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v

 In recent years, the application of systems biology to increase our understanding of cancer 
has led to the integration of a variety of the state-of-the-art high-throughput and multidis-
ciplinary tools and workfl ows. These advances have begun to reveal further some of the 
complexity, and the dynamic nature, of gene networks and  signaling pathways   that vary 
from tumor to tumor and also during the course of the disease. In this volume, a wide range 
of topics contributed by leading experts in the fi elds of  cancer systems   biology and thera-
peutics, medical  bioinformatics  , and computational biology offer both technical and meth-
odological guidance and expert insights into many aspects associated with the study of 
 cancer gene networks  . Hence, this book provides a valuable and timely resource for a broad 
audience with interests in basic and translational  cancer biology  , cancer drug development, 
as well as in the practice of  oncology  .  

  Washington, DC, USA     Usha     Kasid    
      Robert     Clarke    
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    Chapter 1   

 Introduction: Cancer Gene Networks                     

     Robert     Clarke      

  Abstract 

   Constructing, evaluating, and interpreting gene networks generally sits within the broader fi eld of systems 
biology, which continues to emerge rapidly, particular with respect to its application to understanding the 
complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad 
defi nition of systems biology. Considering an organism or disease within an organism as a system, systems 
biology is the study of the integrated and coordinated interactions of the network(s) of genes, their vari-
ants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their 
proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the 
biochemical reactions (e.g., as enzymes, substrates, products) that refl ect the function of that system. 
Central to systems biology, and perhaps the only approach that can effectively manage the complexity of 
such systems, is the building of quantitative multiscale predictive models. The predictions of the models 
can vary substantially depending on the nature of the model and its inputoutput relationships. For exam-
ple, a model may predict the outcome of a specifi c molecular reaction(s), a cellular phenotype (e.g., alive, 
dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopula-
tions, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational 
modeling can be thought of as using machine learning and related tools to integrate the very high dimen-
sional data generated from modern, high throughput omics technologies including genomics (next gen-
eration sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and 
proteomics (ultra high performance liquid chromatography, mass spectrometry), and “subomic” tech-
nologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the 
use of ordinary differential equations and related tools to create dynamic, semi-mechanistic models of low 
dimensional data including gene/protein signaling as a function of time/dose. More recently, the integra-
tion of imaging technologies into predictive multiscale modeling has begun to extend further the scales 
across which data can be obtained and used to gain insight into system function. 

 There are several goals for predictive multiscale modeling including the more academic pursuit of 
understanding how the system or local feature thereof is regulated or functions, to the more practical or 
translational goals of identifying predictive (selecting which patient should receive which drug/therapy) or 
prognostic (disease progress and outcome in an individual patient) biomarkers and/or identifying network 
vulnerabilities that represent potential targets for therapeutic benefi t with existing drugs (including drug 
repurposing) or for the development of new drugs. These various goals are not necessarily mutually exclu-
sive or inclusive.  

 Within this volume, readers will fi nd examples of many of the activities noted above. Each chapter 
contains practical and/or methodological insights to guide readers in the design and interpretation of their 
own and published work.  

  Key words     Systems biology  ,   Cancer gene networks  ,   Quantitative multiscale predictive models  , 
  Computational modeling  ,   Mathematical modeling  ,   High throughput omics  ,   Subomics   
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  Constructing, evaluating, and interpreting gene networks generally 
sits within the broader fi eld of systems biology, which continues to 
emerge rapidly,    particular with respect to its application to under-
standing the complexity of signaling in the context of  cancer biol-
ogy  . For the purposes of this volume, we take a broad defi nition of 
systems biology. Considering an organism or disease within an 
organism as a system, systems  biology   is the study of the integrated 
and coordinated interactions of the network(s) of genes, their vari-
ants both natural and mutated (e.g., polymorphisms, rearrange-
ments, alternate  splicing  , mutations), their proteins and isoforms, 
and the organic and inorganic molecules with which they interact, 
to execute the biochemical reactions (e.g., as enzymes, substrates, 
products) that refl ect the function of that system. Central to sys-
tems biology, and perhaps the only approach that can effectively 
manage the complexity of such systems, is the building of  quantita-
tive multiscale predictive models  . The predictions of the models 
can vary substantially depending on the nature of the model and its 
 input-output relationships  . For example, a model may predict the 
outcome of a specifi c molecular reaction(s), a cellular phenotype 
(e.g., alive, dead, growth arrest, proliferation, and motility), a 
change in the respective prevalence of cell or subpopulations, a 
patient or patient subgroup outcome(s). Such models necessarily 
require computers. Computational  modeling   can be thought of as 
using machine learning and related tools to integrate the very high 
dimensional data generated from modern, high throughput omics 
technologies including genomics (next generation sequencing), 
transcriptomics (gene expression microarrays;  RNAseq  ), metabo-
lomics and  proteomics   (ultra high performance liquid  chromatog-
raphy     ,  mass spectrometry  ), and “subomic”  technologies   to study 
the kinome, methylome, and others. Mathematical modeling can 
be thought of as the use of ordinary differential equations and 
related tools to create dynamic, semi-mechanistic models of low 
dimensional data including gene/protein signaling as a function of 
time/dose. More recently, the integration of imaging technologies 
into predictive multiscale modeling has begun to extend further 
the scales across which data can be obtained and used to gain 
insight into system function. 

 There are several goals for predictive multiscale modeling 
including the more academic pursuit of understanding how the sys-
tem or local feature thereof is regulated or functions, to the more 
practical or translational goals of identifying predictive (selecting 
which patient should receive which drug/therapy) or prognostic 
(disease progress and outcome in an individual patient)  biomarkers   
and/or identifying network  vulnerabilities   that represent potential 
targets for therapeutic benefi t with existing drugs (including drug 
repurposing) or for the development of new drugs. These various 
goals are not necessarily mutually exclusive or inclusive. 

Robert Clarke
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 Within this volume, readers will fi nd examples of many of the 
activities noted above. Each chapter contains practical and/or 
methodological insights to guide readers in the design and inter-
pretation of their own and published work. As a guide, given below 
is a brief overview of each chapter for readers. 

 Lecca and Re [ 1 ] provide an excellent introduction to the 
development and use of  network-oriented approaches   in the con-
text of systems pharmacology for target identifi cation and  drug 
combination   optimization. The context dependence of  network 
topology   and intrinsic robustness are discussed as are different 
approaches to explore  this   topology and identify network  vulnera-
bilities  . The determination of highly connected nodes (often called 
hubs) is considered also in view of  node centrality    metrics   such as 
betweenness centrality, bridging centrality, and  vibrational central-
ity  . The ability to fi nd and optimize effective anticancer drug com-
binations requires a greater focus on the combination than on the 
individual drugs. Two general approaches are presented, a non- 
model based  inference of drug–target networks   and a  network vul-
nerability   analysis applying  vibrational centrality  . The authors 
compare node strength estimated from drug–gene network and 
node centrality in a protein–protein interaction (PPI) network. An 
understanding of network topology as it relates to cell function can 
enable optimization of existing therapies and the identifi cation of 
new combinations or targets. 

  Tumor heterogeneity   is a major problem in the development 
of  drug resistance   and further challenges the building of adequate 
network models that capture all of the vulnerabilities in cancer 
cells. Kim and Gatenby [ 2 ] explore the development of cellular and 
 molecular heterogeneity   in the context of  Darwinian dynamics.   
Each tumor represents an  ecosystem   comprising multiple local 
habitats of tumors cells living within unique  niches  . These niches 
interact with each other and with locally acting environmental 
selection pressures that drive the dynamical properties of the niches 
and ecosystem, representing the  Habitat Concept of intratumoral 
heterogeneity.   These authors propose that imaging technologies 
can identify some of these niches and their features, for example, 
regional variations as affected by immediate anatomical constraints, 
in much the same way that  satellite images   can identify geographic 
localities and their features. Thus, heterogeneity is not driven solely 
by genetic mutations but also by potentially adaptive responses to 
factors operating within the microenvironment. The use of such 
technologies as magnetic resonance imaging ( MRI  ) or images 
from  computed tomography (CT)   scans can provide additional 
information for studying spatial variations refl ecting the dynamic 
properties of the heterogeneity that exists within most solid 
tumors. The authors hypothesize that MRI and CT scans can iden-
tify structures, which can also be monitored over time, and reveal 

Introduction: Cancer Gene Networks
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regional variations within a tumor that refl ect the underlying 
phenotypic and genotypic subpopulations. Such data can create a 
“ species map”   of the  ecology   of a tumor. This approach is termed 
“ radiomics,”   where cross-sectional imaging provides the data for 
the development of quantitative algorithms for the mining of con-
ventional clinical  images  . The chapter provides insight into meth-
ods in landscape  ecology     , where  intratumoral heterogeneity   in 
MRI images can be interpreted as representing  habitats   within 
each tumor ( ecosystem  ). 

  Human pluripotent stem cells (hPSCs)   offer a powerful tool to 
study the role of individual genes in development and progression 
to malignancy. These cells uniquely exhibit the ability to both dif-
ferentiate into any adult human cell type and to replicate without 
limit. While the ability to genetically modify hPSCs is mechanisti-
cally powerful, they have a low effi ciency for transfection and a low 
rate of spontaneous  homologous recombination  . Moreover, the 
need to use a drug- resistance   cassette for clonal selection, which 
can affect the expression of adjacent genes including the reporter 
gene, usually requires removal of the cassette. Verma et al. [ 3 ] pro-
vide a detailed protocol for the use of the  CRISPR/Cas technol-
ogy   to simply the process for generating  fl uorescent reporter   and 
 epitope tagged    hPSCs  . The protocol describes several methods 
including those for transfecting cells, validating established clones, 
designing donor  ssDNA     , sequence verifying targeted clones, and 
using  immunoprecipitation   and western hybridization to validate 
epitope tagged lines. The knock-in strategy described could also be 
used for gene knock-outs. Thus, the procedures described may 
have utility in a variety of experimental designs including gene 
overexpression studies and for cell lineage tracing. 

  RNAseq   has become one of the most popular tools for explor-
ing concurrently both expression levels and RNA sequence data. 
However, chemical modifi cation of bases due to fi xation, often 
from the use of formalin, or degradation can affect sequence and 
alter apparent abundance, particularly for lower abundance RNA 
species. These effects are challenging for RNAseq studies that can 
depend on adequate length reads and abundance for accurate 
sequence determination and expression level estimates. To address 
these concerns, Miller et al. [ 4 ] describe the use of restructured 
adapter sequences for library construction with a method applies 
duplex-specifi c nuclease to eliminate ribosomal  RNAs   and retain 
the RNA species of interest even when the initial input RNA sam-
ple is of relatively low quantity. The method, which is presented in 
detail, can be applied to multiple  RNAseq   platforms including 
Illumina  HiSeq  ,  MiSeq  , and  NextSeq  . 

 In mammals, exon- skipping   is the most prevalent mechanism 
for generating alternate spliced RNAs. Several quite effective meth-
ods have been described to identify exon skipping but these can 
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miss some critical events. Wang et al. [ 5 ] address the issue of  opti-
mally   comparing exon-skipping, alternative  splicing     , transcription 
and epigenesist through a novel computational work fl ow that 
implements a  graph-based exon-skipping scanner approach 
(GESS)  . Their tool can capture  de novo exon-skipping      using raw 
 RNASeq   data and does not require knowledge of gene annotation. 
GESS builds a splice-site-link graph, walks across the graph itera-
tively to map those subgraphs that exhibit a pattern likely refl ecting 
an  exon-skipping event  . The  Mixture of Isoforms (MISO) model   
is applied to help determine the dominant transcript(s). The 
authors show the utility of the method in two studies, one of cells 
of lymphoid origin and one in data from prostate cancer cells. 

 The  tumor microenvironment   is widely implicated as a critical 
contributor to the development and progression of neoplasia and 
to the ability of tumors to resist the antineoplastic activity of mul-
tiple therapeutic interventions. Zhang et al. [ 6 ] provide a detailed 
description of their approaches to modeling the microenvironment 
of  multiple myeloma   using two prototype  perfusion culture devices  . 
To capture the three-dimensional features of the solid tumor 
microenvironment, the fi rst device uses an  osteoblast-derived tis-
sue scaffold   within a  microfl uidic stricture   that can be perfused as 
appropriate for each study design. The use of a glass slide format 
makes the device suitable for several experimental designs includ-
ing performing time-lapse microscopy. For higher throughput, the 
second approach takes a 96-well format in a modifi ed  perfusion 
culture device   where microenvironments can be reconstructed 
using human and murine cells. This device allows for the preserv-
ing of primary cells while providing a high-throughput format for 
experimentation that is amenable to use on standard plate readers 
that use standard 96-well tissue culture plates. 

 Noncoding RNAs are now understood to play critical roles in 
gene regulation. Micro-RNAs were among the fi rst of these to be 
identifi ed and there remains considerable interest in more accu-
rately predicting their regulated targets in cancer cells. Most  pre-
dictive   algorithms tend to overfi t and predict multiple targets likely 
refl ecting an infl ated Type 1 error (false positive). To address this 
problem Ritchie [ 7 ] presents a method that refi nes predictions and 
constrains the Type 1 error to generate more robust predictions of 
miRNA  target    genes  , likely at the cost of an acceptable infl ation of 
the Type 2 error. Three strategies are taken to achieve this overall 
goal: (1)  multi-targeting   leverages the observation that the same 
gene is often targeted multiple times by the same  miRNA  ; (2) 
widely available gene expression array data supports identifi cation 
of differentially regulated target genes; (3) integration of informa-
tion from  databases   that contain experimental validation of specifi c 
targets further supports target identifi cation. 

Introduction: Cancer Gene Networks
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 Proteins are the most common molecules targeted by drug 
and applying novel  proteomic   technologies to identify new targets 
has increased in recent years. Nguyen et al. [ 8 ] take readers through 
some of the more recently developed and/or more widely used 
 chemoproteomic   methods for  drug discovery  . Rather than reca-
pitulate much of what has been reviewed by others, the authors 
focus on some of the more successful methods and some of the 
more recent approaches that appear to offer great potential to sup-
port future discovery. Stability  proteomic   approaches address 
experimental designs where the goal is to identify proteins that 
become thermodynamically unstable or stable once they bind the 
drug of choice. These methods include  cellular thermal shift assay 
(CETSA)  ,  stability of proteins from rates of oxidation (SPROX)  , 
and  drug affi nity-responsive target stability (DARTS).   The authors 
also discuss the role of  kinobeads   to explore the relative affi nities of 
different enzymes and  inhibitors  . 

 The profi ling of thousands of endogenous metabolites and 
small molecules in cells, tissues and fl uids including blood and urine 
can provide insight into function and the nature and consequences 
of exposures to factors in the environment and lifestyle. The rela-
tive ease with which blood and urine can be collected can allow for 
the analysis of changes over time associated with disease, treatment, 
response, or other interventions. For cells in culture, changes in 
metabolism that occur in seconds,    minutes, or hours can also be 
followed and metabolic fl ux through established pathways can be 
studied readily. Haznadar and Mathé [ 9 ] address several issues in 
the rapidly developing fi eld of metabolomics with a primary focus 
on analytical methods and study designs. The authors compare the 
two primary technological approaches:  nuclear magnetic resonance 
(NMR)   and the  mass spectrometry (MS)  -based approaches that are 
usually linked to analysis of materials following separation by either 
liquid or gas  chromatography     . These are complementary tools since 
NMR is appropriate mostly for known, high abundance molecules, 
whereas the MS-based approaches have greater sensitivity and can 
be more effectively used for profi ling and analysis of lower abun-
dance molecules. The authors discuss  lipidomics  , sample process-
ing, quantifi cation, use of  databases   to identify molecules from 
their mass–charge properties, study design, and controls. 

 Delivery of proteins into cells has remained diffi cult, especially 
for larger proteins like antibodies. While there have been many 
reportedly successful attempts to do so, few methods have included 
unambiguous validation of delivery into the cytosol. This issues is 
clearly defi ned by Marschall et al. [ 10 ], who also note the expres-
sion of antibodies from transfected cDNAs frequently produce 
proteins that are incompletely or incorrectly folded if expressed in 
the cytosol, and so do not function appropriately. Their text 
includes careful consideration of the most appropriate controls 
and they present two independent strategies for critical evaluation 
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of antibody delivery effi ciency. A more widespread application of 
the optimal method allows investigators to deliver antibodies to 
cells for modulating cell signalling, e.g. by targeting individual 
phosphorylation sites of cellular receptors. 

 Genomics and transcriptomics have garnered most of the 
recent attention. However, it is more often the protein products of 
these nucleic acids, and their posttranslational modifi cations, which 
transduce signals and most directly affect cell function. Moreover, 
most drugs target proteins and a better understanding of disease 
specifi c changes in the  proteome   is likely to lead to the develop-
ment of more, and perhaps better, drugs.  Proteomics   analyses 
based on two-dimensional gel analyses and/or  mass spectrometry   
have remained somewhat limited in their application to date. As 
Jozwik et al. note [ 11 ], challenges remain with developing mas-
sively parallel proteomic approaches that are adequately sensitive, 
quantitative, rapid, and robust. These authors propose that one of 
the two primary protein  microarray   technologies,    where either a 
series of antibodies (forward capture) or the antigen/specimens 
(reverse capture) are single spot printed onto slides. While each is 
limited by the availability of antibodies with adequate sensitivities 
and specifi cities, where appropriate antibodies are available these 
approaches offer signifi cant potential. Of the two approaches, per-
haps the reverse capture method has been the more widely adopted. 
Jozwik et al. provide guidance into the successful application of 
reverse capture methods, with a focus on studies that use  body 
fl uids   other than serum/plasma. 

 The elimination of damaged, improperly folded, or unfolded 
proteins is a critical homeostatic process in cells. The presence of 
such proteins can be sensed by the  unfolded protein response 
(UPR)  , which can then activate the two pathways primarily per-
form this function – one or more of the autophagy pathways 
 ( macroautophagy  ,  microautophagy  , chaperone mediated  autoph-
agy  ) [ 12 ] and the ubiquitin-proteasome pathway [ 13 ]. Generally, 
the autophagic processes manage proteins with long half-lives, 
whereas the ubiquitin-proteasome system (UPS)    eliminates more 
short- lived proteins. Targeting autophagy has been used effectively 
in several experimental cancer models. There is signifi cant cross 
talk between the  UPR  , autophagy, and cell death (apoptosis) [ 14 ], 
and inhibiting autophagy reverses resistance to endocrine agents in 
breast cancer [ 15 ,  16 ]. Mooneyham and Bazzaro [ 17 ] provide an 
excellent assessment of the concepts supporting targeting autoph-
agy and the deubiquitinating enzymes (DUBs) of the  UPS   as a 
new approach to eliminating cancer cells. The chapter carefully 
describes critical cross talk between autophagy and  UPS  , and 
addresses the role of autophagy in cancer (both prodeath and pro-
survival cell actions). 

 In their chapter, Li et al. [ 18 ] address the need to probe DUB 
activities experimentally. The authors describe a novel approach to 

Introduction: Cancer Gene Networks



8

synthesizing a new class of deubiquitin DUB probes. They show 
that two ubiquitin moieties, connected by a linker that traps the 
DUB active site  cysteine  , offers a new series of reagents to study 
DUB activities. Detailed materials and methods provide guidance 
to enable  others   to use their approach in their own research. 

 A critical cell survival signaling driven by the  UPR   is the 
unconventional  splicing   of  XBP1   following activation of the 
endogenous  RNase   activity of IRE1α. For example, in breast can-
cer cells, activation of  XBP1   can drive the ability to grow in the 
absence of estrogens and resist the antineoplastic effects of anties-
trogens [ 19 – 21 ]. IRE1α also has a kinase domain and Feldman 
and Maly [ 22 ] describe biochemical approaches to explore profi l-
ing both the kinase and  RNase   activities of this critical regulator of 
the UPR.    They discuss the role of the soluble form of the protein 
(IRE1α*), which exhibits many activities seen in the membrane 
bound form. A greater understanding of the multiple actions of 
IRE1α, likely will lead to obtaining fundamentally new insights 
into its role within the UPR and perhaps beyond. 

 Cell survival signaling, including that regulated by the UPR 
and autophagy, often includes the regulation of intracellular Ca ++  
concentrations and the action of calcium-binding proteins. 
Leighton et al. [ 23 ] describe a novel tumor suppressor  gene  , the 
calcium binding protein ANAX7-GTPase that is also a member of 
the annexin family. The authors explore the characteristics of the 
ANAX7-GTPase gene/protein and identify its novel role as a 
potential driver of the metastatic cascade and also as a  biomarker   of 
risk in HER2-negative breast cancers. Signaling cross talk with 
other critical oncogenic factors, including the ability of ANAX7- 
GTPase to interact with PTEN and  EGFR   to regulate PI3K-AKT 
is also clearly delineated. The chapter further explores the role of 
ANAX7-GTPase in Ca ++  metabolism, and how ANAX7-GTPase 
may be a novel target for gene cancer therapy. 

 Day et al. [ 24 ] provide an insightful discussion of the apparent 
role of tumor  necrosis   factor-α-inducible protein 8 (TNFAIP8)    in 
 cancer biology  , with a specifi c focus on its role in affecting cell 
survival and  tumor progression  . Taking a mechanistic approach, 
the authors show how  knockdown   of TNFAIP8  regulates   the 
expression of several critical genes that control proliferation and 
apoptosis. The multifaceted actions of TNFAIP8 include signaling 
through multiple oncogenes and signaling through  HIF-1α  . The 
authors’ detailed and effective assessment of TNFAIP8 action pro-
vides a framework for future validation studies. As the critical role 
of TNFAIP8-centric regulated factors becomes clear in the con-
text of cancer cell survival and disease progression, additional 
emphasis on their role as  biomarkers   and targets for  drug discovery   
is likely to emerge.    
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    Chapter 2   

 Emerging Methods in Chemoproteomics with Relevance 
to Drug Discovery                     

     Chuong     Nguyen    ,     Graham     M.     West    , and     Kieran     F.     Geoghegan      

  Abstract 

   A powerful interplay exists between the recognition of gene families, sensitive techniques in proteomics, 
and the interrogation of protein function using chemical probes. The most prominent methods, such as 
affi nity capture, activity-based protein profi ling and photoaffi nity labeling, are extensively reviewed in the 
literature. Here we briefl y review additional methods developed in the past 15 years. These include “stabil-
ity proteomics” methods such as proteomically analyzed cellular thermal shift assays and the use of chemi-
cal oxidation as a probe of structure, the use of multiple bead-linked kinase inhibitors to analyze inhibitor 
specifi cities, and advances in the use of proteolysis-targeting chimeras for selective protein elimination.  

  Key words     Chemoproteomics  ,   CETSA  ,   SPROX  ,   DARTS  ,   LiP-SRM  ,   Proteomics  ,   Kinobeads  ,   PROTAC  

1       Introduction 

  Proteomics   has developed spectacularly in its short lifetime at a rate 
of growth and change rapid enough to unnerve the unwary. In its 
early days, two-dimensional gels were used to resolve hundreds of 
proteins into discrete spots in a way that  highlighted      meaningful 
variations [ 1 ], and digestion followed by Edman sequencing or 
peptide mass-mapping [ 2 ] was used to identify proteins of interest. 
This approach had the strong attribute that attention went directly 
to any proteins that changed under test, but its coverage of the 
 proteome   was generally low. 

 Rapid advances in  mass spectrometry   and the power of the 
SEQUEST algorithm soon converted the fi eld to methods based 
on digestion and mass spectrometry, a teenage period that roughly 
covered the fi rst decade of the twenty-fi rst century [ 3 ]. As pro-
teomics reaches its mid-twenties, label-based ratiometric methods 
or label-free alternatives that increase the depth and scope of com-
parative analyses form a basis for improving the quantitative rigor 
of global or broadband proteomic analyses. Meanwhile, specialized 
methods for targeted analysis have been established for cases in 
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which quantitation is required, as in the urgent but challenging 
hunt for protein  biomarkers   of human disease [ 4 ]. 

 Interfacing  proteomics   with drug discovery has also been chal-
lenging. As some foresaw [ 5 ], seeking the origins of disease in 
altered protein expression patterns has not been an especially 
rewarding endeavor, if the criterion for reward is immediate action-
ability. Instead, it is applications based on the proteomic algorithm 
but directed to answering questions about the molecular action of 
drug-like molecules that are coming to the fore in the pharmaceu-
tical industry.  

2     Chemoproteomics: Principal Methods 

 The literature already offers many authoritative reviews of major 
methods in chemical biology. Rather than adding to the surfeit, we 
devote this article to a few specialized methods that have either 
proved their success or are currently raising hopes of new insights. 
The common thread running through these techniques is the 
involvement of a drug or potential drug molecule in the experi-
ment, which is the origin of the term “chemoproteomics.” Often, 
but not always, it denotes an experimental approach composed of 
two parts, a fi rst one in which affi nity for a chemical probe is used 
to select proteins from a complex mixture, and a second in which 
the essential methods of  proteomics   (digestion,  mass spectrometry   
and  database   searching) are used to identify those proteins. Already, 
however, this defi nition is being outdated by expansive new ideas. 

 Classical methods of this kind have  already      had real impact. 
Affi nity capture of drug targets using small molecules immobilized 
on beads or captured after target binding via a biotin “handle” is 
an example. Handa and colleagues [ 6 ] used a refi ned version of 
this method employing methacrylate-coated nanobeads to uncloak 
the mechanism of action of the teratogenic drug thalidomide, 
rehabilitated now as a therapy for blood cancers. Their result has 
been incorporated directly into an exciting strategy for targeted 
protein degradation, which we discuss. Another example is pho-
toaffi nity labeling, which increasingly is used to identify specifi c 
ligand-binding sites on proteins rather than just to identify tar-
geted proteins [ 7 ]. A third is the burgeoning strategy known as 
activity-based protein profi ling [ 8 ,  9 ], which unifi es previously dis-
connected chemical probes that react covalently with protein tar-
gets. Although these reagents function by a variety of mechanisms, 
some assisted by substrate-recognition elements of enzyme active 
sites and others targeting enzymes purely by complementary reac-
tivity, they are now collectively designated as activity-based  probes   
of enzyme targets. Their defi ning characteristic is an ability to label 
covalently a class of enzymes or other proteins that have an impor-
tant feature in common, such as an exceptionally reactive thiol 
group or the common capacity to bind ATP. 

Chuong Nguyen et al.
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 Instead of providing still more coverage of these well-reported 
topics, we devote this section to a few technologies that may be 
new to readers who specialize in fi elds other than chemical biology 
or  proteomics  . These methods are not all new, but we share them 
in the spirit of colleagues sharing recent reading, as they are gain-
ing momentum and the potential power of the methods reviewed 
deserves to be appreciated.  

3     Stability  Proteomics  : Cellular Thermal Shift Assay and  SPROX   

 Typical proteomics studies correlate stress on a system (e.g., the 
presence of a disease state or bioactive compound) with shifts in 
the expression levels or modifi cations of specifi c proteins. Changes 
in protein abundance or levels of post-translational  modifi cation 
     are inferred from the intensity ratios of peptide ions. This type of 
approach has been used with increasing success for two decades to 
study protein networks and lay a foundation for systems  biology  . 
Despite their power, these techniques are less suited to detecting 
indirect effects such as changes in protein interactions that leave 
protein expression levels unchanged. Some recently developed 
proteomic techniques combine the power of LC-MS with biophys-
ical or biochemical manipulation to monitor the ligand-induced 
thermodynamic stabilization of proteins, and we refer to these 
techniques collectively as “Stability Proteomics”. 

 All stability  proteomics      techniques use or are compatible with 
bottom-up (i.e., digest-based)  mass spectrometric   measurements as 
a readout for the thermodynamic stability of proteins. Experiments 
often compare results obtained in the absence or presence of a com-
pound with the intent of identifying proteins that become thermo-
dynamically stabilized or destabilized by the compound of interest. 
An advantage of these methods is that no chemical derivatization or 
immobilization of the ligand molecule or target proteins is required. 
In addition, they can all detect on- and off-target protein–drug 
interactions as well as direct and indirect binding events. Perhaps 
the most anticipated potential of stability proteomics techniques is 
the possibility to identify previously unknown off-target (or even 
unknown on-target) protein–drug interactions. 

 Methods of this kind detect changes in the thermodynamic 
stability of proteins using a variety of biophysical and biochemical 
mechanisms. The  cellular thermal shift assay (CETSA)   (Fig.  1 ) was 
originally developed using a readout based on western blots [ 10 ] 
but has been recently adapted to LC-MS [ 11 ]. CETSA relies on 
the loss of protein solubility in the thermally denatured state to 
generate thermal denaturation curves. LC-MS approaches gener-
ate these melting curves from reporter ion intensities which 
approximate the abundance of soluble proteins through their pep-
tide surrogates. The experimental protocol for CETSA is attrac-
tively simple, but analysis of the data appears challenging.

Emerging Methods in Chemoproteomics
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   An additional method, the “ s tability of  p roteins from  r ates of 
 ox idation” (SPROX)    technique (Fig.  2 ) follows the chemical dena-
turation of proteins by measuring the hydrogen peroxide- mediated 
     oxidation of structurally protected methionines over a range of 
concentrations of chemical denaturant [ 12 – 14 ]. Unlike the other 
stability proteomics techniques,  SPROX   provides additional infor-
mation regarding affi nity ( K  d ), binding pocket location and 
domain-specifi c interactions, but is limited at the peptide level to 
globally protected methionine-containing peptides.

   The approach known as “drug affi nity-responsive target sta-
bility” (DARTS)    [ 15 ,  16 ] and a similar energetics-based method 
for target identifi cation [ 17 ] (Fig.  3 ) rely on the classical observa-
tion that ligand binding  often   stabilizes proteins against proteo-
lytic degradation. Peptide peak intensities in proteomic analysis 
are used as the readout for these techniques. DARTS has the 

  Fig. 1    The  CETSA   (cellular thermal shift assay) protocol uses ten aliquots of a control 
(DMSO-treated) sample and ten aliquots of sample treated with ligand. The aliquots 
can originate from a lysate or intact cell sample.       Each aliquot in a set is exposed to 
one of a series of temperatures and denatured/aggregated proteins are then 
removed by centrifugation. The fraction of non-denatured protein remaining in each 
aliquot is measured by TMT (Tandem Mass Tag™) reporter ion intensities from 
peptides in its tryptic digest, and the reporter ion intensities are used to construct 
thermal melting curves. Ligand-induced shifts in the  T  m  values for these curves 
indicate ligand-induced effects on the thermodynamic stabilities of proteins       
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advantage of being label-free, but the experiment requires prior 
optimization of conditions.

   Limited proteolysis (LiP) coupled with  single reaction moni-
toring (SRM)   is similar to  DARTS   (Fig.  3 ), but follows the partial 
digestion step with an additional alternative proteolytic digestion 
step to increase the number of peptides amenable to bottom up 
LC-MS and takes advantage of SRM for improved quantitative 
accuracy. However, LiP-SRM requires additional optimization 
steps and the quantitative advantage provided by SRM requires 
prior knowledge of the targets. As such, Lip- SRM   may prove to 
be particularly useful as a follow-up technique for the other sta-
bility proteomics techniques that validates potential hits with 
greater sensitivity. 

  Fig. 2    As with CETSA, the  SPROX   protocol starts with aliquots of a protein mixture 
treated with either DMSO (as a control) or ligand, but in this case chemical dena-
turant is used to shift the folding equilibria of the proteins. Hydrogen peroxide is 
then added to the aliquots so that solvent–exposed methionine side chains are 
labeled with oxygen. The extent of methionine oxidation is used to report on the 
folding equilibrium at each denaturant concentration, typically measured by 
reporter ions. The data are used to generate denaturation curves, or SPROX 
curves, and the transition midpoints (C 1/2 ) from the SPROX curves for each pro-
tein/peptide in the presence and absence of ligand are used to determine 
changes to proteins’ thermodynamic stability in solution at the time of labeling       
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 The remainder of this section will focus on  CETSA   and 
 SPROX  , which are the only stability proteomics methods that can 
generate denaturation curves. Shifts in these curves induced by 
compound binding can be instructive. 

 The  CETSA   technique (Fig.  1 ) essentially  performs   a  thermal 
shift assay (TSA)   on every protein in a given test mixture. As with 
TSA of a pure protein, in which the protein is carried  through      its 
denaturation equilibrium over a series of increasing temperatures, 
the CETSA technique gauges the relative amount of each protein 
that remains folded over a range of temperatures. Unlike most 
TSA techniques for single pure proteins, CETSA estimates dena-
turation based on solubility rather than fl uorescence. The CETSA 
derived “ T  m ” value may not be accurate for proteins that unfold 
irreversibly, but this does not prevent the technique from detecting 
ligand-induced shifts in CETSA curves. The fact that CETSA can 

  Fig. 3     DARTS   (drug affi nity-responsive target stability) and LiP- SRM   (limited pro-
teolysis coupled with  single reaction monitoring  ) both rely on a protein’s suscep-
tibility to protease-catalyzed cleavage.       The premise of these techniques is that 
specifi c regions of proteins are less susceptible to proteolytic cleavage when 
they are stabilized by a ligand. Protease effi ciency is measured at the peptide 
level in DARTS and at the peptide fragment level in LiP-SRM. All of the  proteomic   
stability techniques are capable of detecting direct on-target and off-target inter-
actions with ligands (stabilization) as well as indirect effects such as the disrup-
tion of a protein–protein interaction (destabilization)       
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screen for ligand interactions from (potentially) every peptide/
protein detected in an LC-MS experiment makes this new tech-
nique appear very appealing. In addition, it is reported to be able 
to be performed on live cells as well as on cell lysates. 

 The process by which denaturation  curves      are generated 
involves dividing a protein mixture or cell population into equal 
aliquots. Each aliquot is heated to a different temperature that will 
contribute a point to the thermal melting curve for each protein 
detected. The temperature-specifi c samples are lysed, if necessary, 
and centrifuged to remove proteins which are no longer soluble as 
a result of denaturation. After digestion, isobaric tagging and pool-
ing, the sample is analyzed by LC-MS and thermal denaturation 
curves are generated for each detected peptide from the isobaric 
tag reporter ions. These peptide-specifi c data must then be pooled 
to give data at the protein level. 

 An additional sample containing a compound of interest is pre-
pared likewise and the  CETSA   denaturation curves are compared 
between conditions to identify proteins that were stabilized or 
destabilized by the compound. In addition, CETSA can also gen-
erate isothermal dose–response (ITDR) profi les that resemble 
dose–response curves. 

 The SPROX technique provides results fundamentally similar 
to chemical denaturation curves from CD or fl uorescence-based 
studies on pure proteins [ 14 ,  18 ]. SPROX methodology calls for 
diluting a protein mixture into a series of chemical denaturants that 
shift the unfolding equilibria of proteins in each denaturant- 
containing mixture (Fig.  2 ). Solvent- accessible      Met side chains are 
then labeled (oxidized) with hydrogen peroxide. The oxidant is 
quenched, and the protein samples are digested, labeled with iso-
baric tags and pooled. SPROX uses the denaturant-dependent oxi-
dation of Met side chains to generate denaturation curves and 
measure thermodynamic properties of proteins. Reporter ion 
intensities from oxidized and unmodifi ed methionine-containing 
peptides are used to generate this data and the folding free energy 
(Δ G ),  m -value, and  K  d  can be derived by fi tting this data to SPROX 
equations.       However, these Δ G  values may not be accurate for cases 
where oxidation affects protein equilibria. Although the  K  d  values 
may still be accurate when Δ G  estimation is compromised, the 
accuracy of  K  d  values is affected when oxidation interferes with 
compound binding. The number of proteins identifi ed from an 
LC-MS experiment that can be useful in a SPROX analysis is also 
limited to those proteins for which digestion yields Met-containing 
peptides. In theory the SPROX approach could generate dose–
response data similar to  PLIMSTEX   (protein–ligand interaction by 
 mass spectrometry  ) [ 19 ], but this has yet to be demonstrated. 

 As with all proteomic studies, novel hits from stability pro-
teomics techniques require validation using orthogonal techniques 
such as western blotting with immunodetection. Nonetheless, the 
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various emerging methods of stability proteomics present research-
ers with the exciting potential to discover novel on- and off-targets 
of their compounds. Having  knowledge   of all targets for a given 
drug candidate could enable medicinal chemists to design around 
off-target interactions that could be potentially detrimental in vivo 
and in the clinic. On a more cautionary note, the widespread feasi-
bility and applicability of these techniques remains to be seen, as 
the few novel target identifi cations secured by these methods to 
date all come from the labs in which the techniques were devel-
oped. Although the  SUPREX technique   (stability of unpurifi ed 
proteins from rates of H/D exchange), on which  SPROX   was 
based, has seen broader use among the scientifi c community [ 20 , 
 21 ], time will tell if these new stability proteomics techniques will 
be adopted into the tool kits of external laboratories.  

4      Kinobeads   

 The central importance of  protein kinases   in biology places them 
among the most attractive drug targets, but the extent of their 
mutual similarity initially made specifi c inhibition of particular 
kinases appear to be a diffi cult task [ 22 ]. Persistence has trans-
formed the picture and kinase  inhibitors   now  appear      in the clinic in 
the form of a variety of life-saving and life-enhancing medicines. In 
some cases, they are less specifi c than was originally intended, and 
this  apparent   shortcoming has turned out to be a strength [ 23 ]. 
Therefore, the ability to defi ne in quantitative terms the specifi city 
of protein kinase  inhibitors      is a topic of great importance. 

 Kinase selectivity screens using panels of enzymes [ 24 ] and a 
notably successful ATP-based covalent probe [ 25 ] have provided 
two routes to acquiring the needed information, but one of the 
most streamlined and elegant approaches is the use of kinobeads 
[ 26 ] (Fig.  4 ). This approach exploits the ability of multiple kinase 
inhibitors linked to agarose beads to capture a high fraction of the 
 protein kinases   present in a cell or tissue lysate. Inhibitors present 
in soluble form can compete against the bead-linked compounds, 
allowing a direct means of gauging the relative affi nities of differ-
ent enzymes and inhibitors.

   The  kinobead   approach has some attractive features. Coupling 
kinase inhibitors that belong to several different classes to agarose 
beads has allowed the capture and MS-based identifi cation of as 
many as several hundred kinases per assay, while the use of  isobaric 
chemical tags   (initially iTRAQ) [ 27 ] allows for ratiometric quanti-
tation of their binding or displacement by competitors. Varying 
the concentrations of soluble inhibitor during the capture step 
allows derivation of an  IC50   for any detected kinase. 

 To introduce the concept and its utility, Bantscheff and cowork-
ers investigated the inhibitory activities of several drugs, imatinib 
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(Gleevec), dasatinib (Sprycel), and bosutinib (Bosulif) [ 26 ]. 
Lysates deriving from K562 cells, which express BCR-ABL  fusion 
protein  , were fi rst incubated (separately) with an increasing con-
centration of each kinase inhibitor (100 pM–10 μM), after which 
the lysates were exposed to kinobeads. Kinases captured by the 
beads despite the competitive presence of the soluble inhibitor 
were digested, labeled with iTRAQ reagent, and  detected      by  mass 
spectrometry   with reporter ion readouts providing a gauge of the 
extent of binding at each concentration of the competitor. This 
allowed  IC50   values for all three drugs to be derived. 

 An additional benefi t of the work was its potential to identify 
nonkinase drug targets. In the introductory paper [ 26 ], potent 
inhibition of the oxidoreductase NQO2 by imatinib was indicated 
by the kinobeads binding protocol and  directly   confi rmed in an 
enzyme assay. 

 Several improvements to the workfl ow and new applications 
for the method have now been reported [ 28 ,  29 ]. The original 

  Fig. 4     Kinobeads   workfl ow. Kinase-containing samples are fi rst incubated with increasing concentrations of a 
kinase inhibitor. Equal amounts of kinobeads (polymeric beads carrying multiple immobilized kinase  inhibitors  ) 
are then added to each sample, leading to capture of  protein kinase   molecules while inhibitor-bound kinase 
molecules remain in solution. The beads are washed, the proteins bound to them are digested, and the multiple 
digests are fi rst chemically labeled with isobaric tagging reagents such as TMT or iTRAQ, and then combined 
for ratiometric quantitation of the kinases bound to the beads and the effect on their binding of the soluble 
competitor.  Label-free quantitation (LFQ)   might be used as an alternative, in which case no mixing would 
occur. Kinase binding as a function of inhibitor concentration is extracted from the result, and the respective 
affi nities of the soluble inhibitor for different kinases can be calculated       
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format held the possibility that endogenous ATP or related com-
pounds might compete with soluble kinase  inhibitors   for occu-
pancy of ATP binding sites on kinases during the fi rst step, 
potentially causing IC50 values to be inconsistent between experi-
ments. To correct for this, lysates were fi rst depleted for cofactors 
by gel fi ltration before addition of inhibitors. As expected, the con-
centrations of endogenous nucleotide factors can greatly affect the 
observed affi nities of inhibitors for target kinases [ 29 ]. 

 Although the kinobeads method was devised to profi le kinase 
inhibition, it has been adapted to measuring differences in the 
expression of kinases between two cell lines. To do this, kinobeads 
were used to capture kinases from different cell lines without any 
resort to competition from soluble inhibitors. The relative expres-
sions of kinases were derived by taking the summation of their 
corresponding three largest peptide intensities [ 29 ,  30 ]. 

 To broaden the scope of the  kinobead   method, Médard et al. 
synthesized a new generation of kinobeads capable of capturing a 
wider selection of kinase families [ 28 ]. The workfl ow was stream-
lined by performing competition assays in 96-well plates and label- 
free  quantitation   in the powerful  MaxQuant program   [ 31 ] was 
used instead of iTRAQ. The improved method allowed 216  pro-
tein kinases   to be captured and, therefore, potentially to be the 
targets of competitive binding studies. 

 Finally, comparison of the  kinobeads   method with covalent 
capture of kinases using acylphosphate ATP  analogs      indicated that 
the two methods are complementary [ 32 ] and can be used in 
 tandem when maximum coverage of the kinase complement of a 
sample is required.  

5     Targeted Protein Degradation 

 As we noted above, affi nity-based protein capture allied to sensitive 
protein identifi cation was the method that resolved the molecular 
mechanism of thalidomide [ 6 ]. The drug and its relatives bind to 
cereblon, the substrate recognition module of a certain E3 ubiqui-
tin protein ligase complex (there are more than 600 [ 33 ]), and can 
modulate its specifi city for certain protein substrates. For example, 
exquisite SILAC-based  proteomic    analysis   was used to demonstrate 
the extraordinarily specifi c effect of lenalidomide in bringing about 
the ubiquitination and degradation of casein kinase 1α as well as 
two transcription factors, IKZF1 and IKZF3 [ 34 ]. The latter effects 
provide the clinical effi cacy of lenalidomide in  multiple myeloma  . 

 Increased understanding of the mode of action of these com-
pounds has led to their incorporation into the existing strategy of 
using a double-headed drug to bring a protein targeted for elimi-
nation into close proximity to an E3 ubiquitin ligase. One end of 
the agent should have affi nity for the targeted protein, and has 
been a drug-like small molecule from the outset. The element to 

Chuong Nguyen et al.



21

be recognized by the E3 ubiquitin ligase was originally a peptide 
[ 35 ], but diffi culty with cell-permeability caused this to give way to 
an E3-targeting small molecule [ 36 ,  37 ]. Impressive preliminary 
demonstrations of the use of a thalidomide-related E3-targeting 
group have appeared [ 38 ,  39 ], and interest in this strategy is sure 
to continue to grow despite concerns that the method requires 
agents that embody two drug-like moieties and consequently will 
tend to have molecular weights beyond the preferred range for 
good pharmacokinetic properties.  

6     Conclusion 

 The power and scope of rapidly emerging methods in chemical 
biology is one of many developments resulting from the genomic 
 revolution      that occurred mainly in the 1990s. This resulted in mas-
sive enhancement of our understanding that related proteins are 
derived from families of related genes. Together with the emer-
gence of methods for protein recognition based on the essential 
algorithm of  proteomics  , the stage has been set for adventurous 
exploration of the potential of chemical probes—agents that 
address proteins with respect to their functions—to elucidate 
details of the subtle differences that may exist between related fam-
ily members. As proteins will presumably continue to account for 
the great majority of drug targets, this additional capability to 
monitor their functional aspects will be an important complement 
to mainstream drug discovery in the coming decades.     
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 ANXA7-GTPase as Tumor Suppressor: Mechanisms 
and Therapeutic Opportunities                     
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  Abstract 

   Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity at 10q, are 
commonly observed in most human tumors, including prostate, breast, and kidney cancers. The 
ANXA7- GTPase is a tumor suppressor, which is frequently inactivated by genomic alterations at 10q21. 
In the last few years, considerable amounts of data have accumulated describing inactivation of ANXA7-
GTPase in a variety of human malignancies and demonstrating the tumor suppressor potential of 
ANXA7-GTPase. ANXA7-GTPase contains a calcium binding domain that classifi es it as a member of 
the annexin family. The cancer-specifi c expression of ANXA7-GTPase, coupled with its importance in 
regulating cell death, cell motility, and invasion, makes it a useful diagnostic marker of cancer and a 
potential target for cancer treatment. Recently, emerging evidence suggests that ANXA7-GTPase is a 
critical factor associated with the metastatic state of several cancers and can be used as a risk biomarker 
for HER2 negative breast cancer patients. Cross talk between  ANXA7 ,  PTEN , and  EGFR  leads to con-
stitutive activation of PI3K-AKT signaling, a central pathway of tumor cell survival and proliferation. 
This review focuses on the recent progress in understanding the tumor suppressor functions of ANXA7-
GTPase emphasizing the role of this gene in Ca 2+  metabolism, and exploring opportunities for function 
as an example of a calcium binding GTPase acting as a tumor suppressor and opportunities for ANXA7-
GTPase gene cancer therapy.  

  Key words     ANXA7-GTPase  ,   Tumor suppressor gene  ,   Cancer  ,   Calcium  ,   Apoptosis  

1      Introduction 

 The rising incidence of cancer and coincident morbidity and mor-
tality are signifi cant health problems and cost enormous health 
resources. Despite recent intensive research investigations, much 
remains to be learned about specifi c molecular defects  associated      
with onset and progression of cancer. Current evidence suggests 
that the development of cancer may be driven, at least in part, by 
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the inactivation of as yet unknown  tumor suppressor genes (TSG)   
which are presently identifi ed only as sites of allelic loss. The iden-
tifi cation and characterization of these TSGs are useful for estab-
lishing molecular markers which can identify patients at risk for 
advanced disease. TSGs function properly in normal tissues by 
regulating the growth of normal cells. Classically, TSGs have been 
suspected on the basis of noting a specifi c relationship between the 
occurrence of tumor(s) and chromosomal defects. However, muta-
tions, deletions, or other modes of inactivation of these TSGs 
should also be expected to contribute to uncontrolled growth and 
malignant transformation of normal cells. Many TSGs have been 
cloned from humans and found to be mutated in a variety of 
human cancers. In this review, we discuss a new TSG, ANXA7- 
GTPase, which differs from other TSGs in terms of its unique 
chemical, biophysical, and biological properties.  

2    Identifi cation of  ANXA7  Gene on Chromosome 10q21 

 Multiple potential tumor suppressor  genes   have been hypothesized 
to exist around the 10q21 locus of the chromosome 10. Examples 
of the diseases correlated with loci at chromosome 10 include myx-
oid chondrosarcoma (10q21.1, [ 1 ]); sporadic nonmedullary thy-
roid carcinoma (10q21.1, [ 2 ]); renal cell carcinoma (10q21-23, 
[ 3 ]); chronic myelogenous leukemia (10q21, [ 4 ]); glioma (10q21- 
26, [ 5 ]);  glioblastoma   (two independent regions: 10pter-q11 and 
10q24-q26, [ 6 ]); colonic adenocarcinoma (inverted, non-ret 
duplication of 10q11 to 10q21, [ 7 ]); lung carcinoma (10q21- 
10qter, [ 8 ]); hepatocellular carcinoma (10q, [ 9 ]); and prostate 
cancer (two independent loci:10q21 and 10q23-24, [ 10 ]). A  fre-
quently      deleted locus on chromosome 10q24-25 has recently been 
shown to harbor the PTEN tumor suppressor  gene   [ 11 ,  12 ], thus 
supporting the concept of multiple candidate tumor suppressor 
genes in this region. The  ANXA7  gene is located at human chro-
mosome 10q21, and  ANXA7  deletions are extremely common in 
human cancers, especially those that arise from prostate and breast. 
Four microsatellite markers at or near the  ANXA7  locus on chro-
mosome 10q21 were used to analyze the DNA from laser capture 
microdissected tumor cells and matched normal cells. Thirty-fi ve 
percent of the 20 prostate tumors showed  loss of heterozygosity 
(LOH)  . The microsatellite marker closest to the  ANXA7  locus 
showed the highest rate of LOH, including one homozygous dele-
tion [ 13 ]. Similarly, 40 % of the informative breast cancer patients 
were found to have LOH [ 14 ]. The fi nding of a tumor suppressor 
 gene    ANXA7  in this chromosomal region with frequent muta-
tions/deletions in human prostate cancers raises important ques-
tions as to its potential contribution to this cancer type.  
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3    Expression of ANXA7 in Cancer 

 Annexins are a family of calcium-dependent, phospholipid and 
membrane binding proteins containing a conserved repeating 
domain of approximately 70 amino acids [ 15 – 17 ]. These are 
thought to be associated with membrane traffi cking, signal trans-
duction, cellular differentiation and proliferation [ 16 ,  18 – 21 ]. 
Annexins have also been shown to function as ion channels [ 21 –
 23 ]. Dysregulated expression of several members of the annexin 
family of proteins has been observed in prostate cancer [ 13 ,  24 –
 27 ]. The expression of  ANXA1   (lipocortin I) and  ANXA2   (calpac-
tin I) has been reported to be decreased in androgen-stimulated 
prostate cancer compared with benign prostatic epithelium [ 23 , 
 24 ,  26 ]. Conversely others have noted no ANXA1 or ANXA2 pro-
tein expression changes in androgen-stimulated prostate cancer, 
while reporting a signifi cant decrease in  recurrent   prostate cancer 
expression [ 27 ]. The expression of ANXA7 (synexin) has been 
shown to be commonly lost in hormone-refractory and locally 
recurrent metastatic prostate cancer [ 13 ,  27 ,  28 ],  glioblastoma   
[ 29 ,  30 ], and melanoma [ 31 ]. Numerous examples of ANXA7 
protein distribution in different tumors unequivocally confi rmed 
its tumor suppressor effect which can be plausibly associated with 
the regulation of  immune response   and hormonal balance through 
other ANXA7-mediated major effects—the  Ca(2+)/GTP- 
dependent secretion and exocytosis  . 

 One of the most  signifi cant      features of ANXA7 is its differen-
tial distribution in cancer compared with equivalent normal tissues. 
Early work on the  ANXA7  gene has shown that it is expressed in 
small amounts in nearly every normal cell, and that it is found 
throughout phylogeny as a single copy gene in organisms as diverse 
as man [ 32 ], mouse [ 33 ,  34 ], Xenopus [ 35 ], and Dictyostelium 
[ 36 ,  37 ]. Two types of molecular abnormalities have been reported 
that might contribute to aberrant ANXA7 expression at least in 
certain cancers. Dramatic overexpression of ANXA7 compared 
with normal tissues has been demonstrated in tumors of breast, 
liver, nasopharyngeal, colorectal, testis, thyroid, and oral cavity 
[ 38 – 43 ]. Conversely, loss of ANXA7 expression has been demon-
strated in prostate, skin,  glioblastoma  , melanoma, pancreas and 
adrenal gland neoplasms [ 13 ,  29 – 31 ,  42 ,  43 ]. A comprehensive 
survey of ANXA7 protein expression in patient-matched benign 
prostatic epithelium, high grade  prostatic intraepithelia neoplasms 
(PIN)  , stage T2 and T3/4 primary tumors, metastatic, and locally 
 recurrent   prostate cancer has revealed that signifi cant reductions in 
ANXA7 expression occur in a stage specifi c manner [ 13 ]. ANXA7 
expression is completely lost in a high proportion of metastases 
(57 %) and in local recurrences of hormone refractory prostate 
 cancer (63 %). The signifi cance of the difference from other 
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samples is at the  p  = 0.0001 level. On the other hand, the expres-
sion of ANXA7 in breast cancer is signifi cantly enhanced and has 
been associated with the presence of metastatic disease ( p  < 0.0001) 
[ 44 ,  45 ]. These studies suggest that the dysregulations of ANXA7 
are important events in prostate and breast carcinogenesis and can-
cer progression. 

 These data illuminate a profound difference in the biological 
consequences of ANXA7 expression in breast and prostate cancers. 
A similar disparity has previously been found for the antiapoptotic 
protein Bcl-2. High Bcl-2 predicts adverse  prognosis   in primary 
prostate cancer [ 46 ], but is a favorable prognostic  marker      in breast 
cancer [ 47 ,  48 ]. Bcl-2 expression in normal prostate glands is 
restricted to the basal cell compartment [ 46 ], whereas ANXA7 is 
preferentially expressed in the secretory cells of the prostate [ 13 ]. 
Thus, reappearance of basal cell like gene expression patterns in a 
fraction of cancers may be interpreted as a stem cell effect leading 
to dedifferentiation and more aggressive behavior. While prostatic 
stem cells are located in the basal cell layer [ 49 ], the exact identity 
of the putative stem cells of the mammary gland remains a matter 
of investigation [ 50 ,  51 ]. Interestingly, ANXA7 has pro-apoptotic 
properties as compared to the apoptosis inhibiting function of Bcl- 
2. The opposite role in apoptosis control of Bcl-2 and ANXA7 may 
explain their opposite expression pattern in benign prostate glands 
and prostate cancers (Table  1 ). In addition, loss of ANXA7 or 
overexpression of Bcl-2 leads to downregulation of  IP3 Receptor  - 
regulated store-operated calcium  channels  . We conclude that the 
reason for the different ANXA7 expression patterns between breast 
and prostate cancer may be explained by differential regulation and 
functions of ANXA7, and the relative importance of pro-and anti- 
apoptotic and calcium  signaling pathways   in these tissues. It is 
plausible that multiple signaling pathways might converge on the 
regulation of the  ANXA7  gene in neoplasia.

   Table 1  
  Biological basis for differences in ANX7 expression in breast and prostate 
cancers   

 Prostate  Breast 

 Bcl-2  ANXA7  Bcl-2  ANXA7 

 Normal tissue  ↓  ↑  ↑  ↓ 

 Stem cell  ↑  ↓  ?  ? 

  Cancer       ↑  ↓  ↓  ↑ 

 Favorable prognosis  ↓  ↑  ↑  ↓ 
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4       ANXA7  Knockout Mouse   

 Reexpression of ANXA7 protein in human tumor cells kills cancer 
cells by apoptosis and causes tumor suppression in nude mice. 
Although the early kinetics of ANXA7 inactivation is carcinogen-
esis and the human studies support assignment of ANXA7 as a 
tumor suppressor, many cancer geneticists consider the outcome 
in the gene knockout mouse model as the ultimate biological test. 
If ANXA7 loss in humans does contribute to cell transformation, 
then murine ANXA7-defi cient animals might be expected to 
develop tumors, potentially in the same organs in which human 
ANXA7 loss-initiated tumors appear. This was precisely the result 
in the Anxa7 knockout mice, all the more striking because this was 
after genetically inactivating only one  Anxa7  allele in the mouse. 
Because the murine  Anxa7  locus, like its  syntenic   human counter-
part, is fragile, mice that were heterozygous for inactivation of 
 ANXA7  developed mostly lymphosarcoma of the thymus, sponta-
neously due to genomic instability. In general, the frequency of 
spontaneous tumor occurrence is in the range of 20–30 %, becom-
ing more accentuated with advancing age [ 52 ]. Importantly the 
homozygous knockout (−/−) mouse has a lethal phenotype, 
meaning that the  Anxa7  gene is crucial for life and has no genetic 
“backups.” 

 Increased tumor  incidence      in the  Anxa7 -challenged  mice   was 
associated with the gender-related cell growth anomalies indicat-
ing possible defects in sex hormone synthesis or actions. While 
only male  Anxa7  (+/−) mice had extraordinarily enhanced growth 
spurt including internal organs, the female mice had signifi cantly 
higher incidence of tumors compared to males. Some gender- 
related anomalies in major lymphatic organs possibly refl ected 
defective  immune response   in tumorigenesis: unlike splenomegaly 
present in males, spleen size was decreased in females, while lym-
phosarcoma (thymus, spleen) was the most frequent tumor, espe-
cially in females. Along with growth anomalies and susceptibility to 
tumorigenesis, the  Anxa7 -challenged mice displayed multiple 
defects in their endocrine status. In the  Anxa7  (+/−) mice the 
genes responsive to the nutritional state were set at constantly 
higher levels of expression resulting in the phenotype of  adrenal 
medullary hypertrophy   and  chromaffi n cell hyperplasia  , which can 
be related to chromogranin A, a master control “switch” for dense 
core granule formation [ 53 – 55 ]. Islets of Langerhans in these mice 
exhibited a profound reduction in ITPR3 protein expression, 
defective intracellular calcium signaling as well as insulin secretion 
which presumably contributed to the loss of genomic discrimina-
tion between the fed and fasted states [ 56 ].  
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5    ANXA7 and Calcium  Homeostasis      

 The phenotype of  Anxa7  heterozygous mice not only demon-
strates that loss of  Anxa7   predisposes   to carcinogenesis, but also 
suggests that an intact calcium homeostasis might either protect 
the  ANXA7  locus or maintain ANXA7 expression in humans. 
ANXA7 is a  Ca 2+ -activated GTPase protein   with membrane fusion 
properties which has been implicated in the regulation of exocy-
totic secretory processes in pancreatic islets and elsewhere. While 
the nullizygous knockout  Anxa7  gene is lethal, the heterozygous 
 Anxa7  (+/−) mice survives and expresses an instructive beta cell 
defect. In studies with β-cells from the viable heterozygous  Anxa7  
(+/−) mice, we learned that reduced  Anxa7  gene dosage in the 
 Anxa7  heterozygous mice not only leads to an aberrant Ca 2+  effect 
on insulin secretion, a selective decrease in  IP 3 -Receptor   expres-
sion and IP 3 -Receptor mediated calcium stores, but also a defective 
 store-operated calcium channel (SOC)   [ 53 ]. Levels of serum tes-
tosterone,       estrogen, growth hormone, glucagon, corticosterone, 
and IGF-1 in the mutants were identical to levels found in the 
normal littermates, suggesting that the  problems      were likely to be 
local to the β-cells [ 57 ]. In addition to these defects in Ca 2+  metab-
olism in cultured beta cells, we noted that the IP3-mediated cal-
cium transients are attenuated in T-lymphocytes and cerebellum 
from  Anxa7  (+/−) mice heterozygotes (unpublished data).  

6     ANXA7  Gene Mediates Pro-apoptotic Actions of Ca 2+  in Tumor Cells 

 ANXA7 has been long known to be a mediator of calcium action, 
and cells from the cancer-prone  Anxa7  (+/−) knockout mice are 
also known to be defi cient in  IP3 Receptors  . Since Ca 2+  is a central 
actor in the apoptosis process, and cells with loss of IP3 receptors 
are apoptosis-resistant, we hypothesized that this calcium-focused 
mechanism may be the basis of ANXA7 tumor suppressor  gene   
activity. If this is true, this will be the fi rst instance in which the 
activity of a tumor suppressor gene is mediated by Ca 2+ . Most pros-
tate cancer cells actually divide slowly, and their cancer phenotype 
therefore appears to be ruled more by inhibition of apoptosis than 
by enhanced proliferation [ 58 – 60 ]. Calcium elevation is a neces-
sary preliminary event in the initiation of the apoptotic cascade 
[ 58 ,  61 ,  62 ], and compounds that recruit intracellular calcium 
from the  endoplasmic reticulum   have therefore been increasingly 
studied as prototype drugs for induction of apoptosis in prostate 
cancer cells. An example of such a compound is  thapsigargin  , which 
arrests prostate cancer cells in G1/G0 of the cell cycle and induces 
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the apoptotic cascade [ 58 ,  63 ,  64 ]. Thapsigargin raises cytosolic 
Ca 2+  concentration by blocking the  SERCA-pump ATPase   on the 
ER, thereby blocking reuptake of calcium into the ER. As a further 
consequence of elevation of cytosolic free calcium, either by thap-
sigargin or endogenous mechanisms, plasma membrane-localized 
 store-operated calcium (SOC)   channels are also activated. The lat-
ter process contributes to elevation of intracellular calcium, and 
thus further pushes the cell into the apoptotic cascade. As an evi-
dence for the contribution of the SOC channels to the apoptotic 
signal, Wertz and Dixit [ 60 ] have shown that LNCaP cells are 
quite resistant to pro-apoptotic stimuli if Ca 2+  release is blocked 
and  SOC   channels are silent. The  importance      of increased cyto-
solic Ca 2+  for growth arrest at G1/G0 and induction of apoptosis 
in prostate cancer cells is further manifested by the fact that the 
 thapsigargin   effect can be blocked by the  intracellular calcium che-
lator BAPTA   [ 63 ], and can be mimicked by addition of the general 
calcium ionophore  ionomycin   [ 64 ]. 

