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Preface

These are the conference proceedings of the 4th Haifa Verification Conference,
held October 27–30, 2008 in Haifa, Israel. This international conference is a
unique venue that brings together leading researchers and practitioners of both
formal and dynamic verification, for both hardware and software systems.

This year’s conference extended the successes of the previous years, with a
large jump in the number of submitted papers. We received 49 total submissions,
with many more high-quality papers than we had room to accept. Submissions
came from 19 different countries, reflecting the growing international visibility
of the conference. Of the 49 submissions, 43 were regular papers, 2 of which
were later withdrawn, and 6 were tool papers. After a rigorous review process,
in which each paper received at least four independent reviews from the distin-
guished Program Committee, we accepted 12 regular papers and 4 tools papers
for presentation at the conference and inclusion in this volume. These numbers
give acceptance rates of 29% for regular papers and 67% for tool papers (34%
combined) — comparable to the elite, much older, conferences in the field. A
Best Paper Award, selected on the basis of the reviews and scores from the
Program Committee, was presented to Edmund Clarke, Alexandre Donzé, and
Axel Legay for their paper entitled “Statistical Model Checking of Mixed-Analog
Circuits with an Application to a Third-Order Delta-Sigma Modulator.”

The refereed program was complemented by an outstanding program of in-
vited talks, panels, and special sessions from prominent leaders in the field. We
have included in this volume abstracts, and papers if available, from the in-
vited program. Among the invited program was the recipient of the 2008 HVC
Award, chosen as the most influential work in the past five years in the field of
verification. This year’s winner was Ken McMillan, for his work on interpolants.

A conference of this scope happens only through the tireless contributions of
many people. On the technical side, we are grateful to the Program Committee
and their many additional reviewers for ensuring the intellectual quality of the
conference. We thank the HVC Sesssion Chairs (in the order of appearance): Ken
McMillan, Malay Ganai, Moshe Vardi, Daniel Jackson, Carl Pixley, Doron Peled,
Jason Baumgartner, and Karen Yorav, for their knowledgeable and professional
chairing of the sessions. We are especially thankful to organizers and chairs of the
special sessions: Orna Grümberg, who organized and chaired a panel on coverage
“across the verification domain,” and to Ziyad Hanna and Warren Hunt, who
organized and chaired a special session on post-silicon verification. We also thank
the HVC Award Committee, who tackled the unenviable task of selecting a single
winner from several extraordinary works. On the logistical side, special thanks go
to Vered Aharon for mastery of the countless organizational issues that needed
to be addressed. We also thank IBM for providing administrative support and
services such as graphic design, technical writing, printing, and, of course, a
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cafeteria, free of charge to the conference participants. We would also like to
thank the HVC Organizing Committee, who are an endless source of knowledge,
wisdom, and guidance. Finally, thank you to everyone who participated in the
conference: a successful conference is a unique little neighborhood in space and
time, and it is the participants who create the magic of the moment.

October 2008 Alan J. Hu
Hana Chockler
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Hazards of Verification

Daniel Jackson

MIT CSAIL

It is insufficiently considered that men
more often require to be reminded
than informed.

Samuel Johnson

Abstract. Great progress has been made in software verification. One has only
to look, for example, at the growth in power of SAT and its widening class of
applications to realize that concerns early on that verification was fundamentally
intractable and that it would remain a largely manual activity were mistaken. Nev-
ertheless, despite many research advances, verification is still not widely applied
to software. In order to make verification practical, some fundamental obstacles
will need to be addressed. This talk outlined a sample of these obstacles, in three
categories: technical obstacles in the mechanism of verification itself; engineer-
ing obstacles related to the problem of establishing confidence in a system rather
than a single component; and social and managerial obstacles related to the pro-
cess of verification.

These obstacles are known and have been fairly widely discussed. It is useful,
however, to remind ourselves of them since otherwise, as a research community,
we risk focusing on technical details that may be overwhelmed by these larger
factors. In explaining some of the obstacles, I also sought to question some as-
sumptions that are often made in the verification community that make sense
in a narrower, mathematical context but are not defensible in the larger system
context.

One example of this is the notion of conservatism. It is often assumed that
a ’conservative’ analysis that never misses bugs, but which may generate false
alarms, is necessarily superior to an analysis that is ’unsound’ and may fail to
report real errors. In practice, however, this superiority is not inevitable, and in
many cases, an unsound analysis is preferable. First, the need to be conservative
can result in a dramatic increase in false positives, so that the unsound analysis
may actually be more accurate (in the sense that the probability of missing a bug
is low, whereas the comparable conservative analysis produces a report full of
erroneous claims). Second, the presence of false alarms may increase the burden
of reading the report so dramatically that bugs may be overlooked in the filtering
process, so that the conservative analysis becomes, in its context of use, unsound.
Similarly, in a software design context, the assumption that checks should be
conservative is often not justified in engineering terms. In air-traffic control, for
example, it has long been recognized that a conflict detection tool must not gen-
erate false alarms. The catastrophic accident in Guam in 1997, in which a 747
flew into the ground, might not have occurred had a safe-altitude-warning system
not been disabled because of its over-conservative error reporting.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Automata-Theoretic Model Checking Revisited

Moshe Y. Vardi

Rice University, Department of Computer Science,
Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu

Abstract. In automata-theoretic model checking we compose the design under
verification with a Büchi automaton that accepts traces violating the specification.
We then use graph algorithms to search for a counterexample trace. The theory of
this approach originated in the 1980s, and the basic algorithms were developed
during the 1990s. Both explicit and symbolic implementations, such as SPIN and
SMV, are widely used.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, p. 2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Proofs, Interpolants, and Relevance Heuristics
(HVC 2008 Award Winner)

Ken McMillan

Cadence Berkeley Labs

Abstract. The technique of Craig interpolation provides a means of extracting
from a proof about a bounded execution of a system the necessary information to
construct a proof about unbounded executions. This allows us to exploit the rel-
evance heuristics that are built into modern SAT solvers and SAT-based decision
procedures to scale model checking to larger systems.

This talk will cover applications of Craig interpolation in various domains, in-
cluding hardware verification using propositional logic, and software verification
using first-order logic.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, p. 3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Is Verification Getting Too Complex?

Yoav Hollander

Cadence Israel

Abstract. Verification of HW and HW/SW systems is becoming more and more
complex. This presentation will look at the reasons for the increased complexity
and what can be done about it.

Specifically, I shall look at where bugs come from and how they flow through
the system (from specification, through design, detection, debug and removal).
I shall then present some promising directions for reducing verification complex-
ity, many of them attacking “incidental complexity”.

Throughout the presentation, I shall try to emphasize currently-neglected
research areas.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, p. 4, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Can Mutation Analysis Help Fix Our Broken Coverage
Metrics?

Brian Bailey

Abstract. The semiconductor industry relies on coverage metrics as its primary
means of gauging both quality and readiness of a chip for production, and yet the
metrics in use today measure neither quality nor provide an objective measure
of completeness. This talk will explore the problems with existing metrics and
why they are not proper measures of verification. Mutation analysis looks like a
promising technology to help bridge the divide between what we have and what
we need in terms of metrics and may also be able to help bridge the divide be-
tween static and dynamic verification. The talk will conclude with some of the
remaining challenges that have to be overcome, such as its correct fit within a
verification methodology and the standardization of a fault model.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, p. 5, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Practical Considerations Concerning HL-to -RT
Equivalence Checking

Carl Pixley

Synopsys

Abstract. We will discuss several years’ experience with commercial HL-to-
RTL equivalence checking with the Hector technology. We will also discuss sev-
eral considerations based upon the reality that our company is an EDA vendor.
This is quite different from the position of a semiconductor company, which can
concentrate on a very specific methodology and design type.

Our observations will include some case studies from customers about the
methodology and designs on which they are using Hector. Most of the develop-
ment of Hector was based upon solutions to problems presented by our customers.
We will also discuss the general architecture of Hector and some technological
information about the engines that underlie Hector.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, p. 6, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Framework for Inherent Vacuity

Dana Fisman1,2,�, Orna Kupferman1, Sarai Sheinvald-Faragy1,
and Moshe Y. Vardi3,��

1 School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel
2 IBM Haifa Research Lab, Haifa University Campus, Haifa 31905, Israel

3 Rice University, Houston Texas 77005, USA

Abstract. Vacuity checking is traditionally performed after model checking has
terminated successfully. It ensures that all the elements of the specification have
played a role in its satisfaction by the design. Vacuity checking gets as input both
design and specification, and is based on an in-depth investigation of the relation
between them. Vacuity checking has been proven to be very useful in detecting
errors in the modeling of the design or the specification. The need to check the
quality of specifications is even more acute in property-based design, where the
specification is the only input, serving as a basis to the development of the system.
Current work on property assurance suggests various sanity checks, mostly based
on satisfiability, non-validity, and realizability, but lacks a general framework for
reasoning about the quality of specifications.

We describe a framework for inherent vacuity, which carries the theory of
vacuity in model checking to the setting of property-based design. Essentially, a
specification is inherently vacuous if it can be mutated into a simpler equivalent
specification, which we show to coincide with the fact the specification is satis-
fied vacuously in all systems. We also study the complexity of detecting inherent
vacuity, and conclude that while inherent vacuity leads to specifications that bet-
ter capture designer intent, it is not more complex than simple property-assurance
checks.

1 Introduction

In recent years, we see a growing awareness to the importance of assessing the quality
of (formal) specifications. In the context of model checking, a specification consists of
a set of formulas written in some temporal logic, and the quality of the specification is
assessed by analyzing the effect of applying mutations to the formulas. If the system
satisfies the mutated specification, we know that some elements of the specification do
not play a role in its satisfaction, thus the specification is satisfied in some vacuous way
[3, 20]. Vacuity is successfully used in order to improve specifications and detect design
errors [18].

The need to assess the quality of specifications is even more acute in the context
of property-based design [24]. There, the design process starts with the development

� The work of this author was done as part of the Valazzi-Pikovsky Fellowship Fund.
�� Supported in part by NSF grants CCR-0124077, CCR-0311326, CCF-0613889, ANI-0216467,

and CCF-0728882, by BSF grant 9800096, and by gift from Intel.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, pp. 7–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



8 D. Fisman et al.

of the specification as a set of temporal formulas, which then serves as a basis to the
development of the implementation. For example, in temporal synthesis [23], we go
automatically from the specification to a system that satisfies it. Indeed, one of the
criticisms against synthesis is that it does not eliminate the difficulty of design, but
merely shifts the difficulty of developing correct implementations to that of developing
correct specifications [17].

Property assurance is the activity of eliciting specifications that faithfully capture de-
signer intent [5, 27]. Obvious quality checks one may perform for a given specification
are non-validity and satisfiability [28]. More involved quality checks are studied in the
PROSYD project [24]. There, one considers a set of temporal formulas, partitioned into
assumptions and guarantees, and checks consistency of the assumptions and various
types of entailment of guarantees by assumptions. Recent work has focused on other
aspects of property assurance. For example, both [10, 22] study completeness analysis
for property sets. There, one analyzes a specification consisting of a set of temporal for-
mulas and measures the degree to which the specification determines the exact behavior
of each of its signals. There is a trade-off between the level of abstraction that a speci-
fication enjoys and the level of detail in which it describes the system. The analysis in
[10, 22] takes one side of this trade-off, as it expects the specifications to determine the
exact behavior of the signals.1

As discussed in [27], checking vacuity of the formulas in the context of property
assurance would be of great importance. While vacuity has been widely studied in the
context of model checking [2, 3, 6, 14, 20, 21], it is not clear how to define and check
vacuity of formulas without having a system that is meant to satisfy these formulas.
A first step for analyzing vacuity in a specification is taken in [9], which studies early
detection of vacuity and provides the inspiration to this work. There too, a specification
consists of a set of temporal formulas, and the goal is to reduce vacuity of the specifica-
tion by removing formulas that are implied by the specification, and by strengthening
formulas to ones that are still implied by the specification. While [9] introduced the
intuitive concept of “vacuity without design”, it does not attempt to define this concept.
Rather, it offers various sanity checks that can be applied to sets of properties, with the
aim of simplifying later vacuity checking with respect to a design. Our aim in this work
is to formalize the intuitive concept introduced in [9].

We describe a framework for inherent vacuity for sets of linear temporal properties.
The term “inherent” refers to the fact that we do not study vacuity of properties with re-
spect to a given system, but as a quality measure of the properties themselves. We focus
on both identifying the appropriate definition of inherent vacuity, as well as developing
algorithms for testing inherent vacuity.

Before we present our definition for inherent vacuity, let us recall one definition of
vacuity in LTL model checking [2]. There, given a system S and a specification ϕ that

1 A related line of research is that of specification debugging [1], where, in the process of model
checking, counterexamples are automatically clustered together in order to make the manual
debugging of temporal properties easier. Another related line of research is that of coverage
metrics [8, 16]. There, the mutations are applied to the system, and if the mutated system
satisfies the specification, we know that some elements of the system are not covered by the
specification.
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is satisfied in S, we say that a subformula ψ of ϕ does not affect the satisfaction of ϕ in
S if S also satisfies the stronger specification ∀x.ϕ[ψ ← x], in which ψ is replaced by
a universally quantified proposition. Intuitively, this means that S satisfies ϕ even with
the most challenging assignments to ψ.2 The specifications ϕ is then vacuously satisfied
in S if it has a subformula that does not affect its satisfaction in S.

There are two natural approaches to lift the definition of vacuity in the context of
model checking to a definition of inherent vacuity. In order to see the idea behind the
first approach, consider specifications that are tautologies or contradictions. One need
not have a context in order to see that they fail any reasonable criterion, and indeed non-
validity and satisfiability checking are useful sanity checks [28]. The validity criterion
is a special case of a weaker criterion, in which a specification fails if we can mutate it
and get a simpler, equivalent specification. For tautologies, the mutation yields the spec-
ification true. Our criteria use less aggressive mutations, and are inspired by the concept
of vacuity in model checking. We say that a specification ϕ is inherently vacuous if ϕ is
equivalent to ∀x.ϕ[ψ ← x], for some subformula ψ of ϕ. For example, the specification
G (busy → F grant) ∧G (¬busy → F grant) is inherently vacuous, as it is equivalent
to the specification ∀x.G (x → F grant) ∧ G (¬x → F grant), which is equivalent to
G F grant. This approach leads to a PSPACE decision procedure for inherent vacuity
for LTL specifications, by reducing it to the satisfiability problem for LTL.

As described above, our first approach for defining inherent vacuity is based on the
definition of vacuity in model checking, and it adopts the idea of applying mutations
to the specification. With no system to check the mutated specification with respect to,
our first approach requires the mutated specification to be equivalent to the original one.
Our second approach for defining inherent vacuity, also based on the definition of vacu-
ity in model checking, quantifies the missing context (that is, the system) universally.
Thus, according to the second approach, a specification ϕ is inherently vacuous if ϕ is
satisfied vacuously in all systems that satisfy it. Note that in contrast to the first defini-
tion, the definition does not require the same subformula not to affect the satisfaction
of the specification in all systems. Keeping in mind the trade-off between abstraction
and vacuity, one may welcome specifications that are vacuously satisfied according to
the second approach yet have no single subformula that does not affect the satisfaction
in all systems. We show, however, that the second approach coincides with the first
one. Thus, a specification ϕ is satisfied vacuously in all systems that satisfy it iff ϕ is
equivalent to some mutation of it.

The above two approaches, and the encouraging fact they coincide, set the base to
our framework for inherent vacuity. Experience with vacuity in model checking has led
to the conclusion that there is no single definition of vacuity that is superior to all others,
and various definitions are used in practice [2–4, 6, 7, 11, 15, 20, 21, 31]. Our framework
refines the definition of inherent vacuity to account not only for the different definitions
of vacuity in model checking, but also for the different settings in which property-based
design is used (closed vs. open systems), the goal of the designer (tightening the specifi-
cation or only cleaning it), and the polarity of the vacuity (strengthening vs. weakening
of the formula). Thus, we do not offer a single definition of inherent vacuity, but, rather,

2 Since ψ may have several occurrences in ϕ there need not be a single “most challenging
assignment” and it need not be true or false.
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offer a general framework in which the user can choose the parameters that best suit the
application. We view the main practical contribution of the paper in the setting of open
systems and temporal synthesis. As discussed above, the problem of eliciting specifi-
cations that faithfully capture the designer intent is of great importance in this setting.
Still, the only sanity check that is now used for a specification of an open system is its
realizability, which is analogous to satisfiability in the setting of closed systems, and
checks that there is at least one open system that satisfies the specification [23].

We show that in all variations, the two approaches to defining inherent vacuity coin-
cide. We study the problem of deciding whether an LTL formula is inherently vacuous
according to the various criteria and settings. We show that the problem is related to the
basic problem in the corresponding setting. Thus, for the setting of closed system, the
problem can be solved in PSPACE, just like the satisfiability problem [29], while for
the setting of open systems, the problem can be solved in 2EXPTIME, just like the re-
alizability problem [26]. Thus, detection of inherent vacuity is not harder than the most
basic quality checks for specifications. We provide many examples for inherent vacuity
and argue for the likelihood of encountering inherent vacuity in real life specifications.

2 Inherent Vacuity

In this section we define inherent vacuity for LTL formulas and study basic properties
of the definition.

We first review the definition of LTL vacuity in model checking. We assume the
reader is familiar with the syntax and the semantics of LTL. The semantic approach to
LTL vacuity in model checking [2] considers LTL formulas augmented with universal
quantification over atomic propositions. Recall that an LTL formula over a set AP of
atomic propositions is interpreted over computations of the form π = π0, π1, π2, . . .,
with πi ⊆ AP . The computation then satisfies a formula of the form ∀x.ϕ, where ϕ is
an LTL formula and x is an atomic proposition, if ϕ is satisfied in all the computations
that agree with π on all the atomic propositions except (maybe) x. Thus, π |= ∀x.ϕ iff
π′ |= ϕ for all π′ = π′

0, π
′
1, π

′
2, . . . such that π′

i∩ (AP \ {x}) = πi∩ (AP \ {x}) for all
i ≥ 0. As with LTL, a Kripke structure K satisfies ∀x.ϕ if all computations of K satisfy
∀x.ϕ. For two LTL formulas ϕ and ϕ′, we say that ϕ and ϕ′ are equivalent, denoted
ϕ ≡ ϕ′, if for every Kripke structure K, we have that K |= ϕ iff K |= ϕ′.

Given a Kripke structureK and a formula ϕ satisfied in K, we say that a subformula
ψ of ϕ does not affect the satisfaction of ϕ inK ifK also satisfies the formula ∀x.ϕ[ψ ←
x], in which ψ is replaced by a universally quantified fresh proposition [2]. Intuitively,
this means that K satisfies ϕ even with the most challenging assignments to ψ. We
refer to the formula ∀x.ϕ[ψ ← x] as the ψ-strengthening of ϕ. Finally, a formula ϕ is
vacuously satisfied in K if ϕ has a subformula that does not affect its satisfaction in K.

In the context of inherent vacuity, the Kripke structure K is not given. We are only
given the formula ϕ, and we seek some quality criteria that would indicate the likelihood
of ϕ to be satisfied vacuously. Below we describe two natural approaches to defining
inherent vacuity, and show that they are, in fact, equivalent.

The first approach to defining inherent vacuity is based on mutating the formula.
The idea is that if a syntactic manipulation on the formula, which typically changes the
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semantics of the formula, yields an equivalent formula, then something is inherently
vacuous in the given formula.

Definition 1. We say that an LTL formula ϕ is inherently vacuous by mutation if there
exists a subformula ψ of ϕ such that ϕ ≡ ∀x.ϕ[ψ ← x]. That is, ϕ is equivalent to its
ψ-strengthening. We then say that ϕ is inherently vacuous by mutation with witness ψ.

Example 1. The formula ϕ = F (grant ∨ fail ) ∨ X fail is inherently vacuous by muta-
tion, as it is equivalent to its X fail -strengthening ∀x.F (grant ∨ fail ) ∨ x. To see this,
note that both ϕ and its X fail -strengthening are equivalent to F (grant ∨ fail ).

The formula ϕ = (¬busy ∧ (busy U ack )) ∨ (busy ∧ ack ) is inherently vacuous by
mutation, as it is equivalent to its busy-strengthening ∀x.ϕ[busy ← x]. To see this, note
that both ϕ and its busy-strengthening are equivalent to the formula ack .

Remark 1. The purpose of our examples is to show patterns for inherently vacuous
specs. Thus, while we do not expect designers to write the specifications in the exam-
ples, where the vacuity is obvious, such patterns do appear in real life specifications.
Indeed, there, the specifications are more involved, and it is hard to keep track of all
relations among the propositions induced by a specification. We discuss this issue in
detail in Section 4.

As we show later in Theorem 2, defining inherent vacuity by means of mutations en-
ables us to reduce the problem of deciding whether a given specification is inherently
vacuous to the satisfiability problem for LTL.

It is not hard to see that Definition 1 is equivalent to a definition in which a formula
is inherently vacuous if there exists a subformula ψ of ϕ such that ψ does not affect the
satisfaction of ϕ in all Kripke structures that satisfy it. Formally, for every system K
such that K |= ϕ, also K |= ∀x.ϕ[ψ ← x].

One may find Definition 1 too restrictive, as it focuses on a single subformula of the
specification. The second approach to defining inherent vacuity addresses this point, by
starting with the definition of vacuity and quantifying the missing context (that is, the
system) universally, without restricting attention to a single subformula. Formally, we
have the following.

Definition 2. We say that an LTL formula ϕ is inherently vacuous by model if for every
Kripke structure K, if K |= ϕ, then K satisfies ϕ vacuously.

There is a trade-off between the level of abstraction that a specification enjoys and the
level of detail in which it describes the system. Thus, one may tolerate formulas that
are vacuously satisfied yet have no single subformula to blame, and find this second
approach too unrestricted. As we show now, however, in the setting of nondeterminis-
tic Kripke structures, the two approaches we defined coincide. Formally, we have the
following.

Theorem 1. An LTL specification ϕ is inherently vacuous by mutation iff ϕ is inherently
vacuous by model.

Proof. For the first direction, assume that ϕ is inherently vacuous by mutation. Then
there is a subformula ψ of ϕ such that ϕ ≡ ∀x.ϕ[ψ ← x]. Accordingly, for every
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Kripke structureK, if K |= ϕ, then K |= ∀x.ϕ[ψ ← x], and so K satisfies ϕ vacuously.
Thus, ϕ is inherently vacuous by model.

For the second direction, assume that ϕ is inherently vacuous by model, and assume
by way of contradiction that ϕ is not inherently vacuous by mutation. Then there exists
no single subformula ψ of ϕ such that ϕ ≡ ∀x.ϕ[ψ ← x]. Consider the alternative
definition to vacuity by mutation. Then there is no single subformula ψ of ϕ such that
ψ does not affect the satisfaction of ϕ in every Kripke structure K that satisfies it.

Let k be the number of subformulas that ϕ has. By the assumption, for every can-
didate subformula ψi of ϕ, with 1 ≤ i ≤ k, there is a Kripke structure Ki that
satisfies ϕ (and hence, as ϕ is inherently vacuous by model, satisfies ϕ vacuously),
but Ki 
|= ∀x.ϕ[ψi ← x]. Let K = K1 ∪ K2 ∪ · · · ∪ Kk be the disjoint union of
K1,K2, . . . ,Kk. Note that the set of initial states of K is the union of the sets of initial
states in all structures. By the semantics of LTL, the Kripke structureK satisfies ϕ. Since
ϕ is inherently vacuous by model, K satisfies ϕ vacuously. Let ψi be a subformula that
does not affect ϕ in K. By the semantics of LTL, the subformula ψi does not affect ϕ
also in Ki, and we reached a contradiction.

Remark 2. A deterministic Kripke structure is a Kripke structure with a single initial
state in which each state has exactly one successor. If we restrict attention to determin-
istic Kripke structures, then Definitions 1 and 2 do not coincide. That is, there exist
formulas that are inherently vacuous by model but are not inherently vacuous by muta-
tion. For example, consider the formula ϕ = p∨q. Every deterministic Kripke structure
that satisfies ϕ has its (single) initial state labeled either by p or by q or by both, and
thus it satisfies ϕ vacuously. On the other hand, ϕ is not equivalent to any strengthening
of it. Since deterministic Kripke structures are not an interesting model for a system (as
they induce a single computation rather than a set of computations), we continue with
the nondeterministic setting.

So, the definitions that follow from the two different approaches coincide, and we use
the term inherent vacuity to refer to either of them. We now study the complexity of
detection of inherent vacuity.

Theorem 2. Given an LTL formula ϕ and a subformula ψ of ϕ, deciding whether ϕ is
inherently vacuous with witness ψ is PSPACE-complete.

Proof. We start with the upper bound. Consider an LTL formula ϕ. For every subfor-
mula ψ, it holds that ∀x.ϕ[ψ ← x] implies ϕ. Therefore, checking whether ϕ is inher-
ently vacuous with witness ψ amounts to checking whether ϕ implies ∀x.ϕ[ψ ← x].
This is done by checking the satisfiability of ϕ ∧ ∃x.¬ϕ[ψ ← x], which is satisfiable
iff ϕ ∧ ¬ϕ[ψ ← x] is satisfiable. The latter is an LTL formula, whose satisfiability
can be checked in PSPACE. For the lower bound, it is easy to see that ϕ is inher-
ently vacuous with witness ϕ iff ϕ ≡ false, thus PSPACE-hardness follows from the
PSPACE-hardness of LTL satisfiability.

Now, since a formula ϕ is inherently vacuous iff it is inherently vacuous with witness
ψ for some subformula ψ of ϕ, the upper bound in Theorem 2 implies the following.
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Corollary 1. The problem of deciding whether an LTL formula is inherently vacuous
can be solved in polynomial space.

We note that the lower bound for the problem of deciding inherent vacuity is open.
The difficulties in proving a PSPACE lower bound are similar to the ones encountered
in studying the complexity of vacuity detection in model checking (a PSPACE upper
bound is known, yet a lower bound is open [2]).

3 A Framework for Inherent Vacuity

In Section 2 we defined inherent vacuity. Experience with vacuity in model checking
has led to the conclusion that there is no single definition of vacuity that is superior
to all others, and various definitions are used in practice. In this section we refine the
definition of inherent vacuity to account not only for the different definitions of vacuity
in model checking, but also for the different settings in which property-based design is
used. The refinement is based on adding parameters that refer to the type of vacuity, the
context in which the specification is used, the goal of the designer, and the polarity of
the mutation. It turns out that the equivalence of the two approaches to the definition
of inherent vacuity is maintained in all settings. Thus, our lifting of vacuity in model
checking to inherent vacuity is robust, in the sense that it works for the many contexts in
which vacuity may be checked. We elaborate on the parameters below, and we first de-
scribe them for the approach that defines inherent vacuity by mutation. As in Section 2,
this approach is the basis to decision procedures for inherent vacuity.

3.1 The Parameters of the Framework

Vacuity Type. Recall that a formula ϕ is inherently vacuous by mutation if ϕ is equiv-
alent to a ψ-strengthening of it, for some subformula ψ of ϕ. The definition of ψ-
strengthening is induced from work on vacuity in model checking. Recall that several
definitions of vacuity in model checking are studied in the literature: Definitions treating
each occurrence of a subformula separately [3, 20] and their extensions (to the modal
μ-calculus [11] and to PSL/SVA [6] ), definitions treating all occurrences of the same
subformula together [2, 14], definitions considering various distinct subformulas [15],
definitions considering model checker proofs [21], definitions focusing on a certain
type of reasons for vacuity (antecedent [4] and environment [7]), a definition consid-
ering vacuity grounds [30, 31], and more. In Section 2, we followed the definition of
vacuity in [2]. The first parameter in our framework enables the consideration of other
definitions. For example, the semantic-based definition in [2] can be refined according
to different semantics of universal quantification of atomic propositions (structure vs.
tree; for details see [2]). As another example, in the syntactic-based definition to vacuity
in [3, 20], one mutates a single occurrence of a subformula, rather than all occurrences.
Formally, given an occurrence σ of a subformula of the formula ϕ, the σ-strengthening
of ϕ is the formula ϕ[σ ← ⊥], obtained by replacing the occurrence σ by false if σ is
under an even number of negation and by true if σ is under an odd number of negation.
Other definitions allow mutations of a subset of the occurrences, a subset of subformu-
las, or a subset of the atomic propositions [15].
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Example 2. Consider the formula ϕ = grant ∨ (up U grant). Clearly, ϕ is equivalent
to up U grant . Indeed, ϕ is equivalent to ϕ[σ ← ⊥] for σ being the first occurrence of
the subformula grant . Therefore, the σ-strengthening of ϕ is equivalent to ϕ. Note that
if we had considered the semantic-based definition as we did in the previous section,
the formula would not have been declared inherently vacuous, since it is not equivalent
to ∀x.ϕ[ψ ← x] for any subformula ψ of ϕ.

Consider the formula ϕ = (¬busy ∧ ack) ∨ (busy ∧ ack ). It is easy to see that
ϕ is equivalent to ∀x.ϕ[busy ← x]. Thus, f is inherently vacuous when considering
the semantic-based definition for vacuity. On the other hand, ϕ is not equivalent to
ϕ[ψ ← ⊥] for any occurrence of a subformula ψ of ϕ. Thus, ϕ is not inherently vacuous
when considering the syntactic-based definition of vacuity.

Equivalence Type. Again recall that a formula ϕ is inherently vacuous by mutation if
ϕ is equivalent to a ψ-strengthening of it, for some subformula ψ of ϕ. The definition
of equivalence has to do with the context in which ϕ is to be used. In the context of
closed systems, the semantics of ϕ is defined with respect to Kripke structures, thus
ϕ ≡ ϕ′ if for all Kripke structures K, we have that K |= ϕ iff K |= ϕ′. In the context
of open systems, the semantics of ϕ is defined according to transducers, and the atomic
propositions in ϕ are partitioned into input and output signals. Before we turn to show
that this requires a different notion of equivalence, let us define transducers formally.

A transducer is a tuple T = 〈I,O, S, η0, η, L〉, where I is a set of input signals, O
is a set of output signals, S is a set of states, η0 : 2I → 2S \ ∅ is an initial transition
function, η : S × 2I → 2S \ ∅ is a transition function, and L : S → 2O is a labeling
function. Note that T is responsive, in the sense that η0 and η provide at least one
initial state and successor state, respectively, for each input letter. A run of T on an
input sequence i0 · i1 · i2 · · · ∈ (2I)ω is a sequence s0, s1, s2, . . . of states such that
s0 ∈ η0(i0) and sj+1 ∈ η(sj , ij+1) for all j ≥ 0. A computation w ∈ (2I∪O)ω is
generated by T if w = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2) . . . is such that there is a run
s0, s1, s2, . . . of T on i0 · i1 · i2 · · · for which oj = L(sj) for all j ≥ 0. Note that
we consider nondeterministic transducers. A transducer T realizes an LTL formula ϕ,
denoted T |= ϕ, if all computations of T satisfy ϕ. We say that an LTL formula ϕ is
realizable if there is a transducer that realizes ϕ. The synthesis problem is to construct,
given an LTL formula ϕ, a transducer that realizes ϕ.

Note that a nondeterministic transducer may have several runs on an input sequence.
In a deterministic transducer, for all i ∈ 2I and s ∈ S, we have |η0(i)| = 1 and
|η0(s, i)| = 1. Thus, a deterministic transducer has a single run on each input sequence.
Unlike Kripke structures, which can be viewed as transducers with I = ∅, here the
deterministic model is of interest, and it induces a set of computations – one for each
input sequence.

As discussed in [13], equivalence with respect to transducers is weaker than equiv-
alence with respect to Kripke structures. Formally, given two LTL formulas ϕ and ϕ′

both over signals I and O, we say that ϕ and ϕ′ are equivalent in the context of open
systems (o-equivalent, for short), denoted ϕ ≡o ϕ′, if for every transducer T with input
I and output O, we have that T |= ϕ iff T |= ϕ′. For the sake of uniformity, we now
use ≡c to denote equivalence in the context of closed systems (c-equivalence, for short;
what used to be ≡ in Section 2). It is not hard to see that for every two LTL formulas
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ϕ and ϕ′, we have that ϕ ≡c ϕ′ implies ϕ ≡o ϕ′. By [13], implication on the other
direction does not hold. For example, a specification ϕ that restricts the input in some
satisfiable way is unrealizable, and hence ϕ ≡o false, yet ϕ ≡/c false as ϕ is satisfiable.

Example 3. Consider the formula ϕ = [G (busy → F (grant ∧ ¬busy))] ∨G F grant ,
where busy is an input signal and grant is an output signal. The formula is inherently
vacuous in the context of open systems, but is not inherently vacuous in the context
of closed systems (considering the semantic-based definition of vacuity in both). To
see this, consider the subformula ψ = G (busy → F (grant ∧ ¬busy)) in ϕ. Since
ψ imposes restrictions on the input signal, it is unrealizable. Hence, ϕ is o-equivalent
to its ψ-strengthening, which is equivalent to G F grant . On the other hand, ϕ is not
c-equivalent to any strengthening of it.

Tightening Type. The third parameter refers to the goal of the designer. In early stages
of the design, the designer may be interested in detecting cases where the formula can
be mutated to a formula that is strictly stronger, yet is still satisfiable (or, in the context
of open systems, still realizable). The third parameter indicates whether the mutated
formula has to be equivalent to the original formula or only has to maintain its satis-
fiability or realizability. Note that tightening of the specification to a specification that
is strictly stronger and yet maintains its satisfiability or realizability is useful mainly in
the context of synthesis, where it suggests that the specification for the system should
be tightened. We demonstrate this in the two examples below. As Example 4 shows,
there are formulas that can be mutated in a way that preserves realizability, yet cannot
be mutated to an equivalent formula. Thus, inherent vacuity for such formulas is de-
tected only with the third parameter indicating that we are looking for a mutation that
maintains realizability.

Example 4. Consider the formula ϕ = (busy ∨ ack ) → X grant where busy is an
input signal and where ack and grant are output signals. There exists no sub-formula
ψ of ϕ such that its ψ-strengthening is equivalent to ϕ. On the other hand, the ack -
strengthening of ϕ, which is equivalent to ϕ′ = busy → X grant , is realizable.

Example 5. Consider an open system with input req and outputs grant1 and grant2,
and the formula ϕ = G (req → X (grant1 ∨ grant2)) ∧ G (req → F grant2). The σ-
strengthening of ϕ, for σ being the first occurrence of grant2 is still realizable. Thus, the
formula is inherently vacuous when the tightening type is “realizability preservation”
(and the vacuity type is mutation of a single occurrence). The designer may want to
tighten the unbounded delay in the second conjunct as not to overlap the first conjunct.

Consider the formula ϕ′ = G (req → F (grant1 ∨ grant2)). The grant2-
strengthening of ϕ is G (req → F grant1), which is still realizable. Thus, ϕ′ is in-
herently vacuous according to the same criteria as above. Note that the same holds for
the grant1-strengthening of ϕ. In this case, however, it is not clear that the grant2-
strengthening or the grant1-strengthening of ϕ are the desired formulas, as they both
ignore a particular type of grant. The information from the check is still useful, as
the specifier may conclude that the formula he has to use is G (req → [F grant1 ∧
F grant2]), which is the conjunction of the two strengthenings.
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Polarity Type. In the context of model checking, a formula is checked for vacuity only
after it has been verified to hold on the system. The vacuity check then examines whether
a mutation that strengthens the formula still holds on the system Clearly, it makes no
sense to model check a weaker formula, as it is guaranteed to be satisfied.3 In the con-
text of property-based design, however, we may consider mutations that strengthen the
formula as well as mutations that weaken it. Indeed, in the extreme case a mutation that
weakens the formula is the formula true, as all models satisfy it, and clearly a formula
that is equivalent to true (yet is syntactically different) is inherently vacuous.

The fourth parameter in our framework refers to the polarity of the mutation, and in-
dicates whether we compare the formula with its ψ-strengthening or ψ-weakening. The
ψ-weakening of a formula ϕ is defined in a manner dual to its ψ-strengthening. For ex-
ample, dualizing the definition of vacuity in [2], the ψ-weakening of ϕ is ∃x.ϕ[ψ ← x],
in which all the occurrences of ψ are replaced by an existentially quantified proposi-
tion. Likewise, dualizing the definition of vacuity in [20], the σ-weakening of ϕ, for an
occurrence σ of some subformula, is ϕ[σ ← �], which is obtained from ϕ by replac-
ing the occurrence σ by true if σ is of positive polarity and by false if σ is of negative
polarity.

Example 6. Consider the formula ϕ = (F grant)∧ (X grant). Clearly, the formula ϕ is
equivalent to its second conjunct, namely, X grant , which is the F grant-weakening of
ϕ. On the other hand, there is no subformula of ϕ or an occurrence of a subformula ψ
such that ϕ is equivalent to its ψ-strengthening.

Consider the formula ϕ = (F grant)∨(X grant). Since ϕ is equivalent to its X grant-
strengthening, namely, F grant , we have that ϕ is inherently vacuous in a definition
that considers strengthening. On the other hand, there exists no subformula of ϕ or an
occurrence of a subformula ψ such that ϕ is equivalent to its ψ-weakening.

This shows there exist formulas that are inherently vacuous according to weakening
but not according to strengthening and vice versa.

Example 7. In [9], the authors consider specifications of the form ϕ =
∧

i∈I ϕi and
study how to detect redundant conjuncts. Formally, ϕj is redundant if ϕ is equivalent to∧

i∈I\{j} ϕi. Note that this is a special case of our inherent vacuity when considering
weakening of the mutation (and the syntactic-based definition of vacuity).

For example, the formula ϕ = (wait U busy)∧F (wait∨busy) is inherently vacuous
according to this criterion. Indeed, ϕ is equivalent to (wait U busy), which is its σ-
weakening, for σ = F (wait ∨ busy).

3.2 Working with the Different Parameters

In order to describe the different parameters, we use the term ϕ is inherently vacuous
(by mutation) of type (V, E, T, P), where V ∈ {sV, mV} denotes the vacuity type (single
or multiple occurrences), E ∈ {cE, oE} denotes the equivalence type (closed or open
systems), T ∈ {eT, pT} denotes the tightening type (to an equivalent one or to one that
preserves satisfaction), and P ∈ {sP, wP} denotes the type of polarity (strengthening or
weakening). For example,

3 Nevertheless, [15] shows how one can benefit from checking the vacuity of negations of for-
mulas that pass.
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– ϕ is inherently vacuous of type (mV, oE, eT, sP) if ϕ ≡o ∀x.ϕ[ψ ← x], for some
subformula ψ of ϕ.

– ϕ is inherently vacuous of type (sV, cE, eT, wP) if ϕ ≡c ϕ[σ ← �], for some occur-
rence σ of a subformula of ϕ.

– ϕ is inherently vacuous of type (mV, oE, pT, sP) if ∀x.ϕ[ψ ← x] is realizable for
some subformula ψ of ϕ.

Note that inherent vacuity discussed in Section 2 is of type (mV, cE, eT, sP). Note also
that the parameters are orthogonal to each other. An exception is the tightening type
and its polarity: if T is pT, then P must be sP.

For uniformity, we use the V, E, and T parameters also in other notations. In particu-
lar, a V-subformula of ϕ is a subformula if V = mV and is an occurrence of a subformula
if V = sV. Likewise, a E-system is a Kripke structure when E = cE and is a transducer
when E = oE. Finally, a formula that is E-satisfiable is satisfiable when E = cE and is
realizable when E = oE.

Example 8. Mutating a single occurrence of a subformula may not detect inherent vacu-
ity that originates from the relations between different parts of the formula. For exam-
ple, the formula ϕ = (wait ∧ busy) ∨ (wait ∧ ¬busy) is inherently vacuous of types
(mV, cE, eT, sP) and (mV, cE, eT, wP) but is not inherently vacuous of type (sV, cE, eT, sP)
or (sV, cE, eT, wP). Indeed, the busy-strengthening of ϕ and the busy-weakening of it,
which are equivalent to the formula wait , are equivalent to ϕ. However, there is no sin-
gle occurrence σ of a subformula ψ such that ϕ[σ ← ⊥] or ϕ[σ ← �] is equivalent to
wait .

On the other hand, mutating all occurrences may not detect local problems that are
covered by other parts of the formula. For example, the formula ϕ = (G high) ∨
(high → F G high) is inherently vacuous of type (sV, cE, eT, sP) but is not inherently
vacuous of type (mV, cE, eT, sP). Indeed, ϕ is equivalent to its σ-strengthening, for σ be-
ing the first occurrence of G high . However, there is no subformula ψ of ϕ such that ϕ
is equivalent to its ψ-strengthening.

Theorem 3 below summarizes the relations among the various types of inherent
vacuity. The first implication follows from the implications of o-equivalence by c-
equivalence [13]. The second implication follows from the fact we restrict attention
to E-satisfiable formulas. Finally, all the incomparability results are demonstrated in the
examples.

Theorem 3. Let V ∈ {sV, mV}, E ∈ {cE, oE}, T ∈ {eT, pT}, and P ∈ {sP, wP}.

1. Inherent vacuity of type (V, cE, T, P) implies inherent vacuity of type (V, oE, T, P).
Implication in the other direction does not hold.

2. For E-satisfiable formulas, inherent vacuity of type (V, E, eT, sP) implies inherent
vacuity of type (V, E, pT, sP). Implication in the other direction does not hold.

3. Inherent vacuity of type (mV, E, T, P) is incomparable with inherent vacuity of type
(sV, E, T, P).

4. Inherent vacuity of type (V, E, eT, sP) is incomparable with inherent vacuity of type
(V, E, eT, wP).
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We now turn to discuss the complexity of detecting inherent vacuity in the different
settings. The following theorem shows that the problem of deciding whether a given
LTL formula is inherently vacuous of various types we have defined, is not more difficult
than the corresponding E-satisfiability problem for LTL.

Theorem 4. Let V ∈ {sV, mV}, E ∈ {cE, oE}, T ∈ {eT, pT}, and P ∈ {sP, wP}. Given an
LTL formula ϕ and a V-subformula ψ of ϕ, deciding whether ϕ is inherently vacuous of
type (V, E, T, P) with witness ψ is PSPACE-complete for E = cE (except when V = mV

and T = pT, in which case it is in EXPSPACE-complete) and is 2EXPTIME-complete
for E = oE.

Proof. For the upper bound, all cases with T = eT are reducible to checking the E-
equivalence of ϕ and its mutation. When V = mV, the mutation may involve universal
or existential quantification of atomic propositions. Still, only one direction of the im-
plication between ϕ and the mutation should be checked (the other direction always
holds), and fortunately, it is the direction that can be reduced to LTL E-implication.
The upper bounds then follow from the PSPACE and 2EXPTIME complexities for LTL

closed and open implication, respectively [17, 29].
When T = pT, we have to check whether the ψ-strengthening of ϕ is E-satisfiable.

When V = sV, the ψ-strengthening is an LTL formula, and again the upper bound fol-
lows from the known PSPACE and 2EXPTIME complexities for LTL E-implication.
When V = mV, the ψ-strengthening involves universal quantification of atomic
propositions. When E = cE, the problem reduces to the satisfiability problem of LTL

augmented with universal quantification over atomic propositions, this leads to an EX-
PSPACE complexity [32]. When E = oE, we can check in 2EXPTIME the realizability
of ¬ϕ[ψ ← x] in a dual setting. By the determinacy of realizability, the latter is realiz-
able iff ∀x.ϕ[ψ ← x] is unrealizable.

For the lower bound, taking ψ to be ϕ reduces E-satisfiability to inherent vacuity, thus
the lower bound holds from the known PSPACE-hardness and 2EXPTIME-hardness
for LTL satisfiability and realizability, respectively [26, 29]. An exception is inherent
vacuity of type (mV, cE, pT, sP), to which we reduce satisfiability of LTL augmented with
universal quantification over atomic propositions, which is known to be EXPSPACE-
hard [32].

Corollary 2. Let V ∈ {sV, mV}, T ∈ {eT, pT}, and P ∈ {sP, wP}. The problem of decid-
ing whether an LTL formula is inherently vacuous of type (V, cE, T, P) can be solved in
polynomial space (except for type (mV, cE, pT, sP), which requires exponential space).
The problem of deciding whether an LTL formula is inherently vacuous of types
(V, oE, T, P) can be solved in doubly exponential time.

Note that Theorem 2 and Corollary 1 are a special case of Theorem 4 and Corollary 2.
Corollary 2 shows that detection of inherent vacuity, while being more informative

than detection of satisfiability or realizability, which are used in property-based design
[28], is not harder than these basic problems.4

4 The exception of (mV, cE, pT, sP) follows from the universal quantification of atomic proposi-
tions that vacuity type mV involves. It suggests that designers that suspect their specification
for closed systems should be tightened may prefer to work with vacuity type sV.
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Having refined the notion of inherent vacuity by mutations, we now turn to refine
the alternative approach of inherent vacuity by model. Note that since the definition of
inherent vacuity by model refers to vacuous satisfaction of ϕ in a model that satisfies
ϕ, it is not interesting to consider weakening of formulas. Thus, when we compare the
notions of inherent vacuity by mutation and by model, the fourth parameter has to be sP.

Definition 3. Consider an LTL formula ϕ. For V ∈ {sV, mV}, E ∈ {cE, oE}, and
T ∈ {eT, pT}, we say that

– ϕ is inherently vacuous by model of type (V, E, eT, sP) if ϕ is satisfied vacuously in
all E-systems that satisfy ϕ.

– ϕ is inherently vacuous by model of type (V, E, pT, sP) if ϕ is satisfied vacuously in
some E-system that satisfies ϕ.

Note that for type (mV, cE, eT, sP), the definition coincides with Definition 2.

The following theorem, extending Theorem 1, states that the two approaches for inher-
ent vacuity coincide all over the framework.

Theorem 5. For all V ∈ {sV, mV}, E ∈ {cE, oE}, and T ∈ {eT, pT}, an LTL formula ϕ is
inherently vacuous by mutation of type (V, E, T, sP) iff ϕ is inherently vacuous by model
of type (V, E, T, sP).

Proof. Theorem 1 provides the proof for type (mV, cE, eT, sP). The proof for the other
types with T = e are similar. In fact, in the setting of open systems and transducers, the
equivalence is valid even when we consider deterministic transducers. To see this, note
that the “only if” direction in the proof of Theorem 1 is based on defining the union
of k Kripke structures as a single Kripke structure. While this cannot be done with
deterministic Kripke structures, it can be done with deterministic transducers. Indeed,
by adding �log k� input signals that do not appear in the formula, we can define a
deterministic initial transition function for the union, in which the added input signals
choose a transducer from the union. The rest of the proof is the same as in the case of
nondeterministic Kripke structures.

It is left to describe the details for the case T = p, which is different.
Assume that ϕ is inherently vacuous by mutation of type (V, E, pT, sP). Let ψ be such

that the ψ-strengthening of ϕ is E-satisfiable, and let S be the E-system that satisfies it.
By definition, ψ does not affect the satisfaction of ϕ in S, thus S satisfies ϕ vacuously,
and ϕ is inherently vacuous by model of type (V, E, pT, sP).

For the other direction, if ϕ is inherently vacuous by model of type (V, E, pT, sP),
then there exists a V-subformula ψ that does not affect its satisfaction in some E-system.
Then the ψ-strengthening of ϕ is E-satisfiable, thus ϕ is inherently vacuous by mutation
of type (V, E, pT, sP).

4 Discussion

We proposed a framework for inherent vacuity — vacuity of specifications without a
reference model. We argue that, as has been the case with vacuity in model checking, in-
herent vacuity is common, and detection of inherent vacuity may significantly improve
the specifications and the designer’s understanding of it.



20 D. Fisman et al.

In [9], the authors experimented with a real-life block as described in [24]. Its spec-
ification consists of 50 formulas. It is shown in [9] that inherent vacuity exists already
with the basic definition of redundant conjuncts. Indeed, in a set consisting of 17 for-
mulas, 9 were found to be redundant. Another common source of inherent vacuity, not
captured by the definition in [9], is the fact that subformulas that appear in different
conjunctions may be related, without the specifier being aware of such a relation. In
particular, a formula for the full specification may be written by a group of specifiers,
each specifying a different aspect of the design. For example, consider the specification
ϕ = ϕ1 ∧ϕ2 ∧ϑ where ϕ1 is G (ξ1 → F ψ) , ϕ2 is G (ξ2 → F ψ), and ϑ is G (ξ1 ∨ ξ2).
Such a specification is classical in the sense that ξ1 and ξ2 represent some modes of
operation, and ϑ states that the system is always in one of the modes. The formula ϕ is
inherently vacuous as it is equivalent to G (ξ1 ∨ ξ2)∧G F ψ. Yet, as different specifiers
may have specified ϕ1 and ϕ2, such a vacuity may not be noticed.

The above phenomenon, of subformulas that are related to each other without the
specifier being aware of it, follows from the fact that specifiers often pack complicated
properties into a single temporal formula. Moreover, today standard temporal logics
(e.g. SVA [33], PSL [12, 25],) provide a mechanism for doing so, by allowing one to
name a formula and then relate to it in other formulas. As the referenced subformulas
may have many signals in common, inherent vacuity in the obtained formula is likely
to occur.

Another reason for finding inherent vacuity is mistakes, either typos or small
logical errors done by novice in temporal logic. For example, a typo in the formula
(p → (ϕ ∧ ψ)) ∧(¬p → (ϕ ∧ ϑ)) can result in the formula (p → (ϕ ∧ ψ)) ∧
(p → (ϕ ∧ ϑ)), which is inherently vacuous by mutation replacing the second occur-
rence of ϕ by true. As another example, trying to write the temporal-logic formula
for the English specification “If signal error is asserted, it will remain asserted for-
ever” a novice might write ϕ = G (error → (error U error)) which is a tautology,
and inherently vacuous by the mutation ∀x.ϕ(error ← x). Similarly, consider the En-
glish specification “If signal grant is not asserted the cycle after a request, then it can-
not be asserted two cycles after the request.” A wrong attempt to formalize it may be
G¬(req → X (¬grant → X (grant))). The latter formula is inherently vacuous by the
mutation replacing the second occurrence of grant by false. Similar examples abound.

We note that inherent vacuity does not always imply that the specification should be
changed to its simpler mutation, and sometimes the contribution of detecting inherent
vacuity is a better understanding of the specification, possibly leading to a change in the
specification that is different from replacing it by the mutated specification. To see this,
let us consider again the specification ϕ = G (ξ1 → F ψ)∧G (ξ2 → F ψ)∧G (ξ1 ∨ ξ2)
discussed above. While ϕ is equivalent to G (ξ1 ∨ ξ2)∧G F ψ, the specifier may prefer
to leave the original formula, in case the formula needs to be refined further in later
stages of the design (and different refinements may be needed for the different models
ξi), or in case the assumption that only these two modes are possible is removed. Still,
it is useful information for the designer to know that, as is, ψ happens infinitely often,
regardless of the mode. Note, however, that in synthesis one would always prefer the
simpler mutated specification as it will induce a smaller system in less time.
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Abstract. Mainstream programming is migrating to concurrent archi-
tectures to improve performance and facilitate more complex computa-
tion. The state of the art static analysis tools for detecting concurrency
errors are imprecise, generate a large number of false error warnings, and
require manual verification of each warning. In this paper we present a
meta heuristic to help reduce the manual effort required in the verifica-
tion of warnings generated by static analysis tools. We manually generate
a small sequence of program locations that represent points of interest
in checking the feasibility of a particular static analysis warning; then
we use a meta heuristic to automatically control scheduling decisions
in a model checker to guide the program along the input sequence to
test the feasibility of the warning. The meta heuristic guides a greedy
depth-first search based on a two-tier ranking system where the first tier
considers the number of program locations already observed from the
input sequence, and the second tier considers the perceived closeness to
the next location in the input sequence. The error traces generated by
this technique are real and require no further manual verification. We
show the effectiveness of our approach by detecting feasible concurrency
errors in benchmarked concurrent programs and the JDK 1.4 concurrent
libraries based on warnings generated by the Jlint static analysis tool.

1 Introduction

The ubiquity of multi-core Intel and AMD processors is prompting a shift in
the programming paradigm from inherently sequential programs to concurrent
programs to better utilize the computation power of the processors. Although
parallel programming is well studied in academia, research, and a few special-
ized problem domains, it is not a paradigm commonly known in mainstream
programming. As a result, there are few, if any, tools available to programmers
to help them test and analyze concurrent programs for correctness.

Static analysis tools that analyze the source of the program for detecting con-
currency errors are imprecise and incomplete [1,2,3,4]. Static analysis techniques
are not always useful as they report warnings about errors that may exist in the
program. The programmer has to manually verify the feasibility of the warn-
ing by reasoning about input values, thread schedules, and branch conditions
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required to manifest the error along a real execution path in the program. Such
manual verification is not tractable in mainstream software development because
of the complexity and the cost associated with such an activity.

Model checking in contrast to static analysis is a precise, sound, and complete
analysis technique that reports only feasible errors [5,6]. It accomplishes this by
exhaustively enumerating all possible behaviors (state space) of the program to
check for the presence and absence of errors; however, the growing complexity of
concurrent systems leads to an exponential growth in the size of state space. This
state space explosion has prevented the use of model checking in mainstream test
frameworks.

Directed model checking focuses its efforts in searching parts of the state space
where an error is more likely to exist in order to partially mitigate the state space
explosion problem [7,8,9,10,11]. Directed model checking uses heuristic values
and path-cost to rank the states in order of interest in a priority queue. Directed
model checking uses some information about the program or the property being
verified to generate heuristic values. The information is either specified by the
user or computed automatically. In this work we use the imprecise static analysis
warnings to detect possible defects in the program and use a precise directed
search with a meta heuristic to localize real errors.

The meta heuristic presented in this paper guides the program execution
in a greedy depth-first manner along an input sequence of program locations.
The input sequence is a small number of locations manually generated such
that they are relevant in testing the feasibility of a static analysis warning or a
reachability property. The meta heuristic ranks the states based on the portion of
the input sequence already observed. States that have observed a greater number
of locations from the input sequence are ranked as more interesting compared to
other states. In the case where multiple states have observed the same number of
locations in the sequence, the meta heuristic uses a secondary heuristic to guide
the search toward the next location in the sequence. In essence, the meta heuristic
automatically controls scheduling decisions to drive the program execution along
the input sequence in a greedy depth-first manner. The greedy depth-first search
picks the best-ranked immediate successor of the current state and does not
consider unexplored successors until it reaches the end of a path and needs to
backtrack.

In this work we do not consider any non-determinism arising due to data input
and only consider the non-determinism arising from thread schedules. The error
traces generated by the technique are real and require no further verification;
however, if the technique does not find an error we cannot prove the absence of
the error. The technique is sound in error detection but not complete.

To test the validity of our meta heuristic solution in aiding the process of
automatically verifying deadlocks, race conditions, and reachability properties
in multi-threaded programs, we present an empirical study conducted on several
benchmarked concurrent Java programs and the JDK 1.4 concurrent libraries.
We use the Java PathFinder model checker (an explicit state Java byte-code
model checker) to conduct the empirical study [6]. We show that the meta
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heuristic is extremely effective in localizing a feasible error when given a few
key locations relevant to a corresponding static analysis warning. Furthermore,
the results demonstrate that the choice of the secondary heuristic has a dramatic
effect on the number of states generated, on average, before error discovery.

2 Meta Heuristic

In this section we describe the input sequence to the meta heuristic, our greedy
depth-first search, and the guidance strategy based on the meta heuristic.

2.1 Input Sequence

The input to our meta heuristic is the program, an environment that closes the
program, and a sequence of locations that are relevant to checking the feasibility
of the static analysis warning. The number and type of locations in the sequence
can vary based on the static analysis warning being verified. For example, to
test the occurrences of race-conditions, we can generate a sequence of program
locations that represent a series of reads and writes on shared objects. Note that
we do not manually specify which thread is required to be at a given location
in the input sequence and rely on the meta heuristic to intelligently pick thread
assignments.

We use the example in Fig. 1 to demonstrate how we generate an input se-
quence to check the feasibility of a possible race condition from a static anal-
ysis warning. Fig. 1 represents a portion of a program that uses the JDK 1.4
concurrent public library. The raceCondition class in Fig. 1(a) initializes two
AbstractList data structures, l1 and l2, using the synchronized Vector sub-
class implementation. Two threads of type AThread, t0 and t1, are initialized
such that both threads can concurrently access and modify the data structures,
l1 and l2. Finally, main invokes the run function of Fig. 1(b) on the two threads.
The threads go through a sequence of events, including operations on l1 and l2
in Fig. 1(b). Specifically, an add operation is performed on list l2 when a cer-
tain condition is satisfied; the add is then followed by an operation that checks
whether l1 equals l2. The add operation in the Vector class, Fig. 1(c), first
acquires a lock on its own Vector instance and then adds the input element to
the instance. The equals function in the same class, however, acquires the lock
on its own instance and invokes the equals function of its parent class which is
AbstractList shown in Fig. 1(d).

The Jlint static analysis tool issues a series of warnings about potential concur-
rency errors in the concurrent JDK library when we analyze the program shown
in Fig. 1 [4]. The Jlint warnings for the equals function in the AbstractList
class in Fig. 1(d) are on the Iterator operations (lines 8− 14 and lines 18− 19).
The warnings state that the Iterator operations are not synchronized. As the
program uses a synchronized Vector sub-class of the AbstractList (in accor-
dance with the specified usage documentation), the user may be tempted to
believe that the warnings are spurious. Furthermore, people most often ignore
the warnings in libraries since they assume the libraries to be error-free.
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1: class raceCondition{
2: . . .
3: public static void main(){
4: AbstractList l1 := new Vector();
5: AbstractList l2 := new Vector();
6: AThread t0 = new AThread(l1, l2);
7: AThread t1 = new AThread(l1, l2);
8: t0.start(); t1.start();
9: . . .

