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Preface

This book intends to create a professional standard for ‘honest and com-
plete’ environmental risk assessments.

Complete risk assessments are defined as those that undertake all stages
of the risk management cycle guided by stakeholders, a marriage of risk
analysis methods, adaptive management, decision tools, monitoring and
validation.

Honest risk assessments are defined as those that are faithful to assump-
tions about the kinds of uncertainties embedded in an assessment, that
carry these uncertainties through chains of calculations and judgements,
and that represent and communicate them reliably and transparently.

The philosophy of this book is that it is incumbent on risk analysts to
make all relevant uncertainties, and the sensitivity of decisions to these
uncertainties, as plain and as accessible as possible. This book treats both
the qualitative and quantitative aspects of risk assessment. It takes the
position that in most circumstances, the best use of models is to interrogate
options, resulting in choices that are robust to a range of assumptions and
uncertainties.

Reconciling the dispassionate and personal elements is the essence of
creating an honest and complete environmental risk assessment.

The book explores a variety of approaches to risk assessment relevant to
the management and conservation of the environment without providing
full coverage. Thus, it does not explore the full details of ecotoxicology,
but focuses instead on the kinds of models used by ecotoxicologists to
solve environmental problems, and on the conventions used to represent
uncertainty. It does not provide a complete introduction to intervals,
Monte Carlo or logic trees for environmental risk assessment. Other
books provide extensive details on these topics.

Here, there is enough background so that readers will be able to
come to terms with the things that methods such as Monte Carlo and
intervals do, how they can be critically interpreted and used to assist
people to explore options. The book outlines their assumptions and
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weaknesses, and the kinds of uncertainties the methods can and cannot
accommodate.

The US EPA (1992) used a technical perspective when it defined eco-
logical risk assessment as a process that evaluates the likelihood that adverse
ecological effects may occur or are occurring as a result of exposure to one
or more stressors. Uncertainty derived from different perceptions and val-
ues will always be present in risk assessments (Jasanoff 1993). The results
of this dichotomy are approaches to risk assessment that range from those
that emphasize the sociological context (Adams 1995, O’Brien 2000) to
those that focus primarily on the technical and probabilistic nature of
risks (Vose 1996, Stewart and Melchers 1997), with almost no overlap
between them.

The book assumes the reader has completed a first year university
course in statistics, or its equivalent. That is, it assumes the reader is
familiar with concepts such as probability distributions (density func-
tions), probability theory, confidence intervals, the normal distribution,
the binomial distribution, data transformations, linear regression, null hy-
pothesis tests and analysis of variance. It assumes high school calculus and
linear algebra, but no more than that.

An opportunity exists to create a role and a framework for environ-
mental risk assessments so that they represent the ideas and priorities of
stakeholders and are internally consistent, transparent and relatively free
from the conceptual and linguistic ambiguities that plague less formal at-
tempts to evaluate and manage human impacts on the environment. The
opportunity exists because the theoretical and philosophical foundations
have matured to a point where generalizations are possible, though not
to the point at which conventions have become immutably entrenched.

The flaws in this book are entirely my responsibility. I will appreciate
any corrections or suggestions.
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1 � Values, history and perception

Risk is the chance, within a time frame, of an adverse event with specific
consequences. The person abseiling down the front of the city building
next to the giant, hostile ear of corn is protesting about the risks of
eating genetically modified food (Figure 1.1). The same person is willing
to accept the risks associated with descending from a building suspended
by a rope. This book explores the risk assessments that we perform every
day and introduces some tools to make environmental risk assessments
reliable, transparent and consistent.

Risk assessments help us to make decisions when we are uncertain
about future events. Environmental risk assessments evaluate risks to
species (including people), natural communities and ecosystem processes.
Whatever the focus, the risk analyst’s job is to evaluate and communicate
the nature and extent of uncertainty. To discharge this duty diligently, we
need professional standards against which to assess our performance.

Epidemiologists, toxicologists, engineers, ecologists, geologists, chem-
ists, sociologists, economists, foresters and others conduct environmental
risk assessments routinely. Yet analysts often select methods for their con-
venience or familiarity. Choices should be determined by data, questions
and analytical needs rather than by professional convention.

Different philosophies of risk influence how risk assessments are con-
ducted and communicated. Societies and science have evolved conven-
tions for communicating uncertainty that do not acknowledge the full
extent of uncertainty. This book explores different paradigms for risk
assessment. It evaluates how well different tools for risk assessment serve
different needs. It recommends a broad framework that encourages honest
and complete environmental risk assessments.

1.1 Uncertainty and denial
Scientific training leaves us with an unreasonable preoccupation with best
estimates of variables. We focus on means, medians and central tendencies
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Figure 1.1. Risks of different kinds: abseiling and eating genetically modified corn.
Photo by Shawn Best. c© Reuters 2000.

of other kinds. When we report an estimate, we are not obliged to report
its reliability.

We rarely, if ever, think about the tails, the extremes, of a distribu-
tion. Usually, we tacitly deny the tails exist. Risk assessment differs from
mainstream science because it obliges us to think about the tails of dis-
tributions, to account for the full extent of possibilities.

Many risk assessments communicate ideas about risk with words. For
example, ADD (1995) argued in an environmental effects assessment for
a new port facility that oil spills from ships were a ‘low risk’. To justify this
assessment, they said ‘Between 1986 and 1994 there has been, on average,
one ship grounding per annum. Despite the restricted waterways, . . . the
probability of a ship grounding is low. This is due to the high standard of
training given to . . . officers, risk control measures . . .’.

The words ‘low’ and ‘risk’ were not formally defined, but were used
in context with other words such as ‘moderate risk’ and ‘high risk’. The
adjectives have a natural order but do not communicate the magnitude
of the risk or the extent of consequences. To resolve such difficulties, we
need a description of the kinds of uncertainty and some indication of
how they should be expressed, combined and managed.
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Figure 1.2. The US NRC (1983) reported five million known chemicals
(represented by the black area). Of these, 7000 were tested for carcinogenicity (the
larger white box). A total of 30 (the small white box, indicated by the arrow) were
definitely linked to cancer in humans (from Adams 1995).

All risk assessments involve a mixture of kinds of uncertainties, only
some of which may be quantified. Even quantified uncertainty comes
in different forms. For example, we may measure directly the strength
of a wall, the flow rate of a chemical through soil, or the birth rate
of a threatened species. We may estimate them from scientific theory.
If theory or direct measurements are unavailable, we may extrapolate
from data from similar systems or circumstances and assume our system
behaves the same way. Extrapolations are dangerous but may be better
than nothing. We may turn to what is often the weakest kind of evidence,
expert opinion.

Too often, different kinds of information are treated as though they
were equivalent. For instance, expert opinion is usually available, but
reliable expert opinion is deceptively difficult to obtain. Chapter 4 is
devoted to exploring its weaknesses and usefulness.

Direct measurements are almost always missing but the lack of infor-
mation is rarely communicated. Take the case of human health risks posed
by chemicals. Adams (1995) gave a visual interpretation of uncertainty by
shading a square black in proportion to the number of chemicals in use
that had not been tested for their effects (Figure 1.2). But even this un-
derestimates the extent of uncertainty. If the toxicities of all the chemicals
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were thoroughly tested in laboratories, there would still be uncertainty
about interactions between chemicals, exposure and susceptibility among
individuals, the effects of the chemicals in field conditions and so on (see
Suter 1993, Silbergeld 1994).

In an example from an entirely different field, Briggs and Leigh (1996)
created a list of ‘threatened’ Australian plants. They estimated there were
4955 species of vascular plants considered to be ‘at risk (i.e., endangered,
vulnerable, rare or poorly known and thought to be threatened)’. Are such
lists trustworthy? Should they be used to design conservation reserves,
set priorities for recovery, or constrain trade or development (Possingham
et al. 2002a)?

Briggs and Leigh’s (1996) list was modified as new information came
to hand, as people and agencies responsible for the list changed, and as
taxonomists revised species descriptions. Five years later, only 65% of
the species in the earlier list remained on the official government list
(Burgman 2002). Most species were removed because the taxonomy was
revised, or because additional populations were discovered, reducing the
threat classification for the species. In the meantime, the presence of
about 2000 species that were not, in fact, threatened affected planning
decisions and diverted resources for environmental protection. The costs
may be worth the benefits of protecting the species on the list that turn
out to need protection, but the considerable uncertainty in the status of
threatened species lists is not communicated.

Science creates for itself a mantle of objective certainty. This impression
often is unjustified and misleading. For example, Table 1.1 gives the
numbers of species thought to be at risk in several countries. Such lists
are published and used routinely by governments throughout the world.

The mantle of certainty is reflected in the assumptions that untrained
people make when they see the lists. For example, I have shown lists like
Table 1.1 to several thousand high school and first year undergraduate
students over the last 10 years. I asked them ‘why are there no officially
listed endangered fungi, and so few listed endangered invertebrates in
Australia, China and the United States?’ They have given some won-
derfully inventive and plausible explanations: fungi have a resistant life
stage that makes them immune to environmental stress; insects produce
large numbers of eggs and can breed their way out of trouble; insects and
fungi can disperse long distances, thereby avoiding trouble. Almost none
considered the fact that scientists haven’t looked. The vast majority of
nonvascular plants, insects and fungi have never been assessed.
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Table 1.1. The number of species listed as endangered in Australia, USA
and China (each of these countries has relatively large numbers of endemic
species) compared to the number of species listed as endangered in the UK
and the number thought to exist globally (data from Groombridge 1994,
Anonymous 1995, Burgman 2002)

Taxon Estimated total Number listed as ‘Threatened’
number of species
in the worlda Australia USA China UKb

Fungi 500 000 0 0 0 46
Nonvascular plants 100 000 0 0 0 70
Vascular plants 250 000 1597 1845 343 61
Invertebrates 3 000 000 372 860 13 171
Fish 40 000 54 174 16 7
Amphibians 4 000 20 16 0 3
Reptiles 6 000 42 23 8 6
Birds 9 500 51 46 86 25
Mammals 4 500 43 22 42 18

aEstimates of the global numbers of species in each taxon were estimated
crudely from numbers of currently described species and expert judgements
of the proportion remaining to be described (see May et al. 1995, Burgman
2002).

bNumbers from the UK represent all those species in the UK’s Biodiversity
Action Plan for which conservation action plans were written (Anonymous
1995).

The list from the UK has relatively large numbers of fungi, nonvascular
plants and invertebrates. The total number of plants and animals in the
UK is modest. Survey and taxonomic effort per species has been high.

Most lists from most countries are uncertain and biased. May et al.
(1995) called them popularity polls. Scientists are guided by funding
opportunities and personal interests. To most, mammals and birds are
more interesting than insects and fungi. The distribution of research and
taxonomic effort among taxa reflects the preferences of scientists as well
as the interests of broader society. Science is motivated by interest so the
bias is acceptable. But the failure to communicate uncertainty and bias is
professionally negligent, despite its conventional acceptability.

This chapter lays a foundation for improving communication about
uncertainty by exploring concepts of uncertainty, the history of thinking
about risk and the cognitive foundations of risk perception. Later chapters
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offer strategies for dealing with the context of a problem and the values
and preferences of individuals involved in risk assessments.

1.2 Chance and belief
Concepts of probability influence risk measurement, interpretation and
communication. Mostly, a probability is assumed to be a relative fre-
quency. In practice, other definitions are often applied. For instance, in
a paper on estimating parameters in engineering systems, Stephens et al.
(1993, p. 272) suggested probability be defined as, ‘the degree of belief,
held by the person providing the information, that a quantitative system
characteristic will have a value in a particular interval under specified
conditions of measurement’. It is remarkable that, in an early application
of probabilistic risk assessment, Kaplan and Garrick (1981, p. 17) defined
probability as ‘. . . a numerical measure of a state of knowledge, a degree
of belief, a state of confidence’. This section explores the foundations of
a curious ambiguity about the word ‘probability’.

1.2.1 Two kinds of probability

Probability has two dimensions. It can be viewed as the statistical fre-
quency (or relative frequency) with which an event is expected to occur,
and it can be viewed as the degree of belief warranted by evidence. The
former definition is in most standard statistical textbooks (e.g. Casella and
Berger 1990, p. 5). The latter perspective is associated with ‘Bayesian’
statistics.

The dual nature of probability was recognized in texts dating from the
1660s including the Port Royal Logic (1662, the first influential text on
probability; see Hacking 1975) but it is rarely distinguished in modern
applications. Hacking (1975, p. 143) called it the ‘squirming duality’.

Good (1959) defined ‘classical’ probability as ‘the proportion of equally
probable cases’, a concept he attributes to Candan, a sixteenth century
gambler. For example, of the 36 possible results of throwing two dice, 3
give a total of 11 or more points, so the probability is defined as 1/12.
The purpose of the definition was to explain the observed, long-run
frequencies of particular events.

When the concept of probability relates to an event that, when re-
peated, occurs with a certain frequency, it is a statistical concept that
describes a chance process. It exists, independent of our knowledge of
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it. For example, the probability of failure of a dam wall may be known
(within some confidence limits) because there have been many such walls
built and because physical characteristics and failure rates are known from
theory and measurement. The concept is equivalent to the chance of
rolling a given number when playing a dice game.

The other side of the probabilistic coin is concerned with reasonable
degrees of belief. It applies when a probability is unknown or unknow-
able. Despite their subjective origin, in most applications they are ex-
pected to be rational in the sense that they follow the rules of probability
(Cooke and Kraaikamp 2000). For example, if I believe that the chance
that an oil spill will eliminate a bird rookery is 70%, then the chance that
it will not eliminate the rookery should be 30%.

We will return to the dual meaning of probability later in this chapter
and in subsequent chapters.

1.2.2 Two kinds of subjective probability

The term ‘subjective probability’ is in widespread use. Like the word
‘probability’ alone, the phrase also has two meanings. The first meaning
is a lack of knowledge about a process or bias. The second meaning is
that it indicates purely personal degrees of belief.

To illustrate the term when it refers to a lack of knowledge, Hacking
(1975) used an example of a sack full of biased coins. Each coin turns to
either heads or tails more frequently than 1/2 of the time. In this sack,
on average, the biases cancel. If we select a single coin, the probability
of getting heads on the next toss is 1/2. The probability is composed
of two components: the probability that this particular coin will result
in a head (the objective element); and our ignorance about which coin
it is (the subjective element of incomplete knowledge). In this view,
the subjective uncertainty may be resolved by repeating the experiment
(tossing the coin) many times.

In contrast, when subjective probabilities indicate personal belief,
probabilities are unknown only insofar as a person doesn’t know their
own mind (Hacking 1975). Usually, we expect personal beliefs to be
rational in the sense that subjective probabilities should coincide with
relative frequencies, when frequency data are available. While they don’t
need to be exactly the same, they need to be answerable to frequencies in
the sense that frequency data should influence judgements when they are
known (Colyvan 2004).
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1.2.3 Disentangling meanings

Understanding statements about probability is complicated. A proposition
may be stated in probabilistic terms, but there may be no underlying
fact. Language may allow borderline cases or ambiguities so that it is
hard to know what the statement means. People use gaming analogies to
represent nonprobabilistic uncertainties on a numerical scale (even the
Port Royal Logic used this analogy in 1662; see Hacking 1975, Walley
and DeCooman 2001). We will return to this topic in Chapter 2.

In yet another twist, statements may have frequency interpretations,
but the assignment of a probability may be subjective. Understanding
what is meant may not depend on repeated trials. For example, the fol-
lowing circumstances do not require repetition to be understood:

The Tasmanian Tiger is probably extinct.
It will probably rain tomorrow.
Living in this city, you will probably learn to like football.
My brother is probably sleeping at this moment.

For instance, I can say that my brother is probably sleeping just because I
know he is lazy. Equally reasonably, the statements may have a frequency
interpretation and be amenable to measurement. For instance, in support
of the assertion that my brother is sleeping at this time, I could sample
days and times randomly, record my brother’s behaviour and, eventually,
build up a reliable picture of his sleeping habits. I could then, after making
some assumptions, report a probability that he is, in fact, sleeping.

‘Bayesian’ statisticians use subjective probabilities (degrees of belief,
such as, ‘I believe that my brother is asleep’) whereas ‘frequentist’ statis-
ticians see probabilities as relative frequencies (such as, ‘at this time of
day, he is asleep 9 times out of 10’). Subjective probabilities can be up-
dated (via Bayes’ theorem) when new data come to hand. In most cases,
repeated application of Bayes’ theorem results in subjective probabilities
that converge on objective chance. And there are objective ways to ar-
rive at subjective probabilities, including the use of betting behaviour
(see Regan et al. 2002a for more details, and Anderson 1998b, Carpenter
et al. 1999 and Wade 2000 for application of Bayesian methods to envi-
ronmental problems).

1.2.4 Probability words

Many words cluster around the concept of probability. They are used to
capture a component of the broader concept. But they are used carelessly
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and somewhat interchangeably. The following list describes perhaps their
most common current uses in risk assessments (see also Good 1959,
Hacking 1975):

� Chance: the frequency of a given outcome, among all possible outcomes
of a random process, or within a given time frame.

� Belief : the degree to which a proposition is judged to be true, often
reported on an interval (0,1) or per cent scale creating an analogy with
‘chance’.

� Tendency : the physical properties or traits of a system or a test that result
in stable long-run frequencies with repeated trials, or that yield one of
several possible outcomes.

� Credibility : the believability of detail in a narrative or model (acceptance
of ideas based on the skill of the communicator, the trust placed in a
proponent).

� Possibility : the set of things (events, outcomes, states, propositions) that
could be true, to which some (nonzero) degree of belief or relative
frequency might be assigned.

� Plausibility : the relative chance or relative degree of belief (the rank)
assigned to elements of a set of possible outcomes.

� Confidence : the degree to which we are sure that an estimate lies within
some distance of the truth.

� Bounds : limits within which we are sure (to some extent) the truth lies.
� Likelihood : how well a proposition or model fits available data.
� Risk : the chance (within a time frame) of an adverse event with specific

consequences.

Hacking (1975) pointed out that common usage of the word ‘probable’
prior to the 1660s was evaluative. If a thing was probable, it was worth
doing (my sleeping brother would see this definition clearly). It also
meant trustworthy. A probable doctor was a trusted one. Jesuit theologians
in the period before 1660 used the term probable to mean ‘approved
by the wise’, propositions supported by testimony or some authorized
opinion. These meanings are like the terms belief and credibility above,
and allow that a proposition could be both probable (because it is made
by a trustworthy person) and false.

Today, the words under the umbrella of probability make up a dynamic
linguistic landscape. People interpret probability intuitively, leading to dif-
ferent interpretations of risk (Anderson 1998b). There is no doubt that the
meanings of these words will shift in the future as circumstances change.
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This makes it important to be clear about the use and interpretation of
words.

1.2.5 Probability and inference

Scientists meet the word ‘probability’ as a ‘p-value’ most commonly in the
context of statistical hypothesis tests. In this context, usually probability
is thought to mean chance. More exactly, the p-value of a test is the
probability of the observed data assuming the null hypothesis is true.
It deals with chance conceptually. If the null hypothesis is true, and if
an experiment is repeated many times, the p-value is the proportion of
experiments that would give less support to the null than the experiment
that was performed.

In so-called null hypothesis significance testing, frozen and rigidly
interpreted in introductory textbooks, the scientist sets a threshold such
as 0.05, and rejects the null hypothesis whenever the p-value is less than
or equal to 0.05. In this way, in the long run if all sources of error are
taken into account, the scientist will reject a true null hypothesis 5% of
the time. The p-value is a measure of the plausibility of the assertion that
the null is true (Salsburg 2001).

Null hypothesis tests are routinely misinterpreted by scientists in many
disciplines including ecology (see Anderson et al. 2000). The standard
model is particularly vulnerable to psychological frailties (see Chapters 4
and 11). Despite these difficulties, food and drug regulatory authorities,
environmental protection agencies, law courts and medical trials all accept
null hypothesis testing as an appropriate method of proof. Chapter 11
explores some ways of fixing the problem.

1.3 The origin of ideas about risk
The history of ideas about risk gives insight into the dual nature of
probability. It also illustrates the long history of people making poor
judgements about risks; people are not moved to ‘rational’ responses by
empirical evidence alone.

Bernstein (1996) noted that the lack of analytical tools in the Greek,
Hebrew and Roman systems led people to make bets on knucklebones
(one of the earliest common randomizers; Hacking 1975) that today
would be considered irrational. When thrown, a knucklebone can come
to rest in only 1 of 4 ways. The values for narrow faces were 1 and 6
and for wide faces were 3 and 4. Throwing a sequence of 1, 3, 4, 6
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earned more than throwing 6, 6, 6, 6 or 1, 1, 1, 1, even though the
latter sequences are less likely. But the wisdom of betting on the wide
faces is only apparent because we have been trained to think in terms of
frequencies, at least to some extent. Things we take as common sense
are, in fact, learned.

Numbers provide a symbolism that makes arithmetic easy because each
digit denotes a power, usually of 10 (Gigerenzer 2002). The Hindus cre-
ated a number system that allowed calculations (Hacking 1975, Bernstein
1996). Quantitative probabilistic reasoning can be found in Indian liter-
ature that dates to at least the ninth century, 800 years before it emerged
in Europe (Hacking 1975). al-Khowrizm, an Arab mathematician living
around 825, established the rules for adding, subtracting, multiplying and
dividing (Bernstein 1996). Most cultures did not adopt Hindu-Arabic
notation for numbers until well into the second millennium.

Around 1200, Fibonacci, an Italian mathematician, visited Algeria and
learned al-Khowrizm’s system. He wrote a book called Liber Abaci in
which he documented the mechanics of calculations for whole numbers,
fractions, proportions and roots. The centrepiece was the invention of
zero. The system provided solutions to linear and quadratic equations.
It allowed people to calculate profit margins and interest rates, and to
convert weights and measures for arbitrarily large numbers. The Arabic
ancestry of mathematical ideas lives on in words with Arabic roots such
as algorithm, algebra and hazard (from al zahr, the Arabic word for dice;
Bernstein 1996).

When we flip two coins, there are three partitions (HT, TT, HH) and
four permutations (HT, TH, TT, HH). Partitions record only the kinds
of outcomes, ignoring the different ways of getting them. Gambling on
combinations of three 6-sided dice dates to at least ad 1200. Rolling
three dice can generate a sum of 4 with only one partition, 1–1–2. But
a 4 can be obtained with three different permutations (1–1–2, 1–2–1,
2–1–1) and is (we know now) three times more likely than rolling a 3,
which can be generated in only one way (with one partition), namely,
1–1–1. It was not obvious to the people of ad 1200 if permutations or
partitions were equally probable. In 1477, a commentary was written
that gave the probabilities of various totals when three dice are thrown
(Good 1959). Hacking (1975) suggested that the truth could only have
been determined by observation.