 Large molecules such as proteins have been shown to have 
effects similar to those induced by  thapsigargin  . For example, 
exogenously added TGF-β also arrests androgen-independent 
prostate cancer cells in G1/G0, and induces apoptosis [ 65 ]. 
Transfection of the  ANXA7  gene into the DU145 cells also has a 
very similar sequence of actions. This fact, plus the high preva-
lence of tumors in the  Anxa7  (+/−) mice and disorders of calcium 
metabolism in  Anxa7  (+/−) mice tissues appear to implicate a 
specifi cally thapsigargin-like mechanism for how the  ANXA7  
gene activates human tumor cell apoptosis. For example, in cancer 
cells, thapsigargin raises cytosolic calcium concentration by pre-
venting reentry of the Ca 2+  into the ER and activates SOC chan-
nels. Similar studies of Ca 2+  metabolism in beta cells from  Anxa7  
(+/−) mice, showed that thapsigargin failed to raise cytosolic Ca 2+ , 
and failed to activate  SOC   channels The ligand IP3 also failed to 
release intracellular Ca 2+  from the ER. So the reason for the lack 
of effi cacy of thapsigargin in the  Anxa7  (+/−) mice is a docu-
mented tenfold defi ciency in  IP3 Receptors   [ 53 ]. The importance 
of IP3 receptors in cancer cells is that IP3 Receptor activation by 
IP3 is the physiological stimulus needed to release calcium from 
the ER, thus triggering the mitochondrial permeability transition, 
which leads to apoptosis [ 66 ]. Therefore, it is possible that the 
action of the transfected  ANXA7  gene on prostate tumor cells, 
may be to elevate cytosolic Ca 2+ , and to potentiate subsequent 
pro-apoptotic actions of the released calcium. The data support-
ing this perspective and these actions are summarized in Fig.  1 . 
We presume that any of these steps could be part of the mecha-
nism by which addition of the  ANXA7  gene might induce pros-
tate tumor cell death by apoptosis.

ANXA7-GTPase as Tumor Suppressor



30

  Fig. 1    Schematics of the role of  ANXA7      and calcium in apoptosis       
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7       ANXA7 and Molecular Diagnosis of Cancer 

 When analyzed retrospectively, cancer patients expressing altered 
ANXA7 exhibited shortened survival [ 44 ,  45 ], association with 
unfavorable markers of disease progression,  metastasis  , and acceler-
ated rates of recurrences.    The results obtained from 1077 breast 
tissue specimens showed that increased  ANXA7      expression is asso-
ciated with metastatic disease and signifi cantly decreased survival in 
those breast cancer patients who present with BRE grade 2 tumors, 
or tumors lacking detectable HER2 expression. Cox regression 
analysis reveals that HER2 negative patients suffer a doubling in the 
risk of death with each increasing level of ANXA7 expression. 
Remarkably, in HER2 negative patients the difference in risk is ten-
fold between those with negative ANXA7 expression, and those 
with strong ANXA7 expression. The clinical treatment of primary 
breast cancers has been greatly complicated by the inability to accu-
rately predict which tumors will eventually become invasive and 
metastatic, and which will become localized and indolent. Strong 
expression of HER2 in 20–35 % of the breast cancer patients is 
known to be associated with poor  prognosis  , and has been used to 
predict response to treatment with the anti-HER2 antibody trastu-
zumab (Herceptin ® ). Recent data suggest that the expression level 
of ANXA7 can help to stratify the remaining HER2 negative 
patients who need the most focused attention. At a minimum, the 
value of these results for HER2 negative patients is that the  ANXA7  
gene assay might provide a simple and reliable survival parameter 
for clinicians to include in patient management plans for early detec-
tion and treatment options. In prostate tumor specimens ANXA7 
might provide a quick predictive/prognostic indicator to identify 
patients at risk of  recurrent   disease, warranting more-aggressive 
follow-up protocols or alternative treatment regimens [ 13 ].  

8    ANXA7 as a  Therapeutic Target   in Cancer 

 Understanding the mechanism of ANXA7 function as a tumor 
suppressor can potentially allow for the development of therapeu-
tic strategies for cancer treatment. Two general considerations 
make ANXA7 an attractive therapeutic target in cancer: it is selec-
tively expressed in tumor cells and it is required for their viability. 
In dissecting the requisites for ANXA7 function, it was noticed 
that ANXA7 regulates IP3  Receptor   expression and function. The 
importance of IP3 receptors in cancer cells is that IP3 Receptor 
activation by IP3 is the physiological stimulus needed to release 
calcium from the ER, thus triggering the mitochondrial permeabil-
ity transition, which leads to apoptosis [ 66 ]. It is therefore possible 
that the action of the transfected  ANXA7  gene in tumor cells, may 
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be to elevate cytosolic Ca 2+ , and to potentiate subsequent 
 pro- apoptotic actions of the released calcium.       The rationale of tar-
geting ANXA7 for therapeutic intervention comes from experi-
ments using a triple mutant ANXA7J in which putative calcium 
binding sites are mutated. ANXA7J is a dominant-negative antago-
nist of the calcium  signaling pathway  , and prevents the endogenous 
ANXA7 protein from binding to calcium. Loss of this calcium 
binding result in downregulation of  IP3 receptors   in cancer cells 
(unpublished data). 

 The anticancer  properties   of wild type ANXA7 have been 
recently tested in preclinical in vitro and in vivo experiments. 
Expression of wild type ANXA7 in vitro suppressed proliferation of 
prostate, breast and osteosarcoma cells by 95 % in a reaction associ-
ated with tumor cell apoptosis. To make it a potentially more- 
fl exible therapeutic tool, we recently generated a replication-defi cient 
adenovirus encoding wild type ANXA7. Administration of pAd- 
ANXA7 to nude mice prevented prostate and breast tumor forma-
tion, and suppressed the growth of existing tumors by 95 %. Gene 
therapy has recently emerged as a viable treatment in solid tumors 
by reestablishing apoptosis and checkpoint function with wild-type 
p53. A similar indication may be envisioned for the wild type 
ANXA7, either alone or in combination with chemotherapy. 
Finally, ANXA7 could provide an excellent target for cancer ther-
apy because it also plays a crucial role in  metastasis  .  

9    Future Directions 

 Since the identifi cation of ANXA7 as a  TSG  , there has been con-
siderable interest in ANXA7 from various viewpoints of biomedical 
research. The complexity of subcellular localization, the evidence 
for a dual role in both apoptosis and cell division, and the far- 
reaching consequences of dysregulated expression in cancer defi ne 
the existence of a “ANXA7 pathway.” The constituents of the 
pathway are only just now becoming known. Clearly, several ques-
tions on the biology of ANXA7 remain to be answered. The 
upcoming analysis of in vitro and in vivo transgenic models and the 
biochemical mapping of ANXA7 associated and regulated mole-
cules using genomic and  proteomic   analysis will undoubtedly help 
the positioning of the ANXA7 pathway in the apoptosis cascade 
and the regulation of cell division. From a more translational per-
spective, the next set of challenges will be to integrate the ANXA7 
pathway in the global genetic fi ngerprinting of cancer patients, 
linking individual patterns of gene expression to prediction of  clin-
ical outcome   and response to therapy. Recent preclinical studies 
seem to “prove the principle” that  ANXA7      is a viable  therapeutic 
target   in cancer, either directly or by affecting cell viability, and the 
fi rst clinical trial using gene therapy for prostate cancer and 
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 antisense ANXA7 for breast cancer may not be too far behind. 
As knowledge of the ANXA7 pathway grows, the knowledge of 
additional critical requisites for apoptosis inhibition or cell division 
will probably increase and, with that, more options for molecular 
diagnosis and therapeutic intervention will become available.     
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    Chapter 4   

 Experimental and Study Design Considerations 
for Uncovering Oncometabolites                     

     Majda     Haznadar     and     Ewy     A.     Mathé      

  Abstract 

   Metabolomics as a fi eld has gained attention due to its potential for biomarker discovery, namely because 
it directly refl ects disease phenotype and is the downstream effect of posttranslational modifi cations. The 
fi eld provides a “top-down,” integrated view of biochemistry in complex organisms, as opposed to the 
traditional “bottom-up” approach that aims to analyze networks of interactions between genes, proteins 
and metabolites. It also allows for the detection of thousands of endogenous metabolites in various clinical 
biospecimens in a high-throughput manner, including tissue and biofl uids such as blood and urine. 
Of note, because biological fl uid samples can be collected relatively easily, the time-dependent fl uctuations 
of metabolites can be readily studied in detail. 

 In this chapter, we aim to provide an overview of (1) analytical methods that are currently employed 
in the fi eld, and (2) study design concepts that should be considered prior to conducting high-throughput 
metabolomics studies. While widely applicable, the concepts presented here are namely applicable to high- 
throughput untargeted studies that aim to search for metabolite biomarkers that are associated with a 
particular human disease.  

  Key words     Metabolomics  ,   Biomarker discovery  ,   Study design  ,   Mass spectrometry  ,   Oncometabolites  , 
  Analytical techniques  

1      Introduction 

 Measurements from metabolomics  experiments   refl ect genetic fac-
tors and are functional endpoints whose fl ux is measured in sec-
onds (compared to minutes or even hours for proteins). In addition, 
metabolomics measurements also refl ect the effect of environmen-
tal and lifestyle factors (e.g., diet, smoking), which are diffi cult to 
assess at the  genome   and  proteome   level. Such factors are assessed 
without making assumptions about what occurs at the genome and 
proteome level.  Metabolomics   is thus a promising tool that can 
detect perturbations associated with disease, even prior to clinical 
detection [ 1 – 3 ]. 
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 The characterization of   D -2-hydroxyglutarate (D-2HG)   pro-
duction marks one of the earliest examples of oncometabolites. 
D-2HG levels are increased upon gain-of-function mutations of 
isocitrate  dehydrogenase (IDH)      in leukemias, gliomas, and other 
cancer types. High D-2HG levels lead to a competitive inhibition 
of  α-ketoglutarate-dependent (α-KG-dependent) dioxygenase 
enzymes   and posttranslational modifi cation of proteins [ 4 ,  5 ]. 
Similarly, loss-of-function mutations in  fumarate hydratase (FH)   
and  succinate dehydrogenase (SDH)  , lead to an inhibition of 
fumarate and succinate production, respectively [ 6 ]. These were 
the fi rst pieces of evidence directly linking altered metabolism and 
cancer, and such discoveries have led to a momentous and renewed 
interest in the fi eld of  metabolomics   as a platform for discovery of 
robust metabolite markers of disease phenotypes and outcomes.  

2    Specifi c Biological Questions Infl uence Utilized Approaches 

   The most utilized analytical  techniques   used in metabolomics are 
nuclear magnetic resonance (NMR) and mass spectroscopy (MS), 
which is often coupled to either liquid or gas  chromatography      
(LC-MS or GC-MS, respectively) to separate the biological fl uid 
before detection. Other techniques exist as well, such as capillary 
electrophoresis mass spectrometry. Use of specifi c techniques 
depends on the purpose of a given experiment. NMR, for example, 
does not require any pretreatment of a sample prior to the analysis, 
and as such, does not lead to damage of the analytes. Both NMR 
and MS techniques provide a wide range of metabolites in a single 
measurement. However, NMR is more reliable for providing exact 
concentrations of measured molecules. MS, on the other hand, is 
more sensitive and can detect metabolites that are below the limit 
of detection of NMR. Both techniques can be used to determine 
metabolite structures, but NMR’s sensitivity is far too low for low- 
abundance metabolites and lacks a separation component, making 
LC-MS and GC-MS superior for discovery of  biomarkers   and 
potential oncometabolites. Currently, NMR is reserved for study-
ing known and high-abundance targets, or for identifying unknown 
metabolites generated by MS approaches. Therefore, the two tech-
niques can be complimentary. 

 Metabolites are chemically diverse, not encoded in the  genome  , 
and comprise carbohydrates, amino acids, lipids, and nucleotides 
among others. Because of this diversity, extraction, separation, and 
analytical techniques used depend on the specifi c experiment. 
Furthermore, untargeted approaches leverage unbiased techniques 
that will generate the most widespread types of captured metabo-
lites, whereas targeted approaches are optimized to best quantitate 
a metabolite or metabolite type in question. Additional details 
regarding procedures for measurement of specifi c classes of 

2.1   NMR         vs. Mass 
Spectrometry- Based 
Metabolomics 
(UPLC-MS, GC-MS)
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 molecules         are described in the next sections. For the time being, 
however, LC-MS seems to be one of the most preferred metabolo-
mic analytical platforms in metabolomics. Because of the wide-
spread use of MS in  biomarker   research, we focus on this technology 
throughout this chapter.  

   Depending on the  biospecimen   being analyzed, hydrophobicity of 
the majority of the metabolites it comprises should be considered. 
For example, aqueous urine will contain a large number of  hydro-
philic compounds  , while blood (plasma, serum) will contain a large 
number of  hydrophobic compounds  , such as lipids. Based on this 
information, a researcher can decide what type of  chromatography   
should be coupled with MS to attain a better retention of a tar-
geted class of molecules. 

  Hydrophilic Interaction Chromatography (HILIC)   is similar 
to normal phase  liquid chromatography   but with an aqueous 
mobile phase. This chromatography leads to an excellent retention 
and separation of  polar metabolites  . This type of chromatography 
is typically chosen to study aqueous  biospecimens  , such as urine. 
Some typical analytes of HILIC are amino acids, nucleobases 
(purines and pyrimidines), nucleosides, and carbohydrates. In 
HILIC, most of the hydrophobic molecules will elute early in the 
run, and will therefore not be properly retained. Thus, for the 
study of  hydrophobic compounds  , a different type of chromatog-
raphy should be utilized. 

  Reverse Phase (RP) chromatography   is the opposite of normal 
phase, resulting in the adsorption of hydrophobic molecules onto 
a hydrophobic solid support in a polar mobile phase. Therefore, 
the more hydrophobic the molecule, the more time it will spend 
on the solid support. Opposite of HILIC, most of the hydrophilic 
metabolites will elute early and will not be suffi ciently retained. RP 
is often chosen to study metabolites in  biospecimens   such as serum 
and plasma, which are enriched for compounds such as lipids. 
However,    RP  chromatography   is the most popular separation tech-
nique for untargeted approaches, because it applies to a wide range 
of molecules including charged and polar molecules. It also allows 
precise control of variables such as organic solvent type and con-
centration, pH and temperature. Furthermore, RP columns are 
usually effi cient and stable, making  them   suitable for analyzing a 
wide class of molecules with different retention  times  .  

   Although technically a study of hydrophobic compounds, lipido-
mics has emerged as a distinct subdiscipline. A large portion of the 
 metabolomics   research community focuses specifi cally on studying 
lipids. Lipids are extraordinarily diverse in their chemical struc-
tures, polarities, and potential to ionize. LC-MS lipidomics is 
remarkably robust, high-throughput, qualitative, and semiquanti-
tative, and is successfully applied to study many different diseases. 

2.2  Types 
of  Chromatography  

2.3   Lipidomics  
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This approach relies on  high-resolution/accurate-mass (HR/AM)   
and  high-energy collisional dissociation (HDC)   fragmentation of 
an orbitrap LC-MS. Specialized deconvolution software that can 
distinguish specifi c lipid molecules by their unique fragmentation 
patterns is then applied to identify individual metabolites. Many of 
the lipids are already catalogued and therefore present an opportu-
nity for a faster identifi cation of unknown metabolites in global 
lipidomics studies.   

3     Biospecimens   and Sample Processing Procedures 

 One of the signifi cant benefi ts of  metabolomic profi ling   is minimal 
sample processing, ensuring minimal disturbance of the metabo-
lites being measured. In order to keep consistency and increase 
reproducibility, it is important to keep in mind that  standard oper-
ating procedures (SOPs)   should be in place and strictly followed. 
Information such as the time and duration of collection should be 
recorded so that these potential confounders can be adjusted dur-
ing data analysis. Samples should be frozen as soon as possible 
upon collection at −80 °C and shipped on dry ice. Prior to process-
ing, samples should be placed at 4 °C to thaw overnight. 

 Urine and plasma require minimal volume, as they are usually 
signifi cantly diluted (1:4 to 1:20 for global analysis and depending 
on the sensitivity of the instrumentation) with organic materials 
such as aqueous methanol or acetonitrile. Samples are then vortex- 
mixed with an organic “crash solution” of choice (e.g., acetonitrile, 
methanol), and  centrifuged   at maximum speed for about 15 min at 
4 °C in order to precipitate out the proteins. This  centrifugation   
step is also important to avoid clogging of the columns by residual 
proteins. For tissue samples, tissue pieces as small as 5 mg can be 
cryogenically grinded at very low temperatures, allowing for an iso-
lation of measurable metabolites, while protecting those that may 
be temperature-sensitive. For example, the Cryomill instrument 
(Retsch, Inc.) can be used, which pulverizes tissue samples with 
stainless steel balls at high frequencies of vibration and temperature 
as cold as −200 °C by constant infl ux of liquid nitrogen. If extract-
ing metabolites from cell cultures, cell metabolism should be 
quenched fi rst, in order to stop it immediately. Methanol is com-
monly used for quenching. Usually, a minimum of two million cells 
is required to capture the cell metabolome at an MS-detectable 
level. Cells should be suffi ciently lysed for metabolite extraction, 
and this can be accomplished either by several freeze–thaw cycles, 
using water before organic crash buffers, or by utilizing sonication. 

 Specifi c organic crash solutions should be considered depend-
ing on the goal of the study. In order to profi le the widest class of 
molecules (both polar and nonpolar), aqueous methanol (e.g., 
80 % methanol, 20 % water) has been proven to be a successful and 
appropriate crash solution. If attempting to enrich for lipids, as 
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well as capturing polar compounds, a mixture of ice-cold chloro-
form–methanol–water (e.g., 2:5:2, v:v:v) can be used for metabo-
lite extraction. 

 Importantly, it is necessary to consider the effect of multiple 
freeze/thaw cycles on the metabolite measurements in biofl uids 
such as urine and blood. In LC-MS, GC-MS, and  NMR   studies, 
samples clustered similarly together even after several freeze–thaw 
cycles [ 7 ]. However, levels of carnitine in blood were shown to 
decrease as the number of freeze–thaw cycles increases [ 8 ]. While 
these results suggest that samples having undergone several freeze–
thaw cycles are still appropriate to use in large-scale metabolomics 
studies, it is best to be  cautious   and use samples with minimal 
freeze–thaw cycles. Furthermore, it is recommended to use sam-
ples that have the same number of freeze–thaw cycles to avoid pos-
sible confounding. Finally, when collecting samples for 
 metabolomics   analysis, it is ideal to generate multiple aliquots of 
the same specimen, thereby allowing the same freeze–thaw cycle 
specimen to be utilized for different analysis (e.g., pilot experi-
ment, technical validation experiment).  

4    Quantitation of Metabolites of Interest 

   The fi eld of metabolomics is still  concerned   with the number of 
metabolites present in a given system or biofl uids, as well as their 
characterization. Upon overcoming this hurdle, metabolomics 
should move into a stage of high-throughput quantitation of thou-
sands of metabolites using tandem  mass spectrometry  . Liquid- 
 chromatography      tandem mass spectrometry or triple quadrupole 
 mass spectrometry      can be leveraged for untargeted and targeted 
metabolomics, respectively. It is evident that the future of metabo-
lomics is intimately interwoven with the development of sensitive 
instrumentation and software that is capable of quickly and accu-
rately processing thousands of molecules in exploratory studies, so 
that routine analysis can be conducted on important targets related 
to a phenotype under investigation. 

 In the case of LC-MS, thousands of mass to charge ratios 
( m / z ) with corresponding  retention times (RTs)   are captured 
through global  metabolomics.   A critical fi rst step in the data pro-
cessing is data de-convolution, where the goal is to create unique 
spectra for each metabolite, thereby separating co-eluting metabo-
lites from each other. Software such as  Marker Lynx   (Waters, Inc.), 
 XCMS   [ 9 ],  MAVEN   [ 10 ],  PRIME  , and others have been designed 
to perform deconvolution. Furthermore, de-isotoping techniques 
are applied (by the same software) to remove fragments that per-
tain to the same whole molecule from the analysis. Next, appropri-
ate statistical methods are applied to uncover metabolites of interest 
to the study (e.g., most robust predictors of a disease status). 
Finally, in order to assign and verify identities of the metabolites of 

4.1  Methodology
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interest, fragmentations of the markers are carried out using triple 
quadrupole  mass spectrometry  . Currently, databases are being 
constructed that contain accurate masses with putative identities,    
and in some cases  chromatographic   spectra. These databases help 
inform the researcher which high-purity standards can be pur-
chased commercially or which should be synthesized (if no stan-
dard exist). Standards are ultimately required to assign identities to 
unknown metabolites.  

   While many compounds can be detected in a given experiment, 
they are not as easily identifi ed. Researchers have made great prog-
ress in that regard, with the development of a freely accessible  web- 
based data repository, METLIN  , that was developed to facilitate the 
identifi cation of a broad array of unknown metabolites through 
mass analysis [ 11 ]. Other databases that can facilitate identifi cation 
of the unknown metabolites include  Human Metabolome Database   
[ 12 ], BinBase [ 13 ], and others. However, the most signifi cant dif-
fi culty arises when it is impossible to run a commercially available 
standard against the unknown metabolite of interest to compare the 
spectra and fragmentation patterns for the identifi cation. Without a 
commercially available compound, a standard has to be synthesized. 
Such problems can be discouraging to the research community in 
terms of conducting global  metabolomics,   and researchers often 
opt for targeted approaches with specifi c biological questions in 
mind. The importance of having extensive equipment and well-
trained researchers to take on such large tasks is paramount.   

5    Study Design Considerations 

 Prior to starting a large metabolomics experiment, it is essential to 
consider what platform should be applied (discussed above) as well 
as what and how many samples should be included to extract 
meaningful results (e.g., potential  biomarkers  ). Importantly, the 
large dynamic range of metabolite abundances (up to 10 14 ), sample 
to sample variation, and  instrumentation   variation make the chal-
lenges of designing robust metabolomics studies unique. To ensure 
quality data and a well-designed study (and therefore meaningful 
results), it is always best to involve a metabolomics data specialist 
or statistician prior to collecting any samples or data.  

6    Assessing Variation and Sample Size 

 With thousands of peaks being generated for one experiment, each 
having potentially very large dynamic ranges, it is important to get 
a sense of metabolite variability and consequently the sample size 

4.2   Databases  
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that should be employed to attain meaningful results. Conducting 
a pilot study is arguably the best way of assessing variability, and it 
will also allow for optimization of experimental conditions. 
Assessing publicly available data, from  databases   such as 
 Metabolights   [ 14 ] or Metabolomics Workbench (“The 
Metabolomics Workbench,   http://www.metabolomicswork-
bench.org/    ”) could also help with estimating variability, although 
it is essential to keep in mind that sample type and acquisition can 
affect variability. 

 Pilot experiments are typically performed on a small number of 
samples (e.g., 10–50 controls and 10–50 diseased samples). 
Standard deviations and means for each metabolite can be calcu-
lated and from these, the sample size required to attain a specifi ed 
statistically signifi cant  p -value (e.g., 0.01) and fold change (e.g., 
1.5-fold) can be calculated. Software such as the University of 
Vanderbilt’s PS Software (  http://biostat.mc.vanderbilt.edu/
wiki/Main/PowerSampleSize    ) can be utilized to calculate required 
sample size for desired outcome.  

7    Including Proper Technical Controls 

 To ensure quality of the overall experiment and the reliability of 
the measurements, it is important to consider including technical 
controls when designing an experiment. First, pooled samples 
should be run randomly throughout the experiment. For exam-
ple, an aliquot from several samples could be combined in one 
large pooled sample and processed randomly throughout the 
run. The extracted abundances of these samples should be very 
similar. Second, a portion of the samples (e.g., 10 %) should be 
randomly selected and processed in duplicate. Similarly to the 
pooled samples, metabolite abundances for these should be 
strongly correlated. Third, high-purity stable isotope-labeled 
internal  standards   can be injected in the samples and aid in the 
identifi cation of metabolites of interest. The use of isotope-
labeled internal standards, while costly, is overall an excellent 
choice for improved quantifi cation and identifi cation [ 15 ,  16 ]. 
Fourth, blanks could be run to assess sample carryover. However, 
blanks can cause shifts in chromatograms because of the disrup-
tion in the sample types (e.g., blanks vs biofl uid samples). These 
shifts can be mitigated by equilibrating the column with multiple 
pooled samples from the same biofl uid run in the experiment, 
after blanks are run. 

 Finally, the order in which the samples are injected should be 
randomized throughout the experiment. This step is critical for 
avoiding possible confounding of the sample injection order. Also, 
should any issues arise later in the run (e.g., sample carryover 
observed starting at sample 100), samples run up to the observed 
issue could still be salvaged.  

Metabolomic Biomarkers

http://www.metabolomicsworkbench.org/
http://www.metabolomicsworkbench.org/
http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize
http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize


44

8    Assessing Experiment Quality 

 First and foremost, it is essential to evaluate raw chromatograms one 
by one and ensure that there are no obvious red fl ags. Errors to look 
out for include overall low signal, interruption of signal, or unusual 
spikes (which could indicate sample contamination or potentially 
unwanted xenobiotics). Next, once the raw signal abundances are 
extracted, normalized, and scaled (see below for discussion on  nor-
malization   and scaling), the following basic statistical and visualiza-
tion techniques can be applied to assess the reliability of the 
measurements. First, correlation coeffi cients can be calculated to 
evaluate the correlation of metabolite abundances within pooled and 
duplicate samples. These coeffi cients should be very high (>0.9). 
Second, to compare the variation in metabolite abundances between 
disease, non-disease, and technical control (e.g., pooled samples and 
duplicates) samples,  coeffi cients of variation (CVs)   can be calculated. 
CVs are simply standard deviations normalized by the mean, thereby 
enabling standard deviations to be compared between different 
groups. The CVs should be demonstrably larger in the biological 
samples than in the technical control samples. Finally, clustering 
techniques can be applied to obtain a global picture of how similar 
the samples are to each other. Hierarchical clustering can be applied 
for this purpose. Such clustering results in a dendrogram, which 
groups samples together according to a user- defi ned distance metric 
(e.g., correlation). High-dimensionality reduction techniques such 
as principal components analysis (PCA) and multidimensional scal-
ing are also commonly applied. These techniques result in a two- or 
three-dimensional plot, where the distance between points (e.g., 
samples) refl ects the similarity between samples. 

 Analagous to sample quality assessment, the reproducibility 
and quality of metabolite abundances can be evaluated. For exam-
ple, CVs can be calculated for each metabolite across identical 
quality control samples (e.g., pooled samples) and metabolites 
with high CVs (e.g., 30 %) can be removed prior to normalizing 
and further processing. In addition, metabolites with abundance 
levels close to noise can be removed from further analysis. For 
instance, metabolites with abundances lower than the 10th percen-
tile of all mean metabolite abundance could be regarded as noise.  

9     Normalization   

 The overall goal of normalization is to ensure that samples are 
comparable to each other by reducing fl uctuations in metabolite 
abundances that are not due to the biological outcome in question 
(e.g., differences in abundances between disease groups).  Technical 
  variation in measurements can be due to differences in sample 
preparation, ionization effi ciency, and instrument conditions, for 
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example. Several techniques can be applied to reduce this unwanted 
variation. One technique is “total ion current” (TIC)    normaliza-
tion [ 17 ], where the sum of all signal abundances in a sample is 
made equal across all the samples. For each sample, signal abun-
dances are divided by the total sum of abundances, then multiplied 
by a constant (e.g., mean sum of abundances of all samples). 
Another method, “MS total useful signal” (MSTUS)    normaliza-
tion, was introduced more recently and builds upon TIC normal-
ization [ 18 ]. Rather than using all the signal abundances as in TIC 
normalization, only signals that are common to all or to the large 
majority of samples are retained. MSTUS normalization thus 
removes potential artifacts (e.g., drug intake) that may artifi cially 
skew the sum of abundances. Another option is to normalize signal 
abundances to that of spiked-in standards (with known amounts) 
but care should be taken to include standards that elute at different 
times. In urine, “housekeeping” metabolites (e.g., creatinine) have 
been applied yet may not be recommended since abundances of 
creatinine values are actually quite variable. Finally, abundances can 
be normalized to sample tissue weight/volume, or osmolality, or 
other physical measurements of the starting material. 

 In addition to  normalization  , metabolite abundances are typi-
cally transformed or scaled. This step is important for downstream 
statistical analysis, which oftentimes requires the data to fi t a spe-
cifi c distribution (e.g., normal). Typical transformations include 
applying log or power-transformations, and typical scaling include 
mean-centering or Pareto scaling.  

10    Validation 

 To ensure that the results are reproducible, it is essential to validate 
fi ndings. Two types of validation are important to consider: techni-
cal and biological.    Technical validation evaluates whether the 
abundances obtained are reproducible using the same or other 
instrumentation. For example, a subset or all the samples could be 
run on the same instrument in a different laboratory or on a differ-
ent instrument (e.g., LC-MS and QTOF-MS). In both cases, 
observing similar associations between metabolites and disease is 
the desired outcome and would rule out potential technical arti-
fact. Furthermore, calculating  intraclass correlation coeffi cients 
(ICCs)   is useful and gives a measurement of reproducibility. For 
 biomarkers   to be considered as clinically useful, ICCs greater than 
0.7 are required. Biological validation of the results is equally 
important and requires running a second experiment on a new set 
of samples that are preferably not part of the same cohort. This 
type of validation will ensure that the fi ndings are not specifi c to 
the population under study and is very useful in evaluating the 
global utility of the uncovered biomarkers.  
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11    Drawbacks 

 While the need to use complex data-interpretation techniques and 
combinations of analytical methods is not ideal,  metabolomics   may 
allow for the closest examination of causal relationships between 
genetics, environmental exposures, and disease phenotypes and 
outcomes. Although it is diffi cult to predict the number of metab-
olites produced by any given system, in comparison to the number 
of genes for example, this problem is not insurmountable and is 
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fi eld include a lack of well annotated central  databases   with spectral 
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cult to directly compare results between different methods, 
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concentration dynamic range, that can be as high as 10 14 , and pres-
ence of many signifi cantly low-abundance metabolites. The sources 
of variability are a frequent problem: sample, analytical methods, 
workfl ow, reagents, etc. In order to minimize the variability and 
discover valuable signals to illuminate questions at hand, it is of the 
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 Many of the aforementioned issues are common to other high- 
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    Chapter 5   

 Targeting Deubiquitinating Enzymes and Autophagy 
in Cancer                     

     Ashley     Mooneyham      and     Martina     Bazzaro     

  Abstract 

   Maintenance of proper cellular homeostasis requires constant surveillance and precise regulation of intra-
cellular protein content. Protein monitoring and degradation is performed by two distinct pathways in a 
cell: the autophage–lysosome pathway and the ubiquitin–proteasome pathway. Protein degradation path-
ways are frequently dysregulated in multiple cancer types and can be both tumor suppressive and tumor 
promoting. This knowledge has presented the ubiquitin proteasome system (UPS) and autophagy as 
attractive cancer therapeutic targets. Deubiquitinating enzymes of the UPS have garnered recent attention 
in the fi eld of cancer therapeutics due to their frequent dysregulation in multiple cancer types. The content 
of this chapter discusses reasoning behind and advances toward targeting autophagy and the deubiquiti-
nating enzymes of the UPS in cancer therapy, as well as the compelling evidence suggesting that simultane-
ous targeting of these protein degradation systems may deliver the most effective, synergistic strategy to 
kill cancer cells.  

  Key words     Deubiquitinating enzymes  ,   Autophagy  ,   Cancer  ,   Small molecule inhibitors  ,   Ubiquitin–
proteasome system  

1      Introduction to Protein Degradation Systems in The Eukaryotic Cell 

 Maintaining proper  cellular    protein homeostasis   requires constant 
 surveillance   of protein quality and quantity coupled with tightly 
regulated protein degradation systems [ 1 ]. Misfolded, damaged, 
or unnecessary proteins are continuously broken down to mini-
mize dangerous intracellular  proteotoxic stress  . The amino acids 
resulting from the protein degradation process can then be recy-
cled and incorporated into new proteins,    which completes the 
homeostatic protein cycle. In eukaryotic cells, two major path-
ways regulate protein degradation: the ubiquitin–proteasome 
pathway and the autophage–lysosome pathway [ 2 ]. In general, 
the ubiquitin–proteasome  system   is used to degrade short-lived 
proteins and the autophage–lysosome  system   is used to degrade 
long-lived proteins. Protein degradation pathways are frequently 
dysregulated in multiple cancer types and can be both tumor 
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suppressive and tumor promoting [ 3 ,  4 ]. This knowledge has 
 presented the ubiquitin–proteasome system (UPS)    and autophagy 
as attractive cancer  therapeutic targets   [ 5 ,  6 ]. 

   Three types of autophagy have been identifi ed:  chaperone- mediated 
autophagy  ,  microautophagy  , and  macroautophagy  .  Molecular 
chaperones   in the cytosol and the lysosomal  lumen   control chaper-
one-mediated autophagy. Microautophagy is distinct due to the 
direct engulfment of target proteins by the lysosome for degrada-
tion [ 7 ]. In this chapter, macroautophagy will be focused on given 
that nearly all work related to autophagy and cancer development, 
progression, and therapy refers to macroautophagy [ 8 ]. 

  Macroautophagy   (referred to as autophagy for the remainder 
of this chapter) involves the creation of double-membraned vesi-
cles called  autophagosomes   to enclose small portions of the cyto-
plasm. Autophagosomes can then fuse with a lysosome containing 
digestive enzymes. This fusion allows the contents of autophago-
somes to be digested in a contained environment. Autophagy is 
critical for cellular survival under stressed conditions such as nutri-
ent starvation, because digestion of less-essential self-components 
provides a source of metabolic building blocks used to refuel cells. 
This type of macroautophagy is commonly referred to as induced 
autophagy.    Another common type of macroautophagy is basal 
autophagy. Under normal cellular conditions, basal autophagy is 
an essential degradation pathway for removing damaged  organelles   
and  protein   aggregates from the cytosol [ 9 ].  

   The hallmark of the ubiquitin–proteasome system (UPS)    is its use 
of the 76-amino acid protein ubiquitin to selectively mark proteins 
for targeted degradation. Proteins tagged with a polyubiquitin 
chain are recognized and degraded by the 26S proteasome of the 
UPS. Prior to degradation, the ubiquitin tags are removed from the 
target protein by  deubiquitinating enzymes (DUBs)   which cleave 
the tags into ubiquitin monomers that can then be recycled within 
the cell to tag subsequent proteins for degradation.    Once the poly-
ubiquitin chain is removed, the target protein substrate can be 
threaded into the core of the 26S proteasome, where it is unfolded 
and hydrolyzed. Peptides from the degraded protein exit the bot-
tom of the complex, where they are then degraded into amino acids 
used to synthesize new proteins in a continuous process.  

   Until recently, UPS and autophagy protein degradation pathways 
were thought to act in parallel with each other to prevent the accu-
mulation of polyubiquitinated and aggregated proteins. However, 
accumulating evidence suggests some cross talk between the ubiq-
uitin–proteasome pathway and the autophage– lysosome   pathway 
[ 10 ,  11 ]. For example, although autophagy is generally under-
stood to be responsible for degradation of long-lived proteins, it 

1.1  The Autophage–
Lysosome  System  

1.2  The Ubiquitin–
Proteasome System

1.3  Cross Talk 
Between Autophagy 
and  UPS  
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can compensate for degradation of short-lived ubiquitinated pro-
teins when UPS activity is impaired. The UPS can also act in a 
compensatory manner, with proteasomal degradation shown to be 
upregulated in conditions when autophagy-mediated protein deg-
radation is compromised. Both autophagy and UPS have recog-
nized importance in maintaining proper health and  homeostasis   of 
eukaryotic cells. To inhibit either of these pathways greatly cripples 
a cell’s ability to eliminate dangerous intracellular proteotoxic 
stress, making them a tantalizing target in cancer therapy due to 
the already high levels of  proteotoxic stress   existing  inherently   in 
cancer cells. This chapter will discuss results of targeting each sys-
tem individually in cancer and the novel strategy of targeting both 
systems  simultaneously   to increase the effi cacy of protein degrada-
tion  inhibitors     .   

2    Autophagy and Cancer 

 It has become apparent that autophagy is a critical pathway in 
tumor development and cancer therapy [ 12 ,  13 ]. However, con-
fl icting results have been published regarding autophagy’s precise 
function in cancer. Is autophagy tumor suppressive or tumor pro-
moting? The current consensus suggests both [ 14 ]. In normal 
cells, autophagy can act as a tumor suppressor by degrading dam-
aged  organelles   and aggregated proteins before they can accumu-
late [ 15 ]. Preventing this accumulation halts  tumor progression   in 
its early stages by protecting normal cells from oxidative stress and 
DNA damage that could induce transformation into tumor cells. 
Despite this protective role, autophagy is also well known to be 
upregulated in cancer cells to promote tumor growth [ 16 ]. 

 In cancer cells, autophagy  upregulation   is implemented as a 
survival mechanism. The rapid proliferation rate of cancer cells 
results in high protein turnover and increased metabolic demands 
[ 17 ]. These challenges are compounded by the fact that cancer 
cells are often deprived of nutrients due to their location within a 
tumor [ 18 ]. This leaves a threefold opportunity for autophagy to 
be pro-tumorigenic: autophagy can compensate for the high pro-
tein turnover by degrading excess proteins and compromised 
 organelles  , then the protein and organelle degradation products 
can be recycled to overcome nutrient-poor environments and sup-
plement the cancer cells an alternate source of metabolic and 
 synthetic substrates. Inhibition of autophagy is therefore an attrac-
tive target for cancer therapy. By inhibiting autophagy function in 
autophagy-dependent cancer cells, tumor cell death will be acceler-
ated at a rate much greater than normal cells [ 19 ]. 

  Chloroquine   and  hydroxychloroquine   are FDA-approved 
autophagy  inhibitors    commonly   used to treat malaria. New inter-
est in autophagy as a cancer therapy has repurposed these malarial 
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autophagy inhibitors as anticancer therapeutics in recent clinical 
trials, especially within the context of combinational treatment 
with conventional chemotherapy, radiotherapy, and  immunother-
apy   regimens [ 20 ].  Hydroxychloroquine  / chloroquine   enters lyso-
somes and halts protein degradation by reducing lysosomal acidity, 
which effectively blocks autophagy in the last step. Alternatively, 
there are  inhibitors   such as HDAC6 inhibitors that prevent the 
fusion of lysosomes and  autophagosomes   [ 21 ]. This also is an 
effective mechanism of blocking autophagic protein degradation 
by preventing the protein exposure to degradative enzymes. 

 In most preclinical and clinical trials, autophagy inhibitors are 
used in combination with current chemotherapy regimens rather 
than as a single agent [ 22 ]. Since chemotherapy has been shown to 
induce autophagy in cancer cells as a possible tumor-protective 
mechanism, inhibiting autophagy may resensitize cancer cells to 
the chemotherapy treatment.    Most preclinical trials show promis-
ing results and support autophagy inhibitors as a cancer therapy 
option [ 23 ]. These results are especially profound in cancers such 
as pancreatic cancer that are “addicted” to autophagy for tumori-
genic development in addition to relying on autophagy in stressed 
conditions [ 19 ].  

3    Ubiquitin Proteasome System and Cancer 

 Cancer cells sustain survival by aberrant expression of proteins that 
are central to cell cycle and apoptosis. If the proteins are involved 
in suppressing apoptosis and promoting cell cycle progression, 
they are often overexpressed in cancer; if the proteins are involved 
in cell cycle checkpoints and induction of apoptosis, they are often 
underexpressed in cancer [ 24 ]. Due to their high requirement for 
metabolic activity and protein turnover, cancer cells are extremely 
dependent on proteasome degradation. This understanding led to 
the idea of using proteasome inhibition as a cancer treatment [ 25 ]. 
The goal of proteasome inhibition is to cause extensive and rapid 
accumulation of intracellular proteins that would prove toxic to 
cancer cells. As expected, preclinical studies and clinical evidence 
has shown proteasome inhibition does indeed exhibit anticancer 
effects both in vitro and in vivo [ 26 ,  27 ]. 

 The most notable success in the fi eld of proteasome inhibition 
as cancer therapy is the small molecule proteasomal  inhibitor    bort-
ezomib  . Just fi ve years after submission of its Investigational New 
Drug Application,    bortezomib was granted accelerated approval by 
the FDA in 2003[ 28 ]. It is primarily used to treat hematologic 
malignancies such as  multiple myeloma   and mantle cell lymphoma. 
Bortezomib reversibly inhibits the 26S proteasome and is initially 
incredibly effective at increasing survival of patients with hemato-
logical malignancies such as multiple myeloma [ 26 ]. However, these 
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successes were consistently met with onset of bortezomib resistance 
and the anticancer activity of bortezomib failed to translate to solid 
tumor setting. Consequently, bortezomib  provided   evidence and 
rationale for targeting the proteasome in cancer therapy, but it was 
clear that its considerable limitations warranted further experimen-
tation and development of novel ways to inhibit the ubiquitin pro-
teasome system. 

  Carfi lzomib   is a second generation proteasome inhibitor that 
sports one major difference to bortezomib: rather than reversibly 
inhibit, carfi lzomib irreversibly inhibits the 26S proteasome. The 
intent behind the design was to increase potency of this drug and 
prevent resistance from occurring [ 29 ]. Similar to bortezomib, 
its effects in hematologic malignancies were robust and undeni-
able. Although tolerated in patients with solid malignancies, it 
has also struggled to amount signifi cant antitumor activity in 
advanced solid tumors [ 30 ]. Notable third-generation inhibitors 
of the proteasome include  marizomib  ,  ixazomib  ,  oprozomib  , and 
 delanzomib  . Third-generation  inhibitors   are not yet FDA 
approved and are currently undergoing clinical trials. The above-
mentioned third- generation proteasome inhibitors have all shown 
preclinical effi cacy and dose tolerance in settings such as  multiple 
myeloma   [ 31 ]. 

 Despite having fi rst, second, and now third-generation protea-
some inhibitors in clinical trials, all have suffered class-wide limita-
tions. Proteasome inhibition only targets the last step of the  UPS   
and often  results   in the development of dangerous side effects such 
as peripheral neuropathy and resistance in patients. To overcome 
the resistance to proteasomal inhibitors seen acquired in hemato-
logical malignancies and inherently in solid malignancies, as well as 
to improve upon common  toxicities   associated with proteasomal 
inhibition, interest has developed into targeting other essential 
components of the UPS that may provide an alternative strategy to 
reduce highly proliferative or apoptosis-resistant tumor cells to a 
more vulnerable state. Most recently, interest in development of 
inhibitors against  deubiquitinating enzymes (DUBs)   has taken off 
as a novel approach to targeting the  UPS   [ 32 ].  

4    Deubiquitinating  Enzymes   and Cancer 

 A valid alternative for targeting the UPS in cancer involves targeting 
DUBs. DUBs are a family of proteases consisting of at least 98 indi-
vidual DUBs identifi ed to date [ 33 ]. In an already complex UPS 
system, DUBs add another level of regulation. DUBs are responsi-
ble for several functions including: liberation of ubiquitin from pro-
tein substrates, editing of polyubiquitin signal on protein substrates 
to change the fate of the protein, disassembling polyubiquitin 
chains to free ubiquitin monomers, and cleaving ubiquitin 
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precursors or adducts to regenerate active ubiquitin [ 34 ]. These 
functions can work to both encourage degradation or prevent deg-
radation of proteins, and as such reinforce the signifi cant role DUBs 
play in the UPS and in maintenance of protein  homeostasis      [ 35 ]. 
There are fi ve DUB subfamilies identifi ed:  ubiquitin C-terminal 
hydrolases (UCHs)  ,  ubiquitin-specifi c proteases (USPs)  , ovarian 
tumor proteases (OTUs), Josephins, and JAB1/MPN/MOV34 
metalloenzymes (JAMM/MPN+) [ 36 ]. 

 The  UCH   and  USP   subfamilies are by far the most represented 
members of the DUB family, comprising greater than 90 % of the 
mammalian cell DUBs pool. Members of both USP and UCH 
families are differentially expressed and activated in a number of 
cancer types [ 37 ]. Notably, their aberrant activity has been linked 
to cancer progression, onset of  chemoresistance  ,  prognosis  , and 
 clinical outcome   [ 38 ]. It has become recently clear that different 
cancers upregulate specifi c DUBs, which provides the added 
potential advantage of creating targeted therapy specifi c to each 
cancer through carefully selected DUB inhibition. Therefore, 
DUBs have been suggested as potential  therapeutic targets   for can-
cer treatment. Currently,  UCH   and  USP   are the only subfamilies 
for which small molecule  inhibitors      have been developed and 
characterized. 

 Dedicated efforts to design and synthesize small molecule 
inhibitors against cancer-related DUBs have intensifi ed over the 
past fi ve years. The majority of  DUBs   within a cell are cytosolic, 
with the exception of USP14 and UCH37/UCHL5 which are 
directly associated with the 26S proteasome [ 39 ]. Recent com-
pounds synthesized to inhibit DUBs as cancer therapy include 
RA-190 and WP1130. The molecule RA-190 covalently binds the 
RPN13 ubiquitin receptor, which has been shown to be frequently 
amplifi ed in ovarian and colon cancers, thereby disrupting recogni-
tion of ubiquitinated protein substrates for degradation by the 
 UPS   [ 40 ]. WP1130 acts as a partially selective  DUB   inhibitor tar-
geted against USP9X, USP5, USP14, and UCH37/UCHL5 [ 41 ]. 
Unfortunately, although WP1130 was effective at inducing cell 
death in  multiple myeloma   and mantle cell lymphoma, its poor 
solubility and pharmacokinetic properties prevented further clini-
cal development of this drug. After extensive screening and analy-
sis, two promising derivatives of WP1130 have emerged: G9 and 
YJ-8-067. Both selectively target USP9X and have improved anti-
tumor activity and superior in vivo performance to WP1130 in 
preclinical studies [ 42 ]. 

 Notable proteasome-associated DUB  inhibitors   include 
b-AP15, VLX1570, and RA-9. Small molecule  inhibitors      
VLX1570, and RA-9 have increased potency and solubility com-
pared to b-AP15; however, all have shown anti-multiple myeloma 
activity. This  anti-multiple myeloma   activity extends to multiple 
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myeloma  cells   that are resistant to proteasome inhibition, which 
further supports DUB inhibition as a strategy to overcome pro-
teasome inhibitor resistance [ 43 ,  44 ]. Strikingly, RA-9 has addi-
tionally been shown to exert antitumor activity without apparent 
side effects in preclinical solid tumor models such as breast and 
ovarian cancer [ 45 ]. The preliminary success of these compounds 
supports the rationale for further study centered on DUB activity 
inhibition to overcome resistance to  UPS   inhibiting drugs that 
target the proteasome. DUB inhibitors also hold promise to fi nally 
translate the antitumor activity of UPS inhibition to solid malig-
nancies [ 46 ].  

5    Simultaneous Targeting of  DUBs   and Autophagy 

 Targeting components of the autophage–lysosome  system   and the 
ubiquitin–proteasome  system   as anticancer therapy have shown 
initial promise but have also been plagued by problems of resis-
tance and/or  toxicity  . Accumulating evidence has supported a 
cross talk between these two protein degradation pathways, where 
one system can compensate for a weakness in the other if activity 
is hindered [ 47 ]. This ability to adapt to inhibition of either 
autophagy or the UPS could be a large contributor to the resis-
tance observed in clinics. Recent understanding of this cross talk 
triggered interest in simultaneous inhibition of the UPS and 
autophagy as a new strategy to synergistically induce cell death in 
multiple cancer settings. By blocking both protein degradation 
systems at once, the cell will lose its ability to compensate and 
overcome inhibition of a single system and therefore succumb to 
cell death (Fig.  1 ).

   Encouragingly, combination of  DUB   and autophagy inhibi-
tion has shown antitumor effects against solid tumors. Small- 
molecule DUB  inhibitors   such as b-AP15 and RA-9 have a 
profound effect on  triple-negative breast cancer (TNBC)   viability 
and have led to activation of autophagy as a cellular mechanism to 
compensate for ubiquitin–proteasome-system stress. Importantly, 
the activation of autophagy occurred well before induction of 
apoptosis, which indicated the protective and pro-survival nature 
of its induction. Together this supported rationale for concomitant 
inhibition of DUBs and autophagy in the TNBC model. To deter-
mine whether or not inhibitors would have a synergistic effect, 
TNBC cells were treated with suboptimal doses of DUB and lyso-
some inhibitors. Although the doses would be suboptimal on their 
own, the combination of inhibitors caused synergistic cell death of 
TNBC cells [ 48 ]. Accordingly, the evaluation of  DUB   inhibition 
in combination with lysosomal inhibition should be further 
explored as a therapeutic approach for the treatment of  TNBC   and 
other malignancies.  
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  Fig. 1    Synergistic approach to overcome cross talk between  UPS   and autophagy. ( a ) Conventional pathway 
for 26S proteasome degradation of polyubiquitin- tagged target proteins by the ubiquitin–proteasome system 
(UPS). Ubiquitin tags are removed by  deubiquitinating enzymes   (DUBs) before the target protein is threaded 
through the 26S proteasome for degradation. ( b ) The autophage–lysosome  system   can compensate for deg-
radation of ubiquitin-tagged proteins when UPS function is compromised. The red cancel icon is superim-
posed over both the  DUBs   and the proteasome to refl ect the various methods available to inhibit the UPS, 
such as proteasomal inhibition or DUB inhibition. ( c ) Simultaneous targeting of the  UPS   and autophagy results 
in an accumulation of polyubiquitinated proteins within a cell. Red cancel icons indicate inhibition of both 
protein degradation systems. The placement of the red cancel icon over the autophage–lysosome system 
encompasses different targets of autophagy inhibition, such as fusion of  autophagosomes   and lysosomes or 
de-acidifi cation of the lysosome       
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6    Conclusion and Outlook 

 The ubiquitin–proteasome  system   and the autophage–lysosome 
 system   are two main protein degradation pathways within a eukary-
otic cell that work to maintain proper protein  homeostasis     . These 
 pathways   are heavily relied upon by cancer cells due to their 
increased burden of misfolded proteins resulting from rapid prolif-
eration rates, as well as their need for metabolic resources in 
 nutrient- poor environments   such as a tumor. Due to these factors, 
cancer therapeutics based on inhibition of both the autophage–
lysosome pathway and the ubiquitin proteasome pathways have 
been explored. Although this fi eld has experienced remarkable suc-
cesses, such as the implementation of  bortezomib   in  multiple 
myeloma   treatment regimens, the success has been limited by side 
effects and common development of resistance. 

 Cross talk between the autophage–lysosome and ubiquitin–
proteasome pathways has recently been suggested in cancer, with 
evidence signifying they are functionally coupled. This provides a 
possible explanation for why resistance is so prominent in response 
to these treatments: as one protein degradation pathway is inhib-
ited, the other can compensate. Recent studies have suggested 
simultaneous targeting of both protein degradation pathways to 
overcome the issue of cross talk. Specifi cally, interest has been 
taken in targeting the deubiquitinating enzymes of the  UPS  . With 
almost 100 DUBs identifi ed, deubiquitinating enzymes have the 
potential to provide previously unachievable levels of specifi city 
targeting each cancer type when compared to proteasome inhibi-
tion.    Using a combinational approach of targeting DUBs and 
autophagy could profoundly increase effi cacy and duration of 
response to protein degradation  inhibitors      and translate their anti-
cancer properties to variety of cancer settings previously unrespon-
sive to a single-agent approach.     
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    Chapter 6   

 Quantitative Clinical Imaging Methods for Monitoring 
Intratumoral Evolution                     

     Joo     Yeun     Kim     and     Robert     A.     Gatenby      

  Abstract 

   Solid tumors are multiscale, open, complex, dynamic systems:  complex  because they have many interacting 
components,  dynamic  because both the components and their interactions can change with time, and  open  
because the tumor freely communicates with surrounding and even distant host tissue. Thus, it is not 
surprising that striking intratumoral variations are commonly observed in clinical imaging such as MRI and 
CT and that several recent studies found striking regional variations in the molecular properties of cancer 
cells from the same tumor. Interestingly, this spatial heterogeneity in molecular properties of tumor cells is 
typically ascribed to branching clonal evolution due to accumulating mutations while macroscopic varia-
tions observed in, for example, clinical MRI scans are usually viewed as functions of blood fl ow. The clini-
cal signifi cance of spatial heterogeneity has not been fully determined but there is a general consensus that 
the varying intratumoral landscape along with patient factors such as age, morbidity and lifestyle, contrib-
utes signifi cantly to the often unpredictable response of individual patients within a disease cohort treated 
with the same standard-of-care therapy. 

 Here we investigate the potential link between macroscopic tumor heterogeneity observed by clinical 
imaging and spatial variations in the observed molecular properties of cancer cells. We build on techniques 
developed in landscape ecology to link regional variations in the distribution of species with local environ-
mental conditions that defi ne their habitat. That is, we view each region of the tumor as a local ecosystem 
consisting of environmental conditions such as access to nutrients, oxygen, and means of waste clearance 
related to blood fl ow and the local population of tumor cells that both adapt to these conditions and, to 
some extent, change them through, for example, production of angiogenic factors. Furthermore, interac-
tions among neighboring habitats can produce broader regional dynamics so that the internal diversity of 
tumors is the net result of complex multiscale somatic Darwinian interactions. 

 Methods in landscape ecology harness Darwinian dynamics to link the environmental properties of a 
given region to the local populations which are assumed to represent maximally fi t phenotypes within 
those conditions. Consider a common task of a landscape ecologist: defi ning the spatial distribution of 
species in a large region, e.g., in a satellite image. Clearly the most accurate approach requires a meter by 
meter survey of the multiple square kilometers in the region of interest. However, this is both impractical 
and potentially destructive. Instead, landscape ecology breaks the task into component parts relying on the 
Darwinian interdependence of environmental properties and fi tness of specifi c species’ phenotypic and 
genotypic properties. First, the satellite map is carefully analyzed to defi ne the number and distribution of 
habitats. Then the species distribution in a representative sampling of each habitat is empirically deter-
mined. Ultimately, this permits suffi cient bridging of spatial scales to accurately predict spatial distribution 
of plant and animal species within large regions. 

 Currently, identifying intratumoral subpopulations requires detailed histological and molecular studies 
that are expensive and time consuming. Furthermore, this method is subject to sampling bias, is  invasive for 
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vital organs such as the brain, and inherently destructive precluding repeated assessments for monitoring 
post-treatment response and proteogenomic evolution. In contrast, modern cross-sectional imaging can 
interrogate the entire tumor noninvasively, allowing repeated analysis without disrupting the region of 
interest. In particular, magnetic resonance imaging (MRI) provides exceptional spatial resolution and gen-
erates signals that are unique to the molecular constituents of tissue. Here we propose that MRI scans may 
be the equivalent of satellite images in landscape ecology and, with appropriate application of Darwinian 
fi rst principles and sophisticated image analytic methods, can be used to estimate regional variations in the 
molecular properties of cancer cells. 

 We have initially examined this technique in glioblastoma, a malignant brain neoplasm which is mor-
phologically complex and notorious for a fast progression from diagnosis to recurrence and death, making 
a suitable subject of noninvasive, rapidly repeated assessment of intratumoral evolution. Quantitative imag-
ing analysis of routine clinical MRIs from glioblastoma has identifi ed macroscopic morphologic character-
istics which correlate with proteogenomics and prognosis. The key to the accurate detection and forecasting 
of intratumoral evolution using quantitative imaging analysis is likely to be in the understanding of the 
synergistic interactions between observable intratumoral subregions and the resulting tumor behavior.  

  Key words     Diagnostic imaging methods  ,   Ecology  ,   Genetic predisposition to disease  ,   Individualized 
medicine  ,   Oncology  ,   Darwinian dynamics  ,   Intratumoral heterogeneity  ,   Evolutionary biology  , 
  Proteogenomics  ,   Treatment resistance and disease recurrence  

1      Introduction 

 Patients who share a common  oncologic   diagnosis and are treated 
with identical standard-of- care   therapy often display a wide range 
of responses and survivorship. Some of this variation is likely due to 
patient  characteristics         such as age and comorbidities as well as inter-
patient  molecular heterogeneity   resulting in, for example, differ-
ences in  drug metabolism   and  toxicity  . However, uniquely among 
human diseases, cancer cells can evolve and adapt to overcome 
threats and take advantage of opportunities. Thus, while it is not 
surprising that tumor cells vary between patients, local  Darwinian 
dynamics   characteristically produce molecular variations between 
tumors in the same patient and even in different malignant cells in 
the same tumor [ 1 – 5 ]. This heterogeneity has signifi cant clinical 
consequences. Consider, for example, recent advances in tumor 
treatment that use small molecules that target particular molecular 
pathways that promote proliferation. For example, cetuximab tar-
gets the  epidermal growth factor receptor (EGFR)   in lung cancer 
and head and neck cancer. By identifying the EGFR target on the 
tumor cells prior to therapy, the probability that cetuximab will 
produce a positive clinical response is greatly increased. However, 
the effects of cetuximab are almost invariably time-limited because 
the tumor cells evolve resistance and, importantly, the resistant cells 
are generally thought to be present in the tumor prior to therapy 
due to  intratumoral heterogeneity  . Such resistance leading to sub-
sequent progression is common particularly for system treatment, 
and additional  biomarkers   are rarely available for second, third, and 
fourth line therapies. The success of  Darwinian dynamics   in over-
coming cancer therapy is hardly unique to targeted treatments. In 
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fact, the vast majority of disseminated cancers remain fatal despite 
the development of many new therapies that initially produce sig-
nifi cant,          often dramatic, results. In almost every case, cancer cells 
use acquired mutations or simply access and upregulate informa-
tion from the vast information storehouse of the human  genome  , 
to defeat the therapy and permit tumor  recurrence  . In other words, 
evolution is the proximate cause of death in most patients treated 
for cancer, and this will likely remain so even with new advances in 
targeted therapy and  immunotherapy  . 

 Thus, there is a pressing need to develop methods to evaluate 
 intratumoral evolutionary dynamics   during therapy. However, 
achieving this requires solutions to a number of challenges posed 
by  tumor heterogeneity  , particularly spatial variations of  intratu-
moral population dynamics  . A number of studies have demon-
strated substantial molecular variation in different tumors and even 
in different regions of the same tumor [ 1 – 5 ]. Although a single 
therapy may be applied to every region of the tumor, it is acting on 
regionally different populations which, in turn, will result in vari-
able levels of response and resistance. 

 Currently, regional variations in tumor cell molecular proper-
ties and changes in that distribution over time during therapy can 
only be established by multiple repeated biopsies. But this is limited 
by cost,  patient compliance  , and potential complications. A few less 
invasive mechanisms to estimate intratumoral evolution are avail-
able. For example, serial sampling of tumor cells or molecules in the 
blood samples may refl ect the  global evolutionary dynamics   within 
the total patient tumor burden. We have proposed that imaging, 
because it can repeatedly, noninvasively, and nondestructively char-
acterize spatial variations within tumors, has the potential to serve 
as a  biomarker   of intratumoral evolution during therapy. In particu-
lar, we have focused on  MRI   scans, which have no ionizing radia-
tion and can repeatedly interrogate the tumor with multiple 
sequences that are sensitive to different  components         of the tumor 
 ecology   such as  blood fl ow  ,  interstitial edema  , and  cellular density  . 

 Radiologists have long been aware of signifi cant and consistent 
 spatial heterogeneity   in the imaging characteristics of tumors. 
Furthermore, these variations often change with time during ther-
apy or  tumor progression  . This leads to a central question: Are the 
spatial changes observed in clinical imaging directly linked to 
regional variations in the cellular, microenvironmental, and molec-
ular properties observed within and between tumors? 

 Answering this question requires solving multiple challenges 
inherent in comparing data at very different spatial and temporal 
scales. Interestingly, this is highly analogous to problems in 
 landscape  ecology     , which studies the distribution and abundance 
of species in relation to the scale (fi ne- versus coarse-grained het-
erogeneity) and proportions of different habitats within an  ecosys-
tem  . The properties of the habitat can be used to infer the dominant 
local species. For example, in Fig.  1  [ 6 ], the spatial variations in the 
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  Fig. 1     Satellite imagery   used to form landscape  ecology      maps. ( a ) The  study         area showing polygons around 
the main habitats of  Rhabdomys pumilio . ( b ) The study area showing habitat classifi cation according to 
 Rhabdomys pumilio ’s perceived risk of predation. Landscape ecology maps use selective samples of specifi c 
habitats to bridge spatial scales and estimate species distribution in a large area containing multiple habitats. 
Reproduced from Baker and Brown, 2010 (Ref.  6 ) with permission from John Wiley & Sons       
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density of chipmunks ( Rhabdomys pumilio ) can be predicted by 
identifying the habitat characteristics observable on  satellite images   
based on understanding of the features that favor the presence or 
absence of predators.