10: }
11: . . .
12: }

1: class AThread extends Thread{
2: AbstractList l1;
3: AbstractList l2;
4: AThread(AbstractList l1,
5: AbstractList l2){
6: this .l1 := l1; this.l2 := l2;
7: }
8: public void run(){
9: . . .

10: if some condition then
11: l2.add(some object);
12: . . .
13: l1.equals(l2);
14: . . .
15: }
16: }

(a) (b)

1: class Vector extends
2: AbstractList{
3: . . .
4: public synchronized boolean equals
5: (Object o){
6: super .equals(o);
7: }
8: . . .
9: public synchronized boolean add

10: (Object o){
11: modCnt + +;
12: ensureCapacityHelper(cnt + 1);
13: elementData[cnt + +] = o;
14: return true ;
15: }
16: . . .
17: }

1: class AbstractList

2: implements List{
3: public boolean equals(Object o){
4: if o == this then
5: return true ;
6: if ¬(o instanceof List) then
7: return false;
8: ListIterator e1 := ListIterator();
9: ListIterator e2 :=

10: (List o).listIterator();
11: while e1.hasNext() and
12: e2.hasNext() do
13: Object o1 := e1.next();
14: Object o2 := e2.next();
15: if¬(o1 == null ? o2 == null :
16: o1.equals(o2)) then
17: return false;
18: return ¬(e1.hasNext() ||
19: e2.hasNext())
20: }
21: }

(c) (d)

Fig. 1. Possible race-condition in the JDK 1.4 concurrent library

To check the feasibility of the possible race condition reported by Jlint for the
example in Fig. 1 we need a thread iterating over the list, l2, in the equals func-
tion of AbstractList while another thread calls the add function. A potential
input sequence of locations to test the feasibility of the warning is as follows:

1. Get the ListIterator, e2 at lines 9− 10 in Fig. 1(d).
2. Check e2 hasNext() at line 12 in Fig. 1(d).
3. Add some object to l2 at line 11 in Fig. 1(b).
4. Call e2.next() at line 14 in Fig. 1(d).
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1: /∗ backtrack := ∅, visited := ∅ ∗/
procedure gdf search(〈s, locs , hval 〉)
2: visited := visited ∪ {s}
3: while s �= null do
4: if error(s) then
5: report error statistics
6: exit
7: 〈s, locs, hval 〉 := choose best successor(〈s, locs, hval 〉)
8: if s == null then
9: 〈s, locs, hval 〉 := get backtrack state()

Fig. 2. Pseudocode for the greedy depth-first search

The same approach can be applied to generate input sequences for different
warnings. Classic lockset analysis techniques detect potential deadlocks in multi-
threaded programs caused due to cyclic lock dependencies [2,12]. For example,
it detects a cyclic dependency in the series of lock acquisitions l0(A) → l1(B)
and l9(B) → l18(A), where A and B are the locks acquired at different program
locations specified by ln. To generate an input sequence that checks the feasibility
of the possible deadlock we can generate a sequence of locations: l0 → l9 → l1 →
l18. A larger set of concurrency error patterns are described by Farchi et. al in
[13]. Understanding and recognizing the concurrent error patterns can be helpful
in generating location sequences to detect particular errors.

In general, providing as much relevant information as possible in the sequence
enables the meta heuristic to be more effective in defect detection; however, only
2–3 key locations were required to find errors in most of the models in our study.
Any program location that we think affects the potential error can be added
to the sequence. For example, if there is a data definition in the program that
affects the variables in the predicate, some condition, of the branch statement
shown on line 10 in Fig. 1(b), then we can add the program location of the data
definition to the sequence. Similarly we can generate input sequences to check
reachability properties such as NULL pointer exceptions and assertion violations
in multi-threaded programs.

2.2 Greedy Depth-First Search

In this subsection we describe a greedy depth-first search that lends itself nat-
urally in directing the search using the meta heuristic along a particular path
(the input sequence of locations). The greedy depth-first search mimics a test-
like paradigm for multi-threaded programs. The meta heuristic can be also used
with bounded priority-queue based best-first searches with comparable results.

The pseudocode for the greedy depth-first search is presented in Fig. 2. The in-
put to gdf search is a tuple with the initial state of the program (s), the sequence
of locations (locs), and the initial secondary heuristic value (hval). In a loop we
guide the execution as long as the current state, s, has successors (lines 3−9). At
every state we check whether the state, s, satisfies the error condition (line 4).
If an error is detected, then we report the error details and exit the search;
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Fig. 3. Guidance (a) Greedy depth-first search (b) Two-level ranking scheme

otherwise, we continue to guide the search. The choose best successor func-
tion only considers the immediate successors of s and assigns to the current state
the best-ranked successor of s (line 7). When the search reaches a state with no
immediate successors, the technique requests a backtrack state as shown on lines
8−9 in Fig. 2. The details of choose best successor and get backtrack state
are provided in Fig. 4 and Fig. 5 respectively.

Fig. 3(a) demonstrates the greedy depth-first search using a simple example.
The choose best successor function ranks c0, c1, and c2 (enclosed in a dashed
box) to choose the best successor of b0 in Fig. 3(a). The shaded state c2 is ranked
as the best successor of b0. When the search reaches state d2 that does not have
any successors, the search backtracks to one of the unshaded states (e.g., b1, b2,
c0, c1, d0, or d2). We bound the number of unshaded states (backtrack states)
saved during the search. Bounding the backtrack states makes our technique
incomplete; although, the bounding is not a limitation because obtaining a com-
plete coverage of the programs we are considering is not possible.

2.3 Guidance Strategy

The meta heuristic uses a two-tier ranking scheme as the guidance strategy. The
states are first assigned a rank based on the number of locations in the input
sequence that have been encountered along the current execution path. The meta
heuristic then uses a secondary heuristic to rank states that observed the same
number of locations in the sequence. The secondary heuristic is essentially used
to guide the search toward the next location in the input sequence.

In Fig. 4 we present the pseudocode to choose the best successor of a given
state. The input to the function is a tuple 〈s, locs , hval〉 where s is a program
state, locs is a sequence of locations, and hval is the heuristic value of s generated
by the secondary heuristic function. We evaluate each successor of s, s′, and
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1: /∗ mStates := ∅, hStates := ∅, min hval := ∞ ∗/
procedure choose best successor(〈s, locs, hval 〉)
2: for each s′ ∈ successors(s) do
3: if ¬visited .contains(s′) then
4: visited .add state(s′)
5: locs ′ := locs /∗ Make copy of locs ∗/
6: h′

val = get h value(s′)
7: if s′.current loc() == locs.top() then
8: mStates := next state to explore(mStates , 〈s′, locs ′.pop(), h′

val〉)
9: else

10: hStates := next state to explore(hStates , 〈s′, locs, h′
val 〉)

11: backtrack .add state(〈s′, locs ′, h′
val 〉)

12: if mStates �= ∅ then
13: 〈s, locs , hval〉 := get random element(mStates)
14: else
15: 〈s, locs , hval〉 := get random element(hStates)
16: backtrack .remove state(〈s, locs, hval〉)
17: bound size(backtrack )
18: return 〈s, locs, hval 〉
procedure next state to explore(states , 〈s, locs, hval 〉)
1: if states == ∅ or hval == min hval then
2: states .add state(〈s, locs , hval 〉)
3: else if hval < min hval then
4: states .clear()
5: states .add state(〈s, locs , hval 〉)
6: min hval := hval

7: return states

Fig. 4. Two-tier ranking scheme for the meta heuristic

process s′ if it is not found in the visited set (line 2 − 3). To process s′ we
add it to the visited set (line 4), copy the sequence of locations locs into a new
sequence of locations locs ′ (line 5), and compute the secondary heuristic value for
s′ (line 6). If s′ observes an additional location from the sequence (line 7), then
we update the mStates set (line 8); otherwise, we update the hStates set (line
10). An element from the locs ′ is removed on line 8 to indicate s′ has observed
an additional location. We invoke the next state to explore function with the
mStates or the hStates set and the tuple containing s′. The best successor is
picked from mStates if it is non-empty; else, it is picked from the hStates set.
The algorithm prefers states in the mStates set because they have observed
an additional location compared to their parent. All other successor states are
added to the backtrack set (lines 12− 18).

The next state to explore function in Fig. 4 uses the secondary heuristic
values (hval) to add states to the mStates and hStates sets. Recall that the
next state to explore is invoked with either the mStates set or hStates set
which is mapped to the formal parameter states. When the states set is empty
or the hval is equal to the minimum heuristic value (min hval) then the algorithm
simply adds the tuple with the successor state to the states set. If, however,
the hval is less than the minimum heuristic value then the algorithm clears the
states set, adds the tuple with the successor state to states, and sets the value
of min hval to hval . Finally, the function returns the states set.



30 N. Rungta and E.G. Mercer

procedure get backtrack state()
1: if backtrack == ∅ then
2: return 〈null,∞,∞〉
3: else
4: x := pick backtrack meta level()
5: b points := get states(backtrack, x)
6: b points := b points ∩ states min h value(b points)
7: return get random element(b points)

Fig. 5. Stochastic backtracking technique

We use Fig. 3(b) to demonstrate the two-tier ranking scheme. In Fig. 3(b)
the search is guided through locations l1 to ln. The dashed-lines separate the
states based on the number of locations from the sequence they have observed
along the path from the initial state. The states at the topmost level l1 have
encountered the first program location in the sequence while states at l2 have
observed the first two program locations from the sequence, so on and so forth.
In Fig. 3(b) we see that state s1 has three successors: s2, s3, and s4. The states
s2 and s3 observe an additional location, l2, from the sequence compared to
their parent s1. Suppose s2 and s3 have the same secondary heuristic value. We
add the states s2 and s3 to the mStates set to denote that a location from the
sequence is observed. Suppose, the secondary heuristic value of s4 is greater than
that of s2 and s3; then s4 is not added to the hStates set.

After enumerating the successors of s1, the mStates set is non-empty so we
randomly choose between s2 and s3 (line 13 in Fig. 4) and return the state as
the best successor. When we evaluate successors of a state that do not encounter
any additional location from the sequence, for example, the successors of s2 in
Fig. 3(b) (enclosed by the box), the states are ranked simply based on their
secondary heuristic values. The best successor is then picked from the hStates
set. All states other than the best successor are added to the backtrack set.
We bound the size of the backtrack set to mitigate the common problem in
directed model checking where saving the frontier in a priority queue consumes
all memory resources.

The get backtrack state function in Fig. 5 picks a backtrack point when the
guided test reaches the end of a path. Backtracking allows the meta heuristic to
pick a different set of threads when it is unable to find an error along the initial
sequence of thread schedules. As shown in Fig. 5, if the backtrack set is empty,
then the function returns null as the next state (lines 1 − 2); otherwise, the
function probabilistically picks a meta level, x, between 1 and n where n is the
number of locations in the sequence. The states that have observed one program
location from the sequence are at meta level one. We then get all the states at
meta level x and return the state with the minimum secondary heuristic value
among the states at that meta level. The stochastic element of picking backtrack
points enables the search to avoid getting stuck in a local minima.
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3 Empirical Study

The empirical study in this paper is designed to evaluate the effectiveness of the
meta heuristic in detecting concurrency errors in multi-threaded Java programs.

3.1 Study Design

We conduct the experiments on machines with 8 GB of RAM and two Dual-core
Intel Xeon EM64T processors (2.6 GHz). We run 100 trials of greedy depth-
first search and randomized depth-first search. All the trials are bounded at one
hour. We execute multiple trials of the greedy depth-first search since all ties
in heuristic values are brokenly randomly and there is a stochastic element in
picking backtrack points. An extensive study shows that randomly breaking ties
in heuristic values helps in overcoming the limitations (and benefits) of default
search order in directed search techniques [14]. We pick the time bound and
number of trials to be consistent with other recent empirical studies [15,16,17].
Since each trial is completely independent of the other trials we use a super com-
puting cluster of 618 nodes to distribute the trials on various nodes and quickly
generate the results.1 We use the Java Pathfinder (JPF) v4.0 Java byte-code
model checker with partial order reduction turned on to run the experiments [6].
In the greedy depth-first search trials we save at most 100,000 backtrack states.

We use six unique multi-threaded Java programs in this study to evaluate the
effectiveness of the meta heuristic in checking whether the input sequence leads to
an error. Three programs are from the benchmark suite of multi-threaded Java
programs gathered from academia, IBM Research Lab in Haifa, and classical
concurrency errors described in literature [15]. We pick these three artifacts from
the benchmark suite because the threads in these programs can be systematically
manipulated to create configurations of the model where randomized depth-first
search is unable to find errors in the models [17]. These models also exhibit
different concurrency error patterns described by Farchi et. al in [13]. The
other three examples are programs that use the JDK 1.4 library in accordance
with the documentation. Fig. 1 is one such program that appears as AbsList in
our results. We use Jlint on these models to automatically generate warnings on
possible concurrency errors in the JDK 1.4 library and then manually generate
the input sequences. The name, type of model, number of locations in the input
sequence, and source lines of code (SLOC) for the models are as follows:

– TwoStage: Benchmark, Num of locs: 2, SLOC: 52
– Reorder: Benchmark, Num of locs: 2, SLOC: 44
– Wronglock: Benchmark, Num of locs: 3, SLOC: 38
– AbsList: Real, Num of locs: 6, Race-condition in the AbstractList class

using the synchronized Vector sub-class Fig. 1. SLOC: 7267
– AryList: Real, Num of locs: 6, Race-condition in the ArrayList class using

the synchronized List implementation. SLOC: 7169
1 We thank Mary and Ira Lou Fulton for their generous donations to the BYU Super-

computing laboratory.
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Table 1. Error density of the models with different search techniques

Subject Total Random Meta Heuristic

Threads DFS PFSM Rand Prefer
Threads

TwoStage(7,1) 9 0.41 1.00 1.00 1.00
TwoStage(8,1) 10 0.04 1.00 1.00 1.00
TwoStage(10,1) 12 0.00 1.00 1.00 1.00
Reorder(9,1) 11 0.06 1.00 1.00 1.00
Reorder(10,1) 12 0.00 1.00 1.00 1.00
Wronglock(1,20) 22 0.28 1.00 1.00 1.00
AbsList(1,7) 9 0.01 1.00 0.37 0.00
AbsList(1,8) 10 0.00 1.00 0.08 0.00
Deadlock(1,9) 11 0.00 1.00 1.00 1.00
Deadlock(1,10) 12 0.00 1.00 1.00 1.00
AryList(1,5) 7 0.81 1.00 1.00 1.00
AryList(1,8) 10 0.00 1.00 1.00 0.01
AryList(1,9) 11 0.00 1.00 1.00 0.00
AryList(1,10) 12 0.00 1.00 1.00 0.00

– Deadlock: Real, Num of locs: 6, Deadlock in the Vector and Hashtable
classes due to a circular data dependency [12]. SLOC: 7151

3.2 Error Discovery

In Table 1 we compare the error densities of randomized depth-first search
(Random DFS) to the meta heuristic using a greedy depth-first search. The error
density which is a dependent variable in this study is defined as the probability
of a technique finding an error in the program. To compute this probability we
use the ratio of the number of error discovering trials over the total number of
trials executed for a given model and technique. A technique that generates an
error density of 1.00 is termed effective in error discovery while a technique that
generates an error density of 0.00 is termed ineffective for error discovery.

We test three different secondary heuristics which is an independent variable
to study the effect of the underlying heuristic on the effectiveness of the meta
heuristic: (1) The polymorphic distance heuristic (PFSM) computes the distance
between a target program location and the current program location on the
control flow representation of the program. The heuristic rank based on the
distance estimate lends itself naturally to guiding the search toward the next
location in the sequence [11]. (2) The random heuristic (Rand) always returns
a random value as the heuristic estimate. It serves as a baseline measure to
test the effectiveness of guiding along the input sequence in the absence of any
secondary guidance. (3) The prefer-thread heuristic (Prefer Threads) assigns a
low heuristic value to a set of user-specified threads [8]. For example, if there are
five total threads in a program then the user can specify to prefer the execution
of certain threads over others when making scheduling choices.
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Table 2. Comparison of the heuristics when used with the meta heuristic

Subject PFSM Heuristic Random Heuristic Prefer-thread Heuristic
Min Avg Max Min Avg Max Min Avg Max

TwoStage(7,1) 209 213 217 40851 130839 409156 414187 2206109 4813016
TwoStage(8,1) 246 250 255 49682 217637 502762 609085 4436444 10025314
TwoStage(10,1) 329 333 340 52794 314590 827830 2635251 6690008 8771151
Wronglock(1,10) 804 3526 12542 73 7082 22418 560 120305 675987
Wronglock(1,20) 2445 21391 175708 67 24479 242418 1900 3827020 15112994
Reorder(5,1) 106 109 112 1803 5597 10408 259 977 2402
Reorder(8,1) 193 197 202 17474 36332 65733 523 3110 13536
Reorder(10,1) 266 271 277 28748 67958 110335 771 5136 16492
AryList(1,10) 1764 14044 55241 3652 15972 63206 - - -
AbsList(1,10) 1382 1382 1382 10497302 10497302 10497302 - - -

The results in Table 1 indicate that the meta heuristic, overall, has a higher
error discovery rate compared to randomized depth-first search. In the TwoStage
example the error density drops from 0.41 to 0.00 when going from the configura-
tion of TwoStage(7,1) to the TwoStage(10,1) configuration. A similar pattern
is observed in the Reorder model where the error density goes from 0.06 to 0.0;
in the AryList model the error density drops from a respectable 0.81 to 0.00.
For all these models, the meta heuristic using the polymorphic distance heuristic
finds an error in every single trial as indicated by the error density of 1.00. In
some cases, even when we use the random heuristic as the secondary heuristic,
the greedy depth-first search outperforms the randomized depth-first search.

The AbsList, AryList, and Deadlock models represent real errors in the JDK
1.4 concurrent library. The AbsList model contains the portion of code shown in
Fig. 1. In addition to the locations shown in Section 2.1 we manually add other
data definition locations that are relevant in reaching the locations shown in
Section 2.1. We use the meta heuristic to successfully generate a concrete error
trace for the possible race condition reported by Jlint. The counter-example
shows that the race-condition is caused because the equals method in Fig. 1(c)
never acquires a lock on the input parameter. This missing lock allows another
thread to modify the list (by adding an object on line 11 in Fig. 1(b)) while the
thread is iterating over the list in the equals method. To our knowledge, this
is the first report of the particular race condition in the JDK 1.4 library. It can
be argued that the application using the library is incorrect and changing the
comparison on line 13 of Fig. 1(b) to l2.equals(l1) can fix the error; however, we
term it as a bug in the library because the usage of the library is in accordance
with the documentation.

Table 2 reports the minimum, average, and maximum number of states gen-
erated in the error discovering trials of the meta heuristic using the three sec-
ondary heuristics. The entries in Table 2 marked “-” indicate that the technique
was unable to find an error in 100 independent greedy depth-first search tri-
als that are time-bounded at one hour. In the TwoStage, Reorder, AryList,
AbsList subjects, the minimum, average, and maximum states generated by the
PFSM heuristic is perceptibly less than the random and prefer-thread heuristics.
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Fig. 6. Effect of varying the number of locations in the sequence in the AryLst(1,10)
program to verify the race condition in the JDK1.4 concurrent library

Consider the Twostage(7,1) model where, on average, the PFSM heuristic only
generates 213 states while the random heuristic and prefer-thread heuristic gen-
erate 130, 839 and 2, 206, 109 states respectively, on average, before error discov-
ery. In the AbsList(1,10) model the PFSM heuristic finds the error every time
by exploring a mere 1382 states. In contrast, from a total of 100 trials with the
random heuristic only a single trial finds the error after exploring over a million
states, while the prefer-thread heuristic is unable to find the error in the 100
trials. Wronglock is the only model where the minimum number of states gen-
erated by the random heuristic is less than the PFSM heuristic. This example
shows that it is possible for the random heuristic to get just lucky in certain
models. The results in Table 2 demonstrate that a better underlying secondary
heuristic helps the meta heuristic generate fewer states before error discovery.
The trends observed in Table 2 are also observed in total time taken before error
discovery, total memory used, and length of counter-example.

3.3 Effect of the Sequence Length

We vary the number of key locations in the input sequence provided to the meta
heuristic to study the effect of the number of locations on the performance of
the meta heuristic. In Fig. 6 we plot the average number of states generated (the
dependent variable) before error discovery while varying sequence lengths in the
AryLst model. In Fig. 6 there is a sharp drop in the number of states when we
increase the number of key locations from one to two. A smaller decrease in the
average number of states is observed between sequence lengths two and three.
We observe the effects of diminishing returns after three key locations and the
number of states does not vary much. In general, for the models presented in this
study, only 2–3 key locations are required for the meta heuristic to be effective. In
the possible race condition shown in Fig. 1 (AbsList model), however, we needed
to specify a minimum of five key program locations in the input sequence for
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the meta heuristic to find a corresponding concrete error trace. Recall that the
AbsList model represents the race-condition in the AbstractList class while
using the synchronized Vector sub-class in the JDK 1.4 library.

4 Related Work

Static analysis techniques ignore the actual execution environment of the pro-
gram and reason about errors by simply analyzing the source code of the pro-
gram. ESC/Java relies heavily on program annotations to find deadlocks and
race-conditions in the programs [1]. Annotating existing code is cumbersome
and time consuming. RacerX does a top-down inter-procedural analysis starting
from the root of the program [2]. Similarly, the work by Williams et al. does a
static deadlock detection in Java libraries [12]. FindBugs and Jlint look for suspi-
cious patterns in Java programs [3,4]. Error warnings reported by static analysis
tools have to be manually verified which is difficult and sometimes not possible.
The output of such techniques, however, serve as ideal input for the meta heuris-
tic presented in this paper. Furthermore, dynamic analysis techniques can also
be used to generate warnings about potential errors in the programs [18,19].

Model checking is a formal approach for systematically exploring the behav-
ior of a concurrent software system to verify whether the system satisfies the
user specified properties [5,6]. In contrast to exhaustively searching the system,
directed model checking uses heuristics to guide the search quickly toward the er-
ror [7,8,20,9,10,11]. Property-based heuristics and structural heuristics consider
the property being verified and structure of the program respectively to com-
pute a heuristic rank [7,8]. Distance estimate heuristics rank the states based on
the distance to a possible error location [20,9,10,11]. As seen in the results, the
PFSM distance heuristic is very effective in guiding the search toward a partic-
ular location; however, its success is dramatically improved in combination with
the meta heuristic.

The trail directed model checking by Edelkamp et. al uses a concrete counter-
example generated by a depth-first search as input to its guidance strategy [21].
It uses information from the original counter-example (trail) in order to generate
an optimal counter-example. The goal in this work, however, is to achieve error
discovery in models where exhaustive search techniques are unable to find an
error. The deterministic execution technique used to test concurrent Java mon-
itors is related to the technique presented in this paper [22]. The deterministic
execution approach, however, requires a significant manual effort with the tester
required to provide data values to execute different branch conditions, thread
schedules, and sequence of methods.

Similar ideas of guiding the program execution using information from some
abstraction of the system have been explored in hardware verification with con-
siderable success [23,24]. An interesting avenue of future work would be to study
the reasons for the success (in concretizing abstract traces by guiding program
execution) that we observe in such disparate domains with very different ab-
straction and guidance strategies.
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5 Conclusions and Future Work

This paper presents a meta heuristic that automatically verifies the presence of
errors in real multi-threaded Java programs based on static analysis warnings.
We provide the meta heuristic a sequence of locations and it automatically con-
trols scheduling decisions to direct the execution of the program using a two-tier
ranking scheme in a greedy-depth first manner. The study presented in this pa-
per shows that the meta heuristic is effective in error discovery in subjects where
randomized depth-first search fails to find an error. Using the meta heuristic we
discovered real concurrency errors in the JDK 1.4 library. In future work we
want to take the output of a static analysis tool and automatically generate the
input sequence using control and data dependence analyses. Also we would like
to extend the technique to handle non-determinism arising due to data values.
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Abstract. Abstraction/refinement methods play a central role in the analysis of
hybrid automata, that are rarely decidable. Soundness (of evaluated properties) is
a major challenge for these methods, since abstractions can introduce unrealistic
behaviors.

In this paper, we consider the definition of a three-valued semantics for μ-
calculus on abstractions of hybrid automata. Our approach relies on two steps:
First, we develop a framework that is general in the sense that it provides a preser-
vation result that holds for several possible semantics of the modal operators. In a
second step, we instantiate our framework to two particular abstractions. To this
end, a key issue is the consideration of both over- and under-approximated reach-
ability analysis, while classic simulation-based abstractions rely only on overap-
proximations, and limit the preservation to the universal (μ-calculus’) fragment.
To specialize our general result, we consider (1) so-called discrete bounded bisim-
ulation abstractions, and (2) modal abstractions based on may/must transitions.

1 Introduction

Hybrid automata [16,1] provide an appropriate modeling paradigm for systems where
continuous variables interact with discrete modes. Such models are frequently used in
complex engineering fields like embedded systems, robotics, avionics, and aeronau-
tics [2,12,24,25]. In hybrid automata, the interaction between discrete and continuous
dynamics is naturally expressed by associating a set of differential equations to every
location of a finite automaton.

Finite automata and differential equations are well established formalisms in math-
ematics and computer science. Despite of their long-standing tradition, their combina-
tion in form of hybrid automata leads to surprisingly difficult problems that are often
undecidable. In particular, the reachability problem is undecidable for most families of
hybrid automata [1,14,20,21,22], and the few decidability results are built upon strong
restrictions of the dynamics [3,17]. The reachability analysis of hybrid automata is a
fundamental task, since checking safety properties of the underlying system can be re-
duced to a reachability problem for the set of bad configurations [16].

For this reason, a growing body of research is being developed on the issue of deal-
ing with approximated reachability on undecidable – yet reasonably expressive – hybrid
automata [9,11,23,25,26]. To this end, most of the techniques proposed so far either rely
on bounded state-reachability or on the definition of finite abstractions. While the first
approach suffers inherently of incompleteness, the quest for soundness is a key issue in

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, pp. 38–52, 2009.
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the context of methods based on abstractions. In fact, abstractions can introduce unre-
alistic behaviors that may yield to spurious errors being reported in the safety analysis.
Usually, a simulation preorder is required to relate the abstraction to the concrete dy-
namics of the hybrid system under consideration, ensuring at least the correctness of
each response of (abstract) non reachability.

In this work, we provide a uniform approach to the sound evaluation of general
reactive properties on abstractions of hybrid automata. Here, ‘general’ refers to the fact
that we specify properties by means of the highly expressive logic of μ-calculus, that
covers in particular CTL and other specification logics. ‘Uniform’, instead, emphasizes
that we consider different possible classes of abstractions, whose analysis permits to
recover both under- and overapproximations of state-sets fulfilling a given reachability
requirement. Intuitively, this requirement is a minimal prerequisite for recovering sound
abstract evaluations of arbitrary μ-calculus formulas.

To achieve our results we proceed by two steps: We start with the development of a
generic semantics scheme for the μ-calculus, where the meaning of the modal operators
can be adapted to particular abstractions. Assuming certain constraints for the semantics
of these operators, we can prove a preservation result for our generic semantics scheme,
thus providing a general framework for different classes of abstractions. In a subsequent
step, we specialize our framework to suitable abstractions. In particular, we demonstrate
the applicability of our framework by considering (1) the class of so-called discrete
bounded bisimulation (DBB) abstractions [10], and (2) a kind of modal abstractions
based on may/must transitions. As a final contribution, we compare these instances
of our framework with respect to the issue of monotonicity of preserved μ-calculus
formulas.

The paper is organized as follows: Preliminaries are given in Section 2. Section 3 in-
troduces the classes of abstractions used in Section 5 to instantiate the generic result on
preservative three-valued μ-calculus semantics outlined in Section 4. The monotonic-
ity issue is dealt with in Section 6, while Section 7 concludes the paper discussing its
contributions. All proofs are given in the appendix and in [4].

2 Preliminaries

In this section, we introduce the basic notions used in the remainder of the paper.

Definition 1 (Hybrid Automata [3]). A Hybrid Automaton is a tuple H = 〈L, E, X ,
Init, Inv, F, G, R〉 with the following components:

• a finite set of locations L
• a finite set of discrete transitions (or jumps) E ⊆ L× L
• a finite set of continuous variables X = {x1, . . . xn} that take values in R

• an initial set of conditions: Init ⊆ L× Rn

• Inv : L → 2R
n

, the invariant location labeling
• F : L × Rn → Rn, assigning to each location 	 ∈ L a vector field F (	, ·) that

defines the evolution of continuous variables within 	
• G : E → 2R

n

, the guard edge labeling
• R : E × R

n → 2R
n

, the reset edge labeling.
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We write v to represent a valuation (v1, . . . , vn) ∈ Rn of the variables’ vector x =
(x1, . . . , xn), whereas ẋ denotes the first derivatives of the variables in x (they all de-
pend on the time, and are therefore rather functions than variables). A state in H is a
pair s = (	,v), where 	 ∈ L is called the discrete component of s and v is called the
continuous component of s. A run of H is a path in the time abstract transition system
of H , given in Definition 2.

Definition 2. The time abstract transition system of the hybrid automaton H = 〈L, E,
X, Init, Inv, F, G, R〉 is the transition system TH =〈Q,Q0, 	→, →〉, where:

• Q ⊆ L× Rn and (	,v) ∈ Q if and only if v ∈ Inv(	)
• Q0 ⊆ Q and (	,v) ∈ Q0 if and only if v ∈ Init(	) ∩ Inv(	)
• 	→ = {e, δ} is the set of edge labels, that are determined as follows:

– there is a continuous transition (	,v) δ→ (	,v′), if and only if there is a differ-
entiable function f : [0, t] → Rn, with ḟ : [0, t] → Rn such that:
1. f(0) = v and f(t) = v′

2. for all ε ∈ (0, t), f(ε) ∈ Inv(	), and ḟ(ε) = F (	, f(ε)).
– there is a discrete transition (	,v) e→ (	′,v′) if and only if there exists an edge

(	, 	′) ∈ E, v ∈ G(	) and v′ ∈ R((	, 	′),v).

Definition 3 and Definition 4 recapitulate the syntax and the semantics of the μ-calculus
language Lμ on hybrid automata, respectively [6,7].

Definition 3 (Lμ Syntax). The set of μ-calculus preformulas for a set of labels a ∈
{e, δ} and propositions p ∈ AP is defined by the following syntax:

φ := p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ |E(φ1Uφ2) |A(φ1Uφ2) | μZ.φ | νZ.φ

The set Lμ of μ-calculus formulas is defined as the subset of pre-formulas, where each
subformula of the type μZ.φ and νZ.φ satisfies that all occurrences of Z in φ occur
under an even number of negation symbols.

Definition 4 (Semantics of Lμ on Hybrid Automata). Let AP be a finite set of propo-
sitional letters, let p ∈ AP and consider H = 〈L, E, X , Init, Inv, F, G, R〉. Given
	AP : Q → 2AP and φ ∈ Lμ, the function �φ� : Q → {0, 1} is inductively defined:

• �p�(q) = 1 iff p ∈ lAP (q)
• �¬φ� := ¬ �φ�
• �φ � ψ� := �φ� � �ψ� for � ∈ {∨,∧}
• �E(φUψ)�(q) = 1 iff there exists a run ρ departing from q that admits a prefix

ρ∗ := q1
a1→ ...

an−1→ qn, where q = q1, ai ∈ {e, δ}, qi = (l, vi), satisfying:
· �ψ�(qn) = 1 and for 1 ≤ i < n: �φ�(qi) = 1
· for ai = δ: ∃ a differentiable function f : [0, t] → Rn, for which:

1. f(0) = vi and f(t) = vi+1

2. for all ε ∈ (0, t), f(ε) ∈ Inv(	), and ḟ(ε) = F (	, f(ε))
3. for all ε ∈ (0, t), q′ = (li, f(ε)) satisfies �φ ∨ ψ�(q′) = 1

• �A(φUψ)�(q1) = 1 iff for all runs ρ departing from q there exists a prefix ρ∗ :=
q1

a1→ ...
an−1→ qn, where q = q1, ai ∈ {e, δ}, qi = (l, vi), satisfying:
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· �ψ�(qn) = 1 and for 1 ≤ i < n: �φ�(qi) = 1
· for ai = δ: ∃ a differentiable function f : [0, t] → Rn, for which:

1. f(0) = vi and f(t) = vi+1
2. for all ε ∈ (0, t), f(ε) ∈ Inv(	), and ḟ(ε) = F (	, f(ε))
3. for all ε ∈ (0, t), q′ = (li, f(ε)) satisfies �φ ∨ ψ�(q′) = 1

• �〈a〉φ�(q) = 1 iff ∃q a→ q′ : �φ�(q′) = 1
�[a]φ�(q) = 1 iff ∀q a→ q′ : �φ�(q′) = 1

• The fixpoint operators are defined in the following way:
Let [φ]ψZ be the formula obtained by replacing all occurrences of Z with ψ. Given
a fixpoint formula σZ.φ with σ ∈ {μ, ν} its k-th approximation apxk(σZ.φ) is
recursively defined as follows:

apx0(μZ.φ) := 0 and apxk+1(μZ.φ) := [φ]apxk(μZ.φ)
Z

apx0(νZ.φ) := 1 and apxk+1(νZ.φ) := [φ]apxk(νZ.φ)
Z

Then smallest and greatest fixpoints �σZ.φ� are defined by
· smallest fixpoint: �μZ.φ� :=

∨
k∈N

�apxk(μZ.φ)�

· greatest fixpoint: �νZ.φ� :=
∧

k∈N

�apxk(μZ.φ)�

H � φ iff ∀q0 ∈ Q0 : �φ�(q0) = 1.

The following definition recalls the notion of simulation relation, that plays a central
role in the context of hybrid automata abstractions.

Definition 5 (Simulation). Let T1 = 〈Q1, Q1
0, 	→,→1〉, T2 = 〈Q2, Q2

0, 	→,→2〉,
Q1 ∩ Q2 = ∅, be two edge-labeled transition systems and let P be a partition on
Q1 ∪ Q2. A simulation from T1 to T2 is a non-empty relation on ρ ⊆ Q1 × Q2 such
that, for all (p, q) ∈ ρ:

• p ∈ Q1
0 iff q ∈ Q2

0 and [p]P = [q]P .
• for each label a ∈ 	→, if there exists p′ such that p

a→ p′, then there exists q′ such
that (p′, q′) ∈ ρ and q

a→ q′.

If there exists a simulation from T1 to T2, then we say that T2 simulates T1, denoted
T1 ≤S T2. If T1 ≤S T2 and T2 ≤S T1, then T1 and T2 are said similar, denoted
T1 ≡S T2. If ρ is a simulation from T1 to T2, and the inverse relation ρ−1 is a simulation
from T2 to T1, then T1 and T2 are said bisimilar, denoted T1 ≡B T2

3 Abstractions of Hybrid Automata for Parallel over- and
Underapproximated Reachability Analysis

In this section, we introduce two kinds of abstractions that we will use in the sequel to
specialize our general preservation result for μ-calculus semantics.

Most of the abstraction/refinement methods for hybrid automata in the literature
are based on overapproximations of the reachable states1. In particular, they rely on
a generic notion of abstractions based on the simulation preorder. The latter is required
to relate the abstraction to the dynamics of the hybrid automaton, as formalized below.

1 Note that the reachability problem is undecidable for most classes of hybrid automata.
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Definition 6 (Abstraction). Let H be a hybrid automaton. An abstraction of H is a

finite transition system A = 〈R, R0,
δ→,

e→〉 in which

1. R is a finite partition of the state space of H , R0 ⊆ R is a partition of the initial

states,
δ→⊆ R×R and

e→⊆ R×R

2. A∗ := 〈R, R0
δ

→∗,
e→〉 simulates the time abstract transition system TH associated

to H , where
δ

→∗ denotes the transitive closure of the continuous transitions
δ→

Since this basic notion of abstraction gives only an overapproximation of the hybrid
automaton’s reachable states, its usage is inherently limited to the universal fragment of
the μ-calculus [5]. As we are interested in unrestricted μ-calculus properties, we need a
more powerful abstraction/refinement approach. To this end, a minimum requirement is
the combination of both over- and underapproximations of state-sets satisfying a given
reachability property. The consideration of parallel over- and underapproximated reach-
ability on hybrid automata is quite new: In [10], discrete bounded bisimulation (DBB)
abstractions, briefly recalled in Subsection 3.1, were designed for this purpose. Another
approach that leads to over- and underapproximations is given by modal abstractions
for hybrid automata, that we develop in Subsection 3.2 (generalizing the definitions
given in context of discrete systems [13]).

3.1 Discrete Bounded Bisimulation (DBB) Abstractions

It is well known that the classic bisimulation equivalence can be characterized as a
coarsest partition stable with respect to a given transition relation [18]. Bounded bisim-
ulation imposes a bound on the number of times each edge can be used for partition
refinement purposes. For the equivalence of discrete bounded bisimulation (DBB), the
latter bound applies only to the discrete transitions of a given hybrid automaton, as
recalled in Definition 7, below.

Definition 7 (Discrete Bounded Bisimulation [10]). Let H be an hybrid automaton,
and consider the partition P on the state-space Q of TH = 〈Q, Q0, 	→,→〉. Then:

1. ≡0∈ Q×Q is the maximum relation on Q such that for all p ≡0 q
(a) [p]P = [q]P and p ∈ Q0 iff q ∈ Q0

(b) ∀p δ→ p′∃q′ : p′ ≡0 q′ ∧ q
δ→ q′

(c) ∀q δ→ p′∃q′ : p′ ≡0 q′ ∧ p
δ→ p′

2. ≡n∈ Q×Q is the maximum relation on Q such that for all p ≡n q
(a) p ≡n−1 q

(b) ∀p δ→ p′∃q′ : p′ ≡n q′ ∧ q
δ→ q′

(c) ∀q δ→ p′∃p′ : p′ ≡n q′ ∧ p
δ→ p′

(d) ∀p e→ p′∃q′ : p′ ≡n−1 q′ ∧ q
e→ q′

(e) ∀q e→ q′∃p′ : p′ ≡n−1 q′ ∧ p
e→ p′

For n ∈ N, the relation ≡n will be called n-DBB equivalence.
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The succession of n-DBB equivalences over an hybrid automaton H naturally induces
a series of abstractions for H , as stated in Definition 8.

Definition 8 (Series of DBB Abstractions [10]). Let H be a hybrid automaton and
TH = 〈Q, Q0, l→,→〉 be the associated time abstract transition system. Let P be a
partition of Q and consider the n-DBB equivalence ≡n. Then, the n-DBB abstraction
H≡n = 〈Q′, Q′

0, l→ →′〉 is defined as follows:

– Q′ = Q/≡n
, Q′

0 = Q0/≡n

– ∀α, β ∈ Q′ :
• α

e→ β iff ∃a ∈ α∃b ∈ β : a
e→ b

• α
δ→ β iff ∃a ∈ α∃b ∈ β : a

δ→ b and the path a� b only traverses α and β

The existence of a simulation preorder relating successive elements in a series of DBB
abstractions allows the refinement of overapproximations of reachable sets in the con-
sidered hybrid automaton [10]. Moreover, H≡n preserves the reachability of a given
region of interest (in the initial partition) whenever the latter can be established on
H following a path that traverses at most n locations [10]. On this ground, it is also
possible to use the succession of DBB abstractions to obtain ⊆-monotonic underap-
proximations of the set of states fulfilling a given reachability requirement.

3.2 Modal Abstractions Based on May/Must Relations

For discrete systems [13], a may-transition between two abstract classes r and r′ en-
codes that for at least some state in r there is a transition to some state in r′. In turn, a
must-transition between r and r′ states that all states in r have a transition to a state in
r′. Naturally, may-transitions (resp. must-transitions) refer to overapproximated (resp.
underapproximated) transitions among classes of an abstract system. The above ideas
can be extended to the context of hybrid automata as formalized in Definition 9.

Definition 9 (Modal Abstractions). Let A = 〈R, R0,
δ→,

e→〉 be an abstraction of the
hybrid automaton H . Then A is a modal abstraction (or may/must abstraction) of H iff
the following properties hold:

– δ→⊇ δ→must, where
δ→must is defined as follows:

r
δ→must r′ iff for all x ∈ r there exists an x′ ∈ r′ such that H can evolve

continuously from the state x to the state x′ by traversing the only regions r and r′.
– e→⊇ e→must where

e→must is defined as follows:
r

e→must r′ iff for all x ∈ r there exists an x′ ∈ r′ s.t. x
e→ x′ in H .

The subautomaton 〈R, R0,
δ→must,

e→must〉 of A is called Amust.

Given the modal abstraction A for the hybrid automaton H , Lemma 1 states that Amust

is simulated by the time abstract transition system TH of H .

Lemma 1. Let H be a hybrid automaton and let A be a may/must abstraction of H .
Then, the subautomaton Amust of A is simulated by TH , i.e. Amust ≤S TH ≤S A∗.
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On this ground, may/must abstractions can be used not only to overapproximate, but
also to underapproximate the set of states modeling a given reachability property, as
stated in Corollary 1.

Corollary 1. Let A = 〈R, R0
δ→,

e→〉 be a modal abstraction for the hybrid automaton
H , and let F be a set of (final) states in H . Assume that F is consistent with respect to
R, i.e. for all r ∈ R : r ∩ F = r ∨ r ∩ F = ∅. If r ∈ R admits a path to r′ ⊆ F in
Amust, then for all s ∈ r, exists s′ ∈ r′ such that H admits a run from s to s′.

4 A Generic Semantics for μ-Calculus on Abstractions of Hybrid
Automata

In this section, we present one of the main ingredients of our approach: a generic three-
valued semantics for μ-calculus on abstractions of hybrid automata. Here, two key-
words deserve our attention: Generic and three-valued.

The choice of a three-valued logic as the base of our semantics is motivated by the
broad family of abstractions that we consider for our framework. In fact, the abstractions
we have in mind are in general less precise than a bisimulation (which allows for exact
reachability analysis, but is seldom finite), and more precise than a simulation (that
allows only for overapproximated reachability analysis). Hence, we can not expect that
any μ-calculus formula is preserved, however it should be possible to recover at least all
true universal μ-calculus subformulas2. By means of a three-valued logic, we can use
the third value⊥ to distinguish the cases for which it is not possible to derive a boolean
truth value, due to the coarseness of the abstraction. Instead, the preservation applies
to all the boolean results established using the abstract semantics. In the following, we
write ¬3, ∨3, ∧3 for the three-valued extensions of the boolean operations ¬, ∨, ∧,
respectively3.

The second keyword – generic – is better understood as a way of establishing a link
between (1) the quest for soundness in our semantics, and (2) the variety of patterns
according to which different abstractions split the information over their regions. Our
generic semantics is an abstract semantics scheme, where the evaluation is fixed for
some operators (namely boolean and fixpoint operators), and only subject to some con-
straints for the others. The constraints are sufficient to establish a general preservation
result, though the semantics scheme can be adapted to several classes of abstractions.

Given the above premises, we are now ready to formalize in Definition 10 our three-
valued generic semantics for μ-calculus on abstractions of hybrid automata. Note that
for a μ-calculus formula φ, we distinguish between the semantics �φ�H on a hybrid
automaton H (as given in Definition 4) and the semantics �φ�(r) on the region r of an
abstraction of H .

Definition 10 (Generic μ-Calculus Semantics). Let H be a hybrid automaton whose
state space is partitioned into finitely many regions of interest by the labeling func-
tion lAP : Q → 2AP , where AP is a finite set of propositional letters. Let φ be a

2 Recall that bisimulation preserves the whole μ-calculus, while simulation preserves the only
true universally quantified formulas.

3 We use Kleene’s definition of three-valued logic [19].
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μ-calculus formula with atomic propositions AP , and consider the abstraction A =
〈R, R0, l→,→〉 where R is assumed to refine4 the regions of interest in H .

1. If φ is an atomic proposition, then �φ�(r) =
{

1 φ ∈ lAP (r)
0 otherwise

2. If φ = ¬ϕ, then �¬ϕ� = ¬3�ϕ�
3. If φ = ϕ ∨ ψ, then �ϕ ∨ ψ� = �ϕ� ∨3 �ψ�
4. If φ = ϕ ∧ ψ, then �ϕ ∧ ψ� = �ϕ� ∧3 �ψ�
5. If φ ∈ {〈δ〉ϕ, 〈e〉ϕ, [δ]ϕ, [e]ϕ, E(ϕUψ), A(ϕUψ)}, then �φ� is required to fulfill

the following conditions:

�φ�(r) = 1 ⇒ ∀ x ∈ r : �φ�H (x) = 1
�φ�(r) = 0 ⇒ ∀ x ∈ r : �φ�H (x) = 0

6. Let φ ∈ {μZ.ϕ, νZ.ϕ} be a fixpoint formula. Let [ϕ]ψZ be the formula obtained
by replacing all occurrences of Z with ψ. Given a fixpoint formula σZ.ϕ with
σ ∈ {μ, ν}, its k-th approximation apxk(σZ.ϕ) is recursively defined as follows:

– apx0(μZ.ϕ) := 0 and apxk+1(μZ.ϕ) := [ϕ]apxk(μZ.ϕ)
Z

– apx0(νZ.ϕ) := 1 and apxk+1(νZ.ϕ) := [ϕ]apxk(νZ.ϕ)
Z

The semantics of least and greatest fixpoints �σZ.ϕ� are defined by �apxk̂σZ.ϕ�

where k̂ is the smallest index where �apxk̂(σZ.ϕ)� = �apxk̂+1(σZ.ϕ)� holds.

Let φ be a μ-calculus formula and let A = 〈R, R0
δ→,

e→〉 be an abstraction of the
hybrid automaton H . On the ground of Definition 10, we can define a three-valued
relation �3 stating whether A is a model of the formula φ:

A �3 φ =

⎧⎨⎩
1 ∀r ∈ R0 : �φ�(r) = 1
0 ∃r ∈ R0 : �φ�(r) = 0
⊥ otherwise

Theorem 1 below states that both results true and false established on A via �3 are pre-
served on the underlying hybrid automaton. Note that Theorem 1 has a sort of uniform
character, since �3 subsumes indeed many possible effective semantics for μ-calculus,
the latter recovered by specializing the semantics of the modal operators according to
the properties of different classes of abstractions. For the rest of this work let � be the
partial order over {0, 1,⊥} defined by the reflexive closure of {(⊥, 0), (⊥, 1)}.

Theorem 1 (Uniform Preservation Theorem). Let H be a hybrid automaton, let A
be an abstraction of H . Then, for any μ-calculus formula φ, we have A �3 φ � H � φ.

Hence, if A �3 φ is 1, so is H � φ, and if A �3 φ is 0, so is H � φ, and if A �3 φ is ⊥,
then H � φ is completely unknown. For this reason, both valid and invalid subformulas
can be preserved with our framework as long as the abstraction is not too coarse.

4 Note that our assumption (the partition ofQ into regions of interest is refined by the abstraction
A = 〈R,R0, l→,→〉) implies that ∀r ∈ R ∀x1, x2 ∈ R : lAP (x1) = lAP (x2) holds. Thus,
the labeling function can be easily extended to lAP : R → 2AP .
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5 Instantiation to DBB- and May/Must-Abstractions

In this section, we specialize the general preservation result given in Section 4 to two
particular instances, namely to modal and DBB abstractions. As a result, we obtain two
preservative abstraction/refinement frameworks for μ-calculus on hybrid automata.

5.1 Semantics Completion for May/Must-Abstractions

In modal abstractions, each
δ→must (resp.

e→must) edge underapproximates a continu-

ous (resp. discrete) evolution for the underlying hybrid automata. In turn, each
δ→ (resp.

e→) edge overapproximates a continuous (resp. discrete) evolution for the considered
hybrid automaton. The above considerations can be used to properly instantiate the
semantics for the modal operators on may/must abstractions, completing the semantics
scheme given in Definition 10. Consider for example the modal operator 〈δ〉. According
to the adaptive semantics scheme in Definition 10, we should instantiate the semantics
�〈δ〉ϕ� in such a way that whenever �〈δ〉ϕ� evaluates to 1 (resp. 0) on an abstract region,
then it evaluates to 1 (resp. 0) on all the states of the region. This constraint is naturally

guaranteed on modal abstractions if we use only
δ→must edges (resp.

δ→ edges) to in-
spect for true (resp. false) evaluations. A similar way of reasoning allows to completely
adapt the semantics scheme in Definition 10 to the case of modal abstractions, as for-
malized in Definition 11.

Definition 11. Let H be a hybrid automaton, A = 〈R, R0
δ→,

e→〉 be a may/must
abstraction of H and let ϕ and ψ be μ-calculus formulas. Then, the semantics of the
three-valued μ-calculus of Definition 10 for a, ai ∈ {δ, e} is completed by:

• �〈e〉ϕ�(r)

⎧⎨⎩
1 ∃r e→must r′ : �ϕ�(r′) = 1
0 ∀r e→ r′ : �ϕ�(r′) = 0
⊥ otherwise

• �〈δ〉ϕ�(r)

⎧⎪⎨⎪⎩
1 ∃r δ→must r′ : �ϕ�(r′) = 1

0 ∀r
δ

→∗ r′ : �ϕ�(r′) = 0
⊥ otherwise

• �[a]φ� = �¬(〈a〉¬φ)�
• Let {rn}n∈N (resp. {rn}must

n∈N
) denote an infinite path of A (resp. Amust) starting

in r = r0. Then:

�E(ϕUψ)�(r)

⎧⎨⎩
1 ∃{rn}must

n∈N
∃k ∈ N : �ψ�(rk) = 1 ∧ �ϕ�(ri<k) = 1

0 ∀{rn}n∈N∀k ∈ N : �ψ�(rk) 
= 0 ⇒ ∃i < k : �ϕ�(ri) = 0
⊥ otherwise

�A(ϕUψ)�(r)

⎧⎨⎩
1 ∀{rn}n∈N∃k ∈ N : �ψ�(rk) = 1 ∧ �ϕ�(ri<k) = 1
0 ∃{rn}must

n∈N
∀k ∈ N : �ψ�(rk) 
= 0 ⇒ ∃i < k : �ϕ�(ri) = 0

⊥ otherwise

Lemma 2, below, states the correctness of our instantiation, namely it ensures that the
semantics for the modal operators on may/must abstractions in Definition 11 fulfill the
constraints provided in Definition 10.
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Fig. 1. May/Must Abstraction A1 of the Heat-
ing Controller
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Fig. 2. May/Must Abstraction A2 of the Heat-
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Lemma 2. Let A be a modal abstraction for the hybrid automaton H , and assume to
interpret μ-calculus formulas according to Definition 11. Then, for any formula φ ∈
{〈δ〉ϕ, 〈e〉ϕ, [δ]ϕ, [e]ϕ, E(ϕUψ), A(ϕUψ)}, we have:

�φ�(r) = 1 ⇒ ∀ x ∈ r : �φ�H(x) = 1
�φ�(r) = 0 ⇒ ∀ x ∈ r : �φ�H(x) = 0

On this ground, the uniform preservation theorem given in the previous section (cfr.
Theorem 1) applies to our specialized semantics, as stated in Corollary 2.

Corollary 2. Let A be a modal abstraction for the hybrid automaton H , and assume
to interpret μ-calculus formulas according to Definition 11. Then A �3 φ � H � φ.

x > 18
ẋ = −0.1x

off

x < 24
ẋ = 5− 0.1x

on

x > 22, x′ = x

x < 20, x′ = x

Fig. 3. Heating Controller

We conclude this subsection by providing
a concrete example, which illustrates our
three-valued semantics on modal abstrac-
tions.

Figure 3 depicts a heating controller con-
sisting of the two discrete states off and on.
While the heating is off, the temperature x
falls via the differential rule ẋ = −0.1x.
Conversely, while the heating is on, the tem-
perature rises via ẋ = 5 − 0.1x. The location off may be left, when the temperature
falls below 20 degree and it has to be left, when x falls below 18 degree. Symmetric
conditions hold for on. Initially, the heating controller starts at the location off with a
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temperature of 20 degrees. Figure 1 and Figure 2 depict two different modal abstrac-
tions A1 and A2 for the heating controller. Consider the formula ψ = μZ.φ ∨ ♦Z ,
where φ denotes a propositional letter being true for the abstract state (off, (20, 24)).
This formula holds in the states that can reach a configuration where the temperature
is between 20 and 24 degree and the heating is off. Applying the semantics scheme
on A1, this formula can not be proven since A1 does not admit a must-path from the
initial region to (off, (20, 24)). Conversely, ψ can not be falsified, since there exists a
may-path from the initial region to the target region. Using A2 instead we can establish
A2 � ψ, since A2 contains a must-path leading to (off, (20, 24)). This yields H � ψ,
by our preservation theorem.

5.2 Semantics Completion for DBB Abstractions

We now turn out to the consideration of DBB abstractions, providing a further special-
ization of the uniform preservation result discussed in section 4.

DBB abstractions encode the information for parallel over- and underapproximated
reachability analysis differently from modal abstractions. In particular, there is no dis-
tinction between edges that over-estimate (resp. under-estimate) the evolution of the
underlying hybrid automaton. Rather, a discrete edge between the abstract states [r]≡n

and [r]≡n in H≡n means that H can evolve from [r]≡n to [r′]≡n−1 ⊇ [r′]≡n , via a
discrete edge. The continuous edges in H≡n represent instead with fidelity the contin-
uous evolution along the regions of the abstraction. These considerations are useful to
understand the ratio underlying the development of the exact semantics for the modal
operators on DBB abstractions, given in Definition 12.

Definition 12. Let H be a hybrid automaton and H≡n = 〈Q/≡n, Q0/≡n, l→,→/≡n〉
be its n-DBB abstraction. Then the semantics scheme in Definition 10 is completed by
the following rules:

• The value of �〈δ〉ϕ�≡n([x]≡n) is given by⎧⎪⎨⎪⎩
1 ∃[x′]≡n ∈ Q/≡n : [x]≡n

δ→ [x′]≡n ∧ �ϕ�≡n([x′]≡n) = 1

0 �[x′]≡n ∈ Q/≡n : [x]≡n

δ

→∗ [x′]≡n ∧ �ϕ�≡n([x′]≡n) = 1
⊥ otherwise

• The value of �〈e〉ϕ�≡n([x]≡n) is given by⎧⎪⎨⎪⎩
1 ∃[x′]≡n ∈ Q/≡n : [x]≡n

δ→ [x′]≡n ∧ �ϕ�≡n−1([x′]≡n) = 1
0 �[x′]≡n ∈ Q/≡n : [x]≡n

e→ [x′]≡n ∧ �ϕ�≡n([x′]≡n) 
= 0
⊥ otherwise

• �[a]ϕ�≡n := �¬(〈a〉¬ϕ)�≡n for a ∈ {e, δ}
• Let us use the notation {[xi]≡n} to represent an infinite path in H≡n. Then:

The value of �E(ϕUψ)�≡n([x0]≡n) is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ∃{[xi]≡n}∃k ∈ N : 1. [xi<k]≡n

δ→ [xi+1]≡n ∧ �ϕ ∨ ψ�≡n([xi]≡n) = 1
2. �ψ�≡n([xk]≡n) = 1 or

[xk]≡n
e→ [xk+1]≡n ∧ �E(ϕUψ)�≡n−1([xk+1]≡n−1) = 1

0 ∀{[xi]≡n}∀k ∈ N : �ψ�≡n([xk]≡n) �= 0 ⇒ ∃j < k : �ϕ ∨ ψ�≡n([xj ]≡n) = 0
⊥ otherwise
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The value of �A(ϕUψ)�≡n([x0]≡n) is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ∀{[xi]≡n}∃k ∈ N : �ψ�≡n([xk]≡n) = 1 ∧ �ϕ ∨ ψ�≡n([xi<k]≡n) = 1
0 ∃{[xi]≡n}∃k ∈ N : 1. [xi<k]≡n

δ→ [xi+1]≡n ∧ �ϕ ∧ ¬ψ�≡n([xi]≡n) = 1
2. �ϕ ∨ ψ�≡n([xk]≡n) = 0 or

[xk]≡n
e→ [xk+1]≡n ∧ �A(ϕUψ)�≡n−1([xk+1]≡n−1) = 0

⊥ otherwise

On the ground of Lemma 3 the uniform preservation theorem in Section 4 applies also
to our specialized semantics for DBB abstractions, as formally stated in Corollary 3.

Lemma 3. Let H≡n be an n-DBB abstraction for the hybrid automaton H , and assume
to interpret μ-calculus formulas according to Definition 12. Then, for any formula φ ∈
{〈δ〉ϕ, 〈e〉ϕ, [δ]ϕ, [e]ϕ, E(ϕUψ), A(ϕUψ)}:

�φ�(r) = 1 ⇒ ∀ x ∈ r : �φ�H(x) = 1
�φ�(r) = 0 ⇒ ∀ x ∈ r : �φ�H(x) = 0

Corollary 3. Let H≡n be an n-DBB abstraction for the hybrid automaton H , and as-
sume to interpret μ-calculus formulas according to Definition 12. Then for any formula
φ ∈ Lμ: H≡n �3 φ � H � φ

x2 ≤ 10
ẋ1 = 1
ẋ2 = 1

shut

x1 ≥ 0
ẋ1 = −1
ẋ2 = −2

open

x1 = 0

x2 = 10

Fig. 4. Water Level Controller

The following example illustrates the in-
stantiation of the semantic framework to
DBB abstractions described so far.

