
A Mathematical Theory of Design:
Foundations, Algorithms and Applications

Applied Optimization

Volume 17

Series Editors:

Panos M. Pardalos
University of Florida, U.SA.

Donald Hearn
University of Florida, U.S.A.

The titles published in this series are listed at the end of this volume.

A Mathematical Theory
of Design:
Foundations, Algorithms
and Applications

by

Dan Braha
Department of Industrial Engineering,
Ben Gurion University,
Beer Sheva, Israel

and

Oded Maimon
Department of Industrial Engineering,
Tel-Aviv University,
Tel-Aviv, Israel

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4419-4798-7 ISBN 978-1-4757-2872-9 (eBook)
DOI 10.1007/978-1-4757-2872-9

Printed on acid-free paper

AlI Rights Reserved
© 1998 Springer Science+Business Media Dordrecht
Originally published by Kluwer Academic Publishers in 1998
Softcover reprint ofthe hardcover lst edition 1998
No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner.

"the science of design is possible and some day
we will be able to talk in terms of well
established theories and practices."

Herbert Simon, 1969

To our families

CONTENTS

PREFACE

Part One THE DESIGN PROCESS: PROPERTIES,
PARADIGMS AND THE EVOLUTIONARY
STRUCTURE

xix

1

1 INTRODUCTION AND OVERVIEW 3
1.1 Scope and Objectives 3
1.2 Common Properties of Design 4
1.3 Design Theories 5
1.4 The Mathematical Method of General Design Systems 6
1.5 Difficulties of the Application of the Mathematical Method 8
1.6 Preview of the Book 9

1.6.1 Modeling the Attribute Space (Chapter 4) 11
1.6.2 The Idealized Design Process (Chapter 5) 11
1.6.3 The 'Real' Design Process (Chapter 6) 12
1.6.4 Computational Analysis of Design (Chapters 5-7) 13
1.6.5 The Measurement of A Design Structural and Functional 14

Complexity (Chapters 8-9)
1.6.6 Algorithmic Methods and Design Applications (Parts III 14

& IV)
1.7 Concluding Remarks 14
References 15

2 DESIGN AS SCIENTIFIC PROBLEM-SOLVING 19
2.1 Introduction 19

2.1.1 Motivation and Objectives 19
2.1.2 Overview of the Chapter 20

2.2 Properties of the Design Problem 22
2.2.1 The Ubiquity of Design 22
2.2.2 Design as A Purposeful Activity 23
2.2.3 Design is A Transformation Between Descriptions 23
2.2.4 Categories of Design Requirements 23
2.2.5 Bounded Rationality and Impreciseness of Design 24

Problems
2.2.6 The Satisficing Nature of Design Problems 25

x CONTENTS

2.2.7 The Intractability of Design Problems 25
2.2.8 The Form of Design 25

2.3 Properties of the Design Process 27
2.3.1 Sequential and Iterative Natures of Design 27
2.3.2 The Evolutionary Nature of the Design Process 29
2.3.3 Design Process Categories 32
2.3.4 The Diagonalized Nature of Design 33

2.4 Survey of Design Paradigms 38
2.4.1 Defining A Design Paradigm 38
2.4.2 Design Paradigms 39
2.4.3 The Analysis-Synthesis-Evaluation (ASE) Design 40

Paradigm
2.4.4 Case-Based Design Paradigm 44
2.4.5 The Cognitive Design Paradigm 45
2.4.6 The Creative Design Paradigm and the SIT Method 46
2.4.7 The Algorithmic Design Paradigm 57
2.4.8 The Artificial Intelligence Design Paradigm 58
2.4.9 Design as A Social Process 61

2.5 Scientific Study of Design Activities 65
2.5.1 The Axiomatic Theory of Design 66
2.5.2 Design as Scientific Problem-Solving 67

2.6 A General Design Methodology 77
2.7 Summary 79
References 79

3 INTRODUCTORY CASE STUDIES 85
3.1 Electrical Design 85

3.1.1 Design of A "Data Tag" 85
3.1.2 Control Logic of Flexible Manufacturing Systems 90
3.1.3 Serial Binary Adder Unit Design 92

3.2 Mechanical Design 93
3.2.1 Mechanical Fasteners Design 93
3.2.2 Supercritical Fluid Chromatography (SFC) Design 96
3.2.3 Gear Box Design (Wormgear Reducer) 97

3.3 Flexible Manufacturing System Design 101
3.3.1 What is A Flexible Manufacturing System? 101
3.3.2 FMS Configuration Design Issues 102

3.4 Discussion 104
References 106

Part Two FORMAL DESIGN THEORY (FDT) 107

4 REPRESENTATION OF DESIGN ARTIFACTS 109
4.1 Introduction 109
4.2 Modeling the Artifact Space 111

4.2.1 The Basic Modeling of Design Artifacts 111

CONTENTS xi

4.2.2 Examples 115
4.2.3 Properties of the Design Space 124

4.3 Summary 134
Appendix - A (Proofs) 134
Appendix - B (Basic Notions of Set Theory) 139
References 141

5 THE IDEALIZED DESIGN PROCESS 143
5.1 Introduction 143
5.2 Motivating Scenarios 147

5.2.1 Mechanical Fasteners 147
5.2.2 The Car Horn 149

5.3 Preliminaries 152
5.3.1 The Attribute and Function Spaces 152
5.3.2 Proximity in Function and Attribute Spaces 154
5.3.3 Transformation Between Function and Attribute Spaces 160
5.3.4 Decomposition of Design Specification 163
5.3.5 Convergence of the Function Decomposition Stage 165
5.3.6 Order Relation for Attribute and Function Spaces 165

5.4 Idealized Design Process Axioms 167
5.4.1 Continuity in Function and Attribute Spaces 167
5.4.2 The Complexity of the "Homeomorphism" and 171

"Continuity" Problems
5.5 Basis for Function and Attribute 172

5.5.1 Definition and Properties 172
5.5.2 Space Character as A Descriptive Complexity Measure 174

5.6 Concluding Remarks 175
Appendix A - Basic Notions of Topology, and Language Theory 176
Appendix B - Bounded Post Correspondence Problem (BPCP) 180
Appendix C - Graph Isomorphism 180
Appendix D - Proofs of Theorems 180
References 185

6 MODELING THE EVOLUTIONARY DESIGN 187

PROCESS
6.1 Introduction 187
6.2 Preview of the Models 190

6.2.1 Type-l Design Process 190
6.2.2 Type-2 Design Process 197

6.3 Detailed Modeling 199

6.3.1 Type-O Design Process (L, Q, P, TA , Ts, So' F) 200

6.3.2 Type-l Design Process (L, Q, P, TA , Ts, So' F) 203

6.3.3 Type-2 Design Process (L, Q, P, T, So' F) 203

6.4 Correctness and Complexity of the Design Process 205

xii CONTENTS

604.1 Correctness of the Design Process 205
604.2 Computational Complexity of the Design Process Problem 207

6.5 Summary 214
Appendix A - Basic Notions of Automata Theory [Adopted from 3] 215
References 216

7 GUIDED HEURISTICS IN ENGINEERING DESIGN 217
7.1 Introduction
7.2 The Basic Synthesis Problem (BSP)

7.2.1 Problem Formulation
7.2.2 The Intractability of the BSP

7.3 The Constrained Basic Synthesis Problem (CBSP)
7.3.1 Problem Formulation
7.3.2 Universal Upper Bound on Igl

704 Refined Upper Bound on Igl
704.1 Probabilistic Design Selection
704.2 The Asymptotic Equipartition Property (AEP)
704.3 Consequences of the AEP on the CBSP

7.5 Design Heuristics for Feature Recognition
7.5.1 Geometric Modeling
7.5.2 Wireframe Feature Recognition
7.5.3 Combinatorial Analysis of the Connectivity Problem
7.504 Combinatorial Analysis of the Feature Recognition

Problem
7.6 Summary
Appendix A - The Satisfiability Problem
References

217
218
219
222
225
225
225

227

227
228
230
232
232
233
235
236

237
238
238

8 THE MEASUREMENT OF A DESIGN 241
STRUCTURAL AND FUNCTIONAL COMPLEXITY
8.1 Introduction 241

8.l.l Complexity Judgment of Artifacts and Design Processes 241
8.1.2 Two Definitions of Design Complexity 243
8.1.3 Organization of the Chapter 245

8.2 Structural Design Complexity Measures 245
8.2.1 Description of the Valuation Measures 245
8.2.2 Basic Measures 247
8.2.3 Composite Measures 249

8.3 Evaluating the Total Assembly Time of A Product 255
8.3.1 Total Assembly Time and Assembly Time Measure 255
8.3.2 Assembly Defect Rates and Assembly Time Measure 261
8.3.3 Design Assembly Efficiency and Assembly Time Measure 262

804 Thermodynamics and the Design Process 267
804.1 Natural Science and Engineering Design 267
804.2 The "Balloon Model" 268

CONTENTS xiii

8.5 Functional Design Complexity Measure 273
8.6 Summary 276
References 277

9 STATISTICALANALYSISOFTHETIME 279

COMPLEXITY MEASURE
9.1 Introduction 279
9.2 Other Methods for Design for Assembly (DFA) 280
9.3 Results and Discussion of the Time Complexity Measure 283
9.4 The Barkan and Hinckley Estimation Method 285
9.5 Conclusions 287
Appendix A - Time Complexity Measure of A Motor Drive Assembly 289
References 290

Part Three ALGORITHMIC AND HEURISTIC 291

METHODS FOR DESIGN DECISION SUPPORT

10 INTELLIGENT ADVISORY TOOL FOR DESIGN 293

DECOMPOSITION
10.1 Introduction 293
10.2 ANDIOR Tree Representation of Design 294
10.3 Guiding the ANDIOR Search Tree 297
10.4 A Prototype System to Implement the Design Search Algorithm 300

10.4.1 Case-l Overview 300
10.4.2 Basic Case-l Definitions 302
10.4.3 The Case Builder Interface 305
10.4.4 The Analyzer Interface 312

10.5 Summary 318
References 319

11 PHYSICAL DESIGN OF PRINTED CIRCUIT 321
BOARDS: GROUP TECHNOLOGY APPROACH
11.1 Introduction 321

11.1.1 The Role of Clustering (Grouping) in Design 321
11.1.2 The Circuit Partitioning Problem 324

11.2 Mathematical Formulation 330
11.3 Properties of the Circuit-Partitioning Problem 332
11.4 A Grouping Heuristic for the Circuit-Partitioning Problem 334
11.5 A Branch and Bound Algorithm 336
11.6 Computational Results Using the Branch and Bound Algorithm 339
11.7 Summary 345
Appendix A - A Brief Overview of Microelectronics Circuits and 345
their Design
Appendix B - (Proof of Theorem 11.1) 348
Appendix C - (Bounds on the Number of Times Net Type j Must be 349

xiv CONTENTS

Packed)
References 351

12 PHYSICAL DESIGN OF PRINTED CIRCUIT 353

BOARDS: GENETIC ALGORITHM APPROACH
12.1 Introduction 353
12.2 The Genetic Algorithm Approach 354
12.3 A Genetic Algorithm for the Circuit-Partitioning Problem 356
12.4 Computational Results 358
12.5 Other Applications of Genetic Algorithm 361

12.5.1 The Catalogue Selection Problem 361
12.5.2 Outline of the Genetic Algorithm 362

12.6 Summary 363
References 363

13 ADAPTIVE LEARNING FOR SUCCESSFUL 365

DESIGN
13.1 Introduction 365

13.1.1 Managing the Intricate Correspondence Between Function 365
and Structure

13.1.2 The Applicability of the Methodology 367
13.2 Problem Formulation 368
13.3 Adaptive Learning of Successful Design 369

13.3.1 The Probabilistic Nature of the Design Process 369
13.3.2 Preliminaries 371
13.3.3 The P-Learning Algorithm 374

13.4 Illustrative Example 376
13.5 A Catalogue Structure for the P-Learning Algorithm 381
13.6 Summary 382
Appendix A - Computation of the Experimental Success Probabilities 383
Appendix B - Bayes' Theorem 384
References 385

14 MAINTAINING CONSISTENCY IN THE DESIGN 387

PROCESS
14.1 Introduction 387

14.1.1 Variational Design 387
14.1.2 Design Consistency in Variational Design 388
14.1.3 Chapter Outline 389

14.2 Previous Efforts 389
14.2.1 Geometric Reasoning 389
14.2.2 Numerical Techniques based on Continuation Methods 390
14.2.3 Other Numerical Techniques 391
14.2.4 Discussion 393

14.3 Design Consistency 394

CONTENTS

14.4 Design Evolution in Variational Design Systems
14.5 Design Consistency Through Solution Trajectories

14.5.1 Definitions in Design Consistency
14.5.2 Theorems in Design Consistency

14.6 COAST Algorithm for Design Consistency
14.6.1 Mean Value Theorem
14.6.2 Rigorous Sensitivity Analysis Algorithm
14.6.3 Bifurcations and Infeasible Regions

14.7 Design of Cantilever Beam
14.7.1 Design Execution
14.7.2 Comparison with Other Methods

14.8 Summary
Appendix A - Interval Analysis Techniques

Al Solving Systems of Interval Equations
A2 Existence and Uniqueness of Solutions

Appendix B - Constraint Model of Beam
References

15 CONSTRAINT -BASED DESIGN OF FAIRED
PARAMETRIC CURVES
15.1 Constraint-Based Curve Design
15.2 Previous Work
15.3 Maintaining Design Consistency in Constraint-Based Curve

Design
15.3.1 Distance Constraints
15.3.2 Arc Length
15.3.3 Consistency in Curve Fairing
15.3.4 COAST Methodology for Design Consistency

15.4 Examples
15.4.1 Bezier Curve from Distance Constraints
15.4.2 Apparel Design

15.5 Discussion
References

16 CREATING A CONSISTENT 3-D VIRTUAL LAST
FOR PROBLEMS IN THE SHOE INDUSTRY
16.1 Problems in Shoe Design Industry
16.2 Creation of A Virtual Last

16.2.1 Constraint Definitions
16.2.2 Curve Fairing

16.3 Results
16.4 Summary
References

xv

396
400
400
403
405
405
406
408
409
410
414
416
417
418
419
419
421

423

423
424
425

426
428
428
430
431
431
435
443
443

445

445
448
452
455
456
459
459

xvi CONTENTS

Part Four DETAILED DESIGN APPLICATIONS 461

17 DESIGN OF A WORMGEAR REDUCER: A CASE 463
STUDY
17.1 Introduction 463
17.2 Conceptual Design of A Wormgear Reducer (Gear Box) 464

17.2.1 Confrontation 464
17.2.2 Problem Formulation 465
17.2.3 Design Concepts 466

17.3 Detailed Synthesis of the Gear Box 468
17.3.1 Motor Design 470
17.3.2 The Design of the Transmission Parts and the Outline of 471

Their Relative Position
17.3.3 Testing the Current Design Against the Wormgear Load 475

and Strength Constraints
17.3.4 Initial Design of the Casing (Box) 477
17.3.5 The Design of the Wormgear Shaft Set 479
17.3.6 Calculation and Check of the Shaft Set Parts 481
17.3.7 Strength and Wear-Resistance Constraints 486
17.3.8 Detailed Design of the Casing 487
17.3.9 Accessories Design 487
17.3.10 Casing Heat Balance Constraints 488

17.4 Discussion 491
17.4.1 Design Description (L) 493

17.4.2 Transformation (T) 494

17.5 A Methodology for Variational Design 495
17.5.1 The General Methodology 495
17.5.2 Demonstration 496
17.5.3 Design Execution 498

References 498

18 ADAPTIVE LEARNING FOR SUCCESSFUL 499

FLEXIBLE MANUFACTURING CELL DESIGN: A
CASE STUDY
18.1 Introduction 499
18.2 Physical Configuration 500
18.3 Parameters and Performance Measures 503

18.3.1 Performance Measures 503
18.3.2 Parameters and Structural Assumptions 504
18.3.3 Evaluation ofthe Responses Through Simulation 506

18.4 Solving the Design Problem Using the P-Learning Algorithm 506
18.5 Concluding Remarks 512
References 512

CONTENTS xvii

19 MAINTAINING DESIGN CONSISTENCY: 513
EXAMPLES
19.1 Wormgear Assembly Problem 514

19.1.1 Dimensions - Wormgear Assembly 514
19.1.2 Design Execution 514

19.2 Helical Compression Spring Problem 521
19.3 Other Design Areas 524
19.4 Point at A Distance from Two Points 528
19.5 Line Tangent to Two Circles 533
19.6 Helical Compression Spring (Continued) 539
Appendix A - Constraint Model of Wormgear 548

20 CASES IN EVOLUTIONARY DESIGN PROCESSES 551
20.1 Automobile Design Example 551

20.1.1 The Specification and Design Description Properties 551
20.1.2 The Production Rules 553
20.1.3 Car Synthesis Using the Design Search Algorithm (see 562

Chapter 10.3)
20.2 Forklift Design Example 564

20.2.1 The Specification and Design Description Properties 565
20.2.2 The Production Rules 568
20.2.3 Forklift Truck Synthesis Using the Design Search 576

Algorithm (see Chapter 10.3)
20.3 Computer Classroom Design Example 578

20.3.1 The Specification and Design Description Properties 578
20.3.2 The Production Rules 584
20.3.3 Computer Classroom Synthesis Using the Design Search 601

Algorithm (see Chapter 10.3)
20.4 Tire Design Example 604

20.4.1 The Specification and Design Description Properties 606
20.4.2 The Production Rules 608
20.4.3 Tire Synthesis Using the Design Search Algorithm (see 612

Chapter 10.3)
20.5 Fastener Design Example 614

20.5.1 The Specification and Design Description Properties 614
20.5.2 The Production Rules 615
20.5.3 Fastener Synthesis Using the Design Search Algorithm 620

(see Chapter 10.3)
20.6 Fastener Design Example (Continued) 621

20.6.1 The Specification and Design Description Properties 621
20.6.2 The Production Rules 624

Appendix A - Automobile Design 632
Al Engines 632
A2 The Body 638
A3 Steering System 639
A.4 Suspension System 640

xviii CONTENTS

A.5 The Brake System 642
A.6 Power Train 044
A. 7 Other Design Consideration 645

Part Five PRACTICAL CONSIDERATIONS 649

21 CONCLUDING REFLECTIONS 651
21.1 General Purpose Guidelines 651

21.1.1 Representation of Design Knowledge 651
21.1.2 Design Process 652

21.2 Algorithmic Design Guidelines 662
21.2.1 Logic Decomposition and Case Based Reasoning (Chapter 662

10)
21.2.2 Group Technology and Clustering Analysis (Chapter 11) 665
21.2.3 Solving Design Problems with Genetic Algorithms 666

(Chapter 12)
21.2.4 Probabilistic Selection Methods for System Design 667

(Chapter 13)
21.2.5 Maintaining Consistency in the Design Process (Chapters 667

14, 15, 16)
21.3 Summary 670

REFERENCES 670

INDEX 671

PREFACE

Formal Design Theory (PDT) is a mathematical theory of design. The main goal of
PDT is to develop a domain independent core model of the design process. The book
focuses the reader's attention on the process by which ideas originate and are
developed into workable products. In developing PDT, we have been striving toward
what has been expressed by the distinguished scholar Simon (1969): that "the science
of design is possible and some day we will be able to talk in terms of well-established
theories and practices."

The book is divided into five interrelated parts. The conceptual approach is
presented first (Part I); followed by the theoretical foundations of PDT (Part II), and
from which the algorithmic and pragmatic implications are deduced (Part III).
Finally, detailed case-studies illustrate the theory and the methods of the design
process (Part IV), and additional practical considerations are evaluated (Part V). The
generic nature of the concepts, theory and methods are validated by examples from a
variety of disciplines.

FDT explores issues such as: algebraic representation of design artifacts,
idealized design process cycle, and computational analysis and measurement of
design process complexity and quality.

FDT's axioms convey the assumptions of the theory about the nature of artifacts,
and potential modifications of the artifacts in achieving desired goals or functionality.
By being able to state these axioms explicitly, it is possible to derive theorems and
corollaries, as well as to develop specific analytical and constructive methodologies.

The desired design function and constraints are mapped to the artifact
description using an evolutionary process that can be viewed as a feedback loop of
double interleaved automata accountable for both analysis and synthesis activities.
The automata modify the specification world and the design artifact until a solution is
achieved. Inherent properties, such as soundness and completeness of the process, are
also explored and proved.

A special case of the synthesis activity, called the Basic Synthesis Problem
(BSP), is shown to be intractable (NP-Complete). We show that by combining
domain-specific mechanical engineering heuristics, which constrain the structure of
potential artifacts, the BSP will be computationally tractable. In order to extend this
guided heuristics approach to other domains, the heuristically guided combinatorial
analysis will be presented for 2-D wireframe feature recognition systems which are
predominant in industrial CAD systems.

Information theory is utilized to quantitatively articulate two definitions of
design complexity (structural complexity versus functional complexity), their

xix

xx PREFACE

associated value measures, and the relationships between them. The proposed
measurable metrics provide a proper basis for evaluating each step in the design
process hierarchy, and accordingly recommend the direction to follow for design
modification and enhancement. It also provides a framework for comparing
competing artifacts (the output of a design process). In addition, we demonstrate that
product assembly time can be predicted by applying the design complexity measures.
It is found that the correlation between the proposed assembly time equation and the
estimation of the assembly time as derived from Boothroyd and Dewhurst' Design
for Assembly (DFA) methodology is very close to +1 over a wide diversity of
experiments.

Based on the theory, algorithms and heuristic methods are developed in Part III.
Methods include case based reasoning, group technology, genetic algorithms,
adaptive learning and convergent probabilistic search for successful design, and
continuation methods for maintaining design consistency. The theory is also the basis
for a computer CADAT (Case-based Design Advisory Tool) program. CADAT
suggests the specification decomposition steps to follow in each design cycle. It is a
combined algebraic-expert system program, which explores the evolutionary nature
of the design process.

In Part IV we present detailed design applications (e.g. the design of wormgear
reducer, helical compression spring, automobile, apparel, shoes, and flexible
manufacturing system) that utilize the processes and methods developed in this book.

The book is intended for theoreticians and practitioners in system and
engineering ~esign. It can also serve as the basis of an upper level undergraduate or
graduate course in computer science or a variety of engineering disciplines (such as
mechanical, electrical, industrial, chemical and civil engineering). The practitioners
will have algorithmic references for the design process, validated and demonstrated
by detailed real world case studies. The book will also provide a unified and
explanatory model for the design process. In addition, engineers, computer scientists
and programmers; who are involved in design software, will find herein the
theoretical foundations and detailed algorithms for the next generations of Computer
Aided Design (CAD) software. However, the book will not dwell on the
fundamentals of integrated circuitry, solid mechanics, fluid mechanics, and the like,
since they are more than adequately covered in the regular, domain-specific
engineering design literature.

It is recommended to read the introductory Chapters 1-3 first. Prerequisite
dependencies between individual chapters of the book are illustrated in Figure 0.1.
For example, an arrow from the number 3 to 6 indicates that it is recommended that
Chapter 3 be read before Chapter 6. Although Chapter 21 can be read independently
of other chapters, we suggest reading it for "dessert." We have used asterisks in
Figure 0.1 to note the use of more powerful mathematical tools than are required in
the rest of the book. The following system of numbering and cross-referencing is
used in the book. Items, such as sections, definitions, theorems, examples, remarks,
etc., are numbered consecutively within each chapter. Section numbers in the text are
in italic type. Cross-references are in the form "by Definition 3.4"; this means "by
Definition 4 of Chapter 3."

PREFACE

* advanced students and researchers

Figure 0.1 Prerequisite Dependencies of the Book

xxi

INTRODUCfION &
DESIGN PROCESS

FORMAL
DESIGN
THEORY (FDT)

DESIGN DECISION
SUPPORT

CASE STUDIES

CONCLUSIONS

xxii PREFACE

Acknowledgements

We acknowledge Irad Ben-Gal, Michael Caramanis, Leonid Charny, Li Keping and
Vince Huffaker of Boston University; Roni Horowitz of Tel-Aviv University; Armin
Schmilovici and Kenneth Preiss of Ben-Gurion University; and Sageet Braha for
their helpful comments and practical discussions. The useful suggestions made by our
students are also appreciatively acknowledged. Finally, we are grateful for the
thoughtful support of our families.

NOTE: Authors' names have been listed in alphabetical order.

PART ONE

THE DESIGN PROCESS: PROPERTIES,
PARADIGMS AND THE EVOLUTIONARY
STRUCTURE

CHAPTER 1

INTRODUCTION AND OVERVIEW

This book presents Formal Design Theory (FDT), a mathematical theory of design.
The main goal of FDT is to develop a domain independent core model of the design
process. FDT explores issues such as: the algebraic representation of design artifacts,
idealized design process cycle, and computational analysis and measurement of
design process complexity and quality. FDT can be used as a framework for the
future development of automated design systems (adding another dimension to the
current CAD systems).

1.1 SCOPE AND OBJECTIVES

Design, as problem solving, is a natural and ubiquitous human activity. Design begins
with the acknowledgment of needs and dissatisfaction with how things stand, and
hence the realization that some action must take place in order to solve the problem.
As such, the issue of design is of major concern to all disciplines within the artificial
sciences (engineering in the broad sense). Independent of the specific design domain;
we claim that design problems share a core of common properties. Thus making it
reasonable to talk in terms of well-established general design theory and practices.

The purpose of this book is to offer a new and integrative, mathematically
formulated, approach to the study of formal models in design sciences. Formal
Design Theory (FDT) is an area within the mathematical-natural sciences that is still
in the exploratory stage of development. It is concerned primarily with design
artifacts and their processes. As an experimental and formal science, it deals only
with those properties that remain invariant under transformation from one design
domain to another. The theory is already being utilized in various ways; such as,
identifying the appropriate links between the creativity process and human design
activity, and developing systems that interface with existing CAD systems in order to
identify successful design configurations.

The investigation that led to the discovery of this branch of mathematical science
was motivated by the recognized need for a substantial foundation in theoretical and
experimental science by Design Science in general, and Design Engineering in
particular. To some extent this need may have been met in part [43, 19, 20, 3,
37, 44, 51], by the mathematical derivation ofrelationships and methods that appear
to govern the design processes with respect to the:

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998

4 A MATHEMATICAL THEORY OF DESIGN

1. Design process framework;
2. Nature of an evolutionary scheme;
3. Idealized design process cycle;
4. Computational complexity analysis;
5. Complexity measures, such as the number of mental discriminations and time

taken to derive a design solution;
6. Logic decomposition and case based reasoning;
7. Group technology approach;
8. Genetic algorithms;
9. Adaptive learning for successful design;
10. Consistent configuration in iterative design.

It should also be mentioned that the mathematical approach used must rely upon the
experimental validation of relationships in addition to the proof of theorems.
Consequently, as in any branch of natural science, any theory developed or laws
discovered may only be valid within the domain in which they have been tested.

Our vision in developing FDT was to achieve what was expressed by the
renowned scientist Simon (1969); that the science of design is possible and some day
we will be able to talk in terms of well-established theories and practices. Proclus'
aphorism that "it is necessary to know beforehand what is sought" suggests a ground
rule for recognizing properly any new field of study. A new field needs to scrutinize
its bounds and objectives, where it stands in the universe, and how it proposes to
relate to the established disciplines. Such clarification is the objective of this first
chapter.

1.2 COMMON PROPERTIES OF DESIGN

Various engineering related disciplines (including mechanical, electrical, industrial,
and chemical engineering; as well as computer science and management science) deal
with certain stages in the design process. Each discipline has developed its own
paradigms, models, and semantics; which overlap, differ, and sometimes contradict.
Design has been discussed in contexts such as general design methodologies [30, 16,
31, II, 1,5,6]; design artifact representation [8, 14,26,35,25,22]; computational
models for the design process [21, 23, 24, 27, 34, 18]; and knowledge-based CAD
systems [9, 33, 28]. Based on the design research, we observe that independent of the
specific design domain, design problems share a core of common properties that can
either be logically derived or empirically verified. Let us review some of these basic
features as related to the design process:

• Design begins with an acknowledgment of needs that highlight discrepancies
witp the current status. Thus revealing that some action must take place in order
to bridge the gap.

• Designing an artifact can be considered a transition from concepts and ideas to
concrete descriptions. In the case of engineering design, such design descriptions

INTRODUCTION AND OVERVIEW 5

range from specifications in formal languages (such as computer-aided
engineering systems, symbolic programming techniques associated with AI, and
hardware design/description languages); to descriptions in quasi-formal notation
(such as linguistic descriptions and qualitative influence graphs); and to very
informal and visual descriptions (such as functional block diagrams, flow
diagrams, and engineering drawings).

• The designer is constantly faced with the problem of bounded rationality. In the
model of bounded rationality it is self-evident that there are limitations on the
cognitive and information processing capabilities of the designer's decision
making.

• The design specifications, which constitute the constraints of a design problem,
may initially not be precise or complete; hence, the evolvement and elaboration
of specifications becomes an integral part of the design process [6].

• Traditional engineering design methods make much more use of satisfactory
criteria (bounded rationality) rather than optimal (pure rationality) specifications.

• Alternatives and design solutions are not provided in advance or in a
constructive manner. They must be found, developed, and synthesized by some
research process; which is iterative and evolutionary in nature.

We make explicit use of the above properties in subsequent sections where the
formal theory of design is presented.

1.3 DESIGN THEORIES

Over the last decades, a significant amount of research has been devoted to
developing design theories [12,5, 16, 10, 31, 15, 13,45,47]. These theories have
been classified into various conceptual categories such as empirical, descriptive, or
prescriptive [40]; as well as into their geographic origin [36, 39, 41, 46]. PDT is
based on mathematical foundations as opposed to axioms and corollaries that are not
based on a formal system; e.g., [50, 32].

The field of design theory is relatively new. It has been particularly stimulated
by three computer-related technological advances: computer-aided design (CAD) [2],
knowledge-based expert systems (KBES) [33], and concurrent engineering (CE)
[29]. The slow development and confusion about design theory can be mainly
attributed to the lack of sufficient scientific foundation in engineering design. Dixon
[7] has argued that engineering design education and practice lack an adequate base
of scientific principles, and are guided too much by specialized empiricism, intuition,
and experience. Kuhn [17] concluded that design is at a prescience phase and must
go through several phases before it constitutes a mature science (hence theory). A
mature science is the state of a discipline in which there is a coherent tradition of
scientific research and practice embodying law, theory, application, and
instrumentation. In order to achieve this kind of maturity, design researchers need to
borrow methodologies from other disciplines (beyond calculus) that have reached
relative scientific maturity [4].

6 A MATHEMATICAL THEORY OF DESIGN

A design method, within a design paradigm, does not constitute a theory. Theory
emerges when there is a testable explanation of why the method behaves as it does
[7]. Design methods do not attempt to say what design is, or how human designers do
what they do, but rather provide tools by which designers can explain and perhaps
even replicate certain aspects of design behaviors. The major components and aims
of design theories, which our book is also committed to, are:

1. To construct a systematic inquiry into the design process, and to uncover some
intelligible structure or pattern underlying the phenomenon. In other words, a
theory of design must be in part descriptive;

2. To specify how design should be done, and to allow the construction of more
rational methods and tools to support practical design. In other words, a theory
of design must be in part prescriptive.

3. To construct a simple design theory: When two design theories are possible, we
provisionally choose the one which our minds judge to be the simpler, on the
supposition that this is the more likely to lead in the direction of the truth. This
simplicity principle includes as a special case the principle of William of Occam
"Causes shall not be multiplied beyond necessity";

4. To construct a consistent design theory: A design theory must be consistent with
whatever else we know or believe to be true about the universe in which the
phenomenon is observed;

5. To develop a general design theory: The value of a design theory will be
determined, to a great extent, by its generality and domain-independence
(including mechanical, industrial, electrical, and civil engineering; as well as
computer science).

1.4 THE MATHEMATICAL METHOD OF GENERAL DESIGN
SYSTEMS

One of the most interesting hypothesis that emanates from the significant amount of
design research is that in all the diverse richness of design, and regardless of the
various methodologies or models about the structure of the design process, one may
identify a single general theory. The theory that design as a problem solving activity
conforms to one of the most powerful and successful human activities; namely,
scientific discovery. Examining the literature on design theory [12, 5, 16, 10,31, 15,
13, 45, 47] reveals a number of intermittent and closely intertwined issues (that are
resolved to some degree): Can we construct a natural logic of design? What is the
connection between design and science? How can designs be synthesized
computationally? Unfortunately, despite the numerous design theories and the
metaphor of design-as-scientific discovery; there is no common core of mathematical
general design theory. Consequently, we feel that the most interesting themes in
design theory are: What is the nature of design knowledge representation? Should we
try to formalize the design process? What is the connection between general design
and mathematics? We hope to draw the reader's attention to mathematical methods,

INTRODUCTION AND OVERVIEW 7

which diverge considerably from the techniques applied by contemporary designers;
and to shed some further perspective on the structure of design processes.

While much of what will be discussed applies to design disciplines in general,
our particular emphasis will be the design of well-structured design systems that
assumes the existence of a formal language for representing the structural and
functional properties of a device. We believe that a formal model of design can help
in developing a generally accepted core of mathematical design theory, which could
be applied to enhancing the conceptual design stage. The theory can also provide a
reference framework within which the potentialities and limitations, as well as the
efficacy and deficiency of design automation systems (e.g., computer-aided design
(CAD) and "expert" design systems) can be evaluated.

The philosophical view that underlies the theory is the constructivist or systems
approach. Klir [42] defines systems science as "a science whose domain of inquiry
consists of those properties of systems and associated problems which emanate from
the relation-oriented classification of systems." The general study of "thinghood" is
essentially physics; hence, it follows that the study of any system is subsumed in its
physics (e.g., the underlying fluid mechanics, heat transfer, phase transformation, and
solid mechanics of an arc welding design). This is the essence of reductionism (see
Section 1.5.2). On the other hand, we find the antithetic claim that all apparent
properties of "thinghood" are already subsumed under "systemhood." Essentially,
this is holism. The way in which this holistic view is used in this book is quite
different. We see reductionism and holism as complementary, or cognitively
adjoined. For the description of the design systems in which we are interested;
reductionism implies attention to a lower level, while holism implies attention to a
higher level. These are intertwined in any satisfactory description, and each entails
some loss and some gain relative to our cognitive preferences. . .

Designers are more or less familiar with the construction of mathematical
representations or models of engineering design (the use of calculus). However, it is
perhaps not widely recognized (among designers) that mathematicians often construct
other mathematical systems. The theory presented here is grounded, at large, in those
branches of mathematics called Information Theory, Logic, Automata and
Complexity Theory, Generalized Topology and the Theory of Category.

Topology is the branch of mathematics that studies the notion of continuity. The
systems studied in topology are those mathematical structures (called topological
spaces) on which continuous processes can be defined. One of the basic problems of
topology is to determine whether two such spaces are homeomorphic.
Homeomorphism means that such spaces are indistinguishable from one another from
the standpoint of the continuous processes that may be defined on these spaces.
Category Theory is a general theory for modeling the relations that exist between
formal systems. Thus, for example, we identify the attribute space (alternately the
artifact space, structure space, or the design space) as an algebraic structure; the
relations between the function and attribute spaces as a homeomorphism; and the
evolutionary structure of the design process as consisting of a specification language
expressed by first-order logic and two generative mechanisms for decomposing
specifications and generating new structural attributes.

8 A MATHEMATICAL THEORY OF DESIGN

1.5 DIFFICULTIES OF THE APPLICATION OF THE
MATHEMATICAL METHOD

Let us briefly discuss the role mathematics may play in the development of general
design theory. At present, there exists no universal system of mathematical design
theory. We believe that if one is ever developed, it will probably not be during the
next several decades. Considering the fact that design theory is much more complex,
far less understood, and undoubtedly significantly newer than many natural sciences;
one should expect design theory to lag considerably behind (in terms of mathematical
formalization) fields such as physics.

The assumption that mathematics can not be applied to design theory seems to
be based on a variety of conceptions including:

• That the human element, psychological factors, etc. dictate design.
• That there are no quantitative measures for important factors in design.
• That a mathematical method would rule out the possibility of creativity in

design.

These conceptions may be undermined by notIcing that the outlook on the
physical and biological sciences during their early periods was similarly pessimistic.
In addition, to continue the simile with physics, mathematical theory was necessary
before precise measurements of the quantity and quality of heat (energy and
temperature) could be obtained. Thus, we must look beyond the above conceptions in
order to explain why mathematics has not been rigorously applied to design theory.

To begin with, design problems have not been formulated clearly and have often
been stated in vague terms (such as artifact, adaptiveness, etc.). These factors, a
priori, make mathematical reasoning appear hopeless. Even in design theories where
a description problem has been handled more satisfactorily, mathematical tools have
seldom been used appropriately. Next, the empirical background for design theory
(e.g., cognitive studies) is inadequate. Indeed, it would have been absurd in physics
to anticipate Kepler and Newton theories without Tycho de Brahe's astronomical
observations. There is no reason to hope that the development of design theory would
be easier.

In light of these remarks we may describe our own position as follows: The aim
of this book does not lie in the direction of empirical research. This task seems to
transcend the limits of any individually planned program. We shall attempt to utilize
some commonplace design experiences concerning simple devices and designer
behavior that lend themselves to mathematical treatment and which is of importance
to design. It should be added that the treatment of these manageable situations may
lead to results that are already known, but the exact mathematical proofs may
nevertheless have been lacking. The theories do not exist as scientific theories until
proofs have been given. For example, the data for the orbit of Mars was available
long before its course had been derived by Kepler's elliptical law. Similarly, in design
theory, certain results (such as hierarchy and the intractability of design problems)
may be already known. Yet, it is of interest to derive them again from an exact

INTRODUCTION AND OVERVIEW 9

theory. Finally, we utilize comprehensible design examples in order to better focus
on the fundamental governing principles. The free fall is a very basic physical
phenomenon, which brought forth mechanics. Designers often tend to focus on
"pressing" practical issues (such as providing a needed artifact), and tend to set aside
issues (such as formalization) that do not bring them to immediate applications. This
orientation, as indicated by other sciences, merely delays progress (including
"burning" questions). It seems to us that the same research plan should be applied in
design.

1.6 PREVIEW OF THE BOOK

A general model of design can be visualized as consisting of the following tasks:
needs assessment, analysis, decomposition, synthesis, and evaluation. The first task is
concerned with the assessment of the desired needs and requirements, which are
often fuzzy in nature. Analysis involves specifying, identifying, and preparing the
problem as well as developing an explicit statement of goals. Decomposition is
concerned with breaking the problem into parts and defining the boundaries of a
space in which a fruitful search for the solution can take place. Synthesis is concerned
with discovering the consequences of putting the new arrangement into practice.
Evaluation is concerned with judging the validity of the solutions relative to the goals
and selecting among alternatives. This implies that the outcome from the evaluation
phase is revised and improved by reexamining the analysis (inner cycle). The
outcome may also revise the perceived needs (outer cycle).

In Chapter 2, we examine the logic and methodology of engineering design from
the perspective of the philosophy of science. The fundamental characteristics of
design problems and design processes are discussed and analyzed. These
characteristics establish the framework within which different design paradigms are
examined. Following the discussions on descriptive properties of design, and the
prescriptive role of design paradigms, we advocate the plausible hypothesis that there
is a direct resemblance between the structure of design processes and the problem
solving of scientific communities.

In Chapter 3, we provide some examples of design processes. These cases were
chosen to give the reader insight into the design process (emphasizing the synthesis
part), and the thinking of designers when involved with five different design
situations.

Formal Design Theory (FDT) is established in Part II (Chapters 4-9). FDT is a
descriptive model that attempts to explain how design artifacts are conceptually
represented; and how design processes are conceptually performed (as captured by
the Analysis, Decomposition, and Synthesis stages) in terms of knowledge
manipulation.

Prerequisite dependencies between individual components of FDT are expressed
by the diagram in Figure 1.1.

10 A MATHEMATICAL THEORY OF DESIGN

FDT

Building
CAD

Systems
(Part III)

Figure 1.1 Prerequisite Dependencies of FDT

FDT has inherent relationships with other fields. FDT intersects with
mathematics (generalized topology and category theory), computer science
(complexity theory, automata and formal logic), physics (thermodynamics and
statistical mechanics), information theory (the asymptotic equipartition property) and
psychology (categorical judgments). Part II describes these relationships.

INTRODUCTION AND OVERVIEW 11

1.6.1 MODELING THE ATTRIBUTE SPACE (CHAPTER 4)

Chapter 4 lays out a domain independent modeling of design artifacts, which is based
on the following postulates:

Postulate 1 (Entity-Relational Knowledge Representation): an artifact
representation is built upon the multiplicity of modules (attributes) and relationships
among them.

Postulate I supports the stage of conceptual design; whic~ includes the
assessment, analysis, and decomposition tasks. The conceptual design stage has a
great impact on the direction of the design project; including its performance,
manufacturability, production cost and other concurrent engineering factors. During
this stage, continuous properties are usually discretized. The discreteness might cause
the design evaluation process to be imprecise. However, in most situations the aim of
the conceptual design stage is to generate a variety of alternatives that meet a
required set of specifications early in the project rather than to produce detailed
engineering drawings that are describable by continuous properties.

Postulate 2 (Nested Hierarchical Representation): the design of any complex
system can be considered at various abstraction levels. The general direction of
design is from more abstract to less. A design at any level of abstraction is a
description of an organized collection of constraints (such as various structural,
cause-effect, functional, and performance features) that appear in the physically
implemented design.

These premises lead directly to formulating the attribute space as an algebraic
structure. The artifact is represented by the pair <M,G>. M stands for the set of
modules that the artifact is comprised of; and C denotes the set of relations that
represent the relationships among the modules. In order to capture the essence of
design, a hierarchical construction of systems from subsystems is also developed.
Consequently, the general set of modules is classified into basic and complex
modules. Basic modules represent entities that can not be defined in terms of others.
Complex modules are defined hierarchically in terms of other modules, where the
effects of their interactions are expressed.

Any prescriptive approach to design should have some ability to forward search
(from initial components toward the specifications) and backward search (from initial
specifications toward the initial components). To conduct these search strategies,
Chapter 4 rigorously defines three types of design-space operators; and explores their
characteristics. These operators are able to manipulate transitive relationships among
several relations, and perform any search tasks on a given attribute space. Two
central types of operators are defined: Composition (undertake composition tasks)
and Decomposition (undertake decomposition tasks). Integration operators combine
both.

1.6.2 THE IDEALIZED DESIGN PROCESS (CHAPTER 5)

In FDT, the idealized design process is defined as a mapping of the desired set of

12 A MATHEMATICAL THEORY OF DESIGN

specifications (describing the desired functions and constraints of the final product)
to the artifact description (the final detailed product description). Ideally, a design
process includes several steps: (1) in order to provide a rule of direct correspondence
between structural and functional attributes, the attributes included in the artifact
space (which includes representations of artifacts in terms of properties, drawings,.
etc.) are mapped to functional properties that form the function space (represented in
terms of functional descriptions, and artifact behavior). This step conceptualizes the
issue of design analysis; (2) the desired set of initial specifications (describing the
desired functions and constraints of the final product) is transformed to a "close"
functional description that is sufficiently detailed. This "close" functional description
represents the concept of a model as mediating between the function and attribute
spaces; (3) finally, the detailed functional description of the artifact is mapped to the
attributes or the structure of the artifact (part of the attribute space) by the "inverse"
of the analysis mapping (i.e., synthesis). These attributes are observable properties
that are needed in order to manufacture the artifact. For example, if we consider
mechanical machines, the functional specifications are transformed to a graphic
representation of the machine (e.g., a dynamic model of its behavior); which is
transformed to the physical description of the machine (described in terms of part
types, attributes, and dimensions).

In principle, these three processes (analysis, "close" functional description, and
synthesis) can be combined in a cyclic operation. Since neither the "close" functional
description of the artifact nor the selection process (Le., synthesis) can be rigorous
and practical simultaneously, a loss of information is to be expected. Consequently,
the described cycle is considered idealized in the same sense as in thermodynamics;
where a frictionless (hence ideal) heat engine follows the cycle of Carnol.

Thus, the transformation between the function space and the artifact space must
consist of some combination of processes that make up the idealized cycle. We
characterize the idealized cycle by a set of properties (emphasizing the continuity
property), which immanently embody any idealized design process. These properties
reflect the loss of information occurring in the course of the cycle. The overall
exploration is performed by applying the methodology of generalized topology.

We introduce the concept of a basis for a function space (or attribute space). The
intuitive meaning of a basis for a function space (or attribute space) is the collection
of already known and decomposable functions (or attributes) that can be utilized to
decompose a new function. Thus, the designer can utilize the basis functions
(attributes), which have already been solved, to more easily solve a new problem.

1.6.3 THE 'REAL' DESIGN PROCESS (CHAPTER 6)

In the design process as in many fields, real knowledge, unlike the ideal knowledge,
is fuzzy and one must take into consideration the following characteristics:

• The idealized design process is regarded as a direct mapping from the functional
space onto the attribute space, while the real design process is regarded as a

INTRODUCTION AND OVERVIEW 13

stepwise refinement and evolutionary transformation procedure where the
designer seeks the solution that can satisfy requirements;

• The real design process uses of the artifact's behavior instead of its functional
requirements;

• The real design process takes into account the physical constraints, which were
ignored in the presence of ideal knowledge.

We view the real design process as a goal-directed derivation process, which
starts with an initial specifications and terminates with one or more artifact
descriptions. By adaptively modifying pairs of artifact descriptions and
specifications, from one step to the next, we arrive at a design solution. The desired
functional requirements and constraints are mapped to the artifact description using
an evolutionary process that can be viewed as a feedback loop of double interleaved
automata accountable for both analysis and synthesis activities. The automata modify
the specifications and the design artifact until a solution is reached. Properties such
as soundness and completeness of the process are explored. The real design process
model is based on the following postulates:

Postulate 3 (Incompleteness): Any knowledge representation (as presented by
the designer) is incomplete.

Postulate 4 (Bounded Rationality): The designer can consider only a subset of
knowledge representations at any instant of decision making.

Postulate 5 (Non-Determinism): Several feasible designs can be generated to the
level specified by the designer.

1.6.4 COMPUTATIONAL ANALYSIS OF DESIGN (CHAPTERS 5-7)

One common issue for all designs is the complexity of the design process. The
complexity of the design process stems from the nature, variety, and mutual
interdependence of the choices available to the designer in the course of the design
process. Consequently, the issue of complexity is studied in FDT from three
perspectives that represent a spectrum of problems, which are related to the
architecture of design systems:

• The architecture of the interface (analysis and synthesis) between the artifact
and function spaces (Chapter 5).

• The architecture of a real design process; which is viewed as stepwise, iterative,
and evolutionary (Chapter 6).

• The architecture of basic synthesis activities, which support the real design
process (Chapter 7).

14 A MATHEMATICAL THEORY OF DESIGN

1.6.5 THE MEASUREMENT OF A DESIGN STRUCTURAL AND
FUNCTIONAL COMPLEXITY (CHAPTERS 8-9)

Information theory and cognitive psychology are utilized to quantitatively describe a
universal set of metrics, which are used for measuring the functional and structural
complexity of design artifacts and design processes. We show that assembly time can
be predicted from these measures. The functional and structural complexity measures
constitute ad hoc engineering metrics without a corresponding scientific foundation.
Therefore, we contend that by analogy with thermodynamics, scientific design
evaluation tools may be developed. By applying large-scale or macroscopic formulas
we attempt to understand, or at least quantitatively assess, the microscopic design
process.

1.6.6 ALGORITHMIC METHODS AND DESIGN APPLICATIONS (PARTS
III & IV)

The FDT theory leads to two useful outcomes. First, heuristic methods (including
group technology, case based reasoning, genetic algorithms, adaptive learning for
successful design, and continuation methods for maintaining design consistency) are
described for linking the design process to its underlying knowledge base (Part III).
Second, powerful and comprehensive examples (methodological validation) have
been developed to show that the proposed theory is consistent and fruitful (Part IV).

Based on the theory (Part II), we describe in chapter 10 a computer CADAT
(Case-based Design Advisory Tool) methodology. CADAT is a case-based reasoning
system that assists in determining efficient appropriate groupings and configurations
of parts in order to fulfill customer requirements. The CADAT methodology is
implemented by Case-l "'. Case-l is a powerful knowledge-based problem resolution
tool used to assist in solving issues typically encountered in product support or help
desk roles. Case-l uses case-based reasoning to best match a list of requirements with
a library of existing sub-requirements and/or structural properties.

1.7 CONCLUDING REMARKS

The field of formal design theory presented in this book is still in its early stages of
development. As in other mathematical sciences, formal design theory needs to
follow an evolutionary development process, and not be concerned with whether
results conform with views held for a long time. Thus, what is initially important to
us is the gradual development of a design theory that is based on the careful analysis
of the ordinary everyday interpretations of design facts. This preliminary stage of
transition from nonmathematical plausibility considerations to the formal procedure
of mathematics is necessarily heuristic. Its first applications (which serve to

T. Case-l is a trademark of ASTEA International, 1995.

INTRODUCTION AND OVERVIEW 15

corroborate the theory) are to elementary design situations where no theory is
required. However, an awareness of the following issues may be helpful for future
research on the more advanced aspects of the theory [48,49]:

I. The critical role of needs assessment, which precede active design;
2. The application of prior proven concepts and solutions to innovative design;
3. The robustness of product and manufacturing processes;
4. The design as a social process (involving designers, customers, and others) that

consists of creating and refining a "shared meaning" of requirements and
potential solutions through continual negotiations.

The approach taken in this book can provide a common framework for various
engineering design problems, and thus improve the semantic pollution prevailing in
engineering design. As engineering science breaks into subgroups and less
communication is possible among the disciplines; the growth of total knowledge is
likely to diminish. It is one of the main objectives of mathematical design theory to
develop a framework that enables different specialists to better interpret the design
communications of others. Thus, the engineers that realize the strong formal
similarity between the design process and either topology in mathematics or problem
solving in cognitive psychology may be in a better position to learn from the
mathematicians or psychologists than those who do not.

The next stage is to apply the theory to somewhat more complicated, less
obvious situations. Beyond this lies real success: genuine prediction by theory, and
fully reliable applications in the form of intelligent CAD tools for the design
engineer. It is well known that all mathematized sciences have gone through these
successive phases of evolution.

REFERENCES

I. Antonsson. E.K., "Development and Testing of Hypotheses in Engineering Design Research,"
Journal of Mechanisms, Transmissions, and Autonullioll ill Design, Vol. 109, pp. 153-154, 1987.

2. Bezier, P.E., "CAD/CAM: Past, Requirements, Trends," In Pmc. CAD, Brighton, pp. I-II, 1984.
3. Braha, D. and Maimon, 0., "A Mathematical Theory of Design: Modeling the Design Process (Part

II)," Internatiollal Journal of General Systems, Vol. 26 (4),1997.
4. Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M. and Gero, J.S., Knowledge-Based

Design Systems. Reading, MA: Addison-Wesley, 1990.
5. Cross, N. (ed.)., Development in Design Methodology. New York: John Wiley, 1984.
6. Dasgupta, S., "The Structure of Design Processes," In Advances in Complllers, Vol. 28, M.e. Yovits

(ed.). New York: Academic Press, pp. 1-67, 1989.
7. Dixon, J.R., AI EDAM, Vol. I (3), pp. 145-157, 1987.
8. Freeman, P. and Newell, A., "A Model for Functional Reasoning in Design," In Proc. of the 2nd Int.

Joint COil! Oil Artificialllllelligence, pp. 621-633, 1971.
9. Gero, J.S., "Prototypes: A New Schema for Knowledge Based Design," Technical Report,

Architectural Computing Unit, Department of Architectural Science, 1987.
10. Giloi, W.K. and Shriver, B.D. (eds.), Methodologies for Computer SysteTm Design." Amsterdam:

North-Holland, 1985.
II. Glegg, G.L., The Science of Design. Cambridge, England: Cambridge University Press, 1973,
12. Hubka, Y., Principles of Engineering Design. London: Butterworth Scientific, 1982.
13. Hubka, V. and Eder, W.E., Theory a/Technical SystemV.' A Total COllcept Theory For Engineering

16 A MATHEMATICAL THEORY OF DESIGN

Design. Berlin: Springer-Verlag, 1988.
14. Ishida, T., Minowa, H. and Nakajima, N., "Detection of Unanticipated Functions of Machines," In

Proc. of the Int. Symp. of Design and Synthesis, Tokyo, pp. 21-26, 1987.
IS. Jaques, R. and Powell, J.A. (eds.), Design: Science: Method. Guildford, England: Westbury House,

1980.
16. Jones, lC., Design Methods: Seeds of Human Futures (2nd Edition). New York: John Wiley, 1980.
17. Kuhn, T.S., Postscript - 1969. In The Structure of Scientific Revolutions. Chicago, IL: University of

Chicago Press. Enlarged 2nd Edition, pp. 174-210, 1970.
18. Maher, M.L., "A Knowledge-Based Approach to Preliminary Design Synthesis," Report EDRC-12-

14-87, Carnegie Mellon University Engineering Design Research Center, 1987.
19. Maimon, O. and Braha, D., "A Mathematical Theory of Design: Representation of Design

Knowledge (Part I)," International Journal of General Systems, Vol. 26 (4), 1997.
20. Maimon O. and D. Braha, "On the Complexity of the Design Synthesis Problem," IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 26 (I), 1996
21. Murthy, S.S. and Addanki, A. "PROMPT: An Innovative Design Tool," In Proc. of the 6th Nat.

Con/. on Anificiallntelligence, Seattle, W A, 1987.
22. Paynter, H.M., Analysis and Design of Engineering Systems. Cambridge, MA: MIT Press, 1961.
23. Penberthy, J.S., Incremental Analysis and the Graph of Models: A First Step Towards Analysis in

the Plumber's World, S.M. Thesis, MIT Department of Electrical Engineering and Computer
Science, 1987.

24. Ressler, A.L., "A Circuit Grammar for Operational Amplifier Design," Technical Repon 807MIT,
Artificial Intelligence Laboratory, 1984.

25. Rieger, C. and Grinberg, M., "The Declarative Representation and Procedural Simulation of
Causality in Physical Mechanisms," In Proc. of the 5th Int. Joim Con/. on Artificial Intelligence,
pp. 250, 1977.

26. Rinderle, J.R., "Function and Form Relationships: A basis for Preliminary Design," Report EDRC-
24-05-87, Carnegie Mellon University Engineering Design Research Center, Pittsburgh. PA, 1987.

27. Roylance, G., "A simple Model of Circuit Design," Technical Repon 703, MIT Artificial
Intelligence Laboratory, 1983.

28. Rychener, M. (ed.), Expert Systems for engineering design. New York: Academic Press, 1988.
29. Shina G.S., Concurrent Engineering and Design for Manufacture of Electronics Products. Van

Nostrand Reinhold, 1991.
30. Simon, H.A., The Science of the Artificial. Cambridge. MA: MIT Press, 1981.
31. Spillers, W.R. (ed.)., Basic Questions of Design Theory. Amsterdam: North-Holland, 1972.
32. Suh, N.P., The Principles of Design. New York: Oxford University Press, 1990.
33. Tong, C. and Sriram, D. (eds.), Artificial Intelligence Approaches to Engineering Design, 1991.
34. Ulrich, K.T., "Computation and Pre-Parametric Design," Technical Report 1043, MIT Artificial

Intelligence Laboratory, 1988.
35. Winston, P.H., et. aI., "Learning Physical Descriptions From Functional Definitions, Examples and

Precedents," Memo 679, MIT, Artificial Intelligence Laboratory, 1983.
36. Arciszewski, T., "Design theory and methodology in Eastern Europe," In Design Theory and

Methodology-DTM'90 (Chicago, II), pp. 209-218, New-York, NY, The American Society of
Mechanical Engineers, 1990.

37. Braha, D. and Maimon, O. "The Measurement of A Design Structural and Functional Complexity,"
IEEE Transactions on Systems, Man and Cybernetics, Vol. 28 (3), 1998.

38. Dijkstra, E.W. Notes on Structural Programming. in 0.1. Dahl, E.W. Dijkstra, and C.A.R. Hoare,
Structllral Programming. Academic Press, New York. 1972.

39. Eder, W.E., "Engineering Design - a perspective on U.K. and Swiss development," In Design
Theory and Methodology-DTM'90 (Chicago, II), pages 225-234, New-York, NY, The American
Society of Mechanical Engineers, 1990.

40. Finger, S. and Dixon, J. R., "A review of research in mechanical engineering design. Part I:
Descriptive, prescriptive, and computer-based models of design processes," Research in
Engineering Design, Vol. 1(1), pp. 51-67,1989.

41. Hundal, M.S., "Research in design theory and methodology in West Germany," In Design Theory
and Methodology-DTM'90 (Chicago, II), pages 235-238, New-York, NY, The American Society of
Mechanical Engineers, 1990.

INTRODUCTION AND OVERVIEW 17

42. Klir, J .G. Architecture of Systems Problem Solving. Plenum Press. New York. 1985.
43. Maimon, O. and Braha, D. "A Proof of the Complexity of Design," Kybernetes: An International

Journal of Cybernetics and General Systems, Vol. 21 (7), pp. S9-63, 1992.
44. Maimon, O. and Braha, D., "An Exploration of the Design Process," Technical Report, Boston

University, 1994.
4S. Suh, N. P. "Development of the science base for the manufacturing field through the axiomatic

approach." Robotics & Computer-Integrated Manufacturing, Vol. 1(3/4), pp. 397-41S, 1984.
46. Tomiyama, T., "Engineering design research in Japan," In Design Theory and Methodology

DTM'90 (Chicago, Il), pages 219-224, New-York, NY, The American Society of Mechanical
Engineers, 1990.

47. Warfield, J.N. A Science of Generic Design. Intersystems Publications, Salinas, CA. 1990.
48. Barkan, P. and Hinckley, C. M., "Limitations and Benefits of Structured Methodologies,"

Manufacturing Review, Vol. 6 (3),1993.
49. Reich, Y., 'The Development of Bridger: A Methodological Study of Research on the Use of

Machine Learning in Design," Artificial Intelligence in Engineering, Vol. 8,1993.
SO. Nadler, G. The Planning and Design Approach. John Wiley. New York.
SI. Braha D. and Maimon 0., "The Design Process: Properties, Paradigms and Structure" IEEE

Transactions on Systems, Man and Cybernetic (Part A), Vol. 27 (3),1997.

CHAPTER 2

DESIGN AS SCIENTIFIC PROBLEM-SOLVING

Following Proclus' aphorism that "it is necessary to know beforehand what is
sought," a ground rule of intellectual endeavor seems to be that any new field of
study, to be recognized properly, must first scrutinize its bounds and objectives:
where it stands in the universe and how it proposes to relate to the established
disciplines. Such clarification is the object of this chapter.

In this chapter, we examine the logic and methodology of engineering design
from the perspective of the philosophy of science. The fundamental characteristics of
design problems and design processes are discussed and analyzed. These
characteristics establish the framework within which different design paradigms are
examined. Following the discussions on descriptive properties of design, and the
prescriptive role of design paradigms, we advocate the plausible hypothesis that there
is a direct resemblance between the structure of design processes and the problem
solving of scientific communities. The scientific community metaphor has been
useful in guiding the development of general purpose, highly effective, design
process meta-tools [73].

2.1 INTRODUCTION

2.1.1 MOTIVA TION AND OBJECTIVES

Design as problem solving is a natural and most ubiquitous of human activities.
Design begins with the acknowledgment of needs and dissatisfaction with the current
state of affairs and realization that some action must take place in order to solve the
problem, so scientists have been designing and acting as designers (sometimes
unconsciously) throughout their lives. As such, it is of central concern to all
disciplines within the artificial sciences (engineering in the broad sense).

Design science is a collection of many different logically connected knowledge
and disciplines. Although there is no single model that can furnish a perfect definition
of the design process, design models provide us with the powerful tools to explain
and understand the design process. Design has been discussed, among others, in
contexts such as general design methodologies [105,52, 108, 36, 6, 21, 22], design
artifacts representation [30, 48, 94, 122,92, 83], computational models for the design

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998

20 A MATHEMATICAL THEORY OF DESIGN

process [78, 84, 91, 96, 120, 71], knowledge-based CAD systems [32, 117,97] and
design theories [46, 112, 124, 72, 73, 13]. .

Our research in engineering design [13, 72, 73] has led us to believe that
evolution is fundamental to design processes and their implementation by computer
aided design (CAD) and "expert" design systems in many domains. In spite of the
disparity between the models, and regardless of whether one is designing computer
software, bridges, manufacturing systems or mechanical fasteners, evolutionary
speaking they are similar. As the design process develops, the designer modifies (due
to bounded rationality) either the tentative (current) design, or the specifications -
based on new information obtained in the current design cycle. The modification is
performed in order to remove discrepancies, and eventually establish a fit between
the two parts. The evolved information reflects the fundamental feature of bounded
rationality. The new information determines the tentative design knowledge, stating
the relation among high and low levels of design specifications. It also determines the
inference rules (or inference mechanism) that specify the method for deriving new
design specifications and/or design artifacts. Both the sets of design knowledge and
inference rules reflect the beliefs, skills and expertise unconsciously developed by
designers through the repetitive experiences. The converging design process includes
a testing stage for verifying the tentative design against the tentative specifications to
establish the direction of their future elaboration. This process terminates with an
acceptable design. These characteristics were arrived at from arguments based on the
concept of "bounded rationality" [106].

In this chapter, we present a largely philosophical discussion of our motivations.
We focus our attention on how scientific communities solve problems. Our thesis is
that design as an evolutionary problem solving activity conforms to the structure of
problem solving of scientific communities. That scientific communities are successful
at generating and deciding between alternative explanations for phenomena is
indisputable. Scientific progress, looked at globally and with a time scale of many
decades seems coherent and purposeful. At anyone time many conflicting theories
and paradigms may support to explain the same phenomenon. Scientific communities
themselves can be the subject matter of scientific research. The nature of science has
been a fertile topic in philosophy from the pre-Socratic through the present day. We
are particularly indebted to a number of philosophers and historians of science of this
century among them Popper's, Kuhn's, Laudan's and Lakatos [86, 57-60, 66, 61-63].
We hope to gain insight from this research that will be useful in guiding the
development of general purpose, highly effective design process meta-tools [73].

2.1.2 OVERVIEW OF THE CHAPTER

Section 2.2 scrutinizes the bounds and objectives of design from the perspective of
the design problem. The basic characteristics as articulated in this section are:

1. Generally, designers act and behave under conditions of bounded-rationality;
2. Alternatives, options and outcomes are usually not given in advance (ill-

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 21

structured problems), and must be found and developed by some research
process;

3. Usually, the optimum decisions will not be sought and satisfying decisions will
fully be accepted;

4. Computationally speaking, most design optimization problems (well-structured
problems) are intractable. Hence, the optimal decisions will generally not be
sought and satisfying decisions will fully be accepted.

As a result of these basic postulates, we argue in Section 2.3 that the design
process can be viewed as a stepwise, iterative, evolutionary transformation process.
These characteristics establish the framework within which different design
paradigms are examined. Section 2.4 glean useful ideas from the metaphor of
scientific research to define design paradigms. Having defined a design paradigm, we
survey the contemporary design paradigms. All the paradigms share the characteristic
of observed evolutionary phenomenon which occurs between the time when a
problem is assigned to the designer and the time the design is passed on to the
manufacturer.

Following our previous discussions on descriptive properties of design,
especially the adaptive and evolutionary properties discussed in Section 2.3, and the
prescriptive role of design paradigms (Section 2.4), we pose in Section 2.5 the
hypothesis that there is a direct and striking resemblance between the structure of
design processes and the structure of problem solving of scientific communities. The
basic correspondence is summarized as follows:

1. The counterpart of the Kuhnian paradigm or Laudan's research tradition is the
designer's knowledge-base needed to generate the set of design solutions;

2. The counterpart of a set of phenomena, events or problems are design problems
that are entirely characterized by and generated as a result of measurable and
non-measurable requirements (specifications);

3. The counterpart of a scientific theory (set of hypotheses) is the tentative
design/form serving (much the same as scientific theories) as a vehicle for the
designer to capture her thoughts;

4. Scientific discovery follows the hypothetico-deductive method, or the more
justifiable procedure (following Popper) of conjecture and refutation. It is with a
direct correspondence with the evolutionary nature of design processes;

5. Incremental redesign activity corresponds to the continual and incremental
evolvement of scientific theories within a normal science, whereas innovative
redesign activity corresponds to a transition to a new paradigm (conceptual or
paradigm-shift).

Regardless of whether or not the scientific community metaphor serves as the
bases for explanations for the evolutionary design process, it has also a heuristic
value in explicitly carrying out the act of design. In Chapter 6, we develop a model of
the process based on double interleaved activities of analysis and synthesis, which
explode the specification world (the counterpart of scientific phenomena), and the

22 A MATHEMATICAL THEORY OF DESIGN

design artifact (the counterpart of a scientific theory), until a successful solution is
achieved. We illustrate the application of this evolutionary design model, among
others, to the design of mechanical fasteners (Chapter 6), and gearbox (Chapter 17).
Section 2.6 outlines a design methodology, based on the scientific community
metaphor, by emphasizing the variational (or parametric) design part. Section 2.7
concludes the chapter.

2.2 PROPERTIES OF THE DESIGN PROBLEM

2.2.1 THE UBIQUITY OF DESIGN

The natural point to begin any discussion of design is to state succinctly in a single
sentence what it is that one does when one designs and what the end product is. Such
an endeavor has been attempted in a variety of contexts including architecture,
engineering and computer science. Clearly, an over-simplified or single sentence
definition of design will not do. One reason why definitions fail is the omnipresence
of design or problem solving as a natural human activity [146]. We have been
designing and acting as designers (sometimes unconsciously) throughout our lives.
Designing is pervasive in many human activities, for example an engineer conceiving
of a new type of toaster or configuring a manufacturing cell, a financial manager
configuring a profitable portfolio, or a cook concocting a new pizza. Underlying
these design tasks is a core set of principles, rules, laws and techniques that the
designer uses for problem solving. According to common sense, design is the process
of putting together or relating ideas and/or objects in order to create a whole which
hopefully achieves a certain purpose [19]. Design, according to the Encyclopedia
Britanica, "is a process of developing plans as schemes of actions; more particularly
a design may be the developed plan or scheme, whether kept in mind or set forth as a
drawing or model... Design in the fine arts is often considered to be the creative
process per se, while in engineering, on the contrary, it may mean a concise record of
embodiment of appropriate concepts and experiences. In architecture and product
design the artistic and engineering aspects of design tend to merge; that is; an
architect, craftsman, or graphic or industrial designer cannot design according to
formulas alone, nor as a freely as can a painter, poet, or musician." In its effort to
promote research in the field, the National Science Foundation defines design as "the
process by which products, processes, and systems are created to perform desired
functions, through specifications." These specifications include desired object
features, functions, constraints, etc. Another broad definition is that design is any
arrangement of the world that achieves a desired result for known reasons. The
process of design itself involves some of the same constraints as diagnostic processes
or planning processes. Design approaches have traditionally been subjective; that is,
a standardized set of rules is not readily available which can be applied to all classes
of design problems.

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 23

2.2.2 DESIGN AS A PURPOSEFUL ACTIVITY

Design begins with the acknowledgment of needs and dissatisfaction with the current
state of affairs and realization that some action must take place in order to correct the
problem. Most design theorists, including [105, 4, 67, 98], have derived a number of
consequences of this ostensibly intuitive observation:

• There is a distinction between engineering science (the 'science of the artificial'
as Simon coined) and natural science (e.g. physics, chemistry and biology) that
can be expressed in a variety of ways. First, the aims and methodology of natural
science and engineering differ. That is, natural science is concerned with
'analysis' and engineering with 'synthesis' [22]. Second, natural science is
'theory-oriented' while engineering is 'result-oriented'; and third, the
engineering activity is creative, spontaneous and intuitive, while science is
rational [146, 98];

• Design is a pragmatic discipline concerned with how things should be done.
Thus, the design activity is influenced by the designer's world view and values.
Consequently, the recognition and identification of the design problem, the
nature of the design solution and the determination of valid research topics in
engineering design, are all intimately a function of the designer's perspective
[22].

2.2.3 DESIGN IS A TRANSFORMA TION BETWEEN DESCRIPTIONS

Louis Kahn. the famous architect. viewed design as a process by which the
transcendent forms of thinking and feeling produce the realization of form. By form,
Kahn meant the essence created by a certain relationship of elements within the
whole. Thus, in practical terms, a design problem is characterized in terms of a set of
requirements (specifications, goals and constraints) such that if an artifact or system
satisfies the requirements and is implemented according to the proposed design, the
design problem will be solved [93, 76, 111].

2.2.4 CA TEGORIES OF DESIGN REQUIREMENTS

The most basic type of requirement is empirical, measurable or well-defined in
nature. A requirement is well-defined when it specifies externally observable or
empirically determinable qualities for an artifact [22]. Some requirements can
naturally be stated as empirical, which means that one knows precisely what
procedures to construct or use in order to determine whether or not a given design
meets such requirements. Design problems that are entirely characterized by such
requirements fall within the category of what Simon [102] termed well-structured
problems. The most important varieties of well-defined requirements are
functionality, performance, reliability and modifiability [146]. Functional

24 A MA THEMA TICAL THEORY OF DESIGN

requirements refers to the capability of the designed artifact to do certain desirable
things [22], that is, the minimum set of independent specifications that completely
define the problem. Thus, the functional requirements are the non-negotiable
characteristics of the desired solution. We distinguish between functionality and
behavior as different levels of description, where the function of a piece of a system
relates the behavior of that piece to the function of the system as a whole.
Performance refers to the competence of the desired artifact to achieve its
functionality well. In practical terms, it usually refers to economy in the use of some
observable set of resources. Reliability of artifacts is defined as the probability that
the artifacts will conform to their expected behavior throughout a given period of
time [146]. Modifiability refers to the ease with which changes may be incorporated
in the design of artifacts [22]. Modifiability requirements completely support the
evolutionary characteristic of the design process, and the act of successive changes or
improvements to previously implemented designs.

A design problem may also be generated as a result of requirements that are not
measurable. Such requirements are termed as ill-defined requirements (conceptual),
and any reasonably interesting and complex design problem will contain ill-defined
requirements. A design problem produced fundamentally as a consequence of a set of
ill-defined requirements is referred to as an ill-structured design problem [102]. The
initial requirements may be neither precise nor complete. Hence, in order to show
that a design solution satisfies a set of initial requirements, (including ill-defined
objectives), all requirements must eventually be converted into well-defined
requirements. The process by which this information is transformed into well-defined
design objectives is called the design requirements extraction process. Hence, the
extraction, elaboration or refinement of requirements is an inherent and integral part
of the generation of design [22].

2.2.5 BOUNDED RA TIONALITY AND IMPRECISENESS OF DESIGN
PROBLEMS

Decision making during the design activity deals with highly complex situations. The
traditional methods of decision-making are based on the classical model of pure
rationality, which assumes full and exact knowledge about the decision situation
being considered. In design, assumptions about the exact knowledge are almost never
true. At least to a large measure, the requirements are not comparable and therefore,
the preference ordering among them is incomplete. The departure from 'pure
rationality' based methods is needed in design because of the fact that the designer
has a limited information-processing capacity and the information is vague.
Generally, designers act and behave under conditions of 'bounded-rationality' [104,
106]. The concept of bounded rationality was developed by Simon in the context of
administrative decision making [104], and subsequently elaborated inter alia to
design decision-making. Such limitations may arise in several ways: the designer may
not know all the alternative sequence of decisions; or even assuming all the
conditions are known, the designer may be unable to decide the best sequence of

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 25

decisions; or finally, the time and cost of computing the best possible choices may
be beyond the bounds of the available resources.

2.2.6 THE SATISFICING NATURE OF DESIGN PROBLEMS

The bounded rationality led Simon to postulate that, more often than not, the
optimum decisions will not be sought and satisfying decisions will fully be accepted.
That is, instead of requiring an optimal design, designers accept a "good" or
"satisfactory" one. In Simon's terms this attitude toward design, which allows the use
of heuristic methods, is called 'satisficing'. The postulate of satisfying decisions is
related to the psychological theory of 'aspiration level' given in the classical work of
[68]. Another related concept is 'incrementalism' given by [69]. 'Incrementalism' is
also based on the limited information-processing capacity of the decision-makers
(designers) which forces them to make decisions similar to those previously made.

2.2.7 THE INTRACTABILITY OF DESIGN PROBLEMS

Optimization theory is applied as a recognized technique that can assist designers in
the decision-making process of design. Utilizing optimization theory to solve design
problems poses optimization problems which demonstrate inherent intractability.
Typical instances of design optimization problems include:

1. Design of mechanisms employs graph enumeration and graph isomorphism
problems are known to be NP-complete;

2. Design of printed circuit boards (PCB) includes partitioning, placement and
routing problems, which are known to be intractable. Such problems are referred
to as NP-complete, or Non-deterministic Polynomial time Complete problems
[31 J. The CPU time required to solve an NP-complete problem, based on known
algorithms, grows exponentially with the "size" of the problem. There exist no
polynomial time transformations for NPC problems nor are there any polynomial
time algorithms capable of solving any NP problems, therefore these problems
are considered to be "open" or unsolved problems. The potential to solve these
NP and NPC problems depends on the availability of certain heuristics. Hence,
in spite of knowing that there does indeed exist an optimal solution to a design
problem, the designer may still resort to satisficing methods.

2.2.8 THE FORM OF DESIGN

Designing an artifact can be considered a transItIOn from concepts and ideas to
concrete descriptions. By form (a synonym to design) we mean the essence or
ultimate output of a design process created by a certain relationship of elements
within a whole. For example, the form of a piston for a model aircraft engine, is a

26 A MATHEMATICAL THEORY OF DESIGN

piece of short cylinder designed to fit closely and move inside another cylinder or
tube. The piston consists of a cylinder, piston rod and pin. Despite whether it is made
of plastic, iron or steel, it is recognized as a piston as long as the cylinder, piston, and
pin remain in a certain relationship to one another.

The concept of form is elusive, abstract and complex. The design process
involves conceiving of the concepts relevant to the form and the relationships
between them, and representing the concepts using specific well-defined language. In
the case of engineering design, such design descriptions range from specifications in
formal language (such as computer-aided engineering systems, symbolic
programming techniques associated with AI and hardware design/description
languages) through description in quasi-formal notation (such as linguistic
descriptions and qualitative influence graphs) to very informal and visual
descriptions (such as functional block diagramming, flow-Diagrams and engineering
drawings). The concepts underlying a design are captured in three views: The
functional view describes the design's functions and processes, thus connecting its
capabilities. This view also includes the inputs and outputs of the activities, i.e., the
flow of information to and from the external activities. For example, in the design
process of integrated circuits the functional level includes a register-transfer diagram.
The behavioral view describes the design's behavior over time, the states and modes
of the design, and the conditions and events that cause modes to change. It also deals
with concurrency, synchronization and causality. Good examples are constraints that
components must satisfy such as timing properties. The behavioral and functional
views are invariant characteristics of the design or form. The structural view
describes the subsystems and modules constituting the real system and the
communication between them. It also captures geometrical information. While the
two former views provide the conceptual model of the design, the structural view is
considered to be a physical model, since it is concerned with the various aspects of
the system's implementation. As a consequence, the conceptual model usually
involves terms and notions borrowed from the problem domain, whereas the physical
model draws more upon the solution domain. Examples include details about
materials, layout, process parameters, heat conductivity and other physical
parameters.

The design/form serves several distinct roles in the development of an artifact.
First, a design/form constitutes a tangible representation of the artifact's conceptual
and physical properties, and thus serves as a vehicle for the designer to visualize and
organize thoughts. Second, it serves as a plan for implementation. To accomplish
this, the design/form should contain a systematic representation of the functional
relationships of the components. Such demarcation of form/design and
implementation has not always been necessary [146]. Jones [52] and Ferguson [147,
pp. 3-4] have mentioned that the artisans of the 18th and 19th century did not
demarcate between conceptualizing an artifact and making it; and that the transition
from "designing without drawings" to the engineer's way of "designing with
drawings" is ascribed mainly to the increasing complexity of modern devices (such as
an internal-combustion engine), and the need to enhance the interaction between the
client who wanted a machine built and those who would build the machine [147].

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 27

Third, the design description must also serve as a document (for instance, in the form
of user-manuals) that describe how to harness the final artifact by the user. Finally,
the form/design serves as a vehicle for reflecting the evolutionary history that led to
the emergence of the final form/design, thus facilitating the inspection, analysis and
redesign (change) of the artifact [22].

2.3 PROPERTIES OF THE DESIGN PROCESS

2.3.1 SEQUENTIAL AND ITERA TIVE NA TURES OF DESIGN

Many design theorists argue that the design process can be viewed as a stepwise,
iterative, evolutionary transformation process [105, 124, 112]. Consider the
following two assertions (with justifications) regarding the nature of the typical
design process:

Assertion #1: Design is a sequential process

Almost every flowchart ever created that has attempted to describe the design process
has shown evidence of the fact that design is a sequential process (see Figure 2.1).
The design process evolves from concept through realization and it is impossible to
go backwards. A part cannot be assembled until the components are machined; the
components cannot be machined until the NC code is created; the NC code cannot be
created without a dimensioned part model; the part model cannot be dimensioned
without a set of requirements and a general notion of what the part looks like; and
presumably the last two items come from a need that must first be identified. All this
points to the seemingly undeniable truth that there is an inherent. sequential order to
most design processes.

Assertion #2: Design is an iterative process

One can reason equally effectively, however, that design is an iterative process.
First, designers are only human and have a bounded rationality. They cannot
simultaneously consider every relevant aspect of any given design. As the design
process progresses, new information, ideas, and technologies become available that
require modifying the design. Second, design systems are limited; there is no known
system that can directly input a set of requirements and yield the optimum design.
Rather, the designer must iteratively break down the set of requirements into
dimensions, constraints, and features and then test the resulting design to see if the
remaining requirements were satisfied (see Figure 2.2). Finally, the real world often
responds differently than is imagined. The real world is full of chaotic reactions that
are only superficially modeled in any design system. All this points to the seemingly
undeniable truth that there is an inherent, iterative nature to the design process.

In order to reconcile these two disparate visions of the design process, we
categorize design iteration as occurring either between design stages (inter-stage

28 A MATHEMATICAL THEORY OF DESIGN

iteration) or within a design stage (intra-stage iteration) and then create a new model
of the design process combining both approaches to design (Figure 2.3). In this
model, design still flows sequentially from initial concept through realization, each
design stage providing the data and requirements for the subsequent stage. Within
each design stage, however, the designer iteratively creates a design that meets the
given requirements. This model largely represents the current state-of-the-art in
CAD/CAM/CAE systems. While there are numerous software modules to assist the
designer during intra-stage design iteration (e.g., QFD software to help identify
customer needs and CAE software to analyze a current design), the tools are
generally not well integrated at the inter-stage level.

~ Customer

l Conceptualization I Domain

• ~,

~ Preliminary Design I Functional

•
Domain

l Detailed Design)
~,

• Physical

l Production Planning I Domain

• [Production I
~,

Process , Domain

A. [145] B. [144]

Figure 2.1 Traditional Views of Mechanical Design

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 29

+
.. Design .. Design ..
~

Specification
~ ~

Test

Figure 2.2 Specification and Test Iteration

Custorref Functional Physical Process
Domain Domain Domain Domain

f6DIJ {&JIJ ~(&JIJ {&J1] ~
Figure 2.3 Combining Sequential and Iterative Design

2.3.2 THE EVOLUTIONARY NA TURE OF THE DESIGN PROCESS

The concepts underlying the evolutionary characteristic of design are captured in
three views: purposeful adaptation of artificial things, ontogenetic 1 design evolution
and phylogenetic2 design evolution (both latter phrases are borrowed from biology;
[38] and [148]). Purposeful adaptation, according to Simon, can be thought of as an
interface between the "inner" environment, the substance and organization of the
artifact itself, and an "outer" environment, the surroundings in which it operates. If
the inner environment is appropriate for the outer environment, or vice versa, the
artifact will serve its intended purpose. For instance, a ship's chronometer reacts to
the pitching of the ship only in the negative sense of maintaining an invariant relation
of the hands on its dial to the real time, independently of the ship's motions.
Regardless of whether or not the adaptation model is a universal feature of artificial
systems, it also has a heuristic value. Hence, we can often predict behavior from
knowledge of the artifact's goals and its outer environment with only minimal
assumptions about the inner environment.

Ontogenetic design evolution refers to the design processes that share the

1 Ontogeny: The life history of an embryonic individual
2 Phylogeny: The evolutionary history of a lineage

30 A MATHEMATICAL THEORY OF DESIGN

characteristic of observed evolutionary phenomenon which occurs between the time
when a problem is assigned to the designer and the time the design is passed on to the
manufacturer [22]. During this period the design evolves and changes from the initial
form to the acceptable form. In this case, we say that there is a fit between the design
and the requirements. The evolutionary model of design seems to support the
cognitive model of design: Yoshikawa [124] argues that the ontogenetic design
process can be decomposed into small design cycles. Each cycle has the following
sub-processes:

1. Awareness - problem identification by comparing the object under consideration
and the specifications;

2. Suggestion - suggesting the key concepts needed to solve the problem;
3. Development - developing alternatives from the key concepts by using design

knowledge;
4. Testing - evaluating the alternatives in various ways such as structural

computation, simulation of behavior, etc. If a problem is found as a result of
testing, it also becomes a new problem to be solved in another design cycle;

5. Adaptation - selecting a candidate for adaptation and modification.

Protocol studies on how technically qualified people design were conducted by
several researchers [e.g., 2, 37, 119, 53]. Subjects were given problems to solve in a
specified amount of time and told to talk aloud while they were developing the
design. Based on these studies, the researchers formulated several models of the
design process. However, in spite of the disparity between the models, evolutionary
speaking they are similar: as the design process develops, the designer modifies
either the tentative design or requirements, based on new evidence (information)
obtained in the current design cycle, so as to remove the discrepancy between them
and establish a fit between the two parts.

Regardless of whether or not the evolutionary model is a universal feature of
design processes, the adaptive model has also a heuristic value and serves a useful
purpose in explicitly carrying out the act of design. Solving a problem by beginning
with a set of goals, identifying subgoals which when achieved realize the goals, then
further identifying sub-subgoals that entail the subgoals, and so on, goes by several
names in the computer science, cognitive science and AI literature. Goal directed
problem solving, stepwise refinement, and backward chaining are notable jargons
used [3, 18, 79, 50]. One of the most celebrated of these 'weak' methods is means
ends analysis. This method was proposed by Newell, Simon and associates in the late
1950s and first used in the General Problem Solver CGPS) one of the earliest and
most influential systems developed within the problem space/heuristic search
paradigm. Means-ends analysis relies on the idea that in a particular task domain,
differences between possible initial or 'current' and goal states can be identified and
classified. Thus, for each type of difference, operators can be defined that can reduce
the difference. Associated with each operator is also a precondition that the current
state must satisfy in order for the operator to be applied. Means-ends analysis then
at~mpts to reduce the difference between the current and goal states by applying the

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 31

relevant operator. If, however, the preconditions for the operator are not satisfied,
means-ends analysis is applied recursively to reduce the difference between the
current state and the precondition.

Phylogenetic design evolution refers to the act of redesign, which is defined as
the act of successive improvements or changes made to a previously implemented
design. An existing design is modified to meet the required changes in the original
requirements. A conventional instance of redesign is encountered in discussions of
the history of electronic computers where it is convenient to refer to architectural
families/computer generations. The members of the family/generation are related to
one another through an ancestor/descendant relationship [8, 146]. In general, the
concept of computer family/generation is tied directly to advances in technology. For
example, vacuum tubes and germanium diodes characterize the first generation,
discrete transistors the second and so forth.

The act of redesign can be illuminated and explained by considering two modes
of evolution, namely incremental and innovative. The redesign activity may be
defined as incremental if

1. Over a long period of time the overall artifact's concept has remained virtually
constant;

2. Artifact improvements have occurred through incremental design at the
subsystem and component levels and not at the overall system level. That is,
there has been no major conceptual shift.

The automobile is an example of an incremental redesign related to an overall
artifact's concept. The design team concerned with the next new car will take it for
granted that there will be a wheel approximately at each corner and that, more or less,
it will have the basic attributes of the Model 'T' [87]. Many other artifacts may be
said to fall into the incremental redesign category, for instance, bicycles, tractors,
ships and scissors.

Innovative redesign activity is concerned with innovative, novel conceptual
design. Pugh and Smith [88] observed that in all probability, while many overall
artifact's concepts are fixed, there is a tremendous opportunity for dynamism and
innovation at the subsystems and components levels. For example, the differential
gear is used in all cars today. There have been tremendous advances in gear
technology, manufacturing processes and materials improvements but the concept is
static. The innovative redesign activity is followed by incremental redesign activity.
Notwithstanding, the limited slip differential is an innovation and improvement of the
subsystems level - it is an innovative redesign activity. An innovative redesign is also
encountered in the evolution of the ball valve. The first British patent was granted to
Edward Chrimes in 1845. This artifact appears to have been conceptually static until
the early 1970s with the introduction of the Torbeck valve, and later the Ve Cone
valve. As another example, consider the evolution of bicycles which underwent at
least seven stages of innovation and improvement of the subsystems level:

1. The pedal system was installed to replace footwork operation, enhance control of

32 A MATHEMATICAL THEORY OF DESIGN

the wheels, and increase speed;
2. Incremental improvements in technology led to increasing the bicycle's speed;
3. The increase in speed created difficulties in stopping with feet. Thus, breaks

were installed;
4. Wheel diameter was enlarged to increase speed;
5. The increase in wheel diameter led to instabilities in the bicycle. Thus, chain

transmission systems were installed to increase speed and safety by lowering the
need for larger wheel diameters;

6. Instabilities associated with increased speed and the beating of the wheels
against the roads led to the emergence of tires;

7. In order to enable the rider to have greater control of the pedals, the Free Wheel
system was instated which created a more dynamic connection between the
pedals and wheels.

There are three additional points to note in this regard. Firstly, the artifacts in the
phylogenetic design evolution are mature artifacts that either have been implemented
or are operational. Secondly, the time lapse for the entire phylogenetic design
evolution is measurable in terms of years (the first ball valve was introduced in 1845,
while the first innovative emergence of the Torbeck valve was introduced only in the
early 1970s) rather than days, weeks, or months as in the ontogenetic case. Finally, a
single cycle of redesign will, in general, by itself constitute one or more cycles of
ontogenetic evolution.

2.3.3 DESIGN PROCESS CATEGORIES

Sriram et al. [110] have classified the design process into four categories: creative
design, innovative design, redesign and routine design. These classifications of
design are process dependent and product independent. In creative design, the
domain specific knowledge (e.g. heuristic, qualitative and quantitative) that is needed
to generate the solution set and the set of explicit constraints (such as functionality,
performance, environmental, manufacturability and resource constraints) may be
partially specified, while the set of possible solutions, the set of transformation
operators and the artifact space are unknown. Thus, the key element in this design
activity is the transformation from the subconscious to the conscious. In innovative
design, the decomposition of the problem is known, but the alternatives for each of
its subparts do not exist and must be synthesized. Design might be an original or
unique combination of existing components. Sriram et al. argue that a certain amount
of creativity comes into view in the innovative design process [see also 120].
Redesign is defined as the act of successive changes or improvements to a previously
implemented design. An existing design is modified to meet the required changes in
the original requirements. In general, two scenarios may lead to the condition of
redesign: first, when the design is passed on to the implementer, the artifact may fail
to satisfy one or more critical requirements, and thus must be modified so that it
satisfies the requirements. Second, the environment for which the artifact had been

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 33

originally designed changes (e.g. in technology or other purposes for the artifact
differ from those previously assumed) and produces new requirements. In routine
design, the artifact's form, its method of design, and its mode of manufacture are
known before the design process actually begins. It follows that an a priori plan of
the solution exists and that the general nature of the requirements (satisfied by this
design) is also a priorily known. The task of the designer is essentially to find the
appropriate alternatives for each subpart that satisfies the given constraints [110, 14,
15]. Sriram et al. explain that at the creative end of the spectrum, the design process
might be spontaneous, fuzzy, chaotic and imaginative. At the routine end of the
spectrum, the design is predetermined, precise, crisp, systematic and mathematical.

2.3.4 THE DIAGONAL/ZED NATURE OF DESIGN

Newer design tools are beginning to affect the stepwise and iterative design process.
The technology for both inter-stage and intra-stage categories of iterative design (see
Figure 2.3) has become more available. Computer prices are constantly plummeting
as their capabilities rise. Design software that used to require an expensive
workstation can now run on a personal computer. Design software itself is becoming
ever more capable. Higher-end design software packages (e.g., ProlEngineer or I
DEAS Master Series) allow the designer to create a part and then are able to
calculate the NC code to machine it and update the NC code when the part is
modified (thereby iterating between the Physical Domain and the Process Domain
stages). Recent CAE packages can analyze a part model, calculate key information
about the part, and return the designer immediately back to where they were (thereby
reducing the intra-stage iteration). Looking ahead, it becomes clear that the model
just discussed is exactly backwards from the ideal. Inter-stage iteration is able to
respond to conceptual changes and new information and should be fully allowed by
the design system. Each inter-stage iteration, however, results in changes that must
propagate through the design stages, requiring intra-stage iteration at each stage. As
opposed to the aforementioned design model, the ideal design process will, instead,
consist of maximizing the inter-stage design iteration and minimizing the intra-stage
design iteration.

Maximizing Inter-Stage Design Iteration

In a design model with no inter-stage iteration, design insights are always limited to
the current design stage. Because of the inherent iterative nature of design, there has
always been a need for design systems that support inter-stage iteration. Recently,
however, there have been even more demands made for inter-stage iteration in the
form of incremental design.

We are part of a global competitive marketplace that is becoming more global
and more competitive every day. Incremental design has become the standard
approach towards design in many areas. Most new products are only slightly

34 A MATHEMATICAL THEORY OF DESIGN

modified from their predecessors with slight cosmetic or feature enhancements. In
order to decide which new products to develop, large consumer goods companies
often create several different prototypes, test market all of them, and develop
whichever one sells the best. In this ever-changing environment, fast time-to-market
has become critically important. Companies cannot be required to completely
redesign a product simply to add new features or modify the specifications or
incorporate new materials or new technologies. Computer companies cannot afford
to redesign their computer just because a new CPU is introduced. Most of the design
specifications do not change. Likewise, in designing a new computer keyboard, many
design issues have already been decided including which keys to include and in what
order to place them.

Rapid prototyping involves visiting each design stage quickly, in an effort to
rapidly create a final product. Changes then are made to the product at each design
stage. Rapid prototyping demands productive incremental design. Productive
incremental design demands smooth inter-stage iteration. Incremental design begins
with a completed design and iterates back to a previous design stage to effect changes
on the design. This concept, however, is the antithesis of the sequential design model.

The problem then becomes how to model inter-stage design iteration while
acknowledging the sequential nature of design. Towards this goal, we have created
the diagonalized design paradigm. Diagonalized design reflects the reality that the
designer has a bounded rationality and that new information is constantly being
gathered during the design process, not simply before each design stage. For
example, consider the diagonalized view of mechanical design (see Figure 2.4).
Design still progresses from concept through realization, but the designer can
incrementally modify the design in any previously defined design stage and the
design is automatically updated in all the later design stages.

Itelinimry
frsign

lliailal
frsign

Ruktim
Haming

...... ~

.. - - - ,---------j,-------t-------j
:"'C-------...... -.. .. - ~~------------~ --- ..
~---------------------- -------

lifeC)de

Figure 2.4 Perfectly Flexible Mechanical Design Process

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 35

While perfect flexibility in the design process is the goal, the bottom line can be
adjusted to reflect more realistic current conditions. The area of the enclosed
trapezoid then, becomes a measure of the flexibility of the design process. The
flexibility is very dependent upon local conditions. Specific software, available
technologies, corporate policies, or other factors greatly affect the flexibility of the
design process. These different ranges of flexibility can be shown using diagonalized
design. For example, Figure 2.5 represents a limited flexibility, where iteration is
restricted to recent design stages; Figure 2.6 shows an inflexible design process
where no iteration is allowed; finally, Figure 2.7 demonstrates a design process that is
very flexible in the beginning stages of design, but becomes less so as the design
moves towards production. By tilting the bottom line the other way, the opposite
condition could be shown where beginning stages of design are inflexible, but
production is highly flexible.

............
~------------

lliailed
D:sign

----.. lII...... --~.~~-------------; ,.----------

I------------+~~ - .. - - ----
lifeC¥;le

Figure 2.5 Limited Flexibility Mechanical Design Process

36

lifeCyc1e

A MATHEMATICAL THEORY OF DESIGN

Irodocti.oo
Planning

Figure 2.6 Inflexible Mechanical Design Process

~
~

~ - - -~I------I-----+---------f ---- ---- ---- ----....
~---------- ---

life Cycle

Figure 2.7 Conceptually Biased Flexibility

Design systems capable of fully iterative design will have to support iteration
between each set of two sequential design stages:

1. Customer Domain to FunCtion Domain Iteration

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 37

2. Function Domain to Product Domain Iteration
3. Product Domain to Process Domain Iteration

The difficulty of implementing iteration in a design system varies both with the level
of the iteration as well as the generality of the system.

It is much harder to generalize the design process in earlier iteration levels.
Iterating back to the conceptual level of design requires some form of
parameterization of the design space. This is certainly possible for very domain
specific design systems but as the generality of the design system increases, however,
the general nature of design becomes harder to implement. As a result, there are no
known products which adequately address the first level of iteration. There has been
much success, however, in generalizing the design process during later stages, both in
modeling essentially any type of part and in calculating the NC code to machine
arbitrary surfaces. The last level of iteration, however, is highly dependent on the
manufacturing process. In one company, this may simply require reprogramming one
or more robotic manipulators (the reprogramming could be automated). In this case,
smooth iteration would be possible. In another company a product may depend on a
highly capital intensive, inflexible design process (e.g., injection molding) and then it
becomes harder and more expensive to incorporate design changes. This final stage
of iteration may often be difficult to implement, but its implementation is still
typically easier to understand than that of earlier iteration levels.

Minimizing Intra-Stage Design Iteration

During intra-stage iteration, the user is simply trying to meet the requirements that
were input into the design stage. There are several approaches that could be taken
towards minimizing intra-stage design iteration including:

1. Incorporating New Information
2. Modeling Real-World Interactions
3. Allowing Realistic Design Constraints

The three options are addressed through chapters 6, 13, and 14. To illustrate the
limitations with how current design systems utilize design constraints, consider the
Design-Analysis loop presented in Figure 2.2 as applied to the Detailed Design stage
of mechanical design. A part is defined in terms of its dimensions and in a
constraint-based design system, the designer enters constraints that the design system
satisfies by adjusting the values of the dimensions. During the Design stage, the
designer fully defines the dimensions of the design. In the Analysis stage, the
designer calculates the values of other desired attributes. Clearly, the only need for
the Analysis stage is to calculate whatever attributes cannot be constrained.
Furthermore, the fact that the designer analyzes the design indicates that there are
degrees of freedom in the design that were artificially constrained in order to analyze
the part. Therefore, it can be summarized that a designer is forced to constrain

38 A MATHEMATICAL THEORY OF DESIGN

attributes of the design they do not care about so they can calculate those attributes of
the design they do care about. They then incrementally modify the unimportant
attributes until the important attributes have achieved their proper values.

2.4 SURVEY OF DESIGN PARADIGMS

2.4.1 DEFINING A DESIGN PARADIGM

According to the dictionary, a paradigm is "a model, a pattern, or a standard." In [22,
146], it was pointed out that a design discipline may comprise several alternative
paradigms at any given time. For instance, when we refer to the process of designing
finite-state dynamic systems based on four paradigms: finite-memory machine,
Moore machine, Mealy machine and combined machine. All of these paradigms are
based on the assumption that one subsystem of the designed structure system is a
temporary storage of states of some variables, while the remaining subsystems
represent function dependencies among appropriate variables. The paradigms differ
in the nature of the function dependencies, which affects the constraints imposed
upon the structure of the system to be designed. Another example of the role of
paradigms is the notion of functions as building blocks for computer programs which
form the basis for the development of a distinct style of programming called
functional programming [43].

The common notion of a paradigm was enriched by Thomas Kuhn's seminal
treatise on the nature of the genesis and development of scientific disciplines [57, 58,
59, 60, 75]. The concept of a design paradigm is best elucidated by the Kuhnian
paradigm concept as will be illustrated in this section. To Kuhn, a paradigm in its
essence comprises of a Disciplinary Matrix. A disciplinary matrix refers to a network
of theories, techniques, beliefs, values, etc. that are shared by, and generally agreed
upon a given scientific community. The following components are identified within a
disciplinary matrix [58, 60]:

1. Symbolic Generalizations, examples include Newton's laws of motions and
Ohm's laws in electricity;

2. Beliefs (or Commitment) in metaphysical and heuristic models, such as the belief
that the structure of an atom resembles a tiny planetary system [44], or that
logical languages are the most effective medium for expressing the declarative
knowledge in artificial intelligence systems [81];

3. Values, for example the desire for a simple theory or solution as exemplified in
the principle known as Occam's Razor;

4. Exemplars or Shared Examples, which are defined as the concrete problem
solution networks encountered by students of scientific disciplines in the course
of their training, education and research apprenticeship (through the solving of
textbook exercises, exams, and laboratory experiments) and by scientific
practitioners during their independent research careers.

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 39

A particular set of assumptions upon which several different design methods may
be based, is often referred to as a methodological design paradigm. A methodological
design paradigm may be, like models within a Kuhnian paradigm, metaphysical in
origin, or purely heuristic in nature. Similar to the role of a Kuhnian paradigm in the
context of scientific discovery, a design paradigm serves as a framework or starting
point for the solution of design problems. It is, thus, fundamentally an abstract
prescriptive model of the design process that serves as a useful scheme for
constructing practical design methods, procedures, and (computational) tools for
conducting design [146]. A design method does not constitute a design paradigm. By
definition, methods based upon the same paradigm are equivalent in the sense that
they share the same set of possible solutions. This set consists of all solutions to the
problem except those that violate any of the assumptions that constitute the paradigm.
Hence, a given design method may be regarded as concrete and a practical
embodiment of a design paradigm; it is an explicitly prescribed set of rules which can
be followed by the designer in order to produce a design. A paradigm, according to
the definition, will provide a framework or scheme for one or more design methods,
just as it may serve as a framework or scheme for descriptive and automated tools.

Various schools of thought may become associated with a design paradigm. For
example, in hardware logic design (,gate-level' design), the so called 'Eastern
School' (a 'Naturalist' methodology) favored the use of block diagram in designing
basic circuits, while the 'Western' School (a 'Formalistic' methodology) advocated
the use of Boolean algebra [146]. Another example, in structural engineering of
bridge design, concerns the debate between advocates of mathematical analysis of
structural forces as subordinate to the development of structural form, and the
approach that sophisticated analysis of the structural forces has priority over (and is
determined by) structural form [10, 146].

2.4.2 DESIGN PARADIGMS

There are two major approaches to increasing our understanding of design disciplines
that lack sound scientific theories; case studies (the counterpart of exemplars or
shared examples) and models (the counterpart of a disciplinary matrix). The case
studies approach was prevalent in such disciplines as psychology, prior to the
establishment of the experimental method. This technique is also predominant in
engineering design which relies mostly on the situation interpretation. The second
approach is to use a model to define and understand the design process. Various
perspectives and models need to be considered in order to gain a better understanding
of the design process. Although there is no single model that can furnish a perfect
definition of the design process, models provide us with powerful tools to explain
and understand the design process. Models can be classified into five major types of
paradigms: Analysis-Synthesis-Evaluation (ASE), Case-Based, Cognitive,
Algorithmic and Artificial Intelligence. Following is a review of each of these
paradigms. The interested reader may refer to Dasgupta [146] for discussions of these
issues.

40 A MATHEMATICAL THEORY OF DESIGN

2.4.3 THE ANALYSIS-SYNTHESIS-EVALUATION (ASE) DESIGN
PARADIGM

The ASE design paradigm is a very widely believed paradigm in the engineering
discipline. Three basic phases of design described by [20, 7, 51, 70] are analysis,
synthesis and evaluation. Analysis is concerned with defining and understanding what
must be translated by the designer to an explicit statement of functional requirements
(goals). Synthesis is involved with finding the solutions among the feasible
alternatives. Evaluation is concerned with assessing the validity of the solutions
relative to the original functional requirements [20]. In general, several instances of
these three phases may be required in order to progress from a more abstract level to
a more concrete level in the design process. A general model of design can be
visualized as a feedback loop of synthesis, analysis and evaluation. The ASE model
of design process is inherently iterative; the designer repeatedly goes back to refine
and improve the design until it satisfies the requirements. Analysis and synthesis are
on the forward path of the design loop, while the evaluation process is on the
backward path, verifying the synthesized solutions [99]. A cycle is iterated so that the
solution is revised and improved by reexamining the analysis. It has been argued that
these three phases of the design, which are imperative for any design, irrespective of
domain, form a framework for planning and organizing design activity.

Figure 2.8 depicts a more comprehensive version of a commonly used model of
product development and design process. The design activity is viewed as part of the
total product development process. Engineering a product involves several stages
[109]: The first stage involves a market survey for potential products. This is
followed by the conceptualization stage, where a product is conceived either as the
result of a need or motivated by a potential profit. In the research and development
stage, the information needed for the design of the product is developed. The design
stage involves configuring the product based on several constraints. This is followed
by the manufacturing process which yields the actual product (often preceded by
developing a prototype). The product is then tested for quality in the testing stage and
marketed in the marketing stage. The maintenance stage of the product is provided as
a service by most organizations. The above process is iterative; for example,
problems may arise during manufacturing and the product may have to be
redesigned.

The process of solving a typical design problem involves various stages:
problem identification, analysis, decomposition, synthesis, testing, evaluation and
detailed design. The first task is concerned with identifying the problem (often fuzzy
in nature), resource limitation, target technology, etc. Analysis involves listing the
requirements and performance specifications, as well as specifying the constraints
and objectives. Synthesis is the process of selecting components to form a system that
meets design objectives while satisfying constraints that govern the selection. The
components may themselves be complex entities which need to be synthesized first.
Decomposition is often resorted to as a means for synthesizing the artifact into
smaller and smaller components [17]. The artifact is decomposed into a hierarchical
assembly of systems and subsystems until terminating in a functional or physical

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 41

attribute. I~ such a case, components, individually and through interaction with each
other, meet the design goals. The testing stage involves the response of the system to
external effects. This is determined by using an appropriate model of the system
(such as stress and thermodynamic analysis) to check the feasibility of a design.
Evaluation of such a design involves critiquing the solutions relative to the goals and
selecting among alternatives. Traditionally, evaluation criteria have been represented
either as production rules in production rule-based systems or as constraint rules in
blackboard-based systems [27]. Other measures of performance for engineering
design were constructed with the help of the theory of fuzzy sets [23,26, 123]. The
scope of these evaluators has been restricted to testing the validity of a solution rather
than its degree of acceptability. In order to achieve these goals, design critiquing
which involves evaluating a design in terms of its effectiveness in satisfying a set of
design objectives and constraints, was recently proposed [90, 56]. Detailed design
involves the determination and evaluation of several preliminary geometrical layouts
of designs. Various components of the design are refined so that all applicable
specifications are satisfied. All seven stages are inextricably intertwined and are not
distinct phases in the process of design. Essentially, there are three possibilities for
feedback-edges from testing back to analysis and synthesis, and from evaluation back
to problem identification. In the first case, the design (or form) fails to satisfy one or
more of the requirements. The design must then be modified by returning to the
synthesis stage. In the second case, new requirements (or constraints) emerge during
testing, and the design fails· to satisfy one or more of them. The new requirements
must then be integrated with the 'current' requirements and further analysis must be
done. The outer cycle (Figure 2.8) demonstrates that the evaluated solution might
revise the perceived needs.

42

Need

A MATHEMATICAL THEORY OF DESIGN

PRODUCT DEVELOPMENT CYCLE

Market
Needs

Design

"'II ,..
Manufacturing

t----.. Conceptualization

~
Research &

Development

.. Testing
r

~

Maintenance ~ ___ ---1L-.-_M_a_r_ke_t_in_g_...J

THE DESIGN STAGE

Assessment t---I~ Analysis ~-I~ Decomposition Synthesis

Testing

Evaluation I

Figure 2.8 Comprehensive Model of the Design Process

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 43

Another view (or style) of the above design stages, which is popular in many
European countries, is described by [85]. This design model involves the following
stages: Clarification (which is similar to the above first two stages); Conceptual
Design (which is similar to the above three later stages); Embodiment, where several
preliminary geometrical layouts of designs are obtained and evaluated; and Detailed
Design (same as above).

The Conceptual Design activity, constitutes the major part of the design process.
The stage of conceptual design considerably determines the direction, flexibility and
bounds of the design. It has been shown [121] that the conceptual design stage
constitutes only 3% of the total product resource costs (research and development),
while it determines almost 50% of the product's features including performance,
manufacturability, production costs and other concurrent engineering factors. Hence,
designers should carefully devise efficient design synthesis and evaluation tools.

The preceding section described mainly the descriptive role of the ASE
paradigm. However, from the perspective of design paradigms a more interesting
issue is whether the ASE can serve as a basis for developing designs. Alexander [4]
devised a method which includes a stage of extensive, detailed and comprehensive
analysis of requirements, then one or more stages of synthesis. Sriram and Cheong
[109] have provided a brief description of an industrial product, Supercritical Fluid
Chromatography, which is based largely on the ASE paradigm. Finally, traditional
configuration design procedures of Flexible Manufacturing Systems (FMS) comply
with this paradigm [29].

Several methods within the ASE design paradigm have recently evolved from
the same foundation of competitiveness in terms of achieving high-quality and low
cost products (these include Concurrent Engineering, Design For Manufacture,
Quality Function Deployment and Robust Designs techniques, see [100]). While it is
beyond the intention of this book to go into these methods in great detail, an
indication of the relation to the ASE design paradigm is given. The most significant
of these methods is Quality Function Deployment (QFD), developed in Japan in the
1970s, and popularized by the automobile industry. QFD can be (roughly) described
as a four-phase approach to design [74]:

1. Customer requirements planning - translates customer expectations ('the voice of
the customer') in the form of market research, competitor analysis and
technological forecasts into the desired and specific product characteristics;

2. Product specifications - converts the customer requirements plan for the finished
product into its components and the characteristics demanded;

3. Process and quality control plans - identify design and process parameters
critical to the achievement of the requirements;

4. Process sheets (derived from the process and quality control plans) - are the
instructions to the operator.

Thus, interpreting the QFD process in the terminology of the ASE design paradigm
shows that Steps 1-2 constitute an analysis phase, whereas Step 3 constitutes a
synthesis phase. The design process style that is invoked in the QFD process is a top-

44 A MATHEMATICAL THEORY OF DESIGN

down method (explicitly defined in later sections).
As product designs tend to become conceptually static, QFD will tend to become

a more powerful method. It can also be used as a guideline for incremental redesign
activity (recall Section 2.3.2). If, however, the design implementation is in the start
up growth stage (as a consequence of innovative redesign, for example), and the
customer has yet to experience the benefits of these changes other methods may be
invoked.

Although the ASE paradigm is a very widely believed design paradigm in the
engineering disciplines, it bears several problems: First, with the explicit ordering of
the three stages [22]. Second, with the division of the cognitive activities of analysis
and synthesis [95, 114]. Third, with its preclusion of the role of the designer's
viewpoint and system of beliefs (or a priori conceptual model) in the process of
design. However, if a design problem is well-structured, the design space is
sufficiently small (see Section 2.2.4), and the designer uses conceptual models (that
is, the overall design of the artifact is known beforehand), then the ASE may be an
appropriate paradigm (both descriptive and prescriptive).

2.4.4 CASE-BASED DESIGN PARADIGM

In contrast to other design domains, such as software engineering and circuit design
[113], a simple and obvious correspondence between specific functional
requirements of the artifact and individual components in the design does not usually
exist. Due to the tightly coupled and interacting nature of mechanical designs,
reasoning from prior design cases is proving to be a suitable design methodology as
opposed to direct 'decompose and recombine' (or 'generate and test') strategies that
have successfully been utilized in very-large-scale integration (VLSI) design [116,
111]. Cases are the primary way in which engineering students are taught to design.
This is because there are no general algorithms for design. The designer activity is a
consequence of his experience and training, much of which is based on previous
exposure to similar design problems. This is particularly true in engineering design
[85; 39]. Even when a novice engineer joins a design project, an important part of the
engineer's training involves going through the design records of previous projects.
Cased-based problem solving is based on the premise that a design (or a machine)
problem solver makes use of experiences (cases) in solving new problems instead of
solving every new problem from scratch [54]. Design cases reflect good design
principles, such as function sharing [113] and incorporate decisions that take
advantage of, or compensate for, incidental component interactions. Lansdown [65]
argues that "innovation arises from incremental modification of existing 'tried and
true' ideas rather than entirely new approaches ... the transformation from initial to
final description is continuous and design is more like fine-tuning a set of already
working ideas rather than inventing something new, although the results might not
resemble anything previously imagined." Coyne et al. [20) use the similar term
'prototype model': "A prototype typifies, or exemplifies, a class of designs, and thus
serves as a generic design ... a description of a class of designs also may be

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 45

prototyped or knowledge or rules may even constitute a prototype." A particular
design can then be instantiated or exemplified from the class (prototype) of designs.

Coyne et al. [20] classify the case-based paradigm into three activities: creation,
modification and adaptation. Creation is concerned with incorporating requirements
to create new prototypes. Modifications is concerned with developing a working
design from a particular category of cases. Adaptation is concerned with extending
the boundaries of the class of cases. Pugh and Morley [89] have conducted extensive
design process research by interviewing successful design teams in British industry.
The research indicates that embodiment design (models, prototypes etc.) may be
produced very early in the process of design, both in incremental and innovative
design activities (see III-A).

2.4.5 THE COGNITIVE DESIGN PARADIGM

A cognitive model is representative of how people perform a mental task or activity
and the interrelationships of active intelligent human designers with computerized
tools such as computer aided drafting systems. Protocol studies on how engineers
design were conducted by several researchers [2, 37, 119]. In these studies, designers
were given problems to solve in a specified amount of time and were asked to think
aloud (protocol analysis as a technique to study problem solving behavior is
discussed and used extensively in [79]). Based on these studies, the researchers have
formulated several models of the design process. For example, Ullman et al. propose
a model of the mechanical design process called the TasklEpisode Accumulation
process. Their model views the design process as consisting of the Conceptual
Design, the Layout Design, the Detail Design, and the Catalog Selection stages. A set
of ten operators are used to accomplish these stages. They also observed that
designers normally pursue only a single alternative, rather than considering multiple
alternatives. Sriram and Cheong [109] indicate (based on case studies) that while
designers may have difficulty retaining several alternatives in their memory, the
designers feel that tools that will aid them to pursue various choices would produce
more innovative designs. Many of the features incorporated into CAE (computer
aided engineering) tools were influenced by the cognitive studies. CAE tools have
been utilized for diverse domains. Paper path handling, air cylinders, buildings and
circuits are few examples of domain dependent/independent frameworks developed
in the mid 80's. These systems used hierarchical refinements and constraint
propagation problem solving strategies.

Throughout the spectrum of the design process categories, the process of
creation or ideation often follows a definite pattern [42]:

1. Preparation - defining the situation and gathering facts;
2. Frustration - struggling against mental blocks;
3. Illumination - a sudden spark of insight;
4. Evaluation and execution - assessing alternatives and implementing the optimal

choice (contingent to the designer's world view).

46 A MATHEMATICAL THEORY OF DESIGN

The following attributes are identified as common elements of creativity:

1. Capacity for intuitive perception: the recognition of associations and similarities
among objects and concepts;

2. Concern for implications, meanings, and significance;
3. Ability to think imaginatively without regard for practicalities;
4. Open-mindedness toward, for change, improvement, and new ideas rather than

rehashing old techniques and traditions. The creative designer is warned of the
cost of spending too much effort researching solutions to similar problems of the
past.

A number of techniques are available which appear to animate the creative
process (a prescriptive view of the cognitive paradigm). Examples are: the trigger
word method in which a designer asks himself a series of active questions. The
checklist method [82] that relies on a number of questions on modifications. The
morphological method that analyzes the problem and determines the independent
parameters involved which are then listed on a grid and evaluated systematically. The
Gordon technique that attempts to identify the fundamental concepts underlying a
given situation rather than emphasizing the obvious characteristics. The brain
storming technique which refers to the spontaneous generation of ideas by a diverse
group of individuals, some of whom may know little about the particulars of the
problem.

2.4.6 THE CREATIVE DESIGN PARADIGM AND THE SIT METHOD

We briefly present the creative design paradigm and the Structured Inventive
Thinking (SIT) method, which efficiently implements and enhance creative problem
solving in engineering design. For details see references [150, 151).

The SIT method is a three-step procedure: problem reformulation; general
search strategy selection; and an application of idea provoking techniques. The most
innovative part of the method is the problem reformulation stage. The given problem
is modified through the application of clear, objectively defined and statistically
proven set of sufficient conditions for creative solutions. Extensive empirical cases
that were analyzed proved with high statistical confidence that the method leads the
designer to creative solutions.

The cases also prove the correlation of the SIT method and classical
psychological tests of creativity, in two aspects. Students who are creative according
to the psychological tests are also achieving better results with the SIT method. Most
important, teaching the SIT method enhance creativity in students and engineers.

The SIT theory states that if an idea for a solution of a technological problem
satisfies two sufficient conditions, that idea will be deemed creative by field experts.
Using SIT, the problem solver first reformulates the problem by changing the goal
from 'find a solution' to 'find a solution that satisfies the conditions'. The problem
solver then proceeds to the process of searching the solution. At this stage the

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 47

designer selects one of two general solution strategies, each leading to a different set
of idea provoking techniques.

The SIT method uses ideas developed initially by Altshuller who examined
thousands of inventions and patents from which he extracted 39 properties that
characterize creative solutions. Based on his findings the TRIZ method was
developed.

SIT differs from TRIZ in some fundamental aspects, especially in the fact that in
SIT only two fundamental principles lead the paradigm, and these principles are
clearly and rigorously formulated as the sufficient conditions. Reformulating the
problem through the sufficient conditions generates a well-defined and clear criterion
leading toward testing a candidate solution. Another important difference between
the two methods is that SIT applies a minimal set of techniques, so that after some
training the SIT process can become second nature to the problem solver.

SIT is used in many companies including Ford Motor Company in the US
(trained by Dr. Sickafus) and many Israeli hi-tech companies. The method is taught
as a full credited academic course in Tel-Aviv University, and in the National
University of Singapore. SIT practitioners have attained many creative solutions.

Formal Expression of Sufficient Conditions

We start with needed notation related to a situation in which a problem is described
in terms of a given (existing) technological system that suffers from (known)
undesired effects.

Sj

So
N(s)

O(S)

UDE

the given system in the problem state (I for input)

the system in the solution state (0 for output)

the neighborhood of a system S (the collection of objects which are not
an integral part of the system but can be found in the system's proximity
or have special affinity to that system)
the collection of object types from which the system S is composed.
Each object stands for the single technological concept that underlies its
functioning in the system.
the collection of variables which contribute, directly or indirectly to the
undesired effects, that appear in the problem description
y is an increasing function of x, when all other variables remain
constant.
y is a decreasing function of x, when all other variables remain constant.

the value of y is independent of the value of x

If x, Y E UDE, f+(y,x) is called a problem characteristic function.

Using these notations and definitions the two sufficient conditions can be
expressed as follows:

48 A MATHEMATICAL THEORY OF DESIGN

The Closed World (CW) condition:

(1)

The Qualitative Change in Problem Characteristic (QC) condition:

(2)

The expression for the closed world condition means that no new object can be
added to the system, unless it is a neighborhood object, but objects can be removed
from the system. Since O(S) stand for object types and not the objects themselves,

more objects of the same type are allowed to be introduced into the system (e.g. add
more wheels to a car).

The expression for the qualitative change in problem characteristic condition
means that a problem characteristic needs to change from an increasing function to
either a decreasing or an unchanging function.

The sufficient conditions were developed through an empirical survey of
numerous engineering problems and their corresponding routine and creative
solutions. Once the conditions were extracted an explanation for the rational behind
them may have been induced: Commonly routine design problem solving processes
begin with an attempt to tune parameters, and when this fails to produce the desired
results, engineers turn to searching alternative technological concepts. The QC
condition makes parameter tuning ineffective, and the CW condition does not allow a
replacement of existing concepts. Routine processes thus fail to produce the desired
results, and the problem solver is forced to resort to more creative processes.

Description of the SIT Mechanism

The SIT mechanism comprises three main steps: problem reformulation through the
sufficient conditions; selection of a general thinking strategy; and selection and
application of a relevant idea provoking technique.

(i) Problem Reformulation:

At this stage the problem solver sets the target for the problem-solving task using the
two sufficient conditions. The CW condition is added to current constraints, while the
QC condition changes the goal: instead of the initial (and natural) requirement to
decrease the level of an undesired effect, the problem solver is guided to qualitatively
change a mathematical relation between any two problem related variables (problem
characteristics).

Technically at this stage the user forms a list of system objects, a list of system
neighborhood objects, and a list of problem characteristic variables. The problem
solving task is defined as follows: Find a solution in which at least one of the defined

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 49

increasing functions will become decreasing or unchanging subject to the constraint
that the solution will incorporate only elements of the given system and its
neighborhood that appear in the relevant lists.

(ii) Strategy Selection:

The framework of the sufficient conditions naturally gives rise to two thinking
strategies. A candidate solution is composed of three elements: the desired physical
end state - deduced from the QC condition, the objects to be modified, and the
required modification. The CW condition confines the objects to be modified only to
existing ones, and thus significantly narrows the search space. Two scenarios are
possible at this stage: The problem solver can deduce a required physical end state
from the QC condition. This situation commonly occurs when the desired End State
can be achieved through a simple physical operation that will not interfere with other
operations required from the system.

The problem solver cannot conceive a desired physical end state, or the state he
can think of contradicts other fundamental requirements from the system. These two
scenarios define the two possible strategies. Following the first strategy, the problem
solver first formulates a conceptual solution: a simple operation that once added to
the system, the QC condition is guaranteed to be satisfied. He then proceeds to find
an existing object that will carry out the desired operation. Consider for example the
problem of testing acid liquid material. In this case, the tested material causes
corrosion of the vessel that holds the material. In the course of the solution of the
material testing problem, the problem solver can think of the idea to physically
separate the acidic liquid from the vessel - an idea that guarantees the satisfaction of
the QC condition. He then selects an existing object: the tested samples to carry out
this operation. This strategy is called the extension strategy to indicate the fact that
the system is temporarily extended through the addition of an imaginary object that
will carry out the new operation.

If the problem solver reaches at this point the second situation (that is he cannot
conceive of a desired end state that would guarantee the satisfaction of the QC
condition) he can follow a different strategy: through a trial and error process he tries
different possible modifications to existing objects until at some point hopefully he
hits a state where the QC condition is satisfied (the CW condition is guaranteed to be
satisfied since none of the tried modifications violates it). This strategy is called the
restructuring strategy to indicate the fact that in the trial and error process the
problem solver changes the structure of existing objects and their organization.

The problem solver is guided to select the extension strategy if he can conceive a
conceptual solution, and to select the restructuring strategy otherwise. The actual
significance of selecting a thinking strategy lies in the application of a different set of
idea provoking techniques for each strategy. If the extension strategy was selected the
user is directed to apply either unification or multiplication, if the restructuring
strategy is selected the user is directed to apply either division, or increasing
variability. The extension techniques help the problem solver identify an existing
object that will carry out the new operation, while the restructuring techniques help

50 A MATHEMATICAL THEORY OF DESIGN

him increase the degrees of freedom of possible changes to the system.

(iii) Idea Provoking Techniques:

Idea provoking is the final stage of the method. Their main role is to free the problem
solver from fixated mental states.

The Unification Technique. The unification technique helps the problem solver
identify a system or neighborhood objects that will carry out the operation defined in
the conceptual solution. Applying the technique is a four-step process:
(1) Formulate the needed operation.
(2) Form a list of all main system and neighborhood objects.
(3) Select an object from the list and complete the following sentence: The selected
object will carry out the operation.
(4) Determine the necessary modifications of the selected object, so that it can carry
out the desired operation.

Example - the four steps applied to the material testing problem:
(1) The needed operation: to separate the acidic liquid from the vessel.
(2) A list of objects: vessel, samples, and acidic liquid.
(3) Selected object: samples. The samples will separate the acidic liquid from the
vessel
(4) Required modification: the shape of the samples will change so that it can contain
liquid.

The Multiplication Technique. The purpose of this technique and its first 2 steps
(out of four) are identical to the Unification technique. The last two steps are listed
below:
(3) Select an object from the list and complete the following sentence: The selected
object will multiply. The new copy (or copies) of the of this object will carry out the
operation.
(4) Determine the necessary modifications of the new copy (or copies) of the selected
object, so that it can carry out the desired operation.

The Division Technique. Being a restructuring strategy technique the purpose of the
division technique is to help the user identify new degrees of freedom for modifying
and reorganizing system objects. It is a three-step process:
(1) Form a list of system objects.
(2) Select an object from the list and complete the following sentence: The object
will be divided to its more basic elements/to smaller parts of the same part/in a
random way (select one option from the three).
(3) Search for meaning: try to use the new degrees of freedom to create a state in
which the QC condition is satisfied: different parts in different locations, different
order of parts etc.

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 51

The Increasing Variability Technique. This is another important technique to aid
the problem solver in the creation of new degrees of freedom and new ways to solve
the problem. It is a four- step process:
(1) Form a list of system objects.
(2) Select an object.
(3) Select two parameters Wand Z that are currently not related, that is W is not a
function of Z (a new degree of freedom will be the type of relation between them).
(4) Search for meaning: try to use the new degrees of freedom to create a state in
which the QC condition is satisfied.

Examples for the Application of SIT

This section will demonstrate how SIT is used to find creative solutions to
technological problems. Each example will include problem description, a set of
routine solutions (most common responses of engineers), detailed description of how
SIT is used to solve the problem, and a description of a creative solution - the output
of the SIT process. It is important to note that common SIT applications consist in
many trial and error processes (different strategies, different techniques, and different
application of the techniques), however the description below does not reflect that
important nature of SIT application. For sake of brevity we describe in each example
only the direct path to the solution.

EXAMPLE J - CORN IN A PIPE

A curved steel pipe is one of the components of a corn grain processing plant (as
described in Figure 1). The pipe's function is to conduct the flow of air with the corn
grains. The problem is the grains' impact on the pipe at the bend, which erodes the
pipe wall. The air speed cannot be reduced since this will reduce the plant's capacity.

damaged zone

~5e: •••

~r
Figure 1 The Corn in the Pipe Problem

Routine ideas:
(1) To strengthen the pipe at the erosion zone (change the material, make it thicker).
(2) To make the curved part of the pipe from a different piece that can be easily
replaced.

52 A MATHEMATICAL THEORY OF DESIGN

(3) To coat the pipe with a protective layer that will be replaced from time to time.

SIT Step I - problem reformulation:
(1) List of UDE parameters: cost of production, erosion rate, grain flux, grain
hardness.
(2) List of system and neighborhood objects: pipe, grain, and airflow.
(3) The reformulated problem: make erosion rate unrelated to/decreasing function of
grain flux, don't add any new object to: pipe, grain and airflow.

SIT Step 2 - strategy selection:
Since a conceptual solution can be conceived - to separate the grains from the pipe
the extension strategy is selected.

SIT Step 3 - select and apply an idea provoking technique (unification or
multiplication):
Unification was selected, application of the technique:
(1) Fonnulate the needed operation: to separate the grains from the pipe
(2) Fonn a list of all main system and neighborhood objects: grains, pipe, airflow
(3) Select an object from the list (grain) and complete the following sentence: The
grain will separate the grain from the pipe.
(4) Detennine the necessary modifications of the selected object, so that it can carry
out the desired operation: grains should stick to the curved part of the pipe

The solution: The geometry of the curved area of the pipe will change as to create a
pocket that will enable the grains to accumulate there. This will protect the pipe from
the damage of grains' impact (see Figure 2).

Figure 2 The Solution to the Corn in the Pipe Problem

EXAMPLE 2 - DERAILING DETECTION DEVICE

The braking system of trains includes a pipe that passes along the train, in which the
air is at a pressure of 5 atmospheres. When the pressure drops, the train stops. Under
emergency conditions (such as derailing), the air must be released very quickly. To
ensure fast enough release of the air, it should exit through an opening that is at least

10 cm2. During nonnal operating conditions, this opening should be closed with a

TIlE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 53

stopper. The air pressure itself should release the stopper.
A new derailing detector has been developed. The idea is that in normal

operation, the stopper is to held in place by the derailing detector, and when derailing
occurs the detector stops exerting force on the stopper and it is released. The problem
is that the derailing detector can exert only 0.5 Kgf, not enough to balance the 50 Kgf
applied by the internal pressure (see Figure 3).

compressed air

Figure 3 The Derailing Detector System

Routine ideas:
(1) To use a lever.
(2) To add more derailing detectors, each will support a smaller stopper.
(3) To squeeze the stopper in its place so that friction will carry out some of the load.

SIT Step I - problem reformulation:
(1) List of UDE parameters: probability of false alarm, probability of premature
stopper opening, load on the derailing detector, air pressure, and stopper area.
(2) List of system and neighborhood objects: pipe, air, stopper, and derailing
detector.
(3) The reformulated problem: make load on the derailing detector unrelated
to/decreasing function of air pressure, don't add any new object to: pipe, air, stopper,
and derailing detector.

SIT Step 2 -strategy selection:
Since a conceptual solution can be conceived - to exert on the stopper a force that is
identical and in opposite direction to the force exerted by air pressure, the extension
strategy was selected.

SIT Step 3 - select and apply an idea provoking technique (unification or
multiplication):
Multiplication was selected, application of the technique:
(I) Formulate the needed operation: to exert on the stopper a force that is identical
and in opposite direction to the force exerted by air pressure.
(2) Form a list of all main system and neighborhood objects: pipe, air, stopper, and
derailing detector.
(3) Select an object from the list (stopper) and complete the following sentence: The

54 A MATHEMATICAL THEORY OF DESIGN

stopper will be multiplied. The new copy (or copies) of this object will exert on the
stopper a force that is identical and in opposite direction to the force exerted by air
pressure.
(4) Determine the necessary modifications of the new copies of the selected object,
so that it can carry out the desired operation: The new stopper should be slightly
smaller than the original one so that the derailing detector will still have to carry
some load.

The solution: The new stopper will be mounted exactly above the original one, they
will be connected through a thin wire (see Figure 4).

Figure 4 The Solution to the Derailing Detector Problem

EXAMPLE 3 - THE TUMOR PROBLEM

Suppose you are a doctor faced with a patient who has a malignant, inoperable tumor
in his stomach. Unless the tumor is destroyed the patient will die. There is a ray that
can be used to destroy the tumor. If the rays are directed at the tumor at sufficiently
high intensity, the tumor will be destroyed. Unfortunately, at this intensity, the
healthy tissue that the rays pass through on the way to the tumor will also be
destroyed. At lower intensities, the rays are harmless to the healthy tissue but they
will not affect the tumor.

Routine ideas:
(1) In this problem the most common ideas either violate problem definition (for
example to try to operate although the problem text explicitly states that the tumor is
inoperable) or suggest alternative treatment such as chemotherapy.

SIT Step I - problem reformulation:
(I) List of UDE parameters: probability of patient's death, damage to healthy tissues,
and rays intensity.
(2) List of system and neighborhood objects: rays, tumor, and healthy tissues.
(3) The reformulated problem: make damage to healthy tissues unrelated
to/decreasing function of rays intensity, don't add any new object to rays, tumor, and
health tissues.

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 55

SIT Step 2 - strategy selection:
Since a conceptual solution cannot be conceived the restructuring strategy is selected.

SIT Step 3 - select and apply an idea provoking technique (division or increasing
variability)
Division was selected, application of the technique:
(I) Form a list of system objects: rays (this is the only system object).
(2) Select an object from the list (rays) and complete the following sentence: The
rays wil1 be divided to smaller parts o/the same type.
(3) Search for meaning: try to use the new degrees of freedom to create a state in
which the QC condition is satisfied (different parts in different locations, different
order of parts etc.): The smal1er rays will be directed at the tumor from different
angles.

The solution: To direct a few weak beams at the tumor from different angles, so that
they converge at the tumor and develop sufficient intensity there to destroy the tumor.
The QC condition was satisfied since it is possible to increase the ray intensity at the
tumor by adding more weak rays without affecting healthy tissues through which the
rays pass.

EXAMPLE 4 - SOLID FUEL ROCKET ENGINE

One of the problems that designers of solid-fuel rocket engines (Figure 5) faced was
the necessity of achieving a constant thrust from the engines. The solid-fuel rocket
engine has the shape of a hol1ow cylinder burning in an internal envelope. The
problem with such geometry is that the thrust is not constant owing to a change in the
area of the internal envelope (the radius increases). When the internal combustion
area increases, the thrust increases.

Side view

Figure 5 Side View of A Rocket Engine
Routine ideas:
(1) A new parametric design: the dimensions of the cylinder are changed so that it
will become longer and narrower. These changes maintain its total volume and
combustion area, but since the difference between initial and final radius is smaller,
the variance is smaller.
(2) "Cigar burning" - a cylinder burning in its base.

56 A MATHEMATICAL THEORY OF DESIGN

SIT Step I - problem reformulation:
(1) List of UDE parameters: energy waste, uneven thrust, thrust increase, burning
area increase, perimeter increase.
(2) List of system and neighborhood objects: solid fuel, rocket, and thrust.
(3) The reformulated problem: make burning area unrelated to/decreasing function of
perimeter, do not add any new object to solid fuel, rocket, and thrust.

SIT Step 2 - strategy selection:
Since a conceptual solution cannot be conceived the restructuring strategy is selected.

SIT Step 3 - select and apply an idea provoking technique (division or increasing
variability).
Increasing variability was selected, application of the technique:
(1) Form a list of system objects: solid fuel, rocket, and thrust.
(2) Select an object: solid fuel.
(3) Select two parameters Wand Z that are currently not related, that is W is not a
function of Z (a new degree of freedom will be the type of relation between them): Z
- cross section shape; W - combustion progression.
(4) Search for meaning: try to use the new degrees of freedom to create a state in
which the QC condition is satisfied: The shape of the cross section will change
through the combustion progression from a very complicated winding shape to a pure
circle.

The solution: the shape of the cross-section is such that it maintains a constant
perimeter while combustion progresses. The cross-section changes from a complex
shape to a simple circle, thus, although the average radius increases, the perimeter
remains constant. Figure 6 demonstrates the idea. This solution preserves the initial
concept of a hollow shape burning in the internal envelope thus complying with the
closed world condition. Since the variance in thrust is constantly zero, totally
independent of the difference between initial and final radius, the solution satisfies
the QC condition as well. Note that, at its time, this solution was a breakthrough in
solid fuel engines. In our workshops we see students using the sufficient conditions
finding this solution quite quickly.

Figure 6 The New Inner Envelope as Combustion Progresses

Conclusion

This section presented a set of objective sufficient conditions for creative solutions,

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 57

and a three-step method that structures the search toward obtaining engineering
design solutions.

The application of the sufficient conditions to a specific problem modifies the
given problem definition: The QC condition changes the goal of the search and the
CW condition confines the search space. By applying the sufficient conditions, the
creative problem solver actually solves a different problem than his non-creative
companion, an important factor in finding a different, sometimes surprising solution.
Note that the QC condition is related to the functional decoupling requirement in
Nam Suh's paradigm (see Section 2.5.1).

The detailed extensive study of the validity of the sufficient conditions and the
SIT method can be found in the references.

2.4.7 THE ALGORITHMIC DESIGN PARADIGM

The algorithmic design paradigm is the focus of a considerable amount of current and
past research of design automation. The algorithmic design paradigm views the
design process as the execution of an effective domain-specific procedure that yields
a satisfying design solution (relative to a given initial requirements) in a finite
number of steps. The main premise of this paradigm is that the requirements are well
defined and there are precisely defined criteria for determining whether or not a
design meets the requirements. That is, the notion that design problems are well
structured (see Section 2.2.4).

There exist a number of instances of the algorithmic paradigm which serve to
optimize complex systems: exhaustive search, rapid search and mathematical
programming techniques. Within the algorithmic paradigm, exhaustive search is a
lengthy process resulting in global optimization within the field of inquiry. A style is
defined as a set of attributes that enables the designer to discriminate between one set
of artifacts and another in the same group. A style, therefore, represents certain
search modes (design process styles) on the part of the design algorithm, the result of
which is the nature of the final design [see also 103]. A number of search modes exist
for algorithmic paradigms: breadth-first, depth-first, greedy method, branch and
bound, dynamic programming and so on.

The price of global optimization through an exhaustive search of alternatives is
tremendous. The alternative to an exhaustive search is rapid search, where a set of
simple but arbitrary guidelines are adopted to limit the search space. For example, in
serial optimization, as each stage is optimized (e.g. selecting the types of materials
and method of manufacture), the selections at the subsequent stages are evaluated
conditionally with the assumption that the preceding choices hold. The algorithm
proceeds in this way throughout the series of stages. Serial-optimization may be the
most widely used design style in conscious human decision-making. In term of effort,
it is clearly superior to exhaustive search. The greatest disadvantage of any rapid
search method lies in the questionable proximity to the global optimum; the rapid
search algorithms use arbitrary guidelines for optimization. Notwithstanding the
global optimization potential, many instances within the algorithmic design paradigm

58 A MATHEMATICAL THEORY OF DESIGN

produce satisfying rather than optimal solutions. To understand the difference
between exhaustive and rapid search, consider the domain of arc welding design.
Over the years, numerous researchers have studied various aspects of the welding
process, such as understanding the underlying fluid mechanics, heat transfer, phase
transformation and solid mechanics of the welding process. Attempts to incorporate
them into a rapid search strategy often results in a nonsystematic, somewhat random
method in which designers formulate a set of decisions that ultimately result in the
welding process. Most decisions are made to optimize one aspect of the process,
rather than the process as a whole. This often results in a suboptimal design of the
welding process. A globally optimized welding process, through exhaustive search,
may be achieved by requiring a complete and thorough understanding of the complex
interactions among various aspects of the welding process. The difficulty with this
approach is the global understanding required of an incredibly large data base.

Mathematical programming techniques are a recognized topic in many
engineering design courses, and are discussed at length in texts on engineering design
theory [101, 24]. Mathematical programming techniques can be used to identify the
potential design configuration (e.g. the physical design of electronic circuits) by
optimizing the configuration based on the functional requirements. In general, in
these methods the solution to the problem is developed by solving the mathematical
model consisting of an objective function that is to be optimized and a set of
constraints representing the limitation of the resources.

In summary, although most interesting design problems are incomplete, open
ended and ill-structured (see Section 2.2.5), they may decomposed into one or more
well-structured components. In this case, the algorithmic paradigm may be
successfully utilized to solve each of these well-structured sub-problems. Thus, the
algorithmic paradigm may be considered as a tool that can support and be invoked by
other paradigms [17, 22].

2.4.8 THE ARTIFICIAL INTELLIGENCE DESIGN PARADIGM

Artificial intelligence (AI) is the field that attempts to make computers perform tasks
that usually require human intelligence. The AI design paradigm is based upon
capturing the knowledge of a certain domain and using it to solve problems [34]. In
order to automate a design process, a design system must be able to differentiate
between various choices and determine the best path. The AI design paradigm views
design as a problem-solving process of searching through a state-space, from an
initial problem state to the goal state, where the states represent the design solutions.
Transitions from one state to another are affected by applying one of a finite set of
operators, based on the functional requirements (goals) and design constraints
(constituting the domain specific knowledge) and meta-rules (constituting the domain
independent knowledge). The design process involves representing much of their
knowledge about the problem declaratively. Roughly speaking, declarative
knowledge is encoded explicitly in the knowledge-base in the form of sentences in
some language (usually in the form of IF condition THEN action), and procedural

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 59

knowledge (which typifies the algorithmic design paradigm) is manifested in
algorithms.

The AI paradigm of design relies heavily on the Function-Structure-Behavior of
an artifact and their inter connections through causality. People often refer to artifacts
based on the functions they provide, and that existing structures could be combined
into new ones, to achieve the desired function [30]. Bobrow [11] defines function as
the relation between a goal of a human user and the behavior of the system. Structure
is defined as the information about the interconnection of modules, organized either
functionally - how the modules interact - or physically - how it's packaged. Behavior
can be defined as the relationship between input from the environment and the output
of affect the component usually interfaces to the environment. In summary, the
proponents of the AI design paradigm claim that through a causal reasoning approach
using the problem-solving process of searching and the basic physics behind
behaviors, the structure and set of behaviors to achieve a given goal in as little time
as possible can be accomplished.

The use of knowledge-based expert systems (KBES) has become common
enough to understand their benefits in a problem such as this. An expert system is
able to use previously defined rules and cases to choose through a new problem to
solve it. This would enable an expert system to pick previous design structures and
behaviors and match them to the design specifications. How a knowledge-based
expert system should be constructed depends on where the problem lies on the
analysis-synthesis spectrum [109]. In analysis (e.g., process diagnostics), the problem
conditions are posed as parts of a solution description; the possible outcomes exist in
the knowledge-based of a KBES. Essentially, the solution to these problems involves
the identification of the solution path. In synthesis problem (or design) problems
conditions are given in the form of properties that a solution must satisfy as a whole;
an exact solution does not (normally) exist in the knowledge-base, but the inference
mechanism can generate the solution by utilizing knowledge in the knowledge-base.
Figure 2.9 depicts a multi-level framework for describing knowledge-based design as
enunciated by [117]. KBESs are instances of automatic problem solvers that rely
heavily on domain-specific heuristics, are also often called strong methods [80].
Knowledge-based expert systems provide the support for many of the automatic or
computer-aided design systems developed in recent years, such as buildings design,
circuit design, paper path handling and air cylinders [117; 97]. Sriram and Cheong
[109] have identified the following tenets of computer-aided design systems:

1. Incorporate design plans, design knowledge and design constraints;
2. Deal with evolving specifications;
3. Display geometry and have the ability to associate constraints with geometrical

entities (relating structure to behavior);
4. Provide access to distributed knowledge/database of devices;
5. View mUltiple alternatives simultaneously;
6. Provide access to manufacturability knowledge;
7. Generate assembly sequences automatically from geometry.

60 A MATHEMATICAL THEORY OF DESIGN

When less is known about the design task environment, domain-independent
control strategies are more appropriately evoked. Problem solvers that rely heavily
on domain-specific heuristics, are also often called weak methods [80] . Weak
methods are used to effect and control the search through the state-space. The so
called means-ends analysis [79] lies at the center of these methods (see also Section
2.3.2). Means-ends analysis was employed, among others, by [77] in the domain of
automatic program synthesis; and by [34] in designing room configurations.

The AI design paradigm may be combined with other design paradigms to
establish a 'grand' problem solving strategy for the designer or design system. It is
only very recently that the use of past cases is beginning to recognized in the design
automation literature [76, 32, 47]. The process of case-based design consists of the
following steps that are iteratively applied as new sub-goals are generated during
problem-solving [115] :

1. Development of a functional description through the use of qualitative relations
explaining how the inputs and outputs are related;

2. Retrieval of cases which results with a set of design cases (or case parts) bearing
similarity to a given collection of features;

3. Development of a synthesis strategy which describes how the various cases and
case pieces will fit together to yield a working design;

4. Realization of the synthesis strategy at the physical level;
5. Verification of the design against the desired specifications through quantitative

and qualitative simulation;
6. Debugging which involves the process of asking relevant questions and

modifying them based on a causal explanation of the bug.

Program Level

Figure 2.9 Multilevel Framework for Describing Knowledge·based System (adapted from [109])

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 61

Case-based problem solving has several advantages over knowledge-based
expert systems: first, cases provide memories of past solutions, failures and repairs
that have been used successfully. Secondly, from a knowledge acquisition view, there
is experimental evidence that designers don't explicitly think in terms of rules [107].
Moreover, asking a designer to give examples of cases, is much easier than asking
him to give a list of rules he uses to design. Finally, design case studies are readily
available in the literature.

Simon pointed up [105] that the design process strategies (domain-dependent as
well as domain-independent) "can affect not only the efficiency with which resources
for designing are used, but also the nature (form style) of the final design as well."
Conversely, the designer is likely to use some special features of the problem to
identify one or a small number of styles that are evoked in the process of design (that
is, a form style as a determinant of a control strategy or design process style). The
main three types of design process styles [105] are bottom-up, top-down and meet-in
the-middle. Bottom-up design style involves starting with basic structures and
combining these structures until the final form is accomplished. This design style
incorporates search trees and optimal branch calculations. Top-down design starts
with the final behavior required and sub-divides this behavior into smaller behaviors
which are ultimately linked to components and their respective structures. This
design process style is similar to bottom-up design in that it uses search trees and
optimal branch calculations. Meet-in-the-middle design process style incorporates the
previous two design process styles. Either top-down or bottom-up is chosen
according to the difficulty encountered in the design process and the amount of
previous information available.

To sum up, the AI design paradigm is very useful in solving tightly coupled,
highly integrated and ill-structured design problems. However, when faced with an
original design problem with no previous rules or past cases to help it, the expert
system or case-based problem solver are incapable of original creativity. Thus the
expert system or case-based problem solver are capable of helping in the design
process but are not the solution to design automation. Moreover, the real problem
with AI in design is in determining a way to make the computer program be creative
in a manner that is manageable and not an NP hard solution. If the program just
generates every possible solution, something the computer excels at, the amount of
time generating and checking the solutions may be infinite. The design program must
be able to generate a small selection of design solutions and choose between them for
the ultimate choice. The human designer is able to do this quite easily but has an
extensive language and other extraneous factors to assist in this process.

2.4.9 DESIGN AS A SOCIAL PROCESS

The ASE design paradigm (the "consensus" paradigm) describes the engineering
design process as a sequence of activities leading to intermediate results. Moreover,
many design theorist still insist that design theory requires universal methods
analogous to universal methods used in the natural sciences. In contrast, it is the

62 A MATHEMATICAL THEORY OF DESIGN

contention of the social constructivist approach that the study of design and
sociological studies should, and indeed can, benefit from one another [127].

According to the social constructivist approach, design as a social process
involving designers, customers, and other participators consists of creating and
refining a shared meaning of requirements and potential solutions through continual
negotiations, discussions, clarifications, and evaluations [126]. From the social
constructivist perspective, the consensus model overlooks or underplays the social
factors involved in the design process. For example, negotiation can enter into all
phases of the process. There is also no mention of the problems of sharing knowledge
among members of a design team responsible for different parts of the design. Each
member of the design team is usually also a member of different research and
engineering traditions which conceptualize problems differently and see the design as
a whole, on the basis of different analogical models [125].

Another contention of the constructivist approach is that the consensus model
aims at formal models of design. However, even within the sphere of formal models,
a considerable degree of informal activities take place. Moreover, formal models are
incomplete in their ability to trade off alternatives, which are mediated by inherently
social processes. The connecting thread between these activities or approaches is that
they are all expected to provide insight into the problem at hand. These activities are
meant to facilitate a better understanding of needs and problems encountered, and
potential solutions [126]. The resulting modeling activities can be modified into
modeling activities which are results of both socio-linguistic, and more precise
formal languages. Formal models are evaluated along several dimensions: accuracy,
applicability, intent, and mutual consistency. Still, the very definition of these
dimensions is a negotiated outcome of the design process, and not an input, a priori
or otherwise [126]. The process of acceptance of formal methods is based on their
reliability in a situated context of the domain of application [125, 126]. For example,
the use of optimization methods in chemical engineering is much more accepted and
stable than in mechanical engineering.

Several empirical findings and proposals (pertaining to how designers work)
seem to support the social constuctivist view [125, 126, 128]:

• Different designers and social groups use different vocabularies to describe the
same or very closely related sets of things [129]. For example, for some, the
artifact air tire introduced in the bicycle, was a solution to the vibration problem
of small-wheeled vehicles. For others, the air tire was a way of going faster. For
yet another group of engineers, it was an ugly looking way of making the low
wheeler even less safe (because of side-slipping) then it already was [127].

• Engineers typically spent a significant portion of their time (more than 50%) in
documenting and communicating - much of it in the form of formal or informal
negotiations. The negotiation most often takes the forms of one-on-one meetings
and paper being passed about within the organization.

• The sociocultural, political, legal, and ecological situation of a social group
shapes its norms and values, which in turn influence the meaning given to the
artifact. Because different meanings can constitute different lines of

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 63

development, this seems to offer an operationalization of the relationship
between the wider context and the actual content of technology.

• "Simultaneous" or "concurrent" engineering are terms that have gained a lot of
currency recently. In each of these uses of the term, the underlying premise is
that traditional design processes lack information on the later phases of the
product realization process (such as production and operation) in the early
phases of the development of the product [125]. In a study analyzing the
traditional design and development process Danko and Prinz [130] conclude that
successful design depends on the exchange of information between appropriate
groups in the process. Further, rework and redesign are rampant, because field
recognized conflicts often require design and field changes. Clark and Fujimoto
[131] conclude, based on their study of American, Japanese. and European
automobile companies. that Japanese firms are organized to maximize
knowledge sharing between suppliers and the parent. and through very quick
problem solving cycles that involve separate departments. This integration of
problem solving helps reduce mistakes and rework and enables tool and die
shops to handle changes with fewer transactions and less overhead [131].

In interpreting these findings, note that the underlying phenomenon being
described is that of collaboration (or, in the traditional approach. lack thereot) among
individual separated by disciplines or functional responsibility. However, effective
simultaneous engineering is effective interdisciplinary design which, in turn. is the
creation of effective shared meaning. the persistent form of it being shared memory
[125]. Konda et al [125] define shared memory as the taking-hold of shared meaning
created in specific design situations and applied to other design situations. Shared
memory needs a substrate, or an infrastructure, in which the initial construction of a
shared language are stored and perhaps reactivated at a later time on the same or a
different project. Shared memory is distinguishable from shared meaning in that the
former can have a more physical existence in, for example, databases, cross-indexes,
models, papers. and so on [125, 126].

The phrase shared memory is used to denote the increasingly detailed aspect of a
given profession's knowledge (vertical shared memory), as well as the sharing of
meaning among multiple disciplines, groups, and group members (horizontal shared
memory). Vertical shared memory is the codified corpus of knowledge, techniques,
and models that exist in every professional group. The need for horizontal sharing
among multiple disciplines arises from the general observation that engineering
product development is a collaborative process, where engineers from diverse
disciplines cooperate to specify, design. manufacture, test, market, and maintain a
product [128]. The need for horizontal sharing within a profession arises from the
differences in functioning contexts and meaning. For example, the beginning of the
bicycle's development brought out two different kind of social groups within the
profession of cyclists: (1) the social group of cyclists riding the high-wheeled
Ordinary consisted of "young men of means and nerve" [132]. For this social group
the function of the bicycle was primarily for sport; and (2) some parts of the safety
low-wheelers and the safety ordinaries can be better explained by including a

64 A MATHEMATICAL THEORY OF DESIGN

separate social group of feminine cyclists.
Shared memory needs to be established in and nurtured by appropriate

organizational structures incorporating the necessary technical substrates through
which information, tools and, most importantly, people interact. Shared memory
needs a substrate, or an infrastructure, in which the initial construction of a shared
language are stored and perhaps reactivated at a later time on the same or a different
project [125]. The substrate must address the following objectives:

• Facilitate capturing the context and history of a particular design (cases of both
formal and informal modeling) in order that the experience (good or bad) can be
reused within another design context;

• Facilitate the negotiation among designers and with other relevant parties (such
as users);

• Forecast the impact of design decisions on manufacturing;
• Provide designers interactively with detailed manufacturing process planning;
• Develop mechanism for reaching agreements among designers through

consensus standardization.

Following the general observation that the majority and most critical of activities
in design are informal [126], no single representation or abstraction technique can be
imposed on designers a priori, without severely limiting their capability to model.
Therefore, the substrate of shared memory should allow multiple classifications,
languages and methods designers find appropriate to carry out the above activities.
Thus, the substrate can benefit from research on tools developed in Artificial
Intelligence (AI), such as qualitative physics, semantic network representations, rule
structures, machine learning, information retrieval techniques (relational databases),
hypermedia, graph grammars, etc.

To achieve the objectives outlined above, several system architectures - based on
current trends in programming methodologies, object-oriented databases, and
knowledge based systems were developed. For example, the n-dim project, currently
underway at the Engineering Design Research Center, Carnegie Mellon University, is
a computer environment to support collaborative design [133]. n-dim is also a history
capturing mechanism for complex corporate activities such as design. Other
important aspects of n-dim are a task-level view for configuring and managing the
design process, and an information-management system that allows for defining and
displaying a user's current design context by means of models (linked information
objects; see [126]). Other related work include the DICE (Distributed and Integrated
environment for Computer-aided Engineering) being pursued at the Massachusetts
Institute of Technology [128], the STEPIPDES effort, the RATAS project [134], the
EDM model [135], and the spatial representation work being pursued at Carnegie
Mellon University [136] are relevant tools that support collaboration among
distributed teams of persons carrying out a complex process such as design.

Although automation facilitates the creation of effective shared memory, Clark
and Fujimoto [131] argue that "competitive advantage will lie not in hardware and
commercial software, but in the organizational capability to develop proprietary

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 65

software and coherently integrate software, hardware, and "human ware" into an
effective systems." For example, some degree of horizontal memory (which derives
collaborative behavior) can be achieved based on reward structures to encourage the
exchange of information among multiple disciplines, groups, and groups members.
Hence, enhancing communication between human designers from different
perspectives is feasible using organizational methods such as assignment of team
responsibility and proximity of the designers, or through techniques such as Quality
Function Deployment (QFD) for matching quality control and customer preferences
[137]. In short, automation should not drive context - automation should be driven by
context.

2.5 SCIENTIFIC STUDY OF DESIGN ACTIVITIES

The field of design theory is relatively new, which has been particularly stimulated by
three computer-related technological advances: computer-aided design (CAD) [9],
knowledge-based expert systems (KBES) [117], and concurrent engineering (CE)
[100]. The main source of the slow development and confusion about design theory
is that engineering design lacks the sufficient scientific foundations. Dixon [25]
argued that engineering design education and practice lack an adequate base of
scientific principles, and are guided too much by the specialized empiricism,
intuition, and experience. Kuhn [58, 59] concluded that design is at a prescience
phase and it must go through several phases before it constitutes a mature science
(hence theory), which is that state of a discipline in which there is a coherent tradition
of scientific research and practice, embodying law, theory, application and
instrumentation. In order to achieve this kind of maturity, designers must borrow the
methodologies from other disciplines (such as artificial intelligence, neural networks,
logic and fuzzy logic, object oriented methods) that have reached relative scientific
maturity [20].

A design method (within a design paradigm) does not constitute a theory; theory
emerges when there is a testable explanation of why the method behaves as it does
[25]. Design methods do not attempt to say what design is or how human designers
do what they do, but rather provide tools by which designers can explain and perhaps
even replicate certain aspects of design behaviors. The major components and aims
of design theories are:

1. To construct a systematic inquiry into a phenomenon which is to uncover some
intelligible structure or pattern underlying the phenomenon. That is, a theory of
design must be in part descriptive [22];

2. Theories must be in part prescriptive, that is has the capability of specifying how
design should be done, and allow us to construct more rational methods, and
tools to support practical design;

3. Theories must be simple; that is, when two design theories are possible, we
provisionally choose that which our minds adjudge to be the simpler, on the
supposition that this is the more likely to lead in the direction of the truth. It

66 A MATHEMATICAL THEORY OF DESIGN

includes as a special case the principle of William of Occam - "Causes shall not
be multiplied beyond necessity";

4. Theories must be consistent with whatever else we know or believe to be true
about the universe in which the phenomenon is observed;

5. The value of a design theory be determined, to a great extent, by its generality
and domain-independence (including mechanical engineering, electrical
engineering, civil engineering and computer science).

While discussions of design theory, from a number of different perspective, have
appeared in [105,45, 49, 21, 52, 108, 35], in the following sections an attempt is
made to demonstrate and concentrate on two interesting design theories - the
axiomatic theory of design, and design as scientific problem-solving. The former
theory is more grounded in the 'real' environment of design while the latter theory is
a more abstract, speculative or philosophical.

2.5.1 THE AXIOMATIC THEORY OF DESIGN

The axiomatic theory of design is a structured approach to implementing a product's
design from a set of functional requirements, that was developed by [113, 112]. It is a
mathematical approach to design which differentiates the attributes of successful
product and demonstrates design that are not manufacturable. Suh defines design as
the culmination of synthesized solutions (in the form of product, software, processes
or system) by the appropriate selection of design parameters that satisfy perceived
needs through the mapping from functional requirements in the functional domain to
design parameters in the structure domain. Suh pointed out that the fact that empirical
decisions often lead to superior designs (as supported by technological progress)
indicates that there exists a set of underlying principles, heuristics or axioms which
govern the decision making process. If these axioms can be formalized and their
corollaries derived, then it should be possible to establish a scientific basis for
guidelines in manufacturing design [113]. The axiomatic approach is based on the
following premises:

1. There exist a small number of axioms which will always lead to superior
decisions in terms of increased overall productivity;

2. These heuristics may be established and examined through an empirical studies;
3. Axiomatic is not a mechanism for generating acceptable designs, but a tool to aid

in the decision making process.

The hypothesized principles of manufacturing axiomatic may be given as two
axioms:

1. The Independence Axiom - In an acceptable design, the design parameters and
the functional requirements are related in such a way that specified design
parameter can be adjusted to satisfy its corresponding functional requirement

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 67

without affecting other functional requirements (functional independence is
analogous to the concept of orthogonality in linear algebra.) The independence
axiom does not imply that a part has to be broken into two or more separate
physical parts, or that a new element has to be added to the existing design.
Functional decoupling may be achieved without physical separation, although in
some cases such physical separation may be the best way of solving the problem
(recall the bicycle's evolution);

2. The Information Axiom - The best design has minimum information content. It
coincides with the principle of 'simplicity'. The search for simplicity, likewise
the search for beauty, is a powerful aesthetic imperative that serves as a basic
component of a designer's value system. Simple in the design means, for
example, being able to minimize the number and complexity of part surfaces.
The simplicity principle implies that if a design satisfies more than the minimum
number and measure of functional requirements originally imposed, the part or
process may be overdesigned. Simple design will result in reducing product cost
(such as inventory and purchasing costs), and enhancing quality.

Suh et al. have developed a number of theorems and corollaries which may
readily be shown to be implied by the axioms. These corollaries bear strong
resemblance to many design guidelines and design for manufacture (DFM)
techniques (recall the ASE design paradigm) that were developed in manufacturing
companies [12]. Some of these guidelines (corollaries) include: minimizing
functional requirements, decoupling of coupled design, integration of physical parts,
symmetry, standardization and largest tolerance.

2.5.2 DESIGN AS SCIENTIFIC PROBLEM·SOL VING

Discussions in the literature of design processes generally treats separately a category
of the artificial sciences (engineering disciplines) and the natural sciences (such as
physics, biology and geology). Several criteria that demarcate the artificial sciences
from the natural sciences have been identified [105, as well as others]:

1. Engineers are concerned with how things ought to be, that is in order to attain
goals, and to function while science concerns itself solely with how things are. In
an ultimate philosophical sense, the natural science has found a way to exclude
the normative, and to concern itself with solely with descriptive aspects of
nature;

2. Engineering is concerned with 'synthesis' while science is concerned with
'analysis';

3. Engineering is 'creative, intuitive and spontaneous' while science is 'rational and
analytic' .

Schon [98] has proposed that design creates an entirely new epistemology
(epistemology is concerned with the question of what knowledge is and how it is

68 A MATHEMATICAL THEORY OF DESIGN

possible), which he terms 'reflection-in-action' as contrasted to scientific discovery
which concerns with 'technical rationality'. Cross [21] and Coyne et al. [20] have
claimed that the aims of design and those of science differ. Coyne et al. summarized
elegantly the demarcation between the natural science and design as: "science
attempts to formulate knowledge by deriving relationships between observed
phenomena. Design, on the other hand, begins with intentions and uses the available
knowledge to arrive at an entity possessing attributes that will meet the original
intentions. The role of design is to produce form or more correctly, a description of
form using knowledge to transform a formless description into a pragmatic discipline
concerned with providing a solution within the capacity of the knowledge available to
the designer. This design may not be 'correct' or 'ideal' and may represent a
compromise, but it will meet the given intentions to some degree".