   To illustrate this approach, we focus on  glioblastoma (GBM)  , 
which is the most common adult brain neoplasm and uniformly 
fatal. Upon tissue diagnosis,  standard of care (SOC)   treatment 
usually consists of surgical resection or debulking followed by 
combined radiation therapy and temozolomide, an orally adminis-
tered alkylating agent. Despite this vigorous, multimodal therapy, 
 tumor progression   is virtually inevitable and overall survival is usu-
ally 12–14 months [ 7 ] following diagnosis. However, there is sig-
nifi cant variation within this cohort—some die within 2 months of 
diagnosis while a small percentage experiences an unusually long 
term (>4 years) survival. 

 The varying  clinical outcomes   following  SOC   therapy suggest 
that resistant cancer cells exist prior to therapy and/or develop 
during treatment. Identifying and targeting these resistant popula-
tions would  likely         improve outcomes but how can this be achieved? 
Interrogation of the heterogeneity of  glioblastoma   during therapy 
through repeated tissue/cellular/molecular analysis seems to be 
the obvious answer. However, this is impractical based on cost and 
compliance and may be dangerous as repeated biopsies of the brain 
lead to loss of memory, personality, and function [ 8 ] as well as cost 
of money and time. Furthermore, the sampling process can alter 
the tumor dynamics, for example, through  hemorrhage  . 

 Thus, while the wide range of sensitivity and resistance to 
treatment that is found in GBM, and many other malignancies, is 
likely to be at least partly attributable to intratumoral  proteoge-
nomic    heterogeneity  , the clinical characterization and investigation 
of the spatial variations in  macro- or micro-scale tumor properties   
is diffi cult so that the signifi cance of observed molecular variations 
[ 9 ] remains largely unknown. 

 To address these issues we note that sophisticated cross- 
sectional diagnostic  imaging   modalities including  magnetic reso-
nance imaging (MRI)   and  computed tomography (CT)   can 
noninvasively and nondestructively characterize tissue-level intra-
tumoral variations in GBMs repeatedly over time during and after 
therapy. In a number of studies, we and others have investigated 
the potential of  imaging-defi ned tissue heterogeneity   to provide 
insights in spatial and temporal variations in the cellular and molec-
ular characteristics of tumor cells. We hypothesize that the tools to 
bridge the spatial scales may exist within landscape  ecology      as 
described above. Similar to  satellite images  , MRI and CT scans can 
defi ne relatively large scale structures within a tumor. It is possible 
that imaging characteristics can be used to defi ne regional varia-
tions in the ecology of each cancer which, in turn, will correlate 
with a “ species map”   of spatial distribution of distinct phenotypic 
and genotypic cancer subpopulations.  
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2    Quantitative Methods in Clinical Cancer  Imaging   

 An initial challenge for this work is development of  quantitative 
and reproducible metrics   to characterize the imaging properties of 
cancers.  Medical imaging   is an integral part of  oncologic   diagnosis 
and post-treatment surveillance but monitoring strategies such as 
the  Response Evaluation Criteria in Solid Tumors (RECIST)   and 
World Health Organization (WHO)  criteria   focus only on  utilizing         
the tumor size as the metric of comparison.  Inter-observer vari-
ability   is a common and well-known short coming in all of these 
methods. The documentation of the perceivable  intratumoral tex-
tural variations  ,  necrosis  ,  enhancement patterns   and  interstitial 
edema   remains descriptive and subject to large  inter-observer vari-
ability  . Because morphologic and textural assessment is limited to 
the  macroscopic spatial resolution  , even the most experienced eye 
can fail to recognize a small pathologic nodule or lymph node 
which may appear morphologically normal but be proven to be 
malignant through functional imaging such as  positron emission 
tomography (PET)  . Similarly, the eye can fail to appreciate the fi ne 
granular variations in imaging signal characteristics and texture 
(Fig.  2 ) [ 9 ] that, if detected, could lead to a different diagnosis, or 
a different cancer stage.

3        Radiomics   

 While each  CT   or  MRI   requires several megabits of storage, none 
of this data is typically quantitative. Furthermore, as noted earlier, 
interpretation is typically reliant entirely on visual inspection. In 
fact,  cross-sectional imaging   modalities are potential sources of a 
huge volume of mineable data. Furthermore, MR images, for 
example, are built from single pixels each displaying the unique 
echo signal generated by the molecular constituents of the corre-
sponding minute volume of tissue. A close look at an apparently 
uniform region of tumor can reveal subtle spatial variations of sig-
nals which likely refl ect the underlying cellular and  molecular het-
erogeneity   (Fig.  3 ). An automated method of quantifying these 
 signal         variations that are visually imperceptible may provide an 
accurate and objective metric for assessing a patient’s  prognosis  . 
For example, Lacroix et al. [ 10 ] found that quantitation of  necrosis   
and enhancement on preoperative MRI scans were independent 
predictors of GBM survival. Several other studies [ 2 ,  10 – 13 ] have 
shown that  MRI   characteristics (e.g., ratio of tumor enhancement 
to  necrosis  ) are predictive of survival. Thus, a quantifi ed measure-
ment of the necrosis and enhancement prior to treatment may pro-
vide a further dimension to guide treatment planning, and be 
compared with subsequent post-treatment measurements as an 
objective means of monitoring treatment response.
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   The general approach to develop quantitative  methods   and 
potential data mining algorithms from conventional clinical images 
is termed “radiomics.” These methods allow automated high 
throughput  imaging   feature extraction from radiologic images and 
offers a tool for fi ne-grained, operator-independent diagnostic and 
follow-up methods that are objectively quantitative, reproducible, 
and repeatable for monitoring temporal intratumoral evolution. 

 Importantly, however, virtually all radiomic techniques view 
the tumor as a single entity and thus produce metrics that are not 
spatially explicit. In the remainder of this chapter, we focus on 
efforts to develop methods that use imaging to defi ne regional 
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  Fig. 2    ( a )  CT   images obtained with conventional entropy fi ltering in two patients with non-small cell lung can-
cer with no apparent textural differences show similar entropy values across all sections. ( b ) Contour plots 
obtained after the CT scans were convolved with the entropy fi lter. Further subdividing each section in the 
tumor  stack         into tumor edge and core regions ( dotted black contour ) reveals varying textural behavior across 
sections. Two distinct patterns have emerged, and preliminary analysis shows that the change of mean entropy 
value between core and edge regions correlates negatively with survival. Reproduced from Gatenby et al., 
2013 with permission from RSNA (Ref.  9 )       
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variations in the tumor and initial attempts to use  ecological   
 principles to link these macroscopic scale features to the molecular 
and cellular properties of local tumor populations.  

4    The  Habitat Concept of Intratumoral Heterogeneity   

 Many tumor types have been found to exhibit considerable intra-
tumoral variation through RNA– seq   studies and other molecular 
and cellular analysis [ 8 ,  14 – 19 ]. A single  glioblastoma   tumor will 
harbor multiple cellular subtype classifi ers, along with heterogene-
ity in transcription programs related to  oncologic   signaling, prolif-
eration,  immune response  , and  hypoxia   [ 20 ]. No two tumors are 
alike, but what determines their unique intratumoral organization? 
Such spatially explicit distribution of species are seen in landscape 
 ecological      studies which is built upon  Darwinian dynamics   in 
which evolution is governed by interactions of an organism’s phe-
notype with local environmental properties that act as selection 
forces. Thus, geographic distributions or species are not the result 
of some random  mutational         process but identifi able and predict-
able interactions with the varying landscape and microenviron-
ments. In cancer, initial tumor growth is likely to be determined by 
the accumulation of mutations and resultant aberrations of cell 
cycling. However, as the tumor increases in size, regional varia-
tions usually emerge under the infl uence of its immediate anatomic 
constraints, its proximity to blood vessels and the patient’s immu-
nological response. Thus, the dynamics that drive  somatic evolu-
tion   within cancers, as in nature, are not simply governed by 
accumulating mutations but rather, by interactions among local 
environmental selection forces and  regional phenotypic adapta-
tions   to those forces. 

 In other words, the molecular  properties   of cancer cells are the 
“how” of evolution but the local environmental conditions are the 
“why.” This linkage is the basis for our proposal that conventional 
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  Fig. 3    Patient from our study cohort showing three biopsy sites ( red boxes  in the  MRIs  ) from within the tumor 
core (all designated as contrast-enhancing region CE)   . While macroscopic inspection shows similar characteris-
tics of the peritumoral region, multiparametric analysis shows that these are in fact different (Color fi gure online)       
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clinical  imaging   can be used to predict intratumoral  molecular 
 heterogeneity     . That is, intratumoral  Darwinian dynamics      funda-
mentally connect the intratumoral and environmental conditions 
such as  blood fl ow  ,  interstitial edema  , and  cellular density  . The lat-
ter properties are readily identifi able on  MRI   scans. This leads to 
the hypothesis that identifi able and quantifi able MRI-defi ned 
“habitats”    can predict regional distribution of cellular and molecu-
lar properties observable on pathology.  

5    Methods in Landscape  Ecology      

 One of the challenges in the analysis of intratumoral  heterogene-
ities   is in deciding how to measure the spatial variations. Similar 
questions are answered in landscape ecology using spatial statistical 
methods.          Landscape ecology studies the distribution and abun-
dance of species in relation to the scale (fi ne- versus coarse-grained 
heterogeneity) and proportions of distinct habitats within an  eco-
system  . It is inherently scale dependent and relies on concepts from 
population dynamics and  niche   theory, and on analyses associated 
with spatial and temporal autocorrelations, cluster analyses, and 
structured equation modeling to tease apart direct and indirect 
effects within causal relationships [ 21 ]. For example, when tasked 
with measuring plant species distributions in a large heterogeneous 
region such as the Smokey Mountain National Park, landscape 
ecologists typically begin by reviewing  satellite imagery   of the 
entire region (Fig.  1 ) [ 6 ] to identify and analyze distinct habitats 
via pixilation of variables such as color, refl ectance, infrared and 
UV intensities. 

 Such analyses can be used to discriminate both the number 
and character of distinct habitats. In lockstep with the  satellite 
image  , the different habitats are “ground-truthed” by more 
detailed, small-scale sampling and mapping of “quadrats” that are 
stratifi ed by the habitats noted from the satellite image. This quan-
tifi es the species composition of each habitat, and cross-checks the 
heterogeneity from the quadrats with those from the satellite 
images. By relating small-scale sampling with larger scale  imaging  , 
it is now possible to map the distribution of species. Such strategies 
are being used to  monitor      the speed of rainforest destruction, and 
estimate the total number of an endangered species. 

 On a smaller order of magnitude, individual habitats within a 
 microcosm   can be identifi ed by the number of animals with dis-
tinct  niches  . The number of habitats within a microcosm can be 
calculated using the  K-factor clustering technique  , usually depen-
dent on the number of inhabitant species. A numerical representa-
tion of a relationship between a habitat and its desirability to a 
species is the  Habitat Suitability Index   expressed as a score between 
0 and 1, 0 being undesirable and 1 being more desirable. 
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 Establishing the geographic distribution of different species 
usually requires identifi cation of  adaptational behavioral variations   
between species that occupy similar  niches  , for example between 
the grey and fox squirrels. The grey squirrels are excellent foragers 
but lack survival strategies when they encounter predators.          Thus, 
they uniformly and predictably inhabit wooded areas around 
human habitats where predators are rare and survival is largely 
dependent of acquisition of nutrients. While they are excellent 
scavengers, they seldom encounter predators thus show a relative 
lack of survival  strategies      when faced by such danger. In compari-
son, the fox squirrels, while less effective in foraging for nutrients, 
fi ercely and effectively defend themselves against predators. Thus, 
fox squirrels are predictably found to be dominant in poorly 
wooded areas on the outskirts of cities. Thus, by defi ning the habi-
tat characteristics on satellite maps, the distribution of squirrel spe-
cies can be reliably estimated. 

 We hypothesize that  intratumoral heterogeneity   visible on 
 MRI   can be viewed as a collection of “habitats” each with a distinct 
 ecosystem  .       Using principles and techniques from landscape ecol-
ogy we propose that the coarse-grained, intratumoral variations in 
clinical imaging could be defi ned by the local environmental selec-
tion forces, and could predict the distribution of fi ne-grained fea-
tures such as cellular and molecular properties.  

6    Evidence of  Intratumoral Habitats         in Medical Imaging 

 Like  satellite images  , the intratumoral and peritumoral regional vari-
ations are well demonstrated by  Magnetic resonance imaging (MRI)   
through the use of sequences sensitive to  blood fl ow  , vascular per-
meability,  interstitial edema  , and cell density [ 2 ,  11 – 13 ,  20 ]. 
Aggressive tumors such as  glioblastoma   are radiologically recognized 
by their rapid growth, high vascularity, penchant for building an 
unstable blood supply often leading to central  necrosis   and  cavitation, 
and a high volume of local interstitial edema. The ability of medical 
imaging to display the intratumoral and intertumoral  spatial hetero-
geneity   in glioblastoma is well recognized [ 1 ,  7 ,  17 ,  18 ] (Fig.  4 ).

   In our view, the  presence         of such  spatial heterogeneity   indicates 
that each tumor cannot be viewed as a single entity. Instead, tumors 
may be seen to be an  ecosystem   of distinct but dynamically interact-
ing habitats that can be seen as multiscale  ecologies   adapting to, 
and in turn affecting, the selection forces in its environment. 

 To identify the inhabitants of such habitats, investigators have 
examined the “radio-genomics” and the “ radio-pathomics”   in 
 glioblastoma  . In particular, Barajas et al. [ 1 ] took MRI-guided 
biopsies from the contrast-enhancing (designated CE)    and non- 
enhancing infi ltrative (NE)    tumor regions and found that the CE 
had increased tumor score,  cellular density  , proliferation and archi-
tectural disruption in comparison to NE. Gutman et al. [ 2 ] found 
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that low-enhancing areas of a glioblastoma would be dominated by 
the proneural subtype, and the highly enhancing regions be inhab-
ited by the mesenchymal subtype. Increased mass effect as well as a 
number of distinct imaging features correlated with increased 
 EGFR   expression and intratumoral gene-expression patterns [ 11 ]. 
Similarly, several prior studies examined global MRI features such 
as the infi ltrative pattern, enhancement, edema, and  necrosis   as 
 prognostic biomarkers   [ 2 ,  3 ,  5 ,  11 – 13 ,  22 – 29 ]. Lev et al. [ 3 ] used 
a  decision         tree technique to identify prognostic imaging features. 
Gutman et al. [ 2 ] correlated tumor size and related structural com-
position with clinical survival. A number of studies have also identi-
fi ed intratumoral and intertumoral variations in the molecular 
properties of  glioblastoma   cells to have clinical signifi cance [ 3 – 5 ]. 

  Fig. 4    Whole brain and close-up images of a  recurrent   GBM tumor. The  top row  shows  T1 post-gadolinium 
contrast (T1Gd)     ,  Fluid-attenuated Inversion Recovery (FLAIR)   and a  3D multiparametric tumor cluster map   
constructed from superimposition of T1 pre- and post-gadolinium contrast, T2, FLAIR, and  apparent diffusion 
coeffi cient (ADC)   sequences.  Each color  represents a particular combination of multiparametric signals, or 
“habitat,” defi ned by the analytic methods described in the text, and demonstrates the spatial complexity of 
MRI data (Color fi gure online)       
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 These studies demonstrate that tumor imaging features can be 
predictive of the underlying  proteogenomics   and  prognosis  , 
thereby provide a way to noninvasively predict tumor regions 
which have the potential for treatment failure. Harnessing the 
 MRI’s   ability to accurately demonstrate the environmental compo-
nents, in particular vascularity, may lead to the identifi cation of 
 treatment resistant   areas of a tumor. The most important environ-
mental infl uence on the growth of a tumor is the blood supply 
which is directly related to local concentrations of oxygen, glucose, 
serum growth factors, and acid clearance. The outer edges of a 
tumor have easy access to blood supply, providing an oxygen- and 
nutrient-rich environment for tumor cells which, are also under 
constant attack from cell mediated immunity. Tumor cells at the 
edge of the tumor are “pioneer-like,” inducing angiogenesis, 
locally infi ltrating, and withstanding the harsh  predator-like 
dynamics   imposed by  immune response  . 

 With an increasing tumor volume,          the central regions of the 
tumor become poorly perfused and increasingly hypoxic and nutri-
ent poor.          Some tumor cells enter apoptosis resulting in  necrosis  , 
however some can adopt the  anaerobic respiration  , producing 
acidic by-products of  glucose metabolism  . A poor blood supply 
also means impeded waste disposal, making these tumor regions 
perpetually acidic [ 7 ,  9 ,  30 – 34 ]. Tumor cells surviving in these 
regions can be considered as “engineers,” with adaptive mecha-
nisms that enable them to endure the acidic and hypoxic environ-
ment, with slowed cell cycling kinetics, being sparse in number but 
apoptosis resistant. Such cells sustain a stable population and dis-
play  treatment resistance   through poor  chemotherapeutic agent   
delivery and poor  radiosensitivity   [ 35 ,  36 ]. On imaging, such 
tumor habitats can be expected to show a low level of contrast 
enhancement and maintenance of a reasonable  cellular density  . 

 This intratumoral variation  presents         a signifi cant obstacle on 
the road to “personalized” cancer  therapy  , which is currently based 
on a small number of tumor biopsy samples assumed to be repre-
sentative of a tumor’s molecular properties [ 37 – 39 ], and imaging 
features that average the geographical  intratumoral heterogeneity  . 

 Thus, identifying discrete imaging features that consistently pre-
dict targetable pathologic tumor characteristics such as vascular den-
sity and driver gene expression would be of signifi cant clinical value.  

7    A Practical Approach to  Radiomics   and Quantitative  Habitat Imaging         
on Magnetic Resonance Imaging 

 Through the  collaboration         of evolutionary biologists, imaging sci-
entists and radiologists, we have divided glioblastoma tumors into 
“habitats” based on MRI  multiparametric characteristics  . Central to 
this investigation is our conceptual model of  glioblastoma   as 
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interacting subregions or habitats each with a distinct  ecology   
defi ned by Darwinian selection forces from the local environmental 
properties (usually governed by blood fl ow infl uencing local con-
centrations of oxygen, glucose, acid, and serum growth factors) and 
cellular phenotypic characteristics that are adapted to these condi-
tions [ 7 ,  9 ,  30 – 34 ,  40 ]. Since different MRI sequences are sensitive 
to  blood fl ow  , interstitial edema, and cell density, we reason that 
MRI can defi ne key components of the intratumoral habitats. 

 To analyze the multiscale  ecology   of a  glioblastoma   and its 
clinical signifi cance, we have developed and applied innovative 
methodologies including new image analytic methods to generate 
novel three-dimensional multiparametric MRI maps of GBM 
(Fig.  5 ) [ 9 ] which can be used to defi ne and quantify regional 
variations, or habitats, based on combinations of local  blood fl ow  , 
cell density,  necrosis  , and  interstitial edema  .

   In preliminary work [ 7 ,  9 ], we  developed            image analytic meth-
ods to combine imaging sequences usually including gadolinium 
contrast enhanced T1 sequence (T1Gd)    refl ecting vascularity and 
breaches in  blood–brain barrier  , i.e., contrast enhancement,  fl uid- 
attenuated inversion recovery (FLAIR)   sensitive to interstitial 
edema, and  Apparent Diffusion Coeffi cient (ADC)   sensitive to cell 
density. On MRI,  glioblastoma   presents as a centrally enhancing 
mass lesion often containing variable amounts of central 
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  Fig. 5     Left panel : Contrast-enhanced T1 image from subject TCGA-02- 0034   in The Cancer  Genome   Atlas- 
 Glioblastoma   Multiforme repository of MR volumes of GBM cases.  Right panel : Spatial distribution of  MRI  - 
defi ned  habitats   within the tumor. The  blue region  (Low T1 post-gadolinium, low FLAIR)    is particularly  notable         
because it presumably represents a habitat with low  blood fl ow   but high cell density, indicating a population 
presumably adapted to hypoxic, acidic conditions. Reproduced from Gatenby et al., 2013 (Ref.  9 ) with permis-
sion from RSNA (Color fi gure online)       
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non- enhancement.          The inner parts of the tumor bounded by and 
including the enhancing tissue, in quantitative imaging terms, is 
named the  “ contrast enhancing region (CE),”   and outside the 
enhancing tumor is an area of high FLAIR without contrast 
enhancement, radiologically and pathologically described as an 
area of vasogenic edema, named the “ nonenhancing region (NE).”   
32 glioblastoma from The Cancer  Genome   Atlas (TCGA)    with 
complete survival data were used for  multiparametric imaging   fea-
ture analysis.             Each tumor was manually segmented as the  region of 
interest (ROI)   by a radiologist, and within this ROI the normal-
ized intensity histograms for  T1Gd  ,  FLAIR   and T2 (also fl uid-
sensitive) sequences were made (Fig.  6 ) [ 7 ].

   We found that the distributions of normalized intensities for all 
tumors in each sequence clustered around one, two or three peaks. 
A bimodal distribution in  T1Gd   sequences was the most consistent, 
i.e., two distinct Gaussian populations of different signal signatures. 
The signal intensity of 0.26 (between the normalized range of 0–1) 
at the trough was denoted as the threshold between the “Low” and 
“High” classifi cations of signal intensities. Then,  FLAIR   values 
were projected onto the high and low enhancement groups (Fig.  7 ) 
[ 7 ,  41 ]. The total number of permutations from this resulted in 
four distinct multiparametric combinations which produced an 
automated identifi cation of “habitats,” including regions of avid 
enhancement, low-moderate enhancement, and  necrosis  .

   Regions of high enhancement with low FLAIR corresponded 
to solid areas of enhancing tumor. Regions of low enhancement 
with high FLAIR indicated necrosis. The most interesting regions 
were those with low enhancement with a low FLAIR, i.e., high 
 cellularity  , which could be interpreted as the presence of viable cell 
populations that have adapted to poorly perfused conditions, e.g., 
 hypoxia   and acidosis. When this spatial analysis was separately per-
formed in the short term and long term survivors (<400 day vs. 
≥400 day survival respectively), (Fig.  8 ) [ 7 ] the long-term survi-
vors’  tumors            tended to show avid enhancement and relatively high 
cell density, whereas the short term survivors had a combination of 
 necrosis   and solid regions of low  enhancement         but a relatively high 
cell density. These “low enhancement, high  cellularity”   areas are 
likely to represent a  treatment-resistant   cell population. Based on 
the fraction of the tumor volume with “low enhancement and low 
FLAIR”    signal habitats, the leave-one-out cross-validation scheme 
and the receiver operator curve (ROC) demonstrated that our 
imaging analysis method could separate the short term survivors 
from the long term survivors with 81.25 % accuracy and area under 
curve value (AUC) of 0.86.

   These habitats were spatially mapped (Fig.  5 ) [ 9 ] using a non-
parametric Otsu segmentation approach [ 42 ].  The Otsu algorithm   
iteratively searches for an optimal decision boundary until conver-
gency, thus clustering habitats into spatial groups after an intersec-
tion operation between two MRI modalities.  
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  Fig. 6    Normalized cumulative two-dimensional histograms for magnetic resonance imaging intensities of 
 TCGA    glioblastoma  . The normalized values (intensities) of T1 post-gadolinium, T2 weighted, and FLAIR signals 
were plotted for the short-term survivors (<400 days’ survival, “Group 1”) and long term survivors (≥400 days’ 
survival, “Group2”) respectively. Reproduced from Zhou et al., 2014 (Ref.  7 ) with permission from Elsevier 
Translational  Oncology   Open Access       
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8    Molecular and Histopathological Correlates of  Spatially Explicit Habitats   

 The true merit of  habitat imaging   rests in its potential to facilitate 
 individualized medicine   by demonstrating targetable molecular, 
genetic and epigenetic characteristics of tumor cells in a noninva-
sive manner. At present, most efforts at  expression profi ling   in 
glioma, including a large-scale study by  TCGA   [ 43 ], average the 
contributions from all local populations,    and do not address the 
diverse cellular composition. We propose that a  fi ner-grained char-
acterization   of regional molecular variations can lead to a better 
understanding of  intratumoral evolutionary   dynamics. In land-
scape  ecology     , the habitats noted from the  satellite images   are 
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  Fig. 7     Top panel : The frequency of the normalized values of all T1 post-gadolinium images was plotted. Using 
a Gaussian mixture model, the histogram was divided into two Gaussian populations with a separation point 
of 0.26. The normalized  FLAIR   signal was then plotted in the high and low  T1Gd      groups.  Bottom panels : The 
result suggests that  glioblastoma   consist of fi ve dominant habitats—two with high  blood fl ow   and high/low 
cell densities, and three with low blood fl ow and high/intermediate/low cell densities. Reproduced from Zhou 
et al., 2014 (Ref.  7 ) with permission from Elsevier Translational  Oncology   Open Access       
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“ground-truthed” by detailed small-scale sampling and mapping 
of quadrats, providing a means to cross-check the heterogeneity 
inferred from the satellite images. In a similar fashion, in a recent 
Proceedings of the National Academy of Sciences (PNAS) article 
[ 17 ] we analyzed 69  glioblastoma   patients’  MRI  -localized biopsy 
samples from the  T1Gd      contrast enhancing (CE)    regions and the 
outer high  FLAIR  , non-enhancing infi ltrative regions (NE)    to pro-
duce “ radio-pathomic maps”   of the tumor and peritumoral regions. 
The pathology  samples         showed signifi cant differences in the  cellu-
lar density   and cellular composition between the CE and NE sam-
ples. The CE had signifi cantly higher cellularity than NE, and the 
CE samples were signifi cantly more likely to contain the histologi-
cal hallmarks of GBM including glomeruloid-type vascular prolif-
eration and  necrosis   ( P  < 0.00001 for each feature). 

 The CE region also was associated with the activation of 
 hypoxia   gene expression programs. Conversely, the NE regions 
showed histological features of diffusely infi ltrating glioma 

  Fig. 8    Three-dimensional histograms showing the relative distribution of combinations of perfusion and cell 
density between short term survivors (<400 days, “Group 1”) and long term survivors (≥400 days, “Group 2”) 
of  glioblastoma  . For each group, we plotted the joint cumulative 3D histogram by summing all 3D histograms 
of each group.          The long term survivors show a relatively homogeneous distribution with most regions cluster-
ing in habitats of high perfusion and intermediate cell density. The short term survivors show a greater hetero-
geneity with more areas of low perfusion and a mixed cell density. Reproduced from Zhou et al., 2014 (Ref.  7 ) 
with permission from Elsevier Translational  Oncology   Open Access       
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with neoplastic glial cells intermingled with non-neoplastic 
and reactive cells, displaying activation of proliferation gene 
 expression programs. 

 A high FLAIR signal can be interpreted as the  interstitial 
edema  , and thus, a low FLAIR signal can be assumed to indicate 
increased  cellularity  . As described above, the NE showed heteroge-
neity in cellularity, and a low  ADC   within  NE   correlated with a 
relatively high histological cell density. Interestingly, no such cor-
relation between ADC and cell density was evident in  CE   tumor 
regions, suggesting that the addition of the  ADC   data to the 
dichotomous maps using  T1Gd      and  FLAIR   will increase the accu-
racy of  radio-pathomic   predictive models. 

 Consistent with  ecological   models,    the pathological slides 
demonstrated a complex environment of several cell types, 
 including glioma cells, astrocytes, neurons, microglia, and 
oligodendrocytes.  

9    Future Directions in Quantitative  Intratumoral Imaging      

  Can    MRI     signals serve as    surrogate markers     of the underlying cel-
lular, molecular, tissue properties and potential drug targets? Does 
spatial variation in MRI features reliably correspond with pathologi-
cal    characteristics           and    prognosis    ?  C an we identify pretreatment 
tumor regions and habitats that would eventually contribute dispro-
portionately to areas of recurrence or    treatment resistance   ?  How do 
the    radio-pathomic maps     change after therapy, and do the    intratu-
moral evolutionary     patterns predict    clinical outcome    ?  

 Currently we are a multidisciplinary research team incorporat-
ing expertise in neuro-radiology, neuropathology, neurosurgery, 
neuro- oncology  , applied mathematics, statistics, systems biology, 
and  evolutionary biology   to investigate these hypotheses in over 
100  glioblastoma   patients enrolled in an ongoing clinical trial at 
Columbia University, in which each subject undergoes multiple 
 MRI  -guided biopsies prior to treatment and/or at the time of 
 recurrence  .  Radiopathomic maps   are constructed for each tumor 
in order to facilitate statistical analyses. Also, a unique set of non-
surgically treated GBM patients are being investigated for the 
imaging features of intratumoral evolution prior to, and following 
therapy with temozolomide and radiotherapy, to fi nd consistent 
radiologic, pathologic, or combined  radio-pathomic   features that 
predictably confer positive vs. negative  clinical outcomes  . 

 Pseudoprogression—therapy damaged brain tissue—can 
mimic the MRI appearance of recurrent tumor, causing signifi cant 
clinical quandary during the follow up period.       As our patient set 
includes  recurrent   GBMs, we examine the  radio-pathomic   charac-
teristics which may provide a noninvasive answer to this diffi cult 
diagnostic problem.  

Joo Yeun Kim and Robert A. Gatenby
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10    Conclusion 

  Cross-sectional imaging   is an indispensable part of  oncological   
diagnosis and post-treatment surveillance; however its current uti-
lization remains at the macroscopic level, largely limited to subjec-
tive observations. We maintain that  medical imaging   contains 
quantifi able information representing the molecular characteristics 
of the tissue it depicts. There is a pressing need for a superior means 
for  objective         and quantitative imaging analysis, giving way to a 
noninvasive imaging-based means to assess the intratumoral cellu-
lar and molecular features. The use of  radiomics   for imaging data 
extraction has provided a glimpse into the tremendous volume of 
information remaining to be mined and exploited in medical 
images. Pathologic studies have proven the presence of intratu-
moral molecular, genetic, and phenotypic heterogeneity, and 
radiomics may be the radiologic answer to tissue pathology for its 
ability to faithfully demonstrate spatially explicit regional variations 
at the microscopic level. The  ecological   diversity within each indi-
vidual tumor is unique even amongst those belonging under the 
same pathologic classifi cation, and the wide range of responses to 
the standard-of- care   treatment is likely to be its manifestation. This 
phenomenon can be explained by  Darwinian dynamics  —each 
tumor as an  ecosystem   of distinct habitats occupied by tumor cells 
of a unique  niche  , each interacting with each other, and with the 
environmental selection forces. The advantages of  cross-sectional 
imaging   over tissue diagnosis are the noninvasive nature, the repeat-
ability and its ability to interrogate the entire volume of in vivo 
pathology. We have presented promising evidence for pathologic 
 proteogenomic   and phenotypic features correlating to particular 
radiophenotypic appearances and such signatures of regions which 
are likely to be  treatment resistant   due to  hypoxia   are of particular 
interest. Quantitative imaging may enable the prediction of molec-
ular targets for therapy and regions at risk of treatment failure 
before the initiation of the fi rst round of treatment. Quantitative 
imaging of  intratumoral evolution   shows promise for contributing 
toward  the         overarching goal of individualized therapies in cancer.     
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    Chapter 7   

 Transcriptome and Proteome Analyses of TNFAIP8 
Knockdown Cancer Cells Reveal New Insights into 
Molecular Determinants of Cell Survival and Tumor 
Progression                     

     Timothy     F.     Day    ,     Rajshree     R.     Mewani    ,     Joshua     Starr    ,     Xin     Li    , 
    Debyani     Chakravarty    ,     Habtom     Ressom    ,     Xiaojun     Zou    ,     Ofer     Eidelman    , 
    Harvey     B.     Pollard    ,     Meera     Srivastava    , and     Usha     N.     Kasid      

  Abstract 

   Tumor necrosis factor-α-inducible protein 8 (TNFAIP8) is the fi rst discovered oncogenic and an anti- 
apoptotic member of a conserved TNFAIP8 or TIPE family of proteins. TNFAIP8 mRNA is induced by 
NF-kB, and overexpression of TNFAIP8 has been correlated with poor prognosis in many cancers. 
Downregulation of TNFAIP8 expression has been associated with decreased pulmonary colonization of 
human tumor cells, and enhanced sensitivities of tumor xenografts to radiation and docetaxel. Here we 
have investigated the effects of depletion of TNFAIP8 on the mRNA, microRNA and protein expression 
profi les in prostate and breast cancers and melanoma. Depending on the tumor cell type, knockdown of 
TNFAIP8 was found to be associated with increased mRNA expression of several antiproliferative and 
apoptotic genes (e.g., IL-24, FAT3, LPHN2, EPHA3) and fatty acid oxidation gene ACADL, and 
decreased mRNA levels of oncogenes (e.g., NFAT5, MALAT1, MET, FOXA1, KRAS, S100P, OSTF1) 
and glutamate transporter gene SLC1A1. TNFAIP8 knockdown cells also exhibited decreased expression 
of multiple onco-proteins (e.g., PIK3CA, SRC, EGFR, IL5, ABL1, GAP43), and increased expression of 
the orphan nuclear receptor NR4A1 and alpha 1 adaptin subunit of the adaptor-related protein complex 
2 AP2 critical to clathrin-mediated endocytosis. TNFAIP8-centric molecules were found to be predomi-
nately implicated in the hypoxia-inducible factor-1α (HIF-1α) signaling pathway, and cancer and devel-
opment signaling networks. Thus TNFAIP8 seems to regulate the cell survival and cancer progression 
processes in a multifaceted manner. Future validation of the molecules identifi ed in this study is likely to 
lead to new subset of molecules and functional determinants of cancer cell survival and progression.  

  Key words     TNFAIP8  ,   shRNA and siRNA  ,   RNA and microRNA arrays  ,   Antibody arrays  ,   Cell survival 
and proliferation  ,   Invasion and metastasis  ,   Cancer systems biology  

1      Introduction 

 The tumor  necrosis   factor-α-induced protein 8 (TNFAIP8 
or TIPE) family of proteins is comprised of four members, 
TNFAIP8, TNFAIP8-like 1 (TIPE1), TNFAIP8-like 2 (TIPE2), 
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and TNFAIP8-like 3 (TIPE3) [ 1 – 7 ]. These  proteins            have a 
 conserved  TIPE homology (TH) domain   containing a large 
 hydrophobic cavity [ 8 ]. TIPE members bind to phosphoinositide 
4,5- bisphosphate (PtdIns(4,5) P  2 ) and phosphoinositide 
3,4,5-bisphosphate (PtdIns(3,4,5) P  3 ) and may represent a new 
class of phospholipid transfer proteins [ 6 ]. Specifi cally, TIPE3 has 
been shown to increase the levels of PtdIns(4,5) P  2  and PtdIns(3–
5) P  3  and constitutes a novel phosphoinositide metabolism regula-
tor [ 6 ]. The members of the TIPE family function as pro-apoptotic 
molecules (TIPE1 and TIPE 2) or pro-survival and oncogenic 
molecules (TNFAIP8 and TIPE3) [ 2 – 14 ]. 

   TNFAIP8 is the fi rst discovered member of the TIPE family of 
proteins [ 1 ,  2 ,  9 ,  10 ]. It was identifi ed as a novel transcript overex-
pressed in metastatic and radioresistant head and neck squamous 
cell carcinoma cells as compared to their matched primary tumor- 
derived cells [ 1 ]. Expression analysis showed high TNFAIP8 
mRNA expression in thyroid, lymph nodes, and bone marrow, and 
very low expression in other normal tissues such as the lung and 
liver [ 2 ]. TNFAIP8 is a predominantly cytosolic molecule [ 11 ]. 
There are four major isoforms of TNFAIP8 (23, 22, 21.8, and 
24 kDa) (  www.uniprot.org    ) (Figs.  1a, b ) [ 14 ]. TNFAIP8 isoform 
1 (23 kDa) and isoform 3 (aliases SCC-S2, GG2-1, NDED, 
MDC3.13, 21.8 kDa) (21.8 kDa) are highly expressed in most 
cancers cell lines [ 11 ,  12 ]. TNFAIP8 mRNA and protein expres-
sion is induced by tumor  necrosis   factor α (TNF-α) in human 
tumor cells and endothelial cells [ 2 ,  9 ]. In addition, TNFAIP8 
expression is induced by NF-kB and overexpression of TNFAIP8 
promotes cell survival in  NF-kB   null cells, suggesting that it is an 
important pro-survival molecule downstream of  NF-kB   [ 10 ]. 
TNFAIP8 overexpression was also found to inhibit caspase-8 activ-
ity further supporting its pro-survival function [ 10 ].

   The promoter analysis of an approximately 2.0 kb genomic 
sequence upstream of the translation start site of  TNFAIP8  gene 
indicates potential binding  sites            for multiple transcription factors 
including  NF-kB  ,  hypoxia  -inducible factor (HIF), COUP-TFI, 
and androgen receptor [ 13 ,  15 ]. A complex including the pro- 
apoptotic protein DBC1 and COUP-TF1 was found to occupy the 
 TNFAIP8  promoter. This complex was found to be crucial for 
repression of the  TNFAIP8  promoter by COUP-TFI [ 15 ]. 
TNFAIP8 expression is also induced in response to androgen in 
prostate cancer cells [ 13 ]. In “ promoter array”   studies, differential 
 methylation   and regulation of TNFAIP8 has been reported in 
prostate epithelial and cancer cell lines [ 16 ]. 

 TNFAIP8 is an oncogenic and metastatic molecule. 
Overexpression of TNFAIP8 increases cell proliferation in MCF-7 
breast cancer cells (Fig.  2 ) [ 17 ], and cell proliferation, and migra-
tion and  invasion   in MDA-MB-435 melanoma cells [ 11 ,  12 ]. 

1.1  TNFAIP8 Is 
a Novel Pro- survival, 
Oncogenic, 
and Metastatic 
Molecule

Timothy F. Day et al.
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Exon#Exon#

-3’5’- -3’ 5’- -3’ -3’5’-

Variant 1 (2103 bp, 
includes
5’UTR 271 bp and 
3’UTR 1238 bp) 

Variant 4 (2258 
bp, includes
5’UTR 390 bp
and 3’UTR 1230 
bp) 

Variant 2 (2017 bp, 
includes
5’UTR 215 bp and 
3’UTR 1238 bp) 

MATDVFNSKNLAVQAQKKILG
KMVSKSIATTLIDDTSSEVLDE
LYRVTREYTQNKKEAEKIIKNLI
KTVIKLAILYRNNQFNQDELAL
MEKFKKKVHQLAMTVVSFHQ
VDYTFDRNVLSRLLNECREML
HQIIQRHLTAKSHGRVNNVFD
HFSDCEFLAALYNPFGNFKPH
LQKLCDGINMLDEENI

Protein Isoform 3
(188 aa, 21.8 kDa)

SCC-S2, GG2-1, 
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  Fig. 1    ( a ) Human TNFAIP8:             predicted alternative transcripts including coding and untranslated sequences and 
corresponding protein isoforms are shown. ( b ) Alignment of the amino acid sequences of various human 
TNFAIP8 isoforms. Protein isoform sequences were obtained from Uniprot website (  http://www.uniprot.org/
uniprot/O95379    ) as described earlier [ 14 ]         
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Consistently,  siRNA   downregulation of TNFAIP8 decreases inva-
sion in MDA-MB-435 cells (Fig.  3 ) [ 17 ]. Furthermore, injection 
of TNFAIP8 overexpressing cells into mammary fat pads in athy-
mic female mice led to accelerated tumor formation as compared 
to control cells [ 11 ]. In other studies, tail-vein injection of 
MDA-MB-435 cells stably expressing TNFAIP8 led to signifi cant 
 pulmonary colonization   of tumor cells as compared to control cells 
[ 12 ]. In addition, systemic delivery of liposome-entrapped 
TNFAIP8 targeted  antisense oligos   resulted in signifi cant decrease 
in  pulmonary colonization   of MDA-MB-435 cells in athymic mice 
as compared to mice receiving control liposomes[ 12 ].
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  Fig. 2    Effects of TNFAIP8 overexpression on cell proliferation and VEGFR-2 expression in MCF-7 breast cancer 
cells. ( a ) Expression of FLAG-tagged TNFAIP8 in stably transfected MCF-7 cells was examined as described 
earlier [ 17 ].  IP   immunoprecipitation  ,  IB  immunoblotting. ( b ) Enhanced cell proliferation in MCF-7 TNFAIP8 
transfectants. TNFAIP8 and pCR3.1 vector transfectants were seeded in six well plates (5 × 10 4  per well in 
triplicate), and viable cell numbers on various days were counted by the trypan  blue            dye exclusion method as 
described earlier [ 17 ]. Values represent the average cell number ± S.E. from three independent experiments. 
( c ) Enhanced VEGFR-2 protein expression in MCF-7 TNFAIP8 stable transfectants. Cells were lysed and whole 
cell lysates were analyzed by Western blotting using anti-VEGFR-2 antibody as explained earlier [ 17 ]. The blot 
was reprobed with anti-GAPDH antibody. Approximately ninefold increase in VEGFR-2 expression was seen in 
MCF-7 TNFAIP8 transfectants versus control vector transfectants       
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       TNFAIP8 appears to be an  important            cancer  biomarker  . Numerous 
publicly available datasets (ONCOMINE, GEO) show correlation 
between high TNFAIP8 expression and hyperplasia, primary 
tumors, higher grade, and/or metastatic lesions of diverse organs 
including prostate, kidney, liver, breast, head-neck, brain, lung, 
melanoma, and pancreas [ 13 ]. Furthermore, immunohistochemical 
studies have reported signifi cantly higher TNFAIP8 protein expres-
sion in multiple tumor types. These include NSCLC, pancreatic 
carcinoma, prostate carcinoma, and thyroid cancer [ 13 ,  18 – 20 ]. 

1.2  TNFAIP8 Is 
Implicated in Cancer 
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  Fig. 3     SiRNA   Knockdown of TNFAIP8 protein expression is associated with decreased invasiveness in 
MDA-MB435 melanoma cells. ( a ) MDA-MB 435 cells were treated with TNFAIP8 siRNA (Si2, 200 nM) or a 
scrambled siRNA (Scr1, 200 nM) and TNFAIP8 expression was determined by Western blotting using anti- 
TNFAIP8 antibody as described earlier [ 12 ,  13 ,  17 ]. The blot was reprobed with anti-GAPDH antibody. The 
TNFAIP8 signal was quantifi ed and normalized against GAPDH in the same lane.  UT  untreated control cells,  LF  
Lipofectamine 2000 treated control cells. ( b ) Quantifi cation of normalized TNFAIP8 expression was performed 
using ImageQuant software. Data shown are mean ± S.D. Approximately 88 % of TNFAIP8 expression was 
inhibited in the siRNA treated cells (Si2) versus Scr control cells (Scr1) ( N  = 3,  p  < 0.00003) as described earlier 
[ 17 ]. ( c ) MDA-MB435 cells were treated with TNFAIP8 siRNA (Si2, 200 nM) or scrambled siRNA (Scr1, 200 nM) 
and modifi ed Boyden chamber  invasion   assay was performed and data were quantifi ed as described earlier 
[ 17 ,  39 ]. Representative images of the invaded cells as seen under the TE300X inverted microscope are 
shown. ( d ) TNFAIP8 siRNA treated MDA-MB435 cells show decrease in the number of invasive cells. Data 
shown is mean ± S.D. Approximately 81 % of the siRNA treated cells (Si2) showed loss of invasiveness versus 
Scr control cells (Scr1) ( N  = 3,  p  < 0.00005) as described earlier [ 17 ]. The TNFAIP8 Stealth™ siRNA duplex 
oligoribonucleotide sequence used in the present study was Si2, 5′- UAAAUUUCUCCAUCAAUGCUAGCUC-3′ 
(TNFAIP8-HSS119330, Invitrogen). The control siRNAs used was Scrambled #1 (Stealth RNAi Negative Control 
Low GC Duplex; Invitrogen; 12935-200)       
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 Expression of TNFAIP8 has been associated with increased 
resistance to chemotherapeutic drugs cytosine arabinoside and 
anthracyclines in acute myeloid leukemia [ 21 ]. Furthermore, anti-
sense downregulation of TNFAIP8 has been associated with 
enhanced sensitivities to paclitaxel and docetaxel in prostate tumor 
xenografts grown in athymic mice [ 13 ]. Moreover,    nuclear 
TNFAIP8 expression has been correlated with worse prognosis in 
patients with prostatic adenocarcinomas [ 13 ]. Taken together, 
these observations suggest that TNFAIP8 is a viable  therapeutic 
target   in cancer.  

   Mechanism of TNFAIP8 action remains unclear. In melanoma and 
prostate cancer cells, antisense knockdown of TNFAIP8 correlated 
with concomitant decrease in expression of  angiogenic   and meta-
static molecules such as VEGFR2, matrix metalloproteinase 1 
(MMP1), and MMP9 [ 12 ]. Depletion of TNFAIP8 also corre-
lated with decreased expression of VEGFR2 in endothelial cells 
[ 12 ] and MCF-7 breast cancer cells (Fig.  2b ) [ 17 ]. These data 
suggest that TNFAIP8 may be a regulator of the VEGF-signaling 
and associated biological response. In pancreatic adenocarcinoma, 
TNFAIP8 expression was found to strongly correlate with increased 
 EGFR   expression [ 19 ]. In yeast two hybrid studies,             TNFAIP8 was 
found to interact with Galpha(i) and inhibit cell death in caspase- 
independent manner in Balb-D2S cells [ 22 ]. Other proteins inter-
acting with TNFAIP8 include GDNF family receptor α 1, PARP1, 
Serine/arginine-rich  splicing   factor 2, Karyopherin α2 (RAG 
cohort 1, importin α1), DEAD (Asp-Glu-Ala-Asp) box polypep-
tide 20, protein tyrosine phosphatase, non-receptor type 1, and 
cyclin E1 [ 13 ]. Further investigations are necessary to defi ne a 
functional link between TNFAIP8 and its interacting partners. 

 In this chapter, we have investigated the effects of  shRNA   or 
 siRNA   knockdown of TNFAIP8 expression on  genome  -wide 
changes in the mRNA,  microRNA   (miR), and  protein   expression 
 profi les   in cancer cells. We have identifi ed a subset of molecules 
that may refl ect the biology of TNFAIP8 in various cancer cell 
types. Ultimately this work is likely to advance knowledge of the 
signaling molecules and networks that could determine  cell sur-
vival and  proliferation  , and  tumor progression   behavior in certain 
cancers.   

2     Effects of TNFAIP8 Knockdown on the mRNA and  microRNA Expression   
Profi les in Cancer Cells 

 Several human prostate, breast, pancreatic, and lung cancer cell 
lines were stably transfected with TNFAIP8  shRNA   or scrambled 
control vector using the pLKO.1 lentiviral transduction procedure 
as described earlier [ 14 ]. The knockdown of TNFAIP8 expression 

1.3  Interacting 
Partners of TNFAIP8
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in various tumor cell models was verifi ed by the RT-PCR,  qRT- 
PCR  , and Western blotting assays. Representative data are shown 
in Fig.  4 . For mRNA profi ling, total RNA was isolated from the 
PC-3 and C4-2B prostate cancer models of TNFAIP8 knockdown 
(shT8) and control cells (scr) cells. Samples were processed in trip-
licate using RNA arrays (Affymetrix Human  Genome   U133 Plus 
2.0 arrays). Data were processed and quantifi ed, followed by the 
 Ingenuity Pathway Analysis (IPA)   of the top-ranked expression 
patterns (≥2-fold up/down) in TNFAIP8 shRNA versus scram-
bled  shRNA   treated cells. Nineteen distinct mRNAs that were 
modulated in a TNFAIP8 knockdown-specifi c manner in prostate 
cancer cells are shown in Tables  1  and  2 . Fifteen of these mRNAs 
 were            validated by  qRT-PCR   in multiple tumor model cell systems 
(Fig.  5 ). In brief, TNFAIP8 knockdown tumor cells showed 
increased mRNA expression of tumor suppressor  genes   such as 
IL24 (mda-7), FAT3, LPHN2, EPHA3 and IGFBP3 (Fig.  5a ), 
and decreased expression of  tumor progression   markers, e.g., 
NFAT5, MALAT1, OSTF1, FOXA1, KRAS, MAP2K6, S100P, 
FLRT2, and MET (Fig.  5b ). Interestingly, expression of ACADL, 
long chain acyl-CoA dehydrogenase was signifi cantly increased 
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23 & 
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  Fig. 4    Silencing of  TNFAIP8            expression by stable transduction of lentiviral TNFAIP8  shRNA   expression vector 
into various cancer cell lines as described earlier [ 14 ]. ( a ) and ( b ) Immunoblot analysis of TNFAIP8 knockdown 
in PC-3 prostate cancer cells and LM2-4175 breast cancer cells stably transfected with indicated TNFAIP8 
 shRNA   (T8 shRNA #s 2, 3 and 4). Controls cells were stably transfected with empty vector (EV). ( c ) and ( d ) 
Immunoblot analysis of TNFAIP8 knockdown in prostate (C4-2B and PC-3) and pancreatic cancer cell lines 
(PANC-1) stably transfected with lentiviral TNFAIP8  shRNA   # 3 expression vector (shT8). Scr, scrambled shRNA 
(scr). The blots were reprobed with anti-β-Actin antibody and the fold change in TNFAIP8 expression relative 
to scr control was obtained after normalizing against β-ACTIN expression in the corresponding lanes       
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(Table  2  and Fig.  5a ), and expression of SLC1A1, solute carrier 
family 1 high affi nity glutamate transporter gene, was decreased in 
TNFAIP8 knockdown cells (Tables  1  and  2 ).

      For the microRNA  expression profi ling  ,  RNA   was isolated 
from the PC-3 and C4-2B prostate cancer models of TNFAIP8 
knockdown (shT8) and control cells (scr) cells using the RNA iso-
lation kit (Qiagen). Samples were processed in triplicate using 
 microRNA arrays   (MIRNA 2.0, Affymetrix Inc.). Data were pro-
cessed and quantifi ed. Changes in human  microRNA   levels in 

    Table 1  
  Selected RNA array data showing changes in mRNA expression in TNFAIP8 knockdown PC-3 prostate 
cancer cells   

 Gene 
symbol  Description a  

 Fold change in mRNA in 
shTNFAIP8 vs Scr PC-3 
cells (+, high in shTNFAIP8; 
−, low in shTNFAIP8) b  

  IL24  
( mda - 7 ) 

 Interleukin 24  +6.3 

  FAT3   FAT tumor suppressor homolog 3 (Drosophila)  +6.3 

  LPHN2   Latrophilin  2             +5.9 

  EPHA3   EPH receptor A3  +3.4 

  TMED4    Transmembrane emp24 protein transport domain 
containing 4  

 + 2.3  

  DHRS2    Dehydrogenase / reductase  ( SDR family )  member 2   + 2.0  

  SNX1   Sorting nexin 1  +1.4 

  NFAT5   Nuclear factor of activated T-cells 5, tonicity-responsive  −9.1 

  MALAT1   Metastasis associated lung adenocarcinoma transcript 1 
(non-protein coding)             

 −5.9 

  MET   Met proto-oncogene (hepatocyte growth factor receptor)  −3.4 

  FOXA1   Forkhead box A1  −3.1 

  TPR    Translocated promoter region  ( to activated MET oncogene )  − 3.1  

  TNFAIP8   Tumor necrosis factor, alpha-induced protein 8  −2.9 

  KRAS   v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog  −2.2 

  SLC1A1    Solute carrier family 1  ( neuronal / epithelial high affi nity 
glutamate transporter ,  system Xag ),  member 1  

 − 2.2  

  MAP2K6   Mitogen-activated protein kinase kinase 6  −2.1 

   a  Bold  indicates that  similar            changes in mRNA expression were observed in TNFAIP8 knockdown C4-2B cells 
  b  P -value, <0.05  
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     Table 2  
  Selected RNA array data showing changes in mRNA expression in TNFAIP8 knockdown C4-2B 
prostate cancer cells   

 Gene 
symbol  Description a  

 Fold change in mRNA in 
shTNFAIP8 vs Scr C4-2B cells 
(+, high in shTNFAIP8; −, low 
in shTNFAIP8) b (FDR) 

  ACADL   Acyl-CoA dehydrogenase, long chain  +15.1 (0.00729) 

  IGFBP3   Insulin-like growth factor binding protein 3  +5.2 (0.0432) 

  TMED4    Transmembrane emp24 protein transport domain 
containing    4             

 + 2.6  ( 0.00729 ) 

  DHRS2    Dehydrogenase / reductase  ( SDR family )  member 2   + 2.0  ( 0.0365 ) 

  S100P   S100 calcium binding protein P  −7.7 (0.0219) 

  FLRT2   Fibronectin leucine rich transmembrane protein 2  −4.0 (0.0859) 

  TNFAIP8   Tumor necrosis factor, alpha-induced protein 8  −2.6 (0.0395) 

  SLC1A1    Solute carrier family 1  ( neuronal / epithelial high affi nity 
glutamate transporter ,  system Xag ),  member 1  

 − 2.6  ( 0.0458 ) 

  OSTF1   Osteoclast stimulating factor  1             −2.4 (<1e-07) 

  TPR    Translocated promoter region  
( to activated MET oncogene ) 

 − 2.3  

   a  Bold  indicates that similar changes in mRNA expression were observed in TNFAIP8 knockdown PC-3 cells 
  b  P -value, < 0.05; FDR (False Discovery Rate, < 0.1 values are shown)  

TNFAIP8 depleted cells relative to control cells are shown in 
Table  3 . Verifi cation of various microRNAs in multiple tumor cell 
models of increased and decreased expression of TNFAIP8, and 
functional validation of the top microRNAs and their targets are 
currently ongoing in our laboratory.

   On the PC-3 and C4-2B mRNA array datasets, “core” analy-
ses were run with a fold change cutoff of ±1.3. Fisher’s  P -values 
were given as a measure of overlap between observed and pre-
dicted gene sets. Top  connectivity maps  , top  canonical pathways   
and top diseases and  biofunctions   were generated by  Ingenuity 
Pathway Analysis (IPA)  . Based on the integrated transcriptome 
analysis, aryl hydrocarbon receptor signaling and ephrin receptor 
signaling are among the top-ranked canonical pathways, and can-
cer and tumor morphology are among the top-ranked diseases and 
biofunctions signifying TNFAIP8-centric changes in transcriptome 
of cancer cells (Fig.  6 , and Tables  4  and  5 ).
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3          Effects of TNFAIP8 Depletion on the  Protein Expression 
Profi les      in Cancer Cells 

 The protein expression profi les were investigated in TNFAIP8 
knockdown models of prostate (PC-3), breast (MDA-MB-231 
and LM2-4175) and melanoma cell lines (MDA-MB435) using 
antibody microarrays (Antibody Microarray 507, Clontech) 

   Table 3  
  Selected microRNA array data showing changes in human miR expression 
in shTNFAIP8 knockdown PC-3 and C4-2B prostate cancer cells   

 Human microRNA 

 Fold change in mRNA in shTNFAIP8 vs 
Scr cells (+, high in shTNFAIP8; 
−, low in shTNFAIP8)   P -value 

  I. PC - 3  

 hsa-miR-3172  +4.0  0.008 

 hsa-miR- 1274a             +3.0  0.003 

 hsa-mir-429  +2.4  0.036 

 hsa-miR-3180-3p  +2.3  0.013 

 hsa-miR-720  +2.1  0.049 

 hsa-miR-1274b  +2.1  0.004 

 hsa-miR-1975  +2.0  0.024 

 hsa-miR-767  −2.7  0.013 

 hsa-miR-514b  −2.5  0.000 

 hsa-mir-221  −2.2  0.001 

 hsa-miR-943  −2.1  0.000 

  II. C4 -  2B             

 hsa-miR-7  +3.8  0.008 

 hsa-miR-29b-1-star  +2.2  0.021 

  Fig. 5    Validation of changes in mRNA expression in TNFAIP8 knockdown cells by  qRT-PCR  . ( a ) Increased mRNA 
expression of indicated genes in shTNFAIP8 (shT8) knockdown models of human prostate (PC-3, C4-2B), lung 
(A549, H1299), and pancreatic cancer cell lines (MIAPaC, PANC-1) versus scrambled control cells (scr). ( b ) 
Decreased mRNA expression of indicated genes in shTNFAIP8 (shT8) knockdown models of human prostate 
(PC-3, C4-2B), lung (A549, H1299), and pancreatic cancer cell lines (MIAPaC, PANC-1) versus scrambled con-
trol cells (scr). Primer sequences used and the anticipated RT-PCR product sizes of various genes were as 
described earlier [ 14 ].  n  = number of independent qRT-PCR reactions performed         
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  Fig. 6    Transcriptome-based identifi cation of TNFAIP8-centric top gene networks. ( a )  Top network 1 : Cellular 
Development, Embryonic Development, Organ Development. ( b )  Top network 2 : Cancer, Cell Death and 
Survival, Organismal  Injury            and Abnormalities.  Green shapes  denote downregulated mRNAs and red shapes 
indicate upregulated mRNAs in TNFAIP8 knockdown cancer cells.  Blank shapes  ( clear, open ), molecules con-
nected to experimental dataset based on the IPA  database   showing a strong basis of connection;  Grey shapes , 
molecules that but do not meet the designated fold change cutoff (± 1.3); *, duplicates of the molecule seen 
in the dataset and the one shown in the network was the one with the greatest fold change       

    Table 4  
  Top canonical pathways in which TNFAIP8-centric mRNAs and proteins are implicated in cancer cells   

 Top canonical pathway  Source of data (arrays)   P -value 

 HIF-1α signaling  Antibody  1.58E-10 

 Glucocorticoid receptor signaling  Antibody  2.09E-10 

 Leukocyte extravasation signaling  Antibody  6.09E-10 

 Glioma signaling  Antibody  2.45E-09 

 Pancreatic adenocarcinoma signaling  Antibody  4.93E-09 

 Axonal guidance  signaling             RNA  2.81E-04 

 Hepatic fi brosis/hepatic stellate cell activation  RNA  2.07E-03 

 Clathrin-mediated endocytosis signaling  RNA  2.17E-03 

 Aryl hydrocarbon receptor signaling  RNA  4.99E-03 

 Ephrin receptor signaling  RNA  1.06E-02 
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 according            to the manufacturer’s instructions as we have detailed 
earlier [ 13 ,  23 ,  24 ]. Samples were processed in duplicate or tripli-
cate for  antibody array   analysis. We have observed distinct and 
overlapping TNFAIP8-centric protein expression profi les in vari-
ous tumor cell models tested (Table  6 ). Among the top-ranked 
genes, TNFAIP8 knockdown correlated with increased expression 
of the orphan nuclear receptor NR4A1 and alpha 1 adaptin  sub-
unit      of the adaptor-related protein complex 2 (AP2A1) found in 
clathrin-coated vesicles in three tumor cell models (Table  6 ). In 
addition, TNFAIP8 knockdown correlated with decreased expres-
sion of eight proteins ( EGFR  , PDCL, GTF2F2, IL5, GRAP2, 
ABL1, AKAP2, GAP43) in at least three tumor cell models 
(Table  6 ).

   On the PC-3, MDA-MB231, LM2-4175, and MDA-MB435 
 antibody array   datasets, “core” analyses were run with a fold 
change cutoff of ±1.3. Top  canonical pathways  ,  connectivity maps  , 
and top diseases and  biofunctions   were generated by IPA. Fisher’s 
 P -values are given as a measure of overlap between observed and 
predicted gene sets. Based on the integrated proteome analysis, 
 HIF-1α   and glucocorticoid signaling were the top two canonical 
pathways, and cancer was among the top-ranked diseases and  bio-
functions   signifying TNFAIP8-centric changes in cellular proteins 
(Fig.  7 , and Tables  4  and  5 ).