The hybrid automaton depicted in Fig. 4
models a water level controller with two
variables. The first variable x1 represents a
clock, while the second variable x2 models
the water level in the tank. When the valve
at the bottom of the tank is closed, the wa-
ter level increases by 1ms−1, otherwise it decreases by 2ms−1. Intuitively, the clock
allows to establish that the valve remains open as long as it was closed in the previ-
ous step. This hybrid automaton does not belong to any known decidable class , and it
yields infinite bisimulations for suitable initial partitions [15]. This is the case e.g. for
the initial partition

P = {shut×X, shut × Y, open×X, open× Y }

where X = [0, 6]×{10} and Y = [0,∞)×(−∞, 10]\X . However, the above automa-
ton is fully O-minimal and thus the construction of DBB-Abstractions terminates [10].

Consider the following question ‘When starting in Init = open× [0, 6]×{10}, does
the water level controller always admit an evolution to r = shut × [0, 6] × {10}?’.
Such a question corresponds to compute whether H � ψ, where ψ = μZ.r ∨ ♦Z .
We use DBB abstractions to falsify the above property. Figure 5 and Fig. 6 depict the
0-DBB and 1-DBB abstraction, respectively. In the 0-DBB abstraction the formula ψ
evaluates to 1 on r1, r2, r3 and s1, and is indefinite elsewhere. Thus, (H � ψ) =⊥
since �ψ�(s2) =⊥ for the only initial region s2 of H≡0. In the 1-DBB abstraction H≡1
the region s2 gets split to 〈t2, t3〉 and ψ evaluates to 0 on t3. Since all a paths starting
in t3 do not allow to reach a region, where ψ evaluates to 1 or ⊥, we can conclude that
(H≡1 � ψ) = 0. Thus, due to the preservation theorem we can state that H � ψ.
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Fig. 5. 0-DBB Abstraction: Partitioning of the Regions and Control Graph of the Abstraction
(for simplification the cycle r1 ↔ s1 is left out)
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Fig. 6. 1-DBB Abstraction: Partitioning of the Regions and Control Graph of the Abstraction
(for simplification the cycle r1 ↔ s1 is left out)

6 Abstraction Refinement and Monotonicity

A key issue in the context of three-valued abstract semantics for μ-calculus on hybrid
automata is related to monotonicity. Given an abstraction-refinement framework, it is
desirable that the set of formulas evaluating to ⊥ decreases monotonically in its size
along any succession of finer abstractions. Such a requirement is reminiscent of the
usual regularity property for Kleene’s three-valued logics [8,19].

In this section, we compare the two abstraction refinement frameworks based
on DBB-abstractions and modal abstractions with respect to monotonicity. Theorem
2 proves that the DBB succession of abstractions allows to monotonically recover
true/false μ-calculus formulas along the series of refining abstractions.

Theorem 2 (Monotonicity). Let H≡n and H≡k with n > k be DBB abstractions of the
hybrid system H , and let φ be a μ-calculus formula. Then, (H≡k � φ) � (H≡n � φ).

The following example shows instead that the abstraction/refinement framework based
on modal abstractions does not behave well with respect to monotonicity.

Example 1. Let us consider the abstraction A3 depicted in Fig. 7 which is a refinement
of the abstraction A2 given in Fig. 2. In Section 5.1 we were able to establish the result
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Fig. 7. Abstraction A3 with may/must of the heating controller

(A2 �3 μZ.φ∨♦Z) = 1, where φ is a propositional letter being true on (20, 24)× off.
However, we cannot prove (A3 �3 μZ.φ ∨ ♦Z) = 1 since there exist no

e→must-
transitions from the configuration off to the configuration on.

7 Conclusions

In this paper, we developed a framework for inferring general μ-calculus properties
on abstractions of hybrid automata. Based on the definition of a sound three-valued
semantics on abstractions, our framework does not feature the inherent limitations of
bounded model checking or techniques using the simulation preorder. In particular,
our method can both prove and disprove arbitrary μ-calculus properties on abstractions
over- and underapproximating (unbounded) evolutions of the system. To cope with the
variety of candidate abstractions for our framework, we rely on a top-down approach in
which we (1) fix the semantics of boolean and fixpoint operators while only constrain-
ing the modal operators, and (2) consider suitable classes of abstractions to instantiate
the modal operators according to the constraints. We finally show that, despite of the
generality of the preservation result, the choice of the abstraction is relevant for the
monotonic preservation of true/false evaluations along abstraction refinements.
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Abstract. Closing the feedback loop from coverage data to the stim-
uli generator is one of the main challenges in the verification process.
Typically, verification engineers with deep domain knowledge manually
prepare a set of stimuli generation directives for that purpose. Bayesian
networks based CDG (coverage directed generation) systems have been
successfully used to assist the process by automatically closing this feed-
back loop. However, constructing these CDG systems requires manual
effort and a certain amount of domain knowledge from a machine learn-
ing specialist. We propose a new method that boosts coverage at early
stages of the verification process with minimal effort, namely a fully au-
tomatic construction of a CDG system that requires no domain knowl-
edge. Experimental results on a real-life cross-product coverage model
demonstrate the efficiency of the proposed method.

1 Introduction

Functional verification remains one of the main challenges in the hardware de-
sign cycle [1]. In current industry practice, dynamic verification is the leading
technique for functional verification. To cope with the ever increasing complexity
of modern designs, the verification process is a highly automated process relying
on sophisticated tools to replace the human engineer in almost every aspect of
operating the verification environment, such as generating stimuli for the design
under verification (DUV), and checking that the DUV behavior is according to
its specification [1].

Functional coverage is the main technique for checking that the verification
has been thorough [2]. Coverage can help monitor the quality of verification and
direct the verification team toward areas that have not been adequately verified.
The analysis of coverage information and the use of this information to direct
the stimuli generator toward uncovered or lightly covered areas is one of the
remaining human bottlenecks in today’s verification environment. Therefore,
considerable effort is spent finding ways to automate the covering procedure;
that is, to close the loop of coverage analysis and stimuli generation. Although
in early stages of the verification process, reaching 100% coverage is not the
main priority of the verification team, reaching a high level of coverage as fast as
possible is important because bugs found in the early stages of the design require
far less time and effort to fix. Consequently, it would be helpful to boost coverage
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in the early stages of verification with minimal effort from the verification team.
This requirement motivated the work presented in this paper.

Data-driven Coverage directed test generation (CDG) is a technique to auto-
mate the feedback from coverage analysis to stimuli generation. In data-driven
CDG, the CDG system discovers the relations between the directives that control
the stimuli generation and the coverage events, based on observations of specific
settings of the directives and the coverage events to which they lead. Reports on
several CDG systems of this kind have been published in recent years, including
systems based on Bayesian networks [3,4], Markov chains [5], genetic algorithms
[6], and inductive logic [7].

Bayesian networks [8] are well suited to address the challenges of data-driven
CDG and provide the kind of modeling required for CDG. First, Bayesian net-
works offer a natural and compact representation of the rather complex relation-
ship between the CDG ingredients, namely, the coverage events on the one hand
and the test directives on the other. In addition, Bayesian networks provide the
ability to encode essential domain knowledge in the CDG system. As a result,
Bayesian network CDG systems were able to produce high coverage and high
coverage rate in several industrial settings [3,4,9,10].

The CDG approaches mentioned above require a certain amount of domain
knowledge of an expert familiar with the design details and an expert in Machine
Learning. In addition, construction of the CDG system may require significant
effort that cannot be invested in early stages of the verification process. We pro-
pose a fully automated method for constructing CDG systems based on Bayesian
networks, which does not require domain expertise. In contrast to existing works
using Bayesian networks [3,4], we suggest a process that does not require stages
of pre-processing or help from either verification engineers or machine learn-
ing specialists. Similarly to the manual construction process described in [3],
the components of the automated process include a stage of selecting relevant
directives, followed by construction of the Bayesian network and learning its pa-
rameters. Once this is done, the network can be used to tune the directives in
order to reach desired coverage events. Defining the structure of the Bayesian
network is the most difficult part in the manual process. In the automated pro-
cess, we replace the manual construction with several generic structure learning
algorithms [11,12,13,14]. We then enhance these algorithms with two heuristics
that suit the characteristics of the CDG setting, namely, pruning edges between
directives and quantizing the probabilities of directives. These automatically
constructed networks may not be as good as the manually constructed ones, but
they do provide enough power to achieve the goals of coverage boosting.

We tested our method on a cross-product coverage model used in the verifi-
cation of the instruction fetch unit (IFU) of the IBM z10 processor. Our results
indicate that the automatic booster approach is working. We were able to achieve
significant improvement in coverage over the regression suite used in the verifi-
cation process with a fully automated process that requires minimal effort. We
also present results showing that the structure learning algorithms perform well
with a noisy set of parameters. Moreover, the two heuristics we propose improve
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Fig. 1. Structure of a verification environment with CDG

the quality of the learned Bayesian networks and perform better than the generic
structure learning algorithms.

The rest of the paper is organized as follows: Section 2 provides details on
Bayesian networks and their application to coverage directed generation. In Sec-
tion 3, we explain the concept of the coverage booster. Section 4 describes the
fully automatic process of the coverage booster. Section 5 describes our experi-
mental results. We conclude and present directions for future work in Section 6.

2 Coverage Directed Generation Using Bayesian
Networks

In the highly automated verification environment used today, analysis of coverage
information and usage of this information to direct the stimuli generator toward
uncovered or lightly covered areas is one of the remaining human bottlenecks.
Therefore, considerable effort is spent on finding ways to automate the covering
procedure–that is, to close the loop of coverage analysis and stimuli generation.
This automated feedback from coverage analysis to stimuli generation, known
as Coverage Directed stimuli Generation (CDG), can reduce the manual work in
the verification process and increase its efficiency. In general, the goal of CDG
is to automatically provide the stimuli generator with directives that are based
on coverage analysis [3]. Figure 1 presents a sketch of a verification environment
with CDG. The CDG engine receives information from the coverage analysis
tool about the state and progress of the coverage, and generates directives to
the random test generator that are designed to achieve one or many of the CDG
goals.

There are two main approaches to CDG. In direct CDG, or model-based
CDG, an external model of the design under verification is used to generate
stimuli to accurately hit the coverage events [15]. In data-driven CDG, which
is often called feedback-based CDG, the CDG system relies on inference of the
required stimuli directives from observations of past behaviors [3]. This inference
is usually done with machine learning techniques [3,6,7]. In this paper, we refer
to CDG systems based on Bayesian networks for cross-product coverage [3]. The
rest of this section explains how such systems are constructed and used.
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2.1 A Brief Introduction to Bayesian Networks

A Bayesian network is a graphical representation of the joint probability distri-
bution for a set of variables. It consists of two components. The first is a directed
acyclic graph in which each vertex corresponds to a random variable. This graph
represents a set of conditional independence properties of the represented distri-
bution: each variable is independent of its non-descendants in the graph, given
the state of its parents. The graph captures the qualitative structure of the prob-
ability distribution and is exploited for efficient inference and decision making.
The second component is a collection of local interaction models that describe
the conditional probability p(Xi|Pai) of each variable Xi given its parents Pai.
Together, these two components represent a unique joint probability distribu-
tion over the complete set of variables X [8]. The joint probability distribution
is given by p(X) =

∏n
i=1 p(Xi|Pai). It can be shown that this equation actu-

ally implies the conditional independence semantics of the graphical structure
given earlier. The equation above shows that the joint distribution specified by
a Bayesian network has a factored representation as the product of individual
local interaction models. Thus, while Bayesian networks can represent arbitrary
probability distributions, they provide a computational advantage for those dis-
tributions that can be represented with a simple structure.

Typical types of queries that can be efficiently answered by the Bayesian
network model are derived from applying the Bayes rule to yield posterior prob-
abilities for the values of a node (or set of nodes), X , given some evidence, E,
i.e. assignment of specific values to other nodes: p(X |E) = p(E|X)∗p(X)

p(E) . Thus,
a statistical inference can be made in the form of either selecting the Maximal
A Posteriori (MAP) probability, max p(X |E), or obtaining the Most Probable
Explanation (MPE), arg max p(X |E).

2.2 A Bayesian Network for CDG

The idea behind using Bayesian networks for CDG cross-product coverage mod-
els starts from the understanding that the space containing the directives to the
stimuli generator on one side and the coverage model on the other side is a large
distribution space. On one side of this space stand the directives to the stimuli
generator, which are defined as probability distributions over a domain of values.
On the other side stands the cross-product coverage model, which is represented
by its attributes. Activating the verification environment1 with different settings
of the directives, or even with the same settings but different random seed, yields
different coverage events. Therefore, the coverage attributes can also be viewed
as random variables.

Bayesian networks can represent this large distribution space in a compact
form. The structure of the network captures the true dependencies between the
various components of the space. Specifically, it captures directives that directly
affect the values of specific coverage attributes and dependencies between the
1 That is, generating stimuli using the directives settings, simulating the DUV, and

obtaining coverage data.
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values of various coverage attributes. Once the structure and parameters of the
Bayesian network are defined, an abductive query that provides evidence on the
effect nodes (desired coverage events) can be used to determine the possible
cause (directives settings).

Constructing a Bayesian network for a CDG system comprises three main
steps. The first step is selecting the relevant directives to be used in the system.
The number of directives is narrowed down to avoid networks that are too large
for training and inference. It also reduces the amount of data required for the
learning process that follows. The second step, which is the most difficult one,
is defining the network structure. In most applications of Bayesian networks,
the structure of the network is defined manually by a domain expert. Although
structure learning algorithms exist (e.g., [11,16]) their performance is usually
inferior to manually constructed networks. The last step is estimating the con-
ditional probabilities of each node in the network. There are efficient algorithms
that can learn these parameters from observations on data in the form of values
to (some or all) the network nodes. In the CDG case, the set of observations is a
sample set of directive settings along with their coverage events as resulting from
activating the simulation environment. The constructed Bayesian network can
be used in a CDG system to determine directives for a desired coverage event.

It is important to note that the usage of Bayesian networks for CDG is dif-
ferent from most “classical” uses. These characteristics are caused by the way
stimuli generators and verification environments behave. In many cases, stimuli
generators use the settings of the same directive many times during their opera-
tion, each time randomly choosing a different value according to the distribution
specified in the settings. This allows them to generate rich sequences of values
out of one directive. Therefore, it is important to provide the Bayesian network
and the algorithms that learn it with settings that specify probability distribu-
tions on the possible values of a directive, not just settings that determinately
define its value. We call such settings soft evidence. The implications of using
soft evidence in the automatic construction of a Bayesian network are discussed
in Section 4.

3 The Coverage Booster

Coverage closure is commonly acknowledged as one the most important goals
of the verification process. The recurring observation in this domain is that a
portion of the events to be covered are not reached through the initial attempts.
These events are also usually some of the most complex and subtle events, as
they resisted the preliminary regular attempts to create them. Therefore, this
involved task is usually carried out by experts, both in the application domain
and in the stimuli generation technology.

Due to the costly price of the coverage closure task, both in terms of time
investment and expertise required, much attention has been steered toward the
attempt to insert some automation into this classically manual process. Our
approach, relying on Machine Learning techniques [3], has shown good initial
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signs indicating the potential for automating this task. Indeed, there were several
success stories [4,10] that demonstrated the adequacy of this approach, and
showed that this apparently intrinsically manual task could be modeled and
performed by a program.

While machine learning techniques have shown their capacity to capture part
of the compound relationship between events and stimuli generation directives
and automate the process of closing the loop between stimuli generation direc-
tives and coverage events, constructing the CDG system is still a manual process
requiring both expertise and effort. This significantly limits the opportunities of
CDG to provide real benefits to the verification process. First, CDG is benefi-
cial only in places where it replaces significant effort in coverage closure. This
usually means that there are either large and complex coverage models [10], or
extremely important coverage events [4]. In addition, CDG is possible only when
a significant effort is directed at coverage closure. In many cases, this happens
only towards the end of the verification effort.

“Coverage Booster” is our new approach for exploiting the demonstrated ca-
pacity of machine learning in this domain, while showing an improvement, or
boost, in efficiency measured in overall human effort. Instead of placing full
coverage as a primary goal, we target minimal human effort above any other
consideration. The coverage booster may not reach full coverage, but because of
the zero human effort spent, covering new events and improving the coverage
rate are enough to create real benefits to the verification process. Therefore, the
coverage booster expands the envelope of opportunities for CDG in two ways.
First, CDG can be useful for more coverage models for which the verification
team cannot allocate much effort. In addition, CDG can be used in earlier stages
of the verification process, before coverage becomes top priority.

4 Automatic Construction of CDG Engine

At the heart of a Bayesian network-based CDG engine lies a Bayesian network
that allows a compact yet accurate description of the stochastic space of the
coverage attributes on the one side and the stimuli generator directives on the
other side. As noted previously, the goals of our coverage booster are to elim-
inate the need for manual intervention and boost coverage in early stages of
the verification process. To meet these goals, the Bayesian network needs to be
created automatically. The automated process described in this section gener-
ally follows the manual process described in [3], except that the manual steps
requiring domain expertise in either the DUV and verification environment or
machine learning techniques are replaced with automated steps. This enhanced
automation may lower the quality of the Bayesian network and prevent it from
reaching coverage closure. However, it does provide enough power to achieve the
goal of coverage boosting.

The automated process is composed of three stages: feature selection, struc-
ture learning, and parameter learning. Figure 2 illustrates the automatic process
that creates a Bayesian network, which is later used for coverage boosting. Ini-
tially, the verification team provides a description of the coverage model and
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Fig. 2. Construction of the Bayesian networks for CDG

a list of directives that control the stimuli generator. The number of directives
needs to be cut to allow efficient learning. In order to perform this selection we
create an initial sampling by simulating with random directives. This is followed
by a feature selection phase in which we narrow down the number of directives
that are used later; we do this by choosing those with maximal influence. Next,
we create a training set with random sampling of the directives we chose, while
the rest of the directives are given default values. This training set is the in-
put to the structure learning procedure that is followed by a parameter learning
phase in which the conditional probabilities of the variables are estimated. At
this point we have a Bayesian network that can be used in a CDG engine.

4.1 Feature Selection

A typical verification environment contains tens or even hundreds of directives,
which control the stimuli generator and affect the stimuli it generates. Learning
with such a large set of directives is very difficult or even impossible. Therefore,
it is essential to narrow down the number of directives and select a small high
quality subset for the CDG process. It turns out that in most cases only a small
subset of the directives are required to control the coverage of a specific model,
so this reduction does not reduce the ability of the coverage booster to achieve
its goal.

Feature selection is a general term given to a variety of algorithms that extract
the subset of features most relevant for a given task [17,18]. Most algorithms
perform feature selection on a feature space that is fully observed, i.e., the values
of all features are known for every sample. For CDG, the features are directives
and the feature selection task involves finding directives that highly influence the
coverage attributes. Feature selection in the CDG settings has several unique
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characteristics that make it difficult. First, the data is very noisy because of
the highly stochastic nature of the simulation environment. Second, dominant
values that are present in some of the coverage attributes can mask a dependency
between a directive and a coverage attribute. The third, and most difficult issue,
is the fact that the data is not fully observed. We are not given the exact values
of the directives, but rather a distribution over them. Because of these unique
characteristics, commonly used algorithms cannot be applied as is.

To overcome these problems, we use mutual information [19] as a criterion
that could be estimated from a noisy, not fully observed sample set. Mutual
information in information theory is a quantity that measures the information
between two variables. Let P (X) and P (Y ) be the marginal distributions of
X and Y respectively and let P (X, Y ) be the joint distribution over the two
variables. The mutual information between the variables is given by I(X ; Y ) =∑

x,y P (x, y) log P (x,y)
P (x)P (y) .

We use mutual information as a means of measuring the strength of correlation
between coverage attributes and directives. The mutual information is estimated
from the statistics of the collected data using a standard maximum-likelihood
estimator. We calculate the mutual information of all the directives coverage
attributes pairs and select directives if their mutual information with any of the
attributes is above a certain threshold, that can be changed in order to reach
a desired number of directives. Apart from this feature selection procedure, the
pruning heuristics of the structure learning algorithm described in Section 4.2
can also be used for feature selection.

4.2 Structure Learning

In our CDG systems, the relations between the directives and coverage attributes
are modeled using a Bayesian network, that is composed of two components: the
structure and the parameters. The structure is a DAG that captures causal
relations and the parameters represent the conditional probability tables that
describe the distribution of a node given its parents. While there are applications
where structure learning algorithms provide high quality results (e.g., [10,16]),
in the general case, these algorithms have many weaknesses that cause them to
be highly inferior to manually constructed structures. Some of these weaknesses
are closely related to the unique requirements of Bayesian network for CDG.
One example is the use of soft evidence, which is known to produce a richer set
of events on the one hand, but makes structure learning more difficult on the
other hand. Another example is the inability to construct networks with hidden
nodes, which proved to be essential in past CDG work ([3]). Therefore, we do
not expect the output of structure learning algorithms to be as good as manually
constructed networks. Still, our results show that automatic structure learning
can provide structure that is sufficient for coverage boosting.

There are two main approaches to structure learning: generic algorithms that
can be applied to any problem satisfying predefined conditions and application-
based algorithms that suit the specific setting of given problems (usually with
unique domains or characterization). We are not aware of application-specific
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algorithms that fit the CDG setting; therefore we use several well known generic
algorithms: K2 [11], mcmc [12], gs [13] and structural EM [14]. These algorithms
are used in a wide range of applications with various levels of success.

The initial experiments with these algorithms provided reasonable results.
However, we wanted to improve the results by taking into account the specific
nature of CDG settings. For that purpose, we use two techniques. The first is
a post-processing heuristic that prunes arcs between directives in the network
graph. Our initial learned networks have arcs between directive nodes, for valid
reasons. First, combinations of assignments to directives cause simulations to
fail or produce small sets of coverage events resulting in dependencies between
directives in the training set. In addition, the random independent sampling of
the directive space for the training set may still contain undesired dependencies.
Still, in the CDG settings, these edges are not desirable because we have total
control on the directives settings throughout the process. Moreover, these edges
may actually interfere with learning the real important relations between cov-
erage attributes and directives. Therefore, we decided to investigate removing
these arcs. The resulting networks, which we refer to as pruned networks, yields
better results (see Section 5). The same reasoning cannot be used for edges con-
necting two attribute nodes because they capture dependencies that are essential
for high quality networks. Note that removing the edges between directives can
result in directives nodes that are disconnected from the attributes nodes as
indeed happened in our experiments. These orphan directives are no longer part
of the CDG system, therefore, the pruning heuristics can be used as a second
order feature selection procedure.

The second improvement to the generic learning algorithm is a pre-processing
step that modifies the domain of the directives in order to enrich the settings
of directives and overcome the soft vs. hard evidence problem. Hard evidence is
the term we use when we assign a single value to a directive. It is like having soft
evidence with one probability set to one and all others to zero. In verification,
directive nodes are used many times in a single simulation run and in each use
a new value is randomly chosen based on the probability specified. Therefore,
hard evidence, which forces a single value to each directive, strongly limits the
stimuli sequences generated and soft evidence that sets the probabilities for
each value in the domain of the directives is essential. However, the structure
learning algorithms we use are not capable of handling soft evidence. In order to
deal with this, we suggest a heuristic that allows us to incorporate soft evidence
in the existing algorithms. We refer to this new method as quantized directives.

The main idea of this method is to replace each directive node Y whose domain
is (y1, . . . , yn) with node Ỹ whose domain is a discrete set of probabilities over the
domain of the original directive Y . For example, if Y has a domain (y1, y2, y3), we
can create a node Ỹ with seven values representing the probabilities {(1, 0, 0),
(0, 1, 0), (0, 0, 1), (1

2 , 1
2 , 0), (1

2 , 0, 1
2 ), (0, 1

2 , 1
2 ), (1

3 , 1
3 , 1

3 )} over (y1, y2, y3). Using
this setting allows us to run simulations with soft evidence that enables the full
richness of the generated sequences on one hand, and use the corresponding value
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in Ỹ as hard evidence in the structure learning algorithm. Once the structure
is learned, we return to the original directives for the parameter learning stage.
This quantization procedure is not limited to uniform values over subsets. It
can include any soft evidence chosen. However, there is a trade-off between the
ability to use many soft evidence values and the domain size of the extended
directive. Domain sizes that are too large will cause the learning to be more
difficult and lower the ability of the network to perform inference.

4.3 Parameter Learning

Once the structure of the Bayesian network is known, the next step is to learn
the parameters of its nodes, or, in other words, the conditional probability of
each node given the values of its parents. Unlike structure learning, there exist
algorithms for parameter learning that deals with soft evidence [20]. The al-
gorithm we use is the EM (Expectation-Maximization) algorithm [20]. This is
an iterative algorithm that is guaranteed to converge to a local maximum of
the likelihood. The EM algorithm learns not only the conditional probabilities
of internal nodes, but also the prior probabilities of root nodes (nodes with no
parents). When such a node corresponds to a directive, calculating the prior
probabilities is not needed or even not desirable for the same reasons that led to
the pruning heuristic. In an on going research, we try to generalize the learning
algorithms to address this issue.

5 Experiments

We conducted several experiments using the verification environment for the z10
processor’s instruction fetch unit (IFU), which is built into the latest IBM System
z (mainframe) computers. The IFU is responsible for efficiently requesting and
buffering instruction data fetches from memory, and pre-decoding them. One of
the most important functions for good unit performance is branch prediction.
That is a complex task which includes the prediction of several aspects of a
branch. The coverage model used in the experiments looks at a snapshot of the
processor pipeline and contains 13 attributes that describe the state of each
pipe stage, as well as other flags relating to branches and pipe recycles. The first
experiments were conducted during the development stage of the project, and
contributed to the quality of the final product.

While the experiments included all steps of the automatic construction of
the CDG system described in Section 4, we focused on the structure learning
aspect of the construction, which is the most challenging step. The initial set
of directives provided by the verification team included 22 directives. Using the
feature selection procedure described in Section 4.1, we reduced this set to five
directives. For the parameter learning we used the EM algorithm [20].

We tested the ability of four structure learning algorithms to boost cover-
age over normal activations of the verification environment using its regression
suite. The regression suite is a collection of directives settings that are manu-
ally designed by the verification team to cover areas of interest. The number
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of directives used in the regression suite is much larger than the five directives
we selected for our experiments or even the initial 22 directives given to us. We
started our experiments after about 20,000 simulation runs that covered 5222
events in the model. At that time, we observed a considerable slow down in
the coverage rate (see Figure 3). This was done for two main reasons. First, we
wanted to avoid dealing with the very easy-to-cover events that are hit anyway
and thus are not important to the coverage booster. Second, this setting repre-
sents a more realistic setting, where the coverage booster is not operated from
day one.

We used an additional two references in the experiments. The first was a large
set of randomly created directive settings for the five selected directives. This
reference was used for two reasons: First, to verify that the regression suite is
not naive and more importantly, to ensure that the feature selection phase alone
is not enough for boosting. The last reference was a naive Bayesian network that
contained edges between directives and attributes and between pairs of attributes
with high mutual information. All the experiments followed the same procedure.
We applied a structure learning algorithm and the parameter learning algo-
rithm to obtain a trained Bayesian network. Then we selected 5000 uncovered
events and generated (for each network) two sets of directives for each event
(using MAP and MPE queries). Finally, we simulated the IFU with the gener-
ated directives and measured the corresponding coverage. Note that the networks
were not able to produce directives in all the cases, so the total number of sim-
ulation runs for each network was smaller than the maximum possible 10,000.

The experiments tested the quality of the four structure learning algorithms
mentioned in Section 4.2, namely K2 [11], mcmc [12], gs [13] and structural
EM [14]. The experiments tested and compared the basic algorithm and the
two heuristics proposed in Section 4.2. In addition, we tested the ability of the
structure learning algorithm to perform feature selection. Specifically, the four
experiments we conducted were:

Basic algorithm - The goal of this experiment was to test the ability of the
structure learning algorithms in their basic form to produce networks that boost
coverage. The results of this experiment were also used as a reference to the
heuristics in the following experiments.

Pruning - This experiment was aimed at testing the performance of pruned
networks heuristic we suggested. We used the networks of the previous experi-
ment, but removed edges between directives. Removing these edges resulted with
directive nodes that are orphans, i.e., not connected to any attribute.

Quantization - The goal of this experiment was to test the ability of the
quantization heuristic to overcome the soft evidence problem of the structure
learning algorithms. Here, we used a subset of three out of the five original
directives. These were chosen because they remained connected to attributes
in all the pruned networks of the second experiment (except EM that already
proved to result in sparse networks).
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Fig. 3. Coverage progress for random, regression, and aggregated results of basic and
prune experiments

Large set of directives - In this experiment, we added to the structure learning
algorithm six more directives, with various levels of correlation. The experiment
tested the ability of the structure learning with pruning to perform feature se-
lection by leaving orphans nodes.

Figures 3 - 5 and Table 1 summarize the results of the four experiments.
Figure 3 shows the coverage progress for the random sampling and the regres-
sion suite and the progress of the aggregated results of the basic and pruning
experiments. As expected, the random sampling shows the worst behavior over
all our settings. More importantly, the figure shows that both the basic algo-
rithms and their pruning enhancement are able to boost the coverage. The next
figures and table provide more details on the performance of the four basic algo-
rithms and their enhancements. Figure 4 compares the performance of the four
basic algorithms. The figure presents the coverage progress of each of these algo-
rithms and the naive network. The figure shows that all four algorithms provide
a better coverage rate than the naive network. This confirms the benefits of the
structure learning algorithms, even in their basic form. There is some variation
in the performance of the four algorithms. This variation is in the coverage rate
they provide, the number of simulation runs they produced out of the 10,000
possible ones, and the number of new events they cover. These differences are
also presented in Table 1. The table shows, for each algorithm and each exper-
iment, the number of simulation runs produced and the number of new events
covered.

Out the four algorithms, the gs algorithm provides the best results. It produces
a high number of simulation runs and it has a high coverage rate. Therefore,
although the EM algorithm produces more runs, and K2 and mcmc have a
slightly better rate, gs covers the largest number of new events.

The pruning heuristic used in the second experiment not only pruned the
edges between directives, it also left some directives orphaned. In fact, one of
the directives, which was the weakest among the five selected directives, was
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Table 1. Summary of experimental results

Basic Pruning Quantization Large Set
Network Events Runs Events Runs Events Runs Events Runs
Naive 970 9545
K2 824 2233 918 2335 1374 5546 833 2309
gs 1419 7150 1454 6868 1553 9306 1498 10723
mcmc 766 1685 871 1653 919 2356 927 3492
EM 1226 8641 1261 8916
Aggregate 1837 19709 1918 19772 1936 17208 1713 16524

removed in three out of the four networks. In general, as Table 1 shows, the
pruned networks produce roughly the same number of runs as the networks
before the pruning and cover 3%-15% more events. The overall improvement of
the pruning heuristic over the basic algorithms is also shown in Figure 3 and
Figure 5. The quantization technique allows the structure learning algorithm to
use soft evidence. The results of this experiment show that even with a limited
amount of softness that was used in the experiment, the networks were able to
produce many more runs (twice as many for K2) and reach many more events
(more than 50% for K2). The EM algorithm failed to learn a network in this
experiment and therefore did not produce any results.

The attempt to use the structure learning algorithm with pruning for feature
selection produced mixed results. On one hand, the pruning removed most of
the new directives that are not included in the original set and the directives
removed in the second experiment. It also left most of the directives not pruned
in the pruning experiment. On the other hand, the results of this experiment are
worse than the original pruning algorithm. We believe that the “new” directives
affect the ability of the structure learning algorithms to capture the relations
between the ’good’ directives and the coverage attributes. Therefore, to improve
the results of this experiment, we will try to learn the structure of the network
again after the pruning.
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6 Conclusions and Future Work

Closing the loop from coverage analysis to directives to the stimuli generation
and reaching high coverage is one of the most difficult and time consuming
challenges a verification team must face. In this paper we presented an automatic
technique for constructing data-driven CDG engine based on Bayesian networks
that is aimed at providing coverage boosting with minimal human effort.

Early results, obtained on a coverage model used in the unit verification of
an IBM mainframe processor, indicate that our technique is able to achieve
the coverage booster approach. Namely, improve coverage in a significant way
with minimal human effort both in the construction and activation of the CDG
system. Still, there is a lot of room for improvements and issues that we need
to address. First is the need in an automatic process to determine the quality
of subsets of directives in order to choose high quality subsets. Another issue is
automatic construction of networks with soft evidence. We are currently working
on these issues and we believe that improving these weaknesses will results with
higher quality booster.

It is clear that the extreme goal, the Holy Grail, is to realize full coverage
closure in a totally automatic way without any human effort even to set-up
the automatic scheme. This goal was not yet achieved, and we assume that its
complexity might cause it to stay an eluding one for the foreseeable future. Yet,
we believe that the coverage booster approach has more potential of getting us
closer to this Holy Grail and provide more benefits to the verification process.
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Abstract. For the verification of complex designs, one often needs to solve deci-
sion problems containing integer non-linear constraints. Due to the undecidability
of the problem, one usually considers bounded integers and then either linearizes
the problem into a SMT(LIA) problem (i.e., the theory of linear integer arith-
metic with Boolean constraints) or bit-blasts into a SAT problem. We present
a novel way of linearizing those constraints, and then show how the proposed
encoding to a SMT(LIA) problem can be integrated into an incremental lazy
bounding and refinement procedure (LBR) that leverages on the success of the
state-of-the-art SMT(LIA) solvers. The most important feature of our LBR pro-
cedure is that the formula need not be re-encoded at every step of the proce-
dure but rather, only bounds on variables need to be asserted/retracted, which are
very efficiently supported by the recent SMT(LIA) solvers. In a series of con-
trolled experiments, we show the effectiveness of our linearization encoding and
LBR procedure in reducing the SMT solve time. We observe similar effective-
ness of LBR procedure when used in a software verification framework applied
on industry benchmarks.

1 Introduction

For the theory of integer non-linear operations, the decision problem is un-decidable.
Therefore, the decision procedures for such a theory typically assume bounded inte-
ger operands. Such an assumption is generally justified, given the verification problems
arising from various hardware/software domains use finite width integer (words). Such
non-linear operations do arise often, though used sparingly, in system design and ver-
ification. Traditionally, integer non-linear operations are handled in Boolean logic by
bit-blasting all operands. However, there are some inherent disadvantages in reasoning
at the Boolean level. Propositional translations of richer data types such as integers,
and high-level expressions such as arithmetic, lead to large bit-blasted formulas. More-
over, the high-level semantics such as arithmetic are often “lost” in such a low-level
translation, thereby, the SAT search becomes more difficult [1].

With the growing use of high-level design abstraction to capture today’s complex
design features, the focus of verification techniques [2] has been shifting from proposi-
tional reasoning towards Satisfiability Modulo Theory (SMT) solvers [3, 4], and SMT-
based verification methods such as bounded model checking (BMC) [5]. To capitalize
on these workhorses, encoding for integer non-linear operations such as multiplication
can be carried out using linearization, i.e., one of the operands of multiplication is bit-
blasted, and the result is expressed as linear arithmetic operations.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, pp. 68–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Our Approach: Overview

In our effort to build an efficient decision procedure for bounded integer non-linear
operations using SMT(LIA), we propose the following, as illustrated in the overall
flow of our approach in Figure 1.

SMT problem
with Linear + Non-Linear

Integer Arithmetic 
on bounded integers

Linear Arithmetic
Constraints

“Linearize” Integer 
Non-linear  Operations

(MULT, DIV, MOD, SHIFT, 
Bit-Wise AND, OR, XOR)

SMT (LIA)
SolverLBRDP: Encoding + LBR

SMT problem
with Linear + Non-Linear

Integer Arithmetic 
on bounded integers

Linear Arithmetic
Constraints

“Linearize” Integer 
Non-linear  Operations

(MULT, DIV, MOD, SHIFT, 
Bit-Wise AND, OR, XOR)

SMT (LIA)
SolverLBRDP: Encoding + LBR

Fig. 1. Decision procedure for mixed integer linear and non-linear operations

First, we propose a novel and an improved linearization encoding of bounded integer
non-linear arithmetic operations such as multiplication, divide, mod, and bitwise oper-
ations such as shift, or, xor, and and. This encoding translates non-linear operations
exactly into SMT(LIA), and extends the reasoning power seamlessly to decision prob-
lems with mixed linear and non-linear integer operations without the need to bit-blasting
all operands. The encoding, based on bitwise structural decomposition, is specifically
geared towards improving the search of SMT(LIA) solver.

Second, we propose an incremental lazy bounding and refinement (LBR) decision
procedure on the encoded SMT(LIA) problem to leverage on the success of the state-
of-the-art SMT(LIA) solvers [3]. Our LBR procedure incrementally formulates par-
tially constraint problems in successive iterations. In each iteration, the bounding
constraints are either tightened or relaxed, depending on whether the result was
spuriously satisfiable (due to under-constraining) or spuriously unsatisfiable (due to
over-constraining), respectively, in the previous iteration. Such a procedure has several
advantages: (i) it avoids re-encoding of the formula, thereby, allows the SMT(LIA)
solver to capitalize on the learnt facts and pruning of the search space so far; (ii)
it exploits the capability of the recent SMT(LIA) solvers [3] to assert/retract con-
straints efficiently through their use of a fixed tableau; and (iii) it effectively guides
the SMT(LIA) solver to a faster resolution, when combined with our linearization en-
coding. Third, we propose linearization criteria for choosing non-linear operands for
Booleanization. Such selection criteria are geared towards reduction of the size of the
encoded problem and reduction on the number of iterations of LBR procedure, thereby,
minimize the inherent linearization overhead. In a series of controlled experiments, we
observe that our linearization encoding helps reduce the SMT solve time significantly
compared to a previous linearization approach [6]. Further, our LBR procedure in-
tegrated with the improved linearization is quite effective against the state-of-the-art
SMT(BV) solver [7]. To evaluate further on verification benchmarks, we integrated our
decision procedure in a SMT-based BMC tool [5]. This tool serves as a backend engine
for software verification framework called F-SOFT [8], targeted for finding standard
programming bugs in embedded system software written in C. Verification is performed
via a translation of the given C program to a finite state circuit model. Here we target
typical programs that use linear operations more often than non-linear operations. Our
verification experimentation show the effectiveness of our decision procedure.



70 M.K. Ganai

3 Related Work

Linearization for non-linear datapaths has been studied in the context of RTL veri-
fication [9, 10, 11]. In these approaches, linear arithmetic constraints are generated
for linear and non-linear datapaths, and are encoded into integer linear programming
(ILP) expressions. In [10], a special attention was given to the modulo semantics.
In [6], a linearization encoding with Booleanization (bit-extraction) was used to gener-
ate SMT(LIA), i.e., the theory of Linear Integer Arithmetic with Boolean constraints.
In these approaches, integer bounds were added eagerly as bounding constraints. To
handle modulo semantics, additional constraints were also added eagerly.

As reconfirmed in our experiments, the integer bounding constraints cause the solver
to slow down significantly, especially, when added eagerly. To overcome this, ap-
proaches [12, 13] use abstraction/refinement of bounds in decision procedure for solv-
ing bit-vector and Presburger theories. Other approaches [14, 15] use un-interpreted
functions for abstracting datapaths, accompanied with iterative refinement steps. These
approaches are based on a bit-blasted encoding, and therefore, they make it difficult
to refine the formula without re-encoding it. Re-encoding in Boolean domain typically
“destroys” the learning done by DPLL-style SAT solvers [16,17,18] and thereby affects
the performance of the solvers, as the learning need to be rediscovered. Moreover, it is
not obvious how to guide SAT solvers using high-level constraints, as SAT solvers are
usually “oblivious” of arithmetic expressions.

The theory of bit-vector SMT(BV) is inherently non-linear. In practice, SMT(BV)
solvers use SMT(LIA) in the last stage after linearizing bit-vector operations [19, 10]
or use complete bit-blasting after applying re-write and inference rules at the prepro-
cess/online stage [3, 20, 21, 13, 22, 7]. In [23], a decision procedure for non-linear con-
gruences (i.e., equalities on bounded integers) is presented, however, it does not address
non-linear inequalities.

Computer algebra systems such as Maxima [24] are intended for the manipulation
of symbolic and numerical expressions including factorization, and solving linear equa-
tions. However, such systems can not be directly applied to verification methods such
as SMT-based BMC.

Outline. The rest of the paper is organized as follows: In Section 4, we give the basic
notations and some background on SMT, and modeling C programs and data over-
flow; in Section 5, we present our linearization encoding; in Section 6, we discuss our
LBR procedure; in Section 7, we present our linearization criteria; in Section 8, we
evaluate and compare our approach in a series of experimentation; and in Section 9, we
summarize our work with concluding remarks.

4 Background

4.1 Mixed Expressions and SMT

In this paper, we consider decision problems with Boolean expressions bool-expr and
integer term expressions term-expr. Boolean expressions include Boolean operations
such as “and” (∧), “or” (∨), and “not” (¬) on bool-var (Boolean variables) or bool-
expr. Integer term expressions comprise linear operations such as addition (+),
subtraction (−), constant multiplication (∗c); non-linear operations such as multipli-
cation (∗), divide (/), and modulo (%); and bitwise operations such as left shift (<<),
right shift (>>), bit-wise and (&), bit-wise or (‖) and bit-wise xor (⊗) on integer-var
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(integer variables) or term-expr. We use ITE( bool-expr, term-expr, term-expr) as a
shorthand to denote the if-then-else operator.

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a first-order formula with respect to a background decidable first-order equational the-
ory T (SMT(T )). In this work, we focus on deciding quantifier-free formulas (mixed
expressions) by translating term-expr to the theory of linear arithmetic over integers
(LIA). We define LIA-var as a theory variable interpreted in the domain of LIA, and
LIA-term as a first-order term build from linear operators (+,−, ∗c) and LIA-var.
Such a theory constitutes a conjunction of integer linear arithmetic constraints (LAC)∑

i ai ∗c xi ≤ d. The problem of checking the decidability of LAC over integer do-
main is NP -complete. SMT(LIA) is the problem of deciding satisfiability of Boolean
expressions obtained on applying Boolean connectives on propositional atoms and re-
lational operators (==,≤) on two LIA-terms.

In a DPLL-based SMT(LIA) solver [4, 3], SMT(LIA) formula is solved by com-
bination of Boolean SAT and LIA-solver, wherein LIA-solver solves each successive
integer LAC problem generated. Typically, an LIA-solver employs a layered approach
wherein an integer LAC problem is first approximated into a real LAC problem which
then is solved using an incremental simplex-basedLRA-solver. A branch and cut strat-
egy is used to overcome the incompleteness of the LRA-solver. (Note, the theory of
LRA constitutes a conjunction of real LAC.)

As successive LAC problems share subproblems, there has been a lot of research
to devise incremental solvers to exploit the sharing. Some of the Simplex-based [25]
methods [26] use incremental versions; a tableau is constructed where rows (corre-
sponding to LAC) are added and deleted incrementally during DPLL search. It was
shown [3] that such incremental updates of the tableau are expensive. To reduce the
cost, the solver [3] operates on a transformed problem where the tableau is fixed (i.e.,
rows are not added/deleted) during the decision process, but constraints corresponding
to variable-bounds change during the search. A SMT(LRA) formula φ is first trans-
formed into an equi-satisfiable formula φeqn ∧ φpred, where the formula φeqn repre-
sents the conjunction of linear equations Ax = 0, and φpred represents the Boolean
combination of predicates of the form x �� b where ��∈ {==, <, >,≤,≥} and b is
an integer constant. Note, that the matrix A is fixed during the decision process. It is
the set of inequalities of the form li ≤ xi ≤ ui that changes during the decision pro-
cess where li, ui correspond to the bounds of each variable xi. These inequalities can
be asserted/retracted efficiently without undoing the previous pivoting operations. We
exploit this incremental capability in our decision procedure.

4.2 Booleanization

A bounded integer variable x ∈ [0, 2N) can be related with its Boolean decomposi-
tion variables BN−1BN−2 . . .B0 using the following linear and Boolean constraints,
respectively, where xk is an integer-var such that xk ∈ [0, 1].

x =
N−1∑
k=0

2k ∗c xk (1)∧
k

Bk = (xk == 1) (2)

We refer to such a bit-extraction approach as Bit-wise Relational Decomposition (BRD),
as used in the previous linearization [6]. Later, we contrast it with our structural decom-
position where we relate Bk with x directly using arithmetic expressions.



72 M.K. Ganai

4.3 Modeling C Program and Data Overflow

Using a software verification framework F-SOFT [8], we build a finite model from a
given C program using Boolean and arithmetic expressions, derived automatically by
considering the control and data flow of a program under the assumptions of bounded
data and bounded recursion.

In C, the integer terms are either unsigned or signed. For N -bit arithmetic operations,
each signed integer x has interval bound [−2N−1, 2N−1), i.e. -2N−1 ≤ x < 2N−1, and
unsigned term integer term u has interval bound [0, 2N) i.e., as 0 ≤ u < 2N . As
per the C/C++ language standards (C99/C++98), signed overflow is unspecified and
unsigned overflow is reduced to modulo 2N , i.e., it “wraps around.” (Similarly, for
underflow). An implementation can choose to overflow signed integers using modulo
operation (C99: H.2.2-clause); however, we are considering verification of implemen-
tation independent C-programs where programmers cannot assume any particular han-
dling of signed overflow. We focus on handling signed/unsigned bounded integers as
per the standard, wherein, we either detect or do not allow overflow in signed integers.
In contrast, typically a SMT (BV) solver would handle a signed (or unsigned) overflow
in bit-vector arithmetic implicitly, as “wrap-around”. By encoding signed/unsigned in-
tegers differently, we handle overflows in C programs as per C99. (Interested readers
may check out [27] for encoding of casting and overflows).

5 Encoding Non-linear Arithmetic Operations

In the following, for simplicity, we assume all integers are signed with a system interval
bound [−2N , 2N ). We assume that overflow/underflows are handled as per C99/C++98
standard.

5.1 Bitwise Structural Decomposition (BSD)

To relate a bounded integer-var u ∈ [0, 2N) with its Boolean decomposition variables
BN−1BN−2 . . .B0, we define new Boolean predicates Bk and integer terms tk for
k = N -1 to 0 in a mutually recursive manner as follows:

Bk = (tk ≥ 2k) (0 ≤ k ≤ N − 1) (3)

tk−1 = ITE(Bk, tk − 2k, tk) (1 ≤ k ≤ N − 1) (4)

tN−1 = u (5)

Note that we do not introduce any new integer-var but do introduce additional N -
1 linear constraints, as compared to the BRD approach (Eqn 1-2) [6]. Example: Let
u = 13. We obtain t3 = 13, B3 = (13 ≥ 23) = 1; t2 = 13 − 23 = 5, B2 = (5 ≥
22) = 1; t1 = 5 − 22 = 1, B1 = (1 ≥ 21) = 0; t0 = t1 = 1, B0 = (1 ≥ 20). Note,
B3B2B1B0 = 1101 is a bit-representation of u = 13.

The BRD approach relies on the solver to guess the variables Bk, whereas in our
BSD approach, the structural relation between the Boolean and intermediate terms ex-
pressions are explicitly captured. Intuitively, such constraints provide “pre-computed
learning” to a search process; which, otherwise, have to be learnt (e.g., in BRD), incur-
ring additional backtracking cost. Our experimental results confirm this observation.
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5.2 Integer Multiplication (MULT)

Let z = u ∗ v assuming u, v ≥ 0. Assume, the operand u is chosen for bit-extraction.
Let UN−1UN−2 . . . U0 denote the bitwise decomposition of the operand u as obtained
using either Eqn 1-2 or Eqn 3-5. For k = 0 to N − 1, with r0 = 0, we define partial
sums as follows:

rk+1 = rk + ITE(Uk, 2k ∗c v, 0) (6)

Finally, we relate z with rN , i.e., z = rN . We use ∗L to denote the above linearization
of multiplication, and henceforth, refer to it as linearized multiplier. Note, it is easy to
verify that u∗v = u∗Lv holds if (u < 2N). Now, we focus on the general case z = x∗y,
where the operands x, y can take negative values. We define u = ITE(x < 0,−x, x)
and v = ITE(y < 0,−y, y). We encode w = u ∗ v as described above. We relate
z with w as z = ITE(y < 0 ⊗ x < 0,−w, w) where ⊗ denote the Boolean XOR
operation. Note, we encode y = ITE(S, a, b) into SMT(LIA) by adding two CNF-
clauses (!p + A)(p + B) with predicates A = (y == a), B = (y == b).

For a given set of non-linear multiplier operations, ideally we would like to have a
fewer such u operand chosen for bit-extraction to reduce the overall size of the encoded
problem after linearization. Further, a choice of operand for bit-extraction also influence
the LBR decision procedure (details of selection criteria in Section 7).

5.3 Divide (DIV)

For an ease of description, we assume integers are positive. We add additional con-
straints as described above for a general case. Let w = u/v, with u ≥ 0, v > 0. We
introduce an integer-var term t and add following bounding constraints:

u− v + 1 ≤ t ∗ v ≤ u (7)

Note that for u, v > 0, t equals �u/v�. When v is a constant, we use a constant mul-
tiplier ∗c; otherwise, we use a linearized multiplier ∗L. To handle the trivial cases, we
express the divide result w as follows:

w = ITE(u < v, 0, ITE(u = v, 1, ITE(v = 1, u, t))) (8)

5.4 Modulo (MOD)

Let w = u%v, where u ≥ 0, v > 0. Similar to DIV, we introduce an integer-var term t
and add bounding constraints on t as in Eqn 7. To handle the trivial cases, we express
the modulo result w as follows:

w = ITE(u < v, u, ITE(u = v, 0, ITE(v = 1, 0, u− t))) (9)

5.5 SHIFT

Left and right shifts are expressed in terms of constant divide and multiplier, respec-
tively. Let vr = u >> w, vl = u << w where u, w ≥ 0. We relate vr and vl as
follows:

vr = ITE(w = 0, u, . . . ITE(w = N, u/2N , 0) . . .) (10)

vl = ITE(w = 0, u, . . . ITE(w = N, w ∗c 2N , 0) . . .) (11)

Note, number of ITE is equal to N as each operand has bound [−2N , 2N ).



74 M.K. Ganai

5.6 Bit-Wise Operations

Let z = u bop v assuming u, v ≥ 0, and bop ∈ {&, ‖,⊗}. Let UN−1UN−2 . . . U0 and
VN−1VN−2 . . . V0 denote bitwise decomposition of the operands u and v, respectively.
For k = 0 to N − 1, with r0 = 0, we define the partial sum as follows:

rk+1 = rk + ITE(Uk bop Vk, 2k, 0) (12)

Finally, we relate z with rN , i.e., z = rN .

6 Lazy Bounding and Refinement Procedure (LBR)

We discuss our LBR decision procedure that incrementally constraints the formula with
bound constraints, and avoids re-encoding the formula. Before we present the proce-
dure, we describe various notations and design choices employed.

Let φ be an encoded SMT(LIA) formula obtained after linearization of non-linear
expressions as described in the previous section. To minimize the inherent linearization
overhead, we selectively choose to bit-extract one non-linear operand of MULT over
the other, based on Linearization Criteria (LC) as described in Section 7. Using the
criteria, we partition the terms in φ into exclusive sets X = {x1, . . . , xn} and Y =
{y1, . . . , ym}, where xi(∈ X) represents a term not chosen for bit-extraction (referred
as X term) and yi(∈ Y ) represents a term chosen for bit-extraction (referred as Y term),
respectively. Note, the sub-terms in Eqn 6 belong to X set. For ease of presentation, we
assume that all variables v ∈ X ∪ Y are signed and are bounded by system interval
bound [−2N , 2N), i.e., −2N ≤ v < 2N . One can use interval analysis (such as [28])
statically on the program to obtain a conservative but much tighter interval bound than
system interval bound [−2N , 2N ). In the following, we consider bounding constraints
of the form−b(v) ≤ v < b(v) where v ∈ X ∪ Y and b(v) represents the current bound
size for the variable v. Note, b(v) ≤ 2N .

In the presence of non-linear operations, we are required to bound Y terms in the
formula (as noted earlier, x∗y = x∗Ly if y ∈ Y and b(y) ≤ 2N ). Starting with a smaller
bound [−2b(y), 2b(y)) (b(y) < N) for Y terms, predicates Bk = (tk ≥ 2k) (Eqn 3) can
be simplified to false for k ≥ b(y); which in turn, can lead to simplification of the
overall-formula. Therefore, we choose Y terms for bound-relaxing, as further explained
with an example. Consider the problem of finding x1, y1 such that (x1∗Ly1 = 3∗2039).
Note, with y1 = 3, we can solve the problem. Clearly it would be desirable to start with
a small bound and relax it iteratively.

To exploit incremental solving capability of the recent SMT(LIA) solvers, we do not
want to re-encode the formula when some bounds change. Re-encoding of the formula
loses all the information that was learnt in the previous run. To achieve our goal, we de-
cide to bit-extract all the non-linear operands (from Y set) using the system bound, i.e.,
[−2N , 2N) once, but assert (i.e., add)/ retract (i.e., remove) the bounding constraints
on y ∈ Y terms selectively and incrementally. Using this incremental formulation, we
relax the bounds of y ∈ Y terms when the formula is unsatisfiable due to insufficient
bound size b(y).

In our experiments, we also found that adding the bounding constraints eagerly, i.e.,
−2N ≤ x < 2N for all x ∈ X also increases solve time. Therefore, we add the bound-
ing constraints lazily, i.e., we tighten bounds only when a model returned does not meet
the bound constraints [−2N , 2N) on one or more X terms. Many times, as observed in
our SMT-based BMC verification, BMC instances can be shown unsatisfiable quickly
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without bounding all X terms. In short, we relax/tighten bounding constraints on Y /X
terms lazily. Intuitively, interchanging X/Y terms for tightening/relaxing would worsen
the performance.

We present our LBR1, as shown in Algorithm 1.

Algorithm 1. Lazy Bounding and Refinement Algorithm
1: input: SMT(LIA) formula φ without bounding constraints for non bit-extracted termsX =

{x1, . . . , xn} and bit-extracted terms set Y = {y1, . . . , ym} s.t. X ∩ Y = ∅
2: output: SAT/UNSAT
3:
4: SMT Init(φ) {Encode the (unbounded) logical formula}
5: Xb := ∅ {Set of x ∈ X with [−2N , 2N ) interval bound}
6: for all y ∈ Y do
7: b(y) := 2 {Initial bound size for y}
8: SMT Assert(−b(y) ≤ y < b(y)) {Bound y variables}
9: end for

10: {Iterate through tightening/relaxing}
11: loop
12: is sat := SMT Check() {Invoke SMT(LIA) solver}
13: if (is sat = true) then
14: Let α(x) be the satisfying assignment for each variable x ∈ X
15: X ′

b := ∅
16: for all x ∈ X\Xb do
17: if ¬(−2N ≤ α(x) < 2N ) then
18: {model value does not satisfy bound}
19: SMT Assert(−2N ≤ x < 2N ) {Bound x variables}
20: X ′

b := X ′
b ∪ {x} {New set of bounded x variables}

21: end if
22: end for
23: if (X ′

b = ∅) then
24: {all model values satisfying}
25: return SAT {Satisfiable}
26: end if
27: Xb := Xb ∪X ′

b {update Xb}
28: else
29: {UNSAT result}
30: {Check which bound constraints −b(y) ≤ y < b(y) failed}
31: Let Yb := {y | Either (−b(y) ≤ y) OR (y < b(y)) cause for UNSAT, and b(y) < 2N}

32: if (Yb = ∅) then
33: return UNSAT {Unsatisfiable}
34: end if
35: for all y ∈ Yb do
36: SMT Retract(−b(y) ≤ y < b(y)) {Retract the tight bounds}
37: b(y) := 2 ∗ b(y) {Relax by factor of 2}
38: SMT Assert(−b(y) ≤ y < b(y)) {Assert the relaxed bounds}
39: end for
40: end if
41: end loop

1 The main difference from [13] are in incremental and SMT formulation. In LBR, we start with
an under-constrained formula, whereas in [13] every term is explicitly bounded. Unlike [13],
we do not need to analyze unsat core.
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LBR takes a formula φ with partitioned sets X and Y , system bound [−2N , 2N) and
outputs UNSAT , or SAT with a satisfying model. LBR invokes a SMT(LIA) solver,
iteratively without re-encoding the formula φ, and incrementally asserting and retract-
ing bounding constraints. Following procedures are typically supported in such a solver:
SMT Init to add initial set of logical expressions, SMT Assert to assert constraints,
SMT Retract to retract previously added constraints, and SMT Check to check for
satisfiability.

Let Xb denote the subset of X terms that currently have bounding constraints. Ini-
tially, LBR starts with no bounding constraints on X terms, i.e. Xb = ∅, but bounding
constraints on all Y terms corresponding to the bound size b(y) = 2. These constraints
together with the formula φ result in a partially constrained formula that is checked for
satisfiability. If the formula is satisfiable, the satisfying values α(x) of x ∈ X\Xb terms
is checked against the system bounds. Those variables violating the bound constraints
are tightened by asserting the corresponding constraints −2N ≤ x < 2N . The set Xb

is also updated accordingly. On the other hand, if all values of x are within the system
bound, i.e., the assignment is not spurious, SAT is returned.

If the formula is unsatisfiable, we need to find out if the unsatisfiability is due to
insufficient bound sizes b(y) of y(∈ Y ) terms 2. We obtain the unsatisfying assertions,
i.e., the bounding constraints either of the form −b(y) ≤ y or y < b(y) that were
sufficient to cause unsatisfiability. From these, we construct a set Yb such that b(y) 
=
2N . If the set Yb is empty, then clearly the formula is unsatisfiable, and UNSAT is
returned; otherwise, for each y ∈ Yb, we first retract the corresponding (tight) bound
constraints, relax them by a factor 2, and then assert them back. Note, the initial bound
b(y) and the scale factor can be chosen heuristically. We continue with the next iteration.

