
all data from the primary server exactly as it was prior to its failure (other than
uncommitted transactions, which are permanently lost).

Note Using RAID for transaction log files is critical for ensuring that the active
portion of the transaction log is available for backup and application to the standby
server.

The active portion of the transaction log on the primary server can be backed up
using the NORECOVERY backup option. This option leaves the primary database
in recovery mode. When the primary server is ready to be brought back online, the
transaction logs from the standby server (for the period that users were using the
standby server as the primary server) can be applied to the primary server. This
avoids the necessity of applying a complete database backup and all applicable
transaction logs to restore the primary server. The result is a significant decrease in
the time required to bring the primary server back online.

When the standby server is brought online for use in place of the primary server,
either the standby server must be renamed using the name of the primary server or
user processes must know to connect to the standby server (using the name of a
standby server) rather than the primary server. All uncommitted transactions must
be restarted. Uncommitted transactions cannot be maintained between the primary
server and the standby server.

Note Use the SQL Server Setup program to rename a SQL Server 2000 installa-
tion after renaming the server using Windows 2000 or Windows NT 4.0.

User logins must be created on the standby server prior to bringing the standby
server online as the new primary server. This is generally accomplished using one
of the following methods.

■ User logins from the primary server can be scripted and these scripts used to
create the necessary logins on the standby server when needed.

■ The DTS Transfer Logins Task in DTS Designer can be used within a job to
automate the process of backing up, copying, and restoring the contents of the
sysxlogins system table from the primary server to the standby server.

If the standby server is only providing services to a single production server, you
might want to create the logins on the standby server when the standby server is cre-
ated. However, if the standby server is providing services to multiple databases from
multiple instances of SQL Server, generally you will not create logins on the standby
server until it is brought online as the primary server for a particular database.

634 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Automating Log Shipping
You can automate the process of maintaining a standby server by creating backup,
copy, and restore jobs that are periodically executed by SQL Server Agent on the
primary server and on the standby server. This automated process is called log
shipping. You can also designate a third server to monitor the execution of the log
shipping jobs on the primary server and on the standby server; the third server is
frequently used to monitor other pairs of log shipping servers as well.

Note The log shipping feature is available only in the Enterprise, Enterprise Eval-
uation, and Developer Editions of SQL Server 2000.

You can create these jobs using the Database Maintenance Plan Wizard in SQL
Server Enterprise Manager. You must be a member of the sysadmin server role to
run the Database Maintenance Plan Wizard. To start the Database Maintenance
Plan Wizard, click Database Maintenance Planner on the Tools menu, or right-click
the Database Maintenance Plan container (in the Management container) and then
click New Maintenance Plan. (The use of most of the Database Maintenance Plan
Wizard features was covered in Chapter 13.)

In the Select Servers page, select the primary server. See Figure 16.1.

<< “F16ST01.EPS” >>

Figure 16.1. Selecting a primary server for log shipping.

Next, in the Select Databases page, select the database for which you want to con-
figure log shipping, and specify log shipping by selecting the Ship The Transaction
Logs To Other SQL Servers (Log Shipping) check box. You can select only one
database at a time. See Figure 16.2.

Chapter 16 Maintaining High Availability 635
<< “F16ST02.EPS” >>

Figure 16.2. Selecting a database for log shipping.

Next, advance to the Specify the Database Backup Plan and clear the Back Up The
Database As Part Of The Maintenance Plan check box. See Figure 16.3.

<< “F16ST03.EPS” >>

Figure 16.3. Clearing the full database backup check box.

Note You do not need to perform a full database backup as part of a log shipping
database maintenance plan, although you will need to either perform an initial full
backup or use an existing full backup.

Next, in the Specify Transaction Log Backup Disk Directory page, specify the
directory into which the transaction log backup files will be stored. Make sure this
location has sufficient space to hold the shipped logs, or log shipping will fail. See
Figure 16.4.

636 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F16ST04.EPS” >>

Figure 16.4. Selecting a storage location for transaction log backups.

Next, in the Specify The Transaction Log Share page, specify the network share for
the storage location for the transaction log backup files. See Figure 16.5.

<< “F16ST05.EPS” >>

Figure 16.5. Specifying the network share for the transaction log backup files.

You must create this network share for the directory in which the transaction log
backup files are stored. The domain user account used by the SQL Server Agent
service on the primary server must have read and write access to this network
share, and the domain user account used by the SQL Server Agent service on the
standby server must have read access to this network share.

Next, in the Specify The Log Shipping Destinations page, click the Add button to
display the Add Destination Database dialog box, where you specify the standby
server and configure its properties. The standby server is called the destination
server in the wizard. In addition to using log shipping to create and maintain
standby servers, you can also use log shipping to create read-only copies of one or

Chapter 16 Maintaining High Availability 637
more production server databases rather than using replication. Figure 16.6 illus-
trates the Specify The Log Shipping Destinations page after a log shipping destina-
tion has been specified.

<< “F16ST06.EPS” >>

Figure 16.6. Specifying the standby server.

In the Add Destination Database dialog box, there are a number of properties you
can configure for the destination database. See Figure 16.7.

<< “F16ST07.EPS” >>

Figure 16.7. Specifying the properties of the destination database.

638 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
In the Destination Database group box, you can choose to specify a different data-
base name for the destination database. This is useful for creating a destination
read-only database for reporting purposes. If you want the destination database to
be viewable for read-only queries, you must select the Standby Mode option button
in the Database Load State group box. The default is the No Recovery Mode option
button. If you choose to update and overwrite an existing database (rather than cre-
ating a new database), you should select the Terminate Users In Database (Recom-
mended) check box to automatically terminate all users in the existing database. If
you want to use the destination database as a standby server that may need to
assume the role of the primary server, you must select the Allow Database To
Assume Primary Role check box to specify that it can assume the primary role if
necessary. When you select this check box, you must specify the directory, in the
Directory text box, for storing transaction log backups during the period the
standby server is functioning as the primary server.

Next, in the Initialize The Destination Databases page, you specify the backup file
containing a full database backup to be used to initialize the destination database
on the standby server (see Figure 16.8).

<< “F16ST08.EPS” >>

Figure 16.8. Specifying the backup file for initialization.

You can choose to perform a full backup immediately by selecting the Perform A
Full Database Backup Now option button, or you can select the Use Most Recent
Backup File option button to specify an existing recent backup file. If you specify a
recent backup file, you must include the path and filename of the existing backup
file in the Use Most Recent Backup File text box. This backup file will be placed in
the log shipping share so that it is available to the standby server for initialization
of the destination database.

Next, in the Log Shipping Schedules page, specify the log shipping schedule. See
Figure 16.9.

Chapter 16 Maintaining High Availability 639
In the Backup Schedule group box, the default frequency for backing up the trans-
action log on the primary server is 15 minutes. Click the Change button to display
the Edit Recurring Job Schedule dialog box to modify this frequency. Next, in the
Copy/Load Frequency spin box, specify the frequency with which the transaction
log backup files are copied to the standby server and restored (the default is 15
minutes). In the Load Delay spin box, you can specify a delay between the copy
and the load (restore) of the transaction log backup files (the default is no delay).
Finally, in the File Retention Period spin box, you can specify the length of time
the transaction log backup files are retained on the log shipping share (the default is
24 hours). If the standby server is unable to copy these files before the retention
period expires, the destination database on the standby server will have to be reini-
tialized. The frequency of the transaction log backups and the length of the file
retention period will affect the amount of disk space that the transaction log backup
files will require.

Next, in the Log Shipping Thresholds page, specify the log shipping alert thresh-
olds. See Figure 16.10.

<< “F16ST09.EPS” >>

Figure 16.9. Specifying the log shipping schedule.

640 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F16ST10.EPS” >>

Figure 16.10. Specifying the log shipping alert thresholds.

The Backup Alert Threshold alert defines the maximum length of time between
transaction log backups on the primary server (the default is 45 minutes or three
times the interval between transaction log backups). If the defined length of time is
exceeded, an alert will fire to notify an administrator of a problem with the auto-
mated log shipping process. The Out Of Sync Alert Threshold alert defines the
maximum length of time between the most recent transaction log backup on the
primary server and the restore of the transaction log backup to the standby server
(the default is 45 minutes or three times the interval between transaction log
restores).

Next, in the Specify The Log Shipping Monitor Server Information page, specify a
log shipping monitor for monitoring log shipping jobs on the primary server and
the standby server. See Figure 16.11.

<< “F16ST11.EPS” >>

Figure 16.11. Specifying a central monitoring server.

Chapter 16 Maintaining High Availability 641
This should generally be a server other than the primary or the standby server. The
monitoring server can provide monitoring services to multiple log shipping pairs of
servers. You must specify the authentication mode the SQL Server Agent service
will use to connect to the monitoring server. Select either Windows authentication
or SQL Server authentication. If SQL Server authentication is selected, you must
use the SQL Server login account, log_shipping_monitor_probe.

The next two pages, the Reports To Generate page and the Maintenance Plan His-
tory page, were covered in Chapter 13. See Figures 13.49 and 13.50.

When you are finished configuring your maintenance plan, the Database Mainte-
nance Plan Wizard Summary page appears. See Figure 16.12. Verify that the plan
information is correct, and then click Next. Finally, click the Finish button in the
Completing The Database Maintenance Plan Wizard page, as shown in Figure
16.13.

After the Database Maintenance Plan Wizard completes its task, the database
selected for log shipping is restored in recovery mode (using either the NORE-
COVERY or STANDBY options) on the standby server. See Figure 16.14.

<< “F16ST12.EPS” >>

Figure 16.12. Database Maintenance Plan Summary page.

642 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F16ST13.EPS” >>

Figure 16.13. Completing the Database Maintenance Plan Wizard page.

<< “F16ST14.EPS” >>

Figure 16.14. Standby server with database in standby mode.

Practice: Creating a Standby Server
In this practice you use the Database Maintenance Planner Wizard in SQL Server
Enterprise Manager to automate log shipping.

� To create a standby server

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. Click Start, point to Programs, point to Microsoft SQL Server, and then click
Enterprise Manager.

3. In the console tree, expand the Microsoft SQL Servers container, expand the
SQL Server Group container, expand the default instance container, and then
expand the Databases container.

Chapter 16 Maintaining High Availability 643
4. Right-click Databases, point to All Tasks, and then click Attach Database.

The Attach Database – SelfPacedCPU dialog box appears.

5. Click the ellipsis button to browse for the MDF file.

The Browse for Existing File – SelfPacedCPU dialog box appears.

6. Click LogShipDB.mdf in C:\SelfPacedSQL\CH_16 and then click OK.

Notice that the LogShipDB database is about to be attached.

7. In the Specify Database Owner drop-down box, click Sa.

8. Click OK to attach the LogShipDB database.

A SQL Server Enterprise Manager message box appears to inform you that
attachment of the database has completed successfully.

9. Click OK.

Notice that the LogShipDB database appears in the list of databases.

10. Right-click the LogShipDB container, point to All Tasks, and then click Main-
tenance Plan.

The Welcome To The Database Maintenance Plan Wizard page appears.

11. Click Next.

The Select Servers page appears.

12. Select the (Local) check box and then click Next.

The Select Databases page appears with the LogShipDB check box selected.

13. Select the Ship The Transaction Logs To Other SQL Servers (Log Shipping)
check box and then click Next.

The Update Data Optimization Information page appears.

14. Click Next.

The Database Integrity Check page appears.

15. Click Next.

The Specify The Database Backup Plan page appears.

16. Clear the Back Up The Database As Part Of The Maintenance Plan check box
and then click Next.

The Specify Transaction Log Backup Disk Directory page appears.

17. Verify that the Use The Default Backup Directory option button is selected.

18. Select the Remove Files Older Than check box and then click 1 in the spin box
and Hour(s) in the drop-down list.

19. Click Next.

The Specify The Transaction Log Share page appears.

20. Open Windows Explorer and browse to C:\Program Files\Microsoft SQL
Server\Mssql.

21. Right-click Backup and then click Sharing.

The Backup Properties dialog box appears.

644 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
22. Click the Share This Folder option button, change the share name to Produc-
tionBackup in the Share Name drop-down combo box, and then click OK.

23. Browse to C:\Program Files\Microsoft SQL Server\Mssql \$MyNamedIn-
stance.

24. Right-click Backup and then click Sharing.

The Backup Properties dialog box appears.

25. Click the Share This Folder option button, change the name to StandbyBackup
in the Share Name drop-down combo box, and then click OK.

26. Close Windows Explorer.

27. Switch to the Database Maintenance Plan Wizard.

28. In the Network Share Name For Backup Directory text box, type
\\SelfPacedCPU\ProductionBackup and then click Next.

The wizard verifies that the specified share exists, and the Specify The Log
Shipping Destinations page appears.

29. Click the Add button.

The Add Destination Database dialog box appears.

30. In the Server Name drop-down list, click SelfPacedCPU\MyNamedInstance.

31. In the Database Load State group box, click the Standby Mode option button
and then select the Terminate Users In Database (Recommended) check box.

32. Select the Allow Database To Assume Primary Role check box.

33. In the Directory text box, type \\SelfPacedCPU\StandbyBackup and then
click OK.

The wizard verifies that the specified share exists and the Specify The Log
Shipping Destinations page reappears displaying the destination server and
database.

34. Click Next.

The Initialize The Destination Databases page appears.

35. Verify that the Perform A Full Database Backup Now option button is selected
and then click Next.

The Log Shipping Schedules page appears.

36. Click the Change button to modify the backup schedule.

The Edit Recurring Job Schedule dialog box appears. Note that there are two
spin boxes, one for changing the number and one for specifying the increment
of time.

37. In the Daily Frequency group box, change the Occurs Every spin box from 15
to 1 (minute) and then click OK.

The Log Shipping Schedules page reappears.

38. Change the Copy/Load Frequency spin box from 15 (minutes) to 1.

39. Change the File Retention Period spin box from 24 (hours) to 1 (hour(s)).

Chapter 16 Maintaining High Availability 645
40. Click Next.

The Log Shipping Thresholds page appears. Notice that the Backup Alert
Threshold is set to 5 minutes and the Out Of Sync Alert Threshold is set to 3
minutes.

41. Click Next.

The Specify The Log Shipping Monitor Server Information page appears.

42. In the SQL Server drop-down list, verify that SelfPacedCPU is displayed and
then click Next.

The Reports To Generate page appears.

43. Click Next.

The Maintenance Plan History page appears.

44. Click Next.

The Database Maintenance Plan Wizard Summary page appears.

45. In the Plan Name text box, type Log Shipping and then click Next.

The Completing The Database Maintenance Plan Wizard page appears.

46. Click the Finish button.

Notice the progress of the steps the wizard is performing.

47. Click OK to acknowledge a Database Maintenance Plan Wizard message box
informing you that the maintenance plan was created successfully.

48. In the console tree, expand the SelfPacedCPU\MyNamedInstance container
and then expand the Databases container.

49. Click the Databases container and then, on the toolbar, click the Refresh button.

In the Databases container for the SelfPacedCPU\MyNamedInstance, notice
that the LogShipDB database container appears containing a read-only copy of
the LogShipDB database. If it does not appear, right-click the Databases con-
tainer and then click Refresh.

50. Leave SQL Server Enterprise Manager running.

Monitoring Log Shipping
To monitor the status of log shipping on the monitor server, expand the Manage-
ment container of that server and then click Log Shipping Monitor (if you have just
configured log shipping, right-click the Management container and then click
Refresh). The status of all log shipping servers is displayed in the details pane. See
Figure 16.15.

646 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F16ST15.EPS” >>

Figure 16.15. Log shipping monitor.

The log shipping monitor displays the date and time of the most recent transaction
log backup on the primary server in the Last Backup column, the most recent copy
of the transaction log backup file to the network share in the Last Copy column, the
most recent restore of the transaction log backup file to the standby server in the
Last Restore column, and the synchronization status in the Status column. Click the
Show/Hide Console Tree/Favorites button on the toolbar to display only the details
pane.

To view the backup history for the primary server, right-click the log shipping pair
and then click View Backup History to display the Database Maintenance Plan
History dialog box. See Figure 16.16.

<< “F16ST16.EPS” >>

Figure 16.16. Viewing the backup history for the primary server from the monitor server.

To view the copy and restore history for the standby server, right-click the log ship-
ping pair and then click View Copy/Restore History to display the Secondary
Server Log Shipping History dialog box. See Figure 16.17.

Chapter 16 Maintaining High Availability 647
To modify the properties of log shipping, right-click the log shipping pair and then
click Properties to display the Log Shipping Pair Properties dialog box. Log ship-
ping information is displayed on this page, including the last backup file, the last
file copied, the last file loaded, and the times and deltas for each. See Figure 16.18.

Click the Source tab to modify alert properties for the primary server (see Figure
16.19). Click the View Backup Schedule button to view the backup schedule.

Click the Destination tab to modify the alert properties for the standby server (see
Figure 16.20). Click the View Copy Schedule button to view how often database
copies are made, or click the View Load Schedule button to view how often the
database is restored.

<< “F16ST17.EPS” >>

Figure 16.17. Viewing the copy/restore history for the standby server from the monitor
server.

648 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F16ST18.EPS” >>

Figure 16.18. Viewing log shipping pair properties.

<< “F16ST19.EPS” >>

Figure 16.19. Viewing the Source tab of log shipping pair properties.

Chapter 16 Maintaining High Availability 649
<< “F16ST20.EPS” >>

Figure 16.20. Viewing the Destination tab of log shipping pair properties.

Practice: Monitoring Log Shipping
In this practice you use the Log Shipping Monitor in SQL Server Enterprise Man-
ager to monitor log shipping.

� To monitor log shipping

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

2. In the SQL Server Enterprise Manager console tree, expand the Management
container in the default instance.

3. Click the Management container and then, on the toolbar, click the Refresh button.

4. In the Management container, click Log Shipping Monitor.

The current status of the log shipping pair is displayed in the details pane.

5. On the toolbar, click the Show/Hide Console Tree/Favorites button.

Notice that the window now displays only the contents of the details pane (for
easier viewing of all columns).

6. Right-click the log shipping pair and then click View Backup History.

The Database Maintenance Plan History – SelfPacedCPU dialog box appears
displaying the history of the Log Shipping maintenance plan. Notice that the
transaction log is being backed up every minute and each successful job has a
blue check mark in the status column.

7. Click the Close button.

650 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
8. Right-click the log shipping pair and then click View Copy/Restore History.

The Secondary Server Log Shipping History – SelfPacedCPU\MyNamedIn-
stance dialog box appears. Notice that the copy job and the load job occur every
minute. The load job restores all transaction log backup files that have been
copied, and then the copy job connects to the primary server and copies any
new transaction log backup files to the standby server.

9. Click the Close button.

10. Right-click the log shipping pair and then click Properties.

The Log Shipping Pair Properties dialog box appears. Notice that Load Delta
indicates that the synchronization delay between the primary database and the
standby database is one minute (it will be two minutes on some slower comput-
ers).

11. Click OK to close the Log Shipping Pair Properties dialog box.

12. On the Tools menu, click SQL Query Analyzer.

SQL Query Analyzer appears displaying a connection to the SelfPacedCPU
default instance.

13. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

14. Open LogShipChangeData.sql in the C:\SelfPacedSQL\CH_16 folder.

Notice that this script changes the ContactTitle field for one of the customers in
the LogShipDB database.