    Table 5  
  Top diseases and bio functions related to TNFAIP8-centric expression profi les   

 Diseases and disorders  Arrays (source of data)   P -value range 

 Cancer  Antibody  4.97E-07–2.22E-29 

 Hematological disease  Antibody  4.97E-07–2.22E-29 

 Immunological disease  Antibody  4.97E-07–2.22E-29 

 Organismal injury and abnormalities  Antibody  4.97E-07–2.22E-29 

 Connective tissue disorders  Antibody  1.14E-07–9.78E-20 

  Cancer             RNA  4.90E-03–1.03E-08 

 Gastrointestinal disease  RNA  4.90E-03–1.03E-08 

 Organismal Injury and abnormalities  RNA  4.90E-03–1.03E-08 

 Tumor morphology  RNA  4.90E-03–2.18E-06 

 Renal and urological disease  RNA  4.90E-03–4.48E-06 
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     Table 6  
  Selected antibody array data showing changes in expression of various proteins in TNFAIP8 
knockdown models of prostate cancer (PC-3), breast cancer (MDA-231 and LM2-4175) and 
melanoma cells (MDA-MB435)   

 SwissProt  Description (gene symbol) a  

 Fold change in si/shTNFAIP8 vs. 
Scr (+, high in si/shTNFAIP8; −, 
low in si/shTNFAIP8) a  

  P17936   Insulin-like growth factor binding protein 3 
(IGFBP3) 

 +1.7 (PC) 

  Q13596    Sorting nexin 1  ( SNX1 )  + 1.5  ( 231 ); + 1.5  ( LM2 ) 

  P22736    Nuclear receptor subfamily 4 ,  group A  ( NR4A1 )  + 1.2  ( PC ); + 1.2  ( 231 ); + 1.6  ( 435 ) 

  O95782    Adaptor - related protein complex 2 ,  alpha 1  
( AP2A1 ) 

 + 1.4  ( PC ); + 1.2  ( 231 ); + 1.4  ( 435 ) 

  P42336   Phosphoinositide-3-kinase, catalytic (PIK3CA)  −2.6 (LM2) 

  P41240   c-Src tyrosine kinase (SRC)  −1.7 (LM2) 

  Q1RMF6   Microtubule-associated protein tau (MAPT)  −1.6 (LM2) 

  P51955   NIMA (never in mitosis gene a)-related kinase 2 
(NEK2)             

 −1.4 (LM2) 

  Q9Y3R0   Glutamate receptor interacting protein 1 (GRIP1)  −1.5 (PC) 

  Q28595    Microtubule - associated protein tau  ( MAPT )  − 1.2  ( PC ); − 1.5  ( 231 ) 

  P11388    Topoisomerase  ( DNA )  II alpha 170 kDa  
( TOP2A ) 

 − 2.0  ( PC ); − 1.5  ( 435 ) 

  Q14848    TNF receptor - associated factor 4  ( TRAF4 )  − 2.2  ( PC ); − 1.2  ( 231 ) 

  P00533    Epidermal growth factor receptor  ( EGFR )  − 1.7 ( PC ); − 1.3  ( 231 ); − 1.3  ( 435 ) 

  Q13371    Phosducin - like  ( PDCL )  − 1.8  ( PC ); − 1.9  ( 231 ); − 1.4  ( 435 ) 

  P13984    General transcription factor IIF ,  30 kDa  
( GTF2F2 ) 

 − 1.6  ( PC ); − 1.5  ( 231 ); − 1.2  ( 435 ) 

  P05113    Interleukin 5  ( colony - stimulating factor ) ( IL5 )  − 1.5  ( PC ); − 1.2  ( 231 ); − 1.2  ( 435 ) 

  O75791    GRB2 - related adaptor protein 2  ( GRAP2 )  − 1.7  ( PC ); − 1.2  ( 231 ); − 1.3  ( 435 ) 

  Q13691    v - Abl Abelson murine leukemia viral oncogene  
( ABL1 )             

 − 1.5  ( PC ); − 1.4  ( 231 ); − 3.5  ( 435 ) 

  Q9Y2D5    A - kinase  ( PRKA )  anchor protein 2  ( AKAP2 )  − 1.5  ( PC ); − 1.4  ( 231 ); − 1.3  ( 435 ) 

  P17677    Growth associated protein 43  ( GAP43 )  − 1.4  ( PC ); − 1.3  ( 231 ); − 1.4  
( LM2 ); − 1.5  ( 435 ) 

   a  Bold  indicates that similar changes in protein expression were observed in two or more models of TNFAIP8 knock-
down cancer cells 
  b PC-3 (PC), MDA-MB231 (231), and MDA-MB435 (435) cells were treated with siTNFAIP8 or Scr control as 
described earlier [ 13 ]. LM2-4175 cells (LM2) were treated with shTNFAIP8 or Scr control as reported earlier [ 14 ]  
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4       Conclusions and Future Directions 

 We have identifi ed a set of at least 13 oncogenic molecules (NFAT5, 
MALAT1, MET, FOXA1, KRAS, S100P, OSTF1, PIK3CA, SRC, 
 EGFR  , IL5, ABL1, and GAP43) and four antiproliferative and 
apoptotic molecules (IL-24, FAT3, LPHN2 and EPHA3) as 
TNFAIP8-centric potential regulators of cancer cell survival and 
progression. Collectively, our data suggest signifi cance of TNFAIP8 
expression in the Hypoxia-inducible factor 1α (HIF1-α)  signaling 
pathway   and other possible mechanisms of cell survival, prolifera-
tion, and  invasion  . For example, a link between  HIF-1α  -mediated 
suppression of fatty acid β-oxidation (FAO) and cancer progression 
has been reported earlier [ 25 ]. HIF-1α seems to  inhibit            long- chain 

  Fig. 7     Proteome  -based identifi cation of TNFAIP8-centric top gene networks. ( a )  Top network 1 : Cancer, 
Neurological Disease, Organismal Injury and Abnormalities. ( b )  Top network 2 : Cellular Development, Cellular 
Growth and Proliferation, Hematological System Development and Function.  Green shapes  denote downregu-
lated proteins and  red shapes  indicate upregulated protein in TNFAIP8 knockdown cancer cells.  Blank shapes  
( clear, open ), molecules connected to experimental dataset based on the IPA  database   showing a strong basis of 
connection;  Grey shapes , molecules that but do not meet the designated fold change cutoff (± 1.3); *, duplicates 
of the molecule seen in the dataset and the one shown in the network was the one with the greatest fold change       
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acyl-CoA dehydrogenase (LCAD) leading to accumulation of 
unsaturated fatty acids (UFA) and subsequent inhibition of tumor 
suppressor PTEN via upregulation of miR-21 [ 25 ,  26 ]. We have 
observed an increased expression of ACADL in TNFAIP8 knock-
down cells. It is conceivable that TNFAIP8 depletion may result in 
novel activation of FAO and inhibition of tumor growth, in part, 
by activating the PTEN pathway. Hypoxia-inducible HIF- 1α/1β-
dependent expression of SLC1A1, gene coding for a glutamate 
transporter, and enhanced glutamate signaling have been shown to 
result in activation of SRC kinases and downstream pathways of 
cell migration and invasion [ 27 ]. SLC1A1 expression was found to 
be decreased in TNFAIP8 knockdown prostate cancer cells. Thus 
TNFAIP8 may regulate invasiveness in certain cancer cells via 
SLC1A1 and glutamate receptor-activated SRC kinase pathway. 

 The orphan nuclear receptor NR4A1 seems to have both pro- 
apoptotic and growth promoting effects in various cancers [ 28 –
 32 ]. More recently, NR4A1-defi cient mice which lack nonclassical 
“patrolling” monocytes (PMo)    have been reported to have 
increased lung metastases [ 33 ]. Our data showing increased expres-
sion of NR4A1 in TNFAIP8 knockdown tumor cell models may 
explain earlier observations of decreased  pulmonary colonization   
of melanoma cells in mice systemically treated with TNFAIP8- 
targeted  antisense oligos   [ 12 ]. Finally, TNFAIP8 knockdown cells 
showed increased expression of clathrin adaptor-related protein 
complex 2, alpha 1 subunit (AP2A1). AP2, member of the 
Assembly Polypeptide family, binds to phosphatidyl inositol 
(4,5)-bisphosphate (PtdIns4,5P2) in the plasma membrane and is 
crucial for clathrin-mediated endocytosis (CME) of transmem-
brane proteins including  EGFR   [ 34 – 38 ]. Therefore, one specula-
tion is that TNFAIP8 may regulate  traffi cking            of the 
membrane-bound molecules indirectly by modulating expression 
levels of the major endocytic clathrin adaptor AP2. Future valida-
tion of the key molecules identifi ed in this study is likely to lead to 
new subset of molecules and functional determinants of cancer cell 
survival and progression.     

  Acknowledgements  

 Timothy F. Day, Rajshree R. Mewani, and Joshua Starr contrib-
uted equally to this work. This work was supported by grants from 
the National Institutes of Health (CA68322, CA74175) and 
Department of Defense (PC074171). TFD was supported, in part, 
by predoctoral fellowship award from the Department of Defense 
(W81XWH-10-1-0107). LM2-4175 cells were a gift from Dr. 
Joan Massagué. Portions of the work presented in this chapter 
were carried out by TFD and DC toward their Ph.D. dissertations. 

Timothy F. Day et al.



99

UNK is a coinventor on patent application, “Anti-apoptotic gene 
SCC-S2 and diagnostic and therapeutic uses thereof,” (US 
12/858,360). Several cell lines were obtained from the Tissue 
Culture Shared Resource of the Georgetown Lombardi 
Comprehensive Cancer Center. The RNA array and microRNA 
array studies were performed using the Genomics and Epigenomics 
Shared Resource of the Georgetown Lombardi Comprehensive 
Cancer Center. All shared resources were supported by the NIH 
Grant P30-CA51008.  

   References 

      1.    Patel S, Wang FH, Whiteside TL, Kasid U 
(1997) Identifi cation of seven differentially 
displayed transcripts in human primary and 
matched metastatic head and neck squamous 
cell carcinoma cell lines: implications in metas-
tasis and/or radiation response. Oral Oncol 
33:197–203  

       2.    Kumar D, Whiteside TL, Kasid U (2000) 
Identifi cation of a novel tumor necrosis factor- 
alpha- inducible gene, SCC-S2, containing the 
consensus sequence of a death effector domain 
of fas-associated death domain-like interleu-
kin- 1beta-converting enzyme-inhibitory pro-
tein. J Biol Chem 275:2973–2978  

   3.    Zhang Z, Liang X, Gao L et al (2015) TIPE1 
induces apoptosis by negatively regulating 
Rac1 activation in hepatocellular carcinoma 
cells. Oncogene 34:2566–2574  

   4.    Sun H, Gong S, Carmody RJ et al (2008) 
TIPE2, a negative regulator of innate and 
adaptive immunity that maintains immune 
homeostasis. Cell 133:415–426  

   5.    Gus-Brautbar Y, Johnson D, Zhang L et al 
(2012) The anti-infl ammatory TIPE2 is an 
inhibitor of the oncogenic Ras. Mol Cell 
45:610–618  

     6.    Fayngerts SA, Wu J, Oxley CL et al (2014) 
TIPE3 is the transfer protein of lipid second 
messengers that promote cancer. Cancer Cell 
26:465–478  

    7.    Lou Y, Liu S (2011) The TIPE (TNFAIP8) 
family in infl ammation, immunity, and cancer. 
Mol Immunol 49:4–7  

    8.    Zhang X, Wang J, Fan C et al (2009) Crystal 
structure of TIPE2 provides insights into 
immune homeostasis. Nat Struct Mol Biol 
16:89–90  

     9.    Horrevoets AJ, Fontijn RD, van Zonneveld AJ 
et al (1999) Vascular endothelial genes that are 
responsive to tumor necrosis factor-alpha in vitro 
are expressed in atherosclerotic lesions, includ-
ing inhibitor of apoptosis protein-1, stannin, 
and two novel genes. Blood 93:3418–3431  

      10.    You Z, Ouyang H, Lopatin D et al (2001) 
Nuclear factor-kappa B-inducible death effec-
tor domain-containing protein suppresses 
tumor necrosis factor-mediated apoptosis by 
inhibiting caspase-8 activity. J Biol Chem 
276:26398–26404  

       11.    Kumar D, Gokhale P, Broustas C et al (2004) 
Expression of SCC-S2, an antiapoptotic mole-
cule, correlates with enhanced proliferation 
and tumorigenicity of MDA-MB 435 cells. 
Oncogene 23:612–616  

           12.    Zhang C, Chakravarty D, Sakabe I et al (2006) 
Role of SCC-S2 in experimental metastasis and 
modulation of VEGFR-2, MMP-1, and 
MMP-9 expression. Mol Ther 13:947–955  

             13.    Zhang C, Kallakury BV, Ross JS et al (2013) 
The signifi cance of TNFAIP8 in prostate can-
cer response to radiation and docetaxel and 
disease recurrence. Int J Cancer 133:31–42  

          14.   Day TF (2015) Effects of TNFAIP8 knock-
down on EGFR and IGF-1R signaling and 
cytotoxicities of targeted drugs in non-small 
cell lung cancer cells. Ph.D. Dissertation sub-
mitted to the Faculty of the Graduate School 
of Arts and Sciences of Georgetown 
University  

     15.    Zhang LJ, Liu X, Gafken PR et al (2009) A 
chicken ovalbumin upstream promoter tran-
scription factor I (COUP-TFI) complex 
represses expression of the gene encoding 
tumor necrosis factor alpha-induced protein 8 
(TNFAIP8). J Biol Chem 284:6156–6168  

    16.    Wang Y, Hayakawa J, Long F et al (2005) 
“Promoter array” studies identify cohorts of 
genes directly regulated by methylation, copy 
number change, or transcription factor bind-
ing in human cancer cells. Ann N Y Acad Sci 
1058:162–185  

             17.   Chakravarty D (2007) Role of SCC-S2 in 
breast cancer cell proliferation and invasion. 
Ph.D. Dissertation submitted to the Faculty of 
the Graduate School of Arts and Sciences of 
Georgetown University  

TNFAIP8 and Regulation of Gene Expression 



100

    18.    Dong QZ, Zhao Y, Liu Y et al (2010) 
Overexpression of SCC-S2 correlates with 
lymph node metastasis and poor prognosis in 
patients with non-small-cell lung cancer. 
Cancer Sci 101:1562–1569  

    19.    Liu K, Qin CK, Wang ZY et al (2012) 
Expression of tumor necrosis factor-alpha- 
induced protein 8 in pancreas tissues and its 
correlation with epithelial growth factor recep-
tor levels. Asian Pac J Cancer Prev 13:847–850  

    20.    Duan D, Zhu YQ, Guan LL et al (2014) 
Upregulation of SCC-S2 in immune cells and 
tumor tissues of papillary thyroid carcinoma. 
Tumour Biol 35:4331–4337  

    21.    Eisele L, Klein-Hitpass L, Chatzimanolis N 
et al (2007) Differential expression of drug- 
resistance- related genes between sensitive and 
resistant blasts in acute myeloid leukemia. Acta 
Haematol 117:8–15  

    22.    Laliberté B, Wilson AM, Nafi si H et al (2010) 
TNFAIP8: a new effector for Galpha(i) cou-
pling to reduce cell death and induce cell 
transformation. J Cell Physiol 225:865–874  

    23.    Srivastava M, Eidelman O, Jozwik C et al 
(2006) Serum proteomic signature for cystic 
fi brosis using an antibody microarray platform. 
Mol Genet Metab 87:303–310  

    24.    Jozwik CE, Pollard HB, Srivastava M et al 
(2012) Antibody microarrays: analysis of cystic 
fi brosis. Methods Mol Biol 23:179–200  

     25.    Huang D, Li T, Li X et al (2014) HIF-1- 
mediated suppression of acyl-CoA dehydroge-
nases and fatty acid oxidation is critical for 
cancer progression. Cell Rep 8:1930–1942  

    26.    Vinciguerra M, Sgroi A, Veyrat-Durebex C 
et al (2009) Unsaturated fatty acids inhibit the 
expression of tumor suppressor phosphatase 
and tensin homolog (PTEN) via microRNA-21 
upregulation in hepatocytes. Hepatology 
49:1176–1184  

    27.    Hu H, Takano N, Xiang L et al (2014) Hypoxia-
inducible factors enhance glutamate signaling in 
cancer cells. Oncotarget 5:8853–8868  

    28.    Liu ZG, Smith SW, McLaughlin KA et al 
(1994) Apoptotic signals delivered through 
the T-cell receptor of a T-cell hybrid require 
the immediate-early gene nur77. Nature 
367:281–284  

   29.    Lin B, Kolluri SK, Lin F et al (2004) 
Conversion of Bcl-2 from protector to killer by 
interaction with nuclear orphan receptor 
Nur77/TR3. Cell 116:527–540  

   30.    Mullican SE, Zhang S, Konopleva M et al 
(2007) Abrogation of nuclear receptors Nr4a3 
and Nr4a1 leads to development of acute 
myeloid leukemia. Nat Med 13:730–735  

   31.    Zhou F, Drabsch Y, Dekker TJA et al (2014) 
Nuclear receptor NR4A1 promotes breast can-
cer invasion and metastasis by activating TGF-β 
signaling. Nat Commun 5:3388. doi:  10.1038/
ncomms4388      

    32.    Wenzl K, Troppan K, Neumeister P, Deutsch 
AJ (2015) The nuclear orphan receptor 
NR4A1 and NR4A3 as tumor suppressors in 
hematologic neoplasms. Curr Drug Targets 
16:38–46  

    33.    Hanna RN, Cekic C, Sag D et al (2015) 
Patrolling monocytes control tumor metastasis 
to the lung. Science 350:985–990  

    34.    Höning S, Ricotta D, Krauss M et al (2005) 
Phosphatidylinositol-(4,5)-bisphosphate regu-
lates sorting signal recognition by the clathrin- 
associated adaptor complex AP2. Mol Cell 
18:519–531  

   35.    Traub LM (2009) Tickets to ride: selecting 
cargo for clathrin-regulated internalization. 
Nat Rev Mol Cell Biol 10:583–596  

   36.    McMahon HT, Boucrot E (2011) Molecular 
mechanism and physiological functions of 
clathrin-mediated endocytosis. Nat Rev Mol 
Cell Biol 12:517–533  

   37.    Kelly BT, Graham SC, Liska N et al (2014) 
AP2 controls clathrin polymerization with a 
membrane-activated switch. Science 345:
459–463  

    38.    Tong J, Taylor P, Moran MF (2014) Proteomic 
analysis of the epidermal growth factor recep-
tor (EGFR) interactome and post-translational 
modifi cations associated with receptor endocy-
tosis in response to EGF and stress. Mol Cell 
Proteomics 13:1644–1658  

    39.    Shevde LA, Samant RS, Paik JC et al (2006) 
Osteopontin knockdown suppresses tumorige-
nicity of human metastatic breast carcinoma, 
MDA-MB-435. Clin Exp Metastasis 23:
123–133    

Timothy F. Day et al.

http://dx.doi.org/10.1038/ncomms4388
http://dx.doi.org/10.1038/ncomms4388


101

Usha Kasid and Robert Clarke (eds.), Cancer Gene Networks, Methods in Molecular Biology, vol. 1513,
DOI 10.1007/978-1-4939-6539-7_8, © Springer Science+Business Media New York 2017

Chapter 8

Network-Oriented Approaches to Anticancer Drug 
Response

Paola Lecca and Angela Re

Abstract

A long-standing paradigm in drug discovery has been the concept of designing maximally selective 
drugs to act on individual targets considered to underlie a disease of interest. Nonetheless, although 
some drugs have proven to be successful, many more potential drugs identified by the “one gene, one 
drug, one disease" approach have been found to be less effective than expected or to cause notable 
side effects. Advances in systems biology and high-throughput in-depth genomic profiling technolo-
gies along with an analysis of the successful and failed drugs uncovered that the prominent factor to 
determine drug sensitivity is the intrinsic robustness of the response of biological systems in the face 
of perturbations. The complexity of the molecular and cellular bases of systems responses to drug 
interventions has fostered an increased interest in systems-oriented approaches to drug discovery. 
Consonant with this knowledge of the multifactorial mechanistic basis of drug sensitivity and resis-
tance is the application of network-based approaches for the identification of molecular (multi-)fea-
ture signatures associated with desired (multi-)drug phenotypic profiles. This chapter illustrates the 
principal network analysis and inference techniques which have found application in systems-oriented 
drug design and considers their benefits and drawbacks in relation to the nature of the data produced 
by network pharmacology.

Key words Drug–target networks, Drug discovery, Cancer systems biology, Biological network infer-
ence, Network vulnerability analysis

1  Introduction

From a systems biology point of view, a network provides an intui-
tive conceptual representation of the functional and physical rela-
tionships among molecular components like genes, proteins, and 
metabolites that make up life [1, 2]. From a computer science point 
of view, a network is equated to a data structure whereby data can be 
organized, visualized, and queried [3]. From a mathematical point 
of view, a network is formulated through the concepts of graph the-
ory. Network formalism shows a profound diversity in applications 
scale, nature, and purpose [4, 5]. The approaches developed for net-
work deduction and analysis are highly adaptable to a wide range of 
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contexts. Conversely, the specification of network node and/or edge 
attributes, which is at the basis of any network-oriented approach, is 
highly context-specific.

In this chapter, we illustrate the utility of network-based 
approaches in anticancer drug discovery surveying strengths and 
drawbacks of the main applicative cases. The two key challenges 
facing network applications for drug development are discovering 
drugs with the expected phenotypic pharmacological profile and 
identifying the regions of a biological network whose drug-depen-
dent perturbation results in the desired pharmacological outcome. 
There is widespread evidence that combinations of drugs (see Note 
1) can be more effective than the sum of the effectiveness of the 
individual drugs [6–8], a result that can be rationalized using prin-
ciples of modern systems and molecular biology [9–12].

One approach to discover synergistic drug combinations (see 
Note 2) is to understand a disease through in silico modeling of 
the system of interest. Modeling attempts encounter substantial 
hurdles since they require a precise knowledge of the system being 
modeled to a level at which it becomes possible to model the 
actions of perturbations in a predictable way. However, the reliable 
prediction of complex interactions, such as the synergistic or antag-
onistic effects that combinations of drugs might exert through 
cross-pathway wiring, is not yet feasible.

A more pragmatic approach to systematic and synergistic drug 
discovery combines high-throughput screening of drugs with 
genotypic profiles and seeks to detect combinations of genotypic 
features which are associated with drug profiles in a disease model 
of interest. In this direction, inference of drug–target interaction 
networks has proven a valuable technique to link the drug activity 
to the disease-relevant molecular context [13–15].

Equally important, network analysis at the level of individual 
nodes offers a number of benefits. Network node centrality metrics 
can be used for characterizing candidate drug targets, for instance, 
through the prioritization of predictive molecular features based 
on the specificity and sensitivity of their response to multiple drugs, 
in cancer-specific or cross-cancer settings. Furthermore, several 
compelling theoretical and experimental studies support the notion 
that the topological properties of the network nodes help to 
enlighten the system function of the molecular components they 
represent [16–18]. For instance, a relationship has been proposed 
between the essentiality of individual components in a biological 
system and several indices of connectivity centrality of the corre-
sponding nodes in the network which abstracts the biological sys-
tem [17, 19, 20]. Target essentiality has been shown to be related 
to drug side effects and, therefore, should be taken into consider-
ation in rational drug design [21, 22]. Of special interest are the 
attempts to characterize network nodes by the size of the effects 
caused by individual nodes on network stability in response to a 
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perturbation [23, 24]. A recent characterization of essential genes 
by topological properties in a perturbation sensitivity network has 
proven the capability of several network topological node proper-
ties to discriminate between essential and nonessential genes [20]. 
Furthermore, novel centrality metrics have been specifically intro-
duced for the purpose of gauging network dynamical properties at 
the node level. Therefore, network analysis certainly is a valuable 
tool for target identification in drug development.

In this chapter, we show that network-based approaches offer 
a versatile set of tools to computationally support drug discovery 
programs. Network analysis supports the characterization of candi-
date targets by virtue of their position in the disease network as 
well as of the feasibility of their modulation to achieve a beneficial 
pharmacological outcome. Integration of network inference 
approaches with combinatorial drug pharmacology holds the 
promise to meet the pressing clinical need for robust molecular 
correlates of anticancer drug response.

2  Network-Based Approaches in Drug Targets Identification

Drug discovery seeks to identify small molecules that potently and 
selectively modulate disease-relevant functions of target proteins. 
There are two fundamental approaches to understanding the action 
of small molecules on biological systems. Target-based approaches 
(reverse chemical genetics) begin with target validation, which is a 
time-consuming process that involves demonstrating the relevance 
of the protein for the diseases of interest, and proceed with a bio-
chemical assay to find out candidate drugs affecting the target. It is 
presumed that drugs affecting the target would affect the desired 
phenotype; however, this impact needs to be characterized by 
mechanism-of-action studies. Over the past decade, advances in 
assay technology have increasingly facilitated the rapid expansion 
of phenotype-based approaches. Phenotype-based approaches 
(forward chemical genetics) begin with the identification of a 
disease-relevant phenotype in a model system, which is accompa-
nied by a screen where candidate drugs are tested for their impact 
on the phenotype. Candidates must then undergo target identifica-
tion, followed by mechanism-of-action studies, to determine the 
protein or proteins responsible for the observed phenotypic 
change, which can be a complex endeavor. In summary, both tar-
get- and phenotype-based approaches benefit from pathway or 
network information to gain insight into the drug-dependent 
mechanisms eliciting the desired biological response.

Historically, the “one gene, one drug, one disease” paradigm 
assumed that a single direct interaction between a drug and a tar-
get was responsible for phenotypic observations. However, the 
limitations of such an approach were clearly shown by the rates of 
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late-stage drug failure in clinical development which are principally 
due to lower than desired efficacy and/or to clinical safety or toxi-
cology [25]. A fundamental factor of the success of a drug is how 
the robustness and fragility, which are intrinsic to biological sys-
tems, are exploited in terms of disease onset and progression. 
Robustness permits biological systems to maintain their character-
istic behavior in response to internal or external perturbations [9, 
10, 26] and depends on: (1) system control which introduces reg-
ulatory loops to ensure system homeostasis and stability; (2) fail-
safe mechanisms which, by means of compensatory pathways, 
enable a system to keep functioning when a component is disabled; 
and (3) modularity which prevents perturbations from spreading 
through the whole system. Biological robustness is valuable to 
interpret drug efficacy and side effects. A drug is effective when it 
hits the point of fragility but can be ineffective when system robust-
ness compensates for any change caused by the drug, through 
genetic diversity [27–29] or feedback loops [30]. Drug side effects 
can result from the interference with an unexpected point of fragil-
ity of the system [31, 32]. The awareness of biological system 
robustness prompted the development of combinatorial drug ther-
apy which leverages the effects of multiple drugs to get maximal 
overall effect [6, 33]. There are several reasons underlying the suc-
cess of molecularly targeted cancer therapeutics based on drug 
combinations. For instance, the administration of multiple drugs 
could disrupt compensatory mechanisms or the combination of 
multiple drugs could be designed in such a way that a drug targets 
the point of fragility induced by the other drugs in the combina-
tion [34–36]. Given these considerations, drug design clearly 
requires network-oriented approaches to improve drug efficacy 
and selectivity by identifying drugs affecting multiple oncogenic 
signal transduction pathways and drug combinations [37, 38]. In 
addition to the above theoretical reasons, network-based 
approaches are advantageous for evaluating and prioritizing the 
most promising potential drug combinations among the sheer 
number of mathematically possible ones.

Network topology analysis has offered important clues on 
drug target hypotheses as well as on the characterization of net-
work topological properties of confirmed targets. Network infer-
ence approaches have permitted to formulate mechanistic 
hypotheses, rather than targets per se. Furthermore, it is worth to 
note that identifying drug targets and understanding their mecha-
nisms of action actually proceed through a combination of net-
work approaches, along with cell- or organism-based phenotypic 
assays, to test increasingly specific target hypotheses.

The assumption that network topology could provide valuable 
information to identify candidate drug targets dates back to 15 
years ago when early network analysis indicated the possibility of a 
direct correlation between the essentiality and the degree of 
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connectivity of nodes [17]. Subsequent reanalysis of the data 
challenged this view, according to which more highly connected 
hubs in a network are more likely to be essential [39]. The relation-
ship between network topology and the system function of a pro-
tein when it is perturbed was refined by focusing on metrics such as 
the betweenness centrality [40] and the bridging centrality [41] in 
addition to the degree one. Interestingly, an analysis of centrality 
was conducted also on a human network of the interactions between 
all US-approved drugs and therapies and showed prominent role 
for drugs with high betweenness centrality values [42].

If we are to exploit network analysis to identify targets and to 
predict likely outcomes of their perturbations, then a closer model of 
drug action on a target has to consider the drug-dependent network 
dynamics, by capturing the target response to changes in its immedi-
ate neighborhood as well as the propagation to distant nodes [43, 
44]. To understand the system function response to a perturbation, 
responsive mathematical models have to account for the interplay 
between network topology and network dynamics [23, 45]. In this 
respect, lately a new centrality metrics, named vibrational centrality 
[46], was borrowed from physics and reformulated in the complex 
network context permitting to shift the attention from static topo-
logical properties to dynamical properties of a perturbed network at 
the node level. At higher level of mechanistic detail, dynamical mod-
els based on the law of mass action have been successfully applied to 
quantitatively describe the effects of chemical perturbations, used 
either in isolation or in combination, in several signaling pathways 
[47, 48]. The main issues are related to the identification of the sym-
bolic model, usually in the form of ordinary reaction rate equations, 
and to the estimation of the parameters [49, 50]. In the context of 
phenotypic drug screens, these equations are difficult to set up and 
parameterize since the analytical form of the dynamics is largely 
unknown and the estimation of parameters is not approachable. 
Consequently, differential equation-based models are more useful in 
the late-stage refinements of the mechanism-of-action of candidate 
drugs than in the profiling of drug action [51].

Logic-based models permit to bypass some hurdles of mass 
action-based models like the requirement for parameter specifica-
tion [52]. Here, interactions are not interpreted as direct physical 
interactions but as measures of influence between network nodes. 
Functions of discreet logic are used to connect nodes through 
gates and to infer functions best capturing the observed dynamics 
of the data. These approaches have been applied to interpret drug 
response in triple-negative breast cancer and to suggest therapeu-
tics [53–55].

Phenotype-based drug profiling does not usually grasp the 
mechanistic aspects of drug action and therefore are not easily trac-
table by previous approaches. More often, the readouts of individual 
assays or, more recently, of multiple complementary assays could be 
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powerfully analyzed by statistical association-based approaches. 
Bayesian network inference is a promising tool since it can illustrate 
the influences of nodes on each other by probabilistic dependence 
relationships [56]. Bayesian models can be deduced from experi-
mental data provided that the a priori probability distributions on 
the data are supplied. Advantages of Bayesian models include the 
possibility to accommodate noise inherent in the data in a probabi-
listic framework which permits to estimate credibility intervals of the 
parameters associated with the inferred relationships. However, 
owing to the probabilistic nature of the Bayesian modeling approach, 
the inference of statistically significant dependencies requires many 
simultaneous observations of tested molecules. Another caveat, 
which is of practical importance in drug discovery, is the restriction 
of inferred networks to be acyclic whereas system responses to per-
turbations are known to contain feedback loops. Finally, it is worth 
to note that the probabilistic framework, which could be powerful as 
we acknowledged, could turn in a severe drawback since in drug 
screening the a priori knowledge on the data is incomplete and could 
lead to inappropriate selection of the a priori probability distribu-
tions on the data/parameters.

The limited knowledge on a priori data distributions characterizes 
many drug discovery programs which usually rely on systematic high-
throughput and unbiased data. First, a drug screen is conducted to 
identify effective drug combinations; second, a high-throughput pro-
filing of one or more types of genomic features is conducted to trans-
late genotype features into markers of drug sensitivity or resistance 
[14, 57, 58]. Therefore, the raw data delivered by those approaches 
consist of data on drug activity and of data from genotypic profiling. 
In sophisticated experiments, drug activities could be described by 
multiple parameters and genotype data could consist of multidimen-
sional (DNA copy number, mRNA abundance, protein abundance) 
genomic profiles. The next step is to associate the drug activity profile 
with genotypic changes to obtain association profiles between drugs 
and genotypic features. The ultimate goal is to select effective drugs or 
drug combinations and to obtain a multi-feature genomic signature 
of drug(s) response (Fig. 1). Non-model based approaches for net-
work inference are therefore particularly demanded.

Fig. 1  (continued) (b) Various computational techniques provide a matrix of the association between each 
drug activity and each genotypic feature. (c) A combination of multiple genotypic features associated with the 
response of a drug across the samples is finally deduced. For simplicity, the plot illustrates the multi-feature 
signature for a single drug response. The heat maps display the values measured for the genotypic features 
which are included in the signature across the samples (blue corresponds to lower values, red to higher ones). 
Features are separated depending on whether they are associated with drug sensitivity or resistance. To the 
left of each feature is a bar indicating the effect size. Bars in yellow are negative effects, indicating features 
associated with drug sensitivity, and bars in purple are positive effects, indicating features associated with 
drug resistance. Drug response estimates across samples are shown at the bottom. For clarity, only the top 
features associated with sensitivity and resistance are shown
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Fig. 1 Multi-feature signature of drug response. (a) A panel of tumor samples S SS1,, ,,{ }  is characterized 
by multiple genomic features and a drug screen quantifies the effect of drug treatment on the phenotype of 
interest across the same samples. Drug activity can be described by a single parameter or by multiple param-
eters P PP1{ } set (e.g., half-maximal inhibitory concentration (IC50) or slope of the dose–response curve). 
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3  Methods

Computational techniques can rely on the combination between 
phenotype-based drug profiling and genotype-based profiling. 
Drug treatment efficacy is usually scored by response parameters 
such as half-maximal inhibitory concentration (IC50), i.e., the drug 
concentration at which the cancer cell growth is inhibited by 50 %, 
or the area under the dose–response curve, or by the drug sensitiv-
ity score given by the closed-form integration of the area under the 
estimated dose–response curve.

Technical advances in genomic sequencing and genotyping 
have enabled deeper characterization of drug-profiled samples by 
high-throughput measurements across multiple types of genetic 
features. Association profiles are then quantified between the 
phenotypic profiles of N drugs (D1, D2, …, DN) and the genotypic 
profiles of P potential targets T = ¼( )T T TP1 2,,, ,,, ,,, .

The aim is to infer efficient individual drugs or combination 
drugs and the sets of genotypic features that best report on drugs 
action. The approaches developed by Pal et al. [59] and Tang et al. 
[60] are suitable to represent the data-driven approaches which are 
currently in use to identify drug targets from the genomic charac-
terization of phenotypic drug profiling. Here, we do not illustrate 
these approaches in details, but we review their general workflow 
explaining the general mathematical formalization of the inference 
and its solution. In general terms, the inferential procedure first 
selects efficient drugs or combination drugs and then identifies the 
signature of targets best predicting the phenotype measured in 
response to the selected drugs. In the first step, drugs are selected 
through effect-based approaches or dose-effect-based approaches 
[8]. The second step implements a minimization problem, where 
the objective function is the prediction error of the efficacy of the 
subset of most efficient drugs D D* Í . In Tang et  al. [60], it is 
defined as follows:
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new( | |* *( ) ( ) - ( )º
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set of potential targets of Dnew, E D Tnew |

*( ) is the predicted efficacy 
of Dnew on T*, and E Dnew



( )  is the observed efficacy of Dnew. 
E D Tnew |

*( ) is directly estimated from the input data as follows:

	

E D T
I D D E

I D D E I D D
new

i N
i new i

i j N
i new i new j

| *

*

,

*
( )

Ì( )

Ì( ) + Ì

Î

Î

å

å
º



 **( ) -æ
è
ç

ö
ø
÷1 E j



	

3.1  Non-Model 
Based Inference 
of Drug–Target 
Networks

Paola Lecca and Angela Re



109

where I ×( )  is an indicator function, equal to one when the argument 
is true, and zero otherwise. In particular, E D Tnew |

*( ) =1 if Dnew is 
a superset of D* and Ei



=1, whereas E D Tnew |
*( ) = 0  if Dnew is a 

subset of D* and Ei



= 0.
A simple data-driven procedure to infer T* from the initial set 

of potential targets T is a procedure that constructs subsets of T 
and evaluates the error in the prediction of drug efficacy for each 
of these subsets. In Tang et al. [60]) T* is selected by minimizing 
an average leave-one-out error (LOO):
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N
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i N
i i
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The overall picture of this inferential scheme is shown in Fig. 2.

Networked system response to perturbations can be independent 
of the organizational architecture of the network. To measure the 
susceptibility of network nodes to external changes (i.e., drugs), a 
novel centrality measure, termed vibrational centrality proposed 
by E. Estrada [46], is appropriate. The definition of this index is 
based on the analogy of a network with a physical system in which 
the nodes are rigid spheres and the edges are springs. The effects 
of stresses on such a system are modeled as nodes displacements, 
i.e., nodes reactions to changed conditions could be represented in 
terms of nodes vibrations, that are deviations of nodes positions 
from their equilibrium ones.

In order to define the position of nodes, the network is embed-
ded into an n-dimensional Euclidean space (n being the number of 
nodes in the network) represented by the Moore–Penrose pseudo-
inverse of graph Laplacian L D A= - , where D is the diagonal 
matrix of degrees and A is the graph adjacency matrix. Henceforth 
we denote by L+  the pseudo-inverse of L. Each diagonal entry of 
L+ , denoted as lii

+  for the i-th node, represents the squared distance 
of node i to the origin in this n-dimensional space and provides a 
measure of the node’s topological centrality, given as

	
C i

lii
( ) = +

1
.
	

(1)

Closer the node i is to the origin in this space, or equivalently 
lower the lii

+ , more topologically central node i is [61].
A network subjected to some sort of external stresses can be 

modeled by a network submerged in a thermal bath at temperature 
T. This abstraction allows to define the vibrational potential energy 
of the network as it is usually defined for a system of microscopic 
particles, i.e.,

3.2  Network 
Vulnerability Analysis: 
Vibrational Centrality

3.2.1  Vibrational 
Centrality
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Fig. 2 Scheme of non-model based inference of drug–target network. The infer-
ence procedure reported earlier [60] consists of three steps. Step 1 selects the 
most efficient drug, and steps 2 and 3 deal with drug–target network model 
construction
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V

k
x x Lx( ) =

2


	
(2)

where k is the spring constant, and x is the vector whose i-th entry 
is the displacement xi of the i-th node. The probability distribution 
of the displacemen of the nodes is given by the Boltzman 
distribution
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where the partition function Z of the network is defined as 
follows
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Given P(x), the mean displacement of a node i, is by definition

	
Dx x P di iº ò ( )2 x x

	
(4)

It can be shown [62] that

	
Dx

T
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(5)

Equations (2) and (3) describe the potential vibrational energy of 
a network submerged into a thermal bath at the temperature T.

Vibrational centrality was found to achieve high resolution in 
the identification of the most vulnerable nodes in a network, com-
pared to standard topological measures such as node degree, which 
can account for only the nearest-neighbors of a node to quantify 
the relative contribution of the node to network integrity [46].

4  Example of Network Centrality Characterization of Cancer Genes for Drug 
Discovery

We set out to explore the relationship between the effect of 
cancer-related gene changes on drug response and the centrality 
of the protein products in a network of protein interconnections. 
The Genomics of Drug Sensitivity in Cancer (GDSC) project is 
an academic research program to identify molecular features of 
cancers that predict response to anticancer drugs [63]. Data 
about gene effects on the sensitivity of a rich panel of cancer cell 
lines to a wide selection of compounds representing approved 
drugs or drugs under development were downloaded from the 
GDSC database (www.cancerRxgene.org). In fact, this resource 
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provides the results of an analysis of the association of gene muta-
tional state (gene somatic mutation, amplification, or deletion), 
as reported in the Catalogue of Somatic Mutations in Cancer 
database, with cell line drug sensitivity data, as quantified by the 
IC50 value and the slope of the dose–response curve. The col-
lected information on drug–gene association was then framed in 
a bipartite weighted network where the weight of a drug–gene 
edge represented the inverse of the statistical significance of the 
multivariate analysis of variance (MANOVA) test. We then 
mapped the proteins encoded by the genes in the drug–gene 
association network on the IntAct protein interaction network 
through the genes2networks tool (http://amp.pharm.mssm.
edu/genes2networks/). An analysis of node centrality was con-
ducted both in the drug–gene association network and in the 
protein interaction network. Centrality of gene nodes in the 
drug–gene association network was quantified by the sum of their 
edges weights (node strength). In this way, according to the defi-
nition of drug–gene edge weights, the nodes characterized by the 
highest strength values in the drug–gene association network 
correspond to the strongest modifiers of drug response. The cen-
trality analysis of the proteins encoded by the screened genes in 
the protein interaction network was based on the degree, 
betweenness and vibrational centrality metrics. We then con-
ducted an analysis of the relationship between node centrality in 
the protein interaction network, as assessed by the mentioned 
centrality metrics, and the node strength in the drug–gene asso-
ciation network (Fig. 3). This analysis suggested that node degree 
and betweenness in the protein interaction network were not 
informative on node centrality in the drug–gene association net-
work since degree and betweenness values in the protein interac-
tion network were found to be low, irrespectively of the effect of 
the corresponding genes on drug sensitivity. Instead, the assess-
ment of node centrality by the vibrational centrality metric iden-
tified an interesting pattern since differences in node vibrational 
centrality in the protein interaction network seemed to corre-
spond to differences in node strength in the drug–gene associa-
tion network. Interestingly, the strongest nodes in the drug–gene 
association network were found to show the lowest vibrational 
centrality in the protein interaction network, i.e., to be particu-
larly stable nodes in the network. Considering also the previous 
observation on low betweenness values, this analysis suggests that 
the strongest modifiers of drug response tend to be connected by 
particularly stable edges and, nonetheless, to only moderately 
contribute to connect nodes to each other in the protein interac-
tion network. We present this example study to introduce a way 
of generating hypotheses on the attractiveness of proteins with 
regard to the discovery of drug modulators through network 
centrality analysis.
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5  Conclusions

Network-oriented approaches are key components in rational 
drug design for several theoretical and pragmatic reasons. 
Theoretically, the major endeavor is to account for the complexity 
of the multifactorial basis of the response of biological systems to 
drug interventions. Since biological systems have evolved to be 

Fig. 3 Node strength in drug–gene network versus node centrality in protein interaction (PPI) network. The 
strength of a node is the sum of the weights of its incident edges. In the drug–gene network considered in this 
study the edge weight is the inverse of the p-value scoring the association of the mutational state of a gene 
with the drug response. The density plots of the centrality measures of the PPI network show that only the 
vibrational centrality values are partitioned into two intervals identified by the width of the corresponding 
peaks. The higher peak covers values of vibrational centrality smaller than those underlying the second peak. 
The partition of vibrational centrality values in the protein interaction network (indicated by the dotted line in 
the first plot) corresponds to a partition of node strength values in the drug–gene association network: the red 
and the green points in the first plot identify the average value of node strength corresponding to the two 
groups partitioning the values of vibrational centrality. We see that the average node strength of the nodes 
having vibrational centrality smaller that 1 is one order of magnitude greater than then average node strength 
of the nodes with vibrational centrality greater than 1 ( 2 95 105. ´ , and 2 20 104. ´ , respectively). In the most 
common behavior, the strongest nodes in the drug–gene association network have lowest vibrational central-
ity in the PPI network. Additionally, the betweenness (an degree) in PPI networks is low for the great majority 
of the nodes
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robust in the face of internal and external perturbations, they can 
also show robust against drug intervention. Network-based 
approaches provide a way of thinking about the systemic aspects 
of drug sensitivity and resistance and therefore are expected to 
valuably complement screening-based approaches. Indeed, a sys-
tematic and efficient network/based formalization of data gath-
ered by combining phenotype/based drug screens with genome/
wide genotypic profiles has proven to be useful for inferring the 
best combination of molecular cognates of the desired pharmaco-
logical output of single drugs or of multicomponent drugs.

From a practical point of view, the notion of biological sys-
tems as networked systems has led to the consideration that the 
realization of the full potential of molecularly targeted cancer 
therapeutics depends on identifying and optimizing the action of 
combinations of drugs rather than of individual drugs. This adds 
a considerable level of combinatorial complexity in the drug dis-
covery and therapy design process. It is practically prohibitive to 
evaluate the total number of possible combinations of available 
drugs and the corresponding targets. Network representation of 
experimental information allows an in silico exploration of the 
combinatorial space.

Network analysis can be used not only to optimize drug 
efficacy by the inference of the optimal drug target combinator-
ics but also to assess drug specificity; for instance, mapping the 
targets found to be sensitive to a drug or drug combination 
onto a protein interaction network can increment our under-
standing of drug side effects thus aiding informed decision-
making. Furthermore, analyzing the protein interaction network 
context of chemically tractable targets can help pinpoint poten-
tial alternative but previously neglected subnetworks in future 
drug discovery initiatives. In conclusion, the achievement of 
positive outcomes by modern systems-oriented drug design is 
crucially dependent on the combination of systematic drug 
screening, genotyping profiling with network-based approaches.

6  Notes

	1.	 Drug combination. An optimized combination of multiple 
drugs including syncretic or congruous drugs. A combination 
of drugs is syncretic if it is composed of two or more drugs, at 
least one of which is not used individually to treat the target 
disease. A combination of drugs is congruous if each drug has 
been individually used to treat the target disease.

	2.	 Synergy and antagonism. They represent respectively greater 
or lesser effects for drugs in combination than the simple 
additive effect expected from the knowledge of the effects of 
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each drug individually. Useful analyses of mathematical and 
pharmacological concepts underlying the assessment of the 
effects of combinatorial signals (e.g., drugs) are provided in 
refs. [8] and [33, 64].
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    Chapter 9   

 CRISPR/Cas-Mediated Knockin in Human 
Pluripotent Stem Cells                     

     Nipun     Verma    ,     Zengrong     Zhu    , and     Danwei     Huangfu      

  Abstract 

   Fluorescent reporter and epitope-tagged human pluripotent stem cells (hPSCs) greatly facilitate studies on 
the pluripotency and differentiation characteristics of these cells. Unfortunately traditional procedures to 
generate such lines are hampered by a low targeting effi ciency that necessitates a lengthy process of selec-
tion followed by the removal of the selection cassette. Here we describe a procedure to generate fl uores-
cent reporter and epitope tagged hPSCs in an effi cient one-step process using the CRISPR/Cas technology. 
Although the method described uses our recently developed iCRISPR platform, the protocols can be 
adapted for general use with CRISPR/Cas or other engineered nucleases. The transfection procedures 
described could also be used for additional applications, such as overexpression or lineage tracing studies.  

  Key words     Human pluripotent stem cells (hPSCs)  ,   Gene targeting  ,   CRISPR/Cas  ,   Homologous 
recombination  ,   Knockin  ,   Fluorescent reporter  ,   Epitope tag  

1      Introduction 

 Human pluripotent stem cells (hPSCs), which include embryonic 
stem cells (hESCs) and  induced pluripotent stem cells (hiPSCs)  , 
have two unique characteristics: the capacity for unlimited  self- 
renewal   in culture and the ability, called pluripotency, to form any 
cell type that is present in an adult human.    Since the isolation of 
hESCs in 1998, there has been much progress in the development 
of protocols to differentiate hPSCs into specifi c cell types. As a 
result hPSCs have emerged as a valuable tool for studying human 
development and for modeling human disease. Furthermore there 
is great potential to use hPSCs to generate clinically important cell 
types, which can be transplanted into patients to replace those cells 
lost or damaged due to disease [ 1 ,  2 ]. 

 The utility of hPSCs can be further enhanced through genetic 
modifi cation of these lines. Through  homologous recombination   
exogenous sequences can be inserted into the  genome   to generate 
a variety of “ knockin” alleles  , from a single nucleotide change to 
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introduce or correct a disease associated mutation, to the insertion 
of small (less than 100 base pairs, bp)  epitope tags   (e.g., hemag-
glutinin, 3× FLAG, V5 tags) or even the insertion of large (hun-
dreds of bp) transgene constructs such as  fl uorescent reporters   
(e.g., GFP, mOrange) and antibiotic selection cassettes. The ability 
to insert epitope or fl uorescent tags into the  genome   would greatly 
facilitate hPSC-based in vitro and in vivo (after transplantation in 
animal models) studies. The insertion of epitope tags into specifi c 
loci creates recombinant hybrids that contain a polypeptide affi nity 
tag and enable effi cient purifi cation of target proteins. The devel-
opment of these  fusion proteins   facilitates a variety of downstream 
experiments including: western blot,  immunoprecipitation (IP)  , 
chromatin-immunoprecipitation (ChIP), and  immunofl uores-
cence   staining, and is particularly useful when antibodies for the 
protein of interest are substandard or not available. Lineage-specifi c 
knockin  fl uorescent reporters      are valuable tools because they allow 
real- time observation of gene expression dynamics,    cell lineage 
tracing, and the isolation of a specifi c cell population for further 
analysis. hPSCs reporter lines have already been used to identify 
mediators of pluripotency [ 3 ] as well as characterize the culture 
conditions that stabilize different pluripotent states [ 4 ]. 

 Creating  knockin alleles   in hPSCs used to be extremely chal-
lenging because of the low transfection effi ciency [ 5 ] and low rate 
of spontaneous  homologous recombination   [ 6 ]. Thus traditional 
knockin strategies rely on the use of a drug- resistance   cassette that 
allows for the enrichment of cells with the correct integration. 
However, due to potential interference between the drug- resistance 
cassette and nearby genes, the selection cassette must be removed 
prior to using these cells for experimental studies [ 7 ]. We have 
ourselves generated a  knockin reporter allele   at the  OCT4  locus 
using antibiotic selection [ 8 ]. Notably correctly targeted clones 
with the drug selection cassette did not express GFP. Only upon 
Cre-mediated deletion of the drug selection cassette, did all clonal 
lines show proper co-expression of pan-cellular eGFP with OCT4. 
Thus the low targeting effi ciency of hPSCs necessitates an antibi-
otic selection cassette, but this in turn requires additional target-
ing, isolation, and characterization of clonal lines, effectively 
doubling the time and effort required to make the knockin line. 

 The recent emergence of  programmable site-specifi c nucleases   
has greatly improved the effi ciency of  genome   engineering in 
hPSCs.  Zinc fi nger nucleases (ZFNs)  ,  transcription-activator like 
endonucleases (TALENs)  , and the  CRISPR/Cas9 nuclease   can all 
act as genomic scissors to produce a  double strand break (DSB)   at 
the desired  genome   loci [ 9 – 11 ]. Without a repair template, the 
DSB is repaired by the  nonhomologous end joining (NHEJ) path-
way   that often generates small insertions or deletions (indels). These 
hPSC lines with site-specifi c knockout mutations can be used to 
determine the contribution of particular genes for development 

Nipun Verma et al.



121

and disease. In the presence of a repair template, DSB repair with 
error-free  homology directed repair (HDR)   can be used to gener-
ate  knockin alleles   through targeted integration of  exogenous 
  DNA sequences into the desired loci. 

 The CRISPR/Cas9 system was discovered as a form of adaptive 
immunity in bacteria, where it is used to destroy exogenous nucleic 
acids of invading viruses [ 12 ], and it has recently been adapted for 
 genome   engineering in mammalian cells. In this system the  CRISPR 
chimeric guide RNA (gRNA)   recognizes a 20-nucleotide (nt) DNA 
sequence upstream of the 5′-NGG-3′  protospacer adjacent motif 
(PAM)   and directs the DNA endonuclease Cas9 for site-specifi c 
cleavage [ 13 – 16 ]. Cas9 produces a DNA  DSB  , which in the pres-
ence of a double stranded DNA (dsDNA) plasmid or  single stranded 
DNA (ssDNA)   template can promote HDR to effi ciently incorpo-
rate exogenous sequences, such as a  fl uorescent reporter   tag, into 
the specifi c genomic locus in hPSCs [ 8 ,  17 – 20 ]. We have developed 
an effi cient genome- editing platform  in    hPSCs  , called iCRISPR 
[ 21 ,  22 ]. Through TALEN-mediated  gene targeting  , a doxycycline 
inducible Cas9 cassette and the reverse tetracycline transactivator 
(M2rtTA) are integrated into both alleles of the endogenous 
 AAVS1  locus, and thus allow robust Cas9 expression in established 
clonal lines (referred to as iCas9 hPSCs) upon doxycycline treat-
ment. With transfection of appropriate gRNAs we are able to gen-
erate site- specifi c knockout mutations. In addition, with 
co-transfection of repair templates, iCRISPR has also allowed us to 
specifi cally alter the sequence of a small number of nucleotides, and 
to insert a knockin  epitope tag   or a large transgenes such as a fl uo-
rescent tag. Most importantly due to the increased effi ciency of the 
iCRISPR system it is not necessary to use selection to enrich for 
correctly integrated alleles. Thus it is feasible to generate  knockin 
alleles   in an effi cient one-step procedure [ 8 ]. 

 In this methods chapter we  describe   the procedure for using 
our iCRISPR system to generate knockin alleles in hPSCs. We spe-
cifi cally describe the procedure for generating epitope-tagged and 
 fl uorescent-tagged hPSC lines  ; however, the same knockin strategy 
could be used for a variety of other inserts. Furthermore, we believe 
the transfection approach that we use to generate the lines could 
also be used for other purposes, for example to deliver mRNA or 
plasmids for overexpression or lineage tracing studies.  

2    Materials 

 The following materials are needed.

    1.    hPSC medium: DMEM/F12 medium (Life Technologies), 
20 % KnockOut Serum Replacement (Life Technologies), 1× 
Non-Essential Amino Acids (Life Technologies), 1× GlutaMAX 
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(Life Technologies), 100 U/mL Penicillin/100 μg/mL 
Streptomycin (Life Technologies), 0.055 mM 2- mercaptoethanol 
(Life Technologies), 10 ng/mL recombinant human basic FGF 
(Life Technologies).   

   2.    TrypLE Select enzyme (Life Technologies).   
   3.    Fetal Bovine Serum (FBS, Sigma-Aldrich).   
   4.    Dimethyl Sulfoxide (DMSO, Santa Cruz Biotechnology).   
   5.    Rho-associated  protein kinase   (ROCK)  inhibitor   Y-27632 

dihydrochloride (Selleck Chemicals).   
   6.    Genomic DNA lysis buffer: 10 mM Tris pH 8, 0.45 % NP40, 

0.45 % Tween 20, and 100 μg/mL Proteinase K.   
   7.    Lipofectamine RNAiMAX (Life Technologies).   
   8.     Lipofectamine 3000   (Life Technologies).   
   9.     Herculase II Fusion DNA Polymerase   (Agilent Technologies).   
   10.    MEGAshortscript T7 Transcription kit (Life Technologies).   
   11.    MEGAclear Transcription Clean-Up Kit (Life Technologies).   
   12.    DNeasy Blood and Tissue Kit (Qiagen).   
   13.    Ethidium Bromide (EtBr).   
   14.    Agarose (Invitrogen)   .   
   15.    Purelink Gel Purifi cation Kit (Life Technologies).   
   16.    Pierce Crosslink Magnetic IP/Co-IP kit (Pierce Antibodies).   
   17.    FLAG antibody, clone M2 (Sigma-Aldrich).   
   18.    TBST: 20 mM Tris–HCl (pH 7.6), 137 mM NaCl, 0.1 % 

Tween 20.   
   19.    Blocking Buffer: 5 % nonfat milk in TBST.   
   20.    NuPAGE LDS Sample Buffer 4× (Life Technologies).   
   21.    NuPAGE ®  Sample Reducing Agent 10× (Life Technologies).   
   22.    NuPAGE Novex 3–8 % Tris–Acetate Protein Gels (Life 

Technologies).   
   23.    NuPAGE Tris–Acetate SDS Running Buffer (20×) (Life 

Technologies).   
   24.    Nitrocellulose Pre-Cut Blotting Membranes (Life 

Technologies).   
   25.    Amersham ECL Prime Western Blotting Detection Reagent 

(Amersham).   
   26.    Amersham Hyperfi lm (Amersham).   
   27.    Amersham Hypercassette (Fisher).      
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3    Methods 

 Here we describe the procedures to generate epitope and reporter 
tagged hPSC lines using the iCRSIPR platform. In the iCRISPR 
system a doxycycline inducible Cas9 cassette has been targeted into 
the endogenous  AAVS1  locus. Upon doxycycline treatment, Cas9 
is expressed in all cells. After transfection of the site-specifi c gRNAs 
and the donor HDR template with the exogenous DNA sequence 
fl anked by the homology arms, a  DSB   is created and HDR leads to 
incorporation of the insert into the  genome  . For single nucleotide 
alternations, a  ssDNA   template with homology arms of ~40–80 nt 
is generally used. Due to the small size of the  epitope tags   (less 
than 100 nt), the exogenous sequence can also be provided as a 
ssDNA, whereas the larger reporter tag (hundreds of bp) can be 
cloned easily into a donor plasmid for delivery into the cells. In 
both cases selection is not required and  knockin alleles   can be effi -
ciently generated in a single step (Fig.  1 ). We have used the follow-
ing protocols for HUES8 (NIHhESC-09-0021) and MEL-1 
(NIHhESC-11-0139) hESC lines. It may be necessary to adjust 
the protocols for different hPSC lines or for hPSCs cultured under 
different conditions such as feeder-free TeSR and Essential 8 (E8) 
culture conditions [ 23 ,  24 ].

iCas9 hPSCs

M2rtTA

Cas9TRE

M2rtTACAG

Cas9TRE

M2rtTACAG

M2rtTA
DOX

M2rtTA
Targeted locus

gRNA

DSB

indel

NHEJ HDR

donor vector

fluorescent reporter

ssDNA

protein tag

ssDNA

precise mutation

no repair template

  Fig. 1    The iCRISPR platform for  genome    editing   in hPSCs. Doxycycline treatment induces Cas9 expression in 
iCas9 hPSCs. After transfection of gRNA, Cas9 is guided to the target locus via Watson-Crick base pairing and 
induces DNA DSBs. In the  absence   of a repair template, repair of  DSBs   by NHEJ often results in indels that can 
be used to knockout a  target gene   in hPSCs. Alternatively, in the presence of repair templates, either short 
 ssDNA   or long dsDNA donor vectors, HDR can be employed to incorporate exogenous sequences into the endog-
enous loci to introduce precise nucleotide mutations, protein tags, or  fl uorescent reporters   into the target loci       
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         1.    hPSCs are cultured on an irradiated mouse embryonic 
fi broblast (iMEF) feeder layer in hPSC media.   

   2.    iMEFs are plated 1 day before seeding hPSCs. Tissue culture 
dishes are coated with 0.1 % gelatin for 30 min at 37 °C prior 
to plating the iMEF feeder layer.   

   3.    hPSCs cultures are generally passaged at 1:6 or 1:12 split ratios 
every 4–6 days.   To passage hPSCs,  colonies   are disaggregated 
by treating with TrypLE Select enzyme for 5 min at 37 °C.   

   4.    Dissociated hPSCs are collected in hPSC media and spun down 
at 200 ×  g  for 5 min. After spinning hPSCs are resuspended in 
fresh hPSC media and seeded on iMEF coated plates. 5 μM 
ROCK  inhibitor   Y-27632 is added into the culture medium 
when passaging or thawing frozen cells.   

   5.    Cell lines are frozen down in freezing media consisting of 40 % 
FBS, 10 % DMSO and 50 % hPSC media.      

     The generation of knockin reporter hPSC lines using the iCRISPR 
system involves fi rst the induction of Cas9 expression through 
administration of doxycycline followed by the co-transfection of the 
gRNA and donor vector into the iCas9 cells. The transfected gRNA 
forms a complex with the Cas9 protein and directs it to the target 
locus, where it creates a  DSB  . HDR can then be employed to effi -
ciently incorporate the exogenous reporter sequence into the target 
locus. After dissociating and re-plating, single-cell colonies are iso-
lated, expanded and screened through PCR for correct reporter 
integration. Correctly targeted clonal lines are further validated and 
differentiated to assess faithful reporter activity (Fig.  2 ).

3.1  hPSC Culture

3.2  Generation of 
Knockin Reporter 
hPSC Lines Using 
iCRISPR

 ~ Day 15

ExpansionValidation

iCas9

DOX

Day 0 Day 3 & 4

Change medium

Day 5

colony
picking

PCR screening

Day 5

replating 

PCR

Estimation of 
targeting efficiency

Day 1

DOX gRNA template

or

Day 2

DOX gRNA template

or

  Fig. 2    The  workfl ow   for iCRISPR-mediated knockin in hPSCs. Doxycycline treatment 24 h before the fi rst trans-
fection induces Cas9 expression in iCas9 hPSCs at Day 0. Co-transfection of gRNA and repair templates, either 
donor vectors or  ssDNAs  , on Day 1 and Day 2 results in the incorporation of exogenous sequences into the 
endogenous loci. After PCR genotyping on Day 5, cells with the highest targeting effi ciency will be re-plated as 
single-cells at a low density (~2000–5000 cells /100 mm dish) and allowed to grow for ~10–15 days. On Day 
15, single-cell colonies will be picked, amplifi ed, passaged into duplicated wells and subject to PCR screening. 
Correctly targeted clonal lines will be expanded and further validated       
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     Traditionally, the donor plasmid contains two homology arms 
fl anking a promoterless reporter gene and a drug- resistance   cas-
sette driven by a constitutively active promoter. The two arms con-
tain sequences that are homologous to the target locus. The 
constitutively active drug-resistance cassette enables enrichment of 
correctly targeted clones. However to avoid interference between 
the drug resistance cassette and neighboring genes, the drug- 
resistance cassette needs to be removed after identifi cation of cor-
rectly targeted clones. Due to the high effi ciency of the iCRISPR 
system, knockin reporter lines can be generated without the use of 
a drug selection cassette.    This signifi cantly reduces the time and 
effort required for establishment of knockin reporter hPSC lines.