Theories of frequency, randomness and probability coalesced in
Europe around the 1660s and there was a suite of spectacular coinci-
dences (see Hacking 1975 and Bernstein 1996). The theory of probability
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usually is attributed to Pascal who, in correspondence with Fermat, solved
problems for games of chance in 1654 (Good 1959). Huygens published
the first textbook on probability in 1657. At about the same time and
seemingly independently, Hobbes wrote that while experience allows no
universal conclusions, ‘if the signs hit twenty times for one missing, a man
may lay a wager of twenty to one of the event; but may not conclude it
for a truth’ (in Hacking 1975, p. 48).

The first application of probabilistic reasoning to something other
than a game of chance appeared in the Port Royal Logic in 1662. In the
same year, Gaunt published statistical inferences drawn from mortality
records. In 1665, Leibniz applied probabilistic measurements to legal
reasoning, using numbers to represent ‘degrees of probability’, which we
would now call degrees of belief. His ‘natural jurisprudence’ encompassed
conditional probabilities and ‘mixed’ or conflicting evidence. In the late
1660s, Hudde and de Wit developed systems that put annuities on a
sound actuarial footing. Many of these people were unaware of the work
of the others.

Why did all these ideas arise simultaneously? The explanation is related
to the spread of the new number system and to the evolution of ideas
about two kinds of probability in scientific reasoning. Hacking (1975)
argued that the concept of inductive evidence was an additional, neces-
sary precursor to the development of theories of probability. Prior to the
1600s, evidence included concepts of testimony (supported by witnesses)
and authority (supported by religious elders, experts and books). Evi-
dence ‘of the senses’ comprised information that was gained first-hand,
sometimes called the evidence of things, or internal evidence. Lastly, evi-
dence sometimes referred to the demonstration of effects from knowledge
of underlying causes.

Inference requires the formulation of explanations from observations.
For a long time, there was no accepted basis for inductive reasoning.
Hacking (1975) argued that inductive reasoning developed from medical
diagnosis and the related ‘low’ sciences of alchemists, astrologers and
miners who relied on empirical evidence to guide them to explanations.
Symptoms were used as evidence of the state of the system. It led to
the rise of reasoning from observed effects to hypothetical causes. The
concept of diagnosis sits more comfortably with belief than it does with
chance. One can have partial belief in several different explanations but
only one of them will be true.

The merger of probability (as both belief and chance) with the ma-
chinery of arithmetic led to the notion of expected utility, one of the
foundations of decision theory. Expected utility is the magnitude of an
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anticipated gain, discounted by the chance that the outcome will be
achieved. For instance, the Port Royal Logic (1662) stated that ‘Fear of
harm ought to be proportional not merely to the gravity of the harm,
but also to the probability of the event’ (in Bernstein 1996). Bernoulli
(1713, in Bernstein 1996) outlined the law of large numbers, utility and
diminishing returns explicitly, ‘[The] utility resulting from any small in-
crease in wealth will be inversely proportionate to the quantity of goods
already previously possessed.’

During the period from the late 1700s to the late 1800s, concepts such
as conditional probabilities, statistical power, the central limit theorem and
the standard deviation were discovered by Bayes, de Moivre, Laplace,
Bernoulli and Gauss. Many discoveries were in response to practical is-
sues such as dividing wagers before a game was complete and dividing
resources fairly between merchants (Stigler 1986).

The evolution of ideas about risk occurred hand in hand with the
development of ideas about probability and decision theory. Pascal dis-
cussed the decision about the costs and benefits of believing in God in a
decision-theoretic framework (Hacking 1975). This thinking led, even-
tually, to the formalization of statistical inference and null hypothesis tests
by R. A. Fisher and Neyman and Pearson between about 1920 and 1935.

1.4 Perception
People can be bad judges of risk. We carry with us a set of psychological
disabilities that can make it next to impossible for us to visualize and
communicate risks reliably.

The realization that we judge as badly as we do is relatively recent. In
the 1970s, two psychologists, Kahneman and Tversky, began doing ex-
periments on the ways in which people perceive and react to risks. Their
results were strikingly counterintuitive and led to exciting generalizations.
Cognitive psychologists, economists, sociologists and others took up the
theme. They continue to discover quirks of human perception today.

To illustrate how badly we analyse, consider the information in
Table 1.2. Each activity results in an equal additional risk of dying (one in a
million) to the person who does them. The table is somewhat misleading
because the numbers are averages drawn from large samples.

They may be interpreted by creating realistic scenarios. For example,
assume that every 10 km a person rides on a bicycle is a random sam-
ple of all sets of 10 km ridden by themselves and all others, at least
insofar as the chance of being hit by a car and killed is concerned.
This allows us to apply a statistical definition of probability. The table
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Table 1.2. Activities that increase chance of death by about one in a million per
year in the United States (after Wilson 1979, Stewart and Melchers 1997,
NFPRF 2002). Here, we assume that the risks are simple causal
relationships that accumulate additively with exposure

Activities Cause of death

Spending 1 h in a coal mine Black lung disease
Spending 1 h as an agricultural worker Accident
Spending 21/2 days as a firefighter Accident
Travelling 15 km by bicycle Accident
Travelling 500 km by car Accident
Flying 1500 km by jet Accident
Living 2 months in a brick building Cancer from radiation
Working for 1 year in a nuclear power plant Cancer from radiation
Living 50 years within 8 km of a nuclear reactor Radiation (accident)
Living 20 years near a PVC plant Cancer from vinyl chloride

The number of additional deaths per year for the example below are: a. 3840 (assum-
ing 240 working days per year), b. 1920, c. 0.2, d. 110, e. 11. So, the ‘right’ order
is c (least risky), e, d, b, a (most risky).

is an example of a standard form of communication about risks and, like
most others, it gives no indication of the certainty of the estimates, nor
does it evaluate the benefits of each activity (Kammen and Hassenzahl
1999).

Even though these statistics provide a seemingly unambiguous way of
interpreting risk, they are notoriously difficult for people to interpret in
a sensible way. Now, consider the following scenarios:

a. Riding a bicycle to and from a suburban home to work, a distance of
20 km each way, each working day for four years.

b. Working for one year in a coal mine (assuming a 40-h working week).
c. Living 4 km from a nuclear reactor for five years.
d. Working for one year as a firefighter.
e. Working for two months in a nuclear power plant.

We assume the risks accumulate additively with time and that there are no
causes of death other than those listed. Each scenario involves a chance of
dying. For this exercise, rank them from your most preferred to your least
preferred option (that is, try to make these ranks reflect an ordering from
the least risky to the most risky activity) without doing any arithmetic.
An answer is given at the foot of Table 1.2.
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People rarely get the order ‘right’, even if they have just seen the table.
The risks in the example span five orders of magnitude. Most people
overestimate the risk of living near or working in the nuclear reactor, and
underestimate the risk of riding a bicycle. This observation is striking be-
cause interpretation may have direct consequences for individual chances
of surviving and reproducing. People are poor judges despite presumably
powerful selective forces to get it right.

In an influential and much-cited study, Fischhoff et al. (1982) de-
scribed judgements of perceived risk by experts and lay people. It included
Figure 1.3, which plotted judgements against independent technical es-
timates of annual fatalities for 25 technologies and activities. Each point
represents the average responses of the participants. The dashed lines are
the straight lines that best fit the points.

The experts’ risk judgements are closer to measured annual fatality
rates (indicted by the solid lines) than are lay judgements. But they are
not as close as one might have expected. Both groups substantially under-
estimated the risks of high-probability events, and overestimated the risks
of low-probability events. In some cases, the misjudgements were by
two orders of magnitude for events that directly affect the lives of those
making the judgements. We will return to the reliability of experts in
Chapter 4.

Kahneman and Tversky (1979, 1984) found that people’s perceptions
are tuned to measure relative change in the magnitude of consequences
rather than the absolute change. They also found that perceived utility of
a risk depends on how it changes one’s prospects, so that individuals will
interpret risks differently, depending on how they affect their personal
circumstances. In addition, they observed that a tiny risk is not necessarily
a trivial one. Judgements about importance are substantially divorced from
estimates of the magnitude of a risk, and depend on social context.

Suter (1993) provided a good example. He stated, ‘Some exposures and
effects are manifestly trivial’ (p. 87). He went on to say that it is absurd, for
example, to consider restricting a pollutant because it causes one copepod
species to replace another. This statement horrifies aquatic invertebrate
ecologists and outrages copepod specialists. They believe that copepod
species are important for themselves, and that the ecological implications
of replacement may be indicative of qualitative shifts in whole ecosystems.
People will sometimes ‘tolerate’ a risk, implying a willingness to live with
a risk to secure benefits. The risk should not be seen as negligible or
something that might be ignored, but as under review and to be reduced
further as soon as possible (Pidgeon et al. 1992).
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Figure 1.3. Averages of risk estimates made by 15 experts (top) and 40 lay people
(bottom) plotted against the best technical estimates of annual fatalities for
25 technologies and activities. The experts included geographers, biochemists and
hazardous materials regulators. The lay people were from the US League of
Women Voters. The dashed lines are the straight lines that best fit the points. Both
groups were biased. The experts’ risk judgements were more closely associated
with annual fatality rates than were lay judgements (from Slovic et al. 1979,
Fischhoff et al. 1982). The correct assessments are given by the solid lines.

When scientists debate risks publicly, they sometimes try to influence
risk perception by emphasizing (or trivializing) numbers. For example,
Cauchi (2003) reported in a newspaper that scientists inserted a gene into
the chloroplasts of tobacco plants and then looked for it in the plants’
offspring. The technique of injecting modified genes away from a plant
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cell’s nucleus was an attempt to eliminate the risk that the modified gene
would find its way into related species by hybridization. In about 1 in
16 000 seedlings, the gene moved from the chloroplast to the nucleus
where it was heritable.

One expert commented that the rate of 1 in 16 000 ‘sounds like a
very large number’. Another said the rate was ‘not going to be meas-
urable’ because only 1 seed in about 10 000 made it to a neighbouring
nonmodified field, giving a total rate of 1 seed in 160 million. Both
opinions are conveniently framed. ‘Large’ relative to what? We need to
know, at the least, the number of seeds in the average field. And we need
to know what it is we are trying to avoid. If any escape is unacceptable, 1 is
a large number. If less than 1% hybridization is tolerable, 1 in 160 million
might be small depending on the time frame involved. Such arguments
can be difficult to evaluate in the absence of a complete evaluation of
potential costs and benefits.

These examples illustrate the importance of context and framing.
These issues are important in designing risk assessments, communicating
the results and managing risks subsequently, the basis of discussions about
risk management in Chapter 12.

1.4.1 Risk aversion and framing

People make inconsistent (but not necessarily incorrect) choices when
a problem appears in different frames (Kahneman and Tversky 1984).
The answers to questions about risk depend on the setting. Risk aversion
occurs when people prefer to have a smaller reward with greater certainty,
than a larger reward with less certainty. This may be so, even when, on
average, a person would do better to choose the high-risk, high-reward
scenario. Risk aversion makes sense whenever the cost or the failure
to gain a reward is unacceptable. All decisions involve ‘objective’ facts
and subjective views of the desirability of what is to be gained or lost
by the decision. The preferences and circumstances of the individuals
who experience the outcome determine its desirability. It is inherently a
subjective quantity, influenced by context, and may change capriciously.

A framing effect occurs when a change in the presentation of a choice
influences choice behaviour, even when the objective characteristics (out-
comes or probabilities) are not changed (Kahneman and Tversky 1979,
1984). Risk aversion can be modified by the frame as well as by emotional
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motivation. For example, I put the following two sets of questions to a
class of about 250 undergraduates each year for five years:

1. Is it acceptable for each species of Australia’s endemic mammals to have
a 50% chance of persisting for 50 years? What about a 90% chance?
What about a 95% chance? Is it an acceptable level of risk for each
species to have a 95% chance of persisting for 100 years?

Very few (<1%) raised their hands in answer to the first question. Between
25% and 50% of people raised their hands to the last question. Consider
the alternative question, asked a little later:

2. Australia has the worst conservation record on Earth, when it comes
to mammal extinctions. Of the roughly 70 species that have become
extinct globally in the last 400 years, more than 20 have become extinct
in Australia in the last 200 years. Who thinks this is an acceptable
record?

The second question was prefaced by an implicit value judgement (the
woefulness of Australia’s conservation record). Few raised their hand
to this question. Most were insensitive to the fact that Australia has
200 species of endemic mammals, of which around 20 are extinct. This
translates (roughly) to a loss of 5% of the fauna every 100 years, a rate
equal to that stipulated in the final form of question 1, which a substantial
proportion of people thought was acceptable when framed differently.

Decisions such as those made by the students about acceptable levels of
threat to species may appear to be irrational because the driving force is
loss-aversion. The same thinking applies to choices on the stock market.
Bernstein (1996) recognized the importance of this phenomenon when
he stated, ‘Few people feel the same way about risk every day of their
lives. . . . Investors as a group also alter their views about risk, causing
significant changes in how they value the future streams of earnings that
they expect stocks and long-term bonds to provide’ (p. 263).

Thaler (1991) provided an example in which the prospect of loss in-
fluenced decisions more strongly than the prospect of gain. He asked
groups of people, ‘How much would you pay to eliminate a one-in-a-
thousand chance of immediate death?’ and, ‘How much would you have
to be paid to accept an additional one-in-a-thousand chance of immediate
death?’ Median answers were $200 for the former question, and more
than $50 000 for the latter question. Such observations led Bernstein
(1996) to conclude that it is absolutely important for an investment ad-
viser to know the personal circumstances, commitments and sensitivities
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of his or her client. Without it, the adviser is unable to give sensible
advice.

The vagaries of money markets, mortgages and investments may seem
divorced from environmental decision-making, but the analogy is close.
There are potential costs and benefits to any decision. A decision by an
individual not to develop a site because of potential environmental harm,
for instance, is essentially the same as deciding to invest in one arena rather
than another. Exactly how the costs and benefits should be computed and
compared depends on the values, perceptions and circumstances of the
individuals involved, especially for things that do not have monetary value.

1.5 The pathology of risk perception
Perceptual idiosyncrasies colour judgements about risky situations
(Adams 1995). Cognitive psychologists and sociologists have made some
useful generalizations, summarized below (drawn from Tversky and
Kahneman 1974, 1982a,b, Kahneman and Tversky 1979, 1984, Fischhoff
et al. 1982, Slovic et al. 1984, Morgan 1993, Plous 1993, Adams 1995,
Fischhoff 1995, Freudenburg 1996, Freudenburg et al. 1996, Morgan
et al. 1996). It is important to remember that not everyone reacts like
this, just that the majority of people do. These attributes of risk psy-
chology may be viewed collectively as a pathology, a set of identifiable
symptoms that are characteristic of an underlying malaise.

1.5.1 Insensitivity to sample size

Perhaps the most debilitating psychological flaw, from the point of view
of risk assessments, is insensitivity to sample size. Most people (including
experienced scientists) draw inferences from data that can only be justi-
fied with much larger samples. Cognitive psychologists have termed this
the belief in ‘the law of small numbers’, making an oblique, somewhat
sarcastic, reference to the law of large numbers. In environmental science,
the law of small numbers leads to:

� underestimation of risk by proponents,
� overestimation of risk by those faced with dealing with the conse-

quences,
� research based on underpowered samples,
� undue confidence in early trends and apparent patterns, and
� undue confidence in the failure to detect impacts.
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The causes and consequences of this failing will be explored in Chapters 4
and 11. Its existence is one of the primary reasons why formal, transparent
and repeatable risk assessments are necessary.

1.5.2 Overconfidence

Unfortunately, unjustified optimism is a pervasive feature of risk assess-
ments. Typically there is little relationship between confidence and accu-
racy, including eyewitness testimony in law, clinical diagnoses in medicine
and answers to general knowledge questions by people without special
training (see Gigerenzer 2002, Chapter 4).

Capen (1976) asked a group of professional geophysicists attending a
conference to guess the number of beans in a jar, and to provide 90%
confidence intervals for their estimates. One interpretation of this interval
is that the scientists would have been willing to accept a 9 to 1 bet, winning
$1 if they were right, and giving up $9 if they were wrong. Most people
were optimistic about their ability to enclose the truth. Only 40% (14
out of 34) of the respondents included the true value in their interval.

This result is easy to replicate. Figure 1.4 repeats Capen’s experiment
for a group of 63 senior undergraduate students. Only 46% participants
(29 out of 63) included the correct value.

The result in Figure 1.4 is important because it illustrates the unrelia-
bility and optimism typical of subjective estimation. In fact, the example
underestimates the problem because, in general, people involved in risk
assessments know far less about the physical and ecological properties of
a system than they do of a jar of beans, and the example is free of the
linguistic uncertainties that affect more realistic applications.

1.5.3 Judgement bias

People are overconfident in assessing the quality and reliability of their
own judgements. An important source of overconfidence is a failure to
appreciate the nature and tenuousness of assumptions. People consistently
exaggerate what could have been anticipated.

1.5.4 Anchoring

Anchoring is the tendency to be influenced by initial estimates. When
asked to guess a number or a property, people will be drawn to the
guesses made by others, and will defer their judgements to people they
believe have greater authority, even when asked to make an independent
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Figure 1.4. Subjective estimates for 90% ‘confidence’ intervals. Participants were
asked to guess the number of beans in a jar, and to provide an interval around their
guess such that they were 90% certain it would enclose the true value. This was
taken to mean that they would accept a 9 to 1 bet that their interval enclosed the
correct value.

judgement. This bias is closely related to cognitive availability, the tendency
to judge the probability of an event by the ease with which examples are
recalled. More vivid and memorable examples are overestimated. This
implicit weighting gives them undue influence in subjective estimates.

1.5.5 Arbitrary risk tolerance

The perception of risk is linked tenuously to its magnitude and conse-
quences. Other factors filter individual responses and mitigate tolerance,
including:

� Level of personal control. When people feel they are in control of the
situation, they will tolerate higher risks. People will tolerate higher
risks of driving a car (when they are behind the steering wheel) than
they will when riding in an airplane (when someone else steers). This
is not the only factor determining acceptable risks for cars and planes,
but it contributes.

� Voluntary acceptance. Related to the level of personal control, people will
tolerate greater risks when they are given a choice, than they will when
the risks are imposed.
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� Fear of the unknown. People will not always tolerate greater risks
just because they understand technical detail and causal mechanisms.
Lack of experience reduces tolerance of risk. New technologies, in
particular, are susceptible. Explanations of technical detail are rarely
sufficient.

� Uncertainty about the consequences. If consequences are uncertain, peo-
ple are less likely to tolerate a risk than if the consequences are
known and relatively certain. Any new technology that includes un-
certain consequences for subsequent generations is particularly difficult
to sell.

� Dreadfulness of the outcome. Tolerance of risk is strongly motivated by
how terrible the consequences appear. This is also known as the ‘kill
size’ or the ‘outrage factor’, and is a primary concern of those trying
to communicate risks to the public. People are particularly sensitive to
large numbers of instantaneous deaths, impacts on ‘innocent’ people
(especially children) and substantial involuntary impacts.

� Equitability of distribution of the risk. People are less likely to tolerate a
risk that they bear alone or with a subset of society, than they are to
tolerate one shared more broadly.

� Visibility of the hazard. Risk tolerance is influenced by the profile of
potential hazards. Deaths in aeroplanes and nuclear power systems are
much more newsworthy than deaths in cars and coal-fired power sys-
tems, although the latter are much more common. Media and other
forms of information influence risk tolerance.

1.5.6 Race, religion, culture, gender

Many of the average responses to questions about risk by human popu-
lations can be explained by culture. Cultural differences contribute sub-
stantially to perceptions and acceptance, so that different social groups
react differently when confronted by the same hazards (Rohrmann 1994,
1998, Slovic 1999). For example, gender and race are associated with
apparent differences in attitudes to environmental risks and risk-taking
behaviour in the United States (Kalof et al. 2002, Weber et al. 2002,
Figure 1.5).

Similarly, on the whole, most Japanese believe they are worse than
average drivers and need collision insurance, even though there is no law
requiring it. In contrast, most American drivers believe they are better
than average drivers and are required by law to have collision insur-
ance. Hayakawa et al. (2000) explained the cross-national differences by
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Figure 1.5. Mean risk-perception ratings for health hazards, differentiated by race
and gender (after Slovic 1999; see also Kalof et al. 2002). The ‘white-male effect’
was caused by a subset of about 30% of the white male population who were
relatively well educated, earned higher incomes and were politically conservative.
Although they were identified post hoc, they were substantially and consistently
more optimistic about health risks than most others in the population. The
majority of the white male population (the other 70%) was not substantially
different from the other groups.

different traffic environments: fatal accidents in Japan are much more
likely to involve cars killing motorcyclists, bicyclists and pedestrians,
whereas US fatalities usually involve two cars.

Wen-Qiang and Keller (1999) reported the attitudes of Americans
and Chinese to risky situations. One involved a choice either to take a
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1% chance of 100 people dying (and a 99% chance that no-one dies), or
to take one individual out of 100 (say, by a lottery) and sacrifice them to
ensure that the other 99 remain safe. The former circumstance was con-
sidered fairer by both Chinese and Americans, but most Chinese chose
the latter course and most Americans chose the former. The Chinese
population was more risk averse, seeking to avoid catastrophe. The au-
thors speculated that the views reflected the greater importance attributed
to collective actions in Chinese society.

Judgements are clouded by different value systems. For instance,
Goklany (2001) argued that threats to human life and health should take
precedence over threats to the environment, although there may be ex-
ceptions, depending on the nature, severity and extent of the threat. Oth-
ers take a less anthropocentric view (see Brown 1996, MacLean 1996).

1.6 Discussion
The evidence is compelling that the psychological disabilities above are
shared by us all, to varying degrees. We will return to a detailed exami-
nation of other cognitive attributes in Chapter 4, examining the ability
of experts to contribute to risk assessments. In general, people are poor
judges of risk. Risk analysts need to be aware that the people they work
with and they, themselves, are susceptible to the vagaries of human per-
ception. Cognitive biases are heightened by the politically charged and
value-laden contexts of most risk assessments. The analyst should try to
clarify information so that it is as free as possible of the subjective filters,
preferences and values of those involved in its construction.