That there are indeed differences in aims will be agreed in general.
Unfortunately, this demarcation of the natural sciences from engineering as a result of
the differences in their respective aims has led to the fictitious attitude that the
methodology of science and engineering are fundamentally different. Laudan [66]
stresses at the outset of his essay Progress and its Problems that scientific problems
are not fundamentally different from other kinds of problems, though they are
different in degree. Indeed, we shall show that this view can be applied, with only a
few qualifications, to all intellectual disciplines, and design activity in particular.
Engineers wishing to construct an artifact capable of implementing a process (such as
problem solving) often study naturally occurring systems that already implement the
process. This approach has led, inter alia, many researchers to investigate
psychological models of human thought as a basis for constructing the constituent
methods within the AI design paradigm [79, 119]. We shall describe in the sequel
those theories (which conclude, among others, [105, 55, 28, 5, 1, 22]) that support
the thesis that the engineering and natural science are methodologically
indistinguishable, and that the structure of problem solving of scientific communities
(scientific discovery) can be used to justify many of the decisions encountered in the
design process. The relationship is one that can be seen at a high level of abstraction.
The most important aspects of this relationship are forms of scientific discovery
which pursue the hypothetico-deductive (H-D) or the related procedure of abductive
inference, and Kuhn's model of scientific progress [58, 59, see also Section 2.4.1]
whose primary element is the "paradigm" (and more elaborated ideas such as the
notion of research programmes by Lakatos [61, 62], and Laudan's [66] idea of
research tradition). We focus our attention on scientific progress and how scientific
communities solve problems, following by a brief outline of the parallelism to design
processes. We hope to gain useful insight from these parallelism that will aid us to
corroborate the thesis that design and natural science are methodologically
indistinguishable.

The publication of Thomas Kuhn's The Structure of Scientific Revolutions in
1962 was an important milestone in the development of the historiography of science.
It was the first attempt to construct a generalized picture of the process by which a
science is born and undergoes change and development envisaged by Kuhn's model
and further developed and refined by [61, 66]. Their approach may be summarized as

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN

follows (see Figure 2.10):

Immature
Science

69

Revolution

Figure 2.10 Five Stages in the History of Scientific Disciplines According to Kuhn

1. Immature Science: A pre-paradigm stage in which the natural phenomena that
later form the subject matter of a mature science are studied and explained from
widely differing points of view [58, 59].

2. Normal Science: The emergence of a paradigm (e.g., Newtonian mechanics,
quantum mechanics), embodied in the published works of one or more great
scientists, defining and exemplifying the concepts and methods of research
appropriate to the study of a certain class of natural phenomena, and serving as an
inspiration to further research by its promise of success in explaining those
phenomena.

A period of normal science conducted within a conceptual and methodological
framework derived from the paradigmatic achievement, involving actualization of the
promise of success, further articulation of the paradigm, exploration of the
possibilities within the paradigm, use of existing theory (a set of hypotheses) to
predict facts, solving of scientific puzzles, development of new applications of
theory, and the like. Lakatos, as well as Laudan, contend that science is seldom
dominated by just one paradigm, as Kuhn claims in his account of normal science,
but rather that competition between paradigms generally co-occurs with processes of
development within a paradigm. Lakatos replaces Kuhn's term paradigm with the
term research programme (for example, we can distinguish between the flat-world
and round-world research programmes). The common thread linking different
theories into a common research programme is a "hard core" of basic assumptions
shared by all investigators. This core is surrounded by a "protective belt" of auxiliary
assumptions. The "hard core" which may consist of assumptions such as "No action
at a distance," remains intact as long as the research programme continues, but
researchers can change the auxiliary assumptions in the protective belt to
accommodate evidence that either has accumulated or is developed in the course of
research. Laudan invokes the idea of a large-scale unit in science that he calls a
"research tradition". Like Lakatos' research programmes, research traditions for
Laudan consist of a sequence of theories, but they lack a common core that is
immune to revision. What holds a research tradition together are simply common
ontological assumptions about the nature of the world and methodological principles
about how to revise theories and develop new theories.

Kuhn, Lakatos and Laudan agree that the main activity of scientists (within a
paradigm, research programme or tradition) is problem solving. Scientific problem

70 A MATHEMATICAL THEORY OF DESIGN

solving consists of generating hypotheses to account for phenomena, and procedures
for substantiating and refuting these hypotheses. The Positivists called the former
procedure (substantiation) for developing scientific theories the hypothetico
deductive (H-D) method. Popper has called the latter procedure (refutation)
conjecture and refutation (C-R). The basic idea of the H-D method is that scientists
begin with a phenomena (anomaly, experimental or conceptual problem) that requires
explanation. Having developed a hypotheses (for the Positivists how hypotheses were
arrived at was not a matter for logical inquiry), the task was to test and discover
whether the hypotheses was true. If it was; it could provide the theory needed to
explain the phenomena. The hypothesis is a general statement and so could be tested
by considering initial hypothesis, and deriving predictions about what would happen
under these hypothesis. If these predictions turn out to be true, the initial hypothesis
would be confirmed; if the predictions turn out false, the hypothesis would be
disconfirmed. In either case, a new problem (phenomena) would have been generated
and the cycle begins once more. The Positivists thought that at least positive tests of a
hypothesis could give support to that hypothesis. Popper [86] contended that this
assumption was false; observation statements ("this swan is white") can never
logically imply theories ("all swans are white") but they can logically refute them (by
providing a counterexample of just one black swan). He proposed instead that
scientists should begin by making conjectures about how the world is and then seek
to disprove them. If the hypothesis is disproved, then it should be discarded. If, on
the other hand, a scientist tries diligently to disprove a hypothesis, and fails, the
hypothesis gains a tentative or conjectural stature. Although failure to disprove does
not amount to confirmation of the hypothesis and does not show that it is true or even
likely to be true, Popper speaks of such an hypothesis as corroborated. The virtue of
a corroborated hypothesis is that it is at least a candidate for being a true theory,
whereas hypotheses that have been disproved are not even candidates. Popper terms
this the process of conjectures and refutations (C-R).

3. Crisis: A crisis stage of varying duration precipitated by the discovery of natural
phenomena that "violate the paradigm-induced (research programme or tradition)
expectations that govern normal science" and marked by the invention of new
theories (still within the prevailing paradigm) designed to take account of the
anomalous facts.

4. Revolution and Resolution: A relatively abrupt transition to a new paradigm
(research programme or research tradition) that defines and exemplifies a new
conceptual and methodological framework incommensurable with the old; and
continuation of normal science within the new paradigm (research programme or
tradition).

In addition to the foregoing properties, let us state the following important
features:

• Conjectures often develop by adjusting to new problems by discovering the

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 71

discrepancy between their predecessors and the phenomena (recall Newell and
Simons' General Problem Solver scheme). This process led, for example, to
better understanding of Euler's formula and the concept of "polyhedron" [see
62];

• When an anomaly is discovered in a theory, the outcome is often an adjustment
[62] of the theory rather than a total dismissal of the existing paradigm (which
defines the character and structure of the original theory), research programme
or tradition. Most theories evolve through a continual and incremental activity
(recall the concept of 'incrementalism' given by [69] in the context of design);

• Although corroboration does not give us a logical basis for increasing our
confidence that the hypothesis will not be falsified on the next test, it does serve
to limit us to an ever narrowing set of hypotheses that might be true. Popper has
compared this process to Darwinian natural selection, for both nonadapted
organisms and false theories are weeded out, leaving the stronger to continue in
the competition. Evolution is often gradual, taking years or decades. Other
theorists have pursued the idea that theory development may be parallel to the
process of evolution by natural selection [see, for example, 58, 59, 16, 118];

• As pointed out above, for the Positivists how hypotheses were arrived at was not
a matter for logical inquiry, since discovery was assumed to be nonrational
process. Hanson [40] was one of the first to urge philosophers to redirect
attention to discovery (extending the context of 'scientific justification'). His
proposal was to pursue what the 19th century American Pragmatist, Charles
Peirce, called abductive inference which is similar to the H-D method. The
alternative to deductive reasoning is generally taken to be induction. One of the
things that has brought about renewed interest in discovery is the recognition,
partly motivated by work in empirical psychology, that human reasoning
involves additional modes of reasoning than deductive logic and enumerative
induction such as "common sense" knowledge, gestalt-like perception,
analogical reasoning or by sheer trial and error. Because scientific reasoning is
simply an extension of ordinary human reasoning, there is reason to think that
such strategies figure also in science. Newell and Simon [79] popularized the
idea that in solving complex problems we rely on heuristic principles that
simplify the process through which we search for a solution. Recently there has
been considerable interest by both philosophers and those in Artificial
Intelligence in using AI as a tool for studying scientific reasoning [64];

Following our previous discussions on descriptive properties of design,
especially the adaptive and evolutionary properties discussed in Section 2.3.2, and
the prescriptive role of design paradigms, it is plausible to believe the hypothesis that
there is a direct and striking resemblance between the structure of design processes
and the foregoing structure of problem solving of scientific communities is
corroborated (following Popper). Figure 2.11 illustrates the parallel relationship
between inquiry that is associated' with science and that which is associated with
engineering design. This correspondence is summarized as follows:

72

Proposes Artifacts
(for requirements of
human adantation)

Social
Applications of
Explanations
and Artifacts

Persooal Actions
based on

Explanations
and Artifacts

A MATHEMATICAL THEORY OF DESIGN

Proposes Explanations
(for phenomena in the

natural world)

Figure 2.11 The Interrelationships between the Science and Engineering Design

• The counterpart of the Kuhnian paradigm or Laudan's research tradition is the
designer's knowledge-base needed to generate the set of design solutions. The
designer's knowledge-base is a coherent tradition of knowledge and practice,
embodying theories (such as stress analysis, thermodynamics analysis,
information on materials and the like), design paradigms, applications, heuristics
(transformation operators), instrumentation, and law (such as existing zoning
regulations). The most versatile designers will represent much of their
knowledge about their environments declaratively. The set of knowledge
underlies the designer's conceptual assumptions and world view and values
serving as best approximation to what the design domain actually is; so, we
really should be talking about the designer's beliefs rather than the designer's
knowledge. But, following the tradition established by the phrase "knowledge
based systems", we will speak ofthe designer's knowledge;

• The counterpart of a set of phenomena, events or problems are design problems
that are entirely characterized by and generated as a result of measurable and
non-measurable requirements. Laudan distinguishes two kinds of problems that
can confront a research tradition - empirical inadequacies of the current theories
and conceptual problems with the theories comprising the tradition. It is with a
direct correspondence to the distinction (see Section 2.2.4) between empirical,
measurable or well-defined requirements (which specifies externally observable

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 73

or empirically determinable qualities for an artifact); and ill-defined
requirements (conceptual);

• The counterpart of a scientific theory (set of hypotheses) is the tentative
design/form (constitutes a systematic representation of functional relationships
of the components; see II-H) serving (much the same as scientific theories) as a
vehicle for the designer to capture her thoughts, as a plan for implementation,
and as a vehicle for reflecting the evolutionary history that led to the emergence
of the final form/design, thus facilitating the inspection, analysis and redesign
(change) of the artifact;

• Scientific discovery follows the hypothetico-deductive (H-D) method, or the
more justifiable procedure (following Popper) of conjecture and refutation (C
R). Moreover, Popper [as well as 58, 59, 16, 118] has compared the process of
scientific discovery to Darwinian natural selection. It is with a direct
correspondence with the evolutionary nature of design processes (see Section
2.3.2): as the design process develops (due to bounded rationality), the designer
test (to corroborate or disprove the hypotheses) the tentative design against the
requirements. If the test fails, the designer modifies either the tentative design or
requirements (the counterpart of theory adjustment), so as to remove the
discrepancy (recall how Euler's formula was adjusted to a new
"counterexample"; see [62]) between them, and converge or establish a fit
between the two parts. Testing involves a wide range of reasoning types, such as
classical and approximate logical systems (theorem provers, qualitative
reasoning); experiments (e.g., simulations); knowledge accumulated from
previous experience; and common sense reasoning (heuristics and 'rules of
thumb'). If a problem is found as the result of testing, it also becomes a new
problem to be solved in another design cycle;

• Besides the embodiment of ontogenetic design evolution within the model of
scientific discovery, Kuhn's model of scientific progress can also explain
phylogenetic design evolution (see Section 2.3.2). Incremental redesign activity
corresponds to the continual and incremental evolvement of scientific theories
within a normal science, whereas innovative redesign activity corresponds to a
transition to a new paradigm (conceptual or paradigm-shift);

• Comparison of theories in terms of "degree of falsifiability", a concept most
fully developed by Popper [86] and Newtonian world-view of "reductionism",
cast considerable light on the axiomatic theory of design [1l3]. Popper
concludes that the best reason for entertaining a theory is that it is testable (more
accurately "falsifiable") - i.e., that it makes strong predictions that are readily
capable of being refuted by evidence if the theory is, in fact, false. Let us,
following Popper, restate the criterion in a number of other forms. Theory T)
(e.g., "All heavenly bodies move in circles") is decidedly stronger than Theory
T2 ("All planets move in ellipses") if it is more universal and precise. Since in a
theory it is desirable to obtain t~e maximum of prediction from the minimum of
assumptions, the more universal and precise a theory, hence the more falsifiable,
the better. In the case of two theories related as T) and T2 we will entertain the
weaker, T2, only if the stronger, TJ, is falsified. Another form is that of

74 A MATHEMATICAL THEORY OF DESIGN

simplicity. "Simple" theories are generally thought preferable to "complex"
theories. Consequently, for the same design problem, a computer time-sharing
system design, TJ, which was accompanied by larger amounts of experimental
work is stronger than a computer time-sharing system accompanied by poor
amounts of experimental work. Similarly, as previously noted, Suh's information
axiom and derivations (such as the minimization theorem and corollaries, see
[113]) are derived from Popper's (and Occam's razor) simplicity principle.

What we propose to do now is to briefly indicate how Suh's independence axiom
and derivations, as well as various hierarchical decomposition principles of design
problems represent a direct embodiment (from its paradigmatic aspect) of the 171h_

century Newtonian mechanics. The essential point of the Newtonian reductionistic
language is that, in the Newtonian picture, the categories of causation are isolated
into independent mathematical elements of the total dynamics. Indeed, the
independence axiom and the principle of a nearly decomposable system (A
hierarchical system of components CJ, ... ,Cn where each Cj is itself an aggregate of
more primitive entities such that the interactions between the entities within the Cj's
are appreciably stronger than those between the Cj's is called a nearly decomposable
system, see [105]) are nothing but a paraphrase of the Newtonian language, adapted
to inherently non-mechanical situation.

• Both designer's knowledge-base and Laudan's research tradition have the
component of a group's shared past cases (used within the case-based design
paradigm) and examples. By that it means the concrete problem-solutions and
cases that students encounter from the start of their scientific and engineering
education, whether in laboratories, on examinations, or at the technical problem
solutions found in the periodical literature and information about wide variety of
devices (their parts, characteristics, materials, uses and behavior) found from
commercial catalogs.

• The ASE design paradigm is based on a phase of thorough analysis of the
requirements, followed by the actual synthesis of design, and then a phase of
testing the design against the requirements, which is strikingly resemble to the
one of the most influential methodologies of science, namely, inductivism.
According to inductivism only those propositions can be accepted into the body
of science which either describe hard facts by making observations and gathering
the data (the counterpart of an analysis phase of requirements) or are infallible
inductive generalizations (the counterpart of a synthesis phase of design) from
them. The problem with inductivism (as well as with the ASE paradigm) is that
the inductivist cannot offer a rational 'internal' explanation for why certain facts
rather than others were selected in the first instance. Hanson [41] argued that
observation itself is theory-laden, that is that what we perceive is influenced by
what we know, believe, or are familiar with (which implies that designers have
some conceptual models prior to gathering requirements).

The above discussion On the interrelationship between the science and

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 75

engineering design emphasizes individual human design problem solving. To
summarize, Popper argues that theories ought to prove their mettle through several
critical tests (theories should be falsified rather then confirmed). On the other hand,
the approach of Kuhn, Laudan and Lakatos is historical and case-based. They argue
that theories are always more than a single hypothesis. Theories are usually an
interweaving of a number of law-like rule-like statements supplemented by an often
larger number of auxiliary hypotheses concerning instruments used in testing them
and specifications of initial conditions and experimental set-up necessary for these
tests. Our analysis of design methodologies shows that these two alternative view of
scientific development (logical reconstructability versus case-based approach) were
utilized to gain useful insight on the parallelism between the methodologies of
science and design methodology (emphasizing individual problem solving).

Thus far, we have not discussed the fact that design processes as well as
scientific progress involve social factors (see Section 2.4.9 about a discussion on
design as a social process); have similar mechanisms of organizing collaborative
activities among multiple disciplines, groups, and groups members (e.g.
negotiations); and have similar mechanism for allocating effort (such as funding
structure and peer review). Indeed, the views of Kuhn, Laudan and Lakatos have
been elaborated more recently by others who pointed out that social and sometimes
cultural factors can be significantly involved in bringing scientific debate to a relative
close and stabilizing concepts of facts [127, 138, 139, 140, 141]. These approaches
have generated a vigorous program of empirical research on the process of the social
construction of scientific knowledge in various sciences. See, for example, Collins
[141] for scientific controversy, Collins and Pinch [142] for physics and biology, and
DeMilIo et al. [143] for program verification in computer science. These approaches,
which we refer to as "social constructivist," mark an important new development in
the sociology of science. The main characteristics of the social constructivist view is
described by the "Empirical Programme of Relativism" (EPOR) as was developed in
the sociology of scientific knowledge. Three stages in the explanatory aims of the
EPOR can be identified [127];

1. In the first stage (Interpretative Flexibility), it is shown that scientific findings
are open to more than one interpretation. Often opposing directions of research
are found between schools of thought that do not closely interact. For example,
the Freudian and behaviorist schools in psychology explain human neuroses in
very different ways. Neither has proved that its ideas are in all respects superior
to its competitors. There is no good reason for the community as a whole to
accept one theory over the other. In the absence of criterial experiments to
discredit one theory or the other, these opposing ideas may coexist for a long
time. Moreover, all thought happens in the context of certain assumptions. For
example, we can distinguish between the flat world and the round world
hypotheses by imagining two viewpoints, one for each of the theories. We would
expect statements in the flat-world viewpoint to the effect that the world has
edges and the belief in the round-world viewpoint that traveling west long
enough will bring you back to where you started. Research effort in opposing

76 A MATHEMATICAL THEORY OF DESIGN

directions is not only found between distinct schools of thought; it can often be
found in the same research group or individuai.

2. When an anomaly is discarded in a theory. the outcome is often an adjustment of
the theory rather than a total dismissal. This is because theories that have shown
some success tend to develop a core of fundamental concepts that serve to
motivate further work. The process of adjustment. then. is an effort to protect
this core from being discredited. Evolution is often gradual. taking years or
decades. On rare occasions it is quite rapid as the community reacts to a
"breakthrough" that clearly decides an issue (controversy) previously muddled.
Social mechanism that limit interpretative flexibility. and thus allow scientific
controversies to be terminated are described in the second stage of EPOR.

3. The sociocultural and political situation of a social group shapes its norms and
values. which in turn influence the meaning given to theories. A third stage is to
relate the "closure mechanism" to the wider social-cultural milieu.

Having described the EPOR approach to the study of science. and the social
constructivist approach to the study of design (as described in Section 2.4.9). we now
discuss the parallels between them [127]:

1. Interpretative Flexibility - In design. there is flexibility in how designers
interpret artifacts. and how artifacts are designed. There is not just one possible
way or one best way of designing an artifact. For example. for some. the artifact
air tire introduced in the bicycle. was a solution to the vibration problem of
small-wheeled vehicles. For others. the air tire was a way of going faster. For yet
another group of engineers. it was an ugly looking way of making the low
wheeler even less safe (because of side-slipping) then it already was [127].
Moreover. other artifacts were seen as providing a solution for" the vibration
problem. e.g. the saddle. the steering bar. and solutions used spring construction
in the frame;

2. Closure and Stabilization - Closure in design involves the stabilization of an
artifact and the resolving of technological controversy. Pinch and Bijker [127]
identify two closure mechanisms. Rhetorical closure emerges when the relevant
social groups see the design problem as being solved (although it might not be
solved in the common sense of the word). For example. for some time. the
"safety controversy" around the high-wheeler bicycles was resolved by
announcing (through advertisement) that the artifact (i.e. the air tire) was
perfectly safe although to engineers high-wheeled bicycles were known to have
safety problems. Closure by redefinition of the problem means translating the
meaning of the artifact to constitute a solution to quite another problem. For
example. originally the air tire meant a solution to the vibration problem to the
users of the low-wheeled bicycle. However. the group of sporting cyclists riding
their high-wheelers did not accept that as a problem at all. Eventually. closure
has been reached when the meaning of the air tire was translated to constitute a
solution to quite another problem: the problem of how to go as fast as possible
[127].

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 77

To summarize, we argue that the social constructivist view that is prevalent
within the sociology of science provides useful insights that will aid in the
interpretation of design processes with respect to the social factors involved.

2.6 A GENERAL DESIGN METHODOLOGY

This section presents a design methodology, based on the scientific community
metaphor, by emphasizing the variational (or parametric) design part. In variational
design, the dimensions of a part are calculated by solving a system of constraints or
specifications (typically, nonlinear equations). Let us summarize some of the very
basic features of the evolutionary design model as articulated in Chapter 6 and
Chapter 17:

• In variational design, an artifact at any particular abstraction level is described
in terms of part types (a group of objects which are similar but have different
sizes). Every part can be described by a set of attributes. Each attribute can be
described by its dimension (such as wire diameter, spring diameter, number of
active coils, and modulus of elasticity).

• Specifications or constraints, at any particular abstraction level, are the various
functional, behavioral, performance, reliability, aesthetic, or other characteristics
or features that are to be present in the physically implemented artifact. In the
case of the Gear Box design (see Chapter 17), the initial specifications were to
design "a mass production device, which can be used for lifting light objects or
opening a garage door in a family or small warehouse." In variational design,
closed-form constraints are usually either Euclidean (including distance,
tangency, parallelism, and so on), or functional (such as mass properties, forces,
stiffness, strength, rating life, and so on). A higher order constraint is a property
that is satisfied by lower order constraints.

• Design proceeds as a succession of cycles. In each cycle, the objects that evolve
are the design/specifications complexes; the evolution of the
design/specifications complexes is towards the satisfaction of tentative
specifications; and the mechanism employed in this evolutionary process is the
attempt to verify the validity ("degree of believability") of existing
specifications. As a consequence of this mechanism, new specifications and
design parameters are introduced. If the design satisfies the specifications, then
there is a fit between the two, otherwise there is said to be a misfit between
design and specifications. For example, the Gear Box design process is
terminated when the transmission parts, casing, shaft set, and accessories are
fully specified, and all user-specified requirements (duration, capacity), strength
constraints and heat balance are satisfied by the current solution. This
evolutionary design model follows the hypothetico-deductive (H-D) method, or
the more justifiable procedure (following Popper) of conjecture and refutation
(C-R) of scientific discovery (see Section 2.5.2).

78 A MATHEMATICAL THEORY OF DESIGN

The validity of specifications (qualitative design specifications as well as closed
form equations) as encountered by the designer is determined by means of (1)
relevant knowledge of the design domain such as tools and techniques of verification
(e.g. finite-elements or finite-differences); and (2) the process history, which includes
both the sequence of all process states (i.e., the design/specifications complexes)
visited so far, together with the transformations and production rules (or inference
rules) used to modify such process states. Consider the following examples:

I. Constraint C1 ("to insure a long work life for the rope") is considered validated
only if constraint C2 ("the overbending of the rope is avoided") is validated. This
in turn, is considered validated only if constraint C3 ("the minimum drum
diameter should be large enough") is validated. According to the engineering
recommendation value (knowledge of the design domain), for the minimum
drum diameter to be large enough, a IS to 20 times the rope diameter should be

chosen. Therefore, the designer chooses the drum diameter as ddr = 3.75 inches

(a design parameter). The tool used for support of constraint C3 is simply to
check if the selected drum diameter is indeed IS to 20 times the rope diameter;

2. The constraint "select an efficient reducer", is determined by a concept selection
process (the verification tool), which is used to measure the degree of efficiency
of each alternative with respect to well-defined criteria. This in turn, is
considered validated only if the design parameter ("the reducer is a worm and
wormgear type") is validated (or selected). The specifications and design
parameters have dependencies among them. Dependencies between the
specifications and parameters are represented by rules, or logical relationship the
validity of which implies the validity of the specification or the design
parameter. The rules are specified in the first-order calculus. For example, the
validity of specification C ("the shear strength and compression stress of the key
must be less than the allowable shear strength and compression stress,
respectively") is determined by the logical relationship: ("the shear stress should
be calculated" 1\ "the compression stress should be calculated" 1\ "the key's
material should be specified" 1\ "the shear stress must be less than the allowable
shear stress of the material" 1\ "the compression stress must be less than the
allowable compression stress of the material"). In this case, the specification part
is updated by replacing specification C by its antecedents (C is called
consequent, see [149]). The specification "the key's material should be
specified" derives a new design parameter DP "the material of the key is ASTM
40." In this case, the design part is updated by adding the new design parameter
DP.

A most distinct feature of the design evolutionary model is that the design
process is constantly subject to revision. For example, in the Gear Box design
process, if the shear strength and compression stress specifications are not satisfied
by the key, the designer has either to change the key material (DP1), or change the
shaft diameter DP2 (the key size is associated with the diameter of the shaft). In that

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 79

case, all specifications that dependent on DP) and/or DP2 will have to be revised in
the light of this new design state. The evolutionary design process is, thus, non
monotonic in nature in accordance with Kuhn's model of scientific progress (see
Section 2.5.2).

2.7 SUMMARY

To conclude this chapter it is useful to restate that design contains a wide range of
concepts. Design begins with the acknowledgment of needs and dissatisfaction with
the current sate of affairs and realization that some action must take place in order to
solve the problem. Design science is a collection of many different logically
connected knowledge and disciplines constituting miscellaneous design paradigms.
Although there is no single paradigm that can provide a complete definition of the
design process, there are common characteristics that form the framework within
which various paradigms are utilized.

We maintained that the demarcation of the natural sciences from engineering
design, as a result of the differences in their respective aims, has led to the fictitious
attitude that the methodologies of science and engineering design are fundamentally
different. Alternatively, we display the parallelism between the natural sciences and
engineering design. In summary we believe that the scientific community metaphor
(as captured by a number of philosophers, sociologists and historians of science) can
supply important insights that will aid in the interpretation (a descriptive role) and
construction (a normative role) of design problem solving systems. The resulting
framework has been useful in guiding the development of general purpose design
process meta-tools as shown in Parts III and IV of the book. Finally, we may realize
that design theorists can expect no easier fate than that which befell scientists in other
disciplines.

REFERENCES

I. Agassi, J., Technology: Philosophical and Social Aspects. Tel-Aviv: Open University, 1985.
2. Akin, 0., "An Exploration of the Design Process," Design Methods and Theory," Vol. 13 (3-4), pp.

115-119, 1979.
3. Alagic, S. and Arbib, M.A, The Design of Well-Structured and Correct Programs. Berlin: Springer

Verlag, 1978.
4. Alexander, C., Notes on the Synthesis of the Form. Cambridge MA: Harvard University Press,

1964.
5. Altshuller, G.S., Creativity as an Exact Science. New York: Gordon and Breach Publishers, 1984.
6. Antonsson, E.K., "Development and Testing of Hypotheses in Engineering Design Research,"

Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, pp. 153-154, 1987
7. Asimow, W., In Emerging Methods in Environment Design and Planning (ed. Moore G.T.).

Cambridge. MA: MIT Press, pp. 285-307, 1962.
8. Bell, C.G. and Newell, A., Computer Structures: Reading and Examples. New York: McGraw-Hill,

1971.
9. Bezier, P.E., "CAD/CAM: Past, Requirements, Trends," In Proc. CAD, Brighton, pp. 1-11, 1984.
10. Billington, D.P., Robert Mail/art's Bridges: The Art of Engineering. Princeton. NJ: Princeton

University Press, 1979.

80 A MATHEMATICAL THEORY OF DESIGN

II. Bobrow, D.G., Qualitative Reasoning About Physical Systems: An Introduction." Cambridge. MA:
MIT Press, pp. 1-5, 1985.

12. Boothroyd G. and Dewhurst P., Product Design for Assembly. Wakefield, RI: Boothroyd &
Dewhurst Inc, 1987.

13. Braha, D. and Maimon, 0., "A Mathematical Theory of Design: Modeling the Design Process (Part
11)," International Journal of General Systems, Vol. 25 (3), 1997.

14. Brown, D.C. and Chandrasekaran, B., "Expert Systems for a Class of Mechanical Design Activity."
In [33], pp. 259-282, 1985.

15. Brown, D.C. and Chandrasekaran, B., "Knowledge and Control for a Mechanical Design Expert
System," Computer, Vol. 19 (7), July, pp. 92-100, 1986.

16. Campbell, D.T., "Evolutionary Epistemology." In The Philosophy of Karl Popper, P. Schlipp (ed.),
laSalle. ll.: Open Court, 1974.

17. Chandrasekaran, B., "Design Problem Solving: A Task Analysis," AI Magazine, Winter, 1990.
18. Chamiak, E. and McDermott, D., Introduction to Artijicial Intelligence. Reading. MA: Addison

Wesley, 1985.
19. Churchman, C. W., ''The Philosophy ofDesign,"ICPDT, Boston, Mass, August., pp. 17-20, 1987.
20. Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M. and Gero, J.S., Knowledge-Based

Design Systems. Reading, MA: Addison-Wesley, 1990.
21. Cross, N. (ed.)., Development in Design Methodology. New York: John Wiley, 1984.
22. Dasgupta, S., "The Structure of Design Processes," In Advances in Computers, Vol. 28, M.C. Yovits

(ed.). New York: Academic Press, pp. 1-67, 1989.
23. Diaz, A. R., "A Strategy for Optimal Design of Hl't;rarchical System Using Fuzzy Sets," In NSF

Engineering Design Research Conference, University of MASS., Amherst June, pp. 11-14, 1989.
24. Dieter, G.E., Engineering Design: A Materials and Processing Approach. New York: McGraw

Hill, 1983.
25. Dixon,J.R.,AlEDAM, Vol. 1 (3),pp.145-157,1987.
26. Dong. Z., "Evaluating Design Alternatives and Fuzzy Operations," International Conference on

Engineering Design, Boston, MASS, August, pp. 17-20, pp. 322-329, 1987.
27. Fenves, S.1., Flemming, U., Hendrickson, C., Mehar, M.L. and Schmitt, G., "Integrated Software

Environment for Building Design and Construction," Computer Aided Design, Vol. 22 (1), pp. 27-
35,1990.·

28. Fetzer. J.H., "Program Verification: The Very Idea," Comm. ACM, Vol. 31 (9), September, pp.
1048-1063, 1988.

29. FMS Handbook, CSDL-R-1599 U.S Army Tank Automotive Command under contract No.
DAAE07-82-C-4040, 1983.

30. Freeman, P. and Newell, A., "A Model for Functional Reasoning in Design," In Proc. of the 2nd Int.
Joint Con! on Artijiciallntelligence, pp. 621-633. 1971.

31. Garey, M.R. and Johnson, D.S., Computers and Intractability: A guide to the Theory of NP
Completeness. San Francisco: W. H. Freeman and Company, 1979.

32. Gero, J.S., "Prototypes: A New Schema for Knowledge Based Design," Technical Report,
Architectural Computing Unit, Department of Architectural Science, 1987.

33. Gero, J.S. (ed.), Knowledge Engineering in Computer-Aided Design. Amsterdam: North-Holland,
1985.

34. Gero, 1S. and Coyne, R.D., "Knowledge-Based Planning as a Design Paradigm," In Design Theory
for CAD, H. Yoshikawa and E.A.Warman (eds.). Amsterdam: Elsevier Science Publishers, 1987.

35. Giloi, W.K. and Shriver, B.D. (eds.), Methodologies for Computer Systems Design." Amsterdam:
North-Holland, 1985.

36. Glegg, G.L., The Science of Design. Cambridge, England: Cambridge University Press, 1973.
37. Goel, V. and Pirolli, P., "Motivating the Notion of Generic Design with Information-Processing

Theory: The Design Problem Space," AI Magazine, Vol. 10 (I), pp. 18-38, 1989.
38. Gould, S. J., Ontogeny and Phylogeny. Cambridge. MASS: Belknap Press of the Harvard

University Press, 1977.
39. Gregory, S.A., "The boundaries and Internals of Expert Systems in Engineering Design,"

Proceeding of the Second IFlP Workshop on Intelligent CAD, pp. 7-9, 1988.
40. Hanson, N.R., "An Anatomy of Discovery," The Journal of Philosophy, Vol. 64, pp. 321-352, 1967.
41. Hanson, N.R., Patterns of Discovery. Cambridge, England: Cambridge University Press, 1958.

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 81

42. Harrisberger, L., EngineersmallShip. Belmont, California: Brooks/Cole Publishing, 1966.
43. Henderson, P., Functional Programming: Application and Implementation. Englewood Cliffs, NJ:

Prentice-Hall international, 1980.
44. Hollon, G., Introduction to Concepts and Theories in Physical Science. Reading. MA: Addison

Wesley, 1952.
45. Hubka, V., Principles of Engineering Design. London: BUllerworth Scientific, 1982.
46. Hubka, V. and Eder, W.E., Theory of Technical Systems: A Total Concept Theory For Engineering

Design. Berlin: Springer-Verlag, 1988.
47. Huhns, M. H. and Acosta, R. D., "Argo: An Analogical Reasoning System for Solving Design

Problems," Technical Repon AlICAD-092-87, Microelectronic and Computer Technology
Corporation, March, 1987.

48. Ishida, T., Minowa, H. and Nakajima, N., "Detection of Unanticipated Functions of Machines," in
Proc. of the Int. Symp. of Design and Synthesis, Tokyo, pp. 21-26. 1987.

49. Jaques, R. and Powell, J.A. (eds.), Design: Science: Method. Guildford, England: Westbury House,
1980.

50. Johnson-Laird, P.N., The Computer and the Mind. Cambridge, MA: Harvard University Press,
1988.

51. Jones,1.C. 1963, "A Method of Systematic Design," In Conference on Design Methods (J.C. Jones
and D. Thomley, eds.), pp. 10-31, Pergamon, Oxford. Reprinted in [21].

52. Jones, J.C., Design Methods: Seeds of Human Futures (2nd Edition). New York: John Wiley, 1980.
53. Kant, E. and Newell, A., "Problem Solving Techniques for the Design of Algorithms," Information

Processing and Management, Vol. 20 (1-2), pp. 97-118,1984.
54. Kolodner, J. L., Simpson, R. L. and Sycara, K., "A Process Model of Case-Based Reasoning in

Problem Solving," Proceedings of JJCAl-85, Los Angeles, pp. 284-290, 1985.
55. Kornfeld, AW. and Hewitt, E.C., "The Scientific Community Metaphor," IEEE Transactions on

Systems. Man and Cybernetics, SMC-ll (I), 1981.
56. Krishnamoorthy, C.S., Shivakumar, H., Rajeev S. and Suresh, S., "A Knowledge-Based Systems

with Generic Tools for Strucrural Engineering," Structural Engineering Review. Vol. 5 (1),1993.
57. Kuhn, T.S., The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press, 1962.
58. Kuhn, T.S., Postscript - 1969. in The Structure of Scientific Revolutions. Chicago, IL: University of

Chicago Press. Enlarged 2nd Edition, pp. 174-210, 1970.
59. Kuhn, T.S., "Reflections on My Critics." In [63], pp. 231-278, 1970.
60. Kuhn, T.S., "Second Thoughts on Paradigms," Reprinted in T.S. Kuhn, The Essential Tension.

Chicago, IL:University of Chicago Press, 1977.
61. Lakatos, I., "Falsification and the Methodology of Scientific Research Programmes," In [63], pp.

91-196,1970.
62. Lakatos, I., Proofs and Refutations. Cambridge, U.K: Cambridge University Prr-ss, 1976.
63. Lakatos, I. and Musgrave, A (eds.), Criticism and the Growth of Knowledge. Cambridge, U.K:

Cambridge University Press, 1970.
64. Langley, P., Simon, H.A, Bradshaw, G.L. and Zytkow, J.M., Scientific Discovery: Computational

Explorations of the Creative Process. Cambridge, MA: MIT Press, 1987.
65. Lansdown, J., Design Studies, Vol. 8 (2), pp.76-81, 1987.
66. Laudan, L., Progress and Its Problems. Los Angeles: University of California Press, 1977.
67. Lawson, B., How Designers Think: The Design Process Demystified. London: Architectural Press,

1980.
68. Lewin, K., Dembo, T., Festinger, L., and Sears, P.S., "Levels of Aspiration." In Personality and the

Behavior Disorder, Hunt J.M. (ed.). New York: The Ronald Press, 1944.
69. Lindblom, C.E., "The Science of Muddling Through," Public Administration Review, Vol. 9, pp.

79-88, 1959.
70. Luckman, 1., Operational Research Quarterly, Vol. 18 (4), pp. 345-358, 1967.
71. Maher, M.L., "A Knowledge-Based Approach to Preliminary Design Synthesis," Report EDRC-12-

/4-87, Carnegie Mellon University Engineering Design Research Center, 1987.
72. Maimon, O. and Braha, D., "A Mathematical Theory of Design: Representation of Design

Knowledge (Part I)," International Journal of General Systems, Vol. 25 (3), 1997.
73. Maimon O. and D. Braha, "On the Complexity of the Design Synthesis Problem," IEEE

Transactions on Systems. Man. and Cybernetics, Vol. 26 (1), 1996.

82 A MATHEMATICAL THEORY OF DESIGN

74. Manton, S.M., "Engineering for Quality," In Taguchi Methods, Bendell, Disney and Pridmore
(eds.), IFS publications, 1989.

75. Masterman, M., "The Nature of a Paradigm," In [63], pp. 59-90, 1970.
76. Mostow, J., "Toward Better Models of the Design Process," The AI Magazine, Spring, pp. 44-57,

1985.
77. Mueller, R.A and Varghese, J., "Knowledge-Based Code Selection in RetargetabIe Microcode

Synthesis," IEEE Design and Test, Vol. 2 (3), pp. 44-55, 1985.
78. Murthy, S.S. and Addanki, A. 1987, "PROMPT: An Innovative Design Tool," In Proc. of the 6th

Nat. Conf on Artificial Intelligence, Seattle, W A
79. Newell, A. and Simon, H. A., Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall, 1972.
80. Newell. A. and Simon, H. A. "Computer Science as Empirical Enquiry: Symbols and Search,"

(ACM Turing Award Lecture), Comnl ACM, Vol. 19 (3), March, pp. 113-126, 1976.
81. Nilsson. J.N., "Logic and Artificial Intelligence," Anificiallntelligence, Vol. 47. pp. 31-56,1991.
82. Osborn. AF., Applied Imagination. New York: Charles Scribner's Sons. 1963.
83. Paynter, H.M., Analysis and Design of Engineering Systems. Cambridge. MA: MIT Press, 1961.
84. Penberthy. 1.S., Incremental Analysis and the Graph of Models: A First Step Towards Analysis in

the Plumber's World, S.M. Thesis, MIT Department of Electrical Engineering and Computer
Science, 1987.

85. Pahl, G. and Beitz, W., Engineering Design. Berlin: Springer-Verlag, 1988.
86. Popper, K.R., The Logic of Disco~·ery. London: Hutchinson (originally published, 1935). 1959.
87. Pugh. S .• Total Design. New York: Addison-Wesley, 1990.
88. Pugh, S. and Smith, D.G., "CAD in the Context of Engineering Design: The Designers Viewpoint,"

In Proceedings CAD, London, pp. 193-198, 1976.
89. Pugh, S. and Morley, I.E., Toward a Theory of Total Design. University of Strathclyde, Design

Division, 1988.
90. Rehg, 1., Elfes, S., Talukdar, S., Woodbury. R .. Eisenberger. M. and Edahl, R., "CASE: Computer

Aided Simultaneous Engineering." AI in Engineering Design, Gero, 1.S. (ed.), Springer-Verlag,
Berlin. pp. 339-360, 1990.

91. Ressler, A.L., "A Circuit Grammar for Operational Amplifier Design," Technical Report 807MlT,
Artificial Intelligence Laboratory, 1984.

92. Rieger, C. and Grinberg, M., "The Declarative Representation and Procedural Simulation of
Causality in Physical Mechanisms," In Proc:. oj the 5th Int. Joint Con! on Artificial Intelligence,
pp. 250.1977.

93. Rinderle, 1.R., Measures of Functional Coupling in Design, PhD dissertation, MIT, 1982.
94. Rinderle, 1.R., "Function and Form Relationships: A basis for Preliminary Design," Repon EDRC-

24-05-87. Carnegie Mellon University Engineering Design Research Center, Pittsburgh. PA, 1987.
95. Rittel. H.W. and Webber, M.M., "Planning Problems are Wicked Problems," Policy Sciences, Vol.

4, pp. 155-169, Reprinted in [21], pp. 135-144, 1973.
96. Roylance. G .. "A simple Model of Circuit Design," Technical Report 703, MIT Artificial

Intelligence Laboratory, 1983.
97. Rychener, M. (ed.). Expert Systems for engineering design. New York: Academic Press, 1988.
98. Schon. D.A., The Reflective Practitioner. New York: Basic Books, 1983.
99. Serbanati. L.D., IEEE 9th International Conference of Software Engineering, pp. 190-197. 1987.
100. Shina G.S., Concurrent Engineering and Design for Manufacture of Electronics Products. Van

Nostrand Reinhold, 1991.
101. Siddall, J.N., Optimal Engineering Design: Principles and Applications. New York: Dekker, M.,

1982.
102. Simon, H.A., "The Structure of 1lI Structured Problems," Artificial Intelligence, Vol. 4, pp. 181-200,

Reprinted in [21], pp. 145-165, 1973.
103. Simon, H.A., "Style in Design," In Spatial Synthesis in Computer Aided BUilding Design. Eastman,

C.M. (ed.), John Wiley Sons, New York, 1975.
104. Simon, H.A, Administrative Behavior, 3rd Edition. New York: The Free Press, 1976.
105. Simon, H.A., The Science of the Artificial. Cambridge. MA: MIT Press, 1981.
106. Simon, H.A., Models of Bounded Rationality, Vol. 2. Cambridge, MA: MIT Press, 1982.
107. Simoudis, E. and Miller. J.S., "The Application of CBR to Help Desk Applications," Proceeding of

the 1991 Case-Based Reasoning Workshop, Washington, DARPA, 1991.

THE SCIENTIFIC COMMUNITY'S METAPHOR FOR DESIGN 83

108. Spillers, W.R. (ed.)., Basic Questions of Design Theory. Amsterdam: North-Holland, 1972.
109. Sriram, D. and Cheong, K, "Engineering Design Cycle: A Case Study and Implications for CAE,"

In Knowledge Aided Design, Academic Press, New York, 1990.
110. Sriram, S., Stephanopouls, G., Logcher, R. et aI., "Knowledge-Based System Applications in

Engineering Design: Research at MIT," AI Magazine, Vol. 10 (3), pp. 79-96,1989.
III. Steinberg, L.I., "Design as Refinement Plus Constraint Propagation: The VEXED Experience,"

Proceedings of the Sixth National Conference on Artificial Intelligence, pp. 830-835,1987. '
112. Suh, N.P., The Principles of Design. New York: Oxford University Press, 1990.
113. Suh, N.P., Bell, A.C. and Gossard, D.C., "On an Axiomatic Approach to Manufacturing and

Manufacturing Systems," Journal of Engineering for Industry, Vol. 100 (5), pp. 127-130, 1978.
114. Swartout, W. and Balzer, R., "On the Inevitable Intertwining of Specification and Implementation,"

COMM. ACM, Vol. 25 (7), July, pp. 438-440,1982.
liS. Sycara, K and Navinchandra, D., "Integrating Case-Based Reasoning and Qualitative Reasoning in

Design," In Gero, 1. (ed.). Ashurst, Computational Mechanics Publishing, 1989.
116. Tong, C., Knowledge-Based Circuit Design, PhD dissertation, Stanford University, 1986.
117. Tong, C. and Sriram, D. (eds.), Artificial Intelligence in Engineering Design. Boston, Mass:

Academic Press, 1992.
118. Toulmin, S., Human Understanding. Princeton, NJ: Princeton University Press, 1972.
119. Ullman, D., Stauffer, L. and Dietterich, T., "Preliminary Results of Experimental Study of the

Mechanical Design Process," Technical Report 86-30-9, Oregon State University, C.S. Dept., 1986.
120. Ulrich, KT., "Computation and Pre-Parametric Design," Technical Report 1043, MIT Artificial

Intelligence Laboratory, 1988.
121. Vollbracht, G. T., "The Time for CAEDM is Now," Computer-Aided Engineering, CAD/CAM

section, Vol. 7 (Oct.), pp. 28,1988.
122. Winston, P.H., et. aI., "Learning Physical Descriptions From Functional Definitions, Examples and

Precedents," Memo 679, MIT, Artificial Intelligence Laboratory, 1983.
123. Wood, KL. and Antonsson, E.K, "Engineering Design-Computational Tools in the SYNTHESIS

Domain," The Study of the Design Process, A Workshop, Ohio State University, February, pp. 8-10,
1987.

124. Yoshikawa, H., "General Design Theory and a CAD system," Man-Machine Communications in
CAD/CAM, Proceedings, IFlP w.e 5.2, Tokyo, North-Holland, Amsterdam, pp. 35-38,1982.

125. Konda, S., Monarch, I., Sargent, P., and Subrahmanian, E., "Shared Memory in Design: A Unifying
Theme for Research and Practice," Research in Engineering Design, Vol. 4 (I), pp. 23-42,1992.

126. Subrahmanian, E., Konda, S., Levy, S., Reich, Y., Westerberg, A., and Monarch, I., "Equations
Aren't Enough: Informal Modeling in Design," AI EDAM, Vol. 7 (4), pp. 257-274,1993.

127. Pinch, T. K, and Bijker, W. E., "Social Construction of Facts and Artifacts," In Bijker, W. E.,
Hughes, T. P., and Pinch, T. W., Social Construction of Technological Systems, MIT Press,
Cambridge, 1989.

128. Sriram, D., Wong, A., and Logcher, R., "Shared Workspaces in Computer Aided Collaborative
Product Development," Technical report, Intelligent Engineering Systems Laboratory, 1991.

129. Sargent, P. M., Subrahmanian, E., Downs, M., Greene, R., and Rishel, D., "Materials' Information
and Conceptual Data Modeling," Computerization and Networking of Materials Databases: Third
Volume, ASTM STP 1140, Thomas I. Barry and Keith W. Reynard, editors, American Society for
Testing and Materials, Philadelphia, 1992.

130. Danko, G. and Printz, F., "A Historical Analysis of the Traditional Product Development Process as
a Basis for an Alternative Process Model," EDRC report, Carnegie Mellon University, 1989.

131. Clark, K, and Fujimoto, T., Product Development PeifDrmance, Harvard Business Press, 1991.
132. Wood forde, J., The Story of the Bicycle, Routledge and Kegan Paul, London, 1970.
133. Westerberg, A., "Distributed and Collaborative Computer-Aided Environments in Process

Engineering Design," EDRC report, Carnegie Mellon University, 1996.
134. Bjork, B. c., "Basic Structure of a Proposed Building Product Model," Computer Aided Design,

Vol. 12 (2), 1988.
135. Eastman, C., Bond, A., and Chase, S., "A Formal Approach for Product Model Information,"

Research in Engineering Design, Vol. 2, pp. 65-80,1991.
136. Zamanian, K, Fenves, S. J., and Gursoz, E., "Representing Spatial Abstractions of Constructed

Facilities, EDRC report, Carnegie Mellon University, 1991.

84 A MATHEMATICAL THEORY OF DESIGN

137. Hauser, J. H., and Clausing, D., "The House of Quality," Harvard Business Review, pp. 63-73,
May-June 1988.

138. Bloor, D., "Wittgenstein and Manheim on the Sociology of Mathematics," Studies in the History
and Philosophy of Science, Vol. 4, pp. 173-191.

139. Mulkay, M. J., "Knowledge and Utility: Implications for the Sociology of Knowledge," Social
Studies of Science, Vol. 9, pp. 63-80, 1979.

140. Collins, H. M., "An Empirical Relativist Programme in the Sociology of Scientific Knowledge," in
Science Observed: Perspectives on the Social Study of Science, K. D. Knorr-Cetina and M. J.
Mulkay, eds., Sage, Beverly-Hills, pp. 8S-1 13,1983.

141. Collins, H. M., "The Seven Sexes: A Study in the Sociology of a Phenomenon, or the Replication of
Experiments in Physics," Sociology, Vol. 9, pp. 20S-224, 1975.

142. Collins, H. M., and Pinch, T. 1., Frames of Meaning: The Social Construction of Extraordinary
Science, Routledge and Kegan Paul, London, 1982.

143. DeMilio, R. A., Lipton, R. J., and Perlis, A. J., "Social Processes and Proofs of Theorems and
Programs," Communications of the ACM, Vol. 22, pp. 271-280,1979.

144. Nam P. Suh, "Design and Operation of Large Systems", Journal of Manufacturing Systems, Vol.
14, no. 3, pp 203-213, 1995.

14S. Ertas, A. and Jones, J. c., The Engineering Design Process, John Wiley & Sons, New York, 1995.
146. Dasgupta, S., Design Theory and Computer Science, Cambridge University Press, 1994.
147. Ferguson, E. S., Engineering and the Mind's Eye, MIT Press, Cambridge, MA, 1992.
148. Sipper, M. et. al., "A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware

Systems," IEEE Transactions on Evolutionary Programming, Vol. I, No. I, pp. 83- 97,1997.
149. Ramsay, A., Formal Methods in Artificial Intelligence, Cambridge University Press, 1988.
ISO. Maimon, O. and Horowitz, R., "Creative Design Methodology and the SIT Method," Proceedings of

DETCC97IDTM-386S, 9th International AS ME Design Engineering Theory and Methodology
Conference, 1997. Awarded Best Conference Paper.

lSI. Maimon, O. and Horowitz, R., "Sufficient Conditions for Design Inventions", to appear in IEEE
Systems Man and Cybernetics, 1998.

CHAPTER 3

INTRODUCTORY CASE STUDIES

It is not enough to just read about the design process as discussed in this book to truly
understand the role of each phase, and the evolution that causes transfonnation
between a functional and a structural description of a device. One must experience it
This chapter attempts to provide experience through some examples of design
processes. These five cases were chosen to give the reader insight into the design
process (emphasizing the synthesis part), and the thinking of designers in different
design situations. Evidence must be provided to detennine whether or not the design
process is evolutionary in nature. We believe that the evidence in the following
examples is compelling, and serves as strong corroboration that the design process is
evolutionary in nature.

3.1 ELECTRICAL DESIGN

3.1.1 DESIGN OF A "DATA TAG" [4]

The following example provides a brief description (for an in-depth description
consult [5]) of the product "Data Tag" that was developed in the Flexible
Manufacturing Cell at Tel-Aviv University (TATJ CIMD Laboratory).

The Design Task

According to Shmilovici and Maimon [5]: "Data Tags (DT) are small electronic
devices which can store large amounts of data in a compact and economic volume.
Unlike ordinary devices, the contents of a DT can be read or modified by a computer
without the need for physical contact between the DT and the computer."

In a production environment, such as the Flexible Manufacturing Cell at Tel
Aviv University, DTs are attached to the pallets that carry the parts to the robots;
thus, providing a unique identity for each unit produced (rather than just controlling
the machine centers). Installed on the system are two read-write heads; one in front of
each junction of the long closed loop conveyor, which is composed of two smaller
inner loops (there are two junctions that enable each inner loop to operate
independently when needed). When a pallet arrives at a junction, the contents of the

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998

86 A MATHEMATICAL THEORY OF DESIGN

DT is read and the local controller uses the information to make decisions; for
example, whether the pallet is to stay in the inner loop or not.

The properties of DTs include their ability to store large amount of information
that can be modified during the production cycle; their ability to resist many of the
harsh conditions that are common on the factory floor; and their ability to be
integrated in the production process. The effectiveness of DTs can be attributed to
the ability to: incorporate product changes based on customer requests; enable to
accompany the product during its processing stages; document the exact information
about the processing stages that were given for each product, and thus enhancing
statistical process control; monitor the quality of suppliers, customer service,
accounting and inventory control; and enhance the Kan-Ban method for controlling
Work In Process (WIP) by replacing the card that accompanies the product between
work-stations [5].

The Evolution of the "Data Tag"

The Initial Requirements

The desire to apply DT technology emerges from the need for a "paperless
production" process. The designers at the Robotics Lab at TAU came to utilize this
technology by studying the production processes, the existing computing power in
the processes where the DTs are to be used, and the possibility of adding
requirements based on future production or customer needs. The initial specifications
involved in the DT design are:
e 0.1: The DTs should conform to the protocols of the read-write heads that are
attached to personal computers and read the contents of the DTs that arrive at a
particular junction. The personal computers are also connected (via network) to the
central computer; which transmits instructions and gathers information.
e 0.2: The data capacity of a DT should be about 200 bytes with a RAM battery that
enables extended operation time, and small physical dimensions.

The original specifications are replaced (or modified) by the new specifications:
e 1.1: The DT should have the capacity to withstand harsh manufacturing conditions
including dirt, high temperature, and corrosive materials.
e 1.2: DTs need to attach to the pallets that carry the parts to the robots.
S 1.3: The DT's battery should have low power working modes.
e 1.4: The DT needs to continuously operate for at least 900 hours with a disposable
battery. Alternatively, it needs to continuously operate for at least 200 hours with a
reusable battery.
e I.S: The DT needs to handle transmission rates of 9600 baud.
S 1.6: The data on the DTs should include the communication protocol software
between the DT and the local personal computers.
e 1.7: The DTs need to be manufactured in large batches. Thus, a printed circuit
board technology is preferred.
S I.S: The manufacturing cost of the DT should be less than 100$.

INTRODUCTORY CASE STUDIES 87

The DT has to communicate with a read-write heads that are installed in front of
each junction of the conveying system. To carry out this communication, a
communication protocol between the DTs and the read-write heads should be
defined. This communication protocol software should follow the following general
properties 1 :

a 1.9: Its data capacity should be bound to 8K.
a \,10: It needs to withstand transmission rates of 9600 baud.
a \,1\: It should be easily modifiable in terms of software, hardware and the
information capacity.

The Evolution o/the Transmission Method

There are various types of read/write heads that can communicate with different
forms of DTs, and are suitable for a variety of production processes and control
demands. To reduce significantly the number of compatible transmission methods
between the DTs and the local computers the following requirements are considered:
a 1.12: The technology should be cost effective.
a 1.13: It has to withstand high transmission rates.
a 1.14: It has to have low power working modes.
a \,IS: The parts count needs to be relatively low.
a \,16: The operation needs to be simple.
a 1.17: The data on the DT includes a status variable that can indicate faults in the
integrity of the data. If faults are detected the transmission can be reset.
a \,IS: The communication channel can support interference from manufacturing
equipment and disturbances generated by other Data Tags in the vicinity.

There are several transmission methods that use different wavelengths from the
electromagnetic spectrum: infrared light, radio frequencies, magnetic induction and
electronic contact. Accordingly, the transmission range varies from zero for
electronic contact; several millimeters to a few meters for most methods; and up to
hundreds of meters for some forms of Radio transmission.

The designer may conclude that electronic contact such as Barcode technology
can not cope with many of the DTs specifications. The process of reading the
Barcode label is not reliable for many production processes, there is a need for close
proximity between the read-write head and the label, and the reading station is
relatively expensive. Several other transmission methods including the by-wire
method were excluded for similar reasons.

The TAU designer finally arrived at two transmission methods. One method
uses short range radio transmission, and does not need a battery as a power source.
The read-write unit is composed of an antenna, which is connected to an electronic
board that may be hosted in a personal computer. The other method uses infrared
light for transmission and is battery powered. The main advantages are in its ability
to withstand harsh manufacturing conditions that include dirt, high temperatures, and

I Here we focus on the physical design of the DTs. The evolution of the software and
data structures design of the DTs and the local computers are detailed in [4].

88 A MATHEMATICAL THEORY OF DESIGN

corrosive materials; and in the simplicity of the read-write head that can be attached
to any serial data channel. Since the adequacy of a design is determined solely with
respect to the requirements prevailing at that stage, the foregoing transmission
methods were critically tested against the requirements e 1.12 - e 1.18 and the infrared
light transmission method was found to meet the requirements, i.e., there is a fit
between design and requirements.

Concept Design

In the case of the DT design problem, the large number of options may initially be
reduced by a decision to adopt a particular architectural style. The selected
architectural style may not be the 'optimal' decision, but a 'satisfying' one. In our
case, a high level conceptual solution was developed based on bus-architecture, as
shown in Figure 3.1. To satisfy the low power working modes requirements (e 1,3),

the designer adopted two working modes: Power-down working mode, which occurs
when the pallets carry the parts between the read-write heads; and power-up working
mode, which occurs when a pallet arrives at a junction. The contents of the DT is
then read by the local controller. The various components and steps involved in the
DT system are (see Figure 3.1):

TRANSMITfER
RECEIVER

UNIT

RESET
UNIT

CPU
80C32

SWITCHING
MEMORY

UNIT

Figure 3.1 The Architecture of the "Data Tag"

EPROM
87C64

• The CPU communicates with the local computer when a new part enters the
communication range. After each processing stage, the CPU modifies of the
record on the DT (e.g., information regarding the last process taken, its duration
and measurement results). The CPU also controls the system's units (e.g., the
power source to the DT).

• The Memory unit is EPROM-type, and includes the communication protocol
software. Each DT has a unique identification number, a local identification

INTRODUCTORY CASE STUDIES 89

number assigned by the local controller, a description of the current parts'
process plans, and historical information that describes the parts' past processes,
process times, and machines and any parameters measured after the process.

• The Switching Memory unit supports the CPU by controlling the connection
between the power source and the memory unit. By disconnecting the power
source from the memory unit, when the system switches to a power-down
working mode, the current drain in the system can be minimized.

• The Transmitter-Receiver unit supports the CPU by carrying out
communications with the local computer, and in switching the system to a
power-up working mode when a pallet arrives at ajunction.

• The Reset unit enables to produce the desired reset pulse based on the received
signal.

Evolution o/the CPU unit

The initial specifications (constraints) posed on the CPU are: it has to be integrated in
an analog circuit (e 2.1); it should be able to be attached to any serial data channel
without using a universal asynchronous receiver-transmitter unit (e 2,2); its part count
should be relatively low (e 2,3); it has 4K bytes ROM and 256 bytes RAM (e 2,4); it
includes timers (e 2,5)' After considering the requirements e 2,1- e 2,2, the designer
decided to use INTEL 8051 family of micro-controllers. As soon as the selection was
made, an additional constraint was posed on the design: the CPU should have power
reduced mode (e 2,6), Therefore, the designer came up with the following processors
based on CMOS technology:

1. 8051 - 4K ROM
128 byte RAM
cost = $30

2, 8052 - 8K ROM
256 byte RAM
cost = $40

3. 8031 - without ROM
128 byte RAM
cost = $6

4, 8032 - without ROM
256 byte RAM
cost = $8

As soon as the selection was made, an additional constraint was posed on the
design (the CPU): it should be cost effective (e 2,7), Therefore, the designer decided
to use the 80C32 processor. Each of the units in the DT's design plan had its own
(evolutionary) design plan. For example, the memory unit design plan involved
selecting the 87C64 memory unit that has 4K byte, has power reduced mode, is easily
connected to the CPU, and is of EPROM type.

90 A MATHEMATICAL THEORY OF DESIGN

3.1.2 CONTROL LOGIC OF FLEXIBLE MANUFACTURING SYSTEMS

A flexible manufacturing cell (FMC) is a set of processing machines, a transportation
system (e.g., a conveyor belt), a set of work-pieces, a system for storing parts in
processes, and a control system. In a FMC the control logic would commonly be
implemented on a small specific purpose computer called a Programmable Logic
Controller (PLC). The typical PLC is programmed by using ladder logic diagrams or
Boolean equations. In either case the execution of the program is the same, with all
input values being scanned and all outputs being reevaluated once every cycle.

To illustrate, let us consider a simple design problem. For instance, a control
mechanism that must be designed to achieve the following behavior in a flexible
manufacturing cell. The flexible manufacturing cell consists of a transport line, which
transports part from one NC machine to another. If the pallet carrier arrives at the
unload station (denoted by a binary input h) and exactly one NC machine is holding
a finished part (denoted by binary inputs I. and 12, respectively), then the transport
line unloads a part from the machine (denoted by a binary output 0). If both NC
machines are done, then the transport line remains idle until the Fanuc robot unloads
one of the finished parts to a temporary buffer.

If we approach this problem from a computer engineering perspective, then we
would like to synthesize a switching circuit with the following behavior. If either I. or
h (but not both) and h are activated then activate output O. The truth table for this
behavior can be summarized in Table 3.1.

Table 3.1 The Behavior of the Logic Controller

OUTPUT INPUTS

0 I. 12 h
0 0 0 0
0 0 0 1
0 0 1 0
1 0 1 1
0 1 0 0
1 1 0 1
0 1 1 0
0 1 1 1

If this behavior is implemented with digital electronics, such as a Programmable
Logic Controller, then the solution is to combine two Boolean gates (an
EXCLUSIVE OR gate and an AND gate). The behavior of these two gates is shown
in Table 3.2.

INTRODUCTORY CASE STUDIES 91

Table 3.2 Behavior of AND and EXCLUSIVE OR Gates

AND EXCLUSIVE OR
X Y 0 X Y 0
0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 1 1 1

The control logic design process is concerned with how to choose these two
gates and how the structures are determined. Even if we consider the case where each
gate has two inputs and one output, the number of possible structural solutions can be
enormous. In addition, the behavior of a control logic solution changes with each
structure. For example, from the simple behavior of the AND and EXCLUSIVE OR
gates, two different new design solutions can be built. The first design alternative is
shown in Figure 3.2. The second design alternative with the EXCLUSIVE OR and
AND gates has parallel inputs to derive a two bit adder with carry as shown in Figure
3.3.

EXCLUSIVE OR
-

AND

Figure 3.2 Design Alternative 1

AND -- SUM

EXCLUSIVE OR - CARRY OUT

Figure 3.3 Design Alternative 2

92 A MATHEMATICAL THEORY OF DESIGN

3.1.3 SERIAL BINARY ADDER UNIT DESIGN

A serial binary adder unit design constitutes an important component in computer
engineering design. The problem facing the designer is to synthesize a switching
circuit using logical gates that implement the following behavior:

Sum = X + Y + Carry-in (mod 2).
Carry-out = (X + Y + Carry-in - Sum)/2.

(1)
(2)

X and Y are the input bits. Carry-in and Carry-out are carry bits that represent the
input and output carry respectively. The initial problem as stated is: given two binary
inputs and a carry bit (received from previous calculations), devise a switching circuit
using logical gates of OR, AND or EXCLUSIVE OR that computes both the new
sum and carry bit.

A general approach to switching circuit synthesis is to use a decomposition
process. This approach views a system as an interconnection of subsystems, and the
components are modeled one for one. Together the interconnected system provides a
design that satisfies the. overall specification set. Hence, the designer devises a
switching circuit, using logical gates of OR AND or EXCLUSIVE OR, that
implements the behavior as described in Equations 1 and 2. Thus, the specifications
are reformulated so that the design solution satisfies two functional properties,
CARRY and SUM, as follows:

y x Carry-in

CARRY SUM

Carry-out Sum

Figure 3.4 High-level Specification for A Serial Binary Adder Design

Applying any conventional procedure for simplifying Boolean expressions, the
designer arrives at the following solution for CARRY and SUM (Figure 3.Sa-b).

~TRODUCTORYCASESTUDrns 93

X Carry-in y

Legend:

::::::e:r- AN 0

==D-- OR

Carry-out

Figure 3.5(a) CARRY Unit Design

x Y
Legend:

:::::[)-- X OR

Carry-in

SUM

Figure 3.5(b) SUM Unit Design

3.2 MECHANICAL DESIGN

3.2.1 MECHANICAL FASTENERS DESIGN [1J

Of the methods commonly available for joining materials and parts mechanical
fastening is the most versatile. The threaded method is classified as semi-permanent
and the riveted or stamped method as permanent. Adhesive fastening requires a more

94 A MATHEMATICAL THEORY OF DESIGN

carefully controlled environment for its application and may be classified as a
permanent joining method. Soldering and welding, which are permanent methods of
fastening, are more versatile than adhesives but less versatile than mechanical
methods.

The design of mechanical fasteners is a common design problem in mechanical
engineering. The incredible variety of mechanical fasteners (over two million
different kinds) has caused some manufacturers, who have large assemblies, to
carefully re-evaluate the function of each fastener for better standardization.
Fasteners may be divided into five main types: threaded, rivets, washers and retaining
rings, pin, and quick-operating.

The proposed problem is to design a new fastener according to certain given
specifications (including service capability, performance, mechanical, and physical
specifications) based on the knowledge that designers already have from the existing
fasteners. The result of the fasteners design process is a set of potential fasteners;
each of which consists of a set of structural attributes.

The structural description of every fastener is specified in terms of properties
that can be observed. The fastener is composed of six components that are common
to all fasteners: drive, head, shoulder, body (shank), tail, and tip (point). The drive is
the structure that forms the interface to the fastener actuator. The body is the
structure which occupies the hole in the plate. The head and tail are the structures that
provide the tensile forces to the fastened plates when the plates are pulled apart. The
point is the structure that enters the hole first when the fastener is actuated.

Besides these five essential structural features, fasteners can be specified by the
nominal size (fraction diameter), number of threads per inch, thread form (the
configuration of the thread in an axial plane), and thread fit (that specifies the
allowance between the nut and the bolt). Fasteners may also be identified by the
materials from which they are formed. Fasteners are made of dozens of materials
such as ferrous. non-ferrous, and non-metallic (plastics). Such variety is necessary
with the almost limitless combinations of conditions in which fasteners are expected
to perform.

The functional abstraction of a design is usually determined by the structural
hierarchy. For instance, the function of a fastener is to hold two plates together. This
is done by the fastener that transmits the load to the fastened parts. The fastener is
actuated with the drive, and is inserted in the hole. In addition, the function of the
fastener may depend on a second device such as a nut. Other functional attributes that
are commonly used to describe the function of a fastener are the physical,
mechanical, and performance characteristics. Physical properties are inherent in the
raw material and remain unchanged. Such physical properties as density, coefficient
of thermal expansion, electrical resistance, thermal conductivity, and magnetic
susceptibility all have importance and frequently dictate fastener material selection.
Mechanical properties identify the reaction of a fastener to applied loads. Rarely are
the mechanical properties of the fastener equal to those of the raw material from
which it is made. Examples of mechanical properties are tensile strength, yield
strength, hardness, and ductility. Performance properties are functional design
features. built into the fastener in order to satisfy service application criteria. Criteria

INTRODUCTORY CASE STUDIES 95

for service application include retractability, required modifications to the hole,
degree to which access to the back of the second plate is required, ease with which
the fastener can be actuated, insertion-case, adjustability, locking ability, prevailing
torque, sealing, and the precision with which the fastener laterally locates the first
plate with respect to the second plate.

The functional attributes are derived directly from the structure of a fastener, or
may include other sub-functions. The relation is usually described as causal and
governed by the physical laws, as ilIustrated in the following:

• The key to proper fastener selection (that is selecting its five essential structural
components) is knowing what job (mechanical as well as service application) the
fastener is expected to do and then making the specifications accordingly. For
example, permanent fastening is often done with rivets. Sizes are designated by
body diameter and length and range from those used in bridges to those used in
small toys and watches. Blind rivets are used to fasten together plates when only
one side of the assembly is accessible. Quick-operating (or quick release) rivets
are used to fasten sheet-metal parts that must be spring pressured, periodically
opened, yet securely closed. Pin rivets are used as a locking collar to shafts and
hinges.

• The strength (a functional attribute) of mating threads depends on adequate
engagement or overlap of the thread in the transverse direction (a structural
attribute). Ample evidence shows the desirability of having plenty of "breathing
room" between mating threads to accommodate local yielding, thread bending,
and elastic deformations [1]. In general, medium thread fit with low- and
medium-strength materials are used for designing high strength fasteners.
Alternatively, the designer may use a closer thread fit with materials of higher
tensile strength and lower ductility.

• Fasteners are available in almost any material. Common considerations for
material selection are environment, weight, load characteristics, cost, reuse, and
life expectancy. Aluminum is used where a high tensile strength-to-weight ratio
is required. It is also used for corrosion resistance and appearance. Brass in a
cold-drawn state has a greater tensile strength than mild steel and has a higher
resistance to corrosion. It also has a high lustrous finish and is non-magnetic.
Stainless-steel fasteners are used where problems of corrosion, temperature, and
strength exist. Plastic fasteners have excellent corrosion resistance. Salt water
has no effect on nylons and mineral acids have no effect on polyvinyl chloride.
Plastics are recommended where good thermal and electrical insulators are
required. However, plastics are not recommended where high tensile, operating
temperatures or shear strengths are required.

• Some functional attributes can be complex and not easily inferred from one
structural attribute. In this case, other sub-functions may be included in order to
simplify the process. For example, the strength of the fastener (its ability to
support and transfer loads) is determined by the tensile strength, fatigue strength,
hardness, ductility, toughness, shear strength, torsional strength, stress rapture,
and impact strength. Tensile strength is determined by the material and tensile
stress area. Fatigue is determined by the material, head size, thread size, threaded

96 A MATHEMATICAL THEORY OF DESIGN

length, fillet, fabrication and surface structure and so on. These properties, in
turn, are determined by the structural attributes of the fasteners (including
dimensions and materials).

3.2.2 SUPERCRITICAL FLUID CHROMA TOGRAPHY (SFC) DESIGN [6J

This problem is related to a Supercritical Fluid Chromatography (SFC) design. SFC
facilitates the analysis of complex, high-molecular-weight or thermally-Iabille
mixtures (such as polymers, pharmaceuticals, foods, petrochemicals, pesticides). SFC
utilizes a highly compressed gas, which is above its critical temperature. At the
critical point, the vapor and liquid phases of substances have identical temperatures.
The properties of supercritical fluids lie between those of gases and liquids. This
facilitates the easy transport of analytes through the chromatographic column. The
key to the effectiveness and versatility of SFC is the ability to change the density of
the mobile phase, which changes the fluid's chromatographic properties (including
solution, diffusion, and viscosity). A high level schematic view of SFC is shown in
Figure 3.6.

HPLC Injection (Sample)

)
High Pressure
Pump

Column

Figure 3.6 High Level Schematic View of SFC (adapted from [6])

Following is a brief sketch of the evolution of the SFC. By studying the literature
and understanding the chromatographic process, designers arrive at a tentative design
solution that consists of pump, control and oven units. The oven unit is further
divided into injection, oven and detector units. This tentative design involves the
following process: carbon dioxide is compressed to the desired pressure and pumped
into the column and the detector; the sample mixture is then injected through the
injector to the column with the carbon dioxide; and separation takes place. The
detector controls the pump unit by detecting the amounts of the different compounds
in the sample mixture. The next step is to design the various modules: pump, oven,
injection device, control device, and detector.

Let us examine the (partial) evolution of the design pump unit. The initial design

INTRODUCTORY CASE STUDIES 97

specifications as stated are: (1) it has to be pulseless; (2) it should be able to
compress carbon dioxide. By invoking a large knowledge-base the designer in our
case selects a syringe pump. After choosing the type of pump, an additional
specification is derived: (3) the number of experiments per filling should be
optimized. This specification is modified to the following: (4) the pump must be
large; and the pump motor should generate high speeds, have high torque, and be
highly accurate. Based on previous knowledge, the designer refines the specifications
regarding the pump to include the design of its subunits (e.g., the power source,
cylinder, gear, motor, piston rod). For example, in order to generate high speed,
torque, and accuracy; the designer selects a stepper motor.

3.2.3 GEAR BOX DESIGN (WORMGEAR REDUCER)

A machine is a collection of parts designed to transmit and modify motion and force.
The moving parts of a machine are connected such that a change in the position of
one piece is likely to change the position of the others. Each part of a machine must
be in contact with at least one other part. Two parts that are in contact, and may have
relative motion, form a pair. Two elements of consecutive pairs may be connected
together by a link. An assemblage of pairs connected by links constitute a kinematics
chain, a mechanism, or a gear. Because they are capable of transmitting motion and
power, gears are among the most important of all mechanical components. The
remainder of this section illustrates some of the issues involved in the development of
a gear box.

Confrontation

Suppose that you are an engineer at the Sears & Roebuck Co. The director of the
Product Development Department asks you to design a mass production device that
can be used for lifting light objects or opening garage doors in family homes or small
warehouses.

The specifications for the device are not clear enough for you to start the design.
You must speak with the Director for more details. Based on your experience, the
device he has asked for is called a "Hoist." Unlike hoists used in industries and
construction sites (KB), this one should be small, light, and affordable (low cost).
Considering most moving and loading tasks in family homes and small warehouses
(KB), the capacity range for the hoist should be around 100 to 150 lbs.

Based on hoists used in industries and construction sites, the hoist should also
include a cable, drum, coupling, brake, reducer and crane motor. The working
principle ofthe hoist is shown in Figure 3.7.

98 A MATHEMATICAL THEORY OF DESIGN

calole

load
reducer Motor

Iorake
=

drUM =
coupling

Figure 3.7 The Working Principle of the Hoist

Problem Formulation

Suppose that we are going to select the drum, cable, and electrical motor directly
from the market. For general use (in small warehouses), the lifting speed should not
be very fast (V = 30 feet per hour should be suitable). To raise a load of F =150 lb., a
wire cable must have at least 10 times the load 150 lb.; e.g., 1,500 lb. From the
catalog, we select the 1/4 inch diameter wire cable (breaking strength 4,000 lb). To
insure a longer life for the rope, overbending the rope must be avoided. Thus, the
drum diameter should be large. According to the engineering recommendation value,
the drum should be 15 to 20 times the rope diameter. Thus, we choose ddr = 3.75

inches drum diameter. Most industrial electric motors have a synchronous (no load)
speed of nm = 1,500 rpm. The basic requirement of designing a reducer is replaced

with the following specifications and constraints:

Input speed:

Output reducer speed:

Reduction ratio:

ni = 1500rpm (motor speed)

12V 12*30
no = --= - 30.57 rpm

TrLidr 3.14*3.75

R =!!.L = 1500 = 49.067 = 50
no 30.57

(1)

(2)

(3)

mTRODUCTORYCASESTUD~ 99

Output power: p =~= 150*30 =0.136(h)
o 33,000 33,000 P

(4)

Duration: 2000 hours per year for 5 years with a reliability of 90%

Overall dimension: 8" x 8" x 8" (L x W x H)

No special material or special machining process should be used.

Design Concepts

Many different types of reducers can be designed. We can start by drawing some
preliminary sketches (conceptualizations) as shown in Figure 3.8. Belts, chains,
gears, and worm gears can be considered the means of transmission.

Many criteria have to be considered (including the weighting factor associated
with each criteria):

1. Production (including material and machining costs) and operation costs (0.1);
2. Overall dimensions and weight (1);
3. Convenience of use and maintenance (0.7);
4. Reliability and endurance (0.4);
5. Simplicity (0.8).

or"", ~nd rapt'

(0) (b)

(c)

Figure 3.8 Sketch of the Design Concepts

Table 3.3 shows the rating of concepts with respect to criteria (lower is better):

100 A MA THEMA TICAL THEORY OF DESIGN

Table 3.3 The Rating of the Design Concepts

V belt & chain spur gears worm &
pulley worm~ear

complexity of simple (1) simple (1) simple (1) simple (1)
the structure

material steel (1) steel (1) steel (1) steel and
bronze (1)

overall large (6) medium (4) compact (3) small (1)
dimension

transmitting low (6) high (2) high (2) high (2)
accuracy

mechanical 0.7-0.9 (2) 0.8-0.9 (1) 0.8-0.95 (1) 0.45-0.85
efficiency (3)
machining lathe (1) lathe, mill (2) lathe, mill or lathe & hob
equipment hob (4) (2)
machining low (1) medium (2) high (3) high (3)
precision
required
assembly easy (1) easy (1) easy (1) easy (1)
difficulty

noise level low (1) high (4) medium (2) medium (2)
maintenance change belt (4) lubrication (6) check oil (l) check oil

(1)

The belt concept is the simplest transmission mechanism since pulley and shaft
can be turned on a lathe. Since the power is transmitted by friction, the ratio is
unstable when the load changes. Moreover, a certain distance must be maintained,
between two wheel centers, to insure that the belt cover angle is greater than 120
degrees. This makes overall dimension of the design rather large.

The spur gear mechanism can obtain accurate transmission ratios, and results in
a more compact design. However, a special gear generating machine (such as hob) is
needed.

For both belt and spur gear mechanisms, at least two or three stages are needed
to obtain a reduction ratio of 1 :50. This means that more parts need to be included in
the design. The design thus becomes more complicated in structure and larger in size.

The worm and wormgear mechanism is widely used for high ratio speed change.
It can reach a ratio of - 30:100 in a single stage. This mechanism also has a simple
structure and small dimension. Thus, comparing these alternatives, we decide to
select the worm and wormgear concept.

We will not pursue the development of the wormgear reducer further except to
note that the gear box was designed in detail and manufactured in the ADMS
Laboratory at Boston University. During this process, we designed the structure of
the transmission parts (worm and wormgear), shaft, bearings, casing (box), keys,
couples, '0' rings, screws, and the method of lubricating a sealing. The specifications

INTRODUCTORY CASE STUDmS 101

(constraints) considered included strength, rigidity, reliability, wear, friction, cost,
ratio requirements, and space limitation. In chapter 17, we illustrate the development
of the gear box including its complexities.

3.3 FLEXIBLE MANUFACTURING SYSTEM DESIGN [2]

3.3.1 WHAT IS A FLEXIBLE MANUFACTURING SYSTEM?

A Flexible Manufacturing System (FMS) can be defined as a computer-controlled
configuration of semi-independent work stations with a material handling system
designed to efficiently manufacture multiple parts at low to medium volumes. Figure
3.9 shows a conceptual drawing of a FMS. The definition and illustration highlight
the three essential physical components (structural attributes) of the FMS:

• Standard numerically controlled machine tools;

• A conveyor that can move parts and tools within the network of machines and
workstations;

• A control system that coordinates the functions of machine tools, part-moving
elements, and work-pieces.

In most FMS installations, incoming raw work-pieces are loaded onto pallets at a
load station that is set apart from the machine tools. They then move via the conveyor
material handling system to queues at the CNC machines where they are processed.
The flow of parts in the system is directed by the control computer, which acts as the
traffic coordinator. In properly designed systems, the holding queues are seldom
empty, i.e., there is a work-piece waiting to be processed when a machine becomes
idle. When pallet exchange times are short, the machine idle times become quite
small.

The number of machines in a system typically ranges from 2 to more than 20.
The conveyor network system may consist of carousals, conveyors, carts, and robots.
The important aspect of these systems is that the machine, conveyance, and control
elements combine to enhance productivity and maximize machine utilization without
sacrificing flexibility.

FMS technology has a relatively brief history. The original concept emerged in
the mid- to late-1960's. It was a logical outgrowth of progress in applying numerical
control, particularly attempts at factory-wide direct numerical control. During the
1970's, a number of FMSs were installed, and following a problem-shakedown
period typical of new technology they became operational. Today, not only is the
technology proven, it is increasingly available. A growing number of machine-tool
builders are able to supply complete systems.

102

SGI
Design
Station

CNC
Station

A MATHEMATICAL THEORY OF DESIGN

CNC Machines
(Robot) I Design I

Station

Design I
Station

Conveyor

Quality Control
Station

(Robot + Vision)

Super
visory

Control
Station

+
PLC

Figure 3.9 Schematic Configuration of a Flexible Manufacturing System

3.3.2 FMS CONFIGURATION DESIGN ISSUES

Once parts and machine types have been selected, it is possible to proceed to the
system design process. There are several functional attributes involved:

• Flexibility - flexibility in an FMS has many aspects. The most important is the
random-processing capability which allows multiple parts in the system at one
time. Another type of FMS flexibility is fault tolerance. FMSs can continue to
operate almost normally when there are machine failures. This is done by other
machines "covering" for the one that is out of service. The ability to operate
virtually untended is another type of FMS flexibility. Maintenance and part
loading can be performed during the first shift, while much of the actual
production occurs during the second and third shifts.

Desired flexibility affects FMS design. If an untended second- and third
shift operation is preferred then some automatic, in-line inspections may be
needed. Very high system availability may not only require more reliable
machines, material handling system (MHS), and computer but also back-up
computers, duplicate machine types, and alternative routings in the MHS.
Flexibility affects other design features as well. If an FMS is expected to handle
a very wide range of part types, the machines will have fairly general
characteristics such as five-axis capability, reasonable precision, more than
minimum horsepower, etc. A desire to accommodate several parts
simultaneously (without batching) may demand large storage capabilities. A
related aspect is the expandability of the system to accommodate future increases
in demand. The degree of expandability desired will affect the choice of MHS
and the arrangement (layout) of equipment in the configuration.

INTRODUCTORY CASE STUDIES 103

• Process Planning - there are two areas of critical importance: tht:: loading
approach used for each part and the selection of cutting tools. In a FMS, it is
important to minimize both manual and automatic handling of the part. Careful
attention to loading designs can help. The use of window-frame and pedestal
type loading allows the greatest amount of access to a part when using either
four- or five-axis machining centers. The system should be designed to have only
one load/unload sequence. Minimizing the number of load/unload steps can be
done by matching machine axes. For example, if vertical turret lathes (VTLs) are
used for rotational work then vertical machining centers can be used for
prismatic work.
Tool storage capacity needs can be minimized by standardizing the tool
selection. For example, a standard 2- or 3-inch diameter shell mill could be used
for all milling operations, except where restricted by corner radius or pocket
size.
The FMS feeds and speeds that should be used depend on the rigidity of the part,
the ability of dedicated pallets to hold the parts better than standard component
built pallets, and the use of new machine tools (perhaps with adaptive control) to
maintain optimum cutting parameters.

• Precision - if high-precision machining is required, a high precision machine
must be included in the system. Alternatively, the designer may be willing to
customize general-purpose equipment to obtain the desired accuracy (if the cost
can be justified). Finally, the designer may consider environmental control to
obtain the desired accuracy. The environmental control specification derives the
following structural features: temperature control of the FMS area,
part/fixture/pallet temperature soaking, and coolant temperature conditioning. It
may also derive temperature control of the inspection equipment.

• System Availability - machine availability (usually expressed as a percent) is the
time during which a machine is not failed, i.e., the time it would be processing an
available part. The availability is also called the "up-time" percentage. System
availability is the percentage of time that none of the system components are
failed, i.e., all machines, controllers, computers, the MHS, etc. are "up". The
average availability of FMS components must be high if the average system
availability is to be high. Therefore, a common design rule is to incorporate
redundancy in the system. Thus, a system may contain two or more machines of
each type, or it may have machines backing up dissimilar machines, e.g., a
machining center might substitute for a multiple-spindle machine. Redundancy in
the MHS implies multiple part carriers (e.g., carts) and multiple paths between
stations (in case certain links fail). Obviously, there are tradeoffs between system
redundancy, system complexity, component reliability, capital cost, and lost
production cost.

• Material Handling System - The simplest MHS consists of a person and a cart,
manually moving pallets and parts from machine to machine under computer
direction. This manual system will work for small FMSs, where the distance
between machines is short and parts are relatively small and light. To reduce
machine waiting times, a shuttle loader can be added to each machine tool.

104 A MATHEMATICAL THEORY OF DESIGN

However, for larger systems and/or heavier parts, automatic MHSs are more
applicable. These systems consist primarily of carts, conveyors, or robots that
automatically transport pallets to and from shuttle loaders. If a loader is full, the
pallet will circulate in the MHS, wait in front of the machine, or go to an off-line
buffer storage area. Usually, a person is required to load and unload parts at the
load/unload stations, but the rest of the system is computer controlled.

• Tool Storage Capacity - Machines with large tool-changer storage capacity are
generally chosen because they reduce the need for production batching, and they
can facilitate the processing of parts rerouted from failed machines.

• Off-line versus On-line processes - Several processes; such as very high
accuracy machining, washing, inspecting, stress relieving, heat treating, de
burring, finishing, marking and assembling, can be done off-line. If the cost of
sending parts off-line and then returning them is high (especially if they must be
unloaded from and reloaded to their pallet), then some of these processes could
be on-line.

The design of an FMS configuration (guided by the above listed functional
requirements) is a three-step process. The steps are:

1. Estimate the work content of the selected parts: (1.1) develop FMS loading
process for the selected parts; (1.2) plan the process for each part in detail,
constrained by the limited tool capacity of the FMS; (1.3) estimate production
requirements for each part; (1.4) calculate part cycle times and tool usage.

2. Design configurations: (2.1) select specific vendors' equipment for each
machine class; (2.2) estimate the minimum number of machines (spindles)
needed for each machine class; (2.3) modify the estimated number of machines
to account for shop and system efficiency, tool storage capacities, and machine
redundancy desires; (2.4) add desired non-machining processes, such as
automated inspection, material handling system, etc.; and (2.5) develop
variations on the design configuration.

3. Evaluate candidate FMS configurations: (3.1) simulate the operation of each
configuration; (3.2) improve configuration designs until each provides
satisfactory performance measures or is rejected; (3.3) examine and evaluate
intangibles such as flexibility, accuracy, etc.; and (3.4) choose the configuration
that best satisfies both tangible and intangible requirements.

3.4 DISCUSSION

In this section we discuss some observations derived from the design case studies,
and point out the direction of our future work. The design case studies reported in
this chapter illustrate the complexity of the design process. While considering the
design synthesis problem in the engineering realm, the cognitive aspects of designers
cannot be ignored. Designers use the physical laws and also a priori designs based on
their experiences. Hence, a good design synthesis should consider both these aspects.

mTRODUCTORYCASESTUD~ 105

The problem with studying design is understanding the relationship between
function and structure. The function of a device is its purpose or intended use. A
functional description consists of a set of functional attributes that might be
characterized by a truth table, a performance curve, or a set of verbal phrases. The
structure of a device is the information about the interconnection of modules
organized either functionally (how the modules interact) or physically (how the
modules are packed). A structural description consists of a set of structural attributes,
which might be communicated through a drawing, model, or a direct implementation
of the device itself. There are functions that are directly derived from the structure of
a device (by different combinations of structural attributes). Other functional
attributes may be more complex, and can not be inferred from one observable
structural property.

Design is the transformation between a functional and structural description of a
device. Design begins with some goal specifications of functional attributes. It
becomes the designer's task to ascertain the causality for specific behaviors that lead
to the pre-defined functionality, and then to generate a corresponding structure.
Physical laws govern the functionality of the device. Hence, structural descriptions
should be related to physical laws, and the physical laws should be either conjuncted
or disjuncted to interpret or generate behavioral descriptions through causal
reasoning.

The design case studies reveal a simple unifying notion: that the design process
can be viewed as an alternation between specifications (functional attributes) and
structural attributes. The alternation is performed in order to remove discrepancies
between the behavior derived from the current structural attributes, and the current
unsatisfied specifications of functional attributes. Only information, rules, and laws
included in the designer's knowledge-base can be used in the process. The design
process stops when adaptation is achieved. However, the process may resume if the
specifications are subsequently altered, which disturbs the previous state of
adaptation.

The search for design solutions is carried out by generating ideas, either
intuitively or systematically (e.g., concepts of reducers, material handling systems,
or "smart card" architectures) for the most appropriate methods at a given phase. The
aim in seeking many solutions at a given phase is to explore the 'space' created by
the great number of theoretically possible solutions. It is seldom possible to examine
all solutions, as they are often innumerable. Such design problems are referred to as
NP-complete (NPC), or Non-deterministic Polynomial time Complete problems [3].
The CPU time required to solve an NP-complete problem, based on known
algorithms, grows exponentially with the "size" of the problem. There exists no
polynomial time transformations for NPC problems nor are there any polynomial
time algorithms capable of solving NP problems; therefore, these problems are
considered to be "open" or unresolvable problems.

Despite the size of the 'solution space,' it be examined thoroughly so that it
includes the main solution types. Only then can we say with reasonable likelihood
that a satisfying solution can be chosen. In order to choose a solution we often
represent designs more abstractly then is required for detailed design. More

106 A MATHEMATICAL THEORY OF DESIGN

specifically, we present a design formalism that explicitly represents the fundamental
strategies and mechanisms in the design, i.e., the content or the semantics of the
design. Through the realization of such a syntactic and semantic formalism, it
becomes possible to articulate the essential concepts of design, and to model the
artifacts and process of design across design disciplines.

The design case studies suggest that an inheritance scheme for data abstraction
would be highly useful in making the design synthesis problem tractable. To achieve
this goal, some of the design synthesis mechanisms described in subsequent chapters
are implanted into programs, and constitute an intelligent computer-aided design
system called CADAT (Case-based Design Advisory Tool), which is as introduced in
chapter 10. When there is a need for a new design, the design specifications are
usually given as functional or behavioral attributes. The CADAT system uses its
knowledge of existing designs to link these attributes to the functional descriptions.
This is done through the system hierarchy until they are linked to the physical
components. The system interactively progresses through all the design
specifications, and calls for user judgment at each design cycle. This enables
participation in the construction of all the physical components that satisfy the initial
design specifications.

REFERENCES

1. Blake, A., What Every Engineer Should Know about Threaded Fasteners. New York: Marcel
Dekker, 1986.

2. FMS Handbook, CSDL-R-1599 U.S Anny Tank Automotive Command under contract No.
DAAE07 -82-C-4040, 1983.

3. Garey, M.R. and Johnson, D.S., Computers and Intractability: A guide to the Theory of NP
Completeness. San Francisco: W. H. Freeman and Company, 1979.

4. Maimon et. aI., "Electronic Data Storage on a Conveying Pallet," Technical Report, The Robotics
Systems Laboratory, Tel-Aviv University (1990).

5. Shmilovici A., and Maimon 0., "Suggested Uses for "Data Tag" Technology in Distributed Control
of Flexible Manufacturing Systems," Technical Report, Department of Industrial Engineering, Tel
Aviv University (1993).

6. Sriram, D. and Cheong, K., "Engineering Design Cycle: A Case Study and Implications for CAE,"
In Knowledge Aided Design, Academic Press, New York, 1990.

PART TWO

FORMAL DESIGN THEORY (FDT)

CHAPTER 4

REPRESENTATION OF DESIGN ARTIFACTS

This chapter introduces the first part of Formal Design Theory (PDT): representation
of design artifacts. The main goal is to layout a domain independent modeling of
design artifacts. The "minimalist" reader may skip over section 4.2.3, which provides
an analysis of the artifact representation scheme, and proceed directly to the next
chapter.

4.1 INTRODUCTION

The artifact space (alternately the attribute space, structure space, or the design
space) is based on the following hypotheses:

Hypothesis 4.1 (Entity-Relational Knowledge Representation): an artifact
representation is built upon the multiplicity of modules (attributes) and relationships
among them.

Hypothesis 4.1 supports the stage of conceptual design. At the conceptual design
stage. continuous properties are usually discretized. Although discretization might
cause the design evaluation process to be imprecise, in most situations the aim of the
conceptual design stage is to generate a variety of alternative concepts (described in
terms of attributes or the structure of the artifact) that will meet a required set of
specifications early in the project rather than to produce detailed engineering
drawings. Therefore designers, at this stage, look for a conceptual design that will
meet a pursued set of specifications, applying a set of modules

Hypothesis 4.2 (Nested Hierarchical Representation): the design of any
complex artifact can be considered at various abstraction levels. The general
direction of design is from more abstract to the less abstract levels. A design at any
particular level of abstraction is a description of an organized collection of
constraints (such as various structural, cause-effect, functional, and performance
features) that are to appear in the physically implemented design.

These premises lead us directly to establish the artifact space as an algebraic

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998

110 A MATHEMATICAL THEORY OF DESIGN

structure. An artifact is represented by a pair <.M, D. M stands for the set of
modules (or attributes) which the artifact is comprised of; and C denotes the set of
relations that represent the relationships among the modules. In order to capture the
essence of design as stated by Hypothesis 4.2, a hierarchical construction of artifacts
from other artifacts is also developed. Consequently, the general set of modules is
classified into basic and complex modules. Basic modules represent entities that can
not be defined in terms of others. Complex modules are defined hierarchically in
terms of other modules, where the effects of their interactions are captured.

To motivate the proposed generic artifact representation scheme, consider two
typical examples:

1. In the conceptual design of a certain power transmission unit, the synthesis
problem is broken down into sub-designs that include the design of speed
reducers, clutches, motion converters, etc. Furthermore, the design of a speed
reducer can be broken down into sub-designs corresponding to different types of
speed reducers, such as gears, chains, etc. The design solution embedded in this
tree structure takes the form of a path along the branches (which defines the
interaction among modules), or may be simply an individual leaf of the tree.

2. Another example, where modules seem less structured, concern computer
program design. Given an implementation of an algorithm in any language, it is
possible to identify all the operands (modules), defined as variables or constants,
that the implementation employs. Similarly, it is also possible to identify all of
the operators, defined as symbols or combinations of symbols, that affect the
value or ordering of an operand. The concept that an algorithm consists of
operators and operands, and nothing else, is most easily verified by considering
simple digital computers whose instruction format consists of only two parts: an
operation code and an operand address. Following the stepwise refinement
principles of program design, first proposed by Dijkstra [38], modules at each
stage of the refinement procedure can be identified as statements expressed in
pseudocode. The final stage will produce a program expressed in a compatible
programming language.

Although these examples provide no indication whatsoever that designers have
'modules' in mind, it supposes to demonstrate the descriptive competence of the
model introduced in this book. The trend of using 'object oriented' methods in large
computer software projects also supports the foregoing postulates.

Any prescriptive approach to design should have some ability of forward search
(from basic components toward complex components) and backward search (from
complex components toward basic components). To perform these search strategies,
the current chapter rigorously defines three types of artifact space operators, and
explores their characteristics. These operators are able to manipulate transitive
relationships among several relations, and perform any search tasks on a given
artifact space. Two central types of operators are defined, termed as Composition
(undertake composition tasks) and Decomposition (undertake decomposition tasks)
operators. Integration operators combine both.

REPRESENTA nON OF DESIGN ARTIFACTS 111

The chapter is organized as follows: Section 4.2 presents the main part of the
chapter. Section 4.2.1 is devoted to a formal statement of the design space. Section
4.2.2 presents several examples. In Section 4.2.3 some properties of this
representation are elaborated by means of several design-space operators. Finally,
Section 4.3 concludes with some general remarks and directions for future work. For
convenience, it was deemed to present all proofs in the appendix.

4.2 MODELING THE ARTIFACT SPACE

In this section we gradually ~onstruct a representation scheme of design artifacts.

4.2.1 THE BASIC MODELING OF DESIGN ARTIFACTS

Definitions 4.1: Basic Notations

1. The collection of all subsets of a given set Z is denoted by P(Z). For example, if
Z = {a, b, c}, then P(Z) = if, {a}, {b}, {c}, {a, b}, {a, c}, Z}.

2. The finite n-tuples (briefly, tuples) are denoted between angle brackets, for
example, <a, b, c>. The symbol </> means the empty tuple.

3. The tuple set of a set Z is denoted by T(Z). The elements in T(Z) are ordered
tuples whose components belong to the set Z. The set T(Z) contains all
permutation of possible tuples. For example, if Z = {a, b, c} then T(Z) = {</>,
<a>, , <c>, <a,b>, <b,a>, <a,c>, <c,a>, <b,c>, <c,b>, <a, b, c>,

<a, c, b>, <b, a, c>, <b, c, a>, <c, a, b>, <c, b, a>}. Let lSi denote the

cardinality of a set S, obviously IT(Z)I > Ip(Z)1 if IZI > 2.

4. The symbol §.. is used to refer to an element in a tuple. For example, a L <a, b,
c> is true.

Sets will be denoted by capital letters, whereas small letters will denote
individual elements. Appendix B summarizes the set theory terms used in this
chapter.

The artifact's representation scheme is primarily based on the hypothesis that
any artifact is built upon the multiplicity of modules and relationships among them.
We make here a fundamental assumption by letting the design representation scheme
of artifacts to be discrete. This assumption is compatible with common discretization
strategies characterizing the conceptual stage in the progressive refinement that
occurs during a product's life-cycle.

Definition 4.2: Artifact Space (0) - An artifact space is a tuple 0= <.M 0' Co,

M* >. Alternately, 0 is referred to as the attribute space, structure space, or the

112 A MATHEMATICAL THEORY OF DESIGN

design space. Let us discuss each component in turn,

Atomic Modules (Atomic Attributes)

M ° is a set of atomic modules. Atomic modules cannot be defined in terms of other

modules (except trivially by themselves). The set M ° represents primitive

components which can be assembled to construct complex modules. Consider for
example the design of a computer environment (e.g. communication networks): The
basic modules can be programs, data files, subroutines. In the design of analog
circuits atomic modules may represent resistors, capacitors, operational amplifiers,
and diodes.

Relations

CO designates a pre-assigned set of relations. c E CO denotes a collection of tuples,
each represents a relation among the elements (modules) within the tuple. The
relationships among modules may also be expressed in non-mathematical terms (e.g.
in logical terms). Consider for example the design of an analog circuit; the relations
among atomic modules may be represented by 'information' and 'physical' relations
among capacitors, resistors etc.

Complex Modules (Artifact Description)

M* designates the set of all modules, i.e. M* = {Atomic modules} u {Complex
Modules}, where 'Complex Modules' is defined hierarchically in terms of predefined

modules as follows. An artifact m E M* is defined by a set C!: CO such that C =
{c i } iel ' where c i = {M i,k = <m i1 ' m i2 ' ... , min> k : C i «m iI' m i2 ' ... , min> k)

is true} !: (M*) n. C i «m iI' m i2' ... , min> k) designates a formula (a rule or

behavior) associated with the relation c i' and (M *) n is a Cartesian product of n

copies of the set M* . The k-th element M i,k of c i' is termed as the k-th assignment

of the relation c i .

Hence, an artifact m is defined in terms of assignments {M i,k } and set C; such

that C!: CO; and M i,k denotes an ordered set of modules. We define M = U {m:
i,k

m sM i,k } as the carrier set of m and C as the relation set of m. For convenience the

notation m = <M, C> is often used.
We assume that the assignments within a relation are arranged according to a

certain predefined rule (e.g., a lexicographic order rule). The set of artifacts that are

REPRESENTATION OF DESIGN ARTIFACTS 113

defined on the carrier set M and the relation set C is denoted by < M, C > (thus, m E

<M, C».
Since the definition of complex modules is hierarchical, the terms 'artifact',

'complex module' and 'module' are used interchangeably. The foregoing definition
allows for unfeasible artifacts. To eliminate those artifacts from further discussions,
we define in the sequel legal (feasible) artifacts.

Input-Output Models

In most cases the ordered set of modules M i.k (an assignment of a relation c) will be

included in the product set IT M a (where A is a suitably chosen index set
aeA

formalizing the different types of attributes in M*), and hence the behavior c ~ IT
aeA

M a becomes a relation between the basic modules mae M a' ex E A. All further

mathematical structure on product set, as maps, functions, graphs, resulting in a
relation is thus in principle applicable in order to further structure mathematical
design models. An important special case is recovered by assuming that M = I x 0,
and that c is the graph of a map. In an I/O map it is possible to interpret the attributes
of the basic modules in I as causing the attributes of basic modules in O. Note that an

I/O map can be viewed as being described by the behavioral equation MO = c(M 1)
(see Definition 4.2).

In this work, we do not make a distinction between inputs and outputs. There are
a number of arguments for this point of view. First, since we have a tendency to think
of mathematical models in terms of equations, most models being presented in the
form, it is important to emphasize their ancillary role: it is the behavior, the solution
set of the behavioral equations (that is, c(<m I • m 2' m n >)). not the behavioral

equations themselves, which is the essential result of a modeling procedure. Second,
from a physical point of view, it may be unclear what the inputs and outputs are
(think of the question whether an electrical circuit admits a structural or a behavioral
description). Third, which modules will be used as input or output in a device may
very well depend on the ultimate purpose for which it will be used (will a robot arm
be programmed to follow a certain path or to exert a given force?). These and similar
considerations speak in favor of taking Definition 4.2 as the starting point of a
general design theory. It remains important, however, to incorporate inputs and
outputs in this setting.

Types of Modules

Referring to types (categories) of modules instead of individual modules will allow
for intentional characterizations; and is also needed in order to facilitate the

operational definition of legal modules as given below. Let 7t(M*) be a partition of

114 A MATHEMATICAL THEORY OF DESIGN

the set of modules, i.e. a family of non-empty subsets of M* such that each element

of M* belongs to exactly one of these subsets. Formally,

re(M*) = (rei lre i E P(M*), rei ::f:. 0, Un.i = M*, and rei n re j = 0 for all i,j E

iel

f}. We will think of each rei as a type; and assign to it a mnemonic type name {

Every module in re i is said to be an instance of t i , or is said to be of t i type. For
example, in circuit design, modules can be divided into two mnemonic type names:

t 1 = 'Basic-Signal' (input signal) and t 2 = 'Compound-Signal' (compound
Boolean operation of several signals).

Legal Modules

One of the features of the design space is the ability to enforce legality constraints.
We will characterize the term 'legality' by introducing three types of legality
constraints, each represents a different aspect of legality. The first, and most general
one, dictates what "configurations" - i.e., collection of assignments and their related
relations - are permitted as part of legal modules. To put it in illustrative words,
assume that a relation is identified with a device (or process) which impresses a
specified function on quantities flowing through it (by inputting modules such as
mass, energy, information, or a combination of the three). Then, the first legality
constraint defines the legal relations among several devices. This is a fairly general
characterization for introducing legal constraints. However, it is often useful - when
constructing real design artifacts - to consider further two special cases derived from
this general definition. The first special case defines the functioning of each
individual relation by specifying the tuples that are legally connected via the relation.
In our example, it specifies the imputed quantities of mass, energy and information
flowing through each device. The second special case distinguishes the functioning of
each individual module by specifying the tuples in which it is permitted to
participate. In our example, it describes the combinations of flowing quantities in
which each specified quantity is permitted to participate.

Function-Attribute Interface

We distinguish between the artifact space, a((also called tne attribute space) and the
function space, 9" (to be defined in chapter 5), each has its own algebraic structure.
The relation between the artifact space and the function space is performed via the
Analysis mapping, r : (l) ~ g,- which assigns to every complex module in the
artifact space a functional property (or functional description) in the function space.

To clarify the above terms consider the following example. a Bondgraphs is a
useful schematic language for representing designs in the function space [4]. The
bondgraphs language is used for describing the exchange of energy in systems
composed of lumped parameter elements. For example, transformers in bond graphs

REPRESENTATION OF DESIGN ARTIFACTS 115

(part of the function space) represent elements that convert effort in one medium to
effort in another medium (a functional property), and flow in one medium to flow in
another medium. Examples (part of the artifact space) of transformers include a
piston-cylinder that relates a fluid flowrate to velocity; and a motor that relates a
torque to current or an angular velocity to voltage. These will be expressed in our
formal setting as: npiston-cylinder, motor} ~ (transformer). The next chapter
further elaborates on these issues.

4.2.2 EXAMPLES

Example 4.1: Design of a switching circuit - Consider a simplified example of a
switching circuit: an electrical device having n inputs and one output. The signals are
binary: T, F. In electrical terms, F could be considered as ° potential and choose the
unit of potential so that the T value has potential I. Assume that the device has no
memory; i.e., the present output level depends only on the present inputs (and not on
past history). Then the output of the device is described by the Boolean function,

B(X l' X 2 , ... , X n).

Devices meeting all these assumptions constitute an essential part of digital
computer circuitry. There is, for example, the two-input AND gate, for which the
output is the minimum of the input. This device realizes the Boolean function B(O, 1)
= B(l, 0) = B(O, 0) = 0 and B(l, 1) = 1.

The problem facing a computer engineer is: Given B, find a circuit for which the
cost is minimum, subject to constraints such as a maximum allowable delay. For this
problem the engineer has a library of available devices. For example, the engineer
might have available NOT, two-input AND, three-input OR.

An artifact, which is associated with switching circuits (from a standpoint of its
wiring implementation) consists the following primitive modules and relations. The
modules (M 0) of a switching circuit are of three groups:

1. The set of Input signals whose elements are denoted by A, B, C, etc.
2. The set of Available devices whose elements are denoted by AND i' OR i '

NOT;, XOR i , NOR; etc.

3. The set of Output signal whose single element is denoted by Output.

The relations_(Co) are of two groups:

1. Input relation between an input signal and a device.
2. Wiring relation between two devices.
3. Wiring relation between a device and an Output device.

For example, consider the switching circuit of Figure 4.1 to be phrased in the
language of artifacts:

116 A MATHEMATICAL THEORY OF DESIGN

<C,AND 3>};

c 2 = { <AND I ' OR I >, < AND 2 , OR I >, < AND 3, OR 2 >, <OR I' OR 2 >};

c 3 = { < OR 2 , OutPUt>} }.

For example, ci ={M 11 , M I2 ,···, MIS} = {< m11' mI2>1' < m11' mI2>2' ... , <

m 11 ' m 12 > S }, and < m 11 ' m 12 > I = <A, AND I >.

It should be stressed that this representation is not unique. Consider a different
setting (from a functional view) whereby modules are classified into three groups:
Input, Latent and Output signals. The relations are designated by AND, OR, and
NOT. Thus, for example, the above switching circuit is represented in the new setting
(see Figure 4.1) as: m = {AND = {<A, C, SI>' <A, B, S2>' <B, C, S3> }; OR =
{<S I' S 2' S 4 >, < S 4, S 3' Output>} }; for example, the assignment <B, C, S I> is

interpreted as S I = B 1\ C, where' 1\' represents the Boolean operator 'or'.

,....-.,

c

B
(AND2)

I
~

~ ~
(OR2)

Output

A
(ORI)

(ANDI)

Figure 4.1 Design of A Switching Circuit

Example 4.2: Design of an electric light bulb - Consider a simplified example of
the incandescent electric bulb. The basic principle underlying the electric light bulb is
to raise the temperature of the filament - by transferring an electric current through it
- as close as possible to its melting point, resulting in radiation of light (see Figure
4.2a-b).

An artifact, which is associated with the electric bulb (from a functional point of
view) consists of the following primitive modules and relations. The modules (M 0) -

classified by their physical nature - are of three groups:
Group 1: The set of Electromagnetic devices whose elements are denoted by
LIGHT, CURRENT and ELECTRIC FIELD;
Group 2: The set of Mechanical devices whose elements are denoted by
SUPPORTS, ROD WIRES and FILAMENT;

REPRESENTATION OF DESIGN ARTIFACTS 117

Group 3: The set of Flow devices whose single element is denoted by GAS.

The relations (CO) - each expresses a functional operation which relates an input
module with an output module - are of seven groups: 'emit', 'hold', 'heat', 'conduct',
'force', 'contain' and 'prevent-evaporation'.

The universal set of modules M* is composed of four complex modules
(including the primitive modules presented above):

Class of modules of order 0:
Primitive modules: LIGHT, CURRENT, ELECTRIC FIELD, SUPPORTS, ROD,
WIRES, FILAMENT and GAS.
Class of modules of order 1:
GAS_BULB subsystem - mIl = (contain(BULB, GAS)}

SUPPORT subsystem - m 12 = (hold(ROD, SUPPORT)};

CURRENT subsystem - m 13 = (conduct(WIRE, CURRENT); force(ELECTRIC

FIELD, CURRENT)}
Class of modules of order 2:
HEAT subsystem - m21 = (prevent-evaporation(mll' FILAMENT); hold(ml2'

FILAMENT); heat(m 13 ' FILAMENT)};

Class of modules of order 3:
LIGHT-BULB system - m 31 = (emit(m 21, LIGHT)}.

FILAMENT

/
GAS

ROD

Figure 4.2a An Incandescent Bulb

118

LIGHT
BULB

A MATHEMATICAL THEORY OF DESIGN

..

HEAT

Prevent

r·············_-

I
I .
!Contam

l __
GAS-BULB CURRENT

..

Figure 4.2 b The Light Bulb System

Example 4.3: Design of a multistorey reinforced concrete building - Figure 4.3
shows a typical floor of a three storied building that has been proposed as a design
solution for a given set of client requirements.

An artifact, which is associated with the multistorey building (from a physical
point of view) consists of the following primitive modules and relations: The basic
modules (M 0) are represented by beams and columns. Beams and columns are

considered part of a junction only if they originate from that particular junction.

Therefore, junctions are considered as relations (CO). Junctions are distinguished in
accordance with the number of beams and columns that are originated from that
particular junction. Consequently, we have JunctionJ, Junction2 and Junction3 as
relations. In addition, we

REPRESENTATION OF DESIGN ARTIFACTS 119

Number of Floors = 4

Junction 1 Junction I') Junction 3
\~

Column 1 Beaml ~olumn2 Beam2 Column~

Beam3 Beall4 Beams

Junction4 Junctions Junction6
\

Beam6 Columns Beam7 Column6 Column4

Beams Beam9 BeamlO

Junction7 Beamll Junctions Beaml2 Junction~
...,

Column7
...,

Columns Column9

Figure 4.3 Multistorey Reinforced Concrete Building

include the relation 'Building' to indicate a collection of several junctions, thus
constituting the reinforced concrete building.

The universal set of modules M* consists the following complex modules:

Class of modules of order 0:
Primitive modules - Beam I' Beam 2' ... , Beam 12, Column l' Column 2' ... ,

Column 9 .

Class of modules of order 1:
JUNCTION I subsystem - mIl = {Junction 3 (Beam I' Beam 3' Column 1)};

JUNCTION 2 subsystem - m 12 = {Junction 3 (Beam 2, Beam 4' Column 2)};

JUNCTION 3 subsystem - m 13 = {Junction 2 (Beam S ' Column 3)};

JUNCTION 4 subsystem - m 14 = {Junction 3 (Beam 6 , Beam s ' Column 4)};

JUNCTION s subsystem - mlS = (Junction 3 (Beam 7 ,Beam9' Columns)};

120 A MATHEMATICAL THEORY OF DESIGN

JUNCTION 6 subsystem - m 16 = {Junction 2 (Beam 10, Column 6)};

JUNCTION 7 subsystem - m 17 = {Junction 2 (Beam II ' Column 7)};

JUNCTION s subsystem - m IS = {Junction 2 (BeamI2' ColumnS)};

JUNCTION 9 subsystem - ml9 = {Junction I (Column 9)};

Class of modules of order 2:
BUILDING FLOOR system - m 21 = (Building(mll' m12' ... , m 19)}.

Example 4.4 (piston subassembly): That any knowledge representation is built
upon the multiplicity of objects and relationships among them is an empirical
proposition for which evidence has to be provided. Here we provide further evidence
corroborating the proposition by demonstrating how traditional computer models of
geometrically complex objects conform to the entity-relational knowledge
representation hypothesis.

The problem of building computer models of geometrically complex objects has
been addressed in the context of graphics [2], computer aided design [5] and
mechanical assembly [3]. Two major methods have been devised. The surface
approach [1] describes the surfaces of the objects by specifying the vertices and
edges of the faces of polyhedra or, for curved objects, the crossections or surface
patches. The solid approach [2] approximates complex objects by composing several
simpler volumes. There also exist some hybrid systems that allow both types of
descriptions.

The Artifact Description

Figure 4.4 shows a piston subassembly from a model aircraft engine. Figure 4.5
shows a schematic description of the parts in the piston component subassembly. The
parts are arranged hierarchically, where any desired subparts can be represented as
nodes in the part model trees.

Each node has information regarding the size, type and relative position of the
subparts. All the subparts, including holes, are approximated as rectangular or
octagonal right prisms. This provides a uniform internal representation for all the
object types. This representation simplifies the definitions of the spatial modeling
operations. By generalizing to polyhedra we could approximate the desired volumes
to any required accuracy.

REPRESENTATION OF DESIGN ARTIFACTS 121

ROD-PIN-END
ROD-PIN-END HOLE

ROD-SHAFf-END HOLE
ROD-SHAFf -END

PISTON-ROD

Figure 4.4 The Piston Subassembly of A Model Aircraft Engine

122 A MATHEMATICAL THEORY OF DESIGN

piston

Pisto7~
piston-ridge piston-hole

piston-cyl piston-cavity

rod-bar

l\ A
pin-end-cyl pin-end- shaft-end-cyl shaft-end-hole

hole

Figure 4.5 The Tree-structured Relationship of Parts in the Piston Subassembly

A Formal Representation Scheme

Primitive modules
• Polyhedral solids whose crossections are regular polygons. For example: (1) a

rectangular solid, and (2) an octagonal solid which is meant to approximate a
cylinder.

• Properties, attributed to primitive objects, that specify their size parameters,
vertex points, equations for the planes of the faces, generalized position and,
orientation, etc. For example, 'LENGTH', ' and 'RADIUS,' are considered as
basic modules.

• Additional primitive modules include: 'TYPE' which denotes the polyhedral
solid that approximates the object; and 'X', 'Y' and 'Z' which denote the
position of the object.

REPRESENTATION OF DESIGN ARTIFACTS 123

Complex Modules
Complex modules are represented as unions of other objects (primitive as well as
complex). Holes and cut-outs can be treated uniformly as objects by allowing
primitive objects to have negative volumes. For example, the cavity of the piston,
shown in Figure 4.4, can be represented as two cylindrical holes and a cuboid to
approximate its elliptical crossection.

Relations
The set of relations includes: 'offset,' 'angles,' and 'link' which indicate the
coordinate transformation between the local coordinate systems of two objects; the
equality relation '='; and the relations 'bar,' 'shaft-end-cyl,' 'shaft-end-hole,' 'pin
end-cyl,' and 'pin-end-hole'.

Modeling the Piston Rod
Let us present the model of the piston rod for the model aircraft engine (see Figure
4.4). First we define the components parts of the object. The components parts are:
ROD-BAR, PIN-END, SHAFT-END, PIN-END-CYL, PIN-END-HOLE, SHAFT
END-CYL, and SHAFT-END HOLE. Formally:

BAR: bar(< TYPE = RECT, X = 0.2, Y = 0.2, Z = 0.62 »
SHAFT-END-CYL: shaft-end-cyl(<TYPE = CYL, RADIUS = 0.156, LENGTH =
0.114 »
SHAFT-END-HOLE: shaft-end-hole(<TYPE = CYL-HOLE, RADIUS = 0.089,
LENGTH = 0.114 »
PIN-END-CYL: pin-end-cyl(< TYPE = CYL, RADIUS = 0.134, LENGTH = 0.16
»
PIN-END-HOLE: pin-end-hole «TYPE = CYL-HOLE, RADIUS = 0.081,
LENGTH = 0.16 »

Note that the foregoing objects define complex modules of order 2. For example,
'RECT' is a primitive module, 'TYPE = RECT' is complex module of order 1, and
BAR is a complex module of order 2.

The next step is to indicate the relationships between the various parts. The
simplest links in the model of the piston rod are the relationships of the holes to their
corresponding cylinders since they are aligned and concentric:

link (<SHAFT-END-HOLE, SHAFT-END-CYL>)
link «PIN-END-HOLE, PIN-END-CYL»

Then the hollow cylinders are placed at the ends of the bar:

link «SHAFT-END-CYL, BAR>)
link (<PIN-END-CYL, BAR>)

124 A MATHEMATICAL THEORY OF DESIGN

Finally, we need also to denote the position and orientation of either one of the
hollow cylinders relative to the BAR:

offset (<SHAFf-END-CYL, BAR, X = 0, Y = 0, Z = 0.466>)
angles (<SHAFf-END-CYL, BAR, X = 0, Y = p/2, Z = 0>)
offset(<PIN-END-CYL, BAR, X = 0, Y = 0, Z = -0.444>)
angles (<PIN-END-CYL, BAR, X = 0, Y = p/2, Z = 0>)

Example 4.5: Representing artifact in propositional calculus - In Chapter 5
(Definition 5.5), we make several simplifying assumptions about the nature of artifact
representation. The description of artifacts is limited to a list of properties, where an
artifact mayor may not satisfy a particular property. To describe how properties are
constructed we need the following:

1. a finite set of names for basic properties (the basic modules). We choose to use
m 1 ' m 2, ... , m k • These basic property letters are intended to be interpreted as

the names for concrete properties such as high strength, or actuation ease.
2. The relationships between various properties can be represented symbolically,

using connectors (the relations). A connector is a function that makes a
compound properties out of simple properties. The following connectors are
defined as a matter of convention: (1) the conjunction connector A, which is
intended to be read as "and,"; (2) the disjunction connector v, which is intended
to be read as "or"; and (3) the negation connector -, which is intended to be read
as "not,". The foregoing connectors can be used to combine simple properties
letters, as in (-m 2 A (m 4 v m I». We use A, B, C and AI' A 2 , ••• to stand for

complex properties of artifacts (the complex modules).
3. The set of all artifact descriptions (the attribute space) is the set of all properties

obtained by conjunction (A), disjunction (v) and negation (-) over the basic
properties.

Given properties A and B, the significance of the connectors are the following:

1. -A is satisfied by the artifact if A is not satisfied by the artifact, or conversely,
unsatisfied if A is satisfied.

2. A A B is satisfied if both referent statements A and B are satisfied. If one or both
of A and B are unsatisfied, then the compound property is unsatisfied.

3. A v B is satisfied if A or B is satisfied. The compound property is unsatisfied
only when both A and B are unsatisfied.

4.2.3 PROPERTIES OF THE DESIGN SPACE

Definition 4.3: The Graph Incurred by (lj - A directed graph G M. = (V, E) is

referred to as the directed graph which incurred by (lj if V = M· & <m 1 ' m 2 > E E

REPRESENTATION OF DESIGN ARTIFACTS 125

<::) 3M;t 0 ,3C;t 0 : (m 1 E M & m 2 E < M, C ».

Definition 4.4: Regular Artifact Space - An artifact space q; whose incurred
graph G M. is a directed acyclic graph is termed as a regular artifact space. For

brevity 'modules' will be used, when the context identifies 'complex modules' from
'atomic modules'.

Remark 4.1: The rationale which guides the above definition is that we do not
allow a module ml to be used in defining itself. Informally, if G M* is not acyclic

then there exists a walk < m 1 ' m 2 >< m 2' m 3 > ... <m k-l , m 1 > that joins m 1 to itself,

which means that 'Vi: m i is used in defining m i+l . This situation is unrealistic in

most engineering design applications.

Remark 4.2: It can be easily verified, applying Definition 4.4, that any regular
artifact space q; can be arranged in classes as follows,

• Class of modules of order 0: modules which belong to the set M 0 (Atomic

modules).
• Class of modules of order i: modules which belong to the set M i = {m ij } j

where m ij E < if ij' C M" >; C M .. is the relation set, and if ij is the carrier set
I) I)

_ i-I * *
that satisfies M ij ~ UM k • M is given formally by M = sup j {M j }.

k=O

Remark 4.3: We focus in this book only on regular artifact spaces, which
graphically correspond to acyclic directed graphs. In practice we have many
situations that presuppose acyclicity among modules. For example, most object
modeling methods - in the context of computer aided design, graphics and
mechanical assembly - for representing geometrically complex objects, are
implemented as regular artifact spaces.

Remark 4.4: A module m denotes an equivalence class of tuples. The notation m
represents the idea that a module can be expressed in different ways, i.e. if a module

m can be expressed by <M 1, C 1 > or <M 2, C 2 > then it is not necessarily
M M

implies that either Ml = M2 or C 1 = C 2 (where Mi and C i are sets; i = 1,
M M M

2).

The next definition allows connecting a module to itself by applying a unit
relation:

126 A MATHEMATICAL THEORY OF DESIGN

Definition 4.5: Unit relation - A relation c I E CO such that, 'VM ~ M*: <.M, C>

=M~ C= (cd.

It is convenient, for later use, to denote the Order of a set of modules.

Definition 4.6: Modules' Order - Let M* be a regular artifact space, then define

*
the mapping Order: 2 M -+ N as:

1. If me M*: Order(m) = k iff me M k and 'Vi < k: m eo M j.

2. If M = {m j } j then Order(M) = max mjEM (Order(m j)}.

Remark 4.5: A module m can be included in several classes. Definition 4.6 (1)
defines the module's order, k, as the order of the first class, M k ' which the module is

included in. An alternative definition would be to replace, in the above, the 'first

class' with the 'last class'. Formally: If me M* : Order(m) = k iff me M k and 'Vi>

k: m eo M j (when needed, this is referred to as Maxorder operator).

Remark 4.6: The Order mapping may indicate the extent of 'structural complexity'
inherent in a set of modules.

Definition 4.7: Strictly Regular Artifact Space - An artifact space (jj is termed

strictly regular if the following holds: m = <.M, C> and M '¢ {m} :::) m eo M and
Order(m) > Order(M).

Remark 4.7: Definition 4.7 implies that me M 0 :::) [m = <.M, C> :::) M = {m}

and C= {cl}].

Definition 4.8: Predicate - Let P denotes a predicate (e.g., a unary predicate) that
is assigned to individuals modules or relations.

Remark 4.8: Consider for example the predicate, which is assigned to modules,
of 'being of order k'.

The remainder of this section elaborates on properties of the design space model,
by inducing on it three types of operators. These operators enable to perform forward
search (from initial modules toward modules of higher order) and backward search
(from complex modules toward modules of lower order). Moreover, it is shown that
it is sufficient to use these operators in order to perform any search tasks over a given
design space.

* 0 *
Definition 4.9: Composition Operator - A mapping '¥ ~k) : 2 M X 2 C -+ 2 M

REPRESENTATION OF DESIGN ARTIFACTS 127

Let (M, C) E Domain('I' ~k») then 'I' ~k) (M, C) is defined in terms of a positive

integer k, non-empty sets of indices I I, 12 "", I k and relations {Cl,i } for every 1 ::;; I

~ k, i E I I where C l ,; ~ C, such that:

1. Mo =M.

2. For every 1 ::;; l~ k : M I ~ U < M I,; , d,; > such that M I,i !;;;; M I-l for every i
iell

E II and -(3i Ell, 'Vm E MI I: m ~ <Ml';,d,i ».

3. 'I' ~k) (M, C) = Mk

Remark 4.9: When k = 1, a Composition operator is termed First-Order

Composition operator and is denoted by 'I'~) . When k > 1, a Composition operator

is termed k-order Composition operator and is denoted by 'I' ~k) • For brevity, the

order of a Composition operator is omitted when needed. For example, related to our

circuit example we define the following First-Order Composition operator 'I' ~l) ({ A,

B, C, AND I , AND 2 , OR I , OR 2 , OUTPUT}, (cI, c2' c3}) = {m}, where m

denotes the artifact description of the circuit in Figure 4.1.

Observation 4.1: Decomposing 'I'~k) - 'I'~k) may be decomposed in form 'I'~k)

= 'P ~!k 0 'I' ~I,Ll 0 ... 0 'I' ~1!1 (we define ('I'S,i 0 'P S,))(M, C) == 'I' S,i ('I' S,) (M, C),

C). 'I' ~~; are First-Order Composition operators and k ;::: 1.

Remark 4.10.1: Observation 4.1 is important since it enables the designer to
restrict himself to basic definitions of First-Order Composition operators; thus
constructing k-Order operators by composing First-Order operators. It also facilitates
the forthcoming analysis.

Remark 4.10.2: Further conditions may be imposed en Composition operators;
• UJ (k) • f I.e., T S may satls y:

2.

3. Ml ~'I'~k)(Ml,C)

4. 'I'~k) (Ml, C) ~ 'I'~) ('I'~k-l) (Ml, C), C)

(Monotonicity)

(Inclusion)

(First-Order Inclusion)

128 A MATHEMATICAL THEORY OF DESIGN

Condition I asserts that the set of modules that can be generated (by Composition) by
joining two sets of modules is at least equal to the set of modules that is the join of
the generated sets, obtained from each set separately. Condition 2 and Condition 4
are resulted from Condition 1. Condition 3 implies the following property: 'iI(M, C)

E Domain('P ~k», M = 'I' ~k) (M, C): (Order(M) > Order(M» Le., the set of

modules M constructed by the Composition operator are of higher order than the

order of M - the set on which it acts upon - for every C ~ Co.

Definition 4.10: Proper Composition Operator - A Composition operator,
denoted by 'I' s p , which satisfies the following conditions:

I. 3(M, C) E Domain('I' s p): 'I' S P (M, C) = M (Nonunity)

2. ('iI(M, C) E Domain('I' S p): 'I' S p (M, C) = M 0) ~ M = M 0 (Regularity)

Remark 4.11: Nonunity means that new modules are obtained by a Proper
Composition operator for some tuple (M, C); while Regularity means that a
Composition operator, 'I' S ' generates legal tuples for every (M, C) E Domain('I's)

and M:;t:M0'

Definition 4.11: Projection Operator (Relative to predicate n) - A mapping 'I' ~

: n ~ n, defined on a set n, such that: 'I' ~ (0) = 0) if n(O) is True and 0
otherwise.

A Projection operator partitions the set n into two disjoint sets, n F and nT,

where nTis defined as: n T = (0): n(O) is True). We let n F = n _ n T .

The following demonstrates a special type of a Projection Operator.

Definition 4.12: Indicator Operator - A Projection Operator, defined on 2 M

o
(2 C , respectively) such that:

'I' R(M) (M) = {M if M = M
p M 0 otherwise

ife =C

otherwise

*

Remark 4.12: In terms of the above terminology, the Property n = R(M) is
interpreted as 'Equality to modules set M' .

Lemma 4.1: Decomposition Lemma - Let 'I' S be a Composition operator that

satisfies the following conditions:

REPRESENTATION OF DESIGN ARTIFACTS

1. 3(M, C) E Domain('f's) such that 'I' s (M, C) *' M 0

2. 3(M, C) E Domain('f's) such that 'I' s (M, C) *' M

(Feasibility)

(Nonunity)

129

Then \f s may be decomposed in the form 'JI S po'll ~, i.e. 'II s (M, C) =

'I' s p ('I' P (M, C»), where 'I' S p is a Proper Composition operator and 'I' P is a

Projection operator over the product set of modules and relations.

Definition 4.13: First-Order Closure Composition Operator - A mapping 'I' ~) :

* 0 *
2 M X 2 c ~ 2 M that satisfies the following condition: Let (M, C) E

Domain('f' ~)). Define a Closure First-Order Composition operator as: 'f'~) (M, C) =

sup{Mi such that 3'f'~): 'f'~) (M, C) = Mi} = U< M i ,Ci >. The latter
Mir;;;.M,Cir;;;.C

equality is easily inferred by Definition 4.9.

Remark 4.13.1: 'f'~) (M, C) specifies the set of all modules, which is generated

in a single composition step.

Remark 4.13.2: Denote a k-Order Closure Composition operator to be the

composition of k First-Order Closure Composition operators i.e. 'I' ~k) = 'f'~) 0 'f'~) s s s
o ... 0 'f'~) .

s

* 0
Definition 4.14: Closure Composition Operator - A mapping 'f's : 2 M X 2 C

~ 2 M* such that V(M, C) E Domain('f's): 'I' S (M, C) = U 'f'~k) (M ,C)
k=l s

Remark 4.14: 'I' S (M, C) specifies the set of all modules, M , which can be

generated from a pair (M, C) by composition. It is easily verified, using the
compositional structure of complex modules (Remark 4.2), that for regular artifact

o * spaces: 'I' S (M 0 ,C) = M .

Lemma 4.2: Let 'I' k\) be k-Order Closure Composition operator. Assume c 1

E C then the following properties hold:

130 A MATHEMATICAL THEORY OF DESIGN

1. 'I'~k) dJMi,C)~ U 'I'~)(Mi,C)
S i=1 i=1 S

2. MI c;;;.M 2 ~'I'~)(MI,C)c;;;.'I'~)(M2,C)

3.

(Semi-Additivity)

(Monotonicity)

(Inclusion)

Corollary 4.1: It is easily inferred, by applying Property 3 that, k 1 < k 2 ~

(kl) 1 (k2) 1 &
'I' s (M, C) c;;;.'I' s (M, C), lor every k I' k 2 .

Corollary 4.2: The Closure Composition operator satisfies the foHowing

property: 'I'~) (nM i ,C) c;;;. n 'I'~) (M i , C)
S i=1 i=1 S

k * * Definition 4.15: Decomposition Operator - A mapping 'I' ~) : 2 M -7 2 M .

Let M E Domain('I'~», then 'I'~) is defined in terms of a positive integer k,

nonempty sets of indices 11, 12 ,,,,, I k and relations {CI,i } for every 1 S IS k and i

E I I ' such that:

1. MO =M

2. ForeveryOS/Sk-l:M I c;;;. U<Ml,i,d,i> such that UMI,i =M I+1 and
~~ ~~

-(3iE II, VmE M/:me <MI,i,d,i »

3. 'I'~)(M)=Mk

Remark 4.15.1: Definition 4.15 implies that any Decomposition operator has a
'companion' operator (not unique), which is a Composition operator denoted by

\ji A . \ji A satisfies, beside the conditions posed in Definition 4.9, the condition:

U Ml,i = M I - 1 for every 1 SIS k. Formally, let M = 'I'~) (M), then 3C c;;;. CO:
~~ .
- (k) -
'I' A (M, C) = M.

Remark 4.15.2: Let !J) be a regular artifact space, then the following is satisfied:

VM E Domain('I'~», M = 'I'~) (M): (Order(M) S Order(M)} i.e., the modules

constructed by a Decomposition operator are of lower order than the order of the
modules set, on which it acts upon.

REPRESENTATION OF DESIGN ARTIFACTS 131

Remark 4.15.3: When k= 1 in Definition 4.15, a Decomposition operator is

termed First-Order DecompositIOn operator, denoted by 'P~). When k > 1, a

Decomposition operator is termed k-Order Decomposition operator, denoted by

'P~) . For example, related to our switching circuit example, we define the following

First-Order Decomposition operator 'P~) (m) = (A, B, C, AND l' AND 2, OR l'

OR 2' OUTPUT, where m denotes the artifact description of the circuit in Figure 4.1.

Observation 4.2: Decomposing 'P~) - Let 'P~) be a Decomposition operator

*
over 2 M . Then 'P~) can be decomposed in form 'P~) = '1' ~~k 0 '1' ~~k-l 0 0

'1' ~~l (we define ('1' A,i 0 '1' A,j)(M) = '1' A,i ('1' A,j (M)). '1' ~:i are First-Order

Decomposition operators and k ~ 1.

Remark 4.16: Further conditions may be imposed on Decomposition operators.
For example:

1. 'P~)(MI uM2)='P~)(Ml)U'P~)(M2) (Additivity)

2. Ml ~M2 =>'P~)(Ml)~'P~)(M2) (Monotonicity)

3. Ml ~'P~)(Ml) (Inclusion)

4. 'P~) (M 1) ~ 'P~) ('P~) (M 1)) (First-Order Inclusion)

Condition 1 asserts the Additivity of Decomposition operators, whereas Conditions
2-4 are interpreted as in Remark 4.10.2.

Definition 4.16: First-Order Closure Decomposition operator - A mapping
* * 'P~) : 2 M ~ 2 M ,which is defined as follows: Let M E Domain('P~») then,

'P~) (M) = sup{Mi such that 3'P~): 'P~) (Mi) = M}.

Remark 4.17: Denote a k-Order Closure Decomposition operator to be the

composition of k First-Order Closure Composition operators, formally 'P~) = '1' <.!) 0
A A

'1' <.!) 0 ••• 0 '1' <.!) .
A A

The following definition is needed in proving Lemma 4.3 below:

Definition 4.17: Restriction of A First-Order Composition operator - Let 'P~)

132 A MATHEMATICAL THEORY OF DESIGN

be First-Order Composition operator, and consider 'I'~) (M, C) = M I U M 2 . Recall

that Definition 4.9 implies 'I'~) to satisfy M I U M 2!;;; U< M I,i , d,i >, where
ie/l

Ml,i !;;;Mforeveryie II' Let 11,1 uII,2 =11, such thatM I !;;; U<MI,i,CI,i>
ie 11,1

and M 2!;;; U< M l,i , Cl,i > . Let the restriction of 'I'~) , relative to the sets M I
ieII,2

and M 2 , to be the First-Order Composition operators 'I' (I) I and 'I' (I) 2 which are
S,M S,M

defined as follows:

MI = U Ml,i :::) '1'(1) (MI, C) = MI and M2 =
ie/l,l S,M I

U Ml,i :::)
ie/l,2

'I' (I) 2 (M 2 , C) = M 2 .
S,M

Lemma 4.3: 'I'~) satisfy the following properties:

1. 'I' 0) (UMi) = U 'I'~k) (Mi)
A i=l i=1 A

(Additivity)

2. MI !;;;M 2 :::) 'I'~)(MI)!;;;'I'~)(M2) (M onotonicity)

3. MI !;;;'I'~)(MI) (Inclusion)

Corollary 4.3: It is easy to show (by applying Property 3) that
(kl) (k2)

k I $ k 2 :::) 'I' A (M)!;;; 'I' A (M) for every k I ' k 2 .

Corollary 4.4: Closure Decomposition operators also satisfy the following
properties:

'I'0)d1M i)!;;; n '1'0) (Mi)
A i=1 i=l A

*
Definition 4.18: Closure Decomposition Operator - A mapping 'I' A: 2 M ---+

*
2 M , that satisfies the following condition: Let M e Domain('I' A), then 'I' A (M) =

U '1'0) (M).
k=l A

Remark 4.18: A Closure Decomposition Operator generates the set of all
modules, which can be synthesized to obtain its origin set M.

REPRESENTATION OF DESIGN ARTIFACTS 133

Observation 4.3: Let q; be a strictly regular artifact space, and let r I =

{'I' ~~i } i be an infinite collection of First-Order Decomposition operators. Define

the collection ('I'~) } k such that,

(k) HI (I) 0 \II (I) 0 0 \U (I) A \p./M M \p./\II (I) . \U (I) (M) M
'I' A = T A,k T A,k-I ... T A,I' ssume v ex. 0, v T A,i' T A,i ~.

*
Then, there exists a finite integer k * (M) such that, 'I' ~ (M» (M) = {M: M s;;;

Mo }.

The next result shows that our list of design-space operators is complete, in the
sense that every legal state of the design space can be transformed into another legal
state using only these operators.

Lemma 4.4: Let m =41, C> be a complex module of the regular artifact space {lJ

Then m can be obtained from the class of basic modules, M 0 ' by a finite composition

of first-order composition operators.

Definition 4.19: kl-k2 Order Integration Operator - A mapping 'I'~I,k2):
* 0 *

2 M X 2 c ~ 2 M , which is defined in terms of Decomposition and
Composition operators as follows:

3'1' ~2) , 3'1' ~kl) : 'I' ~lok2) = 'I' ~kl) 0 'I' ~2) for some k .. k2

Remark 4.19: Definition 4.19 suggests a general method, whereby subsets of the
design space can be constructed by means of basic Decomposition and composition
operations.

Definition 4.20: k)-k2 Closure Integration Operator - A mapping, 'I'<!.,k2) :
C

* 0 *
2 M X 2 c ~ 2 M ,which is defined as follows: Let (M, C) E Domain('I' ~I,k2)),

then 'I' ~I,k2) (M, C) = sup { M i such that 3'1' ~I,k2) : 'I' ~l,k2) (M, C) = M i }.

We conclude the presentation of design space operators, by introducing Closure
Integration operators:

* 0
Definition 4.21: Closure Integration operator - A mapping 'I' C : 2 M X 2 C

2 M* h th \U (M C) U \U(_klok2). ~ , suc at T C ,= T

kl,k2 C

Ke;r.ark 4.20: A Closure Integration operator, over (M, C), represents the set of

134 A MATHEMATICAL THEORY OF DESIGN

all modules that can be constructed from the tuple.

Jbservation 4.4: The following are satisfied:

1. Let (M, C) E Domain(\f' ~I,k2» and c lEe then, \f' ~I,k2) = 'P ~I) 0 'P ~2)
C C S A

2. 'Vk I: k 2 :::; k2 ¢:> \f' ~),k2) (M, C) ~ 'P ~1.k2) (M, C)

3. 'Vk2: kl :::; k 1 ¢:> \f'~I,k2) (M, C) ~ \f'~I'k2) (M, C)

4. \f' c (M, C) ~ \f's ('P A (M), C)

4.3 SUMMARY

To summarize, this chapter has provided guidelines and tools for the representation
of design knowledge. The assumptions used to define the artifact representation
scheme were highlighted and analyzed.

This chapter has not addressed the issue of how to generate efficient, topological
or even hierarchical knowledge structures that support extensional as well as
intentional descriptions. Thus, the scope of the artifact representation scheme is
broadened in the next chapter, where an intensional representation of artifacts via
propositional calculus (which complies with the entity-relational knowledge
representation as presented in this chapter) is described. Furthermore, the intuitive
concept of design process as a mapping from the desired function and constraints,
called specification, to the artifact description is formalized in the next chapter by
introducing the notion of idealized design process.

APPENDIX A (PROOFS)

PROOF OF OBSERVATION 4.1

Define \f' ~~l' 1 :::; I:::; k, by recursion, as:

1. [= 1: (Mo, C) E Domain(\f'~» ¢:> (Mo , C) E Domain('P ~~I) and MI =
\f' ~~I (Mo , C).

2 [_ .. Mi -'P(l) (M i- I C) . - l. - S,i ,. •

REPRESENTATION OF DESIGN ARTIFACTS 135

PROOF OF LEMMA 4.1

* * ° Given the set of modules, M ,and relations, CO, define 0 = 2 M X 2 c and let

'I' ~ be defined as

n {(M, C) if 'Ps (M ,C) :;t M 0
'I' (M,~= .

p (M 0, C) otherwIse

The set 0 T is defined as: 0 T = {(M, ~: 'I' S (M, ~ :;t M 0 }. Let the Proper

Composition operator be:

'Ps (M, ~={'PS(M ,C)if (M ,C)E OT
p M 0 otherwise

Now, it is observed - by applying Definition 4.9, and the assumptions of the lemma -
that,

'Ps(M,~:;t 0 <=> 'I'sp('P~(M,~)='Psp(M,~

'Ps (M, ~ = 0 <=> 'Psp ('I' ~ (M, ~) = 'I' sp (M 0, ~ = M 0

Thus, we conclude that V(M, ~: 'I' S (M, C) = 'I' s p ('I' ~ (M, ~). •

PROOF OF LEMMA 4.2

Proof of Property 1: We prove first for N = 2. The correctness for N> 2 is verified,
by induction on the Order of the Composition operator. Consider a First-Order

Composition operator 'I' Q) . Let M 1 U M 2 E Domain('P Q)) and infer the following:
S S

'P~)(Mi U M2) = U<MJ,CJ> ;;;2
S

U<MJ,CJ> u
MJt;;;.Mi,CJt;;;.C

U<MJ,C J > =>
MJ t;;;.M2,CJ t;;;.C

MJ t;;;.M i vM2,CJ t;;;.C

'I' ~) (M 1 u M 2) ;! 'I'~) (M 1 , ~ u 'P~) (M 2 , ~. Consider the property holds

for (k-l)-Order Closure Composition operators, let us prove it holds for k-Order

Composition operators: for some 'I' 0-1) and 'I' Q); 'I' 0) (M 1 u M 2, ~ =
S S s

'I' Q) ('I' 0-1) (M 1 u M 2, ~, ~. Using the induction hypothesis we obtain
S S

'I' 0-1) (M 1 u M 2 C)::> 'I' ~k-I) (M 1 r'\ U 'I' 0-1) (M 2 r'\ thus 'I' 0-1) (M 1 u s ' - S ' vI S ' vI> S

M2, C) = 'I'~-I) (M 1, ~ u 'P~k-I) (M 2 , ~ u ll, where II is properly defined.

Substituting into 'I' 0) (M 1 u M 2 , ~ and applying the induction base, we finally
S

136 A MA THEMA TICAL THEORY OF DESIGN

obtain'l'~)(MI uM 2 C)='I'<.!)('I'<!-I)(M I C)v'p(k-1)(M 2 C)uA C):::> s 'S S ' S ' ,-

'II <.!) ('I' <!-I) (M I C) C) u 'I' <.!) ('I' <!-1) (M 2 C) C) u '¥~) ('II ~-I) (A C) C):::>
S S " S S " S S "-

'¥~) (M I , C) U 'I'~k) (M 2 , C).
S S

Proof of Property 2: Let MIS;;; M 2 • Express M 2 as M 2 = M I u (M 2 _ M I), and

apply Property 1 to obtain: 'I'~) (M 2 , C) = 'Ilk) (M 1 u (M 2 - MI), C) ~

'I' k) (M I , C) u 'I' k) (M 2 - MI , C):! 'I' k) (M I , C). •

Proof of Property 3: By induction on the Order of the Composition operator.

Consider a First-Order Closure Composition operator '¥~) . By Definition 4.13, we

conclude that,

'II ~) (M I , C) =
S

U<Mj,C j > = U<Mj,C j > u
Mj s;:MI.C j s;:C Mj s;;;M 1.Cj e(2C -(CJ})

U < M j ,c j >, and by applying Definition 4.5 we conclude '¥~) (M I , C) ~
Mjs;:MI.Cj={CJ} S

A u M I ~ M I , where the set A is properly defined. Consider the property holds for
(k-I)-Order Closure Composition operators. Let us prove it holds for k-Order

Composition operators. For some 'II ~-I) and '¥~) ; '¥~) (M I, C) = s s S

'II ~) ('II ~-I) (M I, C), C). For k-l we obtain MIs;;; 'II ~-I) (M I, C), which implies

by Property 2 that,

'¥~) (M I, C) S;;; '¥~) ('II k-I) (M I, C), C) = '¥~) (M I, C) whilst by the induction

base we conclude MIs;;; 'I' ~) (M I, C). •

PROOF OF COROLLARY 4.2

For N = 2. Since MI "M 2 S;;; Ml and MI "M 2 S;;; M2, we obtain - by applying
the monotonicity property - that,

'¥~)(MI"M2 C)r-'I'<!)(M 1 C)and 'I'<"k)(M I "M 2 C)c'l'~)(M2 C)
S '=s' s '-s"

which finally implies that'll (sf) (M I "M 2 , C) S;;; '¥~) (M I, C) " 'I'~) (M 2 , C).
S S

The induction on N is obvious. •

REPRESENT A nON OF DESIGN ARTIrACTS 137

PROOF OF LEMMA 4.3

Proof of Property 1: We prove for N = 2, the correctness for N> 2 is verified, by
induction on the Order of the Decomposition operator. Consider a First-Order

Decomposition operator 'I' <.!). Let M I U M 2 E Domain('I' <.!», and denote
A A

'I' <2) (M 1 u M2) = Mi(M I VM2) , 'I' Q) (M 1)=Mi(M1) and 'I' Q) (M2) = M i(M 2) .
A A A

By Remark 4.15.1, Mi(M I vM2) satisfies '¥~) (Mi(M I vM2) , C) = (M 1 U M2), for

some '¥~) and C. Definition 4.17 and Remark 4.15.1 imply that there exist sets, M I

and M 2, such that: M I u M 2 = M i(M 1VM 2), ,¥~I) I (M I, C) = MI and
A.M

'¥~) 2 (Ai 2, C) = M2. Now, one can show that M 1 = Mi(M1)and M 2 =
A.M

M i(M 2), hence M 1 U M 2 = M i(M 1VM 2) = Mi(M 1) u M i(M 2) which implies

'I'~) (M I u M 2) = 'I'~) (M I) u 'I'~) (M 2). Consider the property holds for (k-l)

Order Closure Decomposition operators, and let us prove it holds for k-Order

Decomposition operators. Consider 'I' <!=), then by Remark 4.17 we conclude
A

'I' <.!) (M I u M 2) = 'I' <.!) ('I' <!=-l) (M I u M 2 ». For k-l, we obtain by applying the
A A A

induction hypothesis that 'I' <!=-I) (M I u M 2) = 'I' <!=-I) (M I) u 'I' <!=-I) (M 2). Thus,
A A A

substituting into 'I'~) (M I u M 2), and applying the induction base, we conclude

that 'I' <!=) (M I u M 2) = 'I' Q) ('I' <!=-I) (M I) u 'I' <!=-I) (M 2» = 'I' <2) ('I' <!=-l) (MI»
A A A A A A

u '1'<2) ('I'<!=-I) (M2» = 'I'<!=) (MI) u 'I'<!=) (M2) •
A A A A'

The proofs of Properties 2-4 are immediately obtained.

PROOF OF COROLLARY 4.4

Apply similar argument as in Corollary 4.2.

138 A MATHEMATICAL THEORY OF DESIGN

PROOF OF OBSERVATION 4.3

Let M(k-I) = 'f'~-I)(M), and consider 'f'~) = 'f'~~k 0 'f'~-l). If M(k) =

'f'~) (M), it is easy to show that the strict regularity of M* (Definition 4.7) implies

that Order(M (k)) < Order(M (k-l), thus there exists a finite integer k * (M), such that

* *
Order('f' ~ (M» (M) = 0, which means that: ('f' ~ (M» (M) = { M : M ~ M 0 } .•

PROOF OF LEMMA 4.4

Let us assume that m E M k . Define a first-order decomposition operator 'f'~) , such

that 'f'~) (m) is the carrier set of m. Let us extend 'f'~) to a set M by letting 'f'~) (M)

be the union of the carrier sets of each module in M. It is easily seen that 3k * :
* *

'f' ~) = 'f'~) 0 'f'~) 0 ... 0 'f'~) satisfies 'f' ~) (m) = if ~ M 0; M 0 is the class of

*
basic modules. Following Remark 4.15.1, 'f'~) has a 'companion' composition

operator denoted by 'f' S ' such that m = 'f' S (if , C). Finally by Observation 4.1,

'f' (Sk) may be decomposed in form 'f' (Sk) = 'f' (I) 0 'f' (I) 0 0 'f' (I) . which
S,k S,k-I S,I '

concludes the proof. •

PROOF OF OBSERVATION 4.4

Proof of Property 1: By Definitions 4.19 and 4.20, 'f' c01,k2) = 'f' (~I) 0 'f' (~2) for
S A

some Composition and Decomposition operators. Let us show that 'f' (~I) 0 'f' (k,2) =
S A

'f' 01) 0 'f' ~2) . It is easily inferred, by applying Lemma 4.2 (2) and Lemma 4.3 (2),
S A

that 'f' 01) ('f' ~2) (M), C) ~ 'f' 01) ('f' (~2) (M), C) ~ 'f' (~I) ('f' (k,2) (M), C). But
S A S A S A

Definition 4.20 implies that:

'f' 01> 0 'f' ~2) ~ 'f' (~I) 0 'f' (~2) ; thus 'f' (~I) 0 'f' (k,2) = 'f' 01) 0 'f' ~2) . •
S A S A S A S A

Proof of Property 2: By Property 1, 'f'~I,k2) = 'f'~1)('f'~2)(M), C). Corollary

4.3 implies that 'f' ~2) (M) ~ 'f' ~k2) (M). Thus, applying Lemma 4.2 (2), we conclude
A A

REPRESENTATION OF DESIGN ARTIFACTS 139

that 'I'~) ('I' ~2) (M), C) ~ 'I' ~) ('I' ~k2) (M), C), which concludes the proof. •

Proof of Property 3: By Property 1, 'I'~) ,k2) = 'I'~) ('I' ~2) (M), C). Thus

applying Corollary 4.1, we conclude that 'I' ~k) ('I' ~2) (M), C) ~ 'I' f) ('I' ~k2) (M),

C). •

Proof of Property 4: By applying Definition 4.21 and Property 1, one obtains

'I'c(M, C) = U 'I'~),k2) = UU 'I'~k)\'I'~2)(M), C) ~
k),k2 k)k2 A

U 'I' 0) (U 'I' ~2) (M), C), where the latter inclusion is inferred by applying
k) S k2 A

Lemma 4.2 (1). Now, by applying Definition 4.13 and Definition 4.18, we obtain

U 'I' ~kJ} (U 'I' ~2) (M), C) = U 'I' 0) ('I' A (M), C) = 'I's ('I' A (M), C). •
k) S k2 A k) S

APPENDIX B (BASIC NOTIONS OF SET THEORY)

This appendix defines the set theory terms used in this chapter. The terminology used
in this book is at the introductory level of set theory.

We use the usual notation of set theory. Sets are often defined by a property and
we write {x: x has property P} to denote the set consisting of all those elements
which enjoy the property P. The terms "collections," "aggregate," and "family" are
synonyms for set; the members of a set are often referred to as its "elements" or
"objects." These terms are used in this book in a way which agrees with their
customary usage.

Sets are usually denoted by capital letters and elements by lower case letters.
The symbol "E" (abbreviation for "belongs to") indicates set membership. Thus aE A
means that object a is a member of set A, and b E A means that b is not a member of
A.

The set having no members is called the empty set and is denoted by the symbol
0.

If A and B are sets for which each member of A is also a member of B, then A is
a subset of B or is said to be contained in B. Such set inclusion is denoted by the
symbol "~": A ~ B provided that A is a subset of B. The concept of set inclusion
defined here allows for the possibility of equality: A ~ B includes the possibility A =
B. A ~ B is read A is contained in or equal to B. In some texts, this relation is
expressed A c B.

Observe that A ~ A and 0 ~ A for every set A. The latter inclusion is true
because 0 has no members and therefore has no members outside A. Two sets A and

140 A MATHEMATICAL THEORY OF DESIGN

B are equal precisely when each is a subset of the other. This fact is often used in
showing set equality.

It is often desirable to discuss collections of sets and to name many sets in a
systematic way. The standard method of doing this, called indexing, is defined next.
Let A be a set for which, corresponding to each element a E A, there is a set M a'

Then the collection of sets {M a: a E A}, also denoted {M a} aeA, is said to be

indexed by A or to have A as index set.
A note on word usage is in order before defining the standard set operations.

The conjunction "or" is used in mathematics and logic in the inclusive sense: If p and
q are statements, then the statement "p or q" is true whenever at least one of p, q, is
true. The only case for which "p or q" is false is the case in which p is false and q is
also false.

If A and B are sets, the union A u B of A and B is the set consisting of all
elements x which belong to at least one of the sets A, B:

A u B = {x: x E A or x E B}.
The intersection A n B of A and B is the set of all elements x which belong to

both A and B, that is, the set of elements common to A and B:
A n B = {x: x E A and x E B}.

Sets A and B are said to be disjoint if A n B = 0.

The Cartesian product of two sets A, B is denoted A x B: A x B = {<a, b>, and a

E A and b E B. We often use A n to denote A x A x ... x A (n times), and an element

of A n is written <a I' ... , an>' The definition of Cartesian product is easily extended

to more than two factors. If {A i } ~=l is a finite sequence of sets, then their Cartesian
n

product, denoted by A! X A 2 x· .. A n or by, IT Ai ' is defined by
i=!

n
IT Ai = {(a! ' a 2 ' ... an): a i E A i for each i = 1, 2, ... , n}.
i=l

Afimction ffrom A to B, writtenf : A ~ B, is a mapping of the elements of A to
the elements of B, i.e., it associates with each aEA a unique elementj(a) E B. It can
be viewed as a subset of A x B which satisfied:

1. for every aEA there is bE B such that <a, b> E f;
2. <a, b> E fand <a, b'> E f implies b = b'.

For a subset A' of A, the setj(A') = (b E B: b = j(a) for some a E A'} is called the
image of A under f The setj(A), the image of the domain under f, is sometimes called
the image of the function.

For a subset B' of B, the set rl(B') = (a E A:j(a) E B'} is the inverse image of
B' under f The set of points (<a, b> E A x B: b = j(a)} is called the graph of the
functionf

REPRESENTATION OF DESIGN ARTIFACTS 141

A function/is surjective if for every be B there exists some aeA such thatj(a)
= b; it is injective if j(a) = j(a') implies a = a'. / : A ~ B is a one-to-one
correspondence (or a bijection) if it is both surjective and injective. In this case there

is an inverse function/-I : B ~ A which assigns to each b in B its unique pre-image

a =rl (b) inA.
We use the usual notion of composition of functions. If /: A ~ Band g : B ~

C, then gO/ ~ C is the function defined by gO /(a) = g(f{a» for every a e A.

REFERENCES

I. Appel, A., "Modeling in Three Dimensions," IBM Systems Journal, Vol. 7, 3-4 (1968).
2. Braid, I.C., "The Synthesis of Solids Bounded by Many Faces," Communications of the ACM, Vol.

18,4(1975).
3. Lavin, M.A., and Liebennan, LI., "A System for Modeling Three Dimensional Objects," IBM

Research Report RC-5765, (1975).
4. Ulrich, KT., "Computation and Pre-Parametric Design," Technical Repon 1043, MIT Artificial

Intelligence Laboratory, 1988.
5. Vemuri, R.K., Soo-Ik Oh, and Miller, R.A., "Topology-Based Geometry Representation to Support

Geometric Reasoning," IEEE Transactiolls on Systems, Man and Cybernetics, Vol. 19 (2) (1988).

CHAPTER 5

THE IDEALIZED DESIGN PROCESS

This chapter attempts to scientifically define important aspects of the design process
including: the feasibility to design, the role of the designer in the design process, the
human-machine interface, and the abilities of a human designer. The intuitive concept
of the design process as a mapping from the desired function and constraints, called
specifications, to the artifact description is formalized in this chapter by introducing
the notion of an idealized design process. The function and attribute spaces are
represented by propositional calculus (see Appendix A). The principle of design
consistency; which, roughly speaking, states that small changes in specifications
should lead to small changes in design (and vice versa) is formalized by introducing
the notion of a continuous mapping of one closure space to another. The concept of a
basis for the artifact and function spaces is introduced, and its relation with the
principle of design consistency is explored.

5.1 INTRODUCTION

In Chapter 4, a general model for the representation of design artifacts (constituting
the attribute space) was constructed. The primary concept of FDT used in this
chapter is that the design process is a mapping (see Figure 5.1) of the desired set of
specifications (describing the desired functions and constraints of the final product)
onto the artifact description (the final detailed product description). This synthesis
process constitutes a mapping between the functional and physical domains. In turn,
the attributes generated in the physical domain are interpreted as a set of
specifications for implementation (in terms of process variables) in the process
domain. Some instances of this mapping include: (1) an information retrieval system
by which the user of the system can search for the appropriate artifact that satisfies
the specified requirements; (2) a mapping from the desired function and constraints
to the artifact description; both embedded in an Euclidean space that can be
described by mathematical equations; (3) a rule based system that includes a set of
rules; each of the form IF function THEN structure, which produce a solution in
terms of attributes by giving a specification in terms of function; and (4) an
evolutionary design process (as described in Chapter 6) that progresses from a set of
specifications and moves towards the artifact description (the final detailed product

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998

144 A MATHEMATICAL THEORY OF DESIGN

description).

Synthesis

Analysis

Figure 5.1 Design as a Mapping between Function and Attribute Spaces

Design
Analysis

D
Partial Attribute Information
Transformed to "Close" Structural
Description

Specifications Transformed to
"Close" Functional Description

Design
Synthesis

Figure 5.2 The Idealized Design Process Cycle

An idealized design process includes several steps (see Figure 5.2):

1. The different attributes included in the attribute space are mapped to functional
properties that form the function space. This step, which provides a basis for
reasoning at the synthesis stage, conceptualizes the issue of design analysis;

2. The desired set of specifications (describing the desired functions and constraints
of the final product) is transformed to a "close" functional description that is
sufficiently detailed. A "close" functional description represents the concept of a
model as mediating between the function and attribute spaces. Models that are
sufficiently detailed can be used to support the incremental modification of the
design towards a solution. For example, if we design mechanical machines, the
functional specification will be transformed into a graphic representation of the
machine to be designed, and then the model will be transformed into the

THE IDEALIZED DESIGN PROCESS 145

structural description of the machine.
3. The detailed functional description of the artifact is mapped to the attributes or

the structure of the artifact (part of the attribute space) by the "inverse" of the
analysis mapping (i.e., synthesis). These attributes are observable properties that
are needed in order to manufacture the artifact;

4. If we are able to locate only partial attribute information for the candidate
solution, then the partial information is transformed into a "close" structural
description. The "close" structural description is sufficiently detailed to provide
the necessary manufacturing information for the artifact.