15. On the toolbar, click the Execute Query button to execute the query.

Notice that the ContactTitle field for CustomerID ANATR is changed.

16. Leave SQL Query Analyzer and SQL Server Enterprise Manager running.

Bringing a Standby Server Online
To bring a standby server online, you must run the following system stored proce-
dures in order.

1. Run sp_change_primary_role on the primary server. Use the @db_name argu-
ment to specify the appropriate database. Use the @backup_log argument to
specify a backup of the current transaction log and the @terminate argument to
specify a roll back of all incomplete transactions. You can specify the recovery
state of the database after the completion of the stored procedure: RECOVERY,
NO RECOVERY, or STANDBY (default is RECOVERY) with the
@final_state argument. Finally, you can specify the access level of the database
after the completion of the stored procedure: MULTI_USER,
RESTRICTED_USER, or SINGLE_USER (default is MULTI_USER) with the
@access_level argument.

2. Run sp_change_secondary_role on the standby server. Use the @db_name to
specify the appropriate database. Use the @db_name argument to specify the

Chapter 16 Maintaining High Availability 651
application of pending transaction log backup files to the standby database. Use
the @db_name argument to convert the standby database to a primary database.
You can specify the recovery state of the database after the completion of the
stored procedure: RECOVERY, NO RECOVERY, or STANDBY (default is
RECOVERY) with the @final_state argument. Finally, you can specify the
access level of the database after the completion of the stored procedure:
MULTI_USER, RESTRICTED_USER, or SINGLE_USER (default is
MULTI_USER) with the @access_level argument.

Note If the secondary server (the standby server) has a job running against
this database at the same time the system stored procedure is run, you will
receive a Transact-SQL error indicating that exclusive access to the database to
restore the transaction log files could not be obtained. Either rerun the system
stored procedure or complete the restore using SQL Server Enterprise Manager.

3. Run sp_change_monitor_role on the log shipping monitor server. This system
stored procedure updates the monitor server to reflect the changed log shipping
roles, using the @primary_server argument to designate the primary server
being replaced, the @secondary_server argument to designate the standby
server being converted to a primary server, the @database argument to desig-
nate the standby database being converted to a primary database, and the
@new_source argument to specify the network share the new primary server
will use for storing its transaction log backup files.

In addition, you must verify that the new primary server contains all required log-
ins. You can use a saved Transact-SQL script, or if you used the DTS Transfer Log-
ins Task to create a Bcp output file containing these logins, you can use the
sp_resolve_logins system stored procedure to input these logins from the Bcp out-
put file.

After completion of these steps, the standby server is ready to function as the new
primary server. The former primary server is no longer part of a shipping pair. You
must add the original primary server or another server as a standby server to re-
establish a shipping pair. To bring the original primary server back online, repeat
the three-step process just described.

Practice: Bringing a Standby Server Online as the Primary
Server
In this practice you use stored procedures to bring a standby server online as the
primary server and deactivate the primary server and its log shipping jobs.

� To bring a standby server online as the primary server

1. Ensure that you are logged on to the SelfPacedSQL.MSFT domain controller as
Administrator.

652 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
2. In SQL Query Analyzer, verify that you are connected to the default instance of
SQL Server on SelfPacedCPU and then click the Load SQL Script button on
the toolbar.

The Open Query File dialog box appears.

3. Open DemotePrimary.sql in the C:\SelfPacedSQL\CH_16 folder.

This script runs the sp_change_primary_role system stored procedure, which
backs up the current transaction log for the LogShipDB database and sets the
database to read-only.

4. On the toolbar, click the Execute Query button to execute the DemotePri-
mary.sql script.

The script executes and displays a message regarding the backup of the current
transaction log.

Note If you get an access denied permissions error, the SQL Server Agent ser-
vice does not have sufficient permissions. Either verify all required permis-
sions, or make the SQLService account a member of the local Administrators
group (and restart all services), and then rerun this lab from the beginning.

5. Switch to SQL Server Enterprise Manager.

6. On the toolbar, click the Show/Hide Console Tree/Favorites button to show the
console tree (if necessary).

7. Expand the SelfPacedCPU\MyNamedInstance container, expand the Manage-
ment container, expand the SQL Server Agent container, click the Jobs con-
tainer, and then click Local Server Jobs.

The current jobs are displayed in the details pane.

8. In the details pane, right-click the Log Shipping Copy For SelfPacedCPU
LogShipDB_Logshipping job and then click Disable Job.

9. In the details pane, right-click the Log Shipping Restore For SelfPacedCPU
LogShipDB_Logshipping job and then click Disable Job.

10. Switch to SQL Query Analyzer.

11. On the File menu, click Connect.

The Connect To SQL Server dialog box appears.

12. In the SQL Server drop-down list, select SelfPacedCPU\MyNamedInstance,
verify that the Windows Authentication option button is selected, and then click
OK.

13. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

14. Open PromoteSecondary.sql in the C:\SelfPacedSQL\CH_16 folder.

This script runs the sp_change_secondary_role system stored procedure, which
copies the current transaction log from the primary server and restores it to the
LogShipDB database on the standby server. It also restores the database to mul-
tiuser mode and removes the read-only setting.

Chapter 16 Maintaining High Availability 653
15. On the toolbar, click the Execute Query button to execute the PromoteSecond-
ary.sql script.

Notice that the script copies the current transaction log (and any other logs it
has not previously copied) and applies it to the database on the standby server.
It deletes the copy and load jobs that were running on the former standby server
and enables the transaction log backup job on the new primary server. If the
second result set indicates that exclusive control of the database could not be
obtained to perform the restore task, rerun the system stored procedure.

16. Switch to the SQL query pane containing the connection to the default instance.

17. On the toolbar, click the Load SQL Script button.

The Open Query File dialog box appears.

18. Open UpdateMonitorServer.sql in the C:\SelfPacedSQL\CH_16 folder.

This script runs the sp_change_monitor_role system stored procedure, updating
the monitor server regarding the change in the role of the primary and standby
server. It also specifies the storage location for the transaction log backup files
being created on the new primary (former standby) server.

19. On the toolbar, click the Execute Query button to execute the UpdateMoni-
torServer.sql script.

20. Switch to the SQL query pane containing the connection to SelfPaced-
CPU\MyNamedInstance.

21. On the toolbar, click the Clear Window button.

22. In the query pane, type SELECT * FROM LogShipDB.dbo.Customers
WHERE CustomerID = ‘ANATR’ and then click the Execute Query button
on the toolbar.

Notice that the ContactTitle change was captured in the transaction log and
applied to the new primary server before it was restored.

23. On the toolbar, click the Clear Window button.

24. In the query pane, type UPDATE LogShipDB.dbo.Customers SET Contact-
Title = ‘Owner’ WHERE CustomerID = ‘ANATR’ and then click the Exe-
cute Query button on the toolbar.

Notice that the query executes successfully. The new primary database is func-
tioning successfully. If you receive an error stating that BEGIN TRANSAC-
TION could not run because the database is read-only, you are connected to the
default instance rather than to the named instance.

25. Close SQL Server Enterprise Manager and SQL Query Analyzer.

654 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
Lesson Summary
Using a standby server enables the database administrator to quickly bring a server
online in case of a server failure or to perform necessary maintenance on a primary
server. Log shipping automates this process using jobs and alerts administered by
SQL Server Agent service on the primary server and on the standby server. A mon-
itoring server is used to monitor log shipping pairs of servers. Bringing a standby
server online as the primary server requires the execution of three system stored
procedures. In addition, the database administrator must ensure that the new pri-
mary server has the necessary logins for the databases being promoted. This can be
accomplished using the DTS Transfer Logins Task or using Transact-SQL scripts.

Chapter 16 Maintaining High Availability 655
Lesson 2: Using Failover Clustering

SQL Server 2000 failover clustering can be used to provide almost instantaneous
availability of a secondary node in a failover cluster configuration in case the pri-
mary node fails for any reason. Failover clustering provides a higher level of avail-
ability than the use of standby servers. In this lesson, you will be introduced to the
Microsoft Cluster Service (MSCS). You will learn about the use of active/active
and active/passive failover clusters. You will also learn how to create and configure
a SQL Server virtual server on a failover cluster. Finally, you will learn about main-
taining a failover cluster.

After this lesson, you will be able to
■ Install SQL Server on multiple nodes in a failover cluster

■ Describe types of failover clusters

■ Maintain a failover cluster

■ Recover from a cluster node failure

Estimated lesson time: 15 minutes

Introducing MSCS
MSCS is a service of Windows 2000 and Windows NT 4.0 that is used to form
server clusters (also called failover clusters). A server cluster is a group of indepen-
dent computer systems working together as a single system and sharing a common
storage system (generally a RAID system). Each computer frequently has identical
hardware. Windows 2000 Data Center supports up to four nodes (each server in a
cluster is called a node). Windows 2000 Advanced Server and Windows NT 4.0
Enterprise Edition support two nodes. Applications run on a server cluster, rather
than on a specific node in the server cluster. The MSCS clustering software moni-
tors each node and ensures that an application running on the server cluster contin-
ues to run regardless of the failure of an individual node. See Figure 16.21.

656 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
<< “F16ST21.EPS” >>

Figure 16.21. Failover cluster.

Note Installing and administering a server cluster on Windows 2000 or Windows
NT 4.0 is beyond the scope of this book.

Creating a Virtual Server on a Server Cluster
SQL Server 2000 runs as a virtual server across two or more nodes in the server
cluster. To install SQL Server 2000 on an existing server cluster, run the SQL
Server Setup program on one of the nodes in the server cluster. The Setup program
automatically detects the presence of the server cluster. Select the Virtual Server
option button in the Computer Name page to define a virtual server and install the
executable files on each node in the server cluster (for example, to C:\Program
Files\Microsoft SQL Server on each node). This enables each node to run SQL
Server executable programs if necessary. The data files (for system and user data-
bases) for the virtual server can only be installed in the shared RAID system. This
enables the data files to be available to any node.

During setup, you define a virtual server name and assign an IP address to the vir-
tual server. A virtual server can use multiple IP addresses to support multiple sub-
nets that provide redundancy in the event of a network adapter or router failure.
SQL Server clients connect to this virtual server, rather than to any individual node.
By default, the virtual server runs on the node on which you are installing SQL
Server, although you can select another node as the primary node. One or more sec-
ondary nodes in the server cluster function as the failover nodes, ready to pick up
the load of the primary node in the event of failure.

Private network

Node 1Node 2

Public network(s)

Chapter 16 Maintaining High Availability 657
A node in a server cluster can be either active or passive. You can create up to 16
instances of SQL Server 2000 in a server cluster. Each instance can run on any
node in the server cluster. You must plan to have sufficient hardware resources
(memory and processor) in each failover node to provide services in the event a pri-
mary node fails. There are several ways to accomplish this.

■ Active/passive clusters. In an active/passive cluster, one node serves exclu-
sively as the failover node for another node. In the event of failure of the pri-
mary (active) node, the failover (passive) node has sufficient hardware
resources to handle the load of the primary node with no degradation in
throughput or performance. Using an active/passive configuration is generally
required for mission-critical applications. However, in an active/passive cluster,
the passive node in the server cluster is essentially unused unless the primary
node fails.

■ Active/active clusters. In an active/active cluster, each node serves as the pri-
mary node for a virtual server as well as the failover node for another virtual
server. In the event of failure of one of the nodes, the remaining node (or nodes)
must handle the load of both virtual servers. This generally means some degra-
dation of service for both virtual servers until the failed node is repaired. You
must plan to leave sufficient headroom on each active node to provide adequate
service to all services running on the failover node in the event of a node fail-
ure. The use of an active/active cluster is a more cost-effective use of computer
hardware when all nodes are functioning properly.

Planning Issues
There are a number of installation and configuration considerations you must be
aware of when running SQL Server 2000 in a clustered environment.

■ If you plan to use MS DTC in a clustered environment, you must run the Clus-
ter Wizard on each node before you install SQL Server 2000. This enables MS
DTC to run in clustered mode.

■ If you have configured a minimum server memory setting for a node, you must
ensure that the failover node has sufficient memory capacity to provide this
minimum memory in the event of a failover event. Generally, you should allow
SQL Server to dynamically allocate memory in a server cluster.

■ If you are using AWE on one node, all nodes should have the same amount of
AWE. In addition, ensure that the total value of the max server memory setting
for all instances is less than the lowest amount of physical memory available on
any of the nodes in the failover cluster.

■ Ensure that the recovery interval is set to zero to allow SQL Server to set the
recovery interval. This setting affects the length of time SQL Server will take to
fail over to a failover node.

658 Part 1: Self-Paced Training for Microsoft SQL Server 2000 System Administration
■ Service account passwords for each SQL Server service must be identical on all
nodes. If you change a password using SQL Server Enterprise Manager, it will
change the password on all nodes automatically.

■ If you use an internal disk controller, disable caching. To optimize perfor-
mance, use an external disk controller that is certified for database use.

■ On Windows NT 4.0, the domain user account used by the SQL Server and
SQL Server Agent services must be a member of the local Administrators
group on each node in the server cluster.

■ If you are using replication, use the shared disk system for the snapshot files so
they remain always available in the event of a node failure.

Disaster Recovery
In the event the primary node used by a virtual server fails, a secondary node takes
over. A recovery of the database occurs automatically, and the failover node takes
over and handles all user connections (user connections do not need to be reestab-
lished). User processes are oblivious to the change, other than a minor wait for the
failover to complete.

To recover, run the Setup program to remove the failed node from the configura-
tion. This takes approximately one minute. Next, repair or replace the failed node.
Finally, rerun the Setup program and add the rebuilt node. The Setup program takes
care of the rest of the process. The active node does not have to be stopped during
this process, so users can continue working.

Lesson Summary
Failover clustering provides the highest level of availability for SQL Server 2000
installations. Failover clustering is based on MSCS and is available only on Win-
dows 2000 Data Center, Windows 2000 Advanced Server, and Windows NT 4.0
Enterprise Edition. When the SQL Server Setup program detects a server cluster,
you can choose to install a virtual server, selecting one of the nodes in the server
cluster as the primary node. If this node fails, the virtual server will automatically
fail over to a secondary node. The secondary node can either be inactive or function
as the primary node for another virtual server.

Chapter 16 Maintaining High Availability 659
Review

Here are some questions to help you determine whether you have learned the con-
tent of this chapter. If you have difficulty answering the questions, review the mate-
rial in this chapter. The answers for these questions are located in the Appendix,
“Questions and Answers.”

1. You are the database administrator for a number of SQL Server installations
that generally must be available 24 x 7. What are the major failover differences
between the use of standby servers with log shipping and the use of failover
clustering?

2. You are administering 10 production servers. You are planning to implement
log shipping to provide for a quick restore of each production server in the case
of a system failure. What is the minimum number of computers you can use to
accomplish this task? What is the minimum number of computers you would
recommend be used?

889
A P P E N D I X

Questions and Answers

The following questions and answers are for Part 1 of this book.

Chapter 1: Overview of SQL Server 2000

Page 31 1. You are planning to deploy SQL Server 2000 to support Internet-based sales of
your products. You need this installation to handle a large volume of transac-
tions and to be available 24 x 7. Which edition of SQL Server 2000 should you
choose?

You should choose the Enterprise Edition because you need all of the high
performance and fault-tolerant features of the Enterprise Edition.

2. You want to allow users to query SQL Server 2000 using their Internet browser
via the Internet. What components of SQL Server 2000 are required?

First of all, you need the SQL Server service. Next, you need to configure
IIS to access SQL Server 2000 using some of the client communication
components. The specific client communication components will depend
on your specific configuration.

3. The SQL Server 2000 database environment has a physical design component
and a logical design component. As a database administrator, one of your tasks
is to optimize the performance of SQL Server 2000. With which type of data-
base design do you have the most ability to affect performance?

As the database administrator, you have the most ability to affect perfor-
mance by optimizing the physical database component, including choice of
hardware and placement of data and log files.

4. You have an existing server application that uses SQL Server 2000 running on
Microsoft Windows 2000 servers. You have clients who access this server
application using Windows 95 and Windows 98 client applications. You want to
extend this server application to clients using an existing Novell network. What
type of authentication decisions must you make?

You must decide whether the clients who will access SQL Server 2000
from the Novell network will be authenticated by the Windows operating

890 Microsoft SQL Server 2000 System Administration, 70-228
system prior to attempting to access SQL Server 2000. If they will not be
authenticated by the Windows operating system, you must configure
SQL Server 2000 to use Mixed Mode authentication and provide each
user with a SQL Server login.

Chapter 2: Installing SQL Server 2000

Page 71 1. You have decided to install SQL Server 2000 on a test computer to evaluate the
new features available. You have a Pentium III 400-MHz laptop with 96 MB of
memory. Will this laptop be sufficient for testing the new features of SQL
Server 2000?

Probably, but additional information is needed. The processor is fast
enough for all editions and all Windows operating systems editions. How-
ever, the question does not tell us how much hard drive space is available
on the laptop. Assuming enough space can be made available, this laptop
could be used to install the Personal edition on any Windows operating sys-
tem. This laptop does not have enough memory to properly test any SQL
Server 2000 edition on any Windows 2000 Server edition. It does have suf-
ficient memory to test any SQL Server 2000 edition on any Microsoft Win-
dows NT 4.0 Server edition.

2. You are installing SQL Server 2000. You want it to be able to use your
Microsoft Exchange Server to notify you when jobs succeed or fail. What type
of account should you use for the SQL Server and SQL Server Agent services?

You should use a domain user account for the SQL Server and SQL Server
Agent services. A domain user account is required for access to Microsoft
Exchange Server.

3. You are installing SQL Server 2000. You have a mixed network of computers
including Windows NT servers and Novell servers. Your network supports both
TCP/IP and NWLink IPX/SPX. Should you perform a typical or a Custom
setup?

If you want to configure support for NWLink IPX/SPX during setup, you
must perform a Custom setup. The option to configure SQL Server 2000 to
listen on NWLink IPX/SPX is not available when a Typical setup is per-
formed. However, because all network libraries are installed during all
types of setups, you can also use the Server Network Utility to configure
NWLink IPX/SPX after SQL Server 2000 is installed. Finally, because
your network supports TCP/IP as well as NWLink IPX/SPX, support for

Appendix Questions and Answers 891
TCP/IP might be sufficient for your needs without configuring NWLink
IPX/SPX in SQL Server 2000.

4. You are installing SQL Server 2000. You have heard that SQL Server 2000 allows
you to install SQL Server 2000 side by side with SQL Server 7.0. If you install
SQL Server 2000 as a named instance, what issues should you be aware of?

Installing a named instance of SQL Server 2000 on the same computer as
an installation of SQL Server 7.0 will replace all of the SQL Server 7.0 cli-
ent tools and utilities with the SQL Server 2000 versions of these tools and
utilities. It will also install the SQL Server 2000 version of Books Online in
place of the SQL Server 7.0 Books Online. However, it will leave your SQL
Server 7.0 databases intact and functioning using the SQL Server 7.0 data-
base engine.

5. You are installing SQL Server 2000. You plan to install identical configurations
on multiple computers to test the configuration’s performance on different
hardware platforms. You do not want to click your way through the SQL Server
2000 interactive Setup program each time you install SQL Server 2000. What
should you do?