The extent of social and cognitive influences, taken together with
the paucity of data in most circumstances, led Adams (1995) to con-
clude that ‘ . . . risk may be viewed as culturally constructed, and context
dependent. Risks can be changed, magnified, dramatised, or minimised,
and so are open to social definition and construction. . . . Risks are cultur-
ally constructed because sufficient facts are unavailable. Cases of genuine
uncertainty are far more common than are cases in which risk is quantifi-
able. We must proceed in the absence of agreed facts.’ Arguments for the
social construction of risk can be compelling. If they are right, technical
views of risk assessment are misplaced. Credibility and trustworthiness
may be more important than data.

Despite cognitive biases, people process new information systemati-
cally. They compare it to information they already have, and form ap-
proximations and rules of thumb to make decisions. Cognitive biases may
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be as much a problem of communication as of estimation (Trumbo and
McComas 2003). We return to this theme in Chapters 4 and 12.

Risk assessments are invariably subject to distorting influences, perhaps
more so than other types of scientific analysis, because of the public setting
of many of the problems. Typically there is considerable pressure on risk
analysts to produce reliable projections, to diffuse social tension. Unfortu-
nately, analysts and the experts they employ are themselves susceptible to
the same set of pressures. They cannot occupy the independent, objective
ground that politicians and policy makers wish them to.

There are exceptions to the general rule of abysmally poor perfor-
mance in assessing risks. The performances of professional bookmak-
ers, weather forecasters and bridge players are substantially better than
those of untrained or inexperienced people who attempt the same tasks
(Morgan and Henrion 1990, Plous 1993). Yet we don’t usually associate
these groups with good predictions. They have a number of things in
common. They practice. They make predictions on a routine basis and
receive immediate unambiguous feedback on their performance. Con-
sequently, they learn from their mistakes. Often, their judgements reflect
on them personally when they get them wrong.

This book is devoted to making the rest of us behave more like weather
forecasters, bookmakers and bridge players, but only as far as is reasonable.
People who deal successfully with technical risks work in narrow domains
with enviable replication and relatively little ambiguity and social pressure.
The rest of us are doomed to working in circumstances that guarantee
that we can never achieve the kind of reliability boasted by these groups.
The book provides some help with the slippery issues that arise when
statistical probabilities don’t apply.



2 � Kinds of uncertainty

Uncertainty pervades the natural environment and obscures our view
of it. To organize ideas about uncertainty, this book uses a taxonomy
of uncertainty created by Regan et al. (2002a). At the highest level, it
distinguishes between epistemic and linguistic uncertainty.

Epistemic uncertainty exists because of the limitations of measurement
devices, insufficient data, extrapolations and interpolations, and variabil-
ity over time or space. There is a fact, but we don’t know it exactly. This
is the domain of ordinary statistics and conventional scientific training.

Linguistic uncertainty, on the other hand, arises because natural lan-
guage, including our scientific vocabulary, often is underspecific, am-
biguous, vague, context dependent, or indeterminate. It is distinguished
from epistemic uncertainty because it results from people using words
differently or inexactly.

This chapter introduces the concepts of epistemic and linguistic uncer-
tainty. It defines several subtypes within each broad category. It provides
some examples of each and outlines the methods that may be best suited
to treating them.

2.1 Epistemic uncertainty
Epistemic uncertainty reflects incomplete knowledge. It has several main
types: measurement error, systematic error, natural variation, model un-
certainty and subjective judgement. Each arises in different ways. A va-
riety of well-known statistical methods are available to treat them (e.g.
Sokal and Rohlf 1995).

2.1.1 Variability and incertitude

The terms ‘variability’ and ‘incertitude’ make a simple taxonomy of epis-
temic uncertainty worth describing because of its utility. Variability is
naturally occurring, unpredictable change, differences in parameters at-
tributable to ‘true’ heterogeneity or diversity in a population. Incertitude
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is lack of knowledge about parameters or models (including parameter
and model uncertainty).

Incertitude usually can be reduced by collecting more and better data.
Variability is better understood and more reliably estimated, but is not
reduced by collecting additional data.

These words have been useful in routine applications of risk assessment
(Hoffman and Hammonds 1994, Finkel 1995, US EPA 1997a,b, Kelly
and Campbell 2000). While all parameters exhibit both characteristics to
some extent, the distinction can help structure quantitative investigations
of risk (Chapter 10) and influence priorities for collecting data (Hoffman
and Hammonds 1994, Regan et al. 2003). A more detailed taxonomy of
epistemic uncertainty follows.

2.1.2 Measurement error

Measuring equipment and observers are imperfect. Measurement error
results in (apparently) random variation in a quantity. Repeated meas-
urements vary about a mean. In the absence of other uncertainty, the
relationship between the true quantity and the measured quantity de-
pends on the number of measurements taken, the variation amongst
them, the accuracy of the equipment and the skill of the observer.
This type of uncertainty can be dealt with by applying statistical tech-
niques to multiple measurements and reporting bounds such as con-
fidence intervals. For example, various attempts have been made over
time to estimate such fundamental constants as the speed of light and
Avogadro’s number. Theory tells us there is a fact, a single value for
each constant. Any uncertainty derives from our inability to measure
correctly.

It is clearly incorrect to believe that the confidence intervals associ-
ated with each set of measurements capture all uncertainty. For instance,
the confidence intervals associated with reports of measurements of these
physical constants rarely overlap the intervals associated with measure-
ments made subsequently (Figures 2.1a,b). The values from one time to
another include differences between experimental protocols, people and
equipment as well as measurement error.

2.1.3 Systematic error

Systematic error occurs when measurements are biased. It is defined as
the difference between the true value of a parameter and the value to
which the mean of the measurements converges as sample sizes increase.
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Figure 2.1a,b. a. Measurements of the speed of light together with reported
uncertainties (confidence intervals) for the period 1929–73 (Henrion and Fischhoff
1986, in Morgan and Henrion 1990). b. Deviations of estimates of Avogadro’s
number from the 1973 value together with reported uncertainties (confidence
intervals) for the period 1952–73 (Henrion and Fischhoff 1986, in Morgan and
Henrion 1990). Avogadro’s number is the number of atoms present in 12 g of the
carbon-12 isotope (a mole of C12).

Unlike measurement error, it is not (apparently) random. Measure-
ments subject to systematic error alone do not vary about a true value.
Systematic error can result from the deliberate judgement of a scientist
to exclude (or include) data that ought not be excluded (or included).
It can result from consistent, unintentional errors in calibrating equip-
ment or recording measurements. For example, the large differences in
measurements of physical variables among different experiments are the
result of bias (Figures 2.1a,b).
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Figure 2.2. Bias in air pollution data resulting from a programming error (redrawn
from Kaiser 2002). The vertical distance of the circles from the diagonal line
shows how much the estimated death rate was wrong for each of 90 cities (not all
90 are shown here). The black square shows the location of the pooled estimates
(the updated estimate was 0.27% per 10 µg/m3 of PM10, and the original was
0.41%).

The US EPA felt the consequences of bias when it was discovered in
2002 that studies linking deaths to very fine particulate matter (such as
diesel exhaust) were biased because of a default setting in a computer
program. When daily levels of soot rise, slightly more people die from
heart and lung disease. In 1997, the EPA regulated by limiting permissible
levels of the pollutants, in part based on the results of the statistical analysis.
The correction resulted in a revision of the estimate from a 0.41% rise
in mortality per 10 µg/m3 of fine particles, to a 0.27% increase (Kaiser
2002; Figure 2.2). The standard could change as a result.

Some biases exist because observations are affected by theories
(Chalmers 1999; termed the ‘theory-ladenness of observation’). We ob-
serve, in effect, what our theory instructs us to observe. For example,
a formal taxonomic description is a theory about a species. Museum or
herbarium records of species often contribute to estimates of distribu-
tional ranges. If a taxon is not recognized as a species, frequently it is
not collected, catalogued or recorded. If it is subsequently recognized as
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a good species because taxonomists re-evaluate it, estimates of its range
will be biased because it has not been collected thoroughly or systemati-
cally. Burgman et al. (2000) observed this phenomenon when estimating
range changes for Acacia species.

Sometimes, systematic error can be recognized and removed. A cor-
rection may be applied when the magnitude and direction of the bias
are known, as in Figure 2.2. Such corrections underlie double-sampling
methods (Gilbert 1987).

Systematic error, however, is notoriously difficult to recognize, except
on theoretical grounds. The best strategies for dealing with it include
diligent inspection of experimental procedures, comparison of estimates
with scientific theory, independent studies, replication and careful atten-
tion to detail.

2.1.4 Natural variation

Natural variation is environmental change (with respect to time, space
or other variables) that is difficult to predict. In ecology for instance,
populations of plants and animals experience natural variation because
individuals die while others are recruited into the population at rates that
depend on food availability, weather conditions, predators, disease and so
on. The true values of survival or birth rates change as a result of changes
in independent (driving) variables. In ecotoxicology, the concentration
of a chemical in a stream varies with temperature, particulate matter, flow
rates and other variables, all of which fluctuate naturally.

The true values of parameters may be extraordinarily difficult to meas-
ure across the full range of temporal and spatial values (or other related
variables). In some taxonomies, natural variation is considered to be ir-
reducible. Many of the examples in this book are dominated by natural
variation.

Genuine cases of inherent randomness are hard to find (see Regan et al.
2002a). Even random experiments like tossing coins and throwing dice
are deterministic – it’s just that we don’t have enough information about
the dynamic processes and initial conditions to make reliable estimates
about the outcomes. For similar reasons, complex or chaotic systems such
as ecosystems or weather patterns are not inherently random. Chaotic
systems are entirely deterministic but are unpredictable unless the deter-
ministic processes generating them and the relevant initial conditions are
known (Sugihara et al. 1990).
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2.1.5 Model uncertainty

Model uncertainty occurs because models are simple abstractions of real-
ity. Models may be based on language, diagrams, flow charts, logic trees,
mathematics or computer simulations, among others. They may be used
as conceptual tools, to assist in the understanding of the structure of the
system in question. They may be used to predict future events or to
answer questions about a system.

Model uncertainty arises in two main ways. First, usually only variables
and processes that are regarded as relevant and important for the purpose at
hand are featured in the model. Texts that describe model building advise
that models should be a compromise between the level of understanding
of the system and the kinds of questions it is necessary to answer (e.g.
Levins 1966).

Second, the choice of a way to represent observed processes involves
further abstractions. For example, consider describing how populations
change in time. Some individuals die, others reproduce, eat available food,
encounter one another, disperse and so forth. Each of these activities
affects population abundance and may be represented in a variety of
mathematical forms. We may choose the logistic equation, based on a
theory about intra-specific competition, to represent all important natural
processes.

Similar kinds of uncertainty arise from curve fitting (including in-
terpolation and extrapolation) and approximation. For instance, when a
system of continuous differential equations is used to represent chemi-
cal diffusion, it is often necessary to employ a numerical algorithm to
solve the equations. In such cases, a meta-model is constructed to make
predictions and answer questions about the original model (see Regan
et al. 2002a and references therein). The most appropriate mathematical,
verbal, or diagrammatic representation of a process is a matter of opinion
and understanding.

For example, several different curves would fit the two sets of data
in Figure 2.3 equally well. It’s rare to see more than one alternative
explored.

Leon and Bonano (1998) predicted that model uncertainty will be-
come a focus of legal challenges to risk assessments. Uncertainty associ-
ated with model selection is a difficult area because there are no accepted
methods for treating it and there are no general guidelines for measuring
the adequacy of a model for its intended use. Mostly, individual scientists
use a given model because it is convenient or they are familiar with it.
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Figure 2.3a,b. Two examples of model uncertainty. a. Recruitment of two-year-old
fish as a function of the biomass of adults. b. Volume (yield) versus age for plots in
Canadian forests (from Dennis et al. 1985; see also Cushing 1995).
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Model uncertainty is difficult to quantify and impossible to eliminate.
It may be possible to find the ‘best’ available model for particular purposes
(Morgan and Henrion 1990). It may be better to treat models as plausible
alternatives, and to accumulate evidence over time that may winnow the
selection (Hilborn and Mangel 1997).

The only way of determining how appropriate a model is for prediction
is to validate it by comparing predictions with outcomes. It will be reliable
if predictions are within an ‘acceptable’ margin of error. This is as much
a social decision as a scientific one.

2.1.6 Subjective judgement

When there is a fact (for example, a true parameter or model structure),
uncertainty due to subjective judgement results from the interpretation
of data. Often, there are insufficient measurements to make reliable es-
timates. When there is an imperative to proceed with some course of
action, the judgement of an expert may be used in place of or to inter-
pret data. Often, the expert’s judgement will be based on observations
and experience, both of which constitute data. In all such assessments
there is an element of uncertainty (see Chapter 4).

The standard way of dealing with this type of uncertainty is to assign
a degree of belief in the form of a subjective probability. For instance,
an expert might assign a probability of 0.9 to the event ‘there will be
an algal bloom in the lake this month’. This judgement might be based
partly on frequency data. An expert’s judgement will be uncertain but it
should coincide with the results of data if they are available (see Chapter 1
and references in Regan et al. 2002a).

2.2 Linguistic uncertainty
Linguistic uncertainty arises because language is not exact. Vanackere
(1999) gave the example ‘it’s raining’, which may apply when it is pour-
ing, or when a few drops sprinkle down. The need for precision depends
on context. It is not practical to subdivide meaning to cope with all
circumstances. We can’t have a different word for all degrees of rain
intensity. Language needs to be compact. Generality is necessary for
communication.

Linguistic uncertainty can be classified into five distinct types: vague-
ness, context dependence, ambiguity, indeterminacy and underspecificity
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(Regan et al. 2002a). Several arise in natural and scientific language, and
can impact on environmental applications.

2.2.1 Vagueness

Vagueness arises because language permits borderline cases. Algae are
always present in fresh water. At what point does an algal population
become an ‘algal bloom’? In practical terms, a bloom occurs when the
density of algae is such that water appears green (or red), smells are
emitted, oxygen is depleted, the water becomes toxic and fish die. The
bloom is defined in terms of its consequences. A range of algal densities
may lead to them, depending on light, temperature, flows, suspended
sediments, phosphorus and nitrogen. The term is vague because it permits
borderline cases, including slight and severe algal blooms. A spurt of algal
growth that turns the water slightly green may not count as a bloom to a
fishing fleet if it has no impact on fish. The vagueness of the term ‘algal
bloom’ ensures that there is no straightforward answer to the question of
how many algal blooms occur in a lake in a year.

Many other terms in routine use in science are vaguely defined. A
‘tree crown’ is a perfectly serviceable word that communicates a simple
concept: the foliage clustered at the top of a tree. However, this is a
poor operational definition because it does not precisely define a crown’s
boundary. Different people observing the same trees produce wildly dif-
ferent measurements of crown depth because they identify different points
at which it begins and ends.

A common strategy for eliminating vagueness is to replace the intuitive
meaning with a technical term defined by an arbitrary, sharp boundary.
For example, the operational definition of an algal bloom in some ju-
risdictions is that the number of cells exceeds 5000 per ml (usually in a
single surface sample). In another example of a sharp boundary, one of
the IUCN’s (1994, 2001) operational definitions of the term ‘endangered
species’ is that there are fewer than 100 mature individuals.

One of the most serious problems with sharp boundaries is called the
Sorites Paradox (see references in Regan et al. 2002a). If sharp boundaries
are used to define classes in a continuum, very small changes delineate
cases close to the boundaries. A taxon with 100 individuals is classified
differently to a taxon with 99 individuals. This is at odds with the meaning
of the original term ‘endangered’ in which a taxon would not receive
different treatment on the basis of a difference of one individual. Similarly,
if a 1-ml water sample contains 4999 cells, no action is taken, but if it
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contains 5001 cells, then weirs and dams may be opened, drinking water
imported and domestic animals removed from the shores of the lake.

Vagueness permeates far too much of our language to hold any serious
hope for its elimination. Consider the US Federal Register’s definition
of ‘species viability’:

A species consisting of self sustaining and interacting populations that are well
distributed through the species’ range. Self-sustaining populations are those that
are sufficiently abundant and have sufficient diversity to display the array of
life history strategies and forms to provide for their long-term persistence and
adaptability over time. (US Federal Register, undated )

Many terms in this definition are vague, including ‘self sustaining’,
‘well distributed’ and ‘sufficiently abundant’. Vagueness is widespread in
environmental management and difficult to eliminate (note also that some
terms in the definition above may also be subject to additional sources of
linguistic uncertainty described below).

There are other, better ways to deal with vagueness than attempting
to eliminate it, including fuzzy sets which use degrees of membership to
deal with borderline cases (see Walley and DeCooman 2001, Regan et al.
2002a). Regan et al. (2000) suggested their use in classifying conservation
status. For instance, a species that has declined by 70% may have partial
membership (say 0.25 on a scale of 0 to 1) in the set of threatened species
(Figure 2.4). Species with higher rates of decline should have a higher
degree of membership.

2.2.2 Context dependence

Context dependence is uncertainty arising from a failure to specify the
context in which a proposition is to be understood. For example, suppose
an oil spill is said to be ‘small’. Without specifying the context, the
audience is left wondering whether the oil spill is small for an oil container
ship or a dinghy, small for a port or the open ocean.

Note that ‘small’ is also vague but that vagueness and context depen-
dence are quite separate issues. The vagueness persists after the context
has been fixed. That is, even after we are told the context – ‘small-for-a-
cargo-vessel-in-a-port’, say – there are still borderline cases. The way to
deal with context dependence is to specify context unambiguously and
correctly. While the solution is clear, this kind of uncertainty is pervasive.

For example, Cooke and Kraaikamp (2000) described a risk analysis
for an accident at a rural train crossing. The analysts calculated the risk of
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Figure 2.4. A fuzzy boundary for the classification of threatened species under
IUCN (2001) protocols, based on the decline in the number of mature individuals
(after Regan et al. 2000).

a signal failure anywhere in the country, rather than the correct context
of a railway crossing in a wooded rural setting (where the chance of the
event was much higher). They described the use of the wrong context
as ‘habitual sloppiness’ and one of the ‘familiar pitfalls in probabilistic
reasoning’.

2.2.3 Ambiguity

Ambiguity is uncertainty arising from the fact that a word can have
more than one meaning and it is not clear which meaning is intended.
For example, the word ‘cover’ used routinely to describe vegetation can
mean projective foliage cover (the proportion of the ground covered by a
vertical projection of the aerial parts of plants, e.g. Kershaw 1964, p. 15),
or crown cover (the area encompassed by a vertical projection of tree or
shrub crown perimeters, e.g. Philip 1994, p. 132). The former definition
excludes gaps within crowns from estimates of cover. The latter definition
includes them, relying on the polygon formed by the outer edges of the
crown.
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Ambiguity is often confused with vagueness. However, the two types
of uncertainty are quite distinct. The ambiguity in the word ‘cover’ does
not give rise to borderline cases in the way ‘endangered’ does – there is
nothing borderline between projective foliage cover and crown cover.

Shrader-Frechette (2001) documented the use of different terms to
refer to nonindigenous species; she found examples of terms includ-
ing ‘alien’, ‘exotic’, ‘invasive’, ‘imported’, ‘weedy’, ‘introduced’, ‘non-
native’, ‘immigrant’, ‘colonizer’ and ‘naturalized’. In most cases the
authors she reviewed defined the terms imprecisely or not at all. As a
result, she pointed out, there is no common vocabulary in which to
evaluate claims about invasions or the impacts of nonindigenous species.
Careful definition would resolve at least part of the problem.

An important example is given by the term ‘no observed effect con-
centration’, the highest amount of a substance for which no significant
effect was found (at α = 0.05) in a statistical test between a treatment
and a control (Chapter 7). The acronym is easily and frequently in-
terpreted to mean a no observable effect level (Laskowski 1995). The
lack of significance is taken to mean there is no effect, which is wrong
(Chapter 11).

2.2.4 Underspecificity

Underspecificity occurs when there is unwanted generality. For example,
a weather forecast may state that there is a 70% chance of rain. Possible
interpretations are:

� rain during 70% of the day (so that if you emerge from a building at a
random moment, you have a 70% chance of getting wet),

� rain over 70% of the area,
� 70% chance of at least some rain at least somewhere in the area,
� 70% chance of at least some rain at any point in the area,
� 70% chance of at least some rain at a particular point (the weather

station).

Typically, weather forecasts assume the latter, although it is rarely stated
and almost never understood by the people receiving the information. In
most instances, the degree of specificity in the statement ‘there is a 70%
chance of rain’ is sufficient to make a decision about how to dress, but it
may be underspecific depending on a person’s sensitivity to the outcome.
Farmers, for instance, may prefer to have information reported using the
second definition.
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Underspecificity also arises where data could have been obtained but
are no longer available. For example, in fauna and flora surveys it was once
sufficient to provide imprecise locations such as ‘inland Siberia’ or ‘north
of Edmonton’, or to provide no location information at all. Today, many
locations are recorded with Global Positioning Systems accurate to a few
metres. This distinction is important because opportunistic observations
are used to assess temporal trends in species distributions. Underspecificity
of location makes records unusable.

The best we can do is to provide the narrowest possible bounds on
estimates given the data, and to make available all the information behind
such statements. For example, a risk assessment of the ecological effects of
a lobster fishery considered impacts on sea lions (IRC 2002; this example
is explored in more depth in Chapter 6). Sea lion pups sometimes drown
in lobster pots, attracted inside by the lobsters and unable to escape after-
wards. The assessment concluded that an additional 3–4% mortality of sea
lion pups was probably unimportant because sea lion pup mortalities be-
tween birth and five months of age ‘vary naturally between 7% and 24%’.

This statement provided a range without a sample size, and therefore
gave an incomplete picture of the magnitude of variation. Furthermore,
it did not say if this variation was experienced over time within a single
population or over several populations within a year. It may be some
combination of the two. Lastly, it didn’t say how old the pups were that
died in lobster pots. With this information, it is impossible to assess the
assertion that an additional 3–4% mortality is tolerable.

2.2.5 Indeterminacy

Uncertainty arises from indeterminacies in our theoretical terms. The
problem is that the future usage of terms is not completely fixed by past
usage. Some of our terms may not be ambiguous now, but they have
the potential for ambiguity. This is sometimes called the open texture of
language.

Uncertainty arising from this source is different from and more in-
sidious than ambiguity. When we encounter a case of ambiguity we can
always use other words. But in the case of theoretical indeterminacy, this
can only be done after the fact when the new usage of the word comes
into effect.