The state of the idealized design process is characterized by properties that
convey the assumptions of the theory. These assumptions reflect the nature of objects
and their potential manipulation to achieve a desired functionality, the role of the
designer in the design process, the human-machine interface, the abilities of a human
designer, and the feasibility to design. These properties are the foundations of the
theorems discussed later.

To formulate and analyze important aspects of the design process, we emphasize
the application of topological ideas to design. The main purpose of this chapter is to
investigate the notion of design consistency: small changes in specifications should
lead to small changes in design and vice versa. The mathematical concept that is
used to investigate the principle of design consistency is continuity (continuous
analysis and continuous synthesis). Continuity is a process-oriented concept. It
guarantees that a small change in the artifact description will result in a small change
in the artifact functionality and vice versa. Therefore, if the current candidate's
functionality differs slightly from the required function, a small modification to the
structure may be sufficient in order to satisfy the altered function.

There are several important properties of continuous mapping of interest in
design tasks such as synthesis and analysis: metric, convergence, homeomorphism
and basis.

If a space is metric, then one can calculate the distance between any two entities
in the function and attribute spaces. The distance measure can be used to assign
values to each of the attributes or functions describing an artifact.

Convergence is also a process-oriented concept; it provides a different
perspective on continuity. Convergence guarantees that a sequence of incremental
refinement changes to artifact functionality will cause only small incremental changes
to structure.

A transformation between the function space and attribute space that conserves
the continuity or convergence properties is useful in design; because, it allows the
creation of different viewpoints of the desired functionality and the partial design
description that may simplify or direct future steps. In this case, both the analysis and
synthesis (the "inverse" of analysis) mappings are continuous. In topology, such a
transformation is called homeomorphism. One objective of this chapter is to provide
a list of design properties that are not destroyed by continuous transformations
between function and attribute spaces. Even though the concept of continuity and
homeomorphism is useful in design, we show that they are often not easy to check.

146 A MATHEMATICAL THEORY OF DESIGN

The intuitive meaning of a basis for a function space (or attribute space) is the
collection of already decomposable functions (or attributes) that can be utilized to
decompose a new function. Thus, the designer can utilize the basis functions
(attributes), which have already been solved, to more easily solve a new problem.

Several design theories exist that more formally describe design as the
designation of a domain in the attribute space, which corresponds to a domain that
designates the specification. Yoshikawa's general design theory (GDT)
mathematically describes the design process in terms of point-set topology or set
theoretic topology, building up from design axioms [I, 2, 3, 4]. GDT attempts to
scientifically compute important aspects of the design process including: the role of
a designer in the design process, the man-machine interface, the abilities of a human
designer, and the possibility to design. The theory does not, however, address how
this process happens in real design. GDT restricts the nature of knowledge to two
perfect properties: (1) GDT assumes that the function and attribute spaces are
topologies of the set of all real objects that existed in the past; exist in the present, or
will exist in the future (the entity set); and (2) the state of design knowledge is
characterized by the ability to separate between any two entities. Through these
properties, GDT guarantees the termination of the design process.

Yoshikawa's general design theory does not hold for real design processes for
the following reasons. First, the refinement process is made easier by the use of the
entity set as mediator between the specification and the design description. In the
absence of the entity set the process could be more complex. GDT applies to domains
with topological structure, but real domains do not satisfy this requirement.
Moreover, the restriction to domains with topological structure limits the design
selection to the entity set (catalogue). The second reason that GDT does not apply to
real design is because all entities have the same status under the assumption of a
topological structure of the entity set. However, it is recognized that in real design,
the overall organization of concepts and entities is hierarchical.

The "ideal design process" presented in this chapter broadens the scope of
Yoshikawa's theory by insisting on less restrictive assumptions: (1) the design
process is a mapping of the desired functionality of a product onto the description of
the final product without the intervention of the entity set; and (2) human designers
use hierarchical knowledge structure for the overall organization of functional and
structural properties. To this end, the idealized design process attempts to cast these
assumptions in the framework of "closure" topological spaces (as opposed to point
set topology), and uses this framework to prove theorems about the nature of design.
As such, a closure topological structure of functions and attributes provides an
interesting perspective for viewing design.

This chapter is organized as follows: Section 5.2 describes the domain of
mechanical fasteners and car horns, which are used to illustrate the ideas discussed in
the chapter. Section 5.3 reviews the concepts of the idealized design process. Section
5.4 conveys the idealized design process assumptions (axioms) about the nature of
tile mapping from the desired function and constraints to the artifact description.
These assumptions are the foundations of the theorems discussed in the chapter.
Section 5.5 introduces the notion of a basis for attribute and function spaces, and

THE IDEALIZED DESIGN PROCESS 147

suggests that the "smallest" basis can gauge the descriptive complexity inherent in a
space. Section 5.6 summarizes the chapter. For reading fluency, we present the
proofs of the theorems in Appendix D.

5.2 MOTIVATING SCENARIOS

In this section we describe two domains that are used to illustrate and explain the
concepts discussed in this chapter.

5.2.1 MECHANICAL FASTENERS

Figure 5.3 depicts seven mechanical fasteners (see also Chapter 3.2). They will be
referred to as the fasteners domain. Each fastener in the figure is denoted by a letter.
The fasteners have properties that can be observed, and are termed structural
attributes of the artifact. Some of these attributes are summarized in Table 5.1. In the
table, a "1" denotes that a fastener has the corresponding structure; a "-" denotes that
it does not. Additional observable properties that fasteners may have but that are not
mentioned include nominal size (fraction diameter), number of threads per inch,
thread form (the configuration of the thread in an axial plane), and thread fit (that
specifies the allowance between the nut and the bolt).

In addition to providing structures, each fastener provides some functionality as
summarized in Table 5.2. Additional functions that fasteners may have but that are
not mentioned included locking ability, prevailing torque, sealing, thermal
expansion, electrical resistance, thermal conductivity, and magnetic susceptibility.

Table 5.1 Structural Properties of Fasteners

structure fastener
A B C D E F G

slot drive recess 0 0 0 0 0 I 0
cap drive recess 0 I 0 0 0 0 0
external socket hex 0 0 0 I 0 0 0
cap head type 0 I 0 0 0 0 0
round head type 0 0 0 0 0 I 0
truss head type 0 0 0 0 1 0 0
shoulder 0 1 0 1 I 0
threaded shank 0 1 0 I 1 0
threaded tail 0 1 0 I I 1 0
chamfer point 0 1 1 1 I 1 1
fastener with washer 0 0 0 0 0 0 1
polycarbonate material 1 1 1 0 0 1

148 A MATHEMATICAL THEORY OF DESIGN

Table 5.2 Functional Properties of Fasteners

function fastener
A B C D E F G

high strength 0 1 0 I 1 1 0
retractability 0 1 0 1 1 1 0
actuation ease 1 0 0 0 1 0 0
head out 0 1 0 1 1 1 0
tail out 1 0 1 0 0 0 1
medium precision 0 1 0 1 1 I 0
corrosion resistance & 1 1 1 1 0 0 1
thermal conductivity

PLATES

~OWEL PIN

~ H~BOLT
I\%~I~\\\\\\\~\\\\I~\~

8 MACHINESCREW

'\\~I\\\\\\\\~\~~~\\\\~\ro

ROLL PIN

Figure 5.3 Seven Fasteners in the Knowledge Base (adapted from [11])

THE IDEALIZED DESIGN PROCESS 149

There are functions that are directly derived from the structure of a fastener. For
example, polycarbonate fasteners (such as copper-alloy fasteners) are used where
problems of corrosion and thermal conductivity exist, or a fastener that has threaded
tail has medium precision in laterally locating plate A with respect to plate B. Note
that this structure-function relation may be an approximation. Other functions may be
more complex and can not be inferred from one observable property. For example,
fastener E (Christmas tree fastener) provides actuation ease although it does not have
a drive rotary mode. Some functions may qualify other functions; for example, the
function retractability qualifies the function head out.

The ability to infer functionality from artifact structure is useful in analysis. In
contrast, generating artifact structure to satisfy a desired function is related to
synthesis (which is the primary focus of this book). For example, the fastener
specifications high strength and actuation ease lead to one potential design: fastener
E. This design solution can be generated in the following way. We start with {B, D,
E, F} as the high strength designs and refine them with the actuation ease property.
The refinement process is made easier by the use of the seven case fasteners as
intermediaries between the specifications and the design description. In the absence
of these case fasteners, the synthesis process could be more difficult.

As another example, assume that in addition to the previous specifications, it is
also required that the fastener have the property corrosion resistance & thermal
conductivity. There is no fastener that satisfies the three functions. A redesign
process could be invoked by taking the current candidate design E and retracting
either the high strength or the actuation ease specifications and then trying the new
specification. Alternatively, if the set of designs is not confined to the seven
fasteners, fastener E has the property corrosion resistance & thermal conductivity by
using copper-allo)' material.

We may not be able to find any candidate that satisfies all three specification
properties. Nevertheless, we have two sets of nearly good candidates: (I) high
strength and actuation ease {E}; (2) high strength and corrosion resistance &
thermal conductivity {B, D}; and (3) actuation ease and corrosion resistance &
thermal conductivity {A}.

5.2.2 THE CAR HORN

A typical energy-storing transducer (transducers are devices that couple distinct
energy domains) of practical interest is the condenser electrostatic horn. The sketch
of Figure 5.4 shows roughly how these devices may be constructed. A capacitor is
formed by mounting a movable plate near a rigidly mounted plate and providing
electrical connections as one would in a conventional parallel-plate capacitor. In
practice, the movable plate might be a thin diaphragm or tightly stretched membrane
on which a thin layer of conducting material is fixed. Such distributed parameter
"plates" can move in complicated ways.

Figure 5.5 depicts seven comparable concepts for car horn. A car horn is an
audible means of warning of the presence of the car. The car horns have structural

150 A MATHEMATICAL THEORY OF DESIGN

attributes that can be observed; some of these are summarized in Figure 5 .5. In
addition to providing structures, each car horn provides some functionality that is
summarized in Table 5.3.

Moving plate

Rigid
perforated

backing plate

l

Figure 5.4 A Typical Energy-storing Transducer: The Condenser Microphone or
Electrostatic Loudspeaker

Table 5.3 Functional Properties of Car Horns

function car horns
A B C D E F G

ease of achieving 105-125 1 1 1 0 0 0 1
Dba
ease of achieving 2000- 0 0
5000 Hz
resistance to corrosion, 0 0 0 0
erosion and water
resistance to vibration, 0 0 0 0 0
shock and acceleration
resistance to temperature 1 0 0 I 0 0 I
high response time I 0 0 0 0 0 0
small number of stages 1 I 0 0 I 1 0
low power consumption I 0 I 0 0 0 I
ease of maintenance I I 0 0 I I 0
low weight I 0 0 I 0 0 I
small size I 0 0 0 0 0 0
small number of parts I I 0 0 0 0 0
long life in service 1 1 0 0 0 0 0
low manufacturing cost 0 I 0 0 0 0 0
ease of installation I I 0 I 0 0 0
long shelf life 1 1 0 I I I 1