You should use the capability of the SQL Server 2000 Setup program to
record an unattended .ISS file for you to use to perform unattended instal-
lations. This allows you to perform identical installations on multiple com-
puters without having to interactively navigate your way through the SQL
Server 2000 Setup program screens each time you install SQL Server 2000.

6. You have installed SQL Server 2000 on a test computer for evaluation. You had
a problem initially starting the SQL Server service due to a logon failure. You
solved the problem. You want to review the SQL Server error log related to the
failure to start the SQL Server service. Can you do this, and if so, how?

You can use SQL Server Enterprise Manager or any text editor to review
the current error log or any of the previous six error logs.

Chapter 3: Preparing to Use SQL Server 2000

Page 105 1. You have installed SQL Server 2000 on a test computer for evaluation. Gloria,
another database administrator at your company, logged on to the SQL Server
2000 computer and attempted to review the new files that were added. She
reports that she cannot view all of the files that were installed. Why might this
be happening? Is there a problem?

The SQL Server 2000 Setup program locks down certain folders within the
NTFS file system to prevent unauthorized tampering. Only the service
account used by the SQL Server and SQL Server Agent services and mem-
bers of the local Administrators group can access the unique program and
data files for each instance. The reason Gloria cannot view all of the new
files that were added is most likely because she is not a member of the local

892 Microsoft SQL Server 2000 System Administration, 70-228
Administrators group on the computer upon which SQL Server was
installed. This is not a problem. This is by design. If Gloria will be adminis-
tering this SQL Server 2000 installation, she might need to be added to the
local Administrators group. However, she does not have to be a member of
the local Administrators group to administer this SQL Server installation.
Chapters 10 and 11 cover security in detail.

2. You have installed SQL Server 2000 on a test computer for evaluation. During
installation, you used the local system account as the service account for the
SQL Server and SQL Server Agent services. You have decided you need to
configure and use a dedicated domain user account for these services. How
should you change the service account for these services?

You should use SQL Server Enterprise Manager to change the service
account for both the SQL Server and the SQL Server Agent services. This
will set the appropriate access permissions in the NTFS file system and the
Windows registry for this dedicated domain user account. It will also
update the Microsoft Search service with respect to the use of this domain
user account by the SQL Server service.

3. You have installed SQL Server 2000 on a test computer for evaluation. You
want to verify that you can connect to SQL Server 2000 and begin configuring
objects in SQL Server 2000. What tool would you start with and why?

You would probably begin with SQL Server Enterprise Manager.
Although you could use Osql or SQL Query Analyzer to test connectivity,
SQL Server Enterprise Manager is the primary tool for administering
SQL Server 2000 objects.

Chapter 4: Upgrading to SQL Server 2000

Page 133 1. You are planning to upgrade your SQL Server 7.0 installation running on Win-
dows NT 4.0 Server to SQL Server 2000. You want to test SQL Server 2000 on
the same computer on which you currently have SQL Server 7.0 installed, and
you need to keep the SQL Server 7.0 installation available for users. What
issues do you need to consider?

The first issue you need to consider is whether you need to upgrade the
hardware or software to support SQL Server 2000. Windows NT 4.0 must
be running Service Pack 5. Next, you must install SQL Server 2000 as a
named instance. When you do this, you need to be aware that the Setup
program will upgrade the SQL Server 7.0 client tools to SQL Server 2000
client tools. This includes SQL Server Enterprise Manager and SQL

Appendix Questions and Answers 893
Query Analyzer. Finally, you must have sufficient hard drive space for the
named instance of SQL Server 2000.

2. You have recently performed a version upgrade of SQL Server 7.0 to SQL
Server 2000. Although overall performance has improved, full-text searches are
not working. Why might this be?

During the version upgrade, full-text catalogs were disabled. You need to
repopulate the full-text catalogs manually. Maintaining full-text catalogs is
covered in Chapter 12.

3. You have decided that you cannot afford the downtime associated with a ver-
sion upgrade of your SQL Server 7.0 installation and have decided to perform
an online database upgrade of your production databases. What settings and
objects will you have to re-create manually?

You will have to re-create any server settings and SQL Server Agent jobs
and alerts. Also, you cannot upgrade any databases involved in replication.

4. You have been testing SQL Server 2000 on the same computer on which you
have been running your SQL Server 6.5 installation. You decide to upgrade
your SQL Server 6.5 installation. However, you cannot locate the SQL Server
Upgrade Wizard. It is not located on the Start menu and you cannot find it on
your hard drive. Why?

The SQL Server Upgrade Wizard is only installed when you install an
instance of SQL Server 2000 as the default instance. The reason for this is
that you can only upgrade to the default instance. If the wizard does not
appear, you probably installed SQL Server 2000 as a named instance
rather than the default instance.

Chapter 5: Understanding System and User Databases

Page 158 1. Describe the difference in the ordering of data pages from a table caused by
using either a clustered index or a nonclustered index.

A clustered index on a table causes the data pages (and the index pages) to
be physically ordered in the data file based on the key value in the clus-
tered index. A nonclustered index does not physically order the data pages.
Only the index pages of the nonclustered index are physically ordered.

2. Which recovery model does not require regular backups of the transaction log?

The Simple Recovery model does not rely on transaction log backups to
truncate the transaction log. Rather, the checkpoint process automatically
truncates the inactive portion of the logical log at the end of each check-
point.

3. Why should you not create scripts that use Transact-SQL statements to directly
query system tables?

894 Microsoft SQL Server 2000 System Administration, 70-228
You should not create scripts that use Transact-SQL statements to query
system tables directly because the underlying system tables might change
between releases of SQL Server. If such a change does occur, you would
have to rewrite those scripts. Microsoft sometimes modifies system tables
with new releases to add new functionality.

Chapter 6: Creating and Configuring User Databases

Page 196 1. You want to create a user database containing multiple data files on separate
physical disks. You are not experienced at writing Transact-SQL statements.
What is the simplest method you can use to create this database?

Use the direct method in SQL Server Enterprise Manager. The Create
Database Wizard does not allow you to create a database with multiple
data files on separate disks, but the direct method does.

2. Describe the two methods you can use to change the database recovery model
for a database.

You can change the database recovery model for a database on the Options
tab in the Properties dialog box for the database. You can also use the
ALTER DATABASE Transact-SQL statement.

3. You created a new database on your system. You used the default properties for
the transaction log file. You backed up the new database and the master data-
base. After you performed a bulk load of data into your new database, you
notice that the transaction log is quite large. Why did it grow so large and what
must you do to reduce the size of the transaction log?

The transaction log file grew so large because it was set to autogrow and
because the recovery model was set to full. The bulk load operation was
fully logged and generated many transaction log records. To reduce the
size of the transaction log, you should first back up the transaction log file
and then use the DBCC SHRINKFILE or DBCC SHRINKDATABASE
command. You cannot shrink the transaction log using SQL Server Enter-
prise Manager.

4. You are managing a small database system running on Windows 2000 Server.
Although the database is under 1 GB in space, it is very busy (primarily per-
forming writes), and you want to improve its performance. You do not have the
budget for a hardware RAID system and are not aware of specific database
access patterns. You have already placed the transaction log file on a separate
disk from the data file. What is an inexpensive solution?

You can procure between three and six small disks. Set up a mirror of the
transaction log files using the software RAID capabilities of Windows 2000
Server. Combine the remaining disks using RAID 0 and move the data file
to this array. Because you have fault tolerance on the transaction log, the

Appendix Questions and Answers 895
lack of fault tolerance on the data files may be acceptable if the perfor-
mance gain is significant.

Chapter 7: Populating a Database

Page 244 1. You are analyzing the data in a text file containing data that you want to import
into your database. You have determined that the data is internally consistent
but contains fields that are inconsistent with existing data in your database. The
text file is representative of data that you will be importing weekly. What is
your best solution for achieving the necessary data consistency? You have
already determined that you cannot change the original data source.

You have a number of options. You can use DTS to perform transforma-
tions of data during the import. You can use a text editor and manually
perform a search and replace. You can import the data into a temporary
table and use Transact-SQL to massage and scrub the data. Although each
of these methods will work, DTS provides the most automated method and,
because this is a task you will have to perform repeatedly, DTS provides
the best solution.

2. Describe the difference between the On Success precedence constraint and the
On Completion precedence constraint.

A task that follows the On Success precedence constraint will only execute
if the preceding task completes the task it intended to complete. A task that
follows the On Completion precedence constraint will execute when the
preceding task completes, regardless of whether that task achieved the task
it intended to complete.

3. You have created and saved a simple data import and transform package that
imports data from the spreadsheets maintained by your salespeople for expense
reports. However, you want to add additional functionality to the package,
including notifying an administrator after the entire sales staff has uploaded
their expense reports. How might you accomplish this?

You could use DTS Designer to edit the existing package to connect to mul-
tiple data sources (each salesperson’s notebook) once per week and upload
the expense report. You could use Message Queuing to queue a spreadsheet
upload task that occurred weekly for each salesperson. When the last
salesperson has uploaded data, the package could notify an administrator
using the Send Mail task.

4. You have created a package that collects completed sales information from sev-
eral different spreadsheet files used by salespeople in your company. After it
collects this information, it inserts the collected information in one of your
sales reporting databases. You want to distribute this package to your salespeo-
ple to execute regularly as part of their weekly reports. However, you do not
want them to be able to open or edit the package. How should you save this
package and how should you secure it?

896 Microsoft SQL Server 2000 System Administration, 70-228
You should save it as a structured storage file, using both an owner and a
user password. You can then mail or otherwise distribute the package to
your salespeople without the package being viewable or editable.

5. You want to import a large amount of data from a text file into a table that con-
tains a clustered and a nonclustered index. The data being inserted exists in the
text file in the same order as the clustered index. As part of the process, you
first truncate the existing table to replace it with this new data. Should you drop
each of the indexes before you insert the new data?

Because the table will be truncated prior to new data being inserted, you
should drop the nonclustered index and rebuild it after the data insert is
complete. However, you should not drop the clustered index. Rather, you
should specify in your Bcp command or BULK INSERT statement that the
data is already ordered.

Chapter 8: Developing a Data Restoration Strategy

Page 264 1. You are using RAID 1 for your transaction log and RAID 10 for your database.
With this level of fault tolerance, why is it still critical to have a data restoration
plan?

Using fault tolerance for your disk subsystem does not protect your data
from all forms of disaster. For example, multiple disks could fail simulta-
neously, your disk subsystem could be stolen, or a natural disaster could
strike. In addition, you might need to roll your database back to an earlier
point in time because of user or application error.

2. You are developing your data recovery plan. You have tested the length of time
required to perform a full database backup and determined that you can back up
the entire database in six hours. You have decided to perform full database
backups every night. You have also determined that you need to perform trans-
action log backups every 15 minutes to minimize the risk of data loss. Should
you also use regular differential database backups as part of your data recovery
plan?

It depends. The benefit of regular differential database backups is to speed
the restoration process. If your database fails at 5:00 P.M., you will need to
restore each transaction log backup since the full database backup the
night before. If the transaction log backups are reasonably small and are
either on a network file server or only on a few tapes, the benefit of differ-
ential database backups might not be significant. However, if you must

Appendix Questions and Answers 897
insert a separate tape for each transaction log backup or if each transac-
tion log backup is large, performing a differential database backup every
two hours could substantially reduce your data restoration time.

3. You are responsible for maintaining and restoring, if needed, a decision support
database. Several different data sources regularly populate this database using
DTS packages. What is the restoration benefit, if any, to using the Full Recov-
ery model for this database given the substantial increase in the number and
size of the transaction log backups required?

There is little restoration benefit in this scenario. All of the data in this
database comes from existing data sources. If the Full Recovery model is
not used and the entire database is lost because of some disaster, you can
restore data to the point of the most recent transaction log backup. You
can regenerate any more recent data relatively easily from the original
data sources.

Chapter 9: Backing Up and Restoring SQL Server

Page 314 1. You regularly perform full, differential, and transaction log backups to disk.
Are there any other backup tasks that you should perform regularly to protect
your database from data loss?

Yes, you should regularly archive the backups from disk to tape for perma-
nent storage. This will protect your backups in case the disk containing the
backup files should fail.

2. You are a new database administrator. You want to create Transact-SQL scripts
to automate the backup of your database. However, the syntax is imposing.
What are several good methods for familiarizing yourself with the Transact-
SQL syntax and the various backup options?

There are two excellent ways to become familiar with the available backup
options and the Transact-SQL syntax. The first is to use SQL Server
Enterprise Manager, including the Create Database Backup Wizard. This
will assist you in understanding how each backup option works. The sec-
ond is to use the sample Transact-SQL scripts in this chapter as well as
SQL Server Books Online on a sample database and practice modifying
and running backup scripts.

3. What is a major advantage to using SQL Server Enterprise Manager for per-
forming database restorations, rather than Transact-SQL?

A major advantage to using SQL Server Enterprise Manager rather than
Transact-SQL (other than not having to learn the Transact-SQL syntax) is

898 Microsoft SQL Server 2000 System Administration, 70-228
that SQL Server Enterprise Manager will use the backup history in the
msdb database to assist you in selecting the necessary backup sets to per-
form a complete database restoration as quickly as possible.

4. What is the major difference between performing a restoration of the master
database and all other databases?

You must start SQL Server 2000 in single-user mode to perform a master
database restoration.

Chapter 10: Managing Access to SQL Server 2000

Page 355 1. You are concerned about keeping the data stored within your SQL Server 2000
installation extremely secure. All of the users who will access this data are
Windows 2000 users. Should you permit SQL Server authentication? Why or
why not?

Given the information in the question, the answer is no. The primary bene-
fit to enabling SQL Server authentication is to permit users who will not be
previously authenticated by the Windows operating system to access a
SQL Server 2000 installation. The downside to permitting SQL Server
authentication is significantly weaker security. This is primarily because of
the lack of account policy protections that are enforced by Windows 2000
(or Windows NT 4.0) and the lack of encryption for user names and pass-
words on the wire (unless SSL is enabled for the entire session).

2. A member of the help desk staff has complained that although she can log on to
SQL Server 2000 and access the Northwind and Pubs databases, she cannot
even see the Northwind Reports database. How is this possible?

A user cannot see databases to which he or she has no access rights. In gen-
eral, for this member of the help desk staff to see and access the Northwind
Reports database, she must be granted direct rights to the database, be
added to a Windows group that has access, or be added to a database role
in that database. Enabling the guest user account in the Northwind
Reports database will also enable the member of the helpdesk staff to see
and access the Northwind Reports database.

3. You are creating a new SQL Server 2000 installation. Hundreds of users will
require access to several different databases on this SQL Server 2000 instance.
Should you use SQL Server Enterprise Manager or Transact-SQL system
stored procedures for creating these login and user accounts? Why?

Appendix Questions and Answers 899
You should create Transact-SQL scripts rather than use SQL Server
Enterprise Manager because you can create many users with a single
script, whereas SQL Server Enterprise Manager would require hundreds
of separate clicks to create this many users.

Chapter 11: Managing SQL Server Permissions

Page 389 1. You created a Windows 2000 security group for users of the SalesReporting
database on your SQL Server 2000 installation and placed the sales managers
in this group. You then granted this group access to SQL Server 2000 and the
SalesReporting database. In addition, you made this group a member of the
db_datawriter and db_datareader fixed database roles. Several members have
complained that although they can access the data in each table and view in the
database, they are only able to execute certain stored procedures, but not all. To
make matters more complicated, one of the members of this group can execute
all of the stored procedures without a problem. What are the likely causes of
this problem?

The problem begins with the fact that membership in the db_datawriter
and db_datareader fixed database roles does not grant any permissions to
execute stored procedures. Therefore, the problem must relate to permis-
sions on the stored procedures themselves. It is likely that the public role
has been granted execution rights on the stored procedures they are able to
execute. With respect to the remaining stored procedures, either the mem-
ber of the group that can execute them is receiving permission through
membership in another group, or the members that cannot execute them
belong to a group that has been denied the right to execute those specific
stored procedures.

2. You need to grant certain users the ability to insert new data into a highly secure
database. They also require very limited lookup rights to the data. You are con-
cerned about security for this data. What is the most secure method you can use
to allow the users to perform their task?

You can create an application role with very specifically delimited rights to
the database. You can work with a developer to create an application that
only allows the users to perform the specific tasks they need to perform
and have the custom application access the database using the application
role and an encrypted password. Finally, you can ensure that none of the
users of the application have any access rights to the SQL Server 2000
installation other than through the custom application.

3. You are designing a security strategy for your SQL Server 2000 installation.
You are only allowing access to Windows 2000 users and groups. Is there any
advantage to applying permissions to user-defined database groups rather than
directly to Windows groups?

900 Microsoft SQL Server 2000 System Administration, 70-228
Possibly. If each different grouping of permissions maps directly to a single
Windows 2000 group and you will never allow SQL Server logins, there is
no advantage. However, if you might need to permit SQL Server logins in
the future, or if there are multiple Windows 2000 groups that need the
same grouping of permissions, assigning permissions to a user-defined
database group will ease the administrative task over the life cycle of the
SQL Server 2000 installation.

Chapter 12: Performing Administrative Tasks

Page 440 1. You are running a number of server applications on the same computer. You
observe that the performance of SQL Server 2000 is initially poor after a period
of low activity. What can you do to improve its responsiveness?

You can configure a minimum memory setting guaranteeing that a suffi-
cient minimum amount of physical memory will always be available to the
SQL Server 2000 instance.

2. You want to configure the SQL Server Agent service to send mail to adminis-
trators in response to alerts. What is the first task you must perform?

You must configure the SQL Server Agent service to use a domain user
account.

3. You want to enable one of your databases to be queried using XML. What must
you do?

You must configure a virtual directory in IIS pointing to the database and
specify the security context of connecting users. You must also specify the
types of XML queries that will be permitted.

Chapter 13: Automating Administrative Tasks

Page 507 1. The database administrator who has been designated as the fail-safe operator is
leaving the company. What must you do before you delete this person as an
operator?

You must either assign another person as the fail-safe operator or disable
the fail-safe operator feature.

2. If a job fails to execute when scheduled, what are some troubleshooting steps
you can follow?

Verify that the schedule is enabled; verify that the job is enabled; and ver-
ify that SQL Server Agent is running.

3. You have defined an alert that backs up the transaction log when it is 90 percent
full. However, occasionally the transaction log fills up before the job executes.
Why is this occurring and what can be done to solve this problem?

Appendix Questions and Answers 901
Performance condition alerts sample the performance object counters
every few seconds. If your transaction log fills up very quickly, this sam-
pling rate is not frequent enough to back up the transaction log before it
fills. Set a lower threshold for the alert to solve the problem.

4. You are in charge of managing a small database for your company. This is a
part-time responsibility. You are also managing your company’s domain con-
trollers, Web site, and e-mail server. You want to automate as many tasks as
possible. Where should you start?

The first automation task is backup. Use the Database Maintenance Plan
Wizard to automate the backup of all system and user databases. Next,
consider the other tasks you can automate with the Database Maintenance
Plan Wizard and automate those that apply. Next, evaluate the types of
events and conditions for which you should define alerts. This will provide
you with advance notice of potential problems.

5. You want to create a single job that backs up the system databases nightly on
every SQL Server instance within your company. You want to ensure that this
happens automatically, with notice to you only if there is a problem. Can this be
done?