For example, the theoretical indeterminacy associated with the species
concept emerges after taxonomic revisions. Taxonomic revisions of Aca-
cia browniana in 1995 reclassified the taxon into Acacia browniana, A. grisea,
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Table 2.1. Sources of epistemic and linguistic uncertainty and their most
appropriate general treatments (see Regan et al. 2002a for a more complete
treatment)

Source of uncertainty General treatments

Epistemic uncertainty
Measurement error Statistical techniques; intervals
Systematic error Recognize and remove bias
Natural variation Probability distributions; intervals
Inherent randomness Probability distributions
Model uncertainty Validation; revision of theory based

on observation; model averaging;
information-gap theory

Subjective judgement Degrees of belief
Linguistic uncertainty
Numerical vagueness Sharp delineation; fuzzy sets
Non-numerical vagueness Construct measures then treat as for

numerical vagueness
Context dependence Specify context
Ambiguity Clarify meaning
Indeterminacy in theoretical terms Make decisions about future usage
Underspecificity Specify all available data

A. lateriticola, A. luteola, A. newbeyi and A. subracemosa (Burgman et al.
2000). Prior to 1995, taxonomists did not know that there was an ambi-
guity in the name Acacia browniana and would not have had the taxonomic
concepts or the scientific vocabulary to treat the entities separately. This
contributed to bias in range estimates.

Theoretical indeterminacy is dealt with by making decisions to antic-
ipate the future usage of theoretical terms. It means that there must be
tradeoffs; for example, between acquiring new collections and allocating
resources to superficially redundant collections that may become impor-
tant, if a taxon is revised. In general, anticipating future use is difficult
because the future usage must be consistent with the past usage and it
must be theoretically well motivated and fruitful.

2.3 Discussion
All risk assessments involve at least some elements of each of the sources of
uncertainty outlined above. Table 2.1 summarizes the taxonomy. In any
application, uncertainties from different sources compound, including
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uncertainties from epistemic and linguistic sources (e.g. Regan et al.
2001). The quality of a risk assessment is determined by the extent to
which they are recognized and dealt with in a comprehensive, transparent
and repeatable manner.

The categories presented here are not the only ones possible. Not
all uncertainty can be neatly classified into one and only one of the
categories defined by Regan et al. (2002a). But the framework is relatively
complete and unambiguous. It identifies the elements of uncertainty that
are encountered most routinely in environmental risk assessments.

Other taxonomies have been devised to provide different emphases.
For instance, Morgan and Henrion (1990) noted linguistic uncertainty
but did not distinguish between its different forms. Klir and Harmanec
(1997) nominated vagueness and underspecificity (defined as above) and
added conflict uncertainty to their taxonomy. Conflict arises when ev-
idence is inconsistent and may be resolved by the weight of evidence
(the legal model) or by collation of additional information. Ben-Haim
(2001) used a slightly different interpretation of linguistic and epis-
temic uncertainty. Some taxonomies confuse epistemic and linguistic
uncertainty. Others introduce redundant categories. Many in environ-
mental science treat only epistemic uncertainty (e.g. Chesson 1978,
Hilborn 1987, Shaffer 1987, Burgman et al. 1993, Shrader-Frechette
1996a).

No single method can treat all sources of uncertainty. Methods out-
lined in Table 2.1 to treat epistemic and linguistic uncertainty differ.
For instance, none of the methods to deal with linguistic uncertainty are
probabilistic, while many strategies for treating epistemic uncertainty are.
Colyvan (2004) argued that probabilities are not suitable for some types
of uncertainty. We will return to the question of how to deal with differ-
ent kinds of uncertainty, and to applications that combine and propagate
uncertainties, in later chapters.

Many methods for dealing with uncertainty are largely untried in
environmental risk assessment. For instance, interval probabilities can be
assigned to represent an expert’s degree of belief where lower and upper
bounds encompass the range of beliefs (Walley 1991, see Chapters 4
and 8). Treatments of subjective uncertainty may use interval arithmetic,
imprecise probabilities, Dempster-Shafer belief functions and related tools
(see Regan et al. 2002a), some of which are outlined in the chapters that
follow.

Sources of epistemic uncertainty have attracted attention in environ-
mental risk assessment mainly in relation to decision-making (e.g. Taylor
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1995). In some cases, consideration of even a subset of the full spectrum
of uncertainty has been considered to be debilitating. Beissinger and
Westphal (1998) argued that there are insufficient data to parameterize
models dealing with epistemic uncertainty for all but a handful of species.
But there has been no comprehensive evaluation of the importance of the
full spectrum of uncertainties for decision-making. Although linguistic
uncertainty is common, it is often ignored and only epistemic uncertainty
is considered. Clear understanding of the nature of uncertainty will assist
analysts to use appropriate methods.



3 � Conventions and the risk
management cycle

Sit in a room of engineers and listen as they plan a risk assessment, and
you’ll hear a view of how it should be done. Sit in a room of ecotoxicol-
ogists, epidemiologists or conservation biologists and you’ll get quite a
different view. So different, in fact, that you might think the four groups
were discussing four different topics. The assumptions, methods for data
collection, models, use of experts and so on would differ from group to
group. Some would be wildly different, although it would be difficult to
tell through the blankets of jargon.

Some terms are useful in setting up a broad, common context for risk
assessment.

� A hazard is a situation that in particular circumstances could lead to
harm (Royal Society 1983).

� Stressors are the elements of a system that precipitate an unwanted
outcome.

� Environmental aspects are human activities, products or services (such
as emissions, chemical handling and storage, road construction) that
can interact with the environment (Zaunbrecher 1999).

� An environmental effect is any change to the environment, whether
adverse or beneficial.

These definitions help to describe activities and their relationships to
detrimental (and advantageous) environmental outcomes. Management
goals embody social values and management aspirations. Stressors and
environmental aspects have effects on (consequences for) valued ecolog-
ical attributes, processes and services. The broad scope of environmental
aspects makes them valuable in organizing ideas for assessing complex
operations. Table 3.1 provides some examples of these terms for an as-
sessment of an irrigated catchment.

In some engineering, toxicology and human health risk assessments,
hazards are measured by accidents, deaths, illnesses or injuries. In most
environmental assessments there are so many potential measurement
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Table 3.1. Examples of terms in the environmental effects
hierarchy applied to a risk assessment of an irrigation system
(after Hart et al. 2003)

Term Example

Management goal Ecologically sustainable catchment
Hazard Irrigation
Stressors Nutrients, pesticides, flows
Effect/consequence Algal bloom
Assessment endpoint Phytoplankton community
Measurement endpoint Algal abundance in surface water

endpoints that it is not possible to generate a complete list. In Table 3.1,
the algal bloom is listed as a consequence. It may be more suitable to think
about the algal bloom as a hazard, the probability of which is affected by
irrigation practices. The consequences of the hazard may be fish kills, the
deaths of farm animals or decreased revenue from tourism.

Often, in operational circumstances, it is easier to define hazards in
terms of their consequences. If the hazard is an oil spill from a grounded
ship, there are different kinds of ships, and different kinds and sizes of
spills, even for a single type of ship. It may be easier to classify oil spills
as small, moderate and large (taking care to define the kind of oil, the
terms small, moderate and large, and the context of the spills), and then
to estimate the likelihood of each consequence.

In many instances, there is no substantive reason for different disciplines
to perform risk assessments differently. The conventions arose in response
to the timing of the development of risk analyses, the kinds of problems
that presented themselves and the social context in which solutions were
sought.

The purpose of this chapter is to outline the features of different pro-
fessional conventions (paradigms). It describes an environmental effects
hierarchy proposed by Suter (1993). It proposes a broad, unifying frame-
work, taking ideas from adaptive management and applying them to risk
assessment. It echoes Walters (1986) who defined adaptive environmen-
tal assessment as a framework that states the objectives of management,
reviews and assesses any current information, identifies knowledge gaps
and uncertainties and constructs alternative management scenarios. The
broad professional obligation of risk analysts to undertake ‘complete’
analyses may be achieved by adhering to the framework.
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3.1 Risk assessments in different disciplines
Some disciplines such as the nuclear power industry began conducting
risk assessments on data-rich issues with relatively well-understood pro-
cesses, and were protected to some extent from public scrutiny. These
assessments have a highly technical flavour and are driven by experts.
Other risk assessments grew out of public concern over things such as
the effects of contaminants on human health. The conventions in these
domains involved a closer relationship with stakeholders and included
attempts to influence public policy through advocacy.

3.1.1 Ecology

Fisheries biologists began to develop models in the early 1900s to esti-
mate sustainable harvest. More recently, fisheries managers have used risk
assessments together with adaptive management strategies (Holling 1978,
Walters 1986). An emerging operational strategy uses detailed models of
biological processes to challenge the performance of management op-
tions. Harwood and Stokes (2003) urged more general adoption of this
system, pointing to the management of the southern gemfish fishery
where management was based on a simple model, in preference to a de-
tailed age-structured model. The simple model resulted in less variable
catches and the data required to monitor the resource effectively were
relatively cheap to collect (Punt and Smith 1999). We explore the utility
and broad applicability of these ideas in Chapter 12.

Conservation biologists developed a preoccupation with estimating
objective risk in the form of declines of population size. Conservation
biology emerged in the early 1980s focused on risk assessments for threat-
ened populations (see Beissinger 2002). Shaffer (1981) defined a ‘min-
imum viable population’ to be the smallest isolated population having
a 99% chance of surviving 1000 years. This led to the development of
population models to estimate extinction risk under the heading of ‘pop-
ulation viability analysis’ (Soulé 1987).

A pre-existing framework of population dynamic modelling was
adapted for risk assessment that allowed analysts to make judgements
about probabilities of population decline and loss (Burgman et al. 1993).
These models evolved to include spatially explicit incidence models
and frequency models, individual-based models, logic trees and related
quantitative tools (see Beissinger and McCullough 2002, Reed et al.
2002).
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Other tools that accommodate subjective parameter estimation and
attitudes to risk (Akçakaya et al. 2000; see Ralls et al. 2002) have emerged
to assist with risk ranking. Their use is in its infancy.

3.1.2 Engineering

Nuclear power safety provided strong motivation for risk assessment when
the first plants were constructed in the 1950s. The people who developed
the ideas for nuclear power were also responsible for developing numerical
methods to support Monte Carlo simulations (Ulam 1976).

Engineering applications are dominated by quantitative risk assess-
ments and technical philosophies that assume probabilistic interpretations
of risk (Kumamoto and Henley 1996, Stewart and Melchers 1997). They
use probability calculus and explicit models to estimate risk as the prob-
ability of an adverse event and its consequences over time (Kaplan 1997,
Hayes 1997, 2002a).

Petroleum geologists embarked on quantitative risk analyses in the
early 1970s (Capen 1976). They share the probabilistic view of risk held
by the nuclear industry (e.g. Vose 1996) and we explore some of these
methods in Chapters 8 and 10. Usually, risk assessments are conducted by
specialists independently of stakeholders. Experts are viewed as unbiased
interpreters of facts. Nuclear engineers and petroleum geologists support
their empirical, frequentist view of probability with extensive ‘failure
rate’ data bases and accident statistics.

Subjective risk ranking exercises described in detail in Chapter 6 are
one of the most common forms of environmental risk assessments for en-
gineering, mining and other industrial settings. Estimates of likelihoods
and consequences are classified into one of a few categories. These gen-
erate a small number of risk classes that are used to guide decisions and
set priorities for mitigation and remediation. This approach has been
approved by institutions as diverse as the British Society of Actuaries,
The Royal Society for Civil Engineering (ICE/FIA 1998) and Standards
Australia (1999). It has its roots in methods developed by the aerospace in-
dustry in the USA during the 1960s. Current applications have a number
of substantial flaws but, fortunately, some at least can be fixed (Chapter 6).

3.1.3 Ecotoxicology

Ecotoxicology took a different turn. Ecotoxicologists estimate the inten-
sity, frequency, duration and extent of exposure of populations (human
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and others) to chemical, physical or biological agents (Suter 1995, Davies
1996). In ecological risk assessments, conceptual models are developed
around the concepts of stressors (things that may cause harm) and recep-
tors (elements of ecosystems at risk). As formulated by the US EPA, eco-
logical risk assessment is a broad framework in which communication
and management are treated as separate processes from analysing risks
(Figure 3.1).

The ecotoxicology paradigm (Chapter 7) matured into the formal
process represented in Figure 3.1 during the 1970s and 1980s. It includes
standard laboratory tests, equations, default values and conventions for
dealing with some uncertainties. For someone wanting to sell or use a
chemical, for instance, compliance with regulations involves following a
set of stylized procedures, simple conceptual models, laboratory results
and arithmetic calculations. Assessments are supported by data bases of
toxic substances and their effects on standard test organisms (Calow and
Forbes 2003).

This paradigm is influential because it is deeply embedded in many
government authorities around the world devoted to ‘environmental pro-
tection’ (e.g. US NRC 1983; see Kammen and Hassenzahl 1999). At least
some of its mystique derives from its arcane, specialized jargon and from
the heavy use of acronyms.

3.1.4 Public health

Physicians’ judgements about individual patients are exercises in risk as-
sessment that rely on mental models, sometimes supported by statistical
evidence and formal decision tools. Epidemiologists focus on risk assess-
ments at the level of populations.

In the USA, health risk assessments grew out of food, drug, pesticide
and pollution legislation. In the United Kingdom, health risk assessments
grew out of the need to set occupational exposure limits, mitigate floods
and manage safety in the offshore oil industry (Pollard et al. 2002).

The public health risk paradigm shares a number of features with
ecotoxicology, including a focus on exposure pathways, contaminants,
mortality and morbidity. For example, like ecotoxicology, international
benchmarks for food intake of pesticide residues are guided by standard
equations and parameter values (Crossley 2000).

Public health risk assessments use different regulatory mechanisms
(Byrd and Cothern 2000). In the USA, the FDA accomplishes regulation
by publishing lists of ‘allowed’ substances and tolerances. Foods containing
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unlisted substances are adulterated by definition. This contrasts with the
EPA, which publishes lists of maximum permitted exposures to substances
based on ecotoxicological tests (Chapter 7).

Public health risk assessments also operate in a unique social context,
typically involving a closer relationship with stakeholders than do other
disciplines (Beer 2003). Assessments include problem definition, elicita-
tion of risk factors, intervention and advocacy. Public health authorities in
most countries are empowered to act to protect public health in ways that
are not available in other domains of risk assessment (Byrd and Cothern
2000). In particular, human health risk assessment differs because its pro-
ponents are advocates for public health. They may intervene to influence
public policy, something that engineers and ecotoxicologists rarely claim
to attempt.

3.1.5 Economics

Economics was perhaps the first profession to embrace risk assessment.
The stock market provides immediate feedback and unambiguous in-
terpretation of outcome, an ideal template for the development of ideas
about risk. Insurance actuaries began to develop ideas about risk in the
1600s and 1700s. Modern economics had the benefit of some of the best
thinkers in this area, including Keynes (1921, 1936), Arrow (1971) and
Thaler (1991). Today, analyses of acquisition and investment risk, expo-
sure, hedging and risk-adjusted preferences are commonplace (e.g. Bell
and Schleifer 1995).

Like engineers, economists generally subscribe to a frequency inter-
pretation of probability when it comes to things like forecasting stock
movements. But Bernstein (1996) noted that factors that temper the
thinking of environmental risk analysts, such as context and nonmone-
tary values, are also important to business risk assessments. Keynes (1921)
argued that some knowledge is not amenable to exact measurement or
probabilistic description, that there are instances of uncertainty where
there is no scientific basis on which to calculate a probability. Even when
‘there is a relation between the evidence and the event being consid-
ered, . . . it is not necessarily measurable’ (Keynes, 1921, p. 3). The value
of what is to be gained or lost depends on the perspectives of the people
the decision affects.

Perceptions, nonmonetary values and risk aversion cloud otherwise
‘rational’ economic judgements. As noted in Chapter 1, utilities are
benefits discounted by the chance that they will occur. Utilities are
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inherently subjective. In addition, the parameters we need to make de-
cisions are unavailable. Subjective judgements of uncertainty are com-
monplace and the tension between the different concepts of probability
is always present.

3.1.6 Attributes of risk assessments

The list above is not complete. For instance, international quarantine
services use risk assessments routinely. They assess, among other things,
human health, animal and plant diseases and invasive species. They use
an empirical, frequentist view of probability. Like many engineering,
epidemiological and ecotoxicological applications, their assessments are
supported by large data bases and conventional protocols (Morley 1993,
Lonsdale and Smith 2001).

The evolution of conventions has a lasting effect on how risk analy-
ses are conducted. Some include officially approved model assumptions
and parameter values. The EPA in the USA has set mostly conservative
defaults. In contrast, the US Nuclear Regulatory Commission defaults
generally are close to the mean of parameter estimates (Bier 2004). These
differences reflect different attitudes to risk adopted by different profes-
sions.

The approaches share a common belief in the epistemic nature of
risk: there is a fact and the job of the risk analyst is to estimate it. An
opposing philosophy is that risks are subjective and context dependent,
and cannot be analysed formally ( Jasanoff 1993, Adams 1995; Chapter 2).
Adams (1995) argued that risk assessments always involve decisions about
values and preferences, and are coloured by the personal experiences
and prospects of the individuals conducting the assessments. This view
objects to the artificial separation of risk analyst and manager/decision-
maker present in frameworks such as Figure 3.1 (Kammen and Hassenzahl
1999). Instead of using technical analysis, risk assessments are conducted
through stakeholder engagement, elicitation of preferences and values,
and consensus building (e.g. Stirling 1999).

Adams may be right. Certainly the importance of psychology and
context outlined in Chapter 1 provide strong support. The answers gen-
erated by quantitative risk analysts may be little more than smoke and
mirrors, reflecting the personal prejudices and stakes of those conducting
the analysis. It is likely that at least some of the problems alluded to by
Adams will affect all risk analyses. The extent to which they are felt will
depend on the nature of the problem, the amount and quality of data and
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understanding, the personal outcomes for those involved in the analysis,
and the degree to which their predispositions can be made apparent.

Methods for dealing with qualitative and subjective uncertainties are
introduced in Chapters 4, 5 and 6. For the majority of socially based
risk assessments, risks are not usually amenable to probabilistic treatment.
Risk sociologists apply a suite of different methods including multicriteria
methods outlined in Chapter 12, and consensus building and stakeholder
assessment outlined in Chapter 4.

3.2 A common context for environmental
risk assessment
Suter (1993) created a system of thinking to help people to define envi-
ronmental hazards and their consequences. He defined endpoints as an
expression of the values that we want to protect. There are three broad
kinds:

1. Management goals are statements that embody broad objectives, things
such as clean water or a healthy ecosystem. They are defined in terms
of goals that are both ambiguous and vague, but they carry with them
a clear social mandate.

2. Assessment endpoints translate the management goals into a concep-
tual model that satisfies social objectives. Clean water may be water
that can be consumed and bathed in by people. A healthy ecosystem
may be one in which all ecological stages are represented, all natural
ecological processes continue to operate, and populations of impor-
tant plants and animals persist. But even assessment endpoints cannot
be measured.

3. Measurement endpoints are things that we can actually measure. They
are operational definitions of assessment endpoints that are, in turn,
conceptual representations of management goals. Thus, measurement
endpoints for fresh water may include counts of Eschericia coli and the
concentration of salt. Measurement endpoints of a healthy ecosystem
may be the abundance of several important species (threatened species
or game species), and the prevalence of diseases and invasive species
(e.g. Table 3.1).

3.2.1 Selecting endpoints

Selecting assessment and measurement endpoints in environmental sys-
tems is difficult because natural systems are complex and there are many
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potential candidates. Selection also needs to take heed of social context.
Suter (1993) suggested that endpoints should be:

� biologically relevant,
� important to society,
� unambiguously defined,
� operationally feasible,
� predictable and measurable, and
� susceptible to the hazard(s).

If endpoints are to provide credible evidence that management goals
have been satisfied, then they must also satisfy the expectations of policy
makers, politicians and others with a stake in the use of the environment
(Suter 1993).

The process of identifying measurement endpoints presupposes that a
conceptual model of the system has been created and hazards have been
identified. Conceptual model building and systematic hazard identifica-
tion are explored in Chapter 5.

3.2.2 Targeting risk assessments: ecosystems and indicators

Ecosystem services are the processes through which natural ecosystems
sustain human life. They include goods such as food, fuels and pharma-
ceuticals, and services such as the maintenance of biodiversity and waste
assimilation (Daily 1997, 2000). In general, management goals have an
ecosystem process or service in mind.

Some measurement endpoints sample ecosystem attributes (examples
include algal blooms, river flow rates and the number of species in a
mud core). Others sample the hazard itself (such as the toxic plume in
groundwater) or a single environmental feature (such as the abundance of
a threatened species). This book argues that monitoring is an immutable
part of a complete risk assessment. Without it, it is impossible to revise
ideas or improve estimates and decisions.

Risk assessments may be conducted, at least in theory, on populations,
single species, multiple species, communities, ecological processes, or
natural resources. Measures of impact may include changes in:

� genetic variability within and between populations,
� relative abundance of a stage,
� relative abundance of a species,
� numbers of species and their relative abundances,
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� the abundances of functionally different kinds of organisms,
� species turnover from place to place in the landscape within a commu-

nity,
� the value or magnitude of ecosystem services,
� species turnover among communities, and
� the number, size and spatial distribution of communities (Weaver 1995).

‘Indicators’ may be selected as measurement endpoints. Indicators are
biological entities whose interactions with an ecosystem make them es-
pecially informative about communities and ecosystem processes. They
should reflect changes in ecosystem dynamics at multiple spatial, temporal
and organizational scales (Landres et al. 1988, Noss 1990).

Very often, species are chosen to act as indicators. It is usually assumed
implicitly that these species act as ‘umbrellas’ in the sense that conserving
them will result in the protection of numerous other species (Noss 1990).
Such claims are rarely verified in specific applications. Single indicators
are unlikely to reflect a full range of possible responses to ecological
perturbations (Landres et al. 1988). Single attributes can be monitored and
managed to the detriment of others. In particular, a single species focus
may be detrimental to other species and ecosystem processes (Simberloff
1998). Indicators should come from a broad taxonomic spectrum and a
broad range of spatial, temporal and organizational scales (Simberloff and
Dayan 1991). Unfortunately, operational and budget constraints rarely
allow such breadth.