THE IDEALIZED DESIGN PROCESS

~~~D;!ia;!p~h~ra;;;;;g;;;;;m~( Resonator 
Ii plate 

--r-rT"""-'i=:tHt-- Contacts 

Electric 
motor 

Signal generator A 
~speaker tNJ AmPlifier • '" 

151 

Diaphragm 

Diaphragm 

Coil 

Pleza c stal 

Fan 

Reeds 

c 
I--_~.."i Speaker 

Solenoid-operated strip S I 'd t d 

rliif1C 0 d~~~ ..... ) ..... a_e __ -----r 
Reed " 

Toothed disc 

Taut wire E 

Vibrating reed G 
~ Amplifier 

~ ~~speaker 

Microphone 

Figure 5.5 Comparable Concepts for Car Horn (adapted from [12]) 



152 A MATHEMATICAL THEORY OF DESIGN 

5.3 PRELIMINARIES 

This section reviews the idealized design process terminology and definitions; 
including simple working examples (such as the mechanical fasteners and car horn 
domain). The theory attempts to cast design in the framework of Propositional 
calculus and closure topological spaces (see Appendix A). We start with assumptions 
about the nature of structural and functional attributes, and use them in the following 
sections to prove theorems about design. 

5.3.1 THE A TTRIBUTE AND FUNCTION SPACES 

Definition 5.1: An attribute is any structural property (e.g., physical, mechanical, 
geometrical, or chemical) that can be observed or measured by scientific means (e.g., 
through the use of an instrument). An artifact has respective values for its attributes. 
Each of the attributes can be perceived as manufacturing information (such as 
dimensions, tolerances, and manufacturing techniques). 

Example 5.1: The fasteners have properties that can be observed and therefore 
describe the structural attributes (e.g., slot drive recess, round head type, or chamfer 
point) of the artifact; some of these are summarized in Table 5.1. A value of "I" in 
the table denotes that a fastener has the corresponding structure; a "-" denotes that it 
does not. 

Definition 5.2: A functional property is the behavior that an artifact displays 
when it is subjected to a situation. The collection of all functions observed in 
different situations is the functional description of the artifact. 

Example 5.2: The fastener properties listed in Table 5.2 are all functional 
properties, and thus can be observed. For example, corrosion resistance & thermal 
conductivity can be manifested as a behavior when a fastener is immersed in water. 
For instance, fastener E corrodes in water, and thus, does not have the functional 
property corrosion resistance & thermal conductivity. For fastener E, the lack of this 
functional property is a direct consequence of the non-polycarbonate material that is 
used. 

Definition 5.3 (Basic Attributes, M 0): Basic attributes (properties) cannot be 

defined in terms of other attributes. The set M 0 represents basic properties that can 

be assembled to construct the set of all artifact descriptions within the domain. 

Example 5.3: The fastener attributes summarized in Table 5.1; e.g., slot drive 
recess, cap drive recess, external socket hex, cap head type, round head type, 
threaded tail, etc. 

Definition 5.4 (Basic Functions, F 0 ): Basic functions cannot be defined in terms 



THE IDEALIZED DESIGN PROCESS 153 

of other functions. The set F 0 represents basic functional properties that can be 

assembled to construct the set of all functional descriptions within the domain. 

Definition 5.5 (Attribute Space, q): The attribute space is the tuple q) = <.M 0, 

C O• M * >; where C O = {I\, v, -}. and M· is the set of all artifact descriptions (or 
attributes) obtained by conjunction 1\ (logical AND), disjunction v (logical OR), and 
negation - over the basic attributes (i.e., Mo) in q). By convention, we use m E q) 

instead of me M*. 

Example 5.4: Let us denote the basic fastener attributes summarized in Table 
5.1, respectively, by mI' m2' ... mI2' For example, m3 designates the basic 

attribute external socket hex drive recess. In particular, the composite attribute m 1 1\ 

- m 2 1\ - m 3 1\ -m 4 1\ m 5 1\ -m 6 1\ m 7 1\ m 8 1\ m 9 1\ m 10 1\ -m 11 1\ -m 12 

designates a description of fastener F as specified in Table 5.1, and is included in the 
attribute space q). 

Definition 5.6 (Function Space, .9): The function space is the tuple fT = <F o. 

Co, F* >; where CO = { 1\, v, - }. and F* is the set of all functional properties 
(functional descriptions) obtained by conjunction (1\), disjunction (v), and negation 
(-) over the basic functional properties (i.e., F 0) in g: By convention, we usel E fT 

instead of IE F*. The design specification designates the function of the required 
artifact by using functional properties. 

Example 5.5: Let us denote the basic fastener functional properties summarized 
in Table 5.2, respectively, by 11' /Z, ... h . For example, h designates the basic 

functional property actuation ease. In particular, the composite functional property 
-II 1\ -/z 1\ h 1\ -/4 1\ 15 1\ -16 1\ h designates the functional description fastener 

B as specified in Table 5.2. and is included in the function space g: 

Example 5.6: In parametric design, an artifact is described in terms of a finite set 
of attributes (a feature of a part-type that other part-types can connect to or receive 
information through; e.g., axial pitch). Each attribute can be described by its 
dimension. Since it is difficult and very costly to manufacture a device or build a 
structure with exact desired dimensions, designers use tolerances to specify the 
permissible variation in size and shape. Tolerances are an integral part of the design 
documents. In fact, tolerances are intimately linked to each specified dimension in the 
detailed drawings. By specifying a tolerance, the designer makes it possible for the 
manufacturing (or building) inspector to verify that the particular components of the 
designed product fall within the allowed limits. The tolerance limits of a dimension 
are the largest and the smallest that a part can be. For example, when a designer 
specifies that the finished size of a part has to fall between 3.8883" and 3.875," the 



154 A MATHEMATICAL THEORY OF DESIGN 

quality inspector rejects parts that do not fall within those limits. Functional 
properties are also specified in terms of tolerances (e.g., "produce for less than a 
given cost") that specify the permissible variation in the artifact's functionality. 
Functional properties are represented by a fully-constrained system of equal 
constraints as defined by the user. The constraints are defined in terms of the 
tolerances linked to each specified dimension of the part to be created. 

At the beginning of the design, the designer is provided with a design 
specification that is described in terms of tolerances that specify the permissible 
variation in the artifact's functionality. The designer is also given a set of constraints 
that, when solved, produces the desired tolerances; each tolerance intimately linked 
to a specified dimension. 

This type of interaction between the function and attribute spaces can be 
described by solving systems of interval equations as described by interval analysis 
techniques (see Chapter 14). To establish necessary terminology, an attribute or a 
functional property is described in terms of closed intervals: [a, b] = {XE 9t: a::; x::; 
b}. [a, b] is true if the respective dimension x of the attribute (or functional property) 
satisfies XE [a, b]. The system of intervals can be considered a logical conjunction, 
disjunction, and negation as follows: [a, b] 1\ [c, d] is true if the respective dimension 
x E [a, b] n [c, d]; [a, b] v [c, d] is true if the respective dimension x E [a, b] u [c, 
d]; and -[a, b] is true if the respective dimension x e: [a, b]. 

Designing in established design domains may vary from the simple selection of 
artifacts from a catalogue to the routine formation of composing artifacts from 
available components. The next definition corresponds to the situation of choosing a 
design solution from a catalogue. 

Definition 5.7 (Artifact Catalogue, J): The set of all real artifacts that existed, 
and exist in a catalogue. An artifact in J is a design solution, which means its 
functional and structural description are included in the function space and attribute 
space, respectively. Therefore, a design solution satisfies some requirements and 
contains the necessary manufacturing information. If there is a one-to-one 
correspondence between an artifact in the catalogue J and its functional (or 
structural) representation, we shall can refer to the functional description of the 
artifact as the artifact. 

Example 5.7: The specifications of a fastener that will have high strength and 
actuation ease leads to one potential design solution in J: fastener E. The attributes 
that correspond to this design solution that appear in Table 5.1 are: truss head type, 
shoulder, threaded shank, threaded tail, and chamfer point. 

5.3.2 PROXIMITY IN FUNCTION AND A TTRIBUTE SPACES 

The next definition formalizes the intuitive notion of proximity in function space. 



THE IDEALIZED DESIGN PROCESS 155 

Definition 5.8 (Closure Function Space): If U g- is a single-valued relation on 

2 g- with a range of 2 g-, then we say that U g- is a closure operation (or 

"closure") for .9'"provided that the following conditions are satisfied: 

1. U g-(0) = 0 
2. FeU g-(F) for each Fe .9'"; 

3. Ug-(FuG) =Ug-(F) uUg-(G) foreachFc.9'"andGc.9'"; 

Iff is a functional property (or design specification) in g:; then U g- (f) designates a 

set of functional descriptions in .9'" such that each functional description derives (by 
means of logical inference) the functional property f . Each element in the set 
represents a different "viewpoint" of the design functionality f If F is a set of 
functional properties in g:; then U g- (F) = U U g- (f) (in which case U g- is 

feF 

called additive). 
The structure <.9'", U g- > is called a closure function space. In the closure 

function space <g:; U g- >, the functional property x is proximal to F if and only if x 

eUg-(F). 

Definition 5.9 (Topological Function Space): A topological closure operation 
(or "topological closure") for a set .9'" is a closure operation U g- for .9'" satisfying 

the following condition: F ~ .9'"implies U,Cf (U g-(F) ) = U g-(F) . <g:; U fT > 
is called a topological function space, 

If <!7, U g- > is a topological function space, then for every functional property 

f, U g- (f) designates the set of all functional descriptions in .9'" such that each 

functional description derives (by means of logical inference) the functional property 

f 

Example 5.8: Let .9'" be the set of all functional descriptions of car horns 
obtained by conjunction (1\), disjunction (v), and negation (-) over the basic 
functional properties in Table 5.3. If the set F contains the single functional property 
low power consumption, then the closure of F in <.9'", U g- > or under U g-

contains, among others, the following proximal functional properties (each functional 
property derives low power consumption): (I) low power consumption; (2) low 
power consumption 1\ ease of maintenance; (3) low power consumption 1\ -ease of 
maintenance; and (4) low power consumption 1\ (resistance to corrosion & erosion 
and water v resistance to vibration) 1\ (shock and acceleration v resistance to 
temperature). Each proximal functional property represents an alternative 
"viewpoint" of low power consumption. 

Example 5.9: The designer may realize that high strength of fasteners is 



156 A MATHEMATICAL THEORY OF DESIGN 

characterized separately by the head and tail of the fastener. By applying the 
knowledge-base of fasteners and analyzing the current specification, it is concluded 
that both of them require high strength; i.e., high head strength 1\ high tail strength 
~ high strength. Thus, {high head strength 1\ high tail strength} E 

U g-({high strength}) . 

Example 5.10: Let functional properties be described in terms of tolerances as 
specified in Example 5.6. Let the single functional property low power consumption 
be described by the interval [45, 65]. Then the closure of [45, 65] is a collection of 
"nested" closed intervals; i.e., a collection {S n} of intervals such that for each 

interval S n ' S n e [45, 65]. This means that if the observed power consumption of an 

artifact satisfies S n ' then its displayed power consumption lies within the tolerance 
[45,65]. 

The next definition relates to designing from a set of real artifacts in a catalogue. 

Definition 5.10 (Closure in Function Space Catalogue. U fT ): Let / be a 

functional property (or a design specification) in [T, and J' be the set of all real 
artifacts that existed in the past, and exist presently in a catalogue. Then g E 

U g- (f) if and only if the set of artifacts in catalogue J' that satisfy the functional 

property g is a subset of the set of artifacts in catalogue J' that satisfy the functional 
property f Each element in U g-(f) represents an alternative functional description 

for f If F is a set of functional properties in fT, then U g-(F) = U U g-(f) (in 
feF 

which case U g- is called additive). 

If U g- (f) designates the set of all functional descriptions of artifacts in 

catalogue J' that qualify the functional property f, then U fT(f) is called a 

topological closure in the function space catalogue. The following conditions are 
satisfied by a topological closure in the function space catalogue: 

1. Ug-(0) = 0; 

2. FeUg-(F) for each Fe [T; 

3. U g-(F uG) = U g-(F) u U g-(G) for each Fe [Tand G e [T; 

4. U g- (U g-(F) ) = U g-(F) for each Fe g-, 

Example 5.11: If/is the functional property ease 0/ achieving 105 - 125 DbA 1\ 

ease 0/ achieving 2000 - 5000 Hz 1\ resistance to temperature, then U EF (f) 

includes /} = ease 0/ achieving 105 - 125 DbA 1\ ease 0/ achieving 2000 - 5000 Hz 1\ 

resistance to temperature 1\ high response time since the car horn A is the only 
artifact in the catalogue J'that satisfies both/and/}. 



THE IDEALIZED DESIGN PROCESS 157 

The next definition formalizes the intuitive notion of proximity in the attribute 
space. 

Definition 5.11 (Closure Attribute Space): If U (jJ is a single-valued relation on 2 (jJ 

with a range of 2 (jJ ,then we say that U (jJ is a closure operation (or "closure") for 

t;lJ provided that the following conditions are satisfied: 

1. U (jJ (0) = 0 ; 

2. M c U (jJ (M) for each M c t;lJ ; 

3. U (jJ(M uN) = U (jJ(M) u U (jJ(N) for each M c t;lJ and N c t;lJ; 

If m is a structural property in 0, then U (jJ (m) designates a set of structural 

descriptions in 0 such that each structural description qualifies (derives) by means 
of logical inference the structural property m. Each element in the set represents a 
different "viewpoint" of the attribute m. If M is a set of attributes in t;lJ, then 
U (jJ(M) = U U (jJ(m) (in which case U (jJ is called additive). 

meD 

The structure < 0, U (jJ > is called a closure attribute space. In the closure 

attribute space <0, U (jJ >, the attribute x is proximal to M if and only if x E 

U (jJ(M). 

Definition 5.12 (Topological Attribute Space): A topological attribute operation 
(or "topological closure") for a set t;lJ is a closure operation U (jJ for t;lJ satisfying the 

following condition: F ~ t;lJ implies U (jJ (U (jJ (M) ) = U (jJ (M) . < t;lJ, U (jJ > is 

called a topological attribute space. 
If < (lJ, U (jJ > is a topological attribute space, then for every structural property 

m, U (jJ (m) designates the set of all structural descriptions in t;lJ that qualify (by 

means of logical inference) the attribute m. 

Example 5.12: Let 0 be the set of all artifact descriptions of fasteners obtained 
by conjunction (A), disjunction (v), and negation (-) over the basic attributes in 
Table 5.1. If the set M contains the single attribute polycarbonate material, then the 
closure of M in < 0, U (jJ > or under U (jJ contains, among others, the following 

proximal attributes (all of them derive polycarbonate material): (1) polycarbonate 
material; (2) polycarbonate material A fastener with washer; (3) polycarbonate 
material A - chamfer point; and (4) polycarbonate material A (threaded shank v 
threaded tail) A (cap drive recess v external socket hex). Each proximal attribute 
represents an alternative "viewpoint" of polycarbonate material. 

The next definition relates to designing from a set of real artifacts in a catalogue. 



158 A MATHEMATICAL THEORY OF DESIGN 

Definition 5.13 (Closure in Attribute Space Catalogue, U q;): Let m be a 

structural property in 0, and J'be the set of all real artifacts that existed in the past, 
and exist presently in a catalogue. Then lEU q; (m) if and only if the set of artifacts 

in the catalogue J' that have the attribute I is a subset of the set of artifacts that have 
the attribute m. Each element in the set represents an alternative structural 
description. If M is a set of attributes in 0, then U q; (M) = U U q; (m) (in which 

meM 

case U q; is called additive). 

If U q; (m) designates the set of all structural descriptions of artifacts in 

catalogue J'that qualify the attribute m, then U q; (m) is called a topological closure 

in attribute space catalogue. The following conditions are satisfied by a topological 
closure in the attribute space catalogue: 

1. U q; (0) = 0 ; 

2. Me Uq;(M) for each Me 0; 

3. Uq;(MvN) =Uq;(M)vUq;(N)foreachMe 0andNe 0; 

4. U q; (U q;(M» = U q;(M) for each M e 0. 

Example 5.13: If m is the attribute shoulder II. threaded shank II. truss head type, 
then U q; (m) includes the structural description I = shoulder II. truss head type since 

fastener E is the only fastener that satisfies both attributes m and I. 

Definition 5.14 (Open and Closed Sets): A subset F of a closure function space 
<!T, U g:- > is called closed if U g:- (F) = F, and open if its complement (relative to 

g ) is closed; i.e., if U g:- (g - F) = g - F. Similarly, a subset M of a closure 

attribute space < 0, U q; > is called closed if U q; (M) = M, and open if its 

complement (relative to 0) is closed; i.e., if U q; (0 - M) = 0 - M. Thus, closed 

sets of a closure function space (closure attribute space) are the "fixed elements" of 
Ug:- (Uq;). 

Example 5.14: For a topological function space (see Definition 5.9) the closure 
of each subset of g is closed. Iff is a functional property in !T, then the closed set 
U g:- (f) designates the set of all functional descriptions that derive the functional 

property f A functional property that is not included in U 9' (f) does not derive f 
The set of all functional descriptions that do not derive f is the complement of 
U g:- (f) relative to g. Therefore, the closure of the complement of U 9' (f) 

includes the set of all functional descriptions that do not derive f Thus, in accordance 
with Definition 5.14, U 9' (f) is open. In summary, every closure in <!T, U 9' > is 
closed and open at the same time. An analogous result is obtained for topological 



THE IDEALIZED DESIGN PROCESS 159 

attribute spaces. 

Definition 5.15 (Limit Point 0/ a Set): A limit point of a set F (or M) in a closure 
function space (or closure attribute space) is a point x belonging to the closure of F -
{x} (or M- (x}). The set of all limit points of a set F (or M) is denoted by F' (or M') 
and called the derivative of F (or M) in the closure function space (or closure 
attribute space). Clearly, the closure of a set F (or M) is the union of the F (or M) 
with its set of limit points. 

Example 5.15: If / is the functional property low power consumption and 
<fT, U f7 > is a topological function space, then low power consumption 1\ ease 0/ 
maintenance is a limit point of / since {low power consumption 1\ ease 0/ 
maintenance} e U f7 ({low power consumption}) . 

Definition 5.16 (Neighborhood): A neighborhood of a functional property / is 
any closure U f7 (F) for some set F such that / e U f7 (F). Similarly, a 

neighborhood of a structural property m is any closure U (lj (M) for some set M such 

that me U (lj(M). 

Example 5.16: If/is the functional property low power consumption 1\ p.ase 0/ 
maintenance and < 9f U f7 > is a topological function space, then 

U f7 ({low power consumption}) and U f7 ({ease 0/ maintenance}) are two distinct 

neighborhoods off This means that/implies two distinct functional properties in !T. 

Definition 5.17 (Convergence): Let <~~ U f7 > be a closure function space and 

{f n } ;;'=1 be a sequence of functional properties of g: Then {f n } ;;'=1 converges to 

the functional property / E go if is a limit of the sequence), if for every neighborhood 
U f7 of/there is a positive integer N such that/n e U f7 for all n <:! N. Similarly, 

let < (lj, U (lj > be a closure attribute space and {m n } ;=1 be a sequence of attributes 

of (lj. Then {m n } ;=1 converges to the structural property me (lj (or m is a limit of 

the sequence), if for every neighborhood U (lj of m there is a positive integer N such 

that m n e U (lj for all n <:! N. 

Example 5.17: Let functional properties be described in terms of tolerances 
(determined by intervals) as specified in Example 5.6. If the functional property low 
power consumption is described by intervals, and Cantor's Nested Intervals Theorem 
[5] is used; then any sequence of "shrinking" or "nested" closed intervals with 
diameters approaching zero must have exactly one value of power consumption in 
common. 

Example 5.18: If we evolve an artifact structure by utilizing conjunctions of 



160 A MATHEMATICAL THEORY OF DESIGN 

attributes, we get an attribute as the limit of the evolution. For example, the following 
sequence converges to the structural description of fastener F: 
m 1 = slot drive recess; 

m 2 = slot drive recess /\ round head type; 

m 3 = slot drive recess /\ round head type /\ shoulder; 

m 4 = slot drive recess /\ round head type /\ shoulder /\ threaded shank; 

m 5 = slot drive recess /\ round head type /\ shoulder /\ threaded shank /\ threaded 

tail; 
m 6 = slot drive recess /\ round head type /\ shoulder /\ threaded shank /\ threaded 

tail /\ chamfer point; 
m 7 = slot drive recess /\ round head type /\ shoulder /\ threaded shank /\ threaded 

tail /\ chamfer point /\ - washer; 
ms = slot drive recess /\ round head type /\ shoulder /\ threaded shank /\ threaded 
tail /\ chamfer point /\ - washer /\ - polycarbonate material. 

Note that the limit here is an element of q;; therefore, it may only be an 
approximation of the design solution F. This corresponds to real design, where 
artifacts are described by a finite number of properties, and thus each implicitly 
represents an infinite number of possible designs. 

5.3.3 TRANSFORMATION BETWEEN FUNCTION AND ATTRIBUTE 
SPACES 

The automation of design will be improved by providing a rule of direct 
correspondence between the function space and the attribute space without the 
restriction of a catalogue. For example, in designing a helical compression spring 
subject to a known load, maximum allowable stress, shear modulus, safety factor, 
deflection, and free length; the designer applies a known formula to obtain the 
dimensions of the helical spring (such as the coil radius, wire diameter, number of 
coils, and spring index) that correspond to the helical spring specification. Often, 
there is a set of production rules (besides numerical equations) that produce a design 
solution in terms of attributes by giving a specification in terms of functional 
properties. Analysis is concerned with the process of inferring potential functionality 
from an artifact structure. In contrast, designing is mainly concerned with synthesis: 
the generation of an artifact structure that will satisfy a desired function. The 
mapping from the function to the artifact description (Le., synthesis) is often the 
"inverse" of the mapping from the artifact description to the function (Le., analysis). 
The following two definitions formalize these intuitive definitions of synthesis and 
analysis as described in Figure 5.1. 

In an "ideal" artifact, the number of structural properties is equal to the number 
of functional properties. When this is the case, a perturbation in a particular structural 
property must affect only its referent functional property. In general, there are two 
categories of artifacts: uncoupled, and coupled [13]. An uncoupled artifact can be an 



THE IDEALIZED DESIGN PROCESS 161 

"ideal" artifact, whereas a coupled artifact renders some of the tunctional properties 
dependent on other functional properties. A coupled artifact may result when there 
are less attributes than functional properties. Thus, a coupled artifact may be 
decoupled by adding extra components, which increases the number of structural 
properties. In some special cases, redundancy may be required to increase the 
reliability of a particular subsystem, which also increases the safety of the entire 
system. A redundant artifact may result when there are more attributes than 
functional properties. 

If each artifact in a particular design domain (e.g., the fasteners domain) is 
uncoupled, the total number of structural properties in the domain is equal to the total 
number of functional properties in the domain. In other words, the cardinality of the 
function space is equal to the cardinality of the attribute space. Since this equality is 
unlikely, many design domains exhibit the deficiency of having more functions than 
attributes. When this is the case, the synthesis mapping is often unable to 
discriminate between the functionality of some structural descriptions. 

Definition 5.18 (Analysis mapping): If r is a single-valued relation on 0 with a 
range of g; then we say that r is an analysis mapping from the artifact description to 
the functional description provided that the following conditions are satisfied: If m is 
a structural property in 0, then r{m) designates a functional description in [F that 
corresponds to the structural property m. If M is a set of structural properties in 0, 
then r{M) = U r(m). Analysis mapping is concerned with inferring potential 

meM 
functionality from an artifact structure. 

Example 5.19: If M contains the single structural property polycarbonate 
material, then r{M) can be generated in the following way: We start with {A, B, C, 
D, G} as the polycarbonate material designs as summarized in Table 5.1. The shared 
functional properties (see Table 5.2) of the polycarbonate material fasteners are 
{corrosion resistance & thermal conductivity}. Therefore, we may say that 
r{{polycarbonate material}) = {corrosion resistance & thermal conductivity}. 

Example 5.20: Let functional and structural properties be described in terms of 
tolerances (determined by intervals) as specified in Example 5.6. Let the structural 
attribute polycarbonate material denote the percent of carbon that exists in the 
material. If the percent of polycarbonate material is described by the tolerance [a, b J, 
then it is mapped to a tolerance of the functional property corrosion resistance & 
thermal conductivity by the following analysis mapping: r{[a, b]} = {[a2, b2]}. 

Definition 5.19 (Synthesis Mapping): If r is a single-valued relation on [F with 

a range of 0, then we say that r is a synthesis mapping from the functional 
description to the artifact description provided that the following conditions are 
satisfied: If/is a functional property in [F, then roo designates an attribute in 0 that 
corresponds to the functional property f. If F is a set of functional properties in 9f 



162 A MATHEMATICAL THEORY OF DESIGN 

then Y(F) = U Yif). Synthesis mapping is concerned with the generation of an 
feF 

artifact structure that will satisfy a desired function. 

Example 5.21: If F contains the single functional property high strength. then 
Y(F) can be generated in the following way: We start with {B. D. E. F} as the high 
strength designs as summarized in Table 5.2. The shared structural attributes (see 
Table 5.1) of the high strength fasteners are {shoulder. threaded shank, threaded 
tail. chamfer point}. Therefore, we may say that Y({high strength}) = {shoulder A 

threaded shank A threaded tail A chamfer point}. 

Example 5.22: Additional synthesis mapping can be defined; e.g., Y( {high 
strength}) may designate a structural description of an artifact in catalogue J that 
derives the functional property high strength. 

Often the mapping from the function to the artifact description (i.e .• synthesis) is 
the "inverse" of the mapping from the artifact description to the function (i.e., 
analysis). This can be formalized as Y == rl; i.e., VfE g;Yif) = {m E 0: r(m) =f}. 

The idealized design process cycle is summarized in the following definition: 

Definition 5.20 (Idealized Design Process): The structure {<9"', U g- >, <0, 

U q; >. Y, r} is called an idealized design process. The idealized design process 

cycle is depicted in Figure 5.6. 

r 

Uq; r;:;;) 
o I~~t----~ 

Figure 5.6 The Idealized Design Process Cycle 

The next example illustrates the intuitive definition of an idealized design 
process (see Figure 5.2) as the designation of a domain in the attribute space 0 that 
corresponds to a specification domain in the function space 9"'. 

Example 5.23 (An Idealized Design Process): If F contains the single functional 
property high strength, then the closure in function space U g-({high strength}) 

generates the proximal functional description {high strength A retractability}, which 



THE IDEALIZED DESIGN PROCESS 163 

derives the functional property high strength. Following the procedure suggested in 
Example 5.21, Y({high strength 1\ retractability}) generates the set of structural 
descriptions that are shared by fasteners {B, D, E, F}; i.e., {shoulder 1\ threaded 
shank 1\ threaded tail 1\ chamfer point}. Then, the closure in attribute space 
U {i,( {shoulder 1\ threaded shank 1\ threaded tail 1\ chamfer point}) produces the 

structural description of fastener B. To recap, in the specification high strength, B (or 
its structural description) is a design solution. 

5.3.4 DECOMPOSITION OF DESIGN SPECIFIC A TION 

The overall functions (design specifications) that an artifact has to satisfy depend on 
the design domain. Design functions may include information that is relatively 
abstract. Also, some functions may qualify (or derive) other functions. Therefore, in 
the function space, each function selected for a given specification can be further 
decomposed into sub-functions so that enough information is provided to proceed to 
the next design stages. Functions are decomposed until it is possible to match them 
with attributes at the synthesis stage. Decomposition of functions can be done by a 
designer, an intelligent advisor, or both. A designer performs decomposition 
according to experience and design knowledge. An intelligent advisor is a 
knowledge-based system supported by catalogues containing the principles of 
functional decomposition. Given the function space, a number of alternative function 
decompositions may exist; each of which satisfies the overall design specification. 
Such decomposition is represented in the function space and used in the final stage of 
conceptual design, namely synthesis. 

The number of function levels depends on the complexity of the designed 
artifact. The logical hierarchy of functions presents a clear view of the designed 
artifact and defines its behavior, which means that the lower function levels are 
viewed as interacting to produce the overall functions. The lower function levels 
represent design problems of reduced complexity and with lower levels of 
abstraction. This interaction may have various logical forms (e.g., conjunction, 
disjunction, etc.). The set of functions, sub-functions, and the logical relationships 
between them provide a description of the function space for a class of artifacts that 
can be designed. 

A highly articulated version of the above view of the design process is 
formulated in the literature as the analysis-synthesis-evaluation (ASE) paradigm (see 
Chapter 2). According to the ASE paradigm, the design process consists of three 
logically and temporally distinct stages: decomposition of functions, synthesis, and 
evaluation. 

The analysis and synthesis stages are embedded in the idealized design process 
framework as follows: Given the overall design specification, f E 9f the designer 
applies the closure operation U rT (in function space fT) several times. Each single 

application of U rT generates alternative function decompositions. This stage is 

followed by synthesis mapping Y from the function space to the artifact description. 



164 A MATHEMATICAL THEORY OF DESIGN 

This results in a number of alternative design solutions that are given in terms of their 
structural descriptions. 

Figure 5.7 illustrates alternative solution paths. each of which satisfies the 
overall design specification 10. Given the overall design specification 10. the first 
decomposition stage generates three alternative functional descriptions U g- ({ lo}) 

= { 10' II. h. h}. followed by a second stage of decomposition 

U g-({fO,fI' h. h}) = { 10.1I. 14' Is. h}· At this point. it is possible to match 
the functions with attributes. A stage of synthesis follows where four alternative 
artifact descriptions are determined {m I • m 2 • m 3 • m 4 }. 

Figure 5.7 Decomposition of Functions and the Corresponding Synthesis Stage 

Example 5.24: consider the fastener domain where the initial specification is 10 

= high strength A high retractability A medium precision. The first iteration may be 
to realize that strength is characterized separately by the head and tail of the fastener. 
By applying the knowledge-base of fasteners and analyzing the current requirements. 
it is concluded that both of them demand high strength; i.e .• U g-({fo}) = II = 
{high head strength A high tail strength A high retractability A medium precision}. 
The second iteration may be to get a better definition of retractability. There is a 
choice of how fasteners are driven and in order to get high retractability we need 
rotary-mode fasteners; i.e .• U g-({/d) = h = {high head strength A high tail 

strength A drive-mode rotary A tail-mode rotary A medium precision}. In the next 



THE IDEALIZED DESIGN PROCESS 165 

iteration, we realize that medium precision translates into a looser body fit; i.e., 
V g- ({ h}) = h = {high head strength 1\ high tail strength 1\ drive-mode rotary 1\ 

tail-mode rotary 1\ looser body fit}. At this point, synthesis decisions begin to be 
made as the final configuration of the design begins to take place. From the current 
information, we infer that the head of the fastener needs a shoulder, the tail of the 
fastener will be fastened using threads, the drive type will be a hex head, and the 
body will have threads. Finally, it is decided that the tip of the fastener should be 
chamfered in order to maximize reversibility. Thus, the overall synthesis process can 
be formulated as: 1(13) = {shoulder head type 1\ threaded tail type 1\ socket-hex 

drive type 1\ threaded body type 1\ tip type chamfer}. 

5.3.5 CONVERGENCE OF THE FUNCTION DECOMPOSITION STAGE 

According to the ASE paradigm, synthesis mapping can not be applied unless the 
initial design specification can not be further decomposed. In mathematical terms, it 

means that for some decomposition stage i and set of functions F i , V g-(Fi) = Fi. 

A subset F of a function space 9'will be called closed if V g-(F) = F. Closed sets 

of a structure < 9', V g- > are the "fixed points" of Vg-. Thus, the existence of 

fixed points for the operator U g- is a necessary condition for the design process to 

terminate with a solution that satisfies the initial specification. The next result 
establishes a condition under which fixed points for V g- exist. 

Theorem 5.1: Let V be a single-valued relation on 2·T with a range of 2 g- . If V 
is monotonous; i.e., it satisfies the property FJ k F2 ~ V(F I) k V(F 2 ), then V has a 

fix-point in 2 g- . 

Since the closure operation In function space V g- is additive, it is also 

monotonous. Therefore, Theorem 5.1 guarantees the existence of a fixed-point for 
Vg- . 

5.3.6 ORDER RELATION FOR ATTRIBUTE AND FUNCTION SPACES 

If a space is metric; that is, one can calculate a distance between any two entities in 
the function and attribute spaces, then the distance measure can be used to assign 
values to each of the attributes or functions describing an artifact such as those 
described in Tables 5.1 - 5.3. There are no clear performance metrics for functions. 
Evaluation of structural attributes is straightforward. Performance metrics include, 
but are not limited to: size, weight, power requirements, efficiency, capacity for force 
generation, and economic features. Unfortunately, precise performance metrics are 
difficult to articulate for designs that are completely described as function structures. 



166 A MATHEMATICAL THEORY OF DESIGN 

However, the hierarchical design record provided by designing on each successive 
level of abstraction allows the designer to monitor the effectiveness of individual 
functional entities. This design approach begins to address the fundamental problem 
of articulating performance metrics for function structures by imposing a clear 
association between the functions and the derived structural attributes. 

A simple example of the benefits of a metric is related to the search for 
alternative design solutions. A logic tree is one of the tools that can assist the 
designer to represent and record the function decomposition stage. A search problem 
is characterized by an initial state, a set of operators, and a goal state [6]. For 
example, the overall specification is the initial state, a set of production rules for the 
decomposition is the set of operators, and the design solution is the goal state. In 
design, the initial state is known a priori, while the goal state is to be determined. An 
operator transforms one state to another. The objective is to find a sequence of 
operators that will lead to a goal state. Starting from the initial state, the set of all 
states that can be reached by applying operators is called the state space. In order to 
generate a solution, an extensive search of the state space may be required. Three 
representative methods [7] of guiding this search are: (I) breadth-first, (2) depth-first, 
and (3) best-first. One of the most promising best-search methods is the A" method 

[7]. At each step of the A * search process, the most promising state (e.g., state with 
the lowest corresponding evaluation function cost), which has been generated but not 
further expanded, is selected. If it happens to be the final solution, then the search 
process terminates. If not, the chosen state is expanded by generating its successive 
(new) states. A heuristic state evaluation function is applied to each successive state 
to compute a value. Then, all the new states are added to the list of unexpanded 
states. Again the most promising state is selected and the process described above 
continues. The heuristic state evaluation function in the A" algorithm has a 
quantitative nature. That is, the associated cost of each state should allow for ordinal 
comparison among states; for example, functional property 2 is better than functional 
property 5 because the value of the evaluation of functional property 2 is less than 
that of functional property 5. The next definition pertains to assigning values to each 
of the entities in the function and attribute spaces such as those described in Tables 
5.1 - 5.3. 

Definition 5.21 (Designer Preferences in Function Space): A binary relation of 

"preference or indifferent" >- f7 over 9"satisfying: 

I. If II, h are members of 9", then either fl >- fT h or h >- f7 fl' It is 

interpreted as "the designer strictly prefers one of or is indifferent to the 
functions II or h relative to a performance metric for the function space." 

2. Iffl >- fT h, thenh >- fT fl is false; 

3. Iffl >- fT h andh >- f7 h, thenii >- f7 h· 
Designer preference in attribute space (denoted by >-q;) is defined in a similar 

manner. 



THE IDEALIZED DESIGN PROCESS 167 

The following generalizes the previous definition to account for preferences over 
sets of functions. 

Definition 5.22 (Preference over Sets of Functions): A binary relation of 

"preference or indifferent" >- fT on 2 fT satisfying: If F 1 ' F 2 are sets of 2 fT , then 

F 1 >- fT F 2 if and only if for any function fr E F 1 and any function f 2 E F 2' fr 
>- fT f 2. This relation is not necessarily defined for any two subsets of 2 fT . 

Preference over sets of structural attributes is defined in a similar manner. 

5.4 IDEALIZED DESIGN PROCESS AXIOMS 

5.4.1 CONTINUITY IN FUNCTION AND ATTRIBUTE SPACES 

Idealized design process properties (or axioms) convey the assumptions of the theory 
about the nature of artifacts and their potential manipulation to achieve a desired 
functionality. These axioms are the foundations of the theorems discussed later. 
Some of these axioms can be excluded thus providing different categorizing of 
idealized design processes. This enables an assessment of their relevance to design. 
The main purpose of the remaining sections in this chapter is to investigate the notion 
of the continuous mapping of one closure space to another. We visualize the 
continuity of synthesis mapping (or analysis mapping) at f (or m) by thinking that 
whenever f is "close" to a set F, then 1(j) is "close" to Y(F). 

Definition 5.23 (Continuous Synthesis Mapping, CS): A synthesis mapping of a 
closure function space <9', U fT > to a closure attribute space <0, U (1) > is said to 

be continuous at a functional property f of ffif F ~ .9'; fEU fT (F) implies Y(j) E 

U (1) (Y(F)). The mapping 1 is said to be continuous if it is continuous at each 

functional property f of ff; or likewise, if F ~ ff implies Y(U fT(F) ) ~ 

U (1) (Y(F)). 

A closure operation for a space P was defined as a single-valued relation on 2 p 

with a range of 2 P . The intuitive meaning of a closure for a set (in function and/or 
attribute spaces) determines, roughly speaking, what points are proximal to which 
sets. This is the intuitive sense of the notion of a closure operation. Thus, the 
definition of continuous mapping as a mapping that preserves the relation if is 
proximal to F} becomes evident: if is proximal to F} implies the relation {Y(j) is 
proximal to Y(F)}. The continuity property of a synthesis mapping guarantees that a 
small change in the artifact functionality will result in a small change in the artifact 
description. Therefore, if the current candidate's functionality differs slightly from 
the required function, a small modification to the structure may be sufficient. 
Convergence is also a process-oriented concept (see Definition 5.17), which provides 



168 A MATHEMATICAL THEORY OF DESIGN 

a different perspective of continuity. Convergence guarantees that a sequence of 
incremental refinements to the artifact functionality will cause only small incrementai 
changes to the structure. 

Example 5.25: Assume that fastener F has the property corrosion resistance & 
thermal conductivity. Given the initial specification corrosion resistance & thermal 
conductivity, U g-( ( corrosion resis tan cne & thermal conductivity}) - the closure in 

function space - generates the proximal functional description corrosion resistance & 
thermal conductivity 1\ medium precision. This functional description is mapped, by 
the synthesis mapping, to the structural description of fastener F. 

On the other hand, since the structural property polycarbonate material is the 
most probable structural attribute that derives the functional property corrosion 
resistance & thermal conductivity, the designer may decide to synthesize a fastener 
that is composed of polycarbonate material. The closure operation in attribute space 
(U q; ) generates the set of structural descriptions that correspond to fasteners A, B, 

C, D, and G; each of which is made up of polycarbonate material. Thus, the synthesis 
mapping is not continuous at the functional property corrosion resistance & thermal 
conductivity since F is not included in the set {A, B, C, D, G}. 

Definition 5.24 (Continuous Analysis Mapping. CAY: An analysis mapping of a 
closure attribute space <0, U q; > to a closure function space <£j', U g- > is said to 

be continuous at a structural property m of 0 if M ~ 0; m E U q; (M) implies 

rem) E U g- (reM)) . The mapping r is said to be continuous if it is continuous at 

each structural property m of 0; or similarly, if M ~ 0 implies re U q; (M) ) ~ 

U g-(reM)) . 

The continuity property of an analysis mapping guarantees that a small change in 
the artifact description will result in a small change in the artifact functionality. 
Therefore, if the current candidate's structure differs slightly from the required 
structure, a small modification to the functionality may be sufficient. Furthermore, it 
may occur that the analysis mapping is discontinuous at the structural description of 
the artifact; thus, cannot be analyzed. Therefore, the artifact cannot be synthesized to 
a description close to the discontinuity point. The continuity property of an analysis 
mapping also guarantees that a sequence of incremental refinements to an artifact 
structure will cause only small incremental changes to the functionality. In other 
words, each convergent sequence of structures in the attribute space will cause the 
convergence of the corresponding manifestations of functionality in the function 
space. 

As mentioned above, the synthesis mapping from the function to the artifact 
description is often the "inverse" of the analysis mapping from the artifact description 

to the function. This can be formalized as I == r -I ; i.e., \;f f E g:; I(j) = (m E 0: 

rem) = f}. Furthermore, the analysis mapping is often one-to-one, which means that 
distinct structural attributes in 0 are mapped to distinct functional attributes in fT, 



THE IDEALIZED DESIGN PROCESS 169 

and thus manifest different functions. Closure spaces < [T, U fT > and < {jj, U q; > 
are topologically equivalent or homeomorphic if there is a one-to-one analysis 
mapping r from the attribute space to the function space in which r and the inverse 

function r- I (Le., T) are continuous; Le., they satisfy the CA and CS properties 
respectively. This type of analysis mapping r is called a homeomorphism. 

We note that the following condition is not sufficient for <[T, U fT > and <{jj, 

U q; > to be homeomorphic: there exists a one-to-one continuous analysis mapping r 
of <0, U q; > onto <[T, U g- >, and a one-to-one continuous synthesis mapping r 
(distinct from r -I ) of <[T, U g- > onto < {jj, U q; >. The notion of homeomorphism 

is fundamental and therefore we provide a necessary and sufficient condition for an 
analysis mapping to be a homeomorphism. 

Theorem 5.2: Let the analysis mapping r be a one-to-one mapping of <{jj, U q; > 

onto <fT, U g- >, and the synthesis mapping be the inverse of r (Le., r == r-I ); 

then r is a homeomorphism if the following condition holds: F s;;;; [T implies 
r(U g-(F) ) = U q; (Y'(F». 

Definition 5.25 (Order Preserving under Synthesis, OPS): A synthesis mapping 
of a closure function space < fT, U fT > onto a closure attribute space < (jj, U q; > 

"preserves order" if and only if the binary relations >- fT and >- q; satisfy: F 1>- fT F 2 

if and only if Y'(F I ) >- q; Y'(F 2 ). 

The order preserving property means that the preference relation between two 
functional properties is preserved under the synthesis mapping. This property is 
related to the fundamental problem of articulating performance metrics for function 
structures by imposing a clear association between the functions and the derived 
structural attributes. 

Definition 5.26 (Order Preserving in Function Space, OPFS): A closure 
operation in a closure function space < fT, U fT > is said to be order preserving if 

and only if F I >- fT F 2 then -[U fT(F2 ) ) >- g- U fT(FI ) )]. 

This property means that if the designer prefers (or is indifferent to) the set of 
functional properties F 1 to the set of functional properties F 2 (relative to a 

performance metric for function space), then at least one proximal description of F 2 

performs worse than another proximal solution of Fl' 

Similarly, we define "order preserving in attribute space": 

Definition 5.27 (Order Preserving in Attribute Space, OPAS): A closure 



170 A MATHEMATICAL THEORY OF DESIGN 

operation in a closure attribute space < 0, U q; > is said to be order preserving if M I 

>-q; M 2 then -[U q; (M 2) >-q; U q; (M I)]. 

This property means that if the designer prefers (or is indifferent to) the set of 
structural properties M 1 to the set of functional properties M 2 (relative to a 

performance metric for attribute space), then at least one proximal description of M 2 

performs worse than another proximal solution of MI. 

The idealized design process axioms are interrelated as follows: 

Theorem 5.3 (Consistency): Let the analysis mapping r be a one-to-one mapping 
of < 0, U q; > onto < ar, U f7 >, the synthesis mapping be the inverse of r (Le., l' == 

r- I ), and r be a homeomorphism. Then. 

1. The OPS & OPAS imply the OPFS; 
2. The OPS & OPFS imply the OPAS. 

A property P of closure function and attribute spaces is a topological property or 
topological invariant provided that if closure function space <fT. U f7 > has 

property p. then so does every closure attribute space <0. U q; > that is 

homeomorphic to <[F, U f7 >. For example, "the cardinal number of fT is m" is a 

topological property. Next. we show that the property "F is a fixed point in <fT. 
U gr >" is a topological invariant. 

Theorem 5.4: Let the analysis mapping r be a one-to-one mapping of <0. U q; > 

onto <ar, U gr >. the synthesis mapping be the inverse of r (i.e .• l' == r- I ). and r 
be a homeomorphism. If U f7 is monotonous (and thus has a fix-point in 2!T 

according to Theorem 5.1). then U q; is monotonous (and thus has a fixed point in 

2 q; according to Theorem 5.1). 

Theorem 5.5: Let the analysis mapping r be a one-to-one mapping of <0. U q; > 

onto < ar, U f7 >. the synthesis mapping be the inverse of r (i.e., l' == r -I ). and r be 

a homeomorphism. If F* is a fixed point of U f7 • then 1'(F*) is a fixed point of 

Uq;. 



THE IDEALIZED DESIGN PROCESS 

5.4.2 THE COMPLEXITY OF THE "HOMEOMORPHISM" AND 
"CONTINUITY" PROBLEMS 

171 

Even though the concept of homeomorphism is useful in design, it is often difficult to 
discover whether closure function and attribute spaces are homeomorphic or not. 
Likewise deciding whether a synthesis mapping of <fF, U fT >, onto <{l}, U (lJ > is 

continuous at some functional property is a difficult problem. In general (i.e., for 
instances of any size), the Homeomorphism and Continuity problems are 
undecidable. That is, a problem is undecidable if there is no algorithm that takes an 
instance of the problem as input and determines whether the answer to that instance is 
"yes" or "no." The purpose of this section is to investigate the worst-case 
computational complexity of the Homeomorphism and Continuity problems. 

Computational complexity theory seeks to classify problems in terms of the 
mathematical order of the computational resources (such as computation time, space 
and hardware size), which are required to solve problems through digital algorithms. 
A problem is a collection of instances that share a mathematical form, but differ in 
size and in the values of numerical constants. In general, we convert optimization 
problems to decision problems by posing the question of whether there is a feasible 
solution to a given problem, which has an objective function value that is equal to or 
greater than a specified threshold. The notion of "easy to verify" but "not necessarily 
easy to solve" is at the heart of the Class NP decision problems. Specifically, NP 
problems include all the decision problems that could be polynomial-time solved if 
the right (polynomial-length) "clue" or "guess" were appended to the problem input 
string. An important subclass of NP problems are referred to as NP-complete or Non
deterministic Polynomial time Complete problems [8]. The CPU time required to 
solve an NP-complete problem, based on known algorithms, grows exponentially 
with the "size" of the problem. There are no polynomial time transformations for NP
complete problems, nor are there any polynomial time algorithms capable of solving 
NP problems. The potential to solve NP and NP-complete problems depends on the 
availability of certain heuristics. One problem polynomially reduced to another if a 
polynomially bounded number of calls to an algorithm for the second will always 
solve the first. A problem n E NP is shown to be NP-complete by polynomially 
reducing another already known NP-complete problem to n. Any problem n , 
whether a member of NP or not, to which we can polynomially transform an NP
complete problem is NP-hard. 

Definition 5.28 (The CONTINUITY PROBLEM): Let l' be a synthesis mapping 
of a closure function space of < gr, U g:- > to a closure attribute space < {l}, U (lJ >. 
The decision problem, termed the CONTINUITY PROBLEM, concerns the existence 
of the following property: there exists a functional property f such that l' is 
continuous at f, i.e., F ~ gr, f eo F, fEU fT (F) implies roo E U (lJ (l'{F». An 

analogous continuity problem can be defined for an analysis mapping. 

Theorem 5.6: If the number of functional properties in gr is finite, the 



172 A MATHEMATICAL THEORY OF DESIGN 

CONTINUITY PROBLEM is NP-hard (in the cardinal number of the 8'). 

Following the proof of Theorem 5.6, we conclude that the Continuity Problem 
becomes undecidable for instances that have unbounded space of functional 
properties. The implication might be that, in general, a synthesis process can not be 
verified for continuity by an automatic problem solving procedure. Thus, the focus 
should be on developing computational methods that can be practically implemented 
for verifying the continuity of only a certain percentage of all possibilities (that is, the 
analysis and synthesis mappings be "almost" continuous). 

Definition 5.29 (The HOMEOMORPHISM PROBLEM): The decision problem, 
termed the HOMEOMORPHISM PROBLEM, concerns the existence of a one-to-one 
analysis mapping r of <0, U 0> onto <8', U g- > and its inverse synthesis 

mapping Y == r-1 such that: F r;;;, 8' implies Y(U g-(F} } = U 0 (y(F}). 

Theorem 5.7: If the number of functional properties in 8' is finite, the 
HOMEOMORPHISM PROBLEM is NP-hard. 

5.5 BASIS FOR FUNCTION AND ATTRIBUTE 

5.5.1 DEFINITION AND PROPERTIES 

For each functional property f, we define its closure as a set of functional descriptions 
in 8', each of which qualifies by logical inference the functional property f . We 
visualize a functional property x E U iT (f) by thinking that x is "close" to f, in 

which case U g- (f) is called a "neighborhood" of f In other words, given the 

overall design specification f, a number of alternative function decompositions may 
exist, each of which satisfies the overall design specification (similar interpretation is 
given to a closure attribute space). 

A function space (or attribute space) can be very large and complicated. Often it 
simplifies matters to deal with a smaller collection of neighborhoods, which 
generates the entire "neighborhood system" (see Appendix A) of a function space (or 
attribute space) through unions. Such a collection is called a basis. The intuitive 
meaning of a basis for a closure function space (or attribute space) is that given an 
overall design specification f, the designer is able to precisely decompose it into 
corresponding functions (or attributes) through the unions in the basis. 

The definition of a basis also has a heuristic value in design systems where the 
designer routinely encounters many design problems. In such cases, the designer can 
improve performance by extending the initial phase that involves specifying a basis 
for the corresponding function space. This strategy can serve to reduce the 
computational complexity of the search for the function space. 

The definition of a basis follows: 



THE IDEALIZED DESIGN PROCESS 173 

Definition 5.30 (Basis): Let <57; U fT > be a closure function space. A basis for 

< 57; U 7 > is a collection <I> = {G i } ie I with the following property: for each set of 

functional properties F, there exists a sub-collection of <1>, {G i } ieQ such that 

U 7(F) = U U fT(G i ) . An analogous definition could be presented for an 
ieQ 

attribute space. 

The whole collection of neighborhoods is also considered a basis. This fact is of 
little use since the point of defining a basis is to produce a smaller collection of 
neighborhoods with which to work. 

Definition 5.31 (Function Space Character): For each basis <I> for <57; U fT >, 

1<1>1 denotes the cardinality (number of members) of the basis <1>. The function space 

character, denoted by Ca( 810, is defined as the greatest lower bound of 1<1>1 for any 

basis <1>; i.e., Ca(.9) = inf { l<I>i I : <I> i is a basis for < 57; U fT >}. 

Example 5.26: Consider the domain of fastener design. The designer would like 
get a better definition of the design specification fastener coupling (denoted by fl. 
The designer decomposes the initial specification as follows: In order to design a 
shaft coupling, either the nature of coupling is rigid 1\ the coupling is able to 
transmit a torque (denoted by g I)' or the nature of coupling is flexible 1\ the 

coupling is able to transmit a torque (denoted by g 2)' When this is the case, 

U 7 ({f}) = U fT ({f, g d ) U U fT ({f, g 2}) and the sets {f, g d & {f, g 2 } may 

be included in the basis of the related function space. 

Next, we investigate the concepts of function space character and of basis. For 
brevity the results are stated in terms of function spaces. Analogous results can be 
obtained for attribute spaces. 

Theorem 5.8: Let G I , G 2 E <1>. UfE U 7 (G1) n U 7 (G2 ), then there exists 

G E <I> such thatfE U fT (G) ~ U 7 (G1) n U 7 (G2 ). 

Theorem 5.9: Assume Ca( [7) S t. Then for every collection {G i } ie I ' there 

existsaset1 0 ~lsuchthat 1101 Stand U U 7 (Gi ) = U U7 (Gi )· 
ie/O iel 

The next theorem shows that each basis for < fT, U 7 > includes a "smaller" 

collection of subsets that forms a basis for <57; U 7 >. 

Theorem 5.10: Let t be a cardinal number, and suppose Cae 810 S t. Then, for 



174 A MATHEMATICAL THEORY OF DESIGN 

every basis CI> (for <[T, U fT ». ther~ exists a basis Cl>o such that ICI>ol :s; t and Cl>o 

(;; CI>. 

Next. we show that the property "CI> is a basis for <[T, U fT >" is a topological 

invariant. 

Theorem 5.11: Let the analysis mapping r be a one-to-one mapping of <0. 

U (j) > onto <g; U fT >. the synthesis mapping be the inverse of r (i.e .• l' == r-1). 

and r be a homeomorphism. If CI> = {G i } is a basis for < g; U fT >. then (l'( G i )} 

is a basis for < 0. U (j) >. 

5.5.2 SPACE CHARACTER AS A DESCRIPTIVE COMPLEXITY 
MEASURE 

In this section. we suggest that the function space character (see Definition 5.31) can 
gauge the descriptive complexity inherent in the space. The descriptive complexity of 
a given space measures the amount of information that is required to describe the 
related space. A descriptive complexity measure is dependent on the number of 
entities in the space and the variety of interdependence among the entities. Indeed. all 
else being equal. our ability to cope or comprehend with a system tends to decrease 
when the entities involved or their interconnections increase. There are many 
different ways in which descriptive complexity can be expressed. However. each of 
them has to satisfy the following properties: 

Let 6' be a collection of closure spaces. A descriptive complexity measure for & 
is a single-valued relation Won & with a range of 9t (where 9t denotes the set of 
real numbers) provided that the following conditions are satisfied: 

1. W(q,) = 0; 

2. If U is a single-valued relation on 2 P with a range of 2 P • and Q is a subset of P; 

then the single-valued relation U I Q on 2 Q with a range of 2 Q defined by 

U I Q (a) = U(a) is called the restriction of U to Q. If A is the closure space <p. 

U> and B is the closure space <Q. U I Q >. then W(B) :s; W(A); 

3. A is homeomorphic to B implies W(A) = W(B). 

Properties 1 and 2 ensure that descriptive complexity measures will be non-negative. 
Property 2 expresses the expectancy for a reduction in the complexity measure as a 
result of system abstraction. If the closure function space and the closure attribute 
space are homeomorphic. then it can be shown that the following property holds: for 
each f E g; F is a neighborhood off if and only if 1'(1') is a neighborhood of T(j). 
Thus. the mutual dependence among the functional properties of !T is topologically 



THE IDEALIZED DESIGN PROCESS 175 

invariant. In view of this fact, Property 3 maintains that two topologically equivalent 
spaces are equally complex. By applying Definition 5.31 and Theorem 5.11, it can be 
shown that the function space character (see Definition 5.31) satisfies the properties 
stated above; and thus, it has the intuitive meaning of a descriptive complexity 
measure. 

5.6 CONCLUDING REMARKS 

In this chapter the intuitive concept of the design process as a mapping of the desired 
functionality of a product to the description of the final product without the 
intervention of a catalogue is formalized by introducing the notion of the idealized 
design process. 

Regardless of whether or not the idealized design process serves as the basis for 
a descriptive theory of design, it also has a heuristic value in offering some guidelines 
for building CAD systems: 

1. Knowledge Representation - there exist two potential artifact representations: 
extensional and intensional. In the extensional representation, a structural 
property (or functional property) is expressed as the set of artifacts having this 
property (e.g., as summarized in Table 5.1 and Table 5.2). In the intensional 
representation, artifacts are described by the set of attributes characterizing them. 
The idealized design process supports the use of intensional representation of 
artifacts via Propositional calculus which describes functional and structural 
properties. The ideal design process also suggests, through the notion of 
neighborhoods (that represent function or attribute decomposition groups), the 
use of hierarchical knowledge structures for design support systems (see Section 
5.3.4). Graph structures are reminiscent of neighborhoods. Thus, employing such 
knowledge structures may result in better support of real design. 

In the presence of a design catalogue, the synthesis process is made easier 
by the use of the catalogue as mediator between the specification and the design 
description. In this case, extensional representation may result in a better support 
of real design. 

2. Design Process - The automation of design can be improved by providing a rule 
of direct correspondence between the function space and the attribute space 
without the intervention of a catalogue. Models and thorough research analysis 
(e.g., based on kinematics or mechanics) that are sufficiently detailed must be 
used for mediating between the attribute and its corresponding function. 

The concepts presented in this chapter are related to subsequent chapters in 
several respects: 

1. According to the continuity property explored in Section 5.4, when designers 
make an incremental change to the design, they expect that the resulting design will 
be consistent with the beginning design. After a design modification (redesign), the 



176 A MATHEMATICAL THEORY OF DESIGN 

constraint solver should honor the initial design choice. When the specifications are 
modified, we wish to not only find a new satisfactory design, we wish to find the 
intended design. This is what is meant by consistent design. The problem resides in 
selecting the correct solution. If there is only one possible solution to the 
specifications, then it is easy to maintain a consistent design. It is much harder if 
there are multiple competing solutions, all of which satisfy the specifications. 
Fortunately, the continuity property of design directs us towards a principle of design 
consistency: small changes in specifications should lead to small changes in design. 
Furthermore, large changes in specifications can often be decomposed to a series of 
small changes, in which case the principle can still be applied. In Part III of the book 
(Chapter 14), the concept of design consistency in the area of variational design is 
furthered formalized, and the COAST methodology is implemented for maintaining 
design consistency in those design areas where similarity between designs can be 
calculated; 
2. The ideal design process does not address how the mapping between the 
function space and the attribute space happens in real design. In real design, 
processes progress from a set of specifications (describing the desired functions and 
constraints of the final product) and move towards the artifact description (the final 
detailed product description). This evolutionary nature of design is formalized in 
Chapter 6. In Chapter 6, we present the design process as a sequence of synthesis 
steps, where each step describes the "current" functional properties (specifications) 
and structural properties. 

APPENDIX A - BASIC NOTIONS OF TOPOLOGY, AND 
LANGUAGE THEORY 

This appendix defines the topological and Language Theory terms used in this 
chapter. The definitions listed were compiled from [5, 9, 10]. 

TOPOLOGICAL SPACES 

closure operation If P is a set and U is a single-valued relation on 2 P with a range 

of 2 P , then we say that U is a closure operation for P provided that the following 
conditions are satisfied: 

(cl 1) U( 0) = 0 ; 
(el2) X ~ U(X) for each X ~ P; 
(cl 3) U(X u Y) = U(X) u U(Y) 

closure space A structure <P. U> where P is a set and U is a closure operation for P. 
If <p. U> is a closure space and X ~ P, then the set U(X) is called the closure of X in 
<P, U>. 



THE IDEALIZED DESIGN PROCESS 177 

closed set A subset X of a closure space <.P, U> is called closed if U(X) = X. 

open set A subset X of a closure space <.P, U> is called open if its complement 
(relative to P) is closed; i.e .• if U(P - X) = P - X. The collection (9. of all open subsets 
of a closure space <P, U> fulfills the following three conditions: 

(0 1) The set P belongs to (9.; 

(02) The union of any sub-collection of (9. belongs to (9.; 

(03) The intersection of any two members of (9. belongs to (9.. 

interior operation If <.P, U> is a closure space, then the interior operation int u is a 

single-valued relation on 2 P with a range of 2 P such that for each X !;;;; P, int u (X) = 
P - U(P - X). The set int u (X) is called the interior of X in <.P, U>. 

neighborhood A neighborhood of a subset X of a space <.P, U> is any subset G of P 
containing X in its interior. The neighborhood system of a set X !;;;; P in the space <.P, 
U> is the collection of all neighborhoods of the set X. 

limit point A limit point or an accumulation point of a set X in a closure space <.P, 
U> is a point x belonging to the closure of X - {x}. By intuition a cluster point is a 
point where other points accumulate (or converge) to that point. 

topological closure operation A closure operation U for P that satisfies the 
following condition: (cI4) for each X!;;;; P, U(U(X» = U(X). 

topological closure space A closure space <.P, U> is said to be topological if the 
closure of P is topological. In a topological closure space <.P, U> the closure of each 
set is closed in <P, U>, and the interior of each subset of P is open in <.P, U>. 

open basis An open basis of a topological space <.P, U> is a collection {If of subsets 
of P such that a subset G of <.P, U> is open if and only if it is the union of a sub
collection of {If. 

convergence of a sequence A sequence {s n} in a topological space <.P, U> 

converges to a point S E P if and only if for every neighborhood G of s there is a 
positive integer N G such that s i E G whenever i > N G . 

continuous mapping Let <.P, U> and <Q, v> be two closure spaces. A mapping /: 
P ~ Q is continuous if for all X!;;;; P,j{U(X)!;;;; V(f(X). 

homeomorphism If <.P, U> and <Q, V> are two closure spaces, then a mapping/: P 

~ Q is called a homeomorphism if and only if/is invertible and both/andr1 are 



178 A MATHEMATICAL THEORY OF DESIGN 

continuous. 

metric space A set S is called a metric space if with every pair of points x, YES, 
there exists a non-negative real number d(x, y) that satisfies: 

(1) If d(x, y) = 0 then x = y and d(x, x) = 0 always holds; 
(2) For any pair of points x, y; d(x, y) = d(y, x); 
(3) For any three points x, y; and z, d(x, z) ~ d(x, y) + d(y, z). 

PROPOSITIONAL LOGIC 

Logic is an indispensable part of reasoning or deductive thinking. Let us consider the 
propositional logic. A proposition is a declarative statement or sentence. A particular 
proposition may be either true or false. For example, consider the following two 
statements: "The word blueberry has two consecutive r's"; and "The word peach is 
six letters long." The former statement is true, and the latter statement is false. 

The relationships between various declarative statements can be represented 
symbolically, using connectors. A connector is a function that makes a compound 
statement out of simple statements. The following connectors are defined as a matter 
of convention: 

Symbol Meaning Connector name 
1.- "not" Negation 
2.1\ "and" Conjunction 
3. v "or" Disjunction 
4.=> "if-then" Implication 
5.¢::> "if and only if' Equivalence 

Given propositions P and Q, the significance of the symbols are as follows: 

1. -P is true if P is false, or conversely false if P is true. 
2. P 1\ Q is true if both referent statements P and Q are true. If one or both P and Q 

is false, then the compound statement is false. 
3. P v Q is true if P or Q is true. The compound statement is false only when both 

P and Q are false. 
4. P => Q is false if P is true and Q is false, and true in all other cases. P is called 

the antecedent or premise; Q is called the consequent or conclusion. 
5. P ¢::> Q is true when P and Q are both true or both false; otherwise, the statement 

is false. 

Based on the definitions given above; a truth table, which is a table of 
combinations of truth assignments to propositions, may be constructed. Table A.I 
gives an example of such a truth table. Each column except those labeled by atomic 
formulas is derived from one or two columns to its left with the aid of the definitions 



THE IDEALIZED DESIGN PROCESS 179 

for -, 1\, v, =>, ¢:::>. In this example, the third column is derived from the fIrst, the 
fourth from the fIrst and second, and the fIfth from the third and fourth. This truth 
table shows that (-P => (P => Q» is a tautology. 

Table A.I Example of A Truth Table 

P Q -P (P => Q) (-P=>(P => Q» 
T T F T T 
T F F F T 
F T T T T 
F F T T T 

Since P => Q and -P v Q take on identical truth values for all the combinations 
of values for P and Q, they are equivalent; i.e., (P => Q) ¢:::> (-P v Q). 

LANGUAGES 

A "symbol" is an abstract entity that we shall not defIne formally; just as "point" and 
"line" are not defined in geometry. Letters and digits are examples of frequently used 
symbols. A string (or word) is a fInite sequence of symbols juxtaposed. For example, 

a, b, and c are symbols and abcb is a string. The length of a string w, denoted I~, is 

the number of symbols in the string. The empty string, denoted by e, is the string 

consisting of zero symbols. Thus lEI = O. 

The concatenation of two strings is the string formed by writing the fIrst string, 
followed by the second, with no separating space. For example, the concatenation of 
white and house is whitehouse. Juxtaposition is used as the concatenation operator. 
That is; if a and b are strings, then ab is the concatenation of these two strings. The 
empty string is the identity for the concatenation operator. That is, Ea = aE = a for 
each string a. 

An alphabet is a fInite set of symbols. A (formal) language is a set of strings of 
symbols from one alphabet. The empty set, cp, and the set consisting of the empty 
string {E} are languages. Note that they are distinct; the latter has a member while the 
former does not. 

Let us defIne a regular expression and the language it represents. Let L be a 
fInite alphabet. The Regular expressions over an alphabet L are the strings defIned 
inductively as follows: 

(1) cp is a regular expression representing the empty set of strings; 
(2) E is a regular expression representing the set consisting of the empty string E; 

(3) For each a E L, a is a regular expression representing the set {a}; 
(4) If a and ~ are regular expressions representing sets A and E, then 



180 A MATHEMATICAL THEORY OF DESIGN 

(i) ex u 13 is a regular expression representing A u B; 
(ii) exl3 is a regular expression representing the language AB = {xy: x E A, Y E 

B}; 

(iii) ex· is a regular language representing the language A· = UAi , where 
i=O 

APPENDIX B - BOUNDED POST CORRESPONDENCE 
PROBLEM (BPCP) [8] 

INSTANCE: Finite alphabet I, two sequences of strings a = (a I, a 2, ... an) and b 

= (b I ,b 2, ... b n ) from I·, and a positive integer K ~ n. 

QUESTION: Is there a sequence iI' i 2, ... i k where k ~ K such that the two strings 

ail ai2 ... aik and bil bi2 ... bik are identical? 

APPENDIX C - GRAPH ISOMORPHISM [8] 

INSTANCE: Graphs G I = (VI' E I ) and G 2 = (V 2' E 2). 

QUESTION: Is there a one-to-one mapping f: V I ~ V 2 , such that (v I , v 2 ) EEl if 

and only if (fly I ),ft,y 2» E E 2 ? 

APPENDIX D - PROOFS OF THEOREMS 

Proof of Theorem 5.1 

Let us examine the set B = (F E [7": F ~ U(F)}. F is not empty since 0 E F. Define 

* * * F = U F . Let us show that U(F ) = F . 
FeB 

• * Step 1: F ~ UU(F) -- F ~ U(F) for every FEB; hence, F = UF ~ 
FeB FeB 

UU(F) . 
FeB 

Step 2: UU(F) ~ U(F*) -- For every FEB, F ~ F*. Hence, the monotonicity of 
FeB 

U implies U(F) ~ U(F·) for every FEB. Thus, it is concluded that UU(F) ~ 
FeB 

U(F*). 



THE IDEALIZED DESIGN PROCESS 181 

Step 3: F* ~ U(F*) -- A direct result from Steps 1 and 2. 

Step 4: U(F*) ~ F* -- From step 3 we obtain F* ~ U(F*) and the monotonicity of 
* * *. * * U implies U(F ) ~ U(U(F ». Hence, U(F ) E B; I.e., U(F ) ~ F . 

Step 5: U(F*) = F* -- A direct consequence of Steps 3 and 4. • 

Proof of Theorem 5.2 

Since F ~g- implies 1'(U fT (F» = U q; (Y'(F» , we conclude that Y'(U ar (F» ~ 

U q; (Y'(F». Thus the CS property is satisfied. The equivalence Y'(U ar (F» = 
U q; (Y'(F» implies that 1'(U ar (F» :2 U q; (Y'(F». Since r is a one-to-one 

mapping, we concluded that there exists a set for which r(M) = F. Therefore, we 
obtain Y'( U fT (r(M») ::! U q; (Y'(r(M))). Since the synthesis mapping is the 

"inverse" of the analysis mapping (i.e., 1'(r(M) = M), we concluded that 
Y'(U fT (r(M»)::! U q;(M). Applying the analysis mapping to both sides, we obtain 

the CA property; i.e., U ar (r(M» ::! r( U q; (M) ). • 

Proof of Theorem 5.3 

Part 1: Let F 1 >- fT F 2. The OPS property implies Y'(F I) >- q; Y'(F 2). Therefore, 

the OPAS property implies -[U q;(Y'(F2» >-q; U q;(Y'(F1»]. Since 1'(U ar (F2» = 
U q; (1'(F2» and Y'( U ar (F1» = U q; (Y'(F1». by applying Theorem 5.2, we 

conclude - [Y'(U fT (F2» >-q; Y'(U fT (F1»]. Finally, by the OPS property, we 

obtain - [U fT (F2 ) >- fT U fT (F1)], which concludes the proof. • 
Part 2: Let M 1 >- q; M 2. The OPS property implies r(M I) >- fT r(M 2). Therefore, 

the OPFS property implies -[ U fT (r(M 2» >- ar U ar (r(M I» ]. Since 

r(Uq;(M1» = Uar(r(M1» and r(Uq;(M 2» = Uar (r(M 2», by applying 

Theorem 5.2, we conclude - [r(U q; (M 2» >- fT r(U q;(M I) )]. FinaIly, by the OPS 

property, we obtain -[U QJ (M 2) >-q; U QJ (M I)], which concludes the proof. • 

Proof of Theorem 5.4 

Let M 1 ~ M 2 ~ 0. Since l' is a one-to-one mapping and additive, there exist sets 

F l' F 2 such that F 1 ~ F 2 ~ g-and 1'(F 1) = s 1 & 1'(F 2) = S 2. By Theorem 5.2, 

we obtain 1'(U fT (F1» = U QJ(Y'(F1» and Y'(U ar (F2» = U q;(Y'(F2». The 



182 A MATHEMATICAL THEORY OF DESIGN 

monotonicity of V g- implies V g- (FI ) !;;;; V g- (F2) . Since I is additive we obtain 

y(Ug-(FI »!;;;; y(Vg-(F2». Thus, V~(Y(FI»!;;;; U~(Y(F2»; i.e., V~(MI)!;;;; 

V ~ (M 2) as required. • 
Proof of Theorem 5.5 

Let F* be a fixed-point of V g-; i.e., V g- (F*) = F*. By Theorem 5.2, 
* *. *.. * Y(Vg-(F »=V~(Y(F» whlchalsomeansY(F )=U~(Y(F ».Thus,y(F) 

is a fixed-point of V ~ . • 

Proof of Theorem 5.6 

It is easy to see that the CONTINUITY PROBLEM E NP. Let us transform 
BOUNDED POST CORRESPONDENCE (BPC, see Appendix B) to the 
CONTINUITY PROBLEM. Let a finite alphabet I, sequences a = {a I, a 2,'" an} 

and b = {b I ,b 2,'" b n } of strings from I * , and a positive integer K S n form an 

arbitrary instance ofBPC. We shall construct closure spaces <0, V~> and <[T, 

V g- >, and a synthesis mapping )'; such that there exists a functional property / and 

that Y is continuous at/if and only if the reply to BPC is the affirmative: 

• Let N be the alphabet N = {I, 2, 3 ... n}. The function and attribute spaces are 

defined as follows: [T= {ai, a2,'" an} K u {I, 2, 3 ... n} K and 0 = {ai, a2'''' 

an} K u {b I ,b 2 , ... b n } K U {1, 2, 3 ... n} K; where {a I' a 2 , ... an} K denotes, for 

example, the set of all strings over {a I, a 2 , ... an} of length less than or equal to K. 

The closure operation V g- is defined as follows: 

• V g-(ail ai2 ... aik) = (ail ai2 ... aik ); U g-(ili2 ... ik ) = {il i2···ik , ail ai2 ... aik }; 

and for each F, G c g: V g- (F u G» = U g- (F) u U g- (G) . 

• The synthesis mapping, I, is defined as the identity mapping; i.e., for each set F 
!;;;;[T: Y(F) = F. 

• The closure operation U ~ is defined as follows: 

U~(ili2 .. ·ik) = {ili2 ... ibbilbi2 .. bik}; U~(ailai2· .. aik) = (ailai2· .. aik) ; and 

U ~ (bil bi2 .. bik ) = (bil bi2 .. bik ). Also, for each M, N c 0: U ~ (M uN) = 



TIlE IDEALIZED DESIGN PROCESS 183 

Uq;(M) uUq;(N). 

Now, it is easily verified that l' has a single continuity point at f = ail ai2 ... aik if and 

only if the reply to BPC is affirmative. • 

Comment: the BOUNDED POST CORRESPONDENCE PROBLEM is 
undecidable if no upper bound is placed on k; e.g., see [10]. 

Proof of Theorem 5.7 

Let us transform GRAPH ISOMORPHISM (see Appendix C) to the 
HOMEOMORPHISM PROBLEM. Let the graphs G I and G 2 form an arbitrary 

instance of GRAPH ISOMORPHISM. We construct closure spaces <0, U q; > and 

<fT, U ET > such that there exists a one-to-one synthesis correspondence l' if and 

only if the reply to GRAPH ISOMORPHISM is positive: 

• The function and attribute spaces are defined as follows: 0 = V I and fT = V 2 • 

• The closure operation U ET is defined as follows: U ET ({ v}) = {v} u {e i : <v, 

e i > EEl}; and for each F c fT and G efT, U.CT (F u G» = U ET (F) u 

U ET (G). 

• The closure operation U q; is defined as follows: U q; ({ v}) = {v} u {e i: <v, 

e i > E E 2 }; and for each M c 0 and N c 0: U q; (M uN) = U q; (M) u 
U q;(N). 

Now, it is easily verified that there exists a homeomorphism l' if and only if the reply 
to GRAPH ISOMORPHISM is the positive. • 

Proof of Theorem 5.8 

Let W = U fF (G1) II U fF (G2) , thenf E W = UU ET(Gi ) for some subset n ~ I. 
ien 

Now, 3i* e n:fe U fF (G;); and since \;;/i e n: U ET (Gi ) ~ W, we concludefe 

• U fF (Gi ) !:; U g- (G1) II U ET (G2 )· • 



184 A MATHEMATICAL THEORY OF DESIGN 

Proof of Theorem 5.9 

Take a generating set <1> = {F j } for < g; U g- > such that 1<1>1 ::;; t, and denote by <1> 0 

the collection of all F E <1> 0 such that for some i E I we have U g- (F) ~ 

U g- (Gj ). To every F E <1> 0, define the set n(F) ~ I as n(F) = {i: U g- (F) ~ 

U g- (Gj ) }. By the axiom of choice, we can define a function n{.) such that to every 

FE <1> 0: n{F) E n(F). Let us show that 10 = n{<1> 0) ~ I satisfies the conditions of 

the lemma. First, observe that 1101 = In{<1>o)1 ::;; 1<1>01 ::;; t. Trivially, UU g-{Gj ) ~ 
je/o 

UUg-{Gj ). Let us show the inverse inclusion. TakefE UUg-{Gj ). Since <1> is a 
~/ ~/ 

generating set, 31* E I. 3F E <1>: m E U g- (F) ~ U g- (Gj*). That is, FE <1>0 and 

n{F) E 10 ; i.e.,fE U g- (F) ~ U g- (Glr (F» ~ UU g-{Gj ) , which concludes the 
ie/o 

proof. • 
Proof of Theorem 5.10 

Pan 1: Suppose that t ~ <00. Take a generating set <1> 1 = {F j } jeJ for the system 

<g; U g- > such that III ~ t. Let <1> = {G j } je/ ' and for any j E 1 let IV) = {i E I: 

U g- (Gj ) ~ U g- {Fj }}. Since cI> is a generating set for the system <g; U g- >, we 

have U g- (Fj ) = U {U g- (Gj »): i E IV)}; and by Theorem 5.9, there exists a set 

IoV) ~ IV) such that IIo(j)1 S; t and Ug-{Fj ) = U ( Ug-{Gj ): i E IV)} = 
U { U g- (G j ): i E 10 V)}· Let cI> 0 = {G j : i E 10 (j) & j E 1}. Since III S; t, from 

IIo(j)1 ::;; t and the equality t2 = t, it follows that 1cI>01 ::;; t. Let us show that cI>0 is a 

generating set for <[T, U g- >. Since cI> I is a generating set, we have -- for an 

arbitrary set F ~ [T -- Ug-{F) = U Ug-{Fj ). Since Ug-(Fj} = 
jeD. 

U {U g- (Gj):i E IV)}, we finally conclude U g- (F) = U UU g-{Gj ), which 
jeD.je/(j) 

proves that cI> 0 is a generating set for <g; U g- >. 

Pan 2: Suppose t < <00. Let cI> 1 = {F j } je/ be a generating set for <g; U g- > such 

that 1<1>11 = Ca{ ET) = k ::;; t. For any G j E cI> I, there exists a subset I j ~ I such that 

Ug-(Fj } = U Ug-{G j }. Let us show that 3j; E I j such that Ug-{F;) = 
je/j 

U g- (G j; ) . If it is not true, then 't/j E I j: U g- {Gj } C U g- {Fj }. Since cI> 1 is a 



THE IDEALIZED DESIGN PROCESS 185 

generating set for < g: U g:- >, we conclude that there exists a proper subset <P 0 c 

<PI such that Ug:-(Fi) = {U Ug:-(Fj ): F j E <po& j<'i eo <Po}. Thus, <PI -

{F i } is a generating set for < g: U g- > and Ca( fT) = k - 1, in contradiction to the 

assumption that Ca( fT) = k. • 

Proof of Theorem 5.11 

We have to show that for each subset M of 0 for some subfamily {L i } len 

U q;(M) = UUq;(Y(Li». Since Y is a one-to-one mapping 3F: M = 1(F). 
ien 

Applying Theorem 5.2, we obtain Y( U g- (F» = U q; (1(F». By definition, for 

some subfamily {G i } len, U g- (F) = UU g- (Gi ) . By applying Y to both sides we 
ien 

obtain, 1(U g- (F» = 1( UU g:-(Gi » = U1(U g:-(Gi». Finally, since the closure 
ien ien 

function and attribute spaces are homeomorphic, we obtain U1(Ug:-(Gi» = 
ien 

U U q; (1(Gi » . Let us denote for each i E n, L i = 1( G i } and conclude the proof .• 
ien 

REFERENCES 

l. Yoshikawa, "General Design Theory and a CAD System," in T. Sata and E. Warman, editors, 
Man-Machine Communication in CAD/CAM, Proceedings of the IFlP WG5.2-5.3 Working 
Conference, Amsterdam, pp. 35-57, 1981. 

2. Tomiyama, "From General Design Theory to Knowledge Intensive Engineering," Anificial 
Engineeringfor Engineering Design, Analysis, and Manufacturing, Vol. 8 (4),1994. 

3. Tomiyama and PJ.W. Ten Hagen, "Organization of Design Knowledge in an Intelligent CAD 
Environment", in J.S. Gero, editor, Expert Systems in Computer-Aided Design, Amsterdam, pp. 
119-152,1987. 

4. Yoram Reich, "A Critical Review of General Design Theory," Research in Engineering Design, 
1995. 

5. Croom, F., Principles of Topology, Sounders College Publishing, Chicago, 1989. 
6. Newell, A. and Simon, H. A., Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall, 

1972. 
7. Nilsson, N. J., Principles of Artificial Intelligence, Tioga Publishing Co., Palo Alto, CA, 1980. 
8. Garey, M.R. and Johnson, D.S., Computers and Intractability: A guide to the Theory of NP

Completeness. San Francisco: W. H. Freeman and Company, 1979. 

9. tech, E., Topological Spaces, Wiley, London, 1966. 
10. Hopcroft, J. E., and Ullman, J. D., Introduction to Automata Theory, Languages, and 

Computation, Addison-Wesley, Reading, MA, 1979. 
II. Ulrich, K. T., Computation and Pre-parametric Design, Technical Report 1043, Massachusetts 

Institute of Technology, Artificial Intelligence Laboratory, Cambridge, 1988. 
12. Pugh S., Total Design., Addison-Wesley, New York, 1990. 
13. Suh, N.P., The Principles of Design. New York: Oxford University Press, 1990. 



CHAPTER 6 

MODELING THE EVOLUTIONARY DESIGN 
PROCESS 

The primary concept of PDT used in Chapter 5 is that the design process is a 
mapping of the desired set of specifications (requirements and constraints) onto the 
artifact description. This ideal view of the design process does not address how the 
mapping between the function space and the attribute space occurs in real design. 
Real design is an evolutionary process that progresses from a set of specifications 
toward the artifact. In this chapter, the evolutionary nature of design is formalized 
through a series of transformations (process steps) beginning with the leading 
specifications and resulting in a physical description of the artifact. There is 
precedence in the relationship between transformed states. Each state is driven by a 
set of production rules and produces a set of new specifications and/or a partial 
solution. 

6.1 INTRODUCTION 

Let us recall some of the very basic features of the design process as addressed in 
Part I of this book: 

• Design begins with the recognition of needs, and the variation from an existing 
artifact state; along with the realization that some action must take place in order 
to bridge the gap. 

• Designing an artifact can be considered a transition from concepts and ideas to 
concrete descriptions. In engineering design, such design descriptions can range 
from specifications in formal languages (computer-aided engineering systems, 
symbolic programming techniques associated with AI, hardware 
design/description languages), to quasi-formal notation (linguistic descriptions, 
qualitative influence graphs), to very informal and visual descriptions (functional 
block diagrams, flow-diagrams, engineering drawings). 

• The designer is constantly faced with the problem of bounded rationality. 
• The model of bounded rationality assumes limitations on the cognitive and 

information processing capability of the designer's decision making. 
• The design specifications, which constitute the constraints of a design problem, 

may initially not be precise or complete. Hence, the evolution and elaboration of 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



188 A MATHEMATICAL THEORY OF DESIGN 

these specifications becomes an integral part of the design process. 
• Traditional engineering design methods generally use specifications of 

satisfactory performance (bounded rationality) rather than optimal performance 
(pure rationality). 

• Constructive alternatives and design solutions are not provided in advance. Thus, 
they must be found, developed, and synthesized by some research process, which 
is iterative and evolutionary in nature. 

As a consequence of the above features, we contend in Chapter 2 that the design 
process can be viewed as a stepwise, iterative, and evolutionary transformation 
process. The concepts underlying the evolutionary characteristic of design are 
captured in two main views: ontogenetic and phylogenetic design evolution. 
Ontogenetic design evolution refers to design processes that share observed 
evolutionary phenomenon. This condition occurs between the time specifications 
(requirements and constraints) are assigned to the designer and the time the artifact is 
passed on to the manufacturer. During this period, the artifact evolves and changes 
from the initial form to the acceptable form, and we say that there is a fit between the 
artifact and the specifications. Phylogenetic design evolution refers to redesign, 
which is defined as the act of successive changes or improvements made to a 
previously implemented artifact. An existing artifact is modified to meet the changes 
made to the original specifications. 

In spite of the foregoing two views of design evolution and regardless of whether 
we are designing computer software, bridges, manufacturing systems or mechanical 
fasteners, their design adhere to the following evolutiollary scheme. The design 
process begins with the establishment of initial specifications { 90 }. This first step is 

subjective but is clearly one of the most critical steps. Given the initial specifications, 
knowledge data, in the form of known Jacts and production rules, is provided by the 
designer as a means of achieving the specifications. This results in the inference of a 
partial design of the artifact that satisfies the specifications, andlor new sub
specifications and derived facts. The modification of a partial solution andlor 
specifications is performed in order to remove discrepancies and establish a fit 
between specifications and solution (see Figure 6.1). Eventually, a complete solution 
emerges, and the design is at the "full content" and specifications are at the "null 
state". The evolved information reflects the fundamental feature of bounded 
rationality. The view that the hierarchical decomposition of specifications is 
performed along with the evolving hierarchies in the structural domain is consistent 
with many other design methodologies [e.g., 4-14]. 

The set of transformations that lead to the final, complete solution can be a 
useful guide to the development of general purpose, highly effective CAD tools. In 
addition, the set of transformations can constitute a knowledge-level process that 
explains the designer's decision making process [see 11, 13]. This type of sound 
explanatory model is specified by the following [see also 16, 17]: Consider a design 
problem with initial conditions (specifically consisting of knowledge body K) and a 
resulting artifact; where the data about the design process is gathered by observation. 
Given the evolutionary model of the design process, an explanation of how the 



MODELING THE EVOLUTIONARY DESIGN PROCESS 189 

artifact was generated will can be developed if a symbol transformation process (a 
path from the initial conditions to an accepting process state) can be described such 
that: (1) the symbol transformation process is in accordance with the model; (2) the 
symbol transformation process uses only the designer's knowledge body; and (3) the 
symbol transformation process produces the artifact. By "sound," we mean that the 
proposed model of the design process is an explanation for an entire domain of 
design problems of which the observed artifact is an instance or an element. The 
evolutionary model presented in this chapter is corroborated by the case study 
approach where a particular designing event is singled out for examination (e.g., see 
Chapter 3 and [13, 15]). 

It is important to emphasize that the design process is not a deterministic 
phenomenon. In other words, if we place the designer of an artifact with exactly the 
same initial conditions and knowledge body, there is no guarantee that the same 
design process or artifact will evolve. The most important consequence of this is that 
a model of the design process cannot be tested by deriving predictions about what 
would happen under the model, and by empirically determining whether the 
predictions hold or not. This is in contrast with Popper's (see Chapter 2) conclusion 
that the best reason for entertaining a theory is that it is testable (more accurately 
"falsifiable"); i.e., that it makes predictions that are readily refutable by evidence if 
the theory is false. 

This chapter is organized as follows: Section 6.2 provides an overview of the 
model, and is followed by two illustrative examples. The formal model is presented 
in Section 6.3. The iterative (evolutionary) scheme of the design process is 
formalized, and a discussion of the correctness and computational complexity of the 
model is provided in Section 6.4. Section 6.5 concludes the chapter. 

Problem 
Identification 

Requirements, 
Constraints & 
Partial Design 

Update 

Modify 
Partial 
Design 
Form 

Modify 
Requirements 

Test 
Specifications 

versus 
Design 

Identify 
Cause of 

Discrepancy 

and/or 14------' 
Constraints 

Figure 6.1 The Evolutionary Scheme of Generating New Specifications and Partial Design 



190 A MATHEMATICAL THEORY OF DESIGN 

6.2 PREVIEW OF THE MODELS 

In this section, we construct three models for the design process. The detailed models 
and their analysis are provided in the next section (6.3). We first introduce a type-1 
design process, which is defined as the mapping of the initial specifications of the 
product through a series of transformations that can be either decomposition of 
specifications or matching specifications with partial solutions. In a type-O design 
process special restrictions are imposed on the form of transformations in a type-l 
process. In a type-2 design process decomposition and synthesis transformations can 
be performed simultaneously and special restrictions are imposed on the form of 
transformations. Both type-O and type-I models are special cases of the type-2 
model. 

6.2.1 TYPE-1 DESIGN PROCESS 

Definition 6.1 (Type-1 Design Process): We formally denote a type-l design 
process as afinite automaton (See Appendix A) OP == (L, Q, P, TA , Ts, So' F), 
where 

• L denotes the design description. which includes both structural and 
specification attributes, and is required for process state and production rule 
descriptions; 

• Q is a finite set of process states; 
• P is a finite set of production rules; which are retrieved from the designer's 

knowledge body, and are suggested as a means of changing the current process 
state to a modified state; 

• The analysis transformation TA is an operator that is used for decomposition of 

specifications. TA is the transition function mapping Q x P to Q. That is, 

TA (S, p) is a process state for each process state S and rule p; 

• The synthesis transformation Ts is an operator that is used for matching the 

specifications with partial solutions. Ts is the transition function mapping 

Q x P to Q. That is, TA (S, p) is a process state for each process state S and rule 

p; 
• So in Q is the initial process state; 

• F s; Q is the set of terminal process states. 

A process is a series of transformations. The series exhibits precedence among its 

transformed process states. A process state is described by S == (M, 9), where: 

1. M denotes the artifact description (artifact part), which is the tentative partial 
solution (set of structural properties) synthesized as yet in the process 



MODELING THE EVOLUTIONARY DESIGN PROCESS 191 

(execution). 

2. 8 == (8 p. 8 V) denotes the specification description (specification part). The 

specification part includes 8 P , which is the set of presumed specifications that 

remain to be satisfied; and 8 V , which is the set of validated specifications that 
are already satisfied. 

At the beginning of the design process, the initial specification part exists in pure 
specification form and the artifact part has a null or empty content: 

Process State 0: So == (0, (8t. 8~») 

A process step (cycle) corresponds to the transformation (transition) of one process 
state to another. A transformation, which describes the relation between two adjacent 
process states, is activated by a set of knowledge tokens in the form of rules included 
in the designer's knowledge body. Two transformation types are available: 

• Analysis transformation TA transforms the process state (M i' (8 {, 8 Y ») to 

(Mi' (8/: 1, 8Y+I») by applying the production rule p. That is 

TA : (Mi' (8{. 8Y»)Xp~ (Mi' (8/: 1, 8Y+I») such that the new presumed 

specifications 8 /: 1 are consistent with 8 { . 

• Synthesis transformation Ts transforms the process state (M i' (8 {, 8 Y ») to 

( M i + I' (81:1, 8 Y+ I) ) by applying the production rule p . That is 

Ts:(Mi' (8{, 8Y»)Xp~ (M i + l , (81:1' 8Y+I»)' 

As various transformations are performed, the specifications change and the design 
solution begins to take shape. The series of transformations ends with a terminal 
process state S n E F in either of two cases: 

1. The artifact part is transformed to a logically possible description (consistent 
description) that is also in its "full content," and the presumed specification part 
is transformed to the "null state." When this occurs, the terminal process state 

Sn = (M n' (0, 8 ~ ») is called successful, since all specifications have been 

implemented; otherwise, 
2. If there are no possible modifications to either the artifact part or the 

specification part, then the process state (M n' (8!, 8 ~ ») is called failed. 



192 A MATHEMATICAL THEORY OF DESIGN 

The execution of a design process is a series of transformations for process states 
i = 1, 2, 3, ... , n. For example, the following design process begins with the 

establishment of initial specifications 9 0 : 

Process State 0: So = (0, (96, 9t'») 
Process Step 1: (0, (96, 9t'») ) (0, (9f, 9t'») = SI 

TA.PI 

Process Step 2: (0, (9f, 9t'») --:-TA-.-P2-~) (0, (9f, 9t'») = S2 
Process Step 3: (0, (9f, 9t'») Ts.P3) (MI' (9f, 9¥») = S3 

Process Step 4: (MI' (9f, 9¥») ) (M2' (0, 9¥ 1\ 9f») = S4 
TS.P4 

At the end of the 4th process step, the initial specifications 9 0 have been converted 

into the physical artifact M 2 ' which contains all the blueprint information for the 

artifact's implementation. 
The process history includes the sequence of all process states visited so far 

{So' SI' S2" .. , Sn} , as well as the transformations and production rules used to 

modify the process states { ... , (TA , Pi)"'" (Ts , P k ), .. } . 

Example 6.1 (Mechanical Fasteners Design): The design of mechanical 
fasteners is a common design problem in the realm of mechanical engineering. The 
function of a fastener is to hold two or more parts together by transmitting the load to 
the fastened parts. There are numerous types of existing mechanical fasteners (see 
Figure 6.2). 

The proposed problem is to design a new fastener according to certain given 
specifications based on the knowledge that we already have from the existing 
fasteners. At the lowest level, a fastener might be described in terms of structural 
properties such as head radius, thread pitch, and thread depth (assuming that it has 
threads). Functional requirements, however, are usually not packaged so neatly. 
Instead, they are usually provided as high level requirements (such as the strength or 
precision of the fastener). From these high-level requirements, a more detailed 
description evolves through the design process. 

1. The Knowledge-Base: The first step is to build a data base of knowledge. The 
existing designs are represented as a set of design descriptions, which include 
structural, functional, and causal relationships between structure and function. The 
structural description of the device and its components are listed. In the case of 
fasteners, the general hierarchy is composed of the five components that are common 
to all fasteners; drive, head, body, tail, and tip as shown in Figure 6.3. 



MODELING THE EVOLUTIONARY DESIGN PROCESS 193 

PLATE B 

OOWELPIN 

8 ...... CHINE SCREW 

1\\\~~\\\\\mI\~I\\\\\\\~§~ 

ROLL PIN 

E:::::31 0 

Figure 6.2 Seven Fasteners in the Knowledge Base (adapted from [4]) 
I 

Head~ 

Body 

Tail 

Tip 

Figure 6.3 Hierarchy Structure of a 'Fastener 

The behavioral abstraction of a design is usually determined by the structural 
hierarchy. For instance, the function of a fastener is to hold parts together, which is 
done by transmitting the load to the fastened parts. The relation is usually a causal 
one governed by physical laws, and the behavior of the components follows the same 
principle. Let us illustrate the relationships with the following example; the strength 



194 A MATHEMATICAL THEORY OF DESIGN 

of the fastener is determined by the static fatigue, stress rapture, and impact strength. 
The fatigue is determined by the material, head size, thread size, threaded length, 
fillet, fabrication, and surface structure. These properties, in turn, are determined by 
the physical attributes of the components and entity. A similar decomposition could 
be applied to the other properties of the fastener. This decomposition can be 
represented as the causal and factual knowledge of the system in a causal network 
and as an if-then structure (production rules). These rules link the functions to the 
structural attributes of the components. 
2. The Task: To perform the synthesis task, the design process is used to transform 
functional specifications to a structural description. A typical input to the design 
process is a conjunction of functional attributes. The result of applying the above 
series of transformations to an input specification is a possible solution, which 
consists of a set of five structural attributes corresponding to the five parts of the 
fastener structure. 
3. A Run Time Design Process: For our fastener design, the initial specification 
comes down as: 

AND-node 

HIGH STRENGTH h) 

Initial Specification (ee) 

HIGH 

RETRACTABILITY h) 
MEDIUM 

PRECISION h) 
Figure 6.4 The Initial Specification 

The first iteration (process step) may be to realize that strength is characterized 
separately by the head and tail of the fastener. By applying the knowledge-base of 
fasteners and analyzing the current requirements, we may conclude that both demand 
high strength: 

HIGH STRENGTH h) 

AND-node 

HIGH HEAD STRENGTH (rl.l) HIGH TAIL STRENGTH (rl,2) 

Figure 6.5 Decomposition of HIGH STRENGTH 



MODELING THE EVOLUTIONARY DESIGN PROCESS 195 

The second iteration may be to improve the definition of retractability. There is a 
choice of how fasteners are driven and in order to get high retractability we need 
rotary-mode fasteners: 

HIGH RETRACTABILITY 

DRIVE-MODE-ROT ARY (r2.I) TAIL-MODE-ROTARY (r2.2) 

Figure 6.6 Decomposition of HIGH RETRACT ABILITY 

In the next iteration. we may realize that medium precision translates into a looser 
body fit: 

MEDIUM PRECISION (r3) 

LOOSE BODY FIT h.I) 

Figure 6.7 Decomposition of MEDIUM PRECISION 

At some point, synthesis decisions begin to be made as the configuration of the 
artifact takes place. From the current information and the rules embedded in the 
knowledge base, we may infer in the next iteration that the head of the fastener needs 
a shoulder: 

HIGH HEAD STRENGTH (rl,l) 

SHOULDER (ml ) 

Figure 6.8 Matching the HIGH HEAD STRENGTH Requirement with the 
SHOULDER Structural Attribute 

In the next iteration, we might infer that the tail of the fastener should be fastened 



196 A MATHEMATICAL THEORY OF DESIGN 

using threads and that the body should have threads: 

TAIL-MODE-ROTARY (r2,2) 
AND-node •. _ .... 

THREADED TAIL (m2) THREADED BODY (m3) 

Figure 6.9 Matching the TAIL-MODE-ROTARY Requirement with the 
THREADED TAIL and THREADED BODY Structural Attributes 

In the next iteration, we may infer that the drive type will be a hex head: 

DRIVE-MODE-ROTARY h,l) 

SOCKET-HEX DRIVE (m4) 

Figure 6.10 Matching the DRIVE-MODE-ROTARY Requirement with the 
SOCKET-HEX DRIVE Structural Attribute 

In the next iteration, we find that the specification HIGH TAIL STRENGTH (rl,2) 

and LOOSE BODY FIT ( r3,1 ) are satisfied by the structural attributes THREADED 

TAIL (m2) and THREADED BODY (m3)' Since these structural attributes are 

already fixed, the artifact part remains unchanged and the specification part is 
transformed to the "null state." Finally, by testing the tentative artifact part, we can 
infer that it does not contain all the information needed to function as a unit. A 
discrepancy still remains since the tip part has not been determined yet. The 
transition strategy is to determine the attribute for the tip, which is not in conflict with 
the already satisfied specifications. Hence, we may decide that the tip should be 
chamfered (ms) in order to maximize reversibility. The process can similarly 

continue until all the physical attributes of the final fastener are determined. 
The process history includes the sequence of all process states visited, and the 

transformations used to modify the process states. The process history of the fastener 
design is described in Table 6.1. 



MODELING THE EVOLUTIONARY DESIGN PROCESS 197 

Table 6.1 The Process History of the Fastener Design 

PROCESS ARTIFACT PRESUMED VALIDATED TRANSITION 
STEP PART SPECIFICATIONS SPECIFICATIONS 

1 0 'I A '2 A'3 0 Analysis 

2 0 '1,1 A '1,2 A '2 A '3 0 Analysis 

3 0 '1,1 A '1,2 A '2,1 A 0 Analysis 

'2,2 A'3 

4 0 '1,1 A '1,2 A '2,1 A 0 Synthesis 

'2,2 A '3,1 

5 mJ '1,2 A '2,1 A '2,2 A '1,1 Synthesis 

'3,1 

6 mJ 1\ m2 1\ m3 '1,2 A '2,1 A '3,1 '1,1 A '2,2 Synthesis 

7 mJI\~l\m3 '1,2 A '3,1 '1,1 A '2,1 A '2,2 Synthesis 

"'4 

8 mJI\~l\m3 0 '1,1 A '1,2 A '2,1 A Synthesis 

m4 '2,2 A '3,1 

9 mJI\~l\m3 0 '1,1 1\ '1,2 1\ '2,1 1\ STOP 

"'41\'"5 '2,2 A '3,1 

6.2.2 TYPE-2 DESIGN PROCESS 

A type-2 design process permits simultaneous synthesis and analysis transformations. 
In this case, the distinction between "structural properties" and "specifications" 
becomes blurred and meaningless. The modification!; needed to include simultaneous 
transitions are described as follows: 

Dejinition 6.2 (Type-2 Design P,ocess): We formally denote a type-2 design 

process as a finite automaton DP = (L, Q, P, T, So' F), where the design 

description L, the finite set of process states Q, the finite set of production rules P, 
the initial process state So' and the set of terminal states F have the same meaning 

as in a type-l design process. T is an operator, which is simultaneously used for 
decomposing specifications and matching specifications with partial solutions. 

A process is a series of t,ansfo,mations. The series follows a precedence 



198 A MATHEMATICAL THEORY OF DESIGN 

relationship among its transformed process states. A process state is described by S = 
( M i /\ a P, a V), where M i /\ a P is a conjunction of structural attributes and 

presumed specifications, and a v represents validated specifications. 
At the beginning of the design process, the initial process state exists in pure 

presumed specifications, and the artifact part and validated specifications have a null 
or empty content: 

Process State 0: So == (at, 0 ) 

A process step (cycle) corresponds to a transformation (transition) from one 
process state to another process state by applying a production rule p, i.e., T : 

(Mi /\ a(, ar)x p ~ (Mi+I/\ a/:" aY+I)' 
The series of transformations ends with a terminal process state Sn in either of 

two cases: 

1. The artifact part is transformed to a logically possible (consistent) description 
that is also in its "full content," and the presumed specification part is 
transformed to the "null state." In this case, the terminal process state Sn == 

( M n' a ~) is called successful, since all specifications have been implemented; 

2. There are no possible modifications to either the artifact or the specifications. In 

this case, the process state (M n /\ e:, e ~ ) is called failed, since some 

specifications remain unsatisfied. 

Example 6.2: Assume that the designer's knowledge body is in the form of rules 
as in Table 6.2. Suppose that the initial specification is r" and that an artifact must 

include the structural attribute m,. The designer first tries to find a rule that 

decomposes rl' i.e., a rule that has r, on its right-hand side (as a conclusion). The 

only candidate rules are 6 and 8, and 6 is chosen. At this new process step the 
designer establishes a new sub-goal of decomposing r2' If we can match r2 with 

structural attributes, then r, would be satisfied by modus ponens. The next sub-goals 

are to decompose r3 and m, (r3 /\ m, => r2)' ml is a structural attribute; thus, only 

r3 needs to be decomposed. The entire process history can be seen in Table 6.3. 



MODELING THE EVOLUTIONARY DESIGN PROCESS 199 

Table 6.2 Production Rules (p) for Example 6.2 

Rule 1: in2 1\ T4 1\ TS ~ r3 

Rule 2: T3 1\ ml ~ r2 

Rule 3: m3 1\ r7 ~ Tg 

Rule 4: ml ~ r6 

Rule 5: r6 ~ rs 

Rule 6: r2 ~ Tl 

Rule 7: r9 ~ rIO 

Rule 8: m2 1\ m3 ~ rl 

Rule 9: m3 ~ r4 

Table 6.3 Illustration of the Process History for Example 6.2 

PROCESS M· 1\ aP aV 
S'IEP I RULE 

1 rl 0 6 

2 T2 0 2 

3 r3 1\ ml 0 1 

4 ml 1\ m2 1\ T4 1\ TS 0 9 

5 ml 1\ m2 1\ m3 1\ rs r4 5 

6 ml 1\ m2 1\ m3 1\ r6 r4 4 

7 ml 1\ "'2 1\ m3 r4 1\ r6 STOP 

Note that the designer could decompose rl in step one by applying rule 8 (since m2 

and m3 are structural attributes). However, this process would terminate with the 

failed process state (m2 1\ m3' Tl), since the artifact solution does not include the 

structural attribute ml (i.e., the artifact part is not transformed to a "full content"). In 

this case, the system backtracks and rule 6 is tried. 

6.3 DETAILED MODELING 

In this section we elaborate on the models presented in the foregoing sections. This 
section will serve as a vehicle for implementing the model on a computer. It will also 
enable us to prove meta-theorems (i.e., theorems that tell us about properties of the 
design process) related to the correctness, decidability and the complexity of design 
processes (see Section 6.4). 



200 A MATHEMATICAL THEORY OF DESIGN 

6.3.1 TYPE-ODESIGNPROCESS (L, Q, P, TA , Ts, So' F) 

Design Description (L) 

L is a propositional calculus (see [1] for an extensive presentation). The basic 
vocabulary and syntax of the design description consists of the following: 

1. A finite set of names for structural and functional attributes (unary predicates). 
We choose to use the finite collection m, ml' m2' ... ml.1 ' . .. as the names for 

concrete structural attributes, and use the finite collection r, rl' r2, ... , rl.I'" 

as the names for concrete functional attributes. These basic proposition letters 
are intended to be interpreted as the names for concrete structural attributes such 
as the fastener will be fastened using threads, or the car will have hydraulic disk 
brakes or fuel injection; or for concrete specifications such as the drive mode is 
rotary, or the car has low maintenance costs. 

2. A name, 0, for a distinguished proposition that is known to be false. 
3. The connectives 1\, v, -, and ~ that are intended to be read as "conjunction," 

"disjunction," "negation," and "implies," respectively. These connectives can be 
used to combine simple structural and functional attribute letters, as in 
(ml 1\ r2) ~ (rl 1\ m3)' 

4. We use the following conventions: (a) M I , M 2 , ... stand for arbitrary 

expressions (artifact descriptions) that include only structural attributes; (b) 
9 1, 92 "" stand for arbitrary expressions (specification descriptions) that 

include only functional attributes; and (c) a , ~, y, ai' a2' ... denote 

expressions that may include structural and functional attributes. 

The semantics of L are given in terms of two objects called T and F. We intend 
these to correspond to the intuitive notions of truth and falsity. The semantics of the 
basic letters and 0 are given by providing a function V, called a valuation, whose 
domain is the set of letters plus 0 and whose range is the set {T, F}. There are 
clearly an infinite number of such functions. The only constraint is that V( 0) must be 
F. V defines the meaning of the basic expressions; i.e., the proposition letters and the 
symbol O. The meaning of compound expressions can be constructed from the 
meanings of the basic ones that appear within them. For example, if V( a) = T and 

V( ~) = F then V( a ~ ~) = F. 

L only has one inference rule; namely, that for any expressions a and ~, you 

can infer ~ from a and a ~ ~ . In addition to this inference rule, which is known 

as modus ponens or MP, there are axioms or expressions that are accepted as being 
true under any valuation. In other words, they are valid. There are axiom set choices 
that are equivalent. 



MODELING THE EVOLUTIONARY DESIGN PROCESS 201 

The inferential component of L is completed by defining the notion of a proof. 
A proof of a conclusion ~ from hypotheses a I' a2, ... , a k is a sequence of 

expressions Y I' Y 2, ... , Y n with the following conditions: 

1. ~ is Y n ; 

2. Each Y i is either an axiom, or an a j , or a result of applying the inference rule 

MP to Y k and Y I where k and I are less than i. 

In such a situation we write, a I, a 2' . . ., a k ~ ~ . The following proof example 

should clarify the definition: 
Example 6.3: Recalling Example 6.1, let us present a proof of rJ,l 1\ r2,2 from 

ml A mz A m3 and the rules given in Table 6.2: 

1. Hypotheses: ml A 111, A m3 and the rules given in Table 6.2 

2. m2 (from #1 by an axiom) 

3. m3 (from #1 by an axiom) 

4. 111, A m3 (from #1 by an axiom) 

5. r2,2 (from #4 and rule m2 1\ m3 => r2,2 by MP) 

6. ml (from #1 and an axiom) 

7. rl,1 (from #6 and rule ml => rl,1 by MP) 

8. rJ,l 1\ r2,2 (from #5 and #7 and an axiom) 

It is reasonable to have a proof of a conclusion ~ from an empty set of hypotheses. If 

this is the case, we generally say that we have a proof of ~, or ~ ~ , A formula that 

can be proved from an empty set of premises is often called a theorem. The 
completeness of L means that if ~ is valid then ~ ~. The following meta-theorem 

(the Deduction Theorem) is critical for deriving non-trivial proofs in L: if 

ai, a2' ... , ak ~~ then ai' a2, ... , ak_1 ~ak => ~. 
A set of expressions ai' a2' ... , ak is consistent if ai, a2' ... , ak ~ 0 

is not the case; otherwise, it is inconsistent. If an expression ~ is accepted as being 

false under any valuation (a contradiction) then ~ ~ O. (~ ~ 0 == ~ - ~ ). 

Process State (Q) 
Q is a finite set of process states. A process state SEQ is described by S == 

(M, e). The artifact part M is an expression in L of the form ml 1\ m21\ ... mk . 

The specification part e == (e P, e V) consists of the set of presumed specifications 



202 A MATHEMATICAL THEORY OF DESIGN 

a P in L - of the form af 1\ af 1\ ... I\a r ' and the set of validated specifications a v 

in L - of the form aj 1\ a~ 1\ ... l\a~ . 

Production Rules (p) 

The finite set of production rules P are expressions in L, which are suggested as a 
means of transforming a current process state to a modified state. The production 
rules P are retrieved from the designer's knowledge body. The production rules are 
either of the form ml 1\ m2 1\ . . . I\mk => r or rl 1\ rll\ ... I\rl => r . 

Analysis Transformation (T A) 

The analysis transformation TA transforms a process state (M;, (ar, aY») to 

( M;, (at: I' a Y+ I) ) by adhering to the following rule: if a r is of the form 

af{ 1\ r 1\ ab, and a=> r is a production rule of P, then transform ar to 

at:l = af{ 1\ a 1\ ab and aY to aY+I = ay 1\ r. 

Synthesis Transformation (Ts) 

The synthesis transformation Ts transforms a process state (M;, (a r, a Y ») to 

( M; + I' (at: I' e Y+ I») by adhering to the following rules: 

1. Let er be of the form af{ 1\ r 1\ ali. If ml 1\ m21\ ... mk => r is a production 

P P P P V aV aV d rule of P, then transform a; . to a;+1 = ail 1\ a;3' a; to ;+1 = ; 1\ r, an 

M; to M; 1\ mll\ ... I\mk ; 

2. If e r = 0 and M; does not contain all the information needed to function as a 

unit, then transform M; to M; 1\ m (for a structural property m). 

Execution and Terminal States 

An execution is a series of process states beginning with an initial process state SO; 



MODELING THE EVOLUTIONARY DESIGN PROCESS 203 

Le.. So. S l' S 2 • . . . S n • such that either of the following is true: 

1. TA(Sj. p) = Sj+l; 

2. TS(Sj. p) = Sj+l . 

The terminal (or final) process state Sn == (Mn. (e:. e~») satisfies one of the 

following conditions: 

1. e: = 0; there is no proof of - Mn and -e~ (Le .• Mn and e~ are 

consistent). and M n contains all the information "needed to function as a unit." 

In this case Sn is called successful. since all specifications have been 

implemented; 

2. ef ¢ 0 and no analysis or synthesis transitions pertain to Sn' In this case Sn 

is called failed. since some specifications remain unsatisfied; 

3. e: = 0 and there is proof of -Mn or -e~ (Le .• Mn or e~ are 

inconsistent). In this case Sn is called failed. since the artifact cannot be 

implemented. 

6.3.2 TYPE-1 DESIGN PROCESS (L. Q. p. TA • Ts. So. F) 

In a type-1 design process no restrictions are imposed on the description of synthesis 
states. production rules. synthesis transformations. or terminal states. The only 
established restriction is related to the analysis transformation. The analysis 

transformation T A transforms a process state ( M j. (8 f. 8 Y ») to 

(M j • (9t:l' eY+l») by adhering to the following rules: 

1. (9 t: 1 1\ e Y+ 1) ~ (9 f 1\ 9 Y ); that is. the new specifications derive the current 

specifications; 

2. if M j ~ ef. then transform ef to et:l = 0 and eY to eY+l = ey 1\ ef . 

6.3.3 TYPE-2 DESIGN PROCESS (L. Q. p. T. So. F) 

The design description L has the same meaning as for the type-O process; but the 
finite set of process states Q, finite set of rules p. transformation T. and set of 

terminal process states F have to be redefined. 



204 A MATHEMATICAL THEORY OF DESIGN 

Process State (Q) 

A process state SEQ is described as S = (X, a V) , where the design form (X is of 

the form M 1\ a P . The artifact description M, the presumed specifications a P , 

and the validated specifications a v are all in conjunctive form. 

Production Rules (p) 

The designer's knowledge body includes the following type of production rules: 
mll\. . .I\mk 1\ a 11\ .. . I\a I => r . 

Transformation (T) 

T is the transition function mapping Q x P to Q. That is, T (S, p) is a process state 

for each process state S and rule p. The transformation T transforms a process state 

(Xj' ay) to (Xj+I' aY+I) by adhering to the following rules: 

1. Let (Xj = M j 1\ af, where af is of the form afI 1\ r A at;. If M A a=> r is 

a production rule of P, then transform (Xj to 

(Xj+1 = M j 1\ M 1\ afI A a A at;; 
2. If M => r is a production rule of P, then transform (Xj to 

(Xj+1 = M j 1\ M 1\ afI A at;, and aY to aY+I = SY A r; 

3. If af = 0 and M j does not contain all the information needed to function as a 

unit, then transform M j to M j A m (for a structural property m). 

Execution and Terminal States 

An execution is a series of process states beginning with an initial process state 

So == (0, aV ); i.e., So' SI' S2' ... , Sn' such that T(Sj' p) = Sj+l. The 

terminal (or final) process state S n == ( M n A a!, a ~ ») satisfies one of the 

following conditions: 

1. a! = 0; there is no proof of - Mn and -a~ (Le., Mn and a~ are 



MODELING THE EVOLUTIONARY DESIGN PROCESS 205 

consistent) and M n contains all the information "needed to function as a unit." 

In this case Sn is called successful, since all specifications have been 

implemented; 

2. af *" 0 and the transition T does not pertain to Sn' In this case Sn is called 

failed, since some specifications remain unsatisfied; 

3. a! = 0 and there is proof of - Mn or -a~ (i.e., Mn or a~ are 

inconsistent). In this case Sn is called failed, since the artifact cannot be 

implemented. 

6.4 CORRECTNESS AND COMPLEXITY OF THE DESIGN 
PROCESS 

There are two fundamental issues of interest to researchers in computer assisted 
engineering design related to the inferential component of the design process. We 
would like to be reassured that a solution (artifact part) will satisfy the initial 
presumed specifications, and would also like to know how many "actions" 
(transformations) must be taken before reaching a solution. These issues are related 
to the correctness and computational complexity of design processes. 

6.4.1 CORRECTNESS OF THE DESIGN PROCESS 

In the following, the correctness of the foregoing design processes is established by 

constructing a proof of the initial presumed specifications (aC) from the terminal 

artifact solution ( M n ). 

Theorem 6.1: Correctness oftype-l and type-O design processes 

If an execution of a type-lor type-O design process ends with a successful process 

state Sn,then Mn ~ eC-

Proof Let So' Sl' S2' ... Sn be an execution that begins with an initial 

process state So. The proof follows directly from the following properties that hold 

for type-l and type-O processes: 

Property 1. For every i E {I, 2, ... , n - I}: (at:l A ar+l) ~ (af A ar) ; 
Property 2. Mn ~ a~. 

Applying these properties, the following proof of aC from the terminal artifact 



206 A MATHEMATICAL THEORY OF DESIGN 

solution M n can be constructed: 

1. Hypotheses: M n and the foregoing Properties 1 and 2 

(from #1 and Property 2 by modus ponens) 2. 

3. (from #2, Property 1, and a: = 0 by modus ponens) 

n + 1. a( t\ ay 
n + 2. at 

(from # n and Property 1 by modus ponens) 

(from n + 1 by modus ponens, Property 1 and 

a~ = 0) 

Hence, M n ~ at, as required. 

Theorem 6.2: Correctness of type-2 design processes 

• 

If an execution of a type-2 design process ends with a successful process state Sn 

then Mn ~ at. 
Proof Let So' S I' S2' . . . S n be an execution that begins with an initial 

process state So. The proof follows directly from the following properties that hold 

for type-2 processes: 

Property 1. For i E {I, 2, ... , n - I}: (M j +1 t\ a1:1 t\ aY+I) ~ (M j t\ ar t\ aY); 
Property 2. Mn ~ a~. 

Applying these properties, the following proof of at from the terminal artifact 

solution M n can be constructed: 

1. Hypotheses: M n and the foregoing Properties 1 and 2 

2. a~ (from #1 and Property 2 by modus ponens) 

3. (from #1 and #2) 

4. M n-I t\ a:_1 t\ a~_1 (from #3, Property 1, and a: = 0 
by modus ponens) 

(from # n + 1 and Property 1 by modus ponens) 



MODELING THE EVOLUTIONARY DESIGN PROCESS 

n + 3. eC (from #n + 2, Property 1, ell' = 0 and 

M 0 = 0 by modus ponens) 

Hence, M n ~ eC, as required. 

6.4.2 COMPUTATIONAL COMPLEXITY OF THE DESIGN PROCESS 
PROBLEM 

207 

• 

The process models presented in Section 6.3 imply that there is a set of discrete 
process states that can be described by a finite collection of unary predicates 
(structural and functional attributes). The application of a production rule, which is 
retrieved from the designer's knowledge body, may (or may not) change the current 
process state; but a production rule always provides the same process state from the 
same prior process state. A particular process state is designated as the initial or 
starting state. Other states, possibly including the initial state, are designated as 
terminal or accepting states. Thus, a design process (DP) problem instance is 
determined by a finite state automaton whose initial process state, number of states, 
and set of accepting states are known to the problem solver. The task is to halt after 
producing an accepting path of transformations in the automaton from the initial 
process state to an accepting process state. To determine the accepting states, the 
problem solver uses effective tests. 

In the analysis of computation theory [2], a problem is a collection of instances 
that share a mathematical form but differ in size. Whenever problems (such as the DP 
problem) can be represented by finite state automata whose nodes are state 
descriptions and whose arcs label the production rules (operators) that change the 
current process state, it is natural to measure the size of a problem instance by the 
total number of predicates (required for a process state description) and production 
rules of the problem instance. 

When the automaton assumption is made, the number of predicates, n, required 

to describe a state determines the number of automaton states, 2n. We are 

guaranteed that if there is an accepting path; there is one containing no more than 2n 

- 1 transformations (and production rules). 
There are procedures (algorithms) that have the capacity to solve a particular 

instance of the DP problem, as well as all instances of the a problem. Since there are 
generally many different ways to solve a DP problem instance (e.g., by applying 
different production rules to each process state), the question of evaluation naturally 
arises. Are some ways of solving the DP problem better than others? In computation 
theory a common way to approach such questions is in terms of a complexity 
measure imposed on the procedure. One natural measure of a procedure's complexity 
for solving a DP problem instance is by the number of effective tests needed to 
determine the accepting process states. How do the computational requirements of 
the procedure (i.e., number of tests) change when an intuitive or useful measure of 
the size of a problem instance is implemented? Does the DP problem have 



208 A MATHEMATICAL THEORY OF DESIGN 

alternative solution procedures that are more efficient than the procedure in question? 
Is there an "easy" solution to the DP problem? 

Computational complexity theory seeks to classify problems in terms of the 
mathematical order of the computational resources (such as computation time) 
required to solve problems with algorithms. Given a DP problem instance and a 
sequence of transformations (or production rules), the solution is assigned a zero 
value if there is a path from the initial process state to an accepting process state, and 
a one value otherwise. We convert the DP optimization problem of finding a 
sequence of transformations of minimum value to a DP decision problem by asking 
whether there is a feasible solution to the problem that has an objective function 
value that is equal to a specified threshold of zero or less. 

The notion of "easy to verify" but "not necessarily easy to solve" decision 
problems is at the heart of the Class NP [2]. Specifically, NP includes all those 
decision problems that could be solved in polynomial-time if the right (polynomial
length) "clue" or "guess" were appended to the problem input string. One problem is 
polynomial time reducible to another if a polynomially bounded number of calls to an 
algorithm for the second will always solve the first. A problem n is NP-hard if all 
problems in NP are reducible by polynomial time to n. If n is NP-hard and 
n E NP, then we say n is NP-complete or Non-deterministic Polynomial time 
Complete problems [2]. The CPU time required to solve NP-complete and NP-hard 
problems, based on known algorithms, grows exponentially with the "size" of the 
problem. At this point in time, no polynomial time algorithms capable of solving NP
complete or NP-hard problems, and it is unlikely that polynomial time algorithms 
will be developed for these problems. The potential to solve NP-complete or NP-hard 
problems depends on the availability of certain heuristics. 

A problem n is shown to be NP-hard by polynomially reducing another already 
known NP-complete problem to n . Thus, we can show that the DP decision problem 
is NP-hard. This can be done with the 3-CNF problem; which is NP-complete [2], 
and polynomially reduces to a special case of the DP decision problem. The 3-CNF 
decision problem is defined in the following subsection. 

The 3-CNF Decision Problem [2J 

A Boolean expression is an expression composed of variables, parentheses, and the 
operators /\ (logical AND), v (logical OR) and - (negation). The precedence of 
these operators is - highest, then /\, then v. Variables take on values 0 (false) and 1 
(true); as do expressions. If E1 and E2 are Boolean expressions, then the value of 

E1 /\ E2 is 1 if both E1 and E2 have the value 1, and 0 otherwise. The value of 

E1 v E2 is 1 if either E1 or E2 has the value 1, and 0 otherwise. The value of - E1 

is 1 if E1 is 0 and 0 if E1 is 1. 

A Boolean expression is said to be in conjunctive normal form (CNF) if it is of 
the form E 1 /\ E21\. •. /\E K; and each E j (called a clause) is of the form 

til /\ ti2/\ ... /\ tir; , where each tij is literal (either x or - x for some variable x). 



MODELING THE EVOLUTIONARY DESIGN PROCESS 209 

We usually write x instead of -x. For example, (xI v X2) /\ (xI v x3 v X4) /\ x3 

is in CNF. The expression is said to be in 3-CNF if each clause has exactly three 
distinct literals. 

An expression in 3-CNF is satisfiable if there is an assignment of O's and l's to 
the variables that gives the expression the value 1. Given an expression in 3-CNF, the 
3-CNF problem is to determine whether the expression is satisfiable. 

The Design Process Decision Problem is NP-HARD 

The main result in this section concerns the computational complexity of the design 
process problem. Since a type-O design process is a special case of both type-! and 
type-2 processes, it is sufficient to prove that the DP decision problem is NP-hard 
when the type-O process assumption is made. The precise DP decision computational 
problem is: 

INSTANCE: A type-O design process (L, Q, P, TA , Ts, So' F) as defined in 

Section 6.3.1. 
QUESTION: Is there a finite sequence of transformations and production rules; e.g., 
{ ... , (TA , Pi)' ... ' (Ts, Pn)} that begins with the initial process state So and ends 

with a successful terminal process state Sn E F? 

We measure the size of the DP decision problem instance by the total number of 
unary predicates in L and production rules in P. It is shown that: 

Theorem 6.3: The DP decision problem is NP-hard. 

Proof: We show that there is a polynomial transformation from the 3-CNF 
problem (as defined above) to an instance of the DP decision problem such that there 
is a Boolean-valued truth assignment to the 3-CNF problem if and only if there is an 
accepting path of transformations to the particular DP decision problem instance. 

Let {XI' x2' ... , X N } be a set of Boolean variables and 

E = EI /\ E2/\ ... /\EK be a conjunction of clauses (each clause has exactly three 

distinct literals), which form an arbitrary instance of the 3CNF problem. Each Ei 

(called a clause) is of the form til v ti2 v tiJ ' and each tij is literal; that is, either 

x or - x for some variable x. The construction of an instance of the DP decision 
problem goes as follows (an example follows the proof): 

• Design Description (L) - Each clause Ei = til v ti2 v tiJ in the 3CNF 

instance corresponds to a structural attribute mj in L. Thus, there are k structural 

attributes of this kind. 
The functional attributes in L are in Var u True u False, where 



210 A MATHEMATICAL THEORY OF DESIGN 

and the T's ("true") or F's ("false") are used to assign values to the "variables" 
X·s. 

• Production Rules (P) - The production rules are of the form: 

1. For every j E {I. 2 •... N} : Tj ~ X j ; 

2. For every j E {I. 2 •... N} : Fj ~ X j ; 

3. For every j E {I. 2 •.. .N}: let Tj E True and Ei = til v ti2 v ti3 be the 

clause in the 3CNF instance that corresponds to the structural attribute mi. We 

say that mi satisfies Tj if the literal x j appears in E i . Define the set of all the 

predicates that satisfy Tj as {m jl. m j2' ...• m jk } • and let 

Tj ~ m jl A m j2 A .•. A m jk be a rule in P; 

4. For every j E {l. 2 •... N} : let Fj E True. We say that mi satisfies Fj if the 

literal - x j appears in Ei . Define the set of all the predicates that satisfy Fj as 

{mjl' mj2 •...• mjk}. and let Fj ~mjl A mj2 A •.• A mjk be a rule in 

P; 

• Initial Process State (So) - Let the initial process state be (Mi' (a6. a~»). 

where Mi = 0. a6 = X I A X 2 A . .• A X N • and a~ = 0; 

• Analysis Transformation (TA ) - Let Si = (Mi' (aj. ay») such that aj is of 

the form at; A X j A at'J. and let PEP be the rule a ~ X j (a is either Tj 

or Fj ). Then. the process state Si is transformed to TA (Si' p) = 

(Mi' (a/:l. aY+l»)' where a/: I = at; A a A at'J and aY+l = aY A Xj; 

• Synthesis Transformation (Ts) - Let Si = (Mi' (a j. a Y ») such that a j = 

at; A a A at'J and a e True u False. If peP is the rule 

a~ mjl A mj2 A ... A mjk' then the process state Sj is 

transformed to Ts(Sj. p) = (M i +l • (a/: I • aY+l»)' where 

Mj+l = Mj A mjl A mj2 A •.. A mjk. 
p p p aj +l = ail A ai3 and 



MODELING THE EVOLUTIONARY DESIGN PROCESS 211 

• Terminal Process States (F) - The process state Sn = (M n' (9:, 9~») is 

terminal if 9: = 0. Sn is successful if Mn = ml 1\ m2 1\ ... 1\ mN (that is, 

M n is in its "full content") and failed otherwise. 

It is easy to verify that the above construction can be done in polynomial time. 
It remains to show that the DP automaton halts after producing an accepting path 

of transformations if and only if there is a Boolean-valued truth assignment of O's and 
1 's to the variables {xI' x2' ",xN } that gives the expression E the value 1: 

(IF) Let ( M n' (9:, 9 ~ ) ) be a successful process state. Since 

96 = X I 1\ X 2 1\ . •• 1\ X N ' 9: = 0 , and the analysis transition TA uses rules 

of the form Tj => X j or Fj => X j; it is concluded that 9 ~ is of the form 

X I 1\ X 2 1\ . •. 1\ X N 1\ 9 1 1\ 9 2 1\ . .. 1\ 9 N ' where each 9 j is either Tj or 

Fj • We match" X j" with the variable" x j ", "Tj " with the value "1", and" Fj " 

with the value "0". It is easy to show that the Boolean-valued truth assignment to the 
variables Xj' which corresponds to the 9 j 's, gives the expression E the value 1. 

Let 9 j => m jl 1\ m j2 1\ ... 1\ m jk j 'Vj E {l, 2, ... N} be the rules in P used by 

the synthesis transformation Ts. By definition, the Boolean-valued truth assignment 

that corresponds to 9 j satisfies each clause that corresponds to some predicate in 

{mjl' mj2, ... mjkj}' Since Mn = ml /\ m2 /\ ... /\ mN' we must have 

N N 
U {m jl' m j2' ... m jk' } = U m j . Thus, it is concluded that the Boolean-valued truth 
j=1 J j=1 

assignment corresponding to the 9 j 's satisfies each clause E j and thus the 

• 
(ONLY IF) Let {ai' a2, ... aN} be a Boolean-valued truth assignment (each a j is 

either 1 or 0) for the variables {xI' x2' ... , x N} that gives the expression 

E = E I 1\ E 21\ ... I\E K the value 1. Define the set of all the clauses that are 

satisfied by the Boolean-valued truth assignment a j as {E jl ' E j2 , ... E jk j } . Let the 

predicates {91,92 , ... 9 N } and {mjl,mj2, ... mjkj} correspond to {al,a2, .. .aN} and 

{E jl' E j2 , ... E jkj }, respectively. It is easy to show that the following path of rules 



212 A MATHEMATICAL THEORY OF DESIGN 

generates a successful process state: 
Process Step 1. 91 => X I ; 

Process Step 2. 92 => X 2 ; 

Process Step N 

Process Step N + 1 

Process Step 2N 

9N => X N ; 

9 1 => mil /\ ml2 /\ ... /\ mlkl ; 

This concludes the proof of Theorem 6.3 • 
Example 6.4: Let {xI, x2' x3' x4} be a set of Boolean variables and 

E=(xlvx2v-x3) /\ (-xlv-x3v-x4) /\ (-x2vx3vX4) be a 

conjunction of three clauses, which form an instance of the 3CNF problem. We show 
that a solution to this 3-CNF problem instance can be determined by solving the 
following instance of the DP decision problem: 

• Design Description (L) - Each clause E j in the 3CNF instance corresponds to a 

structural attribute mj in L. Thus there are 3 structural attributes of this kind. 

The functional attributes in L are in Var u True u False, where 
Var = {Xl' X 2 , X 3, X 4 } ; True = {Tl , T2 , T3, T4 }; False = {Fl , F2 , F3, F4 } 

• Production Rules (P) - The production rules are of the form: 

1. For every j E {l, 2, 3, 4} : Tj => X j 6. T4 => m3 

2. For every j E {I, 2, 3, 4}: F j => X j 7. FI => m2 

3. Tl => ml 8. F2 => m3 

4. T2 => ml 9. F3 => ml /\ m2 

5. T3 => m3 
10. F4 => m2 

• The following path of rules and transformations generates a successful process 
state: 



MODELING THE EVOLUTIONARY DESIGN PROCESS 213 

PROCESS ARTIFACT PRESUMED VALIDATED TRANSITION 
STEP PART SPECIFICATIONS SPECIFICA nONS RULE 

(Mi ) (sf) (sY) (p) 

1 0 x) /\ X2 /\ X3 /\ 0 1) => XI 

X4 

2 0 1} /\ X2 /\ X3 /\ X) F2 => X2 

X4 

3 0 T) /\ F2 /\ X 3 /\ X) /\ X2 T3 => X3 

X4 

4 0 T) /\ F2 /\ T3 /\ X)/\X2/\X3 F4 => X4 

X4 

5 0 T) /\ F2 /\ T3 /\ X)/\X2/\X3/\ T) => m) 

F4 X4 

6 m) F2 /\ T3 /\ X) /\ X2 /\ X3 /\ F2 => m3 

F4 X4 /\ 1} 

7 m) /\ m3 T3 /\ F4 x) /\ X2 /\ X3 /\ T3 => m3 

X4 /\ T) /\ F2 

8 m) /\ m3 F4 X) /\ X2 /\ X3 /\ F4 => m2 

X 4 /\ T) /\ F2 /\ T3 

9 m) /\ m2 /\ m3 0 X)/\X2/\X3/\ STOP 

X4 /\ 1} /\ F2 /\ T3 

/\ F4 

As concluded in Theorem 6.3, the Boolean-valued truth assignment xl = "1", 

x2 = "0", x3 = "1", and x4 = "0", which corresponds to the predicates in s~ that 

are members of True u False (i.e., T), F2 , T3, and F4 ), satisfies the expression 

E=(x)vx2v-x3) /\ (-xlv- x3v - x4) /\ (-x2 vx3 vx4)' 

6.5 SUMMARY 

In this chapter, the "real" nature of design, which is evolutionary, is formalized by a 
finite automaton representation. The finite automaton representation takes an instance 
of a problem where the arc labels signify production rules available to the design 
problem solver, nodes signify process states of the design resulting from transitions, 



214 A MATHEMATICAL THEORY OF DESIGN 

final process states represent accepting states, and initial process state represents the 
initial specifications introduced to the design process solver. A mechanism provides 
the problem solver with a description of a process state (required for specifications 
and partial solution description) that results from any sequence of transitions the 
problem solver undertakes. Each transition is driven by a set of rules and produces a 
new process state. The task is to halt after producing an accepting path of 
transformations in the automaton; that is, a path from the initial process state to an 
accepting process state. To determine the accepting states, the problem solver uses an 
effective test. 

Theorem 6.1, 6.2 reassured that the formal model will not permit us to arrive at a 
solution (artifact part) that does not satisfy the initial presumed specifications 
(correctness). Theorem 6.3 teaches us that there is something inherently difficult 
about the DP problem in terms of how many "actions" (transformations) must be 
taken by the design process solver before it succeeds; even when the number of unary 
predicates (structural and functional attributes) and production rules is manageable. 
This theorem concludes that although expressiveness of the design description is 
necessary to enable the generation of a wide variety of solutions, simply increasing 
the expressiveness of a design description swamps the designer with alternative 
solution paths. Consequently, design problem solving requires a recourse to heuristic 
search procedures. In Chapter 10, we present an "intelligent" computerized advisory 
tool for problem decomposition, which is based on the framework developed here. In 
Chapter 20, we illustrate the application of the evolutionary design model to several 
nontrivial "real world" design problems. 

APPENDIX A - BASIC NOTIONS OF AUTOMATA THEORY 
[ADAPTED FROM 3] 

A finite automata (FA) consists of a finite set of states and transitions from state to 
state that occur on input symbols chosen from an alphabet L (see Appendix A in 
Chapter 5). For each input symbol there is exactly one transition out of each state 
(possibly back to the state itself). One state, usually denoted %' is the initial state in 

which the automaton starts. Some states are designated as final or accepting states. 
A directed graph, called a transition diagram, is associated with an FA as 

follows. The vertices of the graph correspond to the states of the FA. If there is a 
transition from state q to state p on input a, then there is an arc labeled a from 

state q to state p in the transition diagram. The FA accepts a string x if the 

sequence of transitions corresponding to the symbols of x leads from the start state 
to an accepting state. 

We formally denote afinite automaton by a 5-tuple (Q, L, 0, qQ, F), where 

Q is a finite set of states, L is a finite input alphabet, qQ in Q is the initial state, 

F ~ Q is the set of final states, and 0 is the transition function mapping Q x L to 

Q . That is, o(q, a) is a state for each state q and input symbol a . 



MODELING THE EVOLUTIONARY DESIGN PROCESS 215 

REFERENCES 

I. Ramsay, A., Formal Methods in Artificial Intelligence. Cambridge: Cambridge University Press, 
1988. 

2. Garey, M. R. and Johnson, D. S., Computers and Intractability: A guide to the Theory of NP
Completeness. San Francisco: W. H. Freeman and Company, 1979. 

3. Hopcroft, 1. E. and Ullman J. D., Introduction to Automata Theory, Languages, and Computation. 
Reading, MA: Addison-Wesley Publishing Company, 1979. 

4. Ulrich, K. T., Computation and Pre-parametric Design, Technical Report 1043, Massachusetts 
Institute of Technology, Artificial Intelligence Laboratory, Cambridge, 1988. 

5. Takeda, H., Veerkamp P., T. Tomiyama, and H. Yoshikawa, "Modeling Design Processes," AI 
Magazine, 11(4), pp. 37-48, 1990. 

6. Umeda, Y., Takeda H., Tomiyama T., and H. Yoshikawa, "Function, Behavior, and Structure," in 1. 
S. Gero (Ed.), Applications of Artificial Intelligence in Engineering V, Vol. I. Berlin: Springer 
Verlag, pp. 177-194, 1990. 

7. Takeda, H., Tomiyama T., and Yoshikawa H., "A Logical and Computable Framework for 
Reasoning in Design," in D. L. Taylor and L. A. Stauffer (Eds.), Design Theory and Methodology -
DTM'92, ASME, pp. 167-174, 1992. 

8. Pahl, G. and Beitz, W., Engineering Design. London: The Design Council, 1984. 
9. Suh, N.P., The Principles of Design. New York: Oxford University Press, 1990. 
10. Chandrasekaran, B., "Design Problem Solving: A Task Analysis," AI Magazine, Winter, 1990. 
11. Tomiyama, T., "From General Design Theory to Knowledge-Intensive Engineering," Artificial 

Intelligence for Engineering Design, Analysis and Manufacturing, 1994. 
12. Sriram, D. and Cheong, K., "Engineering Design Cycle: A Case Study and Implications for CAE," 

In Knowledge Aided Design. New York: Academic Press, 1990. 
13. Takeda, H., Hamada, S., Tomiyama, T., and Yoshikawa, H., "A Cognitive Approach to the Analysis 

of Design Processes," In Design Theory and Methodology - DTM'90 -. DE-VoI.27, (Rinderle, J. R.. 
Ed.). New York: ASME, pp. 153-160, 1990. 

14. Takeda, H., Tomiyama, T., and Yoshikawa, H., "Logical Formalization of Design Processes for 
Intelligent CAD Systems." In Intelligent CAD. II. (Yoshikawa. H., and Holden, T., Eds.), 
Amsterdam: North-Holland, pp. 325-336, 1990. 

15. Dasgupta, S., "Testing the Hypothesis Law of Design: The Case of the Britannia Bridge," Research 
in Engineering DeSign, Vol. 6. pp. 38-57,1994. 

16. Thagard. P., Computational Philosophy of Science. Cambridge: MIT Press, 1988. 
17. Thagard, P., "Explanatory Coherence," Behavioral and Brain Sciences. Vol. 12. pp. 435-467,1989. 



CHAPTER 7 

GUIDED HEURISTICS IN ENGINEERING DESIGN 

In Chapter 6, the desired function and constraints are mapped to the artifact 
description using an evolutionary process that can be visualized as a feedback loop 
of analysis, synthesis and evaluation. In this chapter, we define "basic synthesis" as 
the complete description of 'primitive' components and their relations so as to meet a 
set of specifications of satisfactory performance. To determine if "basic synthesis" 
could scale up to large problems, it is appropriate to analyze the computational 
complexity of the "basic synthesis" task - an issue which has often been ignored by 
the design research community. A special case of the "basic synthesis" activity, 
called the Basic Synthesis Problem (BSP), is addressed. The BSP is shown to be NP
Complete. generally applicable over all design domains, which suggests that the 
combinatorial complexity would be exponential, hence intractable within most 
modern computing environments. Such a theoretical mathematical analysis ignores 
critical domain-specific engineering knowledge. We show that by combining 
domain-specific mechanical engineering heuristics. which constrain the structure of 
potential artifacts. the BSP will be computationally tractable. In order to demonstrate 
the guided heuristics approach to specific domains, the heuristically guided 
combinatorial analysis will be presented for 2-D wireframe feature recognition 
systems which are predominant in industrial CAD systems. 

7.1 INTRODUCTION 

The previous chapters develop a generic formalism that aims to explain how design 
artifacts are represented. and how design processes conceptually perform in terms of 
knowledge manipUlation (as captured by the ASE-based design paradigm). In 
Chapter 5. the term "design" is defined as a process. Given a description of a desired 
function and constraints. called specifications, provide a representation of an artifact 
that produces the function and satisfies the constraints. This representation, called 
artifact description or artifact structure, is identified as an algebraic structure. The 
mapping from functional requirements to artifact structure is identified in Chapter 6 
as an evolutionary process consisting of similar activities (modeled through finite
state automata) repeated in a cyclic fashion. We address here a special case of the 
synthesis activity called the Basic Synthesis Problem (BSP). The term "basic 
synthesis" used in this study is defined as the complete specifications of 'primitive' 
components and their relations so as to meet a set of specifications of satisfactory 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



218 A MATHEMATICAL THEORY OF DESIGN 

performance. To determine if any such "basic synthesis" could scale-up to large 
databases, it is appropriate to analyze the computational complexity of the basic 
synthesis problem - an issue which has often been ignored by the design research 
community. We show that the decision problem concerning the existence of a 
'satisfying' artifact is NP-Complete. A naIve combinatorial analysis, generally 
applicable over all design domains, suggests that the combinatorial complexity 
would be exponential, hence intractable within most modern computing 
environments. Such a theoretical mathematical analysis ignores critical domain
specific engineering knowledge. It is argued that this theoretical potential for 
combinatorial explosion can be addressed by combining domain-specific engineering 
heuristics with a detailed combinatorial analysis. An example of such a heuristically 
guided combinatorial analysis will be presented by enforcing certain constraints on 
the artifact structure. This example presents combinatorial upper-bounds on the 
number of possible design solutions which indicate that BSPs upon large databases 
will be computationally tractable. These bounds are also instrumental for devising a 
heuristic strategy for the BSP. Thus our results are guidelines for developing 
algorithms to search for optimal and sub-optimal design solutions. 

In order to demonstrate the applicability of the heuristically guided 
combinatorial analysis to a specific design problem, we present such an analysis for 
the domain of wireframe feature recognition, which "can be characterized as 
enhancing the geometric database representation of a mechanical artifact to include 
some design intent" [10]. A number of feature recognition systems have successfully 
demonstrated the ability to capture such design knowledge. This example presents 
combinatorial upper bounds which indicate that feature recognition upon large 
industrial part databases will be computationally tractable. 

The rest of the chapter is organized as follows: Section 7.2 addresses the BSP 
and proves its computational intractability. The consequences are then explored. In 
Section 7.3, we examine the class of Constrained Basic Synthesis Problems (CBSP). 
We use an information-theoretic approach to derive a universal upper bound on the 
number of possible design solutions. In Section 7.4, we derive a refined upper bound 
on the number of possible design solutions, assuming a probabilistic search strategy 
for solving the CBSP. In Section 7.5, we use an heuristically guided combinatorial 
analysis to derive tractable computational upper bounds on feature recognition upon 
large databases. Section 7.6 concludes the chapter. 

7.2 THE BASIC SYNTHESIS PROSLEM (SSP) 

The rest of the chapter addresses and examines the computational complexity 
attached to a special case of the synthesis activity termed the Basic Synthesis 
Problem (BSP). Rigorous description of this problem will serve to illuminate the 
intractability properties of the design process. 



GUIDED HEURISTICS IN ENGINEERING DESIGN 219 

7.2.1 PROBLEM FORMULATION 

The term 'basic synthesis' is defined as the complete specifications of primitive 
components and their relations so as to meet a set of specifications of satisfactory 
performance, which correctly implies the domain-independent nature of the design as 
a generic activity. For example, a configuration can be described in terms of part 
types (a group of objects that are similar but have different sizes). Every part can be 
described by a set of attributes. Each attribute can be described by its dimension. The 
basic synthesis problem would be to find a collection of part types with their 
dimensions so as to meet a set of specifications. 

Traditional engineering design methods prefer to use specifications of 
satisfactory performance over using optimal performance, since the designer is 
constantly faced with the problem of bounded rationality [3]. The model of bounded 
rationality takes as self-evident limitations on the cognitive and information 
processing capability of the designer's decision making. 

In practice, designers often set some criteria of satisfactoriness and if the design 
meets the criteria, the design problem is considered to have been 'solved'. These 
criteria are mostly conflicting and heterogeneous in the same sense that the quality of 
the compared alternatives cannot be adequately expressed by a single integral 
criterion formed as a composition of the original (partial) criteria. Therefore, single
criterion optimization is often insufficient for choosing the best designs. The 
mUltiple criteria can include manufacturing and marketing considerations, in addition 
to traditional measures. 

Example 7.1: Consider a multistorey reinforced concrete building design. A 
complete evaluation of a design solution (limited to the main beams) mainly involves 
the evaluation of the following four types of criteria [2]: 

• Slenderness of beams. This checks the adherence of the design to zoning 
regulations regarding span/depth restrictions of the beams. 

• Interference. This is based on the clearance between floor and roof, which in 
turn, is decided by the deepest beam in the plan. 

• Beam-column compatibility. At every junction of the beam and column, a check 
is made to see if the smaller of the two columns dimensions is .the same as the 
breadth of the beam that frames into that side. The evaluation may be based on 
the percentage of all such instances that violate this requirement. 

• Adjacency - The desirability of two adjacent beams having the same depth is 
sought for. The evaluation may be based on the percentage of all such instances 
that violate this requirement. 

The multiple criteria optimization is modeled through the evaluation operator. 
The evaluation operator measures the degree of efficiency of an artifact, defined as 
the degree of closeness (the less the better) to the actual specifications desired. 
Formally, 

Definition 7.1 (Evaluation Operator): A mapping E e : M* ~ 9t n; e is an 



220 A MATHEMATICAL THEORY OF DESIGN 

ordered set of specifications alternatives and E 6 (m) = (E 6) (m), E 62 (m), ... , E 6n 

(m)), such that 
E 6; (m) measures the degree of closeness of to the specification e;. E 6 induces a 

preference structure on the artifact space, i.e., 

1. E 6; (m )) < E 6; (m 2) <=> The designer strictly prefers module m lover module 

m 2 ' relative to the specification attribute e; . 
2. E 6. (m I) = E 6· (m 2) <=> The designer is indifferent regarding choice of m 1 

I I 

over module m 2 ' relative to the specification attribute e i . 

The designer often defines, prior to solving the BSP, a threshold vector K = (k l • 

k 2 , ...• k n ). K represents (pointwise) the maximum degree of closeness (to e), which 

is still accounted efficient. We term K as the designer's aspiration level. Having 
defined the aspiration level, the BSP is formulated as the decision problem 
concerning the existence of a module evaluated below the aspiration level. Formally, 

Definition 7.2 (Basic Synthesis Problem): Given a set of modules M, a set of 

relations e and a positive vector K E 9\ n • are there subsets M ° ~ M, CO ~ e and 

module m E <Mo,eo > such thatE 6 (m) ~ K? 

Special instances of the BSP include PCB's design ("packing", "placement" and 
"routing"); 0 logic gates circuit satisfiability; and certain graph enumeration and 
isomorphism problems in the realm of mechanisms design. Towards examining 
thoroughly the computational aspects of the BSP, let us first identify one problem 
instance of the BSP. 

Example 7.2 (Minimizing Microinstruction Size) [5, 6, 7]; 

Microprogrammed Control 

Microprogramming is a technique for implementing the control function of a 
processor in a systematic and flexible manner. Every instruction in a CPU is 
implemented by a sequence of one or more sets of concurrent microoperations. For 
example, a microoperation represented by the symbol Reg 1 f- Reg 2' when 

executed by the control unit, causes the content of the specified register Reg2 to be 
gated to the register Reg I . Each microoperation is associated with a specific set of 

control lines which, when activated cause that microoepration to take place. Since 
the number of instructions and control lines is often in the hundreds, a hardwired 
control unit that select and sequences the control signals can be exceedingly 
complicated. 

Microprogramming may be considered as an alternative to hardwired control 



GUIDED HEURISTICS IN ENGINEERING DESIGN 221 

circuits. The control signals to be activated at any time are specified by a word called 
a microinstrauction which is fetched from a control memory COM in much the same 
wayan instruction is fetched from the main memory. A set of related 
microinstructions is called a microprogram. 

Parallelism in Microinstructions 

Microinstruction length is determined, at large, by the maximum number of 
simultaneous microoperations that must be specified. Therefore, microinstructions 
are often designed to take advantage of the fact that at the microprogramming level, 
many micro operations can be performed in parallel. For example, if microoperation 
m I writes into a register/store which is read by m 2 than m I and m 2 cannot be 

executed in parallel. Therefore, it is useful to divide the microoperation specification 
part of the microinstruction into k disjoint parts called control fields. Each control 
field encodes or represents a set of microoperations, anyone of each can be executed 
concurrently with the microinstructions specified by the remaining control fields. 

Minimally Encoded Microinstruction Organization (MEMO) 

Let us examine the problem of encoding the control fields such that the total number 
of bits in the control fields is a minimum [5]. Let I I, 12 ",,'/ m be a set of 

microinstructions for the computer that is being designed. Each microinstruction 
specifies a subset of the available microoperations S = {S I' S 2' ... , S n } which must 

be activated. An encoded control field can activate only one micro operation at a 
time. Two microoperations S I and S 2 can be included in the same control field only 

if they cannot be executed in parallel from the same microinstruction. Call S I and 

S 2 a compatible pair. A compatible class H I is a set of micro operations that are 

pairwise compatible. Each H I can, then, be encoded in a single field of the 

microinstructions using B; = flog21H d + 11 bits. The total length of the 

k 
microinstruction would be B = L B; bits. 

;=1 

The problem is, to determine a set H min of compatible sets such that the 

corresponding length B, is the minimum. This problem is formulated in a BSP form 
as follows: 

• 
• 

• 

The primitive modules (M) are identified with the set of microoperations S; 

There are n types of relations (C), such that C j = {<.S il . S i2 ' ... , S i j >: { Sit. 

S i2 ' ... , S i j } is a compatible class that includes j microoperations}. 

A solution for the BSP is specified in terms of a set of relations {c i }. 



222 A MATHEMATICAL THEORY OF DESIGN 

• The evaluation operator (E) is the total length (in bits) of the microinstruction 
that corresponds to the BSP solution. 

Special Case 

Let S = {s l' s 2' ... , s 8 } be the set of primitive modules. Consider the following pairs 

of micro operations that can be executed concurrently without any conflict in their 
resource usage: 

<s 1, s 2 >, <s 1, s 3 >, <s 2, s 4 >, <s 2, s 5 >, <s 2, s 6 >, <S 2, S 7 >, <S 2' S 8 >, <S 3' 

S 5 >, <s 3' S 6 >, <S 4, S 1 >, <s 4, S 6 >, <S 5 ' S 7 >, <s 6' S 7 >, <s 7 ' S 1 >, <S 7 ' S 2 > 
BSP: Is there a module (a collection of compatible sets), such that the total length of 
the microinstruction would be ~ 6 bits? 

Two design alternatives are considered. The microinstruction that corresponds to 
the first alternative yields a total length of 7 bits: 

Alternative 2 yields a satisfying solution (with total microinstruction length of 6 
bits): 

7.2.2 THE INTRACTABILITY OF THE BSP 

The technical result in this section concerns the computational complexity of the 
BSP. Over the past decade, complexity theory has emerged from a branch of 
computer science almost unknown to the operations research community into a topic 
of widespread interest and research. Computational complexity theory seeks to 
classify problems in terms of the mathematical order of the computational resources 
- such as computation time, space and hardware size - required to solve problems via 
digital algorithms. The notion of "easy to verify" but "not necessarily easy to solve" 
decision problems is at the heart of the Class NP. Specifically, NP includes all those 
decision problems that could be polynomial-time solved if the right (polynomial
length) "clue" or "guess" were appended to the problem input string. An important 
subclass of NP problems are referred to as NP-complete or Non-deterministic 
Polynomial time Complete problems [1]. The CPU time required to solve an NP
complete problems, based on known algorithms, grows exponentially with the "size" 
of the problem. There exists no polynomial time transformations for NP-complete 
problems, nor are there any polynomial time algorithms capable of solving any NP 
problems. The potential to solve NP and NP-complete problems depends on the 
availability of certain heuristics. 

In the following, the time complexity of solving the BSP is expressed as a 



GUIDED HEURISTICS IN ENGINEERING DESIGN 223 

function of the size of the problem. By the size of the BSP we mean the total number 
of modules and relations ( IMI + ICI ). We assume that the input length for an 

instance of a BSP is efficiently encoded (i.e .• the problem size grows polynomially 
with the number of modules and relations). We also assume that each formula 
C i «m il .m i2 •.. .• m in> k) and E e can be verified and computed respectively in 
polynomial time. It is shown that: 

Theorem 7.1: The BSP is NP-complete. 

Proof Let us prove the first part of the theorem. It is easy to see that the BSP E 

NP. since a nondeterministic algorithm need only guess subsets M 0 ~ M, eO ~ e 

and a module m E < Mo. eO > and check in polynomial time that the threshold 

condition E e (m) SKis satisfied. 

Next. we transform the satisfiability problem (see the appendix) to the BSP. Let 
X = {x I • x 2 ••..• x N } be a set of Boolean variables and E = {e I 1\ e 2 1\ ••• 1\ e L } be 
a conjunction of clauses (a clause is defined as the disjunction of literals over X). 
which form an arbitrary instance of the satisfiability problem. We construct sets M. 
C. an Evaluation mapping E e • and a positive integer K such that there are subsets 

Mo s;;; M. CO s;;; e and a module m E <Mo.eO > satisfying Ee(m) S K. The 
construction goes as follows (depicted in Figure 7.1): 

(1) Let M = {XI' x2 •...• xN}; (2) Let C = {TRUE. FALSE}, such that TRUE = 
{ } - "t II (h - "r I ") fi 1 < . <.x il • x i2 •...• x im > means xii - rue ence - xii - la se or every - } 

~ m ("FALSE" is defined similarly); (3) a design solution is defined as m = {TRUE 

= {< X il • X i2 •...• x im >}, FALSE = {< xiI' x i2 ' ... , x iN-m >} } such that { xiI' 

x i2 •... , x im } U { xiI' x i2 •...• x iN-m } = X and { XiI' x i2 ••..• x im } II {x iI • 

x i2 •...• x iN-m } = 0; (4) The evaluation mapping is defined as 

{
o if E is satisfiable by m 

Ee(m) = 
1 otherwise. 

Now, one easily verifies that 3m: E e (m) SO¢::) E is satisfiable. • 
Theorem 7.1 above implies that. in the worst case, the time required to produce 

a solution is O(k n ) where k is a constant and n, a parameter characterizing the 'size' 
of the problem. Therefore the use of heuristics (e.g., branch-and-bound techniques or 
backtrack search) to search for an optimal solution is inevitable when the problem is 



224 A MATHEMATICAL THEORY OF DESIGN 

large. 
The intractability of the BSP infers that the number of potential designs is 

combinatorial -- that is, designs are collections of primitive elements, and many 
different elements can be combined in exponentially different ways: 

Proposition 7.1 (Upper Bound): Let S denotes the set of possible solutions (a 

* n· I I Irl I I subset of < M, C », C j ~ (M ) I, M = N and "'I = p. Then S S 

II2 
Nni 

j=l 

Proof Every relation C j consists of assignments, each associated with the 

Cartesian product of n copies of the set M * . Since I(M * )ni I = N ni , the number of 

n' 
possible assignments is given by 2 (N I) . As a design solution is the set of p 
relations, the required bound is concluded. • 

CNF:X= fX"X2 •... ,xN};E= fe,Ae2A .•• Ae,.} 

l'································· .. ·················· .......................................................................... \ 

1-

C={TRUE, FALSE}; 

10 if E is satisfiable by m 
Es(m) = I 

otherw ise 

\ 
: 
i 

! 
I 
i 
! 

.. ! 
:. /. 
\.. Yes /1 

.............................................................................................................................. 

Yes, E is satisfiable No, E is not satisfiable 

Figure 7.1 A Polynomial Transformation from SAT to BSP 



GUIDED HEURISTICS IN ENGINEERING DESIGN 

7.3 THE CONSTRAINED BASIC SYNTHESIS PROBLEM 
(CBSP) 

7.3.1 PROBLEM FORMULATION 

225 

The primitive modules and relations determine the space of possible solutions to the 
BSP. A designer can only generate structural descriptions that can be formed from 
these elements. The constraints imposed by the choice of primitive modules and 
relations are the cause of a fundamental trade-off between the expressiveness of the 
design representation scheme and the complexity of the BSP. As design 
representation schemes become more expressive, the space of possible solutions 
increases. The following constraints, based upon the specialized circumstances 
relevant to artifacts, will permit replacement of the formidable upper bound on 
Proposition 7.1 with much smaller upper bounds (but still exponential). 

Here, we consider constraints with respect to three cases: 

1. the possible number of assignments that each module can share, grows 
polynomially (of order y) with respect to the number of primitive modules N; 

2. the number of relations of interest is bounded by some p; 
3. the number of assignments per relation is bounded by some v. 

These constraints constitute the constrained basic synthesis problem (CBSP): 

Definition 7.3 (Constrained Basic Synthesis Problem): CBSP is expressed 
similarly to the BSP by further considering the foregoing constraints. 

Formulating the CBSP in this form enables obtaining refined upper bounds of 
Igl (Theorems 7.2 and 7.5), and precise conditions where the CBSP can be solved 

in polynomial time (Proposition 7.2). 

7.3.2 UNIVERSAL UPPER BOUND ON Igl 

In this section, we obtain a universal upper bound of Igl assuming artifacts have 

rigid structure as stated above (Definition 7.3). This upper bound is particularly 
useful when the a priori algorithm of solving the CBSP is unknown. In deriving the 
upper bound, we apply an elementary information-theoretic approach. 

Let us first introduce the important quantity of the entropy of a random variable: 

Definition 7.4: The entropy H(X) of a discrete random variable X drawn 
according to the probability mass function p(x), x e n, is defined by H(X) = -
LP(x)log2P(X). We also write H(P) for the above quantity. The log is to the 

xen 
base of 2 and entropy is expressed in bits. 



226 A MATHEMATICAL THEORY OF DESIGN 

Theorem 7.2 (Universal Upper Bound): For v :s; 0.5NY + 1 and sufficiently large 

pNy+lH (_v_) 
o y+l 

N, 131 :s; v p 2 N. H 0 (P) denotes the binary entropy function 

H 0 (P) = - plog 2P - (l-p)log 2 (l - p). 

Proof: The number of possible assignments constituting any relation C E C is 

bounded by NY + 1 . A design solution is defined by a set of p relations. Consider 

each relation c; contains z; assignments (z; :s; v) out of the NY + 1 possible ones. 

Therefore the number of possible designs having this characteristic is given by 

n[NY+lj. Hence, 
;=1 z; 

V V P [NY+l) 131:s; L... Ln. It is known that for large values of N, the 
Zl = 1 Zp = 1 i = 1 zi . 

p 

[ NY+ 1) [NY+ 1) binomial coefficients satisfy zi :s; v (recall that z; :s; v). It can also 

x 
(N) NHO(-) 

be shown [4] that the binomial coefficients satisfy x :s; 2 N . Therefore, we 

NY+ 1 0 ----y+T ( ) 
Ny+1H ( v ) 

obtain v :s; 2 N. Plugging into the foregoing upper bound 

on 131 and rearranging, we obtain the required inequality. • 

Theorem 7.2 shows that the cardinality of 3 grows exponentially with NY + 1 

and with the binary entropy HO(-_v-I ). The upper bound can be controlled by a 
NY+ 

suitable selection of N and v. The binary entropy is a concave function of the 
distribution, equals 0 when p = 0 or 1, and the maximum is obtained when p = 0.5. 
Therefore, the cardinality of 3 can considerably be decreased either by solving 

problems where v is small with respect to NY + 1 (Le., p = 2-1 ~ 0), or where 
NY+ 

v approaches NY + 1 (Le., p = __ v_ ~ 1). Indeed, the following engineering 
Ny+l 



GUIDED HEURISTICS IN ENGINEERING DESIGN 227 

design heuristics, based upon the specialized circumstances relevant to artifacts, will 
permit replacement of the formidable universal upper bound on Theorem 7.2 with a 
much smaller upper bound: 

Heuristic 1. the number of relations of interest is bounded by some p « N; 
Heuristic2. the number of assignments per relation is bounded by some v «N. 

The above heuristics are now matched to a corresponding combinatorial reduction: 

Proposition 7.2: For v « NY + 1 and sufficiently large N, I~I is bounded by: ex 

exp( o(N» N (y + l)vp , ex is fairly small and o(N) means o(N) ) 0 . 
N N-:;oo 

Proof: The proof is similar to that of Theorem 7.1, except for using the 

following useful approximation when needed, (NYy + I) = (eXP(7,/2ity(Y + 05)) 

exp(o(N») N(y+l)v . Regarding the above heuristics, note that the first and third 

terms are fairly small relative to 2 N . • 

In summary, these heuristics imply that the total number of possible solutions 
that would need to be considered by the synthesis module would be quite acceptable 
for reasonable computational performance. 

7.4 REFINED UPPER BOUND ON I~I 

7.4.1 PROBABILISTIC DESIGN SELECTION 

In this section, we tighten the universal upper bound in the last section by taking into 
account that the designer uses probabilistic heuristic strategy to search for solutions 
for the CBSP. 

The nature of the information involved in the search for a design solution may 
be deterministic, by showing which designs in ~ are categorically inferior, or 
probabilistic, by identifying those designs having the greatest probability of solving 
the problem. The probabilistic decision making process is supported by many 
protocol studies on design [e.g., 8]. In a probabilistic framework, the designer 
decomposes the artifact space into the selections of vp assignments. Each selection 
stage is labeled Node M ij as depicted in Figure 7.2. Node M ij is associated with a 

discrete random variable X i with alphabet n = {A. ii' A. i2' ... , A. iV} (the set of 

assignments constituting relation C i)' each with a conditional probability p ij of 

being included in a successful design solution if one exists. The choices are made out 



228 A MATHEMATICAL THEORY OF DESIGN 

of the N'Y + 1 + 1 possibilities (including the void assignment). If we assume that the 
random variables X i are mutually independent, the designer may choose 

sequentially vp assignments (considering the conditional probability vectors Pi) 

which results in a successful design solution with high probability. The designer's 
problem is that he may not know which assignments will ultimately lead to a 
satisfying design solution. In other words, he has little or no information on the value 
of the P ij 'so Later in Chapter 13, we develop a method for adaptive learning of these 

conditional probabilities P ij 'So 

For simplicity of analysis, we assume in the sequel that the random variables Xi 

are identical and independently distributed (i.i.d.) according to p(x). In this case, we 
establish the appealing proposition that not all possible solutions in g (i.e., all the 
sequences, each of which has vp assignments) have the same probability of solving 
the CBSP, and that the probability of identifying a successful solution for the CBSP 
is inversely proportional to the number of assignments (vp), and to the uncertainty of 
the random variable X. Thus, learning about which assignments satisfy the governing 
requirements reduces the uncertainty of the random variable X, which in turn 
increases the probability of identifying a successful solution to the CBSP. 

NodeMij 

Choosing 

Assignment j of Relation i 

A Design 
Solution 

Figure 7.2 The Probabilistic Decision Making Process 

7.4.2 THE ASYMPTOTIC EQu/PARTITION PROPERTY (AEP) 

Let us first recall some basic results of information theory deriving from the 
Asymptotic Equipartition Property (AEP) which is formalized as follows: 



GUIDED HEURISTICS IN ENGINEERING DESIGN 229 

1 
Theorem 7.3: If X I • X 2' ... are Li.d. -p(x). x E n. then - - log p(X I • X 2 ..... 

n 
X n ) --+ H(X) in probability 

Proof: Functions of independent random variables are also independent random 
variables. Thus. since the X i are LLd., so are log p(X i)' Hence by the weak law of 

large numbers, 

-.! log P(X I ,X 2 .... ,Xn) =-.! Llogp(Xi ) --+-Elogp(X) in probability = 
n n i 

H(X), which proves the theorem. • 

Definition 7.5: The typical set A ~n) with respect to p(x) is the set of sequences 

(xI, x 2, .. , x n) E n n with the following property: 

2 - n(H(X)+E) <p(x x x) < 2-n(H(X)-E) 
- I' 2'''' n - . 

As a consequence of the AEP, it can be shown that the set A ~n) has the following 

properties: 

Theorem 7.4: 

1. If (x l' x 2' .. , x n) E A ~n) , then H(X) - £ ::;; -.! log p(X l' X 2 , ... , X n) < H(X) + 
n 

£. 

2. Pr{ A ~n) } > 1 - £ for n sufficiently large. 

3. IA~n)l::;; 2 n(H(X)+£) , where IAI denotes the number of elements in the setA. 

4. IAt)1 ~(1_£)2n(H(X)-£) forn sufficiently large. 

Proof The proof of property (1) is immediate from the definition of A ~n) . The 

second property follows directly from Theorem 7.3, since the probability of the event 

(X I' X 2' ... , X n)) E A ~n) tends to 1 as n --+ 00. Thus for any ~ > 0, there exists an 

no, such that for all n ~ no. we have 



230 A MATHEMATICAL THEORY OF DESIGN 

Setting B = e, we obtain the second part of the theorem. Note that we are setting e for 
two purposes rather than using both e and B. The identification of B = e will 
conveniently simplify notation later. 

To prove property 3, we write 

1 = L p(x) ~ L p(x) ~ L 2-n{H{X)+E) = 2 -n(H(X)+e) !A!n)!, 
xeOn xe~n) xe~n) 

where the second inequality follows from Definition 7.5. Hence 

!A~n)! !: 2 n(H(X)+e) . 

Finally, for sufficiently large n, Pr{ A ~n) } > 1 - e, so that 

1 - e < Pr{ A ~n) } !: L 2-n{H{X)-E) = 2 -n(H(X)-e) !A!n)!, 
XE~n) 

where the second inequality follows from Definition 7.5. Hence, 

IA~n)1 ~ (1- e) 2 n(H(X)-e). 

which completes the proof of the properties of A ~n) . • 
Thus the typical set has probability nearly 1, all elements of the typical set are 

nearly equiprobable, and the number of elements in the typical set is nearly 

2 nH (X). Moreover, any property that is proved for the typical sequences will then 
be true with high probability and will determine the average behavior of a large 

sample. From the definition of A ~n) , it is clear that A ~n) is a fairly small set that 

contains most of the probability. But from Definition 7.5 it is not clear whether it is 
the smallest such set. However, it can be shown that if the random variables X I' X 2 , 

... are Li.d., than the typical set has essentially the same number of elements as the 
smallest high probability set, to first order in the exponent [4]. If the random 
variables Xl' X 2' ... are not i.i.d., the direct definition of the smallest probable set 

may be used instead of the typical set (as shown in Chapter 13). 

7.4.3 CONSEQUENCES OF THE AEP ON THE CBSP 

Let us now apply the AEP to the CBSP, considering the probabilistic setting as 

explicated above. We let n = vp. In the context of design, the typical set A ~Vp) is 

interpreted as a fairly small set of design solutions that contains most of the 
probability of including a successful solution for the CBSP (see Figure 7.3). 



GUIDED HEURISTICS IN ENGINEERING DESIGN 231 

Assuming that the selections of assignments are independently drawn from the 

probability mass function p(x) and that vp is sufficiently large, we obtain IA~Vp)1 "" 

2 vpH(X) . Thus, we see that the size of the typical set A ~VP) grows exponentially 

with respect to v·p-H(X). 
When the designer has no information ("zero information") about which 

selections of assignments satisfy the governing requirements, the typical set of 
designs includes the entire design space. Indeed, in this case the selections are 
uniformly distributed over the set of possible assignments, i.e., 

p(x)= V . Thus, we obtain IA(VP)I = 2vPlog(NY+I+I) = 
/(Ny+l+ l) £ 

(N (y + I) + I) VP • As more information is obtained (by further analysis) about which 
assignments appear to most likely satisfy the governing requirements, the uncertainty 
in X can only be reduced. In this case, the entropy H(X) is decreased, and the size of 

the typical set of designs A ~VP) becomes smaller due to the reducible exponent 

v·p-H(X). The designs in the modified set A ~VP) have the highest (conditional) 

probability of solving the CBSP if one exists. 
The above analysis and interpretation of the typical set suggests the following 

adaptive algorithm for solving the CBSP (assuming XI' X 2, ... are i.i.d. -p(x». In 

the first stage of the algorithm, when the designer has no information ("zero 
information" state) about which assignments satisfy the governing requirements, the 

designer sets the initial representative sample, n I , to be the typical set (given £) that 
is associated with the uniform distribution p(x) for which each assignment appears 

with the same frequency (i.e., p(x)= V y + 1 ). Given such a sample, the 
/ (N +1) 

algorithm learns more about the design's behavior in terms of which assignments 
appear to satisfy the governing requirements. Accordingly, the probability mass 
function p(x) is modified. As the new probability mass function is obtained, the 
algorithm constructs a new sample of candidate solutions that pertain to the modified 

typical set n 2 • This process repeats itself until some termination criterion is 
satisfied. Typical termination criteria include stopping when the number of solutions 
that have been generated exceeds a predetermined limit. 

In general the random variables XI' X 2' ... are not i.i.d. Thus, the above analysis 

of the typical set is not applicable. In this case, we may use the alternate concept of 
the smallest probable set (the smallest set that contains most of the probability) in 
employing the adaptive algorithm for solving the CBSP. In Chapter 13, we develop 
such an adaptive algorithm (termed as P-learning) for designing a system that is 
characterized as a combination of parameters levels. The P-learning algorithm 
constructs a sequence of samples (populations of candidate solutions) each of which 
is a refined approximation of the smallest probable set. 



232 A MATHEMATICAL THEORY OF DESIGN 

g : Igl Possible Solutions 

,...---- Non-typical Set 

Typical Set of Designs 

A~n) : 2 n(H + E) Designs 

Figure 7.3 Typical Set of Design Solutions (adapted from [4]) 

7.5 DESIGN HEURISTICS FOR FEATURE RECOGNITION 

7.5.1 GEOMETRIC MODELING 

With computer graphics visualization tools we are now able to model and simulate 
the product being designed before building the first physical prototype. Two of the 
most useful computer-based visualization tools are geometric modeling and 
computer-aided design (CAD). These tools are software programs that use the 
designer's input to generate an electronic 3-D or 2-D graphic model on the computer 
screen. The model created by a geometric modeler or a CAD package represents a 
database . The database is a collection of data - such as the X, Y, and Z coordinates 
of the products' parts - having organization and structure. If the same database is 
shared with the manufacturing engineers, the process is called CAD/CAM, or 
computer-aided-design and computer-aided-manuJacturing. 

In designing physical devices, we use analog, iconic-descriptive, and symbolic
descriptive models to describe the unique characteristics of the product being 
designed. Since geometric modeling may describe the product both mathematically 
(symbolic) and visually (iconic), it is the most useful and comprehensive modeling 
technique available for developing new physical products. 

Geometric models may be classified as 2-D or 3-D. A 2-D model is always a 
wireJrame model. A 3-D model may be classified as wireframe, surface, or solid as 
briefly discussed in the following: 

1. both 2-D and 3-D wireJrame models represent objects by the edge lines, curves, 
and points on the surface of the object [9] , In wireframe models there are no 



GUIDED HEURISTICS IN ENGINEERING DESIGN 233 

visible surfaces on the wire frame model; only geometric entities such as lines 
and curves. Wireframe models can be considered as skeletal descriptions of the 
product being designed. Wireframes are practical because of the speed with 
which they can be displayed. 

2. the second type of 3-D model is surface model. Surface models, unlike 
wireframes, provide both visual and mathematical descriptions of the surface 
shapes of the object. Surface models are generated by placing flat and curved 
patches together to form the shell that surrounds the object. The term 'patch' is 
used by CAD modeling software developers to designate a limited region on a 
larger surface. Patches are mathematically defined by a curve-bounded 
collection of points whose coordinates are given by continuous, two-parameter 
functions. 

3. Solid models are an unambiguous and informationally complete description of 
the object being represented. The construction procedure for solid modeling is 
different from that for wireframe and surface modeling. Instead of having to 
generate specific lines curves, and surfaces that define the object, the designer 
uses mathematically predefined solid primitives, such as blocks, cylinders, 
cones, wedges, spheres, and so on. The designer can define a particular primitive 
by specifying the desired shape, and then entering parameters such as size, 
position, and orientation. 

7.5.2 WIREFRAME FEATURE RECOGNITION 

Industrial CAD part databases consist mainly of wireframe models. These databases 
serve as the knowledge storage of much of the design expertness and practice. 
Wireframe models are considered important to the incremental redesign and 
betterment of future artifacts. Therefore, the design process must provide an effective 
mechanism for the transfer of the design knowledge captured in those wireframe 
databases to the synthesis stage, which is a feature-based process [10]. Informally, a 
feature may be thought of as a geometric configuration that has specific functional 
significance (e.g., slot). 

In order to recognize features from wire frame models it is necessary to [10]: 

1. preprocess the database to derive topological connectivity; 

2. determine which connected subsets correspond to features of interest. 

The first activity is not directly applicable to surface and solid models, because 
there already exists an explicit representation of topological connectivity for solids 
and surface models. However, the second activity is directly applicable to all 
geometric representations. 

The focus of this section is upon the feasibility of feature recognition for those 
industrial databases whose parts contain a very large number of geometric entities 
(e.g., lines and arcs). This raises two fundamental questions regarding the number of 
geometric entities considered within a large industrial wireframe part database [10]: 



234 A MATHEMATICAL THEORY OF DESIGN 

1. Is the number of geometric entities that are processed to derive topological 
connectivity computationally intractable? 

2. Is the number of connected subsets of geometric entities that are processed to 
match a given feature computationally intractable? 

Primary attention is given to the combinatorial analysis for 2-D wireframe feature 
recognition (see Figure 7.4). Another domain for which the combinatorial analysis is 
applicable is the domain of sheet-metal parts (see Figure 7.5), where the features 
(e.g., filleted rectangular, slot) are cut-out features. 

Figure 7.4 Wireframe Model of A Wormgear Reducel 

Feature A 

/Line-2 Curve-l 

-~ Slot ) 

Figure 7.5 2-D Wireframe Model of Sheet-metal Part 

The wireframe database in Figure 7.5 of a sheet-metal part consists of distended 
geometric entities, with no explicit connective information. The conventions being 
used are that specific geometric entities are referenced as line-2, arc-4, etc. Note that 
the geometric entities line-2 and line-4 both would be of entity type line and arc-2 
would be of type arc. Each of the four connected subsets, labeled A-D, is a cut-out 



GUIDED HEURISTICS IN ENGINEERING DESIGN 235 

feature. Feature B, a slot, consists of two arcs and two line segments. 
Consider the problem of trying to recognize a slot from a collection of geometric 

entities consisting of lines and arcs. For example, a specific instance of a slot might 
consist of the geometric entities: arc-5, line-3, arc-4, line-2. Before this collection of 
two arcs and two lines could be recognized as a slot, two question must be ask: (1) 
are the four entities connected?; and (2) does their connectivity match that of a slot? 

The following sections apply the guided heuristics approach - which was 
applied to the Basic Synthesis Problem - to the analysis of the connectivity and 
feature recognition problems [see 10]. 

7.5.3 COMBINATORIAL ANAL YSIS OF THE CONNECTIVITY PROBLEM 

The connectivity of a slot, for example, could be specified by any cyclic permutation 
of the types order list (arc, line, arc, line), where it is understood that the 
consecutive elements of the list are connected end to end (with the end of the last 
geometric entity being connected to the beginning of the first geometric entity). Each 
geometric entity has a designated starting and ending point, and is called a directed 
entity. Thus, establishing connectivity may require to find all subsets whose 
connected order matches that of a feature to be recognized, and reversing the stored 
direction of some directed geometric entities. 

The following naive analysis suggests that the combinatorial complexity of the 
connectivity algorithm, which is associated with preprocessing the total number of 
subsets of geometric entities, would be exponential, hence intractable within most 
modern computing environments. 

Theorem 7.5 (Exponential Lower Bound): Let N denotes the number of 
geometric entities, and 9t denotes the set of all possible geometric subsets. Then, 

19t1 > 2 N+I. 

Proof For a specific feature, if k is the number of entities in the feature, then it 

is necessary to consider those subsets of size k, namely (:) many subsets. Each of 

these subsets has k! many permutations. Allowing for the proper direction of 
individual geometric entity would increase the consideration to the following number 

of subsets: (~). k! . 2 k • Considering all these subsets would yield a lower bound of 

L (N).k!.2 k > L (N).2 k > 2· L (N)=2 N+1• • 
kSN k kSN k kSN k 

The following engineering design heuristics, based upon domain-specific 
engineering knowledge, will present combinatorial upper bounds which indicate that 
the connectivity algorithm upon large databases will be computationally tractable. 



236 A MATHEMATICAL THEORY OF DESIGN 

For N geometric entities: 

Heuristic1. 
Heuristic2. 

the number of geometric entities per feature « N ; 
the number of features of interest « N ; 

Next, we match each heuristic to a corresponding combinatorial reduction. Let p 
be the number of distinct classes of features of interest (a feature type is 
characterized by the number of geometric entities). Heuristic 2 implies that p « N. 
Let v j be the number of entities for the ilh feature. Then for each i ~ p, V j « N as 

implied by Heuristic 1. Thus, the total number of subsets, 19t1 ' that must be input to 

the preprocessing algorithm is bounded as follows: 

(V+I+_V_) 
Theorem 7.6: Let v = max jSp v j , then 19t1 < N log2 N 

Proof Following the preceding analysis (Theorem 7.5), the total number of 

subsets that must be input to the preprocessing algorithm, for the ilh feature is (~). 

V j! . 2 Vj = N! .vj~2Vj = N! .2Vj < NVj .2Vj < N V .2v • 
vj!(N-vj)! vj!(N-vj)! 

Finally, considering all the distinct classes of features would yield an upper bound of 

19t1 = L N ,vj!.2 Vj < p.Nv .2v <N(v+l) .2 v =N log2 N • ( ) 
(V+I+_v_) 

jSp Vj 

Since the maximum number of entities per feature (Le., v) is relatively very 

(V+I+_v_) 
small relative to N, then 19t1 < N log2 N «2 N . In summary, these heuristics 

imply that the total number of geometric subsets that would need to be input to the 
preprocessing algorithm would be quite acceptable for reasonable computational 
performance. 

7.5.4 COMBINATORIAL ANAL YSIS OF THE FEATURE RECOGNITION 
PROBLEM 

It is the output of the connectivity algorithm, considered over all candidate subsets, 
that serves as input for feature recognition. A critical factor in evaluating the 
performance of the feature recognition module is to assess the combinatorial bound 
upon the number of connected subsets that may be sent to the feature recognition 

module. We note that once a subset is ordered and connected, those 2 k possibilities 
that allow for the reversal of the direction of the geometric entities have already been 



GUIDED HEURISTICS IN ENGINEERING DESIGN 237 

fully considered and merit no further attention. The following additional design 
heuristic, based upon domain-specific engineering knowledge, will present a 
quadratic upper bound upon the number of connected subsets that may be sent to the 
feature recognition module: 

Heuristic3. the features of interests are disjoint, and are sparsely distributed over 
the part. 

Theorem 7.7: Let N denotes the number of geometric entities, and 9t denotes the 

number of subsets that may be sent to the feature recognition module, then 19t1 < 

N 2 • 

Proof Regarding Heuristic 3, the feature recognition module needs only test the 
disjoint sets. The disjoining heuristic implies that an upper bound upon the number 

of disjoint connected sets of size k is NIfc. Since each order list of k geometric 

entities has k possible starting points, it is possible to arbitrarily choose any of the k
many points to determine a particular starting point. Hence the number under 

consideration for any particular feature becomes ~. k = N. Considering all 

features would yield an upper bound of 19t1 < L (~. k) = N 2 . • 
kSN 

In summary, Heuristic 3 implies that the total number of geometric subsets that 
would need to be input to the feature recognition module, consider all features of 
interest, would be a quadratic function of the total number of geometric entities. 
Such a bound is generally quite acceptable for reasonable computational 
performance. 

7.6 SUMMARY 

A naive combinatorial analysis of design activities, generally applicable over all 
design domains, suggests that the combinatorial complexity would be exponential, 
hence intractable within most modern computing environments. Such a theoretical 
mathematical analysis ignores critical domain-specific engineering knowledge. In 
this chapter, it is argued that this theoretical potential for combinatorial explosion 
can be alleviated by combining domain-specific mechanical engineering heuristics 
with a detailed combinatorial analysis. This approach is termed as guided 
heuristics. 

Two examples of such a heuristically guided combinatorial analysis are 
presented for the domain of basic synthesis problems (BSPs) and for the domain of 
feature recognition in 2-D wireframe representations: 

1. the basic synthesis problem (BSP) is defined and shown to be generally 
intractable. Expressions for the size of the set of possible solutions are obtained, 



238 A MATHEMATICAL THEORY OF DESIGN 

under various conditions and engineering design heuristics. Our results are 
essential for developing heuristic strategies to search for optimal and suboptimal 
design solutions. Our main conclusion is that although expressiveness of the 
BSP is necessary to allow for the generation of a wide variety of designs, simply 
increasing the expressiveness of a design problem swamps the designer with 
alternatives. So, any increase in expressiveness must be accompanied by an 
increase in the designer's ability to control the complexity ofthe design space. 

2. The second example of feature recognition presents combinatorial upper bounds, 
based on domain-specific engineering heuristics, which indicate that feature 
recognition upon large 2-D databases will be computationally tractable. 