Yes. You can create a multiserver job to perform this task and notify you as
the MSXOperator only if a job fails. If you do not receive notification, you
can generally assume that the job completed successfully on all servers.
However, if the e-mail system within your company fails or the Messenger
service stops running, you might not receive notification of failure.

Chapter 14: Monitoring SQL Server Performance and Activity

Page 546 1. You have recently been hired as the new database administrator for a medium-
sized database. You have been tasked with improving the performance of the
database, although no specific problems are apparent. Where should you start?

You should start by reviewing any performance baseline information that
is available. You need to determine whether there are any immediate
resource limitations affecting performance. Thereafter, you can begin iden-
tifying more subtle performance issues, such as inadequate indexes and
long-running queries.

2. You want to be able to quickly view overall levels of resource use on a com-
puter running SQL Server to determine whether resources are adequate. What
is the most appropriate tool for the task?

Task Manager is the most appropriate tool for this task. It can be placed in
the system tray and used to quickly display overall processor, memory, and
I/O activity on the computer.

902 Microsoft SQL Server 2000 System Administration, 70-228
3. You have been viewing current server activity through SQL Server Enterprise
Manager. You have noticed a number of blocking locks. What steps should you
take to determine whether this is a serious problem?

You should use SQL Profiler to determine the number and frequency of
blocking locks. By performing this step over time, you can determine
whether the number of blocking locks is stable or increasing (or perhaps
decreasing). You also capture sufficient information to determine whether
specific SQL batches or stored procedures are causing the majority of the
blocking locks. You can then determine the necessary steps to improve con-
currency and performance, such as rewriting scripts and stored proce-
dures, or changing the design of the database.

Chapter 15: Using SQL Server Replication

Page 629 1. You have a number of users in Brazil who need to access data for the purpose of
sales analysis. The data is stored in a centralized database in New York. They
have been accessing the database in New York over a 56K dedicated link that is
also supporting a variety of other interoffice traffic. You want to implement a
replication solution between your New York office and your Brazil office. What
type of replication would you implement and what additional information do
you need to know?

Because this information is for sales analysis, the users probably do not
need up-to-the-minute data. Depending upon the size of the database and
the number of changes, you would implement either snapshot or transac-
tional replication. Replication could occur once a day, probably late in the
evening.

2. You have implemented a merge replication solution. Each Subscriber running
on Windows 2000 and Windows NT 4.0 is able to initialize the subscription and
replicate data successfully with the Publisher. However, your Windows Me and
Windows 98 Subscribers are unable to successfully replicate with the Publisher.
What is a likely source of this problem? How would you solve this problem?

The Windows Me and Windows 98 Subscribers probably cannot access the
initial snapshot folder. By default, the initial snapshot folder is accessible
only using the hidden administrative share. This share is accessible only to
users that are members of the local Administrators group of the Distribu-
tor. Solve this problem by using an explicitly created share for the snapshot
folder and grant the required permissions to this share.

3. You are planning to implement a merge replication solution. What is the benefit
of using a dedicated Distributor?

There is little benefit to a dedicated server because the Distributor plays a
very limited role in merge replication. It serves primarily as a storage loca-
tion for history information.

Appendix Questions and Answers 903
4. You have implemented transactional replication. You have been monitoring the
size of the distribution database on the Distributor and notice that its size seems
to be larger than anticipated. What might be the cause of this? What Distributor
setting could you modify to affect its size?

The cause of the distribution database being larger than anticipated could
be the retention of transactions in the database for longer than anticipated.
By default, they are held in the distribution database until all Subscribers
have downloaded the transactions or a default period of 72 hours. You
should check the maximum retention period to verify the maximum reten-
tion period. You should also check whether one or more Subscribers is tak-
ing a long time to download changes. Also, if anonymous Subscribers are
permitted, all transactions will be kept for the maximum length of time.

Chapter 16: Maintaining High Availability

Page 659 1. You are the database administrator for a number of SQL Server installations
that generally must be available 24 x 7. What are the major failover differences
between the use of standby servers with log shipping and the use of failover
clustering?

With failover clustering, failover to a secondary node occurs automatically
with only a brief delay and without the need for users to connect to another
server and restart incomplete transactions. With standby servers, a data-
base administrator must manually promote the standby server to primary
and demote the primary server. During this time, the database is unavail-
able. In addition, users must connect to a different server (or the standby
server must be renamed to the original server name) and incomplete trans-
actions must be restarted.

2. You are administering 10 production servers. You are planning to implement
log shipping to provide for a quick restore of each production server in the case
of a system failure. What is the minimum number of computers you can use to
accomplish this task? What is the minimum number of computers you would
recommend be used?

The minimum number of computers is one. You could copy all transaction
logs to a single server, which could also function as a monitoring server. If a
production server fails, you can create the necessary logins and promote
the standby server to primary for the databases affected. The standby
server would continue to function as the standby server for the other pro-
duction servers. Obviously, the capacity of a single server to handle this
load is an issue. Also, this is a single point of failure, which is not advisable.
The recommended number of servers will vary depending upon additional
facts not presented here, such as size of databases and capacity of each
server. However, you would probably want to have at least two standby
servers and a separate monitoring server to eliminate single points of fail-
ure and provide excess capacity.

905
Glossary

Symbol
%User Time A processor object counter that
reports the percentage of time the processor is
spending executing user processes, such as SQL
Server.

A
ACID properties The four properties (atomic-
ity, consistency, isolation, durability) of a transac-
tion. Atomicity means that all of a transaction’s
data modifications are performed, or none of them
is performed. Consistency means that all data
must be left in a consistent state. Isolation means
that modifications made by concurrent transac-
tions must be isolated from the modifications
made by any other concurrent transactions. Dura-
bility means that the effects of a transaction must
be permanent (even after a system failure).

active statement A SQL statement that has
been executed but whose result set has not yet
been canceled or fully processed.

ActiveX Data Objects (ADO) An easy-to-use
application programming interface (API) that
wraps OLE DB for use in languages such as
Visual Basic, Visual Basic for Applications,
Active Server Pages (ASP), and Microsoft Internet
Explorer Visual Basic Scripting.

ActiveX Data Objects (Multidimensional)
(ADO MD) A high-level, language-indepen-
dent set of object-based data access interfaces
optimized for multidimensional data applications.
Visual Basic and other automation languages use
ADO MD as the data access interface to multidi-
mensional data storage. ADO MD is a part of
ADO 2.0 and later.

ActiveX script Scripts that can be written in
several scripting languages, such as Microsoft
Visual Basic Scripting Edition, Microsoft JScript,
or PerlScript, that can utilize the objects, methods,
properties, and collections of the DTS object
model and code transformations of source data to
destination data, create COM objects, dynamically
change properties of a DTS object, or create and
set DTS package global variables.

ADO See ActiveX Data Objects

ADO MD See ActiveX Data Objects (Multidi-
mensional) (ADO MD)

alert A user-defined response to a SQL Server
event. Alerts can either execute a defined task or
send an e-mail, pager, or NET SEND message to a
specified operator.

ALTER TABLET SQL command that enables
users with the appropriate permissions to modify a
table’s definition.

ALTER TRIGGER SQL command that
enables users with the appropriate permissions to
modify a previously created trigger.

ALTER VIEW SQL command that enables
users with the appropriate permissions to modify a
previously created view.

American National Standards Institute
(ANSI) An organization of American industry
and business groups that develops trade and com-
munication standards for the United States.
Through membership in the International Organi-
zation for Standardization (ISO) and the Interna-
tional Electrotechnical Commission (IEC), ANSI
coordinates American standards with correspond-
ing international standards.

Analysis Server The server component of
Analysis Services that is specifically designed to
create and maintain multidimensional data struc-
tures and provide multidimensional data in
response to client queries.

906 Glossary
anonymous subscription An anonymous sub-
scription is a type of pull subscription for which
detailed information about the subscription and
the Subscriber is not stored.

ANSI See American National Standards Insti-
tute (ANSI)

ANSI-to-OEM conversion The conversion of
characters that must occur when data is transferred
from a database that stores character data using a
specific code page to a client application on a
computer that uses a different code page. Typi-
cally, Windows-based client computers use ANSI/
ISO code pages, and some databases (for compati-
bility reasons) might use OEM code pages, such
as the MS-DOS 437 code page or code page 850.

API See application programming interface
(API)

API server cursor A server cursor built to sup-
port the cursor functions of an application pro-
gramming interface (API), such as ODBC, OLE
DB, ADO, and DB-Library. An application does
not usually request a server cursor directly; it calls
the cursor functions of the API. The SQL Server
interface for that API implements a server cursor
if that is the best way to support the requested cur-
sor functionality. See also server cursor

application programming interface (API) A
set of routines available in an application, such as
ADO, for use by software programmers when
designing an application interface.

application role A SQL Server role created to
support the security needs of an application.

Article An object specified for replication. An
article is a component in a publication and can be
a table, specified columns (using a column filter),
specified rows (using a row filter), a stored proce-
dure or view definition, the execution of a stored
procedure, a view, an indexed view, or a user-
defined function.

Atomic Either all of the transaction data modifi-
cations are performed or none of them are per-
formed.

Authentication The process of validating that
the user attempting to connect to SQL Server is
authorized to do so. See also SQL Server authen-
tication

authentication modes Microsoft SQL Server
2000 can be configured to support one of two
authentication modes: Mixed Mode or Windows
Authentication.

Authorization The operation that verifies the
permissions and access rights granted to a user.

AUTO_CLOSE A database option used to con-
trol the behavior of a database when the last user
of the database exits and all processes in the data-
base complete.

AUTO_CREATE_STATISTICS A database
option used to control the behavior of statistics
being automatically created on columns used in a
predicate.

AUTO_UPDATE_STATISTICS A database
option used to control the behavior of statistics
being automatically updated when the statistics
become out of date because the data in the tables
has changed.

automatic recovery Recovery that occurs
every time SQL Server is restarted. Automatic
recovery protects your database if there is a sys-
tem failure.

Autonomy The independence one site has from
other sites when performing modifications to data.

B
Backup A copy of a database, transaction log,
file, or filegroup used to recover data after a sys-
tem failure.

Glossary 907
BACKUP DATABASE T-SQL command used
to back up a database.

backup device A tape or disk used in a backup
or restore operation.

backup file A file that stores a full or partial
database, transaction log, or file and/or filegroup
backup.

BACKUP LOG T-SQL command used to back
up a transaction log.

backup media The tape, disk, or named pipe
used to store a backup set.

backup set The output of a single backup opera-
tion.

base data type Any system-supplied data type,
for example, char, varchar, binary, and varbinary.
User-defined data types are derived from base data
types. See also data type, user-defined data type

batch A set of SQL statements submitted
together and executed as a group. A script is often
a series of batches submitted one after the other.

Bcp files Files that store bulk copy data created
by the bulk copy utility or synchronization.

Bcp utility See Bulk Copy (Bcp) Utility

binary data type Fixed-length binary data
with a maximum length of 8,000 bytes.

Buffer Cache Hit Ratio A Buffer Manager
object counter that reports the percentage of pages
found in the buffer cache without having to read
from a disk.

Buffer Manager object Provides counters to
monitor how SQL Server uses memory to store
data pages, internal data structures, and the proce-
dure cache.

Bulkadmin A fixed server role that enables
members of the role to execute BULK INSERT
statements.

Bulk Copy (Bcp) Utility A command-prompt
bulk copy utility that copies SQL Server data to or
from an operating system file in a user-specified
format.

built-in functions A group of predefined func-
tions provided as part of the Transact-SQL and
Multidimensional Expressions (MDX) languages.

business rules The logical rules that are used to
run a business. Business rules can be enforced in
the .com objects that make up the middle tier of a
Windows DNA system; they can also be enforced
in a SQL Server database using triggers, stored
procedures, and constraints.

C
CA See certification authority (CA)

cache aging The mechanism of caching that
determines when a cache row is outdated and must
be refreshed.

calculated column A column in a table that dis-
plays the result of an expression rather than stored
data. For example, CalculatedCostColumn = Price
* Quantity.

calculated field A field defined in a query that
displays the result of an expression rather than
stored data.

call-level interface (CLI) The interface sup-
ported by ODBC for use by an application.

cascading delete An operation that deletes a
row containing a primary key value that is refer-
enced by foreign key columns in existing rows in
other tables. On a cascading delete, all of the rows
whose foreign key values reference the deleted
primary key value are also deleted.

908 Glossary
cascading update An operation that updates a
primary key value that is referenced by foreign
key columns in existing rows in other tables. On a
cascading update, all of the foreign key values are
updated to match the new primary key value.

CAST Explicitly converts an expression of one
data type to another. Cast is based on the SQL-92
standard.

catalog (database) See database catalog

catalog (system) See system catalog

certificate A collection of data used for authen-
tication and secure exchange of information on
nonsecured networks, such as the Internet. A cer-
tificate securely binds a public encryption key to
the entity that holds the corresponding private
encryption key. Certificates are digitally signed by
the issuing certification authority and can be man-
aged for a user, a computer, or a service.

certification authority (CA) An entity respon-
sible for establishing and vouching for the authen-
ticity of public keys belonging to users (end
entities) or other certification authorities. Activi-
ties of a certification authority may include bind-
ing public keys to distinguished names through
signed certificates, managing certificate serial
numbers and certificate revocation.

char data type Fixed-length non-Unicode char-
acter data that holds a maximum of 8,000 charac-
ters.

character format Data stored in a bulk copy
data file using text characters. See also native for-
mat

character set A character set determines the
types of characters that SQL Server recognizes in
the char, varchar, and text data types. Each charac-
ter set is a set of 256 letters, digits, and symbols
specific to a country or language. The printable
characters of the first 128 values are the same for
all character sets. The last 128 characters, some-

times referred to as extended characters, are
unique to each character set. A character set is
related to, but separate from, Unicode characters.

CHECK constraints A constraint that defines
which data values are acceptable in a column. You
can apply CHECK constraints to multiple col-
umns, and you can apply multiple CHECK con-
straints to a single column. When a table is
dropped, CHECK constraints are also dropped.

Checkpoint An event in which the database
engine writes dirty buffer pages to disk. Dirty
pages are pages that have been modified, but the
modifications have not yet been written to disk.
Each checkpoint writes to disk all pages that were
dirty at the last checkpoint and still have not been
written to disk. Checkpoints occur periodically
based on the number of log records generated by
data modifications, or when requested by a user or
a system shutdown.

CLI See call-level interface (CLI)

client cursor A cursor implemented on the cli-
ent. The entire result set is first transferred to the
client, and the client application programming
interface (API) software implements the cursor
functionality from this cached result set.

clustered index An index in which the logical
order of the key values determines the physical
order of the corresponding rows in a table.

CmdExec Operating system commands or exe-
cutable programs ending with .bat, .cmd, .com, or
.exe.

CNFGSVR.EXE An application that runs dur-
ing the configuration portion of SQL Server setup
to execute the initial installation scripts.

code page For character and Unicode data, a
definition of the bit patterns that represent specific
letters, numbers, or symbols (such as 0x20 repre-
senting a blank space and 0x74 representing the
character “t”). Some data types use 1 byte per

Glossary 909
character; each byte can have 1 of 256 different bit
patterns.

Collation A set of rules that determine how data
is compared, ordered, and presented. Character
data is sorted using collation information, includ-
ing locale, sort order, and case sensitivity. See also
locale, SQL collation

Column In a SQL table, the area in each row
that stores the data value for some attribute of the
object modeled by the table. For example, the
Employees table in the Northwind sample data-
base models the employees of the Northwind
Traders company. The LastName column in each
row of the Employees table stores the last name of
the employee represented by that row, the same
way a LastName field in a window or form would
contain a last name. See also row

column filter Column filters restrict the col-
umns to be included as part of a snapshot, transac-
tional, or merge publication.

column-level collation The ability of SQL
Server 2000 to support multiple collations in a sin-
gle instance. Databases can have default collations
different from the default collation of the instance.
Individual columns and variables can be assigned
collations different from the default collation for
the instance or database. Each column in a table
can have a different collation.

column-level constraint A constraint defini-
tion that is specified within a column definition
when a table is created or altered. The constraint
applies only to the associated column. See also
constraint

COM See Component Object Model (COM)

COM-structured storage file A component
object model (COM) compound file used by Data
Transformation Services (DTS) to store the ver-
sion history of a saved DTS package.

commit An operation that saves all changes to
databases made since the start of a transaction. A
commit guarantees that all of the transaction’s
modifications are made a permanent part of the
database. A commit also frees resources, such as
locks, used by the transaction. See also roll back

Component Object Model (COM) A
Microsoft specification for developing compo-
nent software. Several SQL Server and database
application programming interfaces (APIs) such
as SQL-DMO, OLE DB, and ADO are based on
COM. Some SQL Server components, such as
Analysis Services and English Query, store
objects as COM objects. See also method

composite index An index that uses more than
one column in a table to index data.

composite key A key composed of two or more
columns.

computed column A virtual column in a table
whose value is computed at run time. The values
in the column are not stored in the table, but are
computed based on the expression that defines the
column. An example of the definition of a com-
puted column is: Cost as Price * Quantity.

Concurrency A process that allows multiple
users to access and change shared data at the same
time. SQL Server uses locking to allow multiple
users to access and change shared data at the same
time without conflicting with each other.

Connection An interprocess communication
(IPC) linkage established between a SQL Server
2000 application and an instance of SQL Server
2000. The connection is a network link if the
application is on a computer different from the
SQL Server 2000 instance. If the application and
the SQL Server 2000 instance are on the same
computer, the linkage is formed through a local
IPC mechanism, such as shared memory. The
application uses the IPC linkage to send Transact-
SQL statements to SQL Server and to receive
result sets, errors, and messages from SQL Server.

910 Glossary
constraint A property assigned to a table col-
umn that prevents certain types of invalid data val-
ues from being placed in the column. For
example, a UNIQUE or PRIMARY KEY con-
straint prevents you from inserting a value that is a
duplicate of an existing value, a CHECK con-
straint prevents you from inserting a value that
does not match a search condition, and NOT
NULL prevents you from inserting a NULL value.
See also column-level constraint

continuation media The backup media used
when the initial medium becomes full, allowing
continuation of the backup operation.

CONVERT Explicitly converts an expression
of one data type to another.

Copy Database Wizard Allows you to copy or
move databases between servers.

CPU busy A SQL Server statistic that reports
the time, in milliseconds, the central processing
unit (CPU) spent on SQL Server work.

Create Database Wizard Wizard used to sim-
plify the creation of a SQL Server database.

Create Login Wizard Wizard used to simplify
the process of granting logon access to SQL
Server and databases.

cube A set of data that is organized and summa-
rized into a multidimensional structure. See also
multidimensional structure

Current Activity window Graphically displays
information about processes currently running on
an instance of SQL Server, blocked processes,
locks, and user activity.

Cursor An entity that maps over a result set and
establishes a position on a single row within the
result set. After the cursor is positioned on a row,
operations can be performed on that row, or on a
block of rows starting at that position. The most
common operation is to fetch (retrieve) the current
row or block of rows.

D
data block In text, ntext, and image data, a data
block is the unit of data transferred at one time
between an application and an instance of SQL
Server 2000. The term is also applied to the units
of storage for these data types. In tape backup
files, data block is the unit of physical I/O.

data connection A collection of information
required to access a specific database. The collec-
tion includes a data source name and logon infor-
mation. Data connections are stored in a project
and are activated when the user performs an action
that requires access to the database. For example,
a data connection for a SQL Server database con-
sists of the name of the database, the location of
the server on which it resides, network informa-
tion used to access that server, and a user ID and
password.