Theorem 1. The algorithm LBR decides correctly and always terminates.

Proof. Please refer [27].

7 Linearization Criteria

The size of the encoded problem after linearization depends directly on the number
of Y terms (which are chosen for bit-extraction). Further, the number of iterations in
the LBR procedure also depends on the choice of Y terms. To reduce the size of en-
coded problem and number of iterations in LBR, and thereby, minimize the inherent
linearization overhead, we use the following criteria to selectively choose to bit-extract
the non-linear operand u of MULT z = u ∗ v over the other operand v while encoding
z = u ∗ v:

– Rule 1 (R1): The operand u is an input to more MULT compared to v. The goal is
to reduce the number of operands considered for bitwise decomposition in a given
non-linear decision problem, thereby reducing linearization constraints. In general,
one can formulate it as a vertex cover problem [29].

– Rule 2 (R2): The operand u has a fewer MULT in its transitive input compared to v.
Intuitively, we do not want to bound a term when it can be implied by the bounding
constraints imposed on its transitive inputs. Such a rule is intended to reduce the
number of bound relaxing iterations (line 37, Algorithm 1).

– Rule 3 (R3): The operand u has lower bound size compared to v. Clearly, a lower
bound size on u would require fewer bound relaxing steps in the LBR procedure.

2 Finding minimal constraints might be as hard as generating unsat core (in terms of computation
overhead), but one can use heuristics to obtain a non-minimal set quickly.
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Example: Let there be three (non-linear) multipliers in a decision problem, i.e., w2 =
w1 ∗ u1, w1 = u2 ∗ u2, and w3 = u2 ∗ u3. Potentially, there are four sets of operands
for bit-extraction, i.e., Ya = {u1, u2}, Yb = {w1, u2}, Yc = {u1, u2, u3}, and Yd =
{w1, u2, u3}. Using the rule R1, we would prefer a set Ya or Yb over the remaining sets.
Intuitively, a smaller set reduces linearization constraints, and hence size of the encoded
problem. Among Ya and Yb, we choose Ya using the rule R2. The iterative bounding
constraints on u2 would impose bounding constraints on w1 implicitly. Thus, we would
rather not choose w1 for bit-extraction, as adding explicit bounding constraints on w1
(line 12, Algorithm 1) may over-constrain the formula, resulting in more iterations.

8 Experiments

We implemented our LBR algorithm over the SMT solver yices-1.0.11 [30]. Our ex-
periments were conducted on a single threaded environment, on a workstation with
3.4GHz, 2GB of RAM running Linux. We conducted three sets of experiments.

In the first and second sets, we carried out a series of controlled experimentation,
where we compared a) various lazy and eager combination of X and Y term sets,
b) bitwise decomposition in our linearization against a previous approach [6], c) ef-
fectiveness of linearization criteria, with and without, and d) our decision procedure
against a state-of-the-art SMT solver Z3 (stable version 1.1) [31] supporting non-linear
in SMT(BV). (Note, we compare our method against only those approaches that are
widely used in verification application, and did not compare against algebra system [24]
geared towards the manipulation of numerical expressions.)

For the third set, we integrated our LBR decision procedure as the backend solver
in SMT-based BMC [5] in software verification framework F-SOFT [8]. We used this
framework to check reachability properties in a set of simple and realistic software
programs, respectively.

8.1 Controlled Experimentation

We evaluated and compared various approaches on non-linear decision problems arising
from combination of parameterized multivariate polynomials of various degrees. For
this experiment, we used a timeout of 600s for each run. As Z3 library is available on
Windows platform only, we gave extra time, i.e., a limit of 1000s to Z3 solver (for fair
comparison).

We used system interval bound [−2N , 2N ) with N = 31, where all integer variables
are signed.

Comparing Decision Procedure LBR. We compare LBR procedure against two other
variations depending on whether the bounding constraints (BC) for X and Y variables
are added eagerly or lazily.

– LBR-LE Lazy BC on X , but Eager BC on Y
– LBR-EL Eager BC on X , but Lazy BC on Y
– LBR-LL Lazy BC on both X and Y

In all three algorithmic variations, we used linearization encoding based on our bitwise
structural decomposition (Eqn 3-5). Further, we partition the terms into X and Y sets
using the linearization criteria discussed before. Note that for the same linearization
criteria, the number of iterations needed for bound relaxing (i.e., on Y terms) are also
the same.
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Current version of yices-1.0.11 do not provide API to obtain the set of unsatisfying
bounding constraints when the result is UNSAT, i.e., which assertions failed. Therefore,
for this experimentation, we used a simple heuristic where we construct the set Yb with
all y such that b(y) 
= 2N . Since this heuristic is sub-optimal, our results could be
improved further.

Comparing Booleanization. To compare our Booleanization against the previous ap-
proach [6], we used the bitwise relational decomposition (Eqn 1-2) in linearization, and
combined with the LBR algorithm with lazy bounding constraints on both X and Y
terms. We call this approach BRD. This approach also uses linearization criteria to par-
tition terms into X and Y sets. Note, approach LBR-LL compares fairly with BRD, as
they differ only in the Booleanization methods used.

Comparing Linearization Criteria. To show the effectiveness of linearization criteria,
we used opposite criteria that do not satisfy one or more rules R1 − R3 to partition
the terms into X and Y sets. We used these partition sets in our linearization, and
combine it with LBR algorithm where bounding constraints on both X and Y terms are
added lazily. We refer this approach as NLC. This approach uses the bitwise structural
decomposition (Eqn 3-5). Note, approach LBR-LL compares fairly with NLC, as they
differ only in the use/no use of linearization criteria, respectively.

Comparing LBR with Z3. We also compare our approach with Z3 SMT solver [31]
where we used system bound [−2N , 2N) to encode bit-vector formula. We also added
constraints to prevent overflow.

Benchmarks. We picked a handful of parameterized multivariate polynomials with
degrees 2 and 3, and selected the parameters from a set of product of prime numbers.
These polynomials, with their integer roots, are shown below.

f1(x, y) = x2y + 11x2 + 13xy + 143x + 30y + 330
(roots: x = −3,−10, y = −11)

f2(x) = x3 + 9x2 + 27x+ 27 (root: x = −3)
f3(x, y) = 12xyz + 8xz + 36yz + 24z + 6xy + 4x+ 18y + 12

(root: x = −3)
f4(y) = y3 + 27y2 + 243y + 729 (root: y = −9)
f5(x) = x2 − 3x+ 2 (roots: x = 1, 2)
f6(x, y, c)= xy − c (roots: factors of a constant c)

Note, we dropped the ∗ notation for better readability. Our goal is to find the integer
roots of the polynomials in various combinations. We pose the problem as a decision
problem to be solved in our experimental framework. We experimented with two vari-
eties of decision problems. In one type, the syntactic variables of the polynomials are
the same, and in the other type, they are different, as explained below.

Let arg(fi) denote the set of variables in polynomial fi. For example, arg(f1) =
{x, y}. A decision problem dp denoted as a : {fi, . . . , fj} represents the formula fi =
0 ∧ . . . ∧ fj = 0 where a is S or D depending on whether the syntactic variables of
fi, . . . , fj are same or not, respectively. For example, dp ≡ D : {f1, f2} denotes the
formula (f1(x1, y1) = 0)∧ (f2(x2) = 0) where x1, x2, and y1 are free input variables.
On the other hand, dp ≡ S : {f1, f2} denotes the formula (f1(x, y) = 0)∧(f2(x) = 0)
where x and y are free input variables. For parametric function f6, we use f6(z = c)
to denote the polynomial xy = c. The constant c is determined by the product of prime
numbers, where the prime number corresponds to the largest prime number strictly
smaller than 2k, with 0 < k < N .



Efficient Decision Procedure for Bounded Integer Non-linear Operations 79

We chose the set of benchmarks for a few good reasons. First, the set provides mixed
arithmetic operations with both linear and non-linear types. Second, the set is simple to
understand, and yet not straightforward to solve. Third, we easily obtain many decision
problems using various combinations of these polynomials.

Experimental Results: We present our results in Table 1. Column 1 reports the deci-
sion problem dp ≡ a : {fi . . . fj}; Columns 2-8 report comparison numbers using
linearization criteria. Specifically, Columns 2 and 3 report the size of the sets X and Y ,
i.e. nX and nY , respectively. Column 4 reports the number of iterations (#I) needed by
LBR-EL, LBR-LL and BRD approaches. (For LBR-LE, the number of iteration needed
is one. For the rest, only bound relaxing on Y terms are needed. As they use the same
linearization criteria, the number of iterations are also the same). Columns 5-8 report
solve times for LBR-LE, LBR-EL, LBR-LL, and BRD, respectively. Columns 9-12 re-
port comparison numbers without the linearization criteria i.e., using NLC approach.
Specifically, Columns 9 and 10 report the size of the sets X and Y , i.e. nX and nY ,
respectively; Columns 11 and 12 report the number of iterations needed (#I) and solve
times, respectively. Columns 13 show the time taken by Z3 on bit-vector encoding of
the decision problem dp.

Discussion: We notice that LBR-LE approach times out (TO) in all cases. Such a result
is not surprising, and only reassures that current SMT solvers are not geared towards an
encoding where the bound constraints on Y terms are added eagerly. Performance of
LBR-EL and LBR-LL are comparable. We argue that these set of examples have com-
paratively a fewer X terms, and therefore, the overhead of eager bounding constraints
on X terms was not significant. However, in later experiments 8.3, we observe that
LBR-LL approach outperforms LBR-EL approach when X terms are many. Compar-
ing LBR-LL and BRD approaches, we observe that our bitwise structural decomposition
boosts performance over previous bitwise relational decomposition [6] almost always.
Comparing LBR-LL and NLC approaches, we observe that the use of linearization cri-
teria results in a smaller set Y (compare Columns 3 and 10) and reduces the number of
iterations (compare Columns 4 and 11). These translate into improved performance of
LBR-LL over NLC almost always. Comparing LBR-LL with Z3, we find that LBR-LL
does much better overall. Note, Z3 times out in most cases. Thus, by guiding the SMT
solvers using proposed bitwise structural decomposition and bound refinements, we
exploit the internal incremental capability of SMT solvers without compromising the
learning from previous iterations.

8.2 Experimentation with GCD/LCM Programs

Using our LBR decision procedure we evaluated on parameterized C programs [27]
computing GCD (Greatest Common Divisor) and LCM (Least Common Multiple)
based on Euclidean algorithm that use non-linear operations such as modulo and di-
vision. For each of these programs, we use an inverse function to describe the negated
safety property that requires a non-trivial state space search. We generate verification
conditions similar to CBMC [32].

We use gcd-p1-p2 to denote the inverse function: “Given two parameters p1 and p2,
find an integer pair x and y, such that x + y = p1 and GCD(x, y) = p2?”. Similarly,
we use lcm-p3-p4 to denote the inverse function: “Given two parameters p3 and p4,
find an integer pair x and y, such that x + y = p3 and LCM(x, y) = p4?”. We pose
these parameterized problems as decision problems to be solved in our experimental
framework.
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We experimented on the Linux platform as before, with time limit of 600 sec. For
Z3, we used timeout of 1000s on Windows platform. We present our results in Table 2,
showing comparison of LBR-LE, LBR-EL LBR-LL, BRD, and Z3. Column 1 reports
the parameterized decision problem. Columns 2-5 report the performance results for
LBR-LE, LBR-EL, LBR-LL, and BRD, respectively. Column 6 reports the number of
iterations needed for LBR-EL, LBR-LL, and BRD approaches. Note, LBR-LE requires
one iteration. For the rest, only bound relaxing on Y terms are needed. As they also
use the same linearization criteria, the number of iterations are also the same. Column
7 reports the performance results of Z3.

Discussion: Observe that LBR-EL and LBR-LL approaches are comparable, and
LBR-LL performs better than LBR-LE and BRD. Such results re-assure the superi-
ority of our linearization encoding for the other non-linear operations (such as division
and modulo) as well, for software programs. Observe, Z3 takes more time to solve
gcd-p1-p2 examples and times out in all lcm-p3-p4 examples.

Table 1. Evaluating Lazy Bounding and Refinement Procedure

DP With Linearization Criteria (LC) Without LC Z3 [31]
LBR-LE LBR-EL LBR-LL BRD [6] NLC

a : (fi, . . . , fj) X : L X : E X : L X : L X : L
# Y : E Y : L Y : L Y : L # Y : L

nX nY I T(sec) T(sec) T(sec) T(sec) nX nY I T(sec) T(sec)
S : {f2, f3} 50 2 2 TO 4.1 3.8 58.4 46 6 4 528.1 1
S : {f1, f2} 38 2 2 TO 2.1 1.4 54.5 37 3 4 10.1 175
S : {f1, f3} 49 3 2 TO 10.9 10.8 286.2 47 5 4 123.0 38
S : {f2} 19 1 2 TO 0.7 0.5 1.6 18 2 4 3.6 195
S : {f1} 20 2 2 TO 3.1 3.7 9.5 20 2 2 0.8 1
D : {f2, f3} 50 4 2 TO 16.0 32.9 58.2 48 6 - TO TO
D : {f1, f4, f5} 59 5 4 TO 104.3 121.8 560.8 58 6 7 297.1 328
D : {f4, f6(c1)} 34 2 8 TO 19.2 43.3 47.5 33 3 8 68.9 TO
D : {f4, f6(c2)} 34 2 10 TO 86.3 118.4 154.0 33 3 10 169.0 TO
D : {f4, f6(c3)} 34 2 6 TO 10.1 13.9 21.4 33 3 7 50.9 TO
D : {f4, f6(c4)} 34 2 4 TO 3.3 3.6 9.2 33 3 7 61.9 TO
D : {f4, f6(c5)} 34 2 6 TO 10.7 14.3 13.2 33 3 7 60.6 TO
D : {f4, f6(c6)} 34 2 4 TO 3.3 3.6 8.0 33 3 7 60.3 TO

Note:

L: Lazy, E: Eager, TO: Time Out, -: Not Applicable, nX = |X|, nY = |Y |, #I: number of iterations of LBR.

Constants: c1 = 251∗509, c2 = 1021∗2039, c3 = 31∗61∗127, c4 = 3∗7∗13, c5 = 61∗127, c6 = 3∗7∗13∗31

8.3 Experimentation with Benchmark C Programs

In the third set, we use our LBR decision procedure in F-SOFT [8] to verify industry
software programs. We used as benchmarks C programs from public domain and in-
dustry, including linux drivers, network application software, and embedded programs
in portable devices. We consider 7 of these benchmarks with multiple properties such
as array bound violation, and assertions. These programs3 have predominately linear
operations with sporadic non-linear operations such as /, %, and bit-wise &.

We experimented on same platform as before, with time limit of 1000 sec. We present
our results in Table 3, showing comparison among LBR-LE, LBR-EL LBR-LL and

3 Linear operators and predicates in the corresponding models occur in following ranges:
#(+) : 22 − 81; #(∗c): 380 − 1546; #(≤) : 30 − 80; #(=) : 346 − 1573; #(ITE) :
531− 1573. There is at most one non-linear operators /, % and bitwise &. Also, control states
and program variables in these models range from 318 to 1513, and 40 to 102, respectively.
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BRD approaches. We did not compare with Z3 as we could not integrate Z3 as back-
end solver due to porting issues.

Column 1 reports the examples with the number of properties in braces; Columns
2-4, 5-7, 8-10, and 11-13 report the result details for LBR-LE, LBR-EL, LBR-LL and
BRD approaches, respectively. Specifically, Column 2 reports the time to find the last
witness in sec (TLW ), Column 3 reports the BMC unrolled depth reached just before
time out (DTO), and Column 4 reports the number of witnesses (#w) found. Similar
description applies for Columns 5-7, 8-10, and 11-13, respectively.

Discussion: Observe that LBR-LL approach finds more witnesses or searches deeper
compared to the other approaches. Though LBR-LL approach did not solve all the
properties, yet the strategy looks quite promising compared to the rest.

Table 2. Comparison on gcd/lcm problems

Ex LBR-LE LBR-EL LBR-LL BRD [6] Z3 [31]
gcd-p1-p2, X : L, Y : EX : E, Y : LX : L, Y : LX : L, Y : L #
lcm-p3-p4 T(sec) T(sec) T(sec) T(sec) I T(sec)
gcd-1891-61 27.9 11.4 12.1 4.6 7 497
gcd-21-3 1.1 1.4 0.8 2.4 3 7
gcd-273-13 5.1 3.0 2.4 2.9 5 26
gcd-7747-127 54.6 19.6 3.6 9.1 8 77
gcd-91-13 2.6 3.4 2.9 2.8 5 20
lcm-1891-1830 123.9 51.0 137.7 333.8 11 TO
lcm-21-14 15.4 7.7 10.5 9.8 4 TO
lcm-273-260 70.6 35.6 37.5 56.2 9 TO
lcm-91-78 20.4 13.8 21.0 27.1 7 TO

Note:

1. gcd-p1-p2: Find x,y s.t (x + y = p1) and GCD(x, y) = p2
2. lcm-p3-p4: Find x,y s.t (x + y = p3) and LCM(x, y) = p4

Table 3. SMT-based BMC using LBR on industry programs

Ex LBR-LE LBR-EL LBR-LL BRD [6]
(#prp) X : L, Y : E X : E, Y : L X : L, Y : L X : L, Y : L

TLW (s)DT O #w TLW (s)DT O #w TLW (s)DT O#w TLW (s)DT O #w
B1(88) 69.0 138 40 69.8 138 40 30.3 241 40 30.3 241 40
B2(12) 143.6 24 2 5.1 303 7 7.2 436 7 6.6 399 7
B3(33) 67.3 12 1 962.1 232 22 821.6 261 23 772.2 234 22
B4(14) - 8 0 51.8 363 10 26.1 530 10 45.7 386 10
B5(57) - 29 0 878.9 181 17 946.6 184 18 981.2 173 15
B6(5) 831.1 119 2 31.5 467 3 5.7 590 3 24.5 532 3
B7(1) 184.1 161 1 4.2 161 1 1.2 161 1 1.6 161 1

Note:

L:Lazy, E: Eager, -:Not Applicable, TLW : Time to last witness, DT O : depth reached before timeout, #w: number of

witnesses found

9 Conclusion

We presented a novel linearization of non-linear operations on bounded integers using
bitwise structural decomposition to generate a SMT(LIA) decision problem. Such an
encoding is specially geared towards guiding SMT(LIA) solver for faster search. For
the encoded problem, we also presented a novel lazy bounding and refinement LBR al-
gorithm that generates a partially constrained formula with bound constraints that are
tightened or relaxed incrementally, as determined from the satisfiability results from
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the previous runs. Such a procedure avoids re-encoding of the formula and exploits
the capability of the state-of-the-art SMT(LIA) solver to assert/retract constraints effi-
ciently. We also presented linearization criteria that help in reducing inherent overhead
in linearizing non-linear operations. We found in our experiments that our lineariza-
tion and LBR algorithm are quite efficient and effective in handling decision problems
with non-linear operations, compared to the previous approaches based on linearization
or the state-of-the-art SMT(BV) solver. We conclude that, from a practical viewpoint,
such an approach for handling non-linear arithmetic is crucial for both hardware and
software verification methodologies.
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Abstract. We introduce comparative functional coverage – a technique for 
comparing the coverage of multiple workloads – and the tool in which it was 
implemented. The need to compare workloads and the use of functional cover-
age as a technique to explore data are not new. However, the use of functional 
coverage for comparing workloads has not been addressed as an answer to this 
long unanswered need. We describe our work in augmenting a functional cov-
erage tool so it can handle multiple data sources. We present the data and an 
experiment that shows the usefulness of this method. 

1   Introduction 

Information Technology (IT) customers continuously place pressure on vendors of 
software, hardware, and services to provide the highest availability and quality of 
their respective products and services. The IT customer set is extremely large and 
diverse. Their environments are complex conglomerations of legacy systems and new, 
state-of-the-art web-based applications. The growth is fast and furious.  

Two traditional techniques used to examine the ‘profile’ of critical customers are: 
the review of defect escapes and their root cause, and face-to-face customer review 
and technical exchange.  

Defect escapes (found by the customer) are the most logical area to attack in order 
to better understand how test coverage can be improved. This is because the results are 
immediate and once the defect is known, the test case that was missed can immediately 
be created or an existing test workload can be modified to target that area to ensure the 
issues do not reoccur. This effort is time consuming and is a function of the total num-
ber of escapes and the complexity of each escape. Similar approaches have been taken 
in related work [1], where the defect analysis is performed after development and dur-
ing release of the product in question. Factors such as high impact defects or more-
frequent low impact defects are considered during defect escape analysis [2]. 

Face-to-face customer review and technical exchange with the vendor are another 
proven method for extracting important information about the customer’s configura-
tion, environment, operational practices, and business requirements. This exchange 
implements a thorough analysis of business applications and those applications’ ex-
plicit exploitation of the software or hardware solutions in question. These reviews 
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provide an excellent venue for dialog between the hardware and software providers 
and the customer. The information retrieved from these discussions can definitely be 
used by a motivated test team. However, the challenge lies in determining which 
configurations, environments, applications, and practices should be deployed into the 
hardware and software vendor’s test topology. Even though there is some duplicity in 
customer’s IT shops, each customer’s unique set of business applications creates 
combinations that the IT vendor cannot afford to supply.  

These techniques provide us with a number of pieces to the puzzle.  However, they 
cannot improve quality sufficiently, whether alone or together.  There is still some-
thing missing from the puzzle of ensuring quality coverage.  

To address this problem we needed to improve the ‘profile’ of customers and make 
our testing results stronger and more predictable. Over the past decade, several teams 
have attempted to get a handle on the ‘profile’ of their customers so they can better 
align their test environments, configurations, and workloads for customers. Some 
teams profile the customer’s workload by generating a set of queries that help deter-
mine the desired features for workload optimization [3]. 

In System z, the test team used a method known as workload profiling. This 
method retrieves empirical system data produced by the z/OS operating system and 
performs a logical and statistical comparison between that data from the customer’s 
environment and associated data from IBM’s System z test environments. This com-
parison shows gaps in stress levels against certain functions within the system and the 
overall system in general. It also shows configuration options chosen by customers 
and a certain amount of functional flow of control. This methodology has been, and 
continues to be, utilized both proactively and reactively with some of IBM’s largest 
enterprise customers. It has provided key findings to test organizations within IBM, 
which resulted in recommendations for specific improvements to their testing tech-
niques and newly discovered defects. 

The empirical system data currently available on System z includes interval-based 
data and logging records. The interval-based data are primarily focused on a specific 
component or area of the system. It helps provide information related to stress and 
load, and configuration. The logging capability allows components to trace their mod-
ule flow of control and identify exceptional situations that have been encountered. In 
either case, this data provides only a single dimension of the data (component-oriented) 
– which gives us very little understanding of this component’s interactions with others 
in the whole composition of the system. 

With that in mind, we are faced with the challenge of breaking through this single 
dimensional outlook. This paper discusses a technique and methodology that provides 
a better understanding of comparative functional coverage or profiling. With this new 
technique, test teams will be able to further refine their test workloads, environments, 
and configurations. They will also be able to explicitly reassure customers that or-
ganizations can look at their specific IT environment and change the test approach 
accordingly to better align with the way they use our products. 

2   Workload Profiling with Empirical Data 

Our efforts to use empirical data for workload profiling began several years ago. The 
process has been used at multiple customer engagements where data collection, 
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analysis, and test workload improvements have resulted in the removal of new and 
unique defects. Both of the empirical data opportunities with System z, interval-based 
system data and event-driven logging data, have been utilized in these efforts. Of the 
two, the interval-based data mining and analysis tools are the most mature. Collecting 
the data over an interval acts as an equalizer of the customer and system test data, 
allowing the computation of standard statistical functions for activity in each interval.  
The comparison of these statistics forms the basis of our analysis. The minimum and 
maximum values observed for data points over the set of intervals represent the high 
and low water marks for each data point. The mean and standard deviation of the 
same data points provide a measure of the level of flux for the activity, identifying 
either steady state or highly variable workload activity. Using event-driven data in a 
similar manner requires an additional step of first being normalized into time intervals 
before undergoing similar statistical analysis.  

We used the Systems Management Facility (SMF) data records from the z/OS en-
vironment as the interval-based data for our analyses. They provide an expansive 
number of data points covering many system components. Handling of the large 
amount of data involved in analyzing these records required us to develop tooling in 
two areas: data reduction and data presentation. 

The SMF data exists as binary data records that must be parsed and formatted ac-
cording to the data type of each data point in the record. Because the structure of SMF 
records are self describing, we were able to write generic programs to de-construct the 
SMF records and produce a readable value for each data point at each interval. 

Once parsed and formatted only the numeric data may used as a source for the cal-
culation of the basic statistics. No analysis is attempted for non-numeric data.  Using 
the customer data as the base, we performed a comparison of statistics between the 
customer data and a set of system test data on each data point.  This comparison is 
quantified as the percent change or percent difference using the following formula: 
 

 

We then used the above calculation for a set of data points to build web pages for 
visual analysis. A single web page allows comparison of a set of customer data points 
to the corresponding set of system test data points. Colors highlight the magnitude of 
the difference between the base and compare data for each data point. Shades of green 
indicate test matching or exceeding customer usage while shades of yellow and red 
areas indicate that test usage is deficient.  To speed analysis, a custom report is also 
available that displays only deficient data points. 

The color scheme was successful in quickly evaluating individual data points, but a 
comparison of the combined data points was not easy. Understanding individual data 
points and taking corresponding action to address test deficiencies is key to the proc-
ess. It is also essential to have a summary of the quality of a particular set of test data 
compared to the customer data. This creates useful information regarding which of 
several test environments have the closest match to the customer environment. It 
shows when workload improvements enable data point activity to converge closer to 

compare data point valuei - base data point valuei   
            
                     base data point valuei 

*  100 = percent changei (1) 
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the activity shown in the customer data. To address this need we developed a single 
'overall analysis score' for each comparison. Three factors are used in computing the 
overall analysis score. 

1. Data point value factor – a value from 0 to 3 that weighs the importance of the 
data for the analysis.  A higher value assigns more weight to that data point. 

2. Data point score factor – a value from 0 to 3 that is assigned based on the  
following set of classes. 

Table 1. Data point score factors 

Score Class Score Factor 
Both are equal 0 
One is slightly larger than the other 1 
One is much larger than the other 2 
One is zero and the other is not 3 

 
3. Data point magnitude of difference – is used in a log function to weight those 

data points of greatest difference. 

Using the above factors, the data point analysis score is computed as follows: 

analysis scorei = value factori • score factori • log(1 + |differencei|)        (2) 

The overall analysis score is the sum of the individual data point scores. The lower 
the overall analysis score, the more desirable. On the example profiling analysis web 
page in Figure 1 CUSTF has the best score with a value of 282.4. After changes are 
made to a test run, the overall analysis score can quickly determine how effective 
those changes were in more closely matching the customer workload. 

It is also possible to extend these same concepts to ctrace records. Typical ctrace 
data includes information about modules and entry points. Each time a module is  
 

 

Fig. 1. Example profiling analysis web page 
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entered or exited, a ctrace record is written. Instead of being interval-driven, ctrace 
records are event-driven. Counting the occurrences of each module provides a raw 
number of times the module was invoked; this can be normalized to invocations per 
second. 

Although our approach does allow the use of ctrace data, it is questionable whether 
the full potential of the trace data is being exploited. Ctrace data carries with it infor-
mation beyond the raw counts of module invocations. The order of the entries may 
reveal common call patterns between modules. Or it may instead be used to look for 
the opposite, as uncommon call patterns. Depending on other available data in the 
ctrace record it might be possible to surmise the effect of various input parameters on 
call patterns. There is also the potential for understanding other calls patterns that may 
be active in the system and occurring in parallel with the current one. The interval 
methodology makes it difficult to easily answer new queries that become evident as 
we analyze a set of data. For this reason we decided to augment our process with a 
methodology that allows us to look at views of the data not previously considered.  

3   Functional Coverage Analysis 

Functional coverage [4] [11] is a coverage methodology for evaluating the complete-
ness of testing against application-specific coverage models. Functional coverage is in 
use in many companies [5], [6] and in many projects. The first and most important 
step in the functional coverage process is deciding what to cover. The model is usu-
ally described in free text, or a story, where some of the words designate attributes. 
For example the model could be "Lets check that every <unit> sends every possible 
<signal> to every other <unit>". 

The model is usually described as a tuple containing all the attributes described  
in the story; for example, for our case it will be <unit, signal, unit>. Without the story, 
the tuple by itself could have many other meanings. For example a different story for 
the same tuple could be “Lets check that every <unit> received every <signal> while 
another <unit> has crashed” which may be a reasonable model for checking robust-
ness. Each attribute has a list of possible values. For example, unit may have the val-
ues: OS, Mem, Proc. A coverage task is an instantiation of the story with specific 
values given to the attributes. For every test, we should be able to verify which cover-
age tasks it covered. 

Often some of the tasks in the coverage model are illegal tasks that should not oc-
cur. The reasons could be limitations on the inputs (e.g., some units cannot generate 
some signals) or implementation details (e.g., unit CPU2 cannot send a signal to 
Proc1). Specifying the illegal tasks is an important part of creating the functional 
coverage model.  It is our experience that bugs are found during this phase since the 
architect must consider the application from a different view point. 

After the coverage model is created, the next step is data collection. In functional 
coverage, the models are implementation-specific. This causes the coverage tooling, 
including data collection and data presentation, to be model-specific. Since there are 
many models, it was not possible to write a good coverage analysis tool for each one.  
Nevertheless, the coverage processes of different models have much in common—
although each model is unique. Tasks have to be updated in tables, regression suites 
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have to be created, and coverage reports on sub-models and on progress have to be 
made. Once it was realized that implementation-specific models still have many proc-
esses that can be automated, a number of functional coverage tools were created to 
handle all the common requirements. These include tools such as Meteor [7], Comet 
[4], Specman Elite [8] and Focus [9]. 

From the outset, functional coverage tool development has concentrated on being 
able to explore data in variety of ways [10]. This includes the ability to view projections 
of subsets of the attributes. One such example is the model above, on the sub model 
<signal, unit> where we check which signals arrived to which units. Another common 
view looks at a subset of the values, for example, the sub model <signal, unit> when the 
first unit is not OS. Another very useful view is hole analysis, which automatically 
discovers large sets of uncovered tasks that have something in common [7]. 

The ability to explore data easily in a variety of ways is the main reason functional 
coverage tools are preferred to model-specific tools. It is very easy to conceive of a 
specific way to view the data and then write a script that will process and present the 
data in this specific way. However, when you collect the data, you do not know ex-
actly how you will want to look at it. Furthermore, the process of exploring the data is 
interactive in nature. After half an hour of exploring the data, we usually look at more 
than ten different views. If we had to write a script for each view, the cost would be 
prohibitive. 

This exploration capability is the reason we decided to use the functional coverage 
methodology to evaluate the difference between workload used to emulate customer 
activity and actual workloads collected from the customer. We started the exploration 
by working concurrently on two equivalent models with two separate input data: one 
from the customer and one from the client.  While it is easy to manipulate each set of 
data, comparing them is not trivial. For example, it is easy to see how many of each 
module has been executed by the customer or in test (see Figure 2), but it is not easy 
to see which of them comprises a larger portion of the relevant workload. 

For that reason we enhanced FoCuS, our functional coverage tool with the ability 
to simultaneously look at multiple data sets. This capability is described in the next 
section. 

4   Comparative Functional Coverage 

The idea of comparing two sets of data seems straightforward. Normally there is a 
coverage model and the traces are compared against the model. The coverage output 
is composed of a list of tasks, where each task has a description and an indication of 
how many times it has been covered. Figure 2 shows an example of a coverage report. 
In this report, each task has two attributes: module and thread. In the table, the second 
line with the dark background represents a task with a value of 10 for the module 
attribute and 1 for the thread attribute, which was covered 907 times.  

One could add a second data source as shown in Figure 3, giving us the same list of 
tasks with measurements from two data sources. The measured coverage of Customer 
data is under the Customer column and the coverage of the Test data is presented under 
the Test column. At the top, we automatically put tasks with large changes between the 
sources. The top four rows show tasks covered by only one data source. For example, 
the first row shows a task that was covered only under the Test data source. 
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Fig. 2. Coverage results for a single data source 

 

Fig. 3. Comparing Customer to Test on a functional coverage model 

Being able to see results from two data sources requires a number of additional fea-
tures, such as the ability to sort by relative coverage. Focus tables were able to sort on 
any one of the columns but this capability is not enough. We initially added two sorts 
for source1/source2 (Ratio [1]/[2] button). Since the sort is reversible, this also adds 
source2/source1 (Ratio [2]/[1] button). For example in Figure 4, the top of the screen 
shows all the tasks in which the Customer has better coverage than the Test. The 
bottom of the table (not visible here) shows the complementary tasks which are cov-
ered better by the Test than by the Customer. 

We added a second sort - Changed on top button - that brings to the top the tasks 
with a high absolute value of change between the sources; this is practical when we  
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Fig. 4. Tasks sorted by the value of Customer / Test 

do not care about the order. This sorting capability enables the user to find out where 
one workload has concentration which the other lacks. This is very important for the 
exploration stage and is shown in Figure 3 and is the default of the tool.   

Since we are comparing workloads, some functional coverage features were dis-
abled. In our reports, we need to show coverage of the two workloads against a set of 
tasks. We removed any restriction that changes the task set in an asymmetrical way.  
If the restriction is oblivious to the tests and depends only on the model, then it can be 
used. We removed the ability to restrict tasks to those with coverage higher than some 
number, as the restrictions yield a different set of tasks for each data source and the 
comparison becomes complicated. For the same reason we do not compare illegal 
tasks, which are different for each workload. 

4.1   Comparative Functional Coverage Holes 

The same coverage data can also be shown using another technique called the Sub-
sets (holes) report. Coverage holes are defined as projections on subsets of variables 
that were not covered. Figure 5 shows an example of the Subsets report. The data  
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Fig. 5. Subsets (holes) Coverage result for a single data source 

source (Customer) for this report contains tasks that have three attributes ("module", 
"thread" and "system"). The first row in Figure 5 contains a hole which is a value in 
this projection ("10", "0"); this hole is never covered, regardless of the value of the 
third attribute ("system"). Showing holes is a very useful way to present coverage 
results since it separates the wheat from the chaff. 

By adding a second data source, we can have the same description of partial tasks 
and measure it against two data sources, as can be seen in Figure 6. The measured 
coverage of Customer data is under the Customer column and one can see the cover-
age of the Test data under the Test column. The first row in the report shows that the 
partial task ("23", "0") represents a hole in the Customer data source but not in the 
Test data source (the "999999" is an indicator for no hole). Similar to the Compara-
tive Functional Coverage report, we automatically put at the top the partial tasks 
with a high absolute value of change between the sources. The top four rows show 
partial tasks that exist only on the Customer data source. 

 

Fig. 6. Comparing Customer to Test on a Subsets (holes) coverage result 

5   Experimental Results 

We validated our comparative functional coverage technique on the SYSSMS compo-
nent of the z/OS operating system. The data was collected by post processing the logs 
created by the z/OS ctrace facility; therefore, we did not need to touch the application. 
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In addition, we had a developer available with deep knowledge to help us interpret the 
patterns and to understand whether our observations made sense.   

We set two goals for the analysis.  The first goal was to better understand the func-
tional flow of the SYSSMS modules across the system. The second was to ensure that 
the test covers the same flows as the customer, at the very least.   

The information we gleaned from ctrace for use in our functional coverage model 
is demonstrated in Figure 7. It included: 

1. A numeric module identifier corresponding to the module in the MDID field. 
2. A label to identify the entry as either a module ENTRY or a module EXIT. 
3. A thread identifier for the request constructed by combining the TCBA and 

HASID fields. 
4. An implied order of the module entries. 

As an aside it is interesting to note the thread identifier served as a real life re-
minder of the iterative nature in building a correct model. Our first pass at the model 
and analysis brought us to the conclusion that module number 4 was an entry point to 
the rest of the code. In verifying this with the developer we learned that it was true, 
but we also learned that the thread identifier for module numbers 46 and 4 could not 
be trusted. Leaving them in the model caused the thread to sometimes be incorrectly 
identified, which invalidated many of the other conclusions of the analysis. While 
modifying the model to restrict the entries for the two modules we also discovered a 
third module, number 48, for which the thread identifier could not be trusted. The 
model restrictions had to again be modified to account for this. 

 

Fig. 7. Example ctrace entries 
 
 

--------------------------------------------------------------------------- 
DSYS      ENTRY     00000000  00:19:43.789971  Module Entry                 
--------------------------------------------------------------------------- 
ASID: 00E3  COMP: SMSVSAM (DF122)  SCMP: VRM  (097)  FNID: 019  MDID: 021   
MDNM: IDAVRSUS  TCBA: 80034000  RETN: B58EDA6A DINM: 0001   HASID:  0159    
--------------------------------------------------------------------------- 
KEY:  6132   LEN:  0014                                                     
 +00000000: 00000000 80000000 00000000 00000000  *................ *        
 +00000010: 00000000                             *....             *        
 
 
--------------------------------------------------------------------------- 
DSYS      EXIT      00000002  00:19:43.792024  Module Exit                  
--------------------------------------------------------------------------- 
ASID: 00E3  COMP: SMSVSAM (DF122)  SCMP: VRM  (097)  FNID: 019  MDID: 021   
MDNM: IDAVRSUS  TCBA: 80034000  RETN: B58EDD02 DINM: 0002   HASID:  0159    
--------------------------------------------------------------------------- 
KEY:  0098   LEN:  0004                                                     
 +00000000: 00000000                             *....             *        
KEY:  0006   LEN:  0004                                                     
 +00000000: 00000000                             *....             *      
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Our model has six attributes: 

1. Module – One of 98 possible module names, translated from the MDID to the 
associated alphanumeric module name 

2. MeOnThread – '1' if the currently starting module is already running on the 
same thread, otherwise '0' 

3. MeOnSystem – '1' if the currently starting module is already running on any 
other threads, otherwise '0' 

4. OtherOnThread – '1' if there are any other modules already running on the 
same thread, otherwise '0' 

5. OtherOnSystem – '1' if there are any other modules already running on any 
other  threads, otherwise '0' 

6. MeNextOnThread – '1' if the next starting module on this thread is the same as 
the currently starting module, otherwise '0' 

We performed our analysis using the Focus tool with the two reports described in 
the previous section: the Coverage report and the Holes Subsets report.  The use of 
restrictions and filters in the reports was important in forming the desired queries.  

Our first query was to understand what modules (functions) were being used by the 
customer vs. test. Of these, the most important were modules that were used by the 
customer but not used by the test. Our analysis in Figure 8 did in fact show deficien-
cies in module coverage by test. Modules IDARPS1-68-PC_SS_Common-Rtn and 
IDDAXRTX1-19-Term-Exit (i.e., modules 68 and 19) were used by the customer but 
not by the test. It is interesting to note that both the customer and test cover less than 
one third of the possible modules. This highlights the fact that our goal for using 
comparative functional coverage for this test phase is to match the customer's usage 
and not to ensure complete coverage. 

 

Fig. 8. Comparison of modules used 
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Our next queries were related to the module interactions. The OtherOnThread and 
OtherOnSystem attributes allowed us to look for other likely modules that are points 
for entry to other strings of function. They also served to give us an idea of concurrent 
processing on the system. In Figure 9 we see that modules 6, 23, and 41 are most 
likely to start alone on the thread (using the restriction OtherOnThread = 0) for both 
the customer and the test. However the fourth most likely module to start alone on the 
thread is different for the two: module 54 for the customer and module 15 for test.  
This suggests that the customer makes use of some function with more relative fre-
quency than is done by the test. Modules 68, 42, and 19 are also of interest because 
they are modules that the customer uses, but for which there was no test activity.  
Modules 68 and 19 had been identified earlier as exposures but 42 had not. Even 
though module 42 was used by the test, it does not have the same usage pattern as at 
the customer. 

 

Fig. 9. Alone on thread 

Expanding the query to include other threads in the system allows us to look for 
modules that are starting alone in the system and gives us an idea of the amount of 
concurrent processing that is occurring. In Figure 10 we see that the customer is much 
more likely than test to have a module running alone on the system. We interpret this 
to mean that the customer runs with much lower levels of concurrency. 

Applying a similar analysis to the MeOnThread and MeOnSystem attributes shows 
similar usage patterns. (No figure is shown.) Customer and test have a common set of 
modules that are most likely to run on the thread, and then branch into different usage 
patterns. Looking across the system shows much higher counts for MeOnSystem than 
for test, again indicating a higher level of concurrent processing for test. 

The MeNextOnThread attribute counts the number of times a module exits, and is 
then called again with no other modules appearing between; it applies only to the 
thread level. Our test analysis of this attribute revealed that both the customer and test 
have modules that exhibit this behavior, with some modules that behave differently 
between the two. (No figure is shown.)  
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Fig. 10. Alone on system 

As referenced earlier, Focus offers specific automation to aid in holes analysis.  
Holes analysis in functional coverage normally refers to any function that is not cov-
ered. In our comparison of customer and test, holes takes on a narrower meaning and 
refers to behaviors exhibited by customer but not test. For example, the Holes Subsets 
report in Figure 11 identifies the modules which are used by the customer but not by 
test. Using the holes report we can quickly see the same modules 68 and 19 that we 
identified earlier with the Coverage report. 

 

Fig. 11. Module holes 

As an example of looking for holes across more than one attribute at a time, the 
combination of Module and OtherOnSystem has not been discussed above but reveals 
multiple holes in the test coverage as compared to the customer. This is shown in 
Figure 12. 

In the above examples we used the model data in two different ways. First we  
inferred operational characteristics of the customer and test workloads. Our conclu-
sions about levels of concurrency are an example of this. Second, we identified spe-
cific characteristics of the customer which are not exhibited by the test. Modules used  
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Fig. 12. Holes - other on system 

by the customer and not by the test, along with other holes analysis, fit into this cate-
gory. In summary, using our model along with the FoCuS tool was successful in iden-
tifying instances of both categories. 

6   Conclusions 

Creating a representative workload is a very difficult problem and there are many 
potential dimensions along which one workload can try to emulate another. It is very 
easy to miss the forest for the trees. 

Previously, we tackled the problem by choosing dimensions or evaluation criteria, 
measuring them both at the test and the customer, and comparing the results. We had 
literally thousands of dimensions. We would score each, bias according to impor-
tance, and then summarize the costs to give an evaluation to the workload. This ap-
proach proved very useful but was lacking in flexibility. We measured what we set 
out to measure but we had no way to explore the data looking for unexpected trends 
and behaviors in which the customer and test behave differently. 

In order to reduce the amount of work done to collect the data (instrumentation and 
special scripting) and to enable exploration of the data, we decided to augment the 
functional coverage methodology for comparative functional coverage. 

In this work, we described the features of a comparative functional coverage tool 
and the kind of analysis it can carry out. We then showed real data and the capabilities 
of a general functional coverage data exploration tool in finding trends and behaviors 
that distinguish the test from the customer.   

We found this work very useful and we are already seeing new uses for these capa-
bilities with many of our customer engagements. We believe that this methodology 
will not only make it into functional coverage tools but will also be incorporated 
within code coverage and additional testing tools. 
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Iterative Delta Debugging
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Abstract. Automated debugging attempts to locate the reason for a failure. Delta
debugging minimizes the difference between two inputs, where one input is pro-
cessed correctly while the other input causes a failure, using a series of test runs
to determine the outcome of applied changes. Delta debugging is applicable to
inputs or to the program itself, as long as a correct version of the program exists.
However, complex errors are often masked by other program defects, making it
impossible to obtain a correct version of the program through delta debugging in
such cases. Iterative delta debugging extends delta debugging and removes series
of defects step by step, until the final unresolved defect alone is isolated. The
method is automated and managed to localize a bug in some real-life examples.

1 Introduction

Testing is a scalable, economic, and effective way to uncover faults in software [8,10].
Automated test runs allow efficient verification of software as it evolves. However, in
the case of failure, defect localization (debugging) is still a largely manual task.

In the last few years, several automated debugging techniques have been developed
in order to facilitate fault-finding in complex software [5,13]. Delta debugging (DD) is
one such technique [7,14]. It takes two sets of inputs, one which yields a correct result
and another one which causes a failure. DD minimizes their difference while preserving
the successful test outcome. DD can be applied to the program input or the source code
of the program itself, using two different revisions of the same program. The latter
variant treats the source code as an input to DD. It therefore includes a compile-time
step, which produces mutations of the program to be analyzed, and a run-time step,
where the outcome of that mutation is verified by testing.

DD obtains an explanation for a test failure. The scenario considered here is where
a test fails for the current version. If an older correct version exists, DD can be used
to distill the essential change that makes the new version fail on a given test, and thus
reduce a large change set to a minimal one [14]. DD is applicable when there exists a
known version that passes the test. For newly discovered defects, this may not be the
case. For such cases, we propose iterative delta debugging (IDD). The idea is based on
the premise that there exists an old version that passes the test in question, but older
versions of the program may have other defects introduced earlier that prevent them
from doing so. By successively back-porting fixes to these earlier defects, one may
eventually obtain a version that is capable of executing the test in question correctly [1].

IDD yields a set of changes, going back to previous revisions. The final change,
applied to the oldest version after removal of earlier defects, constitutes an explanation
for the newest defect. Furthermore, the same algorithm that is used to back-port fixes to
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older versions can also serve to port the found bug fix forward to the latest revision (or
a version of choice). Our approach is fully automated. We have applied the algorithm
to several large, complex real-world examples in different programming languages and
types of repositories. Even though it was not known a priori whether a working revision
could be found, we have found working revisions in some cases.

This paper is organized as follows: Section 2 introduces the idea behind IDD. DD
and IDD are described in Sections 3 and 4, respectively. The implementation and exper-
iments carried out are described in Sections 5 and 6. Section 7 concludes, and Section 8
outlines future work.

2 Intuition Behind IDD

Developers have used change sets for debugging before. IDD automates this process:

1. A test fails on the current version. It is assumed to have passed on an older version.
2. By successively going back to older versions, one tries to obtain a version that

passes the test.
3. One tries to distill a minimal difference between the “good” and the “bad” version,

which constitutes the change that introduced the defect.

Step 2 tries to isolate two successive revisions, one that passes a test, and another one
that fails. Step 3 attempts to minimize the difference between these two revisions. In
that step, we assume that delta debugging (DD) is used to minimize a given change set
while preserving the given test outcome [14].

If a version passing the test (a “good” version) is known a priori, then the search
for the latest defective version can be optimized by using binary search instead of lin-
ear search. This idea has been implemented in the source code management tool git,
which is used to maintain the Linux kernel sources [11].

The process becomes more complex when the “good” version is not known. Assume
there exists a test that fails on a current version. We will call this outcome fail. A correct
result is denoted by pass. Besides these two outcomes, there may also be different
incorrect outcomes of the test, denoted by err. A set of changes between two versions
of a program is referred to as a patch.

A test case may not be applicable to older revisions due to missing features or other
defects that prevent the test from executing properly. In this case, IDD utilizes DD to
apply the necessary changes from a newer version to an older version, to allow a test
to run. Figure 1 shows how IDD builds on DD. IDD starts from a version that fails
(version 4 in Figure 1). Unlike in the original scenario for DD, a version that passes
is not known a priori. IDD successively goes back to previous versions and assesses
whether the same failure persists. If the test outcome differs, DD is applied to the last
failing version and the older version. This identifies the source code change that made
the old version behave differently. One IDD iteration thus either (a) skips a version
where the outcome does not change, (b) finds a correct version, or (c) eliminates a older
defect (err) that covered a newer one.

In the example in Figure 1, version 3 produces case (c): It does not pass the test, and
even fails to reproduce the behavior of version 4. DD is then applied between versions 3
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Fig. 1. Iterative delta debugging

prev version = current version = latest version();
patch = {}
original result = current result = test(current version);
while (current result 
= pass) {

current version = predecessor(current version);
current result = test(current version ⊕ patch);
if (current result 
= original result) {

patch = DD(current version, original version);
}
prev version = current version;

}
return patch;

Fig. 2. IDD algorithm in pseudo code

and 4. The resulting minimal change, patch a, can then be applied as a patch to version
3, fixing the earlier defect in version 3, and producing a new version 3′. The resulting
version fails again in the same way as version 4 did. In Figure 1, the change set (patch)
that is back-ported is shown by a thick arrow pointing to the correct, changed code.

The iterative process of IDD continues by applying this patch to older version (such
as version 2) before running tests. This produces version 2′, on which the test is run.
That version behaves differently from 3′, so DD is applied again to find the minimal
change required to fix the program. This produces a new patch b (the change between
3′ and 2). This patch usually contains changes of the previous patch a. The resulting new
version is therefore called 2′′. After version 2 is repaired, IDD continues. The patched
version 1, 1′′, passes, and IDD terminates successfully in this example.

IDD will eventually find a version that passes the test, or run out of older versions
(see Figure 2). IDD is fully automatic as long as the test process does not require human
intervention. The process starts from a version where the test in question successfully
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Step Change set Test verdict
1 00000000 fail
2 11110000 fail
3 11111100 pass
4 11111000 fail
5 11110100 pass
6 00000100 pass

Fig. 3. Delta debugging illustrated

compiles, and produces a known, well-defined output. (Even though that output is er-
roneous, it is important to use it as a measure against changes.) IDD successively tries
older revisions, and uses DD as a subroutine upon failure. DD produces a minimal
change set from a newer (working but not fully correct) revision will be back-ported to
the older one, which produces an error.

3 Delta Debugging

3.1 Delta Debugging

Delta debugging (DD) uses bisection to minimize the difference between two versions
of program input while preserving the behavior that the first input generates. It can also
be applied to the program source code itself. When applied to program source code,
DD typically operates on a description of the difference between two revisions. The
difference set generated by the Unix tool diff provides this change set readily. It also
has the advantage that variations of the change set can automatically be applied by
patch, followed by compilation and execution of the program.

Delta debugging applies bisection to an entire change set. This evaluates changes in
contiguous subsets only, and ignores vast parts of possible subsets of a change set. Since
the size of a power set is exponential in the size of the original set, exhaustive evaluation
of all possible change sets is impossible. In the following discussion, a “successful” or
passing test is a test whose outcome corresponds to the desired value, such as the same
kind of test failure observed in a previous revision.

Figure 3 illustrates DD on a simple example. The change set includes eight elements,
the presence or absence of each is illustrates by a “1” or “0”, respectively. Let the first
element by the leftmost bit in the change set, and the eighth element be the rightmost
bit. Initially, the empty change set is tried. The test, when executed unchanged, fails. DD
then attempts to isolate the reason of the failure. The assumption is that if the test passes
with only the first half of the change set being active, then the reason for the failure
must lie in the first half of the change set. Conversely, if the test fails with the second
half of the change set disabled, then at least a part of the second half of the change
set is necessary for the test to succeed. This is what happened in the example in Figure 3:
The test still fails after the initial bisection of the state space. Therefore, at least one
element of the last four elements in the change sets is necessary to achieve the desired
outcome.
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In the next DD step (3), the subset of the last four elements is again bisected, and the
last two elements are ignored. As the test passes, they can be safely dropped from the
change set. Now, the algorithm backtracks and analyzes the subset containing elements
5 and 6. A direct implementation of backtracking would again analyze the change set of
step 2. As that one is known to fail, it can be skipped. The change set in step 4 therefore
contains elements 1–5; the test fails, confirming that element 6 is necessary. Step 5
confirms that element 5 can be dropped; further backtracking analyzes the first half of
the change set, which again does not contribute to the test outcome in this example.

DD assumes that each element of a change set is independent of all others. As the
format of the Unix diff tool is line-based, DD works best on data where one line is in-
dependent of any other line, such as a flat configuration file. Obviously, program source
code does not conform to this property. For local code changes, though, DD provides a
good approximation of the minimal change set. DD fails in cases where the hierarchi-
cal structure of program source code conflicts with line-by-line analysis of changes. In
typical programming languages, a class scope surrounds declarations of functions and
methods, which contain declarations of local variables and code. Higher-level state-
ments cannot be removed without removing everything within its scope. Therefore,
when trying to eliminate the addition of a new method, DD tends to eliminate state-
ments and declarations but not necessarily the entire method scope. Conversely, when
eliminating the removal of particular statements, it is not possible to remove an entire
method without removing all the program statements it contains.

Figure 4 shows some of the problems arising with DD. It shows two examples in
“unified diff” format, as produced by diff -u, with file names and line numbers
omitted. On the left hand side, a C function is added to the code. DD will analyze the
given changes in conjunction with many other changes, spanning hundreds of lines.
Bisection of the state space may happen at any location, and may not coincide with
function or method boundaries.

Incomplete functions will not compile, resulting in invalid code subsets whenever
the syntactic structure of the target language is violated. Because of this, DD can only
manage to remove unused functions if bisection hits the boundaries of its declaration.
In Figure 4, for DD to succeed fully, bisection needs to hit the function boundaries
and the scope of the preprocessor #if/#endif construct. In other cases, DD only
manages to remove the code inside the function, and, if it works from bottom to top, the
declaration of local variable x. On the right hand side, where a function is removed, the
situation is even worse. A reduction of the change set would correspond to adding code.

Function addition Function removal
+ #if 0
+ static int
+ foo (void * data) {
+ int x;
+ x = 42;
+ }
+ #endif

- static void
- bar(int y) {
- int x;
- x = y;
- if (y)
- bar(--x);
- }

Fig. 4. Different use cases for delta debugging
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As statements cannot be compiled without an enclosing function declaration, bisection
needs to hit the function boundary, or none of the changes regarding statements can
be removed. This example shows why DD is of limited usefulness if large parts of the
code, especially function declarations and interfaces, change.

3.2 Hierarchical Delta Debugging

The problem of having to conform to a syntactic structure also occurs when applying
DD to hierarchical data, such as XML. Previous work has implemented hierarchical
delta debugging to produce correctly nested changes of XML documents [7]. In pro-
gram code, it is very difficult to obtaining change sets that include their hierarchical
scope. Luckily, the changes produced by the diff utility contain some hierarchy in it:
Change sets consist of changes to individual files, which are in turn broken up into so-
called “hunks”, which contain a number of line-based changes. Figure 5 illustrates this
hierarchy using the “unified diff” format. In real code repositories, some changes are
entirely local in the scope of a single file or a block of code where it occurs. Extending
DD to include the hierarchy of the generated patches can therefore improve precision
of DD in these cases, as shown in the experiments in Section 6.

This hierarchy provides possible boundaries for the state space search. Instead of
bisecting the state space in the middle, based on the number of lines involved, bisection
proceeds hierarchically, across files, hunks, and lines. First, sets of changes across files
as a whole are analyzed. If a change for an entire file cannot be ignored, a more fine-
grained search proceeds on hunk level, then on line level.

Usage of the patch file hierarchy improves recognition of local code changes, but it
does not take care of interdependent changes. Addition or removal of a function may
be taken care of by multiple iterations of DD: Once all calls and references to a func-
tion are removed, then the function itself may be removed as well. Unfortunately, even
hierarchical DD cannot deal with certain changes affecting multiple files. For example,
in cases where the signature of a function changes, its definition and all instances of
its usage have to be changed simultaneously. A bisection-based algorithm such as DD
cannot isolate such changes and produces overly large change sets.

Patch Hierarchy
Index: file1
@@ -42,2 +42,3 @@
context

+ addition
context

@@ -84,4 +85,3 @@
context

- removal
+ addition
- removal
context

File
Hunk

Line

Hunk

Line
Line
Line

Fig. 5. The hierarchy of a change set produced by diff -u
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4 Iterative Delta Debugging

IDD starts with a test failure in a new revision. The goal is to find an older revision
that passes the given test. Whenever the outcome of a test changes in a different way
than succeeding, e. g., by executing an infinite loop, delta debugging is used to create
a minimal patch that preserves the former outcome.1 Iteration proceeds until no older
revisions are available, a revision where the test passes is found, or a timeout is reached.

4.1 Iteration Strategy

A given test case (or a set of test cases) is compiled, executed, and evaluated by a shell
script. This evaluation is successively applied to older revisions, until a working version
of the code is found. In most cases, the outcome of a particular test does not change from
one revision to the next. Instead, older revisions contain changes affecting other parts of
the program. Delta debugging is only necessary when the test case of interest changes.

Previous work implemented this iteration strategy but involved manual patch cre-
ation [1]. Usage of DD automates our method. Unlike in previous work, patches are not
accumulated, but replaced with a new patch each time delta debugging (DD) is invoked.

4.2 Forward Porting

So far, the given algorithm attempts to locate a correct version of the program by going
back to older revisions. Patches (minimized by DD) are applied whenever a test cannot
be executed in an older version. If the algorithm is successful, it will eventually find a
revision where the given test passes. The final change set will contain a bug fix for the
given test, as well as all the “infrastructure” needed to execute it. If the bug fix applies
to a version that is much older than when the test was implemented, the portion of the
change set containing new features that are necessary for a given test may be large.
Intermediate design changes may have taken place, making it impossible to directly
apply the resulting patch to the current version. However, the primary concern is usually
to fix the latest revision of the software rather than an old one. Therefore, after having
found a successful revision, IDD is again applied in reverse, going from the correct
version to the current one. DD is again invoked as a subroutine whenever a patch cannot
be applied. In this way, forward IDD generates a patch for the current version.