The choice of measures should depend on the motivation for the
risk assessment. More often it is determined by operational constraints.
Impediments to comprehensive ecosystem risk assessments include (Suter
1993):

� expense and time,
� a lack of general standards for conducting ecosystem-level risk assess-

ments,
� little experience in laboratories,
� problems with definition of endpoints (such as the list above),
� effects of variations in test conditions are uncontrolled,
� generally, replicates are few, variance among replicates is high, and

replicates tend to diverge over time, and
� the complexity of most ecosystems defies parameterization within the

time frames and with the budgets available in most circumstances.
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Figure 3.2a,b. Trajectories in the relative abundances of fauna shown in a reduced
dimensional space using NMDS (from Philippi et al. 1998). a. Samples of
zooplankton collected on five different days in mid 1986 from a cooling reservoir
in the Savannah River, South Carolina. Lines enclose all points sampled on the
same date. Site A (cross), Site B (square), Site C (triangle). b. Changes in the
composition of land-bird communities over time in Stockholm, from 1928 to
1979.

A few attempts have been made to establish risk assessment protocols
using assemblages of plants or animals. Baseline conditions are charac-
terized by sampling biota either prior to impact or at a set of ‘reference’
sites. Changes in the biota are monitored over time and compared to the
baseline or the reference sites. The changes can be visualized by plotting
the multivariate data in a reduced space (using tools such as non-metric
multidimensional scaling (NMDS, e.g. Figure 3.2)). However, it is dif-
ficult to judge how much of a deviation from the baseline condition is
acceptable.

Figure 3.2a shows samples of zooplankton in a cooling reservoir in the
Savannah River, South Carolina. Pairs of samples were taken from three
sites five times in 1986. Site A was in the main channel of the reservoir,
whereas sites B and C were in protected coves. The first sample, indicated
by the solid shapes, was taken while the reactor was operating, heating
the channel water. Water temperature in the coves remained about 15 ◦C
cooler than the channel while the reactor ran, but was the same as the
channel otherwise. Philippi et al. (1998) noted that pairs of replicates lay
close together and samples taken from the same time formed clusters.
Philippi et al. (1998) interpreted Figure 3.2b as showing three periods
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Figure 3.3. The risk management cycle.

of relatively stable species assemblages (1928–44, 1951–60, and 1975–
79). NMDS may be used to visualize ecological change. Other methods,
such as control charts and explicit ecosystem models, are discussed in later
chapters.

3.3 The risk management cycle
A complete risk assessment involves learning. The environmental risk
management cycle includes problem formulation, hazard identification,
risk analysis, sensitivity analysis, decision-making, monitoring, commu-
nication and updating (Figure 3.3). Completion of the cycle ensures that
ideas will be validated and revised or reinforced as knowledge accumu-
lates, so that environmental decisions improve over time.

The details of the various steps in this process are explored in later
chapters. The same general framework was outlined by Harwood (2000),
who emphasized the need in environmental risk assessments to account
for different kinds of uncertainty. Stakeholders generate scenarios. Mon-
itoring data are used to update models and predictions. The feedback
should be used to revise estimates of the relative costs of different kinds
of decisions.



3.3 The risk management cycle · 55

The iterative nature of risk assessment and decision-making empha-
sized in Figure 3.3 has a number of features in common with the US
EPA’s framework (Figure 3.1). Both outline a process that defines the
scope of the problem and provides for a feedback between prediction
and model building that relies on monitoring.

The risk management cycle differs from the US EPA’s framework by
emphasizing the importance of iteration, the critical roles played by moni-
toring and updating, and the importance of involving stakeholders closely
in the risk analysis. Communication of results is not treated as a separate
issue, but is part of the cycle itself. As we’ll see later, the involvement of
interested parties can and perhaps always should be continuous.

The remainder of this section sketches the main elements of the risk
management cycle. Each is treated from various perspectives and in much
greater detail in subsequent chapters.

The risk management cycle in Figure 3.3 is modified from adaptive
management proposed and developed by Holling (1978) and Walters
(1986). It differs from other schemes such as that of the US EPA by
elevating the importance of monitoring and the involvement of stake-
holders (see Beer 2003). These topics are treated in detail in Chapters 4
and 12.

3.3.1 Context: who pays and what do they want?

Context, the setting of the problem at hand, influences outcomes. The
people who control context can guide the outcomes of risk assess-
ments. To a large extent, the context determines the focus of the as-
sessment, the kinds of endpoints used and the time frames considered.
Context determines to whom the assessment is answerable, who is res-
ponsible for conducting it, who participates and who determines if the
detail, solutions and plans for review are acceptable. The budget and dead-
lines determine the extent to which data can be collated and synthesized.

Control is usually in the hands of the people paying for the exercise.
For instance, they may be able to influence the choice of experts. They
may express preferences for the presence of specific stakeholders. They
may have direct or indirect control over access and use of data, and so
on. Many issues may be resolved, or at least understood by stakeholders,
if goals and their links to human values are stated clearly.

Some resource companies conduct in-house risk assessments to sup-
port investments in new projects. This context influences the kinds of
analyses deemed acceptable. In many countries, risk assessments are a
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legislated requirement preceding the development or market release of a
new chemical. Regulations sometimes specify the details of procedures
for conducting an assessment.

Nevertheless, the people paying for the exercise retain substantial con-
trol over context and problem formulation. This fundamental issue is
rarely addressed explicitly in risk assessments. Instead, assessments are as-
sumed to be a kind of impregnable, objective scientific process. We will
see that the context and human frailties of the participants are such that
this cannot be true. Analytical methods go some way towards fixing the
problem if used to assist stakeholders to examine their ideas, but they do
not eliminate it entirely.

3.3.2 Problem formulation

Problem formulation answers the questions: ‘What is the scope of the
problem?’ and ‘What do we need to know to make a decision?’. The
first step in problem formulation establishes the scope of the problem,
including the ecological, social, geographic, temporal and political limits.
These things define the kinds of solutions we seek. They identify who
and what is affected by decisions.

Defining scope is intimately related to hazard identification and the
construction of the conceptual model. The problem boundaries deter-
mine what may be considered when answering the question: ‘What can
go wrong?’.

Problem formulation includes the creation of a set of alternative ac-
tions, a task that can only be achieved reliably by involving all those
potentially affected by any decisions. Prior to specifying the details of
conceptual models, the analyst and other participants should scope alter-
native management options, identifying as many as possible. Chapter 5
provides an example in which the identification of a hazard (salt fallout
from a cooling tower) led the design team to create an alternative solution
(a freshwater cooling tower) that was less costly than the original proposal
and that eliminated the hazard entirely. Scenario analysis is a more formal
approach to creating alternatives and it is outlined in Chapter 12.

When risk assessments fail, it is often because no-one thought of a
particular possibility, event or process. Avoiding surprises depends on
creating a complete list of hazards. Because of the importance of this
step, Chapter 4 examines the range of people who may be considered
stakeholders and Chapter 5 devotes some energy to outlining methods
for defining and compiling hazards.
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The second step in problem formulation is deciding on the form
and type of risk assessment. Different approaches embody different as-
sumptions and make different demands for data and expertise. Social and
scientific context limit what kind of risk assessment is acceptable. Time
and money devoted to the task affect the collection of data, the number
of stakeholders and the kinds of analyses that can be attempted.

3.3.3 Conceptual modelling and hazard assessment

Conceptual models define components in a system. They identify in-
put and output, flows, cycles, system boundaries, causal links and so on.
They can be verbal models, diagrams, logical trees, or sets of mathemat-
ical equations. The level of detail is determined by context and problem
formulation. The model should be sufficiently detailed to provide an-
swers to relevant questions, and no more detailed. Hazard identification
and assessment depend on the construction of an appropriately detailed
model. For example, if interest lies in the fate of toxicants, then the analyst
may decide to explore endpoints in different parts of an exposed mam-
malian body (Figure 3.4). This model attempts to encapsulate processes
by which the contaminant enters, is absorbed into, distributed within and
excreted from the body.

Hazards are possibilities, without probabilities. They are all those things
that might happen, without saying how likely they are to happen. A
hazard is often seen as an intrinsic potential to harm persons, property
or the environment (Beer and Ziolkowski 1995, Potter 1996). The term
is defined more usefully as a function of both intrinsic properties and
circumstances (Royal Society 1983), a state that may result in an undesired
outcome (Suter 1995).

Hazard identification involves compiling a list of hazards associated
with a proposal or activity (Suter 1995, Potter 1996). Hazard assessment
involves describing the potential consequences of each hazard and the
nature of their undesirable effects (Beer and Ziolkowski 1995).

Sometimes, to solve a problem it is sufficient simply to document the
kinds of events that would flow if a hazard eventuated. If the prospect of
the event is unacceptable, the process designers may then take the trouble
to re-engineer the system to eliminate the hazard entirely.

Risk assessment frequently is a tiered or phased process, moving from
simple analyses and ‘conservative’ assumptions that overestimate risk, to
site-specific and more detailed characterizations, and less conservative
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Figure 3.4. Conceptual model of components of a mammal that may be important
in understanding the fate of a toxin, and that may assist the selection of
measurement endpoints (from Klaassen 1996).

assumptions. The rationale is that if a hazard results in an acceptable risk,
even if assumptions are pessimistic, it is safe to forgo further detailed
consideration. The hazard assessment phase is linked to the risk analysis
phase by assessing the appropriate tier for each hazard.
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3.3.4 The risk analysis phase

The conversion of a hazard assessment to a risk assessment involves a
probabilistic element: the likelihood (or relative likelihood) of a hazard
having an effect. The paradigms for risk assessment outlined above have
in common the processes of problem formulation, conceptual modelling
and hazard identification and assessment. Differences emerge primarily
in the ways in which risks are estimated.

As a result, there are important and sometimes arbitrary differences
between the ways in which risk analyses are done. Some are driven by
convention, others by the nature of the problem and the kinds of data
available. Some reflect philosophical positions. Chapters 6–12 document
and explore methods for risk estimation at length.

In some circumstances, particularly when dealing with relatively well-
understood problems, it is worthwhile expressing the conceptual model
in a formal mathematical framework. This involves rendering the con-
cepts in mathematical notation, which guarantees internal logical consis-
tency. Then, the analyst has to estimate parameters from data or expert
judgement.

From the system of equations and parameters, the analyst may estimate
frequencies and consequences of individual hazards. This approach offers
the benefits of formal calibration and validation. It facilitates exploration
of interactions between hazards. Furthermore, sensitivity analysis is a
well-developed concept in this domain, and the analyses that support
decision-making are relatively easy to conduct. However, they come at
a cost of additional technical skills, time and resources.

These methods appear as though they require more data than other
approaches. In fact they simply make apparent the absence of data and
the necessity for simplifying assumptions. In other approaches, these un-
certainties are submerged in assumptions.

3.3.5 Sensitivity and decision-making

Risk assessments depend on a set of assumptions and simplifications.
Before a decision can be made, it’s important to know how sensitive
the predictions are to model assumptions. Sensitivity can be measured
by manipulating the model and evaluating changes in predictions. This
can be done for qualitative and conceptual models, as well as for detailed
mathematical models.

If the assumptions make a substantial difference to expectations, then
it is part of the risk assessor’s job to evaluate whether the decision
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would change, given different, plausible choices. If nothing of impor-
tance changes as a result of the sensitivity analysis, then the decision may
be considered robust to the uncertainties in model structure, parameters
and/or the judgements of experts.

Risk assessments usually are performed to support an action or decision
(act/don’t act, allow/disallow a proposal). A model that focuses on the
central tendency of the system provides an answer to what is most likely
to happen. But it does not provide a feel for possibilities, for the kinds of
things that might go wrong. Numerical models to assist decision-making
in the presence of risk are outlined in Chapters 10 and 11.

3.3.6 Monitoring, updating and communicating

Once a hazard has been identified as posing an unacceptable risk, the
next step in the risk management cycle involves eliminating or reducing
the risk. Certainly, the analyst is responsible for ensuring that the risk is
communicated clearly to those people affected by the risk.

Risk assessments unravel when monitoring is omitted. A primary
weakness of risk assessments is that when the sensitivity analysis is finished,
the task is viewed as complete. Monitoring should provide information
that allows managers to react to changes in the system, to evaluate as-
sumptions and uncertainties, and to modify models as knowledge grows.
Methods for achieving these important goals are explored in Chapter 11.

3.4 Discussion
The risk management cycle emerged in fisheries management (e.g. Punt
and Hilborn 1997). We will explore applications of risk management
in Chapter 12 that involve stakeholders and scientists in analytical risk
assessment.

Most environmental decisions are set in socially charged contexts.
People stand to gain or lose substantially. Arguments are clouded by
linguistic ambiguity, vagueness and underspecificity to which analysts
themselves are susceptible. Prejudice gets in the way of constructive dis-
cussion. A transparent framework helps to relieve these impediments.

In my experience, many disagreements among stakeholders are re-
solved by seeing clearly what the other participants want, and why they
want it. Risk assessments can have their greatest utility in meeting these
challenges. They work because they are logically robust and relatively free
from linguistic ambiguity. They are not necessarily any closer to the truth
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than purely subjective evaluations. But they have the potential, if prop-
erly managed, to communicate all the dimensions of an environmental
problem to all participants. They may do so in a way that is internally
consistent and transparent, serving the needs of communication, given
appropriate skills in the analyst.

Risk analysts sometimes believe themselves to be technical specialists,
closeted with the data and a computer, providing results to managers
and other interested people. This book takes the view that analysts are
translators of ideas and perceptions. Successful implementation, then,
relies on a range of people to diffuse the imprint of the analyst and to
counteract the prejudices of expert participants.

Risk assessment is just as important as a kind of social grease as it is
an instrument of technical analysis. It may provide a focus for people
who disagree to define what it is that they agree about and where they
differ substantively and ethically. The process illuminates the thinking of
people who advocate different solutions. Thus, risk analysts need sub-
stantive knowledge in the domain in which they work (earth science,
engineering, ecology, chemistry and so on), analytical skills that are suf-
ficient to select and use the right tool for the task at hand, and skills to
facilitate the process and make technical detail accessible.



4 � Experts, stakeholders and
elicitation

Environmental risk assessments almost always depend on expert judge-
ment. In risk assessments, it is important to consider what the stakeholders
and experts stand to gain or lose. It is also wise to consider what the person
performing the analysis stands to gain or lose.

For example, there was a terrible accident in Thredbo, Australia in
1997 in which part of a hill subsided, demolishing two ski lodges and
killing 18 people (Figure 4.1). Some of the people living in lodges ad-
jacent to those that subsided assessed the risk and decided to remain. In
doing so, they disagreed with an assessment by consulting geologists and
engineers that concluded many lodges (including theirs) were at ‘high
risk’ of slippage because of swamp deposits, high water tables and signifi-
cant surface water flow. The report went on to say that sites at ‘very high
risk’ showed evidence of soil creep and signs of past instability.

Consider the positions of the people for the period between the ac-
cident and the completion of engineering works. Lodge owners lose
income unnecessarily if they decide the site is unsafe and close their
lodges, and it turns out to be safe. The consulting engineers damage
their professional reputation and incur substantial costs if they conclude
the site is safe, and later it subsides. For both parties, wrong assessments
result in considerable personal costs. The consulting engineers cannot
benefit substantially from an assessment that concludes the site is safe.
The lodge owner may. That is, lodge owners and consulting engineers
will have applied different utilities when they made decisions.

In the period following the accident, few people would accept an
invitation to stay in the adjacent lodges. In the climate of shock following
the accident, the benefits (of a holiday) were not worth the perceived
risk (of dying). The tone of the newspaper’s headlines suggests that the
newspaper accepted the experts’ arguments.

The process of the landslip is deterministic, but our knowledge is such
that we cannot adequately describe it. The remedy is to cast the problem
as a probabilistic one. It turned out that people who stayed on made
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Thredbo lodges at risk 
 

New landslide fear 
Call for urgent repairs 

 
By ADRIAN ROLLINS and GERVASE GREEN  
 

Parts of Thredbo alpine village remain vulnerable 
to devastating landslides, with at least 30 lodges at 
high or very high risk, an engineers' study has 
found. 
 
 Five months after a landslide swept away the Carinya 
and Bimbadeen lodges, killing 18 people, the study 
concluded that extensive engineering works were needed 
around the village to eliminate the possibility of another 
disaster. 

Figure 4.1. Excerpt from a front-page newspaper report on the risks of landslip
faced by mountain resort lodges, recounting details of an engineering report (The
Age, Melbourne, 31 December 1997).

the right prediction. In hindsight, the remaining lodges were perfectly
safe during the period following the event. This is not an argument to
disregard the advice of engineers. It is a starting point to examine the
reliability of expert judgement.

Crawford-Brown (1999) defined five categories of scientific evidence
for risk assessments:

1. Direct empirical evidence: direct experimental observation of cause and
effect, probability or frequency.

2. Extrapolation: observations outside the range at hand.
3. Correlation: statistical associations between measures.
4. Theory-based inference: relationships and causal mechanisms inferred

from understanding of physical or ecological principles.
5. Expert judgement.

The direct empirical evidence, extrapolations and theories for an as-
sessment are almost never available. In their place, we turn to experts.
Experts can use frequency concepts of probability to specify point esti-
mates, intervals or statistical distributions without the use of formal math-
ematical tools or measurements. Experts can also offer subjective beliefs.
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Their judgements can be used in a range of qualitative or quantitative
analysis.

Kerr (1996) reported an expert group elicitation procedure to esti-
mate radioactive waste risks. The question was: ‘How likely is a volcanic
eruption to rupture the repository at Yucca Mountain, Nevada, which
is designed to keep thousands of tonnes of high-grade radioactive waste
undisturbed for 10 000 years?’ The process included:

� selecting 10 experts,
� conducting workshops and field trips to provide background and con-

text,
� face-to-face individual interviews to elicit location, frequencies and

uncertainties of eruptions,
� inclusion of estimates in multiple alternative models of volcanic pro-

cesses, and
� using the resulting values to predict the probability that a magma con-

duit would cut through the repository.

The result was an estimate of 1/10 000, ranging from 5/10 000 to
5/1 000 000. Kerr (1996, p. 913) claimed the result ‘ . . . cut through the
miasma of scientific discord about volcanoes around Yucca Moun-
tain . . . ’. This optimism was not shared by Shrader-Frechette (1996a,b).
We shall see below that there are solid grounds for her scepticism.

Morgan and Henrion (1990) expressed the opinion that it is almost
always possible to make a quantitative risk assessment, but at ‘some point’
the effort isn’t worth the output. Hora (1993) advised that risk assessments
require formal methods for acquiring reliable expert opinion. But how
reliable are experts? Which experts should you use? How many? At what
point does expert opinion become unreliable? Should you include or
exclude experts who have a personal stake in the outcome of a risk
assessment? Should you use experts who are retained by or who act as
advocates for a stakeholder?

There are several steps in working with experts, including:

1. Defining necessary knowledge and skills for the problem at hand (de-
ciding who might be considered an expert).

2. Selecting the experts.
3. Eliciting information.
4. Evaluating the reliability of the information.
5. Combining information from different experts.
6. Using the information in estimation, calculations or decisions.
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Subsets of facts an expert
has learned or created

Self-perceived
knowledge

Perception by
others of expert's
knowledge

Figure 4.2. Expert knowledge and the region of overconfidence, which lies
between the subset of facts known by the expert and the subset they believe they
know (modified from Ayyub 2001).

Rarely is the reasoning or the methodology behind any of these steps
made transparent. The aim of this chapter is to outline options for using
expert judgement in environmental risk assessment, and to explore some
of the questions outlined above.

4.1 Who’s an expert?
Often, the property of being-an-expert is taken to be self-evident. The
person or team in setting the context of a problem (Chapter 3) ‘defines
a set of issues and selects a set of respondents who are experts on the
issues’ (Cooke 1991, p. 13). At the risk of placing myself in the midst of a
tautology about expert judgement on expert judgement, it is important
to explore the question.

An expert may be defined as someone who has knowledge of the issue
at an appropriate level of detail and who is capable of communicating
their knowledge (Meyer and Booker 1990). Technical experience and
training are sometimes called substantive expertise. Normative expertise
is the ability to communicate. It involves knowledge of, for instance, the
statistical principles and jargon of a field.

This definition is superficially appealing but it is difficult to put into
operation. It can be difficult to distinguish between a competent expert
and an incompetent one, and to have a clear picture of what an ‘expert’
knows.

Experts themselves have difficulty knowing the limits of their own
expertise. It is especially difficult to judge the likelihood of events for
which there is no precedent, or for which experts have no direct experi-
ence. Most experts have a region of overconfidence, a domain between
the subset of facts they have learned (Figure 4.2), and the subset they
think they know. It varies between experts and depends on the elicitation
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process. Freudenburg (1999, p. 108) called it ‘insufficient humility about
what we do not know’.

Experts are most dangerous when the region of self-perceived but
unjustified belief about knowledge overlaps the region of perception by
others. An expert thinks they know something, other people think they
know it and, in fact, they don’t. The self-serving nature of the provision
of expert judgement on a consulting basis further complicates things.
Krinitzsky (1993) studied the use of expert opinion in assessments of
earthquake risks and concluded experts may be ‘ . . . fee-hungry knaves,
time servers, dodderers in their dotage. . . . Yet, these and all sorts of other
characters can pass inspections, especially when their most serious defi-
ciencies are submerged in tepid douches of banality’. The remainder of
this section explores legal and philosophical definitions of an expert that
shed light on these difficulties.

4.1.1 Legal definitions

Lawson (1900) wrote the foundation rules for expert and opinion ev-
idence for the US legal system. In these rules, opinion is not admissi-
ble in evidence except, ‘. . . on questions of science . . . persons instructed
therein by study or experience may give their opinions. Such persons are
called experts’ (p. 1–2). This definition was reiterated by the US Fed-
eral Rules of Evidence 702 (1992; see Imwinkelried 1993) that stated
a witness may qualify as an expert by, ‘. . . knowledge, skill, experience,
training, or education’.

Expert opinion is seen as necessary to inform the court as completely as
possible about facts that might be otherwise unattainable because they are
future probabilities, contingencies or facts, ‘not within positive knowl-
edge’ (Lawson 1900, p. 236). In Australian Federal courts, opinion ev-
idence is admissible if it assists, ‘. . . the trier of fact in understanding
the testimony, or determining a fact in issue’ (ALRC 1985, pp. 739–
40). Scientific validity is established through falsifiability, peer review,
acknowledged error rates, general acceptance of ideas and valid methods
(Preston 2003).