Data Control Language (DCL) The subset of
SQL statements used to control permissions on
database objects. Permissions are controlled using
the GRANT and REVOKE statements.

data definition The process of specifying the
attributes, properties, and objects in a database.

data definition language (DDL) A language,
usually part of a database management system,
that is used to define all attributes and properties
of a database, especially row layouts, column defi-
nitions, key columns (and sometimes keying
methodology), file locations, and storage strategy.

data dictionary A set of system tables, stored in
a database catalog, that includes definitions of
database structures and related information, such
as permissions.

data dictionary view A system table.

data file In bulk copy operations, the file that
transfers data from the bulk copy out operation to
the bulk copy in operation. In SQL Server 2000
databases, data files hold the data stored in the

Glossary 911
database. Every SQL Server 2000 database has at
least one primary data file, and can optionally
have multiple secondary data files to hold data that
does not fit on the primary data file. See also log
file

data integrity A state in which all the data val-
ues stored in the database are correct. If incorrect
data values have been stored in a database, the
database is said to have lost data integrity.

data lineage Information used by Data Trans-
formation Services (DTS), in conjunction with
Meta Data Services, that records the history of
package execution and data transformations for
each piece of data.

data manipulation language (DML) The sub-
set of SQL statements used to retrieve and manip-
ulate data.

data mart A subset of the contents of a data
warehouse. A data mart tends to contain data
focused at the department level, or on a specific
business area. See also data warehouse

data modification An operation that adds,
deletes, or changes information in a database
using Transact-SQL statements such as INSERT,
DELETE, and UPDATE.

data pump An OLE DB service provider that
provides the infrastructure to import, export, and
transform data between heterogeneous data stores
using Data Transformation Services (DTS).

data scrubbing Part of the process of building
a data warehouse out of data coming from multi-
ple online transaction processing (OLTP) sys-
tems. The process must address errors such as
incorrect spellings, conflicting spelling conven-
tions between two systems, and conflicting data
(such as having two part numbers for the same
part).

data source In ADO and OLE DB, the location
of a source of data exposed by an OLE DB pro-
vider. See also ODBC data source

data source name (DSN) The name assigned to
an ODBC data source. Applications can use DSNs
to request a connection to a system ODBC data
source, which specifies the computer name and
(optionally) the database to which the DSN maps.

Data Transformation Services (DTS) The
SQL Server tool for transferring and transforming
data between disparate data sources.

data type An attribute that specifies what type
of information can be stored in a column, parame-
ter, or variable. System-supplied data types are
provided by SQL Server; user-defined data types
can also be created. See also base data type

data warehouse A database specifically struc-
tured for query and analysis. A data warehouse
typically contains data representing the business
history of an organization. See also data mart,
fact table

database A collection of information, tables,
and other objects organized and presented to serve
a specific purpose, such as searching, sorting, and
recombining data. Databases are stored in files.

database backup A copy of a database used to
recover data after a system failure.

database catalog The part of a database that
contains the definition of all the objects in the
database, as well as the definition of the database.
See also system catalog

Database Consistency Checker (DBCC) A
Microsoft SQL Server utility that can be run to
check the consistency of a specified database.
DBCC can be run through the Database Mainte-
nance Plan Wizard or as a T-SQL command. The
DBCC command can be used to run integrity
checks of all the objects in a database or of spe-
cific objects, such as indexes only.

912 Glossary
database diagram A graphical representation
of the objects in a database. A database diagram
can be either a whole or a partial picture of the
structure of a database; it includes objects for
tables, the columns they contain, and the relation-
ship between them.

database file One of the physical files that make
up a database.

database language The language used for
accessing, querying, updating, and managing data
in relational database systems. Structured Query
Language (SQL) is a widely used database lan-
guage. The Microsoft SQL Server implementation
of SQL is called Transact-SQL.

Database Maintenance Plan Wizard A built-
in Microsoft SQL Server tool that allows adminis-
trators to schedule core maintenance tasks, such as
database backups, integrity checks, and setting up
log shipping.

database object A database component. A
table, index, trigger, view, key, constraint, default,
rule, user-defined data type, or stored procedure in
a database. May also refer to a database.

database owner A member of the database
administrator role of a database. There is only one
database owner. The owner has full permissions in
that database and determines the access and capa-
bilities provided to other users.

database schema The names of tables, fields,
data types, and primary and foreign keys of a data-
base. Also known as the database structure.

database script A collection of statements used
to create database objects. Transact-SQL scripts
are saved as files, usually ending with .sql.

datetime data type A SQL Server system data
type that stores a combined date and time value
from January 1, 1753 through December 31, 9999
with an accuracy of three-hundredths of a second,
or 3.33 milliseconds.

db_accessadmin A fixed database role that
enables members of the role to add or remove
Windows NT 4.0 or Windows 2000 groups and
users and SQL Server users in the database.

db_backupoperator A fixed database role that
enables members of the role to back up the data-
base.

DBCC See Database Consistency Checker

DBCC CHECKALLOC This command
checks page usage in a database and indexed
views. If you have executed DBCC CHECKDB, it
is not necessary to execute DBCC CHECKAL-
LOC because it is a subset of the DBCC
CHECKDB command.

DBCC CHECKCONSTRAINTS This com-
mand verifies the integrity of each constraint if
you have a database that has constraints created
for it.

DBCC CHECKDB This command verifies the
integrity of everything in a database including
views, indexes, and tables. If you are unsure of
any specific problems with a single database, you
can run DBCC CHECKDB.

DBCC DBREINDEX Rather than deleting and
recreating a suspect index, you can execute DBCC
DBREINDEX to attempt to rebuild it.

DBCC INDEXDEFRAG This command
defrags the index if fragmentation is apparent for a
clustered or nonclustered index.

DBCC INPUTBUFFER Displays the last state-
ment sent from a client to SQL Server.

DBCC NEWALLOC Different than the DBCC
CHECKALLOC command, this command veri-
fies the allocation of data and index pages for each
table within a specified database.

DBCC OPENTRAN Displays information
about the oldest active transaction and the oldest

Glossary 913
distributed and nondistributed replicated transac-
tion, if any, within the specified database.

Dbcreator A fixed server role that enables
members of the role to create and alter databases.

db_datareader A fixed database role that
enables members of the role to see all data from
all user tables in the database.

db_datawriter A fixed database role that
enables members of the role to add, change, or
delete data from all user tables in the database.

db_ddladmin A fixed database role that enables
members of the role to add, modify, or drop
objects in the database.

db_denydatareader A fixed database role that
denies members of the role from selecting data
from the database.

db_denydatawriter A fixed database role that
denies members of the role from changing data in
the database.

Db-Lib See DB-Library (DB-Lib)

DB-Library (DB-Lib) A series of high-level
language (including C) libraries that provide the
application programming interface (API) for the
client in a client/server system. Supported only for
backward compatibility.

db_owner A fixed database role that enables
members of the role to perform activities of all
database roles as well as other maintenance and
configuration activities in the database. The per-
missions of this role span all of the other fixed
database roles.

db_securityadmin A fixed database role that
enables members to manage roles and member
objects of a SQL Server 2000 database. It also
enables members to manage statement and object
permissions in the database.

DCL See Data Control Language (DCL)

DDL See data definition language (DDL)

Deadlock A situation in which two users, each
having a lock on one piece of data, attempt to
acquire a lock on the other’s piece. Each user
would wait indefinitely for the other to release the
lock, unless one of the user processes is termi-
nated. SQL Server detects deadlocks and termi-
nates one user’s process. See also livelock

decimal data type Contains fixed precision and
scale numeric data from -10^38 +1 through 10^38
-1.

decision support Systems designed to support
the complex analytic analysis required to discover
business trends. The information retrieved from
these systems allows managers to make business
decisions based on timely and accurate analysis of
business trends.

declarative referential integrity (DRI) FOR-
EIGN KEY constraints defined as part of a table
definition that enforce proper relationships
between tables. The constraints ensure that proper
actions are taken when DELETE, INSERT, and
UPDATE statements remove, add, or modify pri-
mary or foreign key values. The DRI actions
enforced by FOREIGN KEY constraints can be
supplemented with additional referential integrity
logic defined in triggers on a table.

default A data value, option setting, collation,
or name assigned automatically by the system if a
user does not specify the value, setting, collation,
or name. An action taken automatically at certain
events if a user has not specified the action to take.

DEFAULT constraint A property defined for a
table column that specifies a constant to be used as
the default value for the column. If any subsequent
INSERT or UPDATE statement specifies a value
of NULL for the column, or does not specify a
value for the column, the constant value defined in
the DEFAULT constraint is placed in the column.

914 Glossary
default database The database the user is con-
nected to immediately after logging in to SQL
Server.

default instance The copy of SQL Server that
uses the computer name on which it is installed as
its name. See also multiple instances, named
instance

default language The language that SQL Server
2000 uses for errors and messages if a user does
not specify a language. Each SQL Server 2000
login has a default language.

delimiter In Transact-SQL, characters that indi-
cate the start and end of an object name, using
either double quotation marks (“”) or brackets ([]).

denormalize To introduce redundancy into a
table in order to incorporate data from a related
table. The related table can then be eliminated.
Denormalization can improve efficiency and per-
formance by reducing complexity in a data ware-
house schema.

deny To remove a permission from a user
account and prevent the account from gaining per-
mission through membership in groups or roles
within the permission.

dependencies The views and procedures that
depend on the specified table or view.

device See file

differential database backup A database
backup that records only those changes made to
the database since the last full database backup. A
differential backup is smaller, is faster to restore
than a full backup, and has minimal effect on per-
formance.

direct response mode The default mode in
which SQL Server statistics are gathered sepa-
rately from the SQL Server Statistics display. Data
is available immediately to SQL Server Perfor-
mance Monitor; however, the statistics displayed
are one period behind the statistics retrieved.

dirty pages Buffer pages that contain modifica-
tions that have not been written to disk.

dirty read Reads that contain uncommitted
data. For example, transaction1 changes a row.
Transaction2 reads the changed row before
transaction1 commits the change. If transaction1
rolls back the change, transaction2 has read a row
that never logically existed.

Diskadmin A fixed server role that enables
members of the role to manage disk files.

Distribute To move transactions or snapshots of
data from the Publisher to Subscribers, where they
are applied to the destination tables in the sub-
scription databases.

distributed query A single query that accesses
data from multiple data sources.

distributed transactions Transactions that
involve the use of two or more data sources.

distributed views SQL Server views that must
be created when implementing a federated data-
base.

distribution database A database on the Dis-
tributor that stores data for replication including
transactions, snapshot jobs, synchronization sta-
tus, and replication history information.

distribution retention period The distribution
retention period determines the amount of infor-
mation stored for a replication agent and the
length of time subscriptions will remain active in
the distribution database. When the distribution
retention period is exceeded, the Distribution
Clean Up Agent runs.

Distributor A server for SQL Server replica-
tion that hosts the distribution database and stores
history data, and/or transactions and metadata. See
also local Distributor, remote Distributor

DML See data manipulation language (DML)

Glossary 915
Domain In Windows 2000 security, a collection
of computers grouped for viewing and administra-
tive purposes that share a common security data-
base. In relational databases, the set of valid
values allowed in a column.

domain integrity An integrity mechanism that
enforces the validity of entries for a given column.
The mechanism, such as the CHECK constraint,
can restrict the possible data values by data type,
format, or range of values allowed.

DRI See declarative referential integrity (DRI)

DSN See data source name (DSN)

DTS See Data Transformation Services (DTS)

DTS package An organized collection of con-
nections, Data Transformation Services (DTS)
tasks, DTS transformations, and workflow con-
straints defined by the DTS object model and
assembled either with a DTS tool or programmati-
cally.

DTS package template A model Data Transfor-
mation Services (DTS) package. The template is
used to help create and configure a particular type
of package.

dump See backup

dump file See backup file

dynamic filter Merge replication filters that
restrict data based on a system function or user-
defined function (for example:
SUSER_SNAME()).

dynamic locking The process used by SQL
Server to determine the most cost-effective locks
to use at any one time.

dynamic recovery The process that detects and/
or attempts to correct software failure or loss of
data integrity within a relational database manage-
ment system (RDBMS).

dynamic snapshot A snapshot of a merge pub-
lication with dynamic filters that is applied using
bulk copy files to improve performance.

E
e-mail notification notification sent as an e-
mail message that contains information about an
event or an alert that took place on the SQL
Server.

Encryption A method for keeping sensitive
information confidential by changing data into an
unreadable form.

English Query Refers to a Microsoft applica-
tion development product that allows users to ask
questions in English, rather than in a computer
language such as SQL. For example, you might
ask, “How many customers bought products last
year?” rather than prepare an equivalent SQL
statement.

error log A text file that records system infor-
mation from SQL Server.

error state number A number associated with
SQL Server 2000 messages that helps Microsoft
support engineers find the specific code location
that issued the message. This can be helpful in
diagnosing errors that may be generated from
multiple locations in the SQL Server 2000 code.

exclusive lock A lock that prevents any other
transaction from acquiring a lock on a resource
until the original lock on the resource is released
at the end of the transaction. An exclusive lock is
always applied during an update operation
(INSERT, UPDATE, or DELETE).

explicit transaction A group of SQL statements
enclosed within transaction delimiters. The first
delimiter must be either BEGIN TRANSAC-
TION or BEGIN DISTRIBUTED TRANSAC-
TION, and the end delimiter must be one of the
following: COMMIT TRANSACTION, COM-

916 Glossary
MIT WORK, ROLLBACK TRANSACTION,
ROLLBACK WORK, SAVE TRANSACTION.

extended stored procedure A function in a
dynamic-link library (DLL) that is coded using the
SQL Server 2000 Extended Stored Procedure API.
The function can then be invoked from Transact-
SQL using the same statements that are used to
execute Transact-SQL stored procedures.
Extended stored procedures can be built to per-
form functionality not possible with Transact-SQL
stored procedures.

extent The unit of space allocated to a SQL
Server object, such as a table or index, whenever
the object needs more space. In SQL Server 2000,
an extent is eight contiguous pages.

F
fact table A central table in a data warehouse
schema.

fail-safe operator The fail-safe operator is noti-
fied about an alert after all pager notifications to
the designated operators have failed.

field An area in a window or record that stores a
single data value. Some databases, such as
Microsoft Access, use field as a synonym for col-
umn.

field length In bulk copy, the maximum num-
ber of characters needed to represent a data item in
a bulk copy character format data file.

field terminator In bulk copy, one or more
characters marking the end of a field or row, sepa-
rating one field or row in the data file from the
next.

file In SQL Server databases, a basic unit of
storage for a database. One database can be stored
in several files. SQL Server uses three types of
files: data files (which store data), log files (which
store transaction logs), and backup files (which
store backups of a database).

file DSN Stores connection information for a
database in a file that is saved on your computer.
The file is a text file with the extension .dsn. The
connection information consists of parameters and
corresponding values that the ODBC Driver Man-
ager uses to establish a connection.

file storage type Defines the storage format
used in the data file that transfers data from a bulk
copy out operation to a bulk copy in operation. In
native mode files, all data is stored using the same
internal structures that SQL Server 2000 uses to
store the data in a database. In character mode
files, all data is converted to character strings.

filegroup In SQL Server, a named collection of
one or more files that forms a single unit of alloca-
tion or that is used for administration of a data-
base.

fill factor An attribute of an index that defines
the amount of free space on each page of the
index. FILLFACTOR accommodates future
expansion of table data and reduces the potential
for page splits. FILLFACTOR is a value from 1
through 100 that specifies the percentage of the
index page to be left empty.

filter A set of criteria that controls the set of
records returned as a result set. Filters can also
define the sequence in which rows are returned.

filtering The ability to restrict data based upon
criteria set in the WHERE clause of a SQL state-
ment. For replication, filtering occurs on table
articles defined in a publication. The result is par-
titions of data that can be published to Subscrib-
ers. See also partitioning, vertical filtering

fixed database role A predefined role that
exists in each database. The scope of the role is
limited to the database in which it is defined.

fixed server role A predefined role that exists at
the server level. The scope of the role is limited to
the SQL Server instance in which it is defined.

FK See foreign key (FK)

Glossary 917
foreign key (FK) The column or combination of
columns whose values match the primary key
(PK) or unique key in the same or another table.
Also called the referencing key.

foreign table A table that contains a foreign key.

fragmentation Occurs when data modifica-
tions are made. You can reduce fragmentation and
improve read-ahead performance by dropping and
re-creating a clustered index.

full-text catalog Stores all of the full-text
indexes for tables within a database.

full-text enabling The process of allowing full-
text querying to occur on the current database.

full-text index The portion of a full-text catalog
that stores all of the full-text words and their loca-
tions for a given table.

full-text query As a SELECT statement, a
query that searches for words, phrases, or multiple
forms of a word or phrase in the character-based
columns (of char, varchar, text, ntext, nchar, or
nvarchar data types). The SELECT statement
returns those rows meeting the search criteria.

full-text service The SQL Server component
that performs the full-text querying.

function A piece of code that operates as a sin-
gle logical unit. A function is called by name,
accepts optional input parameters, and returns a
status and optional output parameters. Many pro-
gramming languages support functions, including
C, Visual Basic, and Transact-SQL. Transact-SQL
supplies built-in functions, which cannot be modi-
fied, and supports user-defined functions, which
can be created and modified by users.

G
global default A default that is defined for a
specific database and is shared by columns of dif-
ferent tables.

global rule A rule that is defined for a specific
database and is shared by columns of different
tables.

global subscriptions A subscription to a merge
publication with an assigned priority value used
for conflict detection and resolution.

grant Applies permissions to a user account,
which allows the account to perform an activity or
work with data.

guest A special user account that is present in all
SQL Server 2000 databases and cannot be
removed from any database. If a connection is
made using a login that has not been assigned a
user account in a database and the connection ref-
erences objects in that database, it has the permis-
sions assigned only to the guest account in that
database.

H
heterogeneous data Data stored in multiple for-
mats. For example, data stored in a SQL Server
database, a text file, and an Excel spreadsheet.

homogeneous data Data that comes from multi-
ple data sources that are all managed by the same
software (for example, data that comes from sev-
eral Excel spreadsheets, or data that comes from
several SQL Server 2000 instances). A SQL
Server 2000 distributed query is homogeneous if
all the data comes from SQL Server 2000
instances.

horizontal partitioning To segment a single
table into multiple tables based on selected rows.
Each of the multiple tables has the same columns
but fewer rows. See also partitioning

HTML See Hypertext Markup Language
(HTML)

Hypertext Markup Language (HTML) A sys-
tem of marking up, or tagging, a document so that
it can be published on the World Wide Web

918 Glossary
(WWW). Documents prepared in HTML include
reference graphics and formatting tags. You use a
Web browser (such as Microsoft Internet
Explorer) to view these documents.

HTTP Abbreviation for Hypertext Transfer Pro-
tocol. It is the application-level Internet protocol
used by World Wide Web clients and servers to
exchange information. The protocol makes it pos-
sible for a user to use a client program (browser)
to enter a Uniform Resource Locator (or click a
hyperlink) and retrieve data, such as text, graph-
ics, sound, and other digital information, from a
Web server.