Although primary attention is given to the combinatorial analysis for wireframe 
feature recognition, the given heuristics are also generally applicable to other 
domains such as assembly features on axially symmetric solid parts. While 
Heuristic 3 on Section 5.3 restricted the focus of the guided combinatorial 
analysis to disjoint features, is would still provide appropriate upper bounds 
when the percentage of interacting features is small. 

In summary, the use of guided combinatorial analysis demonstrates how information 
from the engineering domain and the employment of engineering heuristics can be 
used to reduce a theoretical combinatorial explosion to a computationally tractable 
bound. It is expected that the general technique of augmenting combinatorial 
analysis by domain-specific engineering knowledge may be profitably applied to 
combinatorially intensive engineering domains, such as recognition of solid features, 
assembly planning and robotics. 

APPENDIX A - THE SATISFIABILITY PROBLEM 

The satisfiability (SAT in short) is expressed in terms of the following: 

• A set X = (x 1 ' x 2 , ... , x N ) of Boolean variables. 

• Literal - A variable x or its negation -x. 
• Clause over X - Defined as the disjunction of literals over X, denoted bye. 
• Expression - Defined as a conjunction of clauses, denoted by a collection of 

clauses, E = (e 1, e 2 ' ... , eM)· 

• Satisfying truth assignment for E - A collection E of clauses over X is satisfiable 
iff there exists true assignment for X that simultaneously satisfies all the clauses 
inE. 

Now, SAT can be formulated as: Given a set X of variables and a collection E of 
clauses over X. Is there a satisfying truth assignment for E. 

REFERENCES 

1. Garey, M.R. and Johnson, 0.5., Computers and Intractability: A guide to the Theory of NP-



GUIDED HEURISTICS IN ENGINEERING DESIGN 239 

Completeness. San Francisco:W. H. Freeman and Company, 1979. 
2. Krishnamoorthy, C.S., Shivakumar, H., Rajeev S. and Suresh, S., "A Knowledge-Based Systems 

with Generic Tools for Structural Engineering," Structural Engineering Review. Vol. 5 (1),1993. 
3. Simon, H.A., The Science of the Artificial. Cambridge. MA: MIT Press, 1981. 
4. Cover, T. M. and J. A. Thomas, Elements of Information Theory. New York: Wiley and Sons, 1991. 
5. Das, S. R., D. K. Banerji, and A. K. Chattopadhyay, "On Control Memory Minimization in 

Microprogrammed Digital Computers," IEEE Transactions on Computers, Vol. C-22 (9), pp. 845-
848,1973. 

6. Grasselli, A. and U. Montanari, "On the Minimization of Read-Only Memories in Microprogramed 
Digital Computers," IEEE Transactions on Computers, Vol. C-19 (11), pp. 1111-1114, 1970. 

7. Hayes, J. P., Computer Architecture and OrganiZJltion. New York: McGraw-Hili, 1988. 
8. Ullman, D., T. G. Dietterich, and L. A. Stauffer, "A Model of the Mechanical Design Process Based 

on Empirical Data," AI EDAM, Vol. 2, pp. 33-52,1988. 
9. Rodrigues, W., The Modeling of Design Ideas. New York: McGraw-Hili, 1992. 
10. Peters, T. J. "Mechanical Design Heuristics to Reduce the Combinatorial Complexity for Feature 

Recognition," Research in Engineering Design, 1993. 



CHAPTER 8 

THE MEASUREMENT OF A DESIGN STRUCTURAL 
AND FUNCTIONAL COMPLEXITY 

The complexity of a design process or a design artifact substantially influences their 
performance. When evaluation of terms such as "design complexity" and its "quality" 
is addressed in studies, it is often performed in an ad hoc manner. This chapter 
attempts to remedy this situation by articulating two definitions of design complexity 
(structural complexity versus functional complexity), their associated value 
measures, and the relationships between them. The structural definition states that a 
design complexity is a function of its representation. Defining design complexity in 
the structural way provides quantitative techniques for evaluating vague terms such 
as 'abstraction level', 'design form's size', and 'designing effort'. The functional 
definition states that a design complexity is a function of its probability of 
successfully achieving the required specifications (functional requirements and 
constraints). The proposed measurable metrics provide a proper basis for evaluating 
each step of the design process, and accordingly recommends the direction to follow 
for design modification and enhancement. It also provides a framework for 
comparing competing artifacts (the output of a design process). Detailed examples of 
complexity valuation using the measures are described. The chapter concludes by 
discussing the scope of the measures. 

B.1 INTRODUCTION 

8.1.1 COMPLEXITY JUDGMENT OF ARTIFACTS AND DESIGN 
PROCESSES 

The study of design complexity is motivated by several reasons: (1) design 
complexity valuation method can support the evaluation of artifacts developed in 
research or practice, and the determination of their relative merit. This evaluation is 
essential for providing feedback on research progress, such as when developing 
products by prototyping; (2) design complexity valuation methods can help identify 
good information to be used by designers or for incorporation in computer aided 
design systems; and (3) when an intelligent computer aided design system has several 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



242 A MATHEMATICAL THEORY OF DESIGN 

competing modules (e.g. production rules) for solving a design task, design 
complexity valuation methods can identify which module to invoke for achieving the 
task. 

In order to maintain the focus on the methodological aspects of complexity 
evaluation, the discussion in this chapter will refer to design complexity without 
reference to human design. By this we limit the discussion to the valuation of 
complexity embedded in intelligent computer aided design systems. 

Artifact Complexity 

Artifact's complexity may be said to be the exact converse of simplicity. It is 
generally acknowledged that the lower the artifact's complexity, ipso facto, the 
greater the artifact's simplicity, whereas concentration on simplicity leads to 
enhanced artifact's reliability and quality at lowest cost [1, 2, 3]. Simplicity is a 
concept used by designers and aestheticians for many centuries and remains a 
principle of considerable concern to them. By applying the word 'simple' to a work 
of art, the designer is not suggesting that the work is deficient. Simple means that the 
design is being reduced to the fewest possible lines, shapes and subparts, without 
reducing its functional requirements or violating its specifications. Thus, simple 
design will reduce the assembly time and product cost, as well as increase reliability 
by many orders of magnitude. The simplicity principle implies that if a design 
satisfies more than the minimum number and measure of functional requirements 
originally imposed, the part or process may be over-designed. Moreover, the 
elimination of functional requirements originally imposed will cause an incomplete 
design. In other words, "good" designs must be complete, yet not burdened with 
nonessential details. Carrol and Bellinger [1] remark that the superior design is one 
which encompasses the necessary operating and protective functions with the 
absolute minimum number of components and relations. Suh's axiomatic theory of 
design [4] also provides overwhelming evidence through numerous principles that 
support the 'simplicity' contention (e.g. "minimize the number and complexity of part 
surfaces for greater efficiency"). Pugh [5] remarks that the theme of simplicity may 
have emerged from endeavors to avoid discontinuities in systems. A discontinuity 
may be a bend or fork in the road, or a constriction in a pipe. Mahmoud and Pugh [6] 
offer a costing method for turned components produced by a variety of machines. 
Their costing equation is based on the number of discontinuities in the system, 
subsystem or component. Thus, it may be inferred that the more discontinuities you 
have in a system, subsystem or component, the more unreliable it will tend to be. 
Moreover, the number of discontinuities effects the cost due to excessive processing 
operations, which also has a significant impact on quality and reliability. 

In software engineering, artifact descriptions range from formal languages (e.g. 
symbolic programming and hardware design/description languages) to very informal 
and visual descriptions (such as functional block diagramming and flow-diagrams). 
The increasing complexity of computer programs has increased the need for 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 243 

objective measurements of software' complexity. The major ways of measuring 
software complexity in quantitative terms fit into four categories: (1) structured
based measures that look to the pattern of the control flow in the software [16]; (2) 
feature-based measures that look to a selection of characteristics visible from the 
documentation of either the design or the source code [17]; (3) function-based 
measures that look to the pattern of input to output data correspondences [18]; and 
(4) token-based measures that look to the manner of expression of the software [15]. 
The structural complexity measures presented in Section 8.2 are based on the token
based methodology as introduced in [15]. 

Design Process Complexity 

The design process was defined in Chapter 6 as an iterative scheme of decomposition 
and mapping between the functional and artifact domains. This iterative scheme at 
each level of decomposition and mapping is not unique. The evolution at each level 
depends on the imagination and experience of the designer, and there is no guarantee 
whatsoever that the same process would unfold. Thus, it is desirable to develop a 
systematic and generalizable framework for design process complexity valuation. 
Design process complexity valuation measures can aid the designer in evaluation and 
comparing decomposition and mapping alternatives at each level of the design 
process hierarchy. For example, design complexity is addressed in Suh's axiomatic 
design [4] by the Independence axiom: in an acceptable design, the mapping between 
the functional requirements and design parameters is such that each functional 
requirement can be satisfied without affecting any other functional requirements. At 
each level of decomposition and mapping, the Independence axiom is used to 
distinguish between acceptable and unacceptable solutions. The simplest type of 
design process that satisfies the Independence axiom at each level of the design 
process hierarchy is an uncoupled design process. In an uncoupled design process, 
each functional requirements can be changed without affecting any other functional 
requirement, which means that each functional requirement is ultimately controlled 
by a unique design parameter. Coupled design processes are considered highly 
complex and the designer should consider other mapping alternatives. 

8.1.2 TWO DEFINITIONS OF DESIGN COMPLEXITY 

Before discussing how design complexity may be measured, we articulate two 
definitions of design complexity. By "design complexity" we mean either artifact 
complexity or design process complexity. Both definitions assume that the study of 
design complexity is related to the valuation of information embedded in the design 
as captured, for example, by intelligent computer aided design systems. The 
valuation of information depends on what we define as information. The following 
definitions of design complexity dictate the type of valuation measures that can be 
applied: 



244 A MA THEM A TICAL THEORY OF DESIGN 

• Structural Design Complexity - design complexity is a function of the design's 
information content. Information is whatever is represented. The design's 
representation may include facts, causal relations, mathematical models, etc. 

Defining information in the structural way states that the "quantity" of 
information may be measured directly based on its internal structure. Design 
complexity is therefore a static entity. 

The structural definition has several appealing properties: (1) it facilitates easy 
valuation of design complexity performed by simply inspecting the declarative 
evolutionary structure of design (with or without considering the inference 
mechanisms). This is much cheaper than executing behavior assessment experiments; 
(2) Two "amounts" of information (e.g. facts, rules, and laws included in the 
designer's knowledge body) could be added to yield a larger knowledge body, or 
knowledge could be transferred between intelligent computer aided design systems. 

There are some limitations with the structural definition: (l) It detaches design 
from its ultimate purpose of satisfying initial specifications. Therefore, the purpose of 
design is not tested and, at best, can only be hypothesized from the structural 
measure; (2) it detaches information from its method of acquisition. Consequently, 
when information acquisition terminates, some meaning may be unrecoverable; and 
(3) it cannot explain actions that are not logical reasoning, inconsistencies, and 
psychological phenomena. 

Applying the structural definition to evaluating artifact complexity means that if 
two artifacts (as captured, for example, by computer aided design databases) satisfy 
the required specifications, the best artifact (in terms of design complexity) is the one 
with the minimum information content. Thus, the complexity of an artifact may be 
said to be a function of its information content. 

Defining design process complexity in the structural way means that if two 
design processes successfully achieve the required specifications, the best design 
process (in terms of design complexity) is the one with the minimum total 
information content. Thus, the complexity of a design process may be said to be a 
function of its information content at each level of the design process hierarchy. 

There is also a definition of information as a dynamic entity: 

• Functional Design Complexity - defining information in the functional way 
states that "information" is a distinct notion, independent of representation. 
Representations exist at the symbol level and not at the information level. In addition, 
information serves as the specification of what a symbol structure should be able to 
do. Therefore, information has a purpose, and is what a design has that allows it to 
attain goals. 

Defining design process complexity in the functional way means that if a 
designer has information that one of its decisions will lead to one of its goals, than 
the designer will select that decision (the "principle of rationality"). Therefore, 
information manifest and should be evaluated functionally. This means that 
information can be described in terms of its operation to satisfy the goals of the 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 245 

system. Alternatively, two design processes may be compared based on their output. 
The best design process (in terms of design complexity) is the one that yields an 
artifact in which its probability of successfully achieving the required specifications 
is maximized. 

A similar "principle of rationality" is applied when evaluating artifact 
complexity in the functional way. Often, the behavior of an artifact is non
deterministic. Functional requirements are therefore satisfied only to a degree. Thus, 
a design complexity may be said to be a function of its probability of successfully 
achieving the required specifications. In all cases, the best artifact is the one that 
maximizes the probability of successfully achieving the required specifications. 

8.1.3 ORGANIZA TION OF THE CHAPTER 

The rest of the chapter is organized as follows. Section 8.2 develops structural design 
complexity measures in view of the evolutionary design process developed in 
Chapter 6. First, some basic metrics are introduced. Second, we use the basic metrics 
to derive algebraic formulas for the information content of design and related 
structural complexity measures. Section 8.3 shows that the proposed complexity 
measures also lead to the ability to rapidly estimate the approximate total assembly 
time of a product, assembly efficiency, and product defect rates. Section 8.4 explores 
the relationships between the theoretical approach used to derive the structural 
complexity measures and thermodynamics. Section 8.5 presents a functional design 
complexity. Section 8.6 concludes the chapter. 

B.2 STRUCTURAL DESIGN COMPLEXITY MEASURES 

8.2.1 DESCRIPTION OF THE VALUATION MEASURES 

In this section, we develop quantitative metrics for measuring structural design 
complexity. The proposed complexity measures can be used by the designer at any 
stage of the design process, from the conceptual design to the finality of detailed 
design. Following Chapter 6, the term "design" is defined as an evolutionary process. 
Given a description of a desired function and constraints, called specifications, the 
designer (or intelligent computer aided design system) provides a representation of 
an artifact that produces the function and satisfies the constraints. This 
representation, called an artifact description or artifact structure, was identified in 
Chapter 4 as an algebraic structure. By adaptively modifying the design form (the 
conjunction of tentative artifact and postulated specifications), from one step to the 
next, the designer arrives at a design solution. A design form at any particular level of 
abstraction (synthesis stage) is a description of an organized, mutually consistent 
collection of first-order and second-order constraints which a physically implemented 
artifact must satisfy (see Figure 8.1). The design form at a particular level of 
abstraction represents constraints to be met by the next lower level design. 
Furthermore, a higher level design may be formulated in quite fuzzy and imprecise 



246 A MATHEMATICAL THEORY OF DESIGN 

terms. At some later step of the design process, this same design form will have been 
defined in terms of more precise, more primitive constraints. [19] 

Following the foregoing discussion, we define design process complexity to be a 
function of the "quantities" of information content (also termed "size") embedded in 
each level of the design process (see Figure 8.1). The artifact complexity in each 
level of the design process may be evaluated by applying the complexity measures to 
the tentative artifact part. The same approach holds for the successful artifact realized 
in the lowest level in the design process hierarchy (Levell in Figure 8.1), where the 
artifact is described in detail. The information content has yet to be modeled. 
Defining information content in the structural way means that the information content 
should be a function of the description or representation of the design form in some 
symbolic medium, e.g. diagrams, computer languages, or first-order logic. Therefore, 
it may be practical to consider the design form as a computer program, i.e. an ordered 
string of operators and operands. An operand is a variable or a constant and an 
operator is an entity that can alter either the value of an operand or the order in which 
it is altered. For example, the artifact representation model presented in Chapter 4 is 
similar to the machine language of the computer, in which each instruction contains 
an operation code (a relation) in one segment and an operand or the address of an 
operand (an assignment) in the remaining section of the instruction. Henceforth we 
will use 'operators' and 'operands' as generic terms which include 'relations' and 
'modules' as a special case. No other category of entities need be present. 

We expect the information content of the tentative design form to vary in the 
course of the design process. Other "quantities" that vary in the course of the design 
process are the abstraction level, as well as the designer effort at arriving at the 
tentative design form. The aims of this section are twofold (1) to provide quantitative 
techniques for describing and evaluating such qualitative terms as 'information 
content,' 'abstraction level.' and 'designing effort'; and (2) to introduce the time 
complexity measure, which may be used to rapidly estimate the approximate total 
assembly time of a product, assembly efficiency, and product defect rates. 

Abstraction level 

Higher 

Lower 

Design at Level i 
(Specifications) 

< 8 0 > 

Design at Level i-I 
<Mi_I/\Si_l> 

Design at Level I 
(Detailed Artifact) 
<Mk/\8 k > 

Information 
Content 

Lower 

Designing 
Effort 

Higher 

Figure 8.1 Evolutionary Design based on Abstraction Levels 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 247 

8.2.2 BASIC MEASURES 

Given a description of the design form in some symbolic medium (e.g. first-order 
logic) at a particular abstraction level, it is possible to identify all the operands and 
operators that the artifact representation employs (supplemented with such 
distinguished operators as "-", ",,". "v". "( )". etc.). Similarly, it is also possible to 
identify all the operators and operands that constitute the specification part. Let the 
finite set of operators and operands (the alphabet) be denoted by n. From these 
simple definitions. it is possible to obtain quantitative measures for many useful 
properties of design processes. 

Since a design form consists of an ordered string of operators and operands, and 
nothing else. it can be characterized by basic measures that are capable of being 
counted or measured: 

p = number of unique or distinct operators appearing in the design form. 

N = number of unique or distinct basic operands appearing in the design form. 

fl,j = number of occurrences of the jth most frequently occurring operator, where 

j=1,2, ... , p. 

f20j = number of occurrences of the jth most frequently used operand. where 
j=I,2 .... ,N. 

N, = the total number of occurrences of the operators in the design form, N, = 
P 
Lit· . 1 ,J 

J= 

N2 = the total number of occurrences of the operands in the design form, N2 = 
P 
~ h,j 

J=1 

The size of the alphabet is defined to be: 

T\=p+N (1) 

and the length of the design form to be: 

(2) 

Example 8.1: In the final stage of design of a serial binary adder unit, the design 
process terminates with the following successful electronic circuit (depicted in Figure 
8.2). To characterize the basic measures associated with the electronic circuit, a 



248 A MATHEMATICAL THEORY OF DESIGN 

description of the electronic circuit in some symbolic medium needs to be 
considered. Here. we use the following representation in first-order predicate 
calculus: 

Thus. the following basic measures (constituting the alphabet) are identified: (1) 
signals are classified as operands; (2) logical devices are classified as operators; and 
(3) the distinguished symbols ",," and "( )" are classified as operators. The counts of 
operators and operands are summarized in Tables 8.1 and 8.2. From the tables we see 
that: 

(p, N\) = (4, 12) (N, N2) = (7, 11) 

c 

B 

AND2 
OR1 

52 

81 
A 

AND1 

53 

OR2 

Output 

Figure 8.2 A Switching Circuit 

Table 8.1 Operators related to the Switching Circuit in Figure 8.2 

Relation Count 
( ) 4 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 249 

/\ 3 
AND 2 
OR 2 

Table 8.2 Operands related to the Switching Circuit in Figure 8.2 

Module Count 
A 1 
B 2 
C 2 
S) 2 
S2 2 
S3 2 

Output 1 
N2= 12 

8.2.3 COMPOSITE MEASURES 

Based on the basic measures presented above, we develop in the remaining section 
three measures that may be used to express the complexity (the converse of 
simplicity) inherent in the design process. The proposed measures reflect such 
qualitative terms as information content, abstraction level, and designing effort. 

Information Content 

As mentioned earlier, the design process of any complex system proceeds on a stage
by-stage basis, and the description at each stage denotes the design form (i.e. a pair 
of tentative <artifact, specifications» of the system at a particular level of 
abstraction. Note that such notions as conceptual (or preliminary) design and 
detailed design are subsumed within the more uniform notion of design at different 
abstraction levels. Note also that the nature and number of abstraction levels are 
entirely dependent on the designer and the type of system being designed. Given a 
pair of adjacent levels i, i+ 1 (where level i+ 1 is more abstract than level i), one may 
regard the design at level i as an implementation of the design at level i+ 1. The level 
i design in turn becomes a specification that is implemented by the design at level i-I, 
and so on [19]. 

An important characteristic of a design form at a particular abstraction level is its 
size. Whenever a given design is translated from one abstraction level to another, its 
size changes (see Figure 8.1). To study such changes in a quantitative way requires 
that the size be measurable. 



250 A MATHEMATICAL THEORY OF DESIGN 

A suitable metric for the size of any design form, called the structural 
information content H, can be defined as: 

(3) 

The quantitative concept of the information content of a design form can be 
interpreted as follows: since the number of different entities in any design form is 
given by its alphabet, it follows that the number of bits required to provide a unique 
pointer (designator) for each entity must be given by log2 Tl. Using this number of bits 
to specify each item in the string of length L gives the information content. Thus, the 
information content can be interpreted as the fewest number of binary bits with which 
it could be represented. Later, when defining the designing effort, we will provide a 
more in-depth analysis of the design information content. 

Information Content and Entropy 

We now consider the relationship between the information content of a design form 
and its entropy. Following the seminal work by Shannon [7] and Wiener [8], 
information is defined as a reduction in uncertainty. The uncertainty preceding the 
occurrence of an event is usually termed entropy. Information theory provides a way 
of quantifying the information content received, so that the quantity of information 
received is equal to the reduction in entropy. 

Let X), X 2, .•• , XL be independent, identically distributed (i.i.d.) discrete 
random variables drawn according to the probability mass function p(x) = 
)(nl = X, where each variable Xi is either an operator or an operand over the 

alphabet n (the finite set of operators and operands). The probability of a sequence 

(x), X2, ••. , XdE nL is XnlL = XL. According to information theory, the 

information content received from a particular design form with length L is equal to 
the joint entropy H(X!> X 2, ••• , Xd. The joint entropy of a sequence of discrete 
random variables (X), X 2, ••• , Xd is defined as 

H(X),X2, ••• ,Xd=- L P(x\,x2,···,xL)log2P(x\,x2,···,xL) 
XEnL 

Since the probability of a sequence (x), X2, ••. , XdE nL is XnlL = XL' it is easy 

to see that the information content associated with the particular design form is H(X), 
X2, ••• , Xd = L log2 Tl, in accordance with the foregoing definition. 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 251 

Minimal Information Content 

In translating from the higher abstract design form to the lower abstract level, we use 
a greater number of simpler operators and operands. 

Expressing the design form, even in the highest abstraction level, would still 
require operators and operands. The highest (most compact) design level is 
formulated in ambiguous or imprecise terms. Each operator in the most compact 
version of the design form represents a distinct functional requirement that the 
required design solution is expected to satisfy. The number of operands in the most 
compact design form would depend upon the design problem itself, and would equal 
to the number of conceptually unique input and output operands of each functional 
requirement. 

Denoting the corresponding parameters in a design's most compact 
representation by asterisks, it follows from Equation 3 that the minimal (also initial) 
information content is given by: 

(4) 

Note that when the initial specification includes a single functional requirement 
aO, the design's most compact representation may be given by a°(i .. i2, ... , iN")' 

where i .. i2, ••. , iN" denote the unique input and output operands. Substituting 

* * * .. ° . L =11 and p = 2 (considermg the operators 'a ' and '( ),), we obtam: 

* * * H = (2+ N )log2(2+ N ) (5) 

Example 8.2: Let the initial design form (Step 1), in the binary-adder design 
process, be the following specification SUM(X, Y, carry-in, sum) 1\ CARRY (X, Y, 
carry-in, carry-out). Hence, the initial design form consists of four operators (,SUM,' 
'CARRY,' '1\,' and '( )') and five operands ('X', 'Y', 'carry-in', 'carry-out' and 'sum'), 

* . thus: H = 13 log29 = 41.2 bits. 

Equation (5) may also be applied to evaluate the information content associated 
with the artifact's most compact representation. In this case, the artifact's most 
compact representation requires exactly two operators: a single operator which 
represents the primary function that the artifact is expected to perform, and the 
unique operator '( )'. It also requires a list of unique input and output operands. 

Example 8.3: The artifact's most compact representation associated with the 
electronic circuit depicted in Figure 8.2 is: BIN-ADD(X, Y, carry-in, sum, carry-out). 
This representation includes the operator 'BIN-ADD' which represents the primary 
goal, the unique operator '( ),' and five operands ('X,' 'Y,' 'carry-in,' 'carry-out' and 
'sum'). In a lower-level form, this same design would require more operators and 

* operands. Using the foregoing example, H = 7 log27 = 19.65 bits. 



252 A MATHEMATICAL THEORY OF DESIGN 

Since the minimal information content evaluates the initial design form, it may 
also be termed as the initial information content. Consequently, the minimal 

* information content of a design is a single-valued function of N (the number of 
conceptually unique input or output operands). The minimal information content is 
the minimum possible information content associated with any given design problem 
in the course of the design process. It represents an absolute value against which 
other information contents, which are evaluated in subsequent stages, can be 
compared. Thus, it may be considered to be a general measure of the content of any 

* design problem. Furthermore, it follows that H , unlike H, must be completely 
independent of the technology (e.g. methodology, design paradigm or computerized 
tools) or the abstraction level in which the detailed artifact is expressed. 

Abstraction Level 

As we could see in Figure 8.1, the level of abstraction has gone down as the 
information content has gone up. The information content of a given design form (at 
a particular abstraction level) must inversely reflect the level at which it is 
implemented, and the ratio of the information contents of two design forms (for the 
same design problem) must give the inverse of the ratio of the levels at which they 
have been implemented. This leads to the definition of abstraction level A as: 

(6) 

* In the initial synthesis stage, the design form H = H; therefore, A = 1 (the highest 
level). In a lower abstraction level, the design form would have more operators and 

* . operands. Therefore, as expected, A = H IH IS less than 1 at the lower level. 
Furthermore, the product of information content times level will be completely 

* abstraction level independent, because H = A ·H. 

Example 8.4: Let us compute the artifact abstraction level associated with the 
electronic circuit depicted in Figure 8.2. As shown in Example 8.1, the basic 
measures as summarized in Tables 8.1 and 8.2 are (p, N.) = (4, 12), (N, N2) = (7, 
11). Thus the information content associated with the electrical circuit is: H = (N. + 
N2)log2(p + N) = 23 [Og2(11) = 79.6 bits. The minimal information content 

* associated with the electrical circuit (as shown in Example 8.3) is: H = 7 log27 = 
19.65 bits. Therefore, the abstraction level as defined in (6) is: 19.6~9.6 '" 0.25. 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 253 

The Designing Effort and Time 

The designing effort provides a measure for the "mental" activity required to reduce 
a design problem (expressed by means of initial goals) to an actual abstraction level 
(see Figure 8.1). The foregoing metrics and concepts provide a useful frame of 
reference for its quantification. The construction of a design form consists of the 
judicious selection of L entities (operators and operands) from a list of 11 entities. If a 
binary search method is used to select entities from the alphabet of size 11, then on the 
average the total number of mental comparisons needed to construct a design form, is 
the same as the previously defined information content H = L log211. Expressing the 
number of "elementary mental discriminations" [9] required to make one average 

1 
mental comparison as A' gives the effort E in units of elementary mental 

discriminations: 

1 
E=-·H 

A 
(7) 

Note that the effort complexity measure E is a linear function of the information 

content H (with the constant coefficient..!..). E can be also used to estimate the 
A 

amount of effort required by an experienced designer to understand or comprehend 
the design form. 

Equation 7 can be converted directly into units of time, merely by knowing the 
rate, S, at which the brain makes elementary mental discriminations. Stroud [9], a 
psychologist, defined a "moment" as the time required by the human brain to perform 
the most elementary discrimination. He reported that these "moments" occurred at a 
nearly constant rate that varies between 5 and 20 mental discriminations per second, 
depending on the individual [9]. While Stroud was seeking the internal processing 
rate of the brain, as distinct from the input/output rate, it is reassuring to note that his 
figures include within their range the number of frames per second which a motion 
picture must have to appear as a continuous picture rather than as single frames. 

Provided the designer is concentrating, experienced, and has a complete 
specification of the design problem, the relation between time and effort is expected 
to be: 

1 H2 
T=(-)·H=-. 

S·A H S 
(8) 

Note that the time complexity measure T is a linear function of the information 

content H (with the constant coefficient _1_). 
S·A 

As yet, we have not conducted protocol studies and careful experimental testing 
on how long it takes engineers or intelligent computer aided design systems to 



254 A MATHEMATICAL THEORY OF DESIGN 

synthesize an artifact; nevertheless, the timing equation is expected to show high 
correlation with actual designing time. The time T may also be interpreted as the time 
used to comprehend a design form (by reading it). 

In summary, the application of effort and timing equations to design processes is 
based on the following assumptions: 

• The designer is experienced and concentrating. 
• A complete statement of the design problem (precise goals or design form) is 

available. 
• The designer is pursuing only a single alternative, rather than considering 

multiple alternatives. 

Note that these assumptions are embodied in the information processing postulates in 
psychology [10]. Moreover, the third assumption was verified previously by Ullman 
et al [11] by conducting protocol studies on how engineers design. 

Example 8.5 (Quantitative Analysis of A Design Process): As mentioned earlier, 
the measurable metrics developed in this chapter may be estimated for all design 
forms that are encountered in the course of the design process. Thus, in working the 
design process, these measures will always be visible and can be continuously 
monitored. We shall demonstrate how this approach maps onto the evolutionary 
design of the mechanical fasteners presented in Chapter 6 (Table 6.1). We shall 
provide a self contained description of the evolutionary structure of the complexity 
measures underlying the design process. The initial design form (artifact and 
specification parts) and its complexity measures are presented in Table 8.3. Table 8.4 
depicts the measures for the whole design process. 

Table 8.3 Measures for the Initial Design Form of the Fastener Design Presented in 
Chapter 6 

Design Form 0 Measures 

HIGH-STRENGTH A * * * P =1 N =3 11 =4 
HIGH-RETRACTABILITY A * MEDIUM-PRECISION N,=2 N 2 =3 L =5 

* H = 10 H= 10 A = 1 
E= 10 T= 0.55 (S=18) 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 255 

Table 8.4 Complexity Measures for the Fastener Design Process Presented in 
Chapter 6 

p N n Nl N2 L H* H A E 
1 1 3 4 2 3 5 10 10 1 10 
2 1 4 5 3 4 7 10 16.25 0.61 26.4 
3 1 5 6 4 5 9 10 23.26 0.42 54.1 
4 1 5 6 4 5 9 10 23.26 0.42 54.1 
5 1 5 6 4 5 9 10 23.26 0.42 54.1 
6 1 6 7 5 6 11 10 30.88 0.32 95.35 
7 1 6 7 5 6 11 10 30.88 0.32 95.35 
8 1 4 5 3 4 7 10 16.25 0.61 26.24 
9 1 5 6 4 5 9 10 23.26 0.42 54.10 

8.3 EVALUATING THE TOTAL ASSEMBL Y TIME OF A 
PRODUCT 

8.3.1 TOTAL ASSEMBLY TIME AND ASSEMBLY TIME MEASURE 

T 
0.55 
1.46 
3.00 
3.00 
3.00 
5.29 
5.29 
1.46 
3.00 

The complexity of assembly of a product can be gauged by the time required to 
perform the assembly. In this section, we show that the time complexity measure T 
may be used to rapidly estimate the approximate total assembly time of a product. 
This provides a powerful analytical tool that is useful during concept development. 

Following the structural definition of complexity, the complexity of assembly of 
a product is a function of its representation. In the sequel, it is suggested to use a 
representation that embeds the information associated with the assembly interfaces. 
We focus on the assembly interfaces for the following reason. As the number of 
mating features in an interface increases, there are additional restrictions on the 
orientation of the parts during assembly. As a result, the assembly time increases as 
the complexity of the interface grows. For example, a part with only one correct 
alignment orientation must have more interface dimensions and a longer assembly 
time than a simple cylinder that can be inserted in either axial direction into a hole. 

Based on the foregoing assumption, we use the following representation in first
order predicate calculus: 

INTERFACE(mj ,mj) 
k-I k 

where the operands mj denote the parts of the assembly, and the operator 
} 

'INTERFACE' represents the liaisons between two separated parts. The information 
content H, associated with this representation, can then be computed. The most 
compact representation associated with the product assembly may be given as 



256 A MATHEMATICAL THEORY OF DESIGN 

follows: 

* where mj denote the parts of the assembly. The minimal information content H can 

then be computed. Finally, the approximate total assembly time of a product as given 
2 

by (8) is: T = H* ' where S varies between 5 and 20 (we often use S = 18). 
HS 

In Chapter 9, we inspect through an extensive statistical analysis the correlation 
between the time complexity measure T and the estimates of product assembly times 
that were derived by Boothroyd and Dewhurst in their Design for Assembly (DFA) 
structured methodology [12]. The correlation between the time complexity measure T 
and the Boothroyd and Dewhurst's estimates is found to be very close to ±1 over a 
wide diversity of experiments. This demonstrates that the time complexity measure T 
may be used as a powerful predictive tool. By simply determining the number of 
interfaces and number of parts in each product concept, the approximate total 
assembly time can be determined with a minimum amount of analysis and without 
any dependence on a database. Such a tool could be used in the earliest stages of 
concept development to estimate the approximate total assembly times, allowing 
comparison of competing concepts or stimulating redesign at the time when it is 
easiest to make design changes. 

The time complexity measure T reveals two fundamental factors that can 
contribute to assembly time: (1) the number of assembly operations (a subset of the 
set of assembly interfaces); and (2) the number of parts (a subset of the set of 
assembly operations). While the role of part count has long been recognized as the 
measure of design effectiveness [13], the method described here provides a critical 
missing link that relates the product assembly time to the number of operations. 
Without these relationships, it is impossible to accurately compare concepts that 
differ in the number of parts and operations. 

Example 8.6 (Time Complexity Measure of A Drip Cleaner): Figure 8.3 presents 
a 3-D drawing of a drip cleaner, Figure 8,4 provides schematic 2-D drawings and 
individual names for each part of the drip cleaner, and Figure 8.5 presents the 3-D 
drawings and individual names for each part. Determining the 'INTERFACE' 
liaisons between two separated parts yields the following representation of the 
assembly: 

INTERFACE(Base, Nozzle) 1\ INTERFACE(Base, Diaphragm) 1\ 

INTERFACE(Base, Lock-Ring) 1\ INTERFACE(Base, Membrane) 1\ 

INTERFACE(Base, Cap) 1\ INTERFACE(Base, Tube) 1\ INTERFACE(Base, 
Press-Ring) 1\ INTERFACE(Lock-Ring, Diaphragm) 1\ INTERFACE(Membrane, 
Cap) 

For this design form, the measurable metrics and information content are computed 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 257 

as: p = 3; N = 8; L = 44; and H = 152.21. 

* To calculate H , we consider the most compact (highest level) representation of 
the drip cleaner: 

INTERFACE(Base, Nozzle, Diaphragm, Lock-Ring, Cap, Tube, Press-Ring, 
Membrane) 

For this design form, the measurable metrics and minimal information content are 

* * * computed as: p = 2; N = 8; and H = 33.21. Finally, the abstraction level, effort, 
and time complexity measure are respectively given by: A = 0.218; E = 698.21; and 
T= 38.79 seconds. 

Figure 8.3 3-D Drawing of Drip-Cleaner 

i I 
I 

jj I i 
tl i 

I 

~/l i 

I z 

~\-! 
:;; I 
en i 
w i g: i 

I 
i 
i 
i 
i 

-tl ~ 
~ 

w 
CD 

~ 

'" w 

-.-b ~ 
en 
c:li 

~ 

Figure 8.4 Schematic 2-D Drawings for Components of Drip-Cleaner 



258 

PRESS-RING 

~ 

LOCK-RING 

~ 

NOZZLE 

g 

-DIAPHRAGM 

0 

TUBE 

A MATHEMATICAL THEORY OF DESIGN 

MEMBRANE 

C) 
CAP 

BASE 

Figure 8.5 Schematic 3-D Drawings for Components of Drip-Cleaner 

Example 8.7 (Time Complexity Measure of A Unijunction Transistor 
Metronome): The layout of the present assembly is given by Figure 8.6 [14]. The 
observed assembly time is given by T = 225 seconds. Determining the 
'INTERFACE' liaisons between two separated parts yields the following 
representation of the assembly: 

INTERFACE(A, B) /\ INTERFACE(A, C) /\ INTERFACE(B, D) /\ INTERFACE(C, 
G) /\ INTERFACE(C, H) /\ INTERFACE(D, E) /\ INTERFACE(D, F) /\ 
INTERFACE(F, Q) /\ INTERFACE(H, Q) /\ INTERFACE(Q, M) /\ 
INTERFACE(Q, N) /\ INTERFACE(M, N) /\ INTERFACE(M, 0) /\ 
INTERFACE(N, 0) /\ INTERFACE(O, P) /\ INTERFACE(L, M) /\ 
INTERFACE(O, L) /\ INTERFACE(K, P) /\ INTERFACE(K, L) /\ INTERFACE(K, 
J) /\ INTERFACE(J, L) /\ INTERFACE(I, Q) /\ INTERFACE(I, E) /\ 
INTERFACE(I, G) /\ INTERFACE(I, K) /\ INTERFACE(I, P) 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 259 

12·Kn,112W resistor 
20-Kn, 1500, 220Kn, 1/4W resistors 
15O-Kn, log taper potentiometer 
Signal diode 
SPSTswitch 
Capacitor, 25V, 100).1f 
Capacitor, 25V, 10Jlf 
Unijunction transistor, 2N2160 
Speaker, 3.m, 2W 
Ground 

Finishing 

P 
1500 

Ra 

B2 2N~~60 
Unijunction 

BJ 

-....--+--___ ~----lk ~speaker 

INI692·· 
(in four places) 

Parts List 
aty Unit Extended Remarks 

------p~-------------2 0.12 0.24 My 
3 0.13 0.39 My 
1 1.02 1.02 MalloryU42 
4 0.49 1.96 Newark 

0.66 0.66 Cutler·Hammer 7580K4 
0.81 0.81 Comel~Dubilier Electrolytic BRl00-25 
0.60 0.60 Comell·Dubilier Electrolytic BRI0-25 
1.49 1.49 Allied 
1.85 1.85 auam30A05 

Hours Per 100 Rate Per Hour ' 

18.00 $4.60 
Machine shop 7.00 5.00 
Assembly 6.25 5.00 
Inspection 2.80 6.20 

Figure 8.6 Unijunction transistor metronome (Reproduced from [14]) 

For this design form, the measurable metrics and information content are computed 



260 A MATHEMATICAL THEORY OF DESIGN 

as: p = 3; N = 7; L = 129; and H = 428.53. 

* To calculate H , we consider the most compact (highest level) representation of 
the unijunction transistor metronome: 

INTERFACE(A, B, C, ... , Q) 

For this design form, the measurable metrics and minimal information content are 

* * * computed as: p = 2; N = 17; and H = 80.71. Finally, the abstraction level, effort, 
and time complexity measure are respectively given by: A = 0.189; E = 2267.4; and 
T = 126 seconds. 

Example 8.8 (Time Complexity Measure of an Electrical Receptacle): The layout 
of the present assembly is given by Fig. 8.7, with a detailed description of its 
elements and a sketch of the parts involved. The time study observation as given by 
[14] shows that the normal cycle time (where the observed time is adjusted to a 
normal performance time) is found to be T = 0.516 minutes (31 seconds). 

Let us now derive the time complexity measure T. The assembly representation 
is given as follows: 

INTERFACE(Mount-ear, Back-plate) 1\ INTERFACE(ContactJ, Back-plate) 1\ 

INTERFACE(Contact2, Back-plate) 1\ INTERFACE(Face-plate, Back-plate) 1\ 

INTERFACE(Face-plate, Contact}) 1\ INTERFACE(Face-plate, Contact2) 1\ 

INTERFACE(ScrewJ, Face-plate) 1\ INTERFACE(Screw2, Face-plate) 1\ 

INTERFACE(ScrewJ, Back-plate) 1\ INTERFACE(Screw2, Back-plate) 

For this design form. the measurable metrics and information content are computed 
as: p = 3; N = 7; L = 49; and H = 162.8. 

* To calculate H , we consider the most compact (highest level) representation of 
the Electrical Receptacle: 

INTERFACE(Mount-ear, Back-plate, Contact}, Contact2, Face-plate, Screw}, 
Screw2) 

For this design form, the measurable metrics and minimal information content are 

computed as: p * = 2; N * = 7; and H* = 28.53. Finally, the abstraction level, effort, 
and time complexity measure are respectively given by: A = 0.175; E = 930.28; and 
T= 51.7 seconds. 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 261 

Figure 8.7 Detailed description of elements for the electrical receptacle 
(Reproduced from [14)) 

8.3.2 ASSEMBL Y DEFECT RATES AND ASSEMBL Y TIME MEASURE 

Even when parts satisfy defined tolerances and requirements, defects can occur 
during the assembly process. One source of assembly defects is interference between 
mating parts. An evaluation of several simple assemblies demonstrated that this will 
lead to an increased probability of assembly interference due to variations in 
dimensions, even for parts toleranced by the best current methods. Thus, as 
previously mentioned, the assembly time increases as the complexity of the interface 



262 A MATHEMATICAL THEORY OF DESIGN 

grows. 
Assembly errors, such as installing a part in an incorrect position or orientation 

are other sources of assembly defects, which can occur during assembly even in the 
case of perfect parts and minimum complexity interfaces (e.g. a part may be omitted). 
For example, misalignment during insertion can damage mating parts that are 
otherwise functionally adequate. As the difficulty of the task increases, the 
probability of an assembly error is also likely to increase for the same level of care in 
the operation. Each increase in assembly time can be related to an increase in the 
difficulty of the assembly operation. Thus, the probability of an assembly error 
should also be a function of the assembly operation time. An analysis of eight 
Motorola products reflecting tens of thousands of assembly operations supported the 
assumption that defects would increase with assembly operation time. Fifty 
combinations comparing defect rates to product characteristics, such as total 
assembly time or number of assembly operations, were examined. Of all the 
combinations, the average defect per operation versus the average assembly time per 
operation showed the strongest linear correlation (correlation coefficient r = 0.94). 

The finding that defects would increase with totaL assembly time, combined with 
the potential of applying the time complexity measure T to rapidly estimate the 
approximate total assembly time of a product (see Chapter 9), provides a method of 
rapidly estimating product defect rates. 

8.3.3 DESIGN ASSEMBL Y EFFICIENCY AND ASSEMBL Y TIME 
MEASURE 

Practitioners tend to focus on part count as the measure of design effectiveness [13]. 
However, as mentioned above, part count is an inadequate and potentially dangerous 
focus for design. 

The search for a better criterion led to a study of Assembly Efficiency, a 
parameter introduced by Boothroyd and Dewhurst in their DFA structured 
methodology [12]. Assembly efficiency compares computed assembly times to an 
ideal but arbitrary standard. This relationship is expressed as follows: 

EM = tjdeal . NM 
TM 

where, 

EM = the manual assembly efficiency 

tjdeal = the "ideal" assembly time per part, suggested as 3 seconds [12] 

(9) 

NM = the theoretical minimum number of parts, determined as the number of parts 
that satisfy at least one of the following three criteria: (1) must move during 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 263 

operation; (2) must be made of different material; (3) must be separate to 
permit assembly or disassembly 

TM = the total manual assembly time in seconds 

The assembly efficiency parameter can be interpreted as a measure of the 
potential to achieve further reduction in assembly time by redesign. The importance 
of the assembly efficiency parameter is recently being acknowledged. A significant 
relationship was observed between the defect rate in the factory assembly of several 
mass produced electro-mechanical products and the assembly efficiency parameter. 
The relationship reported by Motorola reveals a clear correspondence between the 
assembly efficiency rating of a given product design and defect rates encountered in 
production assembly. Such a relationship could provide a basis for a general, 
quantitative, predictive tool. 

Using the time complexity measure T as an estimate of total assembly time, 
combined with Equation (9), we define the assembly efficiency measure in terms of 
the theoretical minimum number of parts, and the time complexity measure T: 

- 3·NM 
EM=-

T 
(10) 

We illustrate the use of the assembly efficiency measure by comparing two 
competing design alternatives of a pneumatic piston subassembly. 

Example 8.9 (Pneumatic Piston Subassembly): Two competing concepts of a 
pneumatic piston subassembly are compared. The first alternative is presented in 
Figure 8.8. Determining the 'INTERFACE' liaisons between two separated parts 
yields the following representation of the assembly: 

INTERFACE(Screw., Cover) 1\ INTERFACE(Screw2, Cover) 1\ 

INTERFACE(Cover, Spring) 1\ INTERFACE(Spring, Piston-Stop) 1\ 

INTERFACE(Piston-Stop, Piston) 1\ INTERFACE(Piston, Main-Block) 1\ 

INTERFACE(Screw., Main-Block) 1\ INTERFACE(Screw2, Main-Block) 1\ 

INTERFACE(Cover, Main-Block) 1\ INTERFACE(Spring, Piston) 



264 A MA THEMA TICAL THEORY OF DESIGN 

1-Screw(2)(steel) ---Y+ .,T 
3~~31 I 

2-COVer(steel)~~1.5 

3-Spring(steel) __ ~ 
25 40 

30 

4-Piston stop(nylon) ::}~r-
~...:r.7 

S-Ploto"(a'"m'"'"m) ¥l 
25 25 

6-Main block(plastic) -a 
o 

Figure 8.8 Pneumatic Piston Subassembly (Dimensions in mm). (Reproduced from 
[12]) 

For this design form, the measurable metrics and information content are computed 
as: p = 3; N = 7; L = 49; and H = 162.8. 

* To calculate H ,we consider the most compact (highest level) representation of 
the pneumatic piston subassembly: 
INTERFACE(ScrewJ, Screw2, Cover, Spring, Piston-Stop, Main-Block, Piston) 

For this design form, the measurable metrics and minimal information content are 

computed as: p * = 2; N * = 7; and H* = 28.53. Finally, the abstraction level, effort, 
and time complexity measure are respectively given by: A = 0.175; E = 930.28; and 
T= 51.7 seconds. 

The second alternative is presented in Figure 8.9. Determining the 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 265 

'INTERFACE' liaisons between two separated parts yields the following 
representation of the assembly: 

INTERFACE(Cover & Stop, Spring) /\ INTERFACE(Spring, Piston) /\ 
INTERFACE(Piston, Main-Block) /\ INTERFACE(Cover & Stop, Main-Block) 

For this design form, the measurable metrics and information content are computed 
as: p = 3; N = 4; L = 19; and H = 53.33. 

* To calculate H ,we consider the most compact (highest level) representation of 
the pneumatic piston subassembly: 

INTERFACE(Cover & Stop, Spring, Piston, Main-Block) 

For this design form, the measurable metrics and minimal information content are 

* * * computed as: p = 2; N = 4; and H = 15.5. Finally, the abstraction level, effort, 
and time complexity measure are respectively given by: A = 0.29; E = 183.9; and T = 
10.2 seconds. 

~
o 

1-Snap-on cover 
and stop(plastic) __ + 

-=r 
2-Spring(steel) ____ 

22. 

,-P''',"{a',m''',m) ---:~ 1 
25 30 

4-Main block(plastlc) ___ 
~;;;;;;;;;:;S"-

Figure 8.9 Redesign of Pneumatic Piston Subassembly (Dimensions in mm). 
(Reproduced from [12]) 



266 A MATHEMATICAL THEORY OF DESIGN 

Next we compare the two competing concepts based on their assembly efficiency 
measure as defined in (10). The assembly efficiency measure of the first alternative is 

computed as follows: EM = 3· NM = 0.23, where the theoretical minimum number 
T 

of parts was determined in [12] to be NM = 4. The assembly efficiency measure of 
- 3·NM the second alternative is computed as follows: EM = ---= 1.17, where the 

T 
theoretical minimum number of parts was determined in [12] to be NM = 4. The 
comparison of the two competing concepts, based on their assembly efficiency 
measure, shows that the second alternative is preferable to the first alternative. 

To conclude the example, we present the comparison of the two competing 
concepts by Boothroyd and Dewhurst DFA structured methodology. Tables 8.5 and 
8.6 reproduce the corresponding worksheets for the subassemblies as presented by 
Boothroyd and Dewhurst [12]. By comparing the two products based on their manual 
assembly efficiency, it can be seen that the second alternative is preferable to the first 
alternative, as previously concluded. 

Table 8.5 Worksheet for Pneumatic Piston Subassembly (Alternative 1) 

I Pan ID no. I 2 3 4 5 6 
2 Number of 

Times The I I I I I 2 
Operation is 
Carried Out 

3 Manual 30 \0 \0 05 23 11 
Handlin2 Code 

4 Manual 1.95 1.5 I.S 1.84 2.36 1.8 
Handling Time 

Per Pan 
5 Manual Insertion 00 02 00 00 08 39 

Code 
6 Manual Insertion 1.5 2.5 1.5 1.5 6.5 8 

Time Per Pan 
7 Operation Time 

(Seconds) 3.45 4.00 3.00 3.34 8.86 19.6 42.25 TM 
(2) • [ (4) + (6) I 

8 Operation Cost 
(Cents) 1.38 1.60 1.20 1.34 3.54 1.84 16.9 CM 
0.4· (7) 

9 Theoretical I I I I 0 0 4 NM 
Minimum Pan 

Design 
Main Piston Piston Spring Cover Screw Efficiency 

3'NM 
Block Stop 1M 

=0.28 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 267 

Table 8.6 Worksheet for Redesign Pneumatic Piston Subassembly (Alternative 2) 

I Pan ID no. I 2 3 4 
2 Number of 

Times The I I I I 
Operation is 
Carried Out 

3 Manual 30 10 05 10 
Handling Code 

4 Manual 1.95 1.5 1.84 t.S 
Handling Time 

Per Pan 
5 Manual Insertion 00 02 00 03 

Code 
6 Manual Insertion 1.5 2.5 1.5 2.0 

Time Per. Pan 
7 Operation Time 

(Seconds) 3.45 3.00 3.34 3.5 13.29 TM 
(2)' [(4)+ (6) 1 

8 Operation Cost 
(Cents) 1.38 1.20 1.34 1.40 5.32 CM 
0.4' (7) 

9 Theoretical I I I I 4 NM 
Minimum Pan 

Design 
Main Piston Spring Cover Efficiency 

and 3'NM 
Block TM 

Stop 
=0.9 

The strong linear correlation between the time complexity measure T and the 
estimates of product assembly times that were derived by Boothroyd and Dewhurst 
(see Chapter 9) also supports the assumption that the manual assembly efficiency 
increases with the assembly efficiency measure. Considering that much less 
information is needed to derive the assembly efficiency measure, it makes it the more 
elegant and simple method. 

8.4 THERMODYNAMICS AND THE DESIGN PROCESS 

8.4.1 NATURAL SCIENCE AND ENGINEERING DESIGN 

At present, the design process is a technical activity for which we have developed a 
set of ad hoc engineering metrics. Corroborative scientific research has yet to be 
developed. The lack of a scientific foundation is at the heart of many engineering 
design problems, including deficient complexity measures. There is substantial 
economic incentive for developing a scientific basis for design process evaluation. 
Following, we explore the relationship between physics (thermodynamics) and the 
design process, as well as the role of modeling techniques in both. 



268 A MATHEMATICAL THEORY OF DESIGN 

Inevitably, pnmltlve sciences are compared to physics, which represents the 
standard of scientific rigor and success. Predicting the behavior of design processes 
can be carried out by deducing from first principles (physical theory). Thus, while it 
is possible to propose a biological explanation of the design process phenomenon (cf. 
Chapter 2), it is extremely likely that there is a physical theory of fundamental metric 
properties for the design process. 

Some might argue that the design process as a science is philosophically 
different from physics as a science; because there is nothing as measurable as, for 
example, temperature. This sharp distinction will be seen as a question of precision 
rather than as a philosophical matter. Indeed - as the temperature of a body is thought 
of as something real, theoretically it appears as a mathematical coefficient in an 
equation of statistical equilibrium. There is no a priori objection to any coefficient, 
which appeared satisfactorily in practice (for evaluating the design process), 
possessing a certain degree of reality. 

The remainder of this section explores the analogy between the foregoing design 
complexity measures and thermodynamics. This analogy also enables to generalize 
the proposed complexity measures. 

8.4.2 THE "BALLOON MODEL" 

In order to demonstrate the analogy between a general thermodynamic process and a 
design process, we must first state definitely what the system is and what the 
environment is. In thermodynamics, the system interacts with its environment through 
some specific thermodynamic process, starting from an initial state to a final state. 
During this process, energy in the form of heat (Q) and work (W) may go into or out 
of the system. 

Let us now compute Q and W for a specific thermodynamic process. Consider a 
gas contained in a balloon, and assume that no heat flows into or out of the system 
(an irreversible adiabatic process). Let the balloon be the system, and let the blower 
and gas represent the environment. The foregoing physical thermodynamic process 
corresponds to the design process as summarized in Table 8.7. Based on this analogy, 
we derive the proposed design complexity measures. 

Initially, the balloon is in equilibrium with the environment external to it , and 
has a pressure of Pi and a volume Hi' Work can be done on the balloon by 

compressing the gas. Consider a process whereby the system interacts with its 
environment and reaches a final equilibrium state characterized by a pressure P f 

and a volume H f . 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 269 

Table 8. 7 Thermodynamics and the Design Process 

Thermodynamic Process Design Process 
Balloon Design Form 

Blower + Gas Designer 
Pressure Abstraction Level 
Volume Information Content 

Internal Energy Designing Effort 
Entropy Information Content & Length 
Power Stroud Number 

Inflationary Time Designing Time 

Figure 8.10 Expanding the Gas Against the Balloon 

In Figure 8.10 we show the gas expanding against the balloon. The work done by 
the gas in displacing the balloon is given by: 

HI 
w=jdW = j PdH 

Hi 
(11) 

This integral can be graphically evaluated as the area under the curve in a P-H 
diagram, as shown for a special case in Figure 8.11. 

Pressure 

PI 

Pj 

Hj 

Figure 8.11 A Pressure versus Volume Diagram 

Volume 



270 A MATHEMATICAL THEORY OF DESIGN 

There are many different ways in which the system can be taken from the initial 
volume Hi to the final volume H f . However, from the first law of thermodynamics 

and the adiabatic process (Q=O), we obtain: 

(12) 

where U f ' the internal energy of the system in state f, minus the internal energy of 

the system in state i, is simply the change in internal energy of the system. Moreover, 
this quantity has a definite value independent of how the system went from state i to 

f 
By analogy with the design process (cf. Table 8.7), we consider the special case 

* in which the initial and final volumes Hi (=H ) and H f represent the information 

content (given by Equation 3) of the initial and terminal design form, respectively. 

The p,."u,e i, ,ho .. n to be P(H) = K (:. ) 'Y • .. ,uming K and r .,. ,o"'tan~ 
that characterize the design problem and its features. This type of expression is 
consistent with the power law and sizing model which is frequently used for 
estimating the cost of equipment [14]. Then, 

where A is defined as in Equation (6). (13) 

Therefore by (12) we define the internal energy as U(H)= ( I< ) H. Note that 
A(y + 1) 

W is negative when work is done on the system. 
To illustrate a case, let (I<, y) = (2, 1). We obtain: 

P(H) = 2 (~) = 2A" 
H* 

(14) 

(15) 

Thus U(H) = (H t ,which is exactly the effort expression given by Equation (7). 
H 

We now formulate the design process analogy of the second law of 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 271 

thermodynamicr;. The second law of thermodynamics can be stated, loosely, as: 
There exists a useful thermodynamic variable called entropy that is characteristic 
only of the state of the system, and an irreversible adiabatic thermodynamic process 
that starts in one equilibrium state and ends in another. This system will go in the 
direction that causes the entropy of the system to increase. 

In statistical mechanics the quantitative relationship between entropy and 
disorder is given by the relation: 

f.J = k B In w (16) 

Here, k B is Boltzmann's constant, f.J is the entropy of the system, and w is the 

probability that the system will exist in the state it is in relative to all the possible 
states it could be in. This equation connects a thermodynamics or macroscopic 
(entropy) quantity, with a statistical or microscopic quantity, the probability. 

Let us identify the corresponding probability w for the design process case. Here, 
the alphabet, 1'\ (see Equation 1), changes in the course of the design process. The 
probability of finding a particular operand or operator in a given design form is: 

* I w =-
1'\ 

(17) 

Thus, assuming the operands and operators are independently chosen, the probability 
that a given design form may be found in a certain design stage is: 

(18) 

where L is the length of the design form. Equation (18) coupled with Equation (16) 
leads to the following entropy("k" in this equation is analogous to Boltzmann's 
constant): 

f.J = -k In ( ~) L (19) 

Since the entropy f.J is proportional to the length and information content (i.e. f.J oc 

Land f.J oc 1/), we may identify information content and length with the qualitative 
idea of disorder and entropy. 

Let us now cpnsider the time involved in doing work on the balloon if the system 

* is taken from an initial volume Hi = H to a final volume H f =H. Define the 

power S as the time rate at which work is done. If the power delivered by the blower 
(designer) is constant, then: 



272 A MATHEMATICAL THEORY OF DESIGN 

l\.(H/)Y+l l\.H* 
W = S· T => T = * - ---

(H )Y (y+ I)S (y+ I)S 
(20) 

Continuing the simile with the design process, we let (l\.. y) = (2. 1) and let S be the 
Stroud number (the rate at which the brain makes elementary mental discriminations). 
Hence, 

(21) 

T represents the marginal time involved in changing the system from an initial 
volume to its final volume. Thus, we conclude that the time involved in changing the 
system from an initial volume Hi = 0 to a final volume H f = H is given by, 

(22) 

Equation (20) validates the time equation derived earlier for design processes 
(Equation 8). 

Note that there are several variations in applying the "balloon model" for the 
valuation of design complexity. In particular, the design complexity measures defined 
in Sections 8.2 and 8.3 may be generalized by choosing pairs of (l\, y) as opposed to 
(2, 1). The decision of which variation of (l\., y) is used is subjective. and depends on 
features that characterize the design process (e.g. technology, knowledge base). For 
example. the complexity measures derived in Sections 8.2 and 8.3 (where the 
constants (l\., y) = (2,1) are used), may be said to characterize design processes 
which are assisted by intelligent computer design tools. In such cases, the design 
activities at each step are purely mental since the designer needs to select attributes 
from a list of candidate solutions. 

To summarize, we have argued that by analogy with thermodynamics. we may 
develop scientific design complexity measures. There is certainly an extensive body 
of theory from econometrics and related areas which can be brought to bear on the 
evaluation of design processes. Unfortunately, the statistical approach is a 
recognition that the underlying mechanisms are not understood. Therefore, we turn to 
the exact approach. In the exact approach, we attempt to understand - or at least 
quantitatively assess - the microscopic design process by applying large-scale or 
macroscopic formulas. 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 273 

8.5 FUNCTIONAL DESIGN COMPLEXITY MEASURE 

As mentioned in Section 8.1.2, the study of design complexity is related to the 
valuation of information content embedded in the design. In Section 8.1.2, we 
defined information in the functional way as the specification of what a symbol 
structure (e.g. an artifact or a design process) should be able to do. That is, 
information has a purpose, and is what a design has that allows it to attain goals. 

Defining information content in the functional way means that the capabilities of 
each solution alternative may be compared with the governing set of requirements 
until the designer identifies the solution alternative that best satisfies the functional 
requirements. Without a numerical basis for comparison, however, the final selection 
of a design solution involving many functional requirements can only be made on a 
subjective or ad hoc basis. The ability to quantify how well a proposed artifact 
satisfies the governing requirements provides a rational means for selecting the best 
solution. 

In this section, we define the information content of an artifact to be a function 
of its probability of successfully achieving the functional requirements (abbreviated 
as the probability of success). This definition is in accordance with the axiomatic 
theory of design that was developed by [4]. Functional information content is defined 
as the logarithm of the inverse of the probability of success p: 

1 
F= log2(-) 

p 
(23) 

The probability of success p that relates to the satisfaction of a given functional 
requirement can be computed as illustrated in Figure 8.12. The "design range" is the 
tolerance associated with the given requirement [4]. The anticipated response, r, 
from a proposed artifact is represented as a probability density function fir). The 
probability of satisfying the functional requirement is depicted by the dashed area, 
which falls between the limits defined by the requisite tolerance ("design range"). 
Thus, the probability of success and functional information content are given by: 

b 
p=Prob[a~r~b] = If(r)dr 

a 
~ F =log2(b ) (24) 

I f(r)dr 
a 

As shown in Figure 8.12, the success probability can be increased by moving the 
mean of the response toward the desired "design range" and then reducing its 
variance. In addition, while the success probability increases, the functional 
information content and the artifact complexity decrease. 

When there are n independent functional requirements to satisfy, the overall 
probability of success is given by: 



274 

n 

p= rIPi 
i = 1 

A MA THEMA TICAL THEORY OF DESIGN 

(25) 

where Pi is the probability of satisfying the ith functional requirement as given in 

(24). Applying Equation (23), the total functional information content is given by the 
sum of the information contents associated with each functional requirement, i.e. 

1 
F=log2(--) 

n 

rIPi 
i=1 

n 1 n = Llog2(-) = LF; (26) 
i=1 Pi i=1 

Let us consider the case where the anticipated response, r, is represented as a 

uniform probability density function: j{r) = _1_ for c < r < d, and j{r) = 0 
d-c 

otherwIse. The uniform probability distribution function is used in situations where 
the designer has no a priori knowledge favoring the distribution of responses except 
for the end points; that is, the designer does not know what the shelf life of an 
electrical receptacle will be but it must falls, say, between 720 and 800 hours. In the 
case of a uniform probability distribution, it is clear from Figure 8.13 and Equation 
(24) that the probability of success P is equal to the ratio of the region of overlap 
(called the "common range", see [4]) between the "design range" (i.e. [a, b]) and the 
"system range" (i.e. [c, d). Thus, the functional information content can be simply 
written as: 

d-c 
F= log2( ) 

max(a, c) - min(b, d) 
(27) 

Example B.lD: Consider the design of a flexible manufacturing system (a 
detailed example is shown in Chapter 18), where the required functional requirement 
is represented in terms of a tolerance associated with the manufacturing system's 
production rate, r. Let the tolerance be given by T = {r I r ~ 75} , and assume that 

the anticipated production rate, r, obeys the normal probability law 

!rr-~]2 1 -~-
j{r) = e 2 (J 

~21t(J2 
(28) 

with mean J.I. = 8 and standard deviation (J = 1.06. Then the probability of success p is 
computed as follows: 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 275 

7.5 - 8 
P = 1 - <1>(_. -) = 1- <1>(-0.47) = <1>(0.47) = 0.6808 

1.06 
(29) 

1 x -'!'t2 

where <I> (x) = --J e 2 dt is the standard normal probability distribution 
~o 

function. Thus the functional information content of the flexible manufacturing 

system is F = log2 (.!) = 0.554. 
P 

The foregoing approach is also used to define the design process functional 
complexity measure as the functional information content associated with the 
respective output solution. Thus, two design processes may be compared based on 
their outputs, such that the "best" design process is the one that yields an artifact in 
which its probability of successfully achieving the required functional requirements is 
maximized. 

Finally, we show that the functional information content F as defined in 
Equation (23) is consistent with the structural information content H as defined in 
Equation (3). Indeed, assuming the operands and operators are independently (and 
sequentially) chosen, it was shown in Section 8.4 that the probability that a particular 
design form (a "solution") may be found (a "functional requirement") in a certain 

design stage is: p = (~) L . Thus, the functional information content associated with 

the particular design form is given by log2 1 L = L log211, in accordance with 

(X) 
the structural information content provided in Equation (3). The consistency between 
the structural and function complexity measures suggests that a measure based on the 
logarithm of the probability of success may be universal. 

Probability 
Density 

a 

Design Range 

b Functional 
Requirement 

Figure 8.12 Relationship between the Probability Distribution of a System Parameter and the Designer
specified Tolerance 



276 

Probability 
Density 

a c 

A MA THEMA TICAL THEORY OF DESIGN 

Design Range 

b d Functional 
Requirement 

Figure 8.13 Relationship among the "Design Range," "System Range," and 
"Common Range" [4] 

8.6 SUMMARY 

Starting from the evolutionary model of the design process proposed in Chapter 6, we 
gave two definitions of design complexity (structural complexity versus functional 
complexity), each leading to two types of value measures. 

The proposed measures enable us to evaluate the complexity of a design artifact 
as well as the complexity of a design process. In the course of the design process, 
complexity measures may be utilized by designers for comparing alternative design 
forms and determining which path will be most efficient. Thus, during the design 
process, the measurable properties will be visible and can be continuously monitored. 
The proposed complexity measures also lead to the ability to rapidly estimate the 
approximate total assembly time of a product, and the manual assembly efficiency 
introduced by Boothroyd and Dewhurst in their DFA structured methodology [12]. 
The analogy between the design process and thermodynamics as shown in Section 
8.4, serves to emphasize the limited but highly useful role of science in engineering. 
Just as the equations of thermodynamics provide no blueprint for the design or 
construction of an efficient steam engine, the measures developed here tell nothing 
about the importance of design. In other words, they reveal how well a design form 
has been constructed, but they do not determine whether the design form should have 
been constructed in the first place. Instead, just as thermodynamics permits the 
engineer to calculate the maximum efficiency achievable with the optimal engine 
working between two specified temperatures; the design complexity measures enable 
the designer to calculate the "maximum efficiency" obtainable using the best possible 
design method working between two specified design stages. 

In the next chapter, we test the hypothesis that the total assembly time of a 



THE MEASUREMENT OF A DESIGN STRUCTURAL AND FUNCTIONAL COMPLEXITY 277 

concept can be predicted using the time complexity measure. 

REFERENCES 

I. Carrol, J. T. and T. F. Bellinger, "Designing Reliability into Rubber and Plastic AC Motor Control 
Equipment," IEEE Trans. Industry and General Applications, Vol. 5 (4), pp. 455-464, 1969. 

2. Crouse, R. L., "Graphic Trees Help Study of Reliability Versus Cost," Product Engineering, Vol. 
38, pp.48-9, 1967. 

3. Mihalski, J., "Design to Cost Versus - Design to Customer Requirements - Versus Design for Safe 
Operation: Is There a Conflict?," In Proc. ASME, 75-SAF-Z, 1975. 

4. Suh, N.P., The Principles of Design. New York: Oxford University Press, 1990. 
5. Pugh, S., "Load Lines: An Approach to Detail Design," Production Engineer, Vol. 56, pp. 15-18, 

1977. 
6. Mahmoud M.A.M. and S., Pugh, "The Costing of Turned Components at the Design Stage." In 

Proc. InjorflUltionfor Designers Con! Southampton, pp.37-42, 1979. 
7. Shannon. C. E .• "A Mathematical Theory of Communication." Bell Sys. Tech. Journal. Vol. 27, pp. 

379-423. 1948. 
8. Wiener, N. Cybernetics. Cambridge MA: MIT Press, 1948. 
9. Stroud. 1. M .• "The Fine Structure of Psychological Time," Annals of New York Academy of 

Science, pp. 623-631, 1966. 
10. Simon. H. A. and E. A. Feigenbaum, "A Theory of the Serial Position Effect," In Models of Thought 

(Simon, H. A., ed.), Vol. 1. Yale University Press. 
II. Ullman. D., T. G. Dietterich. and L. A. Stauffer. "A Model of the Mechanical Design Process 

Based on Empirical Data," AI EDAM, Vol. 2. pp. 33-52,1988. 
12. Boothroyd, G. and Dewhurst P., Product Design for Assembly. Wakefield. RI: Boothroyd & 

Dewhurst Inc, 1987. 
13. Bralla.1. G., Handbook of Product Design.f(Jr Manufacturing. New York: McGraw-Hill, 1986. 
14. Ostwald, F. P., Cost EstiflUltionfor Engineering and Management, Englewood Cliffs, New Jersey: 

Prentice-Hall, 1992. 
15. Halstead. M. H .. Elements of Software Science, New York: Elsevier/North-Holland, 1977. 
16. McCabe, T. J., "A Complexity Measure," Software Engineering, SE-2, no. 4, pp. 308-320,1976. 
17. McTap, 1. L., "The Complexity of an Individual Program," In Proceedings of the 1980 NCC, 

Arlington, VA: AFlPS Press, pp. 767-771, 1980. 
18. Chapin, N. "A Measure of Software Complexity," In Proceedings of the 1979 NCC, Arlington, VA: 

AFIPS Press, pp. 995-1002,1979. 
19. Dasgupta, S., "The Structure of Design Processes," In Advances in Computers. Vol. 28, M.C. Yovits 

(ed.). New York: Academic Press, pp. 1-67, 1989. 



CHAPTER 9 

STATISTICAL ANALYSIS OF THE TIME 
COMPLEXITY MEASURE 

The problem of obtaining realistic and easily predictable estimations of the assembly 
time for a product, especially during the early stages of the design process, is usually 
solved utilizing Design for Assembly (DFA) methodologies which are generally 
based on empirical observations and experiments, and which can give good results if 
complete data regarding the parts used are provided to the system. In this chapter, we 
show that the time complexity measure presented in Chapter 8 (Equation 8.8) and the 
approximate total assembly time of a product, as derived from Boothroyd and 
Dewhurst' DFA methodology [1], are highly correlated over a wide diversity of 
experiments. The chapter also shows that there is logical consistency with the Barkan 
and Hinckley estimation method of total assembly time of a product. 

9.1 INTRODUCTION 

In recent years, increasing attention has been focused on design as the first step in 
manufacturing. While in the past the main efforts of researchers were directed to 
improving manufacturing equipment and processes, it is now clear that the potential 
benefits of this area have been widely exploited; and new, more cost effective, 
possibilities need to be considered. 

Design is one of those areas, especially because it is now generally recognized 
that product design determines a great percentage of the final manufacturing cost, and 
that much of the manufacturing information is embedded in the product design. 
Therefore, since 1980, analysis techniques have been made available which can guide 
the designers towards products which are easy to manufacture and to assemble [2]. 

These techniques can be grouped into the general framework of Design for 
Manufacturing and Assembly methodologies (DFA and DFM), which are generally 
concerned with comprehending all the interactions among the various distinct 
processes which a manufacturing process is comprised of; and, specifically, aim to 
understand how product design interacts with the other components of the 
manufacturing system. 

The work on DFA generally falls into two major areas: the assembly modeling of 
products and post-design analysis. Our approach falls into the latter area. Two 
general major principles can be recognized behind the heterogeneous DFA 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



280 A MATHEMATICAL THEORY OF DESIGN 

methodologies [3]: 

• reducing the cost of the individual piece parts manufacturing; 
• reducing assembly cost and difficulty. 

The various techniques generally provide the user with guidelines and 
systematically coded statements of design rules that have been heuristically 
accumulated over years of design and manufacturing experience. These techniques 
usually offer quantitative evaluation procedures which are derived from extensive 
design practice [4]. 

Although some of the proposed methods present extended theoretical analysis of 
the design process, a general scientific basis is still missing. The purpose of this 
chapter is to verify the hypothesis, posited in Chapter 8, that there exists a strong 
correlation between the time complexity measure (see Section 8.2.3) and the total 
assembly time of a product. We choose as a reference technique the Boothroyd
Dewhurst DFA methodology [1]. 

The remainder of the chapter is organized as follows: Section 9.2 provides a 
brief overview of three major Design for Assembly methodologies. In Section 9.3 we 
show that the linear correlation between the time complexity measure and the 
estimate of the total assembly time derived from Boothroyd-Dewhurst DFA 
methodology [1] is very close to ±1 over a wide diversity of experiments .. In Section 
9.4, we show that the time complexity measure falls within the 90 percent confidence 
interval for total assembly time as developed by Barkan and Hinckley [5]. Section 
9.5 concludes the chapter. 

9.2 OTHER METHODS FOR DESIGN FOR ASSEMBL Y (DFA) 

Even though statistics show that for many companies assembly operations account 
for a significant part of the production cost of the product (some authors say more 
than 50% [6]), it was only with the introduction of automation, in the last 1970s, that 
researchers began to direct their attention towards it. The first Design for Assembling 
methods were primarily intended to produce design suitable for automated assembly, 
but it became soon apparent that these methods were bringing significant savings for 
manual assembly, materials, and overheads. 

Nowadays, DFA is considered a central element of Design for Manufacturing 
practice, as it aims to produce a product whose assembly cost and difficulty is 
minimized. Among the several methods and techniques that have been devised, the 
Hitachi Assemblability Evaluation Method, the Lucas DFA evaluation method, and 
the Boothroyd-Dewhurst DFA method (all supported by a software package) are the 
most popular in manufacturing industry [7]. 

The Hitachi DFA Method 
The Assemblability Evaluation Method developed by Hitachi LTD in the late 1970s 



STATISTICAL ANALYSIS OF THE TIME COMPLEXITY MEASURE 281 

endeavors to assess the assemblability of a product design. in the earliest possible 
stage of the design process, by making use of two indices: 

1. the assemblability evaluation score. E, which is used to assess the design quality 
or the difficulty of assembly operations; 

2. the estimated assembly cost ratio. K. which is used to project assembly costs 
relative to current assembly costs. 

After having defined and categorized the motions and operations necessary to 
insert each part of the product. penalty points are assigned to represent the 
complexity of the different tasks. The penalty scores are then manipulated and 
combined with N (the total number of parts), and other factors influencing the 
elemental assembly operation. to produce the total assemblability evaluation score. 
The cost ratio K, which represents the total assembly operation cost of the new 
design divided by the total assembly operation cost of the previous design. is derived 
by allocating a time and cost to the basic elemental operation. and depends directly 
on the other index E. 

The Lucas DFA Method 

The Lucas method. developed in the late 1980s at the University of Hull, UK. 
consists of three major phases: 

1. a functional analysis; 
2. a handling and feeding analysis; 
3. a fitting analysis. 

The functional analysis addresses each component in turn and categorizes it into 
part type A (demanded by the design specification). and part type B (required by that 
particular design solution). The design efficiency is defined as AI(A+B), and if the 
design efficiency is low a redesign must be prompted before a detailed analysis is 
carried on. A suggested design efficiency threshold is 60%. 

In the handling/feeding analysis. where a distinction between manual and 
automated assembly is done, the parts are scored on the basis of size and weight, 
handling difficulties and orientation. A handling/feeding ratio is then calculated and 
compared with a recommended target value. 

The final fitting analysis, based on a proposed assembly sequence, is carried out 
to assign to each of the individual assembly processes a fitting index, which take into 
account the assembly direction, alignment problems, restricted vision. the required 
insertion force, and eventual fixtures required. Again a fitting ratio is obtained and 
compared to the recommended target value. 



282 A MATHEMATICAL THEORY OF DESIGN 

The Boothroyd-Dewhurst DFA method 

The Boothroyd-Dewhurst DFA method [1) was developed mainly at the University of 
Massachusetts in the early 1980s. It covers both manual and automated assembly. 
This method provides the user with effective tools to select the best assembling 
methods on the basis of the annual production volume, the payback period, the 
number of parts in the assembly, and the equipment costs. 

The first means of improving the design is considered to be the possible 
reduction in the number of parts. The theoretical minimum number of parts are 
determined as the number of parts that satisfy at least one of the following three 
criteria [2]: 

1. during the operation of the product, does the part move relative to all other parts 
already assembled?; 

2. must the part be of a material that is different from those of other parts already 
assembled?; 

3. must the part be separate from others to allow necessary assembly or 
disassembly of other parts? 

After having recognized the fundamental parts in the design, the next problem to 
be addressed by the method is to ensure that the remaining parts are easy to assemble. 
The evaluation of the design is essentially based on the estimation of the time to 
complete the assembly process and its cost. In order to achieve this, a complete 
design-oriented classification and coding system is provided to assign time penalties 
to manual handling and insertion tasks. The total assembly time for a part is 
determined by: 

1. a time penalty extracted from the coding system, that considers the design 
features of the part being assembled, and in particular: symmetry, size, thickness, 
weight, fragility, flexibility, necessity of using two hands, necessity of using 
grasping tools, accessibility of the assembly location, ease of operation of 
assembly tool, visibility of assembly location, ease of alignment and positioning 
during assembly, resistance to insertion, and depth of insertion; 

2. the number of time that the task must be performed. 

The estimated assembly time is the sum of the operation times for all the component 
parts. 

In addition to the foregoing analytic features, Boothroyd and Dewhurst define 
the "Manual Assembly Efficiency" as the ideal assembling time (suggested as 3·NM, 
where NM represents the theoretical minimum number of parts, and 3 seconds is the 
"ideal" assembly time per part) divided by the total manual assembly time in seconds. 

One of the main benefits of this method is that it allows the identification of 
good designs and the critical examination of imperfect design solutions. Furthermore, 
the method is being continuously enhanced with the introduction of new methods to 
evaluate the cost and feasibility of a wide range of manufacturing processes. Thus, it 



STATISTICAL ANALYSIS OF THE TIME COMPLEXITY MEASURE 283 

provides the user with effective tools to decide between different design alternatives 
at early stages of the design process. 

9.3 RESULTS AND DISCUSSION OF THE TIME 
COMPLEXITY MEASURE 

A major barrier to the implementation of the foregoing DFA procedures is related to 
the amount of time needed to acquire the methods, as well as the amount of time 
required to accomplish a complete analysis of a product assembly. In addition, it can 
be argued that the methods developed thus far neglects a "real" analysis of the design 
process, and that they simply constitute a black-box system which, if correctly fed 
with a wide range of initial data, provides the necessary results without properly 
clarifying the rationale behind them. 

To remedy this situation, we stated in Chapter 8 the hypothesis that the total 
assembly time of a product can be predicted using the time complexity measure 
introduced in Chapter 8. In order to corroborate this hypothesis, we gathered some 
published design cases for which Boothroyd and Dewhurst's estimates for the manual 
assembly time were available. Each product in the data set was analyzed in terms of 
its total number of parts and interfaces. Based on these metrics, we computed the 
time complexity measure using Equation (8.8), and compared it to the Boothroyd and 
Dewhurst's estimate. 

In Table 9.1, we show the list of artifacts, the total manual assembly time derived 
by the Boothroyd and Dewhurst's DFA method [8-12], and the time complexity 
measure introduced in Chapter 8 (an example is given in Appendix A). 

We performed a linear regression analysis to identify the correlation between 
Boothroyd and Dewhurst's DFA estimates and the time complexity measure. The 
following regression line was obtained: 

T= 2.74· TM - 86.82 (1) 

where TM is the total manual assembly time in seconds, and T is the time complexity 
measure. A strong linear correlation (correlation coefficient r = 0.92) was found 
between the total manual assembly time and the time complexity measure. The highly 
correlated plot is presented in Figure 9.1. Based on the regression line in Equation 
(1), the total manual assembly time of a product can be estimated as follows: 

TM = 0.36 . T + 31.7 (2) 

The additive constant in Equation (1) is negative, which suggests that the values 
near the origin are not significant. If we consider only the upper 95% of the analyzed 
values, the linear regression line becomes: 

T= 3.17· TM - 26.27 (3) 



284 A MATHEMATICAL THEORY OF DESIGN 

1400 

• 
120) 

CD • .. 10c0 :s 
I/) 

'" CD 
:iii 

800 
~ 
>< CD 
Q. 800 E 
0 
0 
CD 400 E 
i= 

20) 

0 
0 50 100 150 20) 250 3Xl 350 400 

Boothroyd' AsseniJ/ylime 

Figure 9.1 The Total Manual Assembly Time versus the Time Complexity Measure 

We also reviewed the existing data to verify if other factors influence the total 
manual assembly time. Several combinations comparing total assembly times to 
product characteristics, such as number of assembly operations, and the number of 
parts. Of all the combinations, the time complexity measure versus the total manual 
assembly time derived by Boothroyd and Dewhurst's DFA methodology showed the 
strongest linear correlation. These results corroborate our hypothesis that the time 
complexity measure may be used as a powerful predictive tool in this application. 

We can also observe that, for all the redesign cases analyzed, the improved 
design presents a better value of the time complexity measure, i.e. the value of the 
time complexity measure T is smaller than the one calculated for the original artifact 
(prior to redesign). This result demonstrates that the time complexity measure allows 
comparison of competing concepts, or stimulating redesign at the time when it is 
easiest to make design changes. If the new design has a lower time complexity 
measure, it may render the artifact most suitable. Various scenarios of design changes 
may be considered on the basis of the time complexity measure along with other 
considerations that are related to the functional and manufacturing requirements. 



STATISTICAL ANALYSIS OF THE TIME COMPLEXITY MEASURE 285 

Table 9.1 The List of Design Cases 

Boothroyd-Dewhurst Time Complexity 
Assembly Time Measure 

motor assembly 160 269 
motor assembly redesign 46 39.74 

controller assembly 215 269 
controller assembly redesign 63 53.7 

power plug 43.2 40.5 
riser panel 152 247 

riser panel redesign 70 113 
power saw 274 642 

power saw redesign 126 333 
door latch mechanism 366 1313 

door latch mechanism redesign 77 201 
spindle assemblY 245 453 
housing assembly 60 53.7 

gear assembly 45 34.4 
piston assembly 30 11.2 
link assembly 14 7.2 

piston2 assembly 38 38 
power saw assembly 67 99.5 

cylinder-base assembly 357 1025 
battery charger 55 70.7 

housing2 assembly 29 34.4 
_gear assembly 16 7.2 

2iston assembly 12 7.2 
piston assembly 21 15.9 

power saw assembly 48 67.2 
pneumatic piston 42.2 53.7 

pneumatic piston redesign 13.3 11.3 
terminal subassembly 30 22.9 
riser panel assembly 122 .181 

unijunction transistor metronome 225 217 
electrical receptable 31 43.3 

metal frame assembly 138.5 123 
controller assembly 77 47.1 

9.4 THE BARKAN AND HINCKLEY ESTIMATION METHOD 

Barkan and Hinckley [5] postulate that in any design. the set of manual assembly 
times per operation follows a Pareto distribution (or Zipf distribution). The Pareto 



286 A MATHEMATICAL THEORY OF DESIGN 

distribution is a model for phenomena where the likelihood of an event decreases as 
its magnitude increases. For example, the higher the salary, the fewer the number 
who will have that salary. 

A Pareto distribution of assembly times per operation for a typical product 
illustrates that the shortest assembly times are the most likely to occur. Comparing a 
particular product to a similar product having roughly ten times as many operations, 
approximately the same relative fraction of operations would fall within the same 
time steps. To illustrate, let a motor drive assembly consists of 20 assembly 
operations, and assume that 10 of the 20 operations require less than ten seconds to 
complete. For the same Pareto distribution of assembly times per operation, in a 
motor drive assembly having 100 operations, approximately 50 of those operations 
would take less than ten seconds each to complete. 

The probability mass function of the Pareto or Zipf distribution is given by the 
following equation: 

C 
Prob{X = k} = -- for k = 1,2,3, ... 

k U +I 
(4) 

This equation, which gives the probability that X will have a value of k, is based on 
two constants, a and C. Since the sum of the probabilities must equal one, the value 
of C is fixed by a. For distributions such as assembly time, k can represent bins of 
any uniform size. For example, with a = 1.225 (C == 0.6779), the probability that an 
observation would fall in the first bin is 0.6779, in the second bin would be 0.145, 
and so forth. Given 30 observations with a time bin size of five seconds, we would 
expect 0.6779 . 30 == 20 observations in the five-second bin and 0.145 . 30 == 4 
observations in the ten-second bin. 

Statistical methods have confirmed [5] that assembly operation times follow a 
Pareto distribution described by two adjustable coefficients. At the same time, the 
statistical methods reject at highly significant levels the possibility that assembly 
operation times are normally distributed. 

Having identified the Pareto probability distribution as an appropriate 
distribution for assembly operation times, standard methods are available for 
estimating the cumulative outcome of a series of random assembly operation times 
(random trials or selections) from the Pareto distribution. Using these techniques, a 
probabilistic relationship between total assembly time and the number of assembly 
operations based on a = 1.55 and a time step increment of 4.4 seconds has been 
found to be consistent with the results obtained for 228 diverse assemblies. 

Using the Pareto distribution of assembly times, it has also been shown that the 
approximate total assembly time of a product can be bounded -- based on a 90 
percent confidence interval -- as a function of the number of assembly operations 
(NA ) as follows: 

TMmin = 3· (0.81 + 2.07· NA - 2· (NA)o.5) 

TMmax = 3· (-5.72 + 3.18 . NA + 7.6· (NA)O.5) 

(5) 

(6) 



STATISTICAL ANALYSIS OF THE TIME COMPLEXITY MEASURE 287 

A preliminary analysis of the results in Table 9.1 shows that nearly 80 percent of 
the estimated manual assembly times determined by Equation (2) fall within the 
above bounds. Thus, our approach is found to be consistent with the hypothesis that 
the set of manual assembly times per operation follows a Pareto distribution. 

9.5 CONCLUSIONS 

Design for Assembly (DFA) is directly related and inextricably linked to designing 
for cost [1]. The main aims of DFA are to minimize components, assembly cost and 
development cycles; and to enable higher-quality products to be made. The 
importance of Design for Assembly as a fundamental feature of every Design for 
Manufacturing (DFM) strategy is now generally recognized, and, therefore, different 
methodologies have been developed to systematically lead the designer to a product 
that is easy to assemble. 

The user of a DFA methodology needs a detailed knowledge of manual product 
assembly times, since assembly times can be considered one of the most important 
parameter for the evaluation of different design alternatives. Unfortunately, this 
information is often unknown because assembly times have not been fully specified 
in the early conceptual stages. In this chapter, we tested a new approach to the 
estimation of manual assembly time of a product, based on a set of design measures 
developed to evaluate design complexity by means of simple and rational principles. 

The results show that the correlation between the time complexity measure and 
the estimation of the total manual assembly time derived from Boothroyd-Dewhurst 
DFA methodology is found to be very close to ±1 over a wide diversity of 
experiments. In addition, we show that the estimated total assembly time, using the 
time complexity measure, falls within the 90 percent confidence interval for total 
assembly time as developed by Barkan and Hinckley (derived from the Pareto 
distribution). Thus, our approach (i.e. applying the complexity measures introduced 
in Chapter 8) has been found to be consistent with other design knowledge, and may 
be advanced to the status of a theory. 

Since the time complexity measure and the total manual assembly time are found 
to be highly correlated over a wide diversity of experiments, the time complexity 
measures (and the related measures introduced in Chapter 8) could provide a basis 
for a general, quantitative, predictive tool. Such a tool could be used in the earliest 
stages of concept development to evaluate the product complexity, and the 
approximate total assembly time. It also allows the comparison of competing 
concepts or stimulating redesign at the time when it is easiest to make design 
changes. Rapid estimation of the total assembly time may be supported by imbedding 
the evaluation method within a computer aided design (CAD) tool, which can 
interactively provide at the conceptual stage of the design process the information 
regarding the product's layout (e.g. interfaces, and parts). 

In developing or selecting a DFA procedure we often encounter a tradeoff: while 
accurate and precise results are requested, the difficulty and the amount of data (and 



288 A MATHEMATICAL THEORY OF DESIGN 

consequently the time to gather and analyze them) required to obtain them increases. 
While the Boothroyd and Dewhurst's DFA methodology represents an exhaustive 
and effective tool to optimize the design, it requires a lot of data and computational 
effort to complete the analysis. Since the only data required to compute the time 
complexity measure are the number of parts and the product liaison diagram, the 
proposed measure can partially avoid the above tradeoff by providing relatively 
accurate results using few data and incurring low computational efforts. 

If the strong correlation between the time complexity measure and the total 
assembly time of a product is further corroborated, the following conclusions may be 
drawn: (1) part count alone is not an adequate basis for defining design simplicity or 
predicting conformance quality. Instead, a superior design criterion is: minimize and 
simplify assembly operations. This tends to reduce part counts and simplify part 
interfaces while avoiding assembly complexity that may be introduced to achieve part 
count reduction; (2) the time complexity measure increases more than linearly with 
respect to the number of operations in an assembly. Thus, in a product that requires 
more assembly operations than another product, it is likely that it will have some 
assembly operations that are more time consuming; (3) the time complexity measure 
may be used to rapidly estimate the manual assembly efficiency introduced by 
Boothroyd and Dewhurst in their DFA structured methodology. 

The method described here can be extended in a number of ways: (1) the design 
examples examined in this chapter were mainly drawn from electromechanical 
domains. Further statistical analysis should be conducted for artifacts that belongs to 
other domains (e.g. Printed Circuit Board assembly) in order to verify the strong 
linear correlation between the time complexity measure and total manual assembly 
time; (2) the proposed method does not consider the complexity of the single part or 
the complexity of the single assembly operation, but only the overall time complexity 
of the product. The features of the single part that affect the assembly operation (e.g. 
size, symmetry, weight, fragility, thickness, etc.) should be embodied in the time 
complexity measure. In particular, in developing the time complexity measure (see 
Chapter 8), we assumed that every single interference between two parts contributes 
in the same way to the length (L) and information content (H) of the design form. It 
may be possible to introduce features that depend on the complexity of the two 
mating parts. Applying these features, we assign different weights to different 
interfaces so that higher weights correspond to difficult assembly operations. The 
adjusted length of the design form will be: 

AM. 
L = L Wi 4 + (M -1) (7) 

;=1 

where '4' denotes the total number of operands and operators required for the 
representation of one interface, M denotes the total number of interfaces, and W i 

denotes the weight associated with the ith interface. 

Finally, the adjusted information content will be: 



STATISTICAL ANALYSIS OF THE TIME COMPLEXITY MEASURE 289 

(8) 

APPENDIX A - TIME COMPLEXITY' MEASURE OF A MOTOR 
DRIVE ASSEMBL Y 

Figure 9.2 presents a redesign of a motor drive assembly. Determining the 
'INTERFACE' liaisons between two separated parts yields the following 
representation of the assembly: 

INTERFACE(Sensor, Base) 1\ INTERFACE(Set-Screw, Base) 1\ INTERFACE(Set
Screw, Sensor) 1\ INTERFACE(Motor-Screw, Motor) 1\ INTERFACE(Motor
Screw, Motor) 1\ INTERFACE(Motor-Screw, Base) 1\ INTERFACE(Motor-Screw, 
Base) 1\ INTERFACE(Cover, Base) 1\ INTERFACE(Motor, Cover) 1\ 

INTERFACE(Motor, Base) 

For this design form, the measurable metrics and information content are computed 
as: p = 3; N = 7; L= 43; and H= 142.84. 

* To calculate H ,we consider the most compact (highest level) representation of 
the motor drive assembly: 

MOTOR-DRNE(Motor Screw\o Motor Screw2 , Base, Cover, Sensor, Set Screw, 
Motor) 

For this design form, the measurable metrics and minimal information content are 

* * * computed as: p = 2; N = 7; and H = 28.52. Finally, the abstraction level, effort, 
and time complexity measure are respectively given by: A = 0.199; E = 715.4; and T 
= 39.74 seconds. 



290 A MATHEMATICAL THEORY OF DESIGN 

... ... ... 

Figure 9.2 Motor-Drive Assembly Redesign 

REFERENCES 

I. Boothroyd, G. and Dewhurst P., Product Design for Assembly. Wakefield, RI: Boothroyd & 
Dewhurst Inc, 1987. 

2. Boothroyd, G., "Product Design for Manufacture and Assembly," Computer Aided Design, Vol. 7, 
1994. 

3. Pearson, A. S., "Investigating the Dimensions of Design Decision Making Through Product 
Archeology," Technical Report, MIT. 1992. 

4. Redford, A. and ChaJ, J., Design for Assembly - Principles and Practice. McGraw-Hili. 1994. 
5. Barkan, P., and Hinckley, C. M., "The Benefits and Limitations of Structured Design 

Methodologies," Manufacturing Review, Vol. 8, No.3, 1993. 
6. Bhattacharya, "Comparative Analysis and Applications of Various Design for Assembly 

Methodologies to the Design of Electro-Mechanical Products," F10rida Atlantic University, Boca 
Raton, F1orida, December, 1992. 

7. Leany, P. G., and Wittenberg, G., "Design for Assembling," Assembly Automation, Vol. 2, 1992. 
8. Boothroyd, G., Assembly Automation and Product Design. Marcel Dekker Inc., New York, 1992. 
9. Fujita, T., and Boothroyd, G., "Data Sheet and Case Study for Manual Assembly," Report # 16, 

Department of Mechanical Engineering, University of Massachusetts, Amherst, April, 1992. 
10. De Lisson, W. A., and Boothroyd, G., "Analysis of Product Designs for Ease of Manual Assembly -

A Systematic Approach," Report # 7, Department of Mechanical Engineering, University of 
Massachusetts. Amherst, May, 1992. 

11. Boothroyd, G., "Design for Assembly - The Key to Design for Manufacture," Report # 9, 
Department of Industrial and Manufacturing Engineering, Kingston, Rhode Island, January, 1987. 

12. Porter, C. A., and Knight, W. A., "Design for Quality," Report # 71, Department of Industrial and 
Manufacturing Engineering, Kingston, Rhode Island, February, 1987. 



PART THREE 

ALGORITHMIC AND HEURISTIC METHODS FOR 
DESIGN DECISION SUPPORT 



CHAPTER 10 

INTELLIGENT ADVISORY TOOL FOR DESIGN 
DECOMPOSITION 

In this chapter, the design search problem of finding a finite sequence of production 
rules that begins with initial specifications and ends with an acceptable solution (as 
introduced in Chapter 6), is represented by an AND/OR search tree. A design search 
algorithm, which is based on a set of production rules and the AND/OR tree 
representation, is used to search for a consistent (i.e., physically realizable) design 
solution. A prototype system that was developed to implement the framework is 
discussed. 

10.1 INTRODUCTION 

According to the model presented in Chapter 6, the design process problem is 
characterized by the initial process state, the set of operators, and the accepting 
(goal) process states. The initial specifications represent the initial process state, a set 
of production rules for the decomposition of specifications is the set of operators, and 
design solutions are the accepting process states. In design, the initial process state is 
known a priori while the accepting state is to be determined. An operator transforms 
the given process state into a different process state. The task is to find a sequence of 
operators (production rules) that will lead to an accepting process state. The set of all 
process states that can be reached by applying production rules is called the state 
space. Those states in the state space that are accepting constitute the solution space. 

Depending on the initial specifications, there may exist a large number of 
alternative sequences of production rules that lead to accepting states. Thus also a 
large number of alternative design solutions may exist. Theorem 6.3 teaches us that it 
is inherently difficult (NP-hard) to identify the sequence of production rules used by 
the design solving process before reaching an accepting state. This theorem 
concludes that design problem solving, particularly with its large volume of selection 
information, requires the aid of a systematic selection process guideline. In this 
chapter, a branching AND/OR tree search mechanism is presented jointly with an 
intelligent advisory tool to guide the design process search. 

In Section 10.2, the AND/OR tree representation of design is discussed. A 
methodology for guiding the AND/OR search tree in the state space is presented in 
Section 10.3. In Section 10.4, we discuss a prototype system that has been developed 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



294 A MATHEMATICAL THEORY OF DESIGN 

as an illustration of the practical application of our framework. Conclusions are 
drawn in Section 10.5. 

10.2 AND/OR TREE REPRESENT A TfON OF DESIGN 

It is helpful to display the type-2 design process introduced in Chapter 6 as an 
AND/OR tree. An AND/OR tree is useful for representing the behavior of a rule
based design system that works by problem decomposition; i.e., by decomposing 
high-level specifications into sub-specifications, which may have their own sub
specifications, and so on. Thus, to achieve high-level specifications, sub
specifications should be derived. There are two types of nodes in an AND/OR tree: 
OR nodes and AND nodes. An OR node is satisfied if one sub-specification (child 
node) is satisfied, and an AND node is satisfied if all the sub-specifications are 
satisfied in order for the node to be satisfied. These and other AND/OR clause 
representations are depicted in Table 10.1. Let us consider the following: 

Example 10.1: Assume that the designer's knowledge body is in the form of 
production rules (the score values will be used later) as in Table 10.2, and each 
production rule is a conjunction of several attributes. Suppose that the initial 
specification is Tl • In order to reach an accepting state, the designer may try to find a 

rule that decomposes Tl; i.e., a rule that has Tl as a conclusion (on the right-hand 

side). The only candidate rules are 3 and 6, but 6 is chosen since it has higher score 
value. For the new process step the designer establishes a new sub-goal to decompose 
T2' If T2 can be matched with structural attributes, then T) could be satisfied by 

modus ponens. The designer's next sub-goal is to decompose T3 and ml 

(T3 1\ ml ~ T2)' Since ml is a structural attribute, it is only necessary to decompose 

T3' Thus the process proceeds as shown in Table 10.3. Note that if the designer had 

chosen to decompose Tl by applying rule 3, a different sequence of production rules 

would result. Figure 10.1 illustrates the AND/OR search process for the whole tree. 
As shown in Figure 10.1, the TI specification is satisfied by the following accepting 

process states: 

1. ml 1\ m2 1\ m3 1\ m4 

2. ml 1\ m4 1\ m2 

3. ml 1\ m4 1\ m7 

These process states represent alternative design solutions; each derived from a 
different sequence of production rules. Such solutions are represented in the solution 
space as conjunctions of structural attributes. For example, the derivation of solution 
1 was determined by the sequence of production rules as shown in Table 10.3. In 
Figure 10.1, there are five different specification levels for abstraction and 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 295 

complexity, and each level represents a design problem with different degree of 
detail. The first one is represented with specifications '2 and '8. The second level is 

represented with specifications '3 and '9 or '10. The third level is represented with 

specifications '4 and '5 or '11. The forth level of abstraction is represented with the 

specification '6. 

Table 10.1 Graphical Representation of AND/OR clauses 

Graphical Representation 

s 

A B 

S 

A B 

S 

A B c 
S 

A B C 

Interpretation 

A v B ~ S 

S is satisfied if 
AorB 

are satisfied 

S is satisfied if 
AandB 

are satisfied 

(A 1\ B) v C ~ S 

S is satisfied if 
(A and B) or C 

are satisfied 

(A 1\ B) v (B 1\ C) ~ S 

S is satisfied if 
(A and B) or (B and C) 

are satisfied 



296 

s 

A B c 

A MATHEMATICAL THEORY OF DESIGN 

A"B"C=>S 

S is satisfied if 
(A and Band C) 

are satisfied 

Table 10.2 Production Rules for ExamEle 10.1 
Score 

Rule 1: m2 "r4 "r5 => r3 2 

Rule 2: r3 "ml => r2 2 

Rule 3: ml " r8 => rl 

Rule 4: m4 " r9 => r8 2 

Rule 5: r6 => r5 2 

Rule 6: r2 => rl 2 

Rule 7: rIO => r8 

Rule 8: ml" rll => r9 2 

Rule 9: m3 => r4 2 

Rule 10: m6 => rIO 1 

Rule 11: ms => rIO 2 

Rule 12: m2 => rll 2 

Rule 13: m7 => rll 1 

Rule 14: m4 => r6 2 

Table 10.3 Illustration of the Process History for Example 10.1 

PROCESS PROCESS STATE PRODUCTION 
STEP RULE 

1 rl 6 

2 r2 • 2 

3 r3 "ml 1 

4 ml " m2 " r4 " r5 9 

5 ml " m2 " m3 " '5 5 

6 ml " m2 " m3 " r6 
14 

7 ml " m2 "m3 " m4 STOP 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 297 

m2 r4 rS 
ml rll 

Rule 9 Rule S 

m3 r6 

Rule 14 

m4 

Figure 10.1 The Whole AND/OR Search Tree - Example 10.1 

10.3 GUIDING THE AND/OR SEARCH TREE 

As explained previously, a design search problem can be represented by searching 
through a branching AND/OR tree. The root of the tree represents the initial 
specifications to be satisfied, and the non-terminal nodes are either AND nodes or 
OR nodes. An AND node represents a specification or sub-specification that is 
satisfied only when all its children have been satisfied. An OR node represents a 
specification or sub-specification that is satisfied when any of its children has been 

satisfied. In Figure 10.1 ml, m2' m3' m4, ms, m6, and m7 are terminal nodes. 'I 

is an OR node with two choices; rule 6 (node '2), and rule 3 (the AND node ml and 

'8). In Example 10.1, a backward-chaining system is used to decompose 



298 A MATHEMATICAL THEORY OF DESIGN 

specification r). Rule 6 is tried first and when this path does not satisfy the initial 

specification, the system backtracks and rule 3 is tried. 
The AND/OR tree for a complex system is typically large. In order to generate a 

solution, an extensive search of the state space might be required. This· is mainly due 
to large volume of information and knowledge that exists in the form of production 
rules. In addition, specifications and production rules are often provided in an 
unstructured manner through a natural language interface. Thus, in many cases, the 
designer needs a systematic and analytic guideline to select alternative production 
rules (represented by an OR node) at each process state. There are a number of tree 
search techniques, which are divided into "blind search" and "heuristic search" [1] 
categories. The two basic methods of blind search are called "depth-first" and 
"breadth-first". "Best-first" search methods are representative of heuristic searches. 
In this section, a search algorithm is introduced that combines the principles of best
first search methods and production rules. 

The Design Search Algorithm 

We now discuss a general type of design search algorithm based on the type-2 model 
introduced in Chapter 6 and the AND/OR tree representation. The idea is to select a 
specification at each step of the design process a specification that has been 
generated but not further investigated ('expanded'), and to identify the most 
promising production rule that can decompose it. Each production rule is given a 
score by means of a scoring function that indicates the relative likelihood of being 
the right production rule. A production rule with the highest score value is selected. 
The algorithm makes use of a list of attributes, which are either a functional or 
structural, called OPEN or candidate list. The conjunction of all the attributes OPEN 
list represents the process state as illustrated in Table 10.3. The functional attributes 
in the OPEN list are active in the sense that they must be examined by the algorithm. 
The algorithm also makes use of a list of functional attributes, called CLOSE. Each 
functional attribute in the CLOSE list was already expanded by means of a used 
production rule. If a solution path ends with an inconsistent design, the OPEN and 
CLOSE lists are updated through the backtracking mechanism. The steps of the 
Design Search Algorithm are as follows: 

Step 1: Initially, OPEN contains only the root node. 

Step 2: If all the elements in OPEN are structural attributes and the description is 
consistent (i.e., represent a physically realizable design), terminate; if the description 
is inconsistent, go to Step 5; otherwise, go to Step 3. 

Step 3: Expand the leftmost unexpanded functional attribute in OPEN (provided it is 
not already in CLOSE) to generate its child attributes. Remove it from the queue 
OPEN, and place it at the beginning of the queue CLOSE. If only one production rule 
is generated then add the child attributes at the beginning of the queue OPEN and go 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 299 

to Step 2; otherwise. go to Step 4. 

Step 4: If several production rules are generated. then the unused production rule 
with the highest score value is selected. Add the child nodes at the beginning of the 
queue OPEN. and go to Step 2. 

Step 5: Identify the leftmost attribute in CLOSE. which can be expanded with unused 
production rules. Place the attribute at the beginning of the queue OPEN. and remove 
its descendant attributes in OPEN and CLOSE. If all the attributes in CLOSE can not 
be further expanded. terminate; otherwise. go to Step 3. 

To clarify the Design Search Algorithm consider the following example. 

Example 10.2: Assume that the production rules and their score values are those 
expressed in Table 10.2. Suppose that the initial specification is rl' and that both 

structural attributes ml and m2 can not be included in a physically realizable design. 

The whole Design Search Algorithm proceeds as shown in Table 10.4. 

PROCESS 
STEP 

1 

2 

3 

4 

S 

6 

7 

8 

9 

10 

11 

12 

Table 10.4 The Design Search Algorithm applied to 
the AND/OR tree of Figure 10.1 

Attributes Existing in Attributes Existing in Candidate 
OPEN CLOSE Unused 

Production 
Rules 

'I 0 6.3 

'2 'I 2 

r3. ml r2. rl I 

~. r4' rs. ml r3' r2' rl 9 

m3' m2' rs. ml r4. r3' r2' 'I S 

r6' m3' m2' ml rs. r4. r3' r2. rl 14 

m4' m3' m2' ml r6. rs. r4' r3. backtracking 

(inconsistent r2. rl 
solution) 

rl 0 3 

mi' rg rl 4. 7 

mi' r9' m4 rg. rl 8 

mi' rll' m4 r9' rg. rl 12.13 

m2. mi. m4 rll. r9. rg. rl backtracking 

(inconsistent 
solution) 

Selected 
Production 

Rule 
(highest score) 

6 

2 

I 

9 

S 

14 

--

3 

4 

8 

12 

--



300 A MATHEMATICAL THEORY OF DESIGN 

13 'H' mi. m4 '9. '8' 'I 13 13 

14 m7. mi. m4 'H. '9' '8' 'I STOP --

10.4 A PROTOTYPE SYSTEM TO IMPLEMENT THE DESIGN 
SEARCH ALGORITHM 

The decomposition of specifications performed by Step 3 and Step 4 of the Design 
Search Algorithm can be done by a designer, an intelligent advisor, or both. A 
designer performs decomposition according to his/her experience and design 
knowledge. An intelligent advisor is a knowledge-based system, which is supported 
by catalogues, containing the principles (i.e., production rules) of specification 
decomposition. 

In this section, we give an illustration of the practical usefulness of our 
framework. We discuss a prototype system called CADAT (CAse-based Design 
Advisory Tool), which has been implemented on an IBM PC using Case_IN [2]. 
Case-l has rapid memory access to a large body of knowledge that contains a set of 
general production rules. also termed as cases. The cases, which have been 
developed from previously designed artifacts, are stored in a computer database. 
They are used to guide the design process in decomposing specifications into sub
specifications and/or the corresponding structural properties. Cases can be retrieved 
from the memory using several indexing techniques that make searching the 
knowledge base more efficient and effective. Case-I also provides easy-to-use tools 
for adding to that body of knowledge. 

10.4.1 CASE-10VERVIEW 

Case-I [2] involves up to three modules that allow for user interaction: case builder, 
case retrieval and synthesis, and system administration. The components of Case-I 
that do not require user interaction include: the reasoning engine, and the database. 
These modules are summarized as follows: 

• The Case Builde, - the Case Builder is the authoring tool used by knowledge 
engineers to create and modify cases (production rules). Cases are the atoms of the 
Case-I system. They may be thought of as a single potential decomposition of a 
specification into sub-specifications, or the corresponding structural attributes. A 
case has information associated with it that allows Case-l to determine if the case is 
relevant to specifications ("problem description") the designer might present. This 
information is comprised of the textual description of the specification and 
decomposition ("solution"), a list of qualifying questions, and any appropriate 
hypermedia attachments. All of these components are used by the Analyzer to present 

N Case-I is a trademark of ASTEA International, 1995. 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 301 

to the designer the most probable set of decompositions for the specification. 

• The Analyzer - this module allows the user to present problems (specifications) 
and obtain solutions (through decomposition). Each new problem entered into the 
Case-l analyzer is called a session. Designers compose sessions interactively, with 
the help of editing tools including high level spell checker. The designer then initiates 
a search of the Case-l database. When the search is complete, Case-l displays a 
sorted list of the most probable answers to the design problem. If the solution list is 
not satisfactory, then the Analyzer allows for search criteria to be changed by either 
narrowing or broadening the search area. Interactive questions and answers allow for 
further refinement of the solution set. If no satisfactory solution is presented by Case
I, the session can be placed in a special queue for future review by a knowledge 
engineer. Once the session is complete, it can be closed and saved for future 
operation. 

The list of used sessions assists the designer in representing and recording the 
list OPEN as defined by the Design Search algorithm (see Section 10.3). If all the 
elements in OPEN are structural attributes that represent a physically realizable 
design, the search is terminated. Otherwise, a new session is started where the 
Problem Description window of the new session includes the description of the 
leftmost unexpanded functional attribute in OPEN. 

• The System Administration Utility - this module allows the designer to select 
options and to fine-tune the operation of Case-I. The success of a knowledge-based 
tool such as this depends solely on the data it contains. 

• The Reasoning Engine - this is where all intelligence within Case-l resides. It 
communicates with the database and also interfaces with the interactive components. 

• The Database - the Case-l database contains all the information that Case-l 
needs in order to operate including the cases, case statistics, session status, and 
attachment file locations. 

The CADA T architecture is summarized in Figure 10.2. The "SYNTHESIS" and 
"DESIGN KNOWLEDGE" components are currently the prime focal points of a 
Case-l implementation. The "EVALUATION" component of CADAT is concerned 
with assessing the validity and critiquing the design solutions relative to the original 
functional requirements (which is currently not part of the Case-l implementation). 
Since the knowledge base is generally only heuristically suggestive of causal design 
relations, it can be improved or repaired by processing the functional performance 
evaluation of the artifact. The performance evaluation could be provided by means of 
a simulation (e.g., finite element analysis). In many cases this simulation could be 
provided by a human designer, since designers can usually envision artifact 
performance in many domains. 



302 

· · · · · 

A MATHEMATICAL THEORY OF DESIGN 

rSYN'~~SIS---"--- --l 

I SPECIFICATIONS I ·······c _ s~tfr~_. 

DESIGN KNOWLEDGE 

•••• EVALUATION 

••••••••••••••• ~ User interaction 

-----~. No user 
interaction 

Figure 10.2 The CADAT Architecture 

10.4.2 BASIC CASE-1 DEFINITIONS 

Case 

Each production rule is considered a case. By grouping cases into classes, a domain 
can be created for a set of production rules that pertain to a particular area of 
knowledge (e.g., fasteners, cars, forklifts). A case consists primarily of the problem 
description (representing the specification that needs to be expanded) and the 
solution (representing the child attributes). Here are some simple case examples 
(UPPER CASE characters represent functional attributes while lower case letters 
denote structural attributes): 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 303 

Table 10.5 Examples of Cases (Representing Production Rules) 

Problem Thec~isECONOMICAL 

Description 
Solution The car has RELIABLE TIRES & LOW FUEL 

CONSUMPTION 
Problem Thec~isSAFE FOR HIGH SPEED DRIVING 
Description 
Solution The c~ has 4-wheel steering (4ws) & 

stabilizers in the front suspension 
systems & GOOD BRAKES & extra strong 
roof & rigid passenger compartment 

Each case has its associated information decomposed and structured so that Case-l 
can determine the relevance of each case to specifications the designer might present. 
When a designer enters a problem description into the Analyzer and asks for 
solutions, Case-l presents a list of cases, ranked by the reasoning engine's estimate 
of each case's quality and likelihood of solving the problem. 

In addition to the descriptive features, each case can have an associated list of 
questions and potential answers. Depending on the answers that the designer 
provides, Case-l may give that case a higher or lower rank. 

Each case may also have one or more hypermedia attachments. Information in 
the attachments is not considered by the Reasoning Engine, but can provide 
additional information to the designer. 

The scoring of cases with respect to a particul~ problem statement is affected by 
a number of parameters. The p~ameters ~e dynamically adjusted by the system to 
reflect actual operational experience as the system is run. 

Sessions 

A session is an individual instance of a problem statement (i.e., specification 
description) presented to the Analyzer. For instance, a problem statement could be: 

"The fastener is EASILY DISASSEMBLED" 

"The computer classroom has HIGH LEVEL ACOUSTICS" 

In order to gain the best set of potential answers from Case-l the problem description 
must be as complete as possible. 

Domains 

A domain is a set of cases that pertain to a p~ticul~ area of design knowledge. The 



304 A MATHEMATICAL THEORY OF DESIGN 

designer selects the domains to be searched during each session. Only solutions in the 
selected domains will be presented to the designer. The designer can change the 
domain selections interactively during a session. 

Questions 

During the typical Case-l problem resolution session (specification decomposition), 
a set of questions are presented to the designer. Depending on the answers to the 
questions, a different list of proposed production rules (cases) may be presented to 
the designer. 

The answers designers give to questions are one of the key sources of 
information that Case-l uses to rank production rules. The designer may initially 
choose to answer as many questions as seem appropriate. Additional questions can be 
answered interactively later in the process to further refine the ranking of the 
production rule list. 

The Analyzer Interface 

The designer poses design problems to Case-l through the Analyzer. This is done by 
starting a new "session," and including a description of the specification in plain 
English. When the description is complete, the Caes-l Reasoning Engine uses 
artificial intelligence techniques to sift through its knowledge base, and provides a 
list of possible production rules or cases. If no exact match is available, Case-l 
presents the closest solutions ranked by their likelihood of solving the problem. 

In order to refine the search, Case-l also poses a list of questions, each with 
multiple choice answers. The designer can respond to some or all of the questions by 
selecting answers from each question's pull-down list. The Case-l Reasoning Engine 
uses the answers to update the production rule selection and to present a new list to 
the designer. The process is interactive and can be repeated as needed to find the 
right decomposition. 

Questions, answers and production rules (cases) can have remarks or notes 
attached to them that designers, can view as needed. The notes may include 
hypermedia documents (such as drawings). 

The Reasoning Engine 

Case-l uses several indexing techniques to make searching the knowledge base more 
efficient and effective. These include: common word elimination, morphological pre
processing, synonym consolidation, tolerant pattern matching, and index matching. 
Case-l takes the specification description entered by the designer and compares it 
word by word to the production rule database. In order to find the most likely 
production rule to a specification, Case-l searches its knowledge base for similar 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 305 

production rules and, using intelligent statistical manipulation, displays a list of the 
most probable solutions. Thus, the more often elements appear within a production 
rule, the more likely that production rule will contain the most appropriate solution. 

Case-Builder Interface 

Cases are written by knowledge engineers who have expertise in the problem area. 
When developing cases for a new problem domain, the knowledge engineer typically 
outlines the problem area and identifies significant and relevant functional and 
structural attributes. The knowledge engineer then breaks this information down into 
a series of cases; each dealing with one specific production rule. The knowledge 
engineer then develops a case title, problem description and solution description. The 
knowledge engineer then assigns questions and answers to each case. The engineer 
also assigns weight to the answers based on his/her evaluation of each answer's 
alignment with the case, and likelihood of leading to the best decomposition. 

10.4.3 THE CASE BUILDER INTERFACE 

Case Builder is the authoring tool used by knowledge engineers to create and modify 
production rules. When creating or editing a rule, the engineer must enter information 
that will allow the reasoning engine to determine if the production rule is relevant to 
specifications the designer might present. The knowledge engineer also associates a 
list of questions and answers to the production rule. Finally, the knowledge engineer 
can supplement the information available to the designer by adding hypermedia (such 
as drawings) and other attachments. 

Specifying A Domain 

Since production rules are organized into knowledge domains, we must first specify 
the domain in which we want to work. We select Open from the Case Builder File 
menu (or the open folder icon from the toolbar). The Domain dialog box appears and 
displays a list of available domains (see Figure 10.3). We may then select the name 
of the desired domain and then click OK. 



306 A MATHEMATICAL THEORY OF DESIGN 

~~ Ca~" Builder . - ',' ,'., ',-~' -', "0, • -"v " ':. ' 

Figure 10.3 The Domain Dialog Box 

If we want to create a new domain, we type the name we want to give the new 
domain into the Domain text field. When we click OK, we should see the main Case
Builder window. At the top are three tabs labeled Cases. Details and Questions (see 
Figure 10.4). The leftmost tab. Cases. shows a list of all production rules contained in 
the domain. 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 307 

Figure 10.4 The Main Case Builder Window 

Creating A New Case 

We create a new case when we need to add a production rule that does not already 
appear in the knowledge base. To start building a new case. we select New from the 
Case Builder menu. The Detail tab will come to the front as shown in Figure 10.5. 
We need to enter a title for the case in the Title text field. This title is the text that 
appears in the list of cases during a session search. We should also enter a complete 
description of the specification in the Case Problem Description text field. The 
information in this field is what the reasoning engine uses to match against session 
problem descriptions. The Solution Text field should contain a series of sub
specifications. Thus. to determine the Case Problem Description. the sub
specifications should be developed first. When we are satisfied with the case, we add 
it to the domain database by selecting Save from the action menu. 



308 A MATHEMATICAL THEORY OF DESIGN 

powet btake. ale used 101 vet)' heaV)l 01 vet)'lasl ""' .. A> vehicle. bec.>me hea'fiet and laslet the pedal 
11-:Jlprel:.U'e le~ed to btake the vehicle inae ... ed beyond a ComOltMIe. ollie level POWet btak .. Wete developed 

Ploblem. In !Iliomoble: !he). use Ihe vbCU\.fIl Cleated by the engr,e rising i. Rake woke to roe ... e 
appied to the piston ., Ihe mastet cyfndel. reducing the le~ed pedal pres .... c. lithe power-assisting 

1I,'fllmech/ri"" shrdd lal. or l the en9ne stalls. the btakes wi rot I .. a>mpIet~. alhough IJeatet pedal pre'SlJfe wi 

Figure 10.5 Entering A New Description of A Production Rule 

Attaching Questions to A Case 

When Case-l analyzes a problem statement, a set of discriminating questions is 
usually presented to the designer. These questions help the Analyzer to narrow the 
search, and the Search Engine ranks production rules differently depending on the 
answers to the questions. As a result, a different order of production rules may be 
presented to the Analyzer operator. 

The answers designers provide to the questions are key sources of information 
used by Case-l to rank production rules. The designer may initially choose to answer 
as many of the questions presented as seems appropriate. Additional questions can be 
answered interactively to further refine the candidate list of production rules later in 
the process. 

The set of questions is common to all the production rules in a domain. The 
answers and their scoring weights are part of each production rule. The knowledge 
engineer working on a production rule may choose to assign answers and weights to 
only part of the questions presented in the case's domain. 

To activate the Case Question Screen, we click on the Question tab (see Figure 
10.6). To add a question, we click on the Question tab and then select New from the 
Case Builder Action menu. We can then type the question into the Question text 
field. We may assign a weight to a question as it applies to the production rule we are 



INTEll.IGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 309 

working on. The weight ranges from 0 to I, reflecting the importance of the 
Question. A higher weight indicates a more important question. 

t] Case BUIlder .~ : 

Figure 10.6 Activating the Production Rule Questions Screen 

Attaching Answers to Questions 

For each question. Case-I proposes all available answers. The answers selected by 
the designer affect how the production rules are scored, and influence which 
production rules are presented and in what order. 

To activate the Answer screen, we click on the Answer tab as shown in Figure 
10.7. To create a new answer, we select New from the Case Builder Action menu, 
type the answer in the Answer text field, give the answer an appropriate weight for 
the production rule, and select Add from the Case Builder Action menu. 

An answer weight is a number between -I and + I. When the designer selects an 
answer, the Reasoning Engine reviews the weights assigned to that answer in each of 
the production rules. If the weight is positive, the Reasoning Engine assigns a higher 
likelihood that the production rule is the correct one. If the weight is negative, the 
Reasoning Engine assigns a lower likelihood. If the weight is zero, the question is 
considered neutral and the likelihood is not changed. For example, suppose we are 
working on the production rule presented in Figure 10.5 ("IF the car has power 
brakes THEN the car has GOOD BRAKES"). We add the question that asks: What 



310 A MA THEMA TICAL THEORY OF DESIGN 

is the car's maximum speed? As shown in Figure 10.7, the possible answers that are 
created are: 

• 100 KmIh; 
• 160 KmIh; 
• over 210 KmIh 

Since power brakes are used for very heavy or very fast cars, we might assign a 
weight of 1 to "over 210 KmIh," a neutral score of 0 to "160 KmIh," and a weight of 
-1 to "100 KmIh." Thus, we assigned a weight of -1 to "100 KmIh" since it is 
unlikely that power brakes are needed on such a slow vehicle (drum brakes can be 
used instead). 

Figure 10.7 Attaching Answers to Questions 

Attaching Notes 

Attachments are informative notes (e.g., technical drawings, images, video clips) that 
can be added to Case-l sessions, cases, questions. and solutions. The designer is 
presented with a list of available attachments and may choose to view them or not. 
The information in the attachment is for the designer's benefit only and is not 
analyzed by the Reasoning Engine. For example, a media clip describing the 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 311 

operation of a hydraulic disk brake might be attached to a case that says "IF the car 
has hydraulic disk brakes. THEN the car has GOOD BRAKES". Thus. more 
clearly illustrating the component parts and operating mode (see Figure 10.9). 

To activate the Attachment Notes window. the designer selects Attachment Info 
from the Case Builder Action menu. The Attachment Notes window will appear as 
shown in Figure 10.8. To add a new Note. the designer selects the OLE type (a 
Microsoft standard for exchanging information between different Windows 
applications) of the file containing the Note. and indicates which file contains the 
Note information. The knowledge engineer may also want to test the information in 
the selected source document file by clicking on the Test button (see Figure 10.9). 

f.2 Case Bwlde. ..•..... ..' _l ,'.. ..' -.~ 

Figure 10.8 Attaching Informative Notes to A Production Rule 



312 A MATHEMATICAL THEORY OF DESIGN 

~ Hy-d-b. - MedIa Ctip in Cllcnt Document Diet EJ 

C;\\(NOVNlV-O ·BA-FlC E.J 

Figure 10.9 Testing the Informative Note Related to Hydraulic Disk Brakes by 
Clicking on the Test Button 

10.4.4 THE ANALYZER INTERFACE 

The Analyzer is the designer's primary access to Case-I implementation of the 
Design Search Algorithm presented in Section 10.3. It allows the designer to present 
a specification and obtain a list of sub-specifications in a highly intuitive, natural 
manner. Each new specification description is called a session. When the designer is 
done describing the specification, a search of the production rule database begins. 
When complete, Case-I displays a sorted list of cases that represent the most relevant 
set of potential production rules in the knowledge base. 

If Case-J presents a production rule that is satisfactory to the designer, the list of 
attributes in OPEN is updated as described by Steps 3 and 4 of the Design Search 
Algorithm, and the session is closed. The maintenance of the list OPEN, which 
includes the "active" functional attributes as well as the partial design solution, is not 
implemented by Case-I. The list OPEN may be maintained manually, or by using any 
standard online Windows editing tool (e.g., Notepad). If no satisfactory production 
rule is presented, the session can be placed on a special queue for review by a 
knowledge engineer. 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 313 

Starting a New Session 

Assume that the designer is faced with the problem of designing a car that is able to 
achieve the folJowing specifications (see Section 21.1 for automobile design 
example): 

I. The car is SAFE ( r) ); 

2. The car is capable of HIGH SPEED ( r2); 

3. The car has LOW FUEL CONSUMPTION ( r3 ). 

The initial list of attributes in OPEN includes { r), r2' r3}' We can start a new 

session by selecting New Session from the Case-I Analyzer edit menu. When we 
have completed naming the session and selecting the car design domain to match our 
problem (see Figure 10.10), we click OK. The Session window appears as shown in 
Figure 10.11. Within this window there are three screens represented by index tabs: 
Session, Examine, and Question. The Session tab alJows the designer to compose a 
specification description, the Examine tab enables the designer to look at a 
production rule in more detail, and the Question tab lets the designer answer 
questions that help refine the search. 

Since many production rules may match the current list of attributes in OPEN, 
the preferred rule is the one that matches the first leftmost of the specifications in the 
list OPEN. Thus, the designer composes a problem by describing the specification 
"The car is SAFE" in the Problem Description window of the Session tab, as shown 
in Figure 10.11. 

Figure 10.10 Starting A New Session by Selecting the Appropriate Domain 



314 A MATHEMATICAL THEORY OF DESIGN 

Figure 10.11 Composing A Problem by Describing the Specification in the Problem 
Description Window of the Session Tab 

Launching the Search 

Once we have entered the specification description "the car is SAFE," we start the 
search by selecting Search from the Action menu. When the search process is 
complete, a ranked list of potential production rules is displayed as shown in Figure 
10.12. The score next to each production rule indicates its relative likelihood of being 
the right decomposition for the particular specification. The production rules are 
displayed in order of rank (score). 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 

100 SAFETY-l 
SAFETY-2 
SAFETY-3 

- -- - --. - - - - . _. - --

SAFETY IN ACCIDENTS 

Figure 10.12 A Ranked List of Production Rules is Displayed When the 
Search Process is Complete 

Answering Questions 

315 

If we want to narrow down the set of production rules. we click on the Questions tab 
and respond to questions stored with the production rules. We select questions by 
clicking on a question in the Question widow as shown in Figure 10.13. We answer 
questions by clicking on the desired answer in the Answer window. In our example, 
we answer the questions (see Figure 10.13) according to the following assumed 
constraints: (1) the external conditions are good. (2) the maximum speed is 160 
KmIh. and (3) the weight of the car is between 1 and 3 ton. Once we have answered 
the pertinent questions. we restart the search by clicking on the Session tab. As 
shown in Figure 10.14. the reasoning engine uses the questions to update its 
production rule selection and presents a new list to the designer. 



316 A MATHEMATICAL THEORY OF DESIGN 

Figure 10.13 Selecting the Questions and Answers 

.... , (.4:51:-1 AOdlyzel • 

Figure 10.14 The Answers to Questions are Key Sources of Information used to 
Rank Production Rules 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 317 

Examining and Selecting a Preferred Production Rule 

During a session, we want to review the candidate set of production rules and decide 
which seems the most likely decomposition of the particular specification. For 
example, to see more information about the production rule "SAFETY -3," we select 
it and click the Examine tab. The Examine screen shown in Figure 10.15 appears. 

" Case·l Analyzet • 

car is SAFE IN ACCIDENTS 

Figure 10.15 Examining A Potential Production Rule 

The Examine screen has three text fields. The first gives more information on the 
specification that the production rule is decomposing. The second gives the list of 
sub-specifications, and the third shows a list of hypermedia attachments that further 
illustrate the specification or its list of sub-specifications. 

As mentioned earlier, the list OPEN may be maintained by using any standard 
online Windows editing tool. For example, we can select the list of sub-specifications 
from an Examine screen text box and then select Copy from the Edit menu to copy 
that text to the Windows clipboard. We can then paste that information in any 
Windows application that maintains the list OPEN. 

In our example, we may decide that the preferred rule is "SAFETY-3" (ranked 
first). We then remove the specification "the car is SAFE" from the queue OPEN, 

and add the specification's sub-attribute "the car is SAFE IN ACCIDENTS" ('4) 

at the beginning of the queue OPEN. The current session is closed, and the search 



318 A MATHEMATICAL THEORY OF DESIGN 

process is then applied (by starting a new session) recursively on the sub
specifications in the updated list OPEN (i.e., ( r4, r2, r3}). The process continues 

until eventually a set of structural attributes that correspond to the sub-specifications 
is identified. Table 1 of Chapter 20 shows all the process states generated in the 
course of searching for a solution to the automobile design problem. 

10.5 SUMMARY 

In summary, we introduced the Design Search Algorithm that is based on a set of 
production rules and is used to search for a physically realizable design solution. The 
main idea of the Design Search Algorithm is to select, at each step of the design 
process, a specification that has been generated but not investigated ('expanded'); 
and to identify the most promising production rule that can decompose it. Each 
production rule is given a score (by means of a scoring function) that indicates its 
relative likelihood of being the best production rule for the specification. Thus, a 
production rule with the highest score value should be selected. 

The Design Search Algorithm has been implemented on a prototype system 
called CADAT (CAse-based Design Advisory Tool). The CADAT system performs 
production rule retrievals, which are stored in the production rule memory. To do 
this, the designer starts a new session and types a new specification (the leftmost 
unexpanded specification in OPEN) in plain English. A production rule has 
information associated with it that allows the reasoning engine to determine if the 
production rule is relevant to specifications the designer might present. This 
information is comprised of the textual description of the production rule, a list of 
qualifying questions and answers, and finally any appropriate hypermedia 
attachments. The reasoning engine, via its knowledge of the existing production rules 
and the answers that the designer entered, presents a list of possible production rules 
using several indexing techniques (based on the relevance of the production rule and 
common words). The designer reviews the unsatisfied specifications to determine 
which physical components satisfy the initial design specifications. This results in a 
solution alternative. 

The Design Search Algorithm with its CADA T implementation has the following 
characteristics: (1) it provides a systematic approach to guide the search in a large 
and complex solution space; (2) it uses a set of production rules based on previous 
"good" designs to guide the search; (3) each production rule has its associated 
information decomposed and structured so that its score can be determined; (4) the 
production rules in the knowledge base are not only made within the context of the 
task in question, but also imply a variety of tacit assumptions (e.g., environmental 
conditions). CADAT uses a set of questions and answers to better rank the 
production rules, and to enable production rules to be applied to other contexts. 

Finally, the conceptual design procedure we have described will not improve in 
performance over time. This is because there is no feedback mechanism, or 
evaluation of a design result, which enables the system to learn new causal relations 
with experience. In order to resolve this issue, tools (e.g., simulators) that provide 



INTELLIGENT ADVISORY TOOL FOR DESIGN DECOMPOSITION 319 

performance evaluations should be developed in the future. 

REFERENCES 

1. Luger. G. F. and Stubblefield. W. A.. Anijicia/ Intelligence and the Design of Expert Systems. 
Redwood City. CA: Benjamin/Cummings. 1989. 

2. Case-I User Manual. ASTEA International. 1995. 



CHAPTER 11 

PHYSICAL DESIGN OF PRINTED CIRCUIT 
BOARDS: GROUP TECHNOLOGY APPROACH 

In this chapter, the applicability of Group Technology models and clustering 
techniques of the industrial engineering and operation research community to the 
partitioning problem of electronic circuits is examined. The problem is shown to be 
NP-complete, hence intractable within most modern computing environments. 
Characteristics of the solution are outlined and a grouping heuristic algorithm is 
discussed. We derive lower bounds on the objective function for any set of 
constraints on pairs of gates that must be in thesame chip. The lower bounds and the 
grouping heuristic procedure are used to develop a branch and bound algorithm. 
Finally, computational results are given for four test problems. 

11.1 INTRODUCTION 

11.1.1 THE ROLE OF CLUSTERING (GROUPING) IN DESIGN 

In Chapter 5, we introduced the notion of a metric space. If a space is metric, then 
one can calculate a distance between any two entities in the function or attribute 
spaces. Defining a distance metric will enable to group entities (e.g. artifacts, 
structures, or anything else) into classes that reflect commonality of some properties 
(e.g. structural attributes, functional attributes). Such a grouping or clustering 
method works as follows: 

1. for each entity, define the properties one cares about and be able to give 
numerical values for each property; 

2. create a vector of length n with the n numerical values for each entity to be 
classified; 

3. viewing the n-dimensional vector as a point in an n-dimensional space, cluster 
points that are near one another. 

This procedure leaves the following issues open to variation: 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



322 A MATHEMATICAL THEORY OF DESIGN 

1. the properties used in the vector; 
2. the distance metric used to decide if two points are "close"; 
3. the algorithm used to cluster. 

To take a simple case, suppose we have two properties associated with car horns: 
power consumption and thermal conductivity, each ranging between zero and one. 
Suppose the graph of our data points looks like Figure 11.1. Assuming we use the 
"obvious" Euclidean distance metric between points, then this figure clearly suggests 
two groups, one with four members, one with three. 

The synthesis process was defined in Chapter 5 as a mapping from the 
specifications properties to design description properties. Synthesis generates several 
candidate designs that are expected to satisfy the design specification. In contrast, 
analysis is concerned with the process of inferring potential functionality from 
artifact structure. The mapping from the specifications properties to the artifact 
description (i.e., synthesis) is often the "inverse" of the mapping from the artifact 
description to the specifications properties (i.e., analysis). In most domains, high 
quality synthesis knowledge does not exist (in contrast to analysis knowledge, which 
is well developed within engineering disciplines. However, synthesis is the most 
important process in design, as it deals with the creation of new artifacts. 

Thermal 
conducti
vity 

• 

• • 
• 

Power Consumption 

• 

• • 

Figure 11.1 A simple Clustering Problem 

Grouping or clustering algorithms can be used to support the synthesis process in 
several ways: 

Learning Synthesis Know/edge 

For relatively mature disciplines, examples of existing artifacts are available. Since 
these artifacts are the products of exercising synthesis knowledge, they implicitly 
embed this knowledge. Grouping algorithms provide a means for the acquisition of 
synthesis knowledge to support the synthesis process. The assimilation of design 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 323 

examples into knowledge can be used to synthesize candidate designs for given 
specifications. 

Grouping design examples may work as follows: the description of artifacts is 
limited to a fixed and pre-specified list of property-value pairs. This list is called the 
artifact description. The representation of the specification comprising the 
requirements and constraints for the artifact to be synthesized is also limited to a 
fixed, pre-specified list of property-value pairs. The grouping algorithm accepts a 
stream of examples described by a list of property-value pairs. Then, a distance 
metric used to decide if two designs are "close" is defined. For example, in the work 
reported in [30, 31), the proposed distance metric measures the expected number of 
property-pairs that can be guessed correctly by grouping two designs. What remains 
is the algorithm by which the groups (clusters) are created, given the metric used. For 
example, a typical strategy is to adopt a greedy algorithm. This means that the 
algorithm starts with ro groups, one for each design example. It then combines the 
two groups that result in a minimal loss of the distance metric, and repeats until the 
desired final number of clusters is reached. 

To illustrate how a mapping from the specification, represented by several 
properties, to the full description of the artifact in terms of a much larger number of 
design description properties is created (i.e. synthesis), assume that a new design 
problem (specification properties) is introduced. The synthesis system may try to 
accommodate it into the existing classification. At this stage synthesis should 
terminate and candidate designs should be returned. 

To take a particular example, consider the ECOBWEB algorithm reported in 
[31). The following review is taken from [31). ECOBWEB, an enhanced version of 
COBWEB [30), acquires synthesis knowledge and uses it to synthesize new bridges. 
ECOBWEB creates a classification from design examples represented by lists of 
property-value pairs. It has several operators that build the classification from 
examples. Learning and synthesis progress by one-step look-ahead search in the 
space of classifications directed by an evaluation function to select the best operator. 
The evaluation function, called category utility, evaluates a classification of a set of 
designs into mutually-exclusive classes C l' C 2' . . ., en' When a new design is 
introduced, ECOBWEB tries to accommodate it into the existing classification by 
performing one of five operators that maximizes the value of the category utility 
function. In this approach, ECOBWEB retrieves a pre-determined number of 
candidate designs from the classification. The candidates are complete descriptions 
of previously designed bridges. 

Grouping and Uncoupled Design 

Learning synthesis knowledge via a grouping algorithm as described above restricts 
the scope of designs to those with fixed structure. Therefore, the design of artifacts 
that are described via graphs, such as layouts, cannot be supported under the 
assumption that artifacts and their specifications are described by (finite) lists of 
property-value pairs. However, grouping methods can also be beneficial in 



324 A MATHEMATICAL THEORY OF DESIGN 

synthesizing artifacts that are described via layouts. As discussed in Chapters 6, 10, 
the aim of a good design is to uncouple the functional requirements so that each 
design parameter (e.g. component or subsystem) affects only one set of functional 
requirements. Uncoupling means that each subsystem exhibits a minimum number of 
overlapping functional requirements. For example, electrical circuit partitioning, also 
called packaging or assignment, involves the transformation of a drawing of the 
logical circuit into sub-circuits, each of which is assigned to, or packaged in, a 
module (also called integrated circuits). For a given partitioning, the number of 
interconnections between modules is used as a measure of uncoupling (an efficiency 
measure). The smaller this measure is, the better the design is. 

In this chapter, the applicability of grouping and clustering techniques to the 
partitioning problem of electronic circuits in order to achieve uncoupled solutions is 
examined. 

Performance Metrics for Function Structures 

If a space is metric, then the distance measure can be used to assign values (also 
called performance metrics) to each of the attributes or functions describing an 
artifact (see Chapter 5). Evaluation of structural attributes (e.g. a detailed circuit 
design at the physical level) is straightforward; performance metrics include, but are 
not limited to: size, weight, power requirements, efficiency, capacity for force 
generation and economic features. Unfortunately, precise performance metrics are 
difficult to articulate for designs that are completely described as function structures, 
e.g. a circuit design at the logical level. Grouping methods can be used to address the 
fundamental problem of articulating clear performance metrics for function structures 
by comparing the values of their associated structural attributes. For example, the 
functional requirements specified for a circuit can be fulfilled by more than one 
logical design using different sets of logical elements interconnected in different 
ways. The designer can select one of several alternative logical designs by comparing 
the values of their associated grouping into sub-circuits. 

11.1.2 THE CIRCUIT PARTITIONING PROBLEM 

The remainder of this chapter focuses on the physical design of microelectronics 
circuits. We apply the grouping approach to the microelectronics circuit partitioning 
problem, and use it to develop a branch and bound algorithm. 

Circuit physical design involves the transformation of a logical design into a 
specific set of modules positioned within some specified frame, and the routing of the 
interconnections among the modules. This is illustrated in Figures 11.2 and 11.3. In 
Figure 11.2, a drawing of a logical circuit, called schematic, is represented. A 
physical design for the same circuit is represented in Figure 11.3. The blocks in the 
physical design of Figure 11.3 are the modules of the circuit which contain the 
circuit's logical elements. The portion of each module is very clear, and the routes of 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 325 

all desired interconnections are drawn. It is now clear that circuit physical design 
consists of three major phases: partitioning, placement, and routing [28]. Appendix 
A provides background on electronic circuits and their design for the reader who is 
not familiar with the subject. 

The partitioning phase, also called packaging or assignment, is the first in the 
physical design process. In the partitioning phase, the circuit is partitioned into sub
circuits, each of which is assigned to, or packaged in, a module (also called 
integrated circuits). For a given partitioning, the number modules, and the number of 
interconnections between modules are used as measures of efficiency. The smaller 
these parameters are, the better the design is. Less space is required for a smaller 
number of modules, i.e., higher space utilization; and a design with fewer 
interconnections between the modules is more manufacturable, reliable, and testable. 
For example, Figure 11.4 presents one feasible partitioning of the schematic of the 
logical circuit presented. 

P1 
18-4+--------...:....j ,,0-::------. 
3,+1----"""\ 

~---_~ +5VCC 

+---1+ ... -.' GND 

7 

3 

~41 

Figure 11.2 Drawing of A Logical Circuit, called Schematic 

I 

I ~ 2 



326 A MATHEMATICAL THEORY OF DESIGN 

14 4.00 ~ 

C 
Z 
z m , , , 
0 
m ' 
(J)"l1 
(J)m 
)~ 

~~ 
"11 m 
m) 
mr r' 0 '" 
-I 
J: 
~ 

WC 
.(J) 
0 
0 

Figure 11.3 The Physical Design of the Logical Circuit Presented in Figure 11.2 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 327 

P1 P1 
8 , ,----c-, I 

0 , 
L=:: , 

,I~~~ 
, , 1 c- , 

~-m 
' 0 , _J~ ______ ' -=m 0 , 

, 
2)0, r-- )i~-~ ~- , 

, , , o , , , 
If : 

0 , .10 C- o , , , ----- --_ .. 
: 2Y"l 0 - - ---------- , 
=~:: ~~ 

:17 t5 0 

, 0 , ".: IT L ___ ~ , ~ , 
, ~ , _ ~7 ___ F:!-Q , , 

13)7-- , 
, 

" , r---------" 
0 , 0 , , 16>---r=®::L! 3 , , , .. - __ I 

3" 
, , '16)-r-~ K 

, , , 
, 0 

~ 
, , 

# ------ -----, , 
~--~4 I , 

0 0 
0 

~ 
, 

t=f4) , , 
, 0r:4l ....... , 
'14.,.:.... ..... 4 

, 0 

- --- lo_ r -- -- , , _ , v 

~ 
, , , 

0 , , 
0 

Il 
, , , , , , , , 

=r.r> 
, 

~l == , 0 , , , , , , , 
15 , , , I 

, ______ 01 

'- - _ .. 

Figure 11.4 Feasible Partitioning for A Schematic 

In this chapter, an optimization model is formulated for the circuit partitioning 
problem and an efficient grouping heuristic scheme is developed to solve large scale 
instances of this model. The proposed method can also be used to assist in the 
evaluation of the logical design. The functional requirements specified for a circuit 
can be fulfilled by more than one logical design using different sets of logical 
elements interconnected in different ways. The designer can select one of several 
alternative logical designs by comparing the values of their associated partitioning. 
Since the method presented here is geared to partition the logical design toward 
minimizing the number of on-board (i.e., between chips) connections, doing so is a 
step toward a design for routability, manfacturability, reliability, and testability. 

The circuit presented in Figure 11.4 is specified at the gate level. However, the 
partitioning method presented here is capable of handling circuits at different levels 
of aggregations. A large and complex circuit can be partitioned top-down, and the 
modules at one design level can be further partitioned and internally designed at 



328 A MATHEMATICAL THEORY OF DESIGN 

parallel. Thus, in this chapter a 'circuit' can be a system level circuit, a board level 
circuit, or an integrated circuit (lC). For example, aggregation is used at the logical 
design phase, since million gate circuits are rarely designed at the gate level. Rather, 
previously designed functional elements are retrieved from cell libraries for the 
design of a new circuit. Also, most circuit consists of some well defined modules 
(e.g., ALU, memory) for which the designer needs no help in the partitioning. The 
parts of the circuit that provide the interface between the major modules are those 
that are hard to partition. The gate count of this 'interface logic' can be up to several 
tens of thousands in today's circuits. 

In this chapter we assume that we are given a finite set of gates (components), a 
scheme of the electrical connections between them, and chips (termed also as 
packages or ICs) of different types. Associated with each gate is a list of the 
input/output pins (I/O pins). I/O pins that have a common electrical signal (thus 
connected by the same electrical wiring) are assigned to a particular signal's net type. 
The I/O pins connected by the net's signal are the net's terminals. A gate may be 
connected to more than one signal, i.e., a gate may belong to several nets. Underlying 
the problem formulation are the following assumptions: (1) the gates are assigned to 
different chips such that each chip has a finite capacity for different types of nets that 
reside in it. This constraint is placed to ensure that space limits are not violated, (2) 
costs are incurred when a net is included in a chip, since a pin is required for each net 
that partly resides in it, and (3) routing on the chip is cheaper and more reliable than 
routing on the next level of packaging. The conclusion of the previous discussion 
(see also Appendix A) is that minimizing the on-board (i.e., between chips) 
connections will result in a more modular, routable, reliable, testable, and 
manufacturable design. The number of on-board interconnections is thus used in the 
partitioning problem of this chapter as an effective measure of the design quality. The 
simple way to model the board level circuit is to include a connection between each 
pair of chips holding terminals of a net. The results of the packing efforts may be 
considered as an aggregate description of the schematic in which all the gates packed 
together are represented by a single chip, while on-board connections are used to 
connect net terminals packed in different chips. The ICs and on-board connections 
then form a board level circuit with board level nets. 

Physical board design is similar to many design problems addressed in the 
Industrial Engineering (lE)/Operations Research (OR) literature. Yet, the 
applicability of IE/OR techniques are rarely used in the area of electronic circuits. In 
this chapter, the applicability of Group Technology models and techniques of the 
IE/OR community to the partitioning problem of electronic circuits is examined. 
Group Technology research of the IE/OR community has mainly been devoted to the 
problem of finding appropriate groups for cellular manufacturing [25, 23]. The 
problem is often cast in terms of grouping machines into cells such that the 
production of all components can be accomplished by machines in a single cell. 
Often, this is not possible unless machines can be included in more than one cell or 
unless components are moved between cells during production. In terms of our 
problem, components in the broader Group Technology literature are analogous to 
nets and machines are analogous to logic gates. Moving a component between cells 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 329 

during production is analogous to connecting net's terminals packed in different 
chips. A key facet of our problem that is often ignored in the Group Technology 
literature is that there is a limit on the number of different net types that can be 
included in a chip. This is analogous to having a limit on the number of different 
machines that can be included in a cell. Harhalakis, Nagi, and Proth [9] have recently 
proposed a heuristic approach to cell formation that reflects this constraint. 

Several approaches exist to group the machines into cells, such as (1) the 
application of clustering techniques to a part-machine matrix [12, 13, 3, 4, 17, 
amongst other], (2) the use of optimization-based approaches [e.g., 15, 14, 24], (3) 
graph theoretic approaches [e.g., 1, 21, 26], (4) simulated annealing [9, 10, 16], 
genetic algorithms [20], neural networks [6, 11] as well as the use of learning 
methods to minimize the traffic between cells [5]. A literature review summarizing 
these approaches is given in [25]. 

Recently, Daskin et al. [27] addressed the problem of assembling printed circuit 
boards (PCB). For a thorough review on automated process planning for PCB 
assembly and list of references, related to the many possible strategies for managing 
PCB assembly resources, see [18]. PCBs assembly involves mainly the insertion and 
soldering of electrical components (chips) into printed circuit boards. We assumed in 
[27] that we are given a number of different PCB types that are to be produced on a 
single machine with limited component staging capacity. Associated with each PCB 
type is a list of the component types that must be inserted into the PCB. The problem 
we addressed was to determine the subset of components in each group. The 
objective is to minimize a weighed sum of the total number of passes required by all 
PCB types; and the total of the subset cardinalities. We provided conditions under 
which it is optimal to load each PCB exactly once. When it is both feasible and 
optimal to load each PCB on the machine only once, we can also speak of grouping 
PCBs since a group of PCBs then implies a group of components. 

The top design level, in which the whole board is designed, is the subject of this 
chapter. In this chapter, we show that PCB assembly and circuit physical design are 
similar, and only slight modifications may be needed to convert tools from one to the 
other. In particular by identifying 'PCBs' as 'gates' and 'components' as 'signal's 
nets', the partitioning phase of the physical design process is addressed using the 
methods presented in [27]. 

The remainder of the chapter is organized as follows. In Section 11.2 we 
formulate the problem as an integer linear programming problem. Unlike most of the 
diagonalization and similarity based approaches, the number of different types of nets 
that can be included in a chip (or equivalently the number of machines that can be in 
a cell) are limited. In Section 11.3 we show that the problem is NP-complete. In 
Section 11.4 we outline a clustering heuristic solution procedure. In Section 11.5 we 
derive bounds on the objective function. Using these bounds we develop a branch 
and bound algorithm that is shown to be effective at optimally solving small to 
moderate sized instances of the problem. In Section 11.6 we summarize our 
computational experience with the branch and bound algorithm. Section 11.7 
concludes the chapter. 



330 A MATHEMATICAL THEORY OF DESIGN 

11.2 MATHEMATICAL FORMULATION 

To formulate the problem of grouping logic gates in different chips. we define the 
following indices: 

i = index of net types (i = 1 ..... l) 
j = index of gates (j = 1 •...• 1) 
g = index of chips (g = 1 •...• G) 

We define the following inputs: 

S i = the cost incurred when the net type i is included in a chip 

L = the maximum number of net types allowed in a chip 
a ij = 1. if net type i is associated with gate j; O. otherwise 

N j = the set of indices of net types i required by gate j 

={ilaij=l} 

o j = the set of indices of net types i associated only with gate j 

= { i I a ij = 1 and a ij' = 0 'V j'"# j} 

C j = the set of indices of net types i associated with gate j and 

at least one other gate 
= { i I a ij = 1 and 3 j' "# j such that a ij' = 1 } 

The net cost. S i' will be incurred for each chip in which net type i is included. We 

assume that the costs S i are strictly positive. 

We define the following decision variables: 

X ijg = { l. 
O. 

Y jg = {
I. 

O. 

Zig = {I. 

O. 

if net type i of logic function j is in package g; 

otherwise 

if logic function j is packed in package g; 

otherwise 

if net type i is in package g; 

otherwise 

Note that if net type i is partly resides in chip g. net type i can be connected to any 
gate j that is associated with it. With this notation. the circuit-partitioning problem 
may be formulated as follows: 

Minimize Lisi Lg Zig 

Subject To: Lg X ijg = 1 

(1) 

(2) 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 331 

Zig ~Xijg 'Vie N j' 'Vi 'Vg (3) 

Y jg ~Xijg 'V i e N j , 'Vi 'V g (4) 

LiZig ~L 'Vg (5) 

LgYjg = 1 'Vi (6) 

X ijg e {O, I} 'Vie N j' 'Vi 'Vg (7) 

Y jg ~O 'Vi 'Vg (8) 

Zig ~O 'Vi 'Vg (9) 

The inner sum in the objective function (1) equals the number of chips holding 
terminals of a particular net, i.e., the inner sum counts the number of on-board 
interconnections associated with a particular net. It then follows that the objective 
function (1) is for minimizing the positive weighted count of on-board 
interconnections. We assume that a cost is incurred for each net type in each chip 
(whether or not the net is in any other chip). Thus, even if a net is included in two 
chips, the objective function counts the net's cost a second time. Constraint (2) 
stipulates that each net - gate combination be assigned to exactly one chip. Note that 
it does not require that each net be in only one chip. Constraint (3) states that if net i 
of gate i is in chip g (X,ijg = I), then net i must be assigned to chip g (Zig = 1). 

Similarly, constraint (4) states that if net i of gate j is in chip g, then gate j must be 
packed in chip g (Y jg = 1). Constraint (5) is the capacity constraint for the number 

of nets types permitted in a chip. Constraint (6) states that each gate be assigned to 
exactly one chip. Constraint (7) is the integrality constraint on the assignment 
variables X ijg . Because of constraints (3) and (4), the fact that the objective function 

is a minimization with positive coefficients, and the integrality constraint on the 
assignment variables X ijg' the decision variables Y jg and Zig need only be 

constrained to be non-negative as shown in (8) and (9). To prove this result, let us 
consider the following cases: (a) If X ijg = 1 for some j, then Zig = 1 is a feasible 

solution that minimizes the objective function (1); (b) If X ijg = 0 for every j, then 

Zig = 0 is a feasible solution that minimizes the objective function (1). Similar 

arguments hold for Y jg . 

Maimon and Shtub [17] provided a non-linear integer programming formulation 
of the circuit-partitioning problem. By introducing the variable X ijg , we obtain a 

linear integer programming formulation. 
Other variations on the basic model may also be formulated. For example, 

formulation (1)-(9) does not force or induce small chips to be combined. However, 
two small chips may be identified which have no nets in common and which could be 
merged into a single chip without violating the capacity limit on the number of 
different nets in a chip. To model such problems, we can introduce a cost of using an 



332 A MATHEMATICAL THEORY OF DESIGN 

additional chip. In what follows, when we refer to the circuit-partitioning problem, 
we are referring to formulation (1)-(9). 

11.3 PROPERTIES OF THE CIRCUIT-PARTITIONING 
PROBLEM 

The main result in this section concerns the computational complexity of the circuit
partitioning problem. Computational complexity theory seeks to classify problems in 
terms of the mathematical order of the computational resources - such as computation 
time, space and hardware size - required to solve problems via digital algorithms. A 
problem is a collection of instances that share a mathematical form but differ in size 
and in the values of numerical constants in the problem form. In general we convert 
optimization problems to decision problems by posing the question of whether there 
is a feasible solution to a given problem with objective function value equal or 
superior to a specified threshold. The notion of "easy to verify" but "not necessarily 
easy to solve" decision problems is at the heart of the Class NP. Specifically, NP 
includes all those decision problems that could be polynomial-time solved if the right 
(polynomial-length) "clue" or "guess" were appended to the problem input string. An 
important subclass of NP problems are referred to as NP-complete or Non
deterministic Polynomial time Complete problems [8]. The CPU time required to 
solve an NP-complete problems, based on known algorithms, grows exponentially 
with the "size" of the problem. There exists no polynomial time transformations for 
NP-complete problems, nor are there any polynomial time algorithms capable of 
solving any NP problems. The potential to solve NP and NP-complete problems 
depends on the availability of certain heuristics. One problem polynomially reduced 
to another if a polynomially bounded number of calls to an algorithm for the second 
will always solve the first. A problem n is shown to be NP-complete by 
polynomially reducing another already known NP-complete problem to n . 

We now show that the circuit-partitioning problem is NP-complete in the strong 
sense. We do this by showing that the 3-PARTITION problem, which is NP
complete in the strong sense [8, pp. 96-100] polynomially reduces to a special case of 
the circuit-partitioning problem. The 3-PARTITION decision problem is defined as 
follows: 
INSTANCE: An integer B, 3m integer numbers d l satisfying (i) BI4 < d l < BI2 

and (ii) Lldl = mE. 

QUESTION: Does there exist a partition of the d I into m disjoint sets PI, P 2' ... , 

Pm such that L/epg d l = B for each set P g ? 

If the answer to the 3-PARTITION decision problem is yes, each set P g will contain 

exactly 3 elements (because of the bounds (i) on the values d I). We can define the 

circuit-partitioning decision problem by simply asking whether or not a solution to 
the circuit-partitioning optimization problem exists with a value less than or equal to 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 333 

some input constant Z (recall that this problem is computationally equivalent to the 
original problem). 

Theorem 1: The circuit-partitioning problem is NP-complete in the strong sense. 

Proof The proof is given in Appendix B. 

From the proof it can be shown that the circuit-partitioning problem remains NP
complete even when (1) each chip is constrained to have 3 or fewer PCBs, and/or (2) 
when all net packaging costs are identical. 

We note that if each group is constrained to have 2 or fewer gates, the problem 
can be solved in polynomial time using a minimum weighted matching algorithm. 
The graph for this problem is constructed as follows (an example is presented in 
Figure 11.5): 

Example Net/Gate Requirement Matrix (with net capacity, L = 4): 

Net 

1 
2 
3 
4 
~ 

The Associated Graph Representation: 

co 
CV 

- Primary Node Associated with Gate i 

- Auxiliary Node Associated with Gate i 

1 
1 
1 
0 
1 
0 

Gate 

2 3 4 
1 0 0 
0 1 0 
1 0 0 
0 1 0 
0 1 

Figure 11.5 Transforming A Circuit-partitioning Problem into A Minimum 
Weighted Matching 



334 A MATHEMATICAL THEORY OF DESIGN 

We associate a primary node with each gate. A link connects each pair of primary 
nodes associated with gates that can be included in the same chip (i.e., gates whose 
combined net requirements do not exceed the capacity of the chip). The cost of each 
such link is the total net packaging cost of the nets that are required by the two gates. 
In addition, we create an auxiliary node for each gate. A link is added to the graph 
between the auxiliary and primary nodes for each gate. The cost associated with such 
links is simply the total net packaging cost of the gate's nets. (Such links allow for 
the possibility of having chips that include only one gate.) The solution to the 

minimum weighted matching problem (which can be obtained in O(J3) time [19] 
identified the chips that should be formed to include pairs of gates as well as the 
chips that should be formed to include only a single gate. 

11.4 A GROUPING HEURISTIC FOR THE CIRCUIT
PARTITIONING PROBLEM 

Since the general circuit-partitioning problem is NP-complete, a heuristic solution 
algorithm is likely to be needed. This section outlines a simple heuristic that was used 
to find feasible solutions and was part of the branch and bound algorithm described 
in Section 11.5. Branching in the branch and bound algorithm is based on whether 
two gates must be in the same chip or must be in different chips. We note that a set of 
gates that, at some point of the branch and bound algorithm, must all be included in 
the same chip may be thought of as a mega-gate whose net requirements are equal to 
the union of the sets of nets (N j ) required by the gates that must be packed together 

(we refer to them simply as gates). If the cardinality of the union of these sets exceeds 
the capacity of the chip, there is no feasible solution satisfying the constraints that 
forced the gates to be packed together. We assume that the number of nets required 
by any mega-gate does not exceed the capacity of the chip. In fact, the branch and 
bound algorithm checks that this condition is satisfied before calling the heuristic 
algorithm. 

The heuristic sequentially constructs groups of gates (and nets), and is composed 
of the following steps (see Figure 11.6): 
Step 1 (Identify all mega-gates): The algorithm begins by identifying mega-gates 
based on the current set of constraints (if any) for pairs of gates that must be included 
in the same chip. After identifying the mega-gates, we will have a number of mega
gates and a number of gates which are not constrained to be packed with any other 
gates. 
Step 2 (Begin a new chip): Once all mega-gates are identified, a chip is initiated with 
the unassigned gate (or mega-gate) that requires the smallest number of nets. 
Step 3 (Identify and assign the unassigned gates): Gates (or mega-gates) are added to 
the emerging chip, beginning with the gate (or mega-gate) with the smallest number 
of additional required nets, until either (1) no unassigned gates (or mega-gates) 
remain, or (2) there are no more unassigned gates (or mega-gates) which can feasibly 
be assigned to the emerging chip. Feasibility is based on: (1) the chip capacity. L. and 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 335 

(2) the set of constraints (if any) that preclude pairs of gates from being packed in the 
same chip. If inclusion of a candidate gate (or mega-gate) would violate any of these 
constraints for a gate already included in the emerging chip. the candidate gate (or 
mega-gate) is not included in the chip. If inclusion of the candidate gate (or mega-

NO 

CONSTRUCT MEGA-GATES 
FROM CONSTRAll'."TS 

BEGIN A NEW CHIP WITH 
THE UNASSIGNED MEGA-GATE THAT REQUIRES 

THE SMALLEST NUMBER OF NETS 

IDENTIFY: UNASSIGNED GATE (MEGA-GATE) WITH ..... ~_ 
THE SMALLEST NUMBER OF ADDITIONAL 

REQUIRED NETS THAT IS FEASmLE FOR THE CHIP 

ADD NETS TO CHIP; 
"ASSIGN" GATE TO CHIP 

IMPROVE VIA SINGLE MOVES OR 
PAIRWISE SWAPS 

YES 

Figure 11.6 Flowchart of Heuristic Algorithm 



336 A MATHEMATICAL THEORY OF DESIGN 

gate) in the emerging chip would not have violated the chip capacity, the gate (or 
mega-gate) with the next smallest number of additional required nets is considered 
for inclusion in the emerging chip (i.e., repeat Step 3). If no gate (or mega-gate) may 
be added to the emerging chip and additional unassigned gates (or mega-gates) 
remain, a new chip is initiated (go to Step 2). If all gates (or mega-gates) have been 
assigned to a chip, STOP. 

After all gates are included in some chip, we have a feasible solution to the 
problem. The heuristic algorithm includes the capability of performing single gate 
moves and pairwise swaps of gates. A single gate move consists of removing a gate 
from its current chip and evaluating the cost savings that would result from including 
the gate in another chip. If a feasible move of this sort can be identified and if the 
move results in a cost savings, the move is executed. Similarly, a pairwise swap 
consists of removing two gates from different chips and evaluating the cost savings 
that would result from including each gate in the chip in which the other was 
included. If a feasible swap of this sort can be identified and the swap reduces the 
total cost, the swap is executed. The heuristic algorithm alternates between 
attempting to perform a move and trying to perform a swap. Improvements continue 
until neither a feasible cost saving move nor a feasible cost saving swap can be 
identified. 

11.5 A BRANCH AND BOUND ALGORITHM 

In developing a branch and bound algorithm the following issues need to be resolved: 
(1) the variable(s) on which to branch and the means of identifying the next variable 
on which to branch at each node of the tree; 
(2) the selection of the node in the tree from which to branch; 
(3) means of bounding the solution at each node; and, 
(4) when to apply upper bounding heuristics. 
Each of these issues is briefly addressed in the subsections below. First, however, we 
summarize a domination property that allows us to identify pairs of gates which must 
be in the same chip in an optimal solution. 

A Domination Property 

If N j !;;; N k ' then at least one optimal solution will have gate j and gate k in the 

same chip. In this case we say that gate k dominates gate j. 
To prove this property, suppose we have an optimal solution in which gate j and 

gate k are in different chips, which we refer to as chips 1 and 2 respectively, without 
loss of generality. Since each gate requires exactly one group of nets and since N j C 

N k ' moving gate j from chip 1 to chip 2 will not increase the number of nets required 

to be packed in chip 2. Thus, the objective function can not increase by such an 
exchange. If the objective function Were to decrease as a result of such an exchange, 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 337 

the original solution could not have been optimal. Note that this domination property 
also holds if we replace N k by 9ol.t (the set of net types i used by gate k or any gate 

forced to be in the same chip as gate k). 
This property allows us to force dominated/dominating pairs of gates together, 

thereby reducing the effective size of the problem by branching on these pairs of 
gates at the beginning of the branch and bound tree. It also allows us to fathom nodes 
of the tree for which this property is violated. Note that the optimal solution may 
involve producing gates k and h in different chips while N j !: 9{. k and N j !: 9{. h • 

The domination property implies only that at least one optimal solution involves 
producing gate j with either gate k or gate h. Thus, in using this property in the 
branch and bound algorithm, care must be taken not to fathom a node in which gate j 
is forced not to be with gate h, for example, if gate j is already forced to be with gate 
k. 

Branching Rules 

Branching was done on whether or not a pair of gates must (or must not) be in the 
same chip. In all cases, we branched from the rightmost unfathomed node in the tree. 

To determine the next pair of gates on which to branch, we computed the 
following statistic for each pair of gates (provided gate j is not dominated by gate k): 

«I> jk = the number of net types used by both gate j and gate k 

= LiQijQik 

If gate j is dominated by gate k, we set «I> jk = M, where M exceeds the number of 

nets in the problem. Note that «I> jk need only be computed once, before the beginning 

of the branch and bound procedure. The «I> jk values were sorted into decreasing 

order. At any node in the branch and bound tree, the pair of gates on which the 
algorithm branched was the pair (i', k') with the largest «I> jk value such thati' and k' 

were not either forced to be in the same chip or forced to be in different chips by 
constraints that had been imposed further up the tree. Setting «I> jk = M if gate j is 

dominated by gate k in essence forces this pair of gates to be in the same chip since 
(i) the algorithm will branch on such pairs of gates before any other pairs are 
processed and (ii) the branch in which they are constrained to be apart will be 
fathomed by the domination property outlined above. 

Bounding the Solution at Each Node 

A lower bound on the total cost can be obtained by mUltiplying a lower bound on the 
number of chips into which each net type i must be included by the net i packaging 
cost, S i . At each node of the tree, four approaches were used to bound the number of 



338 A MATHEMATICAL THEORY OF DESIGN 

chips in which net i must be included. The first bound is given by the total number 
of net types needed by all gates (or mega-gates) that require net type i divided by the 
maximum number of nets that can be in a chip, L, rounded up to the next larger 
integer (see Appendix C.l). The second bound is given by the total number of gates 
(E M j ) which, at some node in the branch and bound tree, are mutually forced to be 

in different chips (see Appendix C.2). The third bound involves constructing a 
graph, G j (V j' E j ), in which we create a vertex in the set Vi for every mega-gate or 

unconstrained gate (in the sense of not being forced to be in the same chip as another 
gate) that requires net type i. We create an edge between two vertices j and k in the 
graph if any gate associated with vertexj is constrained to be in a different chip from 
any gate associated with vertex k. The chromatic number of this graph, y(G j), (the 

minimum number of colors needed to color each vertex such that no two vertices that 
are connected by an edge have the same color) is a lower bound on the number of 
chips in which net type i must be included, based on the constraints at that node of 
the branch and bound tree on pairs of gatess that can and can not be in the same chip. 
Unfortunately, the chromatic number problem is itself an NP-complete problem. 
However, a number of lower bounds on the chromatic number have been proposed. 
All are functions of the number of vertices and edges in the graph. The best of these 
is the lower bound proposed by Ersov and Kozuhin [9]. See Appendix C.3 for 
details. The fourth bound is based on the size of the maximum clique (a clique in a 
graph G is a subgraph of G that is complete, i.e., each pair of vertices is connected by 
an edge) in a graph G j whose construction was outlined above. If p(G j) is the size 

of the maximum clique in graph G j, then y(G j) ~ p(G j). Unfortunately again, the 

problem of finding the maximum clique in a graph is also NP-complete [8]. 

However, in O(n 3) time we can check whether or not a clique of size 3 exists (in 
which case the fourth bound is set to 3; if not it is set to 0) simply by enumerating all 
possible combinations of 3 nodes and checking whether or not all three nodes are 
connected to each other. The actual lower bound on the number of times net type i 
must be packed is the maximum of the four bounds outlined above. 

Fathoming Nodes 

Nodes in the tree can be fathomed in one of three ways. First, if the constraints that 
force pairs of gates to be in the same chip create a mega-gate whose net requirements 
exceed the capacity, L, of the chip, no feasible solution exists and the node may be 
fathomed. Second, if the net packaging cost based on the lower bounds on the 
number of times each net must be packed is equal to or greater than the value of a 
known solution, the node can be fathomed. Third, a left node (in which gates k and h 
are constrained to be in different chips) may be fathomed if (i) either k dominates h 
and h is not already dominated by some mega-gate created further up the tree or (ii) 
vice versa. Similarly, a right node (in which gates k and h are constrained to be in the 
same chip) may be fathomed if the newly created mega-gate dominates some gate j 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 339 

which is forced not to be in the same chip as either k or h and gate j is not already 
dominated by some mega-gate created further up the tree. 

Application of the Heuristic Algorithm 

The heuristic algorithm was applied (i) at the root node, (ii) at nodes created by 
branching on a dominated/dominating gate pair, and (iii) when the list of cI> jk values 

was exhausted. If the list of cI> jk values is exhausted at some node in the branch and 

bound tree then there is no pair of gates that are not already either constrained to be 
in the same chip or that are constrained to be in different chips. In that case, the 
heuristic algorithm simply evaluates the cost of the solution specified by the 
constraints that have already been imposed. That means that the heuristic solution at 
the node at which we are trying to branch may be treated as a lower bound on the 
cost at that node in the tree. Since the lower bound then equals or exceeds the value 
of the best known solution, the node may be fathomed. 

11.6 COMPUTATIONAL RESULTS USING THE BRANCH 
AND BOUND ALGORITHM 

In this section we outline results obtained from testing the branch and bound 
algorithm using four data sets (DATAl, DATA3, CLUSTRA and CLUSTAX). In 
Table 11.1 is a summary of key features of the four data sets. DAT A3 was 