5 Implementation

5.1 Compilation and Test Setup

Within each iteration of IDD, and for evaluating changes of a test, IDD uses a set of
scripts to automate program compilation and testing. In detail, this involves the follow-
ing steps:

1 Even though nested dependencies require multiple DD iterations to be removed, only one iter-
ation of DD is run at each time except at the final step, when a fix-point iteration is performed.
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1. Update of the source code to a new revision. This step may fail due to unavailability
of the source repository (e. g. due to a network outage) or because an older version
is unavailable.

2. Patching the source code. Patching is a likely point of failure, as any major changes
in the source code, including formatting changes, make it impossible to apply a
patch to a version other than the one the patch was generated for.

3. Configuration, preceded by deletion of all compiled files. Configuration may re-
quire re-generating a build file. Deletion of all compiled files is necessary, as the
patching process may create files that do not compile. This would result in the ob-
ject file of the older version (which successfully compiled) being used in a current
test run, and falsify test results.

4. Compilation. Also referred to as the build process, this step generates the executable
program and may fail because the given version cannot be compiled before or after
application of a patch. If a given version does not compile even when unpatched,
then it can be skipped.2

5. Test execution. Upon successful compilation, given test cases are executed. Test
execution failure may be detected by a given test harness, e. g. if a known correct
output is not generated by the test case. However, it also frequently happens that
tests fail “outside” the given test harness. There are two ways for this to happen:
(a) Catastrophic failure: Programming errors, such as incorrect memory accesses,

may lead to failures that cannot be caught by the test harness. Therefore, the test
harness of the application has to be complemented by an “outer” test harness
that is capable of detecting such failures.

(b) Incomplete test output verification: A given revision may not contain the full
code to verify the test output. In that case, such a revision may erroneously
report a failed test as successful. The outer test harness has to double-check
that the lack of a reported failure actually implies success.3

Any failure in the steps above is treated as a critical failure that requires the current ver-
sion to be fixed. The only exception is if a test fails in exactly the same way as a previous
revision, in which case it is assumed that the test outcome has not changed. Otherwise,
any change in the result of test execution requires invocation of delta debugging.

5.2 Test Evaluation Accuracy

It should be noted that IDD cannot guarantee that a correct revision (which passes a
given test case) is detected as such. If DD removes code that does not contribute to a
test failure, but is vital for a test to pass, then IDD cannot recognize a future successful
test run as such anymore, as the functionality for the test to pass has been removed by
DD. Figure 6 illustrates the problem on an example that could be run in C or in Java.

2 It sometimes occurs that a repository contains a version that cannot be compiled, for instance,
because a developer committed only a subset of all necessary changes.

3 This may be difficult to achieve in practice, because a given output may not contain enough
information to judge whether a modified version still achieves the intended result when a test
case passes. In our case, we have also monitored the contents of log files and the amount
of memory consumed by tests in order to determine whether source code changes produced
behavioral changes in a test inadvertedly.
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void test1() {
int result;
result = 0;
result = runTest();
assert(result != 0);

}

Fig. 6. Example showing a potential code removal that would prevent a test from passing

Let us assume that the test fails in the current revision, i. e., runTest returns 0.
This fact is preserved when line 4 that calls runTest is removed. Unfortunately,
this removes the entire test functionality from the program. A different revision where
runTest returns 1 would not be recognized as being correct. Even worse, if the code
is compiled as a C program, the initialization of result and the return statement
may be removed as well. This causes the return value of the test function to be unde-
fined. During execution, the value probably corresponds to the contents of an element of
a previous stack frame that occupied the same memory, but such behavior is platform-
dependent. The test harness has to be augmented in order to prevent such deviations.

In order to maintain the exact behavior of failing tests, static or dynamic slicing
[3,13] could be used. Slicing would ensure that DD does not remove any lines that
contribute to the value of the test result. However, slicing tools are not portable across
programming languages, and do not scale well to large programs. We have therefore
chosen a less stringent approach. In addition to monitoring the output as closely as pos-
sible (using an external test harness), memory consumption and time usage are also
checked for deviations from the expected previous value. Furthermore, usage of unini-
tialized data in C programs is prevented by inspecting compiler warnings and the final
change set generated by DD. This process is currently not fully automated, but could
be automated by using memory checking tools such as valgrind [9].

5.3 Implementation Architecture

The iterative step of IDD, which applies a given patch across several revisions, is im-
plemented as a shell script using the compilation and test setup described above as a
subroutine. The script iterates through existing revisions until a change in behavior is
detected. After that, it stops, and control is transferred to the DD program.

When used on a subversion code repository, IDD can take advantage of the fact that
all versions are globally and consecutively numbered. Stepping through older revisions
is therefore trivial. When using CVS, though, global revision numbers are not available.
They were recovered by pre-processing the code repository. During this step, a revision
counter was assigned to each revision that was more than five minutes apart from the
next one. Revisions being less than five minutes apart were regarded as a single version
that was committed using multiple CVS invocations.

DD is implemented as a Java program that takes a patch set derived by the Unix
diff tool as input. It parses the patch file and produces an internal representation
of the state space of all possible patch sets. It then iterates over the state space of all
possible change sets. Each change set is produced as a modified patch, which is applied
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Fig. 7. Implementation architecture of DD

to the faulty version using the patch tool. The resulting version reflects a subset of all
changes between the good and the faulty version. Compilation and testing are then used
to decide whether the mutated version still produces the desired outcome. DD continues
its state space search based on this outcome, until the state space is exhausted.

Usage of the Unix diff and patch tools eliminated the need for a custom repre-
sentation of the difference between two program versions. This made the DD algorithm
rather simple, except for the cache structure, which was difficult to implement for hi-
erarchical DD. While the recursion scheme is elegant to implement, caching adds a
subtle interaction between recursion hierarchies of completed, partially completed, and
incomplete parts of the search space. To ensure that the state space is bisected cor-
rectly even in the case of a nested hierarchy, about 400 unit tests were used. These tests
covered many corner cases, but two additional incorrect corner cases were found by
inspecting the output when the tool was run.

6 Experiments

Table 1 lists the three example applications taken for the experiments. The projects were
chosen according to the following criteria:

– The project had to be sufficiently large to warrant automatic debugging, and have a
certain maturity to contain enough older versions to be available for testing.

– The full history of all revisions had to be available.
– Tests had to be fully automated and repeatable, including any configuration files

needed to run the test.
– The bugs in question had to be sufficiently well documented to be verifiable, and

interesting enough to warrant attention. (This typically meant that the bugs in ques-
tion had not been resolved for weeks or months.)

For each experiment, the outcome using IDD with “classical” delta debugging and
hierarchical delta debugging are shown. Hierarchical delta debugging always fared bet-
ter than its non-hierarchical counterpart, although the differences vary.
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Table 1. Overview of projects used for experiments

Project name Description Implementation Repository
language Size [KLOC] System

Uncrustify Source code formatter C++ 20 Subversion
Java PathFinder Java model checker Java 70 Subversion
JNuke Java VM/run-time analyzer C 130 CVS
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Fig. 8. Result of using IDD on Uncrustify

6.1 Uncrustify

Uncrustify is a source code formatting tool for various programming languages includ-
ing C, C++, and Java. In addition to formatting code, Uncrustify is also capable of
changing the code itself. For instance, one-line statements following an if statement
do not have to be surrounded by curly braces. Uncrustify can be used to add these op-
tional braces, facilitating future changes. As a case study, bug number 1691150 in the
sourceforge bug tracker was used. This bug describes how C++–style one-line com-
ments (starting with //) are sometimes incorrectly moved to the wrong code block
when they are converted to C-style comments (enclosed by /* and */ ) while optional
curly braces are added for if and while statements.

Figure 8 shows the result of running IDD on that case. The sudden growth of the
change set at revision 494 corresponds to a refactoring where the large number of com-
mand line options was specified differently in source code. DD could not eliminate this
refactoring. As older versions supported fewer and fewer options, the expected growth
in the patch set was sometimes compensated by the shrinkage of the part of the patch
that concerned command-line options.

IDD could not find a version passing the given test. Unfortunately, revisions 200
and older could not be checked out with the given subversion (svn) client. We assume
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Fig. 9. Result of using IDD on Java PathFinder

that the server-side repository was converted to a later version at that stage, making it
impossible to retrieve old revisions.

6.2 Java PathFinder

Java PathFinder (JPF) is a Java model checker that analyzes concurrent Java programs
for assertion violations, deadlocks, and other failures [12]. In version 4, a complex input
is not processed correctly. The defect is manifest in an incorrect result after several
minutes of processing: The analysis report of JPF states that a faulty input (a Java
program containing a known defect) is correct. Because the point of failure is extremely
difficult to locate, this problem has persisted for more than a year and has not been
resolved yet. In fact, it was this case study that triggered the work of this paper.

A much older version of JPF, 3.0a, which is not maintained in the same repository,
produces a correct result. However, using that version for identifying a change set would
not be useful, because the entire architecture of JPF has been redesigned since version
3.0a was released. Hence, IDD was applied to different revisions of the source repos-
itory containing all revisions of version 4. The goal was to find a revision in the new
repository that could pass the test. Perhaps the bug was introduced after the architec-
tural changes that took place prior to the migration to a public source repository. In that
case, IDD could find it.

We have applied IDD using revision 475 of version 4 as a starting point. IDD iterated
through older revisions up to version 353, which passed the test (see Figure 9). In this
case, no changes had to be back-ported to that revision. Therefore, the visible part of the
graph shows the size of the patch fixing the defect. Delta debugging was unable to iden-
tify a very small change set to fix the newer, defective versions. As a result of this, the
initial patch of 386 and 171 lines, respectively, grew successively during back-porting.
Sometimes, a later iteration of DD took advantage of previously resolved dependencies
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Fig. 10. Result of using IDD on JNuke

and shrank the patch again. However, at the end, an unwieldy patch of more than 1,000
lines remained for standard IDD, and a patch of 272 lines for hierarchical IDD.

This is still too large for the patch being meaningful to a human programmer. The
generated change set still includes refactorings amidst functional changes, and while it
fixes the given bug, it breaks other features of JPF. Because of this, we did not follow
up with this bug fix further to actually repair JPF.

6.3 JNuke

In JNuke, IDD was applied to find the reason of a memory access problem in the Jar file
reader under Mac OS X 10.4 that was not found under Linux. This is maybe the most
typical case in which IDD can be applied: Code that is often tested on one platform (in
this case, Linux) but rarely on another one (Mac OS). Such tests may pass on the main
development and test system, but fail on a different platform. As the system is period-
ically tested on the other platforms, some known good versions exist, but regression
defects may go undetected for some time.

As Figure 10 shows, IDD was very successful here. The test could be run without any
adaptations on older versions, until it passed at revision 1872. The graph shows the size
of the patch fixing the problem. Hierarchical IDD even found a minimal patch of just
two lines, identifying the fault precisely. This example is a case where IDD would have
found the test quickly enough to be useful for replacing human effort in debugging.

6.4 Summary

Table 2 summarizes the outcome of all experiments. As can be seen, the hierarchi-
cal version of IDD always produces significantly smaller patches, although the dif-
ference varies. In either case, the number of DD cycles within DD would have been
prohibitively large in practice in all cases except for the last one. The complexity of DD
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Table 2. Summary of experiments

Project name Size of final patch set Number of DD Number of build/
invocations test runs

IDD IDD-h IDD IDD-h IDD IDD-h

Uncrustify 666 567 62 57 52483 39170
Java PathFinder 1133 272 18 13 57140 15013
JNuke 20 2 4 4 335 117

is linear in the size of failed build/test runs [14]. However, in IDD, larger patches tend
to be more vulnerable to patch conflicts in later revisions. Therefore, once a patch has
accumulated a number of features such as refactorings, name changes, etc., the patch
command tends to fail more often. As a result of this, the DD subroutine is used more
often, which tends to lead to even larger patches.

Therefore, when patches get larger, both the size and the frequency of DD runs in-
creases. This means that the number of test/build runs grows faster than linearly in the
number of DD invocations. As each build/test cycle takes about 30 seconds in average,
longer IDD runs can take several days.4 In practice, the likelihood of a success is high-
est for quickly detected defects, so DD would typically be run for a few hours or days
before it would be aborted.

7 Conclusion

Delta debugging automates the task of identifying minimal change sets. However, it
requires a correct version, which may not be known when a new defect is discovered.
Still, it is possible that an old revision passes a given test. Sometimes it is necessary to
apply changes of newer versions to older ones in order to allow a newer test to execute
on an old version. Iterative delta debugging automates this process and successively
carries changes from newer versions back to older ones, until either a correct version is
found or the process is aborted. The process is successful in some cases, but requires
much time when change sets get large.

8 Future Work

IDD works in conjunction with delta debugging, but requires a high-performance, high-
precision implementation of DD in order to be successful.

The current tool chain has been written as a prototype, lacking several possible op-
timizations that could be implemented. For instance, DD generates and compiles varia-
tions of one revision by checking out a fresh copy of the necessary files and compiling
them from scratch in each iteration. Whenever the build configuration does not change,
most of these steps can be cached.

4 Intelligent caching of compiled artifacts could reduce this time by a factor of 10. However,
we did not find a system that supported all the programming languages and revision control
systems in question.
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Furthermore, code analysis could eliminate the need to check variations where too
much code is removed. Code coverage and dynamic slicing on a known “good” version
can help to identify which statements are crucial for a test to pass. Such statements
should not be removed in the DD process. For C programs, memory checking algo-
rithms can further automate the suppression of programs that do not generate consistent
results.

The direction of applying hierarchical DD is definitely promising, and delivers faster
and better results than standard DD. However, the hierarchy of the patch file struc-
ture does not exactly mirror the hierarchy of software source code. Tools that represent
software source code in XML format [2,6] could be used to extract a hierarchical repre-
sentation of programming constructs. If XML data is used, then the question of how to
generate an efficient and expedient difference representation is still open. Tools having
their own format exist [4], and may be used in further case studies.
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Abstract. DPLL-based SAT solvers progress by implicitly applying bi-
nary resolution. The resolution proofs that they generate are used, after
the SAT solver’s run has terminated, for various purposes. Most notable
uses in formal verification are: extracting an unsatisfiable core, extracting
an interpolant, and detecting clauses that can be reused in an incremen-
tal satisfiability setting (the latter uses the proof only implicitly, during
the run of the SAT solver). Making the resolution proof smaller can ben-
efit all of these goals. We suggest two methods that are linear in the size
of the proof for doing so. Our first technique, called Recycle-Units,
uses each learned constant (unit clause) (x) for simplifying resolution
steps in which x was the pivot, prior to when it was learned. Our second
technique, called Recycle-Pivots, simplifies proofs in which there are
several nodes in the resolution graph, one of which dominates the others,
that correspond to the same pivot. Our experiments with industrial in-
stances show that these simplifications reduce the core by ≈ 5% and the
proof by ≈ 13%. It reduces the core less than competing methods such
as run-till-fix, but whereas our algorithms are linear in the size of the
proof, the latter and other competing techniques are all exponential as
they are based on SAT runs. If we consider the size of the proof graph as
being polynomial in the number of variables (it is not necessarily the case
in general), this gives our method an exponential time reduction com-
paring to existing tools for small core extraction. Our experiments show
that this result is evident in practice more so for the second method:
rarely it takes more than a few seconds, even when competing tools time
out, and hence it can be used as a cheap proof post-processing procedure.

1 Introduction

DPLL-based SAT solving became in the last few years the single most-used back-
end engine for model checking and satisfiability modulo theories. While SAT
solvers exist from at least the 1960’s, and learning through derivation of conflict
clauses exists from at least the 1980’s (while recognized as implicitly derived
by resolution), only in 2003 the question of how to produce a resolution proof
from a run of a DPLL solver was addressed in practice [18] and implemented.
Most modern solvers nowadays are capable of producing such proofs. Further,
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there are now decision heuristics that are based on an understanding of the
DPLL process as a resolution-based proof engine rather than as a search engine.
Examples are Ryan’s thesis [15] and his SAT solver Siege, which bias conflict-
clause generation towards those that will more likely lead to other resolutions,
and the work by Gershman et al. [7] on a model for explaining and designing
decision heuristics based on an understanding of the SAT solving process as a
resolution engine.

The resolution proofs that modern SAT solvers generate are used in a broad
range of applications in formal verification and elsewhere. Prominent examples
are:

– The resolution proof can be used for extracting an unsatisfiable core, which
can then be used, e.g., in a proof-based abstraction-refinement procedure,
as shown by Amla and McMillan [1]. The unsatisfiable core was also used in
the past for detecting the reasons for unsatisfiability in an underapproxima-
tion/refinement process for model-checking [9]. In the context of satisfiability
modulo theories (SMT): the core is used for finding small explanations (see,
for example, the recent work by Cimatti et al. [4], who suggest to invoke a
tool for minimizing resolution proofs for this purpose) and in theory-specific
decision procedures, such as the abstraction-based procedures for Presburger
and bitvector formulas proposed by Kroening et al. and Bryant et al., re-
spectively [3,10].

– The resolution proof can be used for extracting an interpolant as part of a
complete model-checking technique, as suggested by McMillan in [12].

– The proof can be used for detecting clauses that can be reused in an incre-
mental satisfiability setting [16], such as the one used in Bounded Model-
Checking. The analysis of the proof is done implicitly, during the run of the
SAT solver (in contrast to the first two uses), and is required in order to
check whether all the clauses that were used for resolving a particular con-
flict clause are still expected to be present in the new SAT instance. If yes,
this conflict clause can be reused.

Making the proof smaller by removing some of the nodes and removing literals
from other nodes can benefit all of these goals. In all of these applications, how-
ever, reducing the size of the core/interpolant/reused-clauses has an influence on
the overall run time which is somewhat unpredictable and only vaguely known.
Further, the proof reduction component is called many times during the overall
solving process. As a result, best overall results are most likely to be achieved
with a limited investment in such reductions.

The script Run-till-fix by Zhang and Malik [18] extracts a core and at-
tempts to minimize it by simply running the SAT solver on it repeatedly until
reaching a fix-point. Achieving fast reductions with this tool is not always pos-
sible, as it requires a normal SAT run. The goal of achieving fast reductions was
first addressed in the work by Gershman et al. [6], based on analyzing the proof
graph and trying to restructure it with the aid of a SAT solver. The tasks the
SAT solver is asked to solve by their script Trim-till-fix are closely related, and
hence incremental satisfiability makes this process relatively fast. There are also



116 O.Bar-Ilan et al.

many published techniques for finding minimal cores, i.e., an unsatisfiable sub-
set of clauses from which no clause can be removed without making it satisfiable
(this is also known in the literature by the name MUS, for Minimal Unsatisfiable
Subformula). Some works in this direction from the last three years are [13,5,8],
all of which are worst-case exponential. The complexity of the decision problem
corresponding to finding the minimal unsatisfiable core is DP -complete1 [14]. A
minimal core (in contrast to the minimum core) is not unique and depends on
the starting point, like all the methods we are aware of (including the current
one). Therefore whether the core found is minimal or just ‘small’, as indicated
in [6], has little significance in practice.

The proof reductions techniques we suggest here are linear in the size of the
proof graph. The proof graph itself can be exponential in the number of variables,
and hence in the worst case our procedure is still exponential in the number of
variables, like Run-till-fix. However, if we assume that in practice the size of
the proof graph is not more than the number of variables multiplied by some
polynomial with a bounded exponent, there is a gap of an exponent between our
method and the competing tools, as they can still be exponential in the number
of variables regardless of the size of the proof. Our techniques typically reduce
the core significantly less than the exponential methods, but do so much faster.
They also reduce the size of the proof itself whereas a procedure like run-till-

fix increases it. We therefore consider them as useful tools in the context of
short time-outs and where the size of the proof matters.

The first method we suggest is called Recycle-Units. The idea is to remove
edges from the proof graph by using information that is inferred by the SAT
solver only after the resolutions at the nodes adjacent to these branches were
made originally. For example, if (x) is a unit clause that was learned by the SAT
solver, it can be used for simplifying resolution inferences that used x as the
pivot prior to learning this clause. If not carefully applied, however, this may
lead to circular reasoning.

The second method is called Recycle-Pivots. It is based on the following
observation. For simplicity assume that the proof graph is a tree. Let n1 and
n2 be two nodes on the same path in the proof tree such that n1 is closer to
the root. Further, assume that the pivot variable associated with both nodes is
the same. Our convention is that proofs progress from top to bottom, from the
premises (also called the axioms) of the proof to its consequent. We also follow
the convention by which the right parent of each node contains the negative
phase of the pivot variable, and the left parent contains the positive phase of
this variable. Assume that n2 is on the right branch of n1. In this case, we will
show, the left incoming branch of n2 can be pruned, and the proof rewritten
without it in a way that the resulting proof is a legal resolution proof with a
smaller core. Since in practice proof graphs are DAGs and not just trees, the
procedure is somewhat more complicated as we later describe.

1 DP is the class containing all languages that can be considered as the difference
between two languages in NP, or equivalently, the intersection of a language in NP
with a language in co-NP.
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The two techniques tighten the proof, which means that the resulting proof
uses a subset of the core used by the original proof, and there is an injective
mapping between the target and source nodes, such that each target node is
either equal or subsumes the source node to which it is mapped. As a theoretical
curiosity, we note that the resolution proofs generated by our techniques cannot
necessarily be generated by any modern SAT solver and hence by any core
reduction technique that is based on rerunning such a solver. Our technical
report gives more details about this issue [2].

The rest of the paper is structured as follows: Section 2 summarizes some
preliminaries necessary for the description of the technique (we assume, however,
that the reader is familiar with SAT basics). Section 3 and 4 describe the two
techniques by giving pseudo code and intuitive explanation of their correctness.
Section 5 is dedicated to a formal proof of their correctness. We conclude in
Section 6 with a description of the experiments we conducted and their results.

2 Preliminaries

A literal is a Boolean variable or its negation. A pair of literals corresponding
to a variable and its negation are called complementary. A clause is a (possibly
empty) disjunction of literals, and a CNF formula is a conjunction of clauses.

2.1 Inference by Resolution

The process in which DPLL SAT solvers infer new conflict clauses can be inter-
preted as applying the binary resolution inference rule:

(l ∨ l1 ∨ .. ∨ ln) (¬l ∨ l′1 ∨ .. ∨ l′n)
(l1 ∨ .. ∨ ln ∨ l′1 ∨ .. ∨ l′n)

(Resolution). (1)

The variable l is called the pivot variable (also called ‘resolution variable’ in the
literature).

Let Res be a function that receives two clauses with complementary literals
as input, and returns the consequent of the resolution rule applied to these two
clauses, as output. More formally:

Given clauses C1 = (l ∨ l1 ∨ .. ∨ ln) and C2 = (¬l ∨ l′1 ∨ l′2 ∨ .. ∨ l′n),

Res(C1, C2) = (l1 ∨ .. ∨ ln ∨ l′1 ∨ .. ∨ l′n) .

Resolution is known to be a sound and complete proof system for CNF for-
mulas. Specifically, a CNF formula ϕ is unsatisfiable if and only if there exists a
resolution proof of the empty clause using ϕ’s clauses as premises.

Definition 1 (Resolution Graph). A resolution graph corresponding to a res-
olution proof is a directed acyclic graph (DAG), where the nodes represent clauses
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and for every pair of nodes Ci, Cj, (Ci, Cj) is an edge if and only if Ci is an
antecedent of Cj in the resolution proof.2

Example of a resolution graph can be seen in Fig. 1[a]. Every resolution proof
can be represented by a resolution graph. If a resolution graph has a single sink,
it is called the consequent of the proof. The root nodes are the premises of the
proof. For a given node, the root nodes that can reach it on the proof graph are
called its core. Specifically, if the consequent is an empty clause then its core is
called the unsatisfiable core.

The resolution described so far is known by the name general resolution.
Two well-known restrictions of general resolutions that we will mention later on
are tree-like resolution, which means that the proof graph corresponding to the
proof is a tree rather than a DAG, and Tseitin’s regular resolution [17], which
means that along each path no variable is used twice as a pivot. Both of these
restrictions may cost in a penalty of an exponent in the size of the proof. In
other words, there are formulas that can be proven with general resolution in a
polynomial number of steps, but only with an exponential number of tree-like
resolution or regular resolution.

How do resolution proofs relate to proofs of SAT solvers? Modern DPLL SAT
solvers generate conflict clauses during their run, which are implicitly inferred
from other clauses by a chain of (general) resolutions. Hence, a proof of unsatis-
fiability given by solvers have original clauses as their roots, and conflict clauses
as their internal nodes. We refer the reader to [18] for more details.

We are going to use a variant of the resolution graph in which a single parent
is allowed, if this parent is associated with the same clause as the child. The
resolution proof corresponding to this graph is derived by first eliminating all
nodes with a single parent (removing such a node n and connecting n’s single
parent to n’s children), and continuing as before. This extension is convenient
for simplifying the algorithm and later on the proofs, but is not essential.

3 Recycling Learned Unit Clauses

Some of the conflict clauses learned during the run of a SAT solver are unit
clauses, e.g., (x). In such a case we say that the SAT solver inferred the constant
value of the variable constrained by this clause (x = true in this case). These
constants can be used to rewrite the proof starting from those parts of the proof
that were inferred prior to learning these constants, an action that reduces the
overall size of the proof and its core. In other words, the SAT solver can only
apply resolution to clauses in its clause database (which, recall, is continuously
updated with new conflict clauses). Further, it can only use resolution variables
which at that point in time are unassigned. If at a later stage of the computation

2 Note that we use the convention by which the edges are in the direction of the proof,
i.e., from premises to consequent. For practical purposes it is common to build this
graph with edges (pointers) pointing in the other direction, because this facilitates
a search for the core.
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the same resolution variable is proved to have a constant value then the proof
can be regenerated taking this information into account.

Algorithm 1 presents Recycle-Units, which is the first of a two-step algo-
rithm for recycling unit clauses. The second step is Reconstruct-Proof, which
is presented in Algorithm 2. The two algorithms use the following notation. P is
a resolution proof of the empty clause, and P.sink is the node representing the
empty clause. For a given node n in P , n.C is the clause represented by n, n.L and
n.R are the left and right parents of n respectively, and n.piv is the pivot variable
used to resolve n.C from n.L.C and n.R.C. Recall that we use the convention by
which the left parent includes the positive phase of the pivot, and the right parent
includes its negative phase. If l is a literal, we denote by var(l) its corresponding
variable. When n.C is a unit clause, we sometimes refer to it as a literal rather
than a clause, when the meaning is clear from the context. For example var(n.C)
is the variable corresponding to the literal in the unit clause n.C.

�

�

�

�

Algorithm 1. Recycle-Units(Proof P )

1: Let U be the set of nodes representing constants proved in P ;
2: for each u ∈ U do
3: Mark the (recursive) antecedents of u;
4: for each unmarked n ∈ P do
5: if n.piv == u.C then
6: n.L = u;
7: else if n.piv == ¬u.C then
8: n.R = u;

Recycle-Units iterates over all constants that were proved in P . Let u be a
node representing such a constant, and assume for now that this constant is a
positive literal (i.e., u.C is a positive literal). First, in line 3, Recycle-Units

marks the nodes in its antecedents closure, i.e., the nodes that can reach U in
P . Then, it searches unmarked nodes for those that represent a resolution step
using var(u.C) as pivot. Let n be such a node. According to our convention
u.C ∈ n.L.C and ¬u.C ∈ n.R.C. In line 6 Recycle-Units replaces the left
parent of n from n.L to u, i.e., it disconnects the edge (n.L, n) and connects
instead (u, n). If u.C is a negative literal, then the edge is shifted from (n.R, n)
to (u, n) in line 8.

At this stage the proof is no longer a legal resolution proof, and hence a
reconstruction phase begins by calling Reconstruct-Proof, which appears in
Alg. 2.

Example 1. Consider the partial proof graph that is depicted in Fig. 1a. The
unit clause C8 is proven only after the resolution of C3, which uses the variable
‘1’ (the unit of C8) as its pivot. Recycle-Units begins by marking clauses
that were used for proving C8 – clauses C5 and C6 in this case. It then identifies
C3 as an unmarked node that uses ‘1’ as pivot and rewires the proof – in this
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Fig. 1. [a] Part of a resolution proof [b] After Recycle-Units and before
Reconstruct-Proof

case disconnects (C2,C3) and adds instead the edge (C8,C3), as can be seen in
Fig. 1b. It is left to reconstruct the proof so it becomes a legitimate resolution
proof once again. � 

Implementation of Recycle-Units. The most time-consuming component of
Algorithm 1 is Step 3. Recall that the purpose of this step is to prevent cycles
after we connect a unit clause to another node. Rather than traversing the graph
backwards each time (which would make this method quadratic in the size of
the graph), our implementation maintains at each unit node pointers to all im-
mediate descendent units. Denote by GU the resulting graph of units, i.e., the
nodes of GU are the units in the resolve graph and the edges are defined by the
list of pointers that we maintain with each such node. In Step 3, when consid-
ering connecting a unit clause u to another node c, our tool temporarily makes
this connection and checks if it can reach itself on GU . If the answer is yes, we
undo this temporary connection and continue. Otherwise we keep the connection
and update the list of pointers in the units that are immediate antecedents of u
so they now also point to u. This method makes the solution quadratic in the
number of units. We can always bound the number of units that we consider
(regardless – in practice it is small comparing to the size of the proof) and hence
refer to this element in the complexity analysis as a constant.

Let us now shift the focus to Reconstruct-Proof. The proof graph given
to Reconstruct-Proof as input has a subset of the nodes of the original
proof graph. This is because only edges are shifted up to this point, and these
shifts may disconnect parts of the graph (e.g., in Example 1, node C2 has been
disconnected). Note that only the graph connected to the sink node is sent to
Reconstruct-Proof.

Reconstruct-Proof, appearing in Alg. 2, is a procedure that, given such a
“broken” proof P and a node n (initially the empty clause), reconstructs a legal
resolution proof of n (we will define formally the nature of this broken proof in
Section 5). The procedure is recursive starting from the node n. The base of the
recursion are the root nodes. When n is not a leaf, there are several cases. If the
pivot n.piv is still present in its parents then n.C is a resolution between them
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(see lines 10 and 11). If it is only present in one of them, say the positive phase is
present in n.L.C, then the other node (n.R) replaces n. This is because we know
that n.R.C subsumes n.C. If it is contained in neither of its parents, then both
n.L.C and n.R.C subsume n.C and hence either one of them can replace n.C.

�

�

�

�

Algorithm 2. Reconstruct-Proof (“Broken” proof P , node n)

1: if n visited then return
2: mark n as visited;
3: if n is a root then return
4: if n has a single parent n.L then
5: Reconstruct-Proof (P ,n.L);
6: n.C = n.L.C;
7: else
8: Reconstruct-Proof (P ,n.L);
9: Reconstruct-Proof (P ,n.R);

10: if n.piv ∈ n.L.C and ¬n.piv ∈ n.R.C then
11: n.C = Res(n.L.C, n.R.C);
12: else if n.piv ∈ n.L.C and ¬n.piv �∈ n.R.C then
13: n.C = n.R.C;
14: n.L = nil
15: else if n.piv �∈ n.L.C and ¬n.piv ∈ n.R.C then
16: n.C = n.L.C;
17: n.R = nil;
18: else
19: side = one of {L,R}; otherside = other side; � Choose heuristically
20: n.C = n.side.C;
21: n.otherside = nil;

Example 2. The graphs in Fig. 2 show the steps of reconstruction for the proof
graph in Fig. 1b. � 

4 Recycling Pivots

The second technique we present is linear in the size of the proof and is also
based on two steps, as in the previous case: in the first step we remove edges
from the proof, and in the second step we reconstruct the proof using the same al-
gorithm Reconstruct-Proof. The algorithm is based on the observation that
along each path from root to sink, there is no need for resolving on the same
variable more than once. If there is such a situation, then the redundant reso-
lution steps can be avoided and consequently some of the branches of the proof
can be pruned away. The correctness of this algorithm will be proven in Section
5. We note that this does not result in a regular resolution proof as defined in
Section 2, because we apply it only to some parts of the graph as described below.
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Fig. 2. The recursive steps, from left to right, of reconstructing the proof graph in
Fig. 1b. Recall that single parent nodes are consistent with our definition of resolution
graphs.

If the resolution graph we start with happens to be a tree-like resolution, then
the result of applying this step is indeed a regular resolution proof.

For simplicity of the presentation, assume for now that the proof is a tree
rather than a DAG. Consider a node n with a pivot n.piv. We propagate n.piv
up the right branch (recall that according to our convention n.R.C contains
¬n.piv) in a set called Removable-Literals, or RL for short. Similarly, we prop-
agate ¬n.piv up the left branch. Consider the right branch: if along this branch
there is another node n′ such that n′.piv = n.piv then we can replace n′ with
n′.R. This means that the branch starting at n′.L is pruned. The correctness
of this operation is tied to the second step, which is the proof reconstruction in
Reconstruct-Proof. Note that n′.R.C is contained in n′.C other than ¬n.piv.
Reconstruct-Proof will effectively propagate ¬n.piv down the branch until
inevitably reaching n (a result of our assumption that this is a tree). At node n,
¬n.piv will disappear again due to the resolution on n.piv at n. As a result n.C
will subsume its original version.

In practice the input proof can be a DAG. This may cause a situation in
which our node n′ has paths to the sink not through n. This, in turn, may cause
a situation that Reconstruct-Proof propagates ¬n.piv all the way down
to the sink, which contradicts our goal of producing a proof with an equal or
stronger consequent. Another possible problem is that n′ has paths to the sink
node through both incoming edges of n, which nullifies our suggested technique.
There are two possible solutions to this problem. One, which is the solution taken
in the pseudo-code described here (see line 4) and also in our implementation,
is to propagate RL up (towards the roots) only as long as it is a tree. A more
complicated solution, which we leave for future work, is to check whether all
paths from n′ to the sink go through the edge (n.R, n). This can be done by
computing dominance relation in the graph, for example with the Lengauer-
Tarjan algorithm[11] (which runs in O(|E| log |V |) time). It might burden the
computation, however, since the dominance relation has to be recomputed after
each removal of an edge.

Example 3. Assume Fig. 3a represents the input proof for Recycle-Pivots.
Recycle-Pivots propagates up the removable literals (denoted by RL in the
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�

�

�

�

Algorithm 3. Recycle-Pivots(n, RL)

1: if n visited then return
2: Mark n as visited
3: if leaf then return
4: if n has more than one child then RL = {}
5: if piv �∈ RL and ¬piv �∈ RL then
6: Recycle-Pivots(n.L, RL ∪ {¬piv})
7: Recycle-Pivots(n.R, RL ∪ {piv})
8: else if piv ∈ RL then � this implies ¬piv �∈ RL
9: n.L = nil;

10: Recycle-Pivots(n.R, RL);
11: else � piv �∈ RL and ¬piv ∈ RL
12: n.R = nil;
13: Recycle-Pivots(n.L, RL);

drawing) and, owing to the fact that ‘2’ is the pivot of C3 and that ‘2’ is in
RL, erases the edge (C1,C3). The proof after calling Reconstruct-Proof is
depicted in Fig. 3b. � 
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Fig. 3. For the input proof presented in drawing [a], Recycle-Pivots erases the edge
(C1,C3) and then calls Reconstruct-Proof, which results in the graph in draw-
ing [b]. RL represents the Removable-Literals sets.

5 Proofs

The proof of correctness relies on a notion of e-resolution, which we soon define.
As we will prove, the graphs produced by Recycle-Units and Recycle-Pivots

are e-resolution proof graphs, and Reconstruct-Proof transforms them back
to resolution graphs.

It is convenient to represent resolution proofs as a DAG in which only the
roots are labeled with clauses. The clauses labeling the other nodes, including
the consequents, can be inferred from the topology of the graph and the roots,
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and hence are not considered as part of the representation. Recall that single
parents are allowed if the parent is labeled with the same clause as the child.

e-resolution is defined based on this convention, with the difference that each
internal node n with two parents is labeled with a variable n.piv,3 which in our
case is the pivot used to infer n.C at that node in the original proof. For nodes
with two parents, instead of Eq. (1), e-resolution uses a more relaxed inference
rule, of which (1) is a special case. Using the convention that n.piv may occur
only in n.L.C, and ¬n.piv may occur only in n.R.C, the e-resolution inference
rule is:

n.C = e-resolutionn.piv(n.L.C, n.R.C)
= (n.L.C \ {n.piv}) ∪ (n.R.C \ {¬n.piv}) .

(2)

For example, for a node n labeled with a pivot x, and parents n.L.C = (y1∨y2)
and n.R.C = (¬x ∨ y3) we have n.C = (y1 ∨ y2 ∨ y3).

5.1 The Reconstruct-Proof Algorithm

In the following we denote by ≤ the subsumption relation, e.g., C1 ≤ C2 means
that C1 has a subset of the literals of C2. By A(P ) we denote the set of assump-
tions (roots) of a proof P .

Lemma 1. Let P be an e-resolution proof of C, and let P ′ =Reconstruct-
Proof(P ). Then P ′ is a resolution proof of C′, where C′ ≤ C and A(P ′) ⊆
A(P ).

Proof. The claim follows by induction on the height of the proof (the length of
the longest path from a root to the sink). The proof is a straight-forward analysis
of the four possible cases for a node n as described by the table in Fig. 4. Since
by the induction hypothesis we can assume that the proofs of n.L.C and n.R.C
are legitimate resolution proofs, then clearly the second and third cases, which
simply copy a parent node, result in a resolution proof of n.C. In the fourth case
the choice is made heuristically to achieve best pruning, and the induction step
applies to both choices. It is also clear that in all cases, at each step the clause
labeling n can only be smaller than the one required by applying the e-resolution
inference rule (2) to the updated n.L.C and n.R.C. This of course applies to the
consequent clause as well.

5.2 The Recycle-Units Algorithm

Recycle-Units is a special case of a more general procedure, which we call sub-
sumption. It generalizes Recycle-Units in the sense that it does not only recy-
cle unit clauses, rather any learnt clause that subsumes other clauses in the proof.
Our proof will refer to subsumption, and the correctness of Recycle-Units is
then implied.
3 This is in contrast to a standard resolution graph, in which the pivots can be inferred

from the topology and axioms.



Linear-Time Reductions of Resolution Proofs 125

n.C n.piv ∈ n.L.C ¬n.piv ∈ n.R.C

Res(n.L.C, n.R.C) yes yes
n.L.C no yes
n.R.C yes no
n.R.C or n.L.C no no

Fig. 4. The four cases discussed in the proof of Lemma 1

Consider two nodes p, m in the proof P such that p.C ≤ m.s.C for some side
s ∈ {L, R}. Then, as long as no cycle is produced, we can set m.s = p so that m
uses the stronger p instead of its original parent m.s. In fact, the next definition
and lemma show that one can perform more than one such subsumption opera-
tion in parallel, and the definition of subsumption can be slightly strengthened by
considering the pivot variable. Indeed, Recycle-Units as listed in Algorithm 1
performs such substitutions with an arbitrary order.

Definition 2 (e-subsumption). Let P be an e-resolution proof. We say that
the node p e-subsumes the k nodes m1, . . . , mk with sides s1, . . . , sk (i.e., si ∈
{L, R}), if the following conditions hold for every i: The node mi has two parents;
mi is not an ancestor of p; and

p.C ≤
{

mi.L.C ∪ {mi.piv} if si = L

mi.R.C ∪ {¬mi.piv} if si = R .

Lemma 2 (Parallel e-subsumption). Let P be an e-resolution unsatisfiabil-
ity proof, and let p, m1, . . . , mk, s1, . . . , sk be as above. Then the proof P ′ ob-
tained by setting mi.si = p for all i is an e-resolution unsatisfiability proof with
A(P ′) ⊆ A(P ).

Proof. Let P, P ′ be as above. We first argue that P ′ contains no cycles. Indeed,
assume such a cycle exists. Obviously the cycle must contain some new edge.
However, since all the new edges emanate from p, we can assume that the cycle
contains exactly one new edge, say the edge from p to m1. However, the rest of
the cycle is a path from m1 to p, which is a contradiction to the assumption that
m1 is not an ancestor of p.

Second, we argue that P ′ is an e-resolution unsatisfiability proof. The proof
is by induction on the height of n with the induction claim: n.C′ ≤ n.C. Here
we let n.C, n.C′ denote the consequent clauses at the node n when applying
the e-resolution inference rule for the proof P, P ′ respectively. As the claim
trivially holds for root nodes and for nodes with in-degree one, we can restrict
our attention to some node n with two parents. By induction n.L.C′ ≤ n.L.C ∪
{n.piv} and n.R.C′ ≤ n.R.C ∪ {¬n.piv}.4 Therefore, by (2) we conclude that
n.C′ ≤ n.C as claimed.

(Proof of the correctness of Recycle-Units)
4 Note that the stronger claim n.L.C′ ≤ n.L.C may not be correct since n.piv may

have been added to n.L.C if n.L is one of the k nodes modified in the transition
from P to P ′.
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Proof. The claim follows by applying Lemma 2 once for every iteration starting
in line 2 of the Recycle-Units algorithm, and subsequently applying Lemma 1
once.

The only point that needs some extra elaboration is that the assumptions of
Lemma 2 hold each time it is applied. Indeed, the algorithm Recycle-Units

only considers the case of subsumption by a unit clause u. Furthermore, the
algorithm checks for the condition u = n.piv if si = L and u = ¬n.piv if si = R,
which is strictly stronger than required by the Lemma.

The proof of correctness of Recycle-Pivots is given in the full version of this
article [2] due to lack of space.

6 Experimental Results and Conclusions

We ran our linear reductions on the IBM benchmark suite, which comprises 63
different designs. On each design we ran bounded model checking with a bound
k initially set to 10 and then incremented by 5, up to k = 100 or a bug was
found. This gave us 630 unsatisfiable instances. From those we chose only the
instances that take 10 seconds or more for run-till-fix.5 This left us with 67
proofs. We set the timeout for each run to be 1800 seconds. We used a 64-bit
machine with 8 GB memory, and 2x2.4Ghz Opteron dual core.

Leaves Nodes
Reduction Time Before After Per sec Ratio Before After per sec Ratio
run-till-fix 8095 1002924 533941 57.9 0.53 11830898 17677419 -722.2 1.49
units 1002.5 1002924 997674 5.2 0.99 11830898 11513195 316.9 0.97
pivots 32.5 1002924 953585 1518.6 0.95 11830898 10464394 42059.2 0.88
units + pivots 1235.8 1002924 949279 43.4 0.95 11830898 10247401 1281.3 0.87

Fig. 5. Reduction in proof leaves and nodes. Run time is cumulative for 63 unsatisfiable
runs. The ‘Per sec’ columns indicate the number of removed leaves / nodes per second.
The ‘Ratio’ columns indicate the ratio between the number of leafs (or nodes) before
and after the reduction.

The results appear in Fig. 5. What can be concluded from them is that the lin-
ear reductions we proposed are on one hand fast (especially Recycle-Pivots),
but their effectiveness in reducing leaves is small: only ≈ 5% of the leaves are
removed, comparing to 47% with run-till-fix. When it comes to the size of the
proof itself, it turns out that run-till-fix increases the number of proof nodes
substantially (by 49%) whereas our linear reductions decrease their size by 13%.
The size of the proof can be relevant when computing interpolants, and indeed

5 This creates a bias against run-till-fix, but recall that we are not competing against
run-till-fix – we only check whether our methods can be helpful when run-till-fix
fails with a short time-out.
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as future work we intend to check its effectiveness on IBM’s interpolation-based
model-checker.

To conclude, we showed two techniques for fast preprocessing (perhaps it
should be called postprocessing) of resolution proofs. They cannot replace run-

till-fix if the main goal is the reduction in core regardless of the time it takes,
but they can complement it or even replace it in a realm of short time outs. As
indicated above, it is more valuable in scenarios in which decreasing the proof
size rather than its core is what matters.
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Abstract. This paper presents a novel technique for counterexample
generation in probabilistic model checking of Markov chains and Markov
Decision Processes. (Finite) paths in counterexamples are grouped to-
gether in witnesses that are likely to provide similar debugging infor-
mation to the user. We list five properties that witnesses should satisfy
in order to be useful as debugging aid: similarity, accuracy, originality,
significance, and finiteness. Our witnesses contain paths that behave sim-
ilarly outside strongly connected components.

Then, we show how to compute these witnesses by reducing the prob-
lem of generating counterexamples for general properties over Markov
Decision Processes, in several steps, to the easy problem of generating
counterexamples for reachability properties over acyclic Markov chains.

1 Introduction

Model checking is an automated technique that, given a finite-state model of a
system and a property stated in an appropriate logical formalism, systematically
checks the validity of this property. Model checking is a general approach and is
applied in areas like hardware verification and software engineering.

Nowadays, the interaction geometry of distributed systems and network pro-
tocols calls for probabilistic, or more generally, quantitative estimates of, e.g.,
performance and cost measures. Randomized algorithms are increasingly utilized
to achieve high performance at the cost of obtaining correct answers only with
high probability. For all this, there is a wide range of models and applications in
computer science requiring quantitative analysis. Probabilistic model checking
allows to check whether or not a probabilistic property is satisfied in a given
model, e.g., “Is every message sent successfully received with probability greater
or equal than 0.99?”.

A major strength of model checking is the possibility of generating diag-
nostic information in case the property is violated. This diagnostic informa-
tion is provided through a counterexample showing an execution of the model
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that invalidates the property under verification. Besides the immediate feed-
back in model checking, counterexamples are also used in abstraction-refinement
techniques [CGJ+00], and provide the foundations for schedule derivation
(see, e.g., [BLR05]).

Although counterexample generation was studied from the very beginning in
most model checking techniques, this has not been the case for probabilistic
model checking. Only recently [AHL05, AD06, AL06, HK07a, HK07b, AL07]
attention was drawn to this subject,fifteen years after the first studies on prob-
abilistic model checking. Contrarily to other model checking techniques, coun-
terexamples in this setting are not given by a single execution path. Instead,
they are sets of executions of the system satisfying a certain undesired property
whose probability mass is higher than a given bound. Since counterexamples are
used as a diagnostic tool, previous works on counterexamples have presented
them as sets of finite paths with probability large enough. We refer to these
sets as representative counterexamples. Elements of representative counterexam-
ples with high probability have been considered the most informative since they
contribute mostly to the property refutation.

A challenge in counterexample generation for probabilistic model checking is
that (1) representative counterexamples are very large (often infinite), (2) many
of its elements have very low probability (which implies that are very distant
from the counterexample), and (3) that elements can be extremely similar to
each other (consequently providing similar diagnostic information). Even worse,
(4) sometimes the finite paths with highest probability do not indicate the most
likely violation of the property under consideration.

For example, look at the Markov chainD in Figure 1. The propertyD |=≤0.5 ♦ψ
stating that execution reaches a state satisfying ψ (i.e., reaches s3 or s4) with
probability lower or equal than 0.5 is violated (since the probability of reach-
ing ψ is 1). The left hand side of table in Figure 2 lists finite paths reaching ψ
ranked according to their probability. Note that finite paths with highest prob-
ability take the left branch in the system, whereas the right branch in itself has
higher probability, illustrating Problem 4. To adjust the model so that it does
satisfy the property (bug fixing), it is not sufficient to modify the left hand side
of the system alone; no matter how one changes the left hand side, the proba-
bility of reaching ψ remains at least 0.6. Furthermore, the first six finite paths
provide similar diagnostic information: they just make extra loops in s1. This
is an example of Problem 3. Additionally, the probability of every single finite
path is far below the bound 0.5, making it unclear if a particular path is impor-
tant; see Problem 2 above. Finally, the (unique) counterexample for the property
D |=

<1 ♦ψ consists of infinitely many finite paths (namely all finite paths of D);
see Problem 1. To overcome these problems, we partition a representative coun-
terexample into sets of finite paths that follow a similar pattern. We call these
sets witnesses. To ensure that witnesses provide valuable diagnostic information,
we desire that the set of witnesses that form a counterexample satisfies several
properties: two different witnesses should provide different diagnostic informa-
tion (solving Problem 3) and elements of a single witness should provide similar
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s0

s1 s2

s3

ψ

s4

ψ

0,5 0,99

0,4 0,6

0,5 0,01

Fig. 1. Markov chain

Single paths Witnesses

Rank F. Path Prob Witness Mass
1 s0(s1)1s3 0.2 [s0s2s4] 0.6
2 s0(s1)2s3 0.1 [s0s1s3] 0.4
3 s0(s1)3s3 0.05
4 s0(s1)4s3 0.025
5 s0(s1)5s3 0.0125
6 s0(s1)6s3 0.00625
7 s0(s2)1s4 0.006
8 s0(s2)2s4 0.0059
9 s0(s2)3s4 0.0058
...

...
...

Fig. 2. Comparison Table

diagnostic information, as a consequence witnesses have a high probability mass
(solving Problems 2 and 4), and the number of witnesses of a representative
counterexample should be finite (solving Problem 1).

In our setting, witnesses consist of paths that behave the same outside strongly
connected components. In the example of Figure 1, there are two witnesses:
the set of all finite paths going right, represented by [s0s2s4] whose probability
(mass) is 0.6, and the set of all finite paths going left, represented by [s0s1s3]
with probability (mass) 0.4.

In this paper, we show how to obtain such sets of witnesses for bounded
probabilistic LTL properties on Markov Decision Processes (MDP). In fact, we
first show how to reduce this problem to finding witnesses for upper bounded
probabilistic reachability properties on discrete time Markov chains (MCs). The
major technical matters lie on this last problem to which most of the paper is
devoted.

In a nutshell, the process to find witnesses for the violation of D |=≤p
♦ψ,

with D being an MC, is as follows. We first eliminate from the original MC all
the “uninteresting” parts. This proceeds as the first steps of the model checking
process: make absorbing all states satisfying ψ, and all states that cannot reach
ψ, obtaining a new MCDψ. Next reduce this last MC to an acyclic MC Ac(Dψ) in
which all strongly connected components have been conveniently abstracted with
a single probabilistic transition. The original and the acyclic MCs are related by
a mapping that, to each finite path in Ac(Dψ) (that we call rail), assigns a set of
finite paths behaving similarly in D (that we call torrent). This map preserves
the probability of reaching ψ and hence relates counterexamples in Ac(Dψ) to
counterexamples in D. Finally, counterexamples in Ac(Dψ) are computed by
reducing the problem to a k shortest path problem, as in [HK07a]. Because
Ac(Dψ) is acyclic, the complexity is lower than the corresponding problem in
[HK07a].

It is worth mentioning that our technique can also be applied to pCTL for-
mulas without nested path quantifiers.
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Organization of the paper. Section 2 presents the necessary background on
Markov chains (MC), Markov Decision Processes (MDP), and Linear Tempo-
ral Logic (LTL). Section 3 presents the definition of counterexamples and dis-
cusses the reduction from general LTL formulas to upper bounded probabilistic
reachability properties, and the extraction of the maximizing MC in an MDP.
Section 4 discusses desired properties of counterexamples. In Sections 5 and 6 we
introduce the fundamentals on rails and torrents, the reduction of the original
MC to the acyclic one, and our notion of significant diagnostic counterexamples.
Section 7 then presents the techniques to actually compute counterexamples. In
Section 8 we discuss related work and give final conclusions.

2 Preliminaries

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) constitute a formalism that combines non-
deterministic and probabilistic choices. They are an important model in cor-
porate finance, supply chain optimization, system verification and optimization.
There are many slightly different variants of this formalism such as action-labeled
MDPs [Bel57, FV97], probabilistic automata [SL95, SdV04]; we work with the
state-labeled MDPs from [BdA95].

Definition 2.1. Let S be a finite set. A probability distribution on S is a function
p : S → [0, 1] such that

∑
s∈S p(s) = 1. We denote the set of all probability

distributions on S by Distr(S). Additionally, we define the Dirac distribution on
an element s ∈ S as 1s, i.e., 1s(s) = 1 and 1s(t) = 0 for all t ∈ S \ {s}.
Definition 2.2. A Markov Decision Process (MDP) is a quadruple M =
(S, s0, L, τ), where

• S is the finite state space;
• s0 ∈ S is the initial state;
• L is a labeling function that associates to each state s ∈ S a set L(s) of

propositional variables that are valid in s;
• τ : S → ℘(Distr(S)) is a function that associates to each s ∈ S a non-empty

and finite subset of Distr(S) of probability distributions.

Definition 2.3. Let M = (S, s0, τ, L) be an MDP. We define a successor rela-
tion δ ⊆ S × S by δ � {(s, t)|∃π ∈ τ(s) . π(t) > 0} and for each state s∈S we
define the sets

Paths(M, s) � {t0t1t2 . . . ∈ Sω|t0 = s ∧ ∀n ∈ N . δ(tn, tn+1)} and

Paths�(M, s) � {t0t1 . . . tn ∈ S�|t0 = s ∧ ∀ 0 ≤ i < n . δ(tn, tn+1)}

of paths of D and finite paths of D respectively beginning at s. We usually
omit M from the notation; we also abbreviate Paths(M, s0) as Paths(M) and
Paths�(M, s0) as Paths�(M). For ω ∈ Paths(s), we write the (n+1)-st state
of ω as ωn. As usual, we let Bs ⊆ ℘(Paths(s)) be the Borel σ-algebra on the cones
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Fig. 3. Markov Decision Process

〈t0 . . . tn〉 � {ω ∈ Paths(s)|ω0 = t0 ∧ . . . ∧ ωn = tn}. Additionally, for a set of
finite paths Λ ⊆ Paths�(s), we define 〈Λ〉 �

⋃
σ∈Λ〈σ〉.

Figure 3 shows an MDP. Absorbing states (i.e., states s with τ(s) = {1s})
are represented by double lines. This MDP features a single nondeterministic
decision, to be made in state s0, namely π1 and π2.

Definition 2.4. Let M = (S, s0, τ, L) be an MDP, s ∈ S and A ⊆ S. We define
the sets of paths and finite paths reaching A from s as

Reach(M, s,A) � {ω ∈ Paths(M, s) | ∃i≥0.ωi ∈ A} and

Reach�(M, s,A) � {σ ∈ Paths�(M, s) | last(σ) ∈ A ∧ ∀i≤|σ|−1.σi 
∈ A}

respectively. Note that Reach�(M, s,A) consists of those finite paths σ starting
on s reaching A exactly once, at the end of the execution. It is easy to check
that these sets are prefix free, i.e. contain finite paths such that none of them is
a prefix of another one.

2.2 Schedulers

Schedulers (also called strategies, adversaries, or policies) resolve the nondeter-
ministic choices in an MDP [PZ93, Var85, BdA95].

Definition 2.5. Let M = (S, s0, τ, L) be an MDP. A scheduler η on M is a
function from Paths�(M) to Distr(℘(Distr(S))) such that for all σ ∈ Paths�(M)
we have η(σ) ∈ Distr(τ(last(σ))). We denote the set of all schedulers on M by
Sch(M).

Note that our schedulers are randomized, i.e., in a finite path σ a sched-
uler chooses an element of τ(last(σ)) probabilistically. Under a scheduler η,
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the probability that the next state reached after the path σ is t, equals∑
π∈τ(last(σ)) η(σ)(π)·π(t). In this way, a scheduler induces a probability measure

on Bs as usual.

Definition 2.6. Let M = (S, s0, τ, L) be an MDP and η a scheduler on M. We
define the probability measure Prη as the unique measure on Bs0 such that for
all s0s1 . . . sn ∈ Paths�(M)

Prη(〈s0s1 . . . sn〉) =
n−1∏
i=0

∑
π∈τ(si)

η(s0s1 . . . si)(π) · π(si+1).

We now recall the notions of deterministic and memoryless schedulers.

Definition 2.7. Let M be an MDP and η a scheduler on M. We say that
η is deterministic if η(σ)(πi) is either 0 or 1 for all πi ∈ τ(last(σ)) and all
σ ∈ Paths�(M). We say that a scheduler is memoryless if for all finite paths
σ1, σ2 of M with last(σ1) = last(σ2) we have η(σ1) = η(σ2)

Definition 2.8. Let M be an MDP and Δ ∈ Bs0 . Then the maximal probability
Pr+ and minimal probability Pr− of Δ are defined by

Pr+(Δ) � sup
η∈Sch(M)

Prη(Δ) and Pr−(Δ) � inf
η∈Sch(M)

Prη(Δ).

A scheduler that attains Pr+(Δ) or Pr−(Δ) is called a maximizing or minimiz-
ing scheduler respectively.

2.3 Markov Chains

A (discrete time) Markov chain is an MDP associating exactly one probability
distribution to each state. In this way nondeterministic choices are not longer
allowed.

Definition 2.9 (Markov chain). Let M = (S, s0, τ, L) be an MDP. If |τ(s)| = 1
for all s ∈ S, then we say that M is a Markov chain (MC).

In order to simplify notation we represent probabilistic transitions on MCs by
means of a probabilistic matrix P instead of τ . Additionally, we denote by PrD,s

the probability measure induced by a MCD with initial state s and we abbreviate
PrD,s0

as PrD .

2.4 Linear Temporal Logic

Linear temporal logic (LTL) [MP91] is a modal temporal logic with modalities
referring to time. In LTL is possible to encode formulas about the future of
paths: a condition will eventually be true, a condition will be true until another
fact becomes true, etc.
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Definition 2.10. LTL is built up from the set of propositional variables V ,
the logical connectives ¬, ∧, and a temporal modal operator by the following
grammar:

φ ::= V | ¬φ | φ ∧ φ | φUφ.

Using these operators we define ∨,→,♦, and � in the standard way.

Definition 2.11. Let M = (S, s0, τ, L) be an MDP. We define satisfiability for
paths ω in M, propositional variables v ∈ V , and LTL formulas φ, γ inductively
by

ω |=M v ⇔ v ∈ L(ω0) ω |=M φ ∧ γ ⇔ ω |=M φ and ω |=M γ
ω |=M ¬φ ⇔ not(ω |=M φ) ω |=M φUγ ⇔ ∃i≥0.ω↓i |=M γ and ∀0≤j<i.ω↓j |=M φ

where ω↓i is the i-th suffix of ω. When confusion is unlikely, we omit the subscript
M on the satisfiability relation.