I
identifier The name of an object in a database.
An identifier can be from 1 through 128 charac-
ters.

identity column A column in a table that has
been assigned the identity property. The identity
property generates unique numbers.

identity property A property that generates val-
ues that uniquely identify each row in a table.
When inserting rows into a table that has an iden-
tity column, SQL Server generates the next iden-
tity value automatically based on the last used
identity value and the increment value specified
during column creation.

idle time A SQL Server 2000 Agent condition
that defines the level of CPU usage by the SQL
Server 2000 database engine that constitutes an
idle state. SQL Server 2000 Agent jobs can then
be created to run whenever the database engine
CPU usage falls below the level defined in the idle
time definition. This minimizes the impact the
SQL Server Agent jobs may have on other tasks
accessing the database.

IEC See International Electrotechnical Com-
mission (IEC)

IIS Virtual Directory Management for SQL
Server Utility A utility used to define and regis-
ter a new, SQL Server 2000–specific virtual direc-
tory, also known as the virtual root, on a computer
running Internet Information Server (IIS).

image data type A SQL Server variable-length
binary data type with a maximum length of 2^31 -
1 (2,147,483,647) bytes.

immediate updating An option available with
snapshot replication and transactional replication
that allows data modifications to be made to repli-
cated data at the Subscriber. The data modifica-
tions are then immediately propagated to the
Publisher using two-phase commit protocol
(2PC).

immediate updating Subscribers See immedi-
ate updating subscriptions

immediate updating subscriptions A subscrip-
tion to a snapshot or transactional publication for
which the user is able to make data modifications
at the Subscriber. The data modifications are then
immediately propagated to the Publisher using
two-phase commit protocol (2PC).

implicit transaction A connection option in
which each SQL statement executed by the con-
nection is considered a separate transaction.

implied permission Permission to perform an
activity specific to a role. Implied permissions
cannot be granted, revoked, or denied.

index In a relational database, a database object
that provides fast access to data in the rows of a
table, based on key values. Indexes can also
enforce uniqueness on the rows in a table. SQL
Server supports clustered and nonclustered
indexes. The primary key of a table is automati-
cally indexed. In full-text search, a full-text index
stores information about significant words and
their location within a given column.

Glossary 919
index page A database page containing index
rows.

information model An object-oriented schema
that defines metadata constructs used to specify
the structure and behavior of an application, pro-
cess, component, or software artifact.

initial media The first medium in each media
family.

initial snapshot Files including schema and
data, constraints, extended properties, indexes,
triggers, and system tables necessary for replica-
tion. The initial snapshot is transferred to Sub-
scribers when implementing replication. See also
synchronization

instance A copy of SQL Server running on a
computer. A computer can run multiple instances
of SQL Server 2000. A computer can run only one
instance of SQL Server version 7.0 or earlier,
although in some cases it can also be running mul-
tiple instances of SQL Server 2000.

int (integer) data type A SQL Server system
data type that holds whole numbers from -2^31
(-2,147,483,648) through 2^31 - 1 (2,147,483,647).

integrated security See Windows authentica-
tion

integrity constraint A property defined on a
table that prevents data modifications that would
create invalid data.

intent lock A lock placed on one level of a
resource hierarchy to protect shared or exclusive
locks on lower-level resources. For example,
before a SQL Server 2000 database engine task
applies shared or exclusive row locks within a
table, it places an intent lock on the table. If
another task tries to apply a shared or exclusive
lock at the table level, it is blocked by the table-
level intent lock held by the first task. The second
task does not have to check for individual page or

row locks before locking the table; it only has to
check for an intent lock on the table.

interactive structured query language
(ISQL) An interactive command-prompt utility
provided with SQL Server that allows users to
execute Transact-SQL statements or batches from
a server or workstation and view the results
returned.

internal identifier A more compact form of an
object identifier in a repository. An internal identi-
fier is guaranteed to be unique only within a single
repository. See also object identifier

International Electrotechnical Commission
(IEC) One of two international standards bod-
ies responsible for developing international data
communications standards. The International
Electrotechnical Commission (IEC) works closely
with the International Organization for Standard-
ization (ISO) to define standards of computing.
They jointly published the ISO/IEC SQL-92 stan-
dard for SQL.

International Organization for Standardization
(ISO) One of two international standards bod-
ies responsible for developing international data
communications standards. International Organi-
zation for Standardization (ISO) works closely
with the International Electrotechnical Commis-
sion (IEC) to define standards of computing. They
jointly published the ISO/IEC SQL-92 standard
for SQL.

Internet-enabled A publication setting that
enables replication to Internet Subscribers.

interprocess communication (IPC) A mecha-
nism through which operating system processes
and threads exchange data and messages. IPCs
include local mechanisms such as Windows
shared memory, or network mechanisms such as
Windows Sockets.

IPC See interprocess communication (IPC)

920 Glossary
ISO See International Organization for Stan-
dardization (ISO)

ISQL See interactive structured query lan-
guage (ISQL)

J
job A specified series of operations, called
steps, performed sequentially by SQL Server
Agent.

join As a verb, to combine the contents of two
or more tables and produce a result set that incor-
porates rows and columns from each table. Tables
are typically joined using data that they have in
common. As a noun, the process or result of join-
ing tables, as in the term “inner join” to indicate a
particular method of joining tables.

join filter A row filter used in merge replication
that defines a relationship between two tables that
will be enforced during synchronization, which is
similar to specifying a join between two tables.

join operator A comparison operator in a join
condition that determines how the two sides of the
condition are evaluated and which rows are
returned.

K
kernel In SQL Server 2000, a subset of the stor-
age engine that is referenced in some error mes-
sages. In Windows 2000, the core of the operating
system that performs basic operations.

key A column or group of columns that
uniquely identifies a row (PRIMARY KEY),
defines the relationship between two tables (FOR-
EIGN KEY), or is used to build an index. See also
key column

key column A column referenced by a primary,
foreign, or index key. See also key

keyword A reserved word in SQL Server that
performs a specific function, such as to define,
manipulate, and access database objects.

L
latency The amount of time that elapses when a
data change is completed at one server and when
that change appears at another (for example, the
time between when a change is made at a Pub-
lisher and when it appears at the Subscriber).

LCID See locale identifier (LCID)

leaf In a tree structure, an element that has no
subordinate elements. See also nonleaf

leaf level The bottom level of a clustered or non-
clustered index. In a clustered index, the leaf level
contains the actual data pages of the table. In a
nonclustered index, the leaf level either points to
data pages or points to the clustered index (if one
exists), rather than containing the data itself.

linked server A definition of an OLE DB data
source used by SQL Server 2000–distributed que-
ries. The linked server definition specifies the
OLE DB provider required to access the data, and
includes enough addressing information for the
OLE DB provider to connect to the data. Any
rowsets exposed by the OLE DB data source can
then be referenced as tables, called linked tables,
in SQL Server 2000–distributed queries. See also
local server

livelock A request for an exclusive lock that is
repeatedly denied because a series of overlapping
shared locks keeps interfering. SQL Server detects
the situation after four denials and refuses further
shared locks. A livelock also occurs when read
transactions monopolize a table or page, forcing a
write transaction to wait indefinitely. See also
deadlock

local Distributor A server that is configured as
both a Publisher and a Distributor for SQL Server

Glossary 921
replication. See also Distributor, remote Distrib-
utor

local group A group in Windows NT 4.0 or
Windows 2000 containing user accounts and glo-
bal groups from the domain group in which they
are created and any trusted domain. Local groups
cannot contain other local groups.

local login identification The identification
(ID) a user must use to log in to a local server. A
login ID can have up to 128 characters. The char-
acters can be alphanumeric; however, the first
character must be a letter (for example, CHRIS or
TELLER8).

local server In SQL Server 2000 connections,
an instance of SQL Server 2000 running on the
same computer as the application. When resolving
references to database objects in a Transact-SQL
statement, the instance of SQL Server 2000 exe-
cuting the statement. In SQL Server 2000–distrib-
uted queries, the instance of SQL Server 2000
executing the distributed query. The local server
then accesses any linked servers referenced in the
query. In SQL Server 2000 remote stored proce-
dures, the instance of SQL Server executing an
EXEC statement that references a remote stored
procedure. The local server then passes the execu-
tion request to the remote server on which the
remote stored procedure resides. See also linked
server, remote server

local subscription A subscription to a merge
publication using the priority value of the Pub-
lisher for conflict detection and resolution.

locale The Windows operating system attribute
that defines certain behaviors related to language.
The locale defines the code page, or bit patterns,
used to store character data, and the order in
which characters are sorted. It also defines lan-
guage-specific items such as the format used for
dates and time and the character used to separate
decimals in numbers. Each locale is identified by a
unique number, called a locale identifier or LCID.
SQL Server 2000 collations are similar to locales

in that the collations define language-specific
types of behaviors for instances of SQL Server
2000. See also collation, locale identifier (LCID)

locale identifier (LCID) A number that identi-
fies a Windows-based locale. See also locale

lock A restriction on access to a resource in a
multiuser environment. SQL Server locks users
out of a specific row, column, or file automatically
to maintain security or prevent concurrent data
modification problems.

lock escalation The process of converting many
fine-grain locks into fewer coarse-grain locks,
thereby reducing system overhead.

log file A file or set of files containing a record
of the modifications made in a database. See also
data file

logical name A name used by SQL Server to
identify a file. A logical name for a file must cor-
respond to the rules for identifiers and can have as
many as 30 characters (for example, ACCOUNT-
ING or LIBRARY).

login (account) An identifier that gives a user
permission to connect to SQL Server 2000 using
SQL Server Authentication. Users connecting to
SQL Server 2000 using Windows NT Authentica-
tion are identified by their Windows 2000 login,
and do not need a separate SQL Server 2000 login.

login security mode A security mode that deter-
mines the manner in which a SQL Server 2000
instance validates a login request. There are two
types of login security: Windows authentication
and SQL Server authentication.

lookup table A table, either in a database or
hard-coded in the English Query application, that
contains codes and the English word or phrase
they represent. For example, a gender lookup table
contains the following code and English descrip-
tions: M, Male, F, Female.

922 Glossary
M
machine DSN Connection information for a
database, stored in the system registry. The con-
nection information consists of parameters and
corresponding values that the ODBC Driver Man-
ager uses to establish a connection.

MAPI See Messaging Application Program-
ming Interface (MAPI)

master database The database that controls the
operation of each instance of SQL Server. It is
installed automatically with each instance of SQL
Server and keeps track of user accounts, remote
user accounts, and remote servers that each
instance can interact with. It also tracks ongoing
processes, configurable environment variables,
system error messages, tapes and disks available
on the system, and active locks.

master definition site See Publisher

master file The file installed with earlier ver-
sions of SQL Server used to store the master,
model, and tempdb system databases and transac-
tion logs and the pubs sample database and trans-
action log.

master site See Distributor

MDX See Multidimensional Expressions
(MDX)

media description The text describing the
media set. See also media set

media family All media in a set written by a
single device (for example, an initial medium and
all continuation media, if any). See also media set

media header Information about the backup
media.

media name The descriptive name for the entire
backup media set.

media set All media involved in a backup oper-
ation. See also media description, media family

Memory Manager object Provides counters to
monitor overall server memory usage.

merge The operation that combines two parti-
tions into a single partition.

merge replication A type of replication that
allows sites to make autonomous changes to repli-
cated data, and at a later time, merge changes and
resolve conflicts when necessary. See also snap-
shot replication, transactional replication

message number A number that identifies a
SQL Server 2000 error message.

Messaging Application Programming Inter-
face (MAPI) An e-mail application program-
ming interface (API).

metadata Information about the properties of
data, such as the type of data in a column
(numeric, text, and so on) or the length of a col-
umn. It can also be information about the structure
of data or information that specifies the design of
objects.

method A function that performs an action by
using a COM object, as in SQL-DMO, OLE DB,
and ActiveX Data Objects (ADO). See also Com-
ponent Object Model (COM)

mirroring The process for protecting against
the loss of data because of disk failure by main-
taining a fully redundant copy of data on a sepa-
rate disk. Mirroring can be implemented at several
levels: in SQL Server 2000, in the operating sys-
tem, and in the disk controller hardware.

Mixed Mode A mode that combines Windows
Authentication and SQL Server Authentication.
Mixed Mode allows users to connect to an
instance of SQL Server through either a Windows
NT 4.0 or Windows 2000 user account or a SQL
Server login.

Glossary 923
model database A database installed with SQL
Server that provides the template for new user
databases. SQL Server 2000 creates a new data-
base by copying in the contents of the model data-
base and then expanding it to the size requested.

Multidimensional Expressions (MDX) A syn-
tax used for defining multidimensional objects
and querying and manipulating multidimensional
data.

multidimensional structure A database para-
digm that treats data not as relational tables and
columns, but as information cubes. See also cube

multiple instances Multiple copies of SQL
Server running on the same computer. There can
be one default instance, which can be any version
of SQL Server. There can be multiple named
instances of SQL Server 2000. See also default
instance, named instance

multithreaded server application An applica-
tion that creates multiple threads within a single
process to service multiple user requests at the
same time.

multiuser The ability of a computer to support
many users operating at the same time, while pro-
viding the computer system’s full range of capa-
bilities to each user.

N
named instance An installation of SQL Server
2000 that is given a name to differentiate it from
other named instances and from the default
instance on the same computer. A named instance
is identified by the computer name and instance
name. See also default instance, multiple
instances

named pipe An interprocess communication
(IPC) mechanism that SQL Server uses to provide
communication between clients and servers.
Named pipes permit access to shared network
resources.

native format Bulk copy data files in which the
data is stored using the same internal data struc-
tures SQL Server uses to store data in SQL Server
databases. Bulk copy can quickly process native
mode files because it does not have to convert data
when transferring it between SQL Server and the
bulk copy data file. See also character format

Net-Library A SQL Server communications
component that isolates the SQL Server client
software and database engine from the network
APIs. The SQL Server client software and data-
base engine send generic network requests to a
Net-Library, which translates the request to the
specific network commands of the protocol cho-
sen by the user.

net send notification Sends out a broadcast to
all registered users of the local domain. Net send
is one of the three ways that SQL Server adminis-
trators can send alert notifications to specified
users.

network libraries A set of dynamic link librar-
ies (DLLs) that enable SQL Server to communi-
cate over a variety of protocols.

nickname When used with merge replication
system tables, a name for another Subscriber that
is known to already have a specified generation of
updated data. Used to avoid sending an update to a
Subscriber that has already received those
changes.

niladic functions Functions that do not have
any input parameters. Most niladic SQL Server
functions return system information.

nonclustered index An index in which the logi-
cal order of the index is different from the physi-
cal, stored order of the rows on disk.

nonleaf In a tree structure, an element that has
one or more subordinate elements. In SQL Server
indexes, an intermediate index node that points to
other intermediate nodes or leaf nodes. See also
leaf

924 Glossary
normalization rules A set of database design
rules that minimize data redundancy and results in
a database in which the database engine and appli-
cation software can easily enforce integrity.

NULL An entry that has no explicitly assigned
value. NULL is not equivalent to zero or blank. A
value of NULL is not considered to be greater
than, less than, or equivalent to any other value,
including another value of NULL.

nullability The attribute of a column, parameter,
or variable that specifies whether it allows null
data values.

O
object In databases, one of the components of a
database: a table, index, trigger, view, key, con-
straint, default, rule, user-defined data type, or
stored procedure.

object dependencies References to other
objects when the behavior of the first object can
be affected by changes in the object it references.
For example, if a stored procedure references a
table, changes to the table can affect the behavior
of the stored procedure.

object identifier A unique name given to an
object. In Meta Data Services, a unique identifier
constructed from a globally unique identifier
(GUID) and an internal identifier. All objects must
have an object identifier. See also internal identi-
fier

object owner The security account that con-
trols the permissions for an object, usually the cre-
ator of the object. Object owner is also called the
database object owner.

object permission An attribute that controls the
ability to perform operations on an object. For
example, table or view permissions control which
users can execute SELECT, INSERT, UPDATE,
and DELETE statements against the table or view.

ODBC See Open Database Connectivity
(ODBC)

ODBC data source The location of a set of data
that can be accessed using an ODBC driver. Also,
a stored definition that contains all of the connec-
tion information an ODBC application requires to
connect to the data source. See also data source

ODBC driver A dynamic-link library (DLL)
that an ODBC-enabled application, such as Excel,
can use to access an ODBC data source. Each
ODBC driver is specific to a database manage-
ment system (DBMS), such as SQL Server,
Access, and so on.

ODS See Open Data Services (ODS)

OIM See Open Information Model (OIM)

OLAP See online analytical processing (OLAP)

OLE DB A COM-based application program-
ming interface (API) for accessing data. OLE DB
supports accessing data stored in any format (data-
bases, spreadsheets, text files, and so on) for
which an OLE DB provider is available. See also
OLE DB for OLAP

OLE DB for OLAP Formerly, the separate
specification that addressed OLAP extensions to
OLE DB. Beginning with OLE DB 2.0, OLAP
extensions are incorporated into the OLE DB
specification. See also OLE DB

OLE DB provider A software component that
exposes OLE DB interfaces. Each OLE DB pro-
vider exposes data from a particular type of data
source (for example, SQL Server databases,
Access databases, or Excel spreadsheets).

OLTP See online transaction processing
(OLTP)

online analytical processing (OLAP) A tech-
nology that uses multidimensional structures to
provide rapid access to data for analysis. The

Glossary 925
source data for OLAP is commonly stored in data
warehouses in a relational database.

online transaction processing (OLTP) A data
processing system designed to record all of the
business transactions of an organization as they
occur. An OLTP system is characterized by many
concurrent users actively adding and modifying
data.

Online Troubleshooters Web-based trouble-
shooters for common problems that can help diag-
nose what is happening with an installation of
SQL Server 2000.

Open Data Services (ODS) The layer of the
SQL Server database engine that transfers client
requests to the appropriate functions in the data-
base engine. Open Data Services exposes the
extended stored procedure API used to write DLL
functions that can be called from Transact-SQL
statements.

Open Database Connectivity (ODBC) A data-
access application programming interface (API)
that supports access to any data source for which
an ODBC driver is available. ODBC is aligned
with the American National Standards Institute
(ANSI) and International Organization for Stan-
dardization (ISO) standards for a database Call
Level Interface (CLI).

Open Information Model (OIM) An informa-
tion model published by the Meta Data Coalition
(MDC) and widely supported by software ven-
dors. The OIM is a formal description of meta-
data constructs organized by subject area.

optimize synchronization An option in merge
replication that allows you to minimize network
traffic when determining whether recent changes
have caused a row to move into or out of a parti-
tion that is published to a Subscriber.

optimizer See query optimizer

P
page In a virtual storage system, a fixed-length
block of contiguous virtual addresses copied as a
unit from memory to disk and back during paging
operations. SQL Server allocates database space
in pages. In SQL Server, a page is 8 kilobytes
(KB) in size.

Page Reads/sec A Buffer Manager object
counter that reports the number of physical data-
base page reads that are issued per second.

page split The process of moving half the rows
or entries in a full data or index page to two new
pages to make room for a new row or index entry.