constructed from DATAl in two steps. First, we created a duplicate copy of each 
gate, thereby generating a problem with 16 gates. In the resulting matrix each net 
would be a shared net. Therefore, we removed one of the occurrences of each of the 
unique nets in DATAl from the matrix generated by creating a copy of each gate. In 
removing these components, we alternated between removing the net from the 
original gate (numbered 1-8) and the generated gate (numbered 9-16). In this way, we 
created a problem which again had 43 unique nets, and 10 shared nets. For each row 
corresponding to a shared gate, the density of ones was the same in DATAl and 
DATA3. 

The size of the problems analyzed ranged from 8 gates and 53 nets (with only 10 
shared nets) for DATAl to 34 gates and 162 nets (with 103 shared nets) for 
CLUST AX. The density of ones in the matrices ranged from 12.1 % (CLUST AX) to 
18.4% (DATAl). 

Results for DATA 1 and DATA3 

Table 11.2 is a summary of the key results for DATAl and DATA3. We focus our 
attention on the data set DAT A3 because it includes problems with larger size of the 
gate - net input matrix, which were the most difficult problems to solve using our 



340 A MATHEMATICAL THEORY OF DESIGN 

approach. The results for DAT A3 are broken into two groups based on the chip 
capacity. Results for capacities 11-13 are reported separately from those for 
capacities 14-53 for two reasons. First, the solution times for the small capacity 
problems were all very large. Second, by separating the results for capacities in the 
range 14-53, we can more readily compare the results with those found for DATAL 
The results for capacities 11-13 as well as the entire data set are shown in Table 11.2. 
The entire data set (capacity range 11-53) illustrates the effect of each capacity range. 
Larger capacity problems shift the results (e.g. solution time) towards significantly 
improved performance. 

Table 11.1 Characteristics of Input Data Sets 

DATA SET NAME DATAl DATA3 CLUSTRA CLUSTAX 

NETS 

Unique 43 43 15 59 

Common 10 10 37 103 

Total 53 53 52 162 

GATES 

Total Number 8 16 26 34 

Number 8 16 17 22 
Undominated 

GATES! 
COMMON NET 

Minimum 2 4 2 2 

Average 3.50 7.00 4.73 5.92 

Maximum 8 16 26 32 

% OF Is IN MATRIX 18.4 13.3 14.1 12.1 

PACKAGING COSTS 

All Gates 10 10 21 63 

All Nets 1 1 1 1 

TESTED RANGE OF 14 to 53 14 to 53 22 to 51 81 to 150 
NET CAPACITIES 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 341 

For DATA 1, all solution times were under 1.05 seconds and the average was 
under 0.3 seconds; for DATA3 (with capacity range 14 ~ L ~ 53), the maximum 
solution time was just under 1.76 minutes and the average was under 8.34 seconds. 
Table 11.2 also compares the number of nodes examined in the branch and bound 
tree to the number of solutions that would have had to be examined had total 
enumeration been employed. Even in the worst cases, only a minuscule fraction of 
the total number of solutions needed to be examined. 

Finally, in over 77.5% of the runs, the initial heuristic solution was optimal when 
the move and swap improvement procedures were used. When they were not 
employed, this percentage dropped significantly, particularly for DATA3. 

Table 11.2 Summary of Results for DATAl and DATA3 

DATA SET NAME DATAl DATA3 DATA3 DATA3 

CAPACITY RANGE 14 to 53 11 to 13 14 to 53 11 to 53 

SOLUTION TIME* 

Minimum 0.10 462.58 0.22 0.11 

Average 0.30 639.72 8.34 52.39 

Maximum 1.05 986.90 105.24 986.90 

NODES EVALUATED 

Minimum I 25,223 1 1 

Average 36 36,810 514 3,047 

Maximum 153 58,909 6,069 58,909 

Total 2.6SE+OS 1.33E+36 1.33E+36 1.33E+36 
Enumeration 

% RUNS IN WHICH 
INITIAL 

HEURISTIC WAS 
OPTIMAL 

wI Move and 92.5% 0.0% 77.5% 72.1% 
Swap 

wlo Move and 55.0% 0.0% 5.0% 4.7% 
Swap 

* Seconds on Zenith 386/16 Computer with an 80387 math coprocessor. Code was written in Turbo 
PASCAL version 5.5. 

Figure 11.7 is a plot of the percent of the total number of examined nodes that 
had to be explored before the optimal solution was found versus the chip capacity, L. 
Most (about 90%) of the computational effort is devoted to proving that a solution 



342 A MATHEMATICAL THEORY OF DESIGN 

obtained early in the branch and bound process is, in fact, optimal. In the few cases in 
which the percent shown in Figure 11.7 is large, the number of nodes examined is 
very small. 

Figure 11.8 is a plot of the percent improvement in the solution that results from 
(1) the use of the move and swap algorithms and (2) the use of the branch and bound 
algorithm as a function of the chip capacity, L, for DATA3 (with gate - net matrix as 
defined above). Improvement percentages are measured relative to the optimal value. 
Most of the improvement of the initial heuristic solution was due to the move and 
swap procedures and not to the branch and bound algorithm. In many cases, 
particularly for larger chip capacities, the branch and bound algorithm was only used 
to confirm the optimality of the solution obtained from the initial heuristic followed 
by the move and swap procedures. Similar results were obtained for DATAL 

PERCENT OF EVALUATED NODES EXPLORED 
BEFORE OPTIMUM FOUND 

120.00% Only 37 
nodes 

evaluated 

_ _ _ _ qn)y_ r~ot 
node 

evaluated 
100.00% - - - - - - - - - - - - - - - n-------' - - - - - - - -III 

P 
E 80.00% 

__ HI~ __________ _ 

R 
C 60.00% - - - - - - - - - - - - -
E 

N 40.00% 
T 

20.00% 

0.00% ... , """. 

14 17 20 23 26 29 32 35 38 41 

CHIP CAPACITY 

I-datal --+- data31 

44 47 50 53 

Figure 11.7 Percentage of Evaluated Nodes Explored Before Optimum Found 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 343 

% IMPROVEMENT IN DATA3 RESULTS DUE TO: 
(a) Move and Swap and (b) Branch and Bound 

3.50% 

3.00% 

P 2.50% 

E 
R 2.00% 
C 

E 1.50% 
N 

T 1.00% 

0.50% ..... ----------------

0.00% +-+*+-+*4 __ .. ___ W .... IHIIIIIIIIIIII ........... 

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 

CHIP CAPACITY 

1-.-move and swap - branch and bound 1 

Figure 11.8 Percentage Improvement in DATA3 Results due to (a) Move and Swap 
and (b) Branch and Bound 

Results for CLUSTRA and CLUSTAX 

For CLUSTRA and CLUSTAX, in addition to solving the problems to optimality, we 
solved the problems by fathoming nodes in the tree whenever the difference between 
the best known upper bound and the lower bound was less than E times the lower 
bound. Two values of E were used (0.02 and 0.01) as shown in Table 11.3. Finally, 
instead of running each problem as an independent run, the best solution found for 
the problem with a chip capacity of L was taken as a feasible solution at the root node 



344 A MA THEMA TICAL THEORY OF DESIGN 

of the branch and bound tree for the problem with a capacity of L + 1. This solution 
was compared to the heuristic solution (for a capacity of L + 1) and the smaller value 
was used as the upper bound at the root node of the branch and bound tree for the 
problem with a capacity of L + 1. Thus, successive runs for these data sets are not 
independent. 

Table 11.3 Summary of Results for CLUSTRA and CLUST AX 

DATASET CLUSTR CLUSTRA CLUSTRA CLUSTAX !:;LUSTAX CL!'!STAX 
NAME A 

£ - 0 0.01 0.02 0 om 0.02 
OPTIMALITY 

SOLUTION 
TIME* 

Minimum 0.22 0.33 0.27 50.10 8.84 US 

Average 96.05 17.19 3.12 2407.91 75.38 2.55 

Maximum 1239.28 336.37 33.45 26324.52 1,192.93 12.52 

NODES 
EVALUATED 

Minimum I I I 259 27 I 

Average 2,410 417 47 21,279 616 7 

Maximum 34,857 8,905 783 243,353 10,885 85 

Total 6.84E+97 6.84E+97 6. 84E+97 7.5SE+168 7.55E+168 7.S5E+168 
Enumeration 

% RUNS IN 
WHICH 
BRANCH 96.8% 83.9% 67.7% 100.0% 100.0% 10.0% 
AND BOUND 
ALGORITHM 
NEEDED 

PERCENT 
NET 
COST OVER 
MINIMUM 

Minimum 0.00% 0.00% 0.00% 0.00% 

Average 2.62% 4.95% 3.04% 3.04% 

Maximum 8.20% 20.00% 11.23% 11.23% 

* Seconds on Zenith 386/16 Computer with an 80387 math coprocessor. Code was written in Turbo 
PASCAL version 5.5. 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 345 

For both data sets, both the solution time and the number of nodes examined in 
the branch and bound tree increase dramatically as £ decreases. The time required to 
solve the problems optimally averaged under 2 minutes for CLUSTRA and just over 
40 minutes for CLUSTAX. For £ = 0.01, these times dropped to 18 and 75 seconds 
respectively. As expected, the percent of runs in which the branch and bound 
algorithm was needed (either to improve on the root node solution or to confirm its £

optimality) decreased as £ increased. Finally, Table 11.3 reports the actual percent 
deviation from optimality of the net packaging cost in the objective function. The 
largest percentage deviations tended to occur at the largest chip capacities where the 
net packaging cost was the smallest. However, these problems also tended to be the 
easiest to solve to optimality. Thus, in practice it may be feasible simply to solve the 
large capacity problems optimally or with very small values of £ to reduce the 
deviation of the net packaging cost from its optimal value. 

11.7 SUMMARY 

The main purpose of this chapter is a demonstration of the applicability of the 
mathematical programming and group technology to circuit design, and in particular 
to the physical design of large scale electronic circuits. An optimization model is 
formulated and solution methods are developed and implemented for the partitioning 
phase of the physical design. We also address the fundamental problem of 
articulating performance metrics for function structures (i.e., microelectronics 
circuits) by comparing the values of their associated attributes (i.e., the number of 
on-board interconnections). 

The efficiency in circuit design will become more crucial with the continuing 
rapid progress in microelectronics technology, while the scale of circuit integration 
will grow larger. Thus, the increasing of circuit complexity will render the 
construction of efficient designs more difficult. The more complex the circuit is, 
more concerns must be accounted for when the circuit is designed. This includes 
design for reliability, testability, and manufacturability. Finally, further development 
of the tools as described here will facilitate the integration of the currently separated 
algorithms into a computer integrated design tool. 

APPENDIX A A BRIEF OVERVIEW OF MICROELECTRONICS 
CIRCUITS AND THEIR DESIGN [28J 

For the reader who is not familiar with microelectronics circuits, a brief description 
of microelectronics circuit design follows. 

A.1 MICROELECTRONICS CIRCUITS 

Electronic circuits can be implemented in different ways: wired circuits, printed 



346 A MATHEMATICAL THEORY OF DESIGN 

circuit boards (PCBs), and integrated circuits (ICs). Wired circuits are common at the 
system level. The electrical connections of these circuits are established by wires. A 
printed circuit board is basically a plastic resin material coated with copper foil. In 
printed circuit boards the interconnections are established by copper lines attached 
(printed) to a solid or flexible (insulating) mattress. The conductive patterns on 
printed circuit boards are defined by lithography and selectively etching the copper. 
The integrated circuits and other discrete components are then fastened to the board 
by soldering. This is the final step in making the integrated circuits and the 
microelectronics devices they contain accessible. Such printed circuit boards are the 
hearts of computers and other large electronic systems. The components of the PCBs 
(especially discrete components) are usually packed in integrated circuits. The 
integration ranges from small and medium scale of integration (SSI/MSI) through 
large scale integration (LSI), to very large scale integration (VLSI). The integrated 
circuits are the chips mentioned in the chapter. Recently, custom and semi-custom 
designed (or custom specific) ICs have grown in popularity in order to better utilize 
chip space. These are usually components of large or very large integration that are 
specifically tailored to meet customer requirements. 

A.2 THE GENERAL DESIGN OF PRINTED CIRCUIT BOARDS 

The design of an electronic circuit consists of four major stages: (1) functional (logic) 
design; (2) Physical design; (3) test design and programming; and (4) manufacturing 
process planning. 

The first stage is the logical design. In this stage the requirements and 
specifications that are provided to the designer are transformed into a detailed design 
at a logical level. The elementary functional elements of the circuit in the logical 
design and the interconnections between them are described using standard symbols 
in a chart called a schematic (see Figure 11.2). There are no scales and no 
consideration is given to component placement at this stage. 

A given logical design can be implemented in more than one way. In the physical 
design stage, the board is configured to contain all the elements of the schematic and 
satisfy the functional specifications. In many cases, the logical designer is also 
responsible for part or all the physical design. The physical design consists of three 
main stages: (1) the elements of the schematic have to be packed in ICs ('packing' or 
'partitioning '); (2) each Ie has to be positioned in a well-defined place on the board 
('placement'). These positions will later be used to direct the assembly process; and 
(3) a detailed routing of the interconnections on the board, avoiding short circuits, 
must be specified (,rollting '). This demarcation of the physical design stages is 
somewhat misleading, since all three stages are inextricably intertwined and are not 
distinct phases in the process of physical design. However, considering the very large 
scale of today's circuits, the above decomposition of the physical design is often used 
to reduce the computational intractability that characterizes the physical design task. 

One product of the physical design stage is the artwork. The artwork describes the 
input for the fabrication in which the 'wires' are printed on the surface of the board. 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 347 

In a multi-layer board, the 'wires' are printed on the layer of the board and holes are 
drilled if leaded components are used. Other products are the assembly drawing and 
the list of parts according to which the components are mounted on the board. 

Turning the physical design into a physical board requires a detailed plan of the 
manufacturing process in order to achieve high productivity. This is because a clear 
trade-off exists between the sequence that completes each PCB type once it is loaded 
onto the machine (minimizing the number of times each PCB is loaded onto the 
machine), and a sequence that simultaneously loads all PCBs using the same group of 
components loaded onto the machines (minimizing the number of times each 
component type is loaded on the machine.) For a thorough review on automated 
process planning for PCB assembly and list of references, related to the many 
possible strategies for managing PCB assembly resources, see [18]. 

The complete design is used to generate the test program for the board. The logic 
design is used to derive the test patterns, while the physical design is needed to 
determine how to implement each pattern. 

To summarize, the output of the board design efforts provides all the information 
required by subsequent stages, i.e., IC design and a detailed plan of the 
manufacturing process. The logical elements in the schematic are grouped into sets 
which are packed in different chips. This top design level, often called 'partitioning' 
or 'packaging,' is the subject of this chapter. 

A.3 BOARD PHYSICAL DESIGN OBJECTIVES 

Two measurable quantities that are commonly used to evaluate the quality of 
microelectronics circuits are the wiring length (interconnections), and wiring 
congestion, as will now be explained. 

An important concern in circuit design is routability or wirability of the chip. The 
routability of a design is the extent to which the design circuit can be automatically 
routed. The total wiring length is a popular approximation of routability. The wiring 
length is to be minimized not only for higher wirability but also because it greatly 
affects time delays and power requirements. Local wiring congestion is also used to 
approximate routability, prohibiting congestion in excess of the maximum available 
by the wiring space in any point of the chip. If at any point the design requires more 
wires than allowed by the space available, the chip is unroutable. An upper bound on 
wire density can be calculated as in [29]. The actual objective is then to design the 
cell in order to either balance the wiring congestion, or to minimize the number of 
grid line crossings [29]. 

Routability is also of major importance at the board level since the wiring tracks 
are wider. In addition, routability is related to manufacturability. A board with high 
routability score usually requires fewer number of layers, and be simple to assemble. 
Thus, a higher production rate and lower costs are thus expected when a highly 
routable printed circuit board is implemented. 

Reliability is of major concern too. At the board level the majority of the faults 
are shorts and opens. Opens are disconnection along tracks. Shorts occur when two 



348 A MATHEMATICAL THEORY OF DESIGN 

tracks -- that should not be connected -- are routed to cross each other. Crossovers 
are not allowed in a single layer single sided board. In other boards, feed-thrus (or 
vias).are used in order to prevent shorts circuiting the board. The number of vias is 
determined only after the board is completely routed. In vias, one track is fed through 
(via) a hole in the board to a different layer, thus preventing the contact between the 
crossing signals. However, feed-thrus are often the cause of opens. and thus should 
be minimized. Reliability is closely related to routability: a board with high 
routability score usually requires fewer feed-thrus. 

Another important concern in circuit design is the design-for-testability concept. 
Functional grouping of the components into chips at the board level will reduce the 
complexity that is related to the laborious tasks of fault detection and fault diagnosis 
of the testing stage. 

To summarize. a board with fewer and shorter interconnections is more routable 
and reliable. and less costly to manufacture, test. and maintain. Wiring congestion 
and length. are used to evaluate the quality of microelectronics circuits in the 
physical design stage. 

APPENDIX B (PROOF OF THEOREM 11.1) 

First. the circuit-partitioning problem is in NP since. given any solution (defined by 

values of the OU . J 2) decision variables). we can check in polynomial time whether 
or not the constraints are satisfied and whether or not the objective function is less 
than or equal to some value Z. Note that there will be at most J chips. where J is the 
number of gates. This bound will be realized if each gate uses only unique nets (Le .• 
o j = N j. Vj) and L = 1. Finally. we note that in practical problems the number of 

chips will usually be smaller than J.) 
Next. we show that there is a polynomial transformation from the 3-PARTlTlON 

problem to an instance of the circuit-partitioning problem. such that there is a 
solution to the 3-PARTlTlON problem if and only if there is a solution to the circuit
partitioning problem. 

For j = I ..... 3m. (note that J = 3m in this instance of the circuit-partitioning 
problem) let: 

Do = 0 and D j = "L~=l d m 

Define the following sets of indices of net types i for each of the 3m gates: 

C j = {mB + I}; 0 j = {I + D j-l ..... D j }; N j = C j U 0 j = {1 + D j-l • 

.... D j } U {mB + I} 

Finally. we set s i = I Vi; L = B + 1 and Z = "Ld l + m 
I 

Since the 3-PARTITION problem is NP-complete for values of B that are 
bounded by a polynomial function of m. this transformation can be accomplished in 
polynomial time. We have created an instance of the circuit-partitioning problem in 
which each of the first mB nets is used by only one gate and the last net (net mB + 1) 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 349 

is used by every gate. Thus, Ie jl=1 'Vj and IN jl = d j + 1 < B + 1 = L 'Vj. 

Finally, we show that if we have a solution to this instance of the circuit
partitioning problem with an objective function value less than or equal to Z= L1dl 

+ 7m, then we can construct a solution to the corresponding instance of the 3-
PARTITION problem. First, we show that in an optimal solution to the circuit
partitioning problem with this objective function, each chip must include exactly L = 
B + 1 nets. Suppose this is not so. Then there must exist some chip with B or fewer 
nets. Without loss of generality let one such chip be chip 1. Then, since net mB + 1 
must be in every chip, the number of the first mB nets in chip 1 must be less than or 
equal to B-1. Therefore, the number of the first mB nets that must be in the 
remaining chips must be greater than or equal to mB - (B - 1) = (m - I)B + 1. Again, 
since net mB + 1 must be in every chip, there is only room for B other nets in each 
group. Thus, the remaining (m - I)B + 1 nets can not be in only m - 1 chips. That is, 
they must be in at least m additional chips and the number of chips must therefore be 
at least m + 1. However, if this is so, each of the mB unique nets will be loaded 
exactly once and the common net (net mB + 1) must be loaded at least m + 1 times. 
Thus, the net packaging cost must be at least L1dl + m + 1 > Z. Therefore, each 

chip must contain exactly L = B + 1 nets. 
For each (j, g) pair, we have X ijg = 1 'Vi E N j' Also, Zig = 1 if 3j such that 

gate j is included in chip g (i.e., Y jg = 1) and i E N j ; and Zig = 0 otherwise. By 

construction, the set N j consists of d j unique nets (numbered 1 + D j-I through 

D j) plus net mB + 1. Thus, if gatej is included in chip g, we include indexj in P g • 

Since each gate j will be in only one chip and since the total number of unique nets in 
each chip is B, this assignment of indices j to sets P g will result in L jePg d j = B 

for all sets P g' Hence, the assignment will be a solution to the 3-PARTITION 

problem. • 
APPENDIX C (BOUNDS ON THE NUMBER OF TIMES NET 

TYPE i MUST BE PACKEDj 

C.l First Lower Bound: Let us introduce the following notation: 

!:: {l, if x> 0; 
vex) = 

0, otherwise 

M; = the set of indices of gates j that use net type i or that are part of a mega

gate anyone of whose constituent gates uses net type i. 
With this notation, a lower bound on the total number of net type i usage is given by: 



350 A MATHEMATICAL THEORY OF DESIGN 

U; = I,B( I, akj) 
k jeMj 

(10) 

The inner summation equals the number of gates that use both net type k and net type 
i. The B(·) function sets this total to 1 if there is at least one such gate. Summing over 
all net types k, U; is the total number of net types needed by all gates that require net 

type i. If this number is less than or equal to the chip capacity, L, then all of these 
gates could, at least from the perspective of net type i, be in the same chip. In that 
case, U; indicates that net type i need only be packed once. More generally, 

(11) 

is a lower bound on the number of times net type i must be packed, where r x 1 is the 

smallest integer greater than or equal to x. 

C.2 Second Lower Bound: Let j 1 and j 2 be two gates such that j 1 , j 2 E M;. If, at 

some node in the branch and bound tree, gates j 1 and j 2 are forced to be in different 

chips, then net type i must be packed at least twice. We note that if and h may be 

forced to be in different chips implicitly. For example, if may be forced to be in the 

same chip as some gate j 3, j 2 may be forced to be in the same chip as gate j 4 and, 

gates j 3 and j 4 may be constrained to be in different chips. This would implicitly 

constrain j 1 and j 2 to be in different chips. 

C.3 Third Lower Bound: Ersov and Kozuhin [9] showed that 

r 0(1- ~:~J)l (12) 

is a lower bound on the chromatic number of a graph, where n = IV; I ' p = IE; I ' t = n -

2p and LxJ is the largest integer less than or equal to x. Ersov and Kozuhin [9] 
n 

outlined the construction of graphs with n vertices and p edges that attain this lower 
bound. However, it should be noted that (12) is computationally intensive. This is 
important because the bound may need to be computed for each common net type i at 
each node of the branch and bound tree. In fact, the bound is likely to be computed 
multiple times for each common net type at each node in the tree. 

To alleviate the computational cost which is involved in computing (12), we 
compute chromatic numbers of graphs G' that are constructed by deleting vertices 
and any edges incident on the deleted vertices from G. This relationship is worth 
noting because the lower bounds on G' using (12) may actually be tighter than this 
obtained for G. This is so because '}'(G) is also an upper bound on '}'(G~. Thus, a 
lower bound on the chromatic number of G' is also a lower bound on the chromatic 
numberofG. 

To summarize, the process of successfully deleting the vertex (and incident 
edges) with the smallest degree coupled with the bound provided by (12) constitutes 
the third lower bound. The process is continued until a graph is constructed in which 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GROUP TECHNOLOGY APPROACH 351 

its number of vertices n exceeds the best lower bound which has hitherto been 
computed. This process proved to be very effective for problems with small chip 
capacities, which were the most difficult problems to solve using our approach. 

REFERENCES 

1. Askin, R.G. and K. S. Chiu, "A Graph Partitioning Procedure for Machine Assignment and Cell 
Formation in Group Technology," International Journal of Production Research, Vol. 28, pp. 
1555-1572, 1990. 

2. Boothroyd, G., Assembly Automation and Product Design, Marcel Dekker, New York, 1992. 
3. Chandrasekharan, M.P. and R. Rajagopalan, "An Ideal Seed Non-Hierarchical Clustering 

Algorithm for Cellular Manufacturing." International Journal of Production Research, Vol. 24, pp. 
451-464, 1986a. 

4. Chandrasekharan, M.P. and R. Rajagopalan, "MODROC: An Extension of Rank Order Clustering 
for Group Technology," International Journal of Production Research, Vol. 24, pp. 1221-1233, 
1986b. 

5. Chu, C.H., "Manufacturing cell formation by competitive learning," European Journal of 
Operational Research, Vol. 69 (3), pp. 292-311, 1993. 

6. Chung, Y., and A. Kusiak, "Grouping Parts with a Neural Network," Journal of Manufacturing 
Systems, Vol. 13, pp. 262-275, 1994. 

7. Ersov, A.P. and GJ. Kozuhin, "Estimates of the Chromatic Number of Connected Graphs," Soviet 
Mathematics, Translation of Doklady Akademii Nauk SSSR, Vol. 3, pp. 50-53,1962. 

8. Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP
Completeness, Freeman, San Francisco, CA, 1979. 

9. Harhalakis, G., Nagi, R. and J.M. Proth, "An Efficient Heuristic in Manufacturing Cell Formation 
for Group Technology Applications," International Journal of Production Research, Vol. 28, pp. 
185-198,1990. 

10. Harhalakis, G., Proth, J.M. and X. L. Xie, "Manufacturing cell design using simulated annealing: an 
industrial application," Journal of Intelligent Manufacturing, pp. 185-191, 1990. 

II. Kaparthi, S., Suresh, N.C. and R.P. Cerveny, " An improved neural network leader algorithm for 
part-machine grouping in group technology," European Journal of Operational Research, Vol. 69, 
pp.342-356, 1993. 

12. King, J.R., "Machine-Component Group Formation in Group Technology," OMEGA: The 
International1ournal of Management Science, Vol. 8, pp. 193-199, 1980a. 

13. King, J.R., "Machine-Component Grouping in Production Flow Analysis: An Approach Using a 
Rank-Order Clustering Algorithm," International Journal of Production Research, Vol. 18, pp. 
213-232.1980b. 

14. Kumar. K.R .• Kusiak. A. and A. Vannelli, "Grouping of Parts and Components in Flexible 
Manufacturing Systems." European Journal of Operational Research, Vol. 24, pp. 387-397,1986. 

15. Kusiak. A., "The Generalized Group Technology Concept." International Journal of Production 
Research. Vol. 25. pp. 561-569,1987. 

16. Liu. C.M. and J.K. Wu. "Machine cell formation: using the simulated anneling algorithm," 
International Journal Computer Integrated Manufacturing, Vol. 6 (6). pp. 335-349, 1993. 

17. Maimon. O. and A. Shtub. "Grouping Methods for Printed Circuit Boards Assembly," International 
Journal of Production Research. Vol. 29, pp. 1379-1390. 1991. 

18. McGinnis, L. F .• J.C. Ammons, M. Carlyle, Ranmer L, Depuy, G. W., Ellis, K. P., Tovey C. A. and 
H. Xu. "Automated Process Planning for Printed Circuit Card Assembly," lIE Transactions, 24, pp. 
18- 26. 1992. 

19. Papadimitriou, C.H. and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity, 
Prentice Hall, Englewood Cliffs, NJ, 1982. 

20. Pierreval, H. and M. F. Plaquin, "A Genetic Algorithm Approach to Group Machines into 
Manufacturing Cells," Proceeding of the Fourth International Conference on Computer Integrated 
Manufacturing and Automation Technology, pp. 267-271, 1994. 



352 A MATHEMATICAL THEORY OF DESIGN 

21. Rajagopalan, R. and J.L.Batra, "Design of Cellular Production Systems: A Graph Theoretic 
Approach," International lournal of Prodllction Research, Vol. 13, pp. 567-579,1975. 

22. Rockwell, T.H. and W.E. Wilhelm, "Material Flow Management in Cellular Configurations for 
Small-Lot Circuit Card Assembly," International lournal of Production Research, Vol. 28, pp. 
573-594, 1990. 

23. Shafer, S.M. and Meredith, J.R., "A Comparison of Selected Manufacturing Cell Formation 
Techniques," International lournal of Production Research, Vol. 28, pp. 661-673, 1990. 

24. Shtub, A., "Modeling Group Technology Cell Formation as a Generalized Assignment Problem," 
International lournal of Production Research, Vol. 27, pp. 775-782, 1989. 

25. Singh, N., "Design of cellular manufacturing systems: An invited review," European lournal of 
Operational Research, Vol. 69, pp. 284-291,1993. 

26. Vannelli, A. and K.R. Kumar, "A Method for Finding Minimal Bottle-Neck Cells for Grouping 
Part-Machine Families," International lournal of Production Research, Vol. 24, pp. 387-400, 1986. 

27. Daskin, M., O. Maimon, A. Shtub and Braha D., "A Branch and Bound Algorithm for Grouping 
Components in Printed Circuits Board Production," International lournal of Production Research, 
to appear. 

28. Lindsey, D., The Design and Drafting of Printed Circuits, revised ed., Bishop Graphics Inc., CA, 
1984. 

29. Breuer, M.A., "Min-Cut Placement," lournal of Design Automation and Fault Tolerant 
Computing," Vol. I, pp. 343-362,1977. 

30. Fisher, D. H., "Knowledge Acquisition via Incremental Conceptual Clustering," Machine Learning, 
Vol. 2 (7), pp. 139-172, 1987. 

31. Reich, Y., "Measuring the Value of Knowledge," International lournal of Human-Computer 
Studies, Vol. 42, pp. 3-30, 1995. 



CHAPTER 12 

PHYSICAL DESIGN OF PRINTED CIRCUIT 
BOARDS: GENETIC ALGORITHM APPROACH 

In this chapter, we employ a genetic algorithm to search the space of alternative 
solutions. The fundamentals of this approach are outlined as they apply to the circuit
partitioning problem which was presented in Chapter 11. Computational results are 
provided for this approach and are compared with the heuristic solution approach that 
was presented in Chapter 11 (Section 1104). 

12.1 INTRODUCTION 

In Chapters 2 and 6, we established the hypothesis that view the act of design as an 
evolutionary process and the design itself at any stage of its development as a 
tentative solution to the original requirements. We may also compare this process to 
Darwinian natural selection, for both non-adapted organisms and incorrect designs 
are weeded out, leaving the stronger to continue in the competition. 

The hallmarks of Darwinian evolution can be summarized through an example. 
At any given time there is a population of mice. Some of them are faster than other 
mice. These faster mice are less likely to be eaten by cats, and therefore more of them 
survive to do what mice do best: make more mice. Of course, some of the slower 
mice will survive just because they are lucky. This surviving populations of mice 
starts breeding. The breeding results in a good mixture of mice genetic material: 
some slow mice breed with fast mice, some fast with fast, and some slow with slow. 
And on the top of that, nature mutates every once in a while some of the mouse 
genetic material. The resulting offspring of the mice will (on average) be faster than 
these in the original population because more faster parents survived the cats. 

The above process is termed natural selection. By this process, organisms are 
constantly tested against the environment and those that are genetically endowed to 
survive may be said to fit relative to that environment. If the environment changes 
then some forms of the organisms within the population may become fit relative to 
the new environment while other forms may die out. Thus, organisms appear to 
constantly adapt to its surroundings. We used these concepts of testing and 
adaptation as underlying the design process in general. 

During the last three decades there has been a growing interest in genetic 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



354 A MATHEMATICAL THEORY OF DESIGN 

algorithms, which rely on analogies with Darwinian natural selection. Genetic 
Algorithms (GAs), which use a vocabulary borrowed from natural genetics, have 
been quite successfully applied to optimization problems like wire routing, 
scheduling, adaptive control, cognitive modeling, transportation problems, traveling 
salesman problems, etc. [1]. A GA follows a step-by-step procedure that closely 
matches the story of the mice. A GA performs a multidirectional search by 
maintaining a population of potential solutions and encourages information formation 
and exchange between these directions The population undergoes a simulated 
evolution: at each generation the relatively "good" solutions reproduce, while the 
relatively "bad" solutions die. To distinguish between different solutions, we use an 
objective (evaluation) function which plays the role of an environment. 

The purpose of this chapter is a demonstration of the applicability of genetic 
algorithms as suggested in [2] (for similar group technology production problems) to 
the partitioning phase of electronic circuit design. The circuit-partitioning problem is 
addressed and formulated in Chapter 11. Thus, regardless of the claim that the 
evolutionary model in the specific Darwinian sense is a universal feature of design 
processes, it has a heuristic value in carrying out the act of engineering design. 

The remainder of the chapter is organized as follows. In Section 12.2, we briefly 
outline the key elements of a genetic algorithm. In Section 12.3, we present a genetic 
algorithm approach to solving the circuit-partitioning problem that was presented in 
Chapter 11. Computational results obtained from using the genetic algorithm are 
summarized in Section 12.4. In Section 12.5, we show how catalogue search for fixed 
configuration solutions can be solved with a genetic-search approach. Section 12.6 
concludes the chapter. 

12.2 THE GENETIC ALGORITHM APPROACH 

Traditional heuristic algorithms construct a single solution and then attempt to 
improve on that solution using a variety of rules. Both the construction algorithms 
and the improvement procedures are often complex. This complexity is justified 
since only a single solution is being manipulated and the procedures must attempt to 
avoid being stuck at a local optimum. Genetic algorithms (GAs), by contrast, 
simultaneously maintain a large population of solutions and tend to manipulate each 
solution in much simpler ways [1]. This section briefly outlines the key elements of a 
genetic algorithm. The description focuses first on how one might develop a genetic 
algorithm for a facility design problem (see Chapter 13), simply because the 
description of a genetic algorithm in this context is simpler than that in a circuit
partitioning context. Following the introduction to genetic algorithms, the discussion 
focuses on the development of a genetic algorithm for the circuit-partitioning 
problem. 

To develop a genetic algorithm, schemes for encoding, decoding, and evaluating 
a solution are required. Often solutions are encoded as bit streams. Thus, for 
example, in a facility design problem with N candidate parameters (each fixed to one 
of two possible levels), one natural encoding scheme would represent each candidate 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GENETIC ALGORITHM APPROACH 355 

parameter-level as a bit in an N-bit word. Setting the l bit to 1 would indicate that 
the l parameter is to be assigned to its second level; a 0 would indicate that the l' 
parameter is to be assigned to its first level. Once the scheme is decoded, it must be 
evaluated. In many facility design contexts, the output performance measure is 
evaluated by means of the execution of a computer simulation. Often the encoding, 
decoding and evaluation decisions are intimately linked. 

Genetic algorithms begin by randomly generating a popUlation of candidate 
solutions. Given such a popUlation, a genetic algorithm generates a new candidate 
solution (population element) by selecting two of the candidate solutions as the 
parent solutions. This process is termed reproduction. Generally, parents are selected 
randomly from the popUlation with a bias toward the better candidate solutions. 
Given two parents, one or more new solutions are generated by taking some 
characteristics of the solution from the first parent (the father) and some from the 
second parent (the mother). This process is termed crossover. For example, in the 
facility design context, we might randomly select a crossover bit location, n (1 <n<N). 
Two child solutions could then be generated. The first child would inherit the first n 
siting characteristics from the father and the remaining N-n characteristics from the 
mother. The second child would inherit the first n from the mother and the remaining 
N-n from the father solution. This is illustrated in Figure 12.1 for a problem with N=6 
and n=2. Finally, once child solutions are generated, genetic algorithms allow 
characteristics of the solutions to be changed randomly in a process known as 
mutation. In the binary encoding representation, typically, with a small probability 
(e.g., 0.01) each bit position is changed from its current value to the opposite value. 
With this probability of a single bit changing, the probability of a child solution 
remaining unchanged is (.99)6=.9415. With probability greater than .88, both child 
solutions would remain unchanged. 

Once candidate child solutions have been generated, they are decoded and 
evaluated. Typically, if a child solution is better than the worst solution in the parent 
population, the child solution replaces the worst element in the parent population. 
The process continues until some termination criterion is satisfied. Typical 
termination criteria include stopping when (l) the value of the best and worst 
elements in the parent population are either identical or sufficiently close to each 
other; (2) the value of the best solution in the parent population has not improved 
after Nl successive children have been generated; (3) the value of the average 
solution in the parent population has not improved after N2 successive children have 
been generated; or (4) N3 children have been generated. Goldberg [1] provides an 
excellent introduction to genetic algorithms along with theoretical results suggesting 
why such relatively simple algorithms should work well. 



356 

PARENT SOLUTIONS: 

RANDOMLY SELECTED 
CROSSOVER POINT: 

CHILD SOLUTIONS: 

A MATHEMATICAL THEORY OF DESIGN 

Father 
(1,0,1,1,0,1) 

Between bits 2 and 3 

Mother 
(0,1,0,0,1,1) 

(1,0,0,0,1,1) (0,1,1,1,0,1) 

(Father Characteristics shown in italics to indicate more clearly the inheritance 
process) 

Figure 12.1 Example Crossover Operation in a Facility Design Context 

12.3 A GENETIC ALGORITHM FOR THE CIRCUIT
PARTITIONING PROBLEM 

In the context of circuit-partitioning, encoding, decoding, and evaluating solutions 
are somehow trickier processes than in the facility design context outlined above. 
Similarly, the crossover and mutation operations need careful specification. As noted 
above, decisions regarding encoding, decoding and evaluating solutions must often 
be linked. In the circuit-partitioning problem formulated in Chapter 11, each gate is 
included in exactly one chip (package). Thus, one natural encoding scheme is to 
represent a solution as a permutation of the indices of the gates. The decoding 
scheme would then process the gates in the order in which they appear in the 
permutation, assigning each gate to a chip in some manner. Once the chips are 
formed, the solution can be evaluated simply by summing the costs of the nets 
required in each chip over all chips. 

Three alternate decoding schemes are developed and tested. In all schemes, nets 
are included in chips based on the order in which the gates appeared in the 
permutation. In the first approach, chips are formed sequentially. If the next gate in 
the permutation can be included in the chip under consideration (the number of 
additional nets required by the gate that is packed in the chip is less than or equal to 
the number of additional nets that could be included in the chip), the gate is included 
in the chip; if not, a new chip is initiated. In the second decoding scheme, for each 
gate, the emerging chips are tested, beginning with the first chip constructed, until a 
chip is found in which the gate can be included without violating the constraint on the 
maximum number of nets in a chip. The gate is included in the first chip in which it 
can feasibly be included. If no such chip exists, a new chip is initiated. In the third 
decoding approach, each gate is included in the best of the emerging chips, where 
'best' is defined as the chip which already includes the most nets required by the gate 
under consideration, and which can feasibly accommodate the additional nets 
required by the gate. Again, if no such chip exists, a new chip is initiated. Note that 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GENETIC ALGORITHM APPROACH 357 

each of these decoding schemes, no matter how the gates are assigned to chips, 
differs from the heuristic outlined in Chapter 11 (Section 11.4). In that heuristic, 
chips are constructed sequentially and a search is conducted over all unassigned 
gates for the best to include in the emerging chip. In the decoding schemes used in 
the genetic algorithms, gates are processed sequentially based on their order of 
appearance in the permutation. 

With solutions represented as permutations of the integers 1 to N, the crossover 
process must be carefully specified to ensure that the child solutions are also 
permutations. Goldberg [1] summarizes three crossover processes that satisfy this 
need. In the genetic algorithm developed for the circuit-partitioning problem, the 
partially matched crossover technique is used. In this approach, two crossover points 
are identified. The first child is constructed as follows. First, its permutation is set 
equal to that of the father. Next, the portion of the permutation between the two 
crossover points is replaced by the same portion of the mother's permutation element 
by element. As each element is replaced, the previous element in the child at that 
location is moved to the location in the child of the value of the replacing element. 
This is illustrated in Figure 12.2 for parents characterized by a permutation of the 
integers from 1 to 9. Note that both children are also permutation of the integers from 
1 to 9. 

PARENT SOLUTIONS: 

TWO RANDOMLY SELECTED 
CROSSOVER POINTS: 

Father 

(9,8,4,6,7.5,2, I ,3) 

Between positions 2 and 3 
Between positions 5 and 6 

Mother 

(2,4,5, I ,3,8,6,9,7) 

PARENT SOLUTIONS WITH CROSSOVER 
DELIMITERS: Father Mother 

(9,814,6,715,2,1,3) (2,415,1,318,6,9,7) 

CONSTRUCTION OF FIRST CHILD SOLUTION: 

1. Copy of Father: 
2. Replace lSI Element: 

3. Replace 2nd Element: 

4. Replace 3rd Element: 

SECOND CHILD: 

(9,814,6,715,2,1,3) 
(9,815,6,714,2,1,3)5 replaces 4; 
4 moves to position previously occupied by 5 
(9,815,1,714,2,6,3)1 replaces 6; 
6 moves to position previously occupied by 1 
(9,815,1,314,2,6,7)3 replaces 7; 
7 moves to position previously occupied by 3 

(2,514,6,718,1,9,3) 

(Father Characteristics shown in italics to indicate more clearly the inheritance process) 

Figure 12.2 Example Generation of A Single Child Using The Partially Matched 
Crossover Technique 



358 A MATHEMATICAL THEORY OF DESIGN 

Finally, the mutation process is changed. Instead of examining each bit and 
changing it with a specified permutation probability, we elect to mutate a solution 
with a given permutation probability (e.g., 0.2). If a solution is elected to undergo 
mutation, we randomly select two positions and exchange the elements in the 
permutation in these positions. 

12.4 COMPUTATIONAL RESULTS 

The four data sets (DATAl, DATA3, CLUSTRA and CLUSTAX), which were given 
in Chapter 11, were used in testing the genetic algorithm. Table 11.1 is a summary of 
key features of the four data sets. Finally, Table 12.1 summarizes the key input 
parameters for the genetic algorithm. The size of the parent population differs for the 
four data sets. The genetic algorithm is terminated when either (1) the values of the 
best and worst solutions in the parent population are equal; or (2) a pre-specified 
limit on the number of children to be generated is reached. The magnitude of this 
limit differs for each of the four data sets used in the tests of the algorithm. This, 
however, was the cause of termination in only 1 of the 181 genetic runs. The 
probability of mutating a child solution is 0.2 for all data sets. 

Table 12.1 Input Parameters for the Genetic Algorithm 

DATASET 
Genetic Algorithm DATAl DATA3 CLUSTRA CLUSTAX 
Parameters: 
Population Size 100 500 500 500 
Maximum Number 500 25,000 50,000 50,000 
of Children 
Mutation Probabilit 0.2 0.2 0.2 0.2 

Table 12.2 compares the 3 variants of the genetic algorithm (based on the 3 
decoding algorithm outlined above) in terms of the ability of the algorithms to find 
the optimal solution for the 4 data sets. Decoding using the BEST algorithm and the 
SEQUENTIAL algorithms resulted in about the same average likelihood of finding 
the optimal solution. Using the FIRST algorithm resulted in slightly poorer 
performance. Overall, the genetic algorithm found the optimal solution in almost 80 
percent of the runs. This percentage decreased with the problem size. For the largest 
problem, the genetic algorithm found the optimal solution in about 53 percent of the 
runs. It is likely that this percentage could be increased by running the genetic 
algorithm mUltiple times with different random number seeds. If a looser termination 
criterion were employed, the execution time of the genetic algorithm might not be 
increased dramatically. 

Table 12.3 shows the average execution time for the three decoding algorithms 
and the four data sets. As expected, the execution time for each algorithm increases 
with problem size. The average time for the SEQUENTIAL algorithm exceeded that 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GENETIC ALGORITHM APPROACH 359 

of the other two algorithms for all data sets. This is so despite the fact that the 
SEQUENTIAL algorithm takes less time to evaluate each child. However, as shown 
in Table 12.4, the SEQUENTIAL algorithm requires considerably more children to 
be generated before the values of the best and worst solutions in the parent 
population are equal. 

Balancing the solution quality (Table 12.2), execution time (Table 12.3) and the 
number of required children (Table 12.4), it seems as though decoding the 
permutations based on putting the next gate into the BEST emerging chip is the most 
cost effective approach. 

Table 12.2 Percent of Runs in which Genetic Algorithm 
Found Optimal Solution 

DECODING ALGORITHM 
DATASET: BEST FIRST SEO'L AVERAGE 
DATAl 100.00 100.00 100.00 100.00 
DATA3 97.62 92.86 95.24 95.24 
CLUSTRA 96.67 96.67 86.67 93.34 
CLUSTAX 52.86 48.57 57.14 52.86 
WEIGHTED AVERAGE 80.66 77.90 80.11 79.56 

Table 12.3 Average Solution Time for Genetic Algorithm 

DATASET: 
DATAl 
DATA3 
CLUSTRA 
CLUSTAX 
WEIGHTED AVERAGE 

BEST 
1.52 
28.42 
46.37 
109.53 
57.28 

DECODING ALGORITHM 
FIRST 

1.52 
29.07 
46.04 
100.54 
53.88 

SEO'L 
1.75 
33.36 
51.93 
120.40 
63.64 

AVERAGE 
1.6 
30.28 
48.11 
110.16 
58.27 

Table 12.4 Average Number of Children in Genetic Algorithm 

DATASET: 
DATAl 
DATA3 
CLUSTRA 
CLUSTAX 
WEIGHTED AVERAGE 

BEST 
152 
2,169 
2,506 
2,940 
2,100 

DECODING ALGORITHM 
FIRST 
160 
2,383 
2,774 
3,010 
2,224 

SEO'L 
226 
3,367 
3,809 
4,556 
3,241 

AVERAGE 
179 
2,640 
3,030 
3,502 
2,522 

Finally, Figures 12.3 and 12.4 compare the heuristic that was presented in 
Chapter 11 (Section 11.4) with the three decoding schemes for the genetic algorithm 



360 A MATHEMATICAL THEORY OF DESIGN 

in tenns of the average (Figure 12.3) and maximum (Figure 12.4) percentage error in 
the total net costs (the cost incurred when nets are included in chips) when compared 
with the optimal net costs. Even in the largest of the problems, the average 
percentage error for the worst of the genetic algorithms (the SEQUENTIAL decoding 
scheme) was under 1 percent. The heuristic of Chapter 11 gave an average error of 
almost 6 percent for this data set. Similar results were found for the maximum 
percentage error. The heuristic of Chapter 11 resulted in 25 percent errors for the 
largest data set, while the worst of the genetic algorithm results was within 5 percent 
of the optimal solution. The magnitude of both the average and maximum percent 
errors tends to grow with the size of the problem for both the heuristic of Chapter 11 
and the genetic algorithm with any of the decoding schemes. 

7% 

6% 

o MOVEJSWAP 
5% 

mBEST GA 
4% 

.FIRSTGA 

3% 
.SEQGA 

2% 

1% 

0% 
DATA1 OAT A3 CLUSTRA CLUST AX 

Figure 12.3 Average Percent Error in Heuristic Solutions 

30% 

25% o MOVEISWAP 

20% ElSESTGA 

15% .FIRSTGA 

10% 

5% 

0% 
DATA1 DATA3 CLUSTRA CLUSTAX 

Figure 12.4 Maximum Percent Error in Heuristic Solutions 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GENETIC ALGORITHM APPROACH 361 

12.5 OTHER APPLICATIONS OF GENETIC ALGORITHM 

12.5.1 THE CATALOGUE SELECTION PROBLEM 

Genetic algorithms can also be developed for solving fixed configuration tasks. In 
other words, the types of parts in the assembly and how they are connected are 
specified by the designer. The remaining task is to choose which particular part 
numbers (or types) to use. The designer specifies what type of parts are in the 
configuration and how they are connected. Configuring a design from parts out of a 
catalogue, which satisfies predetermined goals and constraints, requires searching 
large numbers of combinations of parts. We refer to this problem as the catalogue
selection problem. For example, Figure 12.5 shows a hoist that a designer might need 
to specify. The motor, worm and wormgear, shaft set parts and bearings must be 
chosen from those listed in a catalogue. The engineer must satisfy externally imposed 
constraints such as power and speed and internal compatibility constraints between 
adjacent parts (such as Stress Limit, Lifting Speed, and Thrust Force). All of these is 
to be done while minimizing an objective such as production cost. There are typically 
a large number of possible solutions from which to choose, which makes exhaustive 
search for the best solution difficult. 

cQble 

lOQd 
reducer Motor 

brQke 

= 

drUM = 
coupling 

Figure 12.5 The Working Principle of A Hoist 

As another example of the catalogue-selection problem, consider a situation in 
which the designer addresses the problem of selecting the appropriate levels of the 
various attributes to be engineered into the product. For example, in designing a 
flexible manufacturing system a designer would be interested in determining for the 
attributes raw material type and material handling policy, the specific level of each, 
steel or aluminum (for raw material type), and, first come first served or high value 



362 A MATHEMATICAL THEORY OF DESIGN 

first (for material handling policy) to employ in the proposed new system. 
Optimizing search techniques are not practical for searching for parts in 

catalogues because the computation time is often excessive. Rule-based approaches 
suffer from being domain specific and thus are not appropriate as general solution 
methods. Thus, a feasible alternative for solving configuration tasks is to use a 
technique based on genetic search. 

12.5.2 OUTLINE OF THE GENETIC ALGORITHM 

One important question is how to encode products so that they could be searched 
with GA. Based on the algebraic representation of design artifacts, a product 
(configuration, e.g., wormgear reducer) is described in terms of part types (a group of 
objects which are similar but have different sizes, e.g., stepper motor). Every part 
type can be further described by a set of attributes (a feature of a part type that other 
part types can connect to or get or receive information through, e.g., axial pitch). 
Each attribute can be described by its dimension. A relation states that two attributes 
are in contact. A candidate solution is a collection of part types with connections 
specified between their attributes. For a problem to be solved within the GA 
paradigm, one needs to formulate the problem using a string structure. In the 
catalogue-selection problem, we consider a chromosome (i.e. string) to represent a 
product. The parts of the product would correspond to genes and the levels, i.e., 
types the part could take, to alleles. 

For purposes of GA, the products are represented by binary strings. For instance, 
11111-01110-01101-11011-11010, represents load-31 connected to drum-14 
connected to wormgear-13 connected to worm-27 which is connected to motor-23. 
Each part is further specified by a set of attributes and their respective values. For 
example, wormgear-13 is described in terms of the Wormgear Teeth Number Ng = 
50, Wormgear Face Width Fg = 0.4941 (in), Wormgear Pitch Diameter Dg = 
2.548(in), and Wormgear Outside Diameter Dgo = 2.648 (in). 

Each string (i.e., product) has a fitness value which rates how well the candidate 
achieves the objective function (e.g., production cost), and how much it deviates 
from the constraints between the attribute values (dimensions) of adjacent parts. 

An interesting aspect of the approach introduced above is that parts are 
represented only as part numbers. When a catalogue of parts is not available, the part 
type attributes have to be determined from scratch. In this case, a genetic algorithm 
can be used to solve a non-linear programming optimization problem. The 
representation of a candidate solution takes into account the attributes of the part 
types (e.g. Wormgear Teeth Number, Wormgear Face Width, Wormgear Pitch 
Diameter, Wormgear Outside Diameter etc.) The binary representation of candidate 
solutions should code a string of real attribute values (thus, exploring a continuous 
domain of solutions). The fitness function is similar to the one used for the 
catalogue-selection problem. 



PHYSICAL DESIGN OF PRINTED CIRCUIT BOARDS: GENETIC ALGORITHM APPROACH 363 

12.6 Summary 

In this chapter, we presented an approach for solving the circuit-partitioning problem 
using a genetic algorithm. Solutions were coded as a permutation of the gate index. 
Three decoding algorithms were outlined. The results suggest that the genetic 
algorithm can find the optimal solution in a large percentage of the problems, 
particularly for the smaller data sets. The genetic algorithm results were significantly 
better than the sequential chip construction heuristic of Chapter 11 in terms of both 
the average and maximum percentage deviations from the optimal value. Naturally, 
the genetic algorithms took considerably longer to execute. The use of genetic 
algorithms in the context of physical design of printed circuit boards seems to be a 
promising area for future research. 

This chapter has also shown how to solve fixed configuration problems with 
genetic search. Since genetic search is much faster than optimization-based methods, 
the designer may use it to explore larger design spaces that were previously possible. 

REFERENCES 

1. Goldberg, D. E., Genetic Algorithms in Search Optimiwtion and Machine Learning, Addison
Wesley, New York, 1989. 

2. Daskin, M. S., "An Overview of Recent Research on Assigning Products to Groups for Group 
Technology Production Problems," Israeli Institute of Industrial Engineers Conference, Tel-Aviv, 
1991. 



CHAPTER 13 

ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 

In this chapter we want to evaluate which of many parameters (each is set at various 
possible levels) composing a design solution have the greatest likelihood of satisfying 
a given set of functional requirements. The design's functional requirements are 
represented by a set of prespecified limits that determine where the output responses 
should fall. Adopting the probabilistic paradigm presented in Chapter 7 and the 
methodology provided in Chapter 8 for quantifying how well a proposed design 
satisfies the governing requirements (in probabilistic terms), we present a method for 
adaptive learning of successful designs that is based on the use of statistical 
experimental design and a stochastic search algorithm. In Chapter 19, we present a 
real industrial problem of designing a flexible manufacturing system that is solved 
based on the proposed algorithm. 

13.1 INTRODUCTION 

13.1.1 MANAGING THE INTRICATE CORRESPONDENCE BETWEEN 
FUNCTION AND STRUCTURE 

As described in Chapter 5, the primary concept of FDT is that the design process is a 
mapping (synthesis) of the desired set of specifications (describing the desired 
functions and constraints of the final product) onto the artifact description (the final 
detailed product description). Starting with the stated functional requirements, the 
designer generates a solution by defining design parameters that best satisfy the 
functional requirements and describe the solution's physical layout. Functional 
requirements refer to the set of specific requirements that completely describe the 
perceived needs associated with the output performance measures of the design 
solution. Often the output performance measures have noise factors associated with 
them. Noise factors are those variables in a design that are uncontrollable or 
unpredictable, and represent an uncertainty that the desired response will achieve a 
desired value. In experimental-design terminology [1], the input parameters and 
structural assumptions composing a design are called factors, and the output 
performance measures are often termed responses. 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



366 A MATHEMATICAL THEORY OF DESIGN 

This chapter is based on the following characteristics. First, we deal with 
situations in which the rule of direct correspondence between the output performance 
measures and the design parameters is highly complex due to coupling effects 
(interactions) that preclude any possibility of an analytical solution. In these design 
scenarios the designer wants to find out which of possibly many parameters (each 
fixed to one of various possible levels) composing a design solution, have the 
greatest effect on one or more output performance measures. Performance measures 
have functional requirements (design goals) associated with them which are 
represented by a set of requisite tolerances. Second, we assume that the preliminary 
structure of the design is already determined at this phase. In particular, the set of 
design parameters and structural assumptions are considered fixed aspects of the 
design problem. The design problem is related to determining the optimal 
combination of the various parameter levels. 

In this chapter, the output performance measures are evaluated by applying a 
computer simulation model. For example, simulation is often used as a technique for 
evaluating performance measures in flexible manufacturing system (FMS) design 
(see Chapter 3). In FMS , possible factors include: number of machines, queue 
discipline, buffer sizes, conveyor speeds, and machine groupings into cells. Examples 
of responses are: parts throughput, time in system, machine utilization, and 
profitability. FMS is a good example of a complex system. If a change is made at a 
particular work station, its impact on the performance of the overall system may not 
be predictable by simple formal analysis, which results in the use of a computer 
simulation model. 

Without a numerical basis for comparison, however, the final selection of a 
design solution involving many functional requirements can only be made on a 
subjective basis. To resolve this difficulty, we provided in Chapter 8 a rational means 
for quantifying how well a proposed design satisfies the governing requirements in 
terms of its overall probability of successfully achieving the functional requirements. 
We employ this methodology in this chapter. 

This chapter provides a methodology for adaptive learning of successful designs 
(termed as P-Iearning) that is based on the use of statistical experimental design and 
optimization techniques. As mentioned earlier, without any loss of generality, we 
define "experiment" as the execution of a computer simulation model. The P-Iearning 
algorithm constructs a sequence of samples (populations of candidate solutions), 
where each sample includes particular designs to simulate. Given such a sample, the 
P-Iearning algorithm learns more about the design's behavior. In particular, which 
factors and factor interactions appear to satisfy the governing requirements in terms 
of the overall success probability. As the desired information is obtained, the P
learning algorithm generates new candidate solutions (sample elements) with a bias 
toward candidate solutions that include better parameter levels (in terms of their 
overall success probability). This adaptive mechanism is used to approximate the 
smallest probable set, which is the smallest set that includes all the most probable 
solutions (in terms of being included in a successful design, if it exists). This strategy 
is justified in Chapter 7 (Section 7.4) by showing that under certain assumptions the 
smallest high probability set (which is termed as the typical set) is a fairly small set 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 367 

relative to the number of potential designs. Once candidate solutions have been 
generated, they are simulated. This process repeats itself until a certain termination 
criterion is satisfied. Typical termination criteria include stopping when the whole 
number of executed simulation runs exceeds a predetermined constraint. 

13.1.2 THE APPLICABILITY OF THE METHODOLOGY 

As mentioned in Chapter 2, a typical design paradigm can be generalized as a top
down or hierarchical progression involving three stages: conceptual design, 
preliminary design, and detailed design. There is an incremental refinement of the 
design description as the level of detail evolves from abstract concepts to drawings 
that support the finalization of the design product. The methodology proposed in this 
chapter better supports the preliminary and detailed design stages since it is assumed 
that the parameters and structural assumptions are considered fixed aspects of a pre
developed conceptual solution. 

A further aspect of the proposed methodology -- of enhanced control over 
simulation experiments and specified levels -- supports incremental redesign 
activities in a global competitive marketplace. We are part of a marketplace that is 
becoming more global and more competitive every day. Incremental design has 
become the standard approach towards design in many areas. Most new products are 
only slightly modified from their predecessors with slight cosmetic or feature 
enhancements. In order to decide which new products to develop, large consumer 
goods companies often create several different prototypes, test market all of them, 
and develop whichever one sells the best. In this ever-changing environment, fast 
time-to-market has become critically important. Companies cannot be required to 
completely redesign their products. It is likely that they would have to modify their 
existing products by adding new features. modifying the specifications, or 
incorporating new materials and new technologies. If most of the design 
specifications do not change. computer companies cannot afford to redesign their 
products from scratch just because a new CPU is introduced. Likewise, in designing a 
new computer keyboard. many design issues have for the most part already been 
decided including which keys to include and in what order to place them. 

Finally. in addition to evaluating design performance relative to a particular 
functional requirement. some type of multi-objective decision criteria is needed to 
select the optimal solution when there is more than one requirement to be satisfied. 
Traditionally. multi-objective decision functions involve a combination of scale 
factors for putting all objectives into equivalent units and weighing factors for 
describing the relative importance of each objective. In contrast. the use of success 
probability for optimizing design decisions is appealing because it offers a uniform 
and unbiased decision criterion for resolving multi-objective design problems. The 
use of success probability provides a method by which different functional 
requirements are integrated and normalized to units of probability. 

The chapter is organized as follows. The problem formulation is provided in 
Section 13.2, followed by its detailed solution in Section 13.3. The solution approach 



368 A MATHEMATICAL THEORY OF DESIGN 

is illustrated in Section 13.4. Section 13.5 suggests a method for capturing the history 
of previous design processes. Section 13.6 summarizes the chapter. 

13.2 PROBLEM FORMULATION 

As mentioned earlier, this chapter deals with a situation in which the designer wants 
to find out which of possibly many parameters (each fixed to one of various levels) 
composing a design solution have the greatest effect on one or more output 
performance measures (responses). A particular output response is said to satisfy the 
corresponding functional requirement if it falls within the tolerance that represents 
the respective functional requirement. How well a proposed design satisfies the 
governing requirements is evaluated in terms of the probability of its successfully 
achieving these requirements. 

As explained above, we deal with situations in which the rule of direct 
correspondence between the output performance measures and the design parameters 
is highly complex, precluding any possibility of an analytical solution. In this case, 
the output performance measures are evaluated by executing a computer simulation. 
Since the execution of a large simulation requires considerable computational effort, 
the problem formulation as well as the solution strategy incorporate computational 
constraints in terms of the number of simulation runs required. 

The following notation will be used: 

• I: The parameter index set, 1= { I, 2, ... , N}; 
• J: The level index set, where we consider the case in which all parameters have 
the same number of levels M; 

• d: A feasible design solution d = {Ai / i = 1,2, ... , N , j E J}, where 

A{ E I x J , Idl = N , and exactly a single levelj E J is assigned to each parameter 

i E I; 
• n: the design space n = ~I ,d2 ,··,dq'" .. ,d MN J, representing the set of all 

feasible designs. In order to generate a solution, an extensive search of the design 
space might be required; 

• f: n ~ 9tL : a mapping from the design space to 9tL . f(dq) denotes a vector of 
L output performance measures (also called responses) of the qth design. We denote 

r1q as the lth response of the qth design; 

• tl = (0.[, ~I): the lth design specification that is expressed in terms of a tolerance 
(also termed a design range) associated with the lth performance measure. 0.[, and ~I 
are the lower and upper limits of the tolerance, respectively. Let 
T = ~l / I = 1, 2, ... , L }denotes the desired set of specifications (describing the desired 

design range of the final product) associated with the L output performance 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 369 

measures; 

Given a candidate design solution dq, the probability of successfuIIy achieving 

the Ith design specification is P,j = Pr ob~1 ~ 1jq ~ 131 j. Therefore the probability of 

successfuIIy achieving the set of independent specifications in T can be written 
L 

as Pd = II pq . The success probability P d is evaluated in this chapter by the 
q 1=1 '1 q 

execution of a computer simulation. In order to generate the optimal solution, 
extensive simulation runs of the design space might be required. However, it is easy 
to imagine a complicated design problem in which we might be interested in dozens 
or even hundreds of different parameters. Thus, the number of simulation runs 
needed may prove quite inefficient. This computational constraint is tacitly assumed 
by the solution approach presented in later sections. SpecificaIIy,we associate a unit 
cost to the execution of a single computer simulation run, and require to find an 
optimal design by performing at most C computer simulation runs. The designer's 

task is to seek optimal combinations of parameter levels d; (constituting the "best" 

design solution) that maximize the probability of successfuIIy achieving the set of 
specifications T by performing at most C computer simulation runs. Subsequent to 

obtaining the optimal solution d;, the designer may decide to examine the 

admissibility of the optimal solution by comparing P * with a threshold probability 
dq 

Po. In case P * < Po, a more elaborate model of the system with a larger number of 
dq 

parameters and levels must be considered. In general, the theoretical distribution of 
the output performance measure is unknown. Therefore, we develop procedures to 
estimate the parameters of the probability distribution that was computed from the 
observations obtained by executing the computer simulation. 

13.3 ADAPTIVE LEARNING OF SUCCESSFUL DESIGN 

13.3.1 THE PROBABILISTIC NATURE OF THE DESIGN PROCESS 

The nature of the information involved in the search for a design solution maybe 
either deterministic by showing which designs are categoricaIIy inferior, or 
probabilistic by identifying those designs which have the greatest probability of 
satisfying a given set of requirements. The methodology and the underlying P
learning algorithm presented in this chapter is founded on the probabilistic paradigm. 

Recalling Chapter 8, the success probability of a design (i.e. combinations of 
factors levels) that relates to the satisfaction of a particular task can be computed as 
follows. Figure 13.1 illustrates three possibilities of a non-uniform probability 
distribution associated with a particular performance measure I of the design product 



370 A MATHEMATICAL THEORY OF DESIGN 

d. The mean and variance of each probability distribution are indicated by Jl and a2, 
respectively. The functional requirement of a product is represented by a tolerance tl 
= (cxr. ~/). The probability of satisfying the functional requirement is depicted by the 

white area, denoted by ~i = Prob~1 ::;; rlq ::;; ~I J, which falls between the limits 

defined by the requisite tolerance. As shown in Figure 13.1, the success probability 
can be increased either by moving first the mean Jl toward the desired response 
(denoted by the dashed line) or by reducing the variance a2. In case some type of 
multi-objective decision criteria is needed to select the optimal solution, it is rational 
to quantifying how well a proposed design satisfies the design goals in terms of the 
overall probability of successfully achieving a set of independent functional 

L 
requirements, i.e. Pd = n pq . 

q 1=1 II 

FC.e~ul .... ec:l Tolerancel 

• I • 

Figure 13.1 Probability of Satisfying A Functional Requirement 

Suppose that there are M levels for each parameter and the designer wants to 
estimate how a particular parameter-level satisfies the governing requirements. One 
way to measure the effect of a particular parameter-level is to fix the parameter at the 
particular level, letting all other parameters vary over some set of values, and make 
simulation runs for each combination of parameter levels. Then to estimate the value 
of the actual mean Jl and the variance a2 of the output response (in -place of their 
precise values), which are used to compute the success probability as shown earlier 
(and as detailed in Appendix A). The main goal of the P-learning algorithm is to seek 
parameters levels that occur in successful designs. 

Having explained the basic concepts of computing the probability of success; an 
outline of the P-learning algorithm follows. In the first stage of the P-learning 
algorithm, the designer has no information (zero information state) about which 
parameter levels satisfy the governing requirements. In the zero information state, the 

designer sets the initial representative sample, .01 , to be an orthogonal array, for 
which each parameter-level appears with the same frequency. Given such a sample, 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 371 

the P-algorithm learns more about the design's behavior in terms of which parameter 
levels appear to satisfy the governing requirements. As the desired information is 
obtained, the P-Iearning algorithm constructs a new sample of candidate solutions. 
Each new sample element is generated with a bias toward candidate solutions that 
include better parameter levels as determined by the experimental success 

probabilities. Once a new sample of candidate solutions, Us, has been generated, 
each candidate solution is simulated. In the revised sample, each parameter-level 
appears with a frequency that depends on its success probability as computed by the 
previous sample. This process repeats itself until the total number of executed 
simulation runs exceeds a predetermined limit. In general, the P-Iearning algorithm 
manipulates the population of candidate designs in such a way that poor designs fade 
away and successful designs continually evolve (reminiscent of some genetic-based 
algorithms). If, however, the design problem involves dozens or even hundreds of 
different parameters, the experimentation becomes excessively time-consuming and 
impractical. In such a case, to screen out unimportant parameters, it might be 
advisable to apply (for the first orthogonal array) analysis of variance (ANOV A) and 
pooling up techniques at the beginning of the P-Iearning algorithm. A detailed 
description of the P-Iearning algorithm (including the initial screening procedure) is 
provided in the next two sections. 

13.3.2 PRELIMINARIES 

For ease of exposition, we consider the case of evaluating the design performance 
relative to a single functional requirement. When there is more than one criteria to be 
satisfied, the procedure presented in Section 13.3.2 can be applied. The following 
terminology will facilitate the description of the solution approach as presented in 
Section 13.3.3. 

• r q : the design response of the qth design evaluated by the function f(dq ). For 

a multi-objective decision criteria, r q denotes a vector of L output performance 

measures. 
• CI) : the number of independent replications at each parameter combinations (a 
design solution). 

• S/ : the set of designs in as , each of which has the jth level assigned to its ith 

parameter. 

I,r q 

• 
d esi . 

Jl j = -, q .,' : the estimated mean response of all designs in S / . 
Ai S I . CI) 

I 



372 A MATHEMATICAL THEORY OF DESIGN 

• 

I, (r q - Jl .)2 
. Sl 

dqES/ i = --'-----0. __ -,-__ _ 

(lS/I' CO )-1 
the estimated variance of all designs in S I . In 

many cases [1] the mean residual error (MSe) , as obtained from the ANOVA table 

that is constructed for the first orthogonal array, is used as an estimate of &2 .. 
,/ 

I 

• Jld: the estimated mean response of the design dq• If dq E QS, Jld can be q q 

I,r(dq ) 
estimated directly by averaging all the qth design's replications, i.e. Jld = ...::co,,--__ 

q co 

• &2: the estimated variance of the design dq• If dq E QS, &2 can be 
~ ~ 

I,hdq)-Jldq f 
estimated as .,:co,,--____ _ 

co-I 
The preceding definitions describe the variance and the mean as a way of 

evaluating the output performance measure of a design product (or a parameter's 
level) based on a statistical approach. As mentioned in the previous section, the 
output performance measure is used to calculate the probability of successfully 
achieving the requirement. The system range (the distribution of the output 
performance measure) is assumed to have a theoretical non-uniform probability 
distribution, whereas the design range (the functional requirement) is represented by 
a tolerance. Thus, the probability of satisfying the functional requirement is the area, 
under the theoretical probability distribution of the system range, which falls between 
the limits defined by the requisite tolerance. 

In general, however, the theoretical distribution of the output performance 
measure is unknown. When this is the case, it is convenient to assume that the output 
performance measure r has the Normal distribution. Considering this assumption, 
next we formulate the success probability. 

• P d : the probability that a proposed design dq successfully achieves the 
q 

functional requirement, i.e. P d = P~ E t I dq ). P d is estimated as the probability 
q q 

that the design response of dq falls within the predetermined tolerance, i.e. 

p( rEt I Jldq '&~q ). Detailed expressions for computing Pdq are presented in 

Appendix A. 

To carry out the P-Learning algorithm, we need to define the following 
probabilities: 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 373 

• P j: the probability that any design solution in which the jth level is assigned to 
Ai 

parameter i successfully achieves the functional requirement, i.e. 

P j = P ~ E t / 'A.1 Ed). P j is estimated as the probability that the response of 
Ai Ai 

all designs in si 
I 

falls within the specified tolerance, i.e. P j 
Ai 

= 

P (r E t / fl j' 0 2 .). P j is termed as the experimental success probability. The 
Ai Ai Ai 

meaning of P j is that it evaluates, based on the design matrix as, the probability 
Ai 

of successfully achieving the functional requirement for designs that have the jth 
level assigned to parameter i. Detailed expressions for computing P j are presented 

Ai 

in Appendix A. 

• p('A.1 E d): the probability that any design solution has the ith parameter 

assigned to its jth level. p('A.1 E d) is termed as the preference probability. As shown 

in the sequel, the P-Iearning algorithm generates the sample of candidate solutions, 

as, with a bias toward candidate designs as determined by the preference 

probabilities. Thus, p('A.1 E d) may be said to govern the percentage of designs in 

Isil 
as that have the levelj assigned to their ith parameter (i.e. p('A.1 E d) z l~sl)' and 

thus reflects the designer's preference of which designs are to be included in as . In 
the "zero information" case (S= 1), an orthogonal array for the initial design of 

experiments is constructed, and for each parameter and each level p('A.1 E d) is 

initially set to YM . When more information is obtained (in subsequent steps), the 

preference probabilities are modified such that the designer assigns computational 
efforts to those designs that have higher probability of satisfying the functional 
requirements. The preference probabilities are modified in accordance with the a 
posteriori preference probabilities as described in the following. 

• P ~1 E d / rEt), the a posteriori preference probability, is defined as the 

probability that the jth level is assigned to parameter i given that there exists a design 

that achieves the functional requirement. P ~1 E d / rEt) is computed by using 

Bayes' theorem (see Appendix B), as follows: 



374 A MATHEMATICAL THEORY OF DESIGN 

Experimental Prefr.ences 
.............' . Aposterior p.. PCA~ e d) 

~ ,./ I pv-! e d Ire t)= __ ....!.i _____ _ 

I I{P j . PO.! e d)} 
j Ai 

In the next step (S+I), the P-learning algorithm modifies the preference probabilities 
in accordance with the computed a posteriori preference probabilities (as described in 
the subsequent section). 

13.3.3 THE P-LEARNING ALGORITHM 

Algorithm P-Learning (Single performance measure) 

1. If-S. 

2. For each parameter ie I and each level jeJ, set PO.! e d) = YM . 
3. Initialization: set the initial representative sample 0\ to be the smallest 

orthogonal array with at least 5\·MN rows of experiments (5\:S;1). 5) denotes the 
fraction of designs out of all the feasible designs. 

4. Main Loop: 

a) Simulate each design point in as for ro independent replications. 
b) If S=l, identify the parameters that have the greatest effect on the 

performance measure by applying analysis of variance and pooling up 
techniques. If S> 1, include all the parameters in subsequent steps. 

c) For each main parameter iel and each level jeJ, compute the estimated 

mean response J1 j . If the sample size used to estimate &2. is small (e.g. 
Ai Ai 

:S;S), then set the variance &2. as the mean residual error (MSe) in the 

A' , 
ANOVA table that was constructed in the first step (S=l). Otherwise 

compute &2. as shown earlier. Finally, compute P j' 
~ ~ 

d) For each parameter ie I and each level je J, compute the a posterior 

preference probability P (A.! e dIre t). 
e) For each main parameter ie I and each level je J, update the preference 

probability by setting P(A.! e d) = P ~! e d Ire t). 
f) For each design point dqe as , compute the success probability P d (if the 

q 

sample size used to estimate the variance &2 is small, then set the 
dq 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 375 

variance &2 as the residual error in the ANOV A table. Otherwise compute 
dq 

&2 as shown earlier). 
dq 

5. S+1 ~ S. 

6. Design matrix revision: generate Os' InS-II designs (Os::>l) such that for each 

design point and each parameter ie I, the parameter i is fixed to its jth level with 

probability po .. 1 e d) . 

7. Termination criterion: IF C or more computer simulation runs have been 
conducted thus far THEN return the design solution that yields the maximum 
value of success probability among the design points generated thus far, and 
return the design solution that yields the maximum value; OTHERWISE, return 
to the Main Loop (STEP 4). 

The P-Iearning algorithm is illustrated in Figure 13.2. 

FOR EACH PARAMETER· 
LEVEL.COMPUTE THE 

EXPERIMENTAL SUCCESS 
PROBABILITY& A POSTERIORI 

PREFERENCE PROBABILITY 

RETURN 
SOLUTION 

>-.... ~THATYIELDS 
MAXIMUM 
SUCCESS 
PROBABILITY 

Figure 13.2 Flowchart of the P-Learning Algorithm 



376 A MATHEMATICAL THEORY OF DESIGN 

13.4 ILLUSTRATIVE EXAMPLE 

Consider the following design problem where the parameter index set is 1= {I, 2, 3, 
4}; the level index set is J={I, 2}; and the required functional requirement 
(tolerance) associated with the single output performance measure r is given by 
T = {r / r ~ 7.5}. The design space includes 24= 16 feasible design solutions. The 

sample reduction ratios are set to 0,=02=0.5, and the termination criterion is set to 
C=12. 

• Initialization: Based on the reduction ratio 0" when the designer has no 
information about which parameter-levels satisfy the governing requirements, the 

initial representative sample nl is set to be the Ls orthogonal array presented in 
Figure 13.3. The Ls orthogonal array guarantees a resolution level of 2, which means 
that all main parameters are unconfounded with two-parameter interactions, but some 
groups of two-parameter interactions are confounded (mixed) with each other. There 
are several ways to assign parameters to the columns of the Ls orthogonal array. The 
assignment process, which is knowledge driven, is performed by a family of linear 

graphs [1]. The design points in nl were simulated, each for a single replication (i.e. 
0)::: 1). For each parameter ie I and each level je J, the preference 

probabilities P(A{ e d) are set to ~ = 0.5. 

test 

1 
2 
3 
4 
5 
6 
7 
8 

A, A2 A,A2 A3 
1 1 1 1 
1 1 1 2 
1 2 2 1 
1 2 2 2 
2 1 2 1 
2 I 2 2 
2 2 1 1 
2 2 1 2 

One of L8 OA Linear 
Graohs: 

A,A3 A,A4 A4 
1 I I 
2 2 2 
1 2 2 
2 I 1 
2 1 2 
I 2 I 
2 2 I 
1 1 2 

Figure 13.3 The initial Ls Orthogonal Array (OA) 

response 

8 
4 
12 
8 
4 
1 
5 
3 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 377 

• The parameters (including two-parameter interactions) that have the greatest 
effect on the performance measure are identified by applying analysis of variance and 
pooling up techniques. Table 13.1 has rows for source of variation (main parameters 
and their interactions) and p-values for its source of variation produced by ANDV A. 
The large p-values, associated with 1..11..2 and 1..4 , indicate that there is not 

significantly real effect of the interaction ).,11..2 and the main parameter 1..4 , Thus, 

the residual error does not reflect all the unexplained sum of squares. Consequently, a 
different combination of column effects is required in order to better estimate the 
residual error. This type of column combination is determined by "pooling" 
strategies. Two pooling strategies can be considered for design [1]: "pooling down" 
versus "pooling up." 

Table 13.1 The ANDV A Table 

*** ANALYSIS OF VARIANCE *** 

PERFORMANCE 

by A), 1..)1..2 , 1..2 , 1..3, and 1..4 

UNIQUE sums of squares 
All effects entered simultaneously 

Sum of Mean Sig. 
Source of Variation Squares DF Square F ofF 

Main Effects 84.625 5 16.925 27.080 .036 

A) 45.125 45.125 72.020 .014 

1..)1..2 3.125 3.125 5.000 .155 

1..2 15.125 15.125 24.20 .039 

1..3 21.125 21.125 33.80 .028 

1..4 .125 .125 .200 .698 

Explained 85.625 5 16.925 27.080 .007 
Residual .250 2 .625 
Total 85.875 7 12.268 

8 cases were processed. 
o cases (.0 pct) were missing. 

The pooling down strategy entails pooling all but the largest column effect, and 
F-testing the largest against the remaining pool together. If the column effect is 
significant, then the next largest is removed from the pool and F-testing is being 
performed again until some insignificant F ratio is obtained. The pooling up strategy 



378 A MATHEMATICAL THEORY OF DESIGN 

entails pooling the least column with the residual error and F-testing all other 
columns against the pooled columns. This process repeats itself until all the 
remaining columns are significant. The pooling up strategy tends to maximize the 
number of significant factors while the pooling down strategy tends to minimize 
them. In addition, the pooling up strategy tends to increase the alpha type of error, 
i.e. judging some factors to be significant while, in fact, they are not. On the other 
hand, the pooling down strategy increases the likelihood of a beta type of error, i.e. 
judging some significant factors to be non-significant while, in fact, they are. From 
the designer's perspective a beta type of error is less desirable, since once a factor 
has been judged to be insignificant, that factor is excluded from further steps of the 
P-Iearning algorithm. However, in case of an alpha type of error, the factor is 
included in further steps, which enables the designer to revise his judgments. 

In the example, both strategies conclude with three significant parameters, 
AI' A2' A3 as shown in Table 13.2. However, in accordance with the P-Ieaming 

algorithm, we include A4 in further steps. 

Table 13.2 Final ANOV A Table After Conducting A Pooling Up Strategy 

*** ANALYSIS OF VARIANCE *** 

PERFORMANCE 

by AI' A2' and A3 

UNIQUE sums of squares 
All effects entered simultaneously 

Sum of 
Source of Variation Squares 

Main Effects 81.375 

AI 45.125 

A3 21.125 

A2 15.125 

Explained 81.375 
Residual 4.500 
Total 85.875 

8 cases were processed. 
o cases (.0 %) were missing. 

Due to empty cells or a singular matrix, 
higher order interactions have been suppressed. 

Mean 
OF Square F 

3 27.125 24.111 

45.125 40.111 

21.125 18.778 

15.125 13.444 

3 27.125 24.111 
4 1.125 
7 12.268 

Sig. 
ofF 

.005 

.003 

.012 

.021 

.005 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 379 

• For each significant parameter iE I and each level jE J, the estimated mean 
response 11 j is computed. For example, the estimated mean response 11,1 and 

~ ~ 
11 2 are computed as follows: 

1.:4 

'Irq 

A qesl rl +r2 +r3 +r4 8+4+12+8 32 
J.I. 1=_1_= = =-=8, sf ={dl ,d2 ,d3 ,d4 }. ).;IIS/I.w 4·1 4 4 

'Irq 
qesl r2 + r3 + r5 + r8 = __ 1_= 

ISfl. w 4·1 

= 4+12+4+3 = 23 =5.75 
44' 

Since the sample size used to estimate 0- 2 . is small, the variance 0- 2 . is set as the 
A~ A~ 

I I 

residual error in Tabl~ 13.2, i.e. 0- 2 . = 1.125. The estimated mean responses for all 
A~ 

I 

the significant parameters are summarized in Table 13.3. 

Table 13.3 Mean Analysis 

Summary of results by level of AI 
Variable Value Label 

AI 
AI 2 

Summary of results by level of A 2 

Variable Value Label 

A2 

A2 2 

Summary of results by level of A3 
Variable Value Label 

A3 
A3 2 

Summary of results by level of A4 
Variable Value Label 

A4 I 

A4 2 

Variance in all cases is estimated as 1.125 
Total Cases = 8 

Mean 

8.0000 

3.2500 

Mean 

4.2500 

7.0000 

Mean 

7.2500 

4.0000 

Mean 

5.500 

5.7500 

Cases 

4 

4 

Cases 

4 

4 

Cases 

4 

4 

Cases 

4 

4 



380 A MATHEMATICAL THEORY OF DESIGN 

• Following the required functional requirement (tolerance) as given by 
T = {r! r 2: 7.5}, the experimental success probability P j is computed for each 

Ai 

significant parameter iEI and each level jEJ (see Appendix A). For example, the 
experimental success probability P AI is computed as follows: Let vE=4 denotes the 

I 

total number of degrees of freedom used to estimate the residual error (MSe) as 

(11 AI - 7.5) (8 -7.5) 
summarized in Table 13.2. Let ta ,4 = JMs; = 1.06 0.47 is the critical 

point for the t distribution with 4 degrees of freedom, i.e. P( t4 2: ta,4) = I-(X = 0.199. 

Then P AI = I-(X = 0.8004. In a similar manner one obtains the following 
I 

experimental success probabilities: P 2 =< 6.57E-4; PI=< 1.79E -3; P ,2 =< 0.l995; 
AI A2 "'2 

P ,I =< 0.33095; P ,2 =< l.36E-3; PI=< 1.958E-2; P 2 =< 0.0299. 
"'3 "'3 A;4 A4 

• For each significant parameter iE I and each level jE J, the preference probability 

is updated by setting p()..1 E d) = p(A1! rEt). Thus, the revised preference 

probability PO'}I E d) is computed as follows: 

Experimental ~ 
Aposterior p-;-. P(AII E d) 

P(All ; r E r)= AI I 
L{PI·P(AIEd)} 
j AI 

0.8004·0.5 In ---------4-- =< l. a 
0.8004·0.5 + 6.57 ·10 ·0.5 

similar manner one obtains the following revised preference probabilities: P(AT E d) 

= 0; P(AI2 E d) = 0.01; P(A} E d) = 0.99; p(A13 E d) = 0.996; P(A1 E d) = 

0.004; P(A~ E d) = 0.39; P(A~ E d) = 0.61. 

• In the next step (S=2), the designer generates ~r 1.0.11 = 05-8=4 new designs such 

that the parameter i is assigned to its jth level with the revised preference 

probability p(A1 E d). The resulting representative sample .0.2 is described in Table 

13.4. For each design point dqE .0.2 its success probability P d is computed, and the 
q 

design point dq =(1,1,1,2) that yields the maximum value is selected as the design 
solution. 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 381 

Table 13.4 The Design Matrix .0.2 

test AI 1..2 1..3 1..4 response 

1 1 2 1 2 12 
2 1 2 1 1 10 
3 1 1 1 2 15 
4 1 1 1 1 8 

13.5 A CATALOGUE STRUCTURE FOR THE P-LEARNING 
ALGORITHM 

The adaptive learning methodology can be supported by capturing the context and 
history of previous design processes. Information and data that are obtained at the 
termination of the P-Iearning algorithm can be collected based on the field of interest 
and stored in a catalogue for future redesign activities. The data used in the catalogue 

include (in each row): a list of parameter-level combinations (i.e. A{ ), the sample 

size (n'ff) used to estimate the mean response of all designs in S / ' the estimated 

mean (p. j) response of all designs in S/' the estimated variance (&2 . ) of all 
~ ~ 

designs in S /' the preference probability p(A1 E d), the experimental success 

probability P j' the a posteriori preference probability P(A{ E d IrE t), and the 
Ai 

desired set of specifications t. Table 13.5 presents the catalogue associated with the 
example provided in Section 13.4. 

Design catalogues support incremental redesign activities by capturing the 
context and history of a particular design process in order that the experience (good 
or bad) may be reused in future redesign activities. For example, (1) if the perceived 
needs associated with the output performance measures are changed (shifting to a 
new t), the last two columns in the design catalogue (using the Table 13.5 format) 
would be modified to reflect the changes, and the P-Iearning algorithm would be 
initiated with a new sample of candidate solutions generated according to the revised 
preference probabilities in the last column; (2) any revision of the preference 
probabilities due to newly acquired information would be reflected in the fourth and 
last columns; and (3) if the perceived needs are modified to include conjunctions 
over previously defined (and independent) functional requirements (e.g. "work in 
process should be between 6 to 10 units" and "number of defective units should be 
less than 100 parts per million"), then the designer can revise the preference 
probabilities by simply mUltiplying the "experimental success probabilities" columns 
(P ')./ ) in the corresponding catalogues. , 



382 A MATHEMATICAL THEORY OF DESIGN 

Table 13.5 A Catalogue Structure for A Required Functional Requirement 
(Tolerance) Associated with the Single Output Performance Measure r as given by 
t={rlr~75}. 

").) neff IlAi p(A1 E d) 0-2 p. PC),.! e dIre t) I ,./ A.~ 
I I 

I 

All 4 8.00 0.5 1.125 0.8004 99.92% 

A~ 4 3.25 0.5 1.125 6.57E-4 0.08% 

Al2 4 4.25 0.5 1.125 1.79E-3 0.89% 

A~ 4 7.00 0.5 1.125 0.1995 99.11% 

AI 
3 

4 7.25 0.5 1.125 0.33095 99.59% 

A2 
3 

4 4.00 0.5 1.125 1.36E-3 0.41% 

A~ 4 5.50 0.5 1.125 2.37E-2 39.55% 

A~ 4 5.75 0.5 1.125 6.62E-3 60.45% 

13.6 SUMMARY 

In Chapter 8, a functionality complexity measure was provided as a rational means 
for quantifying how well a proposed design satisfies the governing requirements. In 
this chapter, the functionality complexity measure is shown to also have a heuristic 
value by presenting a method for adaptive learning of successful designs. The P
learning algorithm constructs a sequence of samples in which each sample includes 
particular designs to simulate. Given such a sample, the P-Iearning algorithm learns 
which factors appear to satisfy the governing requirement in terms of the overall 
success probability. As the desired information is obtained, the P-Iearning algorithm 
generates new candidate solution with a bias toward candidate solutions that include 
better levels. In Chapter 7, we linked between the probabilistic search strategy as 
presented in this chapter and Information Theory. 

The P-Iearning algorithm can be used when there is more than one requirement 
to be satisfied. This is done by introducing a heuristic measure which quantifies how 
well a proposed design satisfies the overall probability of successfully achieving a set 
of independent design requirements. The P-Iearning algorithm can be modified in 
order to account for dependent requirements by estimating conditional success 
probabilities. However, considering the simplicity of the P-Iearning algorithm and its 
performance, we believe that the proposed functionality complexity measure is 
suitable. 

In Chapter 19, we provide a detailed case study of a flexible manufacturing 
system design by applying the P-Iearning algorithm. 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 

APPENDIX A - COMPUTATION OF THE EXPERIMENTAL 
SUCCESS PROBABILITIES 

383 

In this appendix we show how to compute the experimental success probability P j. 
!,;j 

To compute the design success probability P d ' we simply use the respective 
q 

statistics when needed (i.e. Jld and 0-2 ). Three cases are considered in accordance 
q dq 

with the form of the functional requirement. 

Case 1 - T = {r I r ~ LB} or T = {r I r $; UB}: 

Let VE denotes the of number of degrees of freedom used to estimate the residual 
(Jl . -LB) 

')..1. 
error (MSe). Let ta.vE = ' be the critical point for the t distribution with 

.JMSe 
vEdegrees of freedom such that P(tVE ~ta.vE) = I-a. Then P ')i = I-a as described , 
in Figure l3.3. 

Prob. 

a. 

1 --a 
2 

LB Jl 

r 

Figure 13.3 Experimental Success Probability - Case I 

Case 2 - T ={rlr SUB}: 

To compute the experimental success probability in this case, we let ta,vE = 
(UB-I\J) 

.,[iiS;' ) be the critical point for the t distribution with VE degrees of freedom 
MSe 



384 A MATHEMATICAL THEORY OF DESIGN 

such that PCtvE ::; ta,vE ) = I-a. Then P ')./ = I-a. , 

Case 3 - T = {r ILB ::; r ::; UB}: 

(11~/ - LB) 

Let taLB,VE = JMse and tauB,VE = 
(UB -11,)./) 
---==,.:-'- be defined as in Case 1 and 

.JMSe 
Case 2. Then P j = 1- aUB - aLB. as described in Figure 13.4. 

Ai 

Prob. 

I 
--aLB 
2 

LB Jl VB 

Figure 13.4 Experimental Success Probability - Case 2 

APPENDIX B - BA YES' THEOREM 

r 

The P-algorithm uses Bayes' Theorem to update the preference probabilities at each 
step. Despite its simplicity. Bayes' Theorem is widely used in biometrics. 
epidemiology. and communications theory. 

Bayes' Theorem: Let A;. i= 1 ..... n be a set of disjoint and exhaustive events 
n 

defined on ~. Then U Ai = n. A; n Aj = <I> i*j. Let B be any event defined on ~ • 
i=I 

with PCB) > O. With peA;) *0 for all i: 



ADAPTIVE LEARNING FOR SUCCESSFUL DESIGN 

P(BIAj)P(Aj ) 
P(A/ B) = -n--~-"--

"LP(BIAj)P(Aj ) 
;=1 

In our case, we define the following events: 

B == {the output response falls within the tolerance, Le. rE t} 

Ai == {parameter i is set to its jth level, Le. ;..1 Ed} 

Then 

385 

(the experimental success probability) 

P(A/ B) = P ~1 E d IrE r) = p(;"1 / r E r) 
probability). 

REFERENCES 

(the a posteriori preference 

I. Ross. P. J .• Taguchj Techniques/or Quality Engineering. McGraw-Hili. 1988. 



CHAPTER 14 

MAINTAINING CONSISTENCY IN THE DESIGN 
PROCESS 

In Chapter 5, we investigated the notion of design consistency: small changes in 
specifications should lead to small changes in design. The mathematical concept that 
is used to investigate the principle of design consistency is that of continuos analysis 
and continuos synthesis. In this chapter, the concept of design consistency in the area 
of variational design is furthered formalized, and the COAST (COnsistency through 
Analysis of Solution Trajectories) methodology is implemented for maintaining 
design consistency in those design areas where similarity between designs can be 
calculated [21]. The formal description of an evolutionary design model as given in 
Chapter 6 is used to define the design paradigm used in COAST. 

In variational design, the dimensions of a part are calculated by solving a system 
of constraints (typically, nonlinear equations). Two characteristics of variational 
design combine to necessitate the development of rigorous design consistency 
techniques: (1) systems of nonlinear equations often have multiple solutions, and (2) 
design is an incremental, evolutionary process. If design consistency is not 
maintained, the designer can be confronted with manually correcting the design at 
each iteration of the design process. 

When systems of constraints are modified, the COAST method maintains design 
consistency by following the homotopy of the desired solution between the original 
and modifed systems of constraints. In this chapter, a design consistency is defined 
numerically and interval-based continuation methods (such as that used in the 
COAST method) are analyzed and proven to either guarantee design consistency or 
detect when it cannot do so. Finally, to demonstrate the COAST methodology, a 
cantilever beam is designed and representative solution trajectories are given for each 
step in the design process. 

14.1 INTRODUCTION 

14.1.1 VARIA TlONAL DESIGN 

In computer-aided design systems, a design is represented in terms of its geometry. 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



388 A MATHEMATICAL THEORY OF DESIGN 

In constraint-based design, the designer is able to describe the geometry of the part 
using relations (e.g. distance and angle). This is in contrast to systems in which the 
user must explicitly define the geometry of the design. 

Constraint-based design systems are divided broadly into two categories: 
parametric and variational [14]. In parametric design systems, the designer explicitly 
defines the value of each dimension of a part as it is created. The value may take the 
form of a numerical constant or a mathematical expression that reference attributes of 
previously defined parts, but it must be completely defined. The design system 
records each step of the design and creates a design sequence. When modifications 
are needed, they are made to a specific step in the design sequence and the sequence 
is "replayed", updating every dependent design step. While this is a powerful 
paradigm for constraint-based design, it suffers from requiring the user to explicitly 
constrain the value of each dimension. This limits the type of constraint that can be 
implemented. 

In variational design, the entire system of constraints for a part or parts is solved 
simultaneously with a constraint solver (e.g., Newton-Raphson). Variational design 
systems offer several advantages including the ability to solve problems whose 
dimensions cannot be calculated with a single algebraic expression as well as 
subsuming most of the c?pabilities of parametric design systems. An entire design 
sequence in a parametric design system can be thought of as a system of constraints 
in a variational design system. 

Despite its advantages, the numerical approach to constraint management has 
been often criticized for the multitude of solutions that are possible and the lack of a 
good method for distinguishing among them besides requiring the designer to input 
an initial guess for the design whenever they enter or modify constraints. 

14.1.2 DESIGN CONSISTENCY IN VARIATIONAL DESIGN 

The cost of making changes to a de3ign depends heavily on the ability of the design 
software to maintain consistency. SpecificaIly, we consider the problem of 
maintaining consistency in variational design systems where a part is designed by 
creating a system of constraints that describe the dimensions of the part. 
Furthermore, we consider a numerical approach to constraint satisfaction in which the 
constraints are transformed into a system of algebraic equations (typically nonlinear) 
and solved simultaneously. Systems of equations have historically been solved using 
iterative numerical techniques such as the Newton-Raphson method. One common 
critique of sud. numerical constraint satisfaction techniques is that when the 
equations are nonlinear, there are often multiple competing solutions to the system, 
but only one is usually acceptable to the designer. Simple iterative techniques for 
solving the system of constraints then fall short due to their lack of control over 
which solution the system converges to. Because of the iterative nature of design, 
modifications will certainly occur whereupon the lack of control translates into much 
added effort for the designer in repeatedly guiding the constraint solver to the correct 
solution. 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 389 

The problem of converging to an unintended solution arises because anytime a 
system of constraints is modified, it is typically completely re-solved as if it were a 
new problem. Rather than treating each new system of constraints as completely new, 
we define a convex homotopy from the original system of constraints to the new 
system of constraints. An interval-based continuation method, COAST (COnsistency 
through Analysis of Solution Trajectories) is used to deterministically track the 
solution trajectory of the desired solution as it is modified through the homotopy. 

14.1.3 CHAPTER OUTLINE 

The remainder of this chapter is organized as follows. In Section 14.2, we introduce 
previous research in design consistency, from both geometric and numeric'al 
approaches. In Section 14.3, we provide a general definition of design consistency. 
In Section 14.4, we define our variational design paradigm. In Section 14.5, we 
derive mathematical definitions and theorems about design consistency and prove the 
design consistency capability of COAST. In Section 14.6, we introduce a simple 
interval-based continuation method algorithm (COAST) for following a desired 
solution curve. In Section 14.7, to demonstrate the COAST methodology, a 
cantilever beam is designed and representative solution trajectories are given for each 
step in the design process. In Section 14.8, we conclude and describe future work to 
the COAST algorithm. 

14.2 PREVIOUS EFFORTS 

In variational design, when the designer modifies the system of constraints, there are 
two primary methods for ensuring that the new design is consistent with the previous 
design: either the program can use logic to derive the correct solution from the 
geometry of the design or the program can use mathematical techniques to converge 
to the correct solution. 

14.2.1 GEOMETRIC REASONING 

Geometric techniques seek to exploit geometric information (either defined by the 
designer or inherent in the design) to characterize the possible solutions and maintain 
a consistent solution. 

In geometrical CAD systems, where the constraints are all geometric relations, it 
is often possible to characterize solutions by observing certain topological properties 
of the objects. For instance, [20] introduces two relative position constraints, 
order _on and side_of The first one allows the user to define the order of certain 
objects as they lay on other objects. For instance, if two points are constrained to lay 
on a line and be a certain distance from one another, there is an ambiguity as to their 
order. The second constraint allows the user to define on which side an object lies. 



390 A MATHEMATICAL THEORY OF DESIGN 

For instance, if a line is constrained to be parallel to another lIne, there is an 
ambiguity as to which side of the line to draw the parallel line. Both these types of 
ambiguities are handled by those additional constraints. Similarly, when [3] allow 
constraints which describe the slope of points on a curve, there is ambiguity 
introduced (e.g., there are typically two lines that are tangent to a circle with a given 
slope). This ambiguity is removed by characterizing the two slopes according to the 
± solutions of the quadratic formula used to calculate the slopes. 

Rather than characterizing the different possible solutions or adding relative 
constraints, there are researchers such as [10] who define design consistency to mean 
that the topology and the geometry of a part are in agreement. Consequently, they 
describe techniques to calculate the topological and geometrical genus of the object 
and if they are the same, the design is consistent. They cannot, however, discern 
between multiple feasible solutions. 

14.2.2 NUMERICAL TECHNIQUES BASED ON CONTINUATION 
METHODS 

Consider a system of m equations that describe the values of n unknown variables. 
The system is said to be well-constrained if m = n and there are a finite number of 
solutions: 

f(d)=b~d={dl,d2, ... ,d~, ... ,d }. 
- - - - - - -I -[I, 

When the system of equations is first defined, there is no general approach for 
deciding which of the solutions is the correct one - this is based on the designer's 
intent. In order to identify the correct solution, variational design systems typically 
rely on the user to enter an initial guess, which is used as the initial solution for an 
iterative constraint solver. Then, when the designer decides to change the system of 
constraints by either choosing new constraints and/or defining new constraint values, 
not only does the desired solution change, but the entire set of possible solutions 
changes: 

L<d') = b' ~ d' = {d' I,d' 2 , ... ,d'~ , ... ,d' fI2} . 
Continuation methods are techniques for following a curve. In this case, the curve is 

the path that the solution follows as (b' -Q) is increased. If (b' -Q) is small, then 

d' should be fairly close to 4.. As (b' -Q) becomes larger, d' moves farther away 

from 4. along the solution curve. If (b' -Q) is chosen small enough, then 4. can be 

an accurate initial guess into an iterative numeric constraint solver to solve for d' . 

Fixed Step Continuation 

The basic continuation method consists of dividing up the changes to the constraint 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 391 

values. (b' -£) into smaller steps. When the user changes the values of any of the 

constraints. L(dJ = b' • they can also enter the number of iteration steps to take. m. 

The technique then iteratively steps towards the new value solving the system of 
(b' -b) 

equations. 1(4) = £ + - -. ~. ~ = 1 •...• m. at each increment of the constraint 
- m 

values. using the converged value at each iteration step. ~. as the initial solution of 

the next iteration [12. 13]. This is one of the first known uses of continuation 
methods for maintaining design consistency in a variational design system. It is not 
automatic. however. as the user must manually select a proper value of m in that is 
large enough to converge to the correct solution but not so large that it overly slows 
down the computation time. 

Solution Characterization 

Once all the solutions have been calculated for a given system of equations. 
continuation methods can be used to track all the solutions as they move to their new 
values. This technique is especially well developed for polynomial systems of 
moderate size and can greatly speed up the computation time over finding all the 
solutions without having a starting system. Once all the solutions are found. 
however. it still remains necessary to select the correct one. This is only possible if 
all the solutions can be characterized. For example. in [18]. the authors use 
continuation methods to determine all the possible solutions to problems such as the 
inverse kinematics of a 6-revolute-joint manipulator as the joint angles are varied. 
This technique. however. requires the ability to characterize all the possible solutions 
and it is really only suited for systems of polynomial equations. 

Advanced Continuation 

In order to improve the robustness of continuation techniques. several more advanced 
techniques are outlined in [2]. These include: (1) using arc length as the parameter 
of the curve. (2) incorporating higher-order gradient information to create a more 
accurate prediction. and (3) using different corrector methods (besides Newton
Raphson). Because all these techniques are based on the predictor-corrector model. 
however. it is still possible to converge to a wrong solution and there would be no 
way to determine when this happens (besides requiring the user to recognize it). as 
demonstrated in [9]. 

14.2.3 OTHER NUMERICAL TECHNIQUES 

Prior research efforts in variational design have all had to be able to re-converge to a 
consistent solution when a system of constraints is modified. Six different methods 



392 A MATHEMATICAL THEORY OF DESIGN 

identified in the literature are summarized below. 

User-Defined Initial Solution 

Methods for solving a system of nonlinear equations, L (rf,J =!z., are all of the 

iterative form 4k+l = 4k + F(4k). In the Newton-Raphson method, 

F(4k) = -J(4k rl. Every method for solving systems of nonlinear equations 

depends upon an initial solution, 40 , to control the specific solution it converges to. 

As such, every variational design program offers the user the ability to modify it [I, 
3, 12, 17]. This is the most user-intensive method as it not only requires the user to 
constantly monitor the convergence and recognize when a spurious solution has been 
found, but also to know roughly where the new solution should be. 

Relaxation Factor 

Rather than requiring the user to specify the exact number of iteration steps to take 
for each parameter change, this method allows the user to simply slow down the 
convergence by multiplying the corrective vector by a scalar number (the relaxation 

factor): 4k+1 = 4k + AF(4k) where A typically varies between 0 and 1 [12, 13, 6]. 

While the user still has to monitor the convergence and recognize a spurious solution, 
it is similar to the fixed-step continuation method in that the user only has to decrease 
A until the correct solution is found. As in the fixed-step continuation method, the 
user must tradeoff the probability of finding the correct solution the first time with 
converging quickly. 

Curve-Crawl Factor 

Instead of multiplying the correction vector by a scalar number, this method uses a 
function of the magnitude of the correction vector of the previous iteration, 

4k +l =4k +C(F(14k_d))F(4k). Ideally, this function would become close to 1 as 

the magnitude of the previous correction vector headed towards 0 (thereby not 
limiting a slow convergence) and would become smaller for larger magnitudes of the 
previous correction vector in order to slow down a faster convergence [12, 13]. The 
same limitations as the relaxation factor method apply here. 

Feasibility Limits 

Rather than relying solely on the user to recognize when the constraint solver has 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 393 

converged to an unintended solution, an alternative method is to assign feasibility 
limits to every variable [6]. If the constraint solver converges to a value outside the 
feasible range, the relaxation factor is decreased (slowing the convergence down) and 
the convergence is repeated until either the variables remain inside their feasibility 
limits or a given number of attempts has been exhausted. In the case of mUltiple 
feasible solutions, the user must again recognize the situation and adjust the 
convergence. 

Manual Selection 

This method finds every solution to the system of equations and then allows the user 
to select the· desired solution. This approach is used in higher-level symbolic 
mathematical packages (e.g., Mathematica) and is stated as a future goal of [5]. As 
all solutions are considered equal in worth, there is no attempt to distinguish a correct 
solution from an unintended one. Besides the computational cost of finding all 
solutions, it requires user interaction after every constraint modification. 

Over-Constraining the System 

The final method is to have the user over-constrain the system until it is uniquely
constrained [5]. As this may sometimes yield no solutions, [4] and [19] additionally 
give the user the option to prioritize the constraints (rather than requiring them all to 
be simultaneously satisfied). Essentially, this technique allows the user to 
characterize the solutions. Characterization of solutions to a system of nonlinear 
equations is not possible in general, however. Additionally, if the designer doesn't 
characterize the solutions properly (allowing for every possible design scenario), they 
can lose the desired solution or even converge to a wrong solution. 

14.2.4 DISCUSSION 

In order to maintain a consistent design, the techniques discussed here either require 
the user to interact with the solver, guiding its convergence towards the correct 
solution, or to input enough extra information that there is only one solution and, 
hence, no ambiguity. None of the techniques are satisfactory for our system, 
however. When any of the constraints are modified, the user should not have to 
monitor the convergence and modify it when it converges to an unintended solution. 
Also, it is sufficiently challenging for the user to fully-define any system of 
constraints that requiring the user to over-constrain the system so that there is only 
one solution for all possible constraint values is not practical in general. 



394 A MATHEMATICAL THEORY OF DESIGN 

14.3 DESIGN CONSISTENCY 

Because of the highly iterative nature of diagonalized design, maintaining design 
consistency is very important - so much so that design consistency is simply assumed 
by any designer. When the designer makes an incremental change to the design, they 
expect that the resulting design will be consistent with the beginning design. It is 
unreasonable to expect the designer to enter so many constraints that there is exactly 
one solution to the system of constraints. The initial solution was chosen because it 
met every constraint of the designer (both explicit and assumed). After a design 
modification, the constraint solver should honor the initial design choice. 
Additionally, as the design evolves, different groups (e.g., marketing, manufacturing, 
and accounting) each input different requirements for the final design. Since 
consensus is difficult to achieve, however, each design modification needs to be done 
consistently. Maintaining design consistency is easy for simple constraints in which 
every design parameter is explicitly defined with no ambiguity. However, as more 
powerful, implicit constraints are used, the problem of multiple solutions is 
introduced. 

Morphology is the study of how objects change throughout their life. For 
example, in the area of zoology, spirals occurring in nature (e.g., mollusk shells or 
ram horns) can be categorized and their progression throughout the life of the 
creature can be described mathematically [7]. Similarly, it is asserted that in the 
typical design process, a design moves from one solution to another as it progresses 
throughout the life of the design cycle. How a given design moves between solutions 
can be understood and this information used to maintain the same, consistent 
solution. 

More formally, at each design iteration, we begin with a current list of 
specifications, 80 , a set of possible solutions, {M} 0' and a specific satisfactory 

design, Mo E { M} 0 . The specifications are then modified, 8 1 = 80 + L\80 ' leading to 

a new set of possible satisfactory designs, {M} 1 : 

80 => MOE{M}o 
J, 

8. = 90 + L\90 => {M}. 

At each iteration, we begin from a satisfactory design. When the specifications are 
modified, we wish to not only find a new satisfactory design, we wish to find the 
intended design. This is what is meant by consistent design. The problem becomes 

selecting the correct solution, M 1 E {M}.. If there is only one possible solution to 

the specifications, then it is easy to maintain a consistent design. It is much harder if 
there are multiple competing solutions, all of which satisfy the specifications. 
Fortunately, this iterative view of design directs us towards a principle of design 
consistency: small changes in specifications should lead to small changes in design. 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 395 

Furthermore, large changes in specifications can often be decomposed to a series of 
small changes, in which case the principle can still be applied. With this principle, 
we define consistency between MI and Mo recursively as follows: 

Definition 14.1: MI (satisfying 8 1 = 80 + .Mo) is consistent to Mo (satisfying 

80 ) if either: 

(1) MI is consistent to M· (satisfying 8·) and M· is consistent to Mo (transitivity 
condition), or 
(2) .1.80 = eo ' 

M 1 minimizes II{ M}), Moll, and 

IIM).Moll< K 
where: 

• 11M) , Moll is a metric that quantifies the "difference" between two designs 

(smaller values imply increasing similarity). This metric need only be 
meaningful for designs of sufficiently small difference (as opposed for any two 
general designs). 

• eo is any small change in specifications towards 8) such that there exists a 

symmetrical neighborhood about Mo in which it is known that there is exactly 

one design solution for any change in the specifications, e; (0 < e; ::; eo). Note 

that this also requires a metric to determine the "size" of a specification change 
and "similarity" between sets of specifications. 

• K is a constant. Design should not be a chaotic environment (where small 
changes in input lead to large changes in output). As such, at very small 
increments of the specifications. there is some limit, K, to the acceptable size in 

the change in design, 11M), Moll. 
From this definition. we can describe an algorithm to find the solution, Mlo that 

is consistent to Mo (see Figure 14.1). The individual algorithm steps shown in the 
figure are described more fully as follows: 

Step 1: elil = 80 , Mlil = Mo, 81i2 =eo +eo (where eo is defined as above) 

Step 2: Calculate the solution. M 1i2 ' that minimizes II{ M}1i2 ' M iii ~ 
Step 3: M iii = M 1i2 ' elil = 81i2 ' eli2 = eli2 + eo (where eo is defined as above) 

Step 4: M 1i2 is the new, consistent solution 



396 

3. Update 

No 

A MATHEMATICAL THEORY OF DESIGN 

1. Initialize 

2. Increment current 
specifications and 

calculate best 
solution 

4. Finish 

Figure 14.1 General Consistency Algorithm 

14.4 DESIGN EVOLUTION IN VARIATIONAL DESIGN 
SYSTEMS 

A design is defined in terms of parts and relations. Every part is fully described by a 
set of dimensions and can be uniquely identified by defining all values of its 
dimensions. A configuration is a complete set of dimension values, 4 (fully 

describing a feasible part). An attribute is an algebraic expression in terms of the 
dimensions that describes a certain aspect of the part. A constraint consists of either a 
dimension or an attribute and a value that it must attain. Finally, a requirement 
consists of a qualitative description of the part which must be achieved for a 
satisfactory design. 

Since variational design systems allow the user to enter all the required 
constraints before solving the system, it may appear that design becomes a single 
event rather than an evolutionary process. We argue that this is not the case. The 
designer cannot possibly consider all the possible constraints at once; they may want 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 397 

to test a constraining scheme before the whole design has been constrained or new 
information or requirements may be introduced or modified after a design was 
supposedly completed. In this section, we formally describe the design paradigm as 
evidenced in the COAST methodology. 

In Chapter 6, we provided a formal description of an evolutionary design model. 
A design execution is a sequence of synthesis states, each state being characterized 
by a design pair, (a, M), where: 

• a is the current design specification (here, the system of constraints and the set 

of requirements, a = aC vaQ ) and 
• M is the current design configuration (here, the dimension values which are 

calculated by solving aC ). 

The design process can thus be represented as a sequence of synthesis states, 

{(eo, Mo), (eJ,MJ), ... ,(ak,Mk)} where (ak,Mk) is the termination state. Each 

transition between synthesis states is described by either termination (success or 

failure depending on whether or not M k satisfies af) or modification of either the 

system of constraints, a C , or the set of requirements, e Q • 

Figure 14.2 Design Loop 

The evolutionary design process as viewed by the COAST methodology is 
summarized in the flowchart in Figure 14.2. The specifications, !!; • are composed of 



398 A MATHEMATICAL THEORY OF DESIGN 

a set of requirements, !!p, and a system of constraints, !!;. In all cases, !!; must 

contain as many equations as there are dimensions (~;I = lMil). The design process 

optionally begins with a successful design which meets some historical requirements, 

(f, M*), and a change in the requirements, ll!!Q* that motivates the beginning of 

the design process. Alternatively, the design can start from an original set of 

requirements, !!g. The designer then creates a system of constraints, (!!~, M 0) , 
that will hopefully create a design that meets all the requirements. If M 0 satisfies 

!!g, then the design is finished. Otherwise, the user iteratively modifies the 

constraints, ll!!~l' and/or the requirements, ll!!al' until a satisfactory design is 

found. It is the designer's job to modify the constraints and requirements however 
they feel is necessary to find a satisfactory design; it is the purpose of COAST to 
maintain a consistent solution to every design modification the designer performs. 

Example J 4. J: In order to demonstrate the nomenclature and solution 
trajectories, let us consider the very simple case of creating a point at a certain 
distance from two other points. The unknown point has two dimensions: the x and y 
coordinates. Additionally, let there be two attributes: distance from the point at (0,0) 
and distance from the point at (3,4). The two attributes are each equations in terms 

of the dimensions: ~X2 + / and ~(x_3)2 +(y_4)2 ,respectively. The user 

begins by specifying an initial guess of the desired point: 

eC • M' o· o· 

{
X = 1 ~ {x = 1 
y=4 y=4 

The values of the attributes are calculated and the point is found to be distances 4.12 
and 2 from (0,0) and (3,4), respectively. The user then decides that the point should 
be distances 3 and 6 from (0,0) and (3,4). The two attributes are solved 
simultaneously yielding the solution, (-2.51, 1.64): 

eC • M' I' I' 

{
distfrom(o,o) = 3 ~ {x = -251 

distfrom(3,4) = 6 y = 1.64 

The two distance attributes at the beginning of the problem can be interpreted as in 
Figure 14.3-A. When the constraints are modified, however, there are two possible 
solution (see Figure 14.3-B). 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 399 

A. B. 

Figure 14.3 Simple Variational Design Example 

If the original and new sets of parameter values are considered as two discrete 
events, the only way to maintain consistency of the design is to be able to distinguish 
individual solutions and be able to recognize which solution the user desires 
whenever the parameters are changed. While this is certainly possible for a simple 
geometric design problem, it is not possible in general for a system of nonlinear 
equations. 

Rather than treating parameter changes as discrete events, we consider the 
continuous trajectory the desired solution follows as the constraints are changed from 
the original system to the new system. Rather than trying to characterize the 
solutions, the COAST method follows a specific solution as it moves along its 
solution trajectory. For instance, as the distance radii of the circles are changed, the 
desired point creates a trajectory from its original position to its new position (as 
shown in Figure 14.4). 

Figure 14.4 Solution Trajectory 



400 A MATHEMATICAL THEORY OF DESIGN 

14.5 DESIGN CONSISTENCY THROUGH SOLUTION 
TRAJECTORIES 

Our method for design consistency (COAST) starts from a correct solution (as 
defined by the user). Then, whenever the user modifies the constraints, COAST uses 
interval analysis techniques to deterministically follow the trajectory of the desired 
solution as it moves from the original solution to the new solution. In this section, the 
theory of using solution trajectories for design consistency is developed and the 
algorithm is outlined. 

In variational CAD systems, we start with a fully constrained system of 
equations that has one or more possible solutions: 

f (do)=bo ~do ={XI ,X2, ... ,x:, ... ,x }, 
- - - - - - -, -PI 

There is no general approach for deciding which of the solutions is the correct one -
this is based on the designer'S intent. When the system of constraints is then changed 
by defining new values of the constraints, not only does the desired solution change, 
but the entire set of possible solutions changes: 

[(41)=1z1 ~41 = {X'I,X'2, ... ,x'j, ... ,x'P2}' 
Our goal then becomes to select the consistent solution out of the many possible 
ones. Our method also considers the case where the original system of constraints 

£0 (40) = Izo are transformed into a new system of algebraic equations L (41) = IzI 
as explained below. 

14.5.1 DEFINITIONS IN DESIGN CONSISTENCY 

Two n-dimensional systems of equations £(4) = Izo and £(4) = IzI (Izi E 9tn ) have 

the same number, p, of (possibly non-unique) solutions if 4 is allowed to exist in the 

complex z-plane, en. In order to create a trajectory of the desired solution, the 
parameter vector is modified through a homotopy function, 

(1) 

When the original system of constraints £0 (40) = Izo is transformed into a new 

system of algebraic equations L (41) = IzI ' the following procedure is followed. We 

setup a convex homotopy between two systems of constraints, £0 (40) = Izo and 

£1 (41) = IzI as H'(4, t) = (1- 1 )(£0 (4) -Izo ) + 1(£1 (4) -IzI)' where 1 is the 

homotopy variable and varies from 0 to 1. Since the dimensions do not change 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 401 

between design iterations (only their values), we can simplify H'{4,t) by noting that 

we can always construct a third system of equations, £)40) = b' o. Here, b' 0 is 

calculated by substituting 40 into £1. Then we use the new system of equations to 

construct the desired homotopy, H(4, t) = {1- t )(L (4) - b' 0) + t{£1 (4) - el) . It can 

easily be seen that H'{4,t) and H(4,t) have the same endpoints as t varies from 0 

to 1. 
Simplifying H{4,t) , 

H{4,t) = (£1(4) -b' 0)- t{L (4)-b' 0 )+t{L (4)-el) ~ 

H{4,t) = [1(4)-b' 0 +t(b' 0 -eJ 

Definition 14.2: Homotopy Function 
The continuous transformation of the constraint-value vector from eo to el is 

defined by a real-valued homotopy junction, B(t ,eo ,el)' with the following 

properties: 

• B(O,eo,el)=eo' 

• B(I,eo,el)=el' and 

• B(t,eo,el) is continuous for t E [0,1] 

COAST uses the linear convex homotopy function, B(t ,eo ,el ) = eo + t . (el - eo) . 
Situations when different homotopy functions can be useful are discussed later in this 
chapter. 

Every change in the constraint-value vector, e, causes a change in the solution 

vector, 4. As the constraint-value vector is modified, the solution vector traces out a 

curve, called the solution trajectory. 

Definition 14.3: Solution trajectory 

A solution trajectory is the curve, D(t,[,B), that results from modifying the 

constraint-values according to the homotopy function, B(t ,eo ,el). The curve is 

denoted as D(t,[,B) = {[{4} = B(t,eo,el)} where 0 S t S 1 and £:en --+ 9tn and 

has the following properties: 

• D(0,[,B)=40' 



402 A MATHEMATICAL THEORY OF DESIGN 

• D(I,[,B)=41 = the new solution, and 

• D(t,[,B) is continuous for tE[O,I]. 

There are typically many solution trajectories for a given system of equations and a 
change in !z. . However, since we are working with the trajectories between solutions, 

we can introduce the idea of the consistency of two solutions (in a strong and weak 
sense). 

Definition 14.4: Consistent (strong) 
Two solution vectors, 40 and 41 ' are said to be strongly consistent if: 

There exists a homotopy function, B'(t ,!z.o ,!z.I)' such that the corresponding solution 

trajectory, D'(t,[,B'), has its endpoints at 40 and 41' and 

For every value of t' E [0,1], there exists a neighborhood, E, such that E is above 

some tolerance level, Etal' and the interval, [~] = [D'(t',[,B') - E,D'(t',[,B') + E], 
contains exactly one solution. 

Definition 14.5: Consistent (weak) 
Two solution vectors, 40 and 4. ' are said to be weakly consistent if: 

There exists a homotopy function, B'(t ,!z.o ,!z..), such that the corresponding solution 

trajectory, D'(t,[,B'), has its endpoints at 40 and 4., and 

For some value of t' E [0,1], there exists a neighborhood, E = E,o/ such that the 

interval, [~] = [D'(t',[,B') - E,D'(t',[,B') + E], contains more than one solution. 

Definition 14.6: Inconsistent 
Two solution vectors, 40 and 4. ' are said to be inconsistent if: 

There is no homotopy function, B'(t,!z.o,!z..), such that the corresponding solution 

trajectory, D'(t,[,B'), has its endpoints at 40 and 41 , 

In order for two solutions to be strongly consistent, the solution trajectory 
between them cannot intersect any other solution trajectory. If two solution 
trajectories do intersect, then it is ambiguous which one to follow after the 
intersection point. While one can use heuristics to move through an ambiguous area 
in what is hopefully a consistent manner, it can never be guaranteed. 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 403 

14.5.2 THEOREMS IN DESIGN CONSISTENCY 

Current methods for solving systems of nonlinear equations in complex analysis are 
restricted to solving systems of polynomial equations. As we require COAST to work 
with more general systems of nonlinear equations, we are restricted to the real plane 
where more widely applicable techniques such as Newton-Raphson are available. 
The previous definitions for trajectories and consistency remain the same with the 
understanding that the solution trajectories between solutions must remain in the real 

plane (4 is restricted to the reals: £(rlJ = e., [:9"{n --+ 9"{n). However, in the real 

plane, we are not guaranteed a solution. To check for the existence and uniqueness 
of solutions within a given interval, we will use a theorem from interval analysis (see 
Appendix A for a review of interval analysis techniques): 

Theorem 14.1: 

Let f: 9"{n --+ 9"{n be continuously differentiable over the domain of interest. If 

4 E [~] (where [~] is some real interval vector) and [d.] denotes the Gauss-Seidel 

operator, then: 

Every zero 4* E [~] of £ satisfies 4* E kl 
If [d.] ~ [~] = {2} then £ contains no zero in x. 

If 4 E int([~]) and 0:1; [d.] ~ int([~]) then £ contains a unique zero in x. 

The proof is given in [16]. The Gauss-Seidel operator is discussed in [8, 16]. 

In order to show that two solutions are strongly consistent, we prove the 
following theorem. The general concept is to draw a region around the entire solution 
trajectory and if no other solution trajectory passes through the region, then the two 
solutions must be strongly consistent. 

Theorem 14.2 (sufficient condition for strong consistency): 

Let 40 and 4, be two solution vectors. Let B'{t ,e.o ,e.,) be a parameter trajectory 

function such that the corresponding solution trajectory, D'(t,£,B') , has its 

endpoints at 40 and 4, . Let [4] be a region that encloses the solution trajectory and 

let [~] = [inf([4]) - S,sup([4]) + S] be the region just surrounding [4]. If 

[d.] ~ int([~]) for every t E [0,1] then 40 and 4, are strongly consistent. 

Proof: 
There are three cases: 40 and 4, are either strongly consistent, weakly consistent, or 

inconsistent. Since there is a solution trajectory between 40 and 41' they can only 



404 A MATHEMATICAL THEORY OF DESIGN 

be either strongly consistent or weakly consistent. Assume that 40 and 4. are 

weakly consistent. For some value of t = t* E [0,1], there exists a neighborhood, 

e=eto/' such that the interval, [i]=[D(t*,[,B')-e,D(t*,[,B')+e], contains 

more than one solution. However, it is given that the interval 

[~] = [inf([4]) - 0, sup([4]) + 0] only has one solution (from Theorem 14.1). Since 

[z'] ~ [~] , [i] must have only one solution as well which leads us to a 

contradiction and to the conclusion that 40 and 4. are strongly consistent. • 

Rather than relying on a unique solution in such a large region, we can break 
down the solution trajectory into separate regions, testing the solution consistency in 
each region separately. The algorithm introduced later will use this concept 
extensively. 

Theorem 14.3 (transitive theorem of strong solution consistency): 

Let 4 0 , 4*, and 4. be three solutions on one solution trajectory, D'(t,[,B), such 

that D'(O,[,B) =40 , D'(1,[,B)=4.,and D'(t*,[,B)=4* (where 0<1*<1). If 

40 and 4* are strongly consistent and d* and 4. are strongly consistent, then 40 

and 4. are strongly consistent. 

Proof 

Since we are given the existence of a homotopy function, B'(t,l/ ,~'), such that the 

corresponding solution trajectory, D'(t,[,B'), has its endpoints at 40 and 4., we 

only have to prove that for every value of t' E [0,1], there exists a neighborhood, 

e~eto/, such that the interval, [~]=[D'(t,,[,B')-e,D'(t,,[,B')+e], contains 

exactly one solution. But this must be the case since the interval [~] must exist from 

40 to 4* and from 4" to 4. (since they are strongly consistent) which covers the 

entire solution trajectory so 40 and 4. are therefore strongly consistent. • 

Finally, we prove that design consistency is a unique relationship. After each 
design step, every solution has exactly one consistent solution that corresponds to it. 

Theorem 14.4 (uniqueness theorem of solution consistency): 

Let 4 0 , 4*, and 4. be three solution vectors: 40 is the solution to [0 (4) = eo and 

4* , and 4\ are solutions to [. (4) = e.· If 40 and 4' are strongly consistent and 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 

40 and 4\ are strongly consistent, then 4* = 4\ . 
Proof. 

405 

Assume 4* * 4\. Since 40 and 4* are strongly consistent, there is a solution 

trajectory from 40 to 4*. Likewise, there is a solution trajectory from 40 and 4\. 
Since the two trajectories start from the same point and end at different points, the 

two trajectories have to split at some point, t*. However, after they split, there will 
be some value of £ ~ £'0/ such that the interval, 

[~] = [D'(t',£,B') - £,D'(t',£,B') + £], contains exactly two solutions. But since 

40 and 4* are strongly consistent, this is a contradiction which leads us to the 

conclusion that 4* = 4\ . • 
14.6 COAST ALGORITHM FOR DESIGN CONSISTENCY 

14.6.1 MEAN VALUE THEOREM 

Rather than using approximate predictor-corrector algorithms to follow a solution 
trajectory, COAST uses interval analysis techniques to create guaranteed bounds for 
enclosures of a solution to a system of equations subject to change (see Appendix A 
for a review of interval analysis techniques). COAST iteratively solves the system of 

equations, H(4,t) =0 whentvariesfrom t* to (t*+£\t) as (tvariesfromOto 1): 

H(40,t*) = £ (40)-£0 + t*(£o -£\) ~ 

£ (40)=£0 -t*(£o -£J 

H(4\,t* + £\t) = £ (4\)-£0 +(t* +£\t)(£o -£\)~ 

£ (4J=£0-{t*+£\r)(£0-£\) 

(2) 

(3) 

The interval extension of the mean-value theorem [11] guarantees the existence of an 
interval vector, [~], that exhibits the following property: 

£ (4\) - £ (40) E f' ([~]){41 - 40) 

where 40 ,4\ E [~]. 

Let £~ = £0 - 1 * (£0 - £1) and £; = £0 - (I * + £\t )(£0 - £1) . 

L (4J and L (40 ) yields: 

(4) 

Substituting for 



406 A MATHEMATICAL THEORY OF DESIGN 

(5) 

Which can be represented as a linear interval system of the form Ad = ~ where: 

A. = f' ([~]), 4 = 41 - 40, and ~ =~; - ~~ (6) 

The solution to this system, 4 = A. H ~ (defined as the hull of the solution set of the 

linear interval system), is enclosed by 4 = A. -I ~, where A. -I is the interval 

extension of the matrix inverse of A (which is computable if A is regular). 

4 = 41 - 40 ;2 A.-I ~ (7) 
41 ;2 40 + A. -I ~ (8) 

41 ;2 40 + f' ([~]t (~; - ~~) (9) 

Equation (9) gives an initial guaranteed enclosure for 41' The bounds can be further 

tightened using iterative interval solution techniques (e.g., Gauss-Seidel iteration). 

14.6.2 RIGOROUS SENSITIVITY ANAL YSIS ALGORITHM 

Using equation (9) and techniques from [8, 15, 16], we can create a simple algorithm 

for following the homotopy curve, H(4, t) = L (4) - ~o + t(~o - ~I) as t varies from 

o to 1 (see Figure 14.5). 
There are three areas in which researchers have enhanced this basic rigorous 

sensitivity analysis algorithm. First, there are two obvious qualitative steps used in 
the algorithm: "Create [~]" and "IncreaselDecrease t". These two parameters, [~] 

and t, define an n+ 1 dimensional box around the current solution in which the next 
solution must lie. If the box is too small, the convergence will be slowed down 
greatly. If the box is too large, however, multiple solution trajectories may enter it, 
requiring COAST to repeat the process with a smaller box. To better quantify the 
creation of [~] and t, Kearfott and Xing [9] have developed an interval step control 

method to select an optimal box. A less obvious area for improvement is in the use 
of the interval extension of the Jacobian. A slope is an interval extension of the 
gradient of a function and the Jacobian is merely one such slope. A better estimate 
can be obtained by using more accurate slopes [e.g., 11]. It should be understood 
that due to the rigorous nature of interval analysis, these improvements do not affect 
the robustness of the algorithm - only the speed at which it converges. 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 

Set !L = ho + t· (hi - ho) 

[d,]= do + t.:([zD-'(!L -ho) 

Solve do = {(do) = !L,do e [d, 

Figure 14.5 COAST Outline 

407 

It is now proven that each successful iteration of the algorithm guarantees strong 
consistency (see Definition 14.4). 

Theorem 14.5: 
If the following conditions hold: 

1. [4d = 40 + f'([~]t(b' -l!o), where b' = l!o +t' .(l!. -l!o) , 
2. 40 E [41] c [&] , 
3. d'o = {t(d'o)=b',d'o e[4.]} , and 

4. d' 0 is unique, 

then 40 and d' 0 are strongly consistent. 

Proof 

The two solutions, 40 and d' 0' are bounded by the interval, [~] and are the 



408 A MATHEMATICAL THEORY OF DESIGN 

endpoints of the solution trajectory as t is changed from to to t'. Since [41] is a 

proper subset of [~]. there is a neighborhood about [41]' ([41]+[-5,5]), which is 

also a proper subset of [~]. Because d' 0 is a unique solution to f(d'o)=b', we 

know that [4] ~ int([~]) and thus, d' 0 is strongly consistent to 40 by Theorem 

14.2. • 
From Theorem 14.4, we know that d' 0 is the unique consistent solution. From 

Theorem 14.3, we see that we can incrementally move t from 0 to 1, maintaining a 
strongly consistent solution at each increment, and the final solution will be strongly 
consistent with the original solution. 

14.6.3 BIFURCATIONS AND INFEASIBLE REGIONS 

When following a single solution trajectory, two types of problems can arise: 
bifurcations (when one trajectory splits into two trajectories or two trajectories 
intersect - see Figure 14.6-A) and infeasible regions (when there is no real value for 
the desire system of constraints for some value of the homotopy variable - see Figure 
14.6-B). 

M. 
1 

M i+l 

M. 1......-

A. B. 

Figure 14.6 Bifurcations and Infeasible Regions 

Bifurcations 

The classic approach to handling bifurcations is to perturb the coefficients of the 
homotopy. Doing so creates a new system of constraints which (hopefully) doesn't 
have the same bifurcation. The path taken, however, is dependent on how the system 
is perturbed. Although it seems likely that a solution that lies on one of the 
bifurcation paths would be "more consistent" than a solution that does not, we 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 409 

maintain our original assumption that only one solution is acceptable to the designer. 
Any bifurcation introduces ambiguity into the consistency of the design. We assert 
that the handling of bifurcations has to be domain specific, using the exact 
interpretations of the dimensions to help decide which path is more desirable. 

Infeasible Regions 

It is possible that the homotopy would become infeasible for some value of t. Due to 
our simplified form of the convex homotopy (where we only modify the constraint 
values), we know that the number of complex solutions to the system of equations 
does not change through the homotopy. Also, since complex solutions come in 
conjugate pairs, we can infer the following: (I) the start of any infeasible region 
among the reals is actually a bifurcation if the dimension values are allowed to be 
complex numbers, and (2) the system of equations at the bifurcation point has 
multiplicity of at least two. Any bifurcation routines that can be extended to the 
complex plane can be used to traverse infeasible regions. We know of algorithms for 
finding complex roots of polynomial systems (in which case the COAST algorithm 
can be extended). If it is not possible to find complex roots, then an alternative 
approach may be to try different homotopies in hopes of moving the solution 
trajectory around the infeasible region. 

14.7 DESIGN OF CANTILEVER BEAM 

This demonstration is that of a cantilever beam for a uniformly distributed load. To 
make the design process easier, a constraint model is constructed that defines the 
dimensions and attributes. The constraint model for the beam is given in Appendix B. 

L w 

0' max Ultimate stress (Pa) n Safety factor 

E Young's Modulus (Pa) p Density ( kg I m3 ) 

Figure 14.7 Dimensions of a 'T' -Shaped Cantilever Beam 



410 A MATHEMATICAL THEORY OF DESIGN 

Additionally, the following attributes are defined for the beam in the constraint 
model: 

Volume, V 
Total Surface Area, S 

Maximum Load, Pmax 

End Angle at Pmax , 9max 

End Deflection at Pmax' 6 max 

14.7.1 DESIGN EXECUTION 

Mass,M 
Maximum Moment, M max 

Maximum Allowable Load, Pallow 

End Angle at P allow' 9 allow 

End Deflection at Pallow' aallow 

For this problem, the requirements for a satisfactory design, eg, are: 

• L>20cm 
• w>2.0cm 

• M < 1.5 kg 

• P allow > 2000 kg 

• aallow < 0.1 rom 

• material is steel 

Consider the following design execution to satisfy those requirements: 

eg: Mo: 

I( = 0.01 (m) 
12 = 0.Ql5 (111) 

13 = O.oI (m) 
w = 0.02 (m) 
L = 0.20 (m) 

O'max = 385.106 {Pal 

p = 7850 (kg .m-3 ) 

n = 25 

E = 200000.106 

deo: 

{
Pallow = 2000 (kg) 

dallow = 0.0001 (m) 

tt. 

I( = 0.01 (m) 
12 = O.oI5 (m) 
13 = 0.01 (m) 
w = 0.02 (m) 

-+ L = 0.20 (m) 

0' max = 385.106 {Pal 

p = 7850 (kg .m-3 ) 

n = 25 

E = 200000.106 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 

Sc. 
I' 

'1 = 0.01 (m) 
'2 = 0.015 (m) 
'3 = 0.01 (m) 
PDI/ow = 2000 (kg) 
6. Dllow = 0.0001 (m) 
C1 max = 385.106 (Pa) 

p = 7850 (kg .m-3 ) 

n = 2.5 

E = 200000.10 6 

6.S I : 

!
w = 0.04 (m) 
L = 0.20 em) 
M = 1.3 (kg) 

U 
Be. 

2 . 

t1 = O.Ol(m) 
w=O.04(m) 

L=0.20(m) 

M = 1.3(kg) 

'1 = 0.01 (m) 
'2 = 0.015 em) 
13 = 0.01 em) 
w = 0.0116 em) 

~ L=O.l8(m) 

C1 max = 385.106 {Pal 

p = 7850 (kg .m-3 ) 

n = 2.5 

E = 200000.106 

t1 =O.01(m) 
t2 = 0.0195(m) 

t3 =0.0219(m) 

w=0.04(m) 

6. allow = 0.0001 (m) ~ L=0.20(m) 

a max = 385 . 10 6 (Pa) 

p = 7850~g . m-3 ) 

n=2.5 

E = 200000 .106 

a max = 385 . 10 6 (Pa ) 

p = 7850~g . m-3 ) 

n =2.5 

E = 200000 .10 6 

411 

(o~ . M 0) is the initial solution by the designer of a satisfactory configuration 

yielding the following attribute values: 

v= M= Pmax= o max = 0.0013613 d max = 0.000204196 
0.00007 0.5495 

3649.39 
S = 0.1835 M max = 72.9878 Pallow = 1459.76 a allow = .000544522 d allow = .0000816783 



412 A MATHEMATICAL THEORY OF DESIGN 

The changes in the constraint system, ~eg, are motivated by the observation that 

Pallow should be at least 2000 and that Aallow could be eased to 0.0001. In order to 

maintain a fully constrained system, wand L are unconstrained. 
After replacing the constraints, all but two of the part's dimensions (wand L) are 

directly constrained. Mathematically, ef has four possible solutions: 

1. MI(w,L): w = 0.01158303 L= 0.18290615 

2. MI(w,L): w = O.oI158303 L = -0.18290615 

3. MI(w,L): w = -0.26639935 L = 0.144491157 

4. MI(w,L): w = -0.26639935 L = -0.144491157 

The homotopy curves of these four solutions are shown in Figure 14.8. Of the four 
solutions, only the first one is possible so that is the one intended yielding the 
following configuration: 

tl = 0.01 w = 0.01158303 P =7850 

t2 = 0.015 L = 0.18290615 n=2.5 

t3 = 0.01 O"max = 385.106 E = 200000· 106 

~to~ 

0.2 / 
~ 

0.15 , ---- 1 3 0.1 

Q.06 

L .3 -0.25 .Q.2 '()'15 '()'1 '()'05 O:S 
'()'05 

4 '()'1 2 

---- '()'15 
~ -- , 

.Q.2 

-
W 

Figure 14.8 Solution Trajectories for M 1 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 413 

Calculating the new values of the attributes: 

v= M= Pmax = Smax= fl max = 
0.000049 0.382 4935.06 0.00179876 0.000246753 
S= Mmax = Pallow = Sallow = fl allow = 
0.136 82.5505 2000.00 0.000719504 0.0001 

It is then observed that while Pallow is adequate, the width and length are too small 

now. A new iteration is then performed, constraining the width, length, mass, and the 
deflection at the maximum load. 

Again, all but two dimensions (t 3 and t 2) are directly constrained. There are 

three possible solutions to this system of equations (including one impractical 
solution): 

1. M2(t2,t3): t2 = -0.001709 t3= -0.25041 

2. M 2(t2,t3): t2 = 0.019505 t3= 0.02194 

3. M2(t2,t3): t2 = 0.009508 t3= 0.04501 

When M \ was calculated, if all solutions could have been identified, then the correct 

solution could be deduced by simple deduction (only one solution was practical). In 
this case, however, there is no simple way to deduce which solution is the correct 
one. While the first solution can be deduced to be impractical, the other two 
solutions are both reasonable and under different circumstances, either one could be 
the desired solution. In order to compute which solution is the correct one, the 
homotopy is created and the desired solution trajectory is followed. The solution 
trajectories for the three possible solutions are shown in Figure 14.9. By using the 
algorithm from Section 14.3, The COAST method is able to follow the solution 
trajectory of the desired solution as it moves to its new, correct configuration: 

t\ = 0.01 w=0.04 P = 7850 

t2 = 0.019505 L=0.20 n=2.5 

t3 = 0.021943 O"max = 385.106 E = 200000· 106 

The calculated attributes yield: 

v= M= Pmax = Bmax= flmax= 
0.0001656 1.3 15273.9 0.00164497 0.000246746 

S= Mmax = Pallow = Ballow = fl allow = 
0.02863 305.479 6109.58 0.000657988 0.0001 



414 A MATHEMATICAL THEORY OF DESIGN 

Since M 2 satisfies e~ (the requirements were never modified so e~ = ep = eg ), 
the design process is completed. 

! 

0.015 
/2 

0.01 
, 

3 ~ 

0.005 

.3 -0.25 -0.2 -0.15 -0.1 -o.a; o.a; C 1 
+----

1 
t3 

Figure 14.9 Solution Trajectories for M 2 

14.7.2 COMPARISON WITH OTHER METHODS 

For a comparison of other methods, we use Newton's method to solve the same 

system of constraints, ef, (using the FindRoot command in Mathematica). The 

initial value of each dimension is taken to be either the value directly constrained by 
the user or, if it does not exist, the value of the dimension from the previous design 
iteration. The following table shows the initial values of each dimension and the 
value that it converges to. As can be seen from the values of t2 and t3 , Newton's 

method converges to the wrong solution. 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 415 

Table 14.1 Summary Results for Newton's Method 

Dimension Initial Converged Dimension Initial Converged Dimension Initial Converged 
Value Value Value Value Value Value 

I, 0.01 0.01 w 0.04 0.04 E 2.1011 2.1011 

t2 0.015 0.0095 L 0.2 0.2 P 7850 7850 

t3 0.01 0.04502 n 2.5 2.5 
(Jrnax 3.85.108 3.85.108 

In order to try to converge to the correct solution, fixed step continuation (as 
reviewed in Section 14.2) is attempted and the number of steps is increased until 
correct re-convergence is attained. The following table shows the results. 

Table 14.2 Fixed Point Continuation Comparison 

Dimension Converged Value 
Number 11 0.01 

Steps = 12 0.0095 

2 t3 0.04502 

W 0.04 
L 0.2 
n 2.5 
E 2.1011 

P 7850 

(Jrnax 3.85.108 

Number t, 0.01 

Steps = t2 0.01951 

3 13 0.02194 

W 0.04 
L 0.2 
n 2.5 
E 2·10" 
P 7850 

(Jrnax 3.85.108 

By increasing the number of steps, Newton's method is able to converge to the 
correct solution. Finally, we tried reducing the speed of the convergence by 
modifying the relaxation factor. This was done using the DampingFactor option in 
Mathematica. After trying different values between 1 and 0.001, there was no change 
in the converged solution. 

In conclusion, while Newton's method was able to converge to the correct 



416 A MATHEMATICAL THEORY OF DESIGN 

solution, it succeeded or failed depending on the number of steps taken. For this 
system of constraints, it failed for one or two steps and it succeeded for three or more 
steps. These numbers would, of course, be different for any other system of 
constraints, requiring user intervention to select a proper number of iterations. 
Setting the number of iterations to an arbitrarily large number would, indeed, 
probably work for a large number of design cases, but it would be prohibitively time
consuming and one would never know if it failed without monitoring the 
convergence. Many of the more advanced continuation methods mentioned in 
Section 14.2 would be able to handle this problem. But the designer could never be 
sure that the solver converged to the right solution. The COAST method will either 
guarantee a consistent solution or it will recognize those situations in which it cannot 
do so (bifurcations or infeasible regions). 

14.8 SUMMARY 

Variational design is a powerful paradigm for design, but has been limited in its 
application by the inability to characterize multiple solutions resulting from systems 
of nonlinear equations. Previous methods have required the user to either (1) 
manually guide the constraint solver routines, (2) manually select the correct solution 
from a list, or (3) input enough extra information so as there is no ambiguity. 
Additionally, these methods are not able to guarantee a consistent design. As opposed 
to these methods, we have used an interval continuation method to deterministically 
trace a convex homotopy between the original and new systems of constraints. An 
algorithm was presented and demonstrated to automatically reconverge to a 
consistent solution. 

The applicability of design consistency methods to different design areas is 
presented in chapter 20. The interval-based continuation approach developed in this 
chapter is implemented in the next two chapters to constraint-based curve design 
(Chapter 15) and 3-D shoe design (Chapter 16). Constraint-based design of faired 
parametric curves is demonstrated in Chapter 15 when the constraints are on the 
whole curve (e.g., a curve having a certain arc length or being a given distance from 
another graphical object) and not solely on the defining points of the curve. Because 
the constraints will often be changed over time, it is shown that finding the global 
optimum of the fairing objective function is often less important than finding a 
consistent solution and that a local optimum of the objective function should at least 
be an option in such a system. Necessary conditions of the optimization problem are 
used to locate the desired local optimum. As there are normally many local 
optimums, the COAST methodology is applied to maintain a consistent solution. 
Besides demonstrating this technique with relations between Bezier curves, an 
example is shown from apparel design. Finally, as a proof-of-concept, a 3-D shoe 
design system is demonstrated in Chapter 16 that can grade an upper design to any 
size by modifying the measurements of the parametrized model of a foot. The system 
is then able to create the corresponding manufacturable patterns and render the 
design. 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 417 

Future work in this area involves increasing the robustness of the COAST 
method and applying it to different areas. To make it more robust involves 
incorporating heuristics and more intelligent mathematical techniques to handle cases 
of intersecting trajectories or infeasible regions. One of the areas we are applying 
COAST is actually in constraint-based curve design. Constraints on curves are 
represented as optimization problems. By looking at the necessary conditions and we 
can reduce the optimization problem to a system of nonlinear equations and use 
COAST to maintain a consistent solution. 

APPENDIX A -INTERVAL ANAL YSIS TECHNIQUES 

This appendix gives a quick overview of interval analysis techniques. More thorough 
coverage of interval analysis techniques is available in [16, 8]. The field of interval 
analysis has come up with many powerful methods for analyzing systems of 
equations when they are subject to change. These include: 

• Iteratively improving an enclosure of a solution to a system of equations 
• Rigorous sensitivity analysis of a system of equations 
• Existence and uniqueness tests of systems of equations over intervals of 

parameters 

Let [x] be an interval and let x be any real number in interval [x], 

[x] == p.[x],i[x]]:= {x e 9t I .1. [x] ~ x ~ i[xl} 

Every interval, [x] , has a midpoint, 

x = rnid([x]} = (i[x] + .1.[x])/ 2 

and a radius, 

rad([ xl) = (i[x] - .1.[ x]) I 2 

The interior of a interval is denoted by 

int([xl) = {x e 9t I .1. [x] < x < i[xl} 

The hull of a nonempty bounded subset of 9t, S, is the tightest interval that encloses 
S and is denoted by 

Hull{ S} = [inf(S),sup(S)] . 

Arithmetic operations are defined on intervals [x] and [y] as follows: 

• [x]o[y]= HUll{.1.[x]o.1.[y],.1.[x]oi[y], i[x]o.1.[y], i[x]oi[yJ} for 

oe{+,-,*,\} 

• q>([x]) = [q>(.1.[x]),q>(i[x])] for q> e {sqrt,exp,ln} 



418 A MATHEMATICAL THEORY OF DESIGN 

• sqr([x]) = [O,[X]2] if 0 E [xl or [J,[x]2,i[xf] otherwise 

Other interval operations can be defined similarly. 

Interval vectors are defined as follows: let 9tn denotes the vector space of 

(column) vectors with n real components. J9tn denotes the set of interval vectors 

[~l=([xtl,[X2l, ... ,[xn])T with n components [x!1,[x2l, ... ,[xn le J9t. We interpret 

[~l e J9tn as the set of all vectors ~ e 9tn with xi e [Xi 1 for i = 1, ... , n. For n = 2, 
this set is a rectangle in the plane. 

A.1 SOLVING SYSTEMS OF INTERVAL EQUATIONS 

We wish to find a solution to the system of equations, 

L(~) =Q (1) 

within a given interval, ~ e [~], [~] e J9tn . Solution strategies can be adapted from 

the mean value theorem: 

L( mid([~])) - L(l) e I'([~]). (mid([~]) -l) for all x· e [~] (2) 

Since !,* is a zero of L(!,) = Q, 

(3) 

It is commonly known that iteration methods such as this one work better if 
preconditioned by a real matrix (typically, the inverse of the midpoint matrix of 

f'([~]) ). 
R· L( mid([~])) e R· I'([~]). (mid([~]) - !,*) (4) 

If we let A = R . 1'( ([~])) and t! = R . L( mid([~])) then (4) can be rewritten as 

t! eA· (mid([~]) - !, *) (5) 

and iteratively solved using Gauss Seidel iteration. Let f. '" mid([~]) e [~] and 

I e [~]. The system is rewritten as A· (£ - I) = t!. Writing this system in terms of 

its individual components yields 

~ A .. (C.-:X .}=b. fJI IJ -J -J -I 
J= 

(6) 

and solving (6) for Ii gives: 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 419 

x.ec.-[b.+ i A .. Jx.-c.))/A-.nrz.] -I -I -I • I) \!) _) II 1f, 
1=1 
j#:i 

(7) 

The Gauss-Seidel operator improves on (7), by observing that each iteration can use 
the previous interval in place of x j , that is: 

[y]O =k] 

[y,J'+1 + +, + j~('I· hi)' -£Il)} All my,J' 

(8) 

Equation (8) is the Gauss-Seidel operator (y = N GS ([~])) • 

A.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS 

Interval analysis techniques allow not only for the solution of systems of equations, 
but also provide theorems to check for the existence and the uniqueness of solutions 
within a given interval. The following theorem is proved in [16]: Let 

F: Do ~ 9tn ~ 9tn be continuously differentiable on D ~ Do. If I e [~] ED and 

x' denotes the Gauss-Seidel operator, then: 

(i) Every zero l E [~] of F satisfies ! * E x' . 

(ii) If x' fl [~] = 0 then F contains no zero in x. 

(iii) If K e int([~]) and 0 #: x' !;;;; int([~]) then F contains a unique zero in x. 

APPENDIX B - CONSTRAINT MODEL OF BEAM 

There are nine dimensions which describe a cantilever beam: 
L = Length of beam (m), w = Width of beam top (m), 
tl = Height of beam top (m), t2 = Height of beam bottom (m), 

t3 = Width of beam bottom (m), 

n = Safety factor, 

p =Material density ( kg . m3 ) 

cr max = Ultimate stress (Pa), 

E = Young's Modulus (Pa), 

From those nine dimensions, numerous higher order attributes can be defined: 



420 A MATHEMATICAL THEORY OF DESIGN 

Volume: L·(t2t3 +t\w) 

Mass: Volume * p = p. L.(t2t3 +t\w) 

Total Surface Area: 2L(t\ +t2 +W)+t2t3 +t\w 

Maximum Moment: 

Maximum Load: 

CJrnaxl CJmaxt/t3(t2t3 +t\w) 

Mmax --c-- 12{";' +wt'( ~ +I,)) 
2 Mmax 

Pmax = L2 

Maximum Allowable Load: 2 Mmax 
Pal/ow = nL2 

End Angle at Maximum Load: 

e = Pmax L3 = 
max 6El 

End Angle at Maximum Allowable Loaa: 

3 
e PaliL -

allow =----
6El 

End Deflection at Maximum Load: 

11 = prnax L4 
max BEl 

End Deflection at Maximum Allowable Load: 



MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 421 

4 
d - PaUL -

allow - 8EI -

REFERENCES 

1. Agrawal, R., A Constraint Management Approach for Optimal Design of Mechanical Systems, 
Ph.D. Thesis, Ohio State University, 1991. 

2. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer-Verlag, 
1990. 

3. Beaty, P, A. Fitzhorn, and G. J. Herron, "Extensions in Variational Geometry that Generate and 
Modify Object Edges Composed of Rational Bezier Curves", Computer-Aided Design, vol. 26, no. 
2, February 1994, pp 98-108. 

4. Borning, B., Freeman-Benson, and M. Wilson, "Constraint Hierarchies", Lisp and Symbolic 
Computation, 1992, pp 223-270. 

5. Buchanan, A., and A. de Pennington, "Constraint Definition System: A Computer Algebra Based 
Approach to Solving Geometric Problems", Computer Aided Design, 1993, December, vol. 25, no. 
12, pp. 741-750. 

6. Gallaher, D. T., Variational Systems in Computer-Aided Design, M.S. Thesis, Massachusetts 
Institute of Technology, 1984. 

7. Thompson, D. W., On Growth and Form, University Press, Second Edition, 1952. 
8. Hammer, M. Hocks, U. Kulisch, and D. Ratz, Numerical Toolbox for Verified Computing I, 

Springer-Verlag, Germany, 1993. 
9. Kearfott, B. and Z. Xing, "An Interval Step Control for Continuation Methods", SIAM Journal of 

Numerical Analysis, June 1994, vol., 31, no. 3, pp. 892-914. 
10. Jablokow, U. Uicker Jr., and D.A. Turcic, "Topological and Geometric Consistency in Boundary 

Representations of Solid Models of Mechanical Components", Journal of Mechanical Design, vol. 
115, December 1993, pp 762-769. 

II. Krawczyk and A. Neumaier, "Interval Slopes for Rational Functions and Associated Centered 
Forms", SIAM Journal of Numerical Analysis, June 1985, vol. 22, no. 3, pp. 604-616. 

12. Light, R. A., Symbolic Dimensioning in Computer-Aided Design, M.S. Thesis, Massachusetts 
Institute of Technology, 1980. 

13. Lin, V. C. Three-Dimensional Variational Geometry in Computer-Aided Design, M.S. Thesis, 
Massachusetts Institute of Technology, 1981. 

14. Mackrell, J., "Making Sense of a Revolution", Computer Graphics World, November 1993, pp 26-
38. 

15. Neumaier, A., "Rigorous Sensitivity Analysis for Parameter-Dependent Systems of Equations", 
Journal of Mathematical Analysis and Applications, vol. 144 (1989), pp 16-25. 

16. Neumaier, A., Interval Methods for Systems of Equations, Cambridge University Press, New York, 
NY, 1990. 

17. Serrano, D., MathPAK: An Interactive Preliminary Design Package, M.S. Thesis, Massachusetts 
Institute of Technology, 1984. 

18. Wampler, A. P. Morgan, and A. J. Sommese, "Numerical Continuation Methods for Solving 
Polynomial Systems Arising in Kinematics", Journal of Mechanical Design, March 1990, vol. 112, 
pp.59-68. 

19. Wilson, M. A. Hierarchical Constraint Logic Programming, Ph.D. Thesis, University of 
Washington, May 1993. 

20. Suzuki, H., H. Ando, and F. Kimura, "Geometric Constraints and Reasoning for Geometrical CAD 
Systems", Computers and Graphics, vol. 14, no. 2, pp 211-224. 

21. Huffaker, A. V. and O. Z. Maimon, "Maintaining a Consistent Configuration in a Constraint-Based 
Mechanical Design System," ASME Annual Winter Meeting, RSAFP Symposium, 1995. 



CHAPTER 15 

CONSTRAINT-BASED DESIGN OF FAIRED 
PARAMETRIC CURVES 

This chapter demonstrates techniques to allow relations on parametric curves in a 
variational design system. Constraints on the curves, which are normally represented 
as constrained nonlinear optimization problems, are reduced to systems of nonlinear 
equations (using the necessary conditions of the Non-Linear Programming). 
Additional degrees of freedom are constrained through fairing the curve and the 
resulting NLP is also reduced to its necessary conditions. Although the solution set of 
the necessary conditions contains the optimum, it contains many other solutions as 
well. The COAST design consistency algorithm introduced in Chapter 14 is extended 
to handle consistency when constraints take the form of relations between objects. 
Examples are given for elementary curves and for an apparel design system. 

15.1 CONSTRAINT-BASED CURVE DESIGN 

Computer aided design is typically performed in a hierarchical manner, with more 
complex, composite objects being iteratively defined in terms of increasingly simpler 
objects. At the lowest level are primitive objects which usually consist of points, 
lines, arcs, and any other simple geometrical items. In constraint-based design, 
arrangements of primitive objects can be constrained using distance, angle, or any 
other mathematical relations to form a composite object. For these primitive objects, 
relations such as distance are computed through closed-form arithmetic expressions. 
Arrangements of composite objects can also be defined (e.g., assemblies) but 
constraints on composite objects are typically limited to relations between specific 
primitive components of the composite objects. 

Despite the apparent distinction between primitive and composite objects, curves 
and other parametric objects have always held a rather ambiguous status in design 
systems. Mathematically, curves should be considered as primitive objects. They are 
fully defined through mathematical functions and are not composed of any other 
primitive objects. Additionally, relational constraints such as distance have obvious 
qualitative interpretations when applied to curves. However, there are no closed 
form expressions for simple relations so, instead, they are treated like composite 
objects. Accordingly, in constraint-based design systems, constraints describing the 
actual parametric objects are not allowed. Instead, curves can only be created by 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



424 A MATHEMATICAL THEORY OF DESIGN 

individually creating each of the curve's defining points. 
In this chapter, we demonstrate constraint-based design of parametric curves 

when the constraints are on the whole curve (e.g., a curve having a certain arc length 
or being a given distance from another graphical object) and not solely on the 
defining points of the curve. We introduce techniques that allow designers to define 
relations on parametric curves in a variational design system. Since design is an 
evolutionary process (see Chapter 2), the constraints will almost certainly be changed 
over time. These constraints on the curves, which are normally represented as 
constrained nonlinear optimization problems, are reduced to systems of nonlinear 
equations (using the necessary conditions of the NLP). Although the solution set of 
the necessary conditions contains the optimum, it contains many other solutions as 
well. The COAST design consistency algorithm developed in Chapter 14 is then 
implemented to maintain consistency. Finally, in order to demonstrate these 
techniques, an example is shown incorporating Bezier curves and an apparel design 
system is presented that can grade a design to any size. 

15.2 PREVIOUS WORK 

Variational design involves the simultaneous satisfaction of a system of constraints. 
In numerical approaches to constraint satisfaction, each constraint is expressed as an 
algebraic equation and the system of equations is solved through a numerical method, 
e.g. Newton-Raphson [1-3]. Curve creation in variational design systems typically 
involve individually constraining the defining points of the curve - constraints on the 
curve itself are not allowed. 

Recent research in constraint-based curve design has focused on two aspects of 
curve creation: more powerful constraints [4-7] and better interactive techniques [8-
10]. Nowacki and Lu [4] describe a technique for incorporating constraints on 
composite curves and demonstrate the ability to constrain the area enclosed by a 
composite curve. The constraints are approximated with quadrature techniques and 
the optimization problem resulting from fairing the curve is reduced to a system of 
nonlinear equations which is then solved. There are typically several possible curves, 
however, that would solve the constraints and there is no method presented for 
selecting a consistent one. We generally follow the techniques presented in this 
paper while also incorporating design consistency methods to allow the user to 
interact with the constraints while maintaining a consistent solution. Roulier [5] 
describes an algorithm to create Bezier curves of a given arc length. Although the 
given constraint scheme would typically result in many possible solutions, the 
algorithm assumes many aspects of the curve which reduce the solutions to a one
parameter family of curves at the expense of restricting the flexibility of the designer. 

Research in interactive curve design seeks to create techniques for intelligent 
user control of the shape of the curve. The designer can constrain aspects of the curve 
(e.g., distance or tangency) anywhere along the curve. All of these systems, however, 
require the user to apply the constraint to a specific point on the curve (at a user
defined value of the curve parameter) rather than to the curve as a whole. The 



CONSTRAINT-BASED DESIGN OF FAIRED PARAMETRIC CURVES 425 

research presented here, however, allows the user to define a constraint to be applied 
to the whole curve rather than to just a point on the curve. 

15.3 MAINTAINING DESIGN CONSISTENCY IN 
CONSTRAINT-BASED CURVE DESIGN 

In this section, methodology is demonstrated that allows designers to constrain the 
behavior of a curve as a whole. Using these techniques, a designer is able to constrain 
both intrinsic properties of a curve (e.g., arc length or total curvature) as well as 
extrinsic properties of the curve (e.g., distance from another object). Design 
consistency techniques are incorporated so the designer can then modify the 
constraints and obtain a new curve that is consistent with the original curve. 

Unbounded graphical objects are represented as a vector of dimensions, G. For 

the purpose of this chapter, points, lines, and circles are defined with the following 
dimensions (other dimensions are certainly possible): 

• Point: Q =(x,y) [Cartesian coordinates] 

• Line: Q =(x,y,ang) [Passing through a point with a given angle] 

• Circle: G =(x,y,r) [Centered about a point with a given radius] 

Bounded graphical objects (e.g. line, arc, or curve segment) are represented by 
an unbounded graphical object and an additional parameter that describes the 
endpoints of the object: 

• Line Segment: D =(Q,s)=(x,y,ang,s) 

• Arc: D =( G ,s)=(x,y,r,s) 

• 2-D Cubic Bezier Curve: 

D = (Q, s) = (po x' PI x' P2 x' P3 x' Po y , PI Y , P2 Y , P3 Y , s) 

Any constraint on a graphical object is transformed into an algebraic expression 
in terms of the object's dimensions, 

_ ( ) _ {f( G) unbounded 
OJ -I D - . - I(G,s) bounded 

Satisfying a constraint on a graphical object requires calculating the dimension values 
which satisfy the expressions. Relations. such as distance, between unbounded 
objects (e.g., point, line, and circle) can be computed through closed-form arithmetic 
expressions. Closed form expressions are not possible, however, when the relations 
involving the majority of bounded objects. Accordingly, in most constraint-based 
design systems, constraints describing whole curves are not allowed. Instead, curves 
can only be created by individually creating each of the defining points. 



426 A MATHEMATICAL THEORY OF DESIGN 

15.3.1 DISTANCE CONSTRAINTS 

Consider the problem of constraining the distance between a parametric curve, 

E = (Q,s) , and a point, 1 = (x,y) (see Figure 15.la). The constraint is defined by 

calculating the distance between a point on the curve, E, and the point, 1: 

Because the user is not required to define the specific value of s, the distance is found 

by optimizing the objective function, ~(Px(G,s)_qx)2 +(py(Q,s)_qy)2 as s 

varies between its bounds (0 to I for normalized curves): d = opt t(Q,s'1)' If the 
s 

distance between the point and the circle is defined as the global minimum of the 
distance function between the two objects, then the curve can only be constrained in 
one location as shown in Figure 15.la. There are other locations on the curve, 
however, where the designer may wish to constrain the distance (Figure 15.lb). 
These locations can be categorized as locations where the gradient of the distance 
function with respect to the curve parameter is zero. Graphically, the locations are 
those points on the curve where the normal of the curve intersects the point. The 
required algebraic constraint for these locations is: 

The second constraint serves to restrict the locations at which the distance can be 
measured. These locations are seen to be the local optima (both minima and 
maxima) of the initial 0 roblem. 

p p 

q q 
15.la. 15.lb. 

Figure 15.1 Distance Between a Point and a Curve 



CONSTRAINT-BASED DESIGN OF FAIRED PARAMETRIC CURVES 427 

In general, the local optima is found by analyzing the necessary conditions of the 
optimization problem. For an unconstrained optimization problem, 

opt f{G,s) 

(where opt is either minimize or maximize and f(G,s) is an algebraic expression), 

the necessary conditions are: 

Vf(G,s) =0, 

which, in this example, yields the second constraint. 
Notice that the bounds on the curve parameter are not present in these necessary 

conditions. The first time the constraints are solved, the designer can help the 
program find the desired optimum. After subsequent modifications, design 
consistency techniques are used to maintain the desired local optimum and the value 
of the parameter is simply checked against the bounds to ensure its validity. 

Figure 15.2 shows the objective functions for constraining the distance between 
a parametric curve, P, and a point, line, circle, and another parametric curve. The 
local optima are calculated by finding the points along the curve(s) at which the 
gradients of the objective function with respect to the curve parameter(s). 

d = opt(J(Q, s,!)) = 
s 

2a. 2b. 



428 A MATHEMATICAL THEORY OF DESIGN 

d =opt(f(Q,s,d) = 
s 

2c. 2d. 

Figure 15.2 Objective Functions for Calculating Distance using Optimization 

15.3.2 ARC LENGTH 

Intrinsic integral properties of a curve are typically calculated by integrating over the 
length of the curve. For example, the arc length of a parametric 2-D curve can be 

1 

f [a(PX(G'S))]2 [a(py(G'S))]2 
calculated as 9 1 = f(Q,s) = a-; + a~ ds which can be 

s=o 
approximated with a nonlinear equation using an extended quadrature technique [11]. 

15.3.3 CONSISTENCY IN CURVE FAIRING 

Consider a cubic Bezier curve with endpoints at (0,4) and (3,0) that is constrained to 
be 0.25 away from circle c (Figure 15.3). The curve has eight unknowns, five of 
which are constrained, leaving three degrees of freedom to optimize a performance 
index (here, the arc length of the curve is minimized). This situation gives the curve 
shown in Figure 15.3a. Now move the circle. In order to maintain the distance 
constraint, the curve is modified (Figure 15.3b). At some point, after moving the 
circle a sufficient amount, the curve will jump to the global optimum on the opposite 
side of the circle (Figure 15.3c). In an interactive design system, however, this is 
typically not the desired behavior. Instead, solution consistency should be 
maintained. In this case, the local optimum that maintains design consistency is on 



CONSTRAINT-BASED DESIGN OF FAIRED PARAMETRIC CURVES 429 

the same side of the circle (Figure IS.3d). 

n ~ 
3a. 3b. 

4 

1) 
c 

3c. 3d. 

Figure 15.3 Global vs. Local Optimum 

We assert that after a constraint modification in an interactive design system, the 
new intended (consistent) solution is often a locally optimized solution, rather than a 
globally optimized one. In an interactive design system, the designer is constantly 
modifying the constraints in search of a good design. After each modification, the 
designer expects the design to be changed in a predictable manner. Small changes in 
the constraints should lead to small changes in the design. To locate the local 
optima, we again look to the necessary conditions of the NLP. For a constrained 
optimization problem, 

opt obj( Q, s ) 

such that !1( Q, s ) = 0, 

the necessary conditions are: 

Vobj(Q,s) + ATV!!(G,s) = 0 

!!(Q,s) = 0 

The COAST method is then utilized to maintain a consistent solution to the system of 



430 A MATHEMATICAL THEORY OF DESIGN 

nonlinear equations. 

15.3.4 COAST METHODOLOGY FOR DESIGN CONSISTENCY 

At each design iteration, we begin with a design that both satisfies the constraints and 
is the intended solution. When the constraints are modified, we wish to not only find 
a new satisfactory design, we wish to find the new intended design. This is what we 
mean by consistent design (see chapter 14). If there is only one possible solution to 
the constraints, then it is easy to maintain a consistent design. It is much harder if 
there are mUltiple competing solutions, all of which satisfy the constraints. 

Fortunately, this iterative view of design directs us towards a principle of design 
consistency: small changes in specifications should lead to small changes in design. 
Design is not a chaotic environment (where small changes in input lead to large 
changes in output). Furthermore, large changes in specifications can often be 
decomposed to a series of small changes, in which case the principle can still be 
applied. 

A system of constraints is created from the user-defined constraints 

(!! lei = Ii (G i' si )). When the constraints are modified, let !.. be the vector of 

modified constraint coefficients 

for distance and other relations between curves 1 
for arc length and other integral properties J 

By reducing the optimization problem to a system of nonlinear equations, we 
have simplified the problem at the expense of introducing many more possible 
solutions. By rigorously analyzing the sensitivity of the system of equations as in 
Chapter 14, we can follow the solution trajectory as the constraints change. The 
COAST methodology attempts to maintain a consistent solution through the analysis 
of the solution trajectory of the desired solution. When constraints are modified, a 

homotopy is setup between the two systems of equations, !!(D,£o) = 0 and 

!!(D'£l)=O as !!(D,£o+a(£l-£O))=O and a is varied from 0 to 1. 

We assume that the coefficients of the constraints can be changed, but not the 
form of the constraints. The rigorous sensitivity of systems of equations of the form 

~(D,!) = 0 is described in [12]. Using those methods, we extend the COAST 

methodology developed in Chapter 14 to handle modifications to any coefficients of 
the constraints (Figure 15.4). 



CONSTRAINT-BASED DESIGN OF FAIRED PARAMETRIC CURVES 431 

Create [1:] that encloses Do 

Set L = Io + ex.. (II -Io) 
A = a~([z],(.) B = a~([Z],[I",~]) 

aD at 
[DI]= Do - A-IB.(~ -to) 

"'---'1IoJ Decrease a 

Solve D.={e(D,~)=Q,DE[D,]} 

Set Lo = ~, Do = DI 

Increase ex. 

Figure 15.4 COAST Algorithm for Implicit Constraint Changes 

15.4 EXAMPLES 

15.4.1 BEZIER CURVE FROM DISTANCE CONSTRAINTS 

Problem: Create a 2-D Bezier curve with endpoints at (-1,2) and (5,-1) such that it 

passes 0.25 from the point, ~I = (1,1), and 0.5 from the point, ~2 = (3,4) (Figure 

15.5). Fair the curve by minimizing the arc length. Then, move q to (1,4). The 
-I 

curve should be adjusted in a consistent manner. 



432 

y 

4 

3 

• 
" I 
I 
I 
I 
I 

• 

A MATHEMATICAL THEORY OF DESIGN 

• 

x 

Figure 15.5 Bezier Curve from Distance Constraints 

The parametric function for cubic Bezier curves is: 

p( G, s) = (1- s)3 Po + 3(1- s)2 sPI + 3(1- s)s2P2 + s3 P3 where 

[ J" ( ) [Px(G,s)] G= POx,Plx,P2x,P3x,POy,Ply,P2y,P3y , P G,s = Py(G,s) (in 2-D), and 

o S s S 1. The endpoint constraints yield four simple equations: 

9 1 : px(G,O) = POx =-1 

92 : py(G,O) = POy = 2 

93 : Px(G,I}=P3x =5 

94 : Py(G,I} = P3y =-1 

Each distance constraint adds two equations and one unknown: 

95: (PX (G,SI)-Ql xt +(Py(G,SI)-QlyY =0.25 



CONSTRAINT-BASED DESIGN OF FAIRED PARAMETRIC CURVES 

a (PX(Q,Sl)-q1xt +( Py(Q,Sl)-qly Y 
aSl 

o 

(PX(Q,S2)-q2 xt +( Py(Q,S2)-Q2 y Y =05 

a (PX(Q,S2)-Q2xt +( Py(Q,S2)-Q2 y Y 
o 

433 

for a total of eight equations and ten unknowns. The remaining unknowns are 
constrained by minimizing the arc length of the curve. We approximate the arc 
length, L, of the curve with a 16 point trapezoid quadrature formula [11] that 
estimates the integral given previously and use that equation to form the objective 
function for the NLP, giving the following system of necessary conditions: 

which, along with the eight original constraints, forms a system of 18 equations and 
18 unknowns. As we move along the homotopy, the curve is adjusted accordingly as 
shown in Figure 15.6. The final solution (shown in Figure 15.7) maintains a 
consistent design. 



434 

y 

y 

A MATHEMATICAL THEORY OF DESIGN 

x 

Figure 15.6 Sample Curves along the Homotopy 

• 

x 

Figure 15.7 Ending Curve 

--1.0 
..... 2.0 
-6-3.0 
...... 4.0 



CONSTRAINT-BASED DESIGN OF FAIRED PARAMETRIC CURVES 435 

10r-----------------------------------------, 

8 

6 

4 
y 

2 

Or------+------~----~------~~~~~----~ 

x 

Figure 15.8 Solution Trajectories of Defining Points 

Finally, the solution trajectories of the center two control points along the homotopy 
are shown in Figure 15.8. 

15.4.2 APPAREL DESIGN 

Apparel design is the modification of two-dimensional patterns so that when they are 
assembled, form unique or attractive styles. Apparel design begins with the 
definition of a basic pattern which is derived from the body measurements (the 
sloper). The definition of the sloper is a step-by-step process in which points, lines, 
circles, and curves are defined relative to the body measurements and existing 
elements. The end result is a collection of polygons or outlines which form a simple 
pattern. The patternmaker then performs a sequence of standard patternmaking 
operations on the outlines to modify the style of the piece. 

While there are many apparel design CAD packages available, they all require 
the designer to manually define how each point of the design should be adjusted for 
different sizes. Using our techniques, it is possible to define a design in terms of the 
body measurements. Then, when the body measurements are modified, the design is 
updated in a consistent manner. For example, the following are a few steps of the 
design of a basic bodice sloper using the measurements, Bust Span, Bust Arc, and 
Side Length [13]: 

O-P = Bust Span. Square from center front through N. (P is bust point). 



436 A MATHEMATICAL THEORY OF DESIGN 

O-Q = Bust Arc. To find Q. measure from 0 to P to Q. with Q touching somewhere on J 
guideline indicated by broken line 

P-R = P-Q. plus 114 inch. R touches somewhere on I guideline indicated by broken line. 
R-S = Side Length. (R to S through Q) 
R-T = 112 inch. 

Figure 15.9 shows most of the construction lines used in the creation of the front 
bodice pattern. 

F 

s 

Figure 15.9 Bodice Sloper Construction 

Unfortunately, however, the sequence does not always create an accurate design. 
For example, the angles between the points P and S and between P and B should be 
supplementary so that they are smooth when the design is folded over the body. The 
sequence given, however, does not always maintain this relationship. In order to 
maintain this relationship, we incorporate variational constraints on the angle of the 
segments. Additionally, we create the arm hole and neck hole curves using distance 
constraints from points M and a,respectively. Creating the front bodice requires 12 
measurements (shown in Table 15.1 with their values, in inches, for sizes 10 and 12 
as measured on sample dressforms): 



CONSTRAINT-BASED DESIGN OF FAIRED PARAMETRIC CURVES 437 

Table 15.1 Bodice Measurements 

Full Length Across Shoulder Center Front Length Shoulder Slope 
10: 17.3 10: 7.3 10: 14.3 10: 17.0 
12: 17.3 12: 7.8 12: 14.8 12: 17.5 
Shoulder Length Arm Hole Depth Bust Depth Bust Span 
10: 5.1 10: 4.8 10: 9.3 10: 3.6 
12: 5.4 12: 4.8 12: 9.4 12: 4.1 
Bust Arc Side Length Dart Placement Waist Arc 
10: 9.3 10: 8.4 10: 2.8 10: 6.8 
12: 9.9 12: 9.2 12: 3.3 12: 7.3 

The resulting system contains 54 equations (shown in Table 15.2): 

Table 15.2 Bodice Constraints 

9\: ax=O 928: Oy = ny 
92: av=O 929: py = Oy 
93: bx=O 930: dist[ox,Oy,PX'PY] = Bust Span 
94: dist[ax,ay,bx,by] = Full Length 931 : qy = jy 
95: cy=O 932: dist[qx,qy,Px.Py] + dist[px,Py,OX'Oy] = 

Bust Arc 
96: dist[ax.ay,cX'cy] = Across Shoulder 933: ry = iy 
97: dx=O 934: dist[rx,ry,PX'py] = dist[qx,qy,Px,Py] + 

1/4 
98: dist[bx,by,dx,dy] = Center Front 935: dist[rx,ry,sx,sy] = Side Length 
Length 
99: ex= ex 936: q, r, and s collinear 
9\0: dist[bx,by,ex,ey] = Shoulder 937: dist[rx,ry,tx,ty] = ~ 
Sl~e 

91\: fv=O 938: r, s, and t collinear 
9\2: dist[ex,ey,fx,Cy] = Shoulder Length 939: dist[bx,by,vx,vy] = Dart Placement 
913: gv=dy 940: p, v, and b orthogonal 
914: e, f, and g orthogonal 941 : dist[sx,Sy,XX,XY] = Waist Arc • Dart 

Placement 

9\5: ix = ex 942: s, x, and p orthogonal 
916: dist[ex.ey,ix,iy] = Arm Hole Depth 943: dist[Yx,yy,tx,ty] = 112 
9\7: jx=ix 944: s, t, and y orthogonal 
918: jy=iy·2. 945: Px(O) = ex 
919: kx = ex 946: Px(l) = Yx 
920: ky = (ey+iy)/2. 947: Py(O) = ey 

921 : Ix = ax 948: Py(l) = Yv 



438 A MATHEMATICAL THEORY OF DESIGN 

822: Iv = ky 849: dist[Px(S\), Pv(S\), kx, kv] = 1/2 
823: mx = kx+ 1/2 850: Rx(O) = fx 
824: mv = kv 85\: Rx(1) =dx 
825: dist[ex,ev,nx,nv] = Bust Depth 852: Rv(O) = fv 
826: e, n, and b collinear 853: Rv(1) =dv 
827: Ox = ax 854: dist[Rx(s2), Rv(S2), gx, gv] = 112 

where P(s) is the arm hole curve and R(t) is the neck hole curve. From the constraint 
on the arm hole curve, 849, the necessary condition for the distance relation is added: 

ddist[pAQ,sd, Py(Q,sd,~l 
855: .., 

oSI 
O. 

To fair the curve, the stiffness criterion (J = t· f(llp,,( G, s)112 + IIp'''(Q, s)112 PS) is 

used and estimated using an eight-point Simpson's quadrature formula to obtain the 
following necessary conditions (creating a Bezier curve): 

and likewise for the constraint on the neck hole curve: 



CONSTRAINT·BASED DESIGN OFFAIRED PARAMETRIC CURVES 439 

aJ asSO aSSI aSS2 aSS3 aSS4 aS65 
S73: --+ A7 --+ A8 --+ A9 --+ AIO--+AlI--+ A\2 --=0 

ap3y ap3y ap3y ap3y ap3y ap3y ap3y 

S . aJ ~ aSSO ~ aSSI '1 aSS2 ~ aeS3 ~ aSS4 ~ aS65 - 0 
74· -+1\,7--+1\,8--+1\,9--+1\,10--+1\,11--+1\,12---aS2 aS2 aS2 aS2 aS2 aS2 aS2 

There are 22 points with two dimensions each (44 unknowns) and for each curve 
there are eight curve parameters (16 unknowns), 6 A'S (12 unknowns), and one 
curve parameter (2 unknowns) for a total of74 unknowns. 

Entering the dimensions measured from a size 10 dressform and solving the 
system of equations (with an adequate starting point) yields the solution shown in 
Figure 15.10. 



440 A MATHEMATICAL THEORY OF DESIGN 

·5 

y 

x 

Figure 15.10 Bodice - Size 10 

As we move the measurements from size 10 to size 12 along the homotopy, the 
COAST method is able to converge to a consistent solution (shown in Figure 15.11). 



CONSTRAINT-BASED DESIGN OF FAIRED PARAMETRIC CURVES 441 

- 5 

y 

x 

Figure 15.11 Bodice - Size 10 to 12 

The trajectories of the center two defining points of the arm hole and neck hole 
curves are shown in Figures 15.12 and 15.13. 



442 A MATHEMATICAL THEORY OF DESIGN 

•. 6 ·7.4 ·7.2 ·7 -6.8 -6.6 -6.4 -6.2 

-4.5 

y -6 

-6.5 

·7 

·7.5 

x 

Figure 15.12 Solution Trajectory of Arm Hole Curve Defining Points 

• .5 ·2 ·1.5 

~ PI 

~ 
·2 

Y 

'\ 
·2.5 

P2 

X 

Figure 15.13 Solution Trajectory of Neck Hole Curve Defining Points 



CONSTRAINT-BASED DESIGN OF FAIRED PARAMETRIC CURVES 443 

15.5 DISCUSSION 

In this chapter, we demonstrated the methodology to allow whole-curve constraints in 
a variational design system. Relations involving curves are represented as a nonlinear 
optimization problem. In such cases, we analyze the necessary conditions of the NLP. 
Constraints on the intrinsic behavior of curves are typically represented as integrals 
over the curve. In these cases, the integral is approximated using quadrature 
techniques. After all constraints have been entered, the remaining degrees of freedom 
are used to fair the curve. Curve fairing is also done through a NLP, whose system of 
necessary conditions forms the final system of equations, the solution set of which 
contains the desired optimum. The COAST method for design consistency was 
utilized to maintain a consistent solution once a correct solution had been found. 
Finally, we demonstrated these techniques both on elementary curves and in an 
apparel design system. 

Using this methodology, parametric objects can be fully incorporated in a 
variational design system and constrained like any other primitive objects. Relations 