Definition 2.12. Let M be an MDP. We define the language SatM(φ) associ-
ated to an LTL formula φ as the set of paths satisfying φ, i.e. SatM(φ) � {ω ∈
Paths(M) | ω |= φ}. Here we also generally omit the subscript M.

We now define satisfiability of an LTL formula φ on an MDP M. We say that
M satisfies φ with probability at most p (M |=≤p

φ) if the probability of getting
an execution satisfying φ is at most p.

Definition 2.13. Let M be an MDP, φ an LTL formula and p ∈ [0, 1]. We
define |=≤p

and |=≥p
by

M |=≤p
φ ⇔ Pr+(Sat(φ)) ≤ p,

M |=≥p
φ ⇔ Pr−(Sat(φ)) ≥ p.

We define M |=
<p

φ and M |=
>p

φ in a similar way. In case the MDP is fully
probabilistic, i.e., an MC, the satisfiability problem is reduced to M |=

��p
φ ⇔

PrM(Sat(φ)) �� p, where ��∈ {<,≤, >,≥}.

3 Counterexamples

In this section, we define what counterexamples are and how the problem of
finding counterexamples to a general LTL property over Markov Decision Pro-
cesses reduces to finding counterexamples to reachability problems over Markov
chains.

Definition 3.1 (Counterexamples). Let M be an MDP and φ an LTL for-
mula. A counterexample to M |=≤p

φ is a measurable set C ⊆ Sat(φ) such that
Pr+(C) > p. Counterexamples to M |=<p φ are defined similarly.



136 M.E. Andrés, P. D’Argenio, and P. van Rossum

Counterexamples to M |=
>p

φ and M |=≥p
φ cannot be defined straightforwardly

as it is always possible to find a set C ⊆ Sat(φ) such that Pr−(C) ≤ p or
Pr−(C) < p, note that the empty set trivially satisfies it. Therefore, the best
way to find counterexamples to lower bounded probabilities is to find counterex-
amples to the dual properties M |=

<1−p
¬φ and M |=≤1−p

¬φ. That is, while for
upper bounded probabilities, a counterexample is a set of paths satisfying the
property with mass probability beyond the bound, for lower bounded probabili-
ties the counterexample is a set of paths that does not satisfy the property with
sufficient probability.

s0

s1 s2 s3

s4

{v}

s5

{v}

π1 π2

0,6 0,2

0,7

0,5 0,99

0,5 0,01

0,4 0,1

Fig. 4

Example 1. Consider the MDP M of Fig-
ure 4 and the LTL formula ♦v. It is
easy to check that M 
|=<1 ♦v. The set
C = Sat(♦v) = {ρ ∈ Paths(s0)|∃i≥0.ρ =
s0(s1)i(s4)ω} ∪ {ρ ∈ Paths(s0)|∃i≥0.ρ =
s0(s3)i(s5)ω} is a counterexample. Note
that Prη(C) = 1 where η is any determin-
istic scheduler on M satisfying η(s0) = π1.

LTL formulas are actually checked by re-
ducing the model checking problem to a
reachability problem [Alf97]. For checking
upper bounded probabilities, the LTL for-
mula is translated into an equivalent de-
terministic Rabin automaton and composed
with the MDP under verification. On the
obtained MDP, the set of states forming ac-
cepting end components (SCC that traps
accepting conditions with probability 1) are identified. The maximum proba-
bility of the LTL property on the original MDP is the same as the maximum
probability of reaching a state of an accepting end component in the final MDP.
Hence, from now on we will focus on counterexamples to properties of the form
M |=≤p

♦ψ or M |=
<p
♦ψ, where ψ is a propositional formula, i.e., a formula

without temporal operators.
In the following, it will be useful to identify the set of states in which a

propositional property is valid.

Definition 3.2. Let M be an MDP. We define the state language SatM(ψ)
associated to a propositional formula ψ as the set of states satisfying ψ, i.e.,
SatM(ψ) � {s ∈ S | s |= ψ}, where |= has the obvious satisfaction meaning for
states. As usual, we generally omit the subscript M.

We will show now that, in order to find a counterexample to a property in an
MDP with respect to an upper bound, it suffices to find a counterexample for the
MC induced by the maximizing scheduler. The maximizing scheduler turns out
to be deterministic and memoryless [BdA95]; consequently the induced Markov
chain can be easily extracted from the MDP as follows.



Significant Diagnostic Counterexamples 137

Definition 3.3. Let M = (S, s0, τ, L) be an MDP and η a deterministic mem-
oryless scheduler. Then we define the MC induced by η as Mη = (S, s0,Pη, L)
where Pη(s, t) = (η(s))(t) for all s, t ∈ S.

Now we state that finding counterexamples to upper bounded probabilistic reach-
ability LTL properties on MDPs can be reduced to finding counterexamples to
upper bounded probabilistic reachability LTL properties on MCs.

Theorem 3.4. Let M be an MDP, ψ a propositional formula and p ∈ [0, 1].
Then, there is a maximizing (deterministic memoryless) scheduler η such that
M |=≤p

♦ψ ⇔ Mη |=≤p
♦ψ. Moreover, if C is a counterexample to Mη |=≤p

♦ψ
then C is also a counterexample to M |=≤p

♦ψ.

Note that η can be computed by solving a linear minimization problem [BdA95].
See Section 7.1.

4 Representative Counterexamples, Partitions and
Witnesses

The notion of counterexample from Definition 3.1 is very broad: just an arbi-
trary (measurable) set of paths with high enough mass probability. To be useful
as a debugging tool (and in fact to be able to present the counterexample to a
user), we need counterexamples with specific properties. We will partition coun-
terexamples (or rather, representative counterexamples) in witnesses and list five
informal properties that we consider valuable in order to increase the quality of
witnesses as a debugging tool.

We first note that for reachability properties it is sufficient to consider coun-
terexamples that consist of finite paths.

Definition 4.1 (Representative counterexamples). Let M be an MDP, ψ
a propositional formula and p ∈ [0, 1]. A representative counterexample to
M |=≤p

♦ψ is a set C ⊆ Reach�(M, Sat(ψ)) such that Pr+(〈C〉) > p. We de-
note the set of all representative counterexamples to M |=≤p

♦ψ by R(M, p, ψ).

Theorem 4.2. Let M be an MDP, ψ a propositional formula and p ∈ [0, 1]. If
C is a representative counterexample to M |=≤p

♦ψ, then 〈C〉 is a counterexample
to M |=≤p

♦ψ. Furthermore, there exists a counterexample to M |=≤p
♦ψ if and

only if there exists a representative counterexample to M |=≤p
♦ψ.

Following [HK07a], we present the notions of minimum counterexample, strongest
evidence and most indicative counterexamples.

Definition 4.3 (Minimum counterexample). Let D be an MC, ψ a propositional
formula and p ∈ [0, 1]. We say that C ∈ R(D, p, ψ) is a minimum counterexample
if |C| ≤ |C′|, for all C′ ∈ R(D, p, ψ).

Definition 4.4 (Strongest evidence). Let D be an MC, ψ a propositional
formula and p ∈ [0, 1]. A strongest evidence to D 
|=≤p

♦ψ is a finite path
σ ∈ Reach�(D, Sat(ψ)) such that PrD (〈σ〉) ≥ PrD (〈ρ〉), for all ρ ∈
Reach�(D, Sat(ψ)).
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Definition 4.5 (Most indicative counterexample). Let D be an MC, ψ a
propositional formula and p ∈ [0, 1]. We call C ∈ R(D, p, ψ) a most indicative
counterexample if it is minimum and PrD (〈C〉) ≥ PrD (〈C′〉), for all minimum
counterexamples C′ ∈ R(D, p, ψ).

Unfortunately, very often most indicative counterexamples are very large (even
infinite), many of its elements have insignificant measure and elements can be
extremely similar to each other (consequently providing the same diagnostic in-
formation). Even worse, sometimes the finite paths with highest probability do
not exhibit the way in which the system accumulates higher probability to reach
the undesired property (and consequently where an error occurs with higher
probability). For these reasons, we are of the opinion that representative coun-
terexamples are still too general in order to be useful as feedback information.
We approach this problem by refining a representative counterexample into sets
of finite paths following a “similarity” criteria (introduced in Section 5). These
sets are called witnesses of the counterexample.

Recall that a set Y of nonempty sets is a partition of X if the elements of Y
cover X and are pairwise disjoint. We define counterexample partitions in the
following way.

Definition 4.6 (Counterexample partitions and witnesses). Let M be an MDP,
ψ a propositional formula, p ∈ [0, 1], and C a representative counterexample
to M |=≤p

♦ψ. A counterexample partition WC is a partition of C. We call the
elements of WC witnesses.

Since not every partition generates useful witnesses (from the debugging per-
spective), we now state five informal properties that we consider valuable in
order to improve the diagnostic information provided by witnesses. In Section 7
we show how to partition the representative counterexample in order to obtain
witnesses satisfying most of these properties.

Similarity: Elements of a witness should provide similar debugging infor-
mation.
Accuracy: Witnesses with higher probability should exhibit evolutions of
the system with higher probability of containing errors.
Originality: Different witnesses should provide different debugging infor-
mation.
Significance: Witnesses should be as closed to the counterexample as pos-
sible (their mass probability should be as closed as possible to the bound p).
Finiteness: The number of witnesses of a counterexample partition should
be finite.

5 Rails and Torrents

As argued before we consider that representative counterexamples are excessively
general to be useful as feedback information. Therefore, we group finite paths of
a representative counterexample in witnesses if they are “similar enough”. We
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will consider finite paths that behave the same outside SCCs of the system as
providing similar feedback information.

In order to formalize this idea, we first reduce the original MC D to an acyclic
MC preserving reachability probabilities. We do so by removing all SCCs K of
D keeping just input states of K. In this way, we get a new acyclic MC denoted
by Ac(D). The probability matrix of the Markov chain relates input states of
each SCC to its output states with the reachability probability between these
states in D. Secondly, we establish a map between finite paths σ in Ac(D) (rails)
and sets of paths Wσ in D (torrents). Each torrent contains finite paths that are
similar, i.e., behave the same outside SCCs. We conclude the section showing
that the probability of σ is equal to the mass probability of Wσ.

Reduction to Acyclic Markov Chains

Consider an MC D = (S, s0,P , L). Recall that a subset K ⊆ S is called strongly
connected if for every s, t ∈ K there is a finite path from s to t. Additionally K is
called a strongly connected component (SCC) if it is a maximally (with respect
to ⊆) strongly connected subset of S.

Note that every state is a member of exactly one SCC of D (even those
states that are not involved in cycles, since the trivial finite path s connects s
to itself). From now on we let SCC� be the set of non trivial strongly connected
components of an MC, i.e., those composed of more than one state.

A Markov chain is called acyclic if it contains only trivial SCCs. Note that
an acyclic Markov chain still has absorbing states.

Definition 5.1 (Input and Output states). Let D = (S, s0,P , L) be an MC.
Then, for each SCC� K of D, we define the sets InpK ⊆ S of all states in K
that have an incoming transition from a state outside of K and OutK ⊆ S of all
states outside of K that have an incoming transition from a state of K in the
following way

InpK � {t ∈ K | ∃ s ∈ S \ K .P(s, t) > 0},
OutK � {s ∈ S \ K | ∃ t ∈ K .P(t, s) > 0}.

We also define for each SCC� K an MC related to K as DK �
(K∪OutK, sK,PK, LK) where sK is any state in InpK, LK(s) � L(s), and
PK(s, t) is equal to P(s, t) if s ∈ K and equal to 1s otherwise. Additionally,
for every state s involved in non trivial SCCs we define SCC+

s as DK, where K
is the SCC� of D such that s ∈ K.

Now we are able to define an acyclic MC Ac(D) related to D.
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Definition 5.2. Let D = (S, s0,P , L) be a MC. We define Ac(D) �
(S′, s0,P ′, L′) where

• S′ �

Scom︷ ︸︸ ︷
S \

⋃
K∈SCC�

K
⋃ Sinp︷ ︸︸ ︷⋃

K∈SCC�

InpK,

• L′ � L|S′ ,

• P ′(s, t) �

⎧⎪⎪⎨⎪⎪⎩
P(s, t) if s ∈ Scom,
PrD,s

(Reach(SCC+
s , s, {t})) if s ∈ Sinp ∧ t ∈ OutSCC+

s
,

1 if s ∈ Sinp ∧ ∅ = OutSCC+
s
∧ t = s,

0 otherwise.

Note that Ac(D) is indeed acyclic.

Example 2. Consider the MC D of Figure 5(a). The strongly connected com-
ponents of D are K1 � {s1, s3, s4, s7}, K2 � {s5, s6, s8} and the singletons
{s0}, {s2}, {s9}, {s10}, {s11}, {s12}, {s13}, and {s14}. The input states of
K1 are InpK1

= {s1} and its output states are OutK1 = {s9, s10}. For K2,
InpK2

= {s5, s6} and OutK2 = {s11, s14}. The reduced acyclic MC of D is shown
in Figure 5(b).
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Rails and Torrents

We now relate (finite) paths in Ac(D) (rails) to sets of paths in D (torrents).

Definition 5.3 (Rails). Let D be an MC. A finite path σ ∈ Paths�(Ac(D)) will
be called a rail of D.

Consider a rail σ, i.e., a finite path of Ac(D). We will use σ to represent those
paths ω of D that behave “similar to” σ outside SCCs of D. Naively, this means
that σ is a subsequence of ω. There are two technical subtleties to deal with:
every input state in σ must be the first state in its SCC in ω (freshness) and
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every SCC visited by ω must be also visited by σ (inertia) (see Definition 5.5).
We need these extra conditions to make sure that no path ω behaves “similar
to” two distinct rails (see Lemma 5.7).

Recall that given a finite sequence σ and a (possible infinite) sequence ω, we
say that σ is a subsequence of ω, denoted by σ " ω, if and only if there exists a
strictly increasing function f : {0, 1, . . . , |σ| − 1}→ {0, 1, . . . , |ω| − 1} such that
∀0≤i<|σ|.σi = ωf(i). If ω is an infinite sequence, we interpret the codomain of f
as N. In case f is such a function we write σ "f ω.

Definition 5.4. Let D = (S, s0,P , L) be an MC. On S we consider the equiva-
lence relation ∼D satisfying s ∼D t if and only if s and t are in the same strongly
connected component. Again, we usually omit the subscript D from the notation.

The following definition refines the notion of subsequence, taking care of the two
technical subtleties noted above.

Definition 5.5. Let D = (S, s0,P , L) be an MC, ω a (finite) path of D, and
σ ∈ Paths�(Ac(D)) a finite path of Ac(D). Then we write σ � ω if there exists
f : {0, 1, . . . , |σ| − 1}→ N such that σ "f ω and

∀0≤j<f(i) : ωf(i) 
∼ ωj ; for all i = 0, 1, . . . |σ| − 1, [Freshness property ]
∀f(i)<j<f(i+1) : ωf(i) ∼ ωj ; for all i = 0, 1, . . . |σ| − 2. [Inertia property ]

In case f is such a function we write σ �f ω.

Example 3. Let D = (S, s0,P , L) be the MC of Figure 5(a) and take σ =
s0s2s6s14. Then for all i ∈ N we have σ �fi ωi where ωi = s0s2s6(s5s8s6)is14

and fi(0) � 0, fi(1) � 1, fi(2) � 2, and fi(3) � 3 + 3i. Additionally,
σ 
� s0s2s5s8s6s14 since for all f satisfying σ "f s0s2s5s8s6s14 we must have
f(2) = 5; this implies that f does not satisfy the freshness property. Finally,
note that σ 
� s0s2s6s11s14 since for all f satisfying σ "f s0s2s6s11s14 we must
have f(2) = 2; this implies that f does not satisfy the inertia property.

We now give the formal definition of torrents.

Definition 5.6 (Torrents). Let D = (S, s0,P , L) be an MC and σ a sequence
of states in S. We define the function Torr by

Torr(D, σ) � {ω ∈ Paths(D) | σ � ω}.

We call Torr(D, σ) the torrent associated to σ.

We now show that torrents are disjoint (Lemma 5.7) and that the probability
of a rail is equal to the probability of its associated torrent (Theorem 5.10).
For this last result, we first show that torrents can be represented as the disjoint
union of cones of finite paths. We call these finite paths generators of the torrent
(Definition 5.8).

Lemma 5.7. Let D be an MC. For every σ, ρ ∈ Paths�(Ac(D)) we have

σ 
= ρ ⇒ Torr(D, σ) ∩ Torr(D, ρ) = ∅
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Definition 5.8 (Torrent Generators). Let D be an MC. Then we define for
every rail σ ∈ Paths�(Ac(D)) the set

TorrGen(D, σ) � {ρ ∈ Paths�(D) | ∃f : σ �f ρ ∧ f(|σ| − 1) = |ρ| − 1}.

In the example from the Introduction (see Figure 1), s0s1s3 and s0s2s4 are rails.
Their associated torrents are, respectively, {s0s

n
1 sω

3 | n ∈ N∗} and {s0s
n
2 sω

4 | n ∈
N∗} (note that s3 and s4 are absorbing states), i.e. the paths going left and the
paths going right. The generators of the first torrent are {s0s

n
1 s3 | n ∈ N∗} and

similarly for the second torrent.

Lemma 5.9. Let D be an MC and σ ∈ Paths�(Ac(D)) a rail of D. Then we
have

Torr(D, σ) =
⊎

ρ∈TorrGen(D,σ)

〈ρ〉.

Theorem 5.10. Let D be an MC. Then for every rail σ ∈ Paths�(Ac(D)) we
have

Pr
Ac(D)

(〈σ〉) = PrD (Torr(D, σ)).

6 Significant Diagnostic Counterexamples

So far we have formalized the notion of paths behaving similarly (i.e., behaving
the same outside SCCs) in an MC D by removing all SCC of D, obtaining Ac(D).
A representative counterexample to Ac(D) |=≤p

♦ψ gives rise to a representative
counterexample to D |=≤p

♦ψ in the following way: for every finite path σ in
the representative counterexample to Ac(D) |=≤p

♦ψ the set TorrGen(D, σ) is a
witness, then we obtain the desired representative counterexample to D |=≤p

♦ψ
by taking the union of these witnesses.

Before giving a formal definition, there is still one technical issue to resolve: we
need to be sure that by removing SCCs we are not discarding useful information.
Because torrents are built from rails, we need to make sure that when we discard
SCCs, we do not discard rails that reach ψ.

We achieve this by first making states satisfying ψ absorbing. Additionally,
we make absorbing states from which it is not possible to reach ψ. Note that
this does not affect counterexamples.

Definition 6.1. Let D = (S, s0,P , L) be an MC and ψ a propositional formula.
We define the MC Dψ � (S, s0,Pψ, L), with

Pψ(s, t) �

⎧⎪⎪⎨⎪⎪⎩
1 if s 
∈ Sat♦(ψ) ∧ s = t,
1 if s ∈ Sat(ψ) ∧ s = t,
P(s, t) if s ∈ Sat♦(ψ)− Sat(ψ),
0 otherwise,

where Sat♦(ψ) � {s ∈ S | PrD,s
(Reach(D, s, Sat(ψ))) > 0} is the set of states

reaching ψ in D.
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The following theorem shows the relation between paths, finite paths, and prob-
abilities of D, Dψ, and Ac(Dψ). Most importantly, the probability of a rail σ (in
Ac(Dψ)) is equal to the probability of its associated torrent (in D) (item 5 be-
low) and the probability of ♦ψ is not affected by reducing D to Ac(Dψ) (item 6
below).

Note that a rail σ is always a finite path in Ac(Dψ), but that we can talk
about its associated torrent Torr(Dψ , σ) in Dψ and about its associated torrent
Torr(D, σ) in D. The former exists for technical convenience; it is the latter that
we are ultimately interested in. The following theorem also shows that for our
purposes, viz. the definition of the generators of the torrent and the probability
of the torrent, there is no difference (items 3 and 4 below).

Theorem 6.2. Let D = (S, s0,P , L) be an MC and ψ a propositional formula.
Then for every σ ∈ Paths�(Dψ)

1. Reach�(Dψ, s0, Sat(ψ)) = Reach�(D, s0, Sat(ψ)),
2. PrDψ

(〈σ〉) = PrD (〈σ〉),
3. TorrGen(Dψ , σ) = TorrGen(D, σ),
4. PrDψ

(Torr(Dψ, σ)) = PrD (Torr(D, σ)),
5. Pr

Ac(Dψ)
(〈σ〉) = PrD (Torr(D, σ)),

6. Ac(Dψ) |=≤p
♦ψ if and only if D |=≤p

♦ψ, for any p ∈ [0, 1].

Proof. Straightforward

Definition 6.3 (Torrent-Counterexamples). Let D = (S, s0,P , L) be an MC, ψ
a propositional formula, and p ∈ [0, 1] such that D 
|=≤p

♦ψ. Let C be a represen-
tative counterexample to Ac(Dψ) |=≤p

♦ψ. We define the set

TorRepCount(C) � {TorrGen(D, σ) | σ ∈ C}.

We call the set TorRepCount(C) a torrent-counterexample of C. Note that this
set is a partition of a representative counterexample to D |=≤p

♦ψ. Additionally,
we denote by Rt(D, p, ψ) to the set of all torrent-counterexamples to D |=≤p

♦ψ,
i.e., {TorRepCount(C) | C ∈ R(Ac(D), p, ψ)}.

Theorem 6.4. Let D = (S, s0,P , L) be an MC, ψ a propositional formula,
and p ∈ [0, 1] such that D 
|=≤p

♦ψ. Take C a representative counterexample to
Ac(Dψ) |=≤p

♦ψ. Then the set of finite paths
⊎

W∈TorRepCount(C) W is a repre-
sentative counterexample to D |=≤p

♦ψ.

Note that for each σ ∈ C we get a witness TorrGen(D, σ). Also note that the
number of rails is finite, so there are also only finitely many witnesses.

Following [HK07a], we extend the notions of minimum counterexamples and
strongest evidence.

Definition 6.5 (Minimum torrent-counterexample). Let D be an MC, ψ a
propositional formula and p ∈ [0, 1]. We say that Ct ∈ Rt(D, p, ψ) is a mini-
mum torrent-counterexample if |Ct| ≤ |C′t|, for all C′t ∈ Rt(D, p, ψ).
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Definition 6.6 (Strongest torrent-evidence). Let D be an MC, ψ a propo-
sitional formula and p ∈ [0, 1]. A strongest torrent-evidence to D 
|=≤p

♦ψ is
a torrent Torr(D, σ) such that σ ∈ Paths�(Ac(Dψ)) and PrD(Torr(D, σ)) ≥
PrD(Torr(D, ρ)) for all ρ ∈ Paths�(Ac(Dψ)).

Now we define our notion of significant diagnostic counterexamples. It is the
generalization of most indicative counterexample from [HK07a] to our setting.

Definition 6.7 (Most indicative torrent-counterexample). Let D be an MC,
ψ a propositional formula and p ∈ [0, 1]. We call Ct ∈ Rt(D, p, ψ) a most
indicative torrent-counterexample if it is a minimum torrent-counterexample
and Pr(

⋃
T∈Ct

〈T 〉) ≥ Pr(
⋃

T∈C′
t
〈T 〉) for all minimum torrent-counterexamples

C′t ∈ Rt(D, p, ψ).

Note that in our setting, as in [HK07a], a minimal torrent-counterexample C
consists of the |C| strongest torrent-evidences.

By Theorem 6.4 it is possible to obtain strongest torrent-evidence and most
indicative torrent-counterexamples of an MC D by obtaining strongest evidence
and most indicative counterexamples of Ac(Dψ) respectively.

7 Computing Counterexamples

In this section we show how to compute most indicative torrent-counterexamples.
We also discuss what information to present to the user: how to present witnesses
and how to deal with overly large strongly connected components.

7.1 Maximizing Schedulers

The calculation of the maximal probability on a reachability problem can be
performed by solving a linear minimization problem [BdA95, dA97]. This min-
imization problem is defined on a system of inequalities that has a variable xi

for each different state si and an inequality
∑

j π(sj) · xj ≤ xi for each distribu-
tion π ∈ τ(si). The maximizing (deterministic memoryless) scheduler η can be
easily extracted out of such system of inequalities after obtaining the solution.
If p0, . . . , pn are the values that minimize

∑
i xi in the previous system, then η

is such that, for all si, η(si) = π whenever
∑

j π(sj) · pj = pi. In the following
we denote Psi

[♦ψ] � xi.

7.2 Computing Most Indicative Torrent-Counterexamples

We divide the computation of most indicative torrent-counterexamples to
M |=≤p

♦ψ in three stages: pre-processing, SCC analysis, and searching.

Pre-processing stage. We first modify the original MC D by making all states
in Sat(ψ) ∪ S \ Sat♦(ψ) absorbing. In this way we obtain the MC Dψ from
Definition 6.1. Note that we do not have to spend additional computational
resources to compute this set, since Sat♦(ψ) = {s ∈ S | Ps[♦ψ] > 0} and hence
all required data is already available from the LTL model checking phase.
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SCC analysis stage. We remove all SCCs K of Dψ keeping just input states of
K, getting the acyclic MC Ac(Dψ) according to Definition 5.2.

To compute this, we first need to find the SCCs of Dψ. There exists several
well known algorithms to achieve this: Kosaraju’s, Tarjan’s, Gabow’s algorithms
(among others). We also have to compute the reachability probability from input
states to output states of every SCC. This can be done by using steady state
analysis techniques [Cas93].

Searching stage. To find most indicative torrent-counterexamples inD, we find
most indicative counterexamples in Ac(Dψ). For this we use the same approach
as [HK07a], turning the MC into a weighted digraph to replace the problem of
finding the finite path with highest probability by a shortest path problem. The
nodes of the digraph are the states of the MC and there is an edge between s
and t if P(s, t) > 0. The weight of such an edge is − log(P(s, t)).

Finding the most indicative counterexample in Ac(Dψ) is now reduced to
finding k shortest paths. As explained in [HK07a], our algorithm has to compute
k on the fly. Eppstein’s algorithm [Epp98] produces the k shortest paths in
general in O(m+n log n+k), where m is the number of nodes and n the number of
edges. In our case, since Ac(Dψ) is acyclic, the complexity decreases to O(m+k).

7.3 Debugging Issues

Representative finite paths. What we have computed so far is a most indica-
tive counterexample to Ac(Dψ) |=≤p

♦ψ. This is a finite set of rails, i.e., a finite
set of paths in Ac(Dψ). Each of these paths σ represents a witness TorrGen(D, σ).
Note that this witness itself has usually infinitely many elements.

In practice, one has to display a witness to the user. The obvious way would
be to show the user the rail σ. This, however, may be confusing to the user as σ
is not a finite path of the original Markov Decision Process. Instead of presenting
the user with σ, we therefore show the user the finite path of TorrGen(D, σ) with
highest probability.

Definition 7.1. Let D be an MC, and σ ∈ Paths�(Ac(Dψ)) a rail of D. We
define the representant of Torr(D, σ) as

repTorr (D, σ) = repTorr

⎛⎝ ⊎
ρ∈TorrGen(D,σ)

〈ρ〉

⎞⎠ � arg max
ρ∈TorrGen(D,σ)

Pr(〈ρ〉)

Note that given repTorr (D, σ) one can easily recover σ. Therefore, no informa-
tion is lost by presenting torrents as one of its generators instead of as a rail.

Expanding SCC. Note that in the Preprocessing stage, we reduced the size of
many SCCs of the system (and likely even completely removed some) by making
states in Sat(ψ)∪S \Sat♦(ψ) absorbing. However, It is possible that the system
still contains some very large strongly connected components. In that case, a
single witness could have a very large probability mass and one could argue
that the information presented to the user is not detailed enough. For instance,
consider the Markov chain of Figure 6 in which there is a single large SCC with
input state t and output state u.
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The most indicative torrent-counterexample to the
property D |=≤0.9 ♦ψ is simply {TorrGen(stu)}, i.e., a sin-
gle witness with probability mass 1 associated to the rail
stu. Although this may seem uninformative, we argue that
it is more informative than listing several paths of the form
st · · ·u with probability summing up to, say, 0.91. Our
single witness counterexample suggests that the outgoing
transition to a state not reaching ψ was simply forgotten
in the design; the listing of paths still allows the possibility
that one of the probabilities in the whole system is simply
wrong.

Nevertheless, if the user needs more information to tackle bugs inside SCCs,
note that there is more information available at this point. In particular, for
every strongly connected component K, every input state s of K (even for every
state in K), and every output state t of K, the probability of reaching t from s
is already available from the computation of Ac(Dψ) during the SCC analysis
stage of Section 7.2.

8 Final Discussion

We have presented a novel technique for representing and computing counterex-
amples for nondeterministic and probabilistic systems. We partition a counterex-
ample in witnesses and state five properties that we consider valuable in order
to increase the utility of witnesses as a debugging tool: (similarity) elements of
a witness should provide similar debugging information; (originality) different
witnesses should provide different debugging information; (accuracy) witnesses
with higher probability should indicate system behavior more likely to contain
errors; (significance) probability of a witness should be relatively high; (finite-
ness) there should be finitely many witnesses. We achieve this by grouping finite
paths in a counterexample together in a witness if they behave the same outside
the strongly connected components.

Presently, some work has been done on counterexample generation techniques
for different variants of probabilistic models (Discrete Markov chains and Con-
tinues Markov chains) [AHL05, AL06, HK07a, HK07b]. In our terminology, these
works consider witnesses consisting of a single finite path. We have already dis-
cussed in the Introduction that the single path approach does not meet the
properties of accuracy, originality, significance, and finiteness.

Instead, our witness/torrent approach provides a high level of abstraction
of a counterexample. By grouping together finite paths that behave the same
outside strongly connected components in a single witness, we can achieve these
properties to a higher extent. Behaving the same outside strongly connected
components is a reasonable way of formalizing the concept of providing similar
debugging information. This grouping also makes witnesses significantly different
from each other: each witness comes from a different rail and each rail provides
a different way to reach the undesired property. Then each witness provides
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original information. Of course, our witnesses are more significant than single
finite paths, because they are sets of finite paths. This also gives us more accuracy
than the approach with single finite paths, as a collection of finite paths behaving
the same and reaching an undesired condition with high probability is more likely
to show how the system reaches this condition than just a single path. Finally,
because there is a finite number of rails, there is also a finite number of witnesses.

Another key difference of our work with previous ones is that our technique
allows to generate counterexamples for probabilistic systems with nondetermin-
ism. However, a recent report [AL07] also considers counterexample generation
for MDPs. Their approach only extends to upper bounded pCTL formulas with-
out nested temporal operators. We would like to remark that our technique to
approach counterexample generation for MDPs completely differs from theirs.

Finally, we are not aware of any other work in the literature considering
counterexamples for probabilistic LTL model checking.

The authors would like to stress the important result of [HK07a], which pro-
vides a systematic characterization of counterexample generation in terms of
shortest paths problems. We use this result to generate counterexamples for the
acyclic Markov chains.

In the future we intend to implement a tool to generate our significant diagnos-
tic counterexamples; a very preliminary version has already been implemented.
There is still work to be done on improving the visualization of the witnesses,
in particular, when a witness captures a large strongly connected component.
Another direction is to investigate how this work can be extended to timed sys-
tems, either modeled with continuous time Markov chains or with probabilistic
timed automata.

Acknowledgement. The authors thank David Jansen for helpful comments on
an earlier version of this paper.
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Abstract. In this paper, we consider verifying properties of mixed-
signal circuits, i.e., circuits for which there is an interaction between
analog (continuous) and digital (discrete) quantities. We follow the sta-
tistical Model Checking approach of [You05, You06] that consists of eval-
uating the property on a representative subset of behaviors, generated
by simulation, and answering the question of whether the circuit satis-
fies the property with a probability greater than or equal to some value.
The answer is correct up to a certain probability of error, which is pre-
specified. The method automatically determines the minimal number
of simulations needed to achieve the desired accuracy, thus providing a
convenient way to control the trade-off between precision and computa-
tional cost. We propose a logic adapted to the specification of properties
of mixed-signal circuits, in the temporal domain as well as in the fre-
quency domain. Our logic is unique in that it allows us to compare the
Fourier transform of two signals. We demonstrate the applicability of the
method on a model of a third order Δ−Σ modulator for which previous
formal verification attempts were too conservative and required excessive
computation time.

1 Introduction

Given a property φ, the Probabilistic Model Checking Problem consists of check-
ing whether a stochastic system satisfies φ with a probability greater than or
equal to a certain threshold θ. This problem is generally solved with a numeri-
cal approach that consists of computing the exact probability for the system to
satisfy φ and by comparing the result to θ. The way the probability is computed
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depends on the nature of the system as well as on the property that is consid-
ered. Successful results (see e.g. [BHHK03, CY95, CG04]) and tools (see e.g.
[KNP04, CB06]) exist for various classes of systems, including (continuous time)
Markov Chains and Markov Decision Processes. The drawback behind numerical
approaches is that they compute the probability by considering all the execu-
tions of the system, which may not scale up for systems of large size. Another
way to solve the probabilistic Model Checking problem is to use a statistical
approach based on hypothesis testing and simulation (e.g., [You05, You06] or
[SVA04, SVA05]). The key idea is to deduce whether or not the system satisfies
the property by observing some of its executions. Of course, in contrast to a
numerical approach, a test-based solution does not guarantee a correct result.
However, it is possible to bound the probability of making an error. Statistical
approaches are known to be far less memory and time intensive than numerical
ones, and are sometimes the last resort [YKNP06].

In this paper, we consider applying the statistical procedure proposed by
Younes in [You05, You06] to verify properties of mixed-signal circuits, i.e., cir-
cuits for which there is an interaction between analog (continuous) and digital
(discrete) quantities. Our first contribution is to propose a version of stochastic
discrete-time event systems that fits into the framework of [You05, You06] with
the additional advantage that it explicitly handles analog and digital signals. We
also introduce probabilistic signal linear temporal logic, a logic adapted to the
specification of properties for mixed-signal circuits in the temporal domain and
in the frequency domain.

Our second contribution is the analysis of a Δ−Σ modulator. A Δ−Σ modula-
tor is an efficient Analog-to-Digital Converter circuit, i.e., a device that converts
analog signals into digital signals. A common critical issue in this domain is the
analysis of the stability of the internal state variables of the circuit. The concern
is that the values that are stored by these variables can grow out of control until
reaching a maximum value, causing the circuit to saturate. Saturation is com-
monly assumed to compromise the quality of the analog-to-digital conversion. In
[DDM04] and [GKR04] reachability techniques developed in the area of hybrid
systems were used to analyze the stability of a third-order modulator. The idea
was to use these techniques to guarantee that for every input signal in a given
range, the states of the system remain stable. While this reachability-based ap-
proach is strictly precise, it has important drawbacks such as (1) signals with
long duration cannot be practically analyzed and (2) there are interesting prop-
erties that cannot be checked. Our results show that a statistical Model Checking
approach makes it possible to handle properties and signals that are beyond the
scope of the reachability-based approach. As an example, in our experiments,
we have been able to analyze discrete signals with more than 24000 sampling
points in seconds, while the approach in [DDM04] was limited to 31 points in
hours. We are also able to provide insight on an open question in [DDM04]
by observing that saturation does not always imply an improper signal conver-
sion. The latter can be done by comparing the Fourier transform of each of the
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input analog signals with the Fourier transform of its corresponding digital sig-
nal. Such a property can easily be expressed in our logic and model checked with
our statistical-based approach. We are unaware of any other formal verification
technique that can solve this problem.

2 Statistical Probabilistic Model Checking

The following section introduces the technique of Statistical Probabilistic Model
Checking.

2.1 The Probabilistic Model Checking Problem

We use Pr(E) to denote the probability of event E. We consider a stochastic
system S whose executions are observable and a property φ. We assume that one
can decide whether an execution of S, denoted by σ, satisfies φ. The Probabilistic
Model Checking Problem consists of deciding whether the executions of S satisfy
φ with a probability greater than or equal to a given threshold θ. The latter is
denoted by S |= Pr≥θ(φ). This problem is well-defined if and only if one can
assign a probability to the set of executions of S that satisfy φ. One way to solve
the Probabilistic Model Checking Problem is to use a numerical approach (see
the introduction). The drawback with such an approach is that it computes the
probability for all the executions of the system and may not scale up for systems
of large size. Another way to solve the probabilistic Model Checking problem is
to use a statistical model checking algorithm. In the rest of this section, we recap
the statistical Model Checking technique proposed by Younes in [You05, You06].

2.2 Statistical Approach

The approach in [You05, You06] is based on hypothesis testing. The idea is to
check the property φ on a sample set of simulations and to decide whether the
system satisfies Pr≥θ(φ) based on the number of executions for which φ holds
compared to the total number of executions in the sample set. With such an
approach, we do not need to consider all the executions of the system. To deter-
mine whether S satisfies φ with a probability p ≥ θ, we can test the hypothesis
H : p ≥ θ against K : p < θ. A test-based solution does not guarantee a correct
result but it is possible to bound the probability of making an error. The strength
(α, β) of a test is determined by two parameters, α and β, such that the proba-
bility of accepting K (respectively, H) when H (respectively, K) holds, called a
Type-I error (respectively, a Type-II error ) is less or equal to α (respectively, β).

A test has ideal performance if the probability of the Type-I error (respectively,
Type-II error) is exactly α (respectively, β). However, these requirements make
it impossible to ensure a low probability for both types of errors simultaneously
(see [You05] for details). A solution to this problem is to relax the test by working



152 E. Clarke, A. Donzé, and A. Legay

with an indifference region (p1, p0) with p0≥p1 (p0−p1 is the size of the region).
In this context, we test the hypothesis H0 : p≥ p0 against H1 : p≤ p1 instead of
H against K. If the value of p is between p1 and p0 (the indifference region), then
we say that the probability is sufficiently close to θ so that we are indifferent
with respect to which of the two hypotheses K or H is accepted. The threshold
p0 and p1 are generally defined in term of the single threshold θ, e.g., p1 = θ− δ
and p0 = θ + δ.

2.3 An Algorithmic Scheme

Younes proposed a procedure to test H0 : p≥ p0 against H1 : p≤ p1 that is based
on the sequential probability ratio test proposed by Wald [Wal45]. The approach
is briefly described below.

Let Bi be a discrete random variable with a Bernoulli distribution. Such a
variable can only take 2 values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] =
1 − p. In our context, each variable Bi is associated with one simulation of the
system. The outcome for Bi, denoted bi, is 1 if the simulation satisfies φ and 0
otherwise. In the sequential probability ratio test, one has to choose two values
A and B, with A > B. These two values should be chosen to ensure that the
strength of the test is respected. Let m be the number of observations that have
been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏
i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m

p0m
≥ A, and

H1 if p1m

p0m
≤ B. An algorithm for sequential ratio testing consists of computing

p1m

p0m
for successive values of m until either H0 or H1 is satisfied. This has the

advantage of minimizing the number of simulations. In each step i, the algorithm
has to check the property on a single execution of the system, which is handled
with a new Bernoulli variable Bi whose realization is bi. In his thesis [You05],
Younes proposed a logarithmic based algorithm (Algorithm 2.3 page 27) SPRT
that given p0, p1, α and β implements the sequential ratio testing procedure.
Computing ideal values Aid and Bid for A and B in order to make sure that we
are working with a test of strength (α, β) is a laborious procedure (see Section
3.4 of [Wal45]). In his seminal paper [Wal45], Wald showed that if one defines
Aid≥A = (1−β)

α and Bid ≤ B = β
(1−α) , then we obtain a new test whose strength

is (α′, β′), but such that α′ + β′ ≤ α + β, meaning that either α′≤α or β′ ≤ β.
In practice, we often find that both inequalities hold.

The SPRT algorithm can be extended to handle Boolean combinations of proba-
bilistic properties as well as much more complicated probabilistic Model checking
problems than the one considered in this paper [You05].
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3 Signals, Systems and Logics

3.1 Signals Definition

We use N, R, and C to denote the sets of natural, real, and complex numbers,
respectively. Let the time set T be a finite set of non-negative reals {t0, t1, . . . ,
tN−1}, where N ∈ N. To simplify the presentation, we assume that ti+1−ti = δt,
where δt ∈ R>0 . A digital set is a set consisting of 2b elements, which can be
encoded in terms of b bits. A frequency set is a subset of R. An analog signal
is a mapping ξ : T → R. A digital signal is a mapping ξ : T → D, where D is
a digital set. A frequency-domain signal is a mapping ξ̂ : F → C, where F is
a frequency set. The value at time t ∈ T of a signal ξ is denoted by ξ[t]. Let
t, t′ ∈ T , the restriction of a signal ξ to [t, t′], denoted by ξ|[t,t′] , is a signal such
that:

ξ|[t,t′] [τ ] =
{

ξ[τ ] if τ ∈ [t, t′]
0 else.

The restriction of a frequency-domain signal to an interval of frequencies is de-
fined similarly.

The Fourier transform (see [Smi97]) is a functional F that maps a time-domain
signal ξ : T → R to a frequency-domain signal ξ̂ = F (ξ). The inverse Fourier
transform is used to “reconstruct” ξ from ξ̂, i.e., ξ = F−1(ξ̂). Formally, for all ν
in F and for all t in T we have

F (ξ)[ν] =
∫
T

ξ[t]e−i2πνtdt and F−1(ξ̂)[t] = ξ[t] =
∫
F

ξ̂[ν]ei2πνtdν.

An efficient algorithm known as the Fast Fourier Transform algorithm (see, e.g.,
[FJ97]) is used to compute a discrete approximation of the Fourier transform.

3.2 Model

Our main motivation is to verify properties of mixed-signal circuits. For this pur-
pose, we define stochastic signal discrete-time event systems, which extend the
classical stochastic discrete-time event systems with information about signals.
During an execution, these systems have to remain in the same state between
the occurrence of two events. The signals associated with each execution are thus
piecewise-constant.

Definition 1. Let B be a finite set of Boolean propositions. A stochastic signal
discrete-time event system (SSDES) is a tuple S = (T , S, s0,→, πa, πd, L) where

– T is a finite set of non-negative reals {t0, t1, . . . , tN−1}, with ti+1 − ti = δt;
– S is the set of states, defined as S = As×Ds, where As ⊂ Rna and Ds ⊂ Dnd ,

na and nd being the number of analog and digital signals associated with S,
respectively. These signals will be denoted by ξ1

a, . . . , ξna
a and ξ1

d, . . . , ξnd

d ;
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– s0 ∈ S is the initial state;
– The relation →: S×S is the transition relation of the system. We assume a

probability distribution on →, i.e.,

∀s ∈ S,
∑
s′∈S

Pr(s → s′) = 1;

Our model is assumed to have the Markovian property;
– πa : S × {1, . . . , na}→As is a projection operator such that for all s =

(s1
a, . . . , sna

a , s1
d, . . . , s

nd

d ) and 1 ≤ j ≤ na, πa(s, j) = sj
a;

– πd is defined in a similar manner to πa.
– L is a mapping from S to 2B, which assigns to each state the elements in B

that are true in that state. If p ∈ L(s), then we say that s satisfies p.

Let ω = s1 . . . sk be a finite sequence of states of S. We use ω(i) and ωi to
denote the i-th state of ω and the sequence si . . . sk, respectively. The length
ω, denoted |ω|, is the number of states in ω. An execution of an SSDES S =
(T , S, s0,→, πa, πd, L) is a sequence of N states σ = s0s1 . . . sN−1 such that for
each i ∈ 0 . . .N − 1, si ∈ S and si → si+1. Each state sk (with k < N) of
σ assigns to each analog signal ξi

a (respectively, digital signal ξi
d) its constant

value between tk and tk+1, i.e., ξi
a[t] = πa(sk, i) (respectively, ξi

d[t] = πd(sk, i))
for t ∈ [tk, tk+1]. The i-th suffix of σ is the sequence si, . . . , sN−1. An SSDES is
thus an infinite-state Markov Chain equipped with information and operations
on analog and digital signals.

3.3 Probabilistic Signal Linear Temporal Logic

We introduce the probabilistic signal linear temporal logic (SLTL) to reason on
the set of executions of an SSDES. In the rest of the section, we assume a set of
atomic propositions B and an SSDES S = (T , S, S0,→, πa, πd, L) with L being
a mapping from the set of states S to 2B. Before introducing SLTL, we first
recall the syntax and the semantics for linear temporal logic (LTL). The syntax
of LTL is given by the following grammar:

φ ::= T |F |b ∈ B |φ1 ∨ φ2 |φ1 ∧ φ2 |¬φ | © φ |φ1Uφ2 |φ1Ũφ2.

We now present the semantics of LTL, which here is defined with respect to
finite sequences of states of S. The fact that a finite sequence of states ω of S
satisfies the LTL property φ is denoted by ω |= φ. We have the following:

– ω |= T and ω 
|= F;
– ω |= b with b ∈ B if and only if b ∈ L(ω(0));
– ω |= φ1 ∨ φ2 if and only if ω |= φ1 or ω |= φ2;
– ω |= φ1 ∧ φ2 if and only if ω |= φ1 and ω |= φ2;
– ω |= ¬φ if and only if ω 
|= φ.
– ω |= ©φ if and only if |ω| > 1 and ω1 |= φ;
– ω |= φ1Uφ2 if and only if there exists 0≤i≤|ω| − 1 such that ωi |= φ2, and

for each 0≤j < i, ωj |= φ1;
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– ω |= φ1Ũφ2 if and only if for each 0≤i≤|ω|−1 such that ωi 
|= φ2 there exists
0≤j < i such that ωj |= φ1;

Two additional temporal operators are used, that are ♦ψ = TUψ and �ψ =
FŨψ.

Note that we consider LTL properties on finite executions. Thus, we can only
specify bounded LTL properties. As in [You05], we thus stay in the class of safety
properties. It is easy to decide whether a finite execution satisfies a LTL formula.
We now introduce the notion of an execution predicate.

Definition 2 (Execution Predicate). Let Σ(S) be the set of all the executions
of an SSDES S. An execution predicate p for S is a predicate on Σ(S).

Example 1. Consider an execution predicate p that decides whether the mean
value of the first analog signal associated with an execution σ of an SSDES is
greater than 0. Such predicate can be defined as

p(σ) = T iff
1
N

N−1∑
k=0

πa(σ(k), 1) ≥ 0.

This example shows that the definition of execution predicate makes it easy to
define properties on entire executions that cannot easily be defined with temporal
operators. In Section 5, we will consider a more complex execution predicate
that compares the Fourier transforms of two signals.We add a new clause to the
grammar of LTL for execution predicates. Let P be a set of execution predicates,
our new grammar for LTL is

φ ::= T |F |p ∈ P | b ∈ B |φ1 ∨ φ2 |φ1 ∧ φ2 |¬φ | © φ |φ1Uφ2 |φ1Ũφ2,

with the restriction that execution predicates cannot be under the scope of tem-
poral operators. We can now define probabilistic signal linear temporal logic.

Definition 3 (SLTL Formula). An SLTL formula is a formula of the form
ψ = Pr≥θ(φ), where φ is a LTL formula with execution predicates.

We say that S satisfies ψ, denoted by S |= ψ if and only if the probability
for an execution of S to satisfy φ is greater or equal than θ. The problem is
well-defined since, as is shown in the following theorem, one can always assign a
unique probability measure to the set of executions that satisfy an LTL formula
with execution predicates.

Theorem 1. Let S be an SSDES and φ be a LTL property with execution pred-
icates. One can always associate a unique probability measure to the set of exe-
cutions of S that satisfy φ.

The proof can be found in [EC08].
Assuming that we are only working with execution predicates that we can

compute, we observe that SSDES and SLTL are in the scope of the class of
systems and logics that can be handled with the SPRT algorithm.
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4 A Class of Mixed-Signal Circuits: Δ − Σ Modulators

This section is a brief introduction to the principles of Δ − Σ modulation and
the related design issues. The reader can consult [MPVRV01] for more details
on this topic in Signal Processing.

4.1 Analog to Digital Conversion via Δ − Σ Modulation

A Δ − Σ modulator is an Analog-to-Digital Converter circuit, i.e., a circuit
that takes an analog value u ∈ R as input and encodes it into a digital value
v ∈ D. Since digital signal processing is more widely used than analog signal
processing, such converters are found in many electrical devices, which motivates
their study. The challenge with Analog-to-Digital conversion is to represent the
uncountable set of analog values using a finite set of digital values D. The direct
approach, which is called quantization, consists in mapping u to the digital value
v that minimizes the quantization error defined as δ = u − v, i.e., it chooses
v = argminv∈D |δ|. Obviously, one way to decrease the remaining quantization
error is to increase the number of bits used to encode D and thus the number
of possible digital values. Another approach, which is implemented by Δ − Σ
modulation, is to measure and compensate for the accumulation of quantization
errors during time. As an example, consider the following simple instance of a
discrete time Δ−Σ modulator. Let u(k), v(k), δ(k) = u(k)− v(k) be the analog
input, the digital output, and the quantization error at step k, respectively. The
modulator uses an integrator to store the accumulation of errors in a variable
x(k) =

∑k
0 δ(k), so that x(k + 1) = x(k) + δ(k), and determines the next digital

output v(k +1) based on the sign of x(k +1), i.e., D = {−1, 1} and v(k +1) = 1
if x(k + 1) ≥ 0 and v(k + 1) = −1 otherwise. A Δ−Σ modulator thus basically
consists of a feedback loop controlling the quantization error. To improve the
performance, more complex feedback loops can be designed involving more than
one integrator. The order of a modulator is given by the number of integrators
used.

The benefit of the Δ − Σ modulation approach is clearly apparent in the
frequency domain. Indeed, the Fourier transform of the digital signal is the
Fourier transform of the analog signal composed with some error due to the
quantization. The feedback loop in the Δ−Σ modulator is designed to “push”
this error towards high frequencies, where it can be isolated and removed, e.g.
by using a low-pass filter (see Fig. 2). The original signal can then be retrieved
by using the inverse Fourier transform.

4.2 Verification Issues

Modulators with more than two integrators are known to exhibit better perfor-
mance but also introduce a stability issue [ASS96]. An integrator memorizes its
input and adds it to the sum of all the previously read inputs during the exe-
cution. Consequently, an important issue is whether the integrators are stable,
i.e., whether or not the values stored in the integrators can grow indefinitely.
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Because integrators have limited capacity, the values of these states would then
reach a saturation level. Saturation can compromise the quality of the analog-
to-digital conversion. The stability analysis of the feedback loop is made difficult
by the nonlinearity (in this case, a discontinuity) induced by quantization. This
invalidates the direct application of classical linear stability theory which makes
the stability analysis of Δ− Σ modulators a challenging problem (see [SH93]).
In the next section, we investigate several issues related to stability by using a
statistical Model Checking approach.

5 Experimental Results

We implemented a prototype in the MATLAB environment. Our procedure takes
as input a Simulink model and a property φ that is a LTL formula with exe-
cution predicates. To apply our statistical approach, we combine the Simulink
model with a stochastic input generator. At each time instant ti, this gener-
ator randomly chooses an input value for the analog signal and the Simulink
engine uses this value to compute the next state of the system. The result is
an SSDES whose executions can easily be observed without building the entire
state-space of the system. We now discuss the experimental results we obtained
when applying our prototype to a third-order Δ−Σ modulator.

5.1 SSDES for a Third Order Modulator

We work with the instance of a third order Δ−Σ modulator that was considered
in [DDM04]. A Simulink model is given in Fig. 1. It is combined with a stochastic
input generator to give an SSDES S=(T , S, s0,→, πa, πd, L), where

x1(k) x2(k) x3(k) y(k)

v(k)−K−

c3

−K−

c2

−K−

c1

−K−b4−K−b3−K−b2−K−b1

x3x2x1

Quantizer

v

Output
v(k)

Input
u(k)

1

z−1

1

z−1

1

z−1

−K− −a3−K− −a2−K− −a1

Fig. 1. Simulink model of a third order Δ−Σ modulator.The three blocks 1
z−1

followed
by saturation blocks represent the saturated integrators. The values of the coefficients
ai, bi and ci were obtained using the delsig toolbox. They are a1 = b1 = 0.0440,
a2 = b2 = 0.2881, a3 = b3 = 0.7997, b4 = 1, and c1 = c2 = c3 = 1; x1, x2 and x3 are
the analog variables storing the integrators states.
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– Time. We set T = {t0, t1, .., tN−1} with t0 = 0, tN−1 = 3 and δt = ti+1−ti =
1

8000 , N = 24000.

– Set of States. The Simulink model contains three integrators such that
each contains one real-valued (or analog) variable. A state s ∈ S can thus
be described as a tuple (u, x1, x2, x3, v), where

• x1, x2 and x3 are analog variables storing the integrators’ states;
• u is an analog variable storing values for the input signal ξu;
• v is a digital variable storing values for the output signal ξv.

The number of analog signals is thus na = 4 and the number of digital sig-
nals nd = 1. We assume that the states of the integrators cannot go beyond
certain values that are fixed by the model. When this value is reached, we
say that the integrators saturate. In practice, xi ∈ [−1, 1] for i ∈ {1, 2, 3} and
−1, 1 are the saturation values. Assuming also that u ∈ [−umax, umax], we
get As = [−1, 1]3× [−umax, umax] and Ds = {−1, 1}. Given an execution σ =
s0s1 . . . sN−1, we use u(k) = πa(sk, 1), x1(k) = πa(sk, 2), x2(k) = πa(sk, 3),
x3(k) = πa(sk, 1) and v(k) = πd(sk, 1). For all k ∈ {0, . . . , N − 1}, we have
ξu[tk] = u(k) and ξv[tk] = v(k);

– Transition relation. When u(k) is given, the Simulink engine computes
x1(k + 1), x2(k + 1), x3(k + 1) and v(k + 1). Thus the probability distribu-
tion Pr(sk → sk+1) for all (sk, sk+1) ∈ S × S is induced by the probability
distribution of the input value u(k + 1). For our experiments, we consider
uniform random inputs: for all k, u(k) is chosen in a set [−umax, umax] with
a uniform random distribution;

– Initial state. Initially, the values of the integrator states are 0 and by con-
vention the digital output v(0) is set to 1 and the input value u(0) to 0 Thus
the initial state is s0 = (0, 0, 0, 0, 1);

– Boolean variables. We define a Boolean variable Satur which is true iff one
of the analog values, i.e., either the input or an integrator state, saturates.
Formally, L(s) = T iff there exist i in {1, . . . , 4} such that πa(s, i) = 1 or
−1, L(s) = F otherwise.

The choice of the probability distribution to generate input signals influences
the statistical result we obtain. A simple choice is the uniform distribution, which
gives the same probability for every possible input signal to occur. By doing so,
we make as few assumptions as possible on the nature of the input signal. We
can thus compare our results with those obtained on the corresponding non-
stochastic model.

5.2 Experiments

Saturation We first considered the formula Pr≥θ(♦Satur), i.e., whether sat-
uration occurs with a probability greater or equal to θ for different values of
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Table 1. Table of results for Pr≥θ(♦Satur). H0 was rejected for the first line and
accepted for the others.

umax Probability Number
θ checked of exec.

0.1 0 416
0.15 0.09 4967
0.2 0.64 17815
0.25 0.98 416
0.3 1 688

umax. We applied the SPRT algorithm for several values1 of θ. We set the
two error bounds α and β to 0.001 and used an indifference region (p1, p0) =
(θ − 0.01, θ + 0.01). We tested H0 : p≥θ + 0.01 against H1 : p≤θ − 0.01. Our
results are reported in Table 2. The first and second column report the value of
umax and the value of θ chosen, respectively. Column 3 reports the number of
simulations performed. H0 was rejected for the first line and accepted for the
others. Our results show that saturation will occur with probability 1 when the
maximum amplitude umax of the input signal is greater than 0.3.

In [DDM04] and [GKR04] reachability techniques developed in the area of
hybrid systems were used to guarantee that for every input signal in a given
range, the integrator state will never saturate. While this approach is clearly
sound for proving stability, its computational cost is prohibitive. As an example,
in [DDM04], stability was only proved for a small number of steps, i.e., N = 31.
Our results can be compared with those reported2 in [DDM04]. In particular,
we confirmed the fact that for signals with a maximum amplitude of 0.1, the
circuit never saturates whereas if umax is more than 0.3, the circuit always does.
In our case, though, the length N of the executions considered was much larger.

Frequency Domain Predicate. In addition to improving the computation
time, our approach makes it possible to verify more complex properties than
those that can be handled with a reachability-based technique. In particular,
by defining execution predicates involving the Fourier transform, we can check
reliably whether an analog signal was properly converted to a digital one. We
can also investigate the relation between saturation and wrong behaviors of the
modulator without assuming a priori, as is the case in [DDM04], that the latter
implies the former. We checked the formula Pr≥θ(pF ), where pF is a frequency-
domain execution predicate that compares the Fourier transform of the input
analog signal u with the one of its corresponding digital signal v. Formally, pF

1 The values for umax = 0.1 and umax = 0.3 were chosen to validate the experiments
in [DDM04], while the others were chosen with some trial and error process to get
closer to true probability.