Science is presumed to act as a check on bias or prejudice. Scientists
reinforce this view of themselves. For instance, Cooke (1991) argued that
if individuals follow the scientific method scrupulously, then they may
arrive at results that have a claim on rationality and impartiality. The same
thinking permeates current views of expert judgements in environmental
risk assessments. We will see below that the assumption may not be
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justified. Despite some legal and philosophical views of science as an
impartial analytical tool, the context of environmental science demands
a different set of strategies.

It is interesting to note that Lawson’s view was that expert judgement
is more akin to belief than empirical frequency (one of the two kinds
of probability outlined in Chapter 3, and not the conventional one of
formal statistics). This view was especially clear when he stated (Lawson
1900, p. 236), ‘The witness swears as to the present conviction of his own
mind as to an actual fact’.

Courts have the luxury of being able to question experts and to reject
them. The qualifications of an expert may be tested by the opinions of
other experts. In adversarial systems, the accuracy of testimony may be
tested under cross-examination. The substantive knowledge of an expert
may be tested by hypothetical questions. Opinions may be ‘impeached’ by
proof that, on a former occasion, an expert expressed a different opinion.
We will see below that the ability to question experts is an essential
part of the use of expert judgement. Often, this element is lacking in
environmental risk assessments.

4.1.2 Courts as gatekeepers

In most jurisdictions, courts act as gatekeepers, deciding if experts and
their testimony are admissible. In some countries such as France and
Germany, courts maintain lists of experts from which they may choose
someone to assist them (Chapman 1995). Judges have discretion and may
ignore the official lists. In Germany, experts are publicly appointed to
assist courts with specific issues (Reynolds and Rinderknecht 1993).

Until 1992, expert testimony in the USA required the expert’s view
to be broadly accepted by the scientific community. New Federal Rules
of Evidence and subsequent decisions have broadened the definition to
include opinions ‘. . . of a type reasonably relied upon by experts in the
particular field’ (Imwinkelried 1993). The critical elements are scien-
tific reliability (accounting for error rates, procedural care, predictive
reliability) and grounding in scientific principles, relevant methodol-
ogy and reasoning (Kirsch 1995). Peer review and acceptance are no
longer completely necessary, though they certainly help (Walton 1997).
Legal standards of scientific credibility vary between disciplines. For in-
stance, in medical matters within legal contexts, epidemiologists show
consistent empirical associations between a substance and an effect,
demonstrate dose–response relationships in laboratory tests, and specify
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plausible exposure pathways and physiological and other causal links
(Kirsch 1995).

The responsibility for deciding admissibility has always been a question
for the court (Lawson 1900). But more recent definitions place a greater
onus on the judge to discriminate; they assume judges are competent to
do so. ALRC (2000) noted that where a substantial disagreement arises,
a judge may have no criteria by which to evaluate the opinions.

Difficulties judges face in evaluating conflicting expert evidence may
result from the specialized and technical nature of the evidence. Australian
judge Justice Kirby remarked that ‘. . . the experience of lawyers, and their
education is such as to make the detailed examination of the language
of science and technology uncongenial or even impossible’ (1987, in
Stewart 1993, p. 13).

4.1.3 Advocacy, adversaries and authority

Scientists are advocates of a scientific view and spend their time trying to
convince others of their position, even if they are unaware of it. In adver-
sarial legal systems, potential expert witnesses are selected overwhelm-
ingly for their credentials and for the strength of their support for the
lawyer’s viewpoint (Shuman et al. 1993, in Freckelton 1995). Lawyers
search for appropriate attributes in an expert and develop strategies to
maximize their chance of winning a case. A close association between a
lawyer and an expert may orientate the expert’s opinion to provide great-
est benefit for the person who retains them. Success often depends on
the plausibility or self-confidence of the expert, rather than the expert’s
professional competence (ALRC 2000).

The difficulties of dealing with advocates have led to other models,
such as witness conferencing (Wolfgang 2002). This involves the con-
frontation of two teams of experts, allowing simultaneous, joint hear-
ing of expert evidence. This system claims to be efficient, clarifying
facts and technical issues and eliciting expert judgements more reliably
than other systems (to some extent, an antidote for over-confidence; see
below).

In some jurisdictions including Australia, Britain, France and Ger-
many, an expert is primarily responsible to the court, not to the person
who retains them (Chapman 1995, Lord Woolf 1996, CPR 1999). Ex-
perts are obliged to be independent, as far as possible, of the context of
the legal proceedings. A court may direct experts to confer and develop
a consensus position or it may appoint a specialist to assist the court.
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In the latter case, if the expert’s opinion is not questioned, the in-
formation may be believed simply because of the status of the person
providing it. The assumption is that the scientist can act as an impar-
tial observer, relatively free from bias and guided by impartial scientific
method. If opinions are unassailable, the expert may assume a false mantle
of objective certainty (Walton 1997).

This view of science contrasts starkly with the view of scientists as ad-
vocates. If we see scientists as advocates, valid questions from any source
should be considered. That is, it should not only be experts (or well-
informed lawyers) who can put critical questions to an expert. Any-
one with a stake in the outcome should be able to question an expert’s
opinion.

While some bias is inevitable in adversarial systems because experts
are paid and instructed by one party, the system encourages critical ques-
tioning of expert’s evidence. The ability of courts and opposing lawyers
to question credentials and substantive knowledge counteracts biases, but
it has limits.

The dialogue between the expert and the users of expert advice is
critically important. It underlines the importance of normative skills in
experts. In risk assessment, the dialogue is mediated by the risk analyst.
It implies that the expert is accessible and open to critical questions from
the analyst, other experts, stakeholders and other users of the advice. A
hallmark of an assessment that attempts an honest evaluation is that it
exposes experts to unfettered, critical evaluation.

4.1.4 Philosophical definitions

Hart (1986) identified three attributes that characterize an expert:

1. Effectiveness: they use knowledge to solve problems with an acceptable
rate of success.

2. Efficiency: they solve problems quickly.
3. Awareness of limitations: they are willing to say when they cannot solve

a problem.

Awareness may be generally weak among experts, as we will see below.
Johnson and Blair (1983) and Walton (1997) argued that appeals to sci-
entific experts are reasonable if their authority is open to challenge. This
is a feature of some legal contexts. Suppression of critical questioning
occurs when arguments are coercive or confused, when the context or
presentation daunts the questioner or precludes questions.
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Walton (1997) and Hart (1986) proposed that if an appeal is made to
an expert (E ) in a domain (D) to make an assertion (A) within their
domain of expertise, the appeal is reasonable if it passes a number of
critical questions, including:

1. Is E credible as an expert?
2. Is E an expert in the domain that A is in?
3. Is D a domain in which authoritative knowledge exists?
4. What did E assert that implies A?
5. Is E personally reliable?
6. Does E have a special interest in A being accepted?
7. Is A consistent with the assertions of other experts?
8. On what evidence is E’s assertion based?

These questions provide a basis for evaluating the worth of an expert’s
opinion a priori. Other methods outlined below are useful for evaluating
an expert’s opinion once it has been provided.

4.2 Who should be selected?
How should a risk analyst decide which, and how many, experts to
interrogate? How should the analysts themselves be selected? We assume
there is a pool of available people, appropriately trained, with sufficient
experience and adequate normative skills. But the pool is sometimes small
or nonexistent. Often, it is composed of people with different opinions
and values.

Meyer and Booker (1990) stated that in face-to-face elicitation, four
is too few to get reliable consensus; more than nine is too many to
manage effectively. These are general rules of thumb and there is no
known way of providing more specific advice. There are, however, many
examples of expert groups with fewer than four and more than nine
participants.

Group assessments of uncertainty have some advantages over individ-
ual assessments. In general, if we want to estimate a fact, if participants act
rationally (from the perspective of classical probabilities) and are provided
with information that reflects utilities and expectations in an unbiased
way, group (consensus) judgements can be expected to be better than
individual ones. However, group judgements can fail, attenuating indi-
vidual biases. Groups have difficulty with small probabilities and their
assessments may be biased if the backgrounds of participants are inade-
quate or unrepresentative (Krinitzsky 1993, Bottom et al. 2002).



4.2 Who should be selected? · 71

Literature reviews are a useful way to define the expert pool. Meyer
and Booker (1990) recommended asking experts to suggest other experts
who suggest others, and so on (termed ‘snowballing’, Bernard 1988).
They also suggested stratifying the experts by sectors such as industry,
university and government.

Cognitive psychology theory predicts that conflict between experts
may be minimized if the people involved in the estimation process share
common values, experiences, professional norms, context, cultural back-
ground, and stand to gain or lose in the same way from outcomes.
Selection of experts with a narrow set of social attributes will tend to
underestimate uncertainty in the subjective elements of the risk assess-
ment. Choosing mature males, for instance, may generate assessments
that are more optimistic than those resulting from a more diverse group
(Chapter 1).

Strategic appointments may be used to produce deliberate biases. For
example, the group leader or analyst may select the majority of partic-
ipants who advocate one scientific or technical position. Anonymous
opinions exacerbate the problem because experts cannot be held person-
ally accountable (Krinitzsky 1993).

Stratification of the pool of expert(s) is a critical step in the selection
process. Some dimensions include motivation (stakeholder membership;
see below), technical background, gender and cultural background.

4.2.1 Examples of expert selection

A report on the storage of high-level nuclear wastes by Kerr (1996; also
see Kammen and Hassenzahl 1999) highlighted some of the issues that
arise in using experts. A proposed facility at Yucca Mountain in Nevada
would need to store radioactive material for 10 000 years. To evaluate
the question of how likely it is that magma will intrude into the facility
sometime in the next 10 000 years, the risk analysts went to experts.

The project leader chose 10 expert earth scientists on the basis of
expertise, institutional affiliations and normative qualities (including their
ability to communicate, interpersonal skills, flexibility and impartiality).
These normative attributes were not defined or reported, but instead
were interpreted subjectively by the group leader. Such unstructured and
unstratified expert selection processes are the norm and are more likely
to result in biased judgements than stratified selection processes.

A joint FAO/WHO (2001) Expert Consultation used some stratifica-
tion. The group was formed to examine the potential for microbiological
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pathogens to infect food and to prepare information for exposure
assessment and hazard characterization. The opportunity to participate
was advertised. A complete list of ‘qualified’ experts was posted on web
sites. Selection criteria included:

� technical expertise,
� professional recognition (panels, editorial boards, conferences),
� publications, and
� the ability to participate in group discussions and draft clear reports.

Experts were selected from the published list by a panel made up of
‘eminent’ experts (invited scientists) and representatives from the organi-
zations involved. In making their decision, the panel considered diversity
of scientific background, geographic region, gender and economic de-
velopment, an improvement on the strategy used by the nuclear waste
panel. This step is important because, as we will see below, the com-
position of the expert group affects the outcome of a risk assessment.
The selection process should take into account the ways in which differ-
ent expert opinions will be aggregated, carried through assessments and
subsequently revised.

4.2.2 Post hoc calibration

It is always possible that an unreliable expert is selected. People will
provide an opinion, even if their information base is scant, simply because
they are asked. It is difficult to detect unreliable opinion unless opinions
are tested against independent information.

A better solution is to use explicit mechanisms to exclude or adjust
opinion, developed before the expert advice is received. If not, the result
will be contaminated by the prejudices and context of the analyst or the
group that has editorial control over the final report.

For example, Stewart and Melchers (1997) described an example in
which the United States Nuclear Regulatory Commission asked 12 ex-
perts to estimate the average annual frequency with which pipes of a
particular kind rupture. Their estimates ranged from 5 × 10−6 to 1 ×
10−10. The government report concluded that the failure rate was 1 ×
10−10 and provided bounds. Eight of the 12 experts provided estimates
of failure rates higher than the upper ‘95th’ limit of the final recommen-
dation (Figure 4.3). These results suggest post hoc calibration in which
in-house experts adjudicated on the expert advice. There was no indica-
tion that the in-house judgements were based on better data.



4.3 Eliciting conceptual models · 73

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.5

Assessments
F

ai
lu

re
 ra

te

experts final recommendation

Figure 4.3. Match between expert judgement and final recommendations for pipe
failure rates in a nuclear facility. The lines joining points under the final
recommendation link the ‘5th’ and ‘95th’ quantiles (after US Nuclear Regulatory
Commission 1975, in Stewart and Melchers 1997, p. 87).

The final recommendation had much narrower bounds than the spec-
trum of expert advice, especially considering the log scale of the failure
rates, and the fact that experts were not asked for bounds. It was much
more optimistic about pipe failure. A sceptical mind may ask, for exam-
ple, could the cost of more robust pipes required as a result of a more
pessimistic estimate have weighed on the minds of those making the final
assessment? It may be that the bias in the external expert judgement was
adjusted with independent, empirical data. We will explore means for
calibrating expert opinion in the sections below.

4.3 Eliciting conceptual models
Often, experts have strong and divergent opinions about cause and effect
relationships. Structural uncertainty reflects different ideas about how
systems function. It is difficult to deal with because there are few formal
methods for elicitation or representation.

How do you go about sorting through different possible models? One
of the main difficulties is that there are many. If you have two variables, X
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Table 4.1. The number of different
possible cause and effect relationships (the
number of graphs) for N variables (from
Shipley 2000)

N Number of graphs

2 4
3 64
4 4 096
5 1 048 576
6 1 073 741 824

and Y, and there are no other processes or variables involved, then there
are four possible causal relationships between them:

X causes Y,
Y causes X,
X and Y cause each other, and
X and Y are independent (Shipley 2000).

In general, there are N !/(42!(N−2)!) combinations of N variables
(Table 4.1).

The search for the right structure is often intuitive. Some differences
of opinion about causal relationships may be resolved by data. Empirical
evidence should be used to examine plausible alternative models and
assumptions critically. An example in Chapter 8 shows a dichotomy of
ideas about whether blooms of poisonous algae kill fish, or dead fish cause
blooms of poisonous algae.

Elicitation of causal models is a subjective process, usually based around
verbal elicitation. The analyst asks questions about causes, effects, ac-
tions that will prevent effects, variables that moderate or enable effects,
synergies and interference between variables, and so on. Often, elici-
tation draws on conceptual models constructed previously. The ana-
lyst should try to confirm opinions with relevant theory (see Korb and
Nicholson 2003).

Assessments are especially error prone when they require experts to
judge outcomes of complex models (Freudenburg 1992). Disaggregation
(decomposition) may help. It involves reducing a complex and unfamiliar
problem into a set of underlying, simpler and more familiar processes and
structures. The belief is that it will result in more reliable estimates. Each
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element in the system should become tangible and easy to envisage (Vose
1996, Bier et al. 1999).

Visual representations such as Figure 3.4 are useful. In particular, they
make it easy for the analyst to move from a conceptual model to influ-
ence diagrams, causal networks and more detailed mathematical models
(Chapters 8–11).

If alternative models make a difference, the analyst is obliged to decide
among them, or to weight them and perhaps to combine the results. The
analyst should retain alternatives until there are grounds to discount or
dispense with them. Bayesian methods provide a formal way for weight-
ing alternative models (Hilborn and Mangel 1997). Some approaches to
‘model averaging’ are described briefly in Chapter 10.

4.4 Eliciting uncertain parameters
The reliability of expert estimates of parameters depends, to some ex-
tent, on how the experts are interrogated. Methods for elicitation may
include mail surveys, face-to-face individual interviews, traditional meet-
ings, structured group meetings aimed at achieving consensus, and struc-
tured group meetings that combine consensus with numerical aggrega-
tion. Meyer and Booker (1990), Morgan and Henrion (1990), Cooke
(1991), Vose (1996), Hoffman and Kaplan (1999), Ayyub (2001) and
Walley and DeCooman (2001) provide practical advice on how to elicit
and analyse expert information.

Elicitation is usually preceded by distribution of background informa-
tion. Conceptual models (Chapter 5) outline the context and assumptions
of the problem at hand. Alternative conceptual models encapsulate com-
peting ideas about how a system works or how best to manage a situation.
Part of the elicitation process involves the expert(s) and stakeholders in
the development and revision of conceptual models.

Expert assessments are made substantially more reliable if the analyst
takes care to eliminate as many sources of linguistic uncertainty as possible,
prior to the commencement of the elicitation process. This may involve
testing elicitation procedures against known variables (Cooke 1991; see
Section 4.10).

If the analyst considers carefully what is needed to answer a question, it
may provide opportunities to disaggregate individual parameters. Instead
of estimating an entire distribution, it may be sufficient to estimate the
probability of a discrete event. For example, ocean storm damage is often
represented as a function of the maximum wave height (Bier et al. 1999).
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Similarly, a probability may be defined by the tail of a distribution. For
example, the chance of failure of a mine tailings pond may be viewed as
the tail probability of the distribution of flood heights (Bier et al. 1999).
The way in which a problem is structured and presented can have a
powerful effect on the results of an elicitation exercise.

4.4.1 Verbal representations

Words may be used to approximate probabilities. They provide a con-
venient and easily understood vehicle for elicitation (Lichtenstein and
Newman 1967). Verbal summaries of risk estimates are commonplace in
environmental impact assessments. A useful approach is to rank relative
risks using a set of verbal cues. Vose (1996) proposed a list:

Almost certain,
Very likely,
Highly likely,
Reasonably likely,
Fairly likely,
Even chance,
Fairly unlikely,
Reasonably unlikely,
Highly unlikely,
Very unlikely, and
Almost impossible.

The phrases are ranked from highest to lowest probability. The order
in the list reflects relative probability. The expert is asked to choose a
phrase that equates best with each hazard. Once a word or phrase has
been selected for each hazard from the list, the expert is asked to relate
as many of the events as possible to observed frequencies or to other
representations of probability.

‘Kent’ scales sometimes are used to translate the linguistic interpreta-
tions of uncertainty into quantitative values (e.g. Table 4.2). In practice,
it is virtually impossible to distinguish between terms such as ‘very un-
likely’ and ‘highly unlikely’. It is often effective to use relatively few (five
to seven) categories.

Watson (1998) reported the successful use of a Kent scale together
with logic trees (Chapter 8) to assess the probability of success of new
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Table 4.2. a. A Kent scale used by the US Defense Intelligence Agency in
1980 to relate linguistic terms to probabilities (after Cooke 1991)

Expression Synonyms Rank Percent probability

Near certainty Virtually certain, highly likely 5 91–100
Probable Likely, chances are good, we

believe
4 61–90

Even chance About even 3 41–60
Improbable Probably not, unlikely 2 11–40
Near impossibility Almost impossible, a slight

chance, highly doubtful
1 1–10

Table 4.2. b. A Kent scale used to evaluate geological risk of petroleum
exploration prospects (after Watson 1998)

Expression Synonyms Rank Percent probability

Proven True 8 98–100
Virtually certain Convinced 7 90–98
Highly probable Strongly believe, highly likely 6 75–90
Likely Probably true, chances are

good
5 60–75

Even chance Slightly better, slightly less
than even

4 40–60

Probably not true Unlikely, chances are poor 3 20–40
Possible but very

doubtful
A slight chance, very unlikely 2 2–20

Proven untrue Impossible 1 0–2

oil drilling ventures. The same kind of strategy can be used to elicit
information about the tails of distributions. Create scenarios for particular
events that represent the tails, and rank them. Then link as many as
possible to observations of frequency.

Ayyub (2001) listed more than 40 words that describe different degrees
of probability. The terms have a natural order but are ambiguous and
vague (for instance, what would the correct ordering be for the words
faintly possible, quite unlikely, rare, quite improbable and low risk?).

Linguistic probabilities may be modelled numerically with ‘fuzzy’
methods (see Chapter 2). This avenue exists but has rarely been ap-
plied in ecological risk assessment (see Burgman et al. 2001, Regan
et al. 2001 for examples, and Ayyub 2001 and Klir and Wierman 1998
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Figure 4.4. A triangular distribution representing uncertainty in knowledge about
the efficiency with which insects assimilate PCBs, part of a food web model
developed by Regan et al. (2002b) to estimate the exposure of mink (Mustela vison)
to toxic chemicals.

for methods). Walley and DeCooman (2001) suggested associating inter-
vals with linguistic interpretations. For instance, ‘probably true’ might be
modelled as an interval [0.5,1] (see Chapter 9).

Windschitl (2002) argued that verbal representations of probability
are more easily understood than numerical values. Numerical values are
likely to elicit more deliberative, rule-based thinking. Thus, imprecise,
verbal representations may be most useful when the analyst wants to elicit
intuitive perceptions of an event’s likelihood associated with underlying
decision-making tendencies. Numerical answers may be more useful for
assessing beliefs about objective probabilities.

4.4.2 Which distribution?

When experts estimate objective probabilities or parameters, they choose
a best estimate and a model for uncertainty. Usually this means specifying
bounds, a particular statistical distribution, or a set of distributions.

The triangular distribution is popular because it suits the elicitation
process. People are reasonably happy to guess things such as the ‘most
likely’ value or their ‘best guess’ (e.g. Figure 4.4). Usually, people can be
coerced, goaded or teased into providing the maximum and minimum
‘plausible’ values for a parameter, knowing that more extreme outcomes
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are possible, if unlikely. The triangular distribution has the obvious dis-
advantage that it is rigidly linear between the three defining points. It
seems an unnatural representation.

Morgan and Henrion (1990) reported instances in which experts be-
lieved the available knowledge was so poor that they did not have an
adequate basis for a judgement. Unfortunately, all probabilistic methods
require a distribution. It is tempting to use a uniform distribution when
a person is unsure about the form of uncertainty, although it also seems
an unnatural model.

While most people are comfortable with a best guess and extremes,
they are generally much less happy about guessing means, modes, medi-
ans, variances, coefficients of variation, or skewness. Vose (1996) recom-
mended the beta distribution to assist with elicitation. Like the triangular
distribution, it is defined by three parameters (lower, best, upper) but has
a more ‘natural’ shape.

We will return to the meaning of the bounds and how they may be
elicited in Chapter 9. We will outline the details of some alternative
distributions in Chapter 10.

4.4.3 Eliciting distributions and tails

Risk assessments usually are concerned with the tails of a distribution,
focusing on extremes rather than the central tendency. This creates special
problems because it is much harder to elicit reliable information about
the tails, simply because people have less experience with them.

Sensible elicitation strategies extract as much information as possible
about the tails, striving to find a distribution that reflects extreme events
as faithfully as possible. In many respects, this is a more important process
than judgements about the mean or median. Eliciting a realistic tail de-
pends on the ability of the analyst to describe scenarios that result from
correlated events, common failure modes, or the confluence of unusual
occurrences from independent sources (Vose 1996).