Page Writes/sec A Buffer Manager object
counter that reports the number of physical data-
base page writes that are issued per second.

pager notification A notification sent as an e-
mail message to a pager that contains information
about an event or an alert that took place on the
SQL Server.

partitioning The process of replacing a table
with multiple smaller tables. Each smaller table
has the same format as the original table, but with
a subset of the data. Each partitioned table has
rows allocated to it based on some characteristic
of the data, such as specific key ranges. The rules
that define into which table the rows go must be
unambiguous. For example, a table is partitioned
into two tables. All rows with primary key values
lower than a specified value are allocated to one
table, and all keys equal to or greater than the
value are allocated to the other. Partitioning can
improve application processing speeds and reduce
the potential for conflicts in multisite update repli-
cation. You can improve the usability of parti-
tioned tables by creating a view. The view, created
by a union of select operations on all the parti-
tioned tables, presents the data as if it all resided
in a single table. See also filtering, horizontal
partitioning, vertical partitioning

926 Glossary
permissions Authorization that enforces data-
base security. SQL Server permissions specify the
Transact-SQL statements, views, and stored pro-
cedures each user is authorized to use. There are
two types of permissions: object permissions and
statement permissions.

physical name The path where a file or mir-
rored file is located. The default is the path of the
Master.dat file followed by the first eight charac-
ters of the file’s logical name. For example, if
Accounting is the logical name, and the Master.dat
file is located in Sql\Data, the default physical
name is Sql\Data\Accounti.dat. For a mirrored
file, the default is the path of the Master.mir file
followed by the first eight characters of the mirror
file’s logical name. For example, if Maccount is
the name of the mirrored file, and the Master.mir
file is located in Sql\Data, the default physical
name is Sql\Data\Maccount.mir.

physical reads A request for a database page in
which SQL Server must transfer the requested
page from disk to the SQL Server buffer pool. All
attempts to read pages are called logical reads. If
the page is already in the buffer, there is no associ-
ated physical read generated by the logical read.
The number of physical reads never exceeds the
number of logical reads. In a well-tuned instance
of SQL Server, the number of logical reads is typi-
cally much higher than the number of physical
reads.

PK See primary key (PK)

precision The maximum total number of deci-
mal digits that can be stored both to the left and
right of the decimal point.

primary data file Files containing the startup
information for the database; they can also be used
to store data. Every database has one primary data
file.

primary filegroup The filegroup that contains
the primary data file and any other files not specif-
ically assigned to another filegroup.

primary key (PK) A column or set of columns
that uniquely identifies all the rows in a table. Pri-
mary keys do not allow null values. No two rows
can have the same primary key value; therefore, a
primary key value always uniquely identifies a
single row. More than one key can uniquely iden-
tify rows in a table, and each of these keys is
called a candidate key. Only one candidate can be
chosen as the primary key of a table; all other can-
didate keys are known as alternate keys. Although
tables are not required to have primary keys, it is
good practice to define them. In a normalized
table, all of the data values in each row are fully
dependent on the primary key. For example, in a
normalized employee table that has EmployeeID
as the primary key, all of the columns should con-
tain data related to a specific employee. The table
does not have the column DepartmentName
because the name of the department is dependent
on a department ID, not on an employee ID.

primary table The “one” side of two related
tables in a one-to-many relationship. A primary
table should have a primary key and each record
should be unique. An example of a primary table
is a table of customer names that are uniquely
identified by a CustomerID primary key field.

procedure cache The part of the SQL Server
memory pool that is used to store execution plans
for Transact-SQL batches, stored procedures, and
triggers. Execution plans record the steps that
SQL Server must take to produce the results spec-
ified by the Transact-SQL statements contained in
the batches, stored procedures, or triggers.

processadmin A fixed server role that enables
members of the role to manage processes running
in an instance of SQL Server.

producer A SQL Profiler process that collects
events in a specific event category and sends the
data to a SQL Server Profiler queue.

property A named attribute of a control, field,
or database object that you set to define one of the
object’s characteristics (such as size, color, or

Glossary 927
screen location) or an aspect of its behavior (such
as whether it is hidden).

property pages A tabbed dialog box in which
you can identify the characteristics of tables, rela-
tionships, indexes, constraints, and keys. Every
object in a database diagram has a set of properties
that determine the definition of a database object.
Each set of tabs shows only the properties specific
to the selected object. If multiple objects are
selected, the property pages show the properties of
the first object you selected.

provider An OLE DB provider. An in-process
dynamic-link library (DLL) that provides access
to a database.

public role A special database role used to cap-
ture all default permissions for users in a database.
Every database user belongs to this role.

publication A publication is a collection of one
or more articles from one database. This grouping
of multiple articles makes it easier to specify a
logically related set of data and database objects
that you want to replicate at the same time.

publication database A database on the Pub-
lisher from which data and database objects are
marked for replication as part of a publication that
is propagated to Subscribers.

publication retention period A predetermined
length of time that regulates how long subscrip-
tions will receive updates during synchronizations
and remain activated in databases.

published data Data at the Publisher that has
been replicated.

Publisher A server that makes data available for
replication to other servers, detects changed data,
and maintains information about all publications
at the site.

publishing table The table at the Publisher in
which data has been marked for replication and is
part of a publication.

pubs database A sample database provided
with SQL Server.

pull subscription A subscription created and
administered at the Subscriber. Information about
the publication and the Subscriber is stored. See
also push subscription

push subscription A subscription created and
administered at the Publisher. Information about
the publication and Subscriber is stored. See also
pull subscription

Q
query optimizer The SQL Server database
engine component responsible for generating effi-
cient execution plans for SQL statements.

queue A SQL Server Profiler queue provides a
temporary holding place for server events to be
captured.

R
RAISERROR A T-SQL statement that enables
users to retrieve an existing entry from sysmes-
sages, or it can use a hard-coded (user-defined)
message.

RDBMS See relational database management
system (RDBMS)

record A group of related fields (columns) of
information treated as a unit. A record is more
commonly called a row in a SQL database.

Recovery An operation in which SQL Server is
restarted after a system failure; the transaction log
is used to roll forward all committed transactions
and roll back all uncommitted transactions in
order to bring the database to the state it was in at
the point of failure.

recovery interval The maximum amount of
time that the database engine should require to
recover a database. The database engine ensures
that the active portion of the database log is small

928 Glossary
enough to recover the database in the amount of
time specified for the recovery interval.

referenced key A primary key or unique key
referenced by a foreign key.

referencing key See foreign key (FK)

referential integrity (RI) A state in which all
foreign key values in a database are valid. For a
foreign key to be valid, it must contain either the
value NULL, or an existing key value from the
primary or unique key columns referenced by the
foreign key.

reflexive relationship A relationship from a
column or combination of columns in a table to
other columns in that same table. A reflexive rela-
tionship is used to compare rows within the same
table. In queries, this is called a self-join.

relational database A collection of informa-
tion organized in tables. Each table models a class
of objects of interest to the organization (for
example, Customers, Parts, Suppliers). Each col-
umn in a table models an attribute of the object
(for example, LastName, Price, Color). Each row
in a table represents one entity in the class of
objects modeled by the table (for example, the
customer name John Smith or the part number
1346). Queries can use data from one table to find
related data in other tables.

relational database management system
(RDBMS) A system that organizes data into
related rows and columns. SQL Server is a rela-
tional database management system (RDBMS).

remote data Data stored in an OLE DB data
source that is separate from the current instance of
SQL Server. The data is accessed by establishing a
linked server definition or using an ad hoc connec-
tor name.

remote Distributor A server for SQL Server
replication configured as a Distributor that is sepa-

rate from the server configured as the Publisher.
See also Distributor, local Distributor

remote login identification The login identifi-
cation (login ID) assigned to a user for accessing
remote procedures on a remote server.

remote server A definition of an instance of
SQL Server used by remote stored procedure
calls. Remote servers are still supported in SQL
Server 2000, but linked servers offer greater func-
tionality. See also local server

remote stored procedure A stored procedure
located on one instance of SQL Server that is exe-
cuted by a statement on another instance of SQL
Server. In SQL Server 2000, remote stored proce-
dures are supported, but distributed queries offer
greater functionality.

remote table A table stored in an OLE DB data
source that is separate from the current instance of
SQL Server. The table is accessed by either estab-
lishing a linked server definition or using an ad
hoc connector name.

replicated data Data at the Subscriber that has
been received from a Publisher.

Replication A process that copies and distrib-
utes data and database objects from one database
to another and then synchronizes information
between databases for consistency.

Replication Conflict Viewer Allows users to
view and resolve conflicts that occurred during the
merge replication process and to review the man-
ner in which conflicts have been resolved.

Replication Monitor Allows users to view and
manage replication agents responsible for various
replication tasks and to troubleshoot potential
problems at the Distributor.

replication scripting The generation of .sql
scripts that can be used to configure and disable
replication.

Glossary 929
replication topology A network layout that
defines the relationship between servers and the
copies of data and clarifies the logic that deter-
mines how data flows between servers.

Repository A database containing information
models that, in conjunction with the executable
software, manage the database. The term can also
refer to an installation of Meta Data Services.

repository engine Object-oriented software that
provides management support for and customer
access to a repository database.

repository object A COM object that represents
a data construct stored in a repository type library.

Repository SQL schema A set of standard
tables used by the repository engine to manage all
repository objects, relationships, and collections.
Repository SQL schema maps information model
elements to SQL schema elements.

Repository Type Information Model
(RTIM) A core object model that represents
repository type definitions for Meta Data Services.
This object model is composed of abstract classes
upon which instances of information models are
based.

Republish For a Subscriber to publish data
received from a Publisher to another Subscriber.

Republisher A Subscriber that publishes data
that it has received from a Publisher.

resolution strategy A set of criteria that the
repository engine evaluates sequentially when
selecting an object, where multiple versions exist
and version information is unspecified in the call-
ing program.

Restore An operation in which a SQL Server
backup file is copied back into the SQL Server
database. This operation takes the database back
to the state it was in when the backup was created.

RESTORE DATABASE T-SQL command
used to restore a database.

RESTORE LOG T-SQL command used to
restore a transaction log.

result set The set of rows returned from a
SELECT statement. The format of the rows in the
result set is defined by the column-list of the
SELECT statement.

revoke To remove a previously granted or
denied permission from a user account, role, or
group in the current database.

RI See referential integrity (RI)

role A SQL Server security account that is a col-
lection of other security accounts that can be
treated as a single unit when managing permis-
sions. A role can contain SQL Server logins, other
roles, and Windows logins or groups.

roll back To remove the updates performed by
one or more partially completed transactions.
Rollbacks are required to restore the integrity of a
database after an application, database, or system
failure. See also commit

roll forward To apply all the completed transac-
tions from a database or log backup in order to
recover a database to a point in time or the point of
failure (for example, after events such as the loss
of a disk).

row In a SQL table, the collection of elements
that form a horizontal line in the table. Each row
in the table represents a single occurrence of the
object modeled by the table and stores the values
for all the attributes of that object. For example, in
the Northwind sample database, the Employees
table models the employees of the Northwind
Traders Company. The first row in the table
records all the information (for example, name
and title) about the employee who has employee
ID 1. See also column

930 Glossary
row filter A filter that specifies a subset of rows
from a table to be published and when specific
rows need to be propagated to Subscribers.

row lock A lock on a single row in a table.

Rowset The OLE DB object used to contain a
result set. It also exhibits cursor behavior depend-
ing on the rowset properties set by an application.

RTIM See Repository Type Information Model
(RTIM)

Rule A database object that is bound to columns
or user-defined data types, and specifies which
data values are acceptable in a column. CHECK
constraints provide the same functionality and are
preferred because they are in the SQL-92 stan-
dard.

S
sample setup files SQL Server 2000 contains
several sample setup scripts that you can use when
running an unattended installation. These scripts
include instructions to conduct a typical install,
install only client tools, or upgrade from SQL
Server 7.0.

Savepoint A marker that allows an application
to roll back part of a transaction if a minor error is
encountered. The application must still commit or
roll back the full transaction when it is complete.

Scale The number of digits to the right of the
decimal point in a number.

scheduled backup An automatic backup
accomplished by SQL Server Agent when defined
and scheduled as a job.

Schema In the SQL-92 standard, a collection of
database objects that are owned by a single user
and form a single namespace. A namespace is a
set of objects that cannot have duplicate names.
For example, two tables can have the same name
only if they are in separate schemas; no two tables
in the same schema can have the same name. In

Transact-SQL, much of the functionality associ-
ated with schemas is implemented by database
user IDs. In database tools, schema also refers to
the catalog information that describes the objects
in a schema or database.

schema rowset A special OLE DB or Analysis
Services rowset that reports catalog information
for objects in databases or multidimensional
cubes. For example, the OLE DB schema rowset
DBSCHEMA_COLUMNS describes columns in
tables.

Script A collection of Transact-SQL statements
used to perform an operation. Transact-SQL
scripts are stored as files, usually with the .sql
extension.

search condition In a WHERE or HAVING
clause, predicates that specify the conditions that
the source rows must meet to be included in the
SQL statement. For example, the statement
SELECT * FROM Employees WHERE Title =
‘Sales Representative’ returns only those rows that
match the search condition: Title = ‘Sales Repre-
sentative’.

secondary data file Any file other than the pri-
mary data file that is used to store data or spread
data across multiple disk drives. A database may
have multiple secondary data files.

Securityadmin A fixed server role that enables
members of the role to manage server logons.

Security Identifier (SID) A unique value that
identifies a user who is logged on to the security
system. SIDs can identify either one user or a
group of users.

SELECT The Transact-SQL statement used to
return data to an application or another Transact-
SQL statement, or to populate a cursor. The
SELECT statement returns a tabular result set
consisting of data that is typically extracted from
one or more tables. The result set contains only

Glossary 931
data from rows that match the search conditions
specified in WHERE or HAVING clauses.

select list The SELECT statement clause that
defines the columns of the result set returned by
the statement. The select list is a comma-separated
list of expressions, such as column names, func-
tions, or constants.

Serveradmin A fixed server role that enables
members of the role to configure serverwide set-
tings.

server cursor A cursor implemented on the
server. The cursor itself is built at the server, and
only the rows fetched by an application are sent to
the client. See also API server cursor

server name A name that uniquely identifies a
server computer on a network. SQL Server appli-
cations can connect to a default instance of SQL
Server by specifying only the server name. SQL
Server applications must specify both the server
name and instance name when connecting to a
named instance on a server.

Setupadmin A fixed server role that enables
members of the role to add and remove linked
servers and execute some stored procedures.

Setup initialization file A text file, using the
Windows .ini file format, that stores configuration
information allowing SQL Server to be installed
without a user having to be present to respond to
prompts from the Setup program.

SETUP.ISS The SETUP.ISS file is created
when you use the Setup screens to install SQL
Server 2000. All of the options you select, such as
the collation type, are recorded in the SETUP.ISS
file. You can then use the SETUP.ISS file to run an
unattended installation if you have to reinstall the
server or install a similar configuration to another
server.

severity level A number indicating the relative
significance of an error generated by the SQL

Server database engine. Values range from infor-
mational (1) to severe (25).

shared lock A lock created by nonupdate (read)
operations. Other users can read the data concur-
rently, but no transaction can acquire an exclusive
lock on the data until all the shared locks have
been released.

showplan A report showing the execution plan
for a SQL statement. SET SHOWPLAN_TEXT
and SET SHOWPLAN_ALL produce textual
showplan output. SQL Query Analyzer and SQL
Server Enterprise Manager can display showplan
information as a graphical tree.

SID See Security Identifier (SID)

SIMPLE Recovery model that provides recov-
ery up to the point of the last backup.

single-user mode A state in which only one
user can access a resource. Both SQL Server
instances and individual databases can be put into
single-user mode.

Snapshot Agent A SQL Server Agent job that
prepares snapshot files containing schema and
data of published tables, stores the files in the
snapshot folder, and inserts synchronization jobs
in the publication database.

Snapshot Agent utility A utility that config-
ures and triggers the Snapshot Agent, which pre-
pares snapshot files containing schema and data of
published tables and database objects.

snapshot replication A type of replication that
distributes data exactly as it appears at a specific
moment in time and does not monitor for modifi-
cations made to the data. See also merge replica-
tion, transactional replication

sort order The set of rules in a collation that
defines how characters are evaluated in compari-
son operations and the sequence in which they are
sorted.

932 Glossary
source and target A browsing technique in
which a source object is used to retrieve its target
object or objects through their relationship.

source database See publication database

sp_add_alert Stored procedure that creates an
alert, which then can be used for the purposes of
notifying the SQL Server administrator.

sp_add_job Stored procedure that adds a new
job executed by the SQLServerAgent service.

sp_add_jobschedule Stored procedure that cre-
ates a schedule for a job.

sp_add_jobstep Stored procedure that adds a
step (operation) to a job.

sp_addlogin Stored procedure that creates a
new SQL Server logon that allows a user to con-
nect to an instance of SQL Server using SQL
Server Authentication.

sp_add_notification Stored procedure that sets
up a notification for an alert.

sp_add_operator Stored procedure that creates
an operator (notification recipient) for use with
alerts and jobs.

sp_addtype Stored procedure that creates a
user-defined data type.

sp_attach_db Microsoft SQL Server system
stored procedure that enables administrators to
create a new database by attaching specified .mdf
and .ldf database files to the database. The com-
mand can also be used to attach the database files
to an existing database.

sp_denylogin Stored procedure that prevents a
Windows NT or Windows 2000 user or group
from connecting to SQL Server.

sp_detach_db Microsoft SQL Server system
stored procedure that removes a database from the
server. The command does not delete the .mdf and

.ldf files from the server, which allows an adminis-
trator to move or copy the files to another
Microsoft SQL Server.

specialized setup file A specialized setup file is
created when you use the Record Unattended .iss
option in the Setup program. This specialized
setup file can be used as an alternative to the
SETUP.ISS file. It allows you to specify domain
user accounts that should be used for the SQL Ser-
vices.

sp_grantdbaccess Stored procedure that adds a
security account in the current database for a SQL
Server logon or Windows NT or Windows 2000
user or group and enables it to be granted permis-
sions to perform activities in the database.

sp_grantlogin Stored procedure that allows a
Windows NT or Windows 2000 user or group
account to connect to SQL Server using Windows
Authentication.

sp_help_job Stored procedure that returns
information about jobs that are used by SQLServ-
erAgent service to perform automated activities in
SQL Server.

sp_help_jobhistory Stored procedure that pro-
vides information about the jobs for servers in the
multiserver administration domain.

sp_lock Stored procedure that displays informa-
tion about locks.

sp_manage_jobs_by_login Stored procedure
that deletes or reassigns jobs that belong to the
specified logon.

sp_monitor Stored procedure that displays sta-
tistics about SQL Server, such as the number of
seconds the SQL Server has been idle.

sp_processmail Stored procedure that uses
extended stored procedures to process incoming
mail messages from the inbox for SQL Server.

Glossary 933
sp_revokelogin Stored procedure that removes
the logon entries for SQL Server for a Windows
NT or Windows 2000 user or group created with
sp_grantlogin or sp_denylogin.

sp_who Stored procedure that provides infor-
mation about current Microsoft SQL Server users
and processes.

SQL See Structured Query Language (SQL)

SQL collation A set of SQL Server 2000 colla-
tions whose characteristics match those of com-
monly used code page and sort order
combinations from earlier versions of SQL Server.
SQL collations are compatibility features that let
sites choose collations that match the behavior of
their earlier systems. See also collation

SQL database A database based on Structured
Query Language (SQL).