    1.    Choose the target site for reporter integration in a way that 
ensures faithful reporter expression as well as minimizes the 
potential impact on endogenous gene expression and/or protein 
function. There are two general strategies for reporter gene inte-
gration, protein fusion (also called translational fusion) and pro-
moter fusion (also called transcriptional fusion) (Fig.  3 ). For 
protein fusion, a reporter gene is integrated into the same reading 
frame of the  target gene  , transcribed as a single mRNA driven by 
the endogenous promoter and expressed as a single  fusion pro-
tein  . The protein fusion reporter is useful for monitoring protein 
subcellular localization, protein dynamics, and protein–protein 
interactions of the  target gene  . However, the fused reporter may 
affect the folding, stability, and function of the endogenous pro-
tein. Without previous knowledge about the functional domain 
and protein structure of the target gene, we recommend inserting 
the reporter gene either at the N- terminus immediately after the 
start codon or at the C- terminus immediately after the coding 
sequence. For promoter fusion, a reporter gene is also integrated 
into the same reading frame and transcribed together with the 
target gene as a single mRNA driven by the endogenous pro-
moter. However, different from protein fusion reporter, promoter 
fusion reporter is preceded by either an IRES (internal ribosome 
entry site)    or a 2A peptide sequence (Fig.  3 ). Consequently, the 
reporter and target genes will be translated into two separate pep-
tides. Promoter fusion reporter refl ects the endogenous gene 
expression pattern and usually has minimal effects on the endog-
enous gene expression or protein function. However, it is not 
suitable to monitor the subcellular localization, protein dynamics, 
and protein–protein interactions of the target gene. Whether to 
make a protein fusion or a promoter fusion reporter depends on 
the intended application. For monitoring gene expression during 
hPSC differentiation, we are primarily concerned with dynamic 
changes in gene expression and less about the subcellular 
localization of the protein. Thus for this purpose we generally use 
the promoter fusion strategy and integrate the reporter gene at 

3.2.1  Donor Vector 
Design and Construction
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 the   C-terminus immediately after the coding sequence of the 
endogenous gene as this will have the least effect on endogenous 
protein function (Fig.  4a ).

        2.    After deciding the integration locus, PCR-amplify the two 
homologous arms (HA-L and HA-R) fl anking the integration 
locus using high fi delity  Herculase II Fusion DNA Polymerase   
( see   Note    1  ) and clone into a backbone vector. We generally 
use pBluescript, which contains multiple cloning sites and is 
relatively small, as the backbone vector.   

   3.    While the optimal length of the homologous arms has not 
been thoroughly investigated, approximately 500–1000 bp of 
homology arms on each side of the reporter gene are recom-
mended ( see   Note    2  ).   

   4.    Insert the reporter, for example a fl uorescent protein reporter, 
preceded by a 2A self-cleavage sequence (2A-reporter) between 
the two homology arms. Make sure the 2A-reporter sequence 
is fused in-frame to the last coding sequence of the  target gene   
(Fig.  4b ).    

ATG
3’UTR

STOP
Wild type 

N-terminal

C-terminal 

Intronic 
SA

Protein fusion

Promoter fusion

5’UTR

C-terminal 

2A
Intronic 

SA

N-terminal

2A

reporter

  Fig. 3     Schematics of protein and promoter fusion knockin strategies  . Here we illustrate typical targeting strate-
gies for creating protein and promoter fusion  knockin alleles  . For a protein fusion reporter, the reporter gene 
(in  green ) is fused in-frame to the N-terminus of the endogenous gene immediately after the start codon (ATG, 
in  red ), to the C- terminus   immediately after the last coding sequence or in the intronic region using a  splicing   
acceptor sequence (SA, in  orange ). For a promoter fusion reporter, the reporter gene and the endogenous locus 
is linked through a 2A peptide (2A, in  purple ) and thus two separate peptides will be produced. The promoter 
fusion reporter can also be integrated into the N-terminus, C-terminus or intronic region of the endogenous 
gene. Boxes are exons, with open boxes indicating the untranslated region (UTR), fi lled grey boxes indicating 
the coding sequence (CDS); connecting lines are introns       
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      We routinely use the  CRISPR design tool   developed by the Feng 
Zhang group at MIT (  http://crispr.mit.edu/    ). The software not 
only identifi es all possible CRISPR targets in an input DNA 
sequence but also uncovers potential off-target sites, thus predict-
ing gRNAs with the highest targeting specifi city. For each target 
locus, we recommend designing 3 gRNAs and selecting the gRNA 
that shows the highest targeting effi ciency for establishment of 
clonal lines (estimation of the targeting effi ciency is described in 
 step 5  of Subheading  3.2.3 ). 

 We have found that it is faster and more cost effective to gener-
ate gRNAs using an oligonucleotide, than through cloning into 
the commonly used  gRNA-expressing plasmids  . First, a 120 nt 
 ssDNA   oligo, which includes a T7 promoter sequence, a variable 
20 nt gRNA recognition sequence (N)20 (in red) and a constant 
gRNA backbone sequence can be directly synthesized and bought 
from commercial vendors. Next PCR-amplify the oligonucleotide 

3.2.2  Design 
and Production of gRNAs
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  Fig. 4    Generation of knockin reporter hPSC lines using i CRISPR  . ( a ) Schematics of the targeting strategy. In the 
presence of the donor vector, HDR results in the replacement of stop codon with 2A-reporter sequence. The 
PCR primers (F + R1 and F + R2) used for genotyping are indicated with  red arrows . (HA-L and HA-R indicate 
left and right homology arms). ( b ) Schematics of the cloning strategy. The left and right homology arms (HA-L 
and HA-R) and the 2A-reporter gene are cloned sequentially into the backbone vector. ( MCS  multiple cloning 
site). ( c ) Schematics of the gRNA production. A 120 nt  ssDNA   containing a 20 nt T7 promoter sequence (T7, in 
 black ), a variable 20 nt gRNA recognition sequence ((N)20, in red) and a constant gRNA backbone sequence 
(in  purple ) is PCR amplifi ed using T7 F and Tracr R universal primers ( red arrows ). The dsDNA PCR products 
will then be used as templates for in vitro transcription to produce the gRNAs. ( d ) Estimation of targeting effi -
ciency. The PCR primers (F + R1 and F + R2) are indicated in panel ( a ). Comparison of the PCR product (band 
a) and (band b) allows an approximate estimation (a/(a + b) x 100 %) of the targeting effi ciency by each gRNA       
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using the T7 F and Tracr R universal primers and use the PCR 
products as templates for in vitro transcription to produce the 
gRNAs (Fig.  4c ).

    1.    Use the online  CRISPR design tool   (http://crispr.mit.edu/) 
to design 3 gRNAs that target sequences at the appropriate 
genomic site. It is  highly   recommended to choose gRNAs that 
do not recognize any sequence present in the donor vector to 
prevent undesired  CRISPR/Cas9-mediated mutagenesis   after 
correct reporter gene integration.   

   2.    Order the 120 nt  ssDNA   oligos containing the desired 20 nt 
gRNA sequences directly from commercial vendors. Desalted 
purifi cation is suffi cient.   

   3.    PCR-amplify the 120 nt ssDNA oligos using the T7 F and 
Tracr R universal primers using  Herculase II Fusion DNA 
Polymerase   to produce dsDNA templates for T7 in vitro gRNA 
transcription.   

   4.    Examine the PCR product through electrophoresis using 2.5 % 
Agarose gel. Gel purify the desired dsDNA templates if non-
specifi c PCR products are detected.

 Primer  Sequence 

 T7 F  TAATACGACTCACTATAGGG 

 Tracr R  AAAAGCACCGACTCGGTGCC 

   PCR Reaction mix (50 μL)

 Component  Amount (μL) 

 ddH 2 O  35.5 

 5× Herculase II reaction 
buffer 

 10 

 dNTP mix (25 mM)  0.5 

 T7 F (10 μM)     1.25 

 Tracr R (10 μM)  1.25 

 120-nt  ssDNA   oligo (25 nM)  1 

  Herculase II fusion DNA 
polymerase   

 0.5 
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   PCR cycling conditions

 Cycle number  Denature  Anneal  Extend 

 1  94 °C, 2 min 

 2–31  94 °C, 20 s  60 °C, 20 s  72 °C, 1 min 

 32  72 °C, 2 min 

       5.    Use the MEGAshortscript T7 Transcription kit for gRNA syn-
thesis.   In vitro  t ranscription mix (20 μL)

 Component  Amount (μL) 

 T7 ATP  2 

 T7 CTP  2 

 T7 GTP  2 

 T7  UTP    2 

 T7 10× buffer  2 

 T7 enzyme mix  2 

 dsDNA template  8 

   Incubate for 4 h to overnight at 37 °C 
 Add 1 μL TURBO DNase and incubate for 15 min at 37 °C 

to digest the dsDNA template.   
   6.    Purify gRNA using the MEGAclear Transcription Clean-Up 

Kit following the manufacturer’s instructions, and elute gRNAs 
(typically ~50–100 μg) in 100 μL  RNase  -free water. When 
possible adjust concentration to 320 ng/μL (10 μM) and store 
at −80 °C until use.    

           Effi cient co-transfection of gRNA and dsDNA donor vector into the 
iCas9 hPSC cells is very important for the generation of knockin 
reporter hPSC lines using iCRISPR system. We have tested several 
commonly used transfection reagents along with  electroporation   
and fi nd that the highest and most consistent co- transfection effi -
ciency (~20 %) is achieved using  Lipofectamine 3000   ( see   Note    3  ).

    1.     Day 0 . Plate iMEFs on a gelatin-coated 24-well plate and treat 
60 % confl uent iCas9 hPSC with hPSC medium containing 
2 μg/mL doxycycline. This will allow optimal Cas9  expression   
at the time of transfection on Day 1.   

   2.     Day 1 . Wash the iCas9 cells with PBS w/o Ca 2+  and Mg 2+  and 
then dissociate hPSCs with TrypLE for 5 min at 37 °C. Once 
the cells are disaggregated, collect the cells in 10 mL of hPSC 
media and spin down at 200 ×  g  for 5 min. Resuspend cells at 
~0.25–1 × 10 6  cells/mL in hPSC medium with 5 μM ROCK 

3.2.3  Co-transfection 
of gRNA and Donor Vector 
in iCas9 hPSC Cells
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 inhibitor   and 2 μg/mL doxycycline ( see   Note    4  ). Re-plate 
0.5 mL of cell suspension into each well of a 24-well plate. 
Prepare duplicated wells for each gRNA used, and wells for the 
non-transfection control and the donor-only control. One well 
of the duplicated wells will be used for estimation of the target-
ing effi ciency and the other well will be used for re-plating. 

  First transfection.  For each gRNA, prepare separately:

   Mix 1: 50 μL Opti-MEM + 1 μL gRNA (320 ng) + 2 μL 
P3000 + 2 μL donor plasmid (2.5 μg).  

  Mix 2: 50 μL Opti-MEM + 3 μL Lipo 3000 reagent.  
  Mix 1 + 2, incubate for 5 min at RT and add 50 μL mixture drop-

wise into 0.5 mL hPSCs dilution in both duplicate wells.  
  For the non-transfection control, omit both gRNA and donor 

template.  
  For the donor-only control, add only donor template.      

   3.     Day 2.  Optional. Change hPSC medium with 2 μg/mL doxy-
cycline and perform the 2nd  transfection   using the same pro-
cedure as the 1st transfection.   

   4.     Day 3–4 . Change hPSC medium daily.   
   5.     Day 5.  Estimation of targeting effi ciency. 

 For lineage-specifi c genes that are only expressed in differenti-
ated cell types, the targeting effi ciency can be roughly esti-
mated by PCR amplifi cation of the targeted alleles. Collect 
genomic DNA from one of the duplicated wells using the 
DNeasy Blood & Tissue Kit. PCR-amplify the targeted alleles 
using an external primer (F) and an internal primer (R1), and 
the non-targeted allele using two external primers (F and R2) 
(Fig.  4d ). Although primers F + R2 may also amplify the tar-
geted allele, in our experience the non-targeted allele is prefer-
entially amplifi ed due to its smaller size. Identify the gRNA 
with the highest targeting effi ciency and use the corresponding 
well for expansion and screening of clonal lines. 

 PCR Reaction mix (50 μL)

 Component  Amount (μL) 

 ddH 2 O  35.5 

 5× Herculase II reaction 
buffer 

 10 

 dNTP mix (25 mM)  0.5 

 Forward primer (10 μM)  1.25 

 Reverse primer (10 μM)     1.25 

 Genomic DNA (100 ng/μl)  1 

  Herculase II fusion DNA 
polymerase   

 0.5 
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   PCR cycling conditions

 Cycle number  Denature  Anneal  Extend 

 1  94 °C, 2 min 

 2–36  94 °C, 20 s  N a  °C, 20 s  72 °C, 30 s 

 37  72 °C, 2 min 

   a Annealing temperature of the primer pair, ideally between 55 °C and 65 °C 

    For genes that are expressed in undifferentiated hPSCs, the per-
centage of cells expressing the fl uorescence reporter tag can be 
directly assessed through fl ow  cytometric   analysis.    

          1.     Re-plating.  hPSCs identifi ed with the highest targeting effi -
ciency in Subheading  3.2.3  are dissociated into single cells 
using TrypLE, resuspended in hPSC medium with 5 μM 
ROCK  inhibitor   and re-plated at ~2000–5000 cells per 
100 mm dish into dishes pre-seeded with iMEF feeders. 
 For genes that are  expressed   in undifferentiated hPSCs, enrich 
correctly targeted cells through Flow Activated Cell Sorting 
(FACS) and then re-plate them at a density of 10,000 cells per 
100 mm dish.   

   2.    Do not change medium the next day.   
   3.    Starting from 2 days after re-plating, change hPSC medium 

every day until colonies growing from single cells reach ~2 mm 
in diameter (~10 days).   

   4.     Colony picking.  Remove hPSC medium and add 10 mL PBS w/o 
Ca 2+  and Mg 2+  into the dish for a clearer visibility of the colonies. 
Mechanically dissociate the hPSC colonies into small clusters 
using 200 μL pipette tips, pick and plate single colonies in an 
uncoated 96-well plate containing 100 μL of hPSC medium with 
5 μM ROCK  inhibitor  . Each clone is further disaggregated by 
pipetting up and down 5 times and re-plated in duplicated 96-well 
plates (50 μL each) pre-seeded with iMEFs and containing 
100 μL of hPSC medium with 5 μM ROCK inhibitor. Alternatively, 
colonies could fi rst be cultured in one 96-well plate and then split 
into two 96-well plates when confl uent (in ~5 days). 

 Depending on the estimated targeting effi ciency in 
Subheading  3.2.3 , pick between 96 (targeting effi ciency >5 %) 
to 384 clones (targeting effi ciency <5 %). Media change and 
passaging can be performed using a multichannel aspirator and 
a multichannel pipette. 

 Change hPSC media for the 96-well plates daily. Use one of 
the duplicated 96-well plates for PCR screening in 3 days and 
the other plate for maintenance.   

3.2.4  Expansion 
and Screening of Clonal 
lines
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   5.     Genomic DNA extraction.  Remove media from the wells, wash 
once with PBS w/o Ca 2+  and Mg 2+  and add 35 μL of genomic 
DNA lysis buffer. After 5 min at RT, transfer the cell lysates 
into a 96-well PCR plate.    Seal the plate using a PCR fi lm 
sticker and incubate at 55 °C for 2 h followed by 5 min at 
95 °C to inactivate Proteinase K. Keep samples at 4 °C before 
the PCR screening step ( see   Note    5  ).   

   6.     PCR screening.  PCR-amplify using the same external primer 
(F) and internal primer (R1) used in Subheading  3.2.3 . Run 
25 μL of the PCR product in a 1 % agarose gel stained with 
EtBr. PCR products of the right size suggest proper targeting 
in clonal lines.   

   7.     Expansion of clonal lines.  Amplify the desired clonal lines from 
the maintenance plate for further validation.      

   After targeting, isolation of clonal lines and PCR genotyping, cor-
rectly targeted clonal lines are expanded and further validated. We 
recommend immunohistochemistry for expression of pluripotency 
markers (e.g., OCT4, SOX2, and NANOG), teratoma assay for a 
functional assessment of pluripotency, karyotype testing, and dif-
ferentiation into specifi c lineages to confi rm faithful reporter activ-
ity. We highly recommend performing Sanger sequencing of both 
the targeted and the non-targeted allele at the target locus. We gen-
erally detect the expected sequence at the targeted allele. However, 
indel mutations are sometimes detected in the non- targeted allele, 
and clones with these undesired mutations should be discarded. 

 Due to mismatch tolerance of  CRISPR gRNA paring   [ 18 ], there 
are concerns about the potential off-target mutagenic effects of the 
CRISPR/Cas9 system. The online  CRISPR design tool   (http://
crispr.mit.edu/) can be used to identify the potential off- targets fall-
ing in coding sequences for each gRNA and we typically select 10 top 
candidates for further analysis. PCR-amplify the genomic region 
(∼500 bp) fl anking the CRISPR off-target site using  Herculase II 
Fusion DNA Polymerase   and analyze by Sanger sequencing using a 
primer that binds within the PCR product. It is worth noting that 
our analysis so far has not revealed any off-target mutations at  sites 
  without perfect complementarity to the CRISPR/Cas9 target 
sequence. In agreement with our fi ndings, a recent high-coverage 
whole- genome   sequencing study failed to detect signifi cant incidence 
of off-target mutations in  CRISPR- targeted hPSC lines   [ 25 ].   

   The procedure to generate knockin epitope tagged hPSCs is simi-
lar to the procedure used to create reporter tags (Subheading  3.2 ). 
Expression of Cas9 is induced in iCas9 cells following administra-
tion of doxycycline. A gRNA for the target site and the exogenous 
sequence are delivered into the cells. Site-specifi c  DSBs   produced 
by Cas9 promote HDR and integration of the epitope tag into the 

3.2.5  Validation 
of Established Clonal Lines

3.3  Generation 
 of      Knockin Epitope-
tagged hPSCs Using 
iCRISPR
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 genome  . After two transfections the cells are re-plated at clonal 
densities.       Clonal lines are then isolated, expanded and genotyped 
using PCR. 

 One key difference from Subheading  3.2  is that due to the 
smaller size of the epitope sequence, a  ssDNA   can be used to pro-
vide the HDR template (the epitope tag fl anked by the homology 
arms). In addition a different transfection reagent, Lipofectamine 
RNAiMax is used to deliver the ssDNA and gRNA into the cells. 
Finally clonal lines identifi ed by PCR to have correct integration, 
are further validated using Sanger sequencing, IP and western blot. 

   For the generation of tagged proteins the location of the tag in 
reference to the protein is very important. The tag should be 
located so as to have minimal effect on tertiary structure and bio-
logical activity of the protein. At the same time the tag should be 
readily accessible on the surface of the natively folded protein. In 
deciding where to insert the tag it is best to follow  previous   studies 
that have already validated the generation of a functional  fusion 
protein  . In the absence of a previous study,       the safest strategy 
would be to generate lines that have the tag epitope attached to the 
N-terminal of the target protein, as well as lines that have the tag 
epitope attached to the C-terminal of the target protein (Fig.  5a ). 

3.3.1  Design of  CRISPR 
gRNAs      and Donor  ssDNA     

Wild type 

N-terminal

Wild type 

HA-L tag HA-R
Linker

tag

A

B

ATG
3’UTR

STOP
5’UTR

Linker
tag

tag
Linker

C-terminal

ATG
3’UTR5’UTR

HA-RHA-L
Linker

STOP

  Fig. 5    Generation of  epitope tag   knockin hPSC lines using i CRISPR  . ( a ) Knockin epitope tags can be targeted 
to the N-terminal or C-terminal of a protein. At the N-terminal the epitope tag is inserted right after the start 
 codon   and separated from the endogenous sequence by a linker sequence. At the C-terminal the epitope tag 
is inserted immediately before the stop codon with a linker sequence separating the epitope tag from the 
endogenous sequence. ( b ) Schema of the  ssDNA   donors used to generate knockin epitope tags       
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After these lines have been generated one can compare them to see 
if the tag infl uences the stability or biological function of the pro-
tein. This could be done using western blot, co-IP with known 
interacting proteins, and for DNA-binding proteins,  ChIP-qPCR  .

   When targeting the N-terminal of the protein, 3-4 gRNAs are 
chosen to cut near the start codon, so that after integration the 
start codon will immediately precede the epitope tag. When target-
ing the C-terminal of a protein, 3–4 gRNAs are  designed            to cut 
near the stop codon of the protein, so that after integration the 
epitope tag will be immediately before the stop codon (Fig.  5a ). 
Please refer to Subheading  3.2.2  for detailed instructions on the 
design and production of CRISPR gRNAs.  

   The donor template  consists      of three components: the left and right 
homology arms, the epitope tag sequence, and a short linker 
sequence. The smaller size of the epitope tag compared to a reporter 
transgene, allows smaller homology arms (less than 100 nt) to be 
used for the targeting. Thus the overall size of the donor template 
is typically between 150 and 300 nt, and a ssDNA donor, instead of 
a plasmid, can be used for the targeting experiment.

    1.    Each of the homology arms (left and right) is around 65 nt in 
length ( see   Note    6  ).   

   2.    For targeting the N-terminus, the left homology arm should 
stop after the start codon of the protein, and the right homol-
ogy arm should include the DNA sequence immediately after 
the start codon (Fig.  5b ). The sequence of the epitope tag is 
inserted between the homology arms ( see   Note    7  ), followed by 
a short linker sequence (e.g., 12 nt long). The linker sequence 
separates the epitope tag from the endogenous protein. This 
prevents the epitope tag from interfering with proper folding 
of the endogenous protein [ 26 ], and increases the  accessibility   
of the epitope to antibodies [ 27 ]. A linker sequence we have 
used is: GGAGGACTCGAC, which produces a four amino 
acid sequence of Gly-Gly-Leu-Asp.   

   3.    If targeting the C-terminus, the left arm should contain the 
sequence up to, but not including, the stop codon. This is fol-
lowed by the linker sequence and then the epitope tag. Lastly 
the right homology arm should begin with the stop codon 
(Fig.  5b ).   

   4.    The fi nal ssDNA oligo, containing the two homology arms, a 
linker sequence and the epitope tag, can be ordered directly 
from commercial vendors.       Desalted purifi cation is suffi cient.    

     The procedure for passaging the  cells      for co-transfection is the 
same as described in Subheading  3.2.3 . However, the transfection 
mixture is different. Perform co-transfection of donor ssDNA and 
CRISPR gRNA as follows:

3.3.2  Design of Donor 
 ssDNA     

3.3.3  Co-transfection 
of Donor  ssDNA   
and CRISPR gRNA
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   Mix 1: 50 μL Opti-MEM + 1 μL gRNA (320 ng) + 5 μL ssDNA 
(1.5 μg).  

  Mix 2: 50 μL Opti-MEM + 3 μL Lipofectamine RNAiMAX.  
  Mix 1 + 2, incubate for 5 min at RT and add 50 μL mixture dropwise 

into 0.5 mL dissociated hPSCs in one well of a 24-well plate.    

 The same  procedure      presented in  step 5  of Subheading  3.2.3  
can be used to evaluate the targeting  effi ciency   for the 
epitope-tag.  

   The procedure for isolating clonal lines, PCR screening and expan-
sion of clonal lines is the same as described in Subheading  3.2.4 .  

   We highly recommend  examining      both the targeted and non- 
targeted allele at the target locus by Sanger sequencing. This enables 
us to verify that the epitope tag sequence is intact and properly 
integrated in-frame with the protein sequence. We also verify that 
the non-targeted allele does not contain any unwanted mutations.

    1.    Collect genomic DNA of correctly targeted lines using the 
DNeasy Blood and Tissue kit.   

   2.    PCR-amplify the targeted and non-targeted alleles using a pair 
of external primers. 

 PCR Reaction mix (50 μL)

 Component  Amount (μL) 

 ddH 2 O  35.5 

 5× Herculase II reaction buffer  10 

 dNTP mix (25 mM)     0.5 

 Forward primer (10 μM)  1.25 

 Reverse primer (10 μM)  1.25 

 Genomic DNA (100 ng/μl)  1 

  Herculase II fusion DNA polymerase    0.5 

   PCR cycling conditions

 Cycle number  Denature  Anneal  Extend 

 1  94 °C, 2 min 

 2-36  94 °C, 20 s  N a  °C, 20 s  72 °C, 30 s 

 37  72 °C, 2 min 

   a Annealing  temperature      of the primer pair, ideally between 55 °C and 65 °C 

3.3.4  Expansion and PCR 
Based-screening of Clonal 
Lines

3.3.5  Sequencing 
Verifi cation of Targeted 
Clones
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        3.    Run 25 μL of the PCR reaction on a 1 % agarose gel stained 
with EtBr.   

   4.    Visualize the gel using a UV lamp. For correctly targeted 
clones there should be two bands, representing the targeted 
allele and the non-targeted allele. The targeted allele should be 
larger than the non- targeted   allele by the size of the epitope 
tag (generally less than 100 bp).   

   5.    Cut  out      the individual bands and purify DNA using the 
Purelink Quick Gel Extraction kit.   

   6.    Use one of the PCR primers for Sanger sequencing, or use a 
new sequencing primer that is within the PCR product ( see  
 Note    8  ).    

     The fi nal, and most important, test to validate the epitope tagged 
lines is to perform IP for the tag and then verify that the target 
protein is also pulled down.       This would involve fi rst performing an 
IP using an antibody against the epitope tag followed by a western 
blot with the antibody to the protein of interest. If it is challenging 
to detect the target protein due to lack of quality antibodies, one 
may perform the western blot against the tag epitope to verify that 
the epitope tagged protein is the same size as the target protein. 
Below we provide a protocol routinely used in our laboratory for 
detection of 3×FLAG tagged proteins. We strongly encourage 
users to optimize the protocol for their protein of interest, as it 
may require different procedures for cell lysis, IP and western blot.

    1.    Expand the clonal lines into a 100 mm dish.   
   2.    Use the Pierce Crosslink Magnetic IP/Co-IP kit for lysis and 

IP and follow the manufacturer’s protocol. Lyse one 100 mm 
dish per IP with 600 μL of the provided lysis IP buffer. Incubate 
the cell lysate with the FLAG antibody for 16 h at 4 °C. And 
elute with 100 μL of the provided elution buffer.   

   3.    For the western blot 30 μL total volume is run: 19.5 μL of IP 
sample, 7.5 μL LDS sample buffer and 3 μL of reducing agent. 
The samples should be denatured for 10 min at 70 °C prior to 
loading.   

   4.    Samples are run on NuPAGE Novex 3–8 % Tris–Acetate 
Protein Gels in NuPAGE Tris–Acetate SDS Running Buffer 
(20×) for 1 h at 120 V.   

   5.    Transfer is performed overnight at 30 V onto a nitrocellulose 
membrane.   

   6.    Wash the membrane in  TBST   and then incubate in blocking 
buffer (5 % nonfat milk in TBST) for 30 min at room 
temperature.   

   7.    Incubate the membrane with the FLAG antibody at a 1:2000 
dilution overnight at 4 °C.   

3.3.6  Validation 
of Targeted Clones Using 
 Immunoprecipitation   
and Western Blot
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   8.    Wash the membrane 3 times for 5 min each with TBST, and 
then incubate with HRP conjugated anti-mouse antibody 
(1:5000) for 1 h at room temperature.   

   9.    Finally develop the membrane  using      ECL reagent. Prior to 
exposure, excess liquid should be removed without drying the 
membrane.    Transfer the membrane to a clean sealed bag. 
Expose onto an autoradiography fi lm in a hypercassette.    

4                Notes 

     1.    Undesired mutations in homology arms arising during PCR 
amplifi cation may decrease the targeting effi ciency. We recom-
mend using the high fi delity  Herculase II Fusion DNA 
Polymerase   for PCR amplifi cation of homology arms and also 
later for PCR amplifi cation of the gRNA in vitro transcription 
template. One may substitute Herculase with other commer-
cially available high fi delity DNA polymerases.   

   2.    Traditional targeting procedures that do not utilize site-spe-
cifi c nucleases require homology arms of at least 5–12 kb for 
the insertion of reporter and selection cassettes and the target-
ing effi ciency can be further increased by using substantially 
longer homology regions (up to 100 kb) [ 28 ]. In most tradi-
tional targeting experiments, the donor plasmid typically con-
tains a long (~10 kb) and a short homology arm (~2–4 kb) for 
effi cient  homologous recombination   and also for convenient 
identifi cation of correctly targeted alleles by PCR genotyping 
at the shorter homology arm side. With the use of engineered 
DNA endonucleases, repair templates with much shorter 
homology arms (~500–1000 bp on each side) have been used. 
We have found that approximately 500 bp combined length of 
the homology arms (~250 bp on each side) is necessary to sup-
port effi cient CRISPR-mediated targeting of a 750 bp exoge-
nous sequence into an endogenous locus.   

   3.    In addition to  Lipofectamine 3000   and RNAiMAX, a number 
of other transfection methods have also been shown to work 
effi ciently in hPSCs [ 17 ,  19 ].   

   4.    Based on our experience with HUES8 and MEL1 hESCs, we 
recommend testing several cell densities for the co-transfection 
of gRNA and  donor   vector, for example plating 100, 250, and 
500 K cells per well in a 24-well plate and choosing the best 
condition for the establishment of clonal lines. After transfec-
tion, we regularly use a replating cell density of 2000–5000 
cells per 100 mm dish. These conditions may need to be 
adjusted for other hPSC lines.   

   5.    This simplifi ed protocol enables the extraction of genomic DNA 
for PCR screening without the use of phenol/chloroform 
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extraction and purifi cation. Combined with the use of 
multichannel pipettes, one can quickly screen a large number of 
clones. Based on our experience it is feasible for a single person 
to process up to 384 samples (four 96-well plates) at a time. This 
procedure works well as long as the primers are pre-tested before 
the targeting experiment.   

   6.    We have used homology arms that are around 65 nt in length. 
The targeting effi ciency may be increased by using longer 
homology arms, but this has not been systematically tested.   

   7.    Thus far we have tested attaching a 3×FLAG  epitope tag   to the 
protein of interest. However this strategy can be used for 
attaching a variety of other epitope tags such as poly-Arg, poly-
His, Strep-tag, c-myc-tag, HAT-tag, and His-tag. As long as 
the sequence of the tag remains under 100 bp the same proce-
dure as presented above can be used. For larger tags the size of 
the homology arms and the delivery of the exogenous sequence 
(as a  ssDNA   or as a donor plasmid) may need to be adjusted. 
The specifi c protein tag to use will depend on the protein of 
interest as well as the intended downstream analysis.   

   8.    If a nonsynonymous mutation is detected in the coding 
sequence of the protein in either the targeted or non-targeted 
allele we would advise to discard that particular clone. In some 
cases a mutation may occur in a non-coding regulatory region 
(e.g., promoter), in which case the clone may still be used if 
the mutation does not alter the expression of the affected allele 
(as determined by  qRT-PCR   for example).      

5    Future Applications 

 Here we present the protocols to integrate epitope and reporter 
tags within the  genome   of hPSCs using the  iCRISPR genome edit-
ing platform  . The same knockin strategy could be used for addi-
tional purposes. For example, targeting a fl uorescent or antibiotic 
tag into the coding  region   of a gene could be used to generate 
genetic knockouts. Specifi c deletions could be engineered to mimic 
a genetic disease or to dissect the contribution of particular protein 
domains for protein function. By inserting particular sequences 
one may even precisely modulate the DNA-binding, protein inter-
action or other specifi c activities of endogenous proteins. 
Furthermore, the  gene targeting   strategies presented here are also 
relevant to labs that use engineered nucleases other than CRISPR/
Cas or employ different strategies to deliver these nucleases into 
hPSCs. Finally we provide robust protocols to achieve relatively 
high rates of delivery for  ssDNA     ,  dsDNA plasmids   and  gRNAs  . 
These transfection procedures may have wider applicability such as 
potential uses in overexpression and lineage tracing studies.     
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  Abstract 

   RNA-Seq is the leading technology for analyzing gene expression on a global scale across a broad spectrum 
of sample types. However, due to chemical modifi cations by fi xation or degradation due to collection 
methods, samples often contain an abundance of RNA that is no longer intact, and the capability of cur-
rent RNA-Seq protocols to accurately quantify such samples is often limited. We have developed an RNA- 
Seq protocol to address these key issues as well as quantify gene expression from the whole transcriptome. 
Furthermore, for compatibility with improved sequencing platforms, we use restructured adapter sequences 
to generate libraries for Illumina HiSeq, MiSeq, and NextSeq platforms. Our protocol utilizes duplex- 
specifi c nuclease (DSN) to remove abundant ribosomal RNA sequences while retaining other types of 
RNA for superior transcriptome profi ling from low quantity input. We employ the Illumina sequencing 
platform, but this method is described in suffi cient detail to adapt to other platforms.  

  Key words     RNA-Seq  ,   Transcriptome  ,   Gene Expression  ,   Duplex-specifi c Nuclease  ,   Sequencing  

1      Introduction 

 RNA-seq methodology used for transcriptome analysis has been 
available for less than a decade [ 1 – 3 ], and there continues to be a 
need in the fi eld for approaches capable of quantifying the com-
plete transcriptome, regardless of size and structure. By selecting 
for  poly(A+) RNA  , standard protocols forgo completeness by uti-
lizing random priming [ 4 ], while neglecting small RNA (smRNA) 
such as  miRNA   [ 5 ,  6 ]. Furthermore, RNA-seq methods for 
stranded sequencing approaches to capture smRNA show signifi -
cant bias [ 7 ]. The protocol described in this chapter is  designed   to 
generate stranded quantitative sequence data for the entire tran-
scriptome, which encompasses RNA sizes ranging from 20 to 
20,000 nt [ 8 ]. The protocol can be used for intact, degraded, and 
FFPE  RNA   samples. Previous versions of this protocol have been 
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improved upon in order to allow sequencing on newer Illumina 
platforms ( HiSeq  ,  NextSeq  , and  MiSeq  ), incorporate low quality 
RNA and improve rRNA removal by  duplex-specifi c nuclease 
(DSN)   [ 9 ,  10 ]. In order to capture complete transcriptome data, 
we size fractionate total RNA and generate parallel complementary 
libraries for both  small RNA (smRNA <200 nt)   from native RNA 
and fragmented large RNA (FLgRNA >200 nt))    from total 
RNA. Alternatively, we describe how to generate  fragmented total 
RNA (FTRNA)   libraries without size fractionation, which is well 
suited for non-fragmented degraded and formalin-fi xed paraffi n- 
embedded (FFPE) samples. Adapter ligations to ssRNA preserve 
strandedness, which is necessary for identifying intragenic tran-
scripts. Following cDNA synthesis, libraries are converted to 
dsDNA during the PCR1 step, which works with low (100 ng) 
quantities of starting material and suitable for qPCR analysis in 
place of traditional qPCR protocols that require μg input quanti-
ties [ 10 ]. Custom Illumina compatible adapters and primers are 
designed to allow effi cient removal of adapter dimers and control 
duplex DNA hybrid stability during rRNA removal. High copy 
rRNA sequences are removed using  DSN   technology [ 9 – 11 ], 
which is based on  hybridization   kinetics and stringencies that do 
not target abundant adapter sequences at the ends of library inserts 
to be preserved for sequencing (Tables  1  and  2 ). The PCR2 step 
then completes library ends with barcodes for multiplexed sequence 
reads with Next Generation Sequencing. The chapter concludes 
with a description of library quantifi cations and pooling for multi-
plex sequencing on the Illumina platforms. The general workfl ow 
for this method is shown in Fig.  1  with a detailed library structure 
description in Fig.  2 . This approach is described in suffi cient detail 
to apply on other sequencing platforms.

2         Materials 

       1.    Tissue culture cells or other suitable source for RNA.   
   2.    Microcentrifuge.   
   3.    1.7 mL tubes.   
   4.    RNeasy Mini AllPrep kit (Qiagen).   
   5.    Ethanol (100 %).   
   6.    2-mercaptoethanol (BME).   
   7.    Qiashredder (Qiagen).   
   8.    RWT buffer (Qiagen).   
   9.    Bullet Blender Storm 25 (NextAdvance).   
   10.    1.5 mL Rhino tubes (MidSci).   
   11.    Magnetic 1.5 mL tube stand.      

2.1  RNA Isolation 
and Fragmentation

David F.B. Miller et al.
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              Table 1 
  Custom TruSeq adapters, primers and qPCR primer sequences   

 Assay  Adapter/Primer  Sequence 

 c-TruSeq 
Oligos a,b  

 TruSeq c-5′ adapter/
PCR1 primer 

 G*TTCAGAGTTCTACAGTCCGACGATC 

 TruSeq c-3′ adapter  /5rApp/TGGAATTCTCGGGTGC/3ddC/ 

 TruSeq c-RT/PCR1-3′ 
primer 

 G* GCACCCGAGAATTCCA   

 TruSeq PCR2 5′ primer 
(RP1) 

 A*ATGATACGGCGACCACCGAGATCTACACG
TTCAGAGTTCTACAGTCCGA 

 TruSeq PCR2 I-3′ primer 
(RPI#) 

 C*AAGCAGAAGACGGCATACGAGAT NNNNNN 
GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 

 qPCR 
Primers 

 5S rRNA forward primer  CGATCTCGTCTGATCTCGGAAG 

 5S rRNA reverse primer  AGGCGGTCTCCCATCCAAG 

 U6 snRNA forward 
primer 

 CGCTTCGGCAGCACATATAC 

 U6 snRNA reverse primer  TTCACGAATTTGCGTGTCAT 

 28S rRNA forward primer   TCAGACCCCAGAAAAGGTGTTG   

 28S rRNA reverse primer  TGATTCGGCAGGTGAGTTGTTAC 

 EEF1A1 forward primer  AAGTCTGGTGATGCTGCCATTG 

 EEF1A1 reverse primer  CCCAAAGGTGGATAGTCTGAGAAG 

  *, phosphorothioate bond, /5rApp/, 5′-adenylation; /3ddC/, 3′-dideoxy-C, bold  NNNNNN , the location of the 
reverse complement of the index sequence  

   12.    Nuclease-free water.   
   13.    RNeasy Minelute kit (Qiagen).   
   14.     RNase  -Free DNase kit (Norgen).   
   15.    NanoDrop 2000 (ThermoFisher).   
   16.    10× fragmentation reagent and stop solution (Ambion).   
   17.    2100 Bioanalyzer (Agilent).   
   18.    RNA 6000 Pico assay kit (Agilent).      

       1.    smRNA or FLgRNA in 17 μL nuclease-free water.   
   2.    0.2 mL PCR tubes.   
   3.    Thermocycler with a heated lid.   
   4.    Antarctic phosphatase (New England Biolabs).   
   5.    RNasin Plus (Promega).   

2.2  End Repair 
and Adapter Ligation

Complete Transcriptome RNA-Seq
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   6.    T4 polynucleotide kinase.   
   7.    10 mM ATP (Epicentre).   
   8.     RNase  -free water.   
   9.    RNeasy Minelute kit (Qiagen).   
   10.    T4 RNA Ligase 2, truncated KQ (New England Biolabs).   
   11.    TruSeq c-3′ adapter (5 μM) ( see   Note    1   and Table  1 ).   
   12.    TruSeq c-5′ adapter/PCR1 primer (10 μM) ( see   Note    1   and 

Table  1 ).   
   13.    T4 RNA Ligase 1 (New England Biolabs).      

       1.    0.2 mL PCR tube.   
   2.    Adapter ligated RNA in 10 μL RNase-free water.   
   3.    TruSeq c-RT/PCR1-3′ primer (25 μM) ( see   Note    1   and 

Table  1 ).   
   4.    Superscript RT III (Life Technologies).   
   5.     RNase   H (Life Technologies).   

2.3  Reverse 
Transcription 
and PCR1 
Amplifi cation

     Table 2  
  Hybridization stringencies for customized Illumina oligos for small RNA  TruSeq libraries     

 Custom smRNA v1.5 Oligos  T m - DSN   HYB  T m -PCR  %GC 

 TruSeq c-5′-adapter/PCR1 primer (same) 
 TruSeq c-5′-adapter/PCR1 primer overlap 
 TruSeq 5′ end (fi nal)    
 TruSeq c-3′ adapter 
 TruSeq c-RT/PCR1-3′ primer 
 TruSeq c-3′ adapter/TruSeq PCR1 c-3′ 

primer overlap 
 TruSeq PCR2-5′ primer (RP1) 
 TruSeq PCR2 I-3′ primer (RPI#) 
 TruSeq c-3′/TruSeq PCR2 I-3′ overlap 
 TruSeq 3′ end (fi nal) 

 50.9 

 61.1 
 48.4 
 48.4 

 64.1 

 64.1 

 62.0 

 65.3* 
 62.7 

 72.3 

 50.0 
 47.6 
 50.9 
 58.8 
 58.8 

 58.8 

 53.1 
 54.5 
 52.4 

 RT-PCR targets  T m -DSN HYB  %GC 

 5S  rRNA    76.4  59.5 

 28S rRNA  77.2  69.4 

   T  m , the temperature at which half of the complementary nucleic acid strands are double stranded under the salt condi-
tions described. PCR1 library ends were customized to avoid cutting by duplex-specifi c nuclease ( DSN  ) during removal 
of rRNA sequence inserts at 68 °C in 20 mM NaCl.  T  m  calculations were made using the IDT OligoAnalyzer 3.1 [ 11 ] 
with the appropriate oligo and salt concentrations. The DSN hybridization buffer contains 20 mM NaCl. Phusion PCR 
(PCR1 and PCR2) contains 50 mM KCl and 2 mM MgCl 2 . *, SuperscriptIII RT buffer contains 50 mM KCl and 
10 mM MgCl 2  (for the c-RT/PCR1-3′ primer in the RT reaction). The DSN hybridization  buffer   was adjusted to 
20 mM NaCl to allow rRNA sequences to become double-stranded at 68 °C ( T  m   >  76 °C) while protecting the common 
library ends generated in PCR1 as single-strands ( T  m   <  51 °C)  

David F.B. Miller et al.
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   6.    250 mM EDTA, pH 8.0.   
   7.    TruSeq c-5′ adapter/ PCR1   primer (25 μM) ( see   Note    1   and 

Table  1 ).   
   8.    100 mM dNTP mix.   
   9.    Phusion DNA polymerase (New England Biolabs).   
   10.    Thermocycler with a heated lid.   
   11.    DNA Clean and Concentrator kit (Zymo).   
   12.    Qubit dsDNA HS assay kit (Life Technologies).   
   13.    Bioanalyzer HS DNA kit (Agilent).      

CompleteTranscriptome RNA-seq

Total RNA

rRNA

Size Fractionate (Optional)

LgRNA (or Total RNA)smRNA/FFPE RNA
Degraded RNA

End Repair, Adapter Ligation
Reverse Transcription, PCR1

DSN (remove rRNA), 
PCR2 with Barcodes

Multiplex, RNA-seq
(HiSeq, MiSeq, NextSeq)

mRNA miRNA

Quantify Expression (RPKM), Splicing, Discovery

ncRNA, mRNA

Fragment LgRNA (or Total RNA)

  Fig. 1    General workfl ow for  RNA-Seq libraries  . Abbreviations:   DSN    Duplex-
specifi c nuclease,     smRNA  small  RNA   <200 nt,  FLgRNA  fragmented large RNA 
>200  nt  ,   RPKM    Reads Per Kb per Million reads (modifi ed from Miller et al., 2015)       
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       1.    Nuclease-free water.   
   2.    Thermocycler (2 chamber or additional thermocycler).   
   3.    Duplex-specifi c nuclease (Wako Chemicals).   
   4.    Custom DSN storage buffer: 28 mM Tris–HCl, 22 mM Tris 

base (pH 8.0 automatically,  see   Note    2  ).   

2.4   Duplex Specifi c 
Nuclease (DSN)   
Reduction of rRNA 
Sequences

RNA insert

5’ 3’TruSeq RNA-Seq Library
3’ 5’

Sense strand (RNA)

Index Seq

Index seq primer

RNA insert (fragmented FLgRNA, smRNA, FFPE, Degraded)

5’ 3’

5’ 3’

Sense Strand

Repair ends, ligate c-TruSeq adapters

TruSeq-c-RT/PCR1-3’PCR1 with  TruSeq c-PCR1-5’
Qiaquick Nucleotide Removal Kit (>17nt)

Sense Strand

DSN Normalization 
Zymo DNA Clean-Concentrator (>50bp)

Sense Strand
Antisense

TruSeq (RPI#) PCR2#-3’
( Barcode       ) 63 nt 5’

5’
3’

Sense Strand
Antisense

3’
5’

Next Gen Sequencing (Illumina HiSeq, NextSeq and MiSeq)

TrueSeq (RPI#) PCR2-3’
5’

TruSeq c-3’ adapterTruSeq c-5’ adapter

TruSeq c-3’ adapter

Rev Transcribe with TruSeq c-RT/PCR1-3’
then RNaseH

5’
3’

Sense Strand
Antisense

3’
5’
5’

3’
5’

5’
3’

Insert seq primer

5’ 5’

Antisense

5’

Sense Strand
Antisense

TruSeq c-PCR1-5’

3’
5’

5’
3’

5’

TruSeq-c-RT/PCR1-3’

5’

26 nt

26 bp 17 bp
PCR1 adapter dimer 43 bp
(miRNA + adapter = 63bp)

PCR2 adapter dimer 118 bp
(miRNA + library ends = 138 bp)

5’

TruSeq (RP1)-PCR2-5’ (50 nt)

TruSeq (RP1) PCR2-5’
63 bp

55 bp

TruSeq c-5’ adapter

PCR2 with TruSeq (RP1) PCR2-5’ and
(RPI#) PCR2-3’
Zymo DNA Clean-Concentrator (>50bp)

Quantify and Pool Barcoded Libraries 
for Multiplex Sequencing

  Fig. 2    Detailed description of library construction steps. This fi gure shows a detailed step-by-step library 
sequence modifi cations with adapter and primer locations and sizes including potential adapter dimers (modi-
fi ed from Miller et al., 2013)       
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   5.    Custom 10× DSN hybridization buffer : 200 mM NaCl, 
280 mM Tris–HCl, 220 mM Tris base, 30 % vol/vol PEG8000 
(40 % stock, Sigma) (pH 8.0 automatically,  see   Note    2  ).   

   6.    2× custom DSN reaction buffer: 28 mM Tris–HCl, 22 mM 
Tris base, 20 mM MgCl 2  (pH 8.0 automatically,  see   Note    2  ).   

   7.    2× custom DSN stop buffer: 500 mM NaCl, 200 mM EDTA, 
pH 8.0.   

   8.    Qiagen Qiaquick Nucleotide removal kit for smRNA libraries 
or Zymo DNA Clean and Concentrator for FLgRNA libraries.      

       1.    0.2 mL PCR tube.   
   2.     DSN   normalized library.   
   3.    TruSeq c-3′ PCR2 barcoded primer (25 μM) ( see   Note    1   and 

Table  1 ).   
   4.    TruSeq c-5′ PCR2 primer (25 μM) ( see   Note    1   and Table  1 ).   
   5.    100 mM dNTP mix (Bioline).   
   6.    Phusion DNA polymerase (New England Biolabs).   
   7.    Thermocycler  with   a heated lid.   
   8.    AMPure XP beads (Beckman Coulter).   
   9.    EB elution buffer (Qiagen).   
   10.    Qubit dsDNA HS assay (Life Technologies).   
   11.    2100 Bioanalyzer (Agilent).   

   12.    Bioanalyzer HS DNA kit (Agilent).      

       1.    PCR1 library.   
   2.     DSN   normalized PCR2 library.   
   3.    480 LightCycler (Roche).   
   4.    LightCycler 480 SYBR Green I Master (Roche).   
   5.    EB buffer (Qiagen).   
   6.    Tween 20 (Promega).   
   7.    5S rRNA qPCR primers ( see   Note    1   and Table  1 ).   
   8.    28S rRNA qPCR primers ( see   Note    1   and Table  1 ).   
   9.    EEF1A1 qPCR primers ( see   Note    1   and Table  1 ).   
   10.    U6 snRNA qPCR primers ( see   Note    1   and Table  1 ).   
   11.    Nuclease-free water.   

   12.    480 LightCycler 96-well plate (Roche).      

       1.    Qubit dsDNA HS assay (Life Technologies).   
   2.    2100 Bioanalyzer (Agilent).   
   3.    Bioanalyzer HS DNA kit (Agilent).   

2.5  PCR2 
Amplifi cation 
with Barcode

2.6  qPCR Validation 
of Library rRNA 
Sequence Reduction

2.7  Quantifi cation 
and Pooling of  RNA-
seq Libraries   
for  Multiplex RNA-seq  

Complete Transcriptome RNA-Seq
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   4.    EB buffer (Qiagen).   
   5.    Tween 20.   
   6.    Nuclease-free water.       

3    Methods 

    RNA-seq libraries   can be generated from total RNA (TRNA), 
FFPE  RNA  , degraded RNA (dRNA) or TRNA size fractionated 
into small RNA <200 nt (smRNA)    and large RNA >200 nt 
(LgRNA). Size fractionation of high quality RNA prior to library 
is necessary to  sequence   the complete transcriptome ( see   Notes    3  , 
  4  , and   5  ). Always wear gloves and perform all steps at room tem-
perature unless specifi ed otherwise. Purifi ed RNA should be stored 
at −80 °C or on ice between manipulations. Typical size distribu-
tions for RNA types and fractions are shown in Fig.  3 .

3.1  RNA Purifi cation

  Fig. 3    Bioanalyzer RNA pico chip profi les for input RNA. ( a ) Total RNA (TRNA), ( b ) small RNA (smRNA), ( c ) large 
RNA (LgRNA), ( d ) fragmented large RNA (FLgRNA), ( e ) u nfragmented degraded RNA (dRNA)  , ( f )  Formalin-fi xed 
paraffi n-embedded (FFPE) RNA  , ( g )  DNA contaminated dRNA (DNA/dRNA)  , ( h )  DNase treated DNA/dRNA         
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         1.    Add 600 μL RLT buffer containing 1 % BME (vol/vol) to the 
pelleted cells (~10 7 ) from one 60 cm 2  culture dish and transfer 
to a 1.7 mL tube.   

   2.    Rake the tube across a rack approximately 20 times or vortex 
the sample until the cells are completely lysed.   

   3.    (Solid tumor only) Lyse 25 mg of solid tumor in 600 μL 
RLT + BME solution using a Bullet blender 24 with 1.5 mL 
Rhino tubes.   

   4.    (Solid tumor only) Homogenize at speed 10 for 5 min twice. 
Chill sample on ice before each homgenization.   

   5.    (Solid tumor only) Place tube on magnetic stand for 5 min to 
remove residual metal dust and transfer sample to a clean tube 
before proceeding with the standard protocol ( step 6 ).   

   6.    Aliquot 300 μL of the lysed sample and store at −80 °C 
indefi nitely.   

   7.    (Optional) Centrifuge 300 μL of lysed sample through a 
Qiashredder column for 2 min at 17,000 ×  g . Resuspend the 
fl ow-thru thoroughly.   

   8.    Apply 300 μL of Qiashredder treated sample to the AllPrep AP 
DNA column and centrifuge for 20 s at 10,000 ×  g . DNA can 
be collected from the same sample from this column according 
to the manufacturer’s protocol if needed.   

   9.    Add 450 μL 100 % ethanol (60 % fi nal vol/vol) to the AP DNA 
column fl ow-through and bind RNA to RNeasy Mini column 
by centrifugation for 15 s at 10,000 ×  g . The fl ow-through can 
be stored at −80 °C for protein collection  according   to the 
manufacturer's recommendations.   

   10.    Wash the RNeasy column (centrifuge at 10,000 ×  g  for 15 s) 
with 500 μL RWT buffer containing ethanol according to the 
manufacturer ( see   Note    3  ).   

   11.    Wash the RNeasy column (centrifuge at 10,000 ×  g  for 15 s) 
with 500 μL RPE buffer containing ethanol according to the 
AllPrep kit instructions.   

   12.    Wash the RNeasy column (centrifuge at 17,000 ×  g  for 2 min) 
with 500 μL freshly prepared 80 % ethanol (vol/vol) diluted 
with nuclease-free water.   

   13.    In a clean 1.7 mL tube, centrifuge the RNeasy column at 
17,000 ×  g  for an additional 2 min to dry.   

   14.    Transfer RNeasy column to a clean collection tube and allow it 
to dry with the lid open for at least 10 min ( see   Note    6  ).   

   15.    Add 50–100 μL nuclease-free water to the RNeasy column, 
incubate at room temperature for 1 min and collect RNA by 
centrifugation at 17,000 ×  g  for 1 min. Resuspend the elution 

3.1.1  Total RNA 
Purifi cation

Complete Transcriptome RNA-Seq
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thoroughly. Add a second elution for high concentrations of 
expected RNA yields over 30 μg.   

   16.    Add 10 μL New England Biolabs 10 × enzyme incubation 
buffer and 2.5 μL  RNase  -free DNase to each 87.5 μL volume 
of RNA sample. Incubate the sample at 20–25 °C for 25 min 
( see   Note    7      ).   

   17.    Add 3.5 volumes (350 μL) RLT buffer and 1.5 volumes 
(675 μL) 100 % ethanol to 100 μL DNase-treated  RNA   sample 
( see   Note    4  ).   

   18.    Purify the RNA sample with the RNeasy Mini column as above 
( steps 9 – 15 ).   

   19.    Determine the RNA concentration with the NanoDrop ( see  
 Note    8      ).      

   Size fractionation into smRNA (<200 nt) and LgRNA (>200 nt) is 
required for a complete survey of the transcriptome by sequencing 
in parallel ( see   Note    4  ).

    1.    Transfer 1–5 μg total RNA to a new 1.7 mL tube and add 
nuclease-free water for a fi nal volume of 100 μL. Store addi-
tional RNA at −80 °C.   

   2.    Add 350 μL RLT with 1 % BME and 302 μL ethanol (fi nal 
40 % vol/vol) to the RNA sample.   

   3.    Centrifuge over an RNeasy Minelute column for 15 s at 
10,000 ×  g  to bind the large RNA fraction >200 nt (LgRNA). 
The small  RNA   (smRNA)    will fl ow through the column.   

   4.    Add 375 μL ethanol to the smRNA fraction (fi nal 60 % vol/vol) 
and bind to a clean RNeasy Minelute column by centrifugation 
for 15 s at 10,000 ×  g . Discard the fl ow-through.   

   5.    Wash the RNeasy columns containing smRNA and LgRNA 
(centrifuge at 10,000 ×  g  for 15 s) with 500 μL RPE buffer 
containing ethanol according AllPrep kit instructions.   

   6.    Wash the RNeasy columns (centrifuge at 17,000 ×  g  for 2 min) 
with 500 μL freshly prepared 80 % ethanol (vol/vol) diluted 
with nuclease-free water.   

   7.    Transfer the columns to clean 1.7 mL centrifuge tubes and 
spin at 17,000 ×  g  for an additional 2 min to dry.   

   8.    Transfer RNeasy columns to clean collection tubes and allow 
them to dry with the lid open for at least 10 min ( see   Note    6  ).   

   9.    Add 40 μL nuclease-free water to the columns. For low con-
centration samples use less water.   

   10.    Incubate the columns at room temperature for 1 min and centri-
fuge at 17,000 ×  g  for 1 min. Resuspend the elution thoroughly.   

   11.    Determine the RNA concentration with the NanoDrop ( see  
 Note    8      ).    

3.1.2  Size Fractionation 
of Total RNA (Optional)

David F.B. Miller et al.
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     Average  RNA-Seq library   inserts should be fragmented to around 
200 nt average size ( see   Notes    4   and   5  ).

    1.    Starting with 0.4–1 μg of large RNA (LgRNA) or total RNA 
(TRNA) in 36 μL add 4 μL 10× fragmentation reagent. This 
should provide adequate quantities of fragmented LgRNA 
(FLgRNA or  FTRNA  ); however, lesser starting quantities can 
be used ( see   Note    9  ).   

   2.    Incubate the mix at 70 °C for 4 min.   
   3.    Stop the reaction with the addition of 4 μL 10× stop buffer to 

the fragmentation reaction. This should generate an average 
size of 150–200 nt.    

     The RNeasy Minelute column uses the same purifi cation method 
as the RNeasy Mini column but is designed for smaller quantities. 
FLgRNA and smRNA use different ethanol concentrations for 
size selection.

    1.    Prepare aqueous RNA  for   RNeasy MinElute binding by add-
ing the following components: 44 μL RNA, 56 μL nuclease- 
free water, 350 μL RLT containing 1 % BME, 675 μL ethanol 
for smRNA (fi nal 60 % ethanol vol/vol) or 302 μL ethanol for 
FLgRNA or FTRNA (fi nal 40 % ethanol).   

   2.    Bind the RNA to an RNeasy Minelute column by sequential 
centrifugations for 15 s at 10,000 ×  g . Discard the 
fl ow-through.   

   3.    To the column add 500 μL RPE buffer containing ethanol 
according to the manufacturer and wash by centrifugation for 
15 s at 10,000 ×  g .   

   4.    Add 500 μL 80 % ethanol and wash the RNeasy Minelute col-
umn by centrifugation for 2 min at 17,000 ×  g .   

   5.    Transfer the column to a clean 1.7 mL centrifuge tube and 
spin at 17,000 ×  g  for an additional 2 min to dry.   

   6.    Transfer RNeasy column to a clean 1.7 mL collection tube and 
allow it to dry with the lid open for 10 min or more ( see   Note    6  ).   

   7.    Add 19 μL  RNase  -free water to the FLgRNA columns.   
   8.    Incubate the columns at room temperature for 1 min.   
   9.    Centrifuge the column at 17,000 ×  g  for 1 min to elute the 

RNA. Resuspend the elution thoroughly.   
   10.    Quantify the RNA fractions with the NanoDrop ( see   Note    8      ) 

and run 5 ng of each on the Bioanalyzer using the RNA 
6000 p kit according to the manufacturer’s recommendations. 
Typical RNA profi les are shown in Fig.  3 . Check the Total 
RNA, smRNA, FLgRNA, and LgRNA fractions with the 
Bioanalyzer  RNA   Pico kit for incomplete size fractionation.       

3.1.3  Fragmentation 
of Large RNA (LgRNA) or 
Total RNA (TRNA)

3.1.4  Purify RNA 
with RNeasy Minelute
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   The RNeasy MinElute cleanup binding step utilizes 60 % ethanol 
to avoid loss of smaller fragments. 

       1.    Combine the following reagents in a 0.2 mL PCR tube for 
phosphatase treatment of smRNA, FLgRNA, dRNA, or FFPE 
 RNA  : 17 μL RNA in  RNase  -free water, 2 μL 10× Antarctic 
phosphatase reaction buffer, 1 μL Antarctic phosphatase, 
0.5 μL RNasin Plus.   

   2.    Incubate the reaction in a thermocycler under the following 
conditions: 37 °C for 30 min, 65 °C for 5 min (inactivates the 
phosphatase), then 4 °C hold.   

   3.    Mix the following reagents on ice for the kinase reaction: 5 μL 
10× T4 polynucleotide kinase buffer, 5 μL 10 mM ATP, 
2 μL T4 polynucleotide kinase, 0.5 μL RNasin Plus, and 17 μL 
nuclease-free water.   

   4.    Add the T4 kinase reaction mix to the phosphatase-treated 
RNA in the thermocycler.   

   5.    Incubate the reaction for 60 min at 37 °C.   
   6.    Prepare aqueous RNA for RNeasy MinElute binding by add-

ing the following components: 50 μL end repaired RNA, 
50 μL nuclease-free water, 350 μL RLT containing 1 % BME, 
and 675 μL ethanol (smRNA, dRNA, or FFPE RNA) or 
302 μL (FLgRNA or  FTRNA  ).   

   7.    Bind the RNA to an RNeasy Minelute column by sequential cen-
trifugations for 15 s at 10,000 ×  g . Discard the fl ow-through.   

   8.    To the column add 500 μL RPE buffer containing ethanol 
according to the manufacturer and wash by centrifugation for 
15 s at 10,000 ×  g .   