(e.g., distance and angle) can be entered by the designer between any primitive 
objects (points, lines, circles, and arcs) as well as curves. Intrinsic properties of a 
curve (e.g., arc length and total curvature) can also be constrained by the designer in 
a similar manner to constraining the length of a line segment. Design consistency is 
maintained whenever the designer modifies the constraints. 

REFERENCES 

1. Robert Light and David Gossard, "Modification of Geometric Models through Variational 
Geometry", Computer-Aided Design, vol. 14, no. 4, pp 209-214, July 1982. 

2. V.C. Lin, D.C. Gossard, and R.A. Light, "Variational Geometry in Compter-Aided Design", ACM 
Transactions on Computer Graphics, vol. 15, no. 3, pp 171-177, August 1981. 

3. S. Alasdair Buchanan and Alan de Pennington, "Constraint Definition System: A Computer 
Algebra Based Approach to Solving Geometric Problems·, Computer Aided Design, December, vol. 
25, no. 12, pp. 741-750, 1993. 

4. Horst Nowacki and Xinmin Lu, "Fairing Composite Polynomial Curves with Constraints", 
Computer Aided Geometric Design, vol. II, pp. 1-15, 1994. 

5. John A. Roulier, "Specifying the Arc Length of Bezier Curves", Computer Aided Geometric Design, 
vol 10, pp 25-56, 1993. 

6. Michel Bercovier and Arie Jacobi, "Minimization, Constraints, and Composite Bezier Curves", 
Computer·Aided Geometric Design, vol. II, pp 533-563, 1994. 

7. Hans Hagen and Georges-Pierre Bonneau, "Variational Design of Smooth Rational Bezier Curves", 
Computer-Aided Geometric Design, vol. 8, pp 393-399,1991. 

8. Barry Fowler and Richard Bartels, "Constraint-Based Curve Manipulation", IEEE Computer 
Graphics and Applications, pp. 43-49, September 1993. 

9. John A. Gregory and Muhammad Sarfraz, "Interactive Curve Design using C2 Rational Splines", 
Computers and Graphics, vol. 18, no. 2, pp 153-159, 1994. 

10. Wieger Wesselink and Remco C. Veltcamp, "Interactive Design of Constrained Variational 
Curves", Computer Aided Geometric Design, vol. 12, pp 533-546, 1995. 

II. William H. Press et aI., Numerical Recipes: The Art of Scientific Computing, 2nd Edition, 
Cambridge University Press, 1992. 

12. Arnold Neumaier, "Rigorous Sensitivity Analysis for Parameter-Dependent Systems of Equations", 
Journal of Mathematical Analysis and Applications, vol. 144, pp 16-25, 1989. 

13. Helen I. Armstrong, Patternmakingfor Fashion Design, Harper & Row, New York, 1987. 



CHAPTER 16 

CREATING A CONSISTENT 3-D VIRTUAL LAST 
FOR PROBLEMS IN THE SHOE INDUSTRY 

In the shoe design industry, there are hundreds of standard lasts (3-D models of a 
foot) available [2, 3]. Shoe companies select specific lasts to serve as their models for 
specific sizes. Computer-aided design software for the shoe industry, then, is able to 
take a design (drawn on a 2-D flattened approximation of the last) and grade (scale) it 
to any of the numerous standard lasts. They are not able, however, to create a new 
pattern from an arbitrary set of measurements. In shoe design, the ability to quickly 
and easily customize each pair of shoes for an individual customer could be turned 
into a large market advantage. Many aspects of the required technology are already 
available (e.g., information systems, CNC machines). The problem is then reduced to 
one of computing the desired shoe pattern, given a person's foot measurements and a 
similar prototype, such that the new pattern satisfies the measurements, but is still 
similar to the prototype. In such a computerized domain, there is a need for a virtual 
model of a last that can adjust to any desired size. In this chapter, an approach for 
creating a virtual last is demonstrated in which a series of 22 3-D Bezier curves are 
constrained to satisfy a set of measurements given by the designer. As there are 
typically numerous curves which can satisfy a given system of constraints, the 
COAST methodology for design consistency developed in Chapters 14 and 15 is 
implemented to ensure convergence to the intended solution. 

16.1 PROBLEMS IN SHOE DESIGN INDUSTRY 

"Mass customization gives individual customers exactly what they want, without 
creating overwhelming choice complexity of pushing costs up to the point that a 
company prices itself out of the market [1]." Numerous products exist in which the 
ability to quickly and easily customize each item for an individual customer could be 
turned into a large market advantage (e.g., computers, clothing, and shoes). 

In the case of custom shoe design, the problem is inherently a continuous 
problem: everybody wants shoes that fit and measurements are continuous. Current 
industrial solutions, however, force discreteness, minimizing the number of 
measurements and rounding them off to the nearest increment so as to limit the 
number of possible designs. The state of manufacturing technology is such that fast 
information servers (for easy transmission of personal data) and flexible automation 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



446 A MATHEMATICAL THEORY OF DESIGN 

machines (CNC programs to cut the upper patterns) are available. The problem is 
then essentially reduced to one of computing the desired pattern, given a person's 
foot measurements and a similar prototype, such that the new pattern satisfies the 
measurements, but is still similar to the prototype. 

This problem can be generalized in either the discrete case or the continuous 
case. In the discrete case (best fit selection), a shoe manufacturer has a large, but 
fixed number of sizes available for every different style. More 'custom' shoes can be 
approximated by using more measurements and allowing more precise increments of 
the measurements. Additionally, the customer could specify the fit and/or the 
performance of the shoe (sporty or comfortable). From these measurements and 
desired behaviors of the shoe, a virtual inventory of lasts could be compared and the 
best fitting last selected. An outline of this process is shown in Figure 16.1. 

In the continuous case (pattern grading/visualization) each shoe is sized to fit the 
foot exactly. In the shoe design industry, there are many standard lasts (3-D models 
of a foot) available [2, 3]. Shoe companies select specific lasts to serve as their 
models for specific sizes. Shoe design software, then, is able to take a design and 
grade it to any of the numerous standard lasts. They are not able, however, to create a 
new pattern from an arbitrary set of measurements. 

Modify 
Convergence 

Get 
Measurements 

and 

Yes 

Create Updated 
Last from 

Measurements 

Yes 

Compare with 
Existing Lasts 

and Select Best 

No .. 

Create Set of 
Original 

Virtual Lasts 

Figure 16.1 Best Fit Selection 



A CONSISTENT 3-D VIRTUAL LAST FOR PROBLEMS IN THE SHOE INDUSTRY 447 

In contrast, consider a system that is able to both grade an upper design to any 
size (determined by user's measurements) as well as render the corresponding design. 
One such system could work as outlined in Figure 16.2. From a computerized model 
of a last and its flattened approximation, the user draws the outlines of the desired 
upper patterns. Given the one-to-one correspondence between the curves on the last 
and the flattened approximation, any point selected on the flattened last can be 
identified on the 3-D last. When the measurements are modified, the last and the 
flattened approximation are consistently updated and the points which make up the 
upper patterns are automatically adjusted. 

Modify 
Convergence 

Get 
Measurements 

from 

Yes 

Create Updated 
Last from 

Measurements 

Yes 

Flatten Last and 
Calculate Pattern 
Boundary Points 

No • 

Create 
Original 

Virtual Last 

Flatten Last 

Create Pattern and 
Calculate 

Boundary Points 

Figure 16.2 Upper Pattern Grading and Visualization 

In each case, there is a need for a consistent 3-D virtual last to optimally 
determine issues of size and fit. Given a set of measurements, this chapter 
demonstrates the ability to create a set of curves which outline a 3-D virtual· last. 
Constraints on the curves are transformed into nonlinear equations. The remaining 
degrees of freedom are constrained by fairing the curves. Design consistency is 



448 A MATHEMATICAL THEORY OF DESIGN 

maintained by tracking the desired local optimum of the NLP using the COAST 
methodology (see Chapters 14 and 15) rather that finding the global optimum. 

16.2 CREATION OF A VIRTUAL LAST 

Our system for creating a parametrized 3-D last, DANSER (Design Algorithms using 
Nonlinear Systems of Equations RelationaIIy), uses four sets of Bezier curves to 
describe a foot or a last (see Figures 16.3-16.6, respectively); 

1. Nine curves that surround the outside lower part of the foot (EI - E9 ) ; 

2. Five curves that surround the outside upper part of the foot (EIO - E14) ; 
3. Five curves that pass between the first two sets of curves (EIS - EI9); and 

4. Three curves that pass under the foot (E20 - E22) . 

Figure 16.3 Constraint Points of Lower Curve in XY Plane 



A CONSISTENT 3-D VIRTUAL LAST FOR PROBLEMS IN THE SHOE INDUSTRY 449 

Figure 16.4 Constraint Points of Upper Curve in XY Plane 



450 A MATHEMATICAL THEORY OF DESIGN 

Figure 16.5 Constraint Points of Connecting Curves in XY Plane 

Figure 16.6 Constraint Points of Bottom Curves in XY Plane 



A CONSISTENT 3-D VIRTUAL LAST FOR PROBLEMS IN niE SHOE INDUSTRY 451 

Table 16.1 User-Defined Measurements of A Foot 

Measurement M-ll W-9 Measurement M-ll W-9 

Top. X -1.0 -1.0 Top. Y 10.45 9.45 
Left. X -2.0 -2.0 Left. Y 7.25 7.25 

Right X 2.25 1.7 Right Y 6.4 6.4 
Minor Length 9.0 7.5 Minor Width 3.0 2.75 
Heel Width 3.0 2.25 Ankle Width 2.5 2.25 

Top. Major Length 3.5 3.25 Top. Minor Length 3.0 2.75 
HeeCF01ward_Offset 0.25 0.25 E6z(O) 1.0 0.75 

L(EI) 4.0 3.5 L(E2) 2.0 2.0 

L(E3) 3.5 3.25 L(E4) 2.0 1.5 

L(E5) 2.0 1.5 L(E6) 2.0 1.5 

L(E7 ) 3.5 2.5 L(Es) 3.5 3.25 

L(E9 ) 3.0 2.75 L(EIO) 1.5 1.25 

L(EII) 2.5 2.25 L(E12) 2.5 2.0 

L(E13) 3.0 3.25 L(EI4) 2.0 1.75 

L(EI5) 6.75 7.25 L(EI6) 6.0 6.0 

L(EI7 ) 2.0 2.0 L(EIs) 1.25 1.5 

L(EI9 ) 1.75 1.75 L(E20) 5.25 4.25 

L(E21) 4.25 3.75 L(E22) 3.75 3.25 

Elz(O) .5 .4 E2z(O) .33 .25 

E3z(O) .5 .5 E4z(O) 0.75 .5 

E5z(O) 0.75 .75 E7z (O) .75 .75 

Esz(O) 2.0 1.25 E9z(O) 0.5 0.5 

E1oz(O) 3.5 3.25 Ellz(O) 3.25 2.75 

£ 12z(O) 2.5 2.25 EI3z(O) 2.25 2.25 

EI4z(O) 3.0 2.25 dist(El5 .E20) 1.5 1.5 

dist(E,15 .E,2I) 2.25 2.0 dist(El5 .E,22) 4.5 3.75 



452 A MATHEMATICAL THEORY OF DESIGN 

16.2.1 CONSTRAINT DEFINITIONS 

The 3-D last is dimensioned to 52 user-defined measurements identified in Table 
16.1 (along with their values for a men's size 11 and women's size 9 foot). The 
measurements include thickness and width dimensions measured at peaks and valleys 
of the foot as well as measurements of distance along the foot (designated by L(Pj» 
and height measurements (designated by Eiz(O) = Eiz(QiO). 

The 22 curves have a total of 264 unknowns (270 after including the additional 
curve parameters for the distance relations). From the measurements, a system of 
227 constraints is formed. The 22 arc length measurements, the 14 height 
measurements, and the 3 distance measurements (combined with the six additional 
necessary conditions from the distance constraints) given in Table 16.1 yield 45 
constraints. 

The parametric function for cubic Bezier curves is: 

o ~ Sj ~ 1. Each distance constraint between two curves, Pi and Pj , is of the form: 

and the two additional necessary conditions for each distance constraint are: 

aSi ° and 



A CONSISTENT 3-D VIRTUAL LAST FOR PROBLEMS IN THE SHOE INDUSTRY 453 

o , adding two 

equations and two unknowns (the parameter values). The arc length constraint of 
any given curve, Pj, was calculated using the integral formula, 

1 

+ + ds , and estimated f [a(pj'X(Qi'S;»)]2 [a(pj,y(Qi'Si»)]2 [a(pj'Z(Qi'S;»)]2 . 
as; as; aSi 

s.=O 
I 

using a four-point quadrature technique. 
The remaining 182 constraints are divided among connectivity constraints, 

gradient constraints, distance constraints, and other explicit constraints as follows: 

Connectivity Constraints 

fl (I) = f2 (o) 
Es(1) = E6{O) 
f9{I) = EI{O) 

EIO(l) = Ell (0) 
EI4 (1) = EIO(O) 

E1s(1) = EI (o) 
E17(1)=E4{O) 
E19 {I) = fs{O) 

E20 {l) = E3{O) 

E22{I) = Es{O) 

f2{I)=f3{O) 
E6{I) = E7(O) 

Els(O) = EIO{O) 
E17 (0)=EI2 {0) 

E19{O)=E14 {O) 

f 20 {O) = E9 (O) 
E22 {O) = E7(0) 

E3{I) = f 4 {O) 
E7{I) = Es{O) 

E16{I) = E2{O) 
E\s{l) = E6(O) 

f4{l) = Es{O) 

Es(1) = E9(O) 

EI6{O) = Ell (0) 
E1S{O) = E13 {O) 

Each connectivity constraint adds one equation for each dimension. For example, the 



454 A MATHEMATICAL THEORY OF DESIGN 

first connectivity constraint adds three equations: 

PI 3 - F2 0 = 0 , PI 3 - P2 0 = 0, and PI 3 - F2 0 = 0 . 
'x 'x 'Y 'Y 'z 'z 

The x-, y-, and z-coordinates are constrained at each point for a total of 30*3 = 90 
connectivity constraints. 

Gradient Constraints 

aEI(I)=aE2(O) 
aEs(I) = aE6(O) 
aE9(I) = aEl (0) 

aE3(O) I ax = 0 
aE7(O) I ax = 0 

aEIO(O) I ay = 0 

aEls(I)/ax=O 

aE17(1)/ax=o 

aE19 (I)/ax=0 

aE20(0) I ax = 0 
aE21 (0)/ax=0 
ap22 (0) I ax=o 

aE2(I) = aE3(O) 
aE6(I) = aE7(O) 

aE4(o) I ax = 0 
aEs(O) I ax = 0 

aEI2(O) I ax = 0 

aElS(I) I ay = 0 
aE17(l)/ay=O 

aE19(I)/ay=0 

aE20(0)/ay=0 
aE21(0) lay =0 
ap22 (0)/ay=0 

aE3(l) = aE4 (O) 
aE7(I) = aEs(O) 

aEs(O) I ax = 0 
aEs(O) I az = 0 

aE 13 (0) I cry = 0 

aEI6(l)/ax=0 

aEls(I) I ax=o 

aE20 (I) I ax = 0 

aE21(1) I ax =0 
aE22 (1) I ax= 0 

aE4(I) = aEs(O) 
aEs(I) = aE9(o) 

aE6(o) I ay = 0 
aE9(o) I ax = 0 

aE14(O) I ax = 0 

aEI6(I)/ay=0 

aEls(I)/ay=O 

aE20 (1) I ay = 0 
aE21(1)/ay=0 

aE22 (1) I ay = 0 

Each gradient constraint adds one equation for each dimension. For example, the 
first gradient constraint adds three equations: 

-3R12 + 3R1 3 - 3F2 0 + 3fl2 1 = 0, -3R12 + 3RI3 - 3F2 0 + 3F2· 1 = 0, 
'x 'x 'x 'x 'y 'y 'y 'y 



A CONSISTENT 3-D VIRTUAL LAST FOR PROBLEMS IN THE SHOE INDUSTRY 455 

and -3Pl,2z + 3P1,3z - 3P2,oz + 3P2,lz = 0 

There are 14 points at which all three gradients are constrained (daX, aaY' and aaZ ) 
. t t t 

and 34 points where individual gradients are explicitly constraints for a total of 76 
gradient constraints. 

Distance Constraints 

An additional six constraints are formed from the remaining measurements in Table 
16.1: 

dist(~2(0)'~6(0)) = Minor_Length 

dist(~5(0)'~7(0)) = Heel_Width 

dist(~lO(O)'~13(O)) =Top_Major_Length 

dist(~4(0)'~8(0)) = Minor_Width 

dist(~12(0)'~14(0)) = Ankle_Width 

dist(~11 (0)'~13(0)) =Top_Minor_Length 

Each distant constraint adds one equation. For example, the first distance constraint 
adds the equation: 

Explicit Constraints 

Finally, ten explicit constraints (similar in form to the connectivity constraints) are 
used to orient the last: 

~6x(0) =0 

~ly(O) = Top_Y 

~9x(0) = Left_x 

~6y(0) =0 

~3)0) = Right_ X 

~9y(0) = Left_Y 

16.2.2 CURVE FAIRING 

~1)O)=Top_X 

~3y(0) = Right_Y 

~13x(0)=0 

The remaining degrees of freedom were constrained by minimizing the sum of the 



456 A MATHEMATICAL THEORY OF DESIGN 

stiffness of the curves as given by the formula: t· JOP"(Q,st +lIp"'(Q,st}s 
which is then approximated by a four-point quadrature technique. In order to 
maintain the intended solution, the local optimum was maintained by following the 
solution to the necessary conditions of the optimization problem as the measurements 
were incrementally moved towards their updated values. The resulting system had 
497 equations and 497 unknowns. 

16.3 RESULTS 

The measurements for a men's size 11 were entered and the corresponding 264 
parameters for the 22 Bezier curves were calculated (shown in Figures 16.7-A and 
16.7-B). 

2 

3 

a 

Figure 16.7-A Parameterized Last - Men's Size 11 



A CONSISTENT 3-D VIRTUAL LAST FOR PROBLEMS IN THE SHOE INDUSTRY 457 

-2 

3 

2 

o 

Figure 16.7-B Parameterized Last - Men's Size 11 

Using the COAST presented in Chapters 14 and 15, the current solution was 
then tracked when the measurements were modified to those of a women's size 9 in 
order to maintain a consistent model of the foot (Figures 16.8-A and 16.8-B). This is 
in contrast to an inconsistent solution (Figure 16.8-C, for example). In this 
configuration, the curve that extends over the little toe actually starts with a negative 
z-gradient. This curve satisfies all the constraints, yet is obviously not the desired 
solution. 



458 A MATHEMATICAL THEORY OF DESIGN 

o 

Figure 16.8-A Parameterized Last - Women's Size 9 

o 

Figure 16.8-B Parameterized Last - Women's Size 9 



A CONSISTENT 3-D VIRTUAL LAST FOR PROBLEMS IN THE SHOE INDUSTRY 459 

3 

o 

Figure 16.8-C Inconsistent Parameterized Last - Women's Size 9 

16.4 SUMMARY 

In this chapter, we have demonstrated the ability to create a 3-D last, composed of a 
series of Bezier curves, that is constrained to achieve user-defined measurements. 
Every constraint on the curves is transformed into an algebraic equation. Any 
remaining degrees of freedom are faired using the stiffness criterion. In order to 
maintain a consistent solution, the local optima is followed using the necessary 
conditions of the NLP. When any of the measurements are modified, DANSER is 
able to update the last and maintain a consistent solution. Currently, the last is 
parametrized with 52 measurements which is a rather large number. In the future, 
this number can be reduced with additional study. by finding additional correlation 
between certain measurements and aspects of the shape of the foot. 

REFERENCES 

I. New York Times. March 20.1996. Section D. page I. 
2. Karl C. Adrian. American Last Making. Shoe Trades Publishing. Massachusetts. 1991. 
3. Michael H. Sharp. The Pallem CUller's Handbook. Footwear OPEN TECH Unit. England, 1994. 



PART FOUR 

DETAILED DESIGN APPLICATIONS 



CHAPTER 17 

DESIGN OF A WORMGEAR REDUCER: A CASE 
STUDY 

17.1 INTRODUCTION 

This chapter presents a case study of a wormgear reducer design, which is used to 
corroborate the evolutionary model of the design process (Chapter 6). The design of 
the wormgear reducer is performed on both conceptual and detailed (parametric) 
levels. Conceptualization mainly involves inventive activities in the form of the 
generation of alternative possible solutions to the required goals (high level 
specifications). In parametric design, the dimensions of a part are calculated by 
solving a system of constraints (typically nonlinear equations). The constraints are 
considered part of the specifications. The following sections focus mainly on the 
parametric design of the wormgear reducer. Let us recapitulate some of the very 
basic features of the evolutionary model as articulated for parametric design. 

• An artifact (design), at any particular abstraction level, is described in terms of 
part types (a group of objects which are similar but have different sizes). Every 
part can be described by a set of attributes. Each attribute can be described by its 
dimension (such as wire diameter, spring diameter, number of active coils, and 
modulus of elasticity). 

• Specifications or constraints, at any particular abstraction level, are the various 
functional, behavioral, performance, reliability, aesthetic, or other characteristics 
or features that are to be present in the physically implemented artifact. In 
parametric design, closed-form constraints are usually either Euclidean 
(including distance, tangency, parallelism, and so on), or functional (such as 
mass properties, forces, stiffness, strength, rating life, and so on). A higher order 
constraint is a property that is satisfied by lower order constraints. 

• Design proceeds as a succession of cycles. In each cycle, the design (or 'design 
parameters') is tested against the specifications (or 'constraints'). 

• Tf the design satisfies the specifications, then there is a fit between the two, 
otherwise there is said to be a misfit between design and specifications. 

• Depending on the source of the misfit, the design and/or the specifications are 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



464 A MATHEMATICAL THEORY OF DESIGN 

modified to eliminate or reduce the misfit, thus producing a new (design, 
specifications) pair. 

• The design process halts when adaptation is achieved. However, the process may 
resume if the specifications are subsequently altered, in which case the previous 
state of adaptation is disturbed. 

• The process uses only the facts, rules, and laws included in the designer's 
knowledge body. 

Limitation of space and readability force one to limit the size of the case study, 
and using prose descriptions. We associate to each item in the text a label, denoting 
whether it is a constraint (C), design parameter (DP), or a part of the knowledge body 
(KB). It would be clear to the reader that dependencies between constraints and 
design parameters (which produce a new pair) can be represented by rules given 
either in the form of equations or in the form of a directed acyclic graph (if-then 
structures). 

17.2 CONCEPTUAL DESIGN OF A WORMGEAR REDUCER 
(GEARBOX) 

17.2.1 CONFRONTATION 

Consider you are an engineer for Sears & Roebuck Co. The director of the Product 
Development Department ask you to design a mass production device (C) which can 
be used for lifting light objects (C2) or opening a garage door in a family or small 
warehouse (C3). 

The specifications for the device are not clear enough for you to start the design. 
You must talk with the Director for more details. According to your experience (KB), 
the "device" he asked is in fact called Hoist (DP). Unlike hoists, used in industries 
and construction sites (KB), this one should be small (C4), light (Cs), and at an 
affordable low cost (C6). Considering most moving and loading tasks in families or 
small warehouses (KB), the capacity needed for such a hoist is in the rage of 100 to 
150 lb (C7). 

Considering most hoists used in industries and construction sites, the hoist 
should include a cable (DP2), drum (DP3), coupling (DP4), brake (DPs), reducer 
(DP6) and driven by a crane motor (DP7). The working principle of the hoist is shown 
in Figure 17.1. 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 465 

cOoble 

loOod 
reducer Motor 

brOoke 

= 

drUM = 
coupling 

Figure 17.1 The Working Principle of the Hoist 

17.2.2 PROBLEM FORMULATION 

Suppose we are going to select the drum, cable, and electrical motor directly from the 
market. For general usage (in small warehouse), the lifting speed shouldn't be too 
fast (V = 30 feet per hour would be a suitable speed, Cg). To raise a load of F =150 
lb. (C9), a wire rope must have at least 10 times of the load 150 lb., e.g. 1,500 lb 
(CIO). From the catalog, we select 114 inch diameter (DPg) wire rope (breaking 
strength 4,000 lb). To insure a long work life for the rope (CII ), the overbending of 
the rope (Cd must be avoided. Thus, the minimum drum diameter should be large 
enough (C13). According to the engineering recommendation (KB) value (15 to 20 
times the rope diameter), the designer chooses the drum diameter ddr= 3.75 inches 

(DP9). Most industrial electric motors have a synchronous (no load) speed of nm = 
1,500 rpm (DPIO). The basic requirement of designing a reducer is replaced with the 
following specifications and constraints: 

Input speed: 

Output reducer speed (CI4): 

Reduction ratio (CIS): 

nj = 1500rpm (motor speed) 

12V 12*30 
n = --= 30.57 rpm 
o Mdr 3.14*3.75 

R =!!:L = 1500 = 49.067 "" 50 
no 30.57 

(1) 

(2) 

(3) 



466 A MATHEMATICAL THEORY OF DESIGN 

Output power (C16): p =~= 150*30 =0.136(h 
o 33,000 33,000 p) 

(4) 

Duration (C17): 

90% 
2000 hours per year for 5 years with a reliability of 

Overall dimension (CIS): 8" x 8" x 8" (L x W x H ) 

No special material and special machining process should be used. 

17.2.3 DESIGN CONCEPTS 

There are many different kind of reducers that can be designed. The designer can 
start drawing some preliminary sketches (conceptualizations) as shown in Figure 
17.2. Belts, chains, gears, and worm gears can be considered as the means of 
transmission. 

(0) (b) 

(c) 

Figure 17.2 Sketch of the Design Concepts 

An evaluation operator (see Definition 6.1) is defined and used to measure the degree 
of efficiency of each alternative. Many criteria have to be considered (associated with 
each criteria is a weighting factor): 

l. Production (including material and machining costs) and operation costs (0.1); 
2. Overall dimension and weight (1); 
3. Convenience of use and maintenance (0.7»; 
4. Reliability and duration (0.4); 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 467 

5. Simplicity (0.8). The simplicity measures introduced in Chapter 8 can be applied 
at this stage. 

Table 17.1 shows the rating of each concept with respect to the criteria (lower is 
better): 

Table 17.1 The Rating of the Design Concepts 

V belt & chain spur gears worm & worm 
_pulley_ gear 

complexity of simple (1) simple (1) simple (1) simple (1) 
the structure 

material steel (1) steel (I) steel (1) steel and 
bronze (1) 

overall large (6) medium (4) compact (3) small (1) 
dimension 

transmitting low (6) high (2) high (2) high (2) 
accuracy 

mechanical 0.7-0.9 (2) 0.8-0.9 (1) 0.8-0.95 (1) 0.45-0.85 (3) 
efficiency 
machining lathe (1) lathe, mill (2) lathe, mill or lathe & hob 
equipment hob (4) (2) 
machining low (1) medium (2) high (3) high (3) 
precision 
required 
assembly easy (1) easy (1) easy (1) easy (1) 
difficulty 

noise level low (1) high (4) medium (2) medium (2) 
maintenance change belt (4) lubrication (6) check oil (1) check oil (1) 

The belt concept is the simplest transmission mechanism, pulley and shaft can be 
turned on a lathe. Since the power is transmitted by friction, the ratio is unstable 
when the load changes. Moreover, certain distance between two wheel centers must 
be maintained, to insure that the belt cover angle is greater than 120 degree. This 
makes the design overall dimension rather large. 

Spur gear mechanism can obtain accurate transmission ratio, and give more 
compact design. However, special gear generating machine (such as hob) is needed. 

For both belt and gear mechanisms, at least two or three stages are needed to 
obtain the reduction ratio of 1 :50 (CI5). It means that more parts will be included in 
the design. The design would be rather complicated in structure and larger in overall 
size. 

Worm and wormgear mechanism is widely used for high ratio speed change. It 
can reach the ratio of 30 -100 in a single stage. Accordingly, comparing these 
alternatives, we decide to select the worm and wormgear concept (DPII). 

The resulting dependencies (up to this stage) between constraints and design 



468 A MATHEMATICAL THEORY OF DESIGN 

parameters is shown in Figure 17.3. 

CI {C2 or C3} .. DPI 

l 
{DP2 & DP3 & DP4 & DPs 

& DP6 & DP7} 

CIO CI6 

CIS DPs 

Cll 

~ 
Cl2 DP9 DPIO 

~ 

~C14 

CIS 4---------------' 

Figure 17.3 A First Snapshot of the Constraints and Design Parameters Graph 

17.3 DETAILED SYNTHESIS OF THE GEAR BOX 

During this stage, we design the actual components and mechanism including 
material, shapes, dimensions, and the relative positions of the elements. The 
specifications that are considered include strength, rigidity, reliability, wear, friction, 
cost, ratio requirements, and space limitation. 

By studying manufacturing catalogs (KB), and understanding the structural 
features and functions of industrial reducers, the designer arrives at a design plan 
which consists of designing the structure of the transmission parts (worm and 



DESIGN OF A WORM GEAR REDUCER: A CASE STUDY 469 

wormgear), shaft, bearings, casing (box), keys, couples, '0' rings, screws, and the 
method of lubricating an sealing. The material, machining and assembling processes 
are also need to be considered. Figure 17.4 and Figure 17.5 show a typical worm and 
wormgear reducer and its inside structure. 

Figure 17.4 A Worm and Worm gear Reducer from BOSTON GEAR 

Figure 17.5 The Structure of a Worm and Wormgear Reducer 



470 A MATHEMATICAL THEORY OF DESIGN 

A simple draft scheme, called assembly draft (KB) is shown in Figure 17.6. By 
drafting, we can determine the main structure of the reducer and the proper view 
layout for the final assembly drawing. Further design will be based on this draft, such 
as the shaft design, determination of the bearing position and type, and finding the 
load acting position which will be used to test the fit (or misfit) between the shaft, 
bearings and keys tentative design and the requirements and constraints. 

Figure 17.6 The Final Design Concept Selected 

17.3.1 MOTOR DESIGN 

As calculated above, the power required to raise a F = 1501b. load, at a rate of 
V = 30fpm. is Po = 0.136(hp) (C I6). The transmission efficiency is low (C20) for the 

worm and wormgear concept (due to small worm lead angle, CI9). So, a transmission 
efficiency of 60% is selected (C2d. Thus, the input power should be: 

Po 0.136 
Input power (DP12) P; = - = --= 0.227(hp) 

11 0.6 
(5) 

In order to maintain a certain capacity reservation (C22), a 1/4 hp (DP'2), 1500 rpm 
(DP13), 3-phase AC motor (DP'4) will be specified. The motor is selected from 
manufacturing catalogs (KB, as shown in the Table 17.2) and get all the detail 
dimension (DP's). 

The worm, wormgear and shaft are the main parts of the reducer, which 
determine the dimensions of other components (from the center of the casing 
outward). Thus, the designer begins by designing these primary parts, and then 
considers the other components. 



DESIGN OF A WORM GEAR REDUCER: A CASE STUDY 

Table 17.2 Dimensions for AC Motors 

A.C. MOTORS 
NEMA C·FACE OPEN DRIPPROOF 

r ....... ~·"~ 
1KEi , 

r' -m----+-l-===t~ 
=p== I ==== 

L ~AHJ 
AC 

ALL OiMENSIONS IN INCHES 

I, H.P. 

• +.000 
Cat. Item Mtg. Max. ·.003 
No. No. Code AG AH AJ AK BD AB BG 
DU·B 66115 e-W- 6.62 4.50 5.75 
DU.{; 66116 II I 7.50 2.16 5.875 4.500 6.50 - -

1/4 DU-G 66117 7.20 6.n 
DY·B 66118 ~ 6.62 4.50 5.75 
DY.{; 66119 11 ~ 2.16 5.875 4.500 6.50 - -
DY·G 66120 7.20 6.52 
AEU 63597 IA 6.75 1.31 3.750 3.000 4.67 3.41 4.91 
ER·B 66121 ~ 6.62 4.50 6.75 

1/3 ER·C 66122 II 18.27 2.16 5.875 4.500 6.50 - -
ER·G 66123 8.66 6.52 
ERS·B 66866 ~ 6.62 4.50 6.75 
ERS'{; 66867 II 18.72 2.16 5.875 4.500 6.50 - -
ER5-G 66868 9.49 6.52 5.27 5.83 

+.0000 
Cat. Item MIg. ·.0005 BF Hole Key 

H.P. No. No. Code XP U Size Deplh Sq. Lgth AC 
DU·B 66115 I-- ~ 
DU·C 66116 II >-=- ,6~50 3/8·16 .63 I 3/16 1.38 

1/4 DU·G 06117 
.-=-

- -

17.3.2 THE DESIGN OF THE TRANSMISSION PARTS AND THE 
OUTLINE OF THEIR RELA TIVE POSITION 

471 

The transmitting parts of the reducer are worm and wormgear. Figure 17.7 shows the 
terms used to describe the geometric parameters of the worm and wormgear: 



472 A MATHEMATICAL THEORY OF DESIGN 

Figure 17.7 The Parameters of the Worm and Wormgear 

There are many ways to design the transmission parts (pair). For example, if we 
choose the pitch P (DP1S), thread number N w (DPI6) , lead angle A. (DP17) and 

preS!i;;re angle 4> (DP1s) of the worm as an 'input'; then all other design parameters 

can be derived. The formulas being used by the designer are taken from the 
"Machinery Handbooks 22nd revised edition" (KB). 

Axial Pitch P is used as the basis for the design standard. Eight standard axial 
pitches have been established to provide adequate coverage of the pitch range 
normally required: 0.030, 0.040, 0.050, 0.065, 0.080, 0.100, 0.130, and 0.160 inch. 
The lead angleA. has a standard 15 series value from 0.5, 1, 1.5, 2, 3,4,5, 7, 9, 
11, ..... to 30 degrees. For our design load (i.e. output reducer power, CI6), an axial 
pitch P = 0.16 inch should be strong enough. If we select the worm thread number Nw 

= 1 (since most fine-pitch worms have either one or two threads, KB), lead angle A. = 
70 , pressure angle <p = 200 (standard pressure angle, KB), then according to the 

formulas given in the Table 17.3 (KB), we can calculate all other dimensions of the 
worm and wormgear as follows: 

Worm gear teeth number (DPI9) : 

Worm lead (DP20): 

Worm pitch diameter (DP21 ): 

n· 
Ng=Nw*R=Nw-' =1*50=50 (6) 

no 

Dw =_1_= 1 =0.4I5(in) 
1t tan A. 3.14 * tan 7° 

(8) 



DESIGN OF A WORM GEAR REDUCER: A CASE STUDY 473 

Worm outside diameter (DP23): Dwo = Dw +2a = 0.415+0.101 = 0516 (in) 

(9) 

where, a = 0.3183PcosA. = 0.3183*0.16*0.9925 = 0.0506(in) (DP22) 
(10) 

Wormgear pitch diameter (DP24): Dg = N g P In = 50*0.16/3.14 = 2548(in) 

(11) 

Center distance (DP2S): Cwg = 05( Dw + Dg) = 1.481(in) (12) 

Wormgear outside diameter (DP26): Dgo = 2Cwg - Dw + 2a = 2.648(in) (13) 

Length of threaded portion (DP27): F. = ~ D 2 - D 2 = 0 7236' w go g . (14) 

Wormgear face width (DP29): 

Fg = 1.125 * ~o-( D-w-o-+-2-c-) 2-_-(-D-w-o ---4-a )-2 = 0.4941(in) (15) 

where c = 0.0637 P cos A. + 0.002 = 0.0121 (D P 28) (16) 

An alternative way of designing the worm and wormgear is as follows. The 
designer selects the center distance, Cwg, to be approximately 1.5 inch, the pitch P = 
1.60 inch, and Nw = 1. Applying Table 17.4 (KB), the designer finds that there are 
six possible lead angles: 1.5, 2.0, 3.0, 4.0, 5.0, 7.0, and corresponding worm 
diameters that will satisfy this lead. The approximate lead angle can be computed 
from the following formulas given in Table 17.3. 

Cotangent of approx. lead angle = 

So, 

or, 

2n x approximate· center· dis tan ce· required 

assummed . number· of . threads x axial· pitch 

2n*Cw 
cot A. = g 

Nw*P 

A. = 6.420 

R= 2x3.l416x15 50=8.875 
lxO.l6 

gearing· ratio 

(17) 

(18) 



474 A MATHEMATICAL THEORY OF DESIGN 

Table 17.3 Fonnulas for Proportions of American Standard Fine-pitch Wonns and 
Wonn ears ANSI B6.9-1977 

LETIER SYMBOLS 

p= Circular pitch of wonngear = 
axial pitch of the wonn, px• 

in the central plane 

Px =Axial pitch of wonn 

p" =Nonnal circular pitch of wonn 
and wonngear = Pxcos A = 
Pcosljf 

1..= Lead anele ofwonn 

Ijf= Helix anele of 

N ... = Number of threads in wonn 

Ng = Number of teeth in wonngear 

R= Ratioofgearing= N,+Nw 

Item Fonnula 
WORM DIMENSIONS 

Lead 

Pitch Diameter 

Outside Diameter 

Safe Minimum 
Length of Threaded 

* Portion ofWonn 

Dw =1 + (IttanA) 

Dwo =Dw+ 2a 

14---Dwo ---.t 

c 

0.0556 Fg -'.&.-__ ....1 

Item Fonnula 

WORMGEAR DIMENSIONS 

Pitch 
Diameter 

WORM 

** 

Outside 
Diameter Dgo =2Cwg -Dw+2a 

Face Width Fg =1.l25x 

DIMENSIONS FOR BOTH WORM AND WORMGEAR 

Addendum 
a =0.3183Pn Tooth 

thickness 
tn =0.5Pn 

Whole Depth Iq =0.7003Pn +0.002 Approximate 
nonnal C\ln = 20degrees 

Working Depth hk = 0.6366Pn pressure 
angle 

Clearance 
c =Iq -hk Center 

distance 
Cwg =0.5(Dw + Dg } 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 475 

Out of the six possible worms in Table 17.4, the one with 7-degree lead angle is 
closet to the calculated 6.420 lead angle. Thus, the worm with a pitch diameter Dw = 
0.4148 inch is selected. 

The remaining dimensions of the worm and wormgear may now be determined 
from the data in Table 17.4, and by using the formulas given in Table 17.3 (KB). The 
designer finds that the results are almost the same. 

Table 17.4 Pitch Diameters of Fine-pitch Worms for American Standard 
Combinations of Lead and Lead Angle (ANSI B6.9-1977) 

Lead Angle). in Degrees 

0·5 1.0 1.5 2.0 3.0 4·0 5·0 7·0 
Lead Number 

in of 
Inches, Threads, Pitch Diameter d in Inches 

I n 

0.030 I 1.0937 0·547% 0·3647 0.1735 ... . .. . .. . .. 
0·040 I I.4583 0.7297 . 0.4863 0·3646 0.1419 ... . .. . .. 
0.050 I 1.8118 0.9 III 0·6079 0.4558 0.3037 0.1176 ... ., . 
0.060 1 1.1874 1.0945 0·7195 0·5469 0·3644 0.2731 ... . .. 
0.065 I ... 1.1857 0·7903 0·5925 0·3948 0.1959 0.1365 . .. 
0.080 1,1 ... 1.4593 0·9726 0·7293 0.4859 0·3641 0.1911 . .. 
0·090 3 ... 1.6417 1·0941 0.8204 0·5466 0.4097 0·3174 0.2333 
0.100 1,1 " . 1.8141 1.1158 0·9116 0.6073 0.4551 0.3638 0.1591 
0.110 3,4 ... 1.1890 1.4590 1.0939 0·7188 0.5461 0.4366 0·3111 
0.130 1,1 ... " . I.SSo5 1.18S1 0·7896 0·S917 0.4730 0.3370 

0.150 3,5 " . " . 1.8137 1.3674 0·9110 0.6818 0·5457 0·3889 
0.160 1,1.4 ... " . 1.9453 I.4S85 0·9718 0.7183 0.5811 0·4148 
0.180 6 .. . " . 1.1884 1.6408 1.0931 0.tsl93 0.6549 0·4667 
0.195 3 ... " . . .. I.m6 1.1843 0.8876 0·7095 0·5055 
0.100 l.4.5 ... " . . .. 1.8131 1.1147 0·9104 0·7176 0.5 185 
0.210 7 " . . .. . .. 1.9143 1.1754 0·9559 0.7640 0·5444 
0.240 3.6.8 ... " . . .. 1. 1878 1.4576 1.0914 0.8731 0.6112 

17.3.3 TESTING THE CURRENT DESIGN AGAINST THE WORMGEAR 
LOAD AND STRENGTH CONSTRAINTS 

The teeth of the wormgear are always weaker than the gear teeth (KB). Therefore, the 
bending stress and wear strength of the wormgear should be much less than the 
allowable static stress of the wormgear material (C23). For future design (of the shaft, 



476 A MA TIlEMA TICAL TIlEORY OF DESIGN 

bearings and keys), and strength checking, we need to know the load forces acted on 
the wonn, wonngear and shaft as shown in Figure 17.8. 

The nonnal force, Fn (C24), acts perpendicularly to the tooth surface, and is 

broken into three components: the tangent force, F, (C2S), the radial or separating 

force, Fr (C26), and the thrust force F,hrust (C27). The designer notices that the forces 

would not exist unless certain power is transmitted through the wonn and wonngear 
(KB). In other word, the load forces are the function of the transmitted power, e.g. F 
= f(P). By studying the literature (e.g., [1]), the designer calculates the forces as 
follows (KB): 

T 
F,--

t - 05D g 

Figure 17.8 The Forces Acted on the Wormgear 

0.136 * 6300cr 220(lb) 
3057 * 05 * 2548 

F, = F, = 220 I921(lb) 
n coscjlsinA. cos20osin70 

Fr = Fn sincjl = 1921 *0.342 = 657(lb) 

Fthrust = Fn coscjlCOSA. = 1921 *0.9397 *0.9925 = 1791(lb) 

(19) 

(20) 

(21) 

(22) 



DESIGN OF A WORM GEAR REDUCER: A CASE STUDY 477 

The designer applies the simplified Lewis equation (KB) to the wormgear in 
determining its strength. First, the bending strength (Cn ) is calculated. From Lewis 
equation: 

(23) 

Dynamic bending load (C31): 
1200 + Vpg 

Fd = ( )x Ft 
1200 

(24) 

where, V pg (C30) is the wormgear pitch line velocity which is given by: 

Vpg -- no2-ng 1(2xI2) -_ 30x2x3.l4x2548 20 fi d) IId.J ~ ( eet per secon 
2xl2 

(25) 

S is the static stress (C2S) 

Y is Lewis form factor (C29). For '1> = 20° , Y = 0.392. 

The designer already calculated the normal circular pitch P=0.16 (DP1S), and the 
width of the gear Fg=0.4941=0.5 (DP29). Thus, 

F = (1200+ 20) x 220 = 224(lb.) 
d 1200 

Therefore, the bending stress on the wormgear tooth can be calculated as: 

S = Fd P = 224 x 0.16 
YFg 0.392 x 05 

179.2(psi) 

(26) 

(27) 

This value is much less than the allowable static stress of a phosphor bronze, So 

=12,000 psi. Therefore, the wormgear material is chosen to be phosphor bronze 
(DP30). 

The designer needs also to check the wear strength of the wormgear. Due to 
space limitations, we skip these calculations (for details, refer to [2]). 

If the wear strength is not satisfactory with the allowable strength requirement, 
we must either change the material or change the normal circular pitch P. 

With this information, we can either purchase the worm and wormgear or 
manufacture them. 

17.3.4 INITIAL DESIGN OF THE CASING (BOX) 

As shown in Figure 17.9, certain distances must be maintained between the inner wall 



478 A MATHEMATICAL THEORY OF DESIGN 

and the outside diameters or end faces of the transmitting parts. A I' the distance 

between the outside diameter of the wormgear and the inner wall (DP3), is usually 
equal to or larger than S, the thickness of the wall (C30). A2 ' the distance between 

the end face of the wormgear and the inside wall (DP32), is usually equal or larger 
than 1.2 S (C3). 

Table 17.5 The Main Structural Dimensions of the Cast Iron Casing (unit: 
millimeter) 

items symbols dimensions 
thickness of casing wall distance a 0.04a+3 ~ 8 a: center distance 

between wonn and wonngear 
thickness of cover wall al = a (for wonn on top), 

= 0.85 a (for wonn on bottom) 
thickness of cover edge b l 1.5 at 
thickness of casing edge b 1.5 a 

thickness of casing bottom edge b2 2.5 a 
diameter of installation screw d, 0.036a + 12 
number of installation screws n 4 

diameter of cover screw d2 0.5 - 0.6 d, 
space of cover screw I 150-200 

diameter of bearing cover screw d3 0.4 - 0.5 d, 
diameter of location pin dp 0.7 -0.8 d2 

height of bearing protrude h based on the bearing outer ring; 
must be easy for wrench operation 

distance for gear outer diameter to ~I > 1.2 a 
casing inner wall 

distance from gear end face to ~2 >a 
casing inner wall 

rib thickness m =0.85 a 
outer diameter of bearing cover D2 =D+5d3 D: bearing outer 

diameter 
= D + 5 d3 + (15-20) 

(for invalid bearing cover) 



DESIGN OF A WORM GEAR REDUCER: A CASE STUDY 479 

o 

A2 

Figure 17.9 The Distances Between the Transmission Parts and Casing Inner Wall 

Most of the structural dimensions of the casing are related to the dimensions of 
the transmitting parts (KB). The designer notices that the distance between the 
wormgear end face and the inner wall, il 2 , is much farther than ill because of 

considerations related to the dimensions of the bearings on the worm shaft (KB). 
For the position of the casing bottom, we must consider the lubrication and 

cooling for the mechanism. Certain space volume is needed to keep oil and allow the 
dirty substance to precipitate (C32). Thus, the distance between the outside diameter 
of the wormgear and the inner wall of the bottom, il3 (DP33) should be larger than 

8-12 P, and not less than 1.25 in. (C33). 

After the determination of the positions of the inner walls, the designer 
determines the maximum overall dimensions of the casing according to the thickness 
of the wall and the size of rib. For example, by the position and maximum size of the 
connecting parts outside the casing (such as the couplings), the designer can 
determine the length which the shaft extends out of the casing. 

Table 17.5 provides the experienced reference values (Dp's) for the casing 
design of a worm-gear reducer (KB). The values were determined mainly by 
considerations of strength and rigidity (C's», as well as compactness and 
machinability (C's). Notice that the thickness of the wall (a) remains (at this stage) 
undetermined. 

17.3.5 THE DESIGN OF THE WORMGEAR SHAFT SET 

After designing the transmission parts and the casing, the diameter of the shaft is 
initially calculated according to the maximum allowable torsion strength (C34). A 
maximum torsion strength is obtained, if the transmission power equals the input 
power (C3S). Therefore, the designer uses the following formula (KB): 



480 A MATHEMATICAL THEORY OF DESIGN 

Diameter of the shaft (DP34): d = V80P; (in) d = V80 * 0.25 = 0.8735(in) 
no 30 

(28) 
The designer decides to chose 1 inch as the diameter of the shaft (DP34). 

Since a large thrust force (Fthrust) is created by the worm and wormgear, a 

taped roller bearing must be chosen (DP3S), and the material used for the shaft should 
be commercial steel (DP36). To simplify the shape of the shaft (C36), a one inch 
diameter will go through all the length of the shaft (DP37). To keep the distances 
between the gear and the bearings (C37), two sleeves (DP3S) will be used. For the 
shaft to be axially fixed only by the press fit of the bearing assembly (C3S), and for 
the thrust force to be suffered by the end covers through sleeves and bearings (C39), 

the axial position and clearance in the bearings will be adjusted by the end covers 
against the bearing's outer rings (DP39, see Figure 17.10). 

sleeve 

Figure 17.10 The Radial Dimension ofthe Shaft 

To determine the axial dimension of the shaft, we need to consider the axial size 
(width) of wormgear, sleeve and bearing. The width of the wormgear is only 0.5 in. 
(DP29). For stable and rigid assembly (C40), and high strength of the key (C41), the fit 
length of the shaft and gear must be larger than the diameter of the shaft (Cd. 
Therefore, the designer chooses 1.5 inch as the axial length of the wormgear (OP30). 
From the bearing catalog (KB), he/she finds that the width of the bearing (OP31), and 
the width of the outer ring of the bearing (DP32) which correspond to a 1 inch bore 
are 0.875 inch and 2.5625 in., respectively. For stable and rigid assembly (C40), a 
safety flange couplings are used (OP33), and a seal unit will be needed at the extended 
end of the shaft. For the 1.5 inch axial length of the shaft, the width of the seal unit is 
0.437 inch (DP34), as selected from the catalog (KB). The assembly draft as Figure 
17.11. 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 481 

gear width 

;leeve 

Figure 17.11 The Initial Drawing of the Assembly Draft 

17.3.6 CALCULATION AND CHECK OF THE SHAFT SET PARTS 

In this step, the designer checks the strength of the shaft set parts, such as shaft, key 
and bearings. If some of them are not satisfactory with the strength, rigidity, or 
durability constraints, some modification or even redesign of the shaft set parts will 
be needed. 

Shaft Load Calculation 

The strength of the shaft should be less than the maximum allowable shearing stress 
(Cd. Therefore, the designer has to know the bending (C43) and twisting load (C44) 

on the shaft. The calculate the loads, the designer uses the magnitude, direction and 
the acting point of the external forces F" Fro Ft , Fr , Fthrust , and the torque T (C4S). 

By using the knowledge of Mechanics (KB), the designer calculates all the support 
forces Dmax (C46), and Bmax (C47), and the maximum bending moment, M max (C4S), 

and torsion moment Tmax (C49). Then, he/she uses the combined bending and torsion 

moments to test the previously calculated diameter of the shaft. 
To calculate the support forces, the designer draws a straight line A-B-C-D, 

representing the shaft as shown in Figure 17.12: 



482 A MATHEMATICAL THEORY OF DESIGN 

Dv 

Figure 17.12 Schematic Force System on the Shaft 

The support forces at points Band D (bearings) are: 

Dmax = ~ Dv 2 + Dh 2 

and the maximum torque is : 

Tmax = TAC (the torque between the points A and C), where 

Cso: TAC = 05DgF, = 05*2548*220 = 280.28(lb·in) 

On the vertical plane B. (CSt) and D. (CS2) satisfy: 

and for point B, Me (CS3) satisfies: 
-15Fr +3Dv +Me =0; and 

Me = 05DgFthrust = 05*2548 * 1791 = 2281.7(lb . in) 

z 

~X 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

Thus, Dv = -31O(lb) (negative means that the force is in the opposite direction of 

the drawing), and Bv = 967(lb) . 

On the horizontal plane, Bh (CS4) and Dh (Css) satisfy: 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 

Bh + Dh = Ft ; and 

Bh = Dh = Ft 12 = llO(lb) 
On the axial direction. Da (CS6) satisfies: 

Da = F,hrust = 1791(lb) 

483 

(35) 

(36) 

(37) 

The designer proceeds to draw the shear and bending moment diagrams (KB) for 
the horizontal plane and vertical plane as shown in Figure 17.13. and calculates the 
maximum combined bending moment at section C: 

Mmax =~14502+1652 =1,459(lb·in) 

The support forces at points B and D (bearings) are: 

Bmax = ~ Bv 2 + Bh 2 = ~9672 + 1102 = 973(lb) 

Dmax =~D/+Dh2 =~(-31O)2+1102 = 328.9(lb) 

Notice that when the worm rotates in the opposite direction. the forces Fthrust. 

Ft. Da. Bv. and Dv will be changed directionally or quantitatively. 

Vertied plo.ne Mev= 459 llo-in .l Bv=967 lb 

Dv=310 llo. Fr=675 llo. 

Horizonto. plo.ne 

Dh=110 lb. 

T=280 lb-in 
Torgue 

Figure 17.13 Load. Shear. and Moment Diagrams for the Shaft 



484 A MATHEMATICAL THEORY OF DESIGN 

Shaft Strength Testing 

The shaft we are designing is subjected to combined torsion and bending, By using 
the previously calculated values and the Machinery's Handbook 22nd revised edition 
(KB), the diameter of the shaft should satisfy (CS7): 

(38) 

Km (Css) and Kr (CS9) are combined shock and fatigue factors for bending and 

torsion, respectively. The Machinery's Handbook (KB) shows that Km = Kr = 1. 

M= M max = 1459 is the maximum bending moment, and T = T max = 280 lb· in is the 

maximum torque (see the above calculations). Prj is the maximum allowable shearing 

stress under combined condition (Coo). Since the material used for the shaft set is 
commercial steel (DP36 above), and the key has high strength (C41), Prj is found (in 

the designer KB) to be 8,000 psi. 
Thus, 

d = ~(14592 + 2802)~ = 0.98:::; l(in) 
6,000 

This number is less than the previously calculated value of 1 inch. Thus, the strength 
of the shaft is good enough. If there is a misfit between Constraint CS7, the designer 
needs to redesign the shaft by either increasing its diameter (DP34) or changing its 
shape (DP37). 

Testing the Strength of the Key 

The designer selects the key size (DP40) according to the diameter of the shaft. For 
the 1" diameter shaft, the parallel key should have (according to the Machinery's 
Handbook, KB) a section dimension of 114" x 114" x I" (W x H x L). The shear 
strength and compression stress of the key (see Figure 17.14) must be less than the 
allowable shear strength and compression stress, respectively (C61). To test whether 
the key satisfies Constraint C610 the shear stress (C62) and compression stress (C63) on 
the key should be calculated, and its material (DP41 ) should be specified: 

Shear stress (C62): S =Fs = 2T = 2*280 -2240( si) 
s As dWL 1 * ~ * 1 P 

(39) 

Compression stress (C63): Se = Fe = 4T = 4 ~80 = 4480(psi) (40) 
Ae dWL 1* 4*1 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 485 

Material of the key (DP41): ASTM 40. The designer finds in the Machinery's 
Handbook (KB) that the calculated values of Ss and Sc are much less than the 

allowable stress values for shearing and compression. Therefore, the key selection is 
safe (in the evolutionary design model jargon, 'there is a fit between the strength and 
stress constraints and the key design'). 

If the constraints are not satisfied by the key, (either by shearing or 
compression), the designer has either to change the material, or change the shaft 
diameter (the key size is associated with the diameter of the shaft). 

Figure 17.14 The Shearing and Compression Stress ofthe Key 

Testing the Rating Life of The Bearings 

To test if our tentative design satisfies the duration constraint (C17, above), the rating 
life of the selected bearing must be greater than the specified duration (C64). The 
designer uses the following equation (given in the manufacture's catalog, KB): 

106 C b 
C67: LIO =--(-, (41) 

60nb Pe 

LIO is the rating life of the bearing in hours of life, resulting in 10 % failure; C is the 

basic load rating in pounds (C6S); Pe is the equivalent load in pounds (C66); b = 3.0 
for ball bearings and 10/3 for roller bearings (KB); and nb is the rotational speed in 

revolutions per minute (C67). 

To calculate the equivalent load, the designer uses apply the following formula: 

(42) 

where F, = radial load (C68), lb.; Fa = thrust load (C69), lb.; v = rotation factor =1 -
1.2 (C70); X = a radial load factor (retrieved from the handbook, KB); and Y = a 



486 A MATHEMATICAL THEORY OF DESIGN 

thrust load factor (retrieved from the handbook, KB). Figure 17.15 shows the load 
forces on a pair of tapered roller bearings: 

Fa. 
Figure 17.15 The Load Forces on A Pair of Tapered Roller Bearings 

From the engineering handbook or catalog (KB), the designer finds that for the 
bearings that were selected (1 inch bore diameter, single row tapered roller bearing): 

v = 1; X = 0.4; Y = 1.17; Co = basic static load rating = 4,650 lb; and C = basic 

dynamic load rating = 6,060 lb. 

The designer also knows (KB) that: 

en: Fr = Bmax = 973 lb. (43) 

e73 : Fa = Da = 1791 lb. (44) 

e74: nb = no =30.57 rpm (45) 

Thus: Pe = 0.4 x 1 x 973 + 1.17 x 1791 = 2484.67 lb.; and ~o = 10,841.4 hours. 

Therefore, there is a fit between the current design and the requirement for 5 years 
product life, and 90% reliability. 

17.3.7 STRENGTH AND WEAR-RESISTANCE CONSTRAINTS 

The strength and wear-resistance of the shaft should be within pre-specified 
limitations. Since the basic functional requirement of the hoist is to lift light objects 
(e2) or opening a garage door (e3), and the hoist includes a wormgear reducer (DP6), 

the basic functional requirement of the wormgear is to transmit power 
(e75).Therefore, the strength and wear-resistance of the shaft are good within the pre
specified limitations. 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 487 

If the shaft requires precise transmission (such as in a lathe spindle operation), 
the designer needs to check the bending and torsion deflections to make sure they are 
within the pre-specified limitations. 

17.3.8 DETAILED DESIGN OF THE CASING 

The casing is the part which support and fix the shaft set, ensure the rotational 
precision, maintain the condition of lubrication and seal. We design the casing based 
on the shaft set. 

To ensure the rigidity of the casing (C76), the reasonable thickness of the wall is 
very important (C77, see Figure 17.16). Thus, the designer uses (based on previous 
experience, KB), the following formula: 

B = 21./0.lT ~ 6 - 8(mm) (the unit of T here is Newton-meter) to get the 5/16 
inch thickness of the wall (DP42). 

The casting iron (DP 43) is usually used for casing material. For large casing 
(C7S), the designer needs to add some reinforce plate (strengthening rib, DP 44). Since 
the linear speed of the wormgear reducer is below 40 feet per second, oil is usually 
used as the lubrication and cooling medium (DP4S)' The casing must have enough 
space to store the oil (C79). The volume of the oil which is needed is counted based 
on the power transmitted (0.35 -0.7 liter oil per kilowatt). Therefore, at least 50 to 
100 milliliters oil is needed to keep in the casing or about 3 to 6 cubic inches (DP46). 

The minimum soaking depth which the gear tooth is below the oil surface (DP47), is 
a full length of the tooth and no less than 0.5 inch (Cso). To keep from over 
disturbing the oil (CSI), a 1 to 2 inches distance from the tooth top to the oil bottom 
must be kept (DP4S)' 

Figure 17.16 The Increased Thickness is Employed to Strength the Local Rigidity 

17.3.9 ACCESSORIES DESIGN 

There are many accessories which are related to the casing that can to be considered, 



488 A MATHEMATICAL THEORY OF DESIGN 

such as peep hole, sight glass, oil drain plug (DP's) shown in Figure 17.17. Most of 
these accessories are standard parts the designer can chose from manufacturing 
catalogs (KB). 

Oil check sticl --
plug 

Figure 17.17 Accessories Design 

17.3.10 CASING HEAT BALANCE CONSTRAINTS 

The worm and wormgear creates more heat than other transmission mechanisms. 
Heat balance is usually needed to prevent the overheat (Cd. If the casing does not 
meet the requirement, the size or surface of the casing should be increased, or some 
cooling devices, such as fan and radiator, should bee added to the casing (new DP's). 

We will not pursue the development of this gear box any further, except to note 
that eventually the gear box was designed in detail according to the evolutionary 
model and manufactured in the ADMS Laboratory at Boston University. The 
unfinished assembly working drawing of the worm and wormgear reducer is shown in 
Figure 17.18. The main resulting dependencies (up to this stage) between constraints 
and design parameters is shown in Figure 17.19. 

Figure 17.18 Assembly Working Drawing of the Worm and Wormgear Reducer 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 489 

Initial design of the wormgear reducer 
pitch, ratio, central distance 
lead angle, pressure angle. Design the transmission parts 

and determine the outline and 
P, R, N w ' relative position 

A., (j), n, , n ft diameters,length, gear teeth number, 
width, 
Dw. Dwo • Dg • Dgo • Fw' Fg 

power transmitted 
Check the wormgear strength If S > So 

Ft. Dg • no 

Static stress S < So (allowable 
stress) 

wall thickness, clearance Determine the position of 

o (Table 18.5) 
casing inside wall 

overall dimensions of 
the casing 

not satisfactory 

power transmitted Initially determine 

1';. no the shaft diameter 

Initial diameter d 

type of bearing, seal, key 
~ 

The structure design 

catalogue of the shaft set 

.! (2) 
(2) 



490 A MATHEMATICAL THEORY OF DESIGN 

~ 
Checking of the shaft set Design 

Fr. F,. F,hrust Shaft load calculation I not 
satisfactory 

I 

I Mmax. Tmax. 

d,Km,Kt1 d. W.L d. no' Fr. !F,hrust d.L.G 1 
Check the Check the Calculate the Detennine torsion 

strength of the shaft strength of the key rating life of the bearings and bending deflection 

P< Prj 1 Ss, Sc < allOW~leValue LIO meet refirement Ay, Ae!< allowable 
value 

8. Table 18.5. 
catalogue 

casing area • input 

power P; • 
transmission 
efficiency 17 

1 
design the shaft set 

I. 
i' 

design the casing and accessories 

Casing design 

! 
Accessories design 

1 

check the casing 
heat balance 

· · I · · · · · · · .. 
H<Hd not satisfactory 

Figure 17.19 A Snapshot Of the Constraints and Design Parameter Graph 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 491 

17.4 DISCUSSION 

The theory of evolutionary design process is a paradigm which, in the final analysis, 
is founded on a simple unifying notion: that a design process is to be viewed as an 
alternation between 'specifications' (requirements and constraints) and 'design 
parameters'. In the evolutionary model, the design process begins with some goal 
constraints. It becomes the designer task to make these constraints matter of fact. In 
the case of the Gear Box design, the initial requirements were to design "a mass 
production device, which can be used for lifting light objects or opening a garage 
door in a family or small warehouse." These requirements were assimilated into the 
Gear Box design in the form of three constraints (Cl), (C2) and (C3). 

The validity of constraints (qualitative design requirements as well as closed
form equations) as claimed by the designer is determined by the kind of evidence 
invoked in support of the constraints. The evidence in tum, involves relevant 
knowledge of the design domain; tools and techniques of verification (finite-elements 
or finite-differences); and the causal history of the individual constraints and design 
parameters as illuminated by the constraints and design parameters dependency graph 
(see Figure 17.3). Consider the following examples: 

• The constraint C lI ("to insure a long work life for the rope") is considered 
validated only if constraint Cl2 ("the overbending of the rope is avoided") is 
validated. This in tum, is considered validated only if constraint C\3 ("the 
minimum drum diameter should be large enough") is validated. According to the 
engineering recommendation value (knowledge of the design domain), for the 
minimum drum diameter to be large enough, a 15 to 20 times the rope diameter 
should be chosen. Therefore, the designer chooses the drum diameter as ddr = 
3.75 inches (DP9). The tool used for support of constraint C\3 is simply to check 
if the selected drum diameter is indeed 15 to 20 times the rope diameter. 

• The constraint Cl4 (no = 12j17tddr ) is considered validated only when the 

constraints no =30.57 rpm and V=30 feet per hour, and the design parameter 
ddr = 3.75 were specified. Notice that, for completeness, we should have 

distinguished between the constraint no =30.57 rpm, and the constraint no = 
12j1rcddr • However, due to space limitation (and readability), we omitted this 

notation from the Gear Box thought experiment. 
• The validity of the constraint "select an efficient reducer" is determined by a 

concept selection process (the verification tool), which is used to measure the 
degree of efficiency of each alternative with respect to well-defined criteria. This 
in tum, is considered validated only if DP" ("the reducer is a worm and 
wormgear type") is validated (or selected). 

The constraints and design parameters have dependencies among them. 
Dependencies between the constraints and parameters (see Figure 17.3) are 



492 A MA THEMA TICAL THEORY OF DESIGN 

represented by production rules, which describe the logical relationships between the 
antecedent and consequent parts (constraints or design parameters). The consequent 
part is considered validated only if the antecedent part is validated. The production 
rules are specified in the first-order calculus. For example, the validity (or value) of 

constraint C2S: F, = Po * 63000 (which can be formulated in first-order calculus) is 
No *05Dg 

determined by the logical relationship: (F, = 220(lb) 1\ Po = 0.136 1\ no = 30.57 1\ Dg 
= 2.548). In this case, the specification part is updated by replacing constraint C2S by 
its antecedents (C2S is called consequent). 

As another example, the validity of constraint C61 : "the shear strength and 
compression stress of the key must be less than the allowable shear strength and 
compression stress, respectively " is determined by the logical relationship: ("the 
shear stress should be calculated" 1\ "the compression stress should be calculated" 1\ 

"the key's material should be specified" 1\ "the shear stress must be less than the 
allowable shear stress of the material" 1\ "the compression stress must be less than the 
allowable compression stress of the material". In this case, the specification part is 
updated by replacing constraint C61 by its antecedents (C61 is called consequent). 
Note that the constraint "the key's material should be specified" derives a new 
design parameter DP41 : "the material of the key is ASTM 40." In this case, the design 
part is updated by adding the new design parameter DP41 • 

The evolutionary nature of the Gear Box design process (with respect to the 
evolutionary schema described in Chapter 6) is quite explicit. In the Gear Box design 
process, the objects that evolve are the design/constraints complexes; the direction of 
evolution is towards the attainment of satisfied constraints; and the mechanism of 
evolution is the attempt to verify the validity of existing constraints, and as a 
consequence the introduction of new constraints and design parameters. Table 17.6 
relates the design theory and the Gear Box design process: 

Table 17.6 Comparison Between the Design Evolutionary Theory and Gear 
Box Design Process 

Evolutionary design model Gear Box design process 
Set of user-specified requirements, 

Design + Specifications equations, design attributes and 
design parameters (dimensions) 

Verifications ofthe specifications Attempt to verify the validity of 
versus the design qualitative constraints and 

equations 
Identifications of cause of Identifications of constraints that 

discrepancy cannot be validated 
Misfit elimination Generation of new design 

parameters or new constraints 

A most distinct feature of the design evolutionary model (which implicitly 
assumed) is that the design process is constantly subject to revision. For example, in 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 493 

the Gear Box design process, if the shear strength and compression stress constraints 
are not satisfied by the key, the designer has either to change the key material (DP41), 

or change the shaft diameter DP34 (the key size is associated with the diameter of the 
shaft). In that case, all constraints that dependent on DP 41 and/or DP34 will have to be 
revised in the light of this new design state. The evolutionary design process is, thus, 
non-monotonic in nature. Another important feature is that the evolutionary design 
process pattern is not unique. For example, in designing the worm and wormgear, the 
designer can either initially specify the axial pitch P, lead angle A., worm thread 
number Nw = I, and pressure angle cp; or selecting the center distance, Cwg, axial 

pitch P, N w = I, and lead angle A.. 
Having demonstrated the evolutionary theory of design, we now show I how the 

methodology of the Gear Box design can be given a formal description according to 
the model presented in Chapter 6. A formal description will be useful for 
automatically implementing the evolutionary design methodology. 

As shown in Chapter 6, a Type-2 Design Process is denoted as a tuple DP = 
(L, Q, P, T, So' F), where L denotes the design description, which includes both 

structural and specification attributes; Q is a finite set of process states (conjunction 
of structural and functional attributes); P is a finite set of production rules -
retrieved from the designer's knowledge body -- which are suggested as a means of 
changing the current process state to a modified state; T is an operator, which is 
simultaneously used for decomposition of specifications and matching the 
specifications with partial solutions; So is the initial process state; and F is the set 

of terminal states. A process is a series of transformations. The series exhibits a 
precedence relationship among its transformed process states. 

The Gear Box design process can be shown to be an instance of this general 
evolutionary process model with the definitions given as follows: 

17.4.1 DESIGN DESCRIPTION (L) 

L is a first-order logic. In the Gear Box example, the finite set of structural attributes 
in L includes (1) part types (group of parts which are similar but are of different 
sizes) such as 'drum', 'motor' and 'wormgear'; (2) qualitative attributes given to part 
types such as 'pitch', 'lead angle', 'pressure angle' and 'gear teeth number'; and (3) 
attribute values, which are real numbers assigned to qualitative attributes (e.g. pitch 
angle = 0.16). Although the attribute values are real numbers and, thus, are 
continuous, finiteness of the domain is a reasonable assumption here since the values 
of the dimensions can be quantized at the level of the desired tolerance. 

The finite collection of functional (specification) attributes in L includes 
qualitative specifications and quantitative specifications (closed-form constraints). 
In the Gear Box design, qualitative specifications include: {"a mass production 
device, which can be used for lifting light objects or opening a garage door in a 

I For complete description of the formal model refer to [2] 



494 A MATHEMATICAL THEORY OF DESIGN 

family or small warehouse", "to insure a long work life for the rope", "the shear 
strength and compression stress of the key must be less than the allowable shear 
strength and compression stress, respectively"}. Closed-form constraints include: 

( Ft = Po * 63000 , Bmax = ~ Bv 2 + Bh 2 , Dw = 0.415(in) }. We can also have: ("to 
No *05Dg 

insure a long work life for the rope" A Dw = 0.415(in) ). 

The artifact part (or part of it) may satisfy the specification part. For example, 
the bending stress on the worm gear tooth was calculated to be: 

S = Fd P = 224xO.16 = 179.2(psi). This value is much less than the allowable 
YFg 0.392 x 0.5 

static stress of a phosphor bronze, So =12,000 psi. Therefore, the wormgear material 

(a structural attribute) satisfies the user-specified specification. 

17.4.2 TRANSFORMATION (T) 

T is the transition function mapping Q X P to Q. That is, T (S, p) is a process state 

for each process state S and production rule p. An execution is a series of process 
states So' SI' S2' ... , Sn' such that T(Sj' p) = Sj+l' At the beginning of the 
Gear Box design process, the initial· process state exists in pure presumed 
specifications ("design a mass production device, which can be used for lifting light 
objects or opening a garage door in a family or small warehouse"), and the artifact 
part and validated specifications have a null or an empty content. 

Examples for the transformation Tare: 

• Suppose that the current process state includes the specification "insure a long 
work life for the rope", and the production rule p "IF the over-bending of the rope is 

avoided THEN a long work life for the rope is insured" is included in the designer's 
knowledge body. Then, the transformation T alters the current specification to the 
new requirement "the over-bending of the rope is avoided". 
• Suppose that the current process state includes the specifications (1) no = 
12)i1tddr ; (2) V=30 feet per hour; and (3) ddr= 3.75. Then, the transformation T 

modifies the artifact part with the new structural attribute no = 30.57 rpm. 

• Suppose that the current process state includes the structural attributes (1) 
P = 0.16; (2) Nw = 1; (3) A = 7°; (4) cp = 20°, and the specifications (1) 

Ng=Nw*R; (2) I=NwP; (3) Fg =1.l25*~(Dwo+2c)2_(Dwo-4a)2. 
Then the transformation T modifies the artifact part with the new structural 



DESIGN OF A WORMGEAR REDUCER: A CASE STUDY 495 

attributes N g = 50 and Fg = 0.4941. 

• Suppose that the current process state includes the structural attribute "the wire 
rope diameter =114 inch"; and the specification attribute "the drum diameter should 

be 15 to 20 times the rope diameter". Then the transformation T modifies the 
artifact part with the new structural attribute "drum diameter = 3.75 inches". Notice 
that the revised artifact part: <"wire rope diameter=1I4 inch", "drum diameter = 3.75 
inches"> satisfies (logically) the specification part <"the drum diameter should be 15 
to 20 times the rope diameter">. 

The design process terminates if the artifact part is fully specified, and the design 
solution satisfies the specifications. For example, the Gear Box design process is 
terminated when the transmission parts, casing, shaft set, and accessories are fully 
specified, and all user-specified requirements (duration, capacity), strength 
constraints and heat balance are satisfied by the current solution. 

17.5 A METHODOLOGY FOR VARIATIONAL DESIGN 

In many mechanical systems (such as the Gear Box design), the mathematical model 
can be characterized by m nonlinear equations in n unknowns. The m equations could 
be either equality constraints (specifying the values of higher-order attributes, such as 
volume, mass, maximum stress), or active inequality constraints (a set of qualitative 
specifications). In either case, the mathematical model consists of (n-m) degrees of 
freedom, (n-m) unknowns must be specified and the remaining n variables are 
computed using the n equations. It is the designer's job to modify the constraints and 
specifications however they feel is necessary to find a satisfactory design; it is the 
purpose of a constraint solver (e.g., Newton-Raphson) to solve simultaneously the 
entire system of new constraints. An illustration of this methodology is provided in 
Chapter 14, where the COAST (COnsistency through Analysis of Solution 
Trajectories) methodology is developed for maintaining design consistency in 
variational design. COAST is used to maintain a consistent solution to every design 
modification the designer performs. In this section, we illustrate via !he Gear Box 
example this procedure of revising the entire system of constraints and re-solving 
them. This methodology can also be considered an instance of the general 
evolutionary process model presented in Chapter 6. 

17.5.1 THE GENERAL METHODOLOGY 

In our methodology, a design is represented by a fully-constrained system of equality 
constraints (denoted by f) as defined by the user, and a set of qualitative 
specifications in the form of inequality constraints (denoted by Q). The equality 
constraints are defined in terms of the dimensions of the part to be created. The 



496 A MATHEMATICAL THEORY OF DESIGN 

system is solved simultaneously to obtain the desired values of the dimensions. Q are 
generated by the user to define the successful termination of the process. E. defines 
higher-order attributes (defined in terms of the dimensions) that express higher-level 
characteristics of the part. 

In terms of the general evolutionary process model, the design part includes of 
all the dimensions of a part. The specifications part consists of any higher-order 
attributes values, the equality and inequality constraints. At the beginning of the 
design, the user has a set of qualitative specifications describing the successful 
termination of the design process (e.g., "produce for less than a given cost" andlor 
"have a maximum load greater than some value"), and a set of constraints that, when 
solved, produces a design that mayor not satisfy them. If not, the user modifies either 
the constraints or their values (i.e., a new system of constraints is defined), and/or the 
dimensions (i.e., solving the entire system of constraints) until the design is 
satisfactory. 

17.5.2 DEMONSTRATION 

In order to demonstrate these techniques, a wormgear reducer is designed. The 
constraints model of the wormgear reducer is given as follows. There are nine 
dimensions (design parameters) which describe a wormgear assembly: 

N; = Input Speed (RPM) 
V = Lifting Speed (fpm) 
d = Drum Diameter (in) 
F = Lifting Load (lb.) 
11 = Efficiency 
Nw = Number of Threads 
P = Pitch Angle (deg) 
lP = Pressure Angle (deg) 
A. = Lead Angle (deg) 

From those nine dimensions, twenty higher order attributes (constraints) are 
defined: 

Output Speed: 

Reduction Ratio: 

Output Power: 

12V 
no=--

Mdr 

p. -~ 
0- 33,000 

(46) 

(47) 

(48) 



DESIGN OF A WORM GEAR REDUCER: A CASE STUDY 

Input Power: 
p; _ FV 

I - 33,000rj 

Worm Lead: 1= N.J' 

Dw-- NwPcot(A.) 
Worm Pitch Diameter: 

rt 

rtdN·N 
Wormgear Teeth Number: Ng= I W 

12V 
. . N Pcot(A.) 

Worm Outside Diameter: DwO = 0.6366Pcos().) + --'w-'--__ 
rt 

W P· h· D dPNjN w ormgear Itc Diameter: g = ---"---'-'-
12V 

Center Distance: C = 0.5 (dPNiNw + NwPcot(A.») 
12V rt 

Wormgear Outside Diameter: Dgo = 0.083333dPNi N w + 0.6366Pcos(A.) 
V 

Length of Threaded Portion: 

497 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

r-------------~2-----------------------

Fw = 0.20263p2 + O.l061dP Nj N w cos(A.) + 0.20263p2 cos(2A.) 
V 

(57) 
W ormgear Face Width: 

2 2 
( 0.6366Pcos(A.) + N wP;ot(A.») _( 0.764Pcos(A.) + N wP;ot(A.») (58) 

3.81818rtFV 
Tangent Force: Ft = ------

NiNw P 
(59) 

N IF F 3.81818rtFV csc(A.) sec(<I» 
orma orce: n = 

NjNwP 
(60) 

R d· IFF 3.81818rtFV csc(A.) tan(<I» 
a la orce: r = 

NiNw P 
(61) 

Thru F T, 3.81818rtFVcot(A) 
st orce: thrust = -------'--'-

NiNw P 
(62) 

W ormgear Pitch Line Velocity: V - N j N w P 
fg - 12 (63) 

. 3.81818rtFV 
Dynanuc Load: Fd= 0.000265152 F7r+ -----

NiNw P 
(64) 

Wormgear Tooth Bending Stress: 



498 A MATHEMATICAL THEORY OF DESIGN 

O.88889P(O.000265152F1tV + 3.818181tFV) 
S NjNwP 
=-r================~~================~ 

Y (O.6366PCOS(A) + N w P;Ot(A»)2·_(O.764PCOS(A) + N w P;Ot(A»)2 

(65) 

17.5.3 DESIGN EXECUTION 

The design process begins with a set of qualitative design specifications as shown in 
Table 17.7. A five-step scenario is constructed as follows: 

Step I. The design process begins by entering an initial, reasonable value for each 
dimension: Nj=1500, V=30, d=3.75, F=150, 11 =0.7, N.,.;=I, P=0.16, 4>= 20, ).;=7. 

Step 2. From these dimensions, the higher-order attributes are calculated (from 
Formulas 46-65) for the designer to examine. The output power Po is found to be too 
small. The designer sets Po = 0.225, and unconstrains the efficiency, 11. 

Step 3. Equations (46)-(65) are solved, and the efficiency is found to be 11 = 0.81. 
The closest available motor is 11 = 0.8. Therefore, the designer sets 11 = 0.8, and 
unconstrains the output power Po. 

Step 4. Now then, with a higher efficiency, the wormgear pitch diameter Dg is too 
high. The designer decreases the wormgear pitch diameter, increases the required 
thrust force, and unconstrains the lead angle and pitch angle. 

Step 5. Solving Constraints (46)-(65), the designer finds that the set of qualitative 
design specifications are satisfied. Therefore, the design execution is terminated with 
a successful design solution (set of dimensions). 

Table 17.7 The Qualitative Design Specifications 

Q g 

-1/ 
Po 

-0.81 
0.225 (hp) 

D. -2.6 

-s -12000 (psi) 

F,hnu, 1700 (lb) 

-v -30 

REFERENCES 

1. Shigley, J. E., Mechanical Engineering Design, McGraw-Hili Book Company (5th Edition), 1989. 
2. Braha, D., Maimon, o. and Ben-Gal, I., "Case-Studies in General Design Theory: Measurement 

Tool and Wonngear Reducer," Technical Report 8-95, ADMS Lab, Boston University, 1995. 



CHAPTER 18 

ADAPTIVE LEARNING FOR SUCCESSFUL 
FLEXIBLE MANUFACTURING CELL DESIGN: A 
CASE STUDY 

In Chapter 13 we presented a method (the P-Iearning algorithm) for adaptive learning 
of successful designs that is based on the use of statistical experimental design and 
stochastic search algorithm. This chapter involves a real industrial problem of 
designing a flexible manufacturing system that was solved based on the P-Iearning 
algorithm. 

18.1 INTRODUCTION 

Perhaps the greatest overall benefit of using simulation to design and optimize 
manufacturing environment is that it allows an engineer to obtain a system-wide view 
of the effect of "local" changes to the manufacturing system. If a change is made at a 
particular work station, its impact on the performance of the overall system may not 
be predictable by simple formal analyses, therefore resorting to a computer 
simulation model. 

In Chapter 8 we provided a rational means for quantifying how well a proposed 
design satisfies the governing requirements in terms of its overall probability of 
successfully achieving the functional requirements. In Chapter 13 we presented a 
method for adaptive learning of successful designs that is based on the use of 
statistical experimental design and optimization techniques. In this chapter a detailed 
case study involving the design of a flexible manufacturing cell is presented in order 
to augment the illustrative example presented in Chapter 13. The system to be 
designed is an automated design and manufacturing system (ADMS), which has been 
replacing the traditional job shop-flow shop manufacturing systems. The advantage 
of ADMS over the job-flow shop manufacturing system is the flexibility of the 
system and the integration of the diverse functions of manufacturing such as 
production control and quality control. The system runs automatically and human 
interference is required only in case of machine failures and initial setups. 

The chapter is organized as follows. The physical configuration of the ADMS 
laboratory is provided in Section 18.2, followed in Section 18.3 by a description of 
the functional requirements and parameters included in the study. A detailed solution 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



500 A MATHEMATICAL THEORY OF DESIGN 

of the ADMS design problem using the P-learning algorithm introduced in Chapter 
l3 is given in Section IS.4. Section IS.5 summarizes the chapter. 

18.2 PHYSICAL CONFIGURATION 

In this section we describe an overview of the Automated Design & Manufacturing 
Laboratory (ADMS) at Boston University. The ADMS laboratory cell is comprised 
of a set of stations located around a conveyor as shown in Figure IS.I. For a detailed 
schematic description see Figure IS.2. The description of each component is 
described as follows: 

• Design Stations - the design stations contain a PC loaded with several software 
tools: design packages, production tools' and production system's simulation and 
control. 
• Control Station - the control station contains the central computer and controller, 
the PLC (Programmable Logic Controller) and its terminal. It does not contain a 
robot or any production devices. 
• CNC Station - the CNC station contains the CNC computer and controller, the 
CNC machines (one milling machine and one lathe), an ERV7 Robot, sensors, 
buffers, and a small linear conveyor. 
• Quality Control Station - the QC station contains the QC computer and 
controller, one milling CNC machine, an ERV9 Robot, a vision system, sensors, and 
buffers. The devices are used for inspection of part quality based primarily on 
machine vision. 

The following elements are common to both the CNC and the QC stations: 

• an ACL controller which coordinates the operation of the station and controls the 
robot and any peripheral devices. 
• a PC for user interface to the station controller and device controllers or other 
software. 
• devices that perform an operation in the production cycle, such as CNC 
machines. 
• a SCORBOT-ER7/9 robot which performs material handling tasks such as 
inserting a part into a CNC machine, loading it onto the pallets, etc. 
• a peripheral device which aids the robot in material handling tasks, such as the 
linear slide-base that supports the robot in the CNC station. 



ADAPTIVE LEARNING FOR SUCCESSFUL FLEXmLE MANUFACTURING CELL DESIGN: 501 

SGI CNC Machines I Design I Design (Robot) Station 
Station 

CNC 

I I 
Super-

Station visory 
Control 
Station 

Conveyor 

+PLC 

Design II QC Station )1 
Station (Robot + Vision) 

Figure 18.1 ADMS Schematic Configuration 

The ADMS combines processes to produce two part types. Figure 18.3 shows 
the process plan of each part type. The two part types are produced by the two 
machines in the CNC station, sent to the QC station, and reworked in case of 
defective units. After the final inspection, parts are placed in the finished parts cart 
and are assembled by ERV9 Robot to form the final product. 

The following information and data as summarized in Tables 18.1, 18.2 have 
been collected on the system of interest and used to specify operating procedures and 
probability distributions for the random variables used in the simulation model of the 
ADMS. 

Table 18.1 Probability Distributions of Processing Times (in minutes) 

Part-t~~ I Part-t~~2 
Distribution Parameters Distribution Parameters 

Interarri val Time Nonnal N(8.1) Nonnal N(8.1-2) 
Load Time at Exponential Exp(1.2) Exponential Exp(1.5) 
Robot I 
Unload Time at Exponential Exp(2.0) Exponential Exp(1.2) 
Robotl 
Processing Time at Exponential Exp(3.5) Exponential Exp(4.0) 
TMCI 
Load Time at Exponential Exp(O.7) Exponential Exp(I.O) 
Robot2 
Unload Time at Exponential Exp(2.5) Exponential Exp(O.7) 
Robot2 
Conveyor speed Detenninistic 25 Detenninistic 25 
Inspection Time Exponential Exp(2.0) Exponential Exp(3.0) 
Rework Time at Exponential Exp(6.0) Exponential Exp(6.0) 
TMC2 
Assembling time Exponential Exp(4.5) Exponential Exp(4.5) 
at Robot2 



502 A MATHEMATICAL THEORY OF DESIGN 

Table 18.2 Rework Probabilities 

Part-type I Part-type 2 
Probability of 0.7 0.6 

passing an 
inspection 

Probability of failure 0.3 0.4 

r - - - I - - I 
rites E Se,..ver 

N"t 
Manage-

"I 

I D~nl /1 I El I I 

: I I f I ~ 
THC 

I I 
I I ~ <8> I '""-~ I 
I I 
I I 

r- --1 ::=1 II I I 
J I V is ;on 

CQMerQ 

I c Gsa,.. Cod" " Mogl"lottiC 0 Sconne-r L ~nc:: 0 

L 

Figure 18.2 ADMS Laboratory: Detailed Schematic Configuration 



ADAPTIVE LEARNING FOR SUCCESSFUL FLEXmLE MANUFACTURING CELL DESIGN: 503 

End 

Legend: 0--->·6-
••....• Route 

•••• dlrecllon 
---.L. 

t..• Processing 
L..-__ ..... _ unit 

•••••• seizing the 
_.. resource 

Figure 18.3 Process Plan Logic 

18.3 PARAMETERS AND PERFORMANCE MEASURES 

18.3.1 PERFORMANCE MEASURES 

The decision as to which parameters and structural assumptions compose the ADMS 
design depends on the goals (performance measures) of the study. In our case, we 
consider two responses or performance measures of interest. 



504 A MATHEMATICAL THEORY OF DESIGN 

• Work in process (WIP) - the amount of material found in the manufacturing 
system - in machines, in storage areas, in the transportation subsystem, in inspection 
stations - at any time. The designer wants it to be as small as possible for a variety of 
reasons: (1) inventory costs money to create but generates no revenue, (2) the more 
the inventory the longer it takes to produce the product, and therefore the longer the 
factory makes the customer wait, (3) the more time items spend in the factory, the 
more they are vulnerable to damage, (4) many faulty parts are made before a problem 
is detected, and (5) the space, needed for inventory and material handling system 
costs money. Since there are 45 free fixtures in the cell, 2 robots, and 3 machines, the 
designer decides to state hislher first functional requirement as follows: "achieve a 
work in process level of not more than 51 units." 

• Flow Time (Rs),s) - the amount of time that a final product (composed of the two 
part types) spends in the manufacturing system. It is also called throuput time or lead 
time. The designer wants it to be as small as possible. Since both part types are 
assembled to form the final product, Rsys measures how well the production rates of 
both part types are balanced. According to experience and design knowledge, the 
designer decides to state herlhis second functional requirement as follows: "achieve a 
flow time of not more than 250 minutes." 

18.3.2 PARAMETERS AND STRUCTURAL ASSUMPTIONS 

Parameters can be either quantitative or qualitative. Quantitative parameters 
naturally assume numerical values, while qualitative parameters typically represent 
structural assumptions that are not naturally quantified. We can also classify 
parameters as being controllable or uncontrollable. To find out which of possibly 
many parameters and structural assumptions have the greatest effect on the 
performance measures presented above (Rsys and WIP), the designer collected the 
following information: 

• Since the machines' processing times are already set at their best levels, and 
further improvement is achievable only by replacing the machines, the machines' 
processing times are considered fixed aspect of the system and cannot be reduced. 
However, the rework processing times (countersinking and tapping) can be reduced 
by using different types of raw material (aluminum versus steel). If the designer 
decides to use aluminum, then the rework processing time will be random variable 
from exponential distribution with mean 5.5. If the designer decides to use steel, then 
the rework processing time will be random variable from exponential distribution 
with mean 6.5. 
• Two types of maintenance plans are considered for the robots. Both plans differ 
in price and performance. The first maintenance plan assures a better reliability but 
requires more maintenance time. Reliability is· measured in terms of mean time 
between failures (MTBF) and mean time between repairs (MTTR). The reliability of 
each CNC machine is considered fixed aspect of the system. 



ADAPTIVE LEARNING FOR SUCCESSFUL FLEXIBLE MANUFACTURING CELL DESIGN: 505 

• The conveyor transports the parts from station to station. The conveyor's speed 
can be controlled easily. The designer suspects that the conveyor's speed may affect 
the performance measures. 
• Both robots can perform material handling tasks such as placing a part on the 
conveyor, removing a part from a feeder, or inserting a part in a CNC machine. 
These material handling tasks can be performed according to several scheduling 
procedures. Three policies are considered to be of interest: (1) first come first serve 
(FCFS), (2) high value first (HVF), which means that the second part type 2 has 
priority over part type 1, and (3) low value first (LVF), which means that part type 1 
has priority over part type 2. 
• The interarrival times of raw materials (of both part types) are random variables 
from normal distributions with mean 8. The average interarrival times of raw 
materials (of both part types) are considered fixed aspect of the system, while the 
variance of the interarrival times is considered as uncontrollable parameter. However, 
the designer considers this uncontrollable factor to be of interest, since he/she wants 
to assess how a reduction of the variance would increase the performance measures 
by being able to deal with unforeseen events. 
• The Dyna lathe machine can operate in two possible modes: (l) "large stack" 
mode, which requires longer setup time and longer time between consecutive setups 
(l50minl20min), and (2) "little stack" mode, with requires shorter setup and shorter 
time between consecutive setups (75 minilO min). 
• The designer would also like to determine whether the parameters interact with 
each other, i.e., whether the effect of one parameter depends on the levels of the 
others. 

Based on the above information the designer decides to choose eight parameters 
for further consideration, each of which has just two levels, as summarized in Table 
18.3. The design problem to be solved is to determine the optimal combinations of 
controllable parameters levels that can satisfy the functional requirements (in terms 
of probability). 

Table 18.3 Parameters and their Levels 

Parameters Levell Level 2 

Raw Material Type (RM) Steel Aluminum 
Reliability of Robot I (R I) 75/4 125/3 
Reliability of Robot 2 (R2) 75/4 125/3 
Material Handling Policy of Robot I FCFS LVF 
(PRI) 
Material Handling Policy of Robot 2 FCFS HVF 
(PR2) 
Conveyor Speed (CS) 20 30 
Dyna lathe machine Operation Mode 150120 75/10 
(DY) 

Variance of interarrival times of raw 1 4 
materials (ARR) 



506 A MATHEMATICAL THEORY OF DESIGN 

As mentioned before, the last parameter (ARR) is uncontrollable (a "noise" 
parameter). The main reason to include it in further considerations is to try to identify 
interactions that might exist between the ARR and other controllable parameters. If 
such interactions exist, the robustness of the system can be increased by controlling 
the interacting controllable parameters. 

18.3.3 EVALUATION OF THE RESPONSES THROUGH SIMULA TION 

The performance measures were investigated through simulations. The logic for the 
simulation model is given in Figure 18.3. The system runs automatically and human 
interference is required only in case of failures and initial setups. By failures we 
mean any machine failures, identification ambiguities, and faulty operations, all of 
which are accounted for by the simulation model. For example, failure occur when 
parts are not properly positioned on the machines, the vision system fails to identify 
which object is on table, the network ports are detached, and a machine tool is 
broken. In case of machine (or robot) failure, we assume that the processing of the 
part is resumed as soon as the machine (or robot) is repaired. Queuing capacity 
limitations are also accounted for by the simulation model. The simulation model was 
written using the SIMAN V simulation language [I]. The model consists of more 
than 100 blocks, more than 2000 entities, and is executed for a horizon of 2000 
minutes. In order to lower the possibility of correlated simulation runs, different 
seeds and streams were used for different executions. 

18.4 SOLVING THE DESIGN PROBLEM USING THE P
LEARNING ALGORITHM 

The ADMS design problem is described as follows. The parameter index set is 1 = 
{I, 2, 3,4,5, 6, 7, 8}, the level index set is J={ I, 2}, and the required functional 
requirements (tolerances) are given by T={t.,t2/t. S250,t2 S51}. t.denotes the 

flow time, and t2 denotes the work in process level. The design space includes 

28=256 feasible design solutions. The sample reduction ratios are set to lh= Yt6' 

~= Ys ' and the termination criterion is set to C=22 simulation runs. 

• Initialization: In addition to the main parameters in I, the designer decides to 
determine whether the parameters interact with each other. According to experience 
and design knowledge, the designer considers the following seven interactions to be 
of interest: R2IPR2, R2IRM, ARRlPRI, ARRlRI, ARRlCS, ARRlDY, ARRIRM. 

Based on the reduction ratio 5" the initial representative sample QI is set to be the 
LI6 orthogonal array (see Table 18.4). Since the number of rows (16) equals the 
required degrees of freedom (the sum of degrees of freedom of main parameters and 
interactions), the selected orthogonal array is adequate. The LI6 orthogonal array 



ADAPTIVE LEARNING FOR SUCCESSFUL FLEXIBLE MANUFACTURING CELL DESIGN: 507 

guarantees a resolution level of 2, which means that all main parameters are 
unconfounded with two-parameter interactions, but some groups of two-parameter 
interactions are confounded (mixed) with each other. There are several ways to 
assign parameters to the columns of the LI6 orthogonal array. The assignment 
process, which is knowledge driven, is performed by a family of linear graphs [1]. 

The design points in .0.1 were simulated, each of which for five replications (i.e. 
0)::5). For each parameter ie I and each level je J, the preference 

probabilities po.1 e d) are set to 0.5. 

Table 18.4 The Initial LI6 Orthogonal Array (OA) 

ARR R2 ARR RM PR2 R2I R2I CS ARR RI ARR DY ARR PRI ARR 
IR2 RM PR2 /CS IRI /DY I 

PRI 
I 2 3 4 S 6 7 8 9 10 II 12 13 14 IS 

I I I I I I I I I I I I I I I I 
2 I I I I I I I 2 2 2 2 2 2 2 2 
3 I I I 2 2 2 2 I I I I 2 2 2 2 
4 I I I 2 2 2 2 2 2 2 2 I I I I 
S I 2 2 I I 2 2 I I 2 2 I I 2 2 
6 I 2 2 I I 2 2 2 2 I I 2 2 I I 
7 I 2 2 2 2 I I I I 2 2 2 2 I I 
8 I 2 2 2 2 I I 2 2 I I I I 2 2 
9 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 
10 2 I 2 I 2 I 2 2 I 2 I 2 I 2 I 
II 2 I 2 2 I 2 I I 2 I 2 2 I 2 I 
12 2 I 2 2 I 2 I 2 I 2 I I 2 I 2 
13 2 2 I I 2 2 I I 2 2 I I 2 2 I 
14 2 2 I I 2 2 I 2 I I 2 2 I I 2 
IS 2 2 I 2 I I 2 I 2 2 I 2 I I 2 
16 2 2 I 2 I I 2 2 I I 2 I 2 2 I 

• The parameters (including two-parameter interactions) that have the greatest 
effect on the performance measures are identified by applying analysis of variance 
and pooling up techniques. For both performance measures (flow time and work in 
process), we conclude with four significant parameters, RI, R2, ARR, DY as shown 
in Table 18.5 and Table 18.6, respectively. The results in Tables 18.5, 18.6 are based 
on the assumption that the uncontrollable parameter ARR is assigned to its levels in 
equal probabilities. 



508 A MATHEMATICAL THEORY OF DESIGN 

Table 18.5 Final ANOV A Analysis for Flow Time 

*** ANALYSIS OF VARIANCE *** 

Flow Time (Rsys) 
by Rl, R2, ARR & Interaction DY_ARR 

Source of Sum of Mean Sig. 
Variation Squares DF Square F ofF 

Main Effects 2447.5 4 611.87 16.092 .000 
Rl 441.0 1 441.0 11.59 0.06 
R2 1444.0 1 1444.0 37.977 .000 
ARR 380.25 1 380.25 10.001 .009 
DY 182.25 1 182.25 4.793 .051 

Explained 2447.5 4 611.87 16.092 .000 

Residual 418.25 11 38.02 

Total 2865.75015 191.05 

Table 18.6 Final ANOVA for Work in Process 

***ANALYSIS OF VARIANCE *** 

Work in Process (WIP) 
by RI, R2, ARR & Interaction DY_ARR 

Source of Sum of Mean Sig. 
Variation Squares DF Square F ofF 

Main Effects 104.45 4 26.113 10.795 .001 

Rl 14.822 14.822 6.128 .031 
R2 37.823 37.823 15.63 .002 
ARR 35.403 35.403 14.63 .003 
DY 16.403 16.403 6.781 .025 

Explained 104.45 4 26.113 10.795 .001 

Residual 26.607 11 2.419 

Total 131.057 15 8.737 



ADAPTIVE LEARNING FOR SUCCESSFUL FLEXIBLE MANUFACTURING CELL DESIGN: 509 

• For each significant and controllable parameter ie I and each level je J, the 

estimated mean response J1 j and the estimated variance a2 . are computed as 
~i Ai 

summarized in Tables 18.7, 18.8. The estimated mean and variance which are 
associated with the parameter DY are computed by assuming that the uncontrollable 
parameter ARR is assigned to its first and second values with equal probabilities. 

• 

Table 18.7 Mean and Variance Analysis for Flow Time (Rsys) 

Summaries of Rsys by levels of R1 
Variable Value 
RI 1 
RI 2 

Summaries of Rsys by levels of R2 
Variable Value 
R2 I 
R2 2 

Summaries of Rsys by levels of interaction DY 
Variable Value 
DY I 
DY 2 

Mean 
265.87 
255.37 

Mean 
270.125 
251.125 

Mean 
262.25 
254.02 

Std Dev 
13.303 
13.015 

Std Dev 
9.68 
10.45 

Std Dev 
13.57 
10.67 

Table 18.8 Mean and Variance Analysis for Work in Process (WIP) 

Summaries of WIP by levels of R1 
Variable Value Label Mean Std Dev 
RI I 53.92 2.66 
Rl 2 52.0 3.08 

Summaries of WIP by levels of R2 
Variable Value Label Mean StdDev 
R2 1 54.50 2.22 
R2 2 51.42 2.89 

Summaries of WIP by levels of interaction DY 
Variable Value Label Mean Std Dev 
DYI I 53.725 1.52 
DYI 2 52.2 2.12 

Following the required functional requirements (tolerances) as given by 



510 A MATHEMATICAL THEORY OF DESIGN 

T = ~l,12111 :$; 250,12 :$; 51}, the experimental success probability P j is computed 
/.;j 

for each significant parameter iel and each level jeJ (see Chapter 13, Section 4) 
with respect to each functional requirement as given in Tables 18.9, 18.10. 

Table 18.9 Experimental Success Probabilities with 
Respect to Flow Time 

Factors Levels Experimental Success Probability 

Rl 1 0.0% 
2 1.6% 

R2 1 0.0% 

2 30.8% 
Dy 1 0.0% 

2 0.1% 

Table 18.10 Experimental Success Probabilities with Respect 
to Work in Process 

Factors Levels Experimental Success Probability 

Rl 1 0.0% 
2 4.8% 

R2 1 0.0% 
2 22.8% 

Dy 1 0% 
2 1% 

• For each significant parameter ie I and each level je J, the preference probability 

is updated by setting PO .. ! e d) = P~!I reI) with respect to each functional 

requirement as given in Tables 18.11, 18.12. For each insignificant parameter 
(including the uncontrollable parameter ARR) iel and each leveljeJ, the preference 

probability remains unchanged, i.e. P(')..! e d) is set to 0.5. 



ADAPTIVE LEARNING FOR SUCCESSFUL FLEXIBLE MANUFACTURING CELL DESIGN: 511 

Table 18.11 A Posteriori Preference Probabilities with Respect to Flow 
Time 

Significant Levels A posteriori preference probabilities 
Parameters 

Rl 1 0.1% 

2 99.9% 

R2 1 0.0% 

2 100.0% 

Dy 1 8.5% 

2 91.5% 

Table 18.12 A Posteriori Preference Probabilities with Respect to Work in 
Process 

Significant Levels A posteriori preference probabilities 
Parameters 

Rl 1 0.26% 

2 99.74% 
R2 1 0.01% 

2 99.99% 
Dy 1 9.5% 

2 90.5% 

• In the next step (i.e. S=2), the designer generate S2·loll = 0.375·16=6 new 

designs such that the parameter i is assigned to its jth level with the revised 

preference probability p(,A.1 E d). The resulting representative sample 0 2 is 

described in Table 18.13. The design points in 0 2 were simulated, each of which for 

one replication (i.e. c.o=l). For each design point dqE n 2 its overall success 
probability P d is computed, and the design point d2 that yields the maximum value q 

is selected as the design solution. The overall probability of successfully achieving 
both functional requirements (i.e., T = {tl ,t2/tl ~ 250, t2 ~ 51}) is computed to be 

94%·98% = 92.12%. 



512 A MATHEMATICAL THEORY OF DESIGN 

Table 18.13 The Design Matrix 0 2 

1 2 3 4 5 6 
Design (Optimal) 

Rl 2 2 2 2 2 2 
Rl 2 2 2 2 2 2 

ARR 1 2 1 2 1 2 
PRI 1 1 1 1 1 1 
DY 2 2 2 2 2 2 
PRl 1 1 1 1 2 2 
CS 2 2 1 1 2 2 
RM 1 2 1 2 1 2 

Rs. .. 250 235 253 256 250 236 
WIP 50.2 45.7 50.8 51.3 48.8 46.7 

18.5 CONCLUDING REMARKS 

Another specific design methodology that uses a statistical approach was developed 
by Taguchi [2]. The Taguchi method characterizes the design in terms of four types 
of parameters (signal, control, scaling, and noise parameters) and a single output 
response [2]. According to the Taguchi method, orthogonal arrays are used in design 
of experiments in order to find the average effect of each parameter-level when all 
other parameters are varied. In the selected design solution, each parameter is set to 
the level that yields the greatest average effect. To evaluate the adaptive approach 
demonstrated in this chapter, the Taguchi method has been used to aid in the 
selection of parameter levels that form a solution for the ADMS design problem. For 
both performance measures, the preferable solution according to the Taguchi method 
is d l in Table 18.13. However, the probability of success (=78%) with respect to the 
functional requirement of achieving a flow time of not more than 250 minutes, is less 
than the overall probability of success for the solution selected by the P-Iearning 
algorithm (d2 in Table 18.13). Moreover, the P-Iearning algorithm yields another 
solution (ds in Table 18.13) that performs better than the solution recommended by 
the Taguchi method. 

To summarize, the P-algorithm for optimizing design decisions is appealing 
because (1) the adaptive approach offers a homogeneous and unbiased decision 
criteria for resolving multi-objective design problems, which is a function of their 
overall probability of success (as introduced in Chapter 8), and (2) the adaptive 
approach accounts for coupling effects due to highly complex interactions as opposed 
to the additive approach held by the Taguchi method. 

REFERENCES 

1. Pegden. C. D .• Shannon. R. E .• and Sadowski. R. P .• Introduction to Simulation Using SIMAN. 
McGraw-Hill. 1990. 

2. Ross. P.I .• Taguchi Techniques/or Quality Engineering. McGraw-Hili. 1988. 



CHAPTER 19 

MAINTAINING DESIGN CONSISTENCY: EXAMPLES 

In order to demonstrate the ability to maintain a consistent design by analyzing 
solution trajectories (as presented in Chapter 14), detailed results from several design 
examples are given. Between most steps of the design, there are multiple competing 
solution trajectories that a typical numerical constraint solver could converge. It can 
be seen, however, that the desired solution follows a unique solution trajectory that 
can be followed to maintain the consistency. The algorithm flowchart is repeated here 
to make this chapter as self-contained as possible. 

Increase a 

Set LL = 120 + a. . (121 -120) 

[dl] = dO + f'([z]t (Ii -lzo) 

Figure 19.1 COAST Algorithm 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



514 A MATHEMATICAL THEORY OF DESIGN 

19.1 WORMGEAR ASSEMBL Y PROBLEM 

19.1.1 DIMENSIONS - WORMGEAR ASSEMBLY 

The first example is related to the design of a worm and wormgear assembly (see also 
Chapter 17). There are 9 dimensions which fully describe the wormgear assembly for 
this problem: 

Nj = Input Speed (RPM) V = Lifting Speed (fpm) 

d = Drum Diameter (in) F = Lifting Load (lb) 

1'\ = Efficiency Nw = Number of threads 

P = Pitch Angle (deg) $ = Pressure Angle (deg) 

A. = Lead Angle (deg) 

Additionally, there are 19 attributes defined in the constraint model which can also be 
constrained (see Appendix A). 

Figure 19.2 Parameters and Attributes ofWormIWormgear 

19.1.2 DESIGN EXECUTION 

To test the design consistency methods, a design scenario is constructed and an 8-
step solution process is demonstrated. We are designing a worm and worm-gear 
assembly with the following specifications: 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 

F,hrust ,Fn :S 2500 

20:S V:S 50 

15:S dgo +dwo :S 1.6 

F, :S5oo 

F~250 

0.8:S Ig :S 0.9 

looo:s N j :S 2000 

0.4 :S d go :S 05 

11=0.7 

515 

Additionally, the worm and worm-gear assemblies are available only in the following 
dimensions: 

4-9 degrees in 0.5 degree increments 
18-25 degrees in 0.5 degree increments 

1,2,or3 

0.05 - 0.25 in 0.025 inch increments 
0.05 - 0.25 in 0.05 inch increments 

Starting from an initial solution, the constraints are modified at each step until 
the design is satisfied finally in Step 8. Each step consists of the constraints used to 
define the design, any solution trajectories from the previous solution to the current 
solution, the final correct solution, the corresponding attribute values, and comments 
on the satisfaction of the constraints and what dimensions or attributes to constrain 
and release. 

Nj = 1500, V=30,d=0.25,F=275, 11 =0.70, Nw = I,P=O.I, ell =20, A. 
=7 

Solution Trajectories: 
None. 

M\ : 

N j = 1500, V = 30, d = 0.25, F = 275, 11 = 0.70, N w = 1, P = 0.1, ell = 20,A. 

=7 

Attribute Values: 

Fn=5761., F,hrust=5373., F, =660, dgo =0.167, dwo =0.322, Ig =0.306 

Comments: 
Fthrust is too high; F, is too high; d go is too small; Ig is too small. Constrain 

F,hrust and F, and release P and A.. 



516 

°2: 

A MATHEMATICAL THEORY OF DESIGN 

N j = 1500, V = 30, d = 0.25, F = 275, 11 = 0.70, N w = 1, F,hrust = 2000., «I> = 

20, F, =475 

Solution Trajectories: 

ex P, A. (correct trajectory) P, A. (wrong trajectory) P, A. (wrong trajectory) 

0 0.1,0.122173 (rad) 0.1,3.26377(rad) 0.1, -3.01942(rad) 
0.1 0.102881,0.126659 0.102881,3.26825 0.102881, -3.01493 
0.2 0.105933, 0.131782 0.105933,3.27338 0.105933, -3.00981 
0.3 0.109171,0.13769 0.109171,3.27928 0.109171, -3.0039 
0.4 0.112613,0.144576 0.112613,3.28617 O. II 2613, -2.99702 
0.5 0.1l628,0.152704 0.11628, 3.2943 0.11628, -2.98889 
0.6 0.120194,0.162442 0.120194, 3.30403 0.120194, -2.97915 
0.7 0.12438, 0.174319 0.12438,3.31591 0.12438, -2.96727 
0.8 0.128868, 0.189122 0.128868,3.33071 0.128868, -2.95247 
0.9 0.133692, 0.208073 0.133692,3.34967 0.133692, -2.93352 
1.0 0.138891,0.23318 0.138891,3.37477 0.138891, -2.90841 

M 2 : 

N j = 1500, V=30,d=0.25,F=275, 11 =0.70, N w = I,P=0.139, «I> =20, 

A. = 13.4 

Attribute Values: 
Fn= 2188., F,hrust = 2000., F, = 475, dgo = 0.231, dwo = 0.272, i g = 0.305 

Comments: 
A. is too high; dgo is too small; dwo is too small; i g is too small. Constrain 

F,hrusl' d go' and dwo and release V, P, and A.. 

03 : 

Nj = 1500, F,hrust = 2000, d = 0.25, F = 275, 11 = 0.70, N w = 1, d go = 0.5, «I> 

= 20, dwo = 1.0 

Solution Trajectories: 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 517 

a V. p. A. (correct trajectory) V. p. A. (wrong trajectory) V. p. A. (wrong trajectory) 

0 30.0012.0.138894.0.233184 12.4188. 0.122476. 3.25263 12.4188.0.122476. ·3.03056 
0.1 34.9059.0.169918.0.222152 12.3216.0.1354.3.24132 12.3216.0.1354. ·3.04186 
0.2 37.9066. 0.196635.0.208877 12.1023.0.146066.3.23245 12.1023.0.146066. ·3.05074 
0.3 38.9586.0.218312.0.193758 11.825.0.155099.3.22523 11.825. 0.155099. ·3.05796 
0.4 38.3783. 0.23488. 0.177766 11.5219.0.162896.3.21921 11.5219.0.162896. ·3.06398 
0.5 36.7283.0.247009.0.162062 11.2105.0.169722.3.21409 11.2105.0.169722. ·3.06909 
0.6 34.5593.0.255736.0.147511 10.9002.0.175769.3.20968 10.9002.0.175769. ·3.07351 
0.7 32.2527.0.262046.0.134517 10.5963. 0.181175. 3.20581 10.5963.0.181175. ·3.07737 
0.8 30.0166.0.266691.0.123131 10.3019.0.186046.3.2024 10.3019.0.186046. ·3.08078 
0.9 27.9431.0.270192.0.113229 10.0183.0.190465.3.19936 10.0183.0.190465. ·3.08382 
1.0 26.0614.0.272894.0.104624 9.74625.0.194498.3.19664 9.74625.0.194498. ·3.08655 

M3: 

Nj = 1500, V = 26.1, d = 0.25. F = 275, 11 = 0.70. N w = 1, P = 0.273, cj> = 20, 

A. = 6 

Attribute Values: 
Fn =2138., F,hrust= 1998., Ft =210., d go =0.5, d wo =0.999, i g =0.901 

Comments: 

94 : 

All attribute values seem to check out fairly well. P is now too big; d wo is 

a little too small; i g is a little too big. Constrain F,hrust' d go' and d wo ' 

and release Nj , d, and A.. 

F,hrust = 2000, V = 25, d go = 0.45, F = 275, 11 = 0.70, N w = 1, P = 0.225, <I> 

= 20, d wo = 1.1 

Solution Trajectories: 

a N j • d. t.. (correct trajectory) N j , d, A. (wrong N j • d. A. (wrong trajectory) 

trajectory) 

0 2191..0.217413.0.0834479 2922.02, 0.293384, 3.20423 2922.02. 0.293384. ·3.07896 
0.1 2216.81.0.211867,0.0824806 2947.87.0.288551.3.20368 2947.87.0.288551. ·3.07951 
0.2 2242.62,0.206449,0.0815354 2973.73.0.283803.3.20314 2973.73,0.283803. ·3.08004 
0.3 2268.44.0.201154,0.0806115 2999.58,0.279136.3.20261 2999.58,0.279136, ·3.08057 
0.4 2294.26,0.195979,0.0797082 3025.44.0.274549.3.20209 3025.44.0.274549. ·3.08109 
0.5 2320.08, 0.190919. 0.0788249 3051.29,0.270039.3.20158 3051.29,0.270039. ·3.08161 
0.6 2345.9.0.18597.0.0779609 3077.15,0.265606,3.20108 3077.15.0.265606, ·3.08211 
0.7 2371.72.0.181129,0.0771156 3103 .• 0.261246,3.20058 3103 .• 0.261246, ·3.0826 
0.8 2397.54,0.176393.0.0762883 3128.86,0.256958.3.2001 3128.86.0.256958. ·3.08309 



518 A MATHEMATICAL THEORY OF DESIGN 

2423.36,0.171758,0.0754785 3154.71,0.252741,3.19962 3154.71,0.252741, -3.08357 
2449.18,0.16722,0.0746857 3180.57,0.248592.3.19915 3180.57.0.248592. -3.08404 

M 4 : 

Ni = 2450, V = 25, d = 0.167, F = 275, 11 = 0.70, Nw = 1, P = 0.225, cI> = 20, 

).. =4.3 

Constrained Attribute Values: 
Fn = 2123., F,hrust = 1990., F, = 150., dgo = 0.45, dwo = 1.095, fg = 0.877 

Comments: 
Ni is too high; all other dimension values are within range. Change dimension 

values to match availability. 

Ni = 2000, V = 25, d = 0.15, F = 275, 11 = 0.70, Nw = 1, P = 0.225, cI> = 20, 

).. =4 

Solution Trajectories: 
There are no solution trajectories in this step since all the dimensions are defined 
explicitly. 

Ms: 
Ni = 2000, V = 25, d = 0.15, F = 275, 11 = 0.70, Nw = 1, P = 0.22S, cI> = 20, 

).. =4 

Attribute Values: 
Fn = 2796., F,hrust = 2621., F, = 183., dgo = 0.368, dwo = 1.17, fg = 0.909 

Comments: 
F,hrust is too high; Fn is too high; dgo is too small; fg is too high. Constrain 

Fn, fg, and dgo and release d, P, and)... 

Step 6: 
96 : 

Ni = 2000, V = 25, Fn = 2000, F = 275, 11 = 0.70, N w = 1, fg = 0.85, cI> = 

20, d go = 0.45 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 519 

Solution Trajectories: 

a d, P, A. (correct trajectory) d, P, A. (wrong trajectory) d, P, A. (wrong trajectory) 

0 0.150002,0.225007,0.0698109 0.340516,0.225007,3.07178 0.340516, 0.225007, 
-3.2114 

0.1 0.154174,0.226191,0.0714829 0.344666,0.226191,3.07011 0.344666, 0.226191, 
-3.21308 

0.2 0.158232,0.227439,0.0732392 0.3487,0.227439,3.06835 0.3487, 0.227439, 
-3.21483 

0.3 0.162167,0.228757,0.0750866 0.352609,0.228757,3.06651 0.352609, 0.228757, 
-3.21668 

0.4 0.165974,0.230151,0.0770328 0.356387,0.230151,3.06456 0.356387, 0.230151, 
-3.21863 

0.5 0.169642,0.231627,0.0790864 0.360025,0.231627,3.06251 0.360025, 0.231627, 
-3.22068 

0.6 0.173163,0.233191,0.0812571 0.363513,0.233191,3.06034 0.363513, 0.233191, 
-3.22285 

0.7 0.176529,0.234851,0.0835559 0.366842, 0.234851, 3.05804 0.366842, 0.234851, 
-3.22515 

0.8 0.179727, 0.236615, 0.085995 0.370001,0.236615,3.0556 0.370001, 0.236615, 
-3.22759 

0.9 0.182746,0.238495,0.0885887 0.372977,0.238495,3.053 0.372977, 0.238495, 
-3.23018 

1.0 0.185574,0.2405,0.091353 0.375757,0.2405,3.05024 0.375757, 0.2405, 
-3.23295 

M6: 
Nj =2000, V=25,d=0.19,F=275, T\ =0.70, Nw = I,P=0.24, ell =20, A. 
=5.2 

Attribute Values: 
Fn= 2017., F',hrusr= 1888., F', = 172., d go =0.456, d wo =0.992, fg =0.851 

Comments: 

97 : 

dwo is a little too small; assign available numbers for the dimensions; constrain 

dgo and dwo and release d and A.. 

Nj = 2000, V = 25, dwo = 1.1, F = 275, T\ = 0.70, Nw = 1, P = 0.225, ell = 20, 

dgo = 0.45 

Solution Trajectories: 



520 A MATHEMATICAL THEORY OF DESIGN 

a d, A. (correct trajectory) d, A. (wrong trajectory) d, A. (wrong trajectory) 

0 0.208848,0.0841711 0.3993, 3.20464 0.3993, -3.07855 
0.1 0.20844, 0.0831159 0.398904, 3.20404 0.398904, -3.07915 
0.2 0.208032, 0.0820868 0.398507,3.20346 0.398507, -3.07973 
0.3 0.207624,0.0810827 0.398111,3.20288 0.398111, -3.0803 
0.4 0.207216,0.0801028 0.397714,3.20232 0.397714, -3.08087 
0.5 0.206809,0.0791462 0.397317,3.20177 0.397317, -3.08142 
0.6 0.206402,0.0782122 0.39692,3.20122 0.39692, -3.08196 
0.7 0.205995, 0.0772998 0.396523,3.20069 0.396523, -3.08249 
0.8 0.205589,0.0764084 0.396126,3.20017 0.396126, -3.08302 
0.9 0.205182,0.0755373 0.395729, 3.19965 0.395729, -3.08353 
1.0 0.204776, .0746857 0.395332,3.19915 0.395332, -3.08404 

M7: 

N; =2000, V=25,d=0.2,F=275, 11 =0.70, N w = I,P=0.225, <II =20, A. 

=4.3 

Attribute Values: 
Fn=2601., Fthrust=2437., Ft = 183., d go =0.443, d wo = 1.095, i g =0.877 

Comments: 
Fn is a little too high; Constrain Fn and release V. 

98 : 

N; = 2000, Fn = 2450, d = 0.2, F = 275, 11 = 0.70, N w = 1, P = 0.225, <II = 

20, A. = 4.5 

Solution Trajectories: 
There is only one solution trajectory for V: 

a V (correct trajectory) 

0 26.1604 
0.1 26.0085 
0.2 25.8566 
0.3 25.7048 
0.4 25.5529 
0.5 25.401 
0.6 25.2491 
0.7 25.0972 
0.8 24.9453 
0.9 24.7935 
1.0 24.6416 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 521 

M8: 

Nj = 2000, V = 24.6, d = 0.2, F = 275, 11 = 0.70, N w = I, P = 0.225, C\l = 20, 

A. = 4.5 

Constrained Attribute Values: 
Fn = 2446., F,hrusl = 2291., F, = 180, dgo = 0.448, dwo = 1.053, /g = 0.857 

Comments: 
All dimensions and attributes satisfy the specifications. 

19.2 HELICAL COMPRESSION SPRING PROBLEM 

Finally, the mechanical design of a helical compression spring is demonstrated. The 
spring is described using ten variables: 

I. cr all = maximum allowable stress 

2. G = shear modulus 
3. F = safety factor 
4. R = coil radius 
5. d = wire diameter 
6. N = number of coils 
7. ~ = deflection 
8. 4= free length 
9. C = spring index 
10. P = load 

Additionally, there are four relations given between these variables: 

1. 

2. 

3. 

4. 

Lf -(~+d(N +2))=0 

~_ 4PC4 N 0 
GR 

C- 2R =0 
d 

1tcr IId3_16PRF(4C-I + 0.615)=0 
a 4C-4 C 

Create a helical compression spring according to the following specifications: 

1. cr all = 1.303 X 103 MPa 



522 A MATHEMATICAL THEORY OF DESIGN 

2. G = 7.929 X 104 MPa 
3. F=2 
4. 0 = 12.7 mm 
5. Lf = 63.5 mm 
6. P = 444.82 N 

Plugging in the given variable values into the four relations yields a system of four 
equations and four unknowns (R, d, N, and C). Solving this system of equations 
shows that there are four mathematically possible solutions: 

1. (R, d, N, C) = (6.13, 3.11, 14.33, 3.945) 
2. (R, d, N, C) = (-5.36, -3.01, -18.86, 3.5618) 
3. (R, d, N, C) = (0.063, 0.204, 246.4,0.6169) 
4. (R, d, N, C) = (-0.0064, -0.206, -248.5, 0.6168) 

Of these four solutions, the first one is the desired solution. 

After some time, the specifications are modified. This time, the desired free length is 
increased to 127.0 mm. Create a helical compression spring according to the updated 
specifications: 

1. cr all = 1.303 X 103 MPa 

2. G = 7.929 X 104 MPa 
3. F=2 
4. 
5. 
6. 

o = 12.7 mm 
4= 127.0mm 
P= 444.82 N 

Again, plugging the variables into the relations yields a system of four equations and 
four unknowns and there are, again, four possible solutions: 

1. (R, d, N, C) = (0.092, 0.302, 376.6, 0.6099) 
2. (R, d, N, C) = (-3.67, -2.785, -43.05, 2.635) 
3. (R, d, N, C) = (3.84, 2.81, 38.7, 2.74) 
4. (R, d, N, C) = (-0.0925, -0.3034, -378.7, 0.6097) 

The problem is to automatically determine which of the four solutions is the intended 
solution. It may be tempting to characterize the solutions and determine the correct 
solution through a set of rules. While this may be possible in isolated circumstances, 
it is problematic to have to create a rule-base for every different problem. Instead, by 
using the COAST methodology, design consistency can be achieved in a wide variety 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 523 

of different problems. First, a homotopy is created between the two systems of 
equations and the trajectory of the initial solution is followed as it moves to its new 
value. In this case, similarity between solutions can be expressed as the Euclidean 
norm of the dimension values. The first iteration of the COAST method is shown in 
the following two graphs. Each iteration begins from an initial solution, do. An 
enclosure, [zl is created around the solution and an enclosure is created, [dll, that is 
guaranteed to contain the new solution, dh for a given step in the parameter vector. 
These steps are performed iteratively towards the final solution: (R,d,N,C) = (3.84, 
2.81,38.7,2.74). More charts of the convergence process for this example are given 
in Section 19.6. 

QlI1\Iergence Analysis - Jteraia11- R ftI d 

aw~-----------------------------------------------------, 

aoo 

[7F [6. 1016, 6.1701] 
[3.oo19,3.l292ll 

xl=(6.I:M,3.IOO) 

• • xO =(6. 13. 3.11) 
t::E:J 

[xl] =[6.1211, 6.1263] 
[3.J(lI5,3.I~] 

a~r------+------r-----~----~~----;------;------;-----~ 

6.10 6.11 6.12 6.13 6.W 

R 

6.15 6.16 

Figure 19.3 Helical Spring Convergence 

6.17 6.18 



524 

o 

A MATHEMATICAL THEORY OF DESIGN 

0Jn0./erglnce Analysis - Heralloo 1 -Name 

a~r------------------------------------------------------, 

[2'J=[14~ 14.400>] 
[3.9226, 3.9ffi211 

xO=04.33,3.945) 
• xl =(14.3'Xl, 3.939) 

~ 
[xl] =[[14.3877, 14.3933] 

[3.9383,3.94<»]] 

am~------------r-----------~~-----------+----------~-4 
14.25 14.3:> 14.$ 

N 

14.40 

Figure 19.4 Helical Spring Convergence 

14.45 

19.3 OTHER DESIGN AREAS 

The importance of design consistency can be seen in other design areas as well. 
Typically, the designer is presented with a set of requirements that do not fully 
constrain the design. Hence, the designer uses their expertise to select a "good" 
solution. Their expertise may include anything from knowledge of their specific 
design domain to intricacies of their specific situation to such nuances as "office 
politics". When the design requirements are eventually modified, the design system 
should honor the choices the designer made and select the design configuration that is 
most similar to the original design, while still meeting the new requirements. In 
order to do this without requiring the designer to explicitly define every constraint 
and assumption they made, the similarity must be defined between subsequent design 
iterations. 

Consider the field of electrical engineering where the design requirements may 
be: 

Create an active low-pass filter with a pass-band from 0 to 3.47 kHz 



MAINT AlNlNG DESIGN CONSISTENCY: EXAMPLES 525 

(maximum ripple of 0.07 dB) and stop-band starting at 3.8 kHz (minimum 
attenuation of 50 dB). Assume the OPAMP's are non-ideal. 

Given this set of requirements. the designer may design a ninth-order Cauer
parameter active filter (Figure 19.5). Table 19.1 gives the value of each element 
(resistor values in kQ, capacitor values in F). When the requirements are modified, 
clearly any electronic design system should attempt to first find a different ninth
order Cauer-parameter active filter before searching for other types of circuits to 
satisfy the requirements. And if another type of circuit is needed, it should be chosen 
to be most "similar" to the original design. 

Table 19.1 Element Values for Active Filter 

R.: 5.4779 R2: 2.0076 R3: 3.300 R4: 3.300 Rs: 4.5898 R6: 4.44 
R7: 6.00 Rs: 3.300 R9: 3.300 RIO: 4.2572 RII : 3.2201 R.2: 5.8833 
RI3: 3.300 R.4: 3.300 R.s: 5.6260 R.6: 3.6368 R17: 1.0301 R.s: 3.300 
R.9: 3.300 R20: 5.8085 R2.: 1.2201 C.: 12 C2: 10 C3: 6.8 
C4: 10 Cs: 4.7 C6: 10 C7: 6.8 Cs: 10 C9: 10 

RI R RII RI6 
+o-~c=r-~~~==~~~-<~---.---c~--~--~=r~---o+ 

E"l R, R, Ril Ril 1:.£ V ... 

Rs 

Figure 19.5 Ninth-Order Cauer-Parameter Active Filter 



526 A MATHEMATICAL THEORY OF DESIGN 

Or consider the area of production planning where a designer may need to 
position a robotic manipulator to perform as follows: 

The PUMA 560 is a 6 DOF robotic manipulator with parameters as shown 
in Table 19.2. For a given assembly, it is determined from the product 
design that at a certain point in the assembly process, the PUMA 560 needs 
to be positioned at the end point (-0.244, 0.423, -0.555) with end effector 

orientation: et = (-{).94,0.33,O) , e2 = (-{).03,-{).09,O.80) , and 

et = (-{).33,-{).94,O.09). Calculate the values of the remaining unknown 

joint parameters. 

Table 19.2 Joint Parameters for a PUMA 560 

Joint aj dj 

9t 0 0.671 

92 0.432 -0.15 

93 -0.02 0 

94 0 0.433 

9s 0 0 

96 0 0 

The designer selects the following solution: 

~o = (120 80 30 80 130 158.4). Again, when the requirements are modified, 

the design system should find the manipulator configuration that is the most "similar" 
to the first configuration. 

Finally, consider object-oriented software engineering where a designer may be 
given the following requirements: 

Create an object model of a warehouse system. Parts come into the 
receiving dock. There, they are placed in pallets and walked around the 
warehouse, depositing the parts in appropriate bins (located along the aisles 
in the warehouse). The system should be able to keep track of inventory, be 
able to give a part's location in the warehouse, and perform the following 
interactions: 

1. Identify new shipments that come into the loading dock, locate 
their purchase order and the location of the items in the 
warehouse, and adjust the inventory accordingly; 

2. Input new orders and give their location in the warehouse and 
adjust the inventory accordingly. 

To solve this problem, the designer creates the object model shown in Figure 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 527 

19.6. There are typically many ways to break down a software problem into an 
object model. In order to make this object model, the designer had to make 
numerous choices which should be honored by a software design system when the 
requirements are modified. 

Warelxx& Qganiza!ioo 
narre narre 1 
fuxlBinFa"P.illet "\ 0JStarer 
fuxlN::xtAisleToCount 

ruurber ~ Aill 1 add'ess 
seaIHlIedXden 

n 

I I 
I 1 1 

Lrnding nrlc Picldist 
1 nwrber date 

Aisle 1 
remJVeIlemiFrorrBim 

nwrber 
fuxlBinFocPallet In Qtler 

~i~ ra!eAsNextAisleToCount nwrber 

1 1 shipPngMlress 
n shi~ 

()'1 

Pallet buildPicldist 

~-. 1 
I unIood1ntoBin I-n 

Bin 
PicId.istI.ireItem 
qtyNeeded 

ruurber 

1 ~ isErrpty 1 qtyPicked 
remJVeIIeIrFroolI3im addItem; 

QUedjneItem 

PaIIetUneJtem 
qt)Qdered 1 1 n buildPicldistUneltem 

QUaIltity 

unIoad1ntoBin 

1 

1 
Item 

n ruurber 

1 res;:nptioo n 
up;: n 

BinUneItem 1 n fuxlBinFaQ.y 
quantity unIoadFroni'a11etToBi 

OO\\MmyAvaiJabie 

Figure 19.6 Warehouse System Object Model 



528 A MATHEMATICAL THEORY OF DESIGN 

19.4 POINT AT A DISTANCE FROM TWO POINTS 

We demonstrate the situation of creating a point at a certain distance from two other 
points. The unknown point has two dimensions: the x and y coordinates. 
Additionally, let there be two attributes: distance from the point at (0,0) and distance 
from the point at (3,4). The two attributes are each equations in terms of the 

dimensions: ~x2 + y2 and ~(X_3)2 +(y_4)2 ,respectively. The user begins by 

specifying an initial guess of the desired point: 

eC• M' o· o· 

{x= 1 ~ {x= 1 
y=4 y=4 

The values of the attributes are calculated and the point is found to be distances 4.12 
and 2 from (0,0) and (3,4), respectively. The user then decides that the point should 
be distances 3 and 6 from (0,0) and (3,4). The two attributes are solved 
simultaneously yielding the solution, (-2.51, 1.64): 

eC • M' \. \. 

{diStjrom(O,o) = 3 ~ {x = -251 

distjrom(3,4) = 6 y = 1.64 

The two distance attributes at the beginning of the problem can be interpreted as in 
Figur~ 19.7-A. When the constraints are modified, however, there are two possible 
solution (see Figure 19.7-B). 

7-B. 

Figure 19.7 Simple Variational Design Example 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 529 

As the distance radii of the circles are changed. the desired point creates a trajectory 
from its original position to its new position (as shown in Figure 19.8). 

I 

-3.00 -2.50 -2.00 

Point Reconvergenc. 

·1.50 ·'.00 

X 

·0.50 

ISO 

1.00 

0.0 

000 

Figure 19.8 Solution Trajectory 

0'0 1.00 

As the homotopy is followed. the following eight graphs visually describe the 
COAST algorithm for maintaining a consistent solution and the cumulative values of 
a. 

Convergence Analysis· IteraUon 1 

4.15 

xO = (1.00,4.00) 
a = 0.00·> 0.01 

4.10 

[Z) 

4.05 
[x] = [0.955, 1.045] 
[y] ~ [3.865, 4.135] 

4.00 
('([Z]) 
[[0.2239,0.2624] [0.9062, 1.0386J] 

• (1.00,4.00) 

[[.1.0460. -O.9539[ [-O.0690,O.0690J] 

,. 3.95 
bO =(4.123, 2.000) 
bl :(4.112.2.040) 

3.90 
lnv(f'([Z]))'(bl-bO) 
[(-0.0421, ,0.0380] (-0.0030, -0.000211 

3.85 
[xl) 
[x) = [0.9578, 0.962) 

3.80 [y) = [3.997, 3.9998) 

3.75~--------t--------+------~1---------I 

0.85 0.90 0.95 

X 

1.00 1.05 



530 A MATHEMATICAL THEORY OF DESIGN 

Convergence Analysis· "oration 2 

4.15 
xO = (0.96,3.998) 
a = 0.01 -> 0.02 

4.10 

[Z] 
[x] = [0.916. 1.004] 

4.05 y] = [3.863. 4.134] 

f'([Z]) (0.96,3.998) 

4.00 [[0.2154.0.2528] [0.9083. 1.0409]] • 
[[-1.0438. -0.9559] [-0.0684,0.0667]] 

> 3.95 bO = (4.112. 2.040) 
bl = (4.101. 2.080) 

3.90 inv(f '([Z)))*(bI-bO) 
[[-0.0420, -0.0381] [-0.0033, -0.0006]] 

3.85 xl] 
[x] = [0.917, 0.922] 
[y] = [3.994, 3.998] 

3.80 

3.75 +---------+--------1---------+---------1 
0.85 0.90 0.95 

X 

Ccxwergenc:e Analysis • iteration 3 

1.00 1.05 

4.15r--------------------------------, 

4.10 

4.00 

(0.92,3.006) . 

4.00 • 

> 3.95 

3.00 

3.115 

3.00 

xO = (0.92.3.996) 
a=O.02->O.025 

[Z] 
[x) = [0.877. 0.963) 
[y) =[3.861, 4.131) 

f'([Z]) 
[[0.2068,0.2431) [0.9103. 1.0432)] 
[[-1.0418, -0.9578) [-0.0681.0.(643)] 

bO=(4.101.2.oo) 
bl =(4.095,2.100) 

Inv(f'([Z]»*(bI-bO) 
[[-0.0217. -0.0185) [-0.0025. -0.0(04)) 

[xl) 
[x) = [0.898. O.!m) 
[y) = [3.993. 3.997) 

3.75+---------+-------~------~-------~ 
0.115 0.00 0.95 

X 

1.00 tOO 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 

Convergence AnalysIs • Iteratlon 4 

4.15,-------------------------------, 

4.10 

4.05 

4.00 

> 3.95 

3.90 

3.85 

3.80 

(0.90,3.995) 

• 

xO = (0.90,3.995) 
a =0.025 ->0.03 

[ZI 
[x] = [0.858, 0.942] 
[y] = [3.860. 4.130] 

f'([Z]) 
[[0.2025,0.2382] [0.9112. 1.0443]] 
[(-1.0108, .{).9587] [.{).0680, 0.0630]] 

bO = (4.005, 2.100) 
bl = (4.<m, 2.120) 

Inv(f '([Z]»*(bI-bO) 
[(.{).0216, .{).Dl85] [.{).0025, .{).0002]] 

[xl] 
[x] = [0.878, 0.882] 
[y] = 13.992. 3.995] 

3.75+--------+--------+--------+--------1 
0.85 0.90 0.95 

X 

Cawergence Analysis -1teratlCX1165 

1.00 1.05 

1.90 ....... -----------------------------, 
xO=(-2.449,1.790) 
a=O.97 ->0.98 

1.85 [ZI 

[X] = [-2.537, -2.3ffi) 
[y) = [1.721, 1.859) 

1.90 f'([ZI) 

[(.{).8684, .{).75(») [D.5473,O.6363)) 
[[.{).9593, .{).8952) ['{)3947, '{)3575]) 

> 1.75 bO=(3.034,5.880) 
bl = (3.022. 5.920) 

Inv(f'([ZI»"(bI.w) 
1.70 [[.{).0291, '{).Ol50) ['{)'()&lS, .{).om)) 

[xl] 
[X] = [-2.478. -2.464] 

1.65 [y) = [1.730, 1.749) 

D 

(-2.449, 1.790) 

• 

1.50+-----i----+----+----t-----+----+----t----I 
-2.70 -2.65 -2.55 -2.50 

X 

-2.45 -2.40 -2.35 -2.30 

531 



532 A MATHEMATICAL THEORY OF DESIGN 

CI:x1IIergence Analysis -lIeraIim166 

1.00 

xO=(-2472. 1.7«l) 
a=U98->O.99 

U5 [ZJ 
[x] =[-2561, -2382] 
[y] = [1.672. I.tm] 

1.8J f'([ZJ) 
[[.Q8796. .{).7ro1] [0.5336, Ulmlll 
[[.{).9567, .{).8929] [.{).«X», '{).363811 

> 1.75 1:0=(3.022. 5.920) 
(-2.472, 1.74q 

bl =(3.011, 5.900) 

1.70 
Jm(f'([ZJ»*(bI-l:O) 
[[.Q0286, .{).0l42] [.{).CX:i15, .Q042311 0 
[xl] 

1.S5 [x] = [-2m -2485] 
[y] = [1.678, 1.C97] 

1.00+----+----+-----+------.,1-----+----+---+----1 
·2.70 .2.S5 -2.00 .2.55 -zoo 

X 

·2.45 

CI:x1IIergence Analysis -1IeraIiCJ1167 

1.90 xO=(-2493. 1.688) 
a=O.99 -> 1.00 

1.85 [ZJ 
[X] =[-2584, -2«13] 
[y] =[1.622. 1.754] 

un f'([ZJ) 
[[.{).8r07, .Q76J8] [0.5196, UroI8ll 
[['{).954I,.Q1roS] [.{).«J62. .Q37Olll 

> 1.75 1:0=(1011,5.900) 
bl = (3.00J. 6.000) 

Jm(f'([ZJ»"(bI-l:O) 
1.70 [[.{).0282. .Q0l34] 

[.{).CX:i26,.{).omll 

[xl] 
1.S5 [x] =[-2.522.-2!n5] 

[y] =[1.625,1.6<16] 

xl =(-2515,1.6.36) 

(.2.493. 1.688) 
• 

~ (-2.515, 1.635) 

·2.40 -2.35 .23) 

1.8J+----+---+----+----1-----+----+---+----i 
·2.70 .2.S5 -2.00 -2.55 ·2.50 

X 

-2.45 -2.40 ·2.31 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 533 

a VB lteralloo Ibnber 

1.00 

0.90 

o.ao 

0.70 

0.80 

tSD.50 

0.40 

0.31 

D.2O 

0.10 

0.00 
0 20 40 80 100 120 140 180 180 

19.5 LINE TANGENT TO TWO CIRCLES 

We demonstrate here the situation of creating a line tangent to two circles. The 
unknown line has two dimensions: the angle, e, and length, r, of a perpendicular 
vector from the origin to the line. Additionally, let there be two attributes: distance 
from the point at (-3,3) and distance from the point at (2,2). The two attributes are 

each equations in terms of the dimensions: ~(3sine-3cose-r)2 and 

~(2sine+2cose-r)2 , respectively. The user begins by initially constraining the 

line as follows: 

eC • M' o· o· 

{d~st( -3,3) = 3 -+ {r = 3.78 
dlst(2,2) = 1 e = 0.97 

The user then decides that the point should be distances 2 and 4 from (-3,3) and (2,2). 
The two attributes are solved simultaneously yielding the solution, (5.55, 1.78): 



534 

eC • M· o· o· 

{
dist( -3,3) = 2 {r = 555 
dist(2,2) = 4 --+ e = 1.78 

A MATHEMATICAL THEORY OF DESIGN 

The two distance attributes at the beginning of the problem can be interpreted as in 
Figure 19.9-A. When the constraints are modified, however, there are two possible 
solutions (see Figure 19.9-B). 

9-A. 9-B. 

Figure 19.9 Simple Variational Design Example 

As the radii of the circles are changed, the dimensions of the desired line create a 
trajectory from their original positions to their new positions (as shown in Figure 
19.10). 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 

2oor------------------------------------------------, 

tID t 

1.8:) 

1.31 

1.00 

nlD~------~------_r------_+------~------~------~ 

aoo 4.00 4.9) 

R 
Soo 

Figure 19.10 Solution Trajectory 

6.00 

535 

As the homotopy is followed. the following eight graphs visually describe the 
COAST algorithm for maintaining a consistent solution and the cumulative values of 
a. 

Convergence Analysis· iteration 1 

• (3.78.0.97) 

0.85 ~-------+--------_------_I_---_i------+_---_+---__I 
3.30 3.40 3.50 3.80 3.70 3.80 3.90 4.00 

R 



536 A MATHEMATICAL THEORY OF DESIGN 

CD 

CD 

Convergence Analysis - Iteration 2 

1.10 

xO=(3.7865,O.9725) 
a=O.OO25->O.OOS 

1.05 
[ZJ 
[x) = [3.616, 3.9569) 
[y) = [0.8865, 1.(584) 

W=(2.998, 1.(08) 

1.00 bl =(2.995, 1.0\5) 

f'([ZJ) 
[[0.3570. 1.6430) H17638, 0.7638)) 

• (3.7Il65, 0.9725) 

[[-O.21J81.0.2O!I) [0.5214, 1.4786]) 
0.95 

[fl\(f'([ZJ»·(bI.lJO) 
[[-0.1120,0.1269) [-0.0126,0.(536)) 

[xl) 
0.90 [x) = [3.6745, 3.9135] 

[y) = [0.9598, 1.0261) 

O~+-------r-------~----~------~-------+-------r------~ 
3.30 3.40 3.50 3.60 3.70 

R 

0lnYergence JInaIysls -lteraIoo3 

1.10 

xO=(3.793,O.975) 

a=o,OOS ->0.0015 

1.05 
[ZJ 
[x) =[3.6225, 3.9634) 
[y) = [0.8886, 1.<m5) 

W=(2995, 1.015) 

1.00 bl =(2993, 1.(23) 

f'([ZJ) 

[[OJroI, 1.6398] [.{1767I,0,7671)) 
[[ .{1JJ73, QJJ73) [0.521(}, 1.4I'Xl)) 

0.95 

Inv(f'([ZJ»"{bI-tO) 
[[.{1100;, 0.1213) [-0.0118,0.0513)) 

0.00 
[xl) 
[x) = [3.6863, 3.9143) 
[y) = [0.9628, 1.(259) 

3.80 

(3.;m,0.975) 

• 

3.90 4.00 

~+-------r-----~r-----~-------+-------r------~----~ 

3.30 3.40 3.50 3.6) 3.70 4.00 

R 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 

Ccmergence AnalysIs -iteration 4 

1.10 
,.0=(3.799,0.977) 
«=O.OO7S ->0.01 

1.00 
[ZJ 
[x) = [3.6286. 3.9700) 
IY) = [0.8907, 1.<Xi27J 

10=(2.993,1.023) 

1.00 bl = (2.990, 1.030) 

f'([ZJ) 

'" [[0.3632, 1.6367) [~.1704, 0.1704)) 

(3.7!9,0.977) 

• 
[[~.~ 0.2O'i6) [O.S:1DS, 1.4794)) 

0.95 
InV(f'([ZJ»*(bI-W) 
[[~.I016, 0.1163) [~.Ollo. 0.0492)) 

[xl) 
0.90 [x) = [3.6976, 3.9156) 

IY) = [0.9656. 1.02S9) 

0.95~------r-------~----~------~-------+-------+------~ 
3.3:> 3.40 3.50 3.00 3.70 3.90 4.00 

R 

Cowergence Analysis -Iteration 96 

2.00 
,.0 = (S.5243, 1.7552) 

1.95 «=O.97S->o.985 

[ZJ 
1.90 [X) = [S.3018, S.7467] 

IY) = [1.6458, 1.8646) 
1.85 

W=(202S, 3.925) 

1.m 
bl = (2.015, 3.9S5) 

f'([ZJ) 
'" 1.75 [[0.6153, 1.3846) [-1.2246, 1.2246)) 

[[~.IS73,o.lS73) [O.~ 1.5(XX))) 
1:-'-1 

1.70 
Inv(f'([ZJ»*(bI-W) 

1.1;5 
[[~.0318,o.lNl) [.(10355,0.0557)) 

[xl) 
till [x) = [5.4914, 5.6S33) 

IY) = [1.7196. 1.8109] 

1.55 

1~~--~-----r----~----~---+----~----+---~~---+----4 
4.1ll 4.90 5.00 5.10 5.20 5.3l 

R 

5.40 5.50 5.1ll 5.70 

537 



538 A MATHEMATICAL THEORY OF DESIGN 

~oo 
xO=(5.534S. 1.7637) 

1.95 u=o.985 ->0.995 

[7J 
1.00 [X] =[5.3117, 5.7S72] 

IY] = [i.6S«l. 1.8733) 
1.85 

W=(201S, 3.9SS) 

1.00 bl =(2.005, 3.985) 

f'([7J) 
GO 1.75 [(0.6121, 1.3879) [-12292, 1.2292)) 

[[-O.IS86,o.lS86) [0.4982, 1~18]) EJ 
1.70 

Inv(f'([7J»*(bI-lO) 

1.65 
[(.().0344, 0.1344] [.(l.am,o.05lKl]) 

[xl) 
1.00 [X) =[S.~ 5.6689] 

[y] = [i.72S9, 1.8217) 

lSi 

1~~--~-----r----+---~-----r----r----+----~----r---~ 
4.8) 5.00 5.10 

~oo 

xO=(S.544\ 1.7722) 

1.95 u .. Q99S -> 1.<XXl 

1.00 
[7J 
[X] =[5.3215, 5.767S] 
IY]=[I.(Q3. 1.8821] 

1.85 
W=(2!XlS,3.985) 

1.00 bl =(2.(XX), 4.QXl) 

f'Q2;J) 
cD 1.75 [[O.S36S, 1.86'37] [-S.056S. -1.(1393]] 

[[Q7847, 1.2743] [1.6375,13185]] 
1.70 

Im(f'([7J))"(bI-W) 

1.65 
[[.QOOlo, QOI39] [.QOOJ!, 0.02.98]] 

[xl] 
1.00 [X] = [5.5434, S.SS8S] 

[y]=[I.77I3, 1.mJ] 

lSi 
xl =(S5*. 1.7765) 

1~ 

4.00 4.00 5.00 5.10 5Z) 

5.3l 

R 

5.3> 

R 

5.40 

5.40 

5.00 

Q (5.5494, 1.7765) 

(5.5445, 1.77Z!I 

5.70 

5.50 5.00 5.70 5.00 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 539 

a 118 Heratlon tl.mler 

1.00 

o.so 

o.so 

0.70 

0.81 

i:So.so 

0.«1 

0.30 

0.20 

0.10 

0.00 
0 100 

~onlU1ilor 

19.6 HELICAL COMPRESSION SPRING (CONTINUED) 

This section contains detailed information about the re-convergence in the helical 
compression spring example given in Section 19.2. 

Beginning from Mo (four possible solutions - first one is the desired one): 

1. (R, d, N, C) = (6.13,3.11, 14.33,3.945) 
2. (R, d, N, C) = (-5.36, -3.01, -18.86, 3.5618) 
3. (R, d, N, C) = (0.063, 0.204, 246.4, 0.6169) 
4. (R, d, N, C) = (-0.0064, -0.206, -248.5, 0.6168) 

Now create a helical compression spring according to the updated specifications: 

1. (Jail = 1.303 x 103 MPa 
2. G = 7.929 X 104 MPa 
3. F=2 
4. B = 12.7 mm 
5. 4= 127.0mm 
6. P = 444.82 N 



540 A MATHEMATICAL THEORY OF DESIGN 

In the following graphs, the updated values of (R, d, N, C) are tracked from their 
original values (Mo) to the new desired solution, M1=(3.84, 2.81, 38.7, 2.74). 

CoI1I.ergence Analysis. Hention 1 • R arxf d 

a14~--------------------------------------------------. 

a13 
[Z,I 

a12 

xl 

'0 a11 ~ .xO 

[xl) 

a10 

am 

am~----~----~------r-----~-----+----~------+-----~ 

6.10 6.11 6.12 6.13 6.14 

R 

6.15 6.16 6.17 6.18 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 

U 

Corwergence Analysis -iteration 1 - Nand C 

~~------------------------------------------------------, 

3.96 

3.96 

xO 

• xl 

3.94 ~ 
[xl) 

3.00 

~~------------+-------------~------------+-----------~ 
1425 

3.14 

3.13 

[Z) 

3.12 

14.30 14.35 

N 

CorNergence AnalysIs - Heratlon 2 - R and d 

xl 

14.«1 14.45 

'U 3.11 ~ 
xO 

• c:::E:J 

[xl) 

3.10 

3.Ql 

~+------+------+-----~------~--~~------~----~------~ 
6.Ql 6.Ql 6.10 6.11 6.12 

R 

6.13 6.14 6.15 6.16 

541 



542 

3.97 

3.96 

3.96 

3.94 

U 

3.913 

3.92 

3.91 

3.llO 
14.30 

3.14 

3.13 

3.12 

"a 3.11 

3.10 

3.(9 

3.03 
6.111 6.03 

A MATHEMATICAL THEORY OF DESIGN 

CalYergence AnalysIs -llenition 2 - N and C 

• 
xO 

14.35 14.40 

N 

CalYergence AnalysIs -llenition 3 - R and d 

xl , 
c:t=J 
[xl) 

6.10 

xO 

• 

6.11 

R 

6.12 

xl 

~ 
[xl) 

14.45 14.50 

6.13 6.14 6.15 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 543 

Canvergence InaIysIs • Iteration 3· N 8'ld C 

3!17 

3.96 

[ZJ 

3.95 

3.94 

U xl 
• 

~ 3.10 xO 

[xl) 

3.92 

3.91 

3.00 
14.35 14.40 14.45 14.50 14.55 

N 

Canvergence Analysis· iteration 4· R 8'ld d 

3.14 

3.13 

[ZJ 
3.12 

" 3.11 xl 

~ 
xO 

• 
[xl) 

3.10 

3.(9 

3.al 
6.al 6.(11 6.al 6.(9 6.10 6.11 6.12 6.13 6.14 

R 



544 

3.97 

3.96 

3.96 
[Z) 

3.94 

U 

3.93 

3.92 

3.91 

3.90 
14.40 

2.83 

2.83 
[Z) 

2.lI2 

2.lI2 

" 2.81 

2.81 

2.90 

2.90 

2.79 
3.8J 3.84 

A MATHEMATICAL THEORY OF DESIGN 

Ccnvergence AnalysIs·1IeraIIon 4· N and C 

14.45 14.50 

N 

xO 
• 

CoIMlrgence AnalysIS· Hera1Ion 285· Rand d 

xl 

la • 
[xl] 

xO 

3.85 3.85 3.87 

R 

xl 

~ 
[xl] 

14.8) 

3.88 3.89 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 545 

Corwergence AnalysIs ·lter8tion 285· N IIld C 

2.71 

2.71 
[7;1 

2.76 

2.76 

xO xl 
U 2.75 

• t 2.75 

[xl) 

2.74 

2.74 

2.73 
38.10 38.15 38.20 38.25 38.30 38.35 38.40 38.45 38.50 38.55 38.00 

N 

Corwergence AnalysIs·1ter8tion 286· R IIld d 

2.83 

2.83 [7;1 

2.82 

2.82 

xl 

" 2.81 .. • CCI xO 
[xl) 

2.81 

2.80 

2.80 

2.79 
3.83 3.84 3.85 3.86 3.87 3.86 3.86 

R 



546 A MATHEMATICAL THEORY OF DESIGN 

Convergence AnalysIs -lteraIIoo286 - Nand C 

~n~------------------------------------------------------~ 

~75 

xl 
(.) • t xO 

~74 
[xl) 

~73 

~72 

38.20 38.25 38.3l 38.35 38.40 38.45 38.50 38.55 38.00 38.115 38.70 
N 

Convergence AnaI)'SIs -1IerstIon 'JIfT- Rand d 

2.83 

2.83 [Z) 

2.S2 

2.S2 

xl 

'a 2.81 1 • CICII xO 

2.81 
[xl) 

~ 

~ 

~79 

3.82 :1I13 3.84 3.85 3.87 3.88 

R 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 547 

CaMrgence JInaIysIs·1teration 286· N and C 

~n~------------------------------------------------------, 

~75 

U 
xl 

• • ~74 xO 
III 

[xl) 

~73 

~72 
38.3:) 38.35 :l8AO 38.45 38.50 38.55 38S) 38.E6 38.70 38.75 38.00 

N 

Helical Spring Dimension Reconvergence 

40.00 

35.00 

:noo 

II 25.00 
;, 

~ 
g 20.00 
Ii c 
GI 
E 
is 15.00 

10.00 

R 
5.00 

d 
0.00 

0.00 0.10 OZI 0.31 0.40 Q.5O o.m 0.70 0.110 0.90 1.00 

a 



548 A MATHEMATICAL THEORY OF DESIGN 

a vs IIBnItion IUTber 

1.00 

o.so 

o.so 

0.70 

0.00 

1;50.s0 

0.40 

0.:11 

Q.Z) 

0.10 

0.00 
0 50 100 150 200 2SO 

_cnlUTl>er 

APPENDIX A - CONSTRAINT MODEL OF WORMGEAR 

There are nine dimensions which describe a wormgear assembly: 

N; = Input Speed (RPM), V = Lifting Speed (fpm) 

d = Drum Diameter (in), F = Lifting Load (lb) 

11 = Efficiency, N w = Number of threads 

P = Pitch Angle (deg), , = Pressure Angle (deg) 

A. = Lead Angle (deg), 

From those nine dimensions, numerous higher order attributes can be defined: 

Output Speed: N = 12V 
o 7td' 

Reduction Ratio: R = 7tdN; 
12V 

Output Power: Po = ~, Input Power: P, = FV 
33000 I 33000,.., 



MAINTAINING DESIGN CONSISTENCY: EXAMPLES 

Worm Lead: 1= N wP, Worm Pitch Diameter: Dw 

rcdNiNw 
12V 

Wormgear Teeth Number: N g 

Worm Outside Diameter: Dwo = O.6366Pcos(t..) + NwPcot(t..) 
7t 

Wormgear Pitch Diameter: Dg = dPNiN w 
12V 

Center Distance: C = 05.(dPNiN w + N wPcot(A)) 
12V 7t 

Wormgear Outside Diameter: Dgo = O.08333~PNiN w + O.6366Pcos(t..) 

Length of Threaded Portion: 

0.1061dp2 N·N COS(A) 
Fw = O.20263p2 + I W +O.20263p2 cos(2/..) 

V 

Wormgear Face Width: 

( N pcot(t..))2 ( N pcot(t..))2 
Fg = 1.125· O.6366Pcos(t..)+ w 7t - O.764Pcos(t..)+ w 7t 

3.818187tFV 
Tangent Force: Fr = ----

NiNwP 

J.818187tFV csc( A) sec( <1» 
Normal Force: Fn = -----.:.....:..--'-'-'

NiNwP 

F = 3.818187tFV csc(t..) tan( <1» 
Radial Force: 

r NiNwP 

F _ 3.818187tFVcot(t..) 
Thrust Force: 

thrust - N.N P 
I w 

Wormgear Pitch Line Velocity: VIg = NiNwP 
12 

Dynamic Load: Fd =O.OOO265152F7t+ 3.818187tFV 
NiNwP 

549 



CHAPTER 20 

CASES IN EVOLUTIONARY DESIGN PROCESSES 

In Chapter 10, a design search algorithm was developed according to the 
evolutionary transformation process model presented in Chapter 6. The Design 
Search Algorithm is based on a set of production rules, and an AND/OR tree 
representation is used to search for a consistent (Le., physically realizable) design 
solution. A prototype system, called CADAT, has been developed to implement the 
design decomposition framework. In this chapter, we illustrate the application of the 
Design Search Algorithm to several nontrivial, "real world" design problems. 

20.1 AUTOMOBILE DESIGN EXAMPLE 

The automobile is a self-propelled, four-wheeled, steerable vehicle (or transporting 
people on land. All passenger cars, trucks, and buses have certain things in common: 
(1) the power plant, or engine; (2) the chassis, which supports the engine and wheels 
and includes the frame and the steering and brake systems; (3) the power train, 
which transmits the power from the engine to the car wheels; and (4) the body. 
Technical and operational details related to the design of the main parts of 
automobiles and their components are provided in Appendix A. This section uses the 
car domain as a representative design domain to test the Design Search Algorithm 
described in Chapter 10. 

20.1.1 THE SPECIFICATION AND DESIGN DESCRIPTION PROPERTIES 

The Design Description Properties 

The design description properties (structural attributes) specify the configuration of 
actual cars: 

(ml) 4-wheel drive (m4) absorbent front end 

(m2) 4-wheel steering (ms) air bag 

(m3) 6-8 cylinders (~) air cooled engine 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



552 

(m7) air deflector 

(mS) an engine that 
deflects down 

(~) anti-lock braking 
system (ABS) 

(mlO) automatic belts 

(mll) catalytic converter 

(ml2)deep thread patterns 

(m13) disconnecting fan 
system 

(m14) drum brakes 

(mIS) electric-powered 

(mI6)electronic ignition 

(m17) extra differential 

(mlS) extra strong door 

(m19) extra strong roof 

(m20) fog lights 

(~I) fuel injection 

(m22)high ground clearance 

(m23)high transmission ratio 

(m24) horn 

The Specification Properties 

A MATHEMATICAL THEORY OF DESIGN 

(m2S)hydraulic disk brakes 

(mu) large pistons and 
cylinders 

(m27) light weight 

(m28)liquid cooling system 

(m29) low and small 
structure 

(m30) muffler 

(m31) power brakes 

(m32)powerful starting 
engine 

(m33) radial tire 

(m34)richer mixture fuel 

(m3S) rigid passenger 
compartment 

(m36)stabilizers in the 
front 

(m37)suspension system 

(m3S)tubeless tire 

(m39)windshield defroster 

(m~)windshield washer and 
wiper 

The specification properties (functional attributes) describe the requirements and 



CASES IN EVOLUTIONARY DESIGN PROCESSES 

constraints: 

(rl) AERODYNAMIC DESIGN 

(~) DIESEL ENGINE 

(~) DOESN'T POLLUTE THE 
ATMOSPHERE 

(r4) EASY PARKING 

(rS) ECONOMIC ENGINE 

(r6) ECONOMICAL 

(r7) GOOD BRAKES 

(rS) HEAVY CAR 

(~) HIGH POWER OUTPUT 

(rIO) HIGH SPEED 

(rll) HIGH VOLUME OF THE 
COMBUSTION CHAMBER 

(~2) LOW FUEL CONSUMPTION 

(~3) LOW MAINTENANCE COSTS 

(rI4) MECHANICALLY DEPENDABLE 

and DURABLE 

(rIS) OFF-HIGHWAY TIRE 

20.1.2 THE PRODUCTION RULES 

553 

(~6) PASSABLE CAR 

(~7) RELIABLE TIRE 

(rIS) SAFE CAR 

(rI9) SAFE IN ACCIDENTS 

(r20) SAFE IN BAD WEATHER 

(~l) SAFE IN FLIPPING OVER 

(r22) SAFE IN HEAD-ON 
COLLISIONS 

(r23) SAFE IN HIGH SPEED 
DRIVING 

(~4) SAFE IN OFF-HIGHWAY 
ROAD 

(r2S) SAFE IN POOR EXTERNAL 
CONDITIONS 

(~6) SAFE IN POOR VISIBILITY 

(~7) SAFE IN SIDE COLLISIONS 

(r2S) SMALL CAR 

(r29) SMALL ENGINE 

(r30) STRONG ENGINE 

A portion of the domain-specific knowledge relevant to the car design domain is 
expressed in terms of the rules presented in this section. The set of rules is held in 
rule memory; and a working memory holds or represents the current state of the 
process, which is (in general) a conjunction of structural attributes and the 



554 A MATHEMATICAL THEORY OF DESIGN 

(remaining) current specifications. These rules rely very heavily on the domain
specific knowledge presented in Appendix A. 

(RULE'I) PASSABLE 

If the car has OFF-HIGHWAY TIRE & 4-wheel drive & extra 
differential & high ground clearance & light weight 

Then the car is PASSABLE 

Cause: (1) OFF-HIGHWAY TIRE - off-highway tires and snow tires have deeper 
treads or separate cleats that bite through snow, slush, or dirt to grip the firmer 
surface beneath; (2) 4-wheel drive & extra differential - many 
vehicles now have full or part-time four-wheel-drive (4WD). Part-time 4WD cars are 
driven in 2WD on paved roads. Most modern 4WD cars add an extra differential 
between the front and rear wheels, so the front and rear driving wheels can turn at 
minutely differing rates when driven on pavement, to avoid drive train damage. In 
some vehicles with full-time 4WD, limited-slip differentials couple the front and rear 
final drive gears. Each driving axle has its own differential as well. These 
differentials allow front and rear wheels to turn at slightly varying rates to 
compensate for minor differences in tire diameters or drive-gear ratios. This slippage 
allows the vehicle with full-time 4WD to run on paved roads without damage to its 
drive train. This also provides a better passable car; (3) high ground 
clearance - a high ground clearance is needed in order to avoid colliding in 
objects on the surface of the road (e.g., rocks) - this attribute provides a better 
passable car; (4) light weight - ifthe car weight is low and the road is soft (due 
to mud or snow) the car will not sink - a greater pass-ability. 

(RULE 2) SAFETY-l 

If iliecaris SAFE IN POOR EXTERNAL CONDITIONS 
Then the car is SAFE 

(RULE 3) SAFETY-2 

If the car is SAFE IN HIGH SPEED DRIVING 
Then the car is SAFE 

(RULE 4) SAFETY-3 

If ilie car is SAFE IN ACCIDENTS 
Then the car is SAFE 

(RULE 5) SAFETY IN POOR EXTERNAL CONDITIOt-{S 

If ilie car is SAFE IN POOR VISIBILITY & SAFE IN BAD 



CASES IN EVOLUTIONARY DESIGN PROCESSES 555 

WEATHER & SAFE IN OFF-HIGHWAY ROAD 
Then iliec~isSAFE IN POOR EXTERNAL CONDITIONS 

(RULE 6) SAFETY IN ACCIDENTS 

If the c~ is SAFE IN HEAD-ON COLLISIONS & SAFE IN SIDE 
COLLISIONS & SAFE IN FLIPPING OVER & has automatic 
belts 

Then the car is SAFE IN ACCIDENTS 

Cause: a seat belt is a strap -- usually a shoulder h~ness -- that restrains an occupant 
in the seat, preventing him or her from being thrown out of the seat during a sudden 
stop or change in direction. Fewer than 20 percent of automobile occupants routinely 
use safety belts, even though convincing evidence exists as to their value, and 
legislation has been passed that requires seat belts in all cars. Because of the poor 
response of the driving public to devices that require their active participation, safety 
rese~chers have developed automatic, or passive, restraint systems, which protect 
occupants without any action on their part. Two basic types of passive restraints 
have been produced: (1) the automatic belt, which fastens around the occupant when 
the c~ door is closed (particul~ly important for safety in accidents); and (2) the air 
bag. 

(RULE 7) SAFETY IN HIGH SPEED DRIVING 

If the c~ has GOOD BRAKES & 4-wheel steering (4WS) & 
stabilizers in the front suspension system & extra 
strong roof & rigid passenger compartment 

Then the c~ is SAFE IN HIGH SPEED DRIVING 

Cause: (1) 4-wheel steering (4WS) - if the c~ has 4-WHEEL STEERING, 
high-speed maneuvers ~e safer because "fishtailing" is reduced; (2) stabilizers 
- a stabilizer is a long steel rod that is attached at each end to the two lower control 
~. Its purpose is to prevent excessive lean-out on turns. Thus, it is especially 
important in high speed driving; (3) extra strong roof - an extra strong roof 
protects the passengers when the c~ is flipping and falls on the roof. It is especially 
important for high-speed c~s; (4) rigid passenger compartment - when 
the passengers have to be protected in a car that moves in a high speed, and might be 
flipped over, a rigid passenger comp~tment may be used. 

(RULE 8) SAFETY IN POOR VISIBILITY 

If the c~ has fog lights & windshield washer and wiper & 
horn & windshield defroster 

Then the c~ is SAFE IN POOR VISIBILITY 



556 A MATHEMATICAL THEORY OF DESIGN 

Cause: In order to improve sensing (in poor visibility conditions), the following 
attributes might be used: (1) fog lights - prevent reflecting of the car lights; (2) 
windshield washer and wiper & defroster - to make sure that the 
windshield is clear; and (3) horn - to warn other drivers. 

(RULE 9) SAFETY IN BAD WEATHER 

If the car has GOOD BRAKES & deep thread patterns & anti
lock braking system (ABS) 

Then the car is SAFE IN BAD WEATHER 

Cause: (I) deep thread patterns are especially important when the road is 
wet. The forward portion of a tire's contact patch wipes away water so that the rest of 
the patch grips a drier surface. Continuous channels from the center to the edge of the 
tread direct the water outward. Without a carefully designed tread, water would form 
a wedge and cause the tire to lift off the road. This so-called aquaplaning 
phenomenon is one reason that smooth tires (whether they are intentionally smooth 
racing slicks or regular tires that have been worn bald) are dangerous in bad 
conditions. Tread patterns are especially important when the road is wet (for a off
highway tire); (2) the anti-lock braking system prevent the lock of the 
wheel because of the constant pressure the driver applies in case of sadden stop, and 
a computer is controlling the braking- it's main purpose is to prevent sliding 
especially in bad weather. 

(RULE 10) SAFETY IN OFF-HIGHWAY ROAD 

If the car has OFF HIGHWAY TIRE & stabilizers in the front 
suspension system 

Then thecarisSAFE IN OFF HIGHWAY ROAD 

(RULE II) SAFETY IN HEAD-ON COLLISIONS 

If the car has absorbent front end & air bag & an engine 
that deflects down 

then thecarisSAFE IN HEAD-ON COLLISIONS 

Cause: (I) absorbent front-end - when an accident occurs the front-end is 
absorbing the force ,instead of passing it to the passengers in the car; (2) air bag
in a head-on collision two air bags -- one in the steering column and one in the right 
side of the dashboard -- pop out and instantly inflate, forming cushions that prevent 
the occupants from striking hard surfaces, such as the dashboard or windshield; (3) 
deflecting down engine - if an accident (in head-on collisions) occurs, the 
motor is deflected downwards and so not colliding into the passengers inside the car. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 557 

(RULE 12) SAFETY IN SIDE COLLISIONS 
If the car has extra strong door 
Then the car is SAFE IN SIDE COLLISIONS 

Cause: extra strong doors protects the passengers from objects that collide 
from the side. 

(RULE 13) SAFETY IN FLIPPING OVER 

If the car has extra strong roof & rigid passenger 
compartment 

Then the car is SAFE IN FLIPPING OVER 

Cause: an extra strong roof protects the passengers when the car is flipping 
and falls on the roof. 

(RULE 14) EASY PARKING 

If the car has 4-wheel steering 
Then the car is EASY PARKING 

(RULE 15) HIGH-SPEED 

If the car has AERODYNAMIC DESIGN & STRONG ENGINE & high 
transmission ratio & light weight 

Then the car has HIGH SPEED 

Cause: (1) AERODYNAMIC DESIGN - designers of high-speed cars must also take 
into account aerodynamic concepts such as the boundary layer. This is the layer of 
air nearest the skin of the car where the effects of the turbulence caused by air 
resistance are exhibited most strongly. It is desirable to keep turbulence to a 
minimum, so cars are designed to keep the stream of air flowing around the car as 
undisturbed as possible - hence the term streamlining; (2) STRONG ENGINE - cars 
that need to move in high-speed must use a strong engine, because it is the part that 
supplies the kinetic energy that moves the car; (3) high transmission ratio 
- the transmission ratio determines the ratio between power and speed. Thus, to 
enable the car to move in high-speed, an option for a high transmission ratio may be 
considered; (4) light weight - if the car weight is low, then for the same engine, 
the car with a light weight can move in high speed. 

(RULE 16) AERODYNAMIC DESIGN 

If the car has low and small structure & air deflector 
Then the car has an AERODYNAMIC DESIGN 



558 A MATHEMATICAL THEORY OF DESIGN 

Cause: drag can be dramatically reduced by an air deflector. This device, which 
comes in various shapes, improves the streamlining by deflecting air around the car. 
Carefully designed air deflectors improves dramatically the aerodynamic shape of the 
car. An air deflector is also a very cheap device. 

(RULE 17) STRONG ENGINE 

If the car has HIGH VOLUME OF THE COMBUSTION CHAMBER & 
DIESEL ENGINE & richer mixture fuel & muffler 

Then the car has a STRONG ENGINE 

Cause: (1) HIGH VOLUME OF THE COMBUSTION CHAMBER - a higher 
combustion chamber volume gives better power capacity, thus, a strong engine; (2) 
muffler - larger and stronger engines are noisier and require a muffler or sound 
deadener; usually a canister with an inner shell that dissipates sound wave energy 
within the muffler before exhaust gases are permitted to escape. 

(RULE 18) HIGH VOLUME OF THE COMBUSTION CHAMBER 

If the car has large pistons and cylinders & 6-8 cylinders 
Then the car has a HIGH VOLUME OF THE COMBUSTION CHAMBER 

Cause: the volume of the combustion chamber can be increased by increasing the size 
of the piston and cylinder and by increasing the number of cylinders. 

(RULE 19) OFF-HIGHWAY TIRE 

If the car has RELIABLE TIRES & the tire has deep thread 
patterns 

Then the car has OFF-HIGHWAY TIRE 

Cause: (1) RELIABLE TIRES - an off-highway tire has to be a reliable tire because 
of the especially hard conditions; (2) deep thread patterns - for a off
highway tire, tread patterns are especially important when the road is wet. 

(RULE 20) ECONOMICAL 

If the car has LOW FUEL CONSUMPTION 
Then the car is ECONOMICAL 

(RULE 21) LOW FUEL CONSUMPTION 

If the car has AERODYNAMIC DESIGN & ECONOMIC ENGINE & 
DIESEL ENGINE & disconnecting fan system & light 
weight 



CASES IN EVOLUTIONARY DESIGN PROCESSES 559 

Then the car has LOW FUEL CONSUMPTION 

Cause: (1) DIESEL ENGINE - a diesel engine may be selected because of its 
operating advantages, such as low maintenance costs, greater efficiency, high power 
output, and fuel economy under all loads. It is also a very strong energy source; (2) 
disconnecting fan system - demand-actuated fan drive systems turn the fan 
on and off as needed, either by a temperature-sensing device or by a centrifugal 
clutch that disconnects the fan when the engine, and hence vehicle, speed is high 
enough to provide adequate cooling. Having the fan disconnected when not needed 
can save a considerable amount of energy, thus produces a low fuel consumption; (3) 
light weight - light weight cars can be created by the use of plastics and 
lightweight materials, and result with low fuel consumption. 

(RULE 22) RELIABLE TIRE 

If the car has tubeless tire & radial tire 
Then the car has RELIABLE TIRE 

Cause: (1) tubeless tire - since a tubeless tire has no tube the user doesn't 
have to deal with the problem of "punctures" - it is considered a reliable tire; (2) 
radial tire - a radial tire has reinforcing belts under its tread, but radial belt 
cords are angled closer to the tire's center line. The lack of bias side-wall 
reinforcement makes a radial's side-walls more flexible. This gives the tread a better 
grip and longer life, and therefor it's considered a reliable tire. 

(RULE 23) ECONOMIC ENGINE 

If the car has electronic ignition & fuel inj ection 
Then the car has ECONOMIC ENGINE 

Cause: (1) electronic ignition - electronic ignition system with a fuel 
injection system (controlled by a computer) makes the engine more efficient and 
economic; (2) fuel inj ection - carburetors use various means to ensure an 
optimal mixture of gasoline and air under differing conditions, including idling and 
rapid acceleration. Instead of having a carburetor, an engine can have a system of 
fuel injection, which delivers a metered quantity of gasoline directly to each cylinder. 
Fuel injection has always been used with diesel engines; it has also been gaining in 
use with gasoline engines - and it's more economic then the usual systems. 

(RULE 24) GOOD BRAKES-I 

If the car has drum brakes 
Then the car has GOOD BRAKES 



560 A MATHEMATICAL THEORY OF DESIGN 

Cause: drum brakes are simple and cheap, and they fit for cars that have light weight, 
and are comparatively slow. 

(RULE 25) GOOD BRAKES-2 

If the car has hydraulic disk brakes 
Then the car has GOOD BRAKES 

Cause: hydraulic disk brakes (which most modem cars use) solve two main 
problems: (1) it is difficult to brake all the wheels equally; (2) the increased weight 
and speed of vehicles requires that the driver exert a greater pedal pressure. 

(RULE 26) GOOD BRAKES-3 

If the car has power brakes 
Then the car has GOOD BRAKES 

Cause: power brakes are used for very heavy or very fast cars. As vehicles became 
heavier and faster the pedal pressure required to brake the vehicle increased beyond a 
comfortable, safe level. Power brakes were developed to solve this problem. In 
automobiles they use the vacuum created by the engine during its intake stroke to 
increase the pressure applied to the piston in the master cylinder, reducing the 
required pedal pressure. If the power-assisting mechanism fails, or the engine stalls 
then the brakes will not fail completely (although greater pedal pressure will be 
needed). 

(RULE 27) LOW MAINTENANCE COSTS-l 

If the car has DIESEL ENGINE 
Then the car has LOW MAINTENANCE COSTS 

(RULE 28) LOW MAINTENANCE COSTS-2 

If the car has air cooled engine 
Then the car has LOW MAINTENANCE COSTS 

Cause: an air cooled system is popularly used to power small cars or light weight 
cars, often requires no moving parts, and therefore requires low or no maintenance. 

(RULE 29) HIGH POWER OUTPUT 

If the car has DIESEL ENGINE 
Then the car has HIGH POWER OUTPUT 



CASES IN EVOLUTIONARY DESIGN PROCESSES 561 

(RULE 30) DIESEL ENGINE 

If the car has powerful starting engine & liquid cooling 
system & muffler 

Then the car uses a DIESEL ENGINE 

Cause: (1) powerful starting engine - because of the unusually high 
compression ratios, diesel engines need a powerful starting system. Some diesel 
engines use an electric motor or an auxiliary gasoline engine, whereas others use 
compressed air or spark ignition to start the engine; (2) liquid cooling 
system - most modern automobiles, with the strong engines (especially diesel 
engine) have a liquid cooling system, which is far more efficient than other cooling 
systems. 

(RULE 31) HEAVY 

If the car has STRONG ENGINE 
Then the car is HEAVY 

Cause: heavy cars need high kinetic energy in order to move. A strong engine is the 
part that supplies the high kinetic energy. 

(RULE 32) SMALL CAR 

If the car has SMALL ENGINE 

Then the car is SMALL 

(RULE 33) SMALL ENGINE 

If the car has air cooled engine 
Then the car has SMALL ENG INE 

(RULE 34 ) MECHANICALLY DEPENDABLE & DURABLE 

If the car is electric-powered 
Then the car is MECHANICALLY DEPENDABLE & DURABLE 

Cause: an electric-powered car is mechanically more dependable and durable than is 
the gasoline-powered car. 

(RULE 35) DOESN'T POLLUTE THE ATMOSPHERE-l 

If the car has catalytic converter 
Then the car DOESN I T POLLUTE THE ATMOSPHERE 



562 A MATHEMATICAL THEORY OF DESIGN 

Cause: A catalytic converter is a device in the exhaust system of an automotive 
engine that converts environmentally harmful exhaust gases into harmless gases by 
promoting a chemical reaction between a catalyst and the pollutants. 

(RULE 36) DOESN'T POLLUTE THE ATMOSPHERE-2 

If the car is electric-powered 
Then the car DOESN'T POLLUTE THE ATMOSPHERE 

20.1.3 CAR SYNTHESIS USING THE DESIGN SEARCH ALGORITHM 
(SEE CHAPTER 10.3) 

Assume that the designer is faced with the problem of designing a car description that 
is able to achieve the following specifications: 

1. The car is safe ( r18 ); 

2. The car is capable of high speed ( rIO); 

3. The car has low fuel consumption ( r12 ). 

The following constraints are further assumed: (1) the external conditions are good, 
(2) the maximum speed is 160 KmIh, and (3) the weight ofthe car is between 1 and 3 
ton. These constraints will be useful in case the interpreter (or inference engine) 
identifies (matches) several production rules the condition parts of which satisfy the 
state of the working memory. In this case, the interpreter selects a preferred rule (that 
best matches the constraints) from the conflict set to fire (execute). 

The designer (or design system) must search through the problem space for a 
pathway from the initial specifications to some state of the car description such that 
the specifications rl8' rIO_ and rl2 are achieved. Recall from chapter 10 that among 

the heuristics used to effect such a search is a strategy called backward chaining in 
which the designer in which the search process begins with the goal state (initial 
specifications). The preconditions to the attainment of the initial specifications are 
identified and these become sub-specifications. The search process is then applied 
recursively on the sub-specifications until eventually a set of structural attributes that 
correspond to the sub-specifications are identified. The Design Search Algorithm 
introduced in Section 10.3 is an instance of backward chaining. In attempting to 
solve our goal the Design Search Algorithm is served as the problem solving strategy. 
In the context of production systems this strategy will be embedded in the inference 
engine. In addition, the CADAT architecture (CAse-based Design Advisory Tool, 
see Section 10.4) is utilized in order to assist the problem of organizing and 
representing knowledge in the knowledge base (production rule memory), access the 
knowledge base, extract relevant production rules, and modify the knowledge base 
efficiently. Thus, in our example, the Design Search Algorithm is explicitly 
concerned with computer-assisted design. Table 20.1 shows the process states 



CASES IN EVOLUTIONARY DESIGN PROCESSES 563 

generated in the course of searching for a solution to the automobile design problem. 
At each step of the search the consequent parts of the production rules (listed in 
Section 20.1.2) are matched against the current state of the design (the list of 
attributes in OPEN) - the latter comprising both the current structural attributes and 
the (remaining) current specifications. Since many production rules may match the 
current state. the preferred rule is the one that matches the first leftmost (remaining) 
of the sub-specifications in the list OPEN. 

Table 12.1 Design Search Algorithm Applied to the Automobile Design Problem 

PROCESS Attributes Existing in Attributes Existing in Candidate Selected 
STEP OPEN CLOSE Unused Production 

Production Rule 
Rules (highest 

score) 

I riS' rIO' rl2 0 2.3,4 4 

2 r19. rIO' rl2 rlS 6 6 

3 r22 • r27' r21. mlO r19' rlS II II 

rIO· rl2 

4 m4' 'ns· mg. r27. r22' r19. rlS 12 12 

r21. mlO. rIO. rl2 

5 m4. 17fs. mg. miS. r27. r22. r19. rlS 13 I3 

r21' mlO. rIO. rl2 

6 m4. 17fs. mg, miS. r21' r27' r22. r19' 15 15 

m19· m3S' mlO. rlS 

rIO' rl2 
7 m4' 17fs. mg. miS. rIO' r21' r27' r22. 16 16 

m19· m3S· mlO· r19. rlS 

rl' r30· m23. 

m27. rl2 

8 m4' 17fs. mg. miS. rl. rIO' r21. r27. 17 17 

m19. m3S· mlO· r22' r19. rlS 

m29· m7' r30· 

~3. ~7' rl2 
9 m4. 17fs. mg. miS. r30' rl, riO' r21. 18 18 

m19. m3S. mlO. r27. r22. r19. rlS 

m29. m7. rll. r2. 

m34. m30' m23· 

m27' rl2 



564 A MATHEMATICAL THEORY OF DESIGN 

IO m4' "'5. m8. m18' rll • r30 • rl. rIO' 30 30 

m19· m3S' mlO' r21. r27' r22' rl9 • 

m29· m7' m26' rl8 

m3. r2 • m34' 

m30' m23' m27 • 

rl2 

11 m4. "'5. mg. m18. r2 • rll • r30· rl' 21 21 

m19· m3S' mlO' rIO. r21' r27' r22' 

m29 • m7. m26· rl9 • rl8 

m3· m32' m28· 

m34. m30' m23' 

m27' rl2 

12 m4. "'5. mg. m18' rl2 • r2 • rll • r30 • 23 23 

m19' m3S· mlO· rl. rIO. r21· r27 • 

m29' m7' m26· r22. r19. rl8 

m3' m32 • m28· 

m34. m30 • m23' 

m27' rS. ml3 

13 m4' "'5. nzg. m18' rS' rl2 • r2 • rll • STOP 

ml9 • m3S· mlO· r30 • rl' rIO· r21' 

m29' m7' m26· r27' r22. rl9 • rl8 

m3' m32' m28 • 

m34. m30' m23' 

~7' m16· m21' 

m13 

(consistent solution) 

20.2 FORKLIFT DESIGN EXAMPLE 

A forklift is a small. human-operated. gasoline-powered or a battery-driven truck that 
moves materials between operations. or is used to load finished goods from a storage 
and retrieval system for delivery to customers' plants. where the goods become their 
raw materials. In order to enable operations managers to deliver parts as they are 
needed. thus reducing stockpiles of expensive inventories throughout the plant. 
forklift trucks have to be designed to satisfy several functional requirements such as 
passing narrow pickup rows. lifting carriages to high and low shelves. and lifting and 
carrying heavy and fragile carriages. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 565 

20.2.1 THE SPECIFICATION AND DESIGN DESCRIPTION PROPERTIES 

The Design Description Properties 

The following structural attributes specify the configuration of actual forklifts: 

(ml) battery-powered 

(m2) diesel powered 

(m3) drum brakes 

(m4) extra strong roof 

(ms) foot-operated brakes 

(m6) hand-operated brakes 

(m7) heavy weight 

(mS) high driving engine 
power capacity 

(m9) high extended mast 

(mlO) high ground 
clearance 

(mll) high lifting engine 
power capacity 

(mI2) high retracted mast 

(m13) hydraulic disk 
brakes 

(mI4) light weight 

(mIS) long distance 
between forks 

(mI6) long fork length 

(mI7) long front-to-rear 
distance 

(mIS) low driving engine 
power capacity 

(mI9) low extended mast 

(m20) low height 

(m21) low lifting engine 
power capacity 

(m22) mast tilt has medium 
steep 

(mn) mast tilt is steep 

(m24) medium distance 
between forks 

(m25) medium fork length 

(m~) medium front-to-rear 
distance 

(m27) medium retracted 
mast 

(m2S) medium width 

(m29) narrow width 

(m30) platform 

(m31) pushing position 

(m32) radial tire 



566 A MATHEMATICAL THEORY OF DESIGN 

(m33) regular roof (m37 ) standing position 

(m34) short fork length (m3S) strong roof 

(m35) sitting position (m39) tubeless tire 

(m36) small front-to-rear (m40) wide width 
distance 

The Specification Properties 

The following functional attributes describe the requirements and constraints: 

(rl) ABILITY TO CLIMB HIGH 
STEEP ENTRANCE ROAD 

(~) ABILITY TO CLIMB 
MEDIUM STEEP ENTRANCE 
ROAD 

(r3) ABILITY TO LIFT 
CARRIAGE TO HIGH 
SHELVES 

(~) ABILITY TO LIFT 
CARRIAGE TO LOWER 
SHELVES 

(~) ABILITY TO LIFT 
INDIVIDUAL BOXES 

(~) ABILITY TO LIFT 
PLATFORM WITH MATERIAL 

(ry) CONTINUAL WORK 

(~) FORKLIFT OPERATOR IS 
HIGHLY SAFE 

(~) FORKLIFT OPERATOR IS 
LOW SAFE 

(rIO) FORKLIFT OPERATOR IS 

MODERATELY SAFE 

(rll) HIGH ACCELERATION 

(rI2) HIGH CARRIAGE BALANCE 

(rl3) HIGH CARRIAGE CARRYING 
ABILITY 

(rI4) HIGH CARRIAGE 
LIFTING ABILITY 

(rI5) HIGH CARRIAGE 
LIFTING STABILITY 

(r16) HIGH DRIVING SPEED 

(r17 ) HIGH LIFTING AND 
LOWERING SPEED 

(rIS) HIGH OPERATING 
UTILIZATION 

(rI9) HIGH REACH-ABILITY OF 
THE FORK 

(~O) HIGH REACH-ABILITY TO 
DEEP SHELF 

(~I) LARGE SPINNING RADIUS 



CASES IN EVOLUTIONARY DESIGN PROCESSES 567 

(r22) LIFTING AND CARRYING (r38) MEDIUM CARRIAGE 
FRAGILE CARRIAGE BALANCE 

(r23) LIFTING AND CARRYING (r39 ) MEDIUM DRIVING SPEED 
HEAVY CARRIAGE 

(r40) MEDIUM REACH-ABILITY 
(r24) LIFTING AND CARRYING OF THE FORK 

LIGHT CARRIAGE 
(r41) MEDIUM SPINNING RADIUS 

(r2S) LIFTING AND CARRYING 
ROBUST CARRIAGE (r42) MEDIUM REACH-ABILITY 

OF THE FORK 
(r26) LONG DRIVING DISTANCE 

(r43) MEDIUM REACH-ABILITY 
(r27 ) LOW ACCELERATION TO DEEP SHELF 

(r28 ) LOW CARRIAGE BALANCE (r44) NON-CONTINUAL WORK 

(r29 ) LOW CARRIAGE (r4S) PASSING IRREGULAR 
CARRYING ABILITY SURFACE 

(r30) LOW CARRIAGE (r46) PASSING LOW PLACES 
LIFTING ABILITY 

(r47 ) PASSING MEDIUM 
(r31 ) LOW CARRIAGE PICKUP ROWS 

LIFTING STABILITY 
(r48 ) PASSING NARROW 

(r32 ) LOW DRIVING SPEED PICKUP ROWS 

(r33) LOW LIFTING AND (r49 ) PASSING OBSTACLES 
LOWERING SPEED 

(rSO) PASSING REGULAR 
(r34) LOW OPERATING SURFACE 

UTILIZATION 
(rSl ) PASSING WIDE 

(r3S) LOW REACH-ABILITY PICKUP ROWS 
OF THE FORK 

(rS2 ) RELIABLE TIRE 
(r36) LOW REACH-ABILITY TO 

DEEP SHELF (rS3) SHORT DRIVING 
DISTANCE 

(r37 ) MEDIUM ACCELERATION 



568 

(~4) SMALL SPINNING 

RADIUS 

(~S) WORKING IN HIGHLY 

CROWDED ENVIRONMENT 

20.2.2 THE PRODUCTION RULES 

A MATHEMATICAL THEORY OF DESIGN 

(rS6) WORKING IN LOW CROWDED 

ENVIRONMENT 

(~7) WORKING IN MODERATELY 

CROWDED ENVIRONMENT 

A portion of the domain-specific knowledge relevant to the forklift design domain is 
expressed in terms of the following production rules: 

(RULE 1) PASSING WIDE PICKUP ROWS 

If the forklift truck has LARGE SPINNING RADIUS & wide width 
Then the forklift truck is capable of PASSING WIDE PICKUP ROWS 

Cause: (1) LARGE SPINNING RADIUS - the turning radius of the forklift truck 
has to be small enough in order to spin in the aisle; (2) wide width - the width of 
the forklift truck has to match the width between the pickup rows. 

(RULE 2) PASSING MEDIUM PICKUP ROWS 

If the forklift truck has MEDIUM SPINNING RADIUS & medium 
width 

Then the forklift truck is capable of PASSING MEDIUM PICKUP ROWS 

(RULE 3) PASSING NARROW PICKUP ROWS 

If the forklift truck has SMALL SPINNING RADIUS & narrow width 
Then the forklift truck is capable of PASSING NARROW PICKUP ROWS 

(RULE 4) LARGE SPINNING RADIUS 

If the forklift truck has long front-to-rear distance 
Then the forklift truck has LARGE SPINNING RADIUS 

Cause: the distance between the front and the rear wheels has to be long enough in 
order to have a large spinning radius. 

(RULE 5) MEDIUM SPINNING RADIUS 

If the forklift truck has medium front-to-rear distance 
Then the forklift truck has MEDIUM SPINNING RADIUS 



CASES IN EVOLUtIONARY DESIGN PROCESSES 

(RULE 6) SMALL SPINNING RADIUS 

If the forklift truck has short front-to-rear distance 
Then the forklift truck has SMALL SPINNING RADIUS 

(RULE 7) ABILITY TO LIFr CARRIAGE TO HIGH SHELVES-I 

569 

If the forklift truck has HIGH CARRIAGE LIFTING STABILITY & 
high extended mast 

Then the forklift truck has the ABILITY TO LIFT CARRIAGE TO HIGH 
SHELVES 

Cause: the stability of the forklift while lifting and the masthead (when extended) 
have to be high, when the top pickup shelf is high. 

(RULE 8) ABILITY TO LIFf CARRIAGE TO HIGH SHELVES-2 

If the forklift truck has LOW CARRIAGE LIFTING STABILITY & low 
extended mast 

Then the forklift truck has the ABILITY TO LIFT CARRIAGE TO HIGH 
SHELVES 

Cause: the stability of the forklift while lifting and the masthead (when extended) 
have to be low, when the top pickup shelf is low. 

(RULE 9) HIGH CARRIAGE LIFrING STABILITY 

If the forklift truck has heavy weight 
Then the forklift truck has HIGH CARRIAGE LIFTING STABILITY 

(RULE 10) LOW CARRIAGE LIFrING STABILITY 

If the forklift truck has light weight 
Then the forklift truck has LOW CARRIAGE LIFTING STABILITY 

(RULE 11) HIGH REACH-ABILITY TO DEEP SHELF 

If the forklift truck has HIGH REACH-ABILITY OF THE FORK 
Then the forklift truck has HIGH REACH-ABILITY TO DEEP SHELF 

(RULE 12) MEDIUM REACH-ABILITY TO DEEP SHELF 

If the forklift truck has MEDIUM REACH-ABILITY OF THE FORK 
Then the forklift truck has MEDIUM REACH-ABILITY TO DEEP SHELF 



570 A MATHEMATICAL THEORY OF DESIGN 

(RULE 13) LOW REACH-ABILITY TO DEEP SHELF 

If the forklift truck has LOW REACH-ABILITY OF THE FORK 
Then the forklift truck has LOW REACH-ABILITY TO DEEP SHELF 

(RULE 14) HIGH REACH-ABILITY OF THE FORK 
, 

If the fork length is long&themast tilt is steep 
Then the forklift truck has HIGH REACH-ABILITY OF THE FORK 

(RULE IS) MEDIUM REACH-ABILITY OF THE FORK 

If the fork length is medium & the mast tilt has medium 
steep 

Then the forklift truck has MEDIUM REACH-ABILITY OF THE FORK 

(RULE 16) LOW REACH-ABILITY OF THE FORK 

If the fork length is short & the mast tilt has medium 
steep 

Then the forklift truck has LOW REACH-ABILITY OF THE FORK 

(RULE 17) LONG DRIVING DISTANCE 

If the forklift truck has HIGH DRIVING SPEED & HIGH ACCELERATION 
Then the forklift truck is used for LONG DRIVING DISTANCE 

(RULE IS) SHORT DRIVING DISTANCE 

If the forklift truck has LOW DRIVING SPEED & LOW ACCELERATION 
Then the forklift truck is used for SHORT DRIVING DISTANCE 

(RULE 19) HIGH DRIVING SPEED 

If the forklift truck has light weight & high driving engine 
power capacity & the forklift truck is diesel powered 

Then the forklift truck has HIGH DRIVING SPEED 

(RULE 20) LOW DRIVING SPEED 

If the forklift truck has heavy weight & low driving engine 
power capacity & the forklift truck is battery-powered 

Then the forklift truck has LOW DRIVING SPEED 



CASES IN EVOLUTIONARY DESIGN PROCESSES 571 

(RULE 21) HIGH ACCELERATION 

If the forklift truck has high driving engine power capacity & 
the forklift truck is diesel powered 

Then the forklift truck has HIGH ACCELERATION 

(RULE 22) LOW ACCELERATION 

If the forklift truck has heavy weight & low driving engine 
power capac i ty & the forklift truck is ba t tery-powered 

Then the forklift truck has LOW ACCELERATION 

(RULE 23) ABILITY TO CLIMB HIGH STEEP ENTRANCE ROAD 

If the forklift truck has HIGH CARRIAGE BALANCE & HIGH 
ACCELERATION 

Then the forklift truck has ABILITY TO CLIMB HIGH STEEP ENTRANCE 
ROAD 

Cause: the forklift truck should have high carriage balance on the fork and high 
acceleration when the angle of the entrance road to the warehouse is highly steep. 

(RULE 24) ABILITY TO CLIMB MEDIUM STEEP ENTRANCE ROAD 

If the forklift truck has MEDIUM CARRIAGE BALANCE & MEDIUM 
ACCELERATION 

Then the forklift truck has ABILITY TO CLIMB MEDIUM STEEP 
ENTRANCE ROAD 

Cause: the forklift truck should have medium carriage balance over the fork and 
medium acceleration when the angle of the entrance road to the warehouse is medium 
steep. 

(RULE 25) HIGH CARRIAGE BALANCE 

If the forklift truck has long fork length & long distance 
between forks 

Then the forklift truck has HIGH CARRIAGE BALANCE 

Cause: the forklift truck has high carriage balance over the fork when half the fork 
length is much longer than the center of gravity of the carriage. 

(RULE 26) MEDIUM CARRIAGE BALANCE 

If the forklift truck has medium fork length & medium distance 
between forks 



572 A MATHEMATICAL THEORY OF DESIGN 

Then the forklift truck has MEDIUM CARRIAGE BALANCE 

Cause: the forklift truck has medium carriage balance over the fork when half the 
fork length is relatively longer than the center of gravity of the carriage. 

(RULE 27) ABILITY TO LIFT CARRIAGE TO LOWER SHEL VES-l 

If the forklift truck has high retracted mast 
Then the forklift truck has the ABILITY TO LIFT CARRIAGE TO LOWER 

SHELVES 

Cause: the mast of the forklift truck should be highly retractable when the lowest pick 
up shelves are located very low. 

(RULE 28) ABILITY TO LIFT CARRIAGE TO LOWER SHELVES-2 

If the forklift truck has medium retracted mast 
Then the forklift truck has the ABILITY TO LIFT CARRIAGE TO LOWER 

SHELVES 

Cause: the mast of the forklift truck should be moderately retractable when the lowest 
pick up shelves are located somewhat low. 

(RULE 29) PASSING LOW PLACES 

If the forklift truck has low height 
Then the forklift truck is capable of PASSING LOW PLACES 

(RULE 30) PASSING REGULAR SURFACE 

If the forklift truck has RELIABLE TIRE & drum brakes & foot
operated brakes 

Then the forklift truck is capable of PASSING REGULAR SURFACE in the 
warehouse or outside it 

(RULE 31) PASSING IRREGULAR SURFACE 

If the forklift truck has RELIABLE TIRE & hydraulic disk brakes 
& hand-operated brakes 

Then the forklift truck is capable of PASSING IRREGULAR SURFACE in the 
warehouse or outside it 

(RULE 32) RELIABLE TIRE 

If the forklift truck has tubeless tire & radial tire 



CASES IN EVOLUTIONARY DESIGN PROCESSES 573 

Then the forklift truck has RELIABLE TIRE 

(RULE 33) PASSING OBSTACLES 

If the forklift truck has RELIABLE TIRE & high driving engine 
power capacity & light weight & high ground 
clearance & the forklift truck is diesel powered 

Then the forklift truck is capable of PASSING OBSTACLES in the warehouse 
or outside it 

Cause: the forklift truck should have a high ground clearance in order to avoid 
colliding in objects (such as waste) on the surface ofthe floor. 

(RULE 34) WORKING IN HIGHLY CROWDED ENVIRONMENT 

If the FORKLIFT OPERATOR IS HIGHLY SAFE & the forklift truck has 
LOW DRIVING SPEED & LOW ACCELERATION 

Then the forklift truck is capable of WORKING IN HIGHLY CROWDED 
ENVIRONMENT 

Cause: when there exist other trucks in the warehouse, the forklift operator should be 
safe, and the forklift truck should have low driving speed and low acceleration. 

(RULE 35) FORKLIFf OPERATOR IS HIGHLY SAFE 

If the forklift truck has extra strong roof & the forklift operator has a 
sitting position 

Then the FORKLIFT OPERATOR IS HIGHLY SAFE 

(RULE 36) WORKING IN MODERATELY CROWDED ENVIRONMENT 

If the FORKLIFT OPERATOR IS MODERATELY SAFE & the forklift 
truck has MEDIUM DRIVING SPEED & MEDIUM ACCELERATION 

Then the forklift truck is capable of WORKING IN MODERATELY CROWDED 
ENVIRONMENT 

(RULE 37) FORKLIFf OPERATOR IS MODERA TEL Y SAFE 

If the forklift truck has strong roof & the forklift operator has a 
standing position 

Then the FORKLIFT OPERATOR IS MODERATELY SAFE 



574 A MATHEMATICAL THEORY OF DESIGN 

(RULE 38) WORKING IN LOW CROWDED ENVIRONMENT 

If the FORKLIFT OPERATOR IS LOW SAFE & the forklift truck has 
HIGH DRIVING SPEED & HIGH ACCELERATION 

Then the forklift truck is capable of WORKING IN LOW CROWDED 
ENVIRONMENT 

(RULE 39) FORKLIFf OPERATOR IS LOW SAFE 

If the forklift truck has regular roof & the forklift operator has a 
pushing position 

Then the FORKLIFT OPERATOR IS LOW SAFE 

(RULE 40) LIFfING AND CARRYING HEAVY CARRIAGE 

If the forklift truck has HIGH CARRIAGE LIFTING ABILITY & HIGH 
CARRIAGE CARRYING ABILITY 

Then the forklift truck is capable of LIFTING AND CARRYING HEAVY 
CARRIAGE 

(RULE 41) HIGH CARRIAGE LIFfING ABILITY 

If the forklift truck has high lifting engine power capacity 
Then the forklift truck has HIGH CARRIAGE LIFTING ABILITY 

(RULE 42) HIGH CARRIAGE CARRYING ABILITY 

If the forklift truck has HIGH CARRIAGE BALANCE & high driving 
engine power capacity & hydraulic disk brakes & the 
forklift truck is diesel powered 

Then the forklift truck has HIGH CARRIAGE CARRYING ABILITY 

(RULE 43) LIFfING AND CARRYING LIGHT CARRIAGE 

If the forklift truck has LOW CARRIAGE LIFTING ABILITY & LOW 
CARRIAGE CARRYING ABILITY 

Then the forklift truck is capable of LIFTING AND CARRYING LIGHT 
CARRIAGE 

(RULE 44) LOW CARRIAGE LIFfING ABILITY 

If the forklift truck has low lifting engine power capacity 
Then the forklift truck has LOW CARRIAGE LIFTING ABILITY 



CASES IN EVOLUTIONARY DESIGN PROCESSES 575 

(RULE 45) LOW CARRIAGE CARRYING ABILITY 

If the fotklift truck bas LOW CARRIAGE BALANCE &. low driving 
engine power capacity & hydraulic disk brakes & the 
forklift truck is battery-powered 

Then the forklift truck has LOW CARRIAGE CARRYING ABILITY 

(RULE 46) ABILITY TO LIFT PLATFORM WITH MATERIAL 

If the forklift truck has platforrn & sitting position 
Then the forklift truck has ABILITY TO LIFT PLATFORM WITH 

MATERIAL 

(RULE 47) ABILITY TO LIFT INDIVIDUAL BOXES-l 

If the forklift truck has a standing position 
Then the forklift truck has ABILITY TO LIFT INDIVIDUAL BOXES 

(RULE 48) ABILITY TO LIFT INDIVIDUAL BOXES-2 

If the forklift truck has a pushing position 
Then the forklift truck has ABILITY TO LIFT INDIVIDUAL BOXES 

(RULE 49) LIFTING AND CARRYING FRAGILE CARRIAGE 

If the forklift truck has LOW LIFTING AND LOWERING SPEED & LOW 
DRIVING SPEED 

Then the forklift truck is capable of LIFTING AND CARRYING FRAGILE 
CARRIAGE 

(RULE 50) LOW LIFTING AND LOWERING SPEED 

If the forklift truck has low lifting engine power capacity 
Then the forklift truck has LOW LIFTING AND LOWERING SPEED 

(RULE 51) LIFfING AND CARRYING ROBUST CARRIAGE 

If the forklift truck has HIGH LIFTING AND LOWERING SPEED & 
HIGH DRIVING SPEED 

Then the forklift truck is capable of LIFTING AND CARRYING ROBUST 
CARRIAGE 

(RULE 52) HIGH LIFTING AND LOWERING SPEED 

If the forklift truck has high lifting engine power capacity 



576 A MATHEMATICAL THEORY OF DESIGN 

Then the forklift truck has HIGH LIFTING AND LOWERING SPEED 

(RULE 53) HIGH OPERATING UTILIZATION 

If the forklift truck is capable of CONTINUAL WORK 
Then the forklift truck has HIGH OPERATING UTILIZATION 

(RULE 54) LOW OPERA TING UTILIZATION 

If the forklift truck is used for NON-CONTINUAL WORK 
Then the forklift truck has LOW OPERATING UTILIZATION 

(RULE 55) CONTINUAL WORK 

If the forklift truck has high driving engine power capacity & 
the forklift truck is diesel powered 

Then the forklift truck is used for CONTINUAL WORK 

(RULE 56) NON-CONTINUAL WORK 

If the forklift truck has low driving engine power capacity & 
the forklift truck is ba t tery-powered 

Then the forklifttruck is used for NON-CONTINUAL WORK 

20.2.3 FORKLIFT TRUCK SYNTHESIS USING THE DESIGN SEARCH 
ALGORITHM (SEE CHAPTER 10.3) 

Assume that the designer is faced with the problem of designing a forklift truck that 
is able to achieve the following specifications: 

1. Lifting and carrying heavy carriages (r23 ); 

2. Ability to lift carriages to high shelves (given the top pickup shelf is high) ( r3 ); 

3. High operating utilization (rIS); 

4. Passing wide pickup rows (rSI); 

5. Ability to climb high steep entrance road (rl ) 

Table 20.2 shows the process states generated in the course of searching for a 
solution to the forklift truck design problem. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 577 

Table 20.2 Design Search Algorithm Applied to the Forklift Truck Design Problem 

PROCESS Attributes Attributes Existing Candidate Selected 
STEP Existing in OPEN inCLOSE Unused Production 

Production Rule 
Rules (highest score) 

1 r23 • r3· rlS· 0 40 40 

r51. rl 

2 r14· r13· r3· r23 41 41 

riS. r51. rl 

3 mil' r13· r3 r14. r23 42 42 

riS. r51. rl 

4 mil' rl2 • mS' r13' r14. r23 25 25 

m13· m2. r3· 

riS. r51. rl 

5 mil' m16· r12. r13. r14. r23 7.8 7 

m15· ma. m13· 

m2. r3 • rlS· 

r51. rl 

6 mil. m16. r3. r12' r13' r14. 9 9 

m15' mS' m13· r23 

m2' r15· ~. 

riS. r51' rl 

7 mil' m16. r15' r3' r12' r13' 53 53 

m15. ma. m13. r14. r23 

m2. m7' ~. 

riS. r51. rl 

8 mil· m16· riS. r15. r3. r12· 55 55 

m15. mS' m13. r13. r14. r23 

m2' m7' m9. 

r7' r51. rl 

9 mil' m16. r7. riS' r15 • r3 • 1 1 

m15' ma. m13. r12. r13. r14. r23 

m2· m7· n~. 

'51. '1 

10 mil' m16· r51. '7. riS. r15. 4 4 

m15' ma. m13· r3. r12. '13' '14. 



578 A MATHEMATICAL THEORY OF DESIGN 

m2' m7' 1ncJ. r23 

r21' m40. rl 
11 mil' m16· r21· rSI. r7' rig· 23 23 

miS. mg. m13' riS' r3. r12' r13' 

m2' m7' 1ncJ· r14. r23 

m17' m40' rl 
12 mil' m16· rl· r21' rSI· r7 • 21 21 

miS. mg. m13' rI8. riS. r3' rI2· 

m2· m7' 1ncJ· r13. r14. r23 

m17. m40. rll 

13 mIl· mI6· rll. rl' r21' rSI' STOP 

miS' mg. ml3' r7 • rIg· riS' r3· 

m2. m7' 1ncJ· r12. r13' r14. r23 

m17. m40 
(consistent 
solution) 

20.3 COMPUTER CLASSROOM DESIGN EXAMPLE 

Due to the rapid changes in computer and other technologies. it is more important 
than ever for operation managers to keep abreast of the state of the art. Computer 
training programs are means of updating managers (medium to high level executives) 
on the rapid changes in computer technology. The high demand for this kind of 
training raises the issue of effective computer classroom design. The typical 
computer classroom is set up with rows of tables with computers. such that each 
computer can be used by an individual student while facing the teacher's instruction 
area. The design of a computer classroom has to take into consideration functional 
requirements such as the level of ergonomics. equipment. safety. and protection 
against theft. 

20.3.1 THE SPECIFICATION AND DESIGN DESCRIPTION PROPERTIES 

The Design Description Properties 

The following structural attributes specify the configuration of computer classrooms: 

(m3) 1 fire extinguishers(3 
kg each) 



CASES IN EVOLUTIONARY DESIGN PROCESSES 

(m4) 1 megabytes screen 
memory 

(mS) 1.1 gigabytes disk size 

(m6) 1.7 gigabytes disk size 

(m7) 100 btu per square meter 

(mS) 100 x 60 cm. desk size 

(~) 101 keyboard keys 

(mIO) 104 keyboard keys 

(mIl) 120 x 60 cm. desk size 

(mI2) 13 m. visual distance 

(mI3) 14" screen memory 

(mI4) 15" screen memory 

(mIS) 16 megabytes RAM size 

(mI6) 164 btu per square meter 

(mI7) 17" screen memory 

(mIS) 2 fire extinguishers(3 
kg each) 

(mI9) 2 megabytes screen 
memory 

(m20) 20 - 50 cm. platform's 
height 

(m21) 2300 lumens fluorescent 
tubes 

(m22) 280 X 200 cm. sized 
teacher's instruction 
area 

(m23) 32 megabytes RAM size 

(m24) 350 X 220 cm sized 
teacher's instruction 
area 

(m26) 450 x 250 cm sized 
teacher's instruction 
area 

(m27) 8 megabytes RAM size 

(m2S) 80 X 60 cm. desk size 

579 

(m29) 850 megabytes disk size 

(m30) acoustics walls with 
wood covered and graded 
ceiling 

(m31) alarm 

(m32) attached locks 

(m34) common slide viewer 

(m3S) common wooden desk 

(m36) computerized slide 
viewer 

(m37) custom made desks 

(m3S) executive chair 

(m39) IBM compatible mouse (3 
keys) 

(m40) illumination at 90 
degree 



580 

(m4) integrated wooden office 
system 

(m42) locked cabinets 

(m43) Logi tech mouse 

(m44) low radiation screen 

(m4S) non-interlaced screen 

(m46) Novel network 

(m47) original Microsoft mouse 

(m47) Pentium 100 MHz 

(m49) Pentium 120 MHz 

(m46) Pentium 133 MHz 

(mS) Pentium 200 MHz 

(m4S) primary passage 
em. 

(m49) primary passage 
cm. 

(mS4) primary passage 
cm. 

(mSS) regular wood door 

120 

150 

180 

The Specification Properties 

A MATHEMATICAL THEORY OF DESIGN 

(mS6) secondary passage 
cm. 

100 

(mS7) secondary passage 70 
cm. 

(mSs) secondary passage 
cm. 

(mS9) secretary chair 

(m60) standard chalk board 

85 

(m6) standard walls painted 
in acoustic paint 

(m62) standard wood office 
desk 

(m63) steel construction 

(m64) tin desk 

(m6S) tin table 

(m66) waiting chair 

(m67) white board with 
erasable markers 

(m6S) Windows NT network 

The following functional attributes describe the requirements and constraints: 

(r) ) GOOD ILLUMINATION (r3) GOOD ILLUMINATION AT 
STUDENTS WORK AREA 

(r2 ) GOOD ILLUMINATION AT 
TEACHER'S INSTRUCTION (r4) GOOD VISUAL CONTACT 
AREA 

(rS) HIGH LEVEL ACOUSTICS 



CASES IN EVOLUTIONARY DESIGN PROCESSES 

(r6) HIGH LEVEL AIR 

CONDITIONING 

(r7) HIGH LEVEL CENTRAL 

PROCESSING UNIT (CPU) 

(rS) HIGH LEVEL CHAIRS AT 

TEACHER'S INSTRUCTION 
AREA 

(r9) HIGH LEVEL CHAIRS AT 

STUDENTS WORK AREA 

(rIO) HIGH LEVEL COMPUTER 

CLASSROOM 

(rll) HIGH LEVEL COMPUTER 

NETWORK 

(rI2) HIGH LEVEL COMPUTER 

SYSTEM 

(r13) HIGH LEVEL DESKS AT 

TEACHING INSTRUCTION 
AREA 

(rI4) HIGH LEVEL DESKS AT 

STUDENTS WORK AREA 

(rlS) HIGH LEVEL EQUIPMENT 

(rI6) HIGH LEVEL ERGONOMICS 

(r17) HIGH LEVEL FIRE SAFETY 

(rIS) HIGH LEVEL FURNITURE 

(rI9) HIGH LEVEL FURNITURE AT 

STUDENTS WORK AREA 

(r20) HIGH LEVEL FURNITURE AT 

TEACHER'S INSTRUCTION 
AREA 

(r21) HIGH LEVEL HARD DISK 

DRIVE 

581 

(r22) HIGH LEVEL KEYBOARD TYPE 

(r23) HIGH LEVEL MOUSE TYPE 

(r24) HIGH LEVEL PERSONAL 

COMPUTERS 

(r2S) HIGH LEVEL PROTECTION 

AGAINST THEFT 

(r26) HIGH LEVEL RANDOM ACCESS 

MEMORY 

(r27) HIGH LEVEL SAFE DOOR 

(r2S) HIGH LEVEL SAFE 

EQUIPMENT 

(r29) HIGH LEVEL SAFE WINDOW 

(r30) HIGH LEVEL SAFETY 

(r31) HIGH LEVEL SCREEN 

CONTROLLER 

(r32) HIGH LEVEL SCREEN 

RADIATION SAFETY 

(r33) HIGH LEVEL SCREEN SIZE 

(r34) HIGH LEVEL SLIDE VIEWER 

(r3S) HIGH LEVEL SPACIOUS 

CLASSROOM 

(r36) HIGH LEVEL SPACIOUS 

PASSAGES 

(r37) HIGH LEVEL SPACIOUS 

TEACHER'S INSTRUCTION 
AREA 

(r3S) HIGH LEVEL SPACIOUS 

STUDENTS WORK AREA 



582 

(r39) HIGH LEVEL STUDYING AND 

TEACHING EQUIPMENT 

(r40) HIGH LEVEL TEACHER'S 

WRITING BOARD 

(r41) LOW LEVEL CENTRAL 

PROCESSING UNIT (CPU) 

(r42) LOW LEVEL CHAIRS AT 

TEACHER'S INSTRUCTION 
AREA 

(~3) LOW LEVEL CHAIRS AT 

STUDENTS WORK AREA 

(r44) LOW LEVEL COMPUTER 

CLASSROOM 

(r4S) LOW LEVEL COMPUTER SYSTEM 

(r46) LOW LEVEL DESKS AT 

TEACHING INSTRUCTION 
AREA 

(r47) LOW LEVEL DESKS AT 

STUDENTS WORK AREA 

(r48) LOW LEVEL EQUIPMENT 

(r49) LOW LEVEL ERGONOMICS 

(rSO) LOW LEVEL FURNITURE 

(rSl) LOW LEVEL FURNITURE AT 

TEACHER'S INSTRUCTION 
AREA 

(rS2) LOW LEVEL FURNITURE AT 

STUDENTS WORK AREA 

(rS3) LOW LEVEL HARD DISK 

DRIVE 

(rS4) LOW LEVEL MOUSE TYPE 

A MATHEMATICAL THEORY OF DESIGN 

(rSS) LOW LEVEL PERSONAL 

COMPUTERS 

(rS6) LOW LEVEL RANDOM ACCESS 

MEMORY 

(rS7) LOW LEVEL SAFETY 

(rS8) LOW LEVEL SCREEN 

RADIATION SAFETY 

(rS9) LOW LEVEL SCREEN SIZE 

(r60) LOW LEVEL SPACIOUS 

CLASSROOM 

(r61) LOW LEVEL SPACIOUS 

PASSAGES 

(r62) LOW LEVEL SPACIOUS 

TEACHER'S INSTRUCTION 
AREA 

(r63) LOW LEVEL SPACIOUS 

STUDENTS WORK AREA 

(r64) LOW LEVEL STUDYING AND 

TEACHING EQUIPMENT 

(r6S) MEDIUM LEVEL CHAIRS AT 

STUDENTS WORK AREA 

(r66) MEDIUM LEVEL DESKS AT 

STUDENTS WORK AREA 

(~7) MEDIUM LEVEL ACOUSTICS 

(r68) MEDIUM LEVEL AIR 

CONDITIONING 

(r69) MEDIUM LEVEL CENTRAL 

PROCESSING UNIT (CPU) 

(r70) MEDIUM LEVEL CHAIRS AT 

TEACHER'S INSTRUCTION 
AREA 



CASES IN EVOLUTIONARY DESIGN PROCESSES 

(r71) MEDIUM LEVEL CHAIRS AT 

STUDENTS WORK AREA 

(r72) MEDIUM LEVEL COMPUTER 

CLASSROOM 

(r73) MEDIUM LEVEL COMPUTER 

NETWORK 

(r74) MEDIUM LEVEL COMPUTER 

SYSTEM 

(r7S) MEDIUM LEVEL DESKS AT 

TEACHING INSTRUCTION 
AREA 

(r76) MEDIUM LEVEL DESKS AT 

STUDENTS WORK AREA 

(r77 ) MEDIUM LEVEL EQUIPMENT 

(r7S) MEDIUM LEVEL ERGONOMICS 

(r79) MEDIUM LEVEL FIRE SAFETY 

(rSO) MEDIUM LEVEL FURNITURE 

(rSl) MEDIUM LEVEL FURNITURE AT 

STUDENTS WORK AREA 

(rS2) MEDIUM LEVEL FURNITURE 

AT TEACHER'S INSTRUCTION 
AREA 

(rS3) MEDIUM LEVEL FURNITURE 

AT STUDENTS WORK AREA 

(r84) MEDIUM LEVEL HARD DISK 

DRIVE 

(rSS) MEDIUM LEVEL KEYBOARD 

TYPE 

(rS6) MEDIUM LEVEL MOUSE TYPE 

(rS7) MEDIUM LEVEL PERSONAL 

COMPUTERS 

583 

(rSS) MEDIUM LEVEL PROTECTION 

AGAINST THEFT 

(rS9) MEDIUM LEVEL RANDOM 

ACCESS MEMORY 

(r90) MEDIUM LEVEL SAFE DOOR 

(r91) MEDIUM LEVEL SAFE 

EQUIPMENT 

(r92) MEDIUM LEVEL SAFE WINDOW 

(r93) MEDIUM LEVEL SAFETY 

(r94) MEDIUM LEVEL SCREEN 

CONTROLLER 

(r9S) MEDIUM LEVEL SCREEN 

RADIATION SAFETY 

(r96) MEDIUM LEVEL SCREEN SIZE 

(r97) MEDIUM LEVEL SLIDE VIEWER 

(r98) MEDIUM LEVEL SPACIOUS 

CLASSROOM 

(r99) MEDIUM LEVEL SPACIOUS 

PASSAGES 

{rIOO) MEDIUM LEVEL SPACIOUS 

TEACHER'S INSTRUCTION 
AREA 

(rlOl) MEDIUM LEVEL SPACIOUS 

STUDENTS WORK AREA 

(r102) MEDIUM LEVEL STUDYING 

AND TEACHING EQUIPMENT 

(rI03) MEDIUM LEVEL TEACHER'S 

WRITING BOARD 



584 A MATHEMATICAL THEORY OF DESIGN 

20.3.2 THE PRODUCTION RULES 

A portion of the domain-specific knowledge relevant to the computer classroom 
design domain is expressed in terms of the following production rules: 

(RULE I) HIGH LEVEL COMPUTER CLASSROOM 

If the classroom has HIGH LEVEL ERGONOMICS & HIGH LEVEL 
EQUIPMENT & HIGH LEVEL SAFETY & HIGH LEVEL 
PROTECTION AGAINST THEFT 

Then the classroom is a HIGH LEVEL COMPUTER CLASSROOM 

Cause: high protection against theft is used when there are high theft hazards. 

(RULE 2) MEDIUM LEVEL COMPUTER CLASSROOM 

If the classroom has MEDIUM LEVEL ERGONOMICS & MEDIUM LEVEL 
EQUIPMENT & MEDIUM LEVEL SAFETY & MEDIUM LEVEL 
PROTECTION AGAINST THEFT 

Then the classroom is a MEDIUM LEVEL COMPUTER CLASSROOM 

(RULE 3) LOW LEVEL COMPUTER CLASSROOM 

If the classroom has LOW LEVEL ERGONOMICS & LOW LEVEL 
EQUIPMENT & LOW LEVEL SAFETY & MEDIUM LEVEL 
PROTECTION AGAINST THEFT 

Then the classroom is a LOW LEVEL COMPUTER CLASSROOM 

Cause: medium protection against theft is used when there are low theft hazards. 

(RULE 4) HIGH LEVEL ERGONOMICS 

If the classroom has GOOD ILLUMINATION & HIGH LEVEL FURNITURE 

& GOOD VISUAL CONTACT & HIGH LEVEL ACOUSTICS & is HIGH 
LEVEL SPACIOUS 

Then the computer classroom has HIGH LEVEL ERGONOMICS 

Cause: an ergonomic classroom provides good studying and teaching environment. 

(RULE 5) MEDIUM LEVEL ERGONOMICS 

If the classroom has GOOD ILLUMINATION & MEDIUM 
FURNITURE & GOOD VISUAL CONTACT & MEDIUM 

ACOUSTICS & the classroom is MEDIUM LEVEL SPACIOUS 

Then the computer classroom has MEDIUM LEVEL ERGONOMICS 