When the mean and variance of a distribution are known with rea-
sonable certainty, extreme value theory (Gumbel 1958) can be used to
estimate the probabilities of tails, even when the exact functional form of
the distribution is unknown. This approach may be unreliable if the phys-
ical mechanisms that generate events of different magnitudes are different
(Bier et al. 1999).

Morgan and Henrion (1990) recommended two series of questions to
elicit points on a distribution. They described the ‘fixed value’ method in
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which the assessor asks experts to judge the probability that the variable
lies within a specified interval. The answers approximate points on a
probability density function (a ‘pdf’).

The second approach is the ‘fixed probability’ method in which val-
ues of the variable that bound specified quantiles were elicited. A typical
question is, ‘Give a value of x such that you think the unknown quantity
has a 25% chance of being less than x’. Answers to these questions ap-
proximate points on a cumulative density function (a ‘cdf’). The assessor
concentrates on medians, quartiles and extremes (such as the 1% and 99%
limits).

Morgan and Henrion’s (1990) experience was that fixed value methods
that approximate pdfs are usually better calibrated, even though cdfs may
be easier to interpret by nontechnical people. Most other analysts agree
(e.g. Vose 1996) and my personal experience is the same. cdfs are harder
because all cdfs look the same. Distributions are more easily visualized as
pdfs.

The most direct method for eliciting a distribution is to ask the expert
to draw it, usually as a pdf (Morgan and Henrion 1990, Vose 1996). The
choices can be constrained by prior knowledge of the type of distribution
the variable comes from.

Frequency formats are relatively robust to the inconsistencies of human
perception (Gigerenzer 2002). For example, Borsuk et al. (2001a) elicited
expert information about the time between mixing events in an estuary.
Rather than asking for the probability of different intervals, they used a
frequency context and asked, ‘If you were to observe 100 vertical mixing
events, how many do you think would be x days apart?’.

Morgan and Henrion (1990) suggested asking first for extreme values
for an uncertain quantity. That is, the analyst elicits the maximum and
minimum ‘credible’ values, before asking for the best estimate, to help
overcome overly narrow bounds. Then, they suggested the assessor ask
the respondent to think about scenarios that produce values outside the
extremes.

Eliciting distributions is difficult enough. Eliciting dependencies re-
liably is more difficult. In general, people have poor intuition unless
dependencies are strong (i.e. close to –1 or +1; Morgan and Henrion
1990). Cooke and Kraan (2000) developed a method that depends on a
series of questions about conditional probabilities among pairs of vari-
ables of interest. Mechanistic understanding of dependencies may also be
useful. A great deal remains to be done before eliciting dependencies is
reliable.
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4.4.4 How hard should the analyst try?

The imperatives for finding an answer, any answer, can be powerful
or overwhelming. How does the quality of expert information dete-
riorate and how hard should the analyst try once an expert becomes
reticent?

If an analyst fails to secure a judgement about a statistical distribution
from an expert, then it may be that the analyst lacks the necessary elici-
tation skills. But experts sometimes make judgements just to be helpful
and to retain the semblance of expert respectability (because the experts
have been brow-beaten into providing an answer, or won’t admit they
can’t). If the analyst tries too hard, the answers may be too unreliable to
be useful.

Expert fatigue may corrupt expert knowledge or make it unavailable.
Many conceptual models are complex. They may involve numerous func-
tions and tens or even hundreds of parameters. For ecological models in
particular, there may be more than one plausible opinion, requiring sev-
eral alternative models or sub-models. Time is limited, the process is
demanding and people tire of estimation.

The balancing act for the person undertaking the elicitation involves
keeping the experts within the domain of their knowledge and putting
aside sufficient time for the elicitation process. The region of overconfi-
dence, between the subset of facts experts have learned (Figure 4.2) and
the subset they think they know, varies between experts and depends on
the elicitation process.

Elicitation is particularly error-prone when the topic involves low
probability events such as catastrophic failure of a system, extreme
weather, coincidences of independent events and so on. Sometimes, it
may be possible to compare the situation with other low-probability
events that are better defined. Alternatively, it may be possible to dis-
aggregate the rare event into a sequence of more likely events that are
easier to estimate, the combination of which generates the outcome in
question (Bier et al. 1999). In these circumstances, logic trees (Chap-
ter 8) or failure modes and effects analysis (Chapter 5) can be particularly
useful.

It is a great shame, but there is no substantial empirical information
and no theory to answer the question, ‘How hard should the analyst
try?’. Almost certainly, differences in the personalities of experts and
their sensitivities to errors hinder any potential generalizations. In any
case, tolerance to inaccuracy will depend on the local context.
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One solution is to measure the performance of experts routinely, cal-
ibrating their reliability, weighing their contributions according to their
usefulness and disregarding their contributions when they become too
inexact to be useful (Cooke 1991; see below). For example, scoring rules
measure the difference between actual outcomes and assessed probabili-
ties. A scoring rule is ‘proper’ if it rewards assessors for giving their true
opinion (Morgan and Henrion 1990, Cooke 1991). The ‘reward’ is a
score, fed back to the expert. The efficacy of such rewards is question-
able, especially when experts advocate a value-laden position. We will
outline methods to weight expert opinion below, after first examining
the kinds of things that make expert judgements unreliable.

In general, there is a powerful and unacknowledged tension between
the analyst’s desire to elicit a value, and the expert’s reticence to do so. It
is easy for the analyst to stray into the expert’s region of overconfidence.
The only way to be sure you have not overstepped the mark is to monitor
and validate predictions.

4.5 Expert frailties
Experts are susceptible to the same range of cognitive biases as nonexperts
(Chapter 1). Training can alleviate some of these problems. Routinely
reliable estimates have only ever been demonstrated in people who make
frequent, repeated, easily verified, unambiguous predictions so that they
learn from feedback. Because of the importance of expert opinion in
risk assessment, the following sections examine the fallacies to which
experts are susceptible, and review the track records of experts in making
judgements.

4.5.1 Format

The scale of measurement and the structure of questions influence judge-
ments. For example, Slovic et al. (2000) reported a study in which the
two scales in Figure 4.5 were presented to two groups of experts. Foren-
sic psychologists and psychiatrists were shown case summaries of patients
with mental disorders (Figure 4.6). The same questions were put to the
two groups, about the probability that a person convicted of a particular
crime would re-offend after release. Response scales that emphasized the
lower end of the probability scale led clinicians and lay people to judge
patients as posing lower risks of committing harmful acts.

The judgements could be influenced, but not necessarily improved, if
data were reported in frequency format (Slovic et al. 2000). Gigerenzer
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Figure 4.5. Two scales used to guide judgements about probabilities that violent
criminals will re-offend (after Slovic et al. 2000).
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Figure 4.6. The influence of choice of scale of expert estimates of probability. The
members of the American Psychology-Law Society were given a tutorial on
probability theory prior to their assessment (after Slovic et al. 2000 and Gigerenzer
2002). In all cases, the sample sizes were several hundred individuals.

(2002) speculated that when numbers are presented, people tend to pic-
ture real events, whereas they remain detached when presented with
probabilities.

This result reflects some of the earliest experiments on framing effects.
Tversky and Kahneman (1981) described an experiment in which people
chose a programme to combat a new disease expected to kill 600 people.
The question was posed as follows:

If programme A is adopted, 200 people will be saved.
If programme B is adopted, there is a 1/3 chance that 600 will be saved

and a 2/3 chance that no-one will be saved.

Seventy-two percent of people preferred A to B.
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They put the question differently to a separate set of people, as follows.

If programme C is adopted, 400 people will die.
If programme D is adopted, there is a 1/3 chance that no-one will die,

and a 2/3 chance that 600 people will die.

Twenty-two percent of people preferred C to D.
Of course, A and C are the same programme, as are B and D. The

preferences of most people were influenced by how the question was
framed. Tversky and Kahneman (1981) found the same responses among
undergraduate students, university faculty and practising physicians. It
didn’t help to be an expert.

These results are disquieting because experts are easily influenced by
a frame of reference or the way a proposal is worded. The experts in
Figure 4.6 represent psychiatrists and psychologists who routinely make
decisions that affect the lives of others in profound ways. They were
operating within the accepted limits of their professional expertise.

4.5.2 Availability

Biases arise because of the relative ease with which different kinds of
information are remembered by experts. The reliability of an estimate is
determined by sample size – in effect, the expert’s experience base. Rec-
ollections are influenced by the similarity of past experiences to the prob-
lem at hand. Catastrophic, newsworthy and recent events are more likely
to be remembered (Meyer and Booker 1990). Stark and unusual events
are more easily remembered than routine and diffuse events (Vose 1996).

4.5.3 Overconfidence

A few months before the meltdown of the Chernobyl nuclear reactor in
Russia in 1986 and the release of substantial amounts of deadly radiation,
the Ukranian Minister of Power estimated the risk of a meltdown to be
1 in 10 000 years. Before the space shuttle Challenger exploded on its
25th mission, NASA’s official estimate of the risk of catastrophic failure
was 1 in 100 000 launches (Plous 1993). Both estimates were wildly
overconfident. The space shuttles have a failure rate much closer to 1:50,
about the historical failure rate for solid fuel rockets (see Tufte 1997 for
a discussion of the way evidence was used in the decision to launch the
Challenger).
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The tendency towards unjustified optimism is a pervasive feature of
risk assessments. Typically there is little relationship between confidence
and accuracy, including eyewitness testimony in law, clinical diagnoses in
medicine and answers to general knowledge questions by people without
special training.

Figure 1.4 shows the tendency towards overconfidence in a trivial
assessment of the number of beans in a jar. It is perhaps more disquieting
that expert judgements suffer from the same malaise. Vose (1996, pp. 156–
8) found in a series of informal observations in a range of settings that
experts provide intervals that contain the truth about 40% of the time,
when asked for intervals that will contain the truth about 90% of the
time.

For example, Baran (2000) described a 40-ha patch of sclerophyll forest
and asked a group of professional ecologists at an international meeting
to estimate the number of 0.1-ha quadrats that would be necessary to
sample various percentages of the plant species. She also asked them to
provide 90% credible bounds on their estimates. Field ecologists routinely
estimate the number of quadrats necessary to adequately sample the plants
in an area. The type of vegetation and the spatial scale were familiar to
all of the ecologists. The context is one in which the analyst may have
expected a reliable answer. Baran (2000) sampled the area intensively to
validate their answers.

Unfortunately, estimates of central tendency and bounds were unre-
liable. The ecologists’ estimates of the number of quadrats necessary to
sample 75% of the plant species were about right but only 10 of the in-
tervals estimated by the 28 respondents enclosed the correct value. They
were substantially overconfident. Only 2 of 22 intervals captured the cor-
rect answer when estimating the number required to sample 95% of the
plants (Figure 4.7). The median response substantially underestimated the
number of samples.

Plant ecologists are insensitive to sample size (Chapter 1) and there
is no simple feedback between estimation and outcome in routine plant
surveys. As a result, the experts are poor judges of the effort required for
reliable surveys.

Nordhaus (1994, in Kammen and Hassenzahl 1999) asked a group
of researchers in global climate change to estimate the effect of a 3◦C
change by 2090 on gross world product. The participants included people
researching scientific, economic, political, ecological and engineering
aspects of climate change (Figure 4.8).
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Figure 4.7. Expert estimates of the number of 0.1-ha quadrats necessary to sample
95% of the vascular plant species in a 40-ha patch of dry sclerophyll forest
containing about 120 species, and their 90% credible bounds (after Baran 2000).
The analyses assume plants were randomly distributed in the 40-ha patch, with
respect to the sample quadrats.

These estimates share many properties with Figure 4.7 and Figure 1.4.
In all cases there is a tail of high values. Higher values are associated with
broader intervals. Several opinions are so divergent that intervals do not
include the best estimates of other people. Other intervals fail to overlap
at all.

Some of the results suggested motivational biases (see below). Estimates
by economists were generally 20–30 times lower than those of natural
scientists, although the sample size was small.

The problem of overconfidence is exacerbated by the fact that indi-
vidual experts may be habitually optimistic or pessimistic. Cooke (1991)
noticed that experts tend to be one or the other. For example, when
experts judged the probabilities of an electric shock, most selected values
were consistently too high or too low. Experts were consistently biased
much more frequently than could be expected by chance (Table 4.3).
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Table 4.3. Assessments by 12 experts of the probabilities of 10 events (a–j)
leading to an electric shock from a lawnmower (events were that the person was
grounded, that power was supplied and so on; P means the person made a
pessimistic estimate, and O means their estimate was optimistic)

Experts Events

a b c d e f g h i j Proportion
pessimistic

1 P P P P P P P P P P 1
2 P P P P P P P P P P 1
3 P P O P P P P P P P 0.9
4 P P O P P P P P P P 0.9
5 P O P O P O O P O P 0.5
6 O O O O O O O O O O 0
7 P P P P P P P P P P 1
8 P P P P P P P P P P 1
9 O O O O O O O O O O 0

10 O O O O O O O O O O 0
11 P P O O P P P P P P 0.8
12 P P O P O P O P P P 0.7

-5

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

L
o

s
s
 o

f 
g

ro
s
s
 w

o
rl

d
 p

ro
d

u
c
t 
(%

)

Experts

Figure 4.8. Best estimates and bounds for the loss of gross world product resulting
from a doubling of atmospheric CO2, resulting in an increase in global mean
temperatures by 3 ◦C by 2090 (after Nordhaus 1994, in Kammen and Hassenzahl
1999, Figure 4.3). The intervals are 80% confidence intervals (the 10th and 90th
percentiles). Each number on the x axis represents a different expert.
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This may be due to anchoring (selecting one value and ordering others
relative to it) or an inherent tendency towards optimism or pessimism.

Other factors may contribute to bounds that are too narrow. Fre-
quently, experts are unwilling to consider extremes. In addition, the
specification of relatively wide bounds is sometimes seen as an admis-
sion of a lack of knowledge. The implication may be that the person
specifying the widest bounds has the least knowledge, and their reputa-
tion may suffer as a consequence (Vose 1996).

It is difficult to know how such a phenomenon will translate to other
disciplines and other circumstances. Considering that Cooke’s (1991)
example was from a situation that was relatively well understood, and in
which there were few differences among participants, it seems likely that
the tendency for people to be consistently biased will be present, perhaps
more strongly, in ecological risk assessments.

The surprise index is the frequency with which a true value falls
outside the confidence limits of a judgement. Figures 1.4 and 4.7 give
some instances. If experts are asked to provide 1st and 99th quantiles, for
instance, surprises should occur roughly 2% of the time. Overconfidence
can be measured by the frequency of surprises greater than the expected
rate. The summary statistics from a large number of trials conducted
on an array of different topics with different (mostly nonexpert) people
(Figure 4.9) suggests that overconfidence is the norm, in both experts
and nonexperts.

Morgan and Henrion (1990) concluded that all methods for elicita-
tion show a strong tendency towards overconfidence, generating frequent
surprises. Cooke (1991, p. 40) concluded that expert opinions in proba-
bilistic risk assessments, ‘ . . . have exhibited extreme spreads, have shown
clustering, and have led to results with low reproducibility and poor
calibration’. If experts were unbiased, then combining experts would
converge on the truth and the best expert would be the one with the
smallest variance. Because of clustering, convergence is not guaranteed.
All experts may be biased.

4.5.4 Motivational bias

Well-intentioned people can provide biased assessments because it bene-
fits them to do so. It can lead to overconfidence in predictions or other
deviations from accurate and reliable assessments.

People in corporations acting as champions for a project are likely
to emphasize potential benefits and understate potential costs. This is
not due to malicious or cavalier attitudes in the proponents, but is a
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Figure 4.9. The frequency of surprises. The histogram gives the number of studies
for which the percentage of judgements did not enclose the truth, after specifying
that the range should include 98% of the distribution of uncertainty. Thus, the
expected surprise frequency for all judgements was 2%. The data include 27
assessments from 8 separate studies, some preceded by training to elicit reliable
bounds, and all involving in excess of 100 subjects per test (data from Lichenstein
et al. 1982, in Cooke 1991; see also Morgan and Henrion 1990).

consequence of enthusiasm and ambition, both of which breed opti-
mism. Technical experts may underestimate potential risks because their
discipline and their own research and career prospects are tied to the
development of the technology, even if indirectly. People may wish to
appear knowledgeable and thereby underestimate uncertainty. Analysts
themselves may introduce a bias by misinterpreting the information pro-
vided by experts, or by using it in models that have assumptions and
functions that the expert would not agree with.

This creates particular problems for the assessment of new technology
risks. The few people with substantive knowledge are also likely to possess
a motivational bias.

Gigerenzer (2002) pointed out that roughly 44 000–98 000 people
are killed in the USA each year by preventable medical errors, more
than are killed by motor vehicles or acquired immune deficiency syn-
drome (AIDS). Safety systems such as those in commercial aviation that
would be in the interests of the patient have not been set up in hospitals.
Gigerenzer explained this anomaly by arguing that aviation safety is in the
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immediate interests of the pilot and crew, and the consequences of failure
are highly visible and unambiguous. Doctors and patients, on the other
hand, sometimes have different, or even opposing, goals.

One solution to these problems may be to ensure that analysts and
experts do not gain or lose, personally, from the outcome of a risk as-
sessment. Alternatively, experts may be required to carry a personal cost
from errors that matches the costs experienced by other stakeholders.
The analyst may decide to include a range of experts with a stake in
the outcome, representing alternative scientific positions, or representing
different stakeholder groups.

Morgan and Henrion (1990) suggested a systematic search for moti-
vational biases. Meyer and Booker (1990) recommended testing expert
understanding against known standard problems, making experts aware of
potential sources of bias, providing them with training to improve their
normative skills, and monitoring sources of bias during the elicitation
process. Cooke (1991) provided some numerical methods for achiev-
ing these goals. These are outlined in Section 4.10. Motivational bias is
related to social and philosophical context, as outlined in Section 4.5.7.

4.5.5 Lack of independence

Most technical disciplines have conventional (shared) wisdom. If the tech-
nical base is narrow, or if people are selected by inter-personal relation-
ships, they may represent a single school of thought or be influenced by
the same data (Bier 2002). If group interactions are not well managed, ex-
pert consensus may be influenced disproportionately by a single vocal or
influential expert. Lastly, a set of experts may share the same motivational
bias deriving from their membership of a professional domain, so that
they stand to gain or lose in similar ways from the outcomes of decisions.

If experts are assumed to be independent when they are not, overlap
between their estimates will be taken as stronger evidence than is justified.
Even if there are small correlations between expert estimates, there may
be little additional value in consulting more than four or five experts.
Bier (2002) pointed out that infinitely many experts with correlations of
0.25 are equivalent to only four independent experts.

4.5.6 The conjunction fallacy

People find conditional probabilities hard to interpret correctly. Tversky
and Kahneman (1982a) provided an example of Bill, an intelligent,
unimaginative, compulsive and rather lifeless individual. They asked
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people to rank a number of possible attributes of Bill, from most to
least likely. They included:

1. Bill is an architect.
2. Bill is an accountant.
3. Bill plays jazz for a hobby.
4. Bill is an accountant who plays jazz for a hobby.
5. Bill surfs for a hobby.

More than 80% of people, including statistically literate graduate stu-
dents, judged (4) to be more likely than (2) or (3), even though (4) is
a combination of (2) and (3). Most people ranked (4) before (5), even
when told that many more people surf for a hobby than play jazz or are
accountants.

Gigerenzer (2002) made the point that the way in which conditional
information is worded can influence how experts interpret evidence.
There are two ways of presenting it, as conditional probabilities and as
raw frequencies.

First consider conditional probabilities. The probability that a woman
of age 40 has breast cancer is about 1%. If she has breast cancer, the
chance that she tests positive in a mammogram is 90%. If she does not
have breast cancer, the chance that she tests positive is about 9%. What are
the chances that a woman who tests positive actually has breast cancer? It
is very difficult for experts or anyone else to give the right answer (9%)
when information is presented like this (Figure 4.10).

Gigerenzer then re-stated the problem using raw frequencies. Think
of 100 women of age 40. One has breast cancer. She will probably test
positive. Of the 99 who do not have breast cancer, 9 will also test positive.
How many of those who test positive actually have breast cancer? The
answer, 1 in 10, is now much easier to see. The interpretation of the
positive test depends on the reference group, made plain by the frequency
information.

It is even easier to see as a tree with raw frequencies (Figure 4.11).
Gigerenzer’s point was that, while it is possible to work things out cor-
rectly if information is presented as raw frequencies, people rarely use
them. The consequence is that experts make many avoidable mistakes.
An example of a convention using raw frequencies is given in Chapter 12.

The conceptual fallacy that underlies the misinterpretation of condi-
tional probabilities is allied with ‘illusory certainty’ (Gigerenzer 2002,
p. 14), the belief that scientific tests such as mammograms are infallible
or highly reliable. Lawyers suffer from the same flaw. It is termed the
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Figure 4.10. Estimates made by 48 physicians of the chance of breast cancer given a
positive screening mammogram. Half were given the information as conditional
probabilities and half were given it as raw frequencies. In the latter case, the
estimates clustered more closely around the correct value of 9% (from Gigerenzer
2002).

‘prosecutor’s fallacy’ in which the probability of an event ( p(event)) is
confused with the probability that someone is guilty, given the event
(p(guilty | event)) (see Goldring 2003).

For example, juries are asked to decide whether blood at a crime scene
belongs to a particular person. An expert says in court that one person in
a million would have a DNA profile matching the crime scene evidence.
The defendant’s profile is a match. Unless the court is careful, the jury
could be left with the impression that there is a million to one chance
the evidence was from the defendant. However, if the evidence was
found in the USA where there are about 300 million people, 300 other
people are candidates. The DNA evidence, in isolation, should not be
conclusive.
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1 with the disease 99 without the disease

100 people

1 positive 0 negative 9 positive 90 negative

Figure 4.11. The meaning of a positive test. Out of 100 women, 10 will test
positive and 1 will have the disease (after Gigerenzer 2002, p. 125).

The reference class problem is a related but separate issue. Courts
sometimes consider a person to be more likely to be guilty, simply because
they belong to a social group, a so-called reference class, within which
such crimes are prevalent. Colyvan et al. (2003) made the point that
people belong to infinitely many reference classes and care must be taken
in defining them and drawing inferences.

4.5.7 Cultural, political and philosophical context

Experts are susceptible to the normal range of human emotions and
values. In addition, context may impose an inescapable bias on the pool
of experts.