   9.    Add 500 μL 80 % ethanol and wash the RNeasy Minelute col-
umn by centrifugation for 2 min at 17,000 ×  g .   

   10.    Transfer the column to a clean 1.7 mL centrifuge tube and 
spin at 17,000 ×  g  for an additional 2 min to dry.   

   11.    Transfer RNeasy column to a clean 1.7 mL collection tube and 
allow it to dry with the lid open for 10 min or more ( see   Note    6  ).   

   12.    Add 16 μL  RNase  -free water to the Minelute columns.   
   13.    Incubate the columns at room temperature for 1 min.   
   14.    Centrifuge the  column   at 17,000 ×  g  for 1 min to elute the 

RNA. Resuspend the elution thoroughly.   
   15.    Quantify the RNA with the NanoDrop ( see   Notes    6   and   8  ).      

       1.    Combine these components in a 0.2 μL PCR tube to denature 
and ligate the 3′ adapter with end-repaired smRNA, FLgRNA, 
 FTRNA  , dRNA, or FFPE  RNA   ( see   Notes    9   and   10  ): 14 μL 
end- repaired RNA (5 pmol) and 1 μL (5 pmole) of TruSeq 
c-3′ adapter (5 μM).   

3.2  End Repair 
and Adapter Ligations

3.2.1  End Repair

3.2.2  Adapter Ligations
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   2.    Heat denature the sample for 2 min at 70 °C and hold at 4 °C.   
   3.    Ligate the 3′ adapter in the following reaction mixture: 2 μL 

10× T4 RNA ligase 2 truncated KQ buffer, 1 μL RNasin Plus, 
and 2 μL T4 RNA ligase 2 truncated KQ (200 u/μL).   

   4.    Incubate the reaction overnight at 16 °C in the thermocycler.   
   5.    Heat denature the TruSeq c-5′ adapter (10 μM) for 2 min at 

70 °C and hold at 4 °C. This can be denatured just once if it is 
kept cold or frozen at −20 °C.   

   6.    Ligate the 5′ adapter in the following reaction mixture: 21 μL 
3′ adapter ligation, 1 μL 10× T4 RNA ligase 1 reaction buffer, 
3 μL 10 mM ATP, 1 μL TruSeq c-5′ adapter (10 μM), 2 μL 
 RNase  -free water, and 2 μL T4 RNA ligase 1 (20 U/μL).   

   7.    Incubate the reaction in the thermocycler for 2 h at 20 °C.   
   8.    Prepare aqueous RNA for RNeasy MinElute binding by add-

ing the following components: 30 μL RNA, 70 μL nuclease- 
free water, 350 μL RLT containing 1 % BME, and 675 μL 
ethanol (smRNA, dRNA, or FFPE  RNA  ) or 302 μL (FLgRNA 
or  FTRNA  ,  see   Note    4  ).   

   9.    Bind the RNA to an RNeasy Minelute column by sequential cen-
trifugations for 15 s at 10,000 ×  g . Discard the fl ow-through.   

   10.    To the column add 500 μL RPE buffer  containing   ethanol 
according to the manufacturer and wash by centrifugation for 
15 s at 10,000 ×  g .   

   11.    Add 500 μL 80 % ethanol and wash the RNeasy Minelute col-
umn by centrifugation for 2 min at 17,000 ×  g .   

   12.    Transfer the column to a clean 1.7 mL centrifuge tube and 
spin at 17,000 ×  g  for an additional 2 min to dry.   

   13.    Transfer RNeasy column to a clean 1.7 mL collection tube and 
allow it to dry with the lid open for 10 min or more ( see   Note    6  ).   

   14.    Add 11 μL  RNase  -free water to the Minelute column.   
   15.    Incubate the columns at room temperature for 1 min.   
   16.    Centrifuge the column at 17,000 ×  g  for 1 min to elute the 

RNA. Resuspend the elution thoroughly.       

         1.    Combine 2.5 μL TruSeq c-RT/PCR1-3′ primer (25 μM) and 
10 μL adapter ligated RNA sample in a 0.2 mL PCR tube.   

   2.    Heat denature the mixture for 2 min at 70 °C and hold at 4 °C 
or place on ice.   

   3.    Add the following Superscript RTIII components to the dena-
tured adapter-ligated RNA and TruSeq c-RT/PCR1-3′ primer 
mixture: 15 μL Superscript RTIII 2× reaction buffer and 
2.5 μL Superscript RTIII/ RNaseOut   enzyme mixture. Mix 
gently with a pipet on ice.   

3.3  Reverse 
Transcription 
and PCR1 
Amplifi cation

3.3.1  Reverse 
Transcription
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   4.    Incubate the reverse transcription reaction for 60 min at 50 °C 
and then hold the reaction at 4 °C.   

   5.    Add 1 μL  RNaseH   (10 U) and incubate for 20 min at 37 °C 
and hold at 4 °C or store at −20 °C.      

       1.    Add the following reagents to the reverse-transcribed cDNA 
reaction: 20 μL Phusion reaction buffer (5×), 2 μL TruSeq 
c-RT/PCR1-3′ (25 μM), 2 μL TruSeq c-PCR1-5′ (25 μM), 
1 μL 100 mM dNTP mix, 1 μL 100 mM EDTA pH 8 ( see  
 Note    11  ), 1 μL Phusion DNA polymerase (2 U), and 44 μL 
 RNase  - free water.   

   2.    Amplify the reaction using the following PCR conditions: 1 
cycle 98 °C for 30 s, 14–16 cycles at 98 °C 10 s, 55 °C for 30 s, 
and 72 °C for 30 s, then 1 cycle 72 °C for 10 min and 4 °C 
hold. Optimal amplifi cation cycles will yield 10–20 ng/μL in 
30 μL fi nal volume ( see   Note    11  ).      

   The Zymo DCC kit will  capture   dsDNA fragments over 50 bp. PCR1 
adapter dimers are 43 bp and will be removed while 20 nt  miRNA   
inserts with adapters will be 63 bp and will be retained (Fig.  2 ).

    1.    In a 1.7 mL tube, add fi ve volumes (500 μL) DCC DNA bind-
ing buffer and mix.   

   2.    Centrifuge the sample in a DCC column at 10,000 ×  g  for 30 s. 
Remove the fl ow-through with a pipet to avoid column 
contamination.   

   3.    Wash the column with 200 μL DNA was buffer by centrifuga-
tion at 10,000 ×  g  for 30 s.   

   4.    Repeat the wash step ( step 3 ).   
   5.    Air-dry the column ~5 min with the lid open and elute the 

DNA with 30 μL EB into a clean collection tube by centrifuga-
tion at 10,000 ×  g  for 30 s. Resuspend the elution thoroughly.   

   6.    Add 0.6 μL 5 % Tween 20 to the PCR1 sample.   
   7.    Determine the concentration with the Qubit fl uorometer and 

dilute and aliquot of the sample to 0.5 ng/μL in EBT (EB 
with 0.1 % Tween 20) ( see   Note    8  ).   

   8.    Run 1 μL on a Bioanalyzer HS DNA chip to confi rm the 
absence of adapter dimers. Typical PCR1 size distributions can 
be seen in Fig.  4a–d .

             DSN specifi cally cuts only double stranded nucleic acids that have 
hybridized in the limited 5 h hybridization due to high concentra-
tions, specifi cally rRNA sequences ( see   Notes    12   and Table  2 ).

3.3.2  PCR1 Amplifi cation

3.3.3  Zymo DNA Clean 
and Concentrator (DCC) 
Cleanup for TruSeq PCR1 
Reaction

3.4  Reduction 
of rRNA Sequences 
with  Duplex- specifi c 
Nuclease (DSN)  
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     1.    Combine the following components in a 0.2 μL PCR tube: 
100 ng PCR1 library (smRNA, FLgRNA, FFPE  RNA  , and 
dRNA) or 200 ng PCR1 for  FTRNA   and 2 μL custom 10× 
DSN hybridization buffer.   

   2.    Bring fi nal volume to 20 μL with nuclease-free water. This will 
utilize a  ssDNA   concentration of approximately 150 nM in the 
hybridization reaction ( see   Note    12  ).   

   3.    Mix the reaction with a  pipette   and centrifuge briefl y.   
   4.    Denature the hybridization mix at 98 °C for 2 min.   
   5.    Incubate the hybridization for 5 h at 68 °C.   
   6.    Preheat a 20 μL aliquot of custom 2× DSN reaction buffer in 

a separate thermocycler chamber at 60 °C.   

  Fig. 4    Bioanalyzer HS DNA profi les for PCR1 ( A, C, E, F   ) and PCR2 ( B, D, F, H   ) reactions generated from ( A ,  E ) 
smRNA, ( B ,  F ) FLgRNA, ( C ,  G )  unfragmented degraded RNA (dRNA)   and ( D ,  H ) unfragmented formalin- fi xed   
paraffi n-embedded RNA (FFPE)       

 3.4.1  DSN   Reduction 
of rRNA Sequences
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   7.    Add 1–2 μL of the DSN enzyme to the 2× DSN reaction buf-
fer at 60 °C and gently mix 2 ×.   

   8.    Immediately add 22 μL of preheated (60 °C) 2× DSN reaction 
buffer/enzyme mix to the hybridization reaction at 
68 °C. Gently mix the enzyme mix with the hybridization mix 
10×, transferring from the bottom to the top of the solution 
( see   Note    12  ).   

   9.    Incubate the DSN enzyme reaction for 15 min at 68 °C.   
   10.    Stop the DSN reaction by adding 41 μL of cold custom DSN 

2× stop buffer and store on ice until the cleanup or store at 
−20 °C.    

     Use the QIAquick nucleotide removal kit to retain  > 17 nt  ssDNA   
from the DSN reaction for smRNA libraries or Zymo DNA Clean 
and Concentrator for FLgRNA libraries ( see   Notes    13   and   14  ).

    1.    Add 840 μL of buffer PNI to the DSN reaction and bind 
sequentially (500 μL at a time) to the QIAquick column by 
centrifugation at 6000 rpm (3500 ×  g ) for 60 s.   

   2.    Remove the fl ow-through with a pipet and discard. Repeat 
 steps 1  and  2  until all the reaction is bound to the column.   

   3.    Wash the column with 700 μL PE  buffer   by centrifugation at 
6000 rpm (3500 ×  g ) for 60 s and discard the fl ow-through 
with a pipet.   

   4.    Spin the  column   for 60 s at 13,300 rpm (17,000 ×  g ).   
   5.    Place the column in a clean tube, air-dry for 5 min.   
   6.    Add 50 μL EB to the column and soak for 1 min.   
   7.    Elute the DNA by centrifugation at 13,300 rpm (17,000 ×  g ) 

for 60 s. Resuspend the elution thoroughly.    

      The barcode or index sequence is added with the TruSeq 
PCR2-I-3′ primer (RPI#) where I indicates the unique index 
sequence added to each separate library [ 14 ] (Fig.  2 , and Table  1 ) 
( see   Notes    13   and   15  ).

    1.    Add the following reagents to the  DSN   normalized library: 
50 μL DSN normalized library, 20 μL Phusion reaction buffer 
(5×), 2 μL TruSeq PCR2 I-3′ barcoded primer (25 μM), 2 μL 
TruSeq PCR2-5′ primer (25 μM), 1 μL 100 mM dNTP mix, 
1 μL Phusion DNA polymerase (2 U), and 24 μL  RNase  -free 
water.   

   2.    Amplify the reaction using the following PCR conditions: 1 
cycle at 98 °C for 30 s, 14–16 cycles at 98 °C for 10 s, 55 °C 
30 s, 72 °C 30 s, 1 cycle at 72 °C for 10 min and then 4 °C hold.   

   3.    Check the Illumina guide for multiplexing samples [ 9 ,  14 ]    

 3.4.2  DSN   Reaction 
Cleanup with QIAquick 
Nucleotide Removal Kit

3.5  PCR2 
Amplifi cation 
with Barcode
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        1.    In a 1.7 mL tube, add fi ve volumes (500 μL) DCC DNA bind-
ing buffer and mix.   

   2.    Centrifuge the sample in a DCC column at 10,000 ×  g  for 30 s. 
Remove the fl ow-through with a pipet to avoid column 
contamination.   

   3.    Wash the column with 200 μL DNA wash buffer by centrifuga-
tion at 10,000 ×  g  for 30 s.   

   4.    Repeat the wash step ( step 3 ).   
   5.    Air-dry the column ~5 min with the lid open  and   elute the 

DNA with 30 μL EB into a clean collection tube by centrifuga-
tion at 10,000 ×  g  for 30 s. Resuspend the elution thoroughly.   

   6.    Add 0.6 μL 5 % Tween 20 to the PCR1 sample.   
   7.    Determine the concentration with the Qubit fl uorometer and 

dilute and aliquot of the sample to 0.5 ng/μL in EBT (EB 
with 0.1 % Tween 20) ( see   Note    8  ).   

   8.    Run 1 μL on a Bioanalyzer HS DNA chip to confi rm the 
absence of adapter dimers and determine the average size of 
the TruSeq  library  . The typical size distribution for PCR2 
libraries is shown in Fig.  4e–f .       

   The  DSN    normalization   must be validated by  qRT-PCR   to ensure 
adequate reduction of the rRNA sequences ( see   Note    16  ). 

       1.    Dilute PCR1 and PCR2 DNA to 0.5 ng/μL with EB buffer 
containing 0.1 % Tween 20 (EBT).   

   2.    Combine the following reagents in a 96-well Roche 480 
LightCycler plate for qRT-PCR in triplicate: 5 μL diluted 
PCR1 or PCR2, 1 μL PCR primer mix (5 μM forward and 
reverse), 4 μL  RNase  -free water, and 10 μL LightCycler 480 
SYBR Green I Master mix.   

   3.    Mix each reaction (in triplicate) 5× with a pipette.   
   4.    Use the manufacturer’s  recommended    qRT-PCR   experimental 

design with a 60 °C annealing temperature.   
   5.    Analyze the rRNA  reduction      using the ΔΔC T  method [ 9 ,  10 , 

 13 ] ( see   Note    16  ).       

   The libraries must be accurately quantifi ed, pooled, diluted, and 
quantifi ed again before the fi nal dilution to be sequenced [ 14 ] 
( see   Note    13  ). 

       1.    Determine the concentration of the  libraries   to be pooled 
using the Qubit HS DNA assay kit ( see   Notes    8   and   15  ).   

   2.    Dilute the libraries to 0.5 ng/μL with EB buffer containing 
0.1 % Tween 20 (EBT), mix and wait for 5 min to degas.   

3.5.1  Zymo DNA Clean 
and Concentrator (DCC) 
Cleanup for TruSeq PCR2 
reaction

3.6  qPCR Validation 
of rRNA  Sequence      
Reduction in TruSeq 
Libraries

3.6.1   qPCR Assay 
for rRNA Reduction  

3.7  Quantify 
and Pool  Barcoded 
Libraries for Multiplex 
Sequencing  

3.7.1   Library 
Quantifi cation 
and Multiplexing 
with Barcodes  
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   3.    Run 1 μL of each diluted library on a Bioanalyzer HS DNA chip.   
   4.    Determine the average fragment size for each library in the 

Bioanalyzer Region table.   
   5.    Calculate the library concentration using the equation, 

nM = {[conc (ng/μL)] × (10 6  μL/L)}/MW (ng/nmole) such 
that MW dsDNA = [(size bp) × 607] + 158 = ng/nmole [ 9 ,  10 ] 
( see   Note    15      ).   

   6.    Dilute each library with EBT to a concentration of 17.5 nM, 
mix, wait for 5 min to degas, and combine equal volumes for 
multiplexing [ 9 ,  10 ,  14 ].   

   7.    Determine the fi nal concentration of the pooled libraries using the 
Qubit HS DNA assay kit and Bioanalyzer HS DNA chip as before.   

   8.    Check with the Illumina instrument operator for  instructions   
for library submission. Typically, for running on the Illumina 
 HiSeq  , add 35 fmol of the pooled  libraries   (2 μL of 17.5 nM) 
to 16.5 μL EBT with a fi nal volume of 18.5 μL to be run in a 
single fl ow cell lane.        

4                                                              Notes 

     1.    All adapters and PCR primers used for  library   generation were 
HPLC purifi ed by Integrated DNA Technologies. 
Phosphorothioate bonds were incorporated at the 5′ base to 
inhibit degradation. The 3′ adapter contains a pre-adenylated 
5′ end for ligation to the 3′ end of the RNA with T4 RNA 
ligase truncated KQ, and a dideoxy-nucleotide to avoid liga-
tion to the 5′ end of the RNA in the second ligation step. The 
3’ adapter should be aliquoted and stored at -80 °C to avoid 
degradation. All qPCR primers we purchased from Fisher with 
only salt free purifi cation. qPCR primers were designed to gen-
erate relatively small products (<100 bp) for better results with 
libraries constructed from degraded RNA samples. For all oli-
gos, concentrated stocks were suspended at 1 mM concentra-
tion with TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0). 
Working stocks for all adapters and PCR primers were gener-
ated by diluting concentrated stocks in nuclease-free water.   

   2.    Custom  DSN   (duplex-specifi c nuclease) buffers were gener-
ated by mixing 1 M Tris–HCl and 1 M Tris base stock solu-
tions at the appropriate ratio (1.28:1 respectively). This 
produced pH 8.0 without the introduction of unnecessary 
salts that alter hybridization stringencies and DSN activity.   

   3.    The Qiagen RNeasy or AllPrep kit can be supplemented with RWT 
buffer for the fi rst column wash instead of the supplied RW1 wash 
buffer in order to retain smRNA <200 nt on the column. Following 
all centrifugation steps, it is necessary to thoroughly resuspend the 
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nucleic acids from the bottom of the tube with a pipet or high 
molecular weight material will be reduced.   

   4.    RNA must be high quality (RIN > 8) for size fractionation and 
complete transcriptome sequencing. Total RNA can be size frac-
tionated by changing ethanol concentrations during the RNeasy 
column binding steps. Ethanol concentrations at 40 % in the 
 binding   buffer will capture RNA > 200 nt while 60 % ethanol will 
capture all RNA size fractions. If the RNA is not reasonably high 
quality producing RIN  values   <8, then libraries should be gener-
ated from a single pool of total RNA with 60 % ethanol in the 
binding buffer, which can result in the loss of some smRNA tran-
scripts when fragmented. The RIN value (RNA integrity num-
ber) can be determined by analyzing the total RNA on the 
Agilent Bioanalyzer RNA pico kit or a comparable assay.   

   5.    For optimal sequencing, average fragmented library inserts 
should be approximately 200 nt in size. For longer reads, the 
fragmentation times can be reduced. Library preparations 
require that total RNA or LgRNA be fragmented. If RIN val-
ues from the Bioanalyzer RNA pico assay are less than RIN 5, 
the sample should not be fragmented (personal communica-
tion, Pearlly Yan). Go directly to the end repair step.   

   6.    The RNeasy columns tend to retain a small amount of ethanol 
wash on the rim inside the column. Spinning the columns 
with the lid open during the dry spin step can result in cross- 
contamination. Remove residual ethanol from the rim with a 
small pipet tip and the column should be allowed to dry with 
the lid open on the bench to avoid a solvent peak on the 
NanoDrop quantifi cation, which will alter the reported con-
centration and 260:280 ratio. Pure RNA should give a ratio 
 > 2.0, lower values indicate DNA, protein or solvent 
contamination.   

   7.    DNase treatment is essential for accurate RNA concentration 
determination by the NanoDrop. DNA contamination can 
also be estimated by performing a Qubit HS DNA assay on the 
RNA samples. Typically, pure RNA samples will exhibit a con-
centration ratio  > 15 for RNA/DNA. Residual DNA will be 
present in the RNA fraction and promote adapter dimers due 
to excess adapters in the ligation steps coupled with low effi -
ciency ligation of the 3′ adapter to DNA. These dimers and 
DNA can interfere with downstream applications. DNase 
treatment, in solution, using the New England BioLabs DNase 
kit performed better than other kits and resulted in higher 
RNA recovery than “on column” DNase treatments.   

   8.    Use the Invitrogen Qubit fl uorometer or other suitable fl uoro-
metric assay for all DNA quantifi cations. RNA is most accurately 
quantifi ed by NanoDrop or similar spectrophotometric analysis.   

Complete Transcriptome RNA-Seq



160

   9.    Starting with 6 pmol of RNA is optimal for end repair reaction 
input given a 20 % loss during reaction cleanup steps. Based 
on the average sizes, this would indicate using 230 ng smRNA 
or 380 ng FLgRNA/FTRNA/FFPE  RNA   as optimal input 
quantities. If the starting quantities are lower, it is necessary to 
adjust the amount of TruSeq c-3′ adapter to be equal molar. 
Excess 3′ adapter will result in excess adapter dimers that can 
interfere with down-stream steps in the protocol. The pmole 
input quantity of ssRNA can be calculated with the following 
equations: MW = (# bases  × 320.5) + 159 = ng/nmole and MW 
(ng/pmole) = MW/1000.   

   10.    The T4 RNA ligase 2 truncated KQ enzyme should only 
attach the pre-adenylated/dideoxy  ssDNA   3′ adapter to the 
3′-OH end of RNA and not DNA effi ciently. However, 
 intergenic reads above 7 % and sense strand alignments below 
97 % (indicating gDNA inserts) have been observed from 
degraded RNA samples heavily contaminated with gDNA 
(personal communication, Pearlly Yan).   

   11.    The SuperscriptIII reverse transcription reaction converts the 
RNA to DNA. This reaction contains 10 mM MgCl 2  that will 
compromise the Phusion DNA polymerase PCR1 amplifi cation 
during PCR1. The fi nal MgCl 2  concentration has been opti-
mized with the addition of 1 μL 100 mM EDTA to the sample 
before the amplifi cation in order to minimize PCR sequence 
bias. Adjust the number of PCR cycles to produce 10–20 ng/μL 
for 200 bp inserts (30 μL total). Avoid over amplifi cation to 
prevent PCR biases that can produce redundant reads.   

   12.    rRNA sequences represent about 90 % of the sequences in most 
RNA samples. These sequences are eliminated with duplex-spe-
cifi c nuclease ( DSN  ) for effi cient sequencing. Hybridizing 
approximately one pmole of PCR1 for 5 h allows only high copy 
number sequences enough time to become double-stranded 
once denatured. Adapter dimers, DNA contamination, salts, 
temperature, and the mechanics of mixing the enzyme affect 
DSN target specifi city and activity. The salts, custom buffers and 
custom adapters have been designed to stabilize rRNA sequence 
hybrids and not the high copy library adapter sequences during 
the 68 °C hybridization ( see  Table  2 ). The 2× DSN reaction buf-
fer is preheated to 60 °C in a second thermocycler chamber 
where the  DSN   enzyme is added and gently mixed 2× by pipet-
ting from the bottom to the top. This 2× enzyme solution is then 
transferred (set the pipet at 25 μL) to the 5 h hybridization and 
gently mixed 10× and allowed to incubate for 15 min at 
68 °C. Gentle mixing is important to retain enzyme activity. 
Multiple reactions can be started and stopped sequentially.   

   13.    Sequencing depth of around 40 million reads is usually suffi cient 
for samples generated from smRNA, FLgRNA, or FTRNA. 
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Adding different barcodes (index sequences) to each separate 
library allows the user to combine samples into one lane and 
then demultiplexed following sequencing. Different sequencing 
platforms produce different total reads per library pool so the 
number of libraries to be pooled will be determined by the 
choice of platform being utilized. Follow the Illumina guide-
lines for barcode combinations when multiplexing fewer than 
12 samples per fl ow cell lane [ 14 ]. Adjust the number of PCR 
cycles to produce approximately 10–20 ng/μL concentrations 
for 200 bp inserts (30 μL total). Avoid over amplifi cation to 
prevent PCR biases and redundant reads.   

   14.    Following the DSN reduction of rRNA sequences in the 
library, the remaining transcriptome sequences will be  ssDNA  . 
The Zymo DNA Clean and Concentrator column will capture 
dsDNA 50 bp and larger but only 100 nt or larger ssDNA 
fragments. The Zymo DNA Clean and Concentrator column 
or AMPure XP beads can be used for DSN clean-up on 
FLgRNA libraries in section. Adapters plus 20 nt miRNA 
inserts are 63 nt ssDNA after DSN treatments. Consequently, 
smRNA containing miRNA and should be purifi ed from the 
DSN reaction with the Qiagen Qiaquick Nucleotide removal 
kit which will capture ssDNA sizes ranging from 17 nt to 
10,000 nt.   

   15.    It is necessary to accurately quantify libraries before and after 
pooling. The fi nal dilution will depend on the sequencing plat-
form. The protocol described here is for the Illumina  HiSeq   
platform. Quantifi cation will require calculating the molar 
concentration. Average library sizes are determined with the 
Agilent Bioanalyzer HS DNA kit using the Region Table or 
other suitable assay. Library concentrations for dsDNA can be 
determined with the following equations: nM = {[conc (ng/
μL)] × (10 6  μL/L)}/MW (ng/nmole) such that MW 
dsDNA = [(size bp) × 607] + 158 = ng/nmole. Following all 
centrifugations, samples should be gently suspended by pipet-
ting without introducing bubbles and allowed to degas.   

   16.    Test rRNA sequence abundance with 5S rRNA primers for 
smRNA libraries and 28 s rRNA primers for FLgRNA, dRNA, 
or  FTRNA   libraries. Use the EEF1A1 primer set (or other suit-
able housekeeping gene) as the reference gene for the 
FLgRNA/dRNA/FTRNA libraries and use the U6 snRNA 
primers as the reference for smRNA libraries. The qPCR prod-
ucts should be  < 100 bp for  accurate   Cp values. Fold reduction 
can be calculated using the ∆∆C T  method by comparing PCR2 
with PCR1 [ 9 ,  10 ,  13 ]. The 5.8S rRNA is not a suitable indi-
cator for smRNA libraries for most RNA sources. Adequate 
rRNA reductions are 50-fold and 200-fold for 5S and 28S 
rRNA sequences respectively. It may be necessary to calculate 
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the C T  values with the 480 LightCycler analysis program 
“Absolute Quantifi cation Analysis Using Fit Points Method” [ 10 ]. 
After the run, reset the upper cycle count appropriately to 
eliminate secondary infl ection curves from interfering with the 
C T  calculation. PCR1 libraries can also be used to determine 
transcriptional differences between experimental samples for 
RNA quantities well below traditional qPCR assays [ 10 ].         
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Chapter 11

Computational Methods and Correlation of Exon-skipping 
Events with Splicing, Transcription, and Epigenetic Factors

Jianbo Wang, Zhenqing Ye, Tim H. Huang, Huidong Shi, and Victor X. Jin

Abstract

Alternative splicing is widely recognized for playing roles in regulating genes and creating gene diversity. 
Consequently the identification and quantification of differentially spliced transcripts are pivotal for tran-
scriptome analysis. However, how these diversified isoforms are spliced during genomic transcription and 
protein expression and what biological factors might influence the regulation of this are still required for 
further exploration. The advances in next-generation sequencing of messenger RNA (RNA-seq) have 
enabled us to survey gene expression and splicing more accurately. We have introduced a novel computa-
tional method, graph-based exon-skipping scanner (GESS), for de novo detection of skipping event sites 
from raw RNA-seq reads without prior knowledge of gene annotations, as well as for determining the domi-
nant isoform generated from such sites. We have applied our method to publicly available RNA-seq data in 
GM12878 and K562 cells from the ENCODE consortium, and integrated other sequencing-based genomic 
data to investigate the impact of splicing activities, transcription factors (TFs) and epigenetic histone modi-
fications on splicing outcomes. In a separate study, we also apply this algorithm in prostate cancer in The 
Cancer Genomics Atlas (TCGA) for de novo skipping event discovery to the understanding of abnormal 
splicing in each patient and to identify potential markers for prediction and progression of diseases.

Key words RNA-sequencing, Graph-based exon-skipping scanner (GESS), Alternative splicing (AS), 
Epigenetic

1  Introduction

Exon-skipping is the most common alternative splicing mechanism 
known in mammals, and is a major contributor to protein diversity 
in mammals. Exon-skipping results in the loss of an exon in the 
alternatively spliced mRNA. In this mode, the middle exon in three 
consecutive exons may be included in mature mRNA under some 
conditions or in particular tissues, but may be excluded from the 
mature mRNA in others. Several computational methods have 
been developed to detect exon-skipping events, such as ASprofile 
[1], DiffSplice [2], and DSGseq [3]. Notably, all of the abovemen-
tioned methods have been proven to be useful in detecting novel 
motifs and deciphering the logics of alternative splicing [4]. To this 
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end, our group has developed a novel computational method, 
graph-based exon-skipping scanner (GESS) [5] (detection scheme 
summarized in Fig.  1). Remarkably, a notable advantage of our 
GESS method is reflected in the capability of capturing de novo 
exon-skipping events from raw RNA-seq data without the prior 
knowledge of gene annotation information [6].

Since the mechanism of transcriptional regulation in a cell is 
complex and dynamic, resulting in diverse outcomes under differ-
ent physiological conditions, many current approaches for the 
identification of skipping event depend on annotated exon infor-
mation. Not only such approaches may be unable to capture the 
full landscape of gene expression in situ, but also sometimes may 
lead to errors in the interpretation of results [7]. To the contrary, 

Fig. 1 The scheme of the exon-skipping event detection pipeline (GESS)

Jianbo Wang et al.
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our GESS method rather builds a splice-site-link graph from first-
hand, raw RNA-seq reads and then implements a walking strategy 
on this graph by iteratively navigating sub-graphs to reveal those 
with a pattern corresponding to an exon-skipping event. Thus, it 
can provide a more accurate and comprehensive picture of skip-
ping events associated with a particular physiological condition 
within a cell. Furthermore, we integrated the MISO model into 
our method to determine which isoform, skipping- or inclusion-
isoform, is the dominant transcript produced from a skipping-
event site, where the maintenance of the subtle balance between 
the two mRNA molecules is indeed vital to cellular function and 
dynamics.

2  Methods

The flowchart in Fig. 1 exhibits the general protocol used for the 
discovery of de novo splicing events.

	 1.	Input raw RNA-seq data set (either in single-end or pair-end 
sequences) in FASTQ or FASTA format.

	 2.	Bad reads with low quality and ambiguous bases were filtered 
out.

	 3.	Process the input data set in TopHat [8] and align the remain-
ing reads to the reference genome (either human hg18/19 or 
mouse mm8/9/10).

	 4.	Remaining set of unique aligned reads are composed of two 
subsets:
	(a)	 A set of aligned splicing-reads in which those reads are split 

between two genomic locations (presumably the putative 
exon’s junction).

	(b)	 A set of aligned constitutive-reads in which those reads are 
restrictively mapped to the same genomic location without 
splitting two locations (presumably within one exon).

	 1.	Assign the two chromosome positions of a junction revealed 
by a spliced-read into two nodes, each corresponding to the 
potential splice site.

	 2.	Link the two nodes with an edge in a dotted line if a certain 
number (default parameter is 5) of spliced-reads are above the 
defined threshold.

	 3.	Determine the direction of the line by examining the “GT-
AG” consensus rule for most vertebrate introns since the 
dotted-line edge corresponds to an intron gap.

	 4.	Calculate the coverage density among these splice sites using 
the set of constitutive-reads.

2.1  Tophat Splicing 
Aware Alignment

2.2  Introduction 
to GESS

Epigenetic Regulated Exon-skipping 
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	 5.	Link the two splice sites (nodes) with an edge in a solid line if 
higher density of reads between two splice sites. This type of 
edge should correspond to those exonic regions.

	 6.	Sort these splice sites along the chromosome coordinates, and 
calculate the depth of coverage for each segment between the 
two adjacent splice sites (see Note 1).
As shown in Fig. 1 (the grey oval shape), a walking strategy on 
this graph by iteratively navigating the sub-graphs with pattern 
introduce an exon-skipping event.

	 7.	Check the pattern which should conform to tri-exons with 
three solid edges, and the downstream exon would be con-
nected to the upstream exon indicated by the dotted edges.

	 8.	Ignore patterns that are not matched and move to next 
combination.

	 9.	Define these confirmed sub-graphs as exon-skipping events 
with two possible combinations:

the inclusion combination (termed as inclusion isoform)—
inclusion of the middle exon

the skipping combination (termed as skipping isoform)—
exclusion of the middle exon

	10.	Integrate a MISO [9] model to calculate the ratio of two iso-
forms and determine which isoform is a dominant event in this 
cellular condition using the following formula.
Ratio of two isoforms
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For more information on integration of MISO, please view the 
MISO website http://miso.readthedocs.org/en/fastmiso/.

3  Application to K562 and GM Cells (Lymphoid Origin)

To demonstrate its performance and applicability, we applied the 
GESS method to publicly available RNA-seq data from K562 and 
GM12878 cells [10]. These two cell lines are ENCODE Tier 1 cell 
lines with many publicly available “omics” datasets for further anal-
ysis available for each [11]. Using GESS, we identified 2750 exon-
skipping events in K562 cells and 3583 events in GM12878 cells. 
Of these events, 1299 were common to both cell lines (Fig. 2a). 
Comparing our results to the annotated exon-skipping database 
for the human genome, which contains 39,232 events and was 

Jianbo Wang et al.
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downloaded from the MISO website, we found only ∼30 % of our 
events overlapped previously annotated skipping events, with many 
unique skipping events being newly detected by our method. We 
also observed that a large amount of annotated events were not 
reported by GESS due to absent/low expression signals or splicing 
links in the RNA-seq data utilized. By comparing GESS-predicted 
skipping events with the annotated RefSeq database (UCSC HG19 
RefSeq), in which each exon-skipping event can be mapped to a 
specific annotated gene, we found 40 skipping events that were not 
assignable to any known genes in K562 cells, while 34 events 
lacked annotations in GM12878 cells. As an example shown in 
Fig. 2b, we observed three adjacent exons on chromosome 7 cov-
ered by numerous reads in which the alignment pattern of splicing-
reads revealed two isoforms with differential expression ratios in 
the two cell lines. However, no gene annotation information exists 
for this genomic region (see the RefSeq gene track in Fig. 2c) and 
no skipping event annotation can be found in the MISO dataset.

4  Application to PCa Patients

Prostate cancer (PCa) is the most common cancer and the second 
cause of cancer death among men in European countries [12]. In 
general, PCa is a highly heterogeneous disease, ranging from slow-
growing tumors to rapidly progressing highly aggressive carcino-
mas associated with significant morbidity and mortality. Therefore, 
early detection of PCa by measuring prostate specific antigen (PSA) 

Fig. 2 (a) A Venn diagram showing an overlapping comparison of exon-skipping events identified by GESS with 
the annotated events from the MISO website. (b) An exon-skipping event detected by GESS, in which both 
isoforms are present in K562 and GM12878 cells. (c) No RefGene information for this skipping event was found 
on the UCSC track (top panel); the coverage along the chromosome is also provided (bottom panel)

Epigenetic Regulated Exon-skipping 
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values at regular intervals in peripheral blood is important to iden-
tify men with aggressive cancers at early stage [13, 14] (Table 1).

Next generation RNA sequencing data were generated by The 
Cancer Genomics Atlas (TCGA) consortium for 558 samples, 48 
benign samples and 510 primary tumors. 96 of these samples rep-
resented advanced disease with Gleason grade ≥8 [15] (Table 2) 
and 33 cases had undergone progression as characterized by post-
operative biochemical recurrence. Data were downloaded from the 
UCSC Cancer Genome Browser (Fig. 3) (https://browser.cghub.
ucsc.edu/). Associated clinical data were downloaded from the 
TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/).

Our Initial sequencing studies together with GESS illustrated 
previously suggest that the upregulation of selected splicing regu-
lators in PCa, such as SAM68, SRSF1, or DDX5, directly contrib-
utes to the phenotype by altering the splicing profile of key genes 
[16]. The potential value of targeting specific components of the 
splicing machinery in cancer cells is also suggested by the antion-
cogenic properties of natural compounds, such as spliceostatin A 
(SSA), in a variety of cancer cell models. SSA targets the splicing 
factor 3B subunit 1 (SF3B1) of the spliceosome, thus affecting a 
large number of splicing events concomitantly [17]. The PCa 
genome appears to be characterized by rare SNP and frequent 
copy-number aberrations and genomic rearrangements. These 
rearrangements seem to arise in a punctuated manner, driving 
clonal expansion and evolution [18].

Table 1 
Prostate cancer stage

Stage I The tumor is small and only in the prostate

Stage II The tumor is larger and may be in both lobes of the prostate but is still confined to the 
prostate

Stage III The tumor has spread beyond the prostate to close by lymph glands or seminal vesicles

Stage IV The tumor has spread to other organs such as the bone and is referred to as metastatic 
cancer. If prostate cancer spreads, or metastasizes, to the bone, one gets prostate 
cancer cells in the bone

Table 2 
Gleason scores in categorical order

Gleason 6 The tumor tissue is well differentiated, less aggressive, and likely to grow more slowly

Gleason 7 The tumor tissue is moderately differentiated, moderately aggressive, and likely to 
grow but may not spread quickly

Gleason 8–10 The tumor tissue is poorly differentiated or undifferentiated highly aggressive and 
likely to grow faster and spread

Jianbo Wang et al.
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5  Correlation of Epigenetic Marks with Exon-skipping Events

It has been widely accepted that chromatin state plays essential 
roles in regulating gene expression. While DNA methylation, 
nucleosome occupancy and modifications of histone are all involved 
in determining the chromatin state, some transcription factors 
(TFs) can bind to specific regulatory regions to interact with 
chromatin and regulate gene expression [19]. All these factors can 
be considered as epigenetic features that regulate gene expression 
from a broad perspective [20].

In order to understand the relationship between chromatin 
modifications and exon skipping events, we analyzed “omics” data 
for two epigenetic marks associated with transcription elongation, 
H3K36me3 and H3K79me2 [21]. In GM12878 cells, we found 
that H3K36me3 is not only involved in coupling transcription and 
splicing events, but also in regulating splicing processes in a cell type- 
and perhaps gene site-specific manner. For H3K79me2, we observed 
that it is enriched over splice sites in the ψsml group versus the ψbig 
group in both cell types. Interestingly, with the exception of 
H3K79me2, the distribution of these transcription and epigenetic 
factors exhibited decreasing enrichment when progressing from an 
exon toward an intron. However, increasing enrichment was noted 
when progressing from an intron to an exon. This suggests these fac-
tors either may participate or show sensitivity to exon–intron bound-
ary establishment. Taken together, our analysis suggests that different 
epigenetic factors may introduce a variable obstacle in the process of 
exon–intron boundary establishment leading to skipping events.

Fig. 3 Screenshot of PCa raw RNA-seq data download page from the UCSC Cancer Genome Browser Data 
Portal (https://browser.cghub.ucsc.edu/)

Epigenetic Regulated Exon-skipping 
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6  Note

	 1.	For each specific segment carrying a robustly higher signal ratio 
(i.e., 3.0) relative to the flanking background segments, a solid 
edge is introduced as an exon gap. Thus a complex graph would 
be obtained with intronic or exonic links among the splice sites.
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Chapter 12

Tissue Engineering Platforms to Replicate the Tumor 
Microenvironment of Multiple Myeloma

Wenting Zhang, Woo Y. Lee, and Jenny Zilberberg

Abstract

We described here the manufacturing and implementation of two prototype perfusion culture devices 
designed primarily for the cultivation of difficult-to-preserve primary patient-derived multiple myeloma 
cells (MMC). The first device consists of an osteoblast (OSB)-derived 3D tissue scaffold constructed in a 
perfused microfluidic environment. The second platform is a 96-well plate-modified perfusion culture 
device that can be utilized to reconstruct several tissue and tumor microenvironments utilizing both pri-
mary human and murine cells. This culture device was designed and fabricated specifically to: (1) enable 
the preservation of primary MMC for downstream use in biological studies and chemosensitivity analyses 
and, (2) provide a high-throughput format that is compatible with plate readers specifically seeing that this 
system is built on an industry standard 96-well tissue culture plate.

Key words Microenvironment, Three-dimensional, Microfluidics, Perfusion, Multiple myeloma

1  Introduction

Most of the current knowledge in the field of cancer biology and 
drug discovery has had its roots in the two-dimensional (2D) cul-
ture of cell lines, in which the three-dimensional (3D) features and 
complex interplays between primary patient-derived tumor cells and 
their microenvironment have largely been overlooked. As a result, 
the vast majority of new anticancer drugs eventually fail in clinical 
trials, despite strong indications of activity in in  vitro preclinical 
studies [1, 2]. In particular, the use of primary cells is important 
since immortalizing human cells perturbs the cells’ gene expression 
profiles and cellular physiology [3–5]. Even if primary cells can be 
grown and maintained, resulting genomic expression and cellular 
physiology can be rather different in conventional versus microenvi-
ronment-mimicking culture systems. In this regard, as demonstrated 
over two decades ago by the seminal work of Bissel and colleagues 
[6–8], it is now well recognized that cancers are complex and het-
erogeneous and because of this the flat and hard plastic or glass 

1.1  Tissue 
Engineering Platforms 
in the Era 
of Personalized 
Medicine
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substrates commonly used for cell culture are not representative of 
their in vivo cellular microenvironment. Furthermore, the simplified 
culture conditions of 2D surfaces fall short on reproducing the 
mechanical and biochemical signals, as well as the cell–cell and cell–
extracellular matrix (ECM) adhesive interactions which can be of 
critical importance not only for the ex vivo preservation of primary 
healthy and tumor cells, as we and other have demonstrated [9–13], 
but for the maintenance of stromal cues known to confer tumors 
with drug resistance [14–17]. Therefore, there has been a rapidly 
growing recognition for the need to develop new technologies that 
can aid in the recapitulation of physiologically relevant human tissue 
and tumor models to: (1) conduct preclinical drug evaluation and 
reduce reliance on in vitro and animal models that correlate poorly 
with clinical outcomes, and (2) develop patient-specific diagnostic 
screening platforms to evaluate personalized treatment options for 
the optimum care of patients [18, 19].

Aside from the need for having a suitable microenvironment-
mimicking framework composed of functional and multicellular 
stromal elements of the tumor, it is anticipated that in vitro culture 
technologies aimed at recapitulating the tumor niche will also 
require significant advances on three major research fronts: (1) 
ability to work with primary human cells which are often difficult 
to maintain ex vivo, (2) developing and manufacturing of devices 
that can be easily used by laboratory personnel to evaluate cellular 
responses to drugs in a high-throughput manner, and (3) incorpo-
rate novel techniques for high-content screening.

On the development of static 3D tumor models, the most cur-
rently used technologies to date are: (1) embedding single cells or 
aggregates into a 3D biomaterial scaffold made up of collagen, 
alginate, or Matrigel™, (2) scaffold based culture systems, (3) 
monocellular and multicellular spheroids, and (4) cell printing. 
Each one of these techniques comes with its advantage and disad-
vantages [20–22], but although these systems are beneficial to 
maintain the 3D cellular architecture of tissues, they have limita-
tions in replicating the mechanical forces and mass transfer condi-
tions present within the in vivo tumor microenvironment. To this 
end, bioreactors culture systems have been designed to provide 
efficient mass transfer, computer-controlled systems provide online 
monitoring and automated control of environmental culture vari-
ables [23–26]. More recently, microfluidic-based perfusion culture 
has also emerged at the technological forefront to maintain physi-
ological levels of environmental parameters known to influence cell 
behavior and consequently drug responses [10, 13, 27–30].

However, it is anticipated that for their practical and wide use, 
perfusion culture devices will need to: (1) allow the convenient 
and spatiotemporal placement of cells and biomaterials in wells, (2) 
be able to support long-term (for up so several weeks) multicellular 
culture of primary patient-derived cells, which may be required for 
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functional 3D tissue replication as well as monitoring long-term 
cell response to drugs, and (3) be compatible with conventional 
tissue and cell characterization techniques including phenotyping, 
genotyping, and viability analysis. Ultimately, devices ought to be 
commercially available at reasonable costs relative to those utilized 
in traditional in vitro cultures.

Multiple myeloma (MM), an incurable hematological malignancy 
characterized by the incontrollable proliferation of plasma cells in 
the bone marrow, is the second most common blood cancer in the 
USA with a typical survival of 5–7 years [31, 32]. It is now well 
known that MMC interaction with stromal elements of the tumor 
microenvironment is involved in tumor progression and the devel-
opment of drug resistance; specifically, MMC preferential interac-
tion with osteoblasts (OSB) at the bone marrow endosteal layer 
has been implicated in conferring drug resistance and facilitating 
the survival of malignant plasma cells [33–36]. Because of this 
interplay, one of the major challenges associated with studying and 
evaluating new therapeutic approaches against MM and other can-
cers that likewise reside or metastasis to the bone/bone marrow 
space has been the lack of clinically relevant, high-throughput, and 
inexpensive ex  vivo models. The complex in  vivo bone marrow 
microenvironment consists of non-hematopoietic and hematopoi-
etic cells, together with an extracellular and liquid compartment 
organized in a complex architecture of sub-microenvironments 
(referred to as “niches”) within a protective coat of mineralized 
bone. The balance between these different compartments is pro-
foundly affected in multiple myeloma.

The replication of the intricate multiple myeloma niche has 
been examined using both in  vitro systems and in  vivo models. 
Yaccoby and Epstein developed the widely used xenograft model 
capable of supporting the growth of human myeloma [37, 38], 
using a severe combined immunodeficient (SCID) mouse implanted 
with human fetal bone fragments to create a humanized bone 
microenvironment (SCIDhu). Lawson and colleagues [39] just 
described a new xenograft model where NOD/SCID-GAMMA 
(NSG) mice were MMC injected via the tail vein homed to the 
bones of challenged mice resembling human disease. This simpli-
fied approach proved beneficial for the assessment of various drug 
treatments. However, the use of animals is overall time consuming, 
costly and has limited throughput capacity for drug evaluation. Also 
in recent years, a number of groups have developed different kinds 
of 3D culture systems with several key niche elements that allowed 
in vitro expansion of MMC [40, 41]. However, the conventional 
macroscale static culture nature of these approaches has not been 
suitable for assessing the potential contribution of perfusion-related 
mass transfer and shear stress effects on the dynamic progression 
and expansion of MMC.  The interactions of MMC within their 

1.2  Multiple 
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niche, in a perfused environment that can be controlled to emulate 
blood flow variations due to vascularization changes and recapitu-
lates the spatial and temporal characteristics of the complex tumor 
microenvironment, has yet to be incorporated and examined in 
in vitro models of multiple myeloma.

We described here the manufacturing and implementation of two 
prototype perfusion culture devices designed primarily for the cultivation 
of difficult-to-preserve primary patient-derived MMC, although their 
utility go beyond this particular application and tumor type. The first 
device consists of an OSB-derived 3D tissue scaffold constructed in a 
perfused microfluidic environment [10]. Because it is designed on a glass 
slide, this device is particularly suitable to conduct time-lapse microscopy. 
To begin to address some of the more complex challenges detailed above 
with regards to the broader implementation of perfusion culture sys-
tems, we also developed a 96-well plate-modified perfusion culture 
device for reconstructing several tissue and tumor microenvironments 
utilizing both primary human and murine cells [13, 42]. This culture 
device was designed and fabricated specifically to: (1) enable the preser-
vation of primary MMC for downstream use in biological studies and 
chemosensitivity analyses and, (2) provide a high-throughput format 
that is compatible with plate readers specifically seeing that this system is 
built on an industry standard 96-well tissue culture plate.

In both systems patient-derived bone marrow mononuclear 
cells are coculture with the human OSB cell line hFOB 1.19, which 
over time develops into a tissue construct constituted by cells and 
their deposited ECM and provides a critical biological substrate 
supporting MMC.

2  Materials

	 1.	Polydimethylsiloxane (PDMS, Sylgard 184 silicone elastomer 
kit, Dow Corning Corp.).

	 2.	PDMS curing agent (Sylgard 184, Dow Corning Corp.).
	 3.	Photoresist material (SU8 2025, Microchem, Newton, MA).
	 4.	Razor blade.
	 5.	Oxygen plasma (PDC-001, Harrick Plasma).
	 6.	1.2 mm-thick large glass slide (4″ × 3″, Ted Pella).
	 7.	Hand press (Schmidt Technology).
	 8.	Stainless steel pins (0.63  mm outer diameter, New England 

Small Tube).
	 9.	Stainless steel dispensing needle (Straight, 23 Gauge, 1–1/2″ 

Long, McMaster-Carr).
	10.	Stainless steel dispensing needle (Straight, 23 Gauge, 1/2″ 

Long, McMaster-Carr).

2.1  Patient-Specific 
3D Microfluidic Tissue 
Culture Device
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	11.	Polyethylene tubing (0.58  mm inner diameter, Scientific 
Commodities).

	12.	Poly ɛ-caprolactone (PCL).
	13.	1,1,1,3,3,3-hexafluoro isopropanol (HFIP).
	14.	Scotch tape.
	15.	Power voltage supplier (Gamma High Voltage Research, Inc.).
	16.	VOA vials open top with 0.125  in PTFE/silicone septa 

(40 mL, Fisher Scientific).
	17.	70 % (v:v) isopropanol (IPA).
	18.	Disposable 50  mL centrifuge tube vacuum filter (0.22  μm 

polyethersulfone membrane filter, Millipore).
	19.	Human fibronectin (BD Biosciences).
	20.	Syringe pumps (New Era Pump Systems, Inc.).
	21.	10 mL syringes (BD Biosciences).
	22.	40 μm cell strainer (Falcon).
	23.	Microcentrifuge Tube (Fisher Scientific).

	 1.	Human osteoblasts cell line hFOB 1.19 (CRL-11372, 
American Type Culture Collection).

	 2.	Patient-derived bone marrow mononuclear cells (BMMC).

Media components can be purchased from various suppliers such 
as GIBCO and Fisher Scientific.

	 1.	hFOB 1.19 culture medium: 1:1 mixture of Ham’s F12 
medium and Dulbecco’s modified. hFOB 1.19 culture medium 
is supplemented with 10 % fetal bovine serum (FBS) and 
0.3 mg/mL geneticin (G418) (Life Technologies).

	 2.	Bone marrow culture medium: RPMI with l-glutamine, plasma 
mixture (described below), 6.2 × 10−4 M of CaCl2, 1 × 10−6 M 
sodium succinate, 1 × 10−6  M hydrocortisone, 1 % penicillin–
streptomycin (p/s), 1 unit/mL heparin. The complete bone 
marrow medium is decontaminated using 50  mL centrifuge 
tube vacuum filter units (EMD Millipore).

	 3.	Complete RPMI-1640 medium (cRPMI): RPMI-1640 medium 
supplemented with 10 % FBS, 1 % p/s, 1 % l-glutamine.

	 4.	Phosphatase-buffered saline (PBS) (Sigma-Aldrich).
	 5.	Fluorescence-activated cell sorting (FACS) Buffer: dissolve 

10 g of bovine serum albumin (BSA, Sigma-Aldrich) and 0.2 g 
sodium azide (Sigma-Aldrich) in 1 L of 1× PBS. Mix with stir 
bar for 15 min and sterile filter.

	 6.	Plasma mixture (10 % v/v) is composed of 5 % pooled plasma 
from 5 to 10 patients, and 5 % normal human serum type AB 
(AB serum) (Atlanta Biologicals).

2.1.1  Cell Lines 
and Primary Cells

2.1.2  Medium 
Formulation and Other 
Solutions
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	 1.	Trypsin–EDTA solution (0.25 %) (GIBCO).
	 2.	Disposable polypropylene, RNase-free pellet pestle (Thomas 

Scientific).

Antibodies can be purchased from BD Pharmingen, Beckman 
Coulter and Miltenyi Biotec.

A flow cytometer with 5-color capability (minimum) is needed 
to perform flow cytometric analyses.

	 1.	Carboxyfluorescein diacetate, succinimidyl ester (CFSE) (Life 
Technologies).

	 2.	Mouse anti-human CD138-APC (allophycocyanin; APC, 
clone B-B4).

	 3.	Mouse anti-human CD38-PECy5 (clone LS198-4-3).
	 4.	Mouse anti-human CD38-PECy7 (clone IB6).
	 5.	Mouse anti-human CD56-PE-Vio770 (clone AF12-7H3).
	 6.	Mouse anti-human CD13-PE (phycoerythrin; PE, clone 

WM15). CD13 is an OSB extracellular marker not expressed 
by BMMC.

	 7.	7-aminoactinomycin D (7-AAD, Life Technologies).

Aside from the described materials in Subheading 2.1, the prepara-
tion of the 96-well plate culture platform also requires of the fol-
lowing materials.

	 1.	Polystyrene (PS) bottomless 96-well plate (Greiner Bio-One).
	 2.	Polycarbonate (PC) membrane sheets (Sterlitech).
	 3.	Hole puncher (6 mm, Miltex).
	 4.	Hole puncher (3/8-in., EK Tools Circle Punch).
	 5.	Stainless steel round punch (0.6 mm inner diameter, Technical 

Innovations).

3  Methods

Here we describe an approach for culturing difficult-to-preserve 
primary patient-derived multiple myeloma cells (MMC) using an 
osteoblast (OSB)-derived 3D tissue scaffold constructed in a per-
fused microfluidic environment and a culture medium supple-
mented with patient plasma.

As shown in Fig. 1a, a glass slide is integrated with an 8-chamber 
microfluidic housing made out of PDMS. As shown in Fig. 1b, each 
chamber had an elongated hexagonal prism shape (12 mm long, 
6 mm wide, and 0.2 mm deep) with a chamber volume of ~10 μL.

2.1.3  Tissue Dissociation

2.1.4  Antibodies 
and Stains

2.2  96-Well Plate 
Perfusion Culture 
Device

3.1  Microfluidic 
Device Fabrication
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	 1.	Design a system of eight elongated hexagonal prism shape 
(12 mm long, 6 mm wide, and 0.2 mm deep) using AutoCAD 
(computer-aid-design program from Autodesk).

	 2.	Use the CAD file to produce a high-resolution transparency 
using a commercial printer.

	 3.	Used the transparency sheet as a photomask to produce a mas-
ter. The master contains a positive pattern of eight elongated 
hexagonal prism shapes on a silicon wafer by photolithography 
with a photoresist material.

	 4.	Mix the PDMS precursor and the curing agent at a 10:1 ratio 
(~30 g total).

	 5.	Pour the mixture on the patterned silicon wafer; briefly spin at 
5 × g to allow the liquid to cover the round shaped silicon plate.

	 6.	Degas the mixture in a vacuum desiccator.
	 7.	Cure at 70 °C for 1 h to create the 300 mm thick PDMS top.
	 8.	Peel off the PDMS housing from the mold.
	 9.	Punch holes for each chamber through both inlet and outlet 

using a hand press and a stainless steel round punch (0.6 mm 
inner diameter) for fluidic connections.

Fig. 1 Microfluidic device with eight culture chambers. (a) Microfluidic device can be operated on a micro-
scope stage housed in an environmental chamber for in situ microscopy. (b) Chamber dimensions [28]. 
Reproduced from Lee J.H. et  al., 2012, DOI: 10.1016/j.biomaterials.2011.10.036, with permission from 
Elsevier Publishing Company

Tissue Engineering Platforms to Recapitulate the Tumor Microenvironment

http://dx.doi.org/10.1016/j.biomaterials.2011.10.036


178

	10.	Use scotch tape to cover the glass slide and only leave a 2 mm 
wide area (5 mm to the edge) along the longitudinal direction.

	11.	Make 8 % w/v PCL solution in 1,1,1,3,3,3-hexafluoro isopro-
panol (HFIP) as electrospinning solution.

	12.	Transfer the electrospinning solution to a syringe with a tip-
blunt capillary (inner diameter = 0.9 mm).

	13.	Push the solution out of the capillary tip by syringe pump 
(6 μL/min) and form the ultrathin filament under a strong 
electric field (1.5 kV DC) on the glass slide in 5 min.

	14.	Cut and peel off the Scotch tape and leave a 2 mm wide fiber 
mesh as a barrier near the chamber outlet (Fig. 6b) (see Note 1).

	15.	The PDMS housing and the PCL fiber mesh printed glass are 
treated with oxygen plasma for 1 min and then aligned and 
bonded to form the integrated device.

As shown in Fig. 2c, the perfusion culture device consists of: (1) a 
commercial PS bottomless 96-well plate (Model 655-000, Greiner 
Bio-One), (2) three PDMS layers with each layer being about 1 mm-
thick, (3) PC membrane disks with 6 mm in diameter and 11 μm in 
thickness, (4) a 1.2 mm-thick glass layer, and (5) PDMS plugs. As 
illustrated in Fig. 2b, the PDMS layers is used to: (1) provide a fluidic 
channel of 2 mm thick and 6 mm wide between the inlet and outlet 
chambers and (2) anchor the placement of the PC membrane disks in 
the culture chamber during the device assembly.

	 1.	Mix the PDMS precursor and the curing agent at a 10:1 ratio 
(~30 g total).

	 2.	Pour the mixture on the well plate lid.
	 3.	Degas the mixture in a vacuum desiccator.
	 4.	Place the bottomless 96-well plate onto the PDMS mixture 

placed on the plate lid while continuing to degas until no bub-
ble can be observed.

	 5.	Cure the assembly in an oven at 70 °C for 5 h.
	 6.	Remove the plate lid from the PDMS/well plate assembly.

	 1.	Mix the PDMS precursor and the curing agent at a 10:1 ratio 
(~30 g total).

	 2.	Pour the mixture on the well plate lid.
	 3.	Degas the mixture in a vacuum desiccator.
	 4.	10 g PDMS precursor mixture are then placed onto the outer 

side of plate lid and kept horizontal to mold the mixture into 
the 1 mm-thick flat layer upon curing.

	 5.	Cure the assembly in an oven at 70 °C for 5 h.
	 6.	Peeled off cured PDMS layers from plate lids.

3.2  Well Plate-Based 
Perfusion Culture 
Device Fabrication

3.2.1  PDMS Layer 1 
Fabrication (Fig. 3)

3.2.2  PDMS Layer 2 
and 3 Fabrication (Fig. 3)
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	 1.	Mix the PDMS precursor and the curing agent at a 10:1 ratio 
(~30 g total).

	 2.	Transfer the mixture on the well plate lid.
	 3.	Degas the PDMS mixture in a vacuum desiccator.
	 4.	Place the bottomless 96-well plate onto the PDMS mixture 

placed on the plate lid without degassing.
	 5.	Cure the assembly in an oven at 70 °C for 5 h.
	 6.	Detach the PDMS structure from bottomless 96-well plate 

and well plate lid.
	 7.	Cut with a blade to separate column shape PDMS structures as 

plugs.
	 8.	Punch a hole through the center of plugs using a hand press 

and a stainless steel round punch (0.6 mm inner diameter).

3.2.3  PDMS Plugs 
Fabrication

PDMS Plugs

Bottomless 96-well plate

PDMS Layer  1 with 
PC  Membranes

PDMS Layer 2

PDMS Layer 3

Glass Layer 

(C)

(E)

(A)

MMC OSB

PC Membrane (pore size: 1 µm)

(D)

(B)

Inlet Outlet

PDMS

PS

Inlet chamber

Outlet chamber

Fig. 2 96-well plate-based perfusion device. (a–c) Schematic representations of device design features and 
fabrication steps. (d) Schematic illustration of MMC seeding onto OSB scaffold. (e) Actual device, showing 
polyethylene tubing connected to the stainless steel pins at the inlet and outlet chambers. The metal pins are 
connected to the PDMS plugs. Reproduced from Zhang W. et al., 2015, DOI: 10.1039/c5lc00341e [42], with 
permission from The Royal Society of Chemistry Publishing Company
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	 1.	PDMS Layers 1, 2, and 3 is physically aligned and stacked by 
hand. A hole puncher (6  mm) is used to punch out holes 
through the three PDMS layers using a stainless punch die 
with a diameter of 6 mm (i.e., same as the diameter of wells).

	 2.	In order to make 6 mm wide microfluidic channels between 
the inlet and the outlet chambers, the channel areas of the 
PDMS Layer 3 are cut using a razor blade.

	 1.	Separate PDMS layers 1, 2, and 3 by hand.
	 2.	Cut PC membrane disks from PC membrane sheets using a 

hole puncher (3/8-in.).
	 3.	Place PC membrane disks onto the bottom surface of PDMS 

Layer 1.
	 4.	Bond PDMS Layer 2 to the bottom surface of PDMS Layer 1 

while sandwiching the PC membrane disks using oxygen 
plasma treatment.