2 Recall that the results in [DDM04] are obtained from the Simulink model, while we
work with the corresponding stochastic model.
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(a) Fourier Transform of the analog signal (input)

(b) Fourier Transform of the digital signal (output)

ν

ν

quantization error

Fig. 2. A sample behavior of the Δ − Σ modulator. The Fourier transform of the
output signal (b) matches the Fourier transform of the input signal (a) on the interval
[0, 1500Hz]. The quantization error is pushed toward frequencies higher than 1500Hz.

is defined as follows. Let dF be a metric on frequency-domain signals such that
for two signals ξ̂1 and ξ̂2,

dF (ξ̂1, ξ̂2) =
1
N

∑
0≤k≤N−1

|ξ̂1[νk]− ξ̂2[νk]|. (2)

Let σ be an execution of S. The value of the execution predicate pF on σ is given
by pF (σ) = T iff dF (ξ̂u

|[0,ν]
, ξ̂v

|[0,ν]
) ≤ ε, where ξ̂u and ξ̂v are the Fourier transforms

of the input analog signal u and its corresponding digital signal v, respectively. It
is easy to derive a MATLAB routine that can decide whether or not an execution
provided by Simulink satisfies pF . We worked with ν = 100Hz and ε = 0.1,
since we observed that for those values the predicate efficiently discriminates
between executions for which the digital output has a correct Fourier transform
(see Figure 2) against executions when this is not the case). We used the same
indifference region and the same error types as in the previous experiments.

In our experiments (reported in Table 2), we observed that pF is true with
probability ≥1 for umax = 0.8 and that this probability decreases when the value
of umax increases3. This means that saturation does not always imply a wrong
behavior. Indeed, as an example, for values of umax greater than 0.3, the property
Pr≥1(♦Satur) holds (see previous experiment) and for values of umax smaller
than 0.8, the property Pr≥1(pF ) also holds. We can thus infer that between 0.3

3 We also observed that for values of umax greater or equal to 0.9, the probability for a
good conversion to occur was strictly inferior to 1. The values of θ reported in lines
2 − 5 of Table 2 have been found with some trial and error process.
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Table 2. Table of results for Pr≥θ(pF ). H0 was accepted for each experiment

umax Probability Number
θ checked of exec.

0.8 1. 688
0.9 0.98 612
1.0 0.98 1248
1.1 0.875 6388
1.2 0.575 15507

and 0.8, the property ♦Satur ∧ pF holds with probability 1. In [DDM04], it
is assumed that the absence of saturation is necessary for pF to be true. Our
experiments show that this may be an overly conservative assumption.

More experimental results, in particular characterizing the computation time
with respect to the strength parameters α and β, and the size of the indifference
region can be found in [EC08].

6 Future Work

This paper presents the first attempt to apply the statistical Model Checking
techniques introduced in [You05, YS06] to verifying non-trivial properties of
mixed-signal circuits. In comparison to [DDM04], our technique allows us to
obtain better performance results as well as to handle a larger class of properties.
Our results are correct up to a prespecified probability of an error, while those
of [DDM04] are exact.

Our work requires the ability to monitor properties of discrete-time signals,
which can easily be done with existing techniques [LS06, dR]. In a series of re-
cent papers [NM07, MNP08], Nickovic et al. proposed techniques for monitoring
properties of dense-time analog signals. An interesting direction would be to
adapt the procedure of Younes to work in this latter, more demanding context.

In our experiments, the choice of the value for θ has been driven by the
previous observations reported in [DDM04]. In future work, we plan to use the
estimation-based method of [HLMP04] to approximate the value of θ for which
the property holds.

We also intend to consider extensions of SLTL incorporating past temporal
operators and a better correlation between execution predicates and temporal
operators. We plan to define more complex specifications for frequency domain
properties based on the needs of designers of mixed signal circuits. Our ultimate
goal is to provide them with a general framework for specifying and verifying
properties of mixed-signal circuits.
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Abstract. We study the relation between logical contradictions such as p ∧ ¬p
and structural contradictions such as p∩ (p · q). Intuitively, we expect the two to
be treated similarly, but they are not by PSL, nor by SVA. We provide a solution
that treats both kinds of contradictions in a consistent manner. The solution re-
veals that not all structural contradictions are created equal: we must distinguish
between them in order to preserve important characteristics of the logic. A happy
result of our solution is that it provides the semantics over the natural alphabet
2P , as opposed to the current semantics of PSL/SVA that use an inflated alpha-
bet including the cryptic letters � and ⊥. We show that the complexity of model
checking PSL/SVA is not affected by our proposed semantics.

1 Introduction

A logical contradiction is a propositional formula that is not satisfiable, for example
p ∧ ¬p. In temporal logics such as PSL [8,17] and SVA [18] that contain semi-extended
regular expressions, or SEREs, structural contradictions arise. A structural contradiction
is a SERE that is not satisfiable due to its structure. That is, for any replacement of the
propositions in the SERE, the SERE remains unsatisfiable. For example, p ∩ (p · q) (the
language of words consisting of a single letter on which p holds intersected with the
language of words consisting of two letters on which p holds on the first and q on the
second) is a structural contradiction, while (p · q)∩ (p · ¬q) is a contradiction, but not a
structural one. Structural contradictions were first named in [2], which noted that they
were treated differently than logical contradictions by the formal semantics of PSL.

The ∩ operator is not the only source of structural contradictions in PSL and SVA.
A structural contradiction can also be formed from the fusion operator (denoted here
by ◦ ), a kind of overlapping concatenation. The language of SERE r1 ◦ r2 includes
words of the form v1	v2, where v1 and v2 are words, 	 is a letter, v1	 is in the lan-
guage of r1, and 	v2 is in the language of r2. The SERE λ ◦ p, where λ denotes the
language consisting of the empty word, is a structural contradiction formed without the
∩ operator.

Before proceeding, we must first understand a little bit about the use of SEREs in
PSL/SVA. The set of SEREs is built from atoms which are propositional formulas us-
ing the standard operators concatenation (which we denote · ), union, intersection and
Kleene closure, plus the non-standard fusion operator ◦ . Let r be a SERE. Then the
formula r!, a strong SERE formula, holds on words containing a non-empty prefix in
the language of r. For example:

{a∗ · b∗ · c}! (1)

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, pp. 164–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Structural Contradictions 165

holds on a word starting with some number of letters satisfying a followed by some
number of letters satisfying b followed by a letter satisfying c, and is equivalent to the
LTL formula [a U [b U c]].

The formula r, a weak SERE formula, holds if either r! holds or if the word is “too
short” (ends before we have “fallen off” the automaton for r) or “too long” (is an infinite
word in which we “got stuck” forever in a starred sub-expression).1 For example:

{a∗ · b∗ · c} (2)

holds on words starting with some number of letters satisfying a followed by some
number of letters satisfying b followed by a letter satisfying c (in other words, words on
which r! holds), on (finite) prefixes of such words (words that are “too short”) and also
on infinite words consisting of an infinite number of letters satisfying a or a finite num-
ber of letters satisfying a followed by an infinite number of letters satisfying b (words
that are “too long”). Recall that Formula 1 is equivalent to [a U [b U c]]. Formula 2, its
weak version, is equivalent to the LTL formula [a W [b W c]].

The problem of structural contradictions arises in the context of weak SERE formulas.
Intuitively, a weak SERE formula r is related to its strong counterpart, r!, in the same
way that the weak until operator W is related to its strong counterpart, U. For example,
the formula (p∗ · q) is equivalent to [p W q] and the formula (p∗ · q)! is equivalent to
[p U q]. However, replacing q with a logical contradiction c gives a different result than
replacing it with a structural contradiction s. While (p∗ · c) is still equivalent to [p W c],
the current semantics give that (p∗ · s) is not equivalent to [p W s], but rather to false.

Structural contradictions also arise in the context of formulas using strong operators
(e.g., r! and U) on truncated words, words that are finite but not necessarily maximal.
The problem of structural contradictions on such words is created by the PSL abort
operator and the SVA disable iff operator. In [10] it was observed that methods devel-
oped for dealing with finite maximal words are not sufficient for dealing with truncated
words. On truncated words, the user might want to reason about properties of the trun-
cation as well as properties of the model. For instance, a user might want to specify that
a simulation test goes on long enough to discharge all outstanding obligations, or on the
other hand, that an obligation need not be met if it “is the fault of the test” (that is, if the
test is too short). The former is useful for a test designed to continue until correct output
can be confirmed, while the latter approach is useful for a test that “has no opinion” on
the correct length of a test – for instance, a monitor checking for bus protocol errors.

The truncated semantics of LTL [10] gives three views of the validity of a formula
on a truncated word. The views differ with respect to the truth value of a formula if
the word was truncated before evaluation of the formula was complete. For example,
consider the formula F p on a truncated word such that p does not hold for any letter,
or the formula G q on a truncated word such that q holds at all letters. In both cases we
cannot be sure whether or not the formula holds on the original, untruncated word.

A decision to return true when there is doubt is termed the weak view and a decision
to return false when there is doubt is termed the strong view. Thus in the weak view
the formula F p holds for any finite word, while G q holds only if q holds at every

1 Weak SERE formulas are currently part of PSL but not of SVA. However, they are included in
the Working Group-approved draft of the next version of SVA.
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letter of the word. And in the strong view the formula F p holds only if p holds at some
letter of the word, while the formula G q does not hold for any finite word. The neutral
view demands the maximum that can be reasonably expected from a finite word. Under
this approach, the formula F p holds only if p holds at some letter on the word, while
the formula G q holds only if q holds at every letter on the word. This is exactly the
traditional LTL semantics over finite words [19].

Following the truncated semantics, the formula F false holds in the weak view on a
finite word, and the same sort of thing happens on strong SERE formulas in the current
semantics of PSL and SVA. Thus the semantics can be understood as considering logical
contradictions to be satisfiable in the weak view. The same does not hold, however, for
structural contradictions, and the formula F (p ∩ (p · q)) does not hold on any word in
the weak view, and again, the same sort of thing happens on strong SERE formulas. We
provide a solution to this anomaly in the form of a semantics that treats logical and
structural contradictions in a consistent manner.

Our solution considers structural contradictions to be satisfiable in the weak view, in
the same way that the current semantics of PSL and SVA consider logical contradictions
satisfiable in that view. Why do we take this direction, rather than changing instead the
treatment of logical contradictions? The reason is that changing the treatment of logical
contradictions would have a huge impact on the complexity. In [4] it is shown that the
abort semantics of an early version of PSL [1] has non-elementary complexity, which
can be fixed by the reset semantics. These, in turn, were shown by [10] to be equivalent
to the truncated semantics, which treat logical contradictions as satisfiable in the weak
view. The difference in complexity is caused by the decision whether or not to treat
logical contradictions as satisfiable in the weak view, thus changing the treatment of
logical contradictions would return us to non-elementary complexity.

As we have seen, the idea of considering a logical contradiction to be satisfiable
arose independently as a side effect of two very different motivations. While the moti-
vation of the reset semantics presented in [4] was complexity, the equivalent truncated
semantics [10] was motivated by the use of incomplete verification methods. The work
presented in this paper shares the second motivation but not the first. Indeed, as we
show, the complexity of model checking is not affected by the changes with respect to
the existing semantics of PSL and SVA.

Finally, we emphasize that our main motivation is that if logical contradictions must
be treated as satisfiable (for whatever reason) then we want logical and structural con-
tradictions to be treated consistently, because intuitively there is no difference between
asserting a logical contradiction and asserting a structural one.

2 Preliminaries

PSL and SVA are both temporal logics consisting of LTL [20] operators, formulas formed
from semi-extended regular expressions (SEREs), clock and abort operators, and a lot
of syntactic sugar.2 It is of course not necessary to consider the syntactic sugar. Fur-
thermore, clocks are orthogonal to the issues we examine in this paper (and as shown

2 While the current version of SVA does not have LTL operators, they are included in the Working
Group-approved draft of the next version of SVA.
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Definition 1 (Semi-extended Regular Expressions (SEREs)). If b ∈ B is a proposi-
tional formula and r, r1, and r2 are SEREs, then the following are SEREs:

• λ • b • r1 · r2 • r1 ◦ r2 • r∗ • r1 ∪ r2 • r1 ∩ r2
Definition 2 (PSC formulas). If b ∈ B is a propositional formula, ϕ and ψ are PSC

formulas and r a SERE, then the following are PSC formulas:

• ¬ϕ • ϕ ∧ ψ • X! ϕ • [ϕ U ψ]
• ϕ abort b • r! • r • r → ϕ

Fig. 1. The syntax of PSC

by [12], can be written away by the rewrite rules of [17,18]), thus we use as our base
logic the logic PSC (for PSL/SVA Core), consisting of all of the above-mentioned oper-
ators except for the clock operator. Since in the absence of the clock operator there is
no difference between synchronous and asynchronous abort, we use here a single abort
operator which we denote abort. We are left with LTL operators plus formulas formed
from semi-extended regular expressions (SEREs) and the abort operator.

We define PSC formulas with respect to a non-empty set of atomic propositions P
and a given set of propositional formulas B over P . Then SEREs and PSC formulas
are defined as shown in Definitions 1 and 2 in Figure 1. Note that every propositional
formula is a SERE, thus the weak and strong Booleans of [17] are included.

The weak next operator, X, is needed in order to deal with finite words [19] and is
defined as syntactic sugaring as follows: X ϕ = ¬X! ¬ϕ. In this paper we also make
use of F ϕ = [true U ϕ] and G ϕ = ¬F ¬ϕ.

LTL is the subset of PSC consisting of degenerate SEREs of the form b as the base
case, the Boolean connectives ¬ and ∧, and the temporal operators X! and U.

2.1 Notation

Let Σ = 2P ∪ {�,⊥}; thus a letter is either a subset of the set of atomic propositions
P or one of the special letters �,⊥. We will denote a letter from Σ by 	 and an empty,
finite, or infinite word from Σ by u, v or w. We denote the length of word w as |w|.
An empty word w = ε has length 0, a finite word w = (	0	1	2 · · · 	n) has length
n + 1, and an infinite word has length ∞. We denote the ith letter of w by wi−1 (since
counting of letters starts at zero). We denote by wi.. the suffix of w starting at wi.
That is, wi.. = (wiwi+1 · · ·wn) or wi.. = (wiwi+1 · · ·). We denote by wi..j the finite
sequence of letters starting from wi and ending in wj . That is, wi..j = (wiwi+1 · · ·wj).
We make use of an “overflow” and “underflow” for the indices of w. That is, wj.. = ε
if j ≥ |w|, and wj..k = ε if j ≥ |w| or k < j.

The dual word of w, denoted w, is the word obtained by replacing every� with a ⊥
and vice versa. We use true and false to denote p∨¬p and p∧¬p, respectively, for some
atomic proposition p. We use ϕ and ψ to denote PSC formulas, p to denote an atomic
proposition, and j and k to denote natural numbers.

For languages L1 and L2 we use L1 ·L2 to denote the set {w1w2 |w1 ∈ L1 and w2 ∈
L2} and L1 ◦L2 to denote the set {w1	w2 |w1	 ∈ L1 and 	w2 ∈ L2}. For a language L
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Definition 3 (The language of SERE r).

• L(λ) = ε

• L(b) = {� | � b}
• L(r1 · r2) = L(r1) · L(r2)
• L(r1 ◦ r2) = L(r1) ◦L(r2)
• L(r∗) = L(r)∗

• L(r1 ∪ r2) = L(r1) ∪ L(r2)
• L(r1 ∩ r2) = L(r1) ∩ L(r2)

Fig. 2. The language of SERE r

we use L0 to denote {ε}, Li to denote Li−1 ·L, L∗ to denote
⋃

i≥0 Li and L+ to denote⋃
i>0 Li. We use Lω for the language composed of infinitely many concatenations of L

with itself. For an infinite word w, we define that wv = w for any word v.
We use 〈a〉 to denote a letter on which atomic proposition a and only atomic propo-

sition a holds, 〈ab〉 to denote a letter on which atomic propositions a and b and only
atomic propositions a and b hold, etc. Thus 〈a〉〈bc〉〈d〉 describes a finite word of three
letters, such that a is the only atomic proposition that holds on the first letter, b and c
are the only atomic propositions that hold on the second letter, and d is the only atomic
proposition that holds on the third letter.

2.2 The Current Semantics of PSC

The current semantics of PSC in [17,18] is defined inductively, using as the base case the
semantics of propositional formulas over letters in Σ = 2P ∪ {�,⊥}. The semantics
of propositional formulas is assumed to be given as a relation ⊆ Σ × B relating
letters in Σ with propositional formulas in B. If (	, b) ∈ we say that the letter 	
satisfies the propositional formula b and denote it 	 b. We assume that the two special
letters� and⊥ behave as follows: for every propositional formula b,� b and⊥ / b.
We further assume that on every other letter, 	 p iff p ∈ 	. Finally, we assume that
otherwise the relation behaves in the usual manner, and in particular that Boolean
disjunction, conjunction and negation behave as usual.

The language of SERE r (the words on which r holds tightly [17], or is tightly satis-
fied [18]), denoted L(r), is defined formally as shown in Definition 3 in Figure 2.

Because of its use of the special letters � and ⊥, we call the semantics of [17,18]
the �,⊥ approach to the semantics of PSC, and we use w |=�⊥ ϕ to denote that w models
ϕ under the �,⊥ approach. The semantics are given in Definition 4 in Figure 3. The
semantics of the LTL operators are standard, except that we use the dual word when
negating. The semantics of r! are straightforward: r! holds on a word w if there exists
a finite prefix of w that is in L(r). For example, (a · b · c)! holds on the word u =
〈a〉〈b〉〈c〉〈d〉.

Intuitively, the semantics of r are that nothing should go wrong before reaching a
final state in the automaton of r. In other words, that if we have not completed a word
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Definition 4 (The current semantics of PSC).

• w |=�⊥¬ϕ ⇐⇒ w |=�⊥/ ϕ

• w |=�⊥ϕ ∧ ψ ⇐⇒ w |=�⊥ϕ and w |=�⊥ψ
• w |=�⊥ X! ϕ ⇐⇒ |w| > 1 and w1.. |=�⊥ϕ
• w |=�⊥ [ϕ U ψ] ⇐⇒ ∃k < |w| such that wk.. |=�⊥ψ and for every j < k, wj.. |=�⊥ϕ

• w |=�⊥ r! ⇐⇒ ∃j < |w| s.t. w0..j ∈ L(r)
• w |=�⊥ r ⇐⇒ ∀j < |w|, w0..j�ω |=�⊥ r!
• w |=�⊥ r → ϕ ⇐⇒ ∀j < |w| s.t. w0..j ∈ L(r), wj.. |=�⊥ϕ

• w |=�⊥ϕ abort b ⇐⇒ either w |=�⊥ϕ or ∃j < |w| s.t. wj b and w0..j−1�ω |=�⊥ϕ

Fig. 3. The current semantics of PSC (the �,⊥ approach)

in L(r), then at least things have not gone so wrong that appending some number of
�’s won’t get us there. Thus the semantics are that for every prefix w0..j of w, w0..j�ω

should satisfy r!. For example, (a · b∗ · c) holds on the word v1 = 〈a〉〈b〉〈c〉〈d〉, and also
on the “too short” word v2 = 〈a〉〈b〉 and on the “too long” word v3 = 〈a〉〈b〉ω.

The semantics of r → ϕ (read “r suffix implies ϕ”) are that whenever we see a
prefix of w in L(r), we must have that ϕ holds on the continuation of w starting at the
last letter of the prefix that “matched” r.3 For example, the formula (a · b · c) → G d
holds on the word 〈a〉〈b〉〈cd〉〈d〉ω because G d holds on the suffix of the word starting
from the last letter that “matched” (a · b · c). Note the use of the dual word w. This is
because implication entails a negation of the left operand. For example, the formula
(a · b · c) → ϕ does not hold on the word w = 〈a〉〈b〉⊥ω for any ϕ, because we have
that w = 〈a〉〈b〉�ω, and letting j = 3 we find the word 〈a〉〈b〉� ∈ L(a · b · c), but
the continuation of the original word w starting from the third letter is ⊥ω, on which ϕ
surely does not hold (recall that nothing holds on ⊥, not even true).

Finally, the semantics of the abort operator are that we truncate the word at the point
where we see the abort condition, and pad the result with an infinite number of �’s.
Intuitively, this has the effect of weakening the strong operators on the truncated word.
To see this, let the original word w be w = uv, and let the truncated word be u. Then
a condition that must be fulfilled due to a strong operator can be fulfilled by one of the
�’s, if it is not fulfilled on u. For example, consider formula ϕ = [p U q] abort b on
word w = 〈p〉〈p〉〈p〉〈b〉. Truncating w at b gives us u = 〈p〉〈p〉〈p〉. Then q holds on
every � and in particular on the first one, so [p U q] holds on u�ω.

3 Structural Contradictions

The �,⊥ approach, used by both PSL [17] and SVA [18], is broken with respect to
structural contradictions. We first define formally what we mean by a logical and a
structural contradiction, then show the problem and our solution.

3 In Dynamic Logic [13,15], r → ϕ corresponds to [r]ϕ.
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Definition 5 (Logical contradiction). A logical contradiction is a propositional for-
mula that is not satisfiable.

Observation 1. A logical contradiction can be transformed into a satisfiable (and valid)
formula by substituting each proposition with either true or false.

Definition 6 (Structural contradiction). A structural contradiction is a SERE that is
not satisfiable, and that remains unsatisfiable under every substitution of each proposi-
tion with either true or false.

3.1 The Problem

Let ϕ = (a · b∗ · false) and let ϕ′ = (a · b∗ · (c ∩ (c · c))). It is easy to see that ϕ holds
on w = 〈a〉〈b〉〈b〉〈b〉 but that ϕ′ does not. The reason for this is that any propositional
formula holds on the letter �, thus adding �’s to the end of a finite word allows us to
satisfy any logical contradiction in the future. However, there is no word, not even one
consisting entirely of �’s, on which a structural contradiction holds.

As suggested in [9], it seems that allowing the special letter � to match not only
any propositional formula, but also any SERE of any length, might make the problem
disappear by definition. Under the flexible letter approach, we modify the�,⊥ approach
by defining that L(λ) = �∗ and that L(b) = {	 | 	 b} ·�∗. We then get that ϕ′ =
(a · b∗ · (c ∩ (c · c))) holds on w = 〈a〉〈b〉〈b〉〈b〉 as we want. To see this, note that for
ϕ to hold on w we need that w�ω |=�⊥ ϕ. We have that �� ∈ L(c ∩ (c · c)) because
�� ∈ L(c) and also that �� ∈ L(c · c). Thus we can let j = 5 and take the first six
letters of w�ω to be in L(a · b∗ · (c ∩ (c · c))).

The problem with this solution is that it has a harmful side effect – it changes the
semantics of formulas that do not contain structural contradictions. Let r1 = (a · b · c),
let r2 = (d · e · f), let ϕ = (r1 ◦ r2) and let w = 〈a〉〈b〉〈c〉. Then under the �,⊥ ap-
proach, using the original semantics of L(r) as defined in Section 2.2, we have that ϕ
does not hold on w. To see this, note that |w| = 3. Thus w |=�⊥ ϕ iff ∀j < 3 we have that
w0..j�ω |=�⊥ (r1 ◦ r2)!. Taking j = 2 we get that 〈a〉〈b〉〈c〉�ω |=�⊥/ (r1 ◦ r2)!, because
that requires one letter overlap between (a · b · c) and (d · e · f), but we do not have that
d holds on the third letter. Under the flexible letter approach, using the modified defini-
tions of L(λ) and L(p) of the previous paragraph, we can use more than three letters to
“match” (a · b · c). So take the first four letters of 〈a〉〈b〉〈c〉�ω to be in L(a · b · c), and
then, starting from the last letter of those four (which is �), take some number of letters
to be in L(d · e · f). Since all letters after the first � are �, we can take three �’s for
that. Then the overlap happens on a �, and thus under the flexible letter approach we
get that ϕ holds on w.

3.2 The Solution

Our proposed semantics for PSC is based on the truncated semantics of LTL [10]. The
truncated semantics is defined over the natural alphabet 2P and gives three views of
the truth value of a formula, roughly corresponding to the truth value on w�ω (the
weak view), w (the neutral view) and w⊥ω (the strong view). Formally, the truncated
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Definition 7 (Truncated semantics of LTL [10]).

holds weakly: For w over 2P such that |w| ≥ 0,

• w |=−
b ⇐⇒ |w| = 0 or w0 b

• w |=−¬ϕ ⇐⇒ w |=+
/ ϕ

• w |=−
ϕ ∧ ψ ⇐⇒ w |=−

ϕ and w |=−
ψ

• w |=−
X! ϕ ⇐⇒ w1.. |=−

ϕ

• w |=−
[ϕ U ψ] ⇐⇒ ∃k such that wk.. |=−

ψ and for every j < k, wj.. |=−
ϕ

• w |=−
ϕ abort b ⇐⇒ either w |=−

ϕ or ∃j < |w| s.t. wj b and w0..j−1 |=−
ϕ

holds neutrally: For w over 2P such that |w| > 0,

• w |= b ⇐⇒ w0 b

• w |= ¬ϕ ⇐⇒ w |=/ ϕ
• w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ

• w |= X! ϕ ⇐⇒ |w| > 1 and w1.. |= ϕ

• w |= [ϕ U ψ] ⇐⇒ ∃k < |w| such that wk.. |= ψ and for every j < k, wj.. |= ϕ

• w |= ϕ abort b ⇐⇒ either w |= ϕ or ∃j < |w| s.t. wj b and w0..j−1 |=−
ϕ

holds strongly: For w over 2P such that |w| ≥ 0,

• w |=+
b ⇐⇒ |w| > 0 and w0 b

• w |=+¬ϕ ⇐⇒ w |=−
/ ϕ

• w |=+
ϕ ∧ ψ ⇐⇒ w |=+

ϕ and w |=+
ψ

• w |=+
X! ϕ ⇐⇒ w1.. |=+

ϕ

• w |=+
[ϕ U ψ] ⇐⇒ ∃k such that wk.. |=+

ψ and for every j < k, wj.. |=+
ϕ

• w |=+
ϕ abort b ⇐⇒ either w |=+

ϕ or ∃j < |w| s.t. wj b and w0..j−1 |=−
ϕ

Fig. 4. The truncated semantics of LTL [10]

semantics of LTL is defined as shown in Definition 7 in Figure 4, where abort is the
truncation operator, termed trunc w by [10].

The neutral view is defined over non-empty words and corresponds to the traditional
LTL semantics over finite words, while the weak and strong views are defined on empty
words as well. The weak/strong views consider the empty word explicitly in the se-
mantics of b (the weak view considers it sufficient that |w| = 0 while the strong view
requires that w be non-empty), while the neutral view assumes that w is non-empty.

A third difference is that the weak and strong views make use of the definition of
“overflow” for the indices of w. For example, in Definition 7, consider the semantics of
[ϕ U ψ] under the weak and strong views. When we say “∃k”, k is not required to be
less than |w|. In the weak view, this has the effect of allowing all eventualities to hold,
because an overflow results in ε, b holds on ε, and the rest follows easily by induction.
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Definition 8 (The weak language of SERE r).

• Lweak(λ) = ε

• Lweak(b) = ε ∪ {� | � b}
• Lweak(r1 · r2) = Lweak(r1) ∪ (L(r1) · Lweak(r2))
• Lweak(r1 ◦ r2) = Lweak(r1) ∪ (L(r1) ◦Lweak(r2))
• Lweak(r∗) = (L(r)∗ · Lweak(r)) ∪ L(r)ω

• Lweak(r1 ∪ r2) = Lweak(r1) ∪ Lweak(r2)
• Lweak(r1 ∩ r2) = Lweak(r1) ∩ Lweak(r2)

Fig. 5. The weak language of SERE r

In the strong view, the overflow has the effect of not allowing any eventuality to hold,
by similar reasoning.

The view is preserved in the inductive definition (e.g., ∧ uses |=− in the weak
view, |= in the neutral view and |=+ in the strong view) except that negation switches
between the views, and aborting a formula always takes us to the weak view. Altogether,
we get that the formula ϕ holds on a truncated word in the weak view if up to the end
of the word, “nothing has yet gone wrong” with ϕ. It holds on a truncated word in the
neutral view according to the standard LTL semantics on finite words. It holds on a trun-
cated word in the strong view if everything that needs to happen in order to convince us
that ϕ holds on the original, untruncated word, has already occurred.

For LTL formulas, the truncated semantics are equivalent to the �,⊥ approach, as
shown in [11].

Theorem 2 ([11]). Let u be a word over 2P , let v be a non-empty word over 2P , and
let ϕ be an LTL formula. Then, as shown in [11], the following equivalences hold:

• u |=−ϕ ⇐⇒ u�ω |=�⊥ ϕ • v |= ϕ ⇐⇒ v |=�⊥ ϕ • u |=+
ϕ ⇐⇒ u⊥ω |=�⊥ ϕ

On infinite words, the weak, neutral and strong views coincide, as shown by [10]. Note
that this follows trivially from the �,⊥ approach, by the definition of concatenation to
the right of an infinite word u.

We are now ready to extend the truncated semantics to all of PSC. As a first step, we
can try to extend the definition of the weak language of a SERE [9] to the intersection
and fusion operators. As defined in [9], the weak language of a SERE includes words
that are in L(r), words that are “too short” (are finite prefixes of words in L(r)), and
also words that are “too long” (in which we get stuck in a starred sub-expression). The
weak language of a SERE is defined in Definition 8 in Figure 5.

Using the weak language Lweak(r), we can define that

w |= r ⇐⇒ either ∃j < |w| s.t. w0..j ∈ L(r) or w ∈ Lweak(r)

This appears to give us what we want, but there are two complications. The first is that
we get that the formula ϕ = (a · b · c) ◦ (d · e · f) holds on the word w = 〈a〉〈b〉〈c〉. Thus
we have changed the semantics with respect to formulas not containing structural con-
tradictions, exactly the problem that we had with the flexible letter approach. To see this,
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Definition 9. (The language of finite
proper prefixes of SERE r) The lan-
guage of finite proper prefixes of SERE

r, denoted F(r), is defined as follows:

• F(λ) = ∅
• F(b) = ε

• F(r1 · r2) = F(r1) ∪ (L(r1) · F(r2))
• F(r1 ◦ r2) = F(r1) ∪ (L(r1) ◦F(r2))
• F(r∗) = L(r)∗ · F(r)

• F(r1 ∩ r2) = F(r1) ∩ F(r2)
• F(r1 ∪ r2) = F(r1) ∪ F(r2)

Definition 10. (The loop language of
SERE r) The loop language of SERE r,
denoted I(r), is defined as follows:

• I(λ) = ∅
• I(b) = ∅
• I(r1 · r2) = I(r1) ∪ (L(r1) · I(r2))
• I(r1 ◦ r2) = I(r1) ∪ (L(r1) ◦ I(r2))
• I(r∗) = (L(r)∗ · I(r)) ∪ L(r)ω

• I(r1 ∩ r2) = I(r1) ∩ I(r2)
• I(r1 ∪ r2) = I(r1) ∪ I(r2)

Fig. 6. The languages F(r) and I(r)

let r1 = (a · b · c), let r2 = (d · e · f), and examine the semantics of Lweak(r1 ◦ r2)).
Since we have already seen the third letter, we want to insist that d holds on it, as we do
in the current semantics of PSC. But since w ∈ Lweak(r1), we have not done so.

The second complication is that Lweak(r) does not distinguish between the case
where formula r holds because the word is “too short” (is finite) and the case where it
holds because the word is “too long” (is infinite). Thus it will be difficult for us to use
Lweak(r) to extend the truncated semantics, in which it is required that the three views
coincide on infinite, but not on finite words.

We address the first issue by defining a language that stops one letter short of words
in L(r). In order to address the second issue, we split Lweak(r) into two languages. The
language of proper prefixes of a SERE, denoted F(r), consists of finite proper prefixes
of words in L(r), except that logical and structural contradictions are considered satis-
fiable. The loop language of a SERE, denoted I(r), extends the loop(·) of [16] to the
intersection and fusion operators. It consists of infinite words in which we get “stuck
forever” in a starred sub-expression of r. Formally, these languages are defined as in
Definitions 9 and 10 in Figure 6.

Using L(r), F(r) and I(r), we extend the truncated semantics to all of PSC as shown
in Definition 11 in Figure 7. Note that whenever we ask whether w ∈ F(r) we also ask
if w ∈ {ε}. This is because ε 
∈ F(λ) (it recognizes only proper prefixes), however we
want to preserve the property of [10] that any formula holds weakly on ε.

Examine now the semantics of r! under the neutral view. The formula r! holds neu-
trally on w if there exists a non-empty prefix of w that is in L(r). Since formula r!
is strong, its semantics under the strong view are identical to its semantics under the
neutral view. Under the weak view, the semantics are weakened. The weakening in-
cludes the empty word and words in F(r), but not words in I(r). This is because the
views should differ only on truncated words, which are finite, while words in the loop
language are infinite.

The formula r holds neutrally on w if either there exists a non-empty prefix of w
that is in L(r), or w is “too long” (is in I(r)) or “too short” (is in F(r) ∪ {ε}). Since
formula r is weak, its semantics under the weak view are identical to its semantics under
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Definition 11 (Truncated semantics of PSC). The truncated semantics of PSC consists
of the truncated semantics of LTL as shown in Definition 7 in Figure 4, extended to the
SERE-based operators as follows:

holds weakly: For w over 2P such that |w| ≥ 0,

• w |=−
r! ⇐⇒ either ∃j < |w| s.t. w0..j ∈ L(r) or w ∈ F(r) ∪ {ε}

• w |=−
r ⇐⇒ either ∃j < |w| s.t. w0..j ∈ L(r) or w ∈ I(r) or w ∈ F(r) ∪ {ε}

• w |=−
r → ϕ ⇐⇒ ∀j < |w| s.t. w0..j ∈ L(r) we have wj.. |=−

ϕ

holds neutrally: For w over 2P such that |w| > 0,

• w |= r! ⇐⇒ ∃j < |w| s.t. w0..j ∈ L(r)

• w |= r ⇐⇒ either ∃j < |w| s.t. w0..j ∈ L(r) or w ∈ I(r) or w ∈ F(r) ∪ {ε}
• w |= r → ϕ ⇐⇒ ∀j < |w| s.t. w0..j ∈ L(r) we have wj.. |= ϕ

holds strongly: For w over 2P such that |w| ≥ 0,

• w |=+
r! ⇐⇒ ∃j < |w| s.t. w0..j ∈ L(r)

• w |=+
r ⇐⇒ ∃j < |w| s.t. w0..j ∈ L(r) or w ∈ I(r)

• w |=+
r → ϕ ⇐⇒ w �∈ F(r) ∪ {ε} and ∀j < |w| s.t. w0..j ∈ L(r) we have wj.. |=+

ϕ

Fig. 7. Truncated semantics of PSC

the neutral view. Under the strong view, the semantics are strengthened. Similarly to the
weakening of r! in the weak view, the strengthening affects only finite words.

The formula r →ϕ holds neutrally on w if for every finite non-empty prefix of w
in L(r), ϕ holds on the suffix of w starting from the last letter of the prefix. Formula
r →ϕ is weak, therefore its semantics under the weak view are similar to its semantics
under the neutral view (the difference is in the strength used to check ϕ). Under the
strong view, the semantics are strengthened. The strengthening involves eliminating ε
and words that are in F(r). To understand this, notice that on such words there might
exist an extension to a word in L(r) on the original, untruncated word (considering
logical and structural contradictions to be satisfiable) and we cannot be sure whether ϕ
holds on the original, untruncated word starting from that point.

Before examining the characterisitics of the truncated semantics of PSC, let’s do a
quick sanity check. Previously we saw that on a finite word w = 〈a〉〈b〉〈b〉〈b〉, formulas
ϕ = (a · b∗ · false) and ϕ′ = (a · b∗ · (c ∩ (c · c))) behave differently under the �,⊥
approach. Under the extension to the truncated semantics, we get that both of them hold
on w. Thus it seems that in some sense the truncated semantics of PSC is treating logical
and structural contradictions in a consistent manner. In the next section we formalize
this and other characteristics of our solution.

4 Characteristics of the Truncated Semantics of PSC

In this section we show that our extension of the truncated semantics to all of PSC treats
logical and structural contradictions in a consistent manner. We show that it preserves
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important properties of the original truncated semantics, and that for formulas without
structural contradictions, it preserves the semantics of the �,⊥ approach. Finally, we
show that the complexity of model checking is the same under the truncated semantics
of PSC as under the �,⊥ approach. We start with a simple proposition.4

Proposition 3 (false vs. true ∩ (true · true)). Let ϕ be a PSC formula containing false
and let ϕ′ be the formula obtained by replacing every occurrence of false with the
structural contradiction true ∩ (true · true). Let w be a finite or infinite word over 2P .
Then the truth values of ϕ and ϕ′ on w agree under the truncated semantics of PSC.

We would like to extend Proposition 3 to cover any logical vs. structural contradiction,
and not just false vs. true ∩ (true · true). However, things are not so simple. While
every logical contradiction is equivalent to every other logical contradiction, not all
structural contradictions are created equal. For example, let r1 = true ∩ (true · true)
and let r2 = (true · true)∩ (true · true · true). Then r2 holds on words of length 1, while
r1 does not. To understand this, note that a structural contradiction contains an element
of temporality that is not present in a logical contradiction. So we should compare a
structural contradiction to a temporal logic formula that also contains such an element.
For example, while r1 is equivalent to false, r2 is equivalent to true · (true∩(true · true)),
which is equivalent to X false.

We define the order of a formula to be the length of the longest word on which
it holds weakly. Thus false and p ∩ (p · q) are of order 0 and X false and (p · q) ∩
(p · q · r) are of order 1, and we expect that a generalization of Proposition 3 would
compare only formulas of the same order. Note first that two formulas of order n are
not necessarily equivalent. For example, X false holds on any word of length 1, whereas
(p · q) ∩ (p · q · r) holds only on a subset of such words – those where p holds on the
first letter.

Let X0 ϕ denote ϕ, let Xn denote n repetitions of the X operator and let rn denote n
concatenations of r with itself. Then Proposition 4 below generalizes Proposition 3.

Proposition 4 (Xn−1 false vs. truen ∩ (truen · true+)). Let n ≥ 1, let ϕ be a PSC

formula containing sub-formula ψ = Xn−1 false and let ϕ′ be the formula obtained
by replacing every occurrence of ψ with the structural contradiction ψ′ = truen ∩
(truen · true+). Let w be a finite or infinite word over 2P . Then the truth values of ϕ
and ϕ′ on w agree under the truncated semantics of PSC.

The observant reader may have noticed that the structural contradiction λ ∩ true is
not addressed by Proposition 4. It has order 0, and it might be expected that true ∩
(true · true) = true · (λ ∩ true) have order 1 (it actually has order 0). This apparent
anomaly is resolved if we consider a clocked semantics [12]. Under a clocked seman-
tics, X0 ϕ is not equivalent to ϕ, but is the clock alignment operator, and we have that
λ∩ true is equivalent to false while true∩ (true · true) is equivalent to X0 false. The de-
tails are beyond the scope of this paper – for a thorough discussion of clock alignment,
see [14]. Finally, note that all structural contradictions of the form λ ◦ r are of order 0,
and are equivalent to false.

4 All proofs appear in the full version of this paper, available at http://www.cs.huji.ac.il/
danafi/publications.
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Proposition 4 deals with structural contradictions of a specific structure. What about
others, for example λ ∩ true, (true13 ∩ true7) ∪ (true9 ∩ true4), (a6 ∪ a4) ∩ a7, or
(a · b) ∩ (a · b · c · d · e)? Are they satisfiable in the weak view? The answer is yes, all
structural contradictions are satisfied on the empty word under the weak view (and none
is satisfied by the empty word in the strong view), as stated in the following lemma.

Lemma 5. Let ϕ be a formula in PSC. Then both ε |=−ϕ and ε |=+
/ ϕ.

Lemma 5 fulfills our intuition that on the empty word clearly nothing has yet gone
wrong (thus it should accept weakly any formula, including a structural contradiction)
and conversely the empty word provides evidence for nothing (thus it should accept
no word strongly, including a structural contradiction). Lemma 5 is important because
it shows that a fundamental property of the original truncated semantics, one that was
broken in the �,⊥ approach, is preserved by the truncated semantics of PSC. Below we
show that other important properties of the original truncated semantics are preserved
by our extension to all of PSC. Theorem 6 states that the strong view is stronger than
the neutral, which is in turn stronger than the weak.

Theorem 6 (Strength relation theorem). Let w be a non-empty word over 2P , and ϕ
be a formula in PSC. Then

• w |=+
ϕ =⇒ w |= ϕ • w |= ϕ =⇒ w |=−

ϕ

Corollary 7 states that all three views are equivalent over infinite words.

Corollary 7. If w is infinite, then w |=−
ϕ iff w |= ϕ iff w |=+

ϕ.

Finally, Theorem 8 states that if a formula holds weakly on a word w then it holds
weakly on all prefixes of w, and if a formula holds strongly on a word w then it holds
strongly on all extensions of w. We say that u is a prefix of v, denoted u � v, if there
exists a word u′ such that uu′ = v. We say that w is an extension of v, denoted w ' v,
if there exists a word v′ such that w = vv′.

Theorem 8 (Prefix/extension theorem). Let v be a word over 2P , and ϕ be a formula
in PSC. Then

• v |=−ϕ ⇐⇒ ∀u � v, u |=−ϕ • v |=+
ϕ ⇐⇒ ∀w ' v, w |=+

ϕ

Previously we have seen that even without structural contradictions, the flexible let-
ter approach and the solution using Lweak(r) differ from the semantics of the �,⊥
approach. The theorem below states that without structural contradictions, the �,⊥ ap-
proach and our extension to the truncated semantics agree.

Theorem 9. Let u be a word over 2P , v be a non-empty word over 2P , and ϕ be a PSC

formula that does not contain a SERE that is a structural contradiction. Then

• u |=−ϕ ⇐⇒ u�ω |=�⊥ ϕ • v |= ϕ ⇐⇒ v |=�⊥ ϕ • u |=+
ϕ ⇐⇒ u⊥ω |=�⊥ ϕ

Theorem 9 shows that the special letters � and ⊥ are tools that are useful in stating the
�,⊥ approach, but are not necessary in stating the semantics in the absence of structural
contradictions. Besides the fact that they don’t give us the semantics that we want,
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a major disadvantage of the �,⊥ approach is that it uses the special letters � and ⊥
to encrypt the semantics, rather than stating directly what they are, as we do in the
extension to the truncated semantics.

Intuitively, the weak view can be obtained by considering all states of a Büchi au-
tomaton to be accepting, similarly to the safety component of [3] and to the looping
acceptance condition of [21]. However, we have to be careful. The particular automa-
ton that results from applying the looping acceptance condition depends on the form
of the automaton that we start with, and not just on its original language. For instance,
consider the Büchi automaton consisting of a single (not final) state and no transitions.
Obviously, its language is empty. Now add a single transition on the letter 〈a〉. Since
the single state is not final, we have not changed the language of the automaton, which
remains empty. However, applying the looping acceptance condition to the original and
the modified automata will result in different languages. The following theorem shows
that there are automata of the same size as those implementing the current semantics of
PSL/SVA, for which a manipulation of this sort works.

Theorem 10. Let r be a SERE and let ϕ be a PSC formula.

• There exist non-deterministic finite automata (NFW) NL(r), NF (r) and a Büchi
automaton (NBW) BI (r) each with O(2|r|) states that accept L(r), F(r) and I(r),
respectively. Moreover, these automata agree on all components but the set of ac-
cepting states.

• There exists an alternating Büchi automaton (ABW) Bϕ with O(2|ϕ|) states that
accepts exactly the set of words w such that w |= ϕ.

• The satisfiability and model checking problems for formulas in PSC are
EXPSPACE-complete.

Theorem 10 shows that the proposed semantics is not harder than the current seman-
tics, and thus that complexity is not a motivation for preferring one over the other, or
for considering structural contradictions to be satisfiable. This is in contrast to logical
contradictions, for which, as shown by [4], complexity is an important consideration.

5 Conclusion and Future Work

We have presented a semantics that treats logical and structural contradictions in a con-
sistent manner. Finding a solution was complicated by the need to support not only
intersection, but also fusion and the three views (which are needed by abort). We de-
fined three separate languages for SEREs. The languageL(r) is the traditional language
of a semi-extended regular expression. The language of proper prefixes of a SERE, de-
noted F(r), consists of finite proper prefixes of words in L(r), except that logical and
structural contradictions are considered satisfiable. The loop language of a SERE, de-
noted I(r), consists of infinite words in which we get “stuck forever” in a starred sub-
expression of r. A bonus is that our semantics are defined on the natural alphabet 2P

rather than the inflated alphabet 2P ∪{�,⊥}, currently used by both PSL and SVA. The
complexity of model checking PSC is not affected by the changes we propose.

Previously [9], we used a topological characterization to prove that without the inter-
section and fusion operators, the relation between r! and r is the same as that between
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strong and weak until. Because that characterization is based on the �,⊥ approach, it
breaks down when we admit the intersection and fusion operators. Future work is to
find a topological characterization for the solution that we have presented here.
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11. Eisner, C., Fisman, D., Havlicek, J., Mårtensson, J.: The �,⊥ approach to truncated seman-
tics. Technical Report 2006.01, Accellera (May 2006)

12. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Van Campenhout, D.: The definition of a
temporal clock operator. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer, Heidelberg (2003)

13. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput.
Syst. Sci. 18(2), 194–211 (1979)

14. Fisman, D.: On the characterization of until as a fixed point under clocked semantics.
In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 19–33. Springer, Heidelberg (2008)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
16. Harel, D., Sherman, R.: Looping vs. repeating in dynamic logic. Information and Control 55,

175–192 (1982)
17. IEEE Standard for Property Specification Language (PSL). IEEE Std 1850TM-2005, Annex

B (2005)
18. IEEE Standard for SystemVerilog – Unified Hardware Design, Specification, and Verification

Language. IEEE Std 1800TM-2005, Annex E (2005)
19. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New

York (1995)
20. Pnueli, A.: The temporal logic of concurrent programs. Theoretical Computer Science 13,

45–60 (1981)
21. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-

tion 115(1), 1–37 (1994)



Synthesizing Test Models from Test Cases
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Abstract. In this paper we describe a methodology for synthesizing test mod-
els from test cases. The context of our approach is model-based graphical user
interface (GUI) testing of smartphone applications. To facilitate the deployment
of model-based testing practices, existing assets in test automation should be uti-
lized. While companies are interested in the benefits of new approaches, they
may have already invested heavily in conventional test suites. The approach pre-
sented in this paper enables using such suites for creating complex test models
that should have better defect detection capability. The synthesis is illustrated
with examples from two small case studies conducted using real test cases from
industry. Our approach is semi-automatic requiring user interaction. We also out-
line planned tool support to enable efficient synthesis process.

1 Introduction

Model-based software testing [1] has several obvious advantages over conventional test
suite testing where test cases are crafted manually. For instance, on-line tests generated
from state machines can reach significantly higher coverage in testing non-deterministic
systems under test (SUTs) than linear and static test suites. Moreover, maintenance of
large test suites is more difficult when changes occur in the SUT. Frequent changes
are common especially in graphical user interface (GUI) testing that is typically used
to check the functionality of the SUT from the perspective of the end users before a
release is made.

The problems with conventional test automation approaches have resulted in many
bad experiences, and manual testing is still widely considered as the primary quality
assurance method at the system and acceptance level testing of GUI-intensive software
[2]. While unit and integration level test automation can significantly improve code
quality and enable efficient refactoring, system level test automation entails much more
challenges. This is due to the domain-specific nature of system level testing; at the unit
and integration levels all SUTs seem more or less similar, depending on the program-
ming language used; the same white-box testing and static analysis techniques work
across different domains. At the system level, however, the context comes into play:
testing a banking system can be quite different from testing a set-top box.

The deployment of model-based system testing has been hampered in many contexts
in spite of its many benefits [3,4]. In our earlier work, we have developed a domain-
specific solution to the GUI testing of S60 [5] smartphone applications that should
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be easier to deploy than more generic methodologies [6,7]. The approach consists of
a domain-specific modeling language based on LSTSs (Labeled State Transition Sys-
tems) augmented with S60 specific restrictions, a model-library containing test models
for the basic smartphone applications such as calendar, contacts, camera, and messag-
ing, and tools for on-line test generation. In on-line testing, the idea is to generate tests
while they are executed, thus testing can be seen as a game between the test automation
system and the SUT [8].

In the course of developing our approach we have identified another problem in de-
ployment: companies may have invested huge sums of money to craft test suites and
thus can be unwilling to invest to the development of test models replacing the former
way of working. Thus, in order to facilitate the deployment of our approach, we have
developed a semi-automatic method for synthesizing test models from test cases. This
enables utilizing the existing assets when moving from test suite testing to model-based
one. The method is domain-specific to enable a higher level of automation in the syn-
thesis and promote the usefulness of the resulting models. However, a similar method
could presumably be developed for some other domain, using similar principles.

In this paper we describe the method and the case studies we have conducted. In ad-
dition, since model synthesis is quite different from the traditional way of creating mod-
els, and we compare the synthesized model to a one crafted by hand using a top-down
approach [9]. A tool support for the synthesis is also outlined; its implementation will
be future work. The remainder the paper is structured as follows: Section 2 describes
the context of our contributions, i.e., model-based GUI testing of mobile applications.
Then, we move on to present our approach for model synthesis in Section 3. Sections 4
and 5 present the case studies and discuss the results and the future work.

2 Model-Based GUI Testing of Mobile Software

Action words and keywords [10,11] are commonly used concepts in software test au-
tomation, especially in GUI testing. The basic idea is to separate different concerns:
what are the important actions to be tested and how they are implemented. Action words
are high level descriptions of functionality; in the smartphone context there can be dif-
ferent action words for opening the messaging application, taking a photo with the
camera, or adding a new contact, for instance. Keywords, on the other hand, specify the
exact sequence of events that are needed to implement the functionality described by
an action word. In S60 GUI, for instance, there can be multiple ways of opening a mes-
saging application (short cut, menu, some other application). Each of the different ways
can be encoded as a separate sequence of key strokes that accomplish the action. Fur-
thermore, to receive input from the SUT, some keywords can be dedicated to verifying
that a given text string is found on the display, for instance.

The main benefit of action words and keywords is in enabling non-technical testers
to design action word level tests without deep knowledge of the underlying keyword
implementations. Moreover, they ease the tedious maintenance tasks often hindering
the use of GUI test automation; in many cases minor GUI changes can be restricted to
the keyword level. Action words and keywords can be used in conventional approaches
so that the keywords are implemented as a library of functions, one function for each
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keyword. Action words are then specified using spread sheets, for instance, that list the
sequences of keywords needed to implement the corresponding action word. Finally,
test cases can be encoded as sequences of action words using spread sheets as in the
previous step.

However, linear and static tests are limited in their ability to find new defects. Thus,
the true power of the action words and keywords is realized when combined with auto-
matic test generation based on behavioral models. For this purpose, we have chosen to
use Labeled State Transition Systems (LSTSs) [12] for test modeling. LSTS is an ex-
tension of the more common Labeled Transition System (LTS) formalism where labels
have been added to states as well as transitions. Action words and keywords are used as
transition labels in the models. The formal definition for LSTS is as follows:

Definition 1 (LSTS). A labeled state transition system, abbreviated LSTS, is defined
as a sextuple (S,Σ,Δ, ŝ,Π,val) where S is the set of states, Σ is the set of actions
(transition labels), Δ ⊆ S×Σ× S is the set of transitions, ŝ ∈ S is the initial state,
Π is the set of attributes (state labels) and val : S−→ 2Π is the attribute evaluation
function, whose value val(s) is the set of attributes in effect in state s.

Notation of internal transitions makes no sense in test modeling, because our behavioral
models have to be strictly deterministic for test generation. Our definition differs from
the original one in that respect.

Actions can be divided into three categories according to how they deal with the
SUT: input, output and setup actions. Input actions correspond to user input, and output
actions get information from the SUT. Setup actions affect the SUT just as input actions,
but in ways not accessible to an ordinary user. Setup actions might, for example, directly
create or remove files in memory or alter internal settings. Action words often combine
aspects of more than one category, whereas keywords usually fall neatly into one or
another.

To enable modular and compositional test modeling, parallel composition is used for
combining test model components. The parallel composition of LSTSs [12] is based on
a rule set explicitly defining which actions are executed synchronously. An action of
the composed LSTS can be executed only if the corresponding actions can be executed
in each component LSTS, or if the component LSTS is indifferent to its execution.
The following definition is slightly modified in two respects; internal transitions are not
needed and handling of state propositions is made more straightforward:

Definition 2 (Parallel composition ‖R). ‖R (L1, . . . ,Ln) is the parallel composition of
LSTSs L1, . . . ,Ln, Li = (Si,Σi,Δi, ŝi,Πi,vali), according to rules R, with ∀i, j;1≤ i <
j≤ n : Πi∩Π j = /0. Let ΣR be a set of resulting actions and

√
a “pass” symbol such

that ∀i;1 ≤ i ≤ n :
√

/∈ Σi. The rule set R ⊆ (Σ1 ∪{
√})× ·· ·× (Σn ∪{

√})×ΣR.
Now ‖R (L1, . . . ,Ln) = repa((S,Σ,Δ, ŝ,Π,val)), where

– S = S1×·· ·×Sn

– Σ = ΣR

– ((s1, . . . ,sn),a,(s′1, . . . ,s
′
n)) ∈ Δ if and only if there is (a1, . . . ,an,a) ∈ R such

that for every i (1≤ i≤ n) either
• (si,ai,s′i) ∈ Δi or
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• ai =
√

and si = s′i
– ŝ = (ŝ1, . . . , ŝn)
– Π = Π1∪·· ·∪Πn

– val((s1, . . . ,sn)) = val1(s1)∪·· ·∪ valn(sn)
– repa is function restricting LSTS to contain only the states which are reachable

from the initial state ŝ.

Parallel composition offers tools for implementing rudimentary variables, which the
basic LSTS formalism lacks. A variable can be created as a single component model,
whose states correspond to different values. The actions in such a variable model are
synchronized to those of the other component models so that different values allow
different actions. These synchronized actions can be used to test the value of the variable
or to change it. The idea of using compositional test modeling and separate variable
components is motivated by existing tools, that proof the concept [13].

To hide the complexity inherent in test models and test generation algorithms, and
so to facilitate the deployment of our model-based testing methodology, we have intro-
duced a web based testing service [7]. The idea is that test service users can order tests
using a simple web interface specifying the desired coverage requirements. The cover-
age requirements are then used for driving on-line test generation based on an extensive
model library containing test models for basic S60 applications [9].

We believe that such a service can greatly ease the adoption of model-based testing
in smartphone application testing. However, companies have existing assets in conven-
tional test suites, and they might prefer to utilize them when migrating from traditional
test suite based automation to a model-based one. This led us to research an approach
for synthesizing test models from test cases.

3 Synthesis of Test Models

The synthesis process we have developed allows the creation of a single test model
from a number of test cases. The cases must be strictly linear to begin with; they should
also be specific in detail. The resulting model will have the same level of abstraction
(action word/keyword) as the original cases. Test cases which verify the state of the
SUT often may be easier to handle, but the process is designed to also work with few
or no verifications.

The process has five distinct phases. In the first phase the relevant actions are listed
and parameterized. The second phase consists of creating variables to hold some of the
state information of the SUT. The third phase takes care of the initialization sequence
of the SUT. In the fourth phase recurring states within the test cases are marked and
labeled. Finally, the fifth phase sees the test cases merged together with the variables
and the initialization to form a new test model.

Although the phases are presented consecutively, their order is not fixed. Only the
merging phase is dependent on the others and must therefore be performed last. The oth-
ers may be performed in any order, and it may even be a good idea to consider them side
by side. Throughout the process description we will present a running example, starting
with the three imaginary action word level test cases in Figure 1. In the first the phone
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SMS-Send

OpenMessaging

VerifyMessaging

CreateSMS Send CloseMessaging

VerifyNoMessaging

SMS-Receive

ClearInbox

GenerateSMS

OpenMessage
ExitMessaging

WaitForMessage

SMS-Send-Receive

OpenMessaging

NewSMS Send CloseMessaging

WaitForMessage OpenMessage
CloseMessaging

Fig. 1. The three initial example test cases

sends an SMS to itself, in the second it receives and opens an automatically generated
SMS, and in the third it first sends an SMS and then receives it. Note that the actions
CreateSMS and GenerateSMS perform the same task, as do the actions CloseMessag-
ing and ExitMessaging. They are used to demonstrate the effects of different actions
sequences corresponding to the same functionality.

3.1 Action Definition

The first thing to do is to list all the actions used within the source test cases. Possible
parameters should not be included. Once listed, each action is assigned two values:
weight and idempotence status.

An action’s weight represents its situational specificity. An action with a high weight
is one whose execution with a certain parameter is likely to lead the SUT into the
same state every time. This may be either because the action is only executable in
very few states or because it resets parts of the SUT. An action with a low weight, on
the other hand, is one which can be executed in many different situations and whose
effects depend on the current situation. Weights are used in the merging of test cases. If
identical action sequences taken from different test cases or different parts of the same
test case have a high combined weight, it is likely that the sequences are related to the
same functionality of the SUT. If this is the case, the two test cases may be merged
at the points after the sequences, giving them two different ways to proceed from that
point. The comparison is made with sequences instead of single actions because a long
series of actions is likely to be far more situationally specific than any of its actions
individually.

Actions may be marked as idempotent. The execution of an idempotent action leaves
the SUT in the state it had before the execution. Most idempotent actions are used to
get information out of the SUT. An idempotent action can be discarded from a test case
without breaking it, although the testing value of the case may drop.