LEVEL 
LEVEL 



CASES IN EVOLUTIONARY DESIGN PROCESSES 585 

(RULE 6) LOW LEVEL ERGONOMICS 

If the classroom has GOOD ILLUMINATION & LOW LEVEL FURNITURE & 
GOOD VISUAL CONTACT & MEDIUM LEVEL ACOUSTICS & is LOW 
LEVEL SPACIOUS 

Then the computer classroom has LOW LEVEL ERGONOMICS 

(RULE 7) HIGH LEVEL SPACIOUS CLASSROOM 

If HIGH LEVEL SPACIOUS STUDENTS WORK AREA & HIGH LEVEL 
SPACIOUS PASSAGES & HIGH LEVEL SPACIOUS TEACHER'S 
INSTRUCTION AREA 

Then HIGH LEVEL SPACIOUS CLASSROOM 

(RULE 8) MEDIUM LEVEL SPACIOUS CLASSROOM 

If MEDIUM LEVEL SPACIOUS STUDENTS WORK AREA & MEDIUM 
LEVEL SPACIOUS PASSAGES & MEDIUM LEVEL SPACIOUS 
TEACHER'S INSTRUCTION AREA 

Then MEDIUM LEVEL SPACIOUS classroom 

(RULE 9) LOW LEVEL SPACIOUS CLASSROOM 

If LOW LEVEL SPACIOUS STUDENTS WORK AREA & LOW LEVEL 
SPACIOUS PASSAGES & LOW LEVEL SPACIOUS TEACHER'S 
INSTRUCTION AREA 

Then LOW LEVEL SPACIOUS classroom 

(RULE 10) HIGH LEVEL SPACIOUS STUDENTS WORK AREA 

If 120 x 60 cm. desk size 
Then HIGH LEVEL SPACIOUS STUDENTS WORK AREA 

Cause: a student's desk size is 120 x 60 em. for maximal sized students work area 

(RULE 11) MEDIUM LEVEL SPACIOUS STUDENTS WORK AREA 

If 100 x 60 cm. desk size 
Then MEDIUM LEVEL SPACIOUS STUDENTS WORK AREA 

Cause: a student's desk size is 100 x 60 cm. for medium sized students work area. 

(RULE 12) LOW LEVEL SPACIOUS STUDENTS WORK AREA 

If 80 X 60 cm. desk size 
Then LOW LEVEL SPACIOUS STUDENTS WORK AREA 



586 A MATHEMATICAL THEORY OF DESIGN 

Cause: a student's desk size of 80 X 60 cm. is used for minimal sized students work 
area. 

(RULE 13) HIGH LEVEL SPACIOUS PASSAGES 

If primary passage = 180 cm. & secondary passage = 
100 cm. 

Then HIGH LEVEL SPACIOUS PASSAGES 

Cause: for courses oriented for high level personnel (medium to high level 
executives) use maximum spacing (width) between blocks of tables (primary 
passage) and maximum space between rows of tables (secondary passage). 

(RULE 14) MEDIUM LEVEL SPACIOUS PASSAGES 

If primary passage = 150 cm. & secondary passage = 85 
cm. 

Then MEDIUM LEVEL SPACIOUS PASSAGES 

Cause: for courses oriented for medium level personnel (low level executives), use 
medium spacing between blocks of tables (primary passage) and space between rows 
of tables (secondary passage). 

(RULE 15) LOW LEVEL SPACIOUS PASSAGES 

If primary passage = 120 cm. & secondary passage = 70 
cm. 

Then LOW LEVEL SPACIOUS PASSAGES 

Cause: for courses oriented for low level personnel (standard courses), use minimal 
spacing between blocks of tables (primary passage) and space between rows of tables 
(secondary passage). 

(RULE 16) HIGH LEVEL SPACIOUS TEACHER'S INSTRUCTION AREA 

If 450 x 250 cm sized teacher'S instruction area 
Then HIGH LEVEL SPACIOUS TEACHER'S INSTRUCTION AREA 

Cause: for courses oriented for high level personnel (medium to high level 
executives), use maximal sized teacher's instruction area. 

(RULE 17) MEDIUM LEVEL SPACIOUS TEACHER'S INSTRUCTION AREA 

If 350 X 220 cm sized teacher's instruction area 
Then MEDIUM LEVEL SPACIOUS TEACHER'S INSTRUCTION AREA 



CASES IN EVOLUTIONARY DESIGN PROC;:ESSES 587 

Cause: for courses oriented for medium level personnel (low level executives), use 
medium sized teacher's instruction area. 

(RULE 18) LOW LEVEL SPACIOUS TEACHER'S INSTRUCTION AREA 

If 280 X 200 cm. sized teacher'S instruction area 
Then LOW LEVEL SPACIOUS TEACHER'S INSTRUCTION AREA 

Cause: for courses oriented for low level personnel (standard courses), use minimal 
sized teacher's instruction area. 

(RULE 19) HIGH LEVEL ACOUSTICS 

If acoustics walls with wood covered and graded 
ceiling 

Then HIGH LEVEL ACOUSTICS 

Cause: for courses oriented for medium to high level personnel (courses oriented for 
medium to high level executives), use high level acoustics, which provides high noise 
absorption and good hearing quality. 

(RULE 20) MEDIUM LEVEL ACOUSTICS 

If standard walls painted in acoustic paine 
Then MEDIUM LEVEL ACOUSTICS 

Cause: for courses oriented for low to medium level personnel (standard courses up 
to one's oriented for low level executives), use standard level acoustics, which 
provides normal noise absorption and standard hearing qUality. 

(RULE 21) GOOD ILLUMINATION 

If GOOD ILLUMINATION AT TEACHER I S INSTRUCTION AREA & 
GOOD ILLUMINATION AT STUDENTS WORK AREA 

Then GOOD ILLUMINATION 

Cause: (1) ILLUMINATION AT TEACHER'S INSTRUCTION AREA - high 
lighting intensity and angle at teacher's instruction area provide good visual ability 
students to teaching means; (2) ILLUMINATION AT STUDENTS WORK AREA
high lighting intensity and angle at student's desk provide good visual ability at 
student's desk for writing and reading activities. 

(RULE 22) GOOD ILLUMINATION AT TEACHER'S INSTRUCTION AREA 

If 2300 lumens fluorescent tubes & at 90 degree (ceiling to 
floor) 



588 A MATHEMATICAL THEORY OF DESIGN 

Then GOOD ILLUMINATION AT TEACHER'S INSTRUCTION AREA 

(RULE 23) GOOD ILLUMINATION AT STUDENTS WORK AREA 
If 400 LUX & 90 degree (ceiling to floor) 
Then GOOD ILLUMINATION AT STUDENTS WORK AREA 

(RULE 24) HIGH LEVEL FURNITURE 

If HIGH LEVEL FURNITURE AT TEACHER'S INSTRUCTION AREA 
&HIGH LEVEL FURNITURE AT STUDENTS WORK AREA 

Then HIGH LEVEL FURNITURE 

Cause: comfortable furniture for teacher and students create good concentration of 
teaching and studying. 

(RULE 25) MEDIUM LEVEL FURNITURE 

If MEDIUM LEVEL FURNITURE AT TEACHER'S INSTRUCTION 
AREA & MEDIUM LEVEL FURNITURE AT STUDENTS WORK AREA 

Then MEDIUM LEVEL FURNITURE 

(RULE 26) LOW LEVEL FURNITURE 

If LOW LEVEL FURNITURE AT TEACHER'S INSTRUCTION AREA & 
LOW LEVEL FURNITURE AT STUDENTS WORK AREA 

Then LOW LEVEL FURNITURE 

(RULE 27) HIGH LEVEL FURNITURE AT TEACHER'S INSTRUCTION AREA 

If HIGH LEVEL DESKS AT TEACHING INSTRUCTION AREA & 
HIGH LEVEL CHAIRS AT TEACHER'S INSTRUCTION AREA 

Then HIGH LEVEL FURNITURE AT TEACHER'S INSTRUCTION AREA 

(RULE 28) MEDIUM LEVEL FURNITURE AT TEACHER'S INSTRUCTION 
AREA 

If MEDIUM LEVEL DESKS AT TEACHING INSTRUCTION AREA & 
MEDIUM LEVEL CHAIRS AT TEACHER'S INSTRUCTION AREA 

Then MEDIUM LEVEL FURNITURE AT TEACHER'S INSTRUCTION 
AREA 

(RULE 29) LOW LEVEL FURNITURE AT TEACHER'S INSTRUCTION AREA 

If LOW LEVEL DESKS AT TEACHING INSTRUCTION AREA & LOW 
LEVEL CHAIRS AT TEACHER'S INSTRUCTION AREA 

Then LOW LEVEL FURNITURE AT TEACHER'S INSTRUCTION AREA 



CASES IN EVOLUTIONARY DESIGN PROCESSES 589 

(RULE 30) HIGH LEVEL DESKS AT TEACHING INSTRUCTION AREA 

If integrated wooden office system (selection from catalog serial 
numbers 950 - 954) 

Then HIGH LEVEL DESKS AT TEACHING INSTRUCTION AREA 

Cause: integrated wooden office system is a high quality desk. 

(RULE 31) MEDIUM LEVEL DESKS AT TEACHING INSTRUCTION AREA 

If standard wood office desk (selection from catalog serial 
numbers 300 - 311,840 - 841) 

Then MEDIUM LEVEL DESKS AT TEACHING INSTRUCTION AREA 

Cause: standard wood office desk is a medium quality desk. 

(RULE 32) LOW LEVEL DESKS AT TEACHING INSTRUCTION AREA 

If tin table (selecting from catalog serial numbers 600 - 604) 
Then LOW LEVEL DESKS AT TEACHING INSTRUCTION AREA 

Cause: tin desk is a common quality desk. 

(RULE 33) HIGH LEVEL CHAIRS AT TEACHER'S INSTRUCTION AREA 

If executive chair (selection from catalog serial numbers 202 - 215) 
Then HIGH LEVEL CHAIRS AT TEACHER'S INSTRUCTION AREA 

Cause: executive chair is a high quality chair. 

(RULE 34) MEDIUM LEVEL CHAIRS AT TEACHER INSTRUCTION AREA 

If secretary chair (selection from catalog serial numbers 101 - 118) 
Then MEDIUM LEVEL CHAIRS AT TEACHER'S INSTRUCTION AREA 

Cause: secretary chair is a medium quality chair. 

(RULE 35) LOW LEVEL CHAIRS AT TEACHER'S INSTRUCTION AREA 

If wai ting chair (selection from catalog serial numbers 119 -133 or 
134 -137) 

Then LOW LEVEL CHAIRS AT TEACHER'S INSTRUCTION AREA 

Cause: waiting chair is a common quality chair. 



590 A MATHEMATICAL THEORY OF DESIGN 

(RULE 36) HIGH LEVEL FURNITURE AT STUDENTS WORK AREA 

If HIGH LEVEL DESKS AT STUDENTS WORK AREA & HIGH LEVEL 
CHAIRS AT STUDENTS WORK AREA 

Then HIGH LEVEL FURNITURE AT STUDENTS WORK AREA 

(RULE 37) MEDIUM LEVEL FURNITURE AT STUDENTS WORK AREA 

If MEDIUM LEVEL DESKS AT STUDENTS WORK AREA & MEDIUM 
LEVEL CHAIRS AT STUDENTS WORK AREA 

Then MEDIUM LEVEL FURNITURE AT STUDENTS WORK AREA 

(RULE 38) HIGH LEVEL DESKS AT STUDENTS WORK AREA 

If common wooden desk (selection from catalog serial numbers 300 - 311 
or 840 - 841) 

Then HIGH LEVEL DESKS AT STUDENTS WORK AREA 

Cause: wooden desk is a high quality desk. 

(RULE 39) MEDIUM LEVEL DESKS AT STUDENTS WORK AREA 

If tin desk (selection from catalog serial numbers 600 - 604) 
Then MEDIUM LEVEL DESKS AT STUDENTS WORK AREA 

Cause: tin desk is a medium quality desk. 

(RULE 40) LOW LEVEL DESKS AT STUDENTS WORK AREA 

If custom made desks (hand made by special carpenter order) 
Then LOW LEVEL DESKS AT STUDENTS WORK AREA 

Cause: custom made desk (long desk with several computers) is a common quality 
desk. 

(RULE 41) HIGH LEVEL CHAIRS AT STUDENTS WORK AREA 

If executive chair (selection from catalog serial numbers 202 - 215) 
Then HIGH LEVEL CHAIRS AT STUDENTS WORK AREA 

Cause: executive chair is a high quality chair. 

(RULE 42) MEDIUM LEVEL CHAIRS AT STUDENTS WORK AREA 

If secretary chair (selection from catalog serial numbers 101 - 118) 



CASES IN EVOLUTIONARY DESIGN PROCESSES 591 

Then MEDIUM LEVEL CHAIRS AT STUDENTS WORK AREA 

Cause: secretary chair is a medium quality chair. 

(RULE 43) LOW LEVEL CHAIRS AT STUDENTS WORK AREA 

If waiting chair (selection from catalog serial numbers 119 -133 or 134 
-137) 

Then LOW LEVEL CHAIRS AT STUDENTS WORK AREA 

Cause: waiting chair is a common quality chair. 

(RULE 44) GOOD VISUAL CONTACT 

If 20 50 cm. platform's height & 13 m. visual 
distance 

Then GOOD VISUAL CONTACT 

Cause: the recommended teacher's platform height and visual distance (distance 
between teacher's board and the most remote desk) provide appropriate visual contact 
between the teacher and the students. 

(RULE 45) HIGH LEVEL EQUIPMENT 

If HIGH LEVEL STUDYING AND TEACHING EQUIPMENT & HIGH 
LEVEL AIR CONDITIONING 

Then HIGH LEVEL EQUIPMENT 

(RULE 46) MEDIUM LEVEL EQUIPMENT 

If MEDIUM LEVEL STUDYING AND TEACHING EQUIPMENT & 
MEDIUM LEVEL AIR CONDITIONING 

Then MEDIUM LEVEL EQUIPMENT 

(RULE 47) LOW LEVEL EQUIPMENT 

If LOW LEVEL STUDYING AND TEACHING EQUIPMENT & MEDIUM 
LEVEL AIR CONDITIONING 

Then LOW LEVEL EQUIPMENT 

(RULE 48) HIGH LEVEL STUDYING AND TEACHING EQUIPMENT 

If HIGH LEVEL TEACHER'S WRITING BOARD & HIGH LEVEL 
SLIDE VIEWER & HIGH LEVEL COMPUTER SYSTEM 

Then HIGH LEVEL STUDYING AND TEACHING EQUIPMENT 



592 A MATHEMATICAL THEORY OF DESIGN 

(RULE 49) MEDIUM LEVEL STUDYING AND TEACHING EQUIPMENT 

If MEDIUM LEVEL TEACHER'S WRITING BOARD & MEDIUM LEVEL 
SLIDE VIEWER & MEDIUM LEVEL COMPUTER SYSTEM 

Then MEDIUM LEVEL STUDYING AND TEACHING EQUIPMENT 

(RULE 50) LOW LEVEL STUDYING AND TEACHING EQUIPMENT 

If MEDIUM LEVEL TEACHER'S WRITING BOARD & MEDIUM LEVEL 
SLIDE VIEWER & LOW LEVEL COMPUTER SYSTEM 

Then LOW LEVEL STUDYING AND TEACHING EQUIPMENT 

(RULE 51) HIGH LEVEL TEACHER'S WRITING BOARD 

If white board with erasable markers 
Then HIGH LEVEL TEACHER'S WRITING BOARD 

Cause: white board with erasable markers in a high quality board that provides dust 
reduction, and is easy to use and colorful. 

(RULE 52) MEDIUM LEVEL TEACHER'S WRITING BOARD 

If standard chalk board 
Then MEDIUM LEVEL TEACHER'S WRITING BOARD 

Cause: standard chalk board is a common board that requires low maintenance cost. 

(RULE 53) HIGH LEVEL SLIDE VIEWER 

If common slide viewer & computerized slide viewer 
Then HIGH LEVEL SLIDE VIEWER 

Cause: common slide viewer & computerized slide viewer enable to view both 
simple and computerized slides, thus providing high quality teaching utility 
enhancement. 

(RULE 54) MEDIUM LEVEL SLIDE VIEWER 

If common slide viewer 
Then MEDIUM LEVEL SLIDE VIEWER 

Cause: common slide viewer provides common quality teaching utility enhancement. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 593 

(RULE 55) HIGH LEVEL COMPUTER SYSTEM-l 

If HIGH LEVEL PERSONAL COMPUTERS & HIGH LEVEL COMPUTER 
NETWORK 

Then HIGH LEVEL COMPUTER SYSTEM 

Cause: a suitable computer system is the integration of PC's and a network that meets 
the needs of teaching & software requirements. 

(RULE 56) MEDIUM LEVEL COMPUTER SYSTEM-I 

If MEDIUM LEVEL PERSONAL COMPUTERS & MEDIUM LEVEL 
COMPUTER NETWORK 

Then MEDIUM LEVEL COMPUTER SYSTEM 

(RULE 57) LOW LEVEL COMPUTER SYSTEM-I 

If LOW LEVEL PERSONAL COMPUTERS & MEDIUM LEVEL COMPUTER 
NETWORK 

Then LOW LEVEL COMPUTER SYSTEM 

(RULE 58) HIGH LEVEL COMPUTER SYSTEM-2 

If HIGH LEVEL PERSONAL COMPUTERS 
Then HIGH LEVEL COMPUTER SYSTEM 

Cause: the integration of PC's with a network is expensive. Thus, despite the need to 
connect PC's on a network that will enable network's study, a suitable choice might 
be to renounce the computer network installation. 

(RULE 59) MEDIUM LEVEL COMPUTER SYSTEM-2 

If MEDIUM LEVEL PERSONAL COMPUTERS 
Then MEDIUM LEVEL COMPUTER SYSTEM 

Cause: see "(RULE 58) HIGH LEVEL COMPUTER SYSTEM-2" 

(RULE 60) LOW LEVEL COMPUTER SYSTEM-2 

If LOW LEVEL PERSONAL COMPUTERS 

Then LOW LEVEL COMPUTER SYSTEM 

Cause: see "(RULE 58) HIGH LEVEL COMPUTER SYSTEM-2" 



594 A MATHEMATICAL THEORY OF DESIGN 

(RULE 61) HIGH LEVEL PERSONAL COMPUTERS 

If HIGH LEVEL RANDOM ACCESS MEMORY & HIGH LEVEL HARD 
DISK DRIVE & HIGH LEVEL CPU & HIGH LEVEL SCREEN 
CONTROLLER & HIGH LEVEL SCREEN SIZE & HIGH LEVEL 
KEYBOARD TYPE & HIGH LEVEL MOUSE TYPE 

Then HIGH LEVEL PERSONAL COMPUTERS 

(RULE 62) MEDIUM LEVEL PERSONAL COMPUTERS 

If MEDIUM LEVEL RANDOM ACCESS MEMORY & MEDIUM LEVEL HARD 
DISK DRIVE & MEDIUM LEVEL CPU & MEDIUM LEVEL SCREEN 
CONTROLLER & MEDIUM LEVEL SCREEN SIZE & MEDIUM LEVEL 
KEYBOARD TYPE & MEDIUM LEVEL MOUSE TYPE 

Then MEDIUM LEVEL PERSONAL COMPUTERS 

(RULE 63) LOW LEVEL PERSONAL COMPUTERS 

If LOW LEVEL RANDOM ACCESS MEMORY & LOW LEVEL HARD DISK 
DRIVE & LOW LEVEL CPU & MEDIUM LEVEL SCREEN CONTROLLER 
& LOW LEVEL SCREEN SIZE & MEDIUM LEVEL KEYBOARD TYPE & 
LOW LEVEL MOUSE TYPE 

Then LOW LEVEL PERSONAL COMPUTERS 

(RULE 64) HIGH LEVEL RANDOM ACCESS MEMORY 

If 32 megabytes RAM size 
Then HIGH LEVEL RANDOM ACCESS MEMORY 

Cause: 32 megabytes RAM provides high standard performance (the bigger the 
RAM, the higher the performance). 

(RULE 65) MEDIUM LEVEL RANDOM ACCESS MEMORY 

If 16 megabytes RAM size 
Then MEDIUM LEVEL RANDOM ACCESS MEMORY 

Cause: 16 megabytes RAM provides medium standard performance (the bigger the 
RAM, the higher the performance). 

(RULE 66) LOW LEVEL RANDOM ACCESS MEMORY 

If 8 megabytes RAM size 
Then LOW LEVEL RANDOM ACCESS MEMORY 



CASES IN EVOLUTIONARY DESIGN PROCESSES 595 

Cause: 8 megabytes RAM provides low standard performance (the bigger the RAM. 
the higher the performance). 

(RULE 67) HIGH LEVEL HARD DISK DRIVE 

If 1.7 gigabytes disk size 
Then HIGH LEVEL HARD DISK DRIVE 

Cause: 1.7 gigabytes hard disk drive provides high standard performance (the bigger 
the disk. the higher the performance). 

(RULE 68) MEDIUM LEVEL HARD DISK DRIVE 

If 1.1 gigabytes disk size 
Then MEDIUM LEVEL HARD DISK DRIVE 

Cause: 1.1 gigabytes hard disk drive provides medium standard performance (the 
bigger the disk. the higher the performance). 

(RULE 69) LOW LEVEL HARD DISK DRIVE 

If 850 megabytes disk size 
Then LOW LEVEL HARD DISK DRIVE 

Cause: 850 megabytes hard disk drive provides low standard performance (the bigger 
the disk. the higher the performance). 

(RULE 70) HIGH LEVEL CENTRAL PROCESSING UNIT 

If Pentium 200 MHz 
Then HIGH LEVEL CENTRAL PROCESSING UNIT (CPU) 

Cause: Pentium 200 MHz CPU provides very high standard performance of CPU 
(the faster the CPU. the higher the performance). 

(RULE 71) MEDIUM LEVEL CENTRAL PROCESSING UNIT-1 

If Pentium 133 MHz 
Then MEDIUM LEVEL CENTRAL PROCESSING UNIT (CPU) 

Cause: Pentium 133 MHz CPU provides high standard performance (the faster the 
CPU. the higher the performance). 



596 A MATHEMATICAL THEORY OF DESIGN 

(RULE 72) MEDIUM LEVEL CENTRAL PROCESSING UNIT-2 

If Pentium 120 MHz 
Then MEDIUM LEVEL CENTRAL PROCESSING UNIT(CPU) 

Cause: Pentium 120 MHz CPU provides medium standard performance (the faster 
the CPU, the higher the performance). 

(RULE 73) LOW LEVEL CENTRAL PROCESSING UNIT 

If Pentium 100 MHz 
Then LOW LEVEL CENTRAL PROCESSING UNIT (CPU) 

Cause: Pentium 100 MHz CPU provides low standard performance (the faster the 
CPU, the higher the performance). 

(RULE 74) HIGH LEVEL SCREEN CONTROLLER 

If 2 megabytes screen memory 
Then HIGH LEVEL SCREEN CONTROLLER 

Cause: 2 megabytes of screen controller memory provides high standard performance 
(the more megabytes of screen controller memory; the higher its performance). 

(RULE 75) MEDIUM LEVEL SCREEN CONTROLLER 

If 1 megabytes screen memory 
Then MEDIUM LEVEL SCREEN CONTROLLER 

Cause: 1 megabyte of screen controller memory provides medium standard 
performance (the more megabytes of screen controller memory; the higher its 
performance). 

(RULE 76) HIGH LEVEL SCREEN SIZE 

If 17" screen memory 
Then HIGH LEVEL SCREEN SIZE 

Cause: 17" screen size provides high standard vision performance (the bigger the 
screen the better the vision). 

(RULE 77) MEDIUM LEVEL SCREEN SIZE 

If 15" screen memory 
Then MEDIUM LEVEL SCREEN SIZE 



CASES IN EVOLUTIONARY DESIGN PROCESSES 597 

Cause: IS" screen size provides medium standard vision performance (the bigger the 
screen the better the vision). 

(RULE 78) LOW LEVEL SCREEN SIZE 

If 14 II screen memory 
Then LOW LEVEL SCREEN SIZE 

Cause: 14" screen size provides low standard vision performance (the bigger the 
screen the better the vision). 

(RULE 79) HIGH LEVEL KEYBOARD TYPE 

If 104 keyboard keys 
Then HIGH LEVEL KEYBOARD TYPE 

Cause: new standard keyboard requirements (for windows 95). 

(RULE 80) MEDIUM LEVEL KEYBOARD TYPE 

If 101 keyboard keys 
Then MEDIUM LEVEL KEYBOARD TYPE 

Cause: standard keyboard requirements. 

(RULE 81) HIGH LEVEL MOUSE TYPE 

If original Microsoft mouse 
Then HIGH LEVEL MOUSE TYPE 

Cause: original (ergonomic) Microsoft mouse provides high standard performance. 

(RULE 82) MEDIUM LEVEL MOUSE TYPE 

If Logi tech mouse 
Then MEDIUM LEVEL MOUSE TYPE 

Cause: LOGITECH mouse provides medium standard performance. 

(RULE 83) LOW LEVEL MOUSE TYPE 

If IBM compatible(3 keys) 
Then LOW LEVEL MOUSE TYPE 

Cause: IBM compatible (3 keys) mouse provides low standard performance. 



598 A MATHEMATICAL THEORY OF DESIGN 

(RULE 84) HIGH LEVEL COMPUTER NETWORK 

If Windows NT 
Then HIGH LEVEL COMPUTER NETWORK 

Cause: Windows NT is a high graphic interface computer network that requires low 
computer resources. 

(RULE 85) MEDIUM LEVEL COMPUTER NETWORK 

If Novel network 
Then MEDIUM LEVEL COMPUTER NETWORK 

Cause: Novel network is a low graphic interface computer network that requires low 
computer resources. 

(RULE 86) HIGH LEVEL AIR CONDITIONING. 

If 0.015 hp & 164 btu per square meter 
Then HIGH LEVEL AIR CONDITIONING 

Cause: large size classroom requires high standard air conditioning equipment, which 
creates a comfortable environment for the teacher and students by climate control. 

(RULE 87) MEDIUM LEVEL AIR CONDITIONING 

If 0.005 hp & 100 btu per square meter 
Then MEDIUM LEVEL AIR CONDITIONING 

Cause: medium size classroom requires medium standard air conditioning equipment. 

(RULE 88) HIGH LEVEL SAFETY 

If HIGH LEVEL SCREEN RADIATION SAFETY & HIGH LEVEL 
FIRE SAFETY 

Then HIGH LEVEL SAFETY 

(RULE 89) MEDIUM LEVEL SAFETY 

If MEDIUM LEVEL SCREEN RADIATION SAFETY & MEDIUM LEVEL 
FIRE SAFETY 

Then MEDIUM LEVEL SAFETY 



CASES IN EVOLUTIONARY DESIGN PROCESSES 599 

(RULE 90) LOW LEVEL SAFETY 

If LOW LEVEL SCREEN RADIATION SAFETY & MEDIUM LEVEL 
FIRE SAFETY 

Then LOW LEVEL SAFETY 

(RULE 91) HIGH LEVEL SCREEN RADIATION SAFETY 

If non-interlaced screen & low radiation screen 
Then HIGH LEVEL SCREEN RADIATION SAFETY 

Cause: non-interlaced screen & low radiation screen are used when there are high 
standards regarding radiation. 

(RULE 92) MEDIUM LEVEL SCREEN RADIATION SAFETY 

If low radiation screen 
Then MEDIUM LEVEL SCREEN RADIATION SAFETY 

Cause: low radiation screen is used when there are medium standards regarding 
radiation. 

(RULE 93) LOW LEVEL SCREEN RADIATION SAFETY 

If non-interlaced screen 
Then LOW LEVEL SCREEN RADIATION SAFETY 

Cause: non-interlaced screen is used when there are low radiation standards. 

(RULE 94) HIGH LEVEL FIRE SAFETY 

If 2 fire extinguishers (3 kg each) 
Then HIGH LEVEL FIRE SAFETY 

Cause: 2 fire extinguishers (3 kg each) are used when there are high standards 
regarding fire safety. 

(RULE 95) MEDIUM LEVEL FIRE SAFETY 

If 1 fire extinguishers (3 kg each) 
Then MEDIUM LEVEL FIRE SAFETY 

Cause: 1 . fire extinguisher (3 kg each) is used when there are normal standards 
regarding fire safety. 



600 A MA THEMA TICAL THEORY OF DESIGN 

(RULE 96) HIGH LEVEL PROTECTION AGAINST THEFT 

If HIGH LEVEL SAFE WINDOW & HIGH LEVEL SAFE DOOR & HIGH 
LEVEL SAFE EQUIPMENT 

Then HIGH LEVEL PROTECTION AGAINST THEFT 

(RULE 97) MEDIUM LEVEL PROTECTION AGAINST THEFT 

If MEDIUM LEVEL SAFE WINDOW & MEDIUM LEVEL SAFE DOOR & 
MEDIUM LEVEL SAFE EQUIPMENT 

Then MEDIUM LEVEL PROTECTION AGAINST THEFT 

(RULE 98) HIGH LEVEL SAFE WINDOW 

If bars 
Then HIGH LEVEL SAFE WINDOW 

(RULE 99) HIGH LEVEL SAFE DOOR 

If steel construction 
Then HIGH LEVEL SAFE DOOR 

(RULE 100) HIGH LEVEL SAFE EQUIPMENT 

If attached locks 
Then HIGH LEVEL SAFE EQUIPMENT 

(RULE 101) MEDIUM LEVEL SAFE WINDOW 

If alarm 
Then MEDIUM LEVEL SAFE WINDOW 

(RULE 102) MEDIUM LEVEL SAFE DOOR 

If regular wood door 
Then MEDIUM LEVEL SAFE DOOR 

(RULE 103) MEDIUM LEVEL SAFE EQUIPMENT 

If locked cabinets 
Then MEDIUM LEVEL SAFE EQUIPMENT 



CASES IN EVOLUTIONARY DESIGN PROCESSES 

20.3.3 COMPUTER CLASSROOM SYNTHESIS USING THE DESIGN 
SEARCH ALGORITHM (SEE CHAPTER 10.3) 

601 

Assume that the designer is faced with the problem of designing a high level 
computer classroom ('10)' Table 20.3 shows part of the design process generated in 

the course of searching for a solution to the computer classroom design problem. 

Table 20.3 The Design Search Algorithm Applied to the 
omputer assroom eSlgn ro C CI D . P bl em 

PROCESS Attributes Attributes Existing in Candidate Selected 
SlEP Existing in CLOSE Unused Production 

OPEN Production Rule 
Rules (highest score) 

1 '10 0 1 1 

2 '16· '15· '30· '10 4 4 

'25 
3 'I· '18· '4 '16· '10 21 21 

'5· '35· '15 

'30. '25 
4 '2· '3· '18· 'I. '16· '10 22 22 

'4' '5· '35· 

'15· '30· '25 
5 m2I' m40· '2· 'I· '16· '10 23 23 

'3· '18· '4· 

'5· '35· 'IS· 

'30, '25 
6 m2I' m4Q. '3· '2· 'I' '16· '10 24 24 

m25· '18· 

'4' '5· '35· 

'15· '30· '25 
7 m2I· m40· '18· '3· '2· 'I' '16· 27 27 

m25· '20· '10 

'19· '4· '5· 

'35' '15· '30· 

'25 
8 m2I· m4Q. '20' '18· '3· '2. 'I· 30 30 

m25· '13· '16· '10 

'8· '19· '4· 



602 A MATHEMATICAL THEORY OF DESIGN 

TS· T3S· TIS· 

T30. T2S 

9 m2I' m4Q. TI3· T2Q. TIS· T3· 33 33 

m25· m4I· T2. TI. T16. TIO 

TS· T19· T4· 

TS· T3S· TIS· 

T30. T2S 

10 m21· m4Q. TS· T13' T20· TIS· 36 36 

m2S' m41· T3. T2. TI. T16. TIO 

m3S' T19. T4. 

TS· T3S· TIS· 

T30. T25 

II m21· m4Q. T19· TS· T13· T20· 38 38 

m2S· m41· TIS. T3. T2. TI. T16. 

m3S. T14. T9. TIO 

T4· TS· T3S· 

TIS. T30. T2S 

12 m21· m40· T14· T19· TS· T13· 41 41 

m2S· m41' T20. TIS. T3. T2. TI. 

m3S· m3S· T16. TIO 

T9· T4· TS· 

T3S. TIS. T30. 

T25 

13 m21· m4Q. Tg. T14· T19· TS· 44 44 

m2S· m41' T13· T20· TIS· T3· 

m3S· m3S· T2. TI. T16' TIO 

T4· TS· T3S· 

TIS. T30. T25 

14 m21' m4Q. T4. T9. T14. T19. TS. 19 19 

m2S· m41· T13' T20· TIS· T3 • 

m3S· m3S. T2. TI. T16. TIO 

m20. TS' T35. 

TIS. T30' T25 

15 m21· m4Q. TS. T4. T9. T14' T19. 7 7 

m25· m41· TS· T13· T20· TIS· 



CASES IN EVOLUTIONARY DESIGN PROCESSES 603 

m3S' m3S· T3. T2. TI' T16' TIO 

m20· m30· 

T3S. TIS. T30. 

T2S 

16 m21' m4Q. T3S. TS. T4. T9. T14. 10 10 

m2S' m41' T19· TS' T13· T20. 

m3S' m3S' TIS. T3' T2. TI' T16. 

m20' m30· TIO 

T3S. T36. T37. 

TIS. T30. T2S 

17 m21' m4Q. T3S. T3S. TS. T4. T9. 13 13 

m2S· m41· T14· T19· TS· T13· 

m3S· m3S· T20. TIS. T3. T2. TI. 

m20· m30· T16. TIO 

mil' T36· 

T37. TIS. T30. 

T2S 

18 m21' m4Q. T36· T3S· T3S· TS· 16 16 

m2S' m41' T4. T9. T14. T19. TS. 

m3S· m3S' T13· T20· TIS· T3· 

m20· m30· T2. TI. T16. TIO 

mil· mS4· 

T37. TIS. T30. 

T2S 

19 m21· m4Q. T37' T36· T3S· T3S· 45 45 

m2S. m41· TS. T4. T9. T14. T19. 

m3S· m3S· TS· T13· T20· TIS. 

m20' m30· T3' T2. TI' T16. TIO 

mil' mS4· 

m26· TIS· 

T30. T2S 

(partial 
consistent 
solution) 



604 A MATHEMATICAL THEORY OF DESIGN 

20.4 TIRE DESIGN EXAMPLE 

Tires are rubber-and-fabric devices that, when attached to the wheels of a vehicle, 
provide the contact between the vehicle and the surface over which it travels. Tires 
may be either solid or pneumatic (air-filled) in structure, with the latter by far the 
most prevalent today. Each modern automotive tire supports 50 times its own 
weight. Compressed air within the tire carries 90 percent of the load, with the tire's 
complex structure of rubber and fabric carrying the remaining 10 percent. 

Construction 

The most visible parts of a tire are the tread, which grips the road surface, and the 
supporting sidewalls, which run from tread to wheel rim. Tread patterns are 
especially important when the road is wet. The forward portion of a tire's contact 
patch wipes away water so that the rest of the patch grips a drier surface. Continuous 
channels from the center to the edge of the tread direct the water outward. Without a 
carefully designed tread, water would form a wedge and cause the tire to lift off the 
road. This so-called aquaplaning phenomenon is one reason that smooth tires 
(whether they are intentionally smooth racing slicks or regular tires that have been 
worn bald) are dangerous in wet conditions. Snow tires and off-highway tires have 
deeper treads or separate cleats that bite through snow, slush, or dirt to grip the 
firmer surface beneath. 

A tire's sidewalls have two conflicting purposes: they flex up and down, helping 
cushion the vehicle from road irregularities, yet they must be relatively rigid 
horizontally in order to transfer loads of steering, braking, and acceleration. At their 
innermost edges, sidewalls meet the tire's beads (hoops of steel wire covered with 
hard rubber). Each bead reinforces the interface between the tire and wheel-rim and 
fixes the tire's inner diameter. 

Reinforcing cords, which give the tire its strength, are arranged beneath the tire's 
surface. The three classes of modern tires can be distinguished by the direction of the 
cords: (1) a bias-ply tire (the earliest) has two or more plies of cord running across 
the tire at an angle, or bias, from the tire's centerline; the cords thus form a crisscross 
pattern from bead to bead; (2) in a belted-bias tire, reinforcing belts are placed 
between the plies; (3) a radial tire has reinforcing cords running hoop-fashion from 
bead to bead. Like a bias-belted tire, a radial tire has reinforcing belts under its tread, 
but radial belt cords are angled closer to the tire's centerline. The lack of bias 
sidewall reinforcement makes a radial's sidewalls more flexible. This gives the tread 
a better grip and longer life; it also gives the radial tire its characteristic underinflated 
look. 

The tire construction begins with the sidewall. The different rubber compounds 
necessitated by the different requirements of each part of the tire are brought together 
to form sidewall-tread-sidewall strips. Beads are formed from wound and rubber
coated steel wires. Steel or synthetic-fiber fabric is rubber-coated and cut either at an 
angle or straight across, depending on tire type. All these materials are assembled for 
hand lay-up on a rotating, collapsible drum. The operator carefully aligns reinforcing 



CASES IN EVOLUTIONARY DESIGN PROCESSES 605 

fabric over a rubber liner. An error of 1 degree in cord angle is noticeable; a 2 degree 
error can cause a tire to be scrapped. Next, the beads and tread-sidewall strip are 
added, and the result is an uncured, or green, tire. A heated press molds the tread 
pattern and vulcanizes the rubber. 

Tire Dimensions 

The basic tire dimensions are defined as follows: 

• Rim Width - the linear distance between the flanges of the rim. 
• Overall Diameter - the diameter of an inflated tire at the outermost surface of 

the tread. 
• Rim Diameter - the diameter at the intersection of the planes of the rim bead seat 

and the rim flange. 
• Section Height - Half the difference between the overall diameter and the rim 

diameter. 
• Section Width - the linear distance between the outsides of the sidewalls of an 

inflated tire excluding elevations due to labeling (markings), decorations, or 
protective bands or ribs. 

• Aspect Ratio - one hundred times the ratio of the section height to the section 
width of the tire on its rim. 

Tire Designation 

Tires come in many sizes, each described by a coded sequence. For example, the 
Tire Size Designation P 165/75 R 13 (approved by the International Standards 
Organization) is a passenger-car (P), radial (R), 165 mm. section width, 75 percent 
aspect ratio (profile), and a 13 in. rim diameter code. The number 75 describes the 
tire's cross-sectional profile: its height is 75 percent of its width; the cross-section of 
60 percent aspect ratio would be somewhat more squat. Because of different 
handling characteristics, tires of differing size or type should not be mixed. 

In addition to the Tire Size Designation, a tire may be identified by a Service 
Description consisting of a load index and a speed symbol. The load index is a 
numerical code associated with the maximum load a tire can carry for speed up to 
and including 210 KmIh under the basic inflation pressure of 2.5 bar. The inflation 
pressure means the pressure taken with the tire at ambient temperature and does not 
include any pressure build-up due to tire usage. The speed symbol indicates the 
speed limit for the tire. Speed limit means the maximum speed of which the car is 
capable. The common load indices, speed symbols and the corresponding load and 
speed capabilities of the vehicle are shown in Table 2004. 



606 A MATHEMATICAL THEORY OF DESIGN 

Table 20.4 Load Capabilities and Speed Limits Corresponding 
to the Service Description 

H - 210 89 - 580 
Speed Symbol u - 200 Load Index 88 - 560 

- T - 190 - 87 - 545 
maximum Kmlh S - 180 maximum Kg 86 - 530 

R - 170 per tire 85 - 515 
Q - 160 84 - 500 
p - 150 83 - 487 
N - 140 82 - 475 
M - 130 81 - 462 

80 - 450 
79 - 437 
78 - 425 
77 - 412 
76 - 400 
75 - 387 

20.4.1 THE SPECIFICA TION AND DESIGN DESCRIPTION PROPERTIES 

The Design Description Properties 

The design structural attributes specify the configuration of a tire: 

(ml) 135 or 145 or 155 
or 165 width symbol 

(m2) 195 or 185 or 175 
or 165 width symbol 

(m3) 215 or 205 or 195 
width symbol 

(m4) 50 or 55 or 60 

aspect ratio symbol 

(ms) 60 or 65 or 70 
aspect ratio symbol 

(m6) 80 or 79 or 78 or 77 

or 76 or 75 load 
capacity symbol 

(m7) 82 or 80 or 70 aspect 
ratio symbol 

(mg) 85 or 84 or 83 or 82 
or 81 or 80 load 
capacity symbol 

(m9) 89 or 88 or 87 or 86 

or 85 load capacity 
symbol 

(mID) H or U or T speed 

symbol 

(mll) Q or P or N or M 
speed symbol 

(mI2) T or S or R or Q 

speed symbol 



CASES IN EVOLUTIONARY DESIGN PROCESSES 607 

The Specification Properties 

The following functional attributes describe the requirements and constraints: 

(rl) DRIVING COMFORT 

(~) EXECUTIVE DRIVING 

(r3) FAMILY DRIVING 

(~) GOOD TRACTION 

(~) HIGH ASPECT RATIO 

(~) HIGH ASPECT RATIO 

(r7) HIGH COMFORT 

(~) HIGH DRIVING COMFORT 

(r9) HIGH DRIVING SPEED 

(rIO) HIGH LOAD CAPABILITY 

(rll) HIGH LOAD CAPACITY 

(r12) HIGH SAFETY 

(r13) HIGH SPEED CAPABILITY 

(r14) HIGH TRACTION 

(rIS) HIGH WIDTH 

(rI6) LONG DISTANCE DRIVING 

(r17) LOW ASPECT RATIO 

(rI8) LOW FUEL CONSUMPTION 

(rI9) LOW NOISE 

(r20) LOW WIDTH 

(r21) LOW ASPECT RATIO 

(r22) LOW DRIVING SPEED 

(r23) LOW FUEL CONSUMPTION 

(r24) LOW LOAD CAPABILITY 

(r2S) LOW NOISE 

(~6) LOW SPEED CAPABILITY 

(r27) LOW WIDTH 

(r28) MATERIAL 

TRANSPORTATION 

(r29) MEDIUM WIDTH 

(r30) MEDIUM ASPECT RATIO 

(r31) MEDIUM DRIVING SPEED 

(r32) MEDIUM LOAD CAPABILITY 

(r33) MEDIUM LOAD CAPACITY 

(r34) MEDIUM NOISE 

(r3S) MEDIUM SPEED 

CAPABILITY 

(r36) MEDIUM TRACTION 



608 

(r37) MEDIUM WIDTH 

(r38) REGULAR COMFORT 

(r39) REGULAR DRIVING 

COMFORT 

20.4.2 THE PRODUCTION RULES 

A MATHEMATICAL THEORY OF DESIGN 

(r~) SPORT DRIVING 

(r41) TAXICAB 

(r42) URBAN DRIVING 

A portion of the domain-specific knowledge relevant to the tire design domain is 
expressed in terms of the following production rules: 

(RULE 1) HIGH ASPECT RATIO 

If the tire has 82 or 80 or 70 aspect ratio symbol 
Then the tire has a HIGH ASPECT RATIO 

(RULE 2) HIGH LOAD CAPABILITY 

If the tire has 89 or 88 or 87 or 86 or 85 load capacity 
symbol 

Then the tire has a HIGH LOAD CAPABILITY 

(RULE 3) HIGH SPEED CAPABILITY 

If the tire has H or U or T speed symbol 
Then the tire has a HIGH SPEED CAPABILITY 

(RULE 4) HIGH WIDTH 

If the tire has 215 or 205 or 195 width symbol 
Then the tire has a HIGH WIDTH 

(RULE 5) LOW WIDTH 

If the tire has 135 or 145 or 155 or 165 width symbol 
Then the tire has a LOW WIDTH 

(RULE 6) LOW ASPECT RATIO 

If the tire has 50 or 55 or 60 aspect ratio symbol 
Then the tire has a LOW ASPECT RATIO 



CASES IN EVOLUTIONARY DESIGN PROCESSES 609 

(RULE 7) LOW LOAD CAPABILITY 

If the tire has 80 or 79 or 78 or 77 or 76 or 75 load 
capacity symbol 

Then the tire has a LOW LOAD CAPABILITY 

(RULE 8) LOW SPEED CAPABILITY 

If the tire has Q or P or N or M speed symbol 
Then the tire has a LOW SPEED CAPABILITY 

(RULE 9) MEDIUM LOAD CAPABILITY 

If the tire has 85 or 84 or 83 or 82 or 81 or 80 load 
capacity symbol 

Then the tire has a MEDIUM LOAD CAPABILITY 

(RULE 10) MEDIUM ASPECT RATIO 

If the tire has 60 or 65 or 70 aspect ratio symbol 
Then the tire has a MEDIUM ASPECT RATIO 

(RULE 11) MEDIUM SPEED CAPABILITY 

If the tire has T or S or R or Q speed symbol 
Then the tire has a MEDIUM SPEED CAPABILITY 

(RULE 12) MEDIUM WIDTH 

If thetirehas195 or 185 or 175 or 165 width symbol 
Then the tire has a MEDIUM WIDTH 

(RULE 13) MEDIUM TRACTION 

If the tire has MEDIUM WIDTH & LOW ASPECT RATIO & MEDIUM 
SPEED CAPABILITY 

Then the car has MEDIUM TRACTION 

(RULE 14) HIGH LOAD CAPACITY 

If the tire has HIGH LOAD CAPABILITY & HIGH WIDTH 
Then the car has HIGH LOAD CAPACITY 



610 A MATHEMATICAL THEORY OF DESIGN 

(RULE 15) HIGH TRACTION 

If the tire has HIGH WIDTH & LOW ASPECT RATIO & HIGH SPEED 
CAPABILITY 

Then the car has HIGH TRACTION 

(RULE 16) HIGH DRIVING SPEED 

If the tire has HIGH WIDTH & LOW ASPECT RATIO & HIGH SPEED 
CAPABILITY 

Then the car has HIGH DRIVING SPEED 

(RULE 17) LOW NOISE 

If the tite has LOW WIDTH & HIGH ASPECT RATIO 

Then the car has LOW NOISE 

(RULE 18) LOW FUEL CONSUMPTION 

If the tire has LOW WIDTH & MEDIUM ASPECT RATIO 
Then the car has LOW FUEL CONSUMPTION 

(RULE 19) LOW DRIVING SPEED 

If the tire has LOW WIDTH & MEDIUM ASPECT RATIO & LOW SPEED 
CAPABILITY 

Then the car has LOW DRIVING SPEED 

(RULE 20) MEDIUM DRIVING SPEED 

If the tire has MEDIUM SPEED CAPABILITY & MEDIUM WIDTH & 
MEDIUM ASPECT RATIO 

Then the car has MEDIUM DRIVING SPEED 

(RULE 21) MEDIUM LOAD CAPACITY 

If the tire has MEDIUM LOAD CAPABILITY & MEDIUM WIDTH 

Then the car has MEDIUM LOAD CAPACITY 

(RULE 22) MEDIUM NOISE 

If the tire has MEDIUM WIDTH & MEDIUM ASPECT RATIO 

Then the car has MEDIUM NOISE 



CASES IN EVOLUTIONARY DESIGN PROCESSES 

(RULE 23) REGULAR DRIVING COMFORT 

If the tire has MEDIUM WIDTH & MEDIUM ASPEC'!' RATIO 
Then the car has REGULAR DRIVING COMFORT 

(RULE 24) HIGH DRIVING COMFORT 

If the tire has HIGH ASPECT RATIO & HIGH WIDTH 
Then the car has HIGH DRIVING COMFORT 

(RULE 25) HIGH SAFETY 

If the car has HIGH TRACTION 
Then the car has HIGH SAFETY 

(RULE 26) HIGH COMFORT 

If the car has HIGH DRIVING COMFORT & LOW NOISE 
Then the car has HIGH COMFORT 

(RULE 27) LONG DISTANCE DRIVING 

611 

If the car has MEDIUM DRIVING SPEED & LOW NOISE & HIGH 
DRIVING COMFORT 

Then the car enables LONG DISTANCE DRIVING 

(RULE 28) REGULAR COMFORT 

If the car has MEDIUM NOISE & REGULAR DRIVING COMFORT 
Then the car has REGULAR COMFORT 

(RULE 29) SPORT DRIVING 

If the tire has LOW ASPECT RATIO & HIGH WIDTH & the car has HIGE 
DRIVING SPEED 

Then the car is used for SPORT DRIVING 

(RULE 30) URBAN DRIVING 

If the car has LOW DRIVING SPEED & DRIVING COMFORT & LOW 
FUEL CONSUMPTION 

Then the car is used for URBAN DRIVING 



612 A MATHEMATICAL THEORY OF DESIGN 

(RULE 31) FAMILY DRIVING 

If the car has HIGH COMFORT & GOOD TRACTION & MEDIUM 

DRIVING SPEED & MEDIUM LOAD CAPACITY 
Then the car is used for FAMILY DRIVING 

(RULE 32) EXECUTIVE DRIVING 

If the car has HIGH COMFORT & HIGH DRIVING SPEED & MEDIUM 
LOAD CAPACITY 

Then the car is used for EXECUTIVE DRIVING 

(RULE 33) MATERIAL TRANSPORTATION 

If the car has HIGH LOAD CAPACITY & LOW DRIVING SPEED & 
REGULAR COMFORT 

Then the car is used for MATERIAL TRANSPORTATION 

(RULE 34) TAXICAB 

If the car has HIGH DRIVING COMFORT & LOW FUEL CONSUMPTION 

& LONG DISTANCE DRIVING 
Then the car is used as TAXICAB 

20.4.3 TIRE SYNTHESIS USING THE DESIGN SEARCH ALGORITHM 
(SEE CHAPTER 10.3) 

Assume that the designer is faced with the problem of designing a tire for a car that 
is used for material transportation (r28)' Table 20.5 shows the process states 

generated while searching for a solution to the tire design problem. As shown in 
Table 20.5 (process step 13), the functional requirement r28 cannot be satisfied. This 

situation is likely to occur when the number of structural attributes (in this case, the 
tire's structural properties) in an artifact (i.e., automobile) is much less than the 
number of functional requirements. In this case, the inconsistency may be resolved 
by the addition of new design attributes (e.g., engine structural properties) to make 
the number of structural attributes equal to the number of functional requirements. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 613 

T bl 205 D . S a e . eSlgn earc h Al . h A r d h F kn T k D . P bl Igont m ~ppl1e to t e or 1 t ruc eSlgn ro em 
PROCESS Attributes Existing Attributes Existing in Candidate Selected 
SlEP in OPEN CLOSE Unused Production 

Production Rule 
Rules (highest score) 

1 r28 0 33 33 

2 rll. r22. r38 r28 14 14 

3 rIO' riS' r22. r38 rll. r28 2 2 

4 ~. rlS· r22. rIO' rll. r28 4 4 

r38 

5 ~. m3· r22· riS. rIO. rll' r28 19 19 

r38 

6 ~. m3' r27 • r22 • riS. rIO. rll' 5 5 

r30' r26. r38 r28 

7 I~. m3· mi. r27 • r22 • riS' rIO' 10 10 

r30. r26. r38 rll. r28 

8 ~. m3. mi' r30. r27' r22. riS' 8 8 

mS. r26. r38 rIO' rll' r28 

9 ~. m3' mi' r26. r30. r27. r22· 28 28 

mS. mil' r38 riS. rIO. rll. r28 

10 ~. m3' mi. r38' r26' r30 • r27 • 22 22 

mS. mil. r34' r22 • rlS· rIO· rll • 

r31 r28 

11 ~. m3' mi. r34. r38' r26. r30. 12 12 

mS· mil' r29. r27 • r22 • riS. rIO. 

r31 rll. r28 

12 ~. m3· mi. r29 • r34. r38' r26. 23 23 

mS. mil' m2. r30' r27' r22. rlS· 

r31 rIO' rll' r28 

13 ~. m3· mi· r31' r29. r34. r38· CONFLICT RESOLUTION 
(selecting only one structural 

mS· mil' m2 r26. r30' r27' r22 • attribute) 
(mi. m2. & m3 riS. rIO. rll' r28 

are inconsistent) 

14 ~. m3. mS· r31' r29. r34. r38· STOP 

mil (consistent r26. r30' r27' r22· 
solution) riS. rIO. rll' r28 



614 A MATHEMATICAL THEORY OF DESIGN 

20.5 FASTENER DESIGN EXAMPLE 

The design of mechanical fasteners is a common design problem in the realm of 
mechanical engineering (see Chapter 3). The almost infinite variety of mechanical, 
over two million different kinds, has caused some manufacturers who have large 
assemblies to carefully re-evaluate the function of each fastener, with the view of 
better standardization. Fasteners may be divided into five main types: threaded, 
rivets, washers and retaining rings, pin fasteners, and quick-operating fasteners. 

20.5.1 THE SPECIFICATION AND DESIGN DESCRIPTION PROPERTIES 

The Design Description Properties 

The design description properties specify the configuration of the actual fasteners: 

(ml) 5 sided head 

(m2) alloy 

(m4) aluminum alloy 

(ms) break away head 

(m6) chamfer point 

(m7) coarse thread 

(mS) copper alloy 

(~) cotter pin 

(mlO) fine thread 

(mil) hexagon driving recess 

(mI2) hexagon head 

(mI3) internal wrenching 
hex socket 

(mI4) non-metallic material 

(mI6) Phillips driving recess 

(ml7) Phillips head 

(mIS) Phillips slot 

(mI9) plug in socket 

(m20) slot driving recess 

(m21) spanner head 

(m22) stainless steel 

(m23) thread that was rolled 
after heat treatment 

(m24) titanium 

(m~) twelve point head bolt 

(m26) washer 

(m27) wire 



CASES IN EVOLUTIONARY DESIGN PROCESSES 615 

The Specification Properties 

The following functional attributes describe the requirements and constraints: 

(rl) BOLT TYPE 

(~) CORROSION RESISTANCE 

(~) DIFFICULTY OF 
DISASSEMBLY 

(~) EASE OF DISASSEMBLY 

(~) ELECTRICAL AND 
THERMAL CONDUCTIVITY 

(~) HIGH SHEAR STRENGTH 

(ry) HIGH TENSILE STRENGTH 

(rg) LOW WEIGHT 

(r9) PRECISION 

(rIO) RESISTANT SCREW HEAD 

(rll) RETRACTIBILITY 

(r12) RIVET TYPE 

(rl3) ROTARY MODE 

(~4) SMALL HEAD CLEARANCE 

20.5.2 THE PRODUCTION RULES 

(rIS) STANDARD DRIVING 
RECESS 

(rI6) STRENGTH TO WEIGHT 
RATIO 

(rl7 ) USED FOR FATIGUE 
LOADING 

(rig) USED IN AIRCRAFT 
INDUSTRY 

(rI9) USED IN ELECTRICAL 
INDUSTRY 

(r20) USED IN HIGH 
OPERATION TEMPERATURE 

(r21) USED IN VIBRATING 
ATMOSPHERE 

(~2) USES PNEUMATIC WRENCH 

(~3) USES PNEUMATIC WRENCH 

(~4) USES SPECIAL TOOLS 
FOR TAMPER 

A portion of the domain-specific knowledge relevant to the fastener design domain is 
expressed in terms of the rules presented as follows: 

(RULE 1) LOWWEIGHT-l 

If the fastener is made of aluminum alloy 



616 A MATHEMATICAL THEORY OF DESIGN 

Then the fastener has LOW WEIGHT 

(RULE 2) LOW WEIGHT-2 

If the fastener is made of t i tani urn 
Then the fastener has LOW WEIGHT 

(RULE 3) LOW WEIGHT-3 

If the fastener is made of non-metallic material 
Then the fastener has LOW WEIGHT 

(RULE 4) AIRCRAFT 

If the fastener has HIGH TENSILE STRENGTH & uses PNEUMATIC 

WRENCH & has LOW WEIGHT 

Then the fastener can be used in the AIRCRAFT industry 

(RULE 5) SMALL HEAD CLEARANCE 

If the fastener has internal wrenching hex socket 
Then the fastener has SMALL HEAD CLEARANCE 

(RULE 6) ROTARY MODE-I 

If the fastener has coarse thread & Phillips driving recess 
Then the fastener has ROTARY MODE 

(RULE 7) ROTARY MODE-2 

If the fastener has coarse thread & slot driving recess 
Then the fastener has ROTARY MODE 

(RULE 8) ROTARY MODE-3 

If the fastener has coarse thread & hexagon driving recess 
Then the fastener has ROTARY MODE 

(RULE 9) CORROSION RESIST ANCE-l 

If the fastener is made of aluminum alloy 
Then the fastener has CORROSION RESISTANCE 



CASES IN EVOLUTIONARY DESIGN PROCESSES 617 

(RULE 10) CORROSION RESIST ANCE-2 

If the fastener is made of t i tani urn 
Then the fastener has CORROSION RESISTANCE 

(RULE 11) CORROSION RESISTANCE-3 

If the fastener is made of non-metallic material 
Then the fastener has CORROSION RESISTANCE 

(RULE 12) DIFFICULTY OF DISASSEMBLY 

If the fastener is RIVET TYPE & has RESISTANT SCREW HEAD & uses 
SPECIAL TOOLS FOR TAMPER 

Then the fastener has DIFFICULTY OF DISASSEMBLY 

(RULE 13) STANDARD DRIVING RECESS-l 

If Phillips driving recess 
Then the fastener has STANDARD DRIVING RECESS 

(RULE 14) STANDARD DRIVING RECESS-2 

If hexagon driving recess 
Then the fastener has STANDARD DRIVING RECESS 

(RULE 15) STANDARD DRIVING RECESS-3 

If slot driving recess 
Then the fastener has STANDARD DRIVING RECESS 

(RULE 16) EASE OF DISASSEMBLY 

If BOLT TYPE & ROTARY MODE & STANDARD DRIVING RECESS 
Then the fastener has EASE OF DISASSEMBLY 

(RULE 17) ELECTRICAL 

If the fastener has ELECTRICAL AND THERMAL CONDUCTIVITY 

Then the fastener is used in the ELECTRICAL industry 

(RULE 18) ELECTRICAL AND THERMAL CONDUCTIVITY-l 

If the fastener is made of copper alloy 
Then the fastener has ELECTRICAL AND THERMAL CONDUCTIVITY 



618 A MATHEMATICAL THEORY OF DESIGN 

(RULE 19) ELECTRICAL AND THERMAL CONDUCTIVITY-2 

If the fastener is made of t i tani urn 
Then the fastener has ELECTRICAL AND THERMAL CONDUCTIVITY 

(RULE 20) ELECTRICAL AND THERMAL CONDUCTIVITY-3 

If the fastener is made of stainless steel 
Then the fastener has ELECTRICAL AND THERMAL CONDUCTIVITY 

(RULE 21) ELECTRICAL AND THERMAL CONDUCTIVITY-4 

If the fastener is made of non-metallic material 
Then the fastener has ELECTRICAL AND THERMAL CONDUCTIVITY 

(RULE 22) FATIGUE LOADING 

If the fastener has thread that was rolled after heat 
treatment 

Then the fastener is used for FATIGUE LOADING 

(RULE 23) PNEUMATIC WRENCH 

If the fastener has twelve point head bolt 
Then the fastener uses PNEUMATIC WRENCH 

(RULE 24) PRECISION 

If the fastener has fine thread & Phillips head 
Then the fastener has PRECISION 

(RULE 25) RESISTANT SCREW HEAD 

If the fastener has break away head 
Then the fastener has RESISTANT SCREW HEAD 

(RULE 26) RETRACTIBILITY 

If the fastener has Phillips slot 
Then the fastener has RETRACTIBILITY 

(RULE 27) RIVET TYPE 

If the fastener has chamfer point 
Then the fastener is RIVET TYPE 



CASES IN EVOLUTIONARY DESIGN PROCESSES 619 

(RULE 28) HIGH SHEAR STRENGTH 

If the fastener is made of stainless steel 
Then the fastener has HIGH SHEAR STRENGTH 

(RULE 29) STRENGTH TO WEIGHT RA TIO-l 

If the fastener is made of t i tani urn 
Then the fastener has STRENGTH TO WEIGHT RATIO 

(RULE 30) STRENGTH TO WEIGHT RATIO-2 

If the fastener is made of aluminum 
Then the fastener has STRENGTH TO WEIGHT RATIO 

(RULE 31) STRENGTH TO WEIGHT RATIO-3 

If the fastener is made of alloy 
Then the fastener has STRENGTH TO WEIGHT RA'rro 

(RULE 32) HIGH OPERATION TEMPERATURE-l 

If the fastener is made of ti tanium 
Then the fastener is used in HIGH OPERATION TEMPERATURE 

(RULE 33) HIGH OPERATION TEMPERATURE-2 

If the fastener is made of stainless steel 
Then the fastener is used in HIGH OPERATION TEMPERATURE 

(RULE 34) HIGH OPERATION TEMPERATURE-3 

If the fastener is made of non-metallic material 
Then the fastener is used in HIGH OPERATION TEMPERATURE 

(RULE 35) HIGH TENSILE STRENGTH 

If the fastener is made of stainless steel & has hexagon head 
Then the fastener has HIGH TENSILE STRENGTH 

(RULE 36) SPECIAL TOOLS FOR TAMPER-l 

If the fastener has plug in socket & 5 sided head 
Then the fastener needs SPECIAL TOOLS FOR TAMPER 



620 A MATHEMATICAL THEORY OF DESIGN 

(RULE 37) SPECIAL TOOLS FOR TAMPER-2 

If the fastener has plug in socket & spanner head 
Then the fastener needs SPECIAL TOOLS FOR TAMPER 

(RULE 38) VIBRATING ATMOSPHERE-l 

If the fastener has nut & cotter pin & fine thread & washer 
Then the fastener is used in VIBRATING ATMOSPHERE 

(RULE 39) VIBRATING ATMOSPHERE-2 

If the fastener has nut & wire & fine thread & washer 
Then the fastener is used in VIBRATING ATMOSPHERE 

20.5.3 FASTENER SYNTHESIS USING THE DESIGN SEARCH 
ALGOR'THM (SEE CHAPTER 10.3) 

Assume that the designer is faced with the problem of designing a fastener that is 
able to achieve the following specifications: 

1. low weight (rg) ; 

2. usage in vibration atmosphere (r21); 

3. fatigue loading (rl7) 

Table 20.6 shows the process states generated in the course of searching for a 
solution to the fastener design problem. 

Table 20.6 The Design Search Algorithm Applied to the Fastener Design Problem 

PROCESS Attributes Existing in Attributes Existing Candidate Selected 
STEP OPEN inCLOSE Unused Production 

Production Rule 
Rules (highest score) 

1 rg. r21' rl7 0 1.2.3 1 

2 m4. r21. rl7 rg 38.39 38 

3 m4· mlS· m9· r21. rg 22 22 

mlO. m26. rl7 

4 m4' mlS· m9' rl7. r21' rg STOP 

mlO. m26. m23 

(consistent solution) 



CASES IN EVOLUTIONARY DESIGN PROCESSES 621 

20.6 FASTENER DESIGN EXAMPLE (CONTINUED) 

Designing in established design domains may range from simple selection from a 
catalogue to composing systems from available components. The next example 
corresponds to a situation of choosing a design solution from a catalogue of existing 
fasteners. 

20.6.1 THE SPECIFIC A TION AND DESIGN DESCRIPTION PROPERTIES 

The Design Description Properties (identification of existing fasteners) 

(ml) ball head machine 
screw 

(m2) binding head machine 
screw 

(m3) connector bolt 

(m4) countersunk square 
neck bolt 

(mS) countersunk square 
neck bolt 

(m6) drilled eye bolt 

(m7) elevator bolt 

(mg) fillister head 
machine screw 

(m9) flat 100 degree head 
machine screw 

(mlO) flat 82 degree head 
machine screw 

(mll) flat fillister head 
machine screw 

(m12) flat head cap 

(m13) flat socket head cap 
screw 

(mI4) flat trim head 
machine screw 

(mIS) flat undercut head 
machine screw 

(mI6) flat wood screw 

(m17 ) hanger bol t 

(mig) headless slotted set 
screw 

(mI9) hexagonal head bolt 

(m20) hexagonal head 
machine screw 

(m21) hexagonal head washer 

(m23) oval head bol t 

(m24) oval head machine 
screw 

(m2S) oval track 



622 

(m26) oval trim head 
machine screw 

(m27) oval undercut head 

machine screw 

(m28) oval wood screw 

(m29) pan head machine 

screw 

(m30) round head machine 

screw 

(m31) round head square 

neck carriage bolt 

(m32) round washer head 

machine screw 

(m33) round wood screw 

(m34) socket head cap 
screw 

The Specification Properties 

(rl) USED FOR ADDED 
ATTRACTIVENESS 

(~) USED IN AIRCRAFT 
INDUSTRY 

(~) AMPLE BEARING SURFACE 

(~) CLOSER TOLERANCE 

(rs) CONTACT ATTACHMENT (in 

the electrical industry) 

A MATHEMATICAL THEORY OF DESIGN 

(m3S) socket type set 

screw 

(m36) square uead bol t 

(m37) square head set 

screw 

(11138) step bolt 

(11140) thumb screw 

(11141) truss head machine 
screw 

(11142) twelve point head 

bolt 

(11143) wedge bolt 

(11144 ) weld screw 

(~) COUNTER-BORED HOLES 
ATTACHMENT 

(r7) COVERING LARGE 
DIAMETER HOLES 

(~) EXTERNAL WRENCHING 

(~) FARM MACHINERY 
ATTACHMENT 

(rIO) FLAT SLOTTED HEAD 

(rll) FLUSH SCREW 



CASES IN EVOLUTIONARY DESIGN PROCESSES 623 

(r12) FLUSH SURFACE 
ATTACHMENT (r28) METAL PARTS ATTACHMENT 

(r13) FLUSH WOOD WORK (r29) METAL-TO-WOOD 

ATTACHMENT ATTACHMENT 

(rI4) FREQUENT DISASSEMBLY (r30) RAIL ATTACHMENT 

(rIS) GENERAL PURPOSE SERVICE (r31) RESILIENT MATERIAL 

(rI6) GENEROUS BEARING 

SURFACE ATTACHMENT 

(r17) GOOD WOOD WORK 

APPEARANCE 

(rI8) USED FOR HANGING 

MARBLE FASCIA 

(rI9) HEAVY CONSTRUCTION 

EQUIPMENT ATTACHMENT 

(r20) HEAVY DUTY 

APPLICATIONS 

(r21) HIGH STRENGTH 

(r22) HIGH WRENCHING TORQUE 

(r23) INTERNAL WRENCHING 

(r24) LARGE BEARING SURFACE 

ATTACHMENT 

(r2S) USED IN MACHINE TOOL 

INDUSTRY 

(r26) USED IN MASONRY WORK 

(r27) MAXIMUM DRIVING POWER 

ATTACHMENT 

(r32) SHEET METAL ATTACHMENT 

(r33) SHEET METAL TO STEEL 

ATTACHMENT 

(r34) SHORT SCREW 

(r3S) SPECIAL PURPOSE 

MACHINE SCREW 

(r36) TAPPED AND COUNTER

BORED HOLES 

(r37) THIN METALS AND 

PLASTICS ATTACHMENT 

(r38) TURNING PREVENTING 

(r39) VALVE ATTACHMENT 

(r40) WIDE AND THIN BEARING 

SURFACE ATTACHMENT 

(r41) WOOD ATTACHMENT 

(r42) WRENCH DISFIGUREMENT 

PROTECTION 



624 A MATHEMATICAL THEORY OF DESIGN 

20.6.2 THE PRODUCTION RULES 

A portion of the domain-specific knowledge relevant to the fastener catalogue 
domain is expressed in terms of the following production rules: 

(RULE 1) SPECIAL PURPOSE MACHINE SCREW 

If ball head machine screw 
Then the fastener is used as SPECIAL PURPOSE MACHINE SCREW 

(RULE 2) CONTACT ATTACHMENT 

If connector bolt 
Then the fastener is used for CONTACT ATTACHMENT in the electrical industry 

(RULE 3) FARM MACHINERY ATTACHMENT 

If countersunk square neck bolt 
Then the fastener is used for FARM MACHINERY ATTACHMENT 

(RULE 4 ) HEAVY CONSTRUCTION EQUIPMENT ATTACHMENT 

If countersunk square neck bolt 
Then the fastener is used for HEAVY CONSTRUCTION EQUIPMENT 

ATTACHMENT 

(RULE 5) VALVE ATTACHMENT 

If drilled eye bolt 
Then the fastener is used for VALVE ATTACHMENT 

(RULE 6) CLOSER TOLERANCE 

If drilled eye bolt 
Then the fastener has CLOSER TOLERANCE 

(RULE 7) HIGH STRENGTH 

If drilled eye bolt 
Then the fastener has HIGH STRENGTH 

(RULE 8) WIDE AND THIN BEARING SURFACE 

If elevator bolt 
Then the fastener is used for WIDE AND THIN BEARING SURFACE 

ATTACHMENT 



CASES IN EVOLUTIONARY DESIGN PROCESSES 625 

Cause: an elevator bolt has a thin circular head with extra large diameter, and a 
square shoulder under the head that prevents turning when a nut is applied. 

(RULE 9) TURNING PREVENTING 

If elevator bolt 
Then the fastener has TURNING PREVENTING 

Cause: an elevator bolt has a square shoulder under the head that prevents turning 
when a nut is applied. 

(RULE 10) COUNTER-BORED HOLES ATTACHMENT-l 

If fillister head machine screw 
Then the fastener is used for COUNTER-BORED HOLES ATTACHMENT 

Cause: a fillister head machine screw has a small diameter but higher diameter than a 
round head machine screw. It has a deep slot when it is slotted. 

(RULE II) COUNTER-BORED HOLES ATTACHMENT-2 

If flat fillister head machine screw 
Then the fastener is used for COUNTER-BORED HOLES ATTACHMENT 

(RULE 12) THIN METALS AND PLASTICS ATTACHMENT 

If flat 100 degree head machine screw 
Then the fastener is used for THIN METALS AND PLASTICS ATTACHMENT 

Cause: flat 100 degree head machine screw has larger head than 82 degree design 
and are available with a slotted or Phillips driving recess. 

(RULE 13) FLUSH SCREW 

If flat fillister head machine screw 
Then the fastener is FLUSH SCREW 

Cause: a flat fillister head machine screw is similar to a standard fillister but without 
the oval top. It is available with a slot drive recess only as a machine screw. 

(RULE 14) FLAT SLOTTED HEAD 

If flat head cap 
Then the fastener has a FLAT SLOTTED HEAD 

Cause: a flat head cap is a flat countersunk bolt that often has a slotted head. 



626 A MATHEMATICAL THEORY OF DESIGN 

(RULE 15) INTERNAL WRENCHING 

If flat socket head cap screw 
Then the fastener is used for INTERNAL WRENCHING 

Cause: a flat socket head cap screw is a flat countersunk screw or bolt with 
hexagonal socket or recess. 

(RULE 16) SHORT SCREW 

If flat undercut head machine screw 
Then the fastener is SHORT SCREW 

(RULE 17) FLUSH WOOD WORK ATTACHMENT-l 

If flat wood screw 
Then the fastener is used for FLUSH WOOD WORK ATTACHMENT 

Cause: a flat wood screw has a countersunk flat head, and a slotted or Phillips 
driving recess. 

(RULE 18) FLUSH WOOD WORK ATTACHMENT-2 

If hanger bol t 
Then the fastener is used for FLUSH WOOD WORK ATTACHMENT 

Cause: a hanger bolt has a gimlet point on one end and a machine screw thread on 
the other end. 

(RULE 19) FLUSH SURFACE ATTACHMENT-l 

If flat 82 degree head machine screw 
Then the fastener is used for FLUSH SURFACE ATTACHMENT 

Cause: a flat 82 degree head machine screw has a countersunk section aids centering, 
and it is available with slotted, clutch, Phillips or hexagon-socket driving recess. 

(RULE 20) FLUSH SURFACE ATTACHMENT-2 

If flat trim head machine screw 
Then the fastener is used for FLUSH SURFACE ATTACHMENT 

Cause: a flat trim head machine screw is similar to an 82 degree flat head machine 
screw except for the reduced depth of the countersink. It has only a Phillips driving 
recess. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 627 

(RULE 21) FLUSH SURFACE ATIACHMENT-3 

If flat undercut head machine screw 
Then the fastener is used for FLUSH SURFACE ATTACHMENT 

Cause: a flat undercut head machine screw has a standard 82 degree flat head with 
lower third of the countersink removed. 

(RULE 22) FLUSH SURFACE ATIACHMENT-4 

If headless slotted set screw 
Then the fastener is used for FLUSH SURFACE ATTACHMENT 

Cause: a headless slotted set screw can be driven (with a screw driver) below the 
work surface. 

(RULE 23) AMPLE BEARING SURFACE 

If hexagonal head bolt 
Then the fastener has AMPLE BEARING SURFACE 

(RULE 24) EXTERNAL WRENCHING 

If hexagonal head machine screw 
Then the fastener is used for EXTERNAL WRENCHING 

Cause: a hexagonal head machine screw is similar to a hexagonal head bolt but 
smaller. 

(RULE 25) WRENCH DISFIGUREMENT PROTECTION 

If hexagonal head washer 
Then the fastener is used for WRENCH DISFIGUREMENT PROTECTION 

Cause: a hexagonal head washer has a hexagonal head (or a slotted head) with a 
washer section at base in order to protect work surface against wrench disfigurement. 

(RULE 26) MASONRY WORK 

If lag bolt 
Then the fastener is used for MASONRY WORK 

(RULE 27) HEAVY DUTY APPLICATIONS 

If oval head bolt 
Then the fastener is used for HEAVY DUTY APPLICATIONS 



628 A MATHEMATICAL THEORY OF DESIGN 

Cause: a oval head bolt has a slotted oval head for flush mounted seating. It is similar 
to a machine screw but designed for heavier duty applications. 

(RULE 28) RAILATTACHMENT 

If oval track 
Then the screw is used for RAIL ATTACHMENT 

Cause: an OVAL TRACK fastener joins rails in railroads and electric railways. 

(RULE 29) ADDED ATTRACTIVENESS SCREW-1 

If oval head machine screw 
Then the screw has ADDED ATTRACTIVENESS 

Cause: an oval head machine screw is similar to a standard flat head. but has added 
attractiveness because of the rounded outer surface. 

(RULE 30) ADDED ATTRACTIVENESS SCREW-2 

If oval trim head machine screw 
Then the screw has ADDED ATTRACTIVENESS 

Cause: an oval trim head machine screw is similar to standard oval head. except for 
the reduced countersink depth. It has only a Phillips driving recess. 

(RULE 31) ADDED ATTRACTIVENESS SCREW-3 

If oval undercut head machine screw 
Then the screw has ADDED ATTRACTIVENESS 

Cause: an oval undercut head machine screw is similar to an oval head with the 
lower third of the countersink removed. It has a slotted or Phillips driving recess. 

(RULE 32) GOOD WOOD WORK APPEARANCE 

If oval wood screw 
Then the screw provides GOOD WOOD WORK APPEARANCE 

Cause: an oval wood screw has a countersunk oval head with rounded protrusion. It 
has a slotted or Phillips driving recess. 

(RULE 33) MAXIMUM DRIVING POWER-1 

If binding head machine screw 
Then the fastener has MAXIMUM DRIVING POWER 



CASES IN EVOLUTIONARY DESIGN PROCESSES 629 

Cause: a binding head machine screw is similar to a pan head machine screw. The 
fastener is supplied undercut when specified, for binding and eliminating fraying of 
wire in electrical work. It has slotted or Phillips driving recess. 

(RULE 34) MAXIMUM DRIVING POWER-2 

If pan head machine screw 
Then the fastener has MAXIMUM DRIVING POWER 

Cause: a pan head machine screw has a large diameter and high outer edges. It has a 
slotted or Phillips driving recess. 

(RULE 35) GENERAL PURPOSE SERVICE 

If round head machine screw 
Then the fastener is used for GENERAL PURPOSE SERVICE 

Cause: a round head machine screw has a large slot depth and ample bearing surface 
(not as much as a pan head screw). It has a slotted or Phillips driving recess. 

(RULE 36) LARGE BEARING SURFACE ATTACHMENT 

If round washer head machine screw 
Then the fastener is used for LARGE BEARING SURFACE ATTACHMENT 

Cause: a round washer head machine screw has a round head with integral washer 
and a slotted or Phillips driving recess. 

(RULE 37) WOOD ATTACHMENT-l 

If lag bolt 
Then the fastener is used for WOOD ATTACHMENT 

Cause: a lag bolt has a hexagonal or square head and 60 degree gimlet conical point. 

(RULE 38) WOOD ATTACHMENT-2 

If round wood screw 
Then. the fastener is used for WOOD ATTACHMENT 

Cause: a round wood screw has a round head that protrudes above the work. It has 
either a slotted or Phillips driving recess. 

(RULE 39) WOOD ATTACHMENT-3 

If round head square neck carriage bolt 



630 A MA THEMA TICAL THEORY OF DESIGN 

Then the fastener is used for WOOD ATTACHMENT 

(RULE 40) METAL-TO-WOOD ATTACHMENT 

If round wood screw 
Then the fastener is used for METAL-TO-WOOD ATTACHMENT 

(RULE 41) TAPPED AND COUNTER-BORED HOLES 

If socket head cap screw 
Then the fastener is used for TAPPED AND COUNTER-BORED HOLES 

Cause: socket head cap screw has hexagonal socket or recess. 

(RULE 42) INTERNAL WRENCHING-l 

If flat socket head cap screw 
Then the fastener is used for INTERNAL WRENCHING 

Cause: a flat socket head cap screw is a flat countersunk screw or bolt with 
hexagonal socket or recess. 

(RULE 43) INTERNAL WRENCHING-2 

If socket type set screw 
Then the fastener is used for INTERNAL WRENCHING 

(RULE 44) GENEROUS BEARING SURFACE ATTACHMENT 

If square head bolt 
Then the fastener is used for GENEROUS BEARING SURFACE ATTACHMENT 

Cause: a square head bolt has a square head which is good for wrench tightening. 

(RULE 45) HIGH WRENCHING TORQUE 

If square head set screw 
Then the fastener is used for HIGH WRENCHING TORQUE application 

Cause: the square head has sharp, well-defined corners and threads extending to it. 

(RULE 46) RESILIENT MATERIAL A TT ACHMENT-l 

If step bolt 
Then the fastener is used for RESILIENT MATERIAL ATTACHMENT 



CASES IN EVOLUTIONARY DESIGN PROCESSES 631 

Cause: a step bolt has a square neck that prevents turning. 

(RULE 47) RESILIENT MATERIAL ATTACHMENT-2 

If round head square neck carriage bolt 
Then the fastener is used for RESILIENT MATERIAL ATTACHMENT 

(RULE 48) SHEET METAL ATTACHMENT 

If round head square neck carriage bolt 
Then the fastener is used for SHEET METAL ATTACHMENT 

(RULE 49) SHEET METAL - TO - STEEL ATTACHMENT 

If step bolt 
Then the fastener is used for SHEET METAL TO STEEL ATTACHMENT 

(RULE 50) MACHINE TOOL INDUSTRY 

If t-bolt 
Then the fastener is used in MACHINE TOOL INDUSTRY 

(RULES1) FREQUENT DISASSEMBLY-I 

If socket type set screw 
Then the fastener enables FREQUENT DISASSEMBLY 

(RULE 52) FREQUENT DISASSEMBLY-2 

If thumb screw 
Then the fastener enables FREQUENT DISASSEMBLY 

Cause: a thumb screw has a standard thread thumb screw that provides large thumb 
gripping spade. 

(RULE 53) COVERING LARGE DIAMETER HOLES 

If truss head machine screw 
Then the fastener is used for COVERING LARGE DIAMETER HOLES 

Cause: a truss head machine screw is similar to a round head machine screw except 
for the shallower head and larger diameter. It has a slotted, clutch or Phillips head. 

(RULE 54) AIRCRAFT INDUSTRY 

If twelve point head bolt 



632 A MATHEMATICAL THEORY OF DESIGN 

Then the fastener is used in AIRCRAFT INDUSTRY 

Cause: a twelve point head bolt has a double hexagon head and therefor has a 
superior adaptability to pneumatic wrenching. 

(RULE 55) HANGING MARBLE FASCIA 

If wedge bol t 
Then the fastener is used for HANGING MARBLE FASCIA on buildings 

(RULE 56) METAL PARTS ATTACHMENT 

If weld screw 
Then the fastener is used for METAL PARTS ATTACHMENT 

Cause: a weld screw has lugs or weld projections on top or underside of its head to 
facilitate attachment to metal parts by resistance welding. 

APPENDIX A - AUTOMOBILE DESIGN 

In this appendix, technical and operational details related to the design of the main 
parts of automobiles and their components are provided. The production rules 
presented in Section 1.2 rely very heavily on these domain-specific knowledge. 

A.1 ENGINES 

A variety of engine types have been used in foreign and domestic vehicles. They are 
generally internal-combustion engines that burn gasoline or diesel fuel oil. Internal
combustion engines can be classified in several ways. Of the many possibilities, 
most passenger-car engines run on gasoline, have spark ignition, and are of the 
liquid-cooled, four-stroke-cycle, overhead-valve, carbureted, reciprocating type. 

Diesel engines, which burn fuel oil, are becoming more common in automobiles. 
Diesel engines inject fuel into the cylinders, where it is ignited by the heat of 
compression; they do not require spark ignition systems. 

Most engines have carbureted fuel systems; these mix gasoline with air in the 
carburetor to form a combustible mixture. All diesel engines and some gasoline 
engines, however, use fuel injection instead of a carburetor. In the diesel engine, the 
fuel is injected directly into the engine cylinders. 

Almost all automobiles use reciprocating engines, which have pistons that move 
up and down in cylinders. The crankshaft, the main shaft of the engine, converts the 
reciprocating motion of the pistons into rotary motion. Some, however, use Wankle 
engines, which are a rotary type of engine. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 633 

A.1.1 Spark-Ignition Engine 

HISTORY 

The invention and early development of internal-combustion engines is usually 
credited to three Germans. Nikolaus Otto patented and built (1876) the first such 
engine; Karl Benz built the first automobile to be powered by such an engine 
(1885); and Gottlieb Daimler designed the first high-speed internal-combustion 
engine (1885) and carburetor. Rudolf Diesel invented a successful compression
ignition engine (the diesel engine) in 1892. 

OPERATION 

The operation of the internal-combustion reciprocating engine employs either a four
stroke cycle or a two-stroke cycle (a stroke is one continuous movement of the piston 
within the cylinder.) In the four-stroke cycle, also known as the Otto cycle, the 
downward movement of a piston located within a cylinder creates a partial vacuum. 
Two valves located inside the combustion chamber are controlled by the motion of a 
camshaft connected to the crankshaft. The four strokes are called, in order of 
sequence, intake, compression, power, and exhaust. On the first stroke, the intake 
valve is opened while the exhaust valve is closed; atmospheric pressure forces a 
mixture of gas and air to fill the chamber. On the second stroke, the intake and 
exhaust valves are both closed as the piston starts upward. 

The mixture is compressed from normal atmospheric pressure (1 kg/sq. cm, or 
14.7 lb.lsq. in) to between 4.9 and 8.8 kg/sq. cm (70 and 125 lb.lsq. in). During the 
third stroke, the compressed mixture is ignited -- either by compression ignition or 
by spark ignition. The heat produced by the combustion causes the gases to expand 
within the cylinder, thus forcing the piston downward. The piston'S connecting rod 
transmits the power from the piston to the crankshaft. This assembly changes 
reciprocating -- in other words, up-and-down or back-and-forth motion -- to rotary 
motion. On the fourth stroke, the exhaust valve is opened so that the burned gases 
can escape as the piston moves upward; this prepares the cylinder for another cycle. 

Internal-combustion spark-ignition engines with two-stroke cycles combine 
intake and compression in a single first stroke, and power and exhaust in a second 
stroke. 

A.1.2 Starting System 

Internal-combustion engines require some type of starting system. Larger engines 
may use compressed air or an electric starting system. The latter includes a starter --a 
high-torque electric motor -- to turn the crankshaft until the engine starts. Starting 
motors are extremely powerful for their size and are designed to utilize high currents 
(200 to 300 amperes). The large starting currents can cause a battery to drain rapidly; 
for this reason a heavy-duty battery is usually used. Interrupting this connection is an 



634 A MA THEMA TICAL THEORY OF DESIGN 

electrical switch called a solenoid, which is activated by the low-voltage starting 
switch. In this way the ignition switch can be located away from the starter and yet 
still turn the starter on and off. 

A.1.3 Diesel Engine 

A diesel engine is a type of internal-combustion engine that is similar to the gasoline 
engine, but requires no electrical ignition system or carburetor. It was invented by 
Rudolf Diesel, a German engineer, who obtained a patent for the design in 1892. 

Diesels employ high compression ratios to elevate the compressed air 
temperature sufficiently to ignite a low-grade fuel that is injected into the cylinder. 
Components of diesels are usually heavier than those of gasoline engines because of 
the additional structural strength needed to obtain the higher compression ratio and 
power output. 

Diesel engines employ a system of fuel injection to spray the fuel into the 
cylinder after the air has been compressed by the piston. This mixture burns; the 
expanding gases push the piston down and thus supply power. The timing of this fuel 
injection is just as critical as is the spark that ignites the fuel in the gasoline engine. 
Therefore, the injection mechanisms are mechanically linked to the crankshaft. 
Since each cylinder takes in and compresses a fixed amount of air, the power of the 
engine is varied by the amount of fuel injected. The timing, as well as the duration 
and pressure of fuel injection, is designed so that the maximum useful energy is 
obtained from the fuel for a particular range of speed, power, acceleration, or other 
working conditions. 

Diesel engines, like other internal-combustion engines, require an exhaust 
system, a cooling system, and a starting system. Because of the unusually high 
compression ratios, diesel engines need a powerful starting system. Some diesel 
engines use an electric motor or an auxiliary gasoline engine, whereas others use 
compressed air or spark ignition to start the engine. Diesel engines have always been 
popular power plants for large vehicles such as buses, trucks, locomotives, and ships. 
Small diesels have been used in automobiles, although the noise, soot, and pollutants 
they produce have discouraged that use in the United States. 

The diesel has been successful because of its operating advantages, such as low 
maintenance costs, greater efficiency, high power output, and fuel economy under all 
loads. 

A.1.4 Power Capacity 

The power capacity of an engine depends on a number of characteristics, including 
the volume of the combustion chamber. The volume can be increased by increasing 
the size of the piston and cylinder and by increasing the number of cylinders. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 635 

A.1.5 Engine Location 

In rear-drive cars with front engines, one drive shaft is needed. In front-drive cars 
with front-mounted engines, two are needed; one for each front wheel. Although 
most conventional American cars use a front-mounted engine to drive the rear 
wheels, an increasing number of newer models use front-wheel drive; where the 
weight of the engine on the front wheels provides better traction on slippery roads. In 
some cars designed particularly for bad weather and rough roads, the engine drives 
all four wheels. 

A.1.6 The Fuel System 

An automotive fuel system consists of the carburetor or fuel injector, the fuel tank, 
the fuel pump, and the fuel filter, along with tubing connecting the parts. 

CARBURETOR 

A carburetor is a device that vaporizes a liquid fuel such as gasoline and mixes it 
with air in the proper ratio for combustion in an internal-combustion engine, such as 
the gasoline engine that powers most automobiles. Under ordinary conditions the 
gasoline to air weight ratio should be about 1:15 (1 part gasoline to 15 parts air). A 
higher ratio of gasoline is called a 'richer' mixture, and a lower ratio is called 'leaner'. 

A simple form of carburetor consists of a float chamber, a jet nozzle, and an air 
chamber that is narrowed at one point. Such a narrowing in a chamber or tube is 
called a venturi. A float valve keeps the gasoline at a constant level in the float 
chamber. When the engine is running, the motion of the pistons creates a vacuum, 
drawing air into the air chamber, where it is accelerated by the venturi. In accordance 
with Bernoulli's law, this high-velocity air creates a low-pressure region, and the jet 
nozzle, which is attached in this region, draws a fine spray of gasoline from the float 
chamber into the venturi. Here it mixes with the air, in a manner much like that of a 
perfume atomizer. The mixture of gasoline vapor and air is then fed to the engine 
cylinders, where it is ignited. A throttle valve, which is actuated by the accelerator 
pedal, governs engine speed by regulating the amount of the gasoline-air mixture that 
enters the engine. A choke valve at the entrance to the carburetor is used to reduce 
the amount of air entering the chamber when the engine is cold. Less air means a 
richer mixture that can be more easily ignited by the spark plugs. As the engine 
warms up, the choke valve gradually opens, reducing the richness of the mixture. 

FUEL INJECTOR 

In practice, carburetors use various means to ensure an optimal mixture of gasoline 
and air under differing conditions, including idling and rapid acceleration. Instead of 
having a carburetor, an engine can have a system of fuel injection, which delivers a 



636 A MATHEMATICAL THEORY OF DESIGN 

metered quantity of gasoline directly to each cylinder. Fuel injection has always been 
used with diesel engines; it has also been gaining in use with gasoline engines. 

IMPROVED FUEL ECONOMY 

Recent advances in improved fuel economy include aerodynamic drag reduction, 
demand-actuated fan drive systems, steel radial tires, synthetic lubricants, and engine 
and drive train modifications. 

Drag can be dramatically reduced by an air deflector. This device, which comes 
in various shapes, improves the streamlining by deflecting air over the top of the 
trailer. 

The new fan systems -- used also in some automobiles -- turn the fan on and off 
as needed, either by a temperature-sensing device or by a centrifugal clutch that 
disconnects the fan when the engine, and hence vehicle, speed is high enough to 
provide adequate cooling. Having the fan disconnected when not needed can save a 
considerable amount of energy. 

Other means to improve fuel economy include turbochargers that use waste 
energy to improve engine efficiency, advanced diesel engines, sleeker, aerodynamic 
designs, and the increased use of plastics and lightweight materials. 

A.1.7 Cooling System 

An automotive engine requires cooling because the burning fuel produces much 
more heat than the engine can convert into useful power. The thermal efficiency (the 
percentage of energy actually converted into power) is somewhere between 20 and 
25 percent for an internal-combustion engine. The 75 to 80 percent of the energy not 
converted into power must be discarded by the engine. Some is lost in the hot 
exhaust gases leaving the engine; some is removed by the engine lubrication system; 
and some is removed by the engine cooling system. A liquid cooling system 
typically removes about 30 to 35 percent of the heat produced by the engine. 

Two types of cooling systems are used: air cooling and liquid cooling. An air
cooled engine has separate cylinders and cooling fins both on the cylinders and the 
cylinder heads. The liquid-cooled engine, which is used in most automobiles, 
circulates a cooling liquid, or coolant, between the radiator and the water jackets 
surrounding the cylinders and combustion chambers. The coolant is a mixture of 
water and antifreeze. The primary function of the cooling system is to prevent the 
engine from overheating after it reaches operating temperature; a related function is 
to speed the warm-up of a cold engine. 

The purpose of the quick warm-up is to take the engine out of its most 
inefficient and wear-causing mode of operation as quickly as possible. A cold engine 
requires a rich mixture (excess of gasoline); thus the exhaust gas has more 
atmospheric pollutants. Because the lubricating oil is still cold, it is viscous and 
flows slowly; therefore, the moving metal parts wear more rapidly. 

The cooling system is monitored and controlled by a thermostat located in the 



CASES IN EVOLUTIONARY DESIGN PROCESSES 637 

upper hose line. When the engine is cold, the thermostat is in the closed position, 
blocking off this line so that no coolant can flow to the radiator. The retained heat 
quickly causes the engine temperature to rise. As the temperature reaches the 
optimum value, the thermostat opens, and hot coolant begins to flow to the upper 
part ofthe radiator. 

AIR-COOLED ENGINES 

Air-cooled engines are popularly used to power small cars, often require no moving 
parts, and therefore little or no maintenance, for the cooling system. The head, or 
uppermost part, of the cylinder and the cylinder block have fins cast into them; these 
fins increase the surface exposed to the surrounding air, allowing more heat to be 
radiated. Usually a cover or shroud channels the air flow over the fins. A fan is 
sometimes included if the engine is located away from a stream of fast-moving air. 

WATER-COOLED ENGINES 

Water-cooled engines have water jackets built into the engine block. These jackets 
surround the cylinders. Usually a centrifugal water pump is used to circulate the 
water continuously through the water jackets. In this way the high heat of 
combustion is drawn off the cylinder wall into the circulating water. The water must 
then be cooled in a radiator that transfers the heat energy of the water to the radiator's 
cooler surrounding fluid. The surrounding fluid can be air or water, depending on the 
application of the engine. 

Radiator 

The function of the radiator is to cool the circulating coolant. The radiator contains a 
series of coolant passages surrounded by a series of air passages that permit air to 
flow from front to back through the radiator. The heat in the coolant passes to the 
radiator metal and then to the air circulating through the radiator. Thus, the coolant is 
cooled. From the lower end of the radiator, it flows to the engine water jackets. 
Circulation is maintained by the water pump. 

Water Pump and Fan 

The water pump is an impeller-type pump, driven by a V-belt from the crankshaft 
pulley. The engine fan is mounted on the water-pump pulley. Its function is to 
maintain the flow of air through the radiator. The forward motion of the car also 
helps this air movement. Some vehicles have a clutch drive between the fan hub and 
the pulley. This device reduces fan speed by thermostatic means when full fan speed 
and air circulation are not needed. Power consumption and noise are thus reduced. 



638 A MATHEMATICAL THEORY OF DESIGN 

Sealed Systems 

Cooling systems on most vehicles today are sealed. This allows them to operate at 
pressures as much as 1.0 N/sq. m (15 Ib.lsq. in) over atmospheric pressure, raising 
the boiling point of the coolant to as much as 126.6 deg C (260 deg F). The system 
can therefore operate at a higher temperature, with greater efficiency. The pressure 
buildup is made possible by the radiator pressure cap, which contains a pressure 
valve and a vacuum valve. If the pressure rises above a specified value, the pressure 
valve opens. When the engine cools off and the coolant contracts, the vacuum valve 
admits air or coolant from the expansion tank. 

Expansion Tank 

Most modern automobiles have an expansion tank in the cooling system. The 
expansion tank is a container for coolant to flow into when the engine heats up and 
the coolant expands. When the engine cools, coolant can flow from the tank back 
into the cooling system. This arrangement reduces the loss of coolant. 

A.2 THE BODY 

A.2.1 Body Design 

There are many vehicle body designs such as (see figure A.I below): (I) A sedan has 
a closed body design with two or four doors, two cross seats, and usually 
accommodates five or six people. In the two-door model, the backs of the front seats 
tip forward to give access to the rear seat; (2) A hatchback, although similar to a 
sedan, enables access from the rear; (3) A convertible has an open-body design and 
is similar to the two-door sedan, but has a folding top that can be raised or lowered. 
A hardtop is similar to the two- or four-door sedan except that it has no side 
members between the front and rear windows; (4) A station wagon has a special 
body available on a more or less standard chassis. It has cross seats in the front and 
either cross or side seats in the rear. It may be built to accommodate up to nine 
people, and generally also includes additional luggage or cargo space; (5) A sports 
car is a low, comparatively small car. It usually seats two, and is designed for speed 
and maneuverability; (6) A tow is a strong off-road vehicle; (7) An economy car is a 
smaller and simpler version of the sedan. Generally, it is designed to economize in 
terms of costs and space. 

A Sedan (2 Door) A Hatchback (4 Door) 



CASES IN EVOLUTIONARY DESIGN PROCESSES 639 

An Economy Car 
A Sports Car 

A Convertible 

A Tow Car 

A Station Wagon 

Figure A.I Seven Common Vehicle Body Designs 

A.2.2 Frames 

Two types of frames, full and stub, are used. The full frame has side, front, back, and 
cross members welded into a single assembly that supports all other parts of the 
vehicle. The stub frame has separate frames for the front and back that are welded to 
the car body, with the body forming the center and connecting support. 

A.3 STEERING SYSTEM 

An automobile steering system allows the driver to control the vehicle's direction. 
Rotation of the steering wheel is translated, through gearing and a network of rods 
and joints (the steering linkage), into right or left movement of the car's front wheels. 

There are two basic types of steering systems: rack-and-pinion, and worm-and
roller (or worm-and-key): 
• Rack-and-pinion steering is the simplest, and most commonly used system in 
modern cars. The steering shaft, which is connected at one end to the steering wheel, 
has a pinion gear at its opposite end. The gear meshes with threads in a steering rack, 
which is mounted across the car, and is connected by tie rods to the front wheels. 
The steering wheel turns the steering shaft, and the pinion gear on the shaft's end 
moves the steering rack to the right or left. Thus the wheels move. Rack-and-pinion 
systems use few moving parts but perform precisely and efficiently. 
• In worm-and-roller systems the steering shaft ends in a gearbox, which is 
connected to the steering linkage by a special rod called a Pitman arm. On the left 
side of the car, an idler arm is mounted parallel to the right-mounted Pitman arm. 
The arms are connected by a relay rod. Inserted into the relay rod are tie rods 
connecting it to the two front wheels, and short tire-steering arms that are joined to 



640 A MA THEMA TICAL THEORY OF DESIGN 

the tie rods by ball joints. Inside the gearbox the worm (a spiral-threaded gear on the 
end of the steering shaft) meshes at right angles with a roller or key (a roller is a 
threaded gear; a key is a device with a single tooth that engages the threads of the 
worm gear.) As the steering wheel is turned, the roller or key moves right or left 
along the worm gear; swiveling the Pitman arm. 

Many modern vehicles have power-assisted steering, which uses hydraulic 
pressure to reduce the effort needed to steer. In the most common system, a power 
steering pump (connected by a belt to the engine) sends high-pressure fluid to the 
steering gearbox, where it aids in moving the gears. Innovative 4-wheel steering 
(4WS) is now available in two modes: either all 4 wheels turn in the same direction, 
or front and rear wheels turn in opposite directions. Both systems are said to produce 
the same effects: parking is far easier, and high-speed maneuvers are safer because 
"fishtailing" is reduced. In either mode, 4WS is still relatively untried, but it may 
prove eventually to be the steering system of the future. 

A.4 SUSPENSION SYSTEM 

An automotive suspension system supports the frame and body of a vehicle, 
attaching them to the wheels. Its main purpose is to absorb road shocks caused by 
irregularities in the road surface in order to reduce the bumps transmitted to the 
occupants. The system also improves safety and road-handling ability by maintaining 
better contact between the wheels and the road. 

Most modern motor vehicles have separate springs at each wheel, with supports 
arranged in several ways. There is a shock absorber at each wheel to help smooth out 
spring action. Different arrangements are often used for the suspension at the front 
and rear of the vehicle, because the front wheels must pivot from side to side for 
steering as well as up and down to absorb road shocks. Some cars use aJorsion bar, 
which is a special type of spring. Stabilizers are sometimes used to prevent excessive 
lean-out on turns. 

A.4.1 Springs 

Many suspension systems use coil, or helical, springs. Rear suspensions often use 
leaf springs. A leaf spring is essentially a flat bar that resists motion. The two ends of 
the leaf spring are attached to the frame, and the center is attached to the axle 
housing. This enables the wheel and housing to move up and down with respect to 
the frame when the car hits a bump in the road. 

A.4.2 Torsion Bars 

Some vehicles use torsion bars instead of coil springs at certain points in the system. 
The torsion bar twists as road irregularities are encountered. Its front end is attached 
to a lower control arm, and its rear end is attached to the car frame. As the lower 



CASES IN EVOLUTIONARY DESIGN PROCESSES 641 

control arm pivots up and down, the torsion bar twists and behaves more or less like 
a coil spring. 

A.4.3 Shock Absorbers 

A shock absorber offers a large resistance to movement and can quickly absorb 
vibrations. Its purpose in a suspension system is to moderate wheel movement and to 
prevent continuing vibrations after a wheel has passed over a bump. A spring 
without a shock absorber would continue to expand and contract for a long time; 
thus, causing poor car control and a rough ride. On many front suspension systems 
the shock absorber is attached at the top to the frame and at the bottom to the lower 
control arm. In rear suspensions it is attached in a number of different ways. 

A.4.4 Stabilizers 

Some front suspension systems also use stabilizers. The stabilizer is a long steel rod 
that is attached at each end to the two lower control arms. Its purpose is to prevent 
excessive lean-out on turns. When the vehicle goes around a curve, centrifugal force 
tends to make the car lean out. This action puts more weight on the outer front 
spring, which thus is compressed more than the inner spring on the turn. As the outer 
spring is compressed, it imparts a twist to the stabilizer bar. The inner spring on the 
turn tends to expand, because it has less weight on it. This twists the stabilizer bar in 
the opposite direction. The stabilizer bar resists this twist and thus reduces the 
amount that the vehicle can lean out on a turn. 

A.4.5 Automatic Level Control 

Some cars have a system called automatic level control, which compensates for any 
change in loading of the rear of the car. The system includes a compressor to supply 
compressed air, two special shock absorbers with air domes, and a height-control 
valve. When the weight in the rear is increased (by passengers or cargo), the rear 
settles. This triggers the height-control valve, which sends compressed air from the 
pump through the valve into the air domes in the shock absorbers. The compressed 
air causes the shock absorbers to extend and thus raise the rear of the car. When the 
original height is reached, the valve shuts off the flow of compressed air. When the 
rear of the car is unloaded, it will rise above its original height. When this happens, 
the height-control valve opens to release some of the air from the shock-absorber air 
domes, causing the rear end to settle to the original height. 



642 A MA THEM A TICAL THEORY OF DESIGN 

A.S. THE BRAKE SYSTEM 

A.S.1 Drum Brake 

A drum brake has two convex brake shoes that press against a rotating brake drum. 
Automobile drum brakes have internal brake shoes that are inside a tightly closed 
drum and are actuated by hydraulic pressure. Such a brake has the advantage that it 
can keep out water and dust effectively; its ability to dissipate heat is limited, 
however. When drum brakes heat up, they are subject to fading--a decrease in 
braking effectiveness during extended use of the brake. This happens because the 
increased temperature causes a decrease in the friction of the brake-lining material. 
Special materials have been developed that can be used for the linings to improve 
resistance to fading. 

A.S.2 Disk Brake 

The disk brake has a block that presses against the flat surface of a disk rather than 
against the rim. An example is the caliper disk brake, which was originally 
developed for aircraft and is now increasingly being used in automobiles; the same 
type is used in bicycles. Two opposed blocks (brake shoes) squeeze the disk between 
them like a pair of calipers. Disk brakes dissipate heat rapidly because they are not 
enclosed, thus allowing air to flow over them and carry away heat. 

Newer, heavier cars are often equipped with disk brakes, especially on the front 
wheels. Rear-wheel braking is not as critical, because the weight of the vehicle is 
shifted to the front wheel during braking, thereby reducing the braking force needed 
at the rear wheels. 

A.S.3 Hydraulic Brakes 

Until about 1930, automobiles were braked mechanically. Such a system, however, 
made it difficult to brake all the wheels equally. The increased weight and speed of 
vehicles also required that the driver exert a greater pedal pressure. Both these 
problems were solved with the development of modern hydraulic braking systems. 

In a hydraulic system, depression of the brake pedal moves a piston in a master 
cylinder, forcing hydraulic fluid through piping to a cylinder at each wheel. Called 
wheel cylinders or slave cylinders, these are each fitted with pistons moved by the 
pressure of the fluid, which brings the brake lining into contact with the rotating 
brake drum or disk, producing a braking force. The hydraulic system can de designed 
to multiply the force transmitted from the pedal to the wheel cylinder, which reduces 
the pedal pressure that the driver must apply. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 643 

A.S.4 Power Brakes 

Even with the force-multiplying feature of hydraulic brakes, as vehicles became 
heavier and faster the pedal pressure required to brake the vehicle increased beyond a 
comfortable, safe level. Power brakes were developed to solve this problem. In 
automobiles they use the vacuum created by the engine during its intake stroke to 
increase the pressure applied to the piston in the master cylinder, reducing the 
required pedal pressure. If the power-assisting mechanism should fail, or if the 
engine stalls, the brakes will not fail completely, although greater pedal pressure will 
be needed. 

Power-assisted brake systems are also needed in such heavy vehicles as buses, 
trucks, and railroad trains. One such system is the pneumatically operated 
Westinghouse air brake patented in 1869 by George Westinghouse, an American 
manufacturer. This system, in a slightly improved form, is still used on trains. Each 
railroad car has its own reservoir, called an auxiliary reservoir, connected by means 
of a valve with a brake pipe extending the length of the train. To apply the brakes, 
the engineer lowers the pressure in the brake pipe by letting air escape. The valve 
arrangement closes the connection between the reservoir and the brake pipe while 
simultaneously opening a normally closed connection between the reservoir and the 
brake cylinder. This allows the compressed air in the reservoir to enter the brake 
cylinder, forcing the piston in the brake cylinder against the train wheel, braking the 
train. To release the brakes, the engineer builds up the pressure in the brake pipe. 
This shifts the valve back to its former position and allows the air in the brake 
cylinder to escape, releasing the brake. An important advantage of this system is that 
any sudden drop in brake-pipe air pressure, such as that caused by cars uncoupling, 
will automatically apply the brake. The brake will continue to act until the problem 
is corrected, a good example of a fail-safe mechanism. 

Another brake system with a fail-safe feature is used in heavy trucks. The brake 
is applied by means of a spring, and the power system is used to release the brake -
either by compressed air (an air brake) or by a vacuum (a vacuum brake). If the 
system should fail, the restraining force is removed, allowing the spring to apply the 
brake immediately. 

A.S.S Electric Braking 

A machine powered by an electric motor may be designed with electric braking. The 
circuitry of the motor can be switched so that the motor operates as a generator 
driven by the rotating axle. Not only does the conversion of the rotational energy into 
electricity slow down the machine, but the electricity produced can be returned to the 
power source or collected in storage batteries, thus saving much energy. This general 
principle is called dynamic braking; the special case in which the electricity is 
returned to the source is known as regenerative braking. 



644 A MATHEMATICAL THEORY OF DESIGN 

A.6 POWER TRAIN 

The power train includes a transmission, manual or automatic; a clutch, on cars with 
manual transmission; a drive shaft; a differential; and wheel axles. Although most 
conventional American cars use a front-mounted engine to drive the rear wheels, an 
increasing number of newer models use front-wheel drive, where the weight of the 
engine on the front wheels provides better traction on slippery roads. In some cars 
designed particularly for bad weather and rough roads, the engine drives all four 
wheels. 

A.6.1 Transmission 

The purpose of the transmission is to permit a change in the gear ratio between the 
engine crankshaft and the driven wheels. When the vehicle is started from rest, the 
ratio must be high so that the engine can turn at higher speeds and develop enough 
power to accelerate the car. As the vehicle speed increases, the transmission is 
shifted upward once or several times to decrease the gear ratio. The shift is 
accomplished in manual transmissions by a shift lever operated by the driver. The 
automatic transmission makes the shifts without driver intervention. 

On cars with manual transmissions, a clutch -- a device for connecting and 
disengaging the engine -- is used to relieve the driving pressures through the 
transmission as gears are shifted. Internal clutches in the automatic transmission 
perform this function automatically. 

A.6.2 Manual Transmission 

In some smaller cars with small engines, four- or five-speed transmissions are used 
to compensate for the lower torque available from the engine. Trucks designed to 
haul heavy loads may have as many as 20 forward speeds and four speeds in reverse. 
The part of the transmission that houses the gears is called the gearbox. A manual 
transmission has a clutch to disconnect the engine crankshaft from the gearbox while 
shifting gears. The driver shifts gears by manipulating a shift lever, which is 
connected to the transmission by a mechanical linkage. There is, therefore, some 
choice in the location of the shift lever, which may be on the steering column or on 
the floor. 

The older, sliding-gear transmission has largely been replaced by synchromesh 
transmission, in which synchronizers allow the gear teeth to be in constant mesh, 
turning freely on their shafts. The selected combination of gears is first synchronized 
(the teeth on the two gears are brought to the same speed of rotation) and then locked 
together so that power is transmitted to the drive shaft and then to the differential. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 645 

A.6.3 Automatic Transmission 

Automatic transmissions use a torque converter--to couple the engine and the 
gearbox. It is a form of fluid coupling in which one rotating member causes the 
transmission fluid to rotate; the fluid, in turn, imparts a rotating motion to another 
rotating member on another shaft that is connected to the gearbox. The coupling of 
the torque converter is flexible, allowing slippage, for example, when the car is 
starting from rest and the wheels are not moving. As the car gains speed, slippage is 
reduced, and at cruising speeds the driven member turns almost as fast as the driving 
member. The gearbox contains a set of planetary gears, with clutches and brake 
bands for engaging the desired gears. 

A.6.4 Drive Shaft 

The drive shaft, or propeller shaft, connects the transmission with the differential, an 
arrangement of gears that allows the wheels to rotate at different rates when a car is 
turning. The drive shaft contains two types of joints: a slip joint and one or more 
universal joints. This allows the shaft to change its length and direction as the car 
wheels move up and down. In rear-drive cars with engines at the front, one drive 
shaft is needed. In front-drive cars with front-mounted engines, two are needed, one 
to each front wheel. 

A.6.S Wheel-Drive 

Many vehicles now have full- or part-time four-wheel-drive (4WD). Part-time 4WD 
cars are driven in 2WD on paved roads. Most modern 4WD cars add an extra 
differential between the front and rear wheels, so the front and rear driving wheels 
can turn at minutely differing rates when driven on pavement, to avoid drive train 
damage. 

In some vehicles with full-time 4WD, limited-slip differentials couple the front 
and rear final drive gears. Each driving axle has its own differential as well. These 
differentials allow front and rear wheels to turn at slightly varying rates to 
compensate for minor differences in tire diameters or drive-gear ratios. This slippage 
allows the vehicle with full-time 4WD to run on paved roads without damage to its 
drive train. 

A.7 OTHER DESIGN CONSIDERATION 

A.7.1 Catalytic Converter 

A catalytic converter is a device in the exhaust system of an automotive engine that 
converts environmentally harmful exhaust gases into harmless gases by promoting a 



646 A MATHEMATICAL THEORY OF DESIGN 

chemical reaction between a catalyst and the pollutants. Catalysts are substances that 
speed or slow a chemical reaction between other substances, without themselves 
being consumed. Depending on the type of catalyst (oxidation, reduction, or dual), 
the catalytic converter decreases the emission of hydrocarbons and carbon monoxide, 
of nitrogen oxide, or of all three. A dual-catalyst system consists of an oxidation 
catalyst (for hydrocarbons and carbon monoxide) and a reduction catalyst (for the 
oxides of nitrogen). 

In the most common type of catalytic converter, the exhaust gases are passed 
through a bed, or honeycomb, of small beads coated with the catalysts platinum and 
palladium. When the converter is heated and extra air is pumped into it by an air 
pump, contact with the catalysts causes the hydrocarbons and the carbon monoxide 
to be converted into harmless carbon dioxide and water. The reduction catalyst in the 
nitrogen oxide converter reduces the nitrogen oxides by splitting the nitrogen from 
the oxygen so that nitrogen gas, carbon dioxide, and water are formed. In an 
automobile equipped with a catalytic converter, lead-free gasoline must be used in 
order to prevent coating the catalyst with lead. 

A.7.2 Muffler 

The muffler's main function is to reduce engine noise to an acceptable level. Engine 
noise is a jumbled collection of its fundamental firing frequencies, which range from 
about 100 to 400 hertz (1 Hz = 1 cycle/sec); overtones of these; and an extended 
range of "white noise" caused by resonance of the various components. 

A muffler attenuates noise in three ways. Interior compartments called 
Helmholtz tuning chambers are tuned to cancel resonance of specific frequencies. 
Others, called broadband dissipaters, are designed to reduce the energy of sound 
pulses and thus to attenuate a wide range of frequencies. Finally, the muffler's 
absorptive surfaces function like sound-deadening wall and ceiling panels to absorb 
noise. In a typical "three-pass" design, the exhaust stream changes direction twice as 
it passes through separate compartments, each tuned to attenuate certain frequencies. 
By the time the exhaust gases finally pass through the exhaust system (tail pipe); 
their temperature, pressure, and noise have been greatly reduced. 

A.7.3 Aerodynamic Design 

Designers of high-speed cars must also take into account other aerodynamic concepts 
such as the boundary layer. This is the layer of air nearest the skin of the car where 
the effects ofthe turbulence caused by air resistance are exhibited most strongly. It is 
desirable to keep turbulence to a minimum, so cars are designed to keep the stream 
of air flowing around the car as undisturbed as possible--hence the term streamlining. 

A.7.4 Electric Car 

An electric car is an automobile powered by an electric motor that is run by batteries. 



CASES IN EVOLUTIONARY DESIGN PROCESSES 647 

The concept is not new. The essential battery technology was developed in the late 
19th century, and many such cars were being manufactured by 1900. Although some 
models achieved high speeds for that time, the electric car was generally relatively 
slow, heavy, and expensive to operate. Its range was also limited by its dependence 
on facilities to recharge the battery. The use of the electric car diminished in the 
second decade of the 20th century with the invention of the self-starter, which made 
it unnecessary to hand-crank automobiles powered by gasoline. 

Interest in the electric car revived after World War II with the development of 
smaller electric motors, more efficient batteries, and the advent of the space age. 
Lighter materials also became available for the chassis of such automobiles. 
However, car manufacturers were and still are reluctant to develop the electric car 
because of the many technical problems. For example, the distance an electric car 
can travel before its batteries must be recharged is limited despite advances in battery 
technology that have increased this range. The maximum cruising speed is also 
limited, as is the number of accessories that can be placed in the car. On the other 
hand, the electric car is mechanically more dependable and durable than the 
gasoline-powered car. It also does not pollute the atmosphere. 

In-car battery recharge systems have not proved effective. An attempt to 
dispense with batteries altogether; and to design an electric-powered car without 
transmission, gears, or a drive shaft; shows greater promise. In this "hybrid" system, 
the main source of power is a gasoline-driven generator that powers small I8-kg (40-
lb.) electric motors mounted behind each wheel. These "drive motors" accelerate the 
car and during deceleration generate more energy; which is stored in a flywheel 
mechanism, and used for heavy energy demands during acceleration. 

A.7.S Automotive Instrumentation 

Automotive instrumentation performs the crucial role of monitoring vehicle 
operation and supplying information to both the driver and the vehicle subsystems. 
Mounted on the dashboard, standard instrumentation usually includes a speedometer 
that registers road speed, often coupled with an odometer to record accumulated 
distance and a tachometer showing the engine speed. Fuel and temperature gauges as 
well as oil-pressure and battery-charge warning lights complete the basic dashboard 
array. In recent years, however, the increased use of microcomputers to monitor 
engine performance and other automobile functions has led to far more sophisticated 
dashboard instrumentation. Some cars are now equipped with message centers that 
check basic mechanical conditions (for instance, engine and coolant temperatures, or 
the levels of transmission and brake fluid), and spell out a problem when it arises. To 
increase fuel economy, a monitor lights up when a change in gears will save 
gasoline. Other devices, linked to a computer, can announce instantaneous gas 
mileage, or tell the driver whether there is enough fuel to cover a certain distance. 

Car makers anticipate even more elaborate instrumentation in the near future 
when the standard car will utilize several microprocessors, which may be capable of 
monitoring everything from tire air pressures to the alertness of the driver. 



648 A MATHEMATICAL THEORY OF DESIGN 

A.7.6 Safety 

Automotive safety is concerned with reducing the number of traffic accidents and 
lessening the severity of injuries when accidents do occur. Areas of safety activity 
include the design of roads and highways, adjustments in laws pertaining to traffic 
and vehicles, systems of traffic control, programs of driver education, and vehicle 
design. Vehicle design gradually improved throughout the history of the automobile 
industry; higher speeds and heavier traffic, nevertheless, added to a climbing 
accident rate. In an attempt to deal with the problem, the U. S. Congress passed 
(1966) a law that permitted the federal government to issue mandatory safety 
standards for cars, trucks, motorcycles, and other vehicles. Since that time, more than 
50 safety standards have been imposed, regulating safety windshields, safety belts, 
head restraints, brakes, tires, lighting, door strength, and roof strength. 

A seat belt is a strap -- usually a shoulder harness -- that restrains an occupant in 
the seat, preventing him or her from being thrown out of the seat during a sudden 
stop or change in direction. Fewer than 20 percent of automobile occupants routinely 
use safety belts, even though convincing evidence exists as to their value, and 
legislation has been passed that requires seat belts in all cars. 

Because of the poor response of the driving public to devices that require their 
active participation, safety researchers have developed automatic, or passive, 
restraint systems, which protect occupants without any action on their part. Two 
basic types of passive restraints have been produced: (1) the automatic belt, fastens 
around the occupant when the car door is closed; and (2) the air bag - in a crash, two 
air bags -- one in the steering column and one in the right side of the dashboard -
pop out and instantly inflate, forming cushions that prevent the occupants from 
striking hard surfaces, such as the dashboard or windshield. 

It is estimated that about 12,000 lives could be saved and tens of thousands of 
severe injuries prevented each year if all cars had automatic restraint systems. The 
U.S. Department of Transportation (DOT) proposed in 1977 that all new cars be 
equipped with such systems by model year 1984, although major emphasis was on 
airbags rather than automatic seat belts. Automobile manufacturers objected, 
principally because the cost of air bags is high: $300 to $1,000 per car, depending 
on the volume of cars outfitted. New air bag designs have reduced that cost 
considerably, however, and driver's side airbags have been available on many of the 
most expensive cars since the mid-1980s. Several companies (e.g. Chrysler 
Corporation) plan to equip all of their models with airbags, and other auto makers are 
expected to follow suit. 

A DOT regulation (1984) required that all new cars be equipped with passive 
restraint systems by mid-1989. The requirement could be rescinded if states 
representing two-thirds of the U. S. population enact mandatory seat-belt-usage laws. 



INDEX 

a posteriori preference probability, 373, 374 
abductive inference, 68, 71 
abstraction levels, 11, 246, 252 
active filter, 525 
adaptation, 353 
adaptive learning for successful design, 365, 

499,659,667 
adiabatic process, 270 
administrative decision making, 24 
algebraic expressions, see arithmetic 

expressions 
algebraic structure, 7, 11 0 
algorithmic methods, 14 
alphabet, 247 
alternative solution paths, 164 
analysis, 9,23, 144, 149, 160 
analysis mapping, 114, 161 

continuous, 168 
analysis of variance (ANOY A), 371 
analysis stage, 37 
analysis transformation, 190, 191,202 
AND/OR 

tree representation, 294, 298, 551 
tree search, 293, 653 

antecedent, 78,492 
apparel design, 416, 424, 436, 669 

bodice pattern, 436 
bodice sloper, see body measurements 
body measurements, 436 
CAD packages, 436 
patternmaking, 436 

arc length, 424, 425 
arc welding design, 58 
arithmetic expressions, closed-form, 423, 425 
artifact 

coupled,161 
ideal, 161 
redundant, 161 
uncoupled,160 

artifact catalogue, 154 
artifact complexity, 242 
artifact description, 190, 143 
artifact part, 190,201, see also design part 
artifact space, 7, 12, III, 114 

basis for, 658 

regular, 125 
strictly regular, 126 

aspiration level, 220 
assembling 

and the Pareto distribution, 285, 660 
and the Zipf distribution, 286 

assembly 
defect rates, 261 
efficiency, 262 
efficiency measure, 263 
errors, 262 
operation time, 262 

assembly time, 14,660 
measure, 255 
statistical analysis of, 279 
total, 255, 283 

assignments, 112, 225 
asymptotic equipartition property (AEP), 

228,230 
attribute operation 

topological, 157 
attribute space catalogue 

closure in, 158 
topological closure in, 158 

attribute space, 7, Ill, 143, 153 
basis for, 12, 146 
closure, 157 
preferences in, 166 
topological, 157 

attributes, 144, 152,396,463 
basic, 152 
functional, 12 
qualitative, 493 
structural, 12, 1l0, 147, 149 

automata theory, 215 
automated design and manufacturing system 

(ADMS),499 
parameters, 504 
performance measures, 503 
physical configuration, 500 

automobile design, 551, 632 
body, 638 
brake system, 642 
engines, 632 
functional attributes, 552 



672 

power train, 644 
production rules, 553 
steering system, 639 
structural attributes, 551 
suspension system, 640 
synthesis using the design search 

algorithm, 562 
axiomatic design theory, 66, 651 
axioms, 200 

backward chaining, 30 
balloon model, 268 
Barkan and Hinckley method, 285, 660 
basic synthesis problem (BSP), 217, 218, 658 

intractability of, 222 
Bayes' theorem, 373 
behavioral view, 26 
Bezier curve, 432, 416, 424, 445, 448, 669 
bicycles, 31 
bifurcation, 408 
Boltzmann's constant, 271 
bondgraphs, 114 
Boolean expression, 208 
Boolean gates, 90 

AND,90 
EXCLUSIVE OR, 90 

Boothroyd, 256, 262, 266 
Boothroyd-Dewhurst DFA method, 282, 660 
bounded post correspondence problem, 180 
bounded rationality, 5, 20, 24,187 
bounded rationality postulate, 13 
brain-stonning technique, 46 
branch and bound, 57 
bridge design, 39 

CAD/CAM/CAE, 28 
CADAT, 14, 106,300,551,662 
CAE packages, 33 
cantilever beam, 387, 409 

constraint model of, 419 
car design, 313 
car hom, 149 
CARRY, 92 
Case-I, 14,300,662 

analyzer, 304, 662 
attachments, 310 
builder, 305, 662 
case, 302, 662 
domain, 303 
question, 304 
reasoning engine, 304 
session, 303 

case-based reasoning, 652 
case study approach, 189 
catalogue, 146,651 
catalogue selection problem, 361 

genetic algorithm, 362 
category theory, 7 
causal history, 491 
causality, 59 
checklist method, 46 
chips, 328, 330 
Chrimes,31 

INDEX 

circuit partitioning decision problem, 332 
circuit partitioning optimization problem, 332 
circuit partitioning problem, 324, 354 

branch and bound algorithm, 336 
computational complexity, 332 
computational results, 339 
genetic algorithm, 356 
grouping heuristic, 334 
mathematical formulation, 330 

closed form equations, 78, 491 
closed sets, 158 
Closed World (CW) condition, 48 
closure and stabilization, 76 
closure operation, 155 

topological,155 
clustering, 321 
COAST algorithm, 176, 387,405,424,430, 

440,445,448,457,513,522,523, 
529,668,669 

methodology, 397 
outline, 407 
sensitivity analysis algorithm, 406 

common range, 276, 655 
composite curve, 424 
composite objects, 423 
computational complexity theory, 7, 171 
computer aided design (CAD), 232, 387, 

423,445 
intelligent, 661, 670 

computer aided engineering (CAE), 45 
computer classroom design, 578 

functional attributes, 580 
production rules, 584 
structural attributes, 578 
synthesis using the design search 

algorithm, 601 
computer simulation, 366, 368, 499 
concurrent design, 660 

blackboard,661 
communication, 661 
control mechanism, 661 



INDEX 

intelligent architecture, 661 
modular design, 661 

concurrent engineering, 5, II, 43, 63 
concurrent product development, 666, 670 
conjecture and refutation (C-R), 70 
conjunctive normal form, 208 
consequent, 78, 492 
consistency 

in curve fairing, 428 
in variational design, 388 
strong, 402 
sufficient condition, 403 
transitive theorem, 404 
uniqueness theorem, 404 
weak,402 

consistent design, 394, 434 
consistent solutions, 389,400,440, 668 
constrained basic synthesis problem (CBSP), 

218,225,230 
constrained nonlinear optimization, 423 
constraint management, 388 
constraint satisfaction, 388 
constraint-based design, 388, 423, 425 

offaired parametric curves, 416, 
668,669 

constraints, 11,77, 143,396,464,652 
closed-form, 463, 493 

constraints on parametric curves, 423, 
447,452 

arc length, 428 
distance from another object, 423. 425, 

426,432 
in apparel design, 438 

constructivist approach, 7 
continuation methods, 390 
continuity, 7,145 

at a functional property, 167 
at a structural property, 168 

continuity problem, 171 
continuous analysis, 145,387,667 
continuous mapping, 143 

between functional and physical 
domains, 656 

continuous synthesis, 145,387,667 
continuous trajectories, 399 
convergence, 145, 159,392,393,406, 

415,669 
of function decomposition stage, 165 

corn in a pipe problem, 51 
correct solution, 400 
creative solution, 48 
crisis, 70 

curvature, 425 
curve-crawl factor, 392 
curve fairing, 424, 447, 455 

via the stiffness criterion, 439 

DANSER algorithm, 448 
Darwinian natural selection, 71 
data tag, 85 
decompose and recombine, 44 
decomposition, 9, 293, 294, 653 

of functions, 163 
decomposition solution composition, 658 
deduction theorem, 201 
degree of falsifiability, 73 
derailing detection device, 52 
descriptive complexity measure, 174 
design 

as scientific discovery, 6 
conceptual, 43 
artifact representation, 4 
as problem solving, 6 
as purposeful activity, 23 
as scientific problem solving, 67 
as social process, 61 
axioms, 146 
computational analysis of, 13 
conceptual, 7 
coupled, 654, 655, 656 
creative, 32 
descriptive properties of, 9 
diagonalized nature of, 33, 394, 667 
form of, 25 
innovative, 32 
method,39 
routine, 32 
sequential and iterative nature of, 27, 

388,667 
tentative, 20 
ubiquity of, 22 
uncoupled, 323, 655 
well-structured, 7 

design complexity, 243 
functional, 14, 241, 244, 667 
structural, 14,241,244 

design configuration, 396, 524 

673 

design consistency, 387, 394,424,425,427, 
447,524,656,667, see also 
consistency 

definition~, 400 
examples, 513 
principle of, 143, 176,394,430,656, 

667,668 



674 

theorems. 403 
design description. 26.190.197.200.493 

consistent. 198 
semantics. 200 

design evolution 
ontogenetic. 29. 188 
phylogenetic. 29. 31.188 

design facts. 188. 655 
design for assembly (DFA). 256. 279 
design for manufacture (DFM). 43. 67. 

279.655 
design for testabili ty. 347 
design form. 245. 247 

size of. 249 
design guidelines 

algorithmic. 662 
general purpose. 651 

design heuristics. 227. 659 
design iteration. 394 
design method. 6. 65 
design methodologies. 4 
design paradigms. 6. 9. 38 

algorithmic design paradigm. 57 
analysis-synthesis-evaluation design 

paradigm. 40. 163 
artificial intelligence design paradigm. 

58 
case-based design paradigm. 44 
cognitive design paradigm. 45 
creative design paradigm. 46 

design parameters. 365. 368. 374. 464. 491 
controllable. 504 
qualitative. 504 
quantitative. 504 
uncontrollable. 504 

design part. 492. see also artifact part 
design problems 

ill-structured. 24 
impreciseness of. 24 
intractability of. 25 
satisficing nature of. 25 
well-structured. 23 

design process 
as a mapping. 143.653 
case studies. 551 
categories. 32 
completeness of. 13. 657 
computational complexity of. 199. 207 
computational models. 4 
correctness of. 199. 205 
cycle. 20. 463 
decidability of. 199 

INDEX 

evolutionary model of. 397.463.491. 
551.652.653.661 

evolutionary nature of. 7. 13.20.29. 
143.176.187.353.387.396.652. 
654 

knowledge-level. 188 
non-monotonic nature of. 79.493 
quantitative analysis of. 254 
scientific community metaphor. 19.666 
soundness of. 13 
type-O. 189.200 
type-I. 189.203 
type-2. 189. 197.203.298.493 

design process (DP) problem. 207 
design process complexity. 243 
design process decision problem. 208 
design process execution. 192. 202. 204. 397. 

494.498 
design process history. 78. 192. 653 
design process optimization problem. 208 
design process states, 190. 197. 198.201.204. 

493.655 
failed, 191, 198, 203, 205 
initial, 190, 197, 198 
successful, 191. 198.203,205 
terminal, 190, 191, 197. 198,203,204 

design process step, 191, 198 
design range, 273, 368. 655 
design requirements. 396, 397. 524 

categories of, 23 
empirical,23 
extraction of, 24 
functional. 365, 499, 652. 655 
functionality. 23 
ill-defined. 24 
modifiability, 23 
performance, 23 
qualitative, 491 
reliability. 23 
well-defined. 23 

design search algorithm. 298. 551 
design search problem. 166, 652 
design solutions, 154 
design space, 7, III 

operators. II 
design specifications, 20, 143, 153.394. 

463.491 
qualitative, 78, 493 
quantitative. 493 
tentative. 20 

design stage 
conceptual. 652 



INDEX 

detailed, 37, 652 
design style, 57 

bottom-up, 61 
in apparel design, 436 
meet-in-the-middle,61 
top-down, 61 

design theory, 6, 65 
consistent, 6 
descriptive, 5, 6 
domain-independence, 6 
empirical,5 
general,6 
mathematical, 7 
prescriptive, 5, 6 
simple, 6 

designing effort, 246 
deterministic design selection, 659 
differential gear, 31 
dimensions of a part, 388, 396 
distance between two entities, 165 
drip cleaner, 256 
dynamic programming, 57 

ECOBWEB, 323 
effort complexity measure, 253 
electric light bulb, 116 
electrical connections, 328, see also 

microelectronics circuits 
electrical engineering, 85, 524 
electrical receptacle, 260 
electronic computers, 31 
elementary mental discriminations, 272 
embodiment, 43 
Empirical Programme of Relativism 

(EPOR),75 
empirical research, 8 
Engineering Design Research Center, 64 
engineering design 

logic of, 19 
methodology, 9, 19 
models, 7 

engineering knowledge 
domain-specific, 659 

entity set, 146 
entropy of a random variable, 225, 250, 

271,658 
joint, 250 

Euclidean space, 143 
evaluation, 9 
experimental success probability, 373, 510 
explanatory model, 188 
extension strategy, 49 

factor interactions, 366 
factors, 365 
fairing objective function, 416 
fastener design, 614, 621 

functional attributes, 615, 622 
production rules, 615, 624 
structural attributes, 614, 621 
synthesis using the design search 

algorithm, 620 
feasibility limits, 392 
finite state automata, 197,207 
first law of thermodynamics, 270 
first-order logic, 7 
fitness value, 362 
fix point, 165 
fixed configuration problems, 361 
fixed step continuation, 390, 415 
flexible manufacturing cell, 85 

675 

flexible manufacturing cell design, 499 
flexible manufacturing system (FMS), lOI, 

274,361,365,366,499,667 
flow time, 504 
forklift design, 564 

functional attributes, 566 
production rules, 568 
structural attributes, 565 
synthesis using the design search 

algorithm, 576 
Formal Design Theory (FDT), 3,109,143, 

651,670 
formal language, 7 
function levels, 163 
function sharing, 44 
function space, 12, 114, 143, 153 

basis for, 12, 143, 146, 173,658 
closure, 155 
preferences in, 166 
proximity in, 154 
topological, 155 

function space catalogue 
closure in, 156 
topological closure in, 156 

function space character, 173, 174 
function-structure-behavior, 59 
functional description, 105 

close, 12, 144 
functional domain, 143 
functional properties, 150, 152,651 
functional requirements, independence of, 

654 
functional view, 26 



676 

functions, 143, 147 
basic, 152 
decomposable, 146 

gates, 330 
Gauss-Seidel iteration, 406, 418 
Gauss-Seidel operator, 403, 419 
gear box design, 77, 97 
General Design Theory (GDT), 146 
General Problem Solver (GPS), 30 
generalized topology, 7 
genetic algorithms, 354, 371,666 

alleles, 362 
crossover, 355 
decoding, 354 
encoding, 354 
evaluating a solution, 354 
genes, 362 
local optimum, 354 
mutation, 355 
parent solutions, 355 
population, 354 
reproduction, 355 
termination, 355 

geometric modeling, 232,389 
geometrical CAD systems, 389 
geometry, 387 
global optimization, 57 
global optimum, 416, 448 
goal directed problem solving, 30 
Gordon technique, 46 
gradient of the distance function, 426 
grand problem solving, 60 
graph,124 
graph isomorphism, 180 
graphical objects, 423 

bounded, 425 
unbounded,425 

group technology, 321, 328, 665 
mix-and-match, 666 
modular design, 666 

guided combinatorial analysis, 218 
guided heuristics, 217, 235 

Hanson, 71 
helical compression spring design, 521, 539 
hierarchical causal representation, 652 
hierarchical knowledge structure, 146 
Hitachi DFA method, 280 
hoist, 97, 361,464 
holism, 7 
homeomorphic spaces, 7, 169 

homeomorphism, 145, 169 
homeomorphism problem, 172 
homotopy, 387, 434, 440,523,668 

convex, 389,400, 401,416 
function, 400 
variable, 400 

horizontal shared memory, 63 
hypothetico-deductive (H-D), 68 

I/O pins, 328 
idea provoking techniques, 46 

division, 50 
increasing variability, 51 
multiplication, 50 
unification, 50 

idealized design process, 11,143,162 
I-DEAS Master Series, 33 
immature science, 69 
incompleteness postulate, 13 
inconsistency, 402 
incrementalism, 25 
independence axiom, 66 
infeasible regions, 409 
inference rules, 20 
information axiom, 67 
information content, 246, 249 

functional, 273, 654, 655 
minimal, 251 
structural, 250, 275, 654, 655 

information retrieval systems, 143 
information theory, 7 
initial solution, user-defined, 392 
input-output models, 113 

INDEX 

integrated circuits (IC), 325, 665, see also 
microelectronics circuits 

integration of physical parts, 654 
intelligent advisory tool, 293 
intended design solution, 394, 429, 445 
interactive curve design, 424 
interactive design system, 429 
interference, 261 
interpretative flexibility, 76 
inter-stage design iteration, 33, 668 
interval analysis, 403, 417 
interval analysis techniques, 400, 405 
interval continuation methods, 387, 389, 

416,668 
interval equations, 418 
interval extension 

of the Jacobian, 406 
of the mean-value theorem, 405 

interval step control method, 406 



INDEX 

interval vectors, 418 
intra-stage design iteration, 37, 668 
iterative constraint solver, 390 

Kepler, 8 
knowledge acquisition, 61 
knowledge body, 188, 191,464,491,653 
knowledge representation 

entity-relational, 11, 109 
extensional, 175,651 
intensional, 175, 651 
nested-hierarchical, 11, 109 

knowledge-based CAD, 4 
knowledge-based expert systems (KBES), 59, 

661 
Kuhn, 5, 20,38,65,68 
Kuhnian paradigm, 38 

disciplinary matrix, 38 
exemplars, 38 

Lakatos, 20, 68 
languages, 179 
large scale integration (LSI), 346 
lasts, see models of a foot 
Laudan,20 
learning synthesis knowledge, 322 
line tangent to two circles, 533 
local optimum, 416, 426, 448 
logic, 7 
logic design 

eastern school, 39 
western school, 39 

logical inference, 155 
Lucas DFA method, 281 

manual selection, 393 
manufacturing information, 145 
mass customization, 445 
Mathematica, 393, 414, 415 
mathematical programming, 57 
mature science, 5 
means-ends analysis, 60 
mechanical fasteners, 93, 192, 147 
mega-gates, 334 
metric, 145,395 
microelectronics circuits, 345 

logical design, 324, 346 
packaging, 325 
partitioning, 324, 325, 346, 665, 666 
physical design, 324, 346, 666 
placement, 325, 346 
reliability, 347 

routability, 347 
routing, 324, 325, 346 
schematic, 324 
wiring congestion, 347 
wiring length, 347 

microprogrammed control, 220 
Model 'T', 31 
models, 144 
models of a foot 

3-D virtual, 445, 447, 669 
3-D,445 
creation of virtual, 448 

modules, 220, 658 
atomic, 112 
basic, 11, 110 
complex, 11, 110, 112 
legal,114 
order, 126 
primitive, 225 
types of, 113 

modus ponens, 200 
morphological method, 46 
morphology, 394 
motor drive assembly, 289 
Motorola, 263 

677 

multi-objective decision criteria, 367,370 
multi-objective design problems, 367 
multiple competing solutions, 387, 388, 394, 

430,513 

natural science, 23 
natural selection, 353 
n-dim project, 64 
nearly decomposable system, 74, 665 
necessary conditions of nonlinear 

programming, 424,427,429,433 
needs assessment, 9 
neighborhood, 172, 395 

of a functional property, 159 
neighborhood system, 172 
net, 328, 330 
net terminals, 328 
Newell, 30, 71 
Newton, 8 
Newton-Raphson method, 388, 392, 414, 424 
non-determinism postulate, 13 
nonlinear algebraic equations, 388 
nonlinear programming optimization, 

362,448 
nom . .l science, 69 
NP-complete problem, 25,171,208,222,332 
NP-hard problem, 209 



678 

object oriented methods, 110 
objective function, 362, 426 
open sets, 158 
operands, 110,246,247 
operators, 110,246, 247 

closure composition, 129 
closure decomposition, 132 
closure integration, 133 
composition, 11, 11 0, 126 
decomposition, 11, 110, 130 
evaluation, 219 
first-order closure composition, 129 
first-order closure decomposition, 131 
indicator, 128 
integration, II, 110 

k 1 -k 2 closure integration, 133 

k 1 -k 2 order integration, 133 

projection, 128 
proper composition, 128 
restriction of a first-order composition, 

131 
optimization search techniques, 362 
order preserving 

in attribute space, 169 
in function space, 169 
under synthesis, 169 

order relation, 165 
orthogonal array, 371, 376,506 
output performance measures, see responses 
over-constraining the system, 393 

parallelism between science and design, 75 
parameter levels, 365, 368, 374, 667 
parametric design, 388, 463 
parametric objects 

points, 423 
arcs, 423 
curves, 423 
lines, 423 

performance metrics, 165 
philosophy of science, 9, 19 
physical domain, 143 
piston subassembly, 120 
P-Ieaming algorithm, 366, 374, 499, 667 

application to flexible manufacturing cell 
design, 506 

catalogue structure, 381 
pneumatic piston subassembly, 263 
point at a distance from two points, 528 
pooling strategies, 377 

Popper, 20, 70,189 
positivists, 70 
power, 271 
power law, 270 
predictor-corrector, 391, 405, 668 
preference probability, 373, 374, 510 
preference structure, 220 
preferences over sets, 167 
pressure, 268 
printed circuit board (PCB), 329, 346 
Pro/Engineer, 33 

INDEX 

probabilistic design selection, 227, 659, 667 
probabilistic paradigm, 365 
probability distribution of the output 

performance measure, 369 
probability of success, 273, 369, 374, 

499,655 
overall, 370, 667 

problem characteristic variables, 48 
production planning, 526 
production rules, 188, 190, 197, 202, 204, 

293,302,492,493,551,653 
programmable logic controller (PLC), 90 
proof, 201 
propositional calculus (-logic), 124, 143, 178 
protocol analysis, 45 
protocol studies, 30 
prototype model, 44 
psychology, 10 
purposeful adaptation, 29 

quadrature techniques, 424, 428 
Qualitative Change in Problem Characteristic 

(QC) condition, 48 
quality function deployment (QFD), 43 

rapid prototyping, 34 
rationality 

principle of, 244 
pure, 24 

real knowledge, 12 
redesign, 31 

incremental, 31 
innovative, 31 

reductionism, 7 
redundancy, 161 
refined upper bound, 227 
reflection-in-action, 68 
reinforced concrete building, 118, 219 
relations, 11, 110, 112,220,225,658 

unit, 126 
relaxation factor, 392, 415 



INDEX 

representative sample, 370, 374 
research programme, 69 
responses, 273, 365, 368 
restructuring strategy, 49 
result-oriented, 23 
revolution and resolution, 70 
robotic manipulator, 526 
robust design, 43 
routine solution, 48 
rule-based systems, 143,362 

satisfactory performance,S 
satisfiability problem (SAT), 238 
science of the artificial, 23 
scientific communities, 20 
scientific discovery, 68 
search 

backward, II 
best-first, 166, 298, 653 
blind,298 
breadth-first, 57, 166,298,653 
depth-first, 57, 166,298,653 
exhaustive, 57 
forward, II 
greedy, 57 
heuristic, 214,298 
rapid,57 
stochastic, 365 

second law of thermodynamics, 270 
serial binary adder unit, 92, 247 
serial optimization, 57 
settheory, 139 
shared meaning, 62, 63 
shared memory, 63 
shoe design, 416, 445, 668 

best fit selection, 446 
custom, 445 
foot measurements, 445, 451 
pattern, 445 
style, 446 
upper pattern grading and visualization, 

447 
Simon, 4, 23, 24, 29, 61, 71 
simplicity, 242 
Simpson's quadrature formula, 439 
simulation language, SIMAN, 506 
small and medium scale of integration 

(SSIIMSI), 346 
smallest probable set, 366 
social constructivist approach, 62 
sociology of science, 75 
software complexity, 243 

software engineering, 242 
object-oriented models, 526 

solid fuel rocket engine, 55 
solid model, 233 
solution space, 105, 293 
solution trajectories, 398,401,430,441, 

513,668 
specification description, 191 
specification part, 191,492 
specifications 

initial, 188 
presumed, 191,201,204 
validated, 191, 201, 204 

state space, 166, 293 
statistical experimental design, 365, 499 
statistical mechanics, 271 
stepwise refinement, 30 
Stroud,253 
Stroud number, 272 
structural description, 105 

close, 145 
structural properties, 152, 651 
structural view, 26 
structure space, 7, III 

679 

Structured Inventive Thinking method (SIT), 
46,48 

Suh,66, 242 
SUM,92 
supercritical fluid chromatography, 96 
surface model, 233 
switching circuit, 115 
symbolic medium, 246, 247 
synthesis, 9, 23, 145, 149, 160 
synthesis mapping, 161 

continuous, 167 
synthesis states, 397 
synthesis transformation, 190, 191,202 
system neighborhood objects, 48 
system of constraints, 388, 394, 397, 416, 

424,430,445 
system of equations, 390 

fully constrained, 400 
system of nonlinear constraints, 387, 463 
system of nonlinear equations, 387, 424, 430, 

447 
system range, 274, 655 
systemhood, 7 
systems science, 7 

Taguchi's statistical method, 512 
task/episode accumulation process, 45 
testing stage, 20 



680 

theory-oriented, 23 
thermodynamic process, 268 
thermodynamics, 10 
thinghood, 7 
3-CNF decision problem, 208 
3-PARTIION decision problem, 332 
time complexity measure, 253,283,660 
tire design, 604 

functional attributes, 607 
production rules, 608 
structural attributes, 606 
synthesis using the design search 

algorithm, 612 
tolerance limits, 153 
tolerances, 153, 273. 368 
tools of verification, 78 
topological property, 170 
topological spaces, 7,176 

closure, 146 
topological structure, 146 
topology, point-set, 146 
Torbeck valve, 31 
transformations, 197, 198,204,493,494,653 

between descriptions, 23 
between function and attribute spaces, 

160 
coupled, 654 
uncoupled, 654 

TRIZ,47 
tumor problem, 54 
Tycho de Brahe, 8 
typical set, 366 

uniform probability distribution, 274 
unijunction transistor metronome, 258 
unintended solution, 389 
universal upper bound, 225 

variational CAD systems, 40C 
variational design, 77, 387, 416, 423, 424, 

495,667 
evolution in, 396 

Ve Cone val ve, 31 
verifications tools, 491 
vertical shared memory, 63 
very large scale integration, 346 
volume, 268 

weak methods, 30, 60 
wireframe feature recognition, 217, 233, 659 

connectivity problem, 235, 659 
feature recognition problem, 236, 660 

wireframe model, 232 
work,269 
work in process (WIP), 86, 504 
wormgear assembly design, 514 

design execution, 514 

INDEX 

wormgear reducer design, 97, 463, see also 
gear box design 

accessories, 487 
bearing, 485 
casing heat, 488 
casing, 477, 487 
concepts, 466 
key, 484 
load and strength constraints, 475 
motor, 470 
shaft,479,481 
transmission parts, 471 
wear-resistance, 486 
constraint model of, 548 

Yoshikawa, 30, 146 

zero information state, 370 



Applied Optimization 

1. D.-Z. Du and D.E Hsu (eds.): Combinatorial Network Theory. 1996 
ISBN 0-7923-3777-8 

2. MJ. Panik: Linear Programming: Mathematics, Theory and Algorithms. 1996 
ISBN 0-7923-3782-4 

3. R.B. Kearfott and V. Kreinovich (eds.): Applications of Interval Computations. 
1996 ISBN 0-7923-3847-2 

4. N. Hritonenko and Y. Yatsenko: Modeling and Optimimization of the Lifetime of 
Technology. 1996 ISBN 0-7923-4014-0 

5. T. Terlaky (ed.): Interior Point Methods of Mathematical Programming. 1996 
ISBN 0-7923-4201-1 

6. B. Jansen: Interior Point Techniques in Optimization. Complementarity, Sensitivity 
and Algorithms. 1997 ISBN 0-7923-4430-8 

7. A. Migdalas, P.M. Pardalos and S. Stor0Y (eds.): Parallel Computing in Optimization. 
1997 ISBN 0-7923-4583-5 

8. EA. Lootsma: Fuzzy Logic for Planning and Decision Making. 1997 
ISBN 0-7923-4681-5 

9. J.A. dos Santos Gromicho: Quasiconvex Optimization and Location Theory. 1998 
ISBN 0-7923-4694-7 

10. V. Kreinovich, A. Lakeyev, J. Rohn and P. Kahl: Computational Complexity and 
Feasibility of Data Processing and Interval Computations. 1998 

ISBN 0-7923-4865-6 
11. J. Gil-Alu ja: The Interactive Management of Human Resources in Uncertainty. 1998 

ISBN 0-7923-4886-9 
12. C. Zopounidis and A.1. Dimitras: Multicriteria Decision Aid Methods for the Predic-

tion of Business Failure. 1998 ISBN 0-7923-4900-8 
13. E Giannessi, S. Koml6si and T. Rapcsak (eds.): New Trends in Mathematical Pro-

gramming. Homage to Steven Vajda. 1998 ISBN 0-7923-5036-7 
14. Ya-xiang Yuan (ed.): Advances in Nonlinear Programming. Proceedings of the '96 

International Conference on Nonlinear Programming. 1998 ISBN 0-7923-5053-7 
15. w.w. Hager and P.M. Pardalos: Optimal Control. Theory, Algorithms, and Applica-

tions.1998 ISBN 0-7923-5067-7 
16. Gang Yu (ed.): Industrial Applications of Combinatorial Optimization. 1998 

ISBN 0-7923-5073-1 
17. D. Braha and O. Maimon (eds.): A Mathematical Theory of Design: Foundations, 

Algorithms and Applications. 1998 ISBN 0-7923-5079-0 

KLUWER ACADEMIC PUBLISHERS - DORDRECHT / BOSTON / LONDON 



CHAPTER 21 

CONCLUDING REFLECTIONS 

This book is a treatise on the design process and the formal approach to design. The 
basic premise of the formal approach to design is that there are basic principles that 
govern decision making in design, just as the laws of nature govern the physics of 
artifacts. 

The work is made up of four parts: (Part I) a largely philosophical discussion of 
engineering design; (Part II) Formal Design Theory (FDT), which deals with 
algebraic representation of design artifacts, a model of the idealized design process, a 
model of the evolutionary design process, a discussion of complexity and 
probabilistic search approach, general measurable metrics for evaluating a good 
design, and a study of Boothroyd-Dewhurst's design efficiency and total assembly 
time. This theory is leading to several useful outcomes; (Part III) a methodological 
validation by means of algorithms and heuristics for design decision support has been 
developed to show that the proposed theory is consistent and fruitful; (Part IV) 
powerful and comprehensive case studies have been provided to show how the 
various formulations are linked to genuine design problems, their underlying 
knowledge bases, and their concomitant information processing. 

The aim of this chapter is to recapitulate the principal corollaries or facts that 
are direct consequences of FDT's axioms and theorems (Section 21.1), and the 
derived algorithms and case studies (Section 21.2). These corollaries tend to 
resemble the flavor of design guidelines. The following guidelines either validate 
common design rules and are found to be consistent with other design theories (e.g., 
the axiomatic theory of design, see [1]), or provide new insight and design criteria. 

21.1 GENERAL PURPOSE GUIDELINES 

21.1.1 REPRESENTATION OF DESIGN KNOWLEDGE 

GUIDELINE 1 (Extensional versus Intensional Representation). There are two 
potential representations for expressing design knowledge as presented in Chapters 4 
and 5: extensional and intensional. In the extensional representation approach, 
structural or functional properties are expressed by means of a set of artifacts in a 
catalogue, which have these properties. In the intensional representation approach, 
artifacts are described by a complete set of structural or functional properties, 

D. Braha et al., A Mathematical Theory of Design: Foundations, Algorithms and Applications
© Springer Science+Business Media Dordrecht 1998



652 A MATHEMATICAL THEORY OF DESIGN 

including their relations, which together describe an artifact that delivers the 
functional requirements and satisfies the constraints. 

FDT proposes the use of both representations in design support systems. 
Extensional descriptions are particularly useful in case-based reasoning. In case
based reasoning, designs are obtained by searching a memory bank of previous cases 
for a design that solves a similar problem. When implementing a computationally 
efficient case-based reasoning system, extensional descriptions work best when the 
most similar design to the current problem is chosen. Thus, indexing cases with a rich 
vocabulary of the structural properties and design functions they satisfy is a key to 
effective case-based reasoning. When designing engineering artifacts, the design 
cases need to be indexed in terms of the output behavior of interest. Matching and 
retrieval can be driven by associative processes on these indexes. 

Extensional descriptions enable the recognition of similarity among almost 
identical products. They can also be easily modified to include new cases and 
properties. Thus, extensional descriptions can support newfangled ideas although 
they cannot generate them themselves. Nevertheless, in real design it is recognized 
that perfect mappings of the design process, from design specifications to completed 
devices or components, do not exist. However, FDT postulates that human designers 
use hierarchical causal representation to relate the structure of the device to its 
function by means of causal if-then structured networks. Thus, employing intensional 
descriptions may result in better support of such knowledge structures. Intensional 
representations do not support the similarity between products, but have more 
concise descriptions and are fundamental to supporting incremental (evolutionary) 
design. 

The ability of extensional descriptions to explore a memory bank of previous 
artifacts that satisfy similar specifications is important in the conceptual or 
preliminary design stages. In the detailed design phase, refinements that involve 
assigning attributes to parts and sizing parts may be better dealt with intensionally. 
This involves creating the intensional representations of entities, which would link 
the attributes to the parts, the functions to the attributes, and the assignment of values 
to these attributes. After detailing the intensional descriptions, the process terminates 
with a feasible solution. 

21.1.2 DESIGN PROCESS 

GUIDELINE 2 (Evolutionary Task Structure). The design problem is formally a 
search problem in a large space for objects that satisfy multiple requirements and 
constraints. Only a small number of objects in this space constitute satisficing or 
optimal solutions. What is needed for practical design are strategies that radically 
shrink the search space. 

In Chapter 6, a systematic top-level method -- the evolutionary design model -
that guides the search in the solution space was presented. This approach involves a 
set of functional requirements and constraints (both constitute the design 
specifications). Some specifications serve as the input to the design process as a 



CONCLUDING REFLECTIONS 653 

whole; the others are generated as sub-specifications. Given a design specification, a 
set of knowledge and control strategies in the form of facts and production rules are 
postulated, and a structured set of transformation operators are suggested as a means 
of achieving a specification. Each transformation operator involves, through the 
activation of associated links, the retrieval of facts and production rules from the 
knowledge body, and the application of certain of these rules. The latter results in the 
inference of either a partial design solution that satisfies the specification; or the 
addition of new facts, rules, or sub-specifications. Eventually, a complete solution 
will emerge. The set of transformation operators leading to this final, complete 
solution constitutes the history of a design process. 

The characteristics of the evolutionary design model may establish the 
framework within which different information mapping processes are examined (see 
Part III). These mapping processes can be examined based on different design 
domain boundaries (e.g., customer to functional, functional to physical, physical to 
process planning): (1) a mapping series of mapping that converts a set of customer 
requirements (needs) to a vector of design functional requirements and constraints 
(specifications in the functional domain); (2) starting with the stated functional 
requirements and constrain, the designer generates a solution by defining design 
attributes (design parameters in the physical domain) that satisfy the functional 
requirements and constraints. This synthesis process constitutes a mapping between 
the functional and physical domains; (3) the design attributes generated in the 
physical domain are interpreted as a set of requirements for implementation in the 
manufacturing process domain. The design attributes are achieved by a set of process 
attributes. 

GUIDELINE 3 (Use of Effective Control Strategies). The solution path from initial 
specifications to the physical artifact is not unique. There can be innumerable 
plausible solution paths, yet a selection needs to be made. For instance, if abstract 
specifications decompose so that enough information is provided to proceed to the 
subsequent design stages (see Chapter 10), then two sets of control issues need to be 
considered. The first control issue deals with which sets of decompositions to choose. 
A decomposition will generally produce an AND node. All the sub-specifications in 
an AND node will need to be solved, but only one of the decompositions will need to 
be solved (an OR node). Finding the appropriate decomposition requires a search in 
an AND/OR graph. Three representative methods of guiding this search are: (1) 
breadth-first, (2) depth-first, and (3) best-first. Best-first methods state that 
decompositions are driven by a form of hill climbing, where there is a particular 
decomposition (an AND node) in the direction of maximal increment based on some 
measure of overall performance. The second control issue involves the order in 
which the sub-specifications within a given decomposition ought to be attacked. The 
main constraint is the knowledge about dependencies between sub-specifications. If 
there are independent specifications, one must satisfy the specifications in order of 
importll"ce (from most to least). 

GUIDELINE 4 (Accomplish Functions Prior to Construints). The design problem is 



654 A MATHEMATICAL THEORY OF DESIGN 

specified by a set of functions to be delivered by an artifact and a set of constraints to 
be satisfied. A computationally effective process of design is to generate a candidate 
design based on functions, and then to modify it to meet the constraints. 

GUIDELINE 5 (Maintain the Independence of Functional Requirements). As stated 
in Guideline 3, in an evolutionary design process there can be innumerable plausible 
solution paths (set of transformation operators). However, not all proposed solution 
paths are good solutions. The criteria for differentiating between a "good" 
transformation (from a current design state to a modified design state) and a "bad" 
transformation is by capturing creative knowledge. Uncoupling means that each 
transformation exhibits a minimum number of overlapping functional requirements. 
The following uncoupling criterion is a direct consequence of FDT: the aim of a 
good transformation strategy is to uncouple the current functional requirements so 
that each modified functional requirement or partial design solution (e.g., device, 
component, or design parameter) affects only one set of functional requirements. If 
the independence of functional requirements is violated (coupled transformation), the 
probability of achieving a design solution that satisfies the initial specifications 
decreases. Thus, coupled transformations can never have minimal functional 
information content (see Chapter 8). In addition, coupled transformations may lead to 
complex dependencies among specifications. This might involve making 
commitments to partial design solutions (subparts) and later revising them when other 
functional requirements and constraints (for other subparts) are violated. Thus, 
coupled transformations may lead to a design process that is not computationally 
effective (deviating from Guideline 2). 

GUIDELINE 6 (De-coupling of Coupled Design, see also [1 D. When the number of 
attributes (design parameters) in an artifact is less than the number of functional 
requirements, either a coupled design results, or the functional requirements cannot 
be satisfied. The design may be de-coupled by the addition of new design attributes 
to make the number of design attributes equal to the number of functional 
requirements. 

GUIDELINE 7 (Minimization of Structural Information Content). In Chapter 8 we 
defined a structural design complexity measure as a function of the information 
content associated with the design's representation. The design's representation may 
include facts, causal relations, mathematical models, etc. Thus, the following 
principle results in a computationally effective design process: among all proposed 
transformations from a current design state to a modified design state that satisfy the 
uncoupling criterion (as stated in Guideline 5), the optimal transformation has the 
lowest structural information content. 

GUIDELINE 8 (Minimization of Functional Requirements and Integration of 
Physical Parts). The following principles can be inferred from the minimum 
structural information principle stated in Guideline 7, we infer the following 
principles: (1) a good transformation strategy (from a current design state) minimizes 



CONCLUDING REFLECTIONS 655 

the number of functional requirements and constraints in the modified design state. 
This implies that given two process states; < M t • 9 t > and < M 2. 92 >. where 

< M t • 9 t > embodies design facts and functional requirements in addition to those 

embodied in < M 2.92 >. the structural information content associated with 

<M t .9 t > is less than that associated with <M2 ,92 >. In other words, as the 

number of functional requirements and constraints increases, the system becomes 
more complex and thus raises the structural information content. This implies that the 
design process will be more difficult to operate and maintain (computationally) than 
one that only meets the stated functional requirements at each transformation state; 
(2) At the end of a design process all specifications have been implemented, and the 
initial specifications (functional requirements and constraints) have been converted 
into a physical artifact. Thus, an artifact should fulfill the precise needs defined by 
the specifications -- not more and not less. This implies that the conventional cliche, 
"My design is better than yours because it does more than was intended," is 
misguided. Reliability may also decrease, due to increased complexity when an 
artifact fulfills more functional requirements than are required; (3) the number of 
physical parts and the relations among them should be reduced in order to decrease 
the structural information content. This should be done when possible without 
coupling functional requirements (thUS violating Guideline 5). In other words, the 
structural information content of uncoupled design solutions with fewer components 
is less than those with more components that satisfy the same set of functional 
requirements and constraints. 

GUIDELINE 9 (Minimization of Functional Information Content, see also [1 D. In 
Chapter 8, we defined functional information as the specification of what a symbol 
structure (e.g., an artifact or design process) should be able to do. That is, 
information has a purpose, and this enables the design to attain goals. Defining 
information content in functional terms means that the capabilities of each solution 
alternative may be compared with the governing set of requirements until the 
designer identifies the solution alternative that best satisfies the functional 
requirements. Following this definition, we defined the functional information 
content of an artifact as a function of the probability of its successfully achieving the 
functional requirements (abbreviated as the probability of success p). Specifically, 
functional information content is defined as the logarithm of the inverse of the 
probability of success p. Thus, the following principle provides a rational means for 
selecting the best design: among all proposed solutions that satisfy the uncoupling 
principle (Guideline 5), the optimal design has the lowest functional information 
content. This implies that, depending on whether the solution is created in the 
physical or process domain, the optimal solution will have the highest probability of 
successfully achieving the functional requirements or design parameters. 

GUIDELINE 10 (Decreasing the "System Range", see also [1]). In Chapter 8, we 
introduced a measure of functional information content, which is defined in terms of 
the "design range," "system range," and "common range". The probability of 



656 A MATHEMATICAL THEORY OF DESIGN 

satisfying the functional requirements is expressed in terms of the amount of overlap 
("common range") between the "design range" and the system capability ("system 
range"). To reduce the functional information content (following Guideline 9), the 
designer has to either increase the "common range" or decrease the "system range". 

GUIDELINE 11 (Design for Manufacturability, see also [I)). In order to reduce the 
functional information content of a product or process (following Guideline 10), the 
following design rules should be utilized (depending on whether the design is created 
in the physical domain or manufacturing process domain): (1) use standardized or 
interchangeable parts; (2) use symmetrical shapes and/or arrangements; (3) eliminate 
adjustments, fasteners, jigs and fixtures; (4) specify the largest allowable tolerance 
when stating functional requirements. Thus, given two or more uncoupled designs 
that satisfy the same set of functional requirements and constraints, the design with 
the largest tolerance ("design range") is superior. In all cases, these rules should be 
utilized if they are consistent with the functional requirements and constraints. The 
basic idea behind these design rules is to establish set of "common ranges" within 
which the product or manufacturing process is capable of meeting functional 
requirements (expressed in terms of tolerances). 

GUIDELINE 12 (Information Content of Coupled versus Uncoupled Designs, see 
also [I)). The uncoupling principle stated in Guideline 5 is related to the minimum 
functional information principle as follows: in coupled designs, functional 
requirements can be satisfied by affecting other functional requirements. The 
interactions among functional requirements tend to amplify the "system range," and 
thus result in an increase in the functional information content. Therefore, it is 
desirable to maintain the independence of functional requirements. 

GUIDELINE 13 (Functional Information Content of Uncoupled Design). If each 
functional requirement is independent of other functional requirements, the functional 
information of the artifact is the sum of the functional information content of all the 
individual functional requirements that must be satisfied. 

GUIDELINE 14 (Principle of Design Consistency). In an ideal design, small changes 
in specifications should lead to small changes in design and vice versa. Therefore, if 
the current artifact's function differs slightly from the required function, a small 
modification to the structure may be sufficient. The mathematical concept used in 
Chapter 5 to investigate the principle of design consistency by continuous mapping 
between the functional and physical domains applies here. 

GUIDELINE 15 (Design Consistency, Coupling, and Functional Information 
Content). The following guideline states that coupled designs, when the principle of 
consistency is satisfied, result in an increase of the functional information content. 
Assume that the principle of design consistency is satisfied, and the state of design 

parameters is slightly changed from one state, DO = (d? ' d~ , ... , d~ ) E 9t N , to 



CONCLUDING REFLECTIONS 657 

another state, DI = (d I ' d 1 ' ... , d ~ ) E 9\ N , in the physical domain. The principle 

of design consistency implies that the system behavior is such that the changes in the 

functional requirements, ]IJ = if I ,f 2 ' ... , f N ) E 9\ N , due to a change in design 

parameters may be written as follows (see Figure 21.1). For each functional 
requirementfj , 

afj 1 0 
+ ad N (d N -d N ) 

(21.1) 

In uncoupled design, the change in the design parameter d j is such that 

~~. (dl-dP) is the desired change in fj . In coupled design, the deviation from 
I 

this ideal condition (constituting the "system range") is given by the other terms on 
the right hand side of the equation. Therefore, in coupled designs, where functional 
requirements can be satisfied by affecting other functional requirements, the 
interactions among functional requirements tend to amplify the "system range." 
When the designer-specified tolerances for functional requirements are given, 
uncoupling results in an increase in the functional information content. Therefore, as 
stated in Guideline 12, it is desirable to maintain the independence of functional 
requirements. 

~F' -------?D' 
]IJ < ...................................................................... DO 

Figure 21.1 Small Changes in Specifications Lead to Small Changes in Design and 
Vice Versa 

GUIDELINE 16 (Completeness of the Design Process). As discussed in Chapters 6 
and 10, the design process involves mapping the initial functional requirements 
through a series of transformations that lead to a physical description. The series of 
transformations exhibits precedence among its transformed states. A functional 
requirement may correspond to a partial design solution or decompose into sub
requirements. A set of general production rules is used (l) to decompose 
requirements into sub-requirements; or (2) to match the requirements with 
components. The Completeness guideline states that the set of production rules, 
which are associated with the decomposition of requirements into sub-requirements 



658 A MATHEMATICAL THEORY OF DESIGN 

and/or components, must be exhaustive over the domain of interest. That is, 
recreating a new set of production rules to accommodate a new design situation or 
scenario should not be needed. There are many alternate sets of production rules that 
can be utilized for the life-cycle domain, but some may be redundant. Most life-cycle 
situations can be managed with a "complete basic set" of production rules. In Chapter 
6, we demonstrated that the computational complexity of establishing a "complete 
basic set" of production rules is NP-Complete, which means that there exists no 
polynomial time algorithm capable of solving the problem. Thus, the potential to 
solve the problem depends of the availability of certain heuristics. 

GUIDELINE 17 (Decomposition-Solution Composition). Consider a scenario where 
a "complete basic set" of transformations was found as suggested in Guideline Hi. 
Assume that it is known that the designer might encounter many design problems 
(each described by a set of functional requirements) during the life-cycle domain. In 
such a scenario, prior to carrying out the design process (on-line), it would be an 
efficient strategy to perform off-line preprocessing that involves finding a "complete 
basic set" of functional requirements. When the designer encounters a new design 
problem, the given set of functional requirements needs to be translated into a set that 
is included in the "complete basic set" of functional requirements. If sub-problems 
are solved, the sub-problem solutions are "glued" into the solution to the original 
design problem. This approach suggests the use of past cases to make new design 
decisions rather than solving each new problem from scratch. The decomposition
solution composition idea is comparable to the concept of utilizing a basis for the 
artifact and function spaces as introduced in Chapter 5. 

GUIDELINE 18 (Expressiveness versus Complexity). In Chapter 7, a basic synthesis 
problem was specified by (1) a set of functional requirements to be delivered by the 
artifact; and (2) a repertoire of components (modules) assumed to be available and a 
vocabulary of relations between components. The solution to the basic synthesis 
problem involves specifying a complete set of components and their relations. 
Together these aspects need to describe an artifact that delivers the functional 
requirements. 

A solution to the basic synthesis problem is characterized by three parameters: 
(1) the possible number of relations that each component can share, which grows 
polynomially (of order y) with respect to the number of basic components N; (2) the 
number of relations of interest, p; and (3) the maximum number of occurrences, v, of 
any relation. It was shown that the total number of solutions having these 
characteristics is bounded by, 

(21.2) 

where Ho(P) denotes the binary entropy function Ho(P)=-p/og'}jJ - (l-P)[Og2(l-P). 
Thus, we conclude that although expressiveness of the design problem (partially 



CONCLUDING REFLECTIONS 659 

determined by the above parameters) is necessary for the generation of a wide variety 
of solutions, increasing the expressiveness of a design problem may swamp the 
designer with alternatives. So, any increase in expressiveness needs to be 
accompanied by an increase in the designer's ability to control the complexity of the 
design space. 

GUIDELINE 19 (Decomposition and Complexity Reduction). As shown in Chapter 
7, the following engineering design heuristics, based on the specialized circumstances 
relevant to artifacts, will enable the replacement of the formidable universal upper 
bound presented in (21.2) with a much smaller upper bound: 

Heuristic I. the number of relations of interest is bounded by some p « N ; 
Heuristic2. the maximum number of occurrences of any relation satisfies v «N. 

If there is effective decomposition of a given design problem into smaller sub
problems, and each satisfies the foregoing heuristics, then the combinatorial 
complexity of the original problem can be significantly reduced. 

GUIDELINE 20 (Uncertainty and Complexity). As mentioned in Chapter 7, the 
nature of the information involved in the search for a design solution may be 
deterministic, by showing which design decisions are categorically inferior; or 
probabilistic, by identifying those design decisions with the greatest probability of 
solving the problem. In the latter case, the designer's problem may be not knowing 
which decisions will ultimately lead to a satisfying design solution. In this case, the 
appealing proposition we established in Chapter 7 comes to light. Not all possible 
solutions (i.e., the accumulation of a series of design decisions) have the same 
probability of solving the problem; and the probability of identifying a successful 
solution is inversely proportional to the number of design decisions, and to the 
uncertainty associated with each decision. Thus, learning about which design 
decisions satisfy the governing functional requirements reduces the uncertainty 
associated with the decision, which in turn increases the probability of identifying a 
successful solution to the problem. 

GUIDELINE 21 (Complexity of Wireframe Feature Recognition). In Chapter 7, we 
stated that in order to recognize features (i.e., a collection of geometric entities) from 
wireframe models it is necessary to: (1) preprocess the database to derive topological 
connectivity; and (2) determine which connected subsets correspond to which 
features of interest. 

The following engineering design heuristics, which are based upon domain
specific engineering knowledge, provide combinatorial upper bounds that indicate 
that the connectivity algorithm upon large databases will be computationally 
tractable. For N geometric entities: 

Heuristicl. the number of geometric entities per feature «N; 
Heuristic2. the number of features of interest «N; 



660 A MATHEMATICAL THEORY OF DESIGN 

The following additional design heuristic, which is based upon domain-specific 
engineering knowledge, presents a quadratic upper bound for the number of 
connected subsets that may be sent to the feature recognition module: 

Heuristic3. the features of interest are disjoint, and are sparsely distributed over 
the part. 

GUIDELINE 22 (Time Complexity Measure). In Chapter 9, we inspect through 
extensive statistical analysis the correlation between the time complexity measure T 
(see Chapter 8) and the estimates of product assembly times that were derived by 
Boothroyd and Dewhurst in their Design for Assembly (DFA) structure<i 
methodology [2]. The correlation between the time complexity measure T and 
Boothroyd and Dewhurst's estimates is found to be very close to +1 over a wide 
diversity of experiments. This demonstrates that the time complexity measure T may 
be used as a powerful predictive tool. Such a tool could be used in the earliest stages 
of concept development to estimate total assembly times, or to compare competing 
concepts. Thus redesign may be stimulated while it is easiest to make design changes. 

GUIDELINE 23 (Minimize and Simplify Assembly Operations). The time 
complexity measure T reveals two fundamental factors that can contribute to 
assembly time: (1) the number of assembly operations (a subset of assembly 
interfaces), which affects the time complexity measure more than linearly; and (2) the 
number of parts (a subset of assembly operations). Thus, part count alone is not 
adequate for defining design simplicity or predicting conformance quality. Instead, a 
superior design criterion is: to minimize and simplify assembly operations. This tends 
to reduce part counts and simplify part interfaces while avoiding assembly 
complexity that may be introduced to achieve part count reduction. Since one source 
of assembly defects is the interference between mating parts, this strategy must also 
be pursued to reduce the assembly defects in quality products. 

GUIDELINE 24 (Assembling and the Pareto Distribution). The time complexity 
measure is found to be consistent with the hypothesis by Barkan and Hinckley [3] 
that the set of manual assembly times per operation follows a Pareto distribution. 
That is, the shortest assembly times per operation are the most likely to occur. Using 
this distribution of assembly times, it has been shown by Barkan and Hinckley that 
the total manual assembly time of a product can be bounded as a function of the part 
count and operation count. 

GUIDELINE 25 (Concurrent Design). Concurrent design is different from that of 
serial design. The serial product design assumes a one-way progression along linear 
paths, with no procedural feedback or iteration and no looping or back-chaining. In 
concurrent design, the information flows bidirectionally to upstream and downstream 
tasks. To illustrate, if the accurate information is not made available to the product 
design team by the customer, how can the product be supported in the field? 
Similarly, if a design team does not know the limitations of the available 



CONCLUDING REFLECTIONS 661 

manufacturing processes, how can the team design the product in a cost-effective 
manner? The same can be said for the downstream tasks. How can a manufacturing 
group produce a part if the manufacturing process is not accurately defined or the 
design is not well-understood? Thus, a concurrent design requires that the design 
team consider process constraints while the process planners consider design 
constraints. 

We identify two factors that should be considered to incorporate concurrency 
into a design process: 

1. "Modular Design" - a product is designed in a "modular" fashion if the work of 
development is partitioned among designers (or design teams) who work 
independently. Following the uncoupling criterion presented in Guideline 5, the 
design tasks should be partitioned by rearranging the assignment of tasks to 
reduce interdependence across functional groups. However, several obstacles 
can prevent this ideal from occurring. One obstacle can arise from the sharing of 
results; for example, one team uses results from another team as its input. 
Another obstacle can occur when two tasks need each other's results as input. 
These "input dependent" problems are solved through the use of assumptions. 
Each task uses a "best guess" at what the other task's result will be and proceeds. 
As intermediate results are obtained, they are substituted for the assumption. 
When an assumption proves to be false or falls outside an agreed-upon range, the 
other task is notified and new assumptions are negotiated. This method allows 
both tasks to proceed. 

2. Communication - another method of concurrent design that minimizes the cost of 
coordinating activities across design teams is by facilitating inter-functional 
communication. To accomplish the necessary communication between tasks and 
resolve possible conflicts, a synchronizing and mediating activity is required at 
certain process points or after specific periods of time. This resolution process 
makes the status of each task explicit, and provides alignment of the dependent 
tasks. It is an active problem-solving activity. In order to pursue specialization 
economies by choosing more design groups, firms need to develop better 
communication technology that enables to reduce the coordination loss across 
design teams. 

To achieve the goals outlined above, we propose the use of an Intelligent 
Concurrent Design architecture. The proposed concurrent architecture can be 
envisioned as a network of users supported by Intelligent CAD systems, where the 
communication and coordination is achieved through a global database (Blackboard) 
and a control mechanism. The Blackboard is the medium through which all 
communication takes place. Each Intelligent CAD system can be viewed as a 
knowledge based expert system developed for solving individual design tasks, and 
supported by standard CAD tools (e.g., a database structure, an analysis program). 
Each Intelligent CAD operates according to the evolutionary design process model as 
delineated in Chapters 6 and 10, as well as Guideline 2. The Intelligent Concurrent 



662 A MATHEMATICAL THEORY OF DESIGN 

Design architecture may also be implemented within design groups. 

21.2 ALGORITHMIC DESIGN GUIDELINES 

Based on the theory and the guidelines derived above, algorithms and heuristic 
methods have been developed. Methods include case based reasoning, group 
technology, genetic algorithms, adaptive learning, probabilistic search for 
successful design, and continuation methods for maintaining design consistency. It is 
the aim of this section to summarize these methods, and delineate how the above 
guidelines were used as a pre-processor for the systematic methods presented in Part 
III. 

21.2.1 LOGIC DECOMPOSITION AND CASE BASED REASONING 
(CHAPTER 10) 

Our investigation of the validity of the design process model as introduced in Chapter 
6 has been conducted within a case-based reasoning framework for design (called 
CAse-based Design Advisory Tool, see Figure 21.2), and has been implemented in 
the Case-l TU system. Case-l has a memory that contains a set of general production 
rules, also termed as cases. The cases are derived from previously designed artifacts, 
and are used to guide the design process. Requirements are decomposed into sub
requirements and/or the corresponding structural properties. Cases can be retrieved 
from the memory using several indexing techniques to make searching the knowledge 
base more efficient and effective. 

Case-l involves up to three steps that allow for user interaction: case builder, 
case analyzer, and evaluation. The first two steps that are currently implemented are 
summarized as follows: 

• Case Builder is the authoring tool used by knowledge engineers to create and 
modify cases. Cases are the atoms of the Case-l system. They may be thought of as a 
single potential decomposition of a requirement into sub-requirements or 
corresponding structural attributes. A case consists primarily of a problem 
description part (a requirement) and a solution part (potential sub-requirements or 
structural attributes). Some examples are provided in Table 21.1 based on a problem 
of fastener choices. 

TU Case-l is a trademark of ASTEA International, 1995. 



CONCLUDING REFLECTIONS 663 

Table 21.1 Knowledge Representation in Case-l 

problem "strength rivet high & holding rivet variable & length 
description rivet variable & adjustability rivet permanent & 

insertion-case rivet easy" 
solution "socket-hex drive" 
problem "strength high" 
description 
solution "strength-material high & head-size large & thread-

size large & threaded length large" 

A case provides information that allows Case-l to determine if the case is relevant to 
a problem the user might present. This information is comprised of the textual 
description of the problem and solution, a list of qualifying questions and answers, 
and any appropriate hypermedia attachments. Case-l ranks the case based on the 
answers the designer enters. The results are then used by the Analyzer to provide the 
user the most probable set of cases that apply to the particular problem. A domain is 
a set of cases that pertain to a particular problem area (e.g., fasteners). The designer 
selects the domains to be searched during each session . 

• The Analyzer performs case retrievals. To do this, the designer starts a new session 
and types the requirements in plain English. The Case-l Reasoning Engine presents a 
list of possible cases through its knowledge of the existing production rules and 
several indexing techniques (that consider the relevance of the case and common 
words). This process is interactive and can be repeated several times to link 
requirements to the sub-requirements through the case hierarchy until it links them to 
the structural attributes of the product. After the session is complete, the session can 
be saved and re-opened later. By reviewing the unsatisfied specifications, the 
designer can then determine the physical components that satisfy the initial design 
specifications, and thus uncover a design solution alternative. Sessions that do not 
result in a satisfactory decomposition of requirements need to be reviewed by a 
knowledge engineer to ensure proper decomposition in future sessions. 



664 A MATHEMATICAL THEORY OF DESIGN 

-I -----•• --•••••••• --•••••• - •••••• -.-•••• - •••••••••• -.-••• - ••• ---..... - •• J I SYNTHESIS 

CASE SPECIFICATIONS . 
RETRIEVAL AND I 

SOLUTION I 
UPDATE I 

_._ ...... _ ....... _ ... __ ... ____ ..... ____ ._ .. _._ ............. _ ........... -1 

. ........ 

•• 00 EVALUATION 

0000.0 •• 000000 0 ~ User interaction 

------t~~ No user 
interaction 

Figure 21.2 The CADAT Architecture 

The proposed approach has the following characteristics: 

• It provides a systematic approach that guides the search in a large and complex 
solution space. 

• It uses a set of production rules. based on previous "good" designs. to guide the 
search. 

• Each production rule has associated information decomposed and structured 
such that the relevance of each production rule to any requirement can be 
determined. 

• New design knowledge can be incorporated into the existing knowledge base 
without modifying the existing production rules. 



CONCLUDING REFLECTIONS 665 

• The existing production rules can be changed relatively independently of other 
rules. 

• Each production rule may have one or more hypermedia attachments that 
provide additional information to the designer. 

• The scoring of production rules with respect to a particular requirement is 
dynamically adjusted by the system to reflect the actual operational experience. 

21.2.2 GROUP TECHNOLOGY AND CLUSTER ANALYSIS (CHAPTER 11) 

Group Technology is a planning concept in which similar products are grouped and 
then produced together in order to exploit their similarities. Generally the objective is 
to group products according to the constraints of the collective tool or processing 
requirements, and to organize them into as few groups as possible. The formation of 
part families leads to the reduction of design variety, and procedures that are 
rationalized and automated. 

In Chapter 11 we suggested two major methods in which Group Technology may 
be used in design: 

1. Diversity of products is the major cause of problems for designers. Each product 
satisfies its own functional properties, and requires its own design attributes, process 
plan, etc. It is possible that "similar" products are designed at different times by 
different design personnel. To avoid this, existing designs have to be retrieved and 
used as the prototypes for designing the new products. If this retrieval task is left to 
the designers, it is almost impossible to totally avoid impreciseness and excessive 
time to design. Thus, we introduced in Chapter 5 the notion of a "distance" between 
two entities in the function or attribute spaces. Defining a distance metric will enable 
the grouping of entities (artifacts, structures, or other entities) into classes that reflect 
the commonality of certain properties (e.g., structural attributes, functional 
attributes). When introducing a new design problem (specification properties), the 
synthesis system may try to incorporate it into the existing classification. At this stage 
synthesis should terminate and candidate designs should be generated. 

2. In Guideline 5 we presented the uncoupling criterion for judging a "good" 
design from a "bad" design. A design that adheres to the uncoupling criterion may 
also be considered a nearly decomposable system. That is, a system of components 
CIt ... , Cn where each Cj is an aggregate of more primitive entities such that the 
interactions between the entities within the C;'s are appreciably stronger than those 
between the Cj's. For example, electrical circuit partitioning, also called packaging or 
assignment, involves transforming a drawing of the logical circuit into sub-circuits. 
Sub-circuits are assigned to, or packaged in, a module (also called integrated 
circuits). For a given partitioning, the number of interconnections between modules 
is used as a measure of uncoupling (an efficiency measure). The smaller the measure, 
the better the design. In Chapter 11, we examine the applicability of grouping and 
clustering techniques to the partitioning problem of electronic circuits in order to 



666 A MATHEMATICAL THEORY OF DESIGN 

achieve uncoupled (or decomposable) solutions. 

Group Technology may also be applied to the study of "modular design," and its 
effect on the performance of concurrent product development projects. A product is 
"modular" if development is partitioned among designers (or design teams) who 
work independently. The modules are connected by standardized interfaces that 
permit designers to "mix and match" modules that maximize measures of 
performance. Often finer product partitions improve productivity by specializing but 
increase the costs of coordinating the activities. Intuitively, we wish to group together 
any two components Ci and Cj that have high interaction between them. The higher 
the interaction between the two components, the higher the return to grouping Ci and 
Cj together. On the other hand, when there are fewer components to design, design 
teams can achieve larger gains by specializing. By selecting a design group partition 
and engaging in product design research, we attempt to maximize the expected 
overall performance of the product. 

21.2.3 SOLVING DESIGN PROBLEMS WITH GENETIC ALGORITHMS 
(CHAPTER 12) 

In Chapters 2 and 6, we presented the biological and scientific community's 
evolutionary metaphor applied to design, which models the observed evolutionary 
phenomenon that occurs between the time when a problem is assigned to the designer 
and the time the design is passed on to the manufacturer. During this period, the 
design evolves and changes from the initial form to the acceptable form, and we say 
that there is a fit between the design and the requirements. An evolutionary metaphor 
takes into consideration concepts of randomness of generation, selection based on 
fitness for survival, populations of solutions, propagation of members of populations 
based on some evolutionary mechanism, representation based on genotypes and 
prototypes, etc. 

The term "evolutionary transformation process" also refers to the generally 
accepted biological (genetic) evolutionary transformation process, where mechanisms 
such as crossover and mutation are used on entire populations. Based on this 
meaning, we demonstrated and formulated in Chapter 12 the applicability of genetic 
algorithms to the partitioning phase of electronic circuit design. The results suggest 
that a genetic algorithm can find the optimal solution in a large percentage of the 
problems, particularly for smaller data sets. The genetic algorithm results were 
significantly better than the sequential chip construction heuristic presented in 
Chapter 11. Both in terms of the average and maximum percentage deviations from 
the optimal value. The use of genetic algorithms in the context of the physical design 
of printed circuit boards seems to be a promising area for future research. 

Configuring a design from parts out of catalogs, which satisfy predetermined 
goals and constraints, requires searching large numbers of part combinations. This 
makes it difficult and impractical to do an exhaustive search for the best solution 
using this technique. Rule-based approaches suffer from being domain specific and 



CONCLUDING REFLECTIONS 667 

thus are not appropriate as general solution methods. However, genetic search 
techniques seem to be an encouraging approach for solving fixed configuration 
problems as shown in Chapter 12. 

21.2.4 PROBABILISTIC SELECTION METHODS FOR SYSTEM DESIGN 
(CHAPTER 13) 

In Chapter 13, we addressed the problem of the parameter design of complex 
systems. Design solutions are characterized by their parameter settings (each fixed to 
one out of various possible levels). The design's functional requirements are 
represented by a set of pre-specified limits that determine where the output responses 
should fall. The designer has to identify those designs that maximize the likelihood of 
satisfying a given set of functional requirements. The proposed method is based on 
the functional design complexity measure provided in Chapter 8 for quantifying how 
well a proposed artifact satisfies the governing requirements (in probabilistic terms). 
We consider situations where the exact analytic relationships between the design 
parameters and the design responses are unknown or can not be practically 
determined. Consequently, the designer has to evaluate these relations by statistical 
inferences of experimentation results. 

A methodology for adaptive learning of successful designs (termed as P
learning) is proposed. The P-Iearning algorithm constructs a sequence of samples 
(populations of candidate solutions), where each sample includes particular designs 
that it can simulate. Thus, the P-Iearning algorithm can learn more about the design's 
behavior through the samples. In particular, this helps determine which parameter
levels appear to satisfy the governing requirements in terms of overall success 
probability. As the desired information is obtained, the P-Iearning algorithm 
generates new candidate solutions (sample elements) with a bias toward candidate 
solutions that include better parameter levels. In Chapter 18, a real industrial problem 
of designing a flexible manufacturing system that is presented and solved based on 
the P-learning algorithm. 

21.2.5 MAINTAINING CONSISTENCY IN THE DESIGN PROCESS 
(CHAPTERS 14, 15, 16) 

In Chapter 5, we investigated the notion of design consistency (Guideline 14 above): 
small changes ill specifications should lead to small changes in design. The 
mathematical concept that is used to investigate the principle of design consistency is 
that of continuous analysis and continuous synthesis. Our research and contributions 
(in Chapters 14, IS, and 16) further develop the areas of general design consistency 
as applied to variational design, incorporating curves in variational design, and shoe 
design CAD. 

In Chapter 2, the sequential and iterative nature of design was introduced and the 
diagonalized design framework was presented as an alternative approach to 



668 A MATHEMATICAL THEORY OF DESIGN 

integrating the two disparate views of the design process. The diagonalized design 
framework represents the design process as constantly iterating among design stages. 
In an ideally flexible design environment, even when the design is nearly finished, 
the designer can still make modifications at the conceptual design level. Good design, 
should attempt to maximize the inter-stage iteration and minimize the intra-stage 
iteration. One means towards the latter goal is to allow more realistic design 
constraints in the design system. However, when more powerful constraints are 
allowed, there are often multiple ways of satisfying the constraints. In such an 
environment, the ability to maintain design consistency is of paramount importance. 
Often, maintaining design consistency is assumed by the user, and any design 
environment would be deemed unusable if it was not available. 

In Chapters 14, 15, and 16, we reviewed design consistency in variational 
design, constraint-based curve design, and 3-D shoe design systems. Design 
consistency in any interactive design system is typically approached by requiring the 
user to identify the specific rules for deciding which solution (among many) is the 
correct solution. The problems with this approach are that it is typically very 
computationally intensive to find all the possible solutions, and it is often very hard 
or even impossible to characterize the solutions so as to arrive at the correct one 
regardless of how the specifications are modified. A different approach is to use 
continuation methods to track a given solution, rather than trying to characterize all 
the possible solutions. While our technique, COAST, is based on this idea, 
continuation methods have typically been used for following a curve with the 
"predictor-corrector" paradigm. It is unknown, with such methods, if the constraint 
solver converges to the correct solution or not. In the area of constraint-based curve 
design, we reviewed advanced and interactive techniques for creating or modifying a 
curve. There was no research found, however, that allowed constraint-based design 
of curves with constraints on the whole curve, rather than on defined points on the 
curve. Finally, we looked at shoe design systems and found a class of software 
available for creating 2-D upper pieces and a class of software for displaying 3-D 
surfaces; However, no software was found that performed both jobs (requiring the 
designer to input the design twice). 

In Chapter 14, we implemented our COAST method for maintaining design 
consistency and demonstrated its application to several variational mechanical design 
examples. If there is only one possible solution to the specifications, then it is easy to 
maintain a consistent design. It is much harder when there are multiple competing 
solutions that all satisfy the specifications. Fortunately, Guideline 14 directs us 
towards a principle of design consistency: small changes in specifications should 
lead to small changes in design. Starting from an initial system of constraints, an 
initial satisfactory solution, and a change in constraints, COAST is able to track the 
desired solution as the constraints are changed. A homotopy is setup between the two 
systems of constraints, and interval continuation methods are used to 
deterministically follow the trajectory of the desired solution. Interval techniques 
allow COAST to guarantee that it will either converge to the consistent solution or 
detect those situations in which it cannot do so. COAST was applied to example 
designs of a worm gear assembly and a cantilever beam. In both cases, COAST was 



CONCLUDING REFLECTIONS 669 

able to converge to the consistent solution when the constraints were modified. 
In Chapter 15, we illustrated with COAST the ability to perform constraint-based 

curve design. Rather than attempting to constrain all the individual points on the 
curve, we demonstrated how to constrain the behavior of the whole curve. 
Constraints between the desired curve and another object take the form of an 
optimization problem. In this case, we reduced the optimization to its set of necessary 
conditions. Constraints of the intrinsic behavior of a curve take the form of an 
integral expression over the length of the curve. In this case, we used quadrature 
techniques to reduce the integral to a nonlinear equation. Constraints were also 
reduced to nonlinear form. If there were fewer constra:!1ts than unknowns, we faired 
the curve using another constrained optimization reduced to its set of necessary 
conditions. We then setup a similar homotopy as before and extended the COAST 
method to handle modified coefficients of the constraints as well as modified right 
hand side of the constraints. These techniques were applied to curve design examples 
involving bezier and b-spline curves and to apparel design. 

Finally, in Chapter 16, we demonstrated the capability of creating a consistent 3-
D virtual last with COAST. First, a set of 52 measurements were derived that 
described a general last. Then, a series of 22 3-D Bezier curves were constrained to 
form the outline of the last such that the 52 measurements (as well as other 
constraints) were satisfied. Finally, when the measurements were changed, the 
technique was shown to be able to converge on a new solution that was consistent 
with the original solution. 

We believe the major contributions of these methods are: 

• The diagonalized design framework for managing the sequential and iterative 
nature of design. 

• The general mathematical approach to maintaining design consistency in an 
evolutionary design system whenever the similarities of designs can be 
quantified. 

• The specific algorithm (COAST) for maintaining design consistency when the 
dimensions of the design are constrained through a system of nonlinear 
equations. Given an initial system of constraints and an initial solution, COAST 
is able to follow the desired solution when the constraints are modified. 

• The demonstration of the importance of maintaining a local optima in an 
interactive design system, and the application of the COAST method to the 
maintenance of a desired local optimum. 

• The new approach to incorporating curves into variational design systems. It is 
shown how to place relational constraints on curves like any other graphical 
element. 

• The novel approach to creating a consistent 3-D virtual last when given an 
arbitrary set of measurements taken from the user's foot. 



670 A MATHEMATICAL THEORY OF DESIGN 

21.3 SUMMARY 

This book suggests broad avenues in approaching research challenges that will 
enable the vision of Formal Design Theory (FDT) to be achieved. Some additional 
issues that have yet to be explored are summarized below: 

• In designing a product (or a process), what are the most productive paths through 
the specifications and artifact trees? 

• How can physics (engineering knowledge in the broad sense) be most 
beneficially incorporated between the specifications and artifact trees? 

• Can the formal definition of concurrent engineering activities be included in our 
approach to design process modeling? 

• Would it be useful to provide a powerful computational framework within the 
general evolutionary process model (developed in Chapter 6), which studies 
creativity and in which the creative design process can be described and 
explained? 

• Can statistical methods improve the probabilistic design selection method 
presented in Chapter 13? 

• Can the transition from design to manufacturing be modeled by mathematical 
mapping? 

• Can the belief that "small design changes can lead to significantly increased 
manufacturing cost" be captured by the discontinuity of mathematical mapping? 

• How can FDT research benefit other design methodologies, such as Quality 
Function Deployment (QFD)? 

Much work must still be done to reach the goal of developing Intelligent CAD 
systems that help at the conceptualization stage (incorporating manufacturing, 
materials and assembly information), as well as the implementation stage of 
developing detailed design attributes. The future development of FDT must also 
address large concurrent product development projects. A collaborative engineering 
project typically involves a group of designers working cooperatively on distributed 
tasks, and striving to complete a complex design by closely interacting among 
themselves and dynamically sharing design data and information. 

It is hoped that this book presents FDT's concepts in a clear manner that will 
benefit designers and researchers through the insight FDT provides. In addition, 
perhaps the material will inspire readers to undertake the challenge of further 
developing the theory and applying it to yield more effective design processes and 
products. 

REFERENCES 

1. Suh, N.P., The Principles of Design. New York: Oxford University Press, 1990. 
2. Boothroyd, G. and Dewhurst P., Product Design for Assembly. Wakefield, RI: Boothroyd & 

Dewhurst Inc, 1987. 
3. Barkan, P., and Hinckley, C. M., "The Benefits and Umitations of Structured Design 

Methodologies," Manufacturing Review, Vol. 8, No.3, 1993. 