	 5.	Bond PDMS Layer 3 to the bottom surface of PDMS Layer 2 
using oxygen plasma treatment.

	 6.	Bond the large glass slide to the bottom surface of PDMS 
Layer 3 using oxygen plasma treatment.

3.2.4  PDMS Layer 
Modification (Fig. 4)

3.2.5  Device Assembly 
(Fig. 5)

PDMS Layer 1

Well plate  Lid

PDMS Solution

WP Insertion into 
PDMS Solution

Vacuum 
Degassing

PDMS Curing & Lid 
Separation

PDMS Curing & Lid 
Separation

PDMS Solution

PDMS Layer 2 & 3

Well plate Lid

PDMS Layer 1 Fabrication PDMS Layers 2 & 3 Fabrication

PDMS Curing & Lid 
Separation

PDMS Plug
Preparation

96 Bottomless well plate

PDMS Solution

Well plate  Lid

Well plate  Lid

WP Insertion into 
PDMS Solution

PDMS Plugs Fabrication

ExtrusionPunching

Cutting

Pin Insertion

PDMS Plugs

96 Bottomless well plate

Fig. 3 Schematic illustrations of fabricating PDMS parts for microfluidic connections. Reproduced from Zhang 
W. et al., 2015, DOI: 10.1039/c5lc00341e [42], with permission from The Royal Society of Chemistry Publishing 
Company
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PDMS Layers 
Alignment

Hole Punching

PDMS Layers 
Separation

Fluidic Channel Cutting 
on PDMS Layer 3

PDMS Layers Modification

PDMS Layer 2
Bottom View

PDMS Layer 3
Bottom View

Fig. 4 Schematic illustration of modifying PDMS parts. Reproduced from Zhang 
W. et al., 2015, DOI: 10.1039/c5lc00341e [42], with permission from The Royal 
Society of Chemistry Publishing Company

	 1.	Prepare 0.1 mg/mL human fibronectin in PBS.
	 2.	Maintain hFOB 1.19 cells at 34 °C, 5 % CO2 incubator until use.
	 3.	Autoclave stainless steel pins and stainless steel dispensing nee-

dle prior to culture.
	 4.	Decontaminate each culture compartment. To prepare the 

microfluidic tissue culture device, pipette 20 μL of 70 % IPA 
into each culture chamber to sterilize the entire chamber. To 
prepare the well plate-based perfusion culture device, pipette 
300 μL of 70 % IPA into all the inlet and outlet chamber wells 
to fill and sterilize the entire fluidic passage (see Note 2).

	 5.	After washing 3× with IPA, rinse the culture compartments of 
each device 3× with PBS as described in step 4.

3.3  3D Multiple 
Myeloma Tissue Model 
Construction

3.3.1  Ossified Tissue 
Construction
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Device Assembly

Membrane 
Placing

Well plate w. PDMS Layer 1

Plasma 
Bonding

PDMS Layer 2
Bottom View

Plasma 
Bonding

Plasma 
Bonding

PDMS Layer 3
Bottom View

Layer 1 & PC 
Membrane
Bottom View

6mm
18.7mm 2m

m
4m

m
6.5mm

Glass Layer

Fig. 5 Schematic illustration of device assembly. Reproduced from Zhang W. et  al., 2015, DOI: 10.1039/
c5lc00341e [42], with permission from The Royal Society of Chemistry Publishing Company

	 6.	Coat with human fibronectin the culture chambers. To this 
end, pipette 20 μL of human fibronectin into each chamber of 
the microfluidic device and 30 μL in each of the inlet chambers 
of plate-based perfusion culture device. Incubate at 1  h at 
room temperature.

	 7.	Rinse the fluidic passage of each device 2× with PBS by pipet-
ting in the same manner as in step 4.

	 8.	To prepare the devices for cell seeding, replace the PBS by pipet-
ting 20 μL of hFOB 1.19 growth medium into each chamber of 
the microfluidic tissue culture device. For the well plate-based 
perfusion culture device, replace the PBS in the inlet chamber 
with 250 μL of hFOB 1.19 growth medium by pipetting.

	 9.	Seed ~2 × 104 hFOB 1.19 cells into each chamber of the micro-
fluidic tissue culture device by pipetting 10 μL of the cell sus-
pension. To cover the culture wells of the well plate-based 
perfusion culture device, seed ~2 × 104 hFOB 1.19 cells into 
each well by pipetting ~50 μL of the cell suspension. Incubate 
at 34 °C, 5 % CO2 incubator for 2 h.

	10.	Fill 5  mL of hFOB 1.19 growth medium into each syringe; 
make sure to remove all the bubbles in the syringe (see Note 3).

	11.	Connect syringe with stainless steel dispensing needle (1/2″ 
Long), which is connected with polyethylene tubing (1 m long).
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	12.	To setup the inlet connections of the culture chambers of the 
microfluidic tissue culture device, insert 1/3 of a stainless steel 
pin (0.63 mm outer diameter) into the other side of polyethyl-
ene tubing (0.58 mm inner diameter, 1 m long) (Fig. 1a). For 
the well plate-based perfusion culture device, connect the 
PDMS plugs and polyethylene tubing (0.58 mm inner diame-
ter, 1 m long) through the stainless steel pins (0.63 mm outer 
diameter, Fig. 2) (see Note 4).

	13.	To setup the outlet connections of the culture chambers of the 
microfluidic tissue culture device, insert 1/3 of a stainless steel 
pin (0.63 mm outer diameter) into one side of polyethylene 
tubing (0.58 mm inner diameter, 20 mm long) (Fig. 1a). In 
the well-plate perfusion device, the outlet is setup by connect-
ing the PDMS plugs and polyethylene tubing (0.58 mm inner 
diameter, 20  mm long) through the stainless steel pins 
(0.63 mm outer diameter) (Fig. 2).

	14.	Lastly, connect the inlet and outlet connections to each culture 
chamber of the microfluidic tissue culture device by gently insert-
ing the corresponding stainless steel pins into the inlet and outlet 
ports in the PDMS (Fig. 1b) using forceps. For the well plate-
based perfusion culture device, place the PDMS plugs (Figs. 2c 
and 3) into corresponding culture chambers using forceps.

	15.	Connect 8–12 outlet chambers with one VOA vial by inserting 
the outlet polyethylene tubing through the silicone top of the 
VOA vial.

	16.	Place eight syringes in a syringe pump which can be used to 
control the flow rate of culture medium.

	17.	Culture hFOB 1.19 cells for 4 days using flow rate of 0.25 μL/
min.

The bone marrow aspirate is collected in BD Vacutainer® ACD 
solution A tubes (8.5  mL, Ref# 364606). To isolate BMMC a 
Fricoll density gradient separation is conducted as follows:

	 1.	Carefully layer the contents of one tube of bone marrow aspi-
rate over 15 mL of Ficoll-Paque Plus (Amersham Biosciences) 
in a 50 mL conical tube (see Note 5).

	 2.	Centrifuge at 400 × g for 30–40 min at 20 °C in a swinging- 
bucket rotor with break off.

	 3.	Aspirate the upper layer and transfer into a new conical tube. 
This upper layer contains the patient’s plasma, which is used to 
prepare the bone marrow culture medium. The subsequent 
layer contains the mononuclear cells (lymphocytes, monocytes, 
and thrombocytes) undisturbed at the interphase.

	 4.	Carefully transfer the mononuclear cell layer to a new 50 mL 
conical tube.

3.3.2  Isolation of Bone 
Marrow Mononuclear Cells 
(BMMC) Using Ficoll 
Density Gradient 
Separation

Tissue Engineering Platforms to Recapitulate the Tumor Microenvironment



184

	 5.	To wash the cells, fill the conical tube with PBS and centrifuge 
at 300 × g for 10 min at 20 °C (break on). Carefully remove 
supernatant completely.
Fig.  6a shows the co-localization of CFSE-labeled patient 

BMMC (green) within the 3D ossified tissue construct (gray back-
ground). CFSE-labeling is used, as specified below (Subheading 3.3.4), 
to quantify cell proliferation. Gross differences between the 3D ossi-
fied tissue construct and the tissue construct where BMMC were 
seeded can be found in Fig 6b. A confocal image of the 3D tissue 
construct with embedded BMMC after a 21-day coculture period 
can be found in Fig. 7.

Fig. 7 Confocal image of BMMC in the 3D ossified tissue construct. The stratification of BMMC in the 3D tissue 
was assessed by confocal microscopy (day 21). Diffused green area represents the ECM thickness of the 3D 
bone tissue (~60 μm). CFSE+BMMC can be seen as bright green spots. Average location of BMMC in the upper 
surface of the 3D tissue is followed by the dashed white line. On day 21 BMMC could be found deeper in the 
tissue (white circles). Reproduced from Zhang W. et  al., 2014, DOI: 10.1089/ten.tec.2013.0490 [10], with 
permission from Mary Ann Liebert, Inc. Publishing Company (Color figure online)

Fig. 6 Representative image of CFSE-labeled BMMC biospecimen from a MM patient cultured in the 3D ossified 
tissue construct. (a) Merged bright flied and fluorescent image of CFSE-labeled BMMC in 3D ossified tissue con-
struct, 8 h after seeding; CFSE+BMMC (green), OSB cells and their ECM (gray/black background). (b) In the absence 
of patient BMMC, the ossified tissue (day 21) presented with more mineralized particles (arrow). BMMC appear to 
disrupt the deposition of ECM by OSB hence the more homogenous appearance of the ossified tissue (OSB + BMMC). 
A PCL fiber mesh (blue arrow) was placed near the chamber’s outlet to ensure retention of non-adherent BMMC 
within the culture chamber. Reproduced from Zhang W. et al., 2014, DOI: 10.1089/ten.tec.2013.0490 [10], with 
permission from Mary Ann Liebert, Inc. Publishing Company. (Color figure online)
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	 1.	BMMC are counted in a hemocytometer and reconstituted at 
0.5–1 × 107 cell/mL in 10 % dimethyl sulfoxide (DMSO, bio-
technology performance certify, Sigma-Aldrich, D2438) and 
90 % FBS.

	 2.	The cell suspension is then aliquoted into cryovials (CryoElite, 
yellow caps, Wheton) (1 mL/vial).

	 3.	Vials can be frozen and stored in liquid nitrogen until use.

	 1.	Take one vial of patient BMMC sample out of liquid nitrogen. 
Thaw patient’s BMMC by placing the frozen cryogenic vials in 
37 °C water bath for about 1 min until ~90 % of the sample is 
thawed.

	 2.	Transfer the entire sample into a 50 mL conical tube contain-
ing 30 mL of cRPMI medium with 1 unit/mL heparin (see 
Note 7) and spin down the BMMC.

	 3.	Remove the supernatant (in cRPMI medium) and resuspend 
BMMC by adding 1 mL complete bone marrow culture medium.

	 4.	Filter the BMMC suspension through 40 μm cell strainer, and 
collect the filtered BMMC suspension in a 1.5 mL microcen-
trifuge tube.

	 5.	Split 1  mL BMMC suspension into four wells of a 96-well 
plate and incubate in 37 °C, 5 % CO2 incubator for 1 h.

	 6.	To identify the percentage of MM cells within the patient 
BMMC before culture, take 50 μL a BMMC suspension and 
split into five wells of a 96-well plate for antibody staining (in 
FACS buffer) per manufacturer’s instructions (see Note 8): (1) 
anti-CD38 and anti-CD56, (2) anti-CD38 and anti-CD138, 
(3) anti-CD56 and anti-CD38, and (4) 7-AAD.

	 7.	Acquire a minimum of 10,000 events and analyze by flow 
cytometry. Identify MM subpopulations by double gating on 
CD38+CD56+, CD38+CD138+, and CD56+CD138+ cells.

	 8.	For proliferation assays, label BMMC samples with 0.5  μM 
CFSE per manufacturer’s instruction.

	 9.	Replace hFOB growth medium with 200 μL bone marrow cul-
ture medium in the inlets of culture chambers.

	10.	Seed 4 to 8 × 104 CFSE-labeled BMMC into the 4 day old ossi-
fied tissue culture chambers.

	11.	Stop the flow to allow the settling of cells and reinstate after 
4 h with the bone marrow culture medium. Perfusion cultures 
are kept in a humidified incubator at 37 °C in 5 % CO2 until 
the termination of the experiments.

	12.	The MM tumor model can be cultured for up to 4 weeks 
(see Note 9).

3.3.3  BMMC 
Cryopreservation (See 
Note 6)

3.3.4  Seeding 
of Patient BMMC
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	 1.	At the conclusion of the culture, cells can be removed from 
culture by trypsinization. To this end, add 50  μL trypsin–
EDTA, incubate in 37 °C incubator for 10 min. Add 100 μL 
bone marrow culture medium into each culture well to stop 
the reaction. Pipet the medium in the well up and down five 
times before aspirate the medium out with tissue. Transfer the 
harvested tissue in a microcentrifuge.

	 2.	Further dissociated the harvested tissue by grinding in micro-
centrifuge tubes using a pellet pestle.

	 3.	Prepared single cell suspensions by filtering the ground tissue 
through a 40 μm cell strainer.

	 4.	Divide the harvested single cell suspensions from the same cul-
ture well into five different wells of a 96-well plate.

	 5.	Stain cells in FACS buffer with the following fluorochrome-
conjugated mAb per manufacturer’s instructions: (1) anti-
CD13, anti-CD38, and anti-CD56, (2) anti-CD13, anti-CD38, 
and anti-CD138, (3) anti-CD13, anti-CD56, and anti-CD38, 
and (4) 7-AAD.

	6.	 Acquire a minimum of 10,000 events and analyze by flow cytom-
etry. Triple gate on CFSE+CD38+CD56+ cells, CFSE+CD38+CD138+ 
and CFSE+CD56+CD138+ cells to identify MM subpopulations 
(Fig. 8). CFSE-CD13+7-AAD+ and CFSE+ 7-AAD+ cells are dis-
cerned as dead OSB and dead BMMC respectively.

	 7.	Determine the MMC population expansion and percentage in 
BMMC (see Note 10).

4  Notes

	 1.	A PCL fiber mesh can be placed near the outlet of the culture 
chamber by electrospinning [43] in order to retain non-
adherent BMMC, which would otherwise end up flowing 
through the system due to the direction of the flow in the 
microfluidic tissue culture system (i.e., side to side). Of note, 
this is not an issue in the 96-well perfusion culture device 
because the flow direction in this culture platform is from top 
to bottom and the PC membrane in the inlet well acts also as a 
retainer barrier preventing non-adherent BMMC to flow out 
of the culture chamber.

	 2.	 There are two small holes (0.6 mm in diameter) in each cham-
ber of microfluidic tissue culture device for the inlet/outlet 
connections (i.e., inlet and outlet ports, Fig. 1b). In order to 
pipette liquid into the chamber, through the ports, a 1–100 μL 
pipette tip has to be used to match the port size for liquid 
injection as shown in Fig. 9.

3.3.5  Characterization 
of Cell Populations Using 
Flow Cytometry

Wenting Zhang et al.
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Fig. 8 Representative dot plots images from flow cytometric analyses of a patient on days 7 and 21 of culture. 
(a) CFSE+BMMC. (b) CD38+CD56+ MMC, and (c) CD138+ MMC. MMC were gated on the CFSE+BMMC popula-
tion. Reproduced from Zhang W. et al., 2014, DOI: 10.1089/ten.tec.2013.0490 [10], with permission from a 
Mary Ann Liebert, Inc. Publishing Company
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	 3.	After aspirating hFOB growth medium into the syringe, place 
the dispensing needle (1–1/2″ Long) onto syringe. Push 
syringe to let medium fill up the needle, then use forceps to 
gently tap the syringe to let bubble rise up to the top of the 
syringe. Push the bubble out of the needle.

	 4.	Connect stainless steel pins with polyethylene tubing first; let the 
polyethylene tubing covers 1/3 of the stainless steel pins. Let the 
other 2/3 of a stainless steel pin go through a PDMS plug.

	 5.	Bone marrow aspirates can be diluted with three volumes of 
PBS before layering on Ficoll in order to increase the yield of 
BMMC and decrease the amount of red blood cells.

	 6.	Our culture experiments were conducted using frozen BMMC 
samples. For all samples evaluated in our studies (>20 to date), 
we have successfully been able maintain and expand every 
MMC subpopulation tested, therefore we anticipate the same 
success rate when using freshly isolated (i.e., not cryopre-
served) BMMC.

	 7.	Upon thawing the BMMC it is common to find a gelatinous-
like aggregate. Heparin is added to dissolve this type of aggre-
gates, which interferes with counting and plating of cells.

	 8.	While antibodies can be used at the concentrations indicated 
by the manufacturer, we have found that a lower concentration 
is equally efficacious for labeling the desired cell populations:
(a)	 Staining of cell is conducted in a 96 round bottom-well 

plate. Typically, after culture, dissociation and reconstitu-
tion, we place around 1 × 104 to 2 × 104 cells/well in ~5 μL 
FACS buffer in each well for staining.

(b)	We stained with 1 μL of antibody per well although rec-
ommended standard is higher for Beckman Coulter and 
BD Pharmingen antibodies.

Fig. 9 Pipetting into the microfluidic tissue culture device. A 1–100 μL pipette tip 
has to be used in order to match the hole for liquid injection into the culture 
chambers

Wenting Zhang et al.
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(c)	 For 7-AAD staining, bring the volume of the well to 
250 μL with FACS buffer, add 5 μL of 7-AAD and incu-
bate for 10 min right before test to measure the percentage 
of dead cells by flow cytometry.

	 9.	To support the long-term culture (>3 weeks) of MMC, 1 × 104 
to 2 × 104 healthy OSB can be reintroduced in the 96-well 
plate perfusion culture device (by simply removing the inlet 
plugs and adding the cells) after a 2-week culture period to 
bypass the deleterious effects of MMC on OSB activity and 
viability. This strategy can significantly extend the survival of 
viable MMC pass 4 weeks culture [9].

	10.	CFSE intensity is used to determine MMC proliferation, as each 
cell division results in a 50 % decrease in the florescence intensity of 
this dye. Division peaks are labeled from 0 to n. Since a single cell 
dividing n times will generate 2n daughter cells, and, if the total 
number of cells resulting from three divisions (n = 3) is eight, then 
exactly one mother cell had to divide three times to generate these 
eight daughter cells (23 = 8). Making use of this mathematical rela-
tionship, the number of divisions of mother cells was extrapolated 
from the number of daughters under each division peak. The aver-
age cell expansion is then calculated as described [10]:

	
Average cell expansion = Y

M 	 (1)
Where:

	 Y M= =yield cell number mother cell number, 	 (2)

	
M Y

n
n= ∑ *

% of cells under division peak

2 	 (3)
Therefore:

Average cell expansion
of cells under division peak

= ( )∑
1

2
n

n% / 	
(4)
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    Chapter 13   

 microRNA Target Prediction                     

     William     Ritchie      

  Abstract 

   microRNAs are short RNAs that reduce gene expression by binding to their targets. Computational 
predictions indicate that all human genes may be regulated by microRNAs, with each microRNA 
possibly targeting thousands of genes. Commonly used software will produce a prohibitive number 
of predicted targets for each microRNA. Here I describe procedures that refine these predictions 
by integrating available software and expression data from experiments available online. These 
procedures are tailored to experiments where predicting true targets is more important than 
detecting all putative targets.  

  Key words     microRNA  ,   Target genes  ,   microRNA expression  

1      Introduction 

  microRNAs (miRNAs)   are short, ~22 nucleotide long RNAs that 
reduce gene expression, usually by binding to the 3ʾ untranslated 
region of target mRNAs. miRNAs guide a protein complex called 
 RNA-induced silencing complex (RISC)   to specifi c mRNA target 
 sites  . miRNAs were fi rst discovered in 1993 during an analysis of 
larval developmental timing in the worm  Caenorhabditis elegans , 
where a 22-nucleotide RNA regulated protein abundance of LIN- 14 
[ 1 ]. First regarded as a Nematode-specifi c RNA family, it was only in 
2000 that another microRNA, let-7, was characterized and identifi ed 
in other species. In 2002, Eric Lai compared the sequences of 11 
microRNAs to the K box and Brd Box motifs that were known to 
mediate post-transcriptional regulation in Drosophila. He demon-
strated that the fi rst eight nucleotides, now called the seed region, of 
miRNAs, were perfectly complementary to these motifs and con-
cluded that this complementarity may be essential in posttranscrip-
tional regulation by microRNAs [ 2 ]. This simple  bioinformatics   
analysis established one of the strongest predictive features used in 
target  prediction   to date and was the basis for numerous algorithms 
that enabled the explosion of miRNA functional characterization. 
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 To date over 1000  miRNAs   have been identifi ed in humans, 
hundreds of which are associated with major biological pro-
cesses including cell proliferation and differentiation, develop-
ment, and disease. As such miRNAs are arguably one of the 
most important classes of functional RNAs. However, the rules 
governing miRNA  target   recognition are not fully understood 
and may vary for each miRNA–mRNA  pair  . Computational 
approaches that can test various models of miRNA binding and 
predict target sites are therefore essential to understanding the 
function of  microRNAs  . 

 Here I present three strategies that decrease the number of 
false positive predicted targets. In some cases this comes at the 
cost of more false negatives. The fi rst technique called  multi-tar-
geting   takes advantage of the fact that microRNAs that target the 
same gene multiple times can be detected with higher signal to 
noise ratios than those that target the same gene once [ 3 ]. The 
second technique uses readily available  expression   data to identify 
mRNAs for which the expression is dependent on changes in 
 microRNA expression  . The expression of  microRNAs   that inhibit 
mRNAs should be negatively correlated with the expression of 
their targets. The third integrates  databases   that collect experi-
mental evidence for specifi c targets. 

 In this guide, I use the  TargetScan   [ 4 ] algorithm and the 
miRBase version of the  miRanda   [ 5 ] algorithm. I selected these 
two algorithms fi rstly because they displayed excellent perfor-
mance in terms of sensitivity and specifi city in a recent thorough 
benchmark [ 6 ]. Secondly, these algorithms use different criteria 
to predict targets and thus I consider them to be complemen-
tary and results from both should be considered for subsequent 
investigation. The principles underlying these two algorithms 
are explained below ( see   Notes    1  –  4  ). I also use online databases 
that compile lists of experimental evidence supporting 
 microRNA targets  . This evidence ranges from the “gold stan-
dard” Luciferase assay to much weaker evidence such as changes 
in mRNA expression subsequent to microRNA knockdown or 
 knockin  . Finally, I use the mimiRNA [ 7 ] server that provides 
useful tools for the analysis of  microRNA   targets such as  expres-
sion profi ling   and multi-targeting.  

2    Materials 

     1.    A computer with an Internet connection.   
   2.    Microsoft Excel or its equivalent in free software such as 

OpenOffi ce or StarOffi ce.      

William Ritchie
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3    Methods 

     Recent analysis demonstrates that  numerous   mRNAs are targeted 
by the same  miRNA   at different sites within their 3ʾ UTR [ 3 ] 
(Fig.  1 , bottom panel). This multi-targeting occurs at a signifi -
cantly higher rate than expected. Focusing therefore on mRNAs 
that have more than one predicted site for the same miRNA in the 
3ʾ UTR can increase the signal to noise ratio for different algo-
rithms [ 3 ]. Although this approach will eliminate numerous true 
target sites it has the advantage of producing a list of high confi -
dence gene  targets  . This method requires the user to fi rst select 
one or more target prediction programs and subsequently refi ne 
their results for  multi-targeting  . In a similar approach, the  PicTar   [ 8 ] 
algorithm uses a combinatorial approach that not only accounts for 
multiple binding sites of the same  miRNA   but also computes the 
likelihood that a sequence is bound by a combination of input 
miRNA sequences (Fig.  1 , top panel).

          1.    Go to  TargetScan   (  http://www.targetscan.org/    ). Select the 
species, paste or type your  microRNA   identifi er in the section 
“Enter a microRNA name,” and click “Submit.”   

   2.    In the results page, in the “Conserved sites” column, in the 
sub-column named “total,” search for the number 3 or above. 
This corresponds to genes with at least three conserved pre-
dicted sites for the inputted microRNA. The gene symbols 
corresponding to these rows in the left column are the targets 
of interest. If no such  genes   are found, the threshold should 
not be reduced to select genes with less sites because there is 
insuffi cient proof that this will increase prediction  accuracy        . 
Users should instead use the same approach with the miRanda 
algorithm or use the approach described in Subheading  3.2 .      

3.1  Using  Multi- 
targeting            to Discover 
microRNA Targets 
(Miranda 
and TargetScan)

3.1.1  With  TargetScan  

3.1.2  How to: Filtering 
Predictions with 
 Multi- targeting        

  Fig. 1    Different  miRNAs      that target the same gene ( top panel ), and an miRNA that 
targets the same gene at different locations can reduce false positive predictions 
( bottom panel )       
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        1.    Go to the miRBase implementation of miRanda (  http://www.
ebi.ac.uk/enright-srv/microcosm    ). Click on the Search button.   

   2.    Select the  genome  , paste your  microRNA   identifi er in the sec-
tion “Enter microRNA id,” and click “Search.”   

   3.    At the top of the Target Listing page, next to “Download 
Table,” click on the “TXT” link. This allows you to download 
the results in text format. Your browser should prompt you to 
save this fi le. Save it in a convenient place on your computer.   

   4.    Right click (Ctrl + click on Mac) the saved folder and select “Open 
With,” then Excel. Make sure Excel recognizes the individual col-
umns (there should be 13 columns) of this fi le. Select the column 
with gene names (column “M”). Copy this column.   

   5.    Go to  mimiRNA’s   multi-tool (  http://mimiRNA.centenary.org.
au/mep/MultiT.htm    ) and paste the list in the text area next to 
“Input list of  microRNAs   or Genes.” Click “Find multiple occur-
rences.” The results page will show you genes with 3 or more 
 targets            for your microRNA. This function of mimiRNA can be 
used for lists of genes or microRNAs from any source.       

    Numerous  miRNAs   inhibit gene expression by destabilizing mRNAs 
[ 9 ]. As a consequence,  mRNA   targets should be expressed at lower 
levels in tissues where the miRNA is expressed. Correlating mRNA 
and miRNA  expression   across multiple tissues and selecting those 
pairs that are negatively correlated can successfully detect  target 
genes   (Fig.  2 ) [ 10 ]. Because this method is independent of any 
sequence analysis, it can be used to fi lter  predictions   made by any of 
the aforementioned algorithms. Another advantage of this approach 
is that it is not restricted to targets located in the 3ʾ UTR. Although 
there are fewer published examples of miRNA  targets   in other 
regions of mature mRNAs, there may be numerous targets in the 
coding region that have been overlooked because the high level of 
sequence conservation in exons prohibits the use of sequence con-
servation-based techniques. The major drawback of this approach is 
that  miRNAs   that do not affect mRNA levels or that only “fi ne-
tune” gene expression will not be identifi ed. The  mimiRNA   website 
[ 7 ] provides correlation analysis in human samples and displays the 
predicted targets from  TargetScan  , miRanda, and  PicTar  .

   How to: Integrating Expression Data 

   1.    Go to  mimiRNA   (  http://mimiRNA.centenary.org.au    ). Click 
option 5 “Which genes does my  microRNA target  .”   

   2.    Select your  microRNA   in the scroll down menu. In the 
“Integrate with data from” section, select “ targetScan  ” or 
“ miRanda  ”. This will allow you to integrate predictions of 
these algorithms with those made by mimiRNA. Click “Find 
correlated genes.”   

3.1.3  With miRanda

3.2  Using Expression 
Data to Discover 
Targets

William Ritchie
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   3.    The right column is a list of gene symbols for which the expression 
is negatively correlated with the input microRNA and are 
therefore potential targets. Genes symbols with a “>>>” sym-
bol were also predicted targets according to  TargetScan   (or 
miRanda). Each gene can be clicked to go to its Entrez Gene 
description at the NCBI website.    

     Recent benchmarking of target  prediction      algorithms showed that a 
large portion of confi rmed miRNA–target  interactions   could not be 
identifi ed even by the most sensitive approaches [ 11 ]. Other studies 
have demonstrated that many algorithms produce confl icting results 
not only because of the differences in how miRNA–mRNA  targets   
are modeled but also because different online algorithms use differ-
ent reference gene and 3ʾ UTR  databases   [ 3 ]. For these reasons, 
curated repositories of experimentally verifi ed targets have become 
necessary to evaluate existing algorithms but also to develop novel 
approaches to detect targets. The curation of these databases is 
tedious because numerous experimental techniques can be used to 
validate targets and each of these techniques has its own variants. 
The luciferase reporter assay for example can be used to demonstrate 
repression of a target in a specifi c genomic and cellular context but 
rigorous controls are essential. These controls include whether 
mutagenesis of the binding site is performed to identify the seed 
region, whether the 3ʾ UTR context of the original target was con-
served or whether the cellular context is similar to the in vivo inter-
action. Moreover, publishers do not require that experimentally 
validated  miRNA   targets be uploaded to a common online resource 
prior to publication. Each database must therefore extract these data 
from articles published online. Here I give a brief description of 
some of the most popular databases. 

   The fi rst version of miRecords [ 12 ] was released in 2008 and was last 
updated in April 2013. miRecords contains manually curated experi-
mental evidence for 2705 records of interactions between 644  miR-
NAs   and 1901  target genes   in nine animal species. It also hosts 
predicted miRNA target results produced by 11 miRNA target 

3.3  Integrating Data 
from miRNA Target 
 Databases     

3.3.1   mirRecords  

  Fig. 2    Negative correlations between an  miRNA      and its target can help identify 
biologically relevant targets       
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 prediction   programs (including all algorithms discussed in this chapter). 
The database provides  information   regarding the type of experimen-
tal validation performed, the PubMed ID, and a short excerpt from 
the original article describing the validation approach. Results cannot 
be fi ltered on a specifi c type of experimental evidence.  

   StarBase [ 13 ] version 2.0 was released in 2013. This database takes 
advantage of recent high-throughput experimental technologies 
such as CLIP-Seq ( HITS-CLIP   and  PAR-CLIP  ) and degradome 
sequencing across six organisms. StarBase integrates 108 datasets 
from 37 different studies with miRNA–mRNA target  prediction   
from six different  algorithms      to produce ~500,000 targets. StarBase 
also provides a  Genome   Browser and  functional annotation tools   
linked to fi ve different gene ontologies to discover enriched bio-
logical functions or pathways associated with their targets.  

   Tarbase [ 14 ], fi rst introduced in 2005, is currently in its sixth ver-
sion. TarBase hosts a collection of over 65,000 manually curated 
experimentally validated  miRNA–gene interactions  . TarBase inte-
grates data from high-throughput techniques as well as individual 
 miRNA   studies. These studies provide either direct or indirect evi-
dence of miRNA–mRNA  pairs  . The user can fi lter results based on 
the type of evidence and the experimental approach used. Users 
must sign up to use the software and an e-mail request is  necessary   
to obtain the entire dataset.

  How to: Combining Experimental Evidence from  TarBase   

   1.    Go to  mimiRNA’s   experimental evidence webtool (  http://
mimiRNA.centenary.org.au/mep/expEv.htm    ). This tool 
combines an input list of targets with experimental evidence 
taken from the TarBase.   

   2.    Select an organism and a  microRNA   of interest from the pull-
down menus. If the microRNA of interest is not in the pull-
down menu, this means that there is no experimental evidence 
supporting it from TarBase. In the text box next to “Input list 
of microRNA  targets  ,” paste a list of  microRNA targets  , each 
target separated by a new line. The input can be a list of targets 
found by  miRanda   as described in Subheading  3.1.3  or by any 
other target  prediction   program.   

   3.    “Combine experimental evidence.” This will display the com-
mon targets between the input list and targets with experimen-
tal evidence compiled in  TarBase  .    
  Investigators can further explore the type of  evidence      support-
ing targets by selecting the  microRNA  , its  target gene   and 
organism at   http://diana.cslab.ece.ntua.gr/tarbase/    . Clicking 
on the “+” sign next to “ Experimental   Conditions” on the 
results page will show if the evidence is strong (existence of 
Direct Support) or weak (Indirect Support).    

3.3.2   StarBase  

3.3.3   TarBase  

William Ritchie
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4      ʾNotes 

   More information on  TargetScan   and  Miranda  : 

   1.    There are many available programs dedicated to microRNA 
target  prediction     . In this chapter, I use  TargetScan   and the 
 miRBase   version of miRanda for three main reasons. They 
have relatively low false-positive rates (<30 %) and good overall 
performance [ 6 ], they are hosted on reliable servers but also 
the two approaches (and therefore the set of targets they pre-
dict) are different.   

   2.    The miRBase version of miRanda searches for exact matches 
between the 3ʾ UTR of mRNA genes and the seed region 
(generally nucleotide positions 2–9) of the  microRNA   [ 15 ]. 
It then uses a thermodynamic model to evaluate whether the 
duplex formed between the whole microRNA sequence and 
the mRNA gene is stable. The microRNA–mRNA  pairs   for 
which these conditions are true in at least two other species are 
retained as predictions.   

   3.     TargetScan   v5 relies on the complementarity between the 
mRNA and the microRNA seed sequences. Each seed that 
binds to an mRNA sequence will be attributed a score based 
on the degree of  conservation   of the region to which the seed 
binds, whether the complementarity to the seed region is 8 or 
7 nucleotides long and whether it has an A at position 1. 
TargetScan also calculates a context score, which depends on 
the AU composition of the fl anking region and the distance of 
the target site to the 3ʾ UTR end.   

   4.     TargetScan   is therefore biased towards conserved  microRNA 
targets   whereas miRanda is biased towards microRNAs that 
bind with higher calculated affi nity to their target.         
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    Chapter 14   

 Evaluating the Delivery of Proteins to the Cytosol 
of Mammalian Cells                     

     Andrea     L.  J.     Marschall    ,     Congcong     Zhang    , and     Stefan     Dübel      

  Abstract 

   Delivery of proteins to the cytosol of living cells is a promising research tool. Delivery of antibodies in 
particular bears exciting applications such as in vivo tracking of proteins at endogenous expression levels 
or interference with cellular processes. In spite of the large number of methods published for protein deliv-
ery, successful applications so far are rare. A possible explanation for this is a vast overestimation of the 
delivery effi ciency due to the use of inappropriate detection methods and/or unsuitable positive controls 
for cytosolic delivery. Therefore, we provide strategies for unequivocally detecting cytoplasmic protein 
delivery and quantifying protein transformation effi ciency. Finally, we present a protocol for effi cient pro-
tein delivery to the cytosol validated using these methods.  

  Key words     Antibody  ,   Profection  ,   Protein transfection  ,   Protein delivery  ,   Cell-penetrating peptide 
(CPP)  ,   Protein transduction domain (PTD)  ,   Electroporation  ,   Yumab  

1      Introduction 

 A large number of reports are  published      on the delivery of proteins 
to the cytosol of cells. The delivery of antibodies in particular to 
the cytosol or the nucleus could lead to exciting new applications 
such as in vivo imaging of native proteins at endogenous expres-
sion levels or direct interference with cellular processes [ 1 ]. For 
these compartments, direct expression of the antibodies inside of 
the same cell (“intrabody” approach; for a review, see Marschall 
et al. 2015) is of limited applicability because many antibodies do 
not fold correctly if expressed in the cytosol [ 2 ]. The delivery of 
functional antibody protein to the cytosol from the outside could 
provide a solution [ 1 ,  2 ]. In spite of the numerous reports claim-
ing successful cytosolic delivery and touting new delivery reagents 
for proteins, the actual application of  protein delivery   in research 
has remained comparably sparse, and publications unambiguously 
demonstrating the delivery of noteworthy quantities are very rare. 
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 The reason for this might be found in a generally very low effi -
ciency of many of the protein delivery methods published due to 
overestimation of the amount of protein that has actually ended up 
in the cytosol. Detection methods which can unambiguously dis-
criminate between outer membrane attachment, endosomal (vesicu-
lar) enrichment, or true cytoplasmic delivery are sparse and have not 
been used frequently. Overestimation of cytosolic delivery further 
results from artifacts or inappropriate controls. For example, Richard 
and colleagues found methodological artifacts had led to a marked 
overestimation of cytosolic delivery of proteins by the so-called cell-
penetrating  peptides   [ 3 ]. Furthermore, common misinterpretations 
originate from the property of many delivery vehicles to attach to 
the cell surface due to their cationic net charge. For this reason, 
analysis by  fl ow cytometry   alone is not suffi cient to assess cytosolic 
delivery because it does not allow distinguishing surface-bound pro-
teins and those entrapped in endosomes from proteins that have 
been released to the cytosol [ 4 ].  Confocal microscopy   has been fre-
quently used, but unambiguous discrimination of antibodies evenly 
distributed in the cytosol from background is diffi cult. Many papers 
claiming detection of cytosolic  delivery      by microscopy show signifi -
cant amounts of antibodies in vesicular compartments. Some “posi-
tive” control proteins delivered with commercially available  protein 
transfection   agents are labeled with fl uorescent dyes, which can 
make them sticky and lead to a high basic signal level of unspecifi c 
attachment to cells. A more appropriate control is an unlabeled anti-
body that can bind to a cytosolic protein with a characteristic pattern 
such as the  cytoskeleton  , so surface-bound antibodies cannot be 
mistaken for a protein delivered to the cytosol (Fig.  1a ). The effi -
ciency of  protein delivery   reagents can be evaluated in this way, and 
if a positive staining pattern seen in this assay, this also demonstrates 
the delivery of a considerable amount of functional antibodies, suf-
fi cient to bind to the target throughout the cytosol.

   An approach to compare  protein transfection   effi ciencies is the 
use of a reporter system based on  Fc-Cre as a cargo protein  , a 
fusion of the Cre recombinase with the constant part of a human 
antibody [ 4 ]. This system requires function of the Cre domain of 
the delivered protein in the cell and allows identifying only cells 
where the test protein reached the cytosol (Fig.  1b ). In contrast to 
the assay using antibodies to a characteristic cytoskeleton pattern, 
the reporter cell assay does not allow conclusions on the quantity 
of delivered protein per individual cell but determines the fraction 
of all cells which got proteins delivered to their cytosol at all. 
Previous studies have shown that  protein transfection   effi ciency 
shows enormous variations, depending on the transfection reagents 
used [ 4 ]. 

 In the following, we provide the protocols for these two strate-
gies to assess  antibody transfection effi ciencies  . Both unequivocally 
detect whether antibodies indeed have reached the cytosol as a 

Andrea L.J. Marschall et al.
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result of the application of a delivery reagent/method. Finally, we 
describe the best antibody delivery method as identifi ed using these 
two assays in a comparison of various delivery approaches [ 4 ].  

2    Materials 

     1.    HeLa cells (cell line derived from a human cervix carcinoma 
ATCC no. CCL-2) ( see   Note    1  ).   

   2.     SC1 REW22 Cre indicator cell   line based on the murine fi bro-
blast cell line SC1 [ 5 ] ( see   Note    1  ).   

   3.    Cargo proteins. Anti-tubulin (clone F2C) and anti-myosin (clone 
SF9) scFv-Fc antibodies [ 6 ] or Fc-Cre [ 4 ] can  be      produced in 
HEK293-6E suspension cells according to the protocols by 
Schirrmann and Büssow [ 7 ] and Jäger et al. [ 8 ] ( see   Note    2  ).   

   4.    Tissue culture plates (6-, 12-, 24-, 96-wells), Greiner and SPL 
Life Sciences, Germany.   

   5.    Glass coverslips (15 mm diameter #1, 0.13–0.16 mm thick-
ness) for microscopy from Menzel Gläser (Braunschweig, 
Germany).   

tested transfection
method

tested transfection
method

cytoplasm

cytoplasm

2nd ab added after fixation

GFP

FITC

a

b

GFP gene

intracellular
structure

Fc

CRE

Yumab

Fc

scFv

  Fig. 1    Two evaluation methods to assess cytoplasmic delivery of  protein  . ( a ) 
Staining of  typical       cytoskeleton proteins  . ( b ) Induction of GFP production by  cre  
recombinase-dependent DNA recombination.  ab  antibody,  CRE cre  recombinase, 
 Fc  fragment crystallizable region of a human immunoglobulin G,  FITC  fl uorescein 
isothiocyanate,  GFP  enhanced green fl uorescent protein,  scFv  single-chain vari-
able fragment of human immunoglobulin G       
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   6.    Object slides (76 × 26 mm ISO 8037/1) for microscopy from 
Menzel Gläser (Braunschweig, Germany).   

   7.    FITC-conjugated anti-human IgG (Fc gamma-specifi c) anti-
body (Dianova 109-095098).   

   8.    PBS (170 g/L NaCl, 26.8 g/L Na 2 HPO 4 ·2H 2 O, 6.9 g/L 
NaH 2 PO 4 ·2H 2 O).   

   9.    Parafi lm.   
   10.    Fluoro-Gel (Electron Microscopy Sciences).   
   11.     Electroporation   cuvettes (Gene Pulser/MicroPulser 

Electroporation Cuvettes 0.4 cm gap cat. No. 1652088 from 
Biorad).   

   12.    Electropulse Gene Pulser Xcell (BioRAD).      

3    Methods 

       1.    We employed unlabeled anti-tubulin or anti-myosin scFv-Fc 
antibodies ( yumabs  ) as a cargo protein for the protein delivery 
method to be tested (Fig.  1a ) (also  see   Note    3  ). IgGs can be 
used instead as well. Directly labeled antibodies are not suit-
able since they usually stick unspecifi cally to living cells and 
substantially decrease the signal to noise levels. HeLa cells are 
well suited for microscopy-based detection of protein delivery 
because their large size allows easy and clear detection of cyto-
skeletal fi laments. As a negative control, incubate cells with the 
same amount of antibody but without applying the delivery 
method/reagent, as a control for potential artifacts by surface-
attached proteins that may have entered the cytosol during cell 
fi xation.   

   2.    After applying the chosen protein delivery method/reagent, 
leave cells at 37 °C in the incubator to allow them to readhere in 
24-well tissue culture plates (approximately 1–2 × 10 5  cells per 
well of a 24-well plate). In order to avoid background fl uores-
cence due to unspecifi c attachment of antibodies or antibody 
aggregates to the coverslip surface,  cells      seeded in polystyrene 
24-well plates can be reseeded on glass cover slides after settling 
down for 3 h. To do this, remove the medium from 24-well 
plates, wash with 500 μl PBS, detach cells with 50 μl trypsin/
EDTA per well, add 150 μl of serum containing medium, and 
distribute each 100 μl of the cell suspension on two glass cover-
slips (diameter: 15 mm) that have been placed in the wells of 
6-well plates ( see   Note    4  ).    The surface tension of the medium 
keeps the 100 μl drop of medium on the glass coverslips. Avoid 
adding additional medium to the 6-well plates as glass coverslips 
tend to fl oat on top of the medium. Incubate reseeded cells over-
night before analysis to allow cytoskeletal structures to reorga-
nize in their characteristic pattern.   

3.1  Evaluation 
of Cytosolic  Protein 
Delivery   Effi ciency 
by Microscopy
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   3.    Fixation and staining of cells ( see   Note    5  ). Discard medium 
from glass cover slides, wash 2× with 1 ml PBS. For detection 
of myosin-binding antibodies, add 500 μl of 4 % formaldehyde 
and incubate for 15 min at RT (PFA dissolved in PBS at 37 °C 
in the water bath). Discard formaldehyde, wash with 1 ml PBS, 
and incubate with 0.1 % Triton X (500 μl) for 5 min to permea-
bilize cells. For the detection of tubulin-binding antibodies, 
discard medium from glass slides, wash twice with 1 ml PBS, 
and add methanol (that has been cooled to −20 °C) for 4 min 
to fi x cells. After fi xation with methanol, no permeabilization 
step is required. Wash samples with 1 ml PBS and transfer glass 
coverslips to a small container lined with parafi lm that can be 
covered in a lightproof way. Add a volume of 100 μl of the 
detection antibody diluted in PBS (1:100 diluted FITC-
conjugated goat anti-human IgG (Fc gamma-specifi c) anti-
body from Dianova, cat#109-095-098) and incubate at RT for 
1 h protected from light. Wash with 200 μl PBS and stain 
nuclei by applying 200 μl DAPI (100 μg/ml DAPI in 70 % 
ethanol diluted 1:1000 in PBS) for 2–3 min. Wash twice with 
200 μl PBS, wash with 200 μl water, discard remaining liquid 
from glass slides by slightly tapping the edge of the glass to a 
tissue paper, and put the glass slide into a drop of Fluoro-Gel 
on an object slide with cells facing toward the drop of gel. 
Avoid moving or tilting samples and let the Fluoro-Gel dry in 
a dark, cool place. Analyze samples with appropriate fl uores-
cence microscopy fi lters.     

 Samples should be fi xed and stained for analysis in a time range 
between 24 and 96 h after  protein delivery  , in which antibodies 
have been found to be stable in the cytosol and are still not yet too 
much diluted to reach the detection limit [ 4 ].  

       1.    Employ  Fc-Cre as a cargo protein   and apply your chosen  pro-
tein delivery   method ( see   Note    3  ) to transfect SC1  REW22   
(Fig.  1b ) reporter cells [ 5 ]. As a negative control, incubate 
cells with the  same      amount of Fc-Cre but without applying the 
delivery method.   

   2.    Change medium 24 h after delivery.          For analysis, detach cells 
with trypsin/EDTA and wash cells once by adding 3 ml of FC 
buffer (0.5 % BSA, 5 mM EDTA in PBS), sedimenting cells at 
500 ×  g  for 5 min at RT and discarding the supernatant. Resuspend 
cells in 500 μl FC buffer for analysis, and from now on, keep on 
ice. Cells can then be analyzed by  fl ow cytometry  . In order to 
ensure suffi cient time for allowing Fc-Cre to enter the nucleus 
and perform recombination to indicate successful  protein deliv-
ery  , it is recommended to analyze delivery effi ciency at several 
time points after delivery. The duration of delivery might differ 
between different delivery methods. For  electroporation   of 

3.2  Evaluation 
of  Protein Transfection 
Rates         by Flow 
Cytometry Using 
Reporter Cells
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Fc-Cre, protein delivery was well observable in a time range of 
24–96 h after delivery and for the lipid-based  profection   reagent 
“PULSin” the same time range was suitable [ 4 ].      

       1.    Detach HeLa or SC1  REW22   cells with trypsin/EDTA and 
wash them to remove trypsin/EDTA and all components of 
the medium by adding at least 10 ml PBS per 2 ml cell suspen-
sion and sedimenting cells at 500 ×  g  for 5 min at RT. After 
sedimenting, discard supernatant and resuspend cells in an 
appropriate amount of PBS for counting. Count cells and ali-
quot 4.4 × 10 5  cells per sample to a tube in order to sediment 
them at 500 ×  g  for 5 min at RT. After sedimenting, discard 
the supernatant and resuspend cells in 400 μl of the protein 
solution containing the protein to be delivered ( see   Note    3  ). 
As a control for the maximum signal, a Cre expression plasmid 
(20–40 μg plasmid DNA per sample) can be electroporated 
into cells.   

   2.    Transfer these 400 μl of cell suspension to a 0.4 cm electro-
poration cuvette (BioRad) and apply an electric pulse at 650 μF 
and 300 V using an exponential pulse type with Gene Pulser 
Xcell (BioRad). Especially for cells in protein solutions, care-
fully avoid air bubbles in the electroporation cuvette. After 
application of the electric pulse, instantly apply 400 μl of pre-
warmed medium and transfer the cells then to a cell culture 
dish containing an appropriate amount of prewarmed medium.   

   3.    Depending on the experiment and analysis method, reseed 
cells or directly analyze cells as described above at different 
time points after  electroporation  .       

4            Notes 

     1.    Maintain cells in DMEM high  glucose      from PAA (E15-810) sup-
plemented with 8 % FCS (PAA, FCS Gold), 1 % sodium pyruvate 
and 1 % penicillin/streptomycin (PAA, cat. no. P11-010).   

   2.    For production of each protein, 100 ml of HEK293-6E cell 
suspension containing between 1.5 and 3 × 10 6  cells/ml is rec-
ommended to be used for transfection with the expression vec-
tors for anti-tubulin (pFUSE-F2C), anti-myosin (pFUSE-SF9), 
or Fc-Cre (pCSE5.2-hIgG1Fc-miCre). Proteins should be 
purifi ed by protein A affi nity  chromatography   as described pre-
viously [ 4 ]. Proteins are in PBS after purifi cation and should 
directly be frozen in aliquots and only thawed once directly 
before use.   

   3.    For  protein transfection   ( profection  ) based on non-covalent 
association of antibody and the transfection reagent, it is 
important to test different ratios of cargo protein and transfec-

3.3  Delivery 
of Proteins 
to the Cytosol 
by  Electroporation  

Andrea L.J. Marschall et al.
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tion reagent, because each protein has different biochemical 
and biophysical properties in contrast to DNA, for which a 
fi xed ratio of DNA to transfection reagent can be used. For 
 protein delivery   by  electroporation  , it is advised to perform 
electroporation with a series of concentrations (a concentra-
tion of approximately 0.3 mg/ml scFv-Fc antibody was opti-
mal in our experiments [ 4 ]) in order to avoid either negative 
results due to insuffi cient protein concentrations or distur-
bance of imaging by large aggregates due to extremely high 
protein concentrations.   

   4.    Adherence of proteins to the cell surface or also to the surface 
of the solid support may result in considerable disturbance of 
microscopic analysis. Particularly proteins fused to the  HIV- 
TAT 47- 57  peptide  , a so-called cell-penetrating  peptide  , leads to 
an even and complete coverage of the glass surface because this 
peptide is positively charged and can therefore electrostatically 
interact with the negatively charged glass surface. Particularly 
directly labeled  proteins may also      result in unspecifi c protein 
attachment to the cell surface and other surfaces. Other pro-
teins may aggregate at high concentrations and in this way dis-
turb imaging, which can be countered be reseeding cells.   

   5.    The structure of cytoskeletal fi laments can be lost if fi xation of 
these structures was not optimal. To make sure negative results 
originate from lack of delivery and are not due to failed fi xation 
of microtubule or actin fi laments (to which myosin is associ-
ated [ 9 ]), it is advisable to test the fi xation procedure by stain-
ing these fi laments before performing the actual delivery 
experiment.         
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    Chapter 15   

 Validation of Biomarker Proteins Using Reverse Capture 
Protein Microarrays                     

     Catherine     Jozwik    ,     Ofer     Eidelman    ,     Joshua     Starr    ,     Harvey     B.     Pollard    , 
and     Meera     Srivastava      

  Abstract 

   Genomics has revolutionized large-scale and high-throughput sequencing and has led to the discovery of 
thousands of new proteins. Protein chip technology is emerging as a miniaturized and highly parallel plat-
form that is suited to rapid, simultaneous screening of large numbers of proteins and the analysis of various 
protein-binding activities, enzyme substrate relationships, and posttranslational modifi cations. Specifi cally, 
reverse capture protein microarrays provide the most appropriate platform for identifying low-abundance, 
disease-specifi c biomarker proteins in a sea of high-abundance proteins from biological fl uids such as 
blood, serum, plasma, saliva, urine, and cerebrospinal fl uid as well as tissues and cells obtained by biopsy. 
Samples from hundreds of patients can be spotted in serial dilutions on many replicate glass slides. Each 
slide can then be probed with one specifi c antibody to the biomarker of interest. That antibody’s titer can 
then be determined quantitatively for each patient, allowing for the statistical assessment and validation of 
the diagnostic or prognostic utility of that particular antigen. As the technology matures and the availabil-
ity of validated, platform-compatible antibodies increases, the platform will move further into the desirable 
realm of discovery science for detecting and quantitating low-abundance signaling proteins. In this chap-
ter, we describe methods for the successful application of the reverse capture protein microarray platform 
for which we have made substantial contributions to the development and application of this method, 
particularly in the use of body fl uids other than serum/plasma.  

  Key words     Proteomics  ,   Reverse capture protein microarray  ,   Antibodies  ,   Body fl uids  ,   Biomarkers  , 
  Bioinformatics  

1      Introduction 

  Proteomic   studies to date have underscored the fact that some 
information in the  proteome   cannot be predicted simply from its 
related nucleic acid sequence. With the accumulation of vast 
amounts of DNA sequences in  databases  , researchers are realizing 
that merely having complete sequences of  genomes   is not suffi cient 
to elucidate biological function. A number of alterations or  modi-
fi cations               can occur at translational and posttranslational levels to 
affect protein function. There is no strict linear relationship 
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between genes and the protein complement or “proteome” which 
are the active agents in cells. Importantly, a large number of 
 laboratory tests used in the clinical setting are targeted at expressed 
proteins. Proteomic analysis also directly contributes to drug 
development as almost all drugs are directed against proteins. 
Therefore, there is an urgent need for function-based assays to pri-
oritize and validate candidate targets. Although proteomic studies 
of any disease are still in their infancy, proteomics is beginning to 
impact human disease diagnosis and therapeutic intervention. 

 The promise of clinical proteomics is to make sense of the 
increasing layers of complexity, by building hypothesis-based 
insight into a progressive sequence of genomics, proteomics, sys-
tems  biology  , and disease. An example workfl ow for  integrative 
clinical proteomics   and translational science for graft rejection is 
shown in Fig.  1 . Success depends upon the development of quan-
titative, sensitive, robust, rapid, and massively parallel technolo-
gies. It is likely that protein microarrays may make important 
contributions to this concept and thus  personalized medicine  . The 
current tools of  proteomic   research including two-dimensional 
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  Fig. 1     Workfl ow               for integrative clinical  proteomics      and translational science for 
graft rejection       
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polyacrylamide gel electrophoresis and  mass spectrometry   have 
proven to be limited by low throughput and poor sensitivity. 
Therefore, a strategy that utilizes the existing  serum-centric 
approach   in hospitals and clinics for the analysis of biomarker for 
every phase of the disease is needed to drive clinical decision mak-
ing, supplementing or replacing currently existing invasive tech-
niques. Protein microarrays are an ideal platform for this approach.

   Two primary types of protein array platforms are currently in 
use. The fi rst is an  antibody microarray (forward capture)   in which 
the antibody is printed on the slide and the antigen is present in the 
solution. The second is reverse capture protein microarrays in 
which the antigen or protein extract is printed on the  slide               and the 
antibody is present in the solution. In this format, a single printed 
spot on the slide can be viewed as a dot-blot “western.” However, 
the strategy that gives this platform quantitative power is that serial 
dilutions of  body fl uids  , or cell/tissue extracts can be printed on 
the slide. Antibody reactivity extinguishes at a given dilution. 
Extinction permits the calculation of a titer and therefore calcula-
tion of a quantitative concentration. The global clinical power of 
this platform is that hundreds of patient or cell samples can be 
printed on one slide, thereby allowing a massively parallel analysis 
to take place. Finally, the global power for this platform is manifest 
by the ability to print hundreds of identical slides, thereby allowing 
massively parallel analysis with many antibodies. The reverse cap-
ture microarray platform has been used for both cell and tissue 
extracts [ 1 – 4 ], as well as serum [ 5 ,  6 ]. Using this platform, novel 
cancer-specifi c  signaling networks   were identifi ed for prostate can-
cer [ 7 ,  8 ], ovarian cancer [ 9 ,  10 ], hematopoietic stem cells [ 10 ], 
NCI-60 cancer cells [ 3 ], and primary glioma tissues [ 11 ]. 

 An important caveat for these studies is that results have been 
mostly obtained from limited sets of patients and/or phospho- 
specifi c antibodies. However, the results are still encouraging in 
that they highlight the potential of the microarray-based  proteomic   
approach to distinguish tumor types at the level of  signaling net-
works  . The ultimate goal for moving toward patient-tailored thera-
pies is to defi ne such networks and to correlate them with 
cell-specifi c responses to specifi c therapeutic treatments. The proof 
of concept studies published to date clearly show this potential. 
Furthermore, as the number of patients, tissue types, and phos-
phorylated proteins increases, the outcomes may become suffi -
ciently powered to identify universal diagnostic markers and/or to 
accurately segregate responders versus nonresponders. We have 
made substantial contributions to the development  and               application 
of this method, particularly in the use of  body fl uids   other than 
serum/plasma [ 5 ,  12 – 14 ], and in this chapter, we describe meth-
ods for the successful application of the reverse capture protein 
microarray (RCPMA) platform.  
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2    Materials 

   A wide variety of sample types may be used for reverse capture 
protein microarrays including tissue lysates, serum/plasma, cere-
brospinal fl uid, urine, bronchoalveolar lavage fl uid, etc. 

       1.    Cell culture pellet or tissue sample (store at −80 °C).   
   2.    Plasma, serum, CSF, or other bodily fl uid samples (store at 

−80 °C).      

       1.    T-Per cell lysis buffer (Thermo Fisher Scientifi c Waltham, MA) 
( see   Note    1  ).   

   2.    Protease/phosphatase  inhibitors   (Halt Inhibitors, Roche 
Biochemicals, Indianapolis, IN).   

   3.    BCA Protein Assay Kit (Thermo Fisher Scientifi c Waltham, 
MA).       

       1.    T-Per cell lysis buffer (Thermo Fisher Scientifi c Waltham, MA).   
   2.    Extraction/printing buffer (Arrayit Protein Printing Buffer 

(Arrayit Corporation, Sunnyvale, CA) or 2× SDS sample buf-
fer: 100 mM Tris–HCl, pH 6.8, 4 % SDS, 0.2 % bromophenol 
blue, 20 % glycerol).   

   3.    2-Mercaptoethanol or 1 M DTT solution (Sigma Aldrich, St. 
Louis, MO).   

   4.    Positive control cell  lysates               or recombinant proteins.   
   5.    Contact array printer (Aushon 2470 Arrayer (Aushon 

Biosystems, Billerica, MA) or similar printer).   
   6.    Nitrocellulose-coated slides (FAST (Whatman/Sigma Aldrich, 

St. Louis, MO), ONCYTE (Avid Grace Bio-Labs, Bend, OR) 
or similar slides).   

   7.    384-well microwell  plates  .   
   8.    Desiccant (Drierite, anhydrous calcium sulfate).   
   9.    Ziplock-style plastic storage bags or dessicator.      

       1.    ReBlot Mild Antibody Stripping Solution (EMD Millipore 
Corporation, Billerica, MA; supplied as a 10× concentrate—
dilute to 1× before use).   

   2.    Blocking buffer (5 % nonfat dry milk (Santa Cruz Biotechnology, 
Dallas, TX), 0.1 % Tween-20 in 1× Tris-buffered saline (TBS)).   

   3.    Incubation buffer (0.1 % BSA, 0.05 % Tween20 in 1× TBS).   
   4.    Wash buffer 1 (0.1 % Tween-20 in 1× TBS).   
   5.    Wash buffer 2 (1× TBS).   

   6.    Primary antibodies of choice.   

2.1  Samples 
and Sample 
Preparation

2.1.1  Samples

2.1.2  Sample 
Preparation

2.2   Microarray 
Printing  

2.3  Microarray 
Staining
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   7.    Fluorescent-labeled secondary antibody.   
   8.    SyproRuby Blot Stain (Life Technologies, Carlsbad, CA).   
   9.    Fixative solution (7 % acetic acid, 10 % methanol).   
   10.    Plastic storage container with tight fi tting lid for humidity 

chamber.   
   11.    Nunc 4-well incubation tray(s) (Thermo Fisher Scientifi c 

Waltham, MA).   
   12.    M-Series LifterSlips Cover Slips (Thermo Fisher Scientifi c 

Waltham, MA) or other coverslips with raised edge.      

       1.    Microarray Laser Scanner (Genepix 4000b Laser Scanner 
(Molecular Devices, Sunnyvale, CA), Innoscan 710-IR 
(Innopsys, Carbonne, France) or similar scanner).   

   2.    Image  analysis               software (ImageQuant (GE Healthcare, 
Pittsburgh, PA) or similar software).   

   3.    Excel (Microsoft, Redmond, WA) or similar spreadsheet 
software.       

3    Methods 

   The types of samples that can be used for RCPMA’s include tissue 
samples or cultured cell pellets as well as any proteinaceous  body fl uid   
such as serum, plasma, bronchoalveolar lavage fl uid, CSF, urine, etc. 
Tissue samples and cultured cell pellets should be washed with PBS 
to remove contaminating blood or culture medium. These samples 
are then lysed in lysis buffer and the protein concentration deter-
mined. Most bodily fl uids used for RCPMA’s should be mixed 
directly with extraction buffer at the time of printing; these samples 
are normalized by volume, not total protein concentration.  

       1.    Add Pierce HALT Protease Inhibitor (1/100 dilution) to lysis buf-
fer immediately before use. Perform all subsequent steps at 4 °C.   

   2.    Add lysis buffer with  inhibitors   to tissue or cell pellets. Typical 
amounts are ~1 mL per 200 mg of tissue and ~100 μL per 
1 × 10 6  cultured cells ( see   Note    2  ).   

   3.    Mix cells well with buffer.   
   4.    Disrupt tissue or cell pellets by sonication using short bursts 

and keeping samples on ice.   
   5.    Centrifuge at 12,000 ×  g , 4 °C for 15 min. Transfer superna-

tant to new tube.   
   6.    Remove an aliquot for  protein               assay.   
   7.    Divide lysates into aliquots and freeze at −80 °C.   
   8.    Determine lysate protein concentration using the Pierce BCA 

Protein Assay Kit ( see   Note    3  ).      