Finding the right weights is not an exact process. Action words should generally be
given high weights, whereas keywords’ weights vary case by case. In our running exam-
ple all actions are action words. This means they have a high situational specificity, and
we can give all of them maximal weights. VerifyNoMessaging and VerifyMessaging
are idempotent, the rest are not.
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Following are some examples with keywords: A keyword for resetting the SUT has
a very high weight, since by default it always leaves the SUT in the same state. It is
clearly not idempotent. A keyword which verifies that a given text is visible on the
screen is idempotent and has a relatively high weight, since the same text does not
very often occur in different situations. A keyword indicating that nothing should be
done for a period of time has minimal weight, since waiting is always possible. It is
not idempotent, because it is generally used in situations where the state of the SUT is
expected to change during the wait.

3.2 Variable Definition and Integration

Embedding a part of the state of the SUT into variables is an important part of the
synthesizing process. Without separate variables, the states of the test cases may contain
so much information that they can never be merged together. The first, most difficult
task is to identify the variables to be created. As a general rule, those properties of the
SUT which are independent of the current screen of the SUT yet affect execution should
be moved to variables. Having too few variables reduces the number of potential merge
points and thereby limits the functionality of the final model. Too many variables mean
more work in creating them and may increase the size of the final model, but should not
reduce its quality.

After the variables have been determined, each is given a number of possible values.
The number of values should be kept as small as possible, because they can cause
exponential growth in the final model. Once the values have been chosen, each may be
given one or more setup actions as assignment actions. In the final model, the execution
of the assignment action will automatically set the variable into the designated value.
A single action may act as an assignment action for multiple values, as long as they
do not belong to the same variable. Finally, for each variable one of its values may be
chosen as the initial value. The initial value should either have an assignment action or
be otherwise guaranteed when testing begins. A variable may be left uninitialized, but
then no action based on it can be taken until it has been given a value during a test run,
and the size of the resulting model is also somewhat increased.

Once the variable definitions are ready, variable models are created for them. For this
purpose we have made a simple Python script which reads in the variable definitions
in CSV (Comma Separated Values) format and automatically produces an LSTS for
each variable. The script also creates a variable initialization model which can set the
variables to specific values before a test run by using the assignment actions.

The ready variables must be integrated into the test cases. This is performed by
adding preconditions and postconditions to the actions in the test cases. Preconditions
specify the values of the variables necessary for the successful execution of the action.
Postconditions, conversely, define the changes of values caused by the execution of the
action. Assignment actions do not require explicit postconditions, but are synchronized
directly into appropriate variables. For optimal result, pre- and postconditions should
be placed right around the relevant action, not around a whole action sequence.

In our running example, we create a single variable to record whether there is a mes-
sage on its way to the phone, so that we will be free to merge the test cases at the main
screen, regardless of whether messages have been sent or not. We use GenerateSMS
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SMS-Send

OpenMessaging

VerifyMessaging

CreateSMS Send CloseMessaging

VerifyNoMessaging{MessageOnItsWay == False} {MessageOnItsWay := True}

SMS-Receive

ClearInbox

GenerateSMS

OpenMessage ExitMessaging

WaitForMessage

{MessageOnItsWay == True}

{MessageOnItsWay := False}

SMS-Send-Receive

OpenMessaging

NewSMS Send CloseMessaging WaitForMessage

OpenMessage CloseMessaging{MessageOnItsWay == False} {MessageOnItsWay == True}{MessageOnItsWay := True}

{MessageOnItsWay := False}

MessageOnItsWay

{MessageOnItsWay == True}{MessageOnItsWay == False}

{MessageOnItsWay := True}

{MessageOnItsWay := False}

GenerateSMS

{MessageOnItsWay := True}{MessageOnItsWay := False}
Init-Variables

BeginInitVariables
GenerateSMS

EndInitVariables

Fig. 2. The example test cases with pre- and postconditions added

as an assignment action for the value True and pick False as the initial value, which
should be safe for a new test run. Figure 2 shows the variable model and the variable
initialization model, and above them the test cases with pre- and postconditions marked
with braces.

3.3 Initialization Sequence Definition

In order to automatically set the SUT into its initial state before a test run, an initial-
ization sequence is defined. The sequence contains those setup actions which should
always be executed before a test run. They could, for example, reset the SUT, disable
features that might interfere with testing, and create suitable data. Variable initialization
should not be included here. As a rule, all setup actions should be within the initializa-
tion sequence or act as an assignment action for a variable. If a setup action belongs to
neither group, more variables might be needed.

The rest of the initialization phase could be performed automatically with the in-
formation from the earlier phases, although we do not currently have tools for it. The
initialization sequence is made into a general initialization model. All non-idempotent
setup actions are removed from the beginnings of the test cases (by now they are all in
the general initialization model or the variable initialization model), and synchroniza-
tion is added to connect them into the initialization models.

The changes made into the test cases in the example are very minor, as Figure 3
shows. The only setup action is ClearInbox, which has been moved into a model of
its own.

3.4 State Label Definition and Assignment

The existence of the variables allows the test cases to be merged with relative freedom,
but there is no guarantee that suitable merging points can be automatically identified.
For this purpose state labels are added into the test cases. The important states of the
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SMS-Send

OpenMessaging

VerifyMessaging

CreateSMS Send CloseMessaging

VerifyNoMessaging{MessageOnItsWay == False} {MessageOnItsWay := True}

SMS-Receive
GenerateSMS

OpenMessage ExitMessaging

WaitForMessage

{MessageOnItsWay == True}

{MessageOnItsWay := False}

SMS-Send-Receive

OpenMessaging

NewSMS Send CloseMessaging WaitForMessage

OpenMessage CloseMessaging{MessageOnItsWay == False} {MessageOnItsWay == True}{MessageOnItsWay := True}

{MessageOnItsWay := False}

Init-General

BeginInitGeneral

ClearInbox

EndInitGeneral

Fig. 3. The example test cases with setup actions separated

SMS-Send

OpenMessaging

VerifyMessaging

CreateSMS Send CloseMessaging

VerifyNoMessaging{MessageOnItsWay == False} {MessageOnItsWay := True}

SMS-Receive
GenerateSMS

OpenMessage ExitMessaging

WaitForMessage

{MessageOnItsWay == True}

{MessageOnItsWay := False}

SMS-Send-Receive

OpenMessaging

NewSMS Send CloseMessaging WaitForMessage

OpenMessage CloseMessaging{MessageOnItsWay == False} {MessageOnItsWay == True}{MessageOnItsWay := True}

{MessageOnItsWay := False}

Fig. 4. The example test cases with filled states marking the main screen

SUT are identified and a name is given to each. Especially important are the starting and
ending states of the test cases (ideally the same state); the basic states of other major
SUT screens visited during the test cases are also good choices. Properties included in
variables should be ignored.

Once the important states have been selected, state labels with suitable parameters
are placed into test cases at every point in which the SUT is in a chosen state. The
state labels can be handled as LSTS attributes; alternatively they can be interpreted as
idempotent actions with maximal weights. Either way, merges will always be attempted
at their points of execution. They can be easily removed from the final model so that
they do not interfere with its execution.

In our example, we decide that the only noteworthy state is the main screen of the
phone and label it, as shown in Figure 4. The states in question have been filled.

3.5 Merging of the Component Models

Now that the test cases have been prepared we can perform the actual merging. This is
done with the merger program, which looks for identical sequences of sufficient weight
within the test cases and suggests merging their destination states. The program may
also offer false suggestions, i.e. merges that would result in an erroneous model. Be-
cause of this, the legality of each merge must be manually checked to ensure the validity
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Merged

OpenMessaging

NewSMS

Send

CloseMessaging
WaitForMessage

OpenMessage

CloseMessaging

{MessageOnItsWay == False}
{MessageOnItsWay == True}

{MessageOnItsWay := True}

{MessageOnItsWay := False}

VerifyMessaging

CreateSMS

{MessageOnItsWay == False}

Send

GenerateSMS

VerifyNoMessaging

ExitMessaging

Fig. 5. The model merged from example test cases

Composed

BeginInitGeneral

ClearInbox
EndInitGeneral

BeginInitVariables

VerifyNoMessaging

EndInitVariables

OpenMessaging

NewSMS

{MessageOnItsWay == False}

Send

CreateSMS

{MessageOnItsWay == False}

Send

{MessageOnItsWay := True}

CloseMessaging

GenerateSMS

EndInitVariables

OpenMessaging

NewSMS

CreateSMSGenerateSMS
{MessageOnItsWay == True}

OpenMessage

{MessageOnItsWay := False}

CloseMessaging

ExitMessaging

VerifyNoMessaging
VerifyMessaging

VerifyMessaging

WaitForMessage

Fig. 6. The example model after parallel composition

of the model. The merging results in a control model which contains the functionality of
the original test cases, but without the information encoded into variables. The merged
model, variable models and initialization models are then passed through parallel com-
position, which creates an executable test model.

While the test model obtained this way is usable, it may pose difficulties for test gen-
eration. That is because the model is likely to contain many paths leading to deadlocks,
i.e. states with no outgoing transitions, resulting either from a denied precondition or
the end of a test case that could not be merged anywhere. The model may be cleaned by
removing all the dead paths, but this is not always a good idea. If the test cases could be
looped back into themselves and deadlocks occur only or mostly in places where a pre-
condition fails, the clean-up procedure should be safe to perform. Conversely, if many
test cases ended in unique states and caused deadlocks at the end, the clean-up could
remove relevant functionality. In this case the model may be better left as-is, and the
test generation algorithm must take care not to guide the execution toward a deadlock
prematurely.
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Cleaned

BeginInitGeneral

ClearInbox
EndInitGeneral

BeginInitVariables

VerifyNoMessaging

EndInitVariables

OpenMessaging

NewSMS

{MessageOnItsWay == False}

Send

CreateSMS

{MessageOnItsWay == False}

Send

{MessageOnItsWay := True}

CloseMessaging

GenerateSMS

EndInitVariables

CloseMessaging

GenerateSMS
{MessageOnItsWay == True}

OpenMessage

{MessageOnItsWay := False}

ExitMessaging

VerifyNoMessaging
VerifyMessaging

WaitForMessage

Fig. 7. The final, cleaned model

Figure 3.5 shows the model obtained from our example test cases. Merges have been
performed at matching actions and state labels. Adding the initialization models and the
variable model in parallel composition results in the usable model depicted in Figure
6. It would seem that in this case the cleaned model (Figure 7) would be more useful,
since the dead end on the right likely serves no practical purpose; it depicts a situation
where a new message is created with one already on its way, causing the preconditions
to block its sending.

4 Case Studies

We have performed two small scale case studies to test our synthesizing methodology.
The original sequences were linear keyword level test cases picked from a much larger
set of test cases for S60 applications developed by one of our industrial partners. The
first case study used seven test cases for the Phonebook application. The second one had
nine for the Messaging application, concentrating on short and multimedia messages
(SMS and MMS). Both case studies used the same set of 30 keywords. The Phonebook
test cases had 193 actions altogether, the Messaging test cases 363. Three of the test
cases for the Messaging case study can be seen in Figure 8, with some changes made
for readability and to adapt them for a single phone.

Both case studies used the same set of keywords, which we were already familiar
with from our earlier work. Giving keywords their weights was therefore easily done,
though the values were somewhat arbitrary; we had yet to perform enough experiments
to find the best values. The Phonebook case proved to require seven variables, six to
hold information about existing contacts and groups and one for incoming messages.
The Messaging case required six variables, two for the existence of messages and re-
ports and the rest for various settings. The first case labeled the idle state and the con-
tacts and groups screens, the latter labeled the idle state and the screens for SMS and
MMS writing.
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kw_DeleteMessages all/all

kw_SetSMSCenter $Master$

kw_LaunchApp §Messages§/CloseIfRunning

kw_WaitTime 5

kw_PressSoftkey Options

kw_SelectMenu Settings

kw_SelectMenu Short message

kw_SelectMenu Delivery report/false

kw_PressSoftkey Options

kw_SelectMenu Change

kw_SelectMenu Yes

kw_PressSoftkey Back

kw_PressSoftkey Back

kw_SelectMenu Write message

kw_SelectMenu Short message

kw_WaitTime 2

kw_Type S1->§ui_device_phone_number§

kw_PressHardkey <South>

kw_Type Some content for mms

kw_PressHardkey <Send>
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kw_PressSoftkey Yes
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kw_SetNetworkMode DUAL
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kw_WaitTime 5

kw_SelectMenu Write message
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kw_WaitTime 5
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kw_PressSoftkey Exit
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kw_PressHardkey <Clear>
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kw_PressSoftkey Yes

vw_VerifyText Delete message?/5

kw_PressSoftkey Back

kw_PressSoftkey Exit

vw_VerifyBitmap §Idle§

kw_DeleteAccessPoint $Master$

kw_AddAccessPoint $Master$

kw_SetMMSSettings $Master$

kw_PutFile $5764_350k.3gp$
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kw_LaunchApp §Messages§/CloseIfRunning

kw_WaitTime 3

kw_SelectMenu Write message

kw_SelectMenu Multimedia message

vw_VerifyText subject/10

kw_Type S1->§ui_device_phone_number§

kw_PressHardkey <South>

kw_Type 5764 MMS message

kw_PressHardkey <South>

kw_Type Some content for MMS

kw_PressSoftkey Options

kw_SelectMenu Insert file

kw_SelectMenu Video

vw_VerifyText Select file/10

kw_SelectMenu 5764_350k

kw_PressSoftkey Ok
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kw_SelectMenu 5764_300k

vw_VerifyText Options/10

kw_PressHardkey <Send>

vw_VerifyText Messages/60

kw_PressSoftkey Exit

kw_DeleteFile $5764_350k.3gp$

kw_DeleteFile $5764_300k.3gp$
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kw_Appstate §Idle§ kw_AppState §Idle§kw_AppState §Idle§

Fig. 8. Three of the nine Messaging test cases
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Fig. 9. The final Messaging model

After the merge, the Phonebook model had 126 and the Messaging model 192 states.
Parallel composition and cleanup brought state counts to 12523 and 2327, respectively.
The Phonebook case shows the potentially exponential growth caused by variables.
This happened because the variables controlled relatively small portions of the model
and had little to do with each other. Conversely, the variables in the Messaging case
were interconnected to some degree, and affected control to a much greater extent; for
example, many individual test cases specified certain settings before sending a message.
As a result, large portions of the control model were reachable only with certain variable
values. Figure 9 shows an overview of the final Messaging model, illustrating its scope
and complexity. Although the models are too large for human understanding, their size
is not a problem for our automated test generation tools.

The quality of the final models appeared to be comparable to the test models in our
test model library [9] created by hand from scratch, although not quite equal to them.
The synthesized models contained less functionality, but this was a result of the original
choice of test cases, not a failing of the method itself. A notable difference was the
higher granularity of the synthesized models: often actions which could be performed
separately in hand-made models were forcibly chained together in synthesized ones.
However, this tendency did not seem to reach truly detrimental levels, and the number
of possible action sequences was still magnitudes higher than in the original linear test
cases. The final difference between the synthesized models and our old models was
that keyword level test cases naturally became a single keyword level model, not a
combination of keyword and action word level models as in our model library. The
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action word level might be added using the bottom-up modeling technique presented
in [6]. Presumably action word level test cases could be combined into an action word
level model and the action words then refined as in original test cases, though we have
yet to attempt that.

In both case studies, most of the effort during the synthesizing process went into vari-
able definition and integration. In the Phonebook case, this was mostly manual work:
the variables were simple, but referenced often. With Messaging the situation was dif-
ferent. There much time was spent in deciding what exactly should be modeled into
variables, and how exactly would they be integrated into the test cases. Placing the pre-
and postconditions also took considerable time, mostly because the complexity of the
variables demanded great care in integrating them into control. We found merging to be
relatively easy, but it might pose more difficulties to someone not used to test modeling.
It definitely requires some understanding of the implemented variables, which implies
that the whole process might be best performed by a single person.

Both of the case studies were performed by a single person and each required less
than a day to complete. It seems quite reasonable to us that with good tools a person
familiar with the process could synthesize a model of considerably greater size within
a single day. That would be notably faster than creating a comparable test model from
scratch, and would not require a similar expertise in modeling. Fortunately the most
time-consuming phase, variable definition and integration, seems likely to scale rea-
sonably well with the number of test cases (probably linear effort or less). The least
scalable phase by far is merging of the component models (potentially quadratic or
even exponential effort), which at least might be fully automatable.

5 Discussion

In this paper we have described an approach for synthesizing test models from test
cases. In addition, we presented the results of two small case studies where the approach
was applied for creating test models from existing test cases in the domain of S60 GUI
testing. The synthesis is semi-automatic and thus requires user interaction to achieve
useful results. A tool supporting this interaction was also sketched.

Our approach is domain-specific in the sense that the set of keywords and the corre-
sponding weight values must be decided based on the domain knowledge. In our case
studies this was easy because the same person who had built our model library con-
ducted the experiments. However, the other phases of the synthesis process should be
applicable also in other contexts.

There exists a large body of knowledge about the synthesis process. While most, if
not all, of the existing approaches have been originally developed for design, analysis
and code generation purposes, they may be useful for test model synthesis also. Amyot
and Eberlein have compared twenty-six solutions for constructing design models from
scenarios [14]. Moreover, Liang, Dingel, and Diskin have developed comparison crite-
ria for comparing different algorithms and applied the criteria to compare twenty-one
different approaches [15]. However, it seems that domain knowledge can improve the
synthesis; we first experimented with a more generic approach [16], but decided to de-
velop our own to better fit the needs of our context. An extensive study would be needed
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to analyze the other existing approaches for their applicability to test model creation,
but this lies outside the scope of this paper.

Some of the currently manual phases in our synthesizing process might be auto-
mated, most notably initialization and parts of modeling of variables. The action
weights and state labels must be set manually. The defining and integration of vari-
ables also requires user input, but actual variable models can be created automatically.
It might also be possible to automate merging totally, not just finding the potential merge
points. In the two case studies, potential merge points occurring at state labels were al-
ways mergeable; this seems likely to be a general rule, as long as the labels have been
placed well. The merge points based on action sequences varied, some being mergeable
and others not. However, in these cases the sequence merges did nothing that could not
have been replicated with well-placed state labels. Based on these observations, it might
be possible to automate the merging to always merge at labels and disregard sequences
altogether, but more testing is required before implementing such changes.

Although the most work-intensive part of the process, the creation and integration
of variables, cannot be truly automated, it could be substantially eased by proper tools.
These should offer both an easy way to define variables, preferably hiding the models
altogether, and a simple method for setting pre- and postconditions. Some algorithm for
suggesting potential variables would be a highly useful feature, but difficult to design.

In the future, in addition to developing tool support, there is also the need to conduct
wider case studies and to compare the test coverage that can be achieved with hand-
crafted versus synthesized test models in actual on-line test generation.

Acknowledgements

This paper reports results of research funded by the Finnish Funding Agency for Tech-
nology and Innovation (TEKES), Nokia, Conformiq Software, F-Secure, and Plen-
ware, as well as the Academy of Finland (grant number 121012). For details, see
http://practise.cs.tut.fi/project.php?project=tema.

References

1. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan Kauf-
mann, San Francisco (2007)

2. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing: A Context-Driven
Approach. Wiley, Chichester (2001)

3. Robinson, H.: Obstacles and opportunities for model-based testing in an industrial software
environment. In: Proceedings of the 1st European Conference on Model-Driven Software
Engineering, Nuremberg, Germany, pp. 118–127 (2003)

4. Hartman, A.: AGEDIS project final report (2004) (cited June 2008),
http://www.agedis.de/documents/FinalPublicReport%28D1.6%29.PDF

5. S60. (Cited June 2008), http://www.s60.com
6. Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T., Satama, M.: Towards deploying
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Abstract. We present a tool D-TSR for parallelizing SMT-based BMC over a
distributed environment targeted for checking safety properties in low-level em-
bedded (sequential) software. We use a tunneling and slicing-based reduction
(TSR) approach to decompose disjunctively a BMC instance (at a given depth)
into simpler and independent subproblems. We exploit such a decomposition to
cut down communication cost and idle time of CPUs during synchronization
while solving BMC instances. Our approach scales almost linearly with number
of CPUs, as demonstrated in our experimental results.

1 Introduction

Bounded Model Checking (BMC) provides a complete design coverage with respect
to a correctness property for a bounded depth. In spite of using richer expressive the-
ories such as SMT (Satisfiability Modulo Theory in a decidable subset of first order
logic) to obtain a compact representation, each BMC instance grows bigger in size and
harder to solve with successive unrolling of the design. One possible solution is to use
a distributed environment to solve each BMC instance. Due to communication over-
head and inherent synchronization in such an environment, there are many challenges
in achieving linear scalability, or even close to it. Further, due to uneven (and often un-
predictable) work loads and unreliable worker machines, the problem becomes all the
more challenging.

Several techniques for distributed BMC have been proposed previously [1,2,3]; how-
ever, they do not address the scalability requirements adequately. In a distributed BMC
approach [1], each BMC instance is partitioned structurally so that each processor gets
an exclusive number of consecutive BMC time frames. The distributed problem is then
solved by a distributed SAT, managed by a central server. Though this method over-
comes the memory limitation of a single processor, and employs fine grain paralleliza-
tion of a SAT solver, it incurs significant communication overhead during exchanges
of lemmas and propagation of values across partitions. In [2], each BMC instance is
solved independently on a separate client. As each BMC instance is not partitioned,
there is a significant slow down as unrolling depth increases. In [3], an initial partition
is generated using partial assignments for initial states and properties being verified.
Each partition is sent to a client, which solves the BMC problem for depths 1 to some
bound N using the partial state assignments. Note, each client solves the entire BMC
problem, albeit for different initial states. One can use parallel SAT-solvers such as [4,5]
to solve each BMC instance. In general, parallelizing a DPLL-based SAT solver incurs
large communication and synchronization costs. Our presented approach is orthogonal
to the above-mentioned approaches.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, pp. 194–199, 2009.
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1.1 Tool Overview

We present a tool D-TSR for parallelizing SMT-based BMC over a distributed environ-
ment, where we partition disjunctively a BMC instance (at a particular depth) using a
Tunneling and Slicing-based Reduction (TSR) approach into smaller and independent
subproblems, based on tunnels, i.e., a set of control paths [6]. Each sub-problem is sim-
plified further and solved independently. Our distribution framework comprises a single
controller (master) and several workers (clients).

– We address communication overhead by creating tunnels statically and determin-
istically. Such partitioning is a light-weight operation, and is performed by each
client at every BMC unrolled depth. When the master is required to assign a sub-
problem, it simply notifies a chosen client with a corresponding tunnel id.

– We address uneven (unpredictable) load balancing using relaxed synchronization
criteria. Since each sub-problem is independent, the master need not wait for the
clients that are slow to respond due to slower CPUs or due to harder sub-problems
assigned, at the time of synchronization. The master dynamically adjusts a pool
of available clients; the slower clients are removed from the pool at the time of
synchronization (after each BMC depth), and added back when they respond. This
reduces the idle time for (faster) clients.

We focus on verifying low-level embedded programs under the assumptions of a finite
recursion and bounded data, in a distributed environment. We formulate common design
errors such as array bounds violations, null pointer de-referencing, and user-provided
assertions as reachability properties, and solve them using BMC.

Fig. 1. (a) EFSMM , (b) Tunnels T1 and T2 of unrolled CFG, (c) TSR-based BMC

2 TSR-Based BMC

Consider an EFSM (Extended Finite State Machine) M shown in Figure 1(a). We use a
tool F-Soft [7] to obtain EFSM from a low level C program. In the following, we use
a TSR-based BMC (shown in Figure 1(c)), to illustrate the reachability of an ERROR
control state, P = 10 from a SOURCE control state S = 1.
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We obtain an unrolled CFG (Control Flow Graph) by simply unwinding the CFG
up to a depth k = 7 as shown in Figure 1(b) (block 111, Figure 1(c)). Each program
(concrete) path in a BMC instance up to a depth k, is an instance of an (abstract) control
path in the unrolled CFG. As the unrolled depth increases, number of paths (and control
paths) and their lengths also increase, thereby, making each successive BMC instance
increasingly harder to solve. As shown in Figure 1(b), the number of control paths to
reach ERROR block 10 increases from 4 to 8, as k increases from 4 to 7, respectively.
We use R(k) to denote a set of control states statically reachable at a depth k from
SOURCE state. Example: R(4) = {2, 10, 11, 6}.

We decompose a BMC instance BMCk, say at k = 7, into smaller disjunctive sub-
problems by partitioning control paths as follows (block 114, Figure 1(c)). We pick a
partition depth p = 3. At this depth p, control states 5 and 9 are statically reachable. All
control paths from control state 1 (SOURCE) to control state 10 (ERROR) at depth 7,
pass through a control state either 5 or 9 at a depth p = 3. We refer these control states
as tunnel-posts. We partition these tunnel-posts disjunctively into sets, {5} and {9}.
From the control state(s) in each partitioned set, i.e., {5} (or {9}), ERROR block at a
depth 7, and SOURCE block at a depth 1, we perform forward and backward slicing on
the unrolled CFG to obtain a disjoint set of control paths, i.e., T1 (or T2) as shown in
Figure 1(b). We refer to them as tunnels. Note, all control paths in tunnels T1 and T2
pass through the partitioned tunnel-posts {5} and {9}, respectively at a partition depth
p = 3. For each partitioned tunnel T1 or T2, we obtain a BMC subproblem BMCk

T1

or BMCk
T2

by constraining the BMC problem with the respective tunnels. For a given
tunnel t, we first simplify a BMC subproblem BMCk

t by (a) slicing away the irrelevant
(i.e., not in t) paths, (b) reducing the data path expressions in t, and (c) adding flow
constraints (FCk

t ) for the relevant paths [8] (blocks 116, 117, Figure 1(c)). Note, such
a BMC subproblem has fewer paths, and is potentially easier to solve than the origi-
nal BMC instance. We formulate each reduced subproblem with the property constraint
Bk

P , denoted as BMCk|t ∧ FCk
t ∧ Bk

P , as a quantifier-free formula (QFP) and solve
it separately and independently using a SMT-solver. Note, the satisfiability of a BMC
subproblem implies satisfiability of the BMC instance. Further, due to the indepen-
dency of subproblems, we effectively obtain an efficient decomposition for (potential)
parallelization.

3 D-TSR: Distributed TSR-Based BMC

The tasks (partially shaded boxes in Figure 1(c)) are distributed between master and
clients as shown in Figures 2(a)-(b), respectively, where master-clients are connected in
a star topology. Note, in a star-topology, a client can communicate with the master only.
In the following, we use < tasks : id > to refer tasks in block with id in Figure 1(c).

3.1 Tasks of the Master

The tasks of the master are shown in Figure 2(a). Let Ac denote a set of available clients,
Wc denote a set of current busy clients, A′

c denote a set of clients that are available but
not included in Ac, and W ′

c denote a set of previous busy clients but not included in
W ′

c, respectively. Initially (block 210), the master sets Ac to all available clients, and
sets Wc, A′

c and W ′
c to ∅.

In blocks 210 and 211, it performs tasks < tasks : 110, 111 > and < tasks :
112, 113, 122 >, respectively. In block 212, it creates M partitions for a BMC at depth
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k (< tasks : 114 >). In block 213, it notifies all the clients in the set Ac to carry out
TSR INIT:k (described in Section 3.2). In blocks 214−217, it distributes M partitions
among Ac clients on a first available basis. For a first available client c it assigns a
partition i by sending TSR SOLVE:i message. Note, it sends only the partition id, not
the entire partition information. It updates Ac and Wc sets, accordingly.

If there exists an unassigned partition, but no available client (i.e., all are busy solving
an assigned task), it waits for some client to respond (block 219) with TSR STATUS.
If a client c responds (block 220), it checks if c ∈ Wc. If not, it updates the sets A′

c
and W ′

c that track out-of-order messages, i.e., messages corresponding to TSR SOLVE
of previous BMC instance (block 221). (Such out-of-order messages could arise when
some partition is found satisfiable, and master did not wait for a reply from a client
solving another partition of same BMC instance.) Otherwise, the sets Ac and Wc are
updated (block 222). It checks if the status received is SAT (block 223). If not, it assigns
an unsolved partition to a next available client. If the status is SAT (i.e., BMC instance
is satisfiable), it sends TSR ABORT to all clients in the set Wc (block 224). It then waits
for clients to respond (block 218) using a simple relaxed synchronization criteria. As
per that, instead of waiting for all clients that are yet to respond, it only waits for some
number of clients so that the total number of available clients, i.e., |Ac|, is above some
threshold.

After waiting, it updates Ac and W ′
c, sends TSR QUIT to clients in Ac, and then,

continues to solve a new BMC instance at depth k + 1.

3.2 Tasks of a Client

The tasks of a client are shown in Figure 2(b). Initially, a client performs operations
< tasks : 110, 111 > and then waits for a message from the master.

If the received message is TSR INIT:k, it carries out static TSR partitioning <
tasks : 114 > of BMC instance at depth k. As the partitioning of TSR is determin-
istic, the partitioning by both master and a client produces identical results, and there-
fore, each partition can be identified unambiguously by them. If a received message
is TSR SOLVE:i, the client unrolls < tasks : 116 >, simplifies and adds learning
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Fig. 2. Tasks of (a) the Master (controller), and (b) a Client (worker)
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constraints < tasks : 117 > for the partition i. It performs light-weight symbolic
range analysis to check if the BMC instance is UNSAT.

If the result is unsatisfiable, it sends TSR STATUS:UNSAT message to the mas-
ter; otherwise, it invokes a SMT solver to check if the partition i is satisfiable <
tasks : 118, 119 >. In block 317, it also checks periodically if there is a message
TSR ABORT (not shown). If such a message exists, it simply aborts and replies mas-
ter with TSR STATUS:ABORT message; otherwise, it sends TSR STATUS:SAT or
TSR STATUS:UNSAT depending on the satisfiability outcome.

If a received message is TSR QUIT, it cleans up the memory used after last
TSR INIT message.

4 Experimentation

We implemented our tool D-TSR using standard communication library LAM/MPI [9]
available publicly. We used several workstations each with 4Gb RAM and Intel multi-
cores (2 to 8 cores) cpu, each with speed in the range of 1.8 to 2 Ghz. In our experiment,
we scheduled at most one client per cpu. We used a SMT-based BMC framework [8,
10, 6], using yices-1.0 [11] as the SMT solver.

We present result for f1 which is a restart module of wu-ftpd with array bound
violation checks.

For scalability results, we compare our SMT-based BMC performance implemented
in our D-TSR using different number of client-CPUs, i.e., 1, 2, 4, 8, and 16. We denote
each configuration as para# where (#) denotes the number of client-CPUs used. Note,
para1 is equivalent to a sequential BMC with TSR partitioning with (small) commu-
nication overhead. We also compare against an implementation of SMT-based BMC
(mono) without using TSR. We allocated one hour for each BMC run.

We present our results, i.e., BMC depth vs Cummulative Time (in sec)) in Figure 3.
The vertical line in the chart shows the time taken (in sec) by each client-configuration
for a specific unroll depth 466. Observe that para1 gives substantial speedup over
mono, indicating that the TSR partitioning improves the performance of BMC even
without parallelization. With distribution of tasks, we obtain an almost linear-speedup.
We believe that such approach can easily scale to a large number of CPUs.
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Abstract. We have designed and implemented a tool that predicts files
most likely to have defects in a future release of a large software system.
The tool builds a regression model based on the version and defect his-
tory of the system, and produces a list of the next release’s most probable
fault-prone files, sorted in decreasing order of the number of predicted
defects. Testers can use this information to decide where to focus re-
sources, and to help determine how much effort to allocate to various
parts of the system. Developers can use the tool’s output to help de-
cide whether files should be rewritten rather than patched. A prototype
version of the tool has been integrated with AT&T’s internal software
change management system, providing seamless access to the system’s
version and defect information, and giving users a simple interface to the
tool’s output.

Keywords: software fault prediction, negative binomial model, auto-
mated tool.

1 Research Overview

The goal of this research has been the development of fully automatable models
to allow developers and testers to identify the files of a large industrial software
system that are most likely to contain the largest numbers of faults in the fu-
ture. Based on these models, we have built a tool capable of making predictions
with minimal human intervention, expertise, or time. The tool is designed to
automatically extract data both from the repository that is normally used by
the change management system and from the software code itself. The data is
analyzed and used to construct appropriate statistical models, which can predict
where faults are most likely to reside.

Testing practitioners can use this information to prioritize their testing ef-
forts, and developers can use it to determine which fault-prone files should be
redesigned and recoded.

Initially we performed empirical studies using custom-built models to make
predictions for three different large industrial systems. We paid particular atten-
tion to selecting subject systems with very different functionalities, written in
different languages, using different development paradigms to try to establish a
sort of universal model that could make relatively accurate predictions for each
of the systems.

H. Chockler and A.J. Hu (Eds.): HVC 2008, LNCS 5394, pp. 200–204, 2009.
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Table 1. Percentage of Faults in Top 20% of Files for Six Systems

System Years in Field LOC in Last Release Percentage Faults Identified
Inventory 4 538,000 83%
Provisioning 2 438,000 83%
Voice Response 2+ 329,000 75%
Maintenance Support A 9 442,000 84%
Maintenance Support B 9 384,000 94%
Maintenance Support C 7 329,000 85%

The predictions were made using a negative binomial regression model, whose
independent variables included static code characteristics and each file’s change
and fault history. Code characteristics were the size of the file, and the program-
ming language. File history information included file age in terms of the number
of previous releases the file had been in the system, and the number of changes
and faults recorded in recent releases. We also investigated factors related to
the number of developers who interacted with a file, including the cumulative
number of distinct developers who had modified the file over its lifetime, and
the number of developers who had modified it in the most recent release.

The model based on code characteristics and file history predicted the number
of faults that would be associated with each file in the next release of the software.
When the files were sorted in descending order of predicted faults, we found that
the top 20% of the files typically contained well over 80% of the faults that were
actually detected in those files.

The systems that were used as subjects of our first three empirical studies each
contained hundreds of thousands of lines of code, and had histories ranging from
two to four years in the field. Prediction results for these systems are summarized
in the first three rows of Table 1. Detailed descriptions and prediction results
for the inventory system and the provisioning system are presented in [2], and
for the voice response system in [1].

2 Building a Tool

We have incorporated the defect prediction method into an automated tool to
be used by developers and testers in the field. Our goals for the tool are that it
should be very easy to learn and use, integrated into the normal development and
testing environments, require no statistics background, rely only on data that
is already collected for other purposes, run with reasonable speed (less than 1
minute for a large multi-release system), and present prediction results in an
immediately understandable and useful format.

All the data used to make the predictions are extractable from the
commercially-available change management/version control system used by each
of the six projects that we have worked with to date. This change management
system requires that a modification request (MR) be written in order for any
changes to be made, whether the change is needed because a defect has to be
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fixed, because new functionality is being added in response to a change in the
system specifications or requirements, or because regular maintenance updates
are required.

Our initial prediction models were entirely hand-crafted, but during the fourth
empirical study, whose subject was a business maintenance support system
(Maintenance Support A), we compared the results of a custom-built model to
a model whose coefficients were derived automatically using information learned
from studying the three previous systems [3]. Somewhat surprisingly, the results
from the automatable model were slightly better than those of the custom-built
model for this system, and comparable to the custom-built results for the in-
ventory system and the provisioning system. They also improve significantly on
the custom results for the voice response system. The automatable model per-
formed even better for two additional large components (B & C) of the business
maintenance system. The automatable model’s results for these three systems
are shown in rows 4, 5, and 6 of Table 1.

These observations encouraged us to build a fully-automated tool using this
general negative binomial regression model. For our initial research, we used
shell scripts to do the data extraction, and to drive the prediction model. The
models were fit using the Genmod procedure of SAS/STAT Release 8.01 [5]. We
used this approach for the empirical study of Maintenance Support A, and began
work on an integrated and robust tool design. For this first prototype, we used
R [4] to fit the models and produce the predictions. For the current tool version,
we wrote a custom C program to fit the negative binomial regression model to
the data, and to apply the derived model to the extracted data of the release to
be predicted. The custom C program significantly improved performance, and
also avoids any issues that may arise from embedding a commercial product like
SAS, or using a potentially unstable or evolving open-source product like R.

3 Using the Tool

Key considerations for the prediction tool are ease of use, and speed of execution.
Because almost all expected users will be neither familiar with nor interested
in the statistical foundation of the prediction model, the mathematics of the
prediction is hidden under the hood.

The prototype tool has a simple GUI interface, with one screen used to define
the parameters needed to create and run the model, and a second screen that
presents prediction results to the user.

On the Configuration Screen shown in Figure 1, the user provides the following
information to define the model and request a specific prediction.

– a pointer to the root node of the system’s version management tree (GDB)
– the system to be analyzed
– a list of the system’s previous releases, whose defect and change history will

be used to create the defect prediction model.
– the types of change requests that should be considered defects
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Fig. 1. Defining the configuration for predictions

– the file types for which the user expects fault-proneness predictions
– the single specific release for which the user desires fault-proneness predictions

The tool can provide default values for all of these except the name of the
system to be analyzed and the specific release to be predicted. The list of file
types allows the user to exclude non-executable types such as doc, jpg or wav,
for which the predictions would not be meaningful, while including all relevant
executable languages for the system such as C, C++, Java, SQL, as well as
whatever special-purpose executable languages the project may use. When the
configuration details are satisfactory, the user can save the configuration, and
then run the prediction model.

Figure 2 shows the Result Screen, with a list of all files of the selected types in
decreasing order of their predicted faults in the chosen release. The cumulative
percent of faults allows the user to easily see how many and which files are
needed to include any given percent of the predicted faults. In the example of
Figure 2, the first fifteen files are predicted to contain 39.0% of the faults, while
these fifteen files represent less than 1% of the total files in the system. In our
case studies of the six systems in Table 1, we have frequently seen similarly
top-heavy fault distributions.

The results screen presents the user with several options for displaying the
predictions. The files can be ordered either by decreasing or increasing fault per-
centage, by file name, number of changes made in the prior release, file size(LOC),
or file age. The user can also choose to display only files of any individual type
(in the example: c, C, pC, sql), or only a certain percentage of the files.
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Fig. 2. Prediction of defect frequency for files

4 Conclusions

Although a number of other research groups have been developing prediction
models, none of the others has validated them by performing the number of
large industrial empirical studies we have, nor have they followed systems for
many releases. In total, we have made predictions for well over 100 distinct
releases in six different systems. In addition, we have built an automated tool
to make the predictions, enabling testers and developers to use the technology
in a practical software development environment. Again, to our knowledge, no
other group has accomplished this. Currently, the tool has been integrated into a
widely-used version control/change management system and is about to become
available to production projects to use to help them make their testing more
efficient and effective.
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Abstract. It is well known that code reviews are among the most effective 
techniques for finding bugs [2, 3, 4]. In this paper, we describe a code review 
tool, SeeCode, which supports the code review process. SeeCode is an Eclipse 
plug-in and thus naturally integrates into the developer's working environment. 
It supports a distributed review environment and the various roles used in a re-
view meeting. Reviewers can review the code at the same time, either through a 
virtual or a face-to-face meeting, or at different times. Review comments and 
Author navigation through the code are visible to all reviewers. Review com-
ments are associated with line numbers, and the association is maintained when 
the code is changed by the developer. The integration with the Eclipse [8] Inte-
grated Development Environment (IDE) enables easy code navigation, which is 
required especially when object-oriented code is reviewed.  

SeeCode also supports a quantitative feedback mechanism that reports the 
effectiveness of the ongoing review effort. This feedback is updated as the re-
view progresses, and can be utilized by the review moderator to keep the review 
process on track. 

SeeCode has been piloted by several IBM groups with good feedback. The 
distributed review feature and integration with the IDE are particularly noted by 
users as key features. 

1   Introduction 

In this paper we describe SeeCode, a plug-in for Eclipse that supports the code review 
process. Code review is the most effective technique for ensuring software quality  
[2, 3, 4]. In particular, the selective homeworkless review technique that we described 
in a previous paper [1] enables effective code review in time-constrained and possibly 
distributed projects. In selective homeworkless review, the artifacts for review are 
selected according to quality concerns and review methodologies with little or no 
preparation are used. 

We have been conducting code reviews with a large number of diverse develop-
ment teams across IBM for several years. Our experience indicates that an effective 
review tool should fulfill the following requirements:  

a) Enable the review of source files and provide a mechanism for handling and 
storing review comments 

b) Support the review meeting process and roles, possibly for a distributed team 
c) Provide syntax highlighting and easy code navigation (e.g., jumping from 

function usage to its definition) 



206 M. Shochat, O. Raz, and E. Farchi 

d) Maintain the association between comments and source lines, even when the 
code is changed 

e) Provide ongoing feedback on the effectiveness of the review process  
f) Allow revision control of the review comments along with the source files  

SeeCode was designed to meet the above list of requirements as well as to allow 
various review methodologies.  

Other code review tools exist. However, each of these tools fulfills only part of the 
above requirements. Jupiter [5], like SeeCode, is implemented as an Eclipse plug-in 
and thus naturally integrates into the developer working environment, taking advan-
tage of Eclipse features such as syntax highlighting, code navigation and association 
of markers to source lines. However, Jupiter only supports a single user and therefore 
does not fulfill the requirement for review roles and team distribution support. Codes-
triker [6] is a web application that supports a distributed review environment in which 
all reviewers see the same source file and its associated review comments. However, 
Codestriker does not provide substantial navigation support, nor does it provide an 
association of review comments with the underlying code when the code changes. 
Moreover, SeeCode provides improved distributed review support. SeeCode supports 
the review roles of Owner, Scribe and Reviewers and each of these roles may be  
executed on separate computers. This supports both virtual and face-to-face review 
meeting modes. SourcePublisher [7] generates printouts of the code with syntax high-
lighting and links to other relevant parts of the code. However, SourcePublisher pro-
vides no comment handling mechanism, nor does it provide support for the review 
process. 

A novel feature of SeeCode is the integrated quantitative feedback mechanism that 
reports the effectiveness of the ongoing review effort. This feedback is updated as the 
review progresses and can be utilized by the review moderator to keep the review 
process on track.  

SeeCode has been piloted by several IBM groups with good feedback. The distrib-
uted review feature and the integration with the IDE are particularly noted by users as 
being key features. 

SeeCode is a beta research tool. We are still implementing additional features and 
improving the tool according to user feedback. 

2   SeeCode Main Features 

2.1   Code Review Perspective 

The SeeCode plug-in adds the ‘Code Review’ perspective to the Eclipse workbench 
(see Fig. 1, below). The Code Review perspective includes three views – the ‘Review 
Comments’ view displays all review comments, the ‘Message Log’ view displays a 
log of messages received when the tool is in distributed mode, and the ‘Statistics’ 
view displays statistics on the review process. 

As an Eclipse plug-in, SeeCode naturally integrates into the IDE and enhances the 
review process with built-in Eclipse features such as syntax highlighting and easy code 
navigation. Code navigation is required especially when object-oriented code is re-
viewed, since frequent jumps from one method to another are required. SeeCode uses 
Eclipse markers to store the review comments, and thus allows the persistent associa-
tion of comments to source lines even when the source is changed by the author.  



 SeeCode – A Code Review Plug-in for Eclipse 207 

 

Fig. 1. ‘Code Review’ perspective. ‘Review Comments’ view, ‘Message Log’ view and ‘Statis-
tics’ view are placed at the bottom of the Eclipse workbench. Comments are marked by a See-
Code icon in the editor ruler bar. 

2.2   Distributed Review 

SeeCode defines three review roles - the code Owner, the meeting Scribe and the 
Reviewer(s). Each SeeCode user has one of the above roles and is running on an in-
dependent computer. The Scribe and the Reviewers connect to the Owner, allowing 
them to view the source files, the review comments and the navigation actions of the 
Owner explaining the code. All reviewers can still independently navigate in their 
own IDEs. This supports, for example, the common usage of looking at a related 
piece of code individually to verify a possible issue before stating it.  

SeeCode enables the review of code either in a team meeting or in an asynchronous 
review mode. In a review meeting (either face-to-face or virtual) the Owner explains 
the code; the Reviewers suggest comments and the Scribe documents them using 
SeeCode. In an asynchronous review, the Owner selects the files for review and the 
Reviewers connect at different times, receive the up-to-date list of comments, and add 
their own comments. Often, the asynchronous review is used as a preparation stage 
for the review meeting. 

Even though SeeCode supports the above-mentioned roles and modes, it was de-
signed not to enforce them. This makes SeeCode more flexible and enables its use 
with various code review techniques. 
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2.3   Review Comments  

SeeCode allows the addition of local and global comments. Local comments are as-
sociated with a certain line in the source file while global comments are associated 
with the entire file and are used for general issues. Existing comments are marked by 
a SeeCode icon in the editor ruler bar (see Fig. 1, above) and can be further edited, 
replied to or closed.  

SeeCode review comments are saved in an XML file. There is a comments file for 
each Eclipse project in the user workspace. Using any version control system, the 
comments file can be controlled together with the project source files to maintain the 
correct association between comments and line numbers. 

In addition, SeeCode enables selective export of comments into text or XML files 
and selective import of comments from previously exported XML files. This is useful 
when reviewing the code without connecting to the distributed review. In such cases, 
reviewers export their comments and send them to the Owner, who merges them with 
his comments file. 

2.4   Statistics View 

The ‘Statistics’ view provides a novel quantitative feedback mechanism that reports 
the effectiveness of the ongoing review effort. It displays the updated number of 
comments for each file and compares it to the expected number of issues (see Fig. 2, 
below). The expected number of issues is based on our experience with several IBM 
teams suggesting an average review rate of about 100 lines per hour and an average 
issue recording rate of 2-3 per person hour [1]. This feedback can be utilized by the 
review moderator to keep the review process on track. 

 

Fig. 2. ‘Statistics’ view 

3   Deployment of SeeCode  

SeeCode has been piloted by several IBM groups with good feedback, including some 
of the following responses: 

a) Using the tool is intuitive and easy to learn 
b) Distributed review is very useful for teams that are spread over different lo-

cations and time zones 
c) Syntax highlighting and code navigation features of Eclipse help the review-

ers in understanding the code, making the review more efficient 
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d) Performing the review inside the IDE saves time and extra effort (e.g., no 
need to send files for review and no need to document the comments in a 
separate tool) 

Even though SeeCode is deployed together with our effective review methodology 
(Selective Homeworkless Reviews [1]), it does not restrict usage to a specific meth-
odology. We saw a good example of this with a team that is distributed over several 
IBM locations. This team decided to use SeeCode’s asynchronous review mode for 
several days prior to the review meeting as a preparation stage. 

A noteworthy limitation of SeeCode is the fact that it is less useful for teams de-
veloping in a programming language that has no Eclipse plug-in. This was the case 
for an IBM team that develops PL.8 code. In such cases, we recommend performing 
the reviews in the environment that the team is used to, without SeeCode. 

4   SeeCode Planned Features 

As SeeCode development moves forward, new features are planned. Planned features 
include implementing the integration of other data into SeeCode and providing sup-
porting views to assist in:  

a) Focusing the review according to external data such as file change history, 
static analysis report or code coverage report 

b) Focusing the review according to a specific programming concern such as 
performance, reliability, concurrency, etc  

c) Focusing the review on code changes by performing the review in compare 
view 
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Abstract. Model checking is known to be computationally hard, mean-
ing no single algorithm can efficiently solve all problems. A possible
approach is to run many algorithms in parallel until one of them finds a so-
lution. This approach is sometimes called state-of-the-art (SOTA) model
checker. However, hardware resources are often limited, forcing some se-
lection. In this paper we present an automatic decision system, called
Whisperer, which generates an optimized set of configured algorithms for
a given model-checking problem. The system weights the advice of advi-
sors, each predicting the fitness of a different algorithm for the problem.
Advisors also monitor the progress of currently running algorithms, al-
lowing the replacement of ineffective algorithms. Whisperer is built into
the formal verification platform, RuleBase/PE, and allows novice users to
skip the delicate task of algorithm selection. Our experiments show Whis-
perer, after some training, performs nearly as well as SOTA.

1 Introduction

A significant number of model-checking algorithms have been suggested over the
years. Finding an efficient algorithm for solving a given model-checking problem
may sometimes be non-trivial. In fact, for hard problems it may be non-trivial
to find any configured algorithm that solves them. Running all algorithms in
parallel until one of them finds a solution may prove useful on such cases. This
approach is sometimes referred to as state-of-the-art (SOTA) model checker [1].

With the multitude of algorithms, the SOTA approach may require too many
CPUs. Expert engineers therefore tend to run a few problems at the beginning
of each project to get a feel for the best algorithms and their best settings for the
current hardware design. They then use this set of algorithms along the project.
Still, some problems may defy this set, and require further experimentation.

This paper proposes a decision system, called Whisperer, which automatically
suggests a set of configured model checkers for a given problem. This automation
allows hiding complex algorithmic details and making more friendly tools.

Expert systems are already fundamental to theorem provers, e.g., HOL [2] and
PVS [3]. Changing strategies inside a model checker was also proposed [4], as well
as using machine learning techniques for solver tuning [5]. An expert system was
suggested to guide the flow of a transformation-based verification system [6], and
to select a best-fit SAT or QBF solver [7,8]. Whisperer is different from these in
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its attempt to provide a set of complementing model checkers to run in parallel
and in its online algorithm of weighting expert advice.

RuleBase/PE is IBM’s industrial strength formal-verification platform, re-
placing its predecessor, RuleBase [9]. In addition to offering a larger set of more
advanced model-checking algorithms (a.k.a. engines), RuleBase/PE allows the
parallel execution of several engines on a single problem, thus realizing the SOTA
approach. Whisperer is integrated into RuleBase/PE.

2 Whisperer – Predicting Best-Fit Model Checkers

Whisperer is a decision system for dynamically choosing an effective set of
model-checking engines for a given problem. The set of engines it may select
from includes a guided explicit model checker, BDD-based engines (forwards and
backwards reachability, partial search, abstraction refinement) and SAT-based
engines (BMC, abs. ref., overapproximated reachability). Whisperer’s decisions
are based on problem parameters (flip-flop count, property type, etc.), on past
performance (same problem and problems in the same design) and on user set-
tings (process limit, expected result). Whisperer records engines performance for
future analysis, assuming most problems in a given project behave similarly1.

2.1 Advisors

Whisperer is implemented as an algorithm for combining expert advice. Each en-
gine is assigned an advisor. Advisors predict engine fitness for the given problem
and configure engine settings. A configured engine together with a fitness score
(a number between 0 and 5) is called an advice. In addition, advisors monitor
the progress of their advice (when running), and may adjust fitness accordingly.

Advisors are implemented as C++ inherited classes, allowing modularity and
maintainability. Each advisor implements methods for getting its advice, for eval-
uating a currently running advice and for drawing conclusions from terminated
advice. The implementation is usually written by engines’ developers, using an
API for querying relevant data. A simplistic example advisor is shown in Fig. 1.

In the getAdvice method advisors generate their advice. The example code
shows how settings may be set and fitness may be adjusted in response to user
policy and problem parameters. Whisperer advisors mainly consider these two
inputs. For example, BDD-based engines tend to be sensitive to FF count, ex-
plicit engines prefer a small degree of non determinism, BMC is useless when
attempting proofs. The advisors also use weighted random decisions for choosing
a value for a specific setting. Weights for each value change according to past
performance, allowing learning the best-performing configuration. Advisors for
related algorithms (e.g., SAT-based) share the best values for common settings.

In the evaluate method advisors monitor currently running advice, and
change fitness as they see fit. The example advisor uses this method to gradually
1 This is an empirical observation, made by our users. It is probably due to chunks of

logic, common to most problems, that make some engines outperform others.
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Advice ∗ExAdvisor : : getAdvice ( ) {
Advice ∗ad = new Advice ( this ) ;
i f ( ge tUserPol i cy ( ) == FALSIFY) ad−>Se tSe t t i ng ( ” Fa l s i f y ” , ” t rue ” ) ;
ad−>cu r rF i tn e s s = m baseFi tness ;
i f ( getNumStateVars ( ) > 500) ad−>cu r rF i tn e s s −= 1 . ;
return ad ;

}
void ExAdvisor : : eva luate ( Advice ∗ad ) {

ad−>cu r rF i tn e s s = m baseFi tness − ad−>t imeSinceLastReport ( ) / 6 0 . ;
}
void ExAdvisor : : drawConclusions ( Advice ∗ad ) {

i f ( ad−>solvedProblem ( ) ) m baseFi tness += 0 . 1 ;
}

Fig. 1. An example advisor

decrease advice fitness as time passes since the last reported progress. Whisperer
advisors also analyze the content of progress reports and take into account the
approximated problem hardness. For example, the advisor for the SAT-based
BMC maintains high fitness as long as “bounded passed” results keep coming.

In their drawConclusionsmethod advisors should learn from the performance
of their advice. The example advisor awards itself whenever it solves a problem by
increasing its base fitness. Whisperer advisors usually change weights of specific
values in accordance with the overall progress achieved by their engine.

Whisperer also allows advisors to store arbitrary data on disk, to be used in
future verification sessions. Data is usually loaded in the advisor’s constructor
and saved in its destructor. Thus, the example advisor may save its base fitness
value and provide higher fitness scores following a series of successes. Whisperer
advisors also save various weights and problem statistics produced by the engine.

2.2 Advice Selection

Having a set of advisors as described above, Whisperer’s job then is to decide
which advice to take, which to reject and which to replace. Whisperer should
not only count on the learning done by advisors, but should rather also learn
for itself which advisors correctly predict the fitness of their advice. This allows
Whisperer, to some extent, recovering from unpredictable cases, not anticipated
by the engine developers. Whisperer works iteratively once every few seconds as
follows.

while (problem is unsolved)
newAdvices = getNewAdvices();
reEvaluateRunningAdvices(runningAdvices);
killSomeRunningAdvices( runningAdvices, newAdvices );
addPromisingNewAdvices( runningAdvices, newAdvices );

After getting an advice from each advisor, each advice is assigned a mark, being
the product of the advice’s fitness and the advisor’s reliability factor. The relia-
bility factor is a number, assigned to each advisor, which reflects how successful
the advisor is in predicting the fitness of its advice in the current project.
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Whisperer then asks its advisors to re-evaluate the fitness of their currently
running engines, as engines progress reports may change it. Poor evaluations
together with attractive new advice may terminate a running engine and replace
it with another. The decision is a weighted random decision, based on the engine
runtime and on the marks difference compared to the best new advice. An advice
running for a long time has better chances to be replaced.

Finally, advice is repeatedly picked in a classical weighted random selection
according to its mark, until the number of engines meets the process limit.

Whenever an engine is terminated, the corresponding advice is assessed and
its advisor is rewarded accordingly. Good advice, correctly predicting engine per-
formance, increases its advisor’s reliability by a factor depending on the engine
runtime and whether or not the engine solved the problem. Bad advice, predict-
ing good fitness for a poorly performing engine decreases reliability by a factor
depending on the engine runtime and on the wrongly predicted fitness.

Reliability factors are loaded from disk at the beginning of each model-
checking session (when starting a new project, all advisors get the same factor),
and are saved to disk when it ends. Thus, the more problems are attempted, the
more Whisperer becomes tuned to the current formal verification project.

3 Experimental Results

We compare running RuleBase/PE with Whisperer to running many engines in
parallel as in SOTA model checker. We used a set of industrial examples, each
being one real-life model-checking problem of a distinct hardware design.

For each example we made one run with 16 parallel engines (some engines had
multiple, differently configured instances). This is not as exhaustive as SOTA,
because not every possible engine configuration was covered. Covering them all
would have required hundreds of processes. Yet, it is a reasonable approximation,
as we chose the most productive configurations to the best of our knowledge. We
also ran Whisperer twice for each example. First without any training, then after
allowing Whisperer to solve five random model-checking problems of the same
hardware design. All Whisperer runs used a maximum of 4 concurrent processes.

We used dual-processor, dual-core 2.4GHz AMD Opteron servers with 8GB of
RAM, running under a load-balancing system. Results are shown in Table 1. The
table shows for each example its size (number of flip-flops after model reductions)
and runtimes for our SOTA approximation and for Whisperer before and after
training. An asterisk indicates Whisperer chose SOTA’s best performing engine,
but not necessarily the best configuration for this engine.

Results demonstrate that Whisperer is able to compete with our approxima-
tion of SOTA, and to usually improve after a short training. On most cases
the trained Whisperer chose the best performing engine. On one example (B)
the trained Whisperer chose a better performing configuration than what we
thought to be optimal. For the rest of the cases Whisperer usually came with
a reasonable alternative engine, performing nearly as good as SOTA, but using
significantly less concurrent processes.



214 Z. Nevo

Table 1. Whisperer vs. SOTA (runtimes are in seconds)

Example Size SOTA (16 CPUs) Whisperer (4 CPUs) Trained Whisperer (4 CPUs)
A 755 157 173 168
B 4996 208 333* 192*
C 5158 383 462 384*
D 386 70 158 203
E 550 314 337 344
F 2025 116 184* 142*
G 2391 74 1027 84*
H 1418 190 190* 199*
I 15113 874 973 882*
J 140 265 714 265*

4 Conclusion

This paper describes Whisperer, an automatic system for selecting and config-
uring a set of model-checking algorithms to run in parallel. Whisperer uses the
concept of weighting expert advice, having each algorithm being represented by
an expert. Adjusting expert weight according to its performance, allows Whis-
perer to successfully assign a useful set of algorithm for each problem.

Future research may allow Whisperer to learn from human experts, and to
analyze relationships between the various algorithms. For example, algorithms
with correlated success should not run together.
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Donzé, Alexandre 149
D’Argenio, Pedro 129

Eisner, Cindy 164

Farchi, Eitan 205
Fisman, Dana 7, 164
Fournier, Laurent 53
Fuhrmann, Oded 114

Ganai, Malay K. 68, 194
Gentilini, Raffaella 38

Hollander, Yoav 4
Hoory, Shlomo 114
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