SQLDIAG.EXE A utility that gathers and
stores diagnostic information and the contents of
the query history trace (if it is running).

SQL expression Any combination of operators,
constants, literal values, functions, and names of
tables and fields that evaluates to a single value.
For example, use expressions to define calculated
fields in queries.

SQL Mail A component of SQL Server that
allows SQL Server to send and receive mail mes-
sages through the built-in Windows NT 4.0 or
Windows 2000 Messaging Application Program-
ming Interface (MAPI). A mail message can con-
sist of short text strings, the output from a query,
or an attached file.

SQL Profiler A SQL Server utility that is used
to monitor server performance and activity. SQL
Profiler is used for tracking events within SQL
Server.

SQL query A SQL statement such as SELECT,
INSERT, UPDATE, DELETE, or CREATE
TABLE.

SQL Query Analyzer SQL Query is a graphi-
cal user interface for designing and testing Trans-
act-SQL statements, batches, and scripts
interactively.

SQL Server Agent A Windows service that
performs background tasks, such as scheduling
SQL Server jobs and notifying the appropriate
person of problems within SQL Server.

SQL Server authentication One of two mecha-
nisms for validating attempts to connect to
instances of SQL Server. Users must specify a
SQL Server login ID and password when they
connect. The SQL Server instance ensures that the
login ID and password combination are valid
before allowing the connection to succeed. Win-
dows authentication is the preferred authentication
mechanism. See also Authentication, Windows
authentication

SQL Server Event Forwarding Server A cen-
tral instance of SQL Server that manages SQL
Server Agent events forwarded to it by other
instances. Enables central management of SQL
Server events.

SQL Server login An account stored in SQL
Server that allows users to connect to SQL Server.

SQL Server role See role

SQL Server user See user (account)

SQL statement A SQL or Transact-SQL com-
mand, such as SELECT or DELETE, that per-
forms some action on data.

SQL-92 The version of the SQL standard pub-
lished in 1992. The international standard is ISO/
IEC 9075:1992 Database Language SQL. The
American National Standards Institute (ANSI)
also published a corresponding standard (Data
Language SQL X3.135-1192), so SQL-92 is
sometimes referred to as ANSI SQL in the United
States.

934 Glossary
standard security See SQL Server authentica-
tion

statement permission An attribute that con-
trols whether a user can execute CREATE or
BACKUP statements.

step object A Data Transformation Services
(DTS) object that coordinates the flow of control
and execution of tasks in a DTS package. A task
that does not have an associated step object is
never executed.

store-and-forward database See distribution
database

stored procedure A precompiled collection of
Transact-SQL statements stored under a name and
processed as a unit. SQL Server supplies stored
procedures for managing SQL Server and display-
ing information about databases and users. SQL
Server-supplied stored procedures are called sys-
tem stored procedures.

string A set of contiguous bytes that contain a
single character-based or binary data value. In
character strings, each byte, or pair of bytes, repre-
sents a single alphabetic letter, special character,
or number. In binary strings, the entire value is
considered to be a single stream of bits that do not
have any inherent pattern. For example, the con-
stant ‘I am 32.’ is an 8-byte character string,
whereas the constant 0x0205efa3 is a 4-byte
binary string.

Structured Query Language (SQL) A lan-
guage used to insert, retrieve, modify, and delete
data in a relational database. SQL also contains
statements for defining and administering the
objects in a database. SQL is the language sup-
ported by most relational databases, and is the
subject of standards published by the International
Standards Organization (ISO) and the American
National Standards Institute (ANSI). SQL Server
2000 uses a version of the SQL language called
Transact-SQL.

structured storage file See COM-structured
storage file

subscribe To request data from a Publisher.

Subscriber A server that receives copies of pub-
lished data.

subscription An order that defines what data
will be published, when, and to what Subscriber.

subscription database A database at the Sub-
scriber that receives data and database objects
published by a Publisher.

synchronization In replication, the process of
maintaining the same schema and data at a Pub-
lisher and at a Subscriber. See also initial snap-
shot

system administrator The person or group of
people responsible for managing an instance of
SQL Server. System administrators have full per-
missions to perform all actions in an instance of
SQL Server. System administrators either are
members of the sysadmin fixed server role, or log
in using the sa login ID.

system catalog A set of system tables that
describe all the features of an instance of SQL
Server. The system catalog records metadata such
as the definitions of all users, all databases, all
objects in each database, and system configuration
information such as server and database option
settings. See also database catalog

system databases A set of four databases
present in all instances of SQL Server that are
used to store system information: The master data-
base stores all instance-level metadata, and
records the location of all other databases. The
tempdb database stores transient objects that exist
only for the length of a single statement or con-
nection, such as worktables and temporary tables
or stored procedures. The model database is used
as a template for creating all user databases. The
msdb database is used by the SQL Server Agent to

Glossary 935
record information on jobs, alerts, and backup his-
tories. See also user database

system functions A set of built-in functions that
perform operations on and return the information
about values, objects, and settings in SQL Server.

system stored procedures A set of SQL
Server–supplied stored procedures that can be
used for actions such as retrieving information
from the system catalog or performing administra-
tion tasks.

system tables Built-in tables that form the sys-
tem catalog for SQL Server. System tables store
all the metadata for an instance of SQL Server,
including configuration information and defini-
tions of all the databases and database objects in
the instance. Users should not directly modify any
system table.

T
table A two-dimensional object, consisting of
rows and columns, used to store data in a rela-
tional database. Each table stores information
about one of the types of objects modeled by the
database. For example, an education database
would have one table for teachers, a second for
students, and a third for classes. The columns of a
table represent an attribute of the modeled object
(for example, first name, last name, and address).
Each row represents one occurrence of the mod-
eled object. For example, one row in the Class
table would record the information about an Alge-
bra 1 class taught at 9:00 A.M. and another would
record the information about a World History
class taught at 10:00 A.M.

table lock A lock on a table including all data
and indexes.

table scan A data retrieval operation in which
the database engine must read all the pages in a
table to find the rows that qualify for a query.

table-level constraint Constraints that allow
various forms of data integrity to be defined on
one column (column-level constraint) or several
columns (table-level constraints) when the table is
defined or altered. Constraints support domain
integrity, entity integrity, and referential integrity,
as well as user-defined integrity.

tabular data stream (TDS) The SQL Server
internal client/server data transfer protocol. TDS
allows client and server products to communicate
regardless of operating system platform, server
release, or network transport.

tape backup A backup operation to any tape
device supported by Windows NT 4.0 and Win-
dows 2000. If you are creating a tape backup file,
you must first install the tape device by using Win-
dows NT 4.0 and Windows 2000. The tape device
must be physically attached to the SQL Server
computer that you are backing up.

target object See source and target

Target Server Memory A Memory Manager
object counter that reports the total amount of
dynamic memory the server can consume.

task See job

task object A Data Transformation Services
(DTS) object that defines pieces of work to be per-
formed as part of the data transformation process.
For example, a task can execute a SQL statement
or move and transform heterogeneous data from
an OLE DB source to an OLE DB destination
using the DTS Data Pump.

TDS See tabular data stream (TDS)

tempdb database The database that provides a
storage area for temporary tables, temporary
stored procedures, and other temporary working
storage needs.

text data type A SQL Server system data type
that specifies variable-length non-Unicode data
with a maximum length of 2^31 -1

936 Glossary
(2,147,483,647) characters. The text data type
cannot be used for variables or parameters in
stored procedures.

thread An operating system component that
allows the logic of multiuser applications to be
performed as several separate, asynchronous exe-
cution paths. The SQL Server relational database
engine executes multiple threads in order to make
use of multiple processors. The use of threads also
helps ensure that work is being performed for
some user connections even when other connec-
tions are blocked (for example, when waiting for a
disk read or write operation to complete).

tool A SQL Server application with a graphical
user interface used to perform common tasks.

Total Server Memory A Memory Manager
object counter that reports the total amount of
dynamic memory that the server is currently
using.

trace file A file used by SQL Profiler to record
monitored events.

Transact-SQL The language containing the
commands used to administer instances of SQL
Server, create and manage all objects in an
instance of SQL Server, and to insert, retrieve,
modify, and delete all data in SQL Server tables.
Transact-SQL is an extension of the language
defined in the SQL standards published by the
Organization for International Standardization
(ISO) and the American National Standards Insti-
tute (ANSI).

Transact-SQL cursor A server cursor defined
by using the Transact-SQL DECLARE CURSOR
syntax. Transact-SQL cursors are intended for use
in Transact-SQL batches, stored procedures, and
triggers.

transaction A group of database operations
combined into a logical unit of work that is either
wholly committed or rolled back. A transaction is
atomic, consistent, isolated, and durable.

transaction log A database file in which all
changes to the database are recorded. It is used by
SQL Server during automatic recovery.

transaction processing Data processing used to
efficiently record business activities, called trans-
actions, that are of interest to an organization (for
example, sales, orders for supplies, or money
transfers). Typically, online transaction process-
ing (OLTP) systems perform large numbers of rel-
atively small transactions.

transaction rollback Rollback of a user-speci-
fied transaction to the last savepoint inside a trans-
action or to the beginning of a transaction.

transactional replication A type of replication
in which an initial snapshot of data is applied at
Subscribers, and then when data modifications are
made at the Publisher, the individual transactions
are captured and propagated to Subscribers. See
also merge replication, snapshot replication

transformable subscription A subscription
that allows data movement, transformation map-
ping, and filtering capabilities of Data Transfor-
mation Services (DTS) during replication.

transformation In data warehousing, the pro-
cess of changing data extracted from source data
systems into arrangements and formats consistent
with the schema of the data warehouse.

trigger A stored procedure that executes when
data in a specified table is modified. Triggers are
often created to enforce referential integrity or
consistency among logically related data in differ-
ent tables.

trusted connection A Windows network con-
nection that can be opened only by users who have
been authenticated by the network. The users are
identified by their Windows login ID and do not
have to enter a separate SQL Server login ID. See
also Windows authentication

Glossary 937
two-phase commit A process that ensures
transactions that apply to more than one server are
completed on all servers or on none.

U
unattended installation Microsoft SQL Server
2000 installation scripts can be created enabling
administrators to run unattended installations of
SQL Server 2000. Unattended installations are
particularly useful for those administrators
deploying Microsoft SQL Server 2000 within an
enterprise environment.

Unicode Unicode defines a set of letters, num-
bers, and symbols that SQL Server recognizes in
the nchar, nvarchar, and ntext data types. It is
related to but separate from character sets. Uni-
code has more than 65,000 possible values com-
pared to a character set’s 256, and takes twice as
much space to store. Unicode includes characters
for most languages.

Unicode collation A set of rules that determines
how SQL Server compares, collates, and presents
Unicode data in response to database queries. It
acts as a sort order for Unicode data.

Unicode format Data stored in a bulk copy data
file using Unicode characters.

unique indexes An index in which no two rows
are permitted to have the same index value, thus
prohibiting duplicate index or key values. The sys-
tem checks for duplicate key values when the
index is created and checks each time data is
added with an INSERT or UPDATE statement.

update To modify one or more data values in an
existing row or rows, typically by using the
UPDATE statement. Sometimes, the term update
refers to any data modification, including
INSERT, UPDATE, and DELETE operations.

update lock A lock placed on resources (such as
row, page, table) that can be updated. Updated
locks are used to prevent a common form of dead-

lock that occurs when multiple sessions are lock-
ing resources and are potentially updating them
later.

update query A query that changes the values
in columns of one or more rows in a table.

update statistics A process that recalculates
information about the distribution of key values in
specified indexes. These statistics are used by the
query optimizer to determine the most efficient
way to execute a query.

URL Abbreviation for Uniform Resource Loca-
tor. URLs are formatted strings or streams that an
Internet application can use to reference resources
on the Internet or on an intranet.

user (account) A SQL Server security account
or identifier that represents a specific user in a
database. Each user’s Windows account or SQL
Server login is mapped to a user account in a data-
base. Then the appropriate permissions are
granted to the user account. Each user account can
only access data with which it has been granted
permission to work.

user database A database created by a SQL
Server user and used to store application data.
Most users connecting to instances of SQL Server
reference user databases only, not system data-
bases. See also system databases

user-defined data type A data type, based on a
SQL Server data type, created by the user for cus-
tom data storage. Rules and defaults can be bound
to user-defined data types (but not to system data
types). See also base data type

user-defined event A type of message, defined
by a user, that can be traced by SQL Profiler or
used to fire a custom alert. Typically, the user is
the system administrator.

user-defined function In SQL Server, a Trans-
act-SQL function defined by a user. Functions
encapsulate frequently performed logic in a

938 Glossary
named entity that can be called by Transact-SQL
statements instead of recoding the logic in each
statement.

utility A SQL Server application run from a
command prompt to perform common tasks.

V
vertical filtering Filtering columns from a
table. When used as part of replication, the table
article created contains only selected columns
from the publishing table. See also filtering, ver-
tical partitioning

vertical partitioning Segmenting a single table
into multiple tables based on selected columns.
Each of the multiple tables has the same number
of rows but fewer columns. See also partitioning,
vertical filtering

view A database object that can be referenced
the same way as a table in SQL statements. Views
are defined using a SELECT statement and are
analogous to an object that contains the result set
of this statement.

Vswitch A utility used to switch between SQL
Server 2000, SQL Server 6.5, and SQL Server 6.0
as the active version of SQL Server.

W
WHERE clause The part of a SQL statement
that specifies which records to retrieve.

Windows authentication One of two mecha-
nisms for validating attempts to connect to
instances of SQL Server. Users are identified by
their Windows user or group when they connect.
Windows authentication is the most secure mecha-
nism for connecting to SQL Server. See also SQL
Server authentication, trusted connection

Windows collation A set of rules that determine
how SQL Server sorts character data. It is speci-

fied by name in the Windows Control Panel and in
SQL Server 2000 during Setup.

write-ahead log A transaction logging method
in which the log is always written prior to the data.

X
XDR schema XML Data Reduced schemas rep-
resent a logical view of tables in a database.

XML Extensible Markup Language is a hyper-
text programming language used to describe the
contents of a set of data and how the data should
be output to a device or displayed in a Web page.

Xpath A query language defined for XML that
provides syntax to select a specific node, or subset
of nodes, in an XML document.

xp_deletemail Extended stored procedure that
deletes a message from the SQL Server inbox.

xp_findnextmsg Extended stored procedure
that accepts a message ID for input and returns the
message ID for output.

xp_logevent Extended stored procedure that
logs a user-defined message in the Microsoft SQL
Server log file and in the Microsoft Windows NT
Event Viewer.

xp_readmail Extended stored procedure that
reads a mail message for the SQL Server mail
inbox.

xp_sendmail Extended stored procedure that
sends a message and a query result set attachment
to the specified recipients.

xp_startmail Extended stored procedure that
starts a SQL Server mail client session.

xp_stopmail Extended stored procedure that
stops a SQL Server mail client session.

	Cover
	Copyright Page

	About This Book
	Chapter 1: Overview of SQL Server 2000
	Lesson 1: What Is SQL Server 2000?
	Lesson 2: What Are the SQL Server 2000 Components?
	Lesson 3: What Is the Relational Database Architecture?
	Lesson 4: What Is the Security Architecture?
	Review

	Chapter 2: Installing SQL Server 2000
	Lesson 1: Planning to Install SQL Server 2000
	Lesson 2: Deciding SQL Server 2000 Setup Configuration Options
	Lesson 3: Running the SQL Server 2000 Setup Program
	Lesson 4: Using Default, Named, and Multiple Instances of SQL Server 2000
	Lesson 5: Performing Unattended and Remote Installations of SQL Server 2000
	Lesson 6: Troubleshooting a SQL Server 2000 Installation
	Review

	Chapter 3: Preparing to Use SQL Server 2000
	Lesson 1: Reviewing the Results of Installation
	Lesson 2: Starting, Stopping, Pausing, and Modifying SQL Server 2000 Services
	Lesson 3: Working with Osql, SQL Query Analyzer, and SQL Server Enterprise Manager
	Review

	Chapter 4: Upgrading to SQL Server 2000
	Lesson 1: Preparing to Upgrade
	Lesson 2: Performing a Version Upgrade from SQL Server 7.0
	Lesson 3: Performing an Online Database Upgrade from SQL Server 7.0
	Lesson 4: Performing a Version Upgrade from SQL Server 6.5
	Review

	Chapter 5: Understanding System and User Databases
	Lesson 1: Understanding the Database Architecture
	Lesson 2: Understanding the Transaction Log Architecture
	Lesson 3: Understanding and Querying System and Database Catalogs
	Review

	Chapter 6: Creating and Configuring User Databases
	Lesson 1: Creating a User Database
	Lesson 2: Setting Database Options
	Lesson 3: Managing User Database Size
	Lesson 4: Placing Database Files on Multiple Disks
	Review

	Chapter 7: Populating a Database
	Lesson 1: Transferring and Transforming Data
	Lesson 2: Introducing Microsoft Data Transformation Services (DTS)
	Lesson 3: Transferring and Transforming Data with DTS Graphical Tools
	Lesson 4: Working with DTS Packages
	Lesson 5: Using the Bulk Copy Program (Bcp) and the BULK INSERT Transact-SQL Statement
	Review

	Chapter 8: Developing a Data Restoration Strategy
	Lesson 1: Understanding Data Restoration Issues
	Lesson 2: Understanding the Types of Database Backups
	Lesson 3: Understanding the Restoration Process
	Review

	Chapter 9: Backing Up and Restoring SQL Server
	Lesson 1: Understanding Backup Terms, Media, and Devices
	Lesson 2: Backing Up Databases, Files, Filegroups, and Transaction Logs
	Lesson 3: Restoring a User Database
	Lesson 4: Restoring and Rebuilding System Databases
	Review

	Chapter 10: Managing Access to SQL Server 2000
	Lesson 1: Understanding the Authentication Process
	Lesson 2: Understanding the Authorization Process
	Lesson 3: Creating and Managing Logins
	Review

	Chapter 11: Managing SQL Server Permissions
	Lesson 1: Granting Database-Specific Permissions
	Lesson 2: Using Application Roles
	Lesson 3: Designing an Access and Permissions Strategy
	Review

	Chapter 12: Performing Administrative Tasks
	Lesson 1: Performing Configuration Tasks
	Lesson 2: Setting Up Additional Features
	Lesson 3: Performing Maintenance Tasks
	Review

	Chapter 13: Automating Administrative Tasks
	Lesson 1: Defining Operators
	Lesson 2: Creating Jobs
	Lesson 3: Configuring Alerts
	Lesson 4: Creating a Database Maintenance Plan
	Lesson 5: Creating Multiserver Jobs
	Review

	Chapter 14: Monitoring SQL Server Performance and Activity
	Lesson 1: Developing a Performance Monitoring Methodology
	Lesson 2: Choosing Among Monitoring Tools
	Lesson 3: Performing Monitoring Tasks
	Review

	Chapter 15: Using SQL Server Replication
	Lesson 1: Introducing Replication
	Lesson 2: Planning for Replication
	Lesson 3: Implementing Replication
	Lesson 4: Monitoring and Administering Replication
	Review

	Chapter 16: Maintaining High Availability
	Lesson 1: Using Standby Servers
	Lesson 2: Using Failover Clustering
	Review

	Questions and Answers
	Glossary
	Symbol
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