2.4  Microarray 
Analysis

3.1  Lysate 
Preparation

3.2  Preparation 
of Tissue or Cell 
Culture Lysates
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   RCPMA’s allow the determination of levels of specifi c proteins 
from hundreds of samples on a single slide, and each batch of 
printed slides will be interrogated using many antibodies, each 
with a different affi nity constant. To accommodate the range of 
target protein concentrations and the affi nity of each antibody, 
each sample is printed in a dilution series, permitting selection of 
those dilution points with signal on the linear portion of the curve 
for analysis/comparison. For our arrays, we print a series of seven- 
point, twofold dilutions. Prior to printing, a source plate contain-
ing the dilutions for each  sample   is created in a 384-well plate ( see  
 Note    4  ) (Fig.  2 ).

   Each array should also include positive and negative controls. 
Positive controls include a known lysate or recombinant protein 
mixture that will produce a positive signal with the primary anti-
body of choice. Negative controls include tissue/cell extracts in 
which the protein of interest is not expressed as well as printing 
buffer alone. 

 Printing is performed using a robotic array printer. Multiple 
companies manufacture microarray printers; consult the manufac-
turer’s instructions for source plate layout and printhead confi gu-
ration. We typically print using an Aushon 2470 printer equipped 
with 16, 185 μm pins in a 4 × 4 confi guration. 

   Protein microarrays are printed from a source plate, typically a 
384-well microwell plate that contains the samples and/or dilu-
tions of the samples. Sample/dilution placement in the source 
plate is dependent upon the desired microarray layout as well as the 
microarray printer model and printhead confi guration. In our 
source plates, dilutions for each sample are  placed   in nonconsecu-
tive wells in 384-well source plate for adjacent placement on the 
printed microarray (Fig.  2 ).  

       1.    Thaw lysates on ice.  Perform               as many of the following steps as 
possible on ice or at 4 °C.   

   2.    Determine the volume of diluted lysates required for printing 
the fi rst dilution points and prepare suffi cient 2× printing/
extraction buffer by adding protease/phosphatase  inhibitors   
and 2-mercaptoethanol or DTT to a fi nal concentration of 5 % 
or 50 mM, respectively ( see   Note    5  ).   

   3.    Transfer the appropriate amount of 2× printing/extraction 
buffer to appropriate wells of 96-well microwell plate for the 
fi rst dilution.   

   4.    Determine the volume of printing  buffer   required for printing 
the subsequent dilution points and prepare suffi cient 1× extrac-
tion buffer using lysis buffer as the diluent and adding prote-
ase/phosphatase  inhibitors   and 2-mercaptoethanol or DTT to 
a fi nal concentration of 2.5 % or 25 mM, respectively.   

3.3   Microarray 
Printing  

3.3.1  Source Plate 
Creation

3.3.2  Tissue or Cell 
Culture Lysate Source 
Plate Preparation
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   5.    Transfer 1× printing/extraction buffer to appropriate wells of 
96-well microwell plate.   

   6.    Prepare fresh lysis buffer with protease/phosphatase inhibi-
tors, a suffi cient amount to dilute tissue or cultured cell lysates 
to a fi nal protein concentration of 2 mg/mL. Dilute lysates to 
create normalized 2 mg/mL stock solutions.   

   7.    Dilute the lysate stock solutions ½ into the wells of the microw-
ell plate containing the 2× extraction buffer ( see   Note    6  ).   

   8.    Continue the seven-point, twofold dilution series in the wells 
containing the 1× extraction buffer. The eighth point contains 
only printing/extraction buffer as a background control.   

   9.    At this point, the dilution plates may be sealed and stored at 
−80 °C. If stored, thaw plates, mix well, and centrifuge briefl y 
before proceeding to  step 10 .   

   10.    Incubate sealed plates at 70 °C in heat block or water bath for 
15 min. Centrifuge briefl y to remove condensation from wall 
of microwell plates.   

   11.    Transfer 30 μL of each  dilution               point to the appropriate well of 
384-well source plate ( see   Note    7  ), ensuring that no bubbles 
are produced.    Briefl y centrifuge plate to remove any bubbles 
that may have formed.   

   12.    Use source plate immediately (recommended) or seal and store 
at 4 °C overnight.      

       1.    Thaw samples on ice.   
   2.    Centrifuge at 12,000 ×  g , 4 °C for 15 min. Transfer superna-

tant to a new tube.   
   3.    Determine the volume of  diluted   samples required for printing 

the fi rst dilution points and dilute fl uid samples appropriately 
into printing/extraction buffer that contains protease/phos-
phatase  inhibitors   and 2-mercaptoethanol or DTT to a fi nal 
concentration of 5 % or 50 mM, respectively. The fi nal  concen-
tration      of the printing/extraction buffer should be 1× and 
2-mercaptoethanol or DTT to a fi nal concentration of 2.5 % or 
25 mM, respectively. 

3.3.3  Serum/Plasma or 
Other Body Fluid Source 
Plate  Preparations     

Sample  1
A1 A6 A11 A16 A2 A7 A12 A17 A3 A8 A13 A18 A4 A9 A14 A19 A5 A10 A15 A20 I1 I6 I11 I16
A1 A6 A11 A16 A2 A7 A12 A17 A3 A8 A13 A18 A4 A9 A14 A19 A5 A10 A15 A20 I1 I6 I11 I16
E1 E6 E11 E16 E2 E7 E12 E17 E3 E8 E13 E18 E4 E9 E14 E19 E5 E10 E15 E20 M1 M6 M11 M16
E1 E6 E11 E16 E2 E7 E12 E17 E3 E8 E13 E18 E4 E9 E14 E19 E5 E10 E15 E20 M1 M6 M11 M16

Sample 6

Sample  3Sample  2

Sample 5Sample 4

  Fig. 2    Example slide layout with source plate positions. Dilutions for each sample are placed in nonconsecutive 
wells in 384-well source plate for adjacent placement on printed microarray. Alphanumeric designations 
denote individual wells in microwell plates       
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 Serum/plasma:  Recommended               fi rst dilution is 1/10. 
 Urine, CSF or other fl uids: Recommended fi rst dilution is ½.   
   4.    Determine the volume of printing buffer required for printing 

the subsequent dilution  points      and prepare suffi cient 1× print-
ing/extraction buffer that contains protease/phosphatase 
 inhibitors   and 2- mercaptoethanol   or DTT to a fi nal concentra-
tion of 2.5 % or 25 mM, respectively.   

   5.    Transfer 1× printing/extraction buffer to appropriate wells of 
96-well microwell plate.   

   6.    Continue the seven-point, twofold dilution series in the wells 
containing the 1× extraction buffer. The eighth point contains 
only extraction buffer as a background control. In contrast to 
tissue or cell culture lysate dilution plates,  do not  heat serum/
plasma samples prior to  loading   the source plate.   

   7.    Transfer 30 μL of each dilution point to the appropriate well of 
384-well source plate ( see   Note    7  ), ensuring that no bubbles 
are produced. Briefl y  centrifuge      plate to remove any bubbles 
that may have formed.   

   8.    Proceed immediately to printing; storage of these source plates 
is not recommended.       

   Many different microarray printers may be used to print the micro-
arrays. Please refer to the manufacturer’s instructions. The follow-
ing covers the  general               steps that would apply to any arrayer.

    1.    Set humidity to 80 %. Fill humidifi er with distilled water, if 
necessary.   

   2.    If possible, set the temperature to 25 °C.   
   3.    Ensure that wash containers have suffi cient water and that 

waste containers are empty.   
   4.    Set print parameters: head confi guration, spot spacing, wash 

parameters, depositions per spot ( see   Note    8  ), and offsets ( see  
 Note    9  ).   

   5.    Place nitrocellulose-coated slides onto arrayer platen ( see   Note    10  ).   
   6.    Place source plates into source plate “hotel” ensuring that the 

plastic seal has been removed.   
   7.    Start print run.   
   8.    At the end of the print run, place slides in slides boxes  and 

  store with dessicant (in ziplock bags or dessicator) at −20 °C 
( see   Note    11  ).    

     Reverse capture protein microarrays can be interrogated with any 
validated antibody ( see   Note    12  ). The primary antibody is detected 
using a fl uorescently labeled secondary antibody. The fl uorescently 
labeled slides are visualized using a laser scanner. For arrays using 
tissue or cell culture extracts, it is also helpful to use a fl uorescent 

3.4   Microarray 
Printing  

3.5   Array Staining  
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dye to  determine               the total protein level in each spot to correct for 
differences in protein concentration due to sample preparation or 
printing inconsistencies. 

   In addition to the relevant signal arising from the binding of the 
primary antibody to the specifi c ligand, the fl uorescent signal from 
any spot often includes a contribution from nonspecifi c binding of 
the fl uorescent secondary antibody to the sample. Thus, whenever 
an array set is stained, a negative control slide must be included. The 
negative control consists of a separate array slide that is incubated 
with  only  the secondary antibody. For this slide, incubation buffer 
alone is used during the primary antibody incubation. The resulting 
nonspecifi c staining is quantitated and subtracted from the test 
arrays. Separate controls must be run for mouse and rabbit antibod-
ies. If you have a surplus of slides, it is recommended that you include 
 two  negative control slides for each secondary antibody, in the event 
that there is a staining problem with one of the slides. 

 Prior to staining, many arrays are treated with an antigen 
retrieval solution to increase the signal-to-noise ratio.  Do not  use 
antigen retrieval methods on serum/plasma samples or on any 
array that may contain samples with high levels of albumin as this 
will cause streaking of the most concentrated spots into the other 
spots due to the weak binding of albumin to the slide:

    1.    All incubations are performed with gentle agitation on a rocker.   
   2.    Remove array slides from dessicator and allow them to come to 

room temperature (~10 min).   
   3.    Incubate slides in 5 mL 1× mild ReBlot solution for 15 min at 

room temperature. Omit the antigen retrieval step when stain-
ing arrays  containing   plasma/serum samples; proceed directly 
to  step 5  (Blocking) for serum and plasma arrays.   

   4.    Wash slides 2× with 5 mL of wash buffer 2 for 5 min at room 
temperature.   

   5.    Incubate slides in 5 mL blocking buffer in  incubation   chamber 
for 1 h at room temperature.   

   6.    Wash slides 1× with 5 mL of wash buffer 2 for 5 min at room 
temperature.   

   7.    While washing, make humidity  chamber               by placing a wet paper 
towel in the bottom of the plastic dish.   

   8.    Quickly transfer slides (still in the four-chamber incubation 
tray) to the humidity chamber, and add 90 μL primary anti-
body diluted appropriately in incubation buffer to slides. 
Carefully place coverslip on top of each slide.   

   9.    Place lid on humidity chamber and incubate at 4 °C overnight.   
   10.    Carefully remove coverslips and wash slides 3× with 5 mL of 

wash buffer 1 for 5 min at room temperature.   

3.5.1   Immunostaining  
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   11.    Incubate slides with fl uorescent-labeled secondary antibody 
(frequently 1:10,000 dilution in 5 mL incubation buffer;  see  
 Note    12  ) for 1 h at room temperature.   

   12.    Wash slides 3× with 5 mL of wash buffer 1 for 5 min at room 
temperature.   

   13.    Wash slides 3× with 5  mL   of wash buffer 2 for 5 min at room 
temperature.   

   14.    Dry slides by centrifuging slides in 50 mL conical tubes at 
1500 × g for 5 min.   

   15.    Scan slides in laser microarray scanner.   
   16.    Store stained slides at 4 °C, protected from light (foil- wrapped 

tubes work well).    

     Slides printed throughout a print run may have slightly different 
amounts of protein per spot due to evaporation in the source plate. 
It is best to determine the total protein levels on several slides 
throughout the print run. At the very least, stain a slide from  the 
  beginning of the print run and one from the end of the run.

    1.    All incubations are performed with gentle agitation on a rocker.   
   2.    Remove array slides from dessicator and allow them to come to 

room temperature (~10 min).   
   3.    Incubate slide(s) in dH 2 O for 5 min at room temperature.   
   4.    Incubate slide(s) in fi xative  solution               for 15 min at room tempera-

ture. Use suffi cient stain to completely immerse the slide(s).   
   5.    Wash slides 4× with dH 2 O for 5 min at room temperature.   
   6.    Incubate slide(s) in  SyproRuby stain   for 15 min at room tem-

perature. Use suffi cient stain to completely immerse the slide 
( see   Note    13  ).   

   7.    Wash slides 6× with dH 2 O for 5 min at room temperature.   
   8.    Dry slides by centrifuging slides in 50 mL conical tubes at 

1500 rpm for 5 min. Do not touch wet slide(s), even while 
wearing gloves; use forceps to handle wet, stained slide.   

   9.    Scan slides at an  excitation   wavelength of 532 nm in laser scanner.   
   10.    Store stained slides in foil-covered tubes at 4 °C.    

      There are several considerations to be taken when analyzing the 
results of a scanned RCPMA slide including the specifi c signal aris-
ing from the binding of the primary antibody to the protein of inter-
est, as well as background fl uorescence and nonspecifi c binding of 
the fl uorescent secondary antibody to the sample. A typical example 
of reverse capture protein microarray analysis of stage- specifi c pros-
tate cancer serum samples is shown in Fig.  3 . Local background is 
usually determined by the scanner software by averaging the signal 

3.5.2  Total Protein 
Staining

3.6   Microarray Data 
Analysis  
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between concentric rings around each spot—the inner ring hugging 
the edge of the spot, the outer ring drawn a bit beyond the spot 
edge. Nonspecifi c binding of the secondary antibody can cause even 
larger errors in the interpretation of the signal. This signal can be 
determined from the  negative               control slide and subtracted from the 
signal intensity of each spot on the immunostained slide.

   In the case of tissue or cell lysate arrays,    it is recommended that 
the measured signals from each spot are corrected for differences 
in the amount of sample due to sample processing or printing 
inconsistencies. A slide stained with  SyproRuby   can be used to cor-
rect for the actual amount of total protein printed in each spot. 
The SyproRuby slide should be analyzed following the same steps 
detailed for the immunostained slides. The total protein level in 
each spot can then be used to normalize the signal intensities from 
the immunostained slide, thereby correcting for inter- and intra- 
array variability. 

 Typically, the signal is not linearly proportional to the amount 
of ligand in the sample throughout the dilution curve. This non-
linearity can be corrected by using software such as SuperCurve 
(  http:// bioinformatics  .mdanderson.org/Software/supercurve/    ) 
or circumvented by selecting the linear range or even a single dilu-
tion point for comparison across all samples:

  Fig. 3    Reverse capture protein microarray (RCPMA) analysis of stage-specifi c prostate cancer serum samples. 
( a ) RCPMA slide image with an expanded area indicating an eight-point, twofold dilution series of patient 
samples printed in duplicate. ( b ) Graph of intensity vs. dilution showing the titer determination for patients with 
benign hyperplasia ( red ), prostate cancer ( blue ), and metastasized prostate cancer ( green ). (Color fi gure online)       
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    1.    Use image analysis software to determine the signal and 
background intensities in each spot. Subtract average back-
ground intensity from average signal intensity in each spot. 
Do this for the slides stained with the primary antibody as 
well as the negative control slide.   

   2.    Subtract the net intensity for each spot in the negative control 
slide from the net intensity for each spot in the slide stained 
with the primary antibody.   

   3.    For arrays containing tissue or cell lysates, normalize each spot 
to the net intensity obtained for that spot from the SyproRuby 
total protein stain.   

   4.    Use these normalized, corrected  intensities   to calculate differ-
ences between groups using Excel or other graphing/statisti-
cal packages.    

4                      Notes 

     1.    T-Per is a commonly used commercial lysis buffer, but many 
homemade lysis buffers are compatible with RCPMA, includ-
ing RIPA buffer.   

   2.    For tissue, lysis is more complete if the tissue is cut into very 
small pieces or even  ground               into “sand” before lysis.   

   3.    Many different protein determination methods may be used; 
confi rm compatibility with lysis buffer components before 
proceeding.   

   4.    Storage of tissue/cell culture lysate dilution plates at −20 °C is 
acceptable. However, it is recommended that source plates be 
used immediately for printing. For fl uid samples, neither dilution 
plates nor source plates should be stored prior to printing.   

   5.    Each well of a 384-well microwell plate easily accommodates 
30 μL and this amount will easily print 80–100 slides using 
185–350 μm pins.   

   6.    At this point, the sample is in 1× printing/extraction buffer. 
Further twofold dilutions into 1× printing/extraction buffer 
made with lysis buffer result in the concentration of buffer 
components remaining constant while only the protein con-
centrations change in the dilution series.   

   7.    The source plate layout is dictated by the specifi c printer and 
printhead confi guration. Please consult the printer manual for 
additional information.   

   8.    Our typical  settings               for the Aushon 2470 are:
   4 × 4 printhead confi guration  
  185 μm pins  
  1 s distilled water wash  
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  500 μm spacing  
  350 μm spot size (buffer and sample dependent)  
  3–5 depositions per spot (three for concentrated samples like tissue 

lysates and fi ve for dilute samples such as urine or CSF)  
  Triplicate spots  
  Two superarrays (replicates of entire array) per slide      

   9.    Top offsets need to be determined for each lot of slides. Dyes 
(Coomassie or food coloring) may be used in test runs to set 
offsets for each new lot of slides. Pins must be cleaned thor-
oughly following print runs using  dyes               (follow manufacturer’s 
instructions).   

   10.    Handle nitrocellulose-coated slides with gloved hands as the 
oils can prevent protein binding to the slide.   

   11.    Printed arrays stored at −20 °C have a shelf life of >3 years.   
   12.    Antibodies used for RCPMA should be validated by western blot. 

Antibodies that produce nonspecifi c bands are not suitable. 
 The species reactivity of the fl uorescently labeled secondary 
antibody must be matched with the species of the primary anti-
body. The fl uorescent moiety should match the excitation and 
emission specifi cations of the scanner (e.g., AlexaFluor 635 for 
standard scanners and IRDye 680 for infrared scanners). The 
use of an infrared scanner substantially limits the autofl uores-
cence of the nitrocellulose, resulting in superior signal-to- noise 
ratios. Many fl uorescent dyes are light sensitive; protect the 
slide(s) from light during and after staining.   

   13.     SyproRuby stain   may be reused up to 4× without a loss in 
 sensitivity. Protect stored stain from light. SyproRuby stain 
contains both an organic solvent and heavy metals. Do not 
pour stain down the drain. Keep used stain in a separate waste 
bottle and dispose  according               to your institution’s regulations. 
 SyproRuby is light sensitive; protect the slide(s) from light 
during and after staining.         
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    Chapter 16   

 Chemical Synthesis of Activity-Based Diubiquitin Probes                     

     Guorui     Li    ,     Libo     Yuan    , and     Zhihao     Zhuang      

  Abstract 

   Activity-based diubiquitin probes are highly useful in probing the deubiquitinase (DUB) activity and ubiq-
uitin chain linkage specifi city. Here we describe a detailed protocol to synthesize a new class of diubiquitin 
DUB probes. In this method, two ubiquitin moieties are connected through a linker resembling the native 
linkage in size and containing a Michael acceptor for trapping the DUB active-site cysteine. Detailed pro-
cedures for generating the linker molecule are also described.  

  Key words     Activity-based probe  ,   Diubiquitin probe  ,   Chemical ligation  ,   DUB  ,   Ubiquitin chain  , 
  Linkage specifi city  

1      Introduction 

 Deubiquitinases (DUBs) are an important group of proteases that 
are essential for many cellular processes [ 1 ]. Their detection and 
functional studies have drawn enormous attention in recent years. 
Among the available strategies,  activity-based probes (ABPs)   pro-
vide useful tools for  DUB profi ling  . A typical DUB probe  uses      an 
ubiquitin as the binding or recognition moiety and an electrophilic 
group introduced at its C-terminus as a warhead to trap the DUBs. 
The early DUB probes are based on monoubiquitin [ 2 – 9 ]. More 
recently, this strategy was further developed to generate diubiquitin 
probes for elucidating the  linkage specifi city   of DUBs [ 10 – 14 ]. 

 We reported a strategy to generate diubiquitin probes [ 12 ], in 
which two ubiquitin moieties are connected through a linker that 
contains a Michael acceptor for trapping  the DUB active-site cys-
teine  . The linker molecule was fi rst  ligated   to a distal ubiquitin 
which contained a reactive group at its C-terminus (hUb 1-75 - 
MESNa). Then the ubiquitin species with the linker was deprot-
ected and ligated to a mutant proximal ubiquitin to afford the 
desired diubiquitin probes. Here we describe a detailed protocol 
for this strategy and also the detailed procedures for the synthesis 
of the linker molecule.  
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2    Materials 

   Chemical reagents are obtained from Sigma-Aldrich, Alfa, and Acros 
of the highest available grade and used without further purifi cation. 
All the organic solvents are purchased from Thermo Fisher Scientifi c 
and are certifi ed ACS reagent grade. All the glassware is obtained 
from Chemglass. Nuclear magnetic resonance spectra are recorded 
on Bruker AV400  NMR   spectrometer with a CryoProbe ( 1 H NMR: 
400 MHz,  13 C NMR: 100 MHz). Chemical shifts are reported in  δ  
(ppm) units using  13 C and residual  1 H  signals      from deuterated sol-
vents as references, and coupling constants  J  are given in Hz. Peak 
shapes in NMR spectra are indicated with the symbols “d” (dou-
blet), “s” (singlet), “t” (triplet), and “m” (multiplet). Mass spectra 
are recorded on Shimadzu LCMS 2020. Analytical thin-layer  chro-
matography   (TLC) is performed on silica gel 60 GF254 (Merck). 
Compounds are visualized under UV254 or by I 2  staining. Column 
chromatography is conducted on silica gel (230–400 mesh).  

   All the buffers are prepared using ultrapure water. All the solvents 
used are HPLC grade. All reagents are prepared and stored at 
room temperature (unless indicated otherwise). Mass spectra are 
recorded on Shimadzu LCMS 2020 (monoubiquitin species) or 
Waters QToF (diubiquitin species) MS instrument equipped with 
an electrospray ionization (ESI) source:

    1.    Cleavage buffer for h-Ub 1-75 -MESNa (100 mL): 50 mM MES 
(2-(N-morpholino)ethanesulfonic acid), 100 mM NaCl, 
75 mM β-mercaptoethanesulfonic acid sodium salt (MESNa). 
Weigh 1 g MES and 0.58 g NaCl and transfer to a 100 mL 
beaker containing about 50 mL water. Stir until all the solids 
dissolve. Add water to a volume of 90 mL. Adjust pH to 6.5 
with 4 N HCl/NaOH during stirring. Make up to 100 mL 
with water. Then add 1.23 g MESNa to the above solution. 
Stir until MESNa dissolves. This buffer should be freshly made.   

   2.    HEPES buffer (1 L): 50 mM HEPES (4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid), 100 mM NaCl, pH 6.7. 
Weigh 11.9 g HEPES and 5.8 g NaCl and transfer to a 1 L 
beaker containing about 500 mL of water. Stir until all the 
solids dissolve. Add water to a volume of 900 mL. Adjust pH 
to 6.7 with 4 N HCl/NaOH during stirring. Make up to 1 L 
with water. Store at 4 °C.   

   3.    Dissolving buffer (100 mL): 100 mM Na 2 HPO 4 , 8 M urea, 
500 mM NaCl, pH 6.0. Weigh 1.42 g Na 2 HPO 4 , 2.9 g NaCl 
and 48 g urea and transfer to a 100 mL beaker containing 
about 30 mL of water. Stir until all the  solids      dissolve ( see  
 Note    1  ). Add water to a volume of 90 mL. Adjust pH to 6.0 
with 4 N HCl/NaOH during stirring. Make up to 100 mL 
with water.   

2.1   Small Molecule 
Synthesis  

2.2  Components 
for the Synthesis 
of diUb Probes

Guorui Li et al.
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   4.    Refolding buffer (1 L, 10×,  see   Note    2  ): 200 mM Na 2 HPO 4 , 
1 M NaCl, pH 6.0.   

   5.    Buffer A for purifi cation of diUb probe (1 L): 100 mM ammo-
nium acetate, 100 mM NaCl, pH 4.5.   

   6.    Buffer B for purifi cation of diUb probe (1 L): 100 mM ammo-
nium acetate, 1 M NaCl, pH 4.5. Before the purifi cation of 
diUb probe, buffer A and B are fi ltered.       

3    Methods 

   The route for the synthesis of the linker molecule  3  is shown in 
Scheme  1 .

         1.    The starting material  1  is prepared according to the method of 
Little et al. [ 15 ].   

   2.    The reaction apparatus is set up as shown in Fig.  1  ( see   Note    3  ). 
A 100 mL round-bottom fl ask equipped with a Tefl on-coated 
magnetic stir bar is fi lled with compound  1  (100 mg, 
0.32 mmol), ethylene glycol (200 mg, 3.2 mmol),  p - 
toluenesulfonic acid (6.2 mg, 0.032 mmol) and 50 mL of ben-
zene ( see   Note    4  ).

       3.    The fl ask is placed in silicone oil bath. The reaction mixture is 
heated to refl ux ( see   Note    5  ) and kept at refl ux overnight. 
During this period, the by-product water will be removed by 
Dean- Stark trap ( see   Note    6  ).   

   4.    The reaction mixture is cooled to room temperature. Then 
30 mL saturated NaHCO 3  is added to quench the reaction. 
The biphasic solution is transferred to a 250-mL separatory 
funnel and layers are separated. The aqueous layer is extracted 
with diethyl ether (2 × 30 mL).   

3.1  Synthesis of the 
Linker Molecule  3 

3.1.1  Step 1: Synthesis 
of the Precursor  2 

  Scheme 1    The route for the synthesis of the linker small molecule  3 . Reagents and conditions: ( a )  Step 1 : 
Benzene,  p -TsOH (cat.), refl ux, 18 h, 50 %; ( b )  Step 2 : MeOH, 40 % MeNH 2 , rt, 48 h, 77 %       
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   5.    The combined organic layer is washed with H 2 O (50 mL), 
brine (150 mL) and dried with Na 2 SO 4 . After fi ltration, the 
resulting solution is concentrated by rotary evaporation to get 
the crude mixture as a yellow solid ( see   Note    7  ).   

   6.    The crude mixture is  dissolved      in dichloromethane (20 mL), 
mixed with silica gel (1 g) then concentrated by rotary evapo-
ration to get the silica-adsorbed mixture as a yellow powder. 
Then it is loaded on a column containing 10 g of silica gel and 
eluted with Hexane/EtOAc (4:1). The fractions containing 
product are collected and concentrated by rotary evaporation 
to get compound  2  (57 mg, 0.16 mmol, 50 %) as a white solid 
( see   Note    8  ).      

  Fig. 1    The reaction  apparatus      for the synthesis of compound  2        
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       1.    A 100 mL round-bottom fl ask equipped with a Tefl on-coated 
magnetic stir bar is charged with compound  2  (166 mg, 
0.47 mmol), 50 mL of methanol and 2 mL 40 % MeNH 2 .   

   2.    The neck of the fl ask is closed by a rubber stopper and the 
reaction mixture is stirred at r.t. for 48 h under N 2  atmosphere. 
The solvent is evaporated to get the crude product as brown 
oil ( see   Note    9  ).   

   3.    The residue is dissolved in dichloromethane (30 mL), mixed 
with silica gel (1.5 g), and then concentrated by rotary 
 evaporation to get the silica-adsorbed mixture as a yellow 
powder. Then the powder is loaded on a column containing 
15 g of silica gel and eluted with 5 % methanol-NH 3 -saturated 
dichloromethane ( see   Note    10  ). The fractions containing 
product are collected and concentrated by rotary evaporation 
to get product  3  (80 mg, 0.36 mmol, 77 %) as yellow oil 
( see   Notes    11   and   12  ).       

   The route for the synthesis of diUb probe is shown in Scheme  2 .

     The starting material h-Ub 1-75 -MESNa is expressed and purifi ed 
according to the reported method [ 12 ].

    1.    The hUb 1-75 -pTYB1 plasmid is constructed by cloning the 
humanized yeast Ub gene (lacking Gly76) into the pTYB1 
vector (New England Biolabs). The resulting plasmid is con-
fi rmed by DNA sequencing.   

   2.    For protein expression, the plasmid is transformed into 
BL21(DE3) cells. Cells are cultured at 37 °C in LB medium 
(10 L) containing 100 μg/mL ampicillin. The cell culture is 

3.1.2  Step 2: Synthesis 
of Compound  3 

3.2  Synthesis 
of diUb Probes

3.2.1  Expression 
and Purifi cation 
of h-Ub 1-75 -MESNa

  Scheme 2    The route for the synthesis of diUb probes. Reagents and conditions: ( a )  Step 1 : 3 mg/mL h-Ub 1-75 - 
MESNa, 0.4 M Compound  3 , rt, 18 h, 67 %; ( b )  Step 2 : 0.04 M  p -TsOH, 54 % (v/v) TFA and 0.5 mg/mL ubiquitin 
species  4 , rt, 0.5 h, 80 %; ( c )  Step 3 : rt, 18 h, 63 %       
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induced with 0.4 mM IPTG at OD600 of 0.6–0.8, and grown 
for an additional 18 h at 15 °C.   

   3.    Cells are harvested by centrifugation at 8000 ×  g  for 30 min 
and resuspended in lysis buffer (20 mM Tris-HCl, 200 mM 
NaCl, 1 mM EDTA, 5 % glycerol, pH 7.5).   

   4.    Cells are lysed by sonication and the resulting lysate is cleared 
by centrifugation at 38,000 ×  g  for 30 min.   

   5.    The supernatant is  incubated      with 50 mL chitin resin (New 
England Biolabs) at 4 °C for 6 h. The resin is then washed 
with 500 mL of high-salt wash buffer (20 mM Tris-HCl, 1 M 
NaCl, 1 mM EDTA, 5 % glycerol, pH 7.5) and 300 mL of 
low-salt wash buffer (50 mM MES, 100 mM NaCl, pH 6.5).   

   6.    The resin is then incubated with 50 mL cleavage buffer 
(50 mM MES, 100 mM NaCl, 75 mM β-mercaptoethanesulfonic 
acid sodium salt (MESNa)) for 12 h at room temperature. 
Then the column is eluted with 50 mL cleavage buffer to get 
the desired product ( see   Note    13  ).    

         1.    h-Ub 1-75 -MESNa in its original buffer (6 mg/mL, 0.75 mL) is 
diluted in 10 mL HEPES buffer (50 mM HEPES, 100 mM 
NaCl, pH 6.7,  see   Note    14  ) and concentrated by a Centricon 
(MWCO: 3 kDa; volume: 15 mL). The procedure is repeated 
twice ( see   Note    15  ). Finally it is concentrated to get h-Ub 1-75 - 
MESNa in HEPES buffer (4 mg/mL, 1 mL).   

   2.    Compound  3  (120 mg) is suspended in 0.33 mL HEPES buffer, 
and it is vortexed to get a homogeneous mixture. The  mixture is 
added to the solution of h-Ub 1-75 -MESNa to get a solution con-
taining 3 mg/mL h-Ub 1-75 -MESNa and 0.4 M compound  3  
( see   Notes    16   and   17  ). The reaction mixture is rotated at r.t. 
overnight. MS analysis shows the reaction is complete.   

   3.    The resulting reaction mixture is diluted in 10 mL HEPES buf-
fer and concentrated by Centricon (MWCO: 3 kDa; volume: 
15 mL). The procedure is repeated three times ( see   Note    18  ). 
Finally it is concentrated to get ubiquitin species  4  in HEPES 
buffer (3 mg/mL, 1 mL, yield 67 %).   

   4.    The molecular weight of the product is determined by 
ESI- MS. Found M + Na +  = 8713 Da, calculated = 8712 Da.      

       1.    The following procedure should be performed on ice.  p - 
Toluenesulfonic acid ( p -TsOH) (42 mg) is dissolved in 
1.76 mL H 2 O, and then it is mixed with 3.24 mL TFA. Ubiquitin 
species  4  (3 mg/mL, 1 mL) is added to the above solution to 
get a solution containing 0.04 M  p -TsOH, 54 % (v/v) TFA 
(trifl uoroacetic acid) and 0.5 mg/mL ubiquitin species  4  
( see   Note    19  ).   

   2.    The reaction mixture is rotated at r.t. for 0.5 h ( see   Note    20  ). 
MS analysis shows the reaction is complete.   

3.2.2  Step 1: Generation 
of Ubiquitin Species  4 

3.2.3  Step 2: Generation 
of Ubiquitin Species  5 

Guorui Li et al.
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   3.    To the reaction mixture, 30 mL ice-cold diethyl ether is added. 
A lot of white precipitate forms. Collect the precipitate by  cen-
trifugation      at (ca. 1600 ×  g ) for 5 min. The procedure is repeated 
twice. The resulting crude mixture is air dried for 10 min.   

   4.    The crude product is dissolved in 3 mL dissolving buffer 
(100 mM Na 2 HPO 4 , 8 M urea, 500 mM NaCl, pH 6.0) to get 
the protein with the concentration of approximately 0.5 mg/
mL. Then the solution is transferred into a 3-kDa MWCO 
dialysis membrane and dialyzed against 1 L refolding buffer 
(20 mM Na 2 HPO 4 , 100 mM NaCl, pH 6.0) at r.t. for 6 h ( see  
 Note    21  ). After dialysis, the product is obtained as a solution 
in refolding buffer (0.3 mg/mL, 8 mL, yield 80 %).   

   5.    The molecular weight of the ubiquitin species  5  is determined 
by ESI-MS. Found M + Na +  = 8669 Da, calculated = 8668 Da.      

   The following protocol is used to generate K48-diUb probe. 
Other linkages of diUb probe (i.e., K63-diUb probe) can be 
 prepared and purifi ed by the same method as described for 
K48-diUb probe:

    1.    In order to form K48-diUb probe, h-K48C-HA-Ub 1-76  is used 
as the proximal ubiquitin. h-K48C-HA-Ub 1-76  is expressed 
and purifi ed according to the reported method [ 12 ].   

   2.    Ubiquitin species  5  (0.3 mg/mL, 8 mL) is mixed with 
h-K48C- HA-Ub 1-76  (3 mg/mL, 0.8 mL) and the reaction 
mixture is incubated at r.t. overnight ( see   Note    22  ).   

   3.    The reaction mixture is analyzed by a 20 % denaturing SDS- 
PAGE gel (Fig.  2 ).

       4.    The crude product is purifi ed by a cation-exchange SP 
Sepharose HP column (GE Life Sciences) using a FPLC sys-
tem ( see   Note    23  ).   

   5.    The reaction mixture is fi rst buffer exchanged into buffer A 
(100 mM ammonium acetate, 100 mM NaCl, pH 4.5) using 
a Centricon (MWCO: 10 kDa; volume: 15 mL).   

   6.    The SP column (5 mL) is pre-equilibrated with buffer A.   
   7.    Then the reaction mixture is loaded onto the SP column and 

then eluted at a fl ow rate of 1 mL/min using a gradient of 
0–65 % buffer B (100 mM ammonium acetate, 1 M NaCl, 
pH 4.5). Fractions are collected in 1 mL volume. The purifi ca-
tion result is analyzed by a 20 % denaturing SDS-PAGE gel 
and  fractions      containing the pure diUb probe are collected.   

   8.    The pure product is concentrated using a Centricon (MWCO: 
10 kDa; volume: 15 mL) to get K48-diUb probe (2.5 mg/
mL, 0.6 mL, yield 31 %). The SDS-PAGE gel result shows the 
purity of the product (Fig.  2 ). And the identity of K48-diUb 
probe is confi rmed by ESI  mass spectrometry   analysis. Found 
M + Na +  = 18,336 Da, calculated = 18,339 Da.        

3.2.4  Step 3: Generation 
of the diUb Probes

Activity-Based Diubiquitin Probes
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4                           Notes 

     1.    Urea is diffi cult to dissolve in water, so it is added in portions 
and the beaker is heated during stirring. After all the solids 
dissolve, the beaker is cooled to r.t.   

   2.    Refolding buffer is made and stored as 10× solution. It is 
diluted to 1× when used.   

   3.    This apparatus is used for a 100 mg scale reaction. For larger- 
scale reaction, larger apparatus should be used.   

   4.    Care should be taken when using benzene, since benzene is 
very toxic and a potential carcinogen. All the reaction setup 
and work-up procedures should be performed in a hood.   

   5.    Benzene can generate an azeotrope with water (boiling point 
69 °C) containing 8.8 % water. To ensure the reaction mixture 
refl ux, the oil bath is heated to 100 °C. We also fi nd that tolu-
ene can be used instead of benzene, but higher temperature is 
needed (130 °C).   

   6.    Some cloudy liquid will be produced in Dean-Stark trap, 
which is the azeotrope of benzene and water.   

  Fig. 2    A 20 % denaturing SDS-PAGE gel result showing the  ligation   reaction 
products and the purifi ed diUb probes       
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   7.    The crude mixture is monitored by TLC analysis, which shows 
that the starting material is consumed, and a major new com-
pound appears.   

   8.    Analytic data for the pure compound  2  are shown in our previ-
ous paper [ 12 ].   

   9.    The crude  product      is monitored by TLC analysis, which is per-
formed with silica gel plates, using 5 % methanol-NH 3 - saturated 
dichloromethane as the eluent. The TLC plates are visualized 
by both UV254 and I 2  staining. The product is hardly seen 
under UV254, but it is clearly visible with I 2  staining.   

   10.    NH 3 -saturated dichloromethane can be easily obtained by 
washing dichloromethane with ammonium hydroxide (28–
30 % NH 3  in water).   

   11.    Compound  3  is not stable when exposed to the atmosphere at 
r.t. for a long time. It is suggested that compound  3  is freshly 
made and then used for next step.   

   12.    Analytic data for the pure product  3  are shown in our previous 
paper [ 12 ].   

   13.    After purifi cation, h-Ub 1-75 -MESNa is kept in the cleavage 
buffer containing 50 mM MES, 100 mM NaCl, 75 mM 
β-mercaptoethanesulfonic acid sodium salt (MESNa). For 
long time storage, the protein is fast frozen in liquid nitrogen 
and stored in −80 °C freezer.   

   14.    The pH value of HEPES buffer is very important for this pro-
cess, because h-Ub 1-75 -MESNa is very sensitive to pH value. At 
higher pH (pH > 7), h-Ub 1-75 -MESNa can be easily hydrolyzed.   

   15.    The aim of this process is to remove MESNa in cleavage buf-
fer, which may affect the  ligation   of h-Ub 1-75 -MESNa with 
compound  3 .   

   16.    The molecular ratio of compound  3 /h-Ub 1-75 -MESNa is 
1150. Excess  amount      of compound  3  is used to ensure h-Ub 1- 

75 -MESNa is converted to ubiquitin species  4 . When too less 
compound  3  is used, a lot of hydrolysis by-product will be 
produced.   

   17.    The fi nal concentration of h-Ub 1-75 -MESNa in the reaction 
mixture is 3 mg/mL. When its concentration is too high 
(>4 mg/mL), undesired diUb would be produced.   

   18.    The aim of this process is to remove unreacted compound  3 .   
   19.    Once the protein is added, a lot of white precipitate will 

appear, but they quickly dissolve after gentle vortex.   
   20.    MS analysis shows 0.5 h is enough for the reaction to be com-

plete. Longer reaction time may produce other by-products.   
   21.    Every 2 h, the folding buffer is changed with fresh one.   

Activity-Based Diubiquitin Probes
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   22.    Our recent result shows that the reaction time can be decreased 
to 4 h, and it gives similar result as overnight reaction.   

   23.    The purifi cation is based on the fact that diUb binds SP col-
umn stronger than monoubiquitin at pH 4.5.         
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    Chapter 17   

 Profi ling the Dual Enzymatic Activities of the Serine/
Threonine Kinase IRE1α                     

     Hannah     C.     Feldman     and     Dustin     J.     Maly      

  Abstract 

   There is an allosteric relationship between the kinase and RNase domains of the ER stress sensor IRE1α. 
This relationship has been exploited to develop ATP-competitive inhibitors that are able to divergently 
modulate the RNase activity of IRE1α through its kinase domain. Here, we describe a series of biochemi-
cal methods for profi ling the dual enzymatic activities of IRE1α. These methods can be used to ascertain 
how ATP-competitive inhibitors affect the kinase activity of IRE1α and for determining whether these 
ligands allosterically activate or inactivate RNase activity.  

  Key words     Protein kinase  ,   Endoribonuclease  ,   Allostery  ,   IC 50   ,   Inhibitor  ,   RNase  

1      Introduction 

 Inositol-requiring enzyme 1 alpha (IRE1α) is an ER sensor protein 
that is part of the  unfolded protein response (UPR)   [ 1 ,  2 ]. This 
multi-domain protein contains an N-terminal lumenal domain, 
which resides in the ER, that is linked to cytosolic kinase and 
 endoribonuclease   domains through a transmembrane linker [ 3 ,  4 ]. 
Under  ER stress  , unfolded proteins accumulate in the ER,          result-
ing in the dimerization/oligomerization of IRE1α’s lumenal 
domains. Lumenal domain clustering in the ER facilitates kinase 
trans-autophosphorylation, which stabilizes an  RNase   active 
dimeric state of IRE1α [ 5 ,  6 ]. The active RNase domain of IRE1α 
cleaves a 26-nucleotide intron from the mRNA encoding the 
 X-box protein 1 (XBP1)   transcription factor. Ligation of cleaved 
XBP1 by the RNA ligase RtcB yields an mRNA that encodes an 
activated transcription factor that upregulates the expression of 
proteins that help remediate ER stress [ 7 ,  8 ]. However, under pro-
longed stress, the substrate specifi city of IRE1α’s RNase becomes 
relaxed, causing decay of ER-localized mRNAs, and the upregula-
tion of proapoptotic and pro-infl ammatory elements, eventually 
leading to programmed cell death [ 9 – 11 ]. Due to IRE1α’s role in 
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determining cell fate, there has been interest in the development of 
small-molecule  inhibitors      that modulate its function [ 12 ]. 

 A number of biochemical studies have shown that a soluble 
form of IRE1α—referred to as IRE1α*—that consists of the kinase-
RNase domain module is able to mimic many of the behaviors of 
full-length, membrane-bound IRE1α. Like full-length IRE1α, 
IRE1α* possesses high basal kinase and RNase activity when phos-
phorylated on its activation loop. Activation loop phosphorylation 
also stabilizes the dimerization/oligomerization of IRE1α*. A 
dephosphorylated form of IRE1α*—dP-IRE1*—demonstrates 
low kinase and RNase activity and is mainly monomeric in solution. 
The aforementioned properties of IRE1α* and dP-IRE1α* have 
made these constructs useful tools for studying the biochemistry of 
IRE1α* and for determining how small molecules are able to mod-
ulate the kinase and  RNase   activities of IRE1α. 

 There is an  allosteric   relationship between the kinase and 
 RNase   domains of IRE1α, which allows ATP-competitive  inhibi-
tors      to modulate the RNase activity through the kinase domain [ 1 , 
 11 ,  13 ,  14 ]. Some ATP-competitive inhibitors are able to activate 
the RNase domain of IRE1α* and dp-IRE1*, while others—which 
we call   k inase  i nhibiting  R Nase  a ttenuators (KIRAs)  —are able to 
inactivate the  RNase   domain through the kinase domain [ 1 ]. In 
order to systematically probe the effects of ATP-competitive  inhib-
itors         on IRE1α, we present a series of experiments utilizing bio-
chemical assays for both the kinase and RNase domains of IRE1α*. 
Completion of these experiments will allow for the determination 
of how different ATP-competitive inhibitors affect the kinase and 
RNase activities of IRE1α, as well as outline methods for generat-
ing differentially phosphorylated IRE1α constructs.  

2    Materials 

 All buffers and solutions were prepared using ultrapure water with 
a resistivity of at least 18 MΩ at 25 °C. Listed components and 
reagents were purchased from commercial sources unless other-
wise noted. Some reagents are light sensitive and should be han-
dled carefully in the dark where noted. 

       1.    Kinase assay buffer (5×): 250 mM HEPES (pH 7.5), 5 mM 
MgCl 2 , 500 mM NaCl, 0.25 % Tween-20. Make 250 mL and 
store at room temperature.   

   2.     RNase   assay buffer (5×): 250 mM Tris–HCl (pH 7.5), 5 mM 
MgCl 2 , 500 mM NaCl, 0.25 % Tween-20. Make 250 mL and 
store at room temperature ( see   Note    1  ).   

   3.    Sodium dodecyl sulfate (SDS) (3×): 240 mM Tris–HCl 
(pH 6.8), 6 % (w/v) SDS, 30 % glycerol, 2.3 M 
ß- metamercaptoethanol, 0.06 % (w/v) bromophenol blue.   

2.1  Assay 
Components

Hannah C. Feldman and Dustin J. Maly



235

   4.    Tris-buffered saline Tween (TBST) (1×): 50 mM Tris–HCl 
(pH 7.5), 150 mM NaCl, 0.1 % (v/v) Tween-20.   

   5.    Dithiothreitol (DTT) (30 mM): Dissolve 4.62 mg of DTT 
into 1 mL of water and store on ice until use. Make DTT solu-
tions fresh for each experiment.      

       1.    Purifi ed IRE1α* (residues 547–977)  expressed         from Sf9 insects 
cells using a Bac-to-Bac Baculovirus Expression System [ 1 ].   

   2.    Lambda phosphatase (New England BioLabs).   
   3.    IRE1α* kinase  inhibitors   in 20 mM DMSO stocks (store at 

−20 °C).   
   4.    ATP [γP 32 ]: 3000 Ci/mmol; 10 mCi/mL (Perkin Elmer Life 

Sciences).   
   5.    5′-Carboxyfl uorescein (FAM)- and 3′-Black Hole Quencher 

(BHQ)-labeled  XBP1   single stem-loop mini-substrate 
(5 ′FAM-CUGAGUCCGCAGCACUCAG-3 ′BHQ) 
(Dharmacon).   

   6.    Bovine serum albumin (BSA) (10 mg/mL): Dissolve 10 mg 
of BSA into 1 mL of water. Store at −20 °C.   

   7.    β-Mercaptoethanol (BME) (1.43 M): Dissolve 100 μL BME 
into 900 μL water. Store at −20 °C.   

   8.    Sodium orthovanadate (Na 3 VO 4 ) (1 M): Dissolve 183.9 mg 
in 1 mL water. Store at room temperature.   

   9.    Myelin basic protein (MBP) (10 mg/mL): Dissolve 10 mg in 
1 mL water. Store at −20 °C.   

   10.    Phosphoric acid (H 3 PO 4 ) (0.5 %): Dissolve 10 mL H 3 PO 4  into 
1990 mL water. Store at room temperature.   

   11.    Ethylenediaminetetraacetic acid (EDTA) (100 mM): Dissolve 
292.24 mg of 10 mL water. Store at room temperature.   

   12.    Urea (8 M): Dissolve 4.8 g urea in 10 mL of 1× assay buffer. 
Store at room temperature.   

   13.    IRE1α primary antibody, IRE1α phospho-Ser724 specifi c pri-
mary antibody, appropriate secondary antibody.      

       1.    96-well PCR microplates (Phenix Research).   
   2.    25 mL pipetting reservoirs (Phenix Research).   
   3.    P81 phosphocellulose ion exchange paper (Reaction Biology).   
   4.    Phosphor Screen (GE Health Sciences).   
   5.    Phosphor Imagining System (GE Typhoon FLA 9000).   
   6.    Black 384-well microplate (Corning).   
   7.    Fluorometer capable of fl uorescence excitation at 494 nM and 

fl uorescence emission at 525 nM (Perkin Elmer 2104 Envision 
Microplate Reader).       

2.2  Reagents

2.3  Special 
Equipment, 
Consumables, 
and Instruments

IRE1α Enzymatic Assays
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3    Methods 

       1.    Prepare 650 μL of a mixture of the  following         concentrations: 
1.5× kinase assay buffer, 2.87 mM BME, 3 mM Na 3 VO 4 , 
0.3 mg/mL MBP, 0.075 mg/mL BSA, and 1.5 mM DTT 
( see   Note    2  ).   

   2.    Perform a 2× serial dilution of IRE1α* using an initial concen-
tration of ~3 μM IRE1α* in 1.5× kinase assay buffer in wells 
1–8 of a 96 well PCR microplate. Well 9 of the plate should 
contain only 1.5× kinase assay buffer ( see   Note    3  ).   

   3.    Ensure that the total volume of each well is at least 15 μL.   
   4.    Remove ATP [γP 32 ] from freezer and thaw at room tempera-

ture ( see   Note    4  ).   
   5.    Calculate the activity of ATP [γP 32 ] using a radiation decay 

calculator.   
   6.    Prepare 150 μL of 0.04 μCi/mL ATP [γP 32 ] and distribute 

evenly into wells 1–9 of a PCR microplate.   
   7.    Into a new 96-well PCR plate, pipette 20 μL reaction mixture 

from  step 1  into wells 1–9 in triplicate ( see   Notes    5   and   6  ).   
   8.    From the microplate from  step 2 , using a multichannel 

pipette, pipette 5 μL of the enzyme titration into the reaction 
mixture from  step 7 .   

   9.    Pipette 5 μL ATP [γP 32 ] from  step 6  into the microplate con-
taining your reaction mixture and enzyme.   

   10.    Incubate at room temperature in area outfi tted for use with 
beta-emitting radiation for 3 h ( see   Note    7  ).   

   11.    After 3 h, spot 4.6 μL of each of your wells onto P81 phos-
phocellulose ion exchange paper.   

   12.    Wash spotted phosphocellulose paper 3× for 10 min with 0.5 % 
phosphoric acid.   

   13.    After washing, air-dry, followed by carefully wrapping in saran 
wrap ( see   Note    8  ).   

   14.    Place the wrapped phosphocellulose into a phosphor screen 
and allow exposure for at least 4 h (overnight exposure is 
preferred).   

   15.    After adequate exposure, imaging using an  instrument         capable 
of phosphor imaging (GE Typhoon FLA 9000) (Fig.  1a ).

       16.    Quantitate the blot using imaging software such as 
ImageQuant.   

   17.    Using graphing analysis software (e.g. GraphPad Prism), 
determine linear range of IRE1α* (Fig.  1a ).      

3.1  Enzyme Titration 
of IRE1α*’s Kinase 
Activity

Hannah C. Feldman and Dustin J. Maly
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       1.    Thaw 20 mM inhibitor DMSO stock on ice (Fig.  1b ).   
   2.    Perform 3× serial dilutions of inhibitor across wells 1–10. Initial 

concentration should be in the range of 250–750 μM. Wells 11 
and 12 should only contain DMSO ( see   Note    9  ).   

   3.    For each inhibitor titration, prepare 950 μL of a mixture of the 
following concentrations: 1.26× kinase assay buffer, 0.063 mg/
mL BSA, 2.41 mM BME, 2.52 mM Na 3 VO 4 , 0.252 mg/mL 
MBP, 1 mM DTT.   

   4.    Pour into a liquid reservoir of adequate volume.   
   5.    Remove ATP [γP 32 ] from freezer and thaw at room 

temperature.   
   6.    Calculate the activity of ATP [γP 32 ] using a radiation decay 

calculator.   
   7.    Prepare 190 μL of 0.04 μCi/mL ATP [γP 32 ] for each inhibitor 

titration.   
   8.    Distribute evenly into wells 1–12 of a PCR microplate.   

3.2  Determining  IC 50    
of ATP- Competitive 
 Inhibitors      
Against IRE1α*’s 
Kinase Domain

  Fig. 1    ATP-competitive  inhibitors      in the kinase assay. ( a )  Top : Titration of IRE1α kinase activity;  bottom : quantifi ca-
tion of the enzyme titration presented above (mean ± S.E.M.,  n  = 3). ( b ) Structures of two ( KIRA   and activator) 
IRE1α  inhibitors         characterized in this method. ( c ) IRE1α kinase IC 50  for the KIRA shown in ( b ) (mean ± S.E.M., 
 n  = 3). ( d ) IRE1α kinase  IC 50    for the activator shown in ( b ) (mean ± S.E.M.,  n  = 3)       
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   9.    Pipette 1.2 μL of inhibitor titration in triplicate (wells 1–12, 
rows 1–3).   

   10.    From reaction mixture reservoir, pipette mixture (without 
enzyme) into well 12 in each row.   

   11.    In the reaction mixture reservoir, accounting for the sub-
tracted volume from  step 10 , add IRE1α* to the reservoir to 
a concentration within the linear range determined from the 
kinase enzyme titration assay above. Mix well.   

   12.    Pipettes 23.8 μL of reaction mixture (with enzyme) into wells 
1–11 for each row and allow 30 min incubation time.   

   13.    From the ATP [γP 32 ] from  step 8 , pipette 5 μL into the micro-
plate containing your reaction mixture and enzyme.   

   14.    Incubate, spot, wash, expose, and  image         as previously described.   
   15.    Determine the percentage of inhibition relative to DMSO 

treated IRE1α*, and fi t with an IC 50  curve using graphing 
analysis software (e.g. GraphPad Prism: Non-Linear 
Regression: One Site IC 50 ) (Fig.  1c and d ).      

       1.    Prepare a 2× serial dilution of IRE1α* using an initial concen-
tration of ~3 μM IRE1α* in 1.5× RNase assay buffer in wells 
1–8 of a 96-well PCR microplate ( see   Note    10  ).   

   2.    Well 9 of the plate should contain only 1.5× RNase assay buffer.   
   3.    Ensure that the total volume of each well is at least 15 μL.   
   4.    Prepare 600 μL 1.5× RNase assay buffer with 2 mM DTT.   
   5.    Prepare 300 μL of a 3 μM solution substrate in 100 μM EDTA.   
   6.    Distribute 20 μL RNase reaction mixture into wells 1–9 of a 

384 well black microplate in triplicate ( see   Note    11  ).   
   7.    Add 5 μL IRE1α* titration from  step 1 .   
   8.    Add 10 μL  XBP1   substrate from  step 5  and incubate at room 

temperature in the dark for 10 min ( see   Note    12  ).   
   9.    Quench with 30 μL 8 M Urea to a fi nal concentration of 4 M 

and a fi nal volume of 60 μL.   
   10.    Spin plate down at 1000 ×  g  for 2 min at room temperature.   
   11.    Image plate using a fl uorometer using an excitation wave-

length of 494 nm and an emission wavelength of 525 nm.   
   12.    Determine linear range using graphing  analysis         software (e.g. 

GraphPad Prism). Determine linear range of IRE1α*.      
  

     1.    Prepare a 200 μL of 1.6× RNase assay buffer solution contain-
ing 2 mM DTT.   

   2.    Pipette 18.8 μL of buffer from  step 1  in triplicate into a black 
384-well microplate.   

3.3  Enzyme Titration 
of IRE1α*  RNase   
Activity

3.4  Determination 
of ATP- Competitive 
 Inhibitor      Effect Against 
IRE1α*  RNase   Domain
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   3.    To the remainder of the buffer mix from  step 1 , add IRE1α* 
to a suitable concentration as determined by the RNase 
enzyme titration assay above. Pipette 18.8 μL in triplicate into 
two additional rows.   

   4.    Add 1.2 μL DMSO to the fi rst two rows, and 1.2 μL 250 μM 
inhibitor of interest into the third row. Incubate for 30 min at 
room temperature.   

   5.    Prepare 100 μL of a 3 μM solution substrate in 100 μM EDTA.   
   6.    Add 10 μL of  substrate         into each well and incubate for 10 min.   
   7.    Quench, spin down, and image as described above.   
   8.    Quantitate the fold activation, relative to IRE1α* + DMSO 

and compare to Fig.  2a .
       9.    If fold activation resembles an activator from Fig.  2a , dephos-

phorylate IRE1α* according to procedure  3.5 . If fold activa-
tion resembles the  KIRA   from Fig.  2a , determine the  IC 50    of 
the inhibitor using procedure  3.6  with IRE1α*.      

        1.    Incubate IRE1α* with lambda phosphatase (100 units per 
0.5 nmol IRE1a*), 50 mM HEPES (pH 7.5), 100 mM NaCl, 
1 mM MnCl 2 , 2 mM DTT, 0.01 % Brij-35 for 1 h at room 
temperature.   

   2.    Quench reaction by adding Na 3 VO 4  to a fi nal volume of 
10 mM.   

   3.    Dilute IRE1α* and dP-IRE1α* to a concentration of 500 nM.   
   4.    Dilute in a 2:1 ratio with 3× SDS loading dye.          Ensure a fi nal 

volume of ~10 μL.   
   5.    Run samples in a SDS-PAGE gel (4–15 % Tris–HCl Any kD™ 

Mini-PROTEAN ®  TGX Precast Protein Gel; BioRad) and run 
according to manufacturer’s specifi cations.   

3.5  Dephosphory-
lation of IRE1α*

  Fig. 2    ATP-competitive inhibitors in the  RNase   assay. ( a ) Fold activation of IRE1α’s RNase activity in the pres-
ence of DMSO, 10 μM KIRA, or 10 μM Activator (structures in Fig.  1b ) (mean ± S.E.M.,  n  = 3). ( b ) RNase IC 50  for 
the KIRA shown in Fig.  1b  (mean ± S.E.M.,  n  = 3)       

 

IRE1α Enzymatic Assays



240

   6.    Visualize extent of dephosphorylation by probing via western 
blot using total and phosphorylation state-specifi c IRE1α 
antibodies (Fig.  3a ).

       7.    If dephosphorylation is successful, make note of the IRE1α* 
concentration taking into account the dilution from the incu-
bation and quenching. Determine the linear range of IRE1α* 
before proceeding to  inhibitor   titration.      

        1.    Prepare a 750 μL of 1.6× RNase assay buffer solution contain-
ing 2 mM DTT per inhibitor titration.   

   2.    Thaw 20 mM Inhibitor DMSO stock on ice.   
   3.    Preform 3× serial dilutions of inhibitor across wells 1–10. 

Initial concentration should be in the range of 250–750 μM.   
   4.    Wells 11 and 12 should only contain DMSO.   
   5.    Prepare 400 μL of a 3 μM solution substrate in 100 μM EDTA 

for each inhibitor titration.   
   6.    Add 1.2 μL inhibitor titration into wells 1–12 in triplicate of a 

black 384-well microplate.   
   7.    Pipette 18.8 μL reaction mixture into well 12 in each row.   
   8.    Taking into account the subtracted volume from  step 7 , add 

IRE1α* to a suitable concentration as determined by the 
RNase Enzyme Titration assay above.   

   9.    Pipette 18.8 μL of IRE1α* containing reaction  mixture         into 
wells 1–11 in each row and allow enzyme and inhibitor to 
incubate at room temperature for 30 min.   

   10.    Add 10 μL  XBP1   substrate and incubate at room temperature 
in the dark for 10 min.   

3.6  Determination 
of  IC 50    of ATP- 
Competitive  Inhibitors      
Against IRE1α*  RNase   
Domain

  Fig. 3    Dephosphorylation of IRE1α* and Use of dP-IRE1α in RNase Assays. ( a )  Left : Western blot of IRE1α* and 
IRE1α* treated with λ-phosphatase (dp-IRE1α*). Probed with a total-IRE1α antibody;  right : Western blot of 
IRE1α* and IRE1α* treated with λ-phosphatase (dp-IRE1α*). Probed with a phospho-Ser724 IRE1α antibody. 
( b ) RNase activity of dp-IRE1α* in the presence of the Activator shown in Fig.  1b  (mean ± S.E.M.,  n  = 3)       
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   11.    Quench, spin down, and image as described previously.   
   12.    Quantitate using data analysis software (e.g., GraphPad Prism) 

and determine the IC 50  of the inhibitor (Nonlinear Regression: 
One Site IC 50 ) (Figs.  2b  and  3b ) ( see   Note    13  ).       

4                 Notes 

     1.    RNase assay buffer should be prepared with DNase and  RNase   
free water to prevent non-IRE1α*-mediated mRNA cleavage.   

   2.    Preparing extra reaction mixture is preferred to avoid running 
out sample in the case of pipetting errors.   

   3.    Enzyme titrations should be performed every time IRE1α* is 
re-expressed because of varying levels of phosphorylation dur-
ing expression.   

   4.    ATP [γP 32 ] is radioactive and beta emitting. Proper PPE, 
safety precautions, should be taken during handled.   

   5.    All assay reactions are run in triplicate in order to report stan-
dard error of the mean.   

   6.    Multichannel pipettors are typically used for mixing assay compo-
nents in order to minimize propagation of error from pipetting.   

   7.    Incubation  time         may require optimization.   
   8.    Blots can be washed with acetone to expedite the drying pro-

cess. Imaging wet blots may cause blots to image improperly.   
   9.    Higher initial inhibitor concentration may be preferred for 

weak inhibitors.   
   10.    Prior to running an assay using mRNA substrate, work area 

should be clean and wiped down with an  RNase   decontami-
nant (Eliminase ®  Decon Laboratories). All reagents for the 
assay should be prepared with RNase free water.   

   11.    Any black microplate with low auto-fl uorescence may be used.   
   12.     XBP1   mini-substrate is light sensitive and should be handled 

carefully in the dark.   
   13.     y -Axis for activators should be represented by % activation, 

while  y -axis for  KIRAs   will be represented by % inhibition.         
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