Campbell (2002) used in-depth interviews to examine the attitudes of
experts interested in the conservation and management of marine turtles.
They were asked specifically about the sustainable, consumptive use of
turtles and their eggs. Campbell’s results revealed four ‘positions’ on use,
all of which were defendable on scientific grounds (Table 4.4).

The positions were distinguished by how they dealt with uncertainty.
Proponents of sustainable use were influenced by international conven-
tions, local sociocultural norms, the potential to learn about the system
by monitoring outcomes and the conservation benefits of improved eco-
nomic status. Opponents of sustainable use were influenced by a lack of
faith in free market economics, and moral and philosophical arguments



94 · Experts, stakeholders and elicitation

Table 4.4. Positions on use and institutional affiliation of 36 marine turtle
experts (after Campbell 2002)

Positions on uncertainty NGO University Government Total

Consumption is supported, learn
through use, use existing
information

3 5 2 10

Support limited, consumptive use 2 2 0 4
Uncertainty dictates caution,

consumptive use is not
supported

5 7 7 19

Consumptive use is unacceptable,
uncertainty is not an issue

0 2 1 3

against the use of wildlife. A total of 10 preferred adaptive management
and learning through use whereas 3 experts were implacably opposed to
commercial use, irrespective of uncertainty.

Campbell (2002) noted that experts saw opposing views as influenced
by ‘emotions’, claiming dispassionate scientific objectivity for their own
views, irrespective of their positions. Experts couched their arguments
in scientific terms, downplaying the roles of other values. The experts
attributed emotional involvement to people without scientific training,
as though training protects people against emotional investment in their
subject material. Few propositions are so plainly self-deluded.

4.6 Are expert judgements any good?
The acid test should be: ‘Are expert judgments reliable?’. The impressive
list of frailties above might lead you to conclude that there isn’t much
chance expert judgements will be reliable enough to use.

4.6.1 Performance measures

If the truth is known, expert judgements can be plotted against reality.
These are termed calibration curves. For probabilistic judgements, an-
swers partitioned into subsets with similar probabilities are plotted against
the true proportion in each category. Well-calibrated experts lie close to
the diagonal. Consistent bias results in a displacement of the median.
Overconfident assessors overestimate low-probability events and under-
estimate high-probability events (Morgan and Henrion 1990).
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Figure 4.12. Ranges of expert judgements for probabilities of failure of nuclear
reactor systems compared with actual outcomes (circles) at Oak Ridge in the USA
(after Cooke 1991). The failures were (1–4, pressurized water reactor, 5–7, boiling
water reactor) 1: small loss of coolant accident; 2: auxiliary feedwater system
failure; 3: high-pressure injection failure; 4: long-term core cooling failure; 5: small
loss of coolant accident; 6: automatic depressurization system demand;
7: high-pressure coolant injection.

A Brier score summarizes one of the elements of calibration between
judgement and outcome. It is the weighted average of the mean squared
differences between the proportion correct in each category and the
probability associated with the category (Plous 1993).

Uncertainty often is quantified with an interval that we are x% certain
encloses the true value. The surprise index is the percentage of true
outcomes that lie outside expert confidence regions (e.g. Figure 4.9).

4.6.2 Performance measured

One of the main reasons expert judgements are used is that estimates
are needed in circumstances in which it is difficult or impossible to ac-
quire direct data. There are a few direct comparisons of expert estimates
with actual probabilistic outcomes. The majority come from engineer-
ing. In Figure 4.12, for instance, the ranges of expert estimates from
a study of reactor safety were compared to operating experience for
seven different incidents. None of the expert ranges captured the actual
outcomes.
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Figure 4.13. Opinions of geotechnical experts on two standard problems. The
correct (measured) value for settlement depth was 1.5 cm and for height to failure
was 4.9 m. The x-axis for both was rescaled so the maximum value was 1. Correct
values are shown as dashed horizontal lines. The intervals show ‘minimum’ and
‘maximum’ values reported by the experts (after Hynes and Vanmarcke 1975 in
Krinitzsky 1993).

In an independent study, Krinitzsky (1993) reviewed the accuracy
of experts’ earthquake probability assessments. Some experts provided
ranges that did not make sense and appeared to lack fundamental knowl-
edge. Despite their stature as experts, some participants did not have the
requisite background to give competent judgements. Nevertheless, they
were willing to do so.

Krinitzsky (1993; see also Fischhoff et al. 1982) also reported the abil-
ities of geotechnical experts to assess the parameters in two standard
problems. The results are not heartening (Figure 4.13). Seven interna-
tionally known geotechnical experts were asked to predict the height of
fill at which an embankment would fail. In all cases, the true value fell
outside their confidence intervals.

The geotechnical experts were provided with the data necessary to
make calculations. They used a variety of methods. The answers given for
the settlement depth problem show that averaging the experts’ opinions
will not converge on the truth. All were biased in the same direction. In
both cases, the experts were overconfident.

Experts are not particularly good at judging the mean lifetime of com-
ponents in an engineering system or the range of variation that might
be expected for the mean lifetime in a large number of components
(Figure 4.14).
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Figure 4.14. Calibration curves: expert predictions plotted against actual outcomes.
Crosses are estimates by engineers of the mean lifetime of components in nuclear
power systems, versus measured lifetimes. Open circles are estimates of the ranges
for the mean lifetimes of the same components, versus measured ranges. Ranges are
expressed as the maximum divided by the minimum. The components included
pumps, valves and heat exchange units (after Mosleh 1987, in Cooke 1991). The
squares are army doctors’ subjective probabilities that patients have pneumonia,
versus more reliable diagnoses based on radiography (after Christensen-Szalanski
and Bushyhead 1981). Solid circles are meteorologists’ predicitions for the
probability of rain on the following day, against the observed relative frequencies
(after Murphy and Winkler in Plous 1993). The diagonal line provides the line of
correct estimation for all sets of observations. Values are scaled so that the
maximum value in each set is 100.

Capen (1976), a petroleum engineer, anticipated these results when he
said ‘Every test we have performed points in the same direction . . . The
average smart, competent engineer is going to have a tough time coming
up with reasonable probabilities . . . ’.

Experts underestimated the lifetimes of long-lived components and
overestimated the lifetime of short-lived components. The tendency to
underestimate ranges seems more pronounced than the tendency to un-
derestimate lifetimes, across the full range of values. Army doctors’ sub-
jective probabilities that patients have pneumonia were a poor predictor
of the outcomes of more reliable diagnoses based on radiography. Perfor-
mances of experts in business, energy consumption planning and military
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intelligence are likewise mixed and unimpressive (Morgan and Henrion
1990).

For instance, Van der Heijden (1996) documented consistent overesti-
mates in projections for peak summer energy demand by utility planners
in the Netherlands through the 1970s and 1980s. There was a similar bias
in energy demand predictions for North America where the difference
between use estimated in the mid 1970s and the amount actually used a
decade later was equivalent to the output from 300 large nuclear power
plants (Cooke 1991).

When judging the abilities of experts, it is important to be aware
of the potential for normative and substantive weaknesses. The figures
above may suffer from both. The information people might use to reach
a decision may not be the same as the information they provide when
asked a question.

Windschitl (2002) gave the analogy of asking basketball players the
distance between the three-point line and a point on the floor directly
beneath the hoop, in centimetres. Their responses may be unreliable
because they do not have a good concept of a centimetre or because
they miscalculate. They may be optimistic in judging 90% confidence
intervals for their estimates. Question framing, context, the availability of
recent information, the scale offered for the answer and opportunities for
anchoring might affect the answers. These factors impair their normative
skills (their ability to communicate an answer). Even so, they are likely to
have a good appreciation of the distance. They lack the normative skills,
even though they have sound substantive knowledge of the distance. Part
of the inability of experts to judge parameters reliably may be due to poor
communication skills.

To alleviate some of these problems, Krinitzsky (1993) suggested using
direct data wherever possible. When experts are necessary, he emphasized
the importance of justifying panel composition independently and of us-
ing people with well-developed skills in both communication and techni-
cal detail. Because experts don’t know their own limitations, judgements
that are demonstrably incoherent should be disregarded. Lastly, he advised
that analysts should keep questions simple and make views transparent by
attributing judgements to individuals.

4.6.3 Are expert judgements better than lay judgements?

There is some evidence that experts do better than untrained people,
within their domain of expertise. In Figure 1.3, experts did better at
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Table 4.5. Rank correlations between data on mortality (number of
deaths per 100 000) and lethality (number of deaths per 100 000,
given a disease has been diagnosed) for 31 lethal events, and
judgements of the same parameters made by insurance underwriters
(experts) and students (novices). The subjects ranked the 31 events
using direct estimates of mortality and lethality, and then ranked
them by comparing all pairs of events (after Wright et al. 2002)

Underwriters Students

Direct marginal (mortality) 0.66 0.73
Direct conditional (lethality) 0.66 0.53
Paired marginal (mortality) 0.42 0.24
Paired conditional (lethality) 0.42 0.25

estimating the probabilities of dying from a range of day-to-day activ-
ities such as driving a car, getting a vaccination, or smoking, although
they still underestimated the true values substantially. Figure 4.6 sug-
gests that trained people may be somewhat less prone to bias caused by
the reference frame when making judgements about the likelihood of
violence.

Underwriters make routine assessments of risk for insurance compa-
nies. Wright et al. (2002) repeated the experiment of Slovic et al. (2000)
more rigorously. They used insurance underwriters (experts) and stu-
dents (novices) to judge marginal mortality (deaths per 100 000) and
conditional lethality (deaths per 100 000 given the disease is diagnosed)
for a set of 31 potentially lethal events. The people in the study estimated
mortality and lethality directly, and then by making pairwise comparisons
between events.

Students and experts were reasonably good at ordering the absolute
values for mortality and lethality (Table 4.5), with rank correlations be-
tween estimated ranks and ‘true’ ranks ranging from 0.53 to 0.73 for
the students, and 0.66 for the underwriters. Experts were better at rank-
ing the pairwise comparisons of events. The differences in performance
between students and experts were small and their biases were similar.

The broad conclusion seems to be that experts do better than untrained
people, but not substantially better. Wright et al. (2002) concluded that
if objective models and reliable feedback are unavailable, it may not be
possible for experts to improve their performance above the performance
of an untrained person.
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Judgements by some professionals may be unlearnable, especially if
they involve novel or infrequent events. Demands for unlearnable (and
untested) judgements, together with unquenchable expert optimism, cre-
ate a spectre of widespread, unreliable expert opinion wearing a mantle of
scientific reliability. It may be especially prevalent in environmental do-
mains where novel events are common and objective models, monitoring
and feedback are rare.

4.7 When experts disagree
Environmental issues often are divisive, even in a technical realm.
Krinitzsky (1993) argued that strong personalities influence outcomes.
Participants advocate positions, views are anchored, change is resisted,
people hold covert opinions that are not explained and there is pressure
to conform. Despite these frailties, some analysts persist in the belief that
group elicitation of risks is largely detached from subjective influences,
even for circumstances as value-laden, uncertain and politically charged
as assessing radioactive waste risks (e.g. Kerr 1996).

Salmon in the Pacific north west of the USA are economically, so-
cially and culturally valuable. Ruckelshaus et al. (2002) described how
management concentrates on reproductively isolated salmon populations
(termed ‘evolutionarily significant units’) usually associated with a sin-
gle catchment or geographic area. Widespread and substantial declines
in wild salmon populations have been attributed to habitat degradation,
dams, harvesting, fish hatcheries, el Niño events, predation and invasion
of exotic organisms.

Experts disagree about the causes of decline. Data are often unavailable
or equivocal. For instance, some salmon populations have recovered fol-
lowing reductions of harvest. Others have not. Recovery teams are com-
posed of people with technical backgrounds but who represent a range of
stakeholders (they are ‘expert stakeholders’, see below). Ruckelshaus et al.
(2002, p. 691) noted, ‘Major technical disagreements stemming from
philosophical differences that seem to run as deep as religious beliefs are
commonplace in such technical teams’.

Consistency of opinions among experts may be interpreted as a meas-
ure of reliability. Alternatively, differences may reflect honest, valid differ-
ences of opinion. The way in which differences are handled by the analyst
should reflect a coherent philosophy about the nature of the uncertainties
and the ways in which they affect decisions.
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Figure 4.15. Representation of different kinds of disagreements among five experts
(labelled A-E); a. consonant evidence, b. consistent evidence, c. arbitrary evidence
(from Sentz and Ferson 2002).

Sentz and Ferson (2002) classified evidence from multiple sources.
Consonant evidence can be represented by nested subsets (Figure 4.15a).
For example, the information provided by experts 9, 10, and 11 in Figure
4.8 is consonant. The content of the smallest set is contained within the
next largest, and so on.

Consistent evidence means at least one element is common to all of the
subsets (Figure 4.15b). In Figure 4.8, experts 5–16 are consistent because
they overlap to some extent.

Arbitrary evidence describes the situation where there is no element
common to all subsets, even though some subsets have elements in com-
mon (Figure 4.15c). The opinions provided by experts 14–17 in Figure
4.8 are arbitrary because 14 and 17 do not overlap.

Disjoint evidence implies that any two subsets have no elements in com-
mon with any other subset. The opinions provided by experts 3, 10 and
17 in Figure 4.8 are disjoint.

The easiest way to avoid conflict is to ask just one person. The larger
the set of experts, the greater will be the possibility for arbitrary or dis-
joint opinions. Stratifying the sample of experts to include a range of
demographic and social attributes will further increase the chances of
disagreement, and reduce the chances of bias.

Consulting multiple experts may be viewed as being equivalent to in-
creasing experimental sample size (Clemen and Winkler 1999). Multiple
experts with different backgrounds increase the extent of knowledge and
experience contributing to an assessment. This view carries a hidden as-
sumption that their opinions will converge on the truth. This assumption
may be reasonable for some simple, empirical facts for which vague def-
initions, personal values and linguistic ambiguities do not arise strongly,
and in circumstances in which experts have no motivational or cognitive
biases, but even this is not guaranteed (Figure 4.13).
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Figure 4.16. Assessments by four health experts, in the form of cumulative
probability distributions, of the health impact in additional deaths from exposure to
sulfate air pollution from a coal-fired power plant in Pittsburgh, Pennsylvania,
USA. The curves give the probability that the total number of annual deaths will
be less than the value specified (after Morgan and Henrion 1990).

Technically intensive disputes in particular rely heavily on expert
judgement. Experts’ knowledge, conceptual models and experiences dif-
fer, leading to different technical assessments. For example, Morgan and
Henrion (1990) reported the results of a study in which four health ex-
perts were asked to assess the probabilities of additional deaths resulting
from exposure to a toxin produced by a coal-fired power plant (Fig-
ure 4.16).

All participants believed that there would probably be fewer than
about 5000 additional deaths annually in the surrounding population.
Two experts were relatively optimistic, believing that it was likely that
less than one additional death would occur annually. The experts’ esti-
mates of the probability of zero additional deaths per year ranged from
0 to 1.

Much of the work on risk assessment in decision theory, economics
and statistics has focused on the development of normative theories of
rational consensus: expert judgement takes the form of degrees of belief
about facts. To estimate an uncertain quantity such as the parameter in a
model, an analyst may combine the distributions provided by more than
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one expert. Alternatively, the group may wish to combine individual
distributions to arrive at a collective decision or recommendation. In
either case, there is an underlying assumption that there is a fact and the
job of the experts is to do their best to estimate it.

There are two basic forms of aggregation: behavioural and numerical
aggregation. The following sections outline their forms and uses.

4.8 Behavioural aggregation
4.8.1 Delphi and its descendants

The Delphi technique was invented with consensus in mind. Devel-
oped by the RAND Corporation in a joint US Air Force/Douglas
Aircraft initiative, it began in 1948 (Cooke 1991, Ayyub 2001).
There are different forms of the technique for technology forecast-
ing and policy development but essentially it consists of the following
steps:

� problem formulation and development of questionnaires,
� selection of experts,
� provision of background information and context to experts,
� elicitation of point estimates (performed independently; the experts do

not see one another),
� aggregation of results with medians and interquartile ranges which are

distributed to participants,
� review of combined results by experts and revision of answers, and
� iteration of feedback until consensus is achieved.

Answers and the thinking behind them are distributed among the experts
without revealing who was responsible for each judgement. If experts
persist in deviating substantially from the group consensus, they are asked
to justify their position.

The method has been criticized for limiting interactions between ex-
perts. It does not deal adequately with uncertainty, it encourages unifor-
mity and discourages dissent. Applications tend to overlook important
interactions and misinterpret the joint probabilities of coincident events.
The mechanisms for resolving differences tend to fuel expert overcon-
fidence (see Cooke 1991, Ayyub 2001). Some of these criticisms have
been addressed by changes in the protocol (Box 4.1).
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Box 4.1 · A modified Delphi technique for expert elicitation.

Vose (1996) developed an approach aimed at having participants leave
with a common perception of risks and uncertainties. It consists of the
following steps:

1. Gather relevant information and circulate it prior to the meeting.
2. Bring experts together and lead a brainstorming session (Chapter

5).
3. Encourage discussion of uncertainty in each variable, including log-

ical relationships and correlations.
4. Discuss scenarios that would produce extreme events.
5. Take minutes and circulate them afterwards.
6. Following the brainstorming session, conduct individual interviews

to determine opinions about system structures and uncertainties in
variables.

7. Reconvene the experts to discuss important differences of opinion.
8. Present residual differences and combine them in ways that retain

the information (see below).

This approach gives experts a chance to consider the opinions and
knowledge of others and does a better job of retaining uncertainties
and exploring dependencies between system components.

4.8.2 Closure

Several methods seek consensus among experts. Some of these are appro-
priate for groups of people who represent interests of stakeholders (see
Section 4.12 below). Most involve experts first expressing their views
and then presenting them to others. Facilitators assist experts to revise
their assessments as linguistic hurdles are overcome and information is
disseminated (Clemen and Winkler 1999).

Valverde (2001) suggested a framework to achieve consensus expert
opinion that has its foundations in an approach developed by Kaplan
(1992). It involves diagnosing sources of disagreement and finding ways
to resolve them. Valverde used the typology for arguments invented by
Toulmin (1958) that recognizes five basic elements:

� Claim: an assertion or proposition, usually the end result of an argument,
but neither necessarily certain or true.
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� Data: information content of an argument, including physical evidence,

observations and experimental values.
� Warrant: the causal laws, inference mechanisms, models or rules that

link the data to the claim.
� Backing: background assumptions or foundations that support the war-

rant, including axioms, theory, and formal principles.
� Rebuttal: the conditions under which and the reasons why the claim

does not necessarily hold, and which may apply to the warrant or the
claim.

In the first step, experts advance a series of claims. They are subject
to rebuttal by other experts. Disagreements are about fact, theories or
principle (different scientific traditions or differences of a metaphysical
or ethical nature). Disagreements have their origins in disagreements
about data (the easiest to resolve), warrants or backing (the most difficult
to resolve).

In the second step, the analyst diagnoses and treats sources of expert
disagreement. Valverde (2001) expanded the typology of argument, re-
quiring experts to make explicit numerical statements to represent de-
grees of belief. He created a second taxonomy to diagnose sources of
disagreement:

� Semantic disagreement: experts misunderstand the meanings of words.
� Preference disagreement: experts have different preferences for methods

and standards used to evaluate claims.
� Alternative disagreement: usually management options are offered that

serve to frame a problem, but experts differ in their views about the
admissible set of policy options.

� Information disagreement: experts differ in their views on measurements,
the validity of experiments, the methods used to obtain observations,
or the rules of inference.

� Epistemic disagreement: experts adhere to different scientific theories,
professional conventions or ethical positions.

The taxonomy is applied sequentially, treating the most likely underlying
cause of disagreement last. If, for instance, preference disagreement is
thought to underlie a particular issue, the diagnostic procedure seeks first
to identify and resolve semantic disagreements. If disagreement persists,
the facilitator should introduce alternative information or explore the
differences in understanding. The step is complete when the source of
disagreement is understood.
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The third step in Valverde’s process is to seek ‘closure’ or ‘resolution’.
Closure may be achieved through (Engelhardt and Caplan 1986):

� Sound argument: a ‘correct’ position is identified and opposing views are
seen to be incorrect.

� Consensus: the experts agree that a particular position is ‘best’.
� Negotiation: an arranged resolution is reached that is acceptable to the

participating experts and that is ‘fair’ rather than correct.
� Natural death: the conflict declines gradually and is resolved by ignoring

it, usually because it turns out to be unimportant.
� Procedure: formal rules end sustained argument.

Closure assumes that expert judgements provide a rational interpreta-
tion of evidence and that ‘political’ influences can be divorced from the
scientific process.

Recent advances in cognitive psychology outlined above make it plain
that experts are not completely rational and that debates and expert dis-
agreements are not isolated. In addition, procedures such as voting and
preference voting create circumstances in which the order of choices
offered to a committee can determine the outcome (Arrow 1950).
In general, closure is not guaranteed and it is not always sensible to
seek it.

4.8.3 Resolution

The alternative to closure is to seek ‘resolution’, which may include elim-
inating, mitigating or accepting differences of expert opinion. Valverde
identified means for seeking resolution, some of which relate to ap-
proaches for closure. They include:

� Co-optation: experts acknowledge that the conflict is ‘resolvable’, and
sound argument, consensus or negotiation may bring closure.

� Supremacy: expert disagreements are tested to determine the ‘correct’
position; experts agree on the grounds upon which ‘supremacy’ will
be based, and what evidence would cause them to alter their position.

� Replacement: a new paradigm is introduced that integrates the best as-
pects of the competing viewpoints, in which the experts agree with
the synthesis, leading to consensus or negotiation closure.

Any disagreement cannot necessarily be resolved. It may not be desirable
in all circumstances because it may mask important, legitimate differences
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of opinion. Group judgement may lead to overconfidence and polariza-
tion of opinions in which groups adopt a position that is more extreme
than that of any individual member (Clemen and Winkler 1999). The
decision-oriented nature of risk assessments means that often an action
will be taken, irrespective of the extent of disagreement. Political action
does not depend on complete agreement on all issues.

There is no empirical or theoretical evidence to support one be-
havioural alternative over another in all circumstances. Group consensus
has been used to estimate statistical distributions. For example, the Inter-
national Whaling Commission used group consensus to develop priors
for a Bayesian assessment of the recovery of Bowhead whales (Punt and
Hilborn 1997). While it is always useful to eliminate arbitrary elements
of disagreement (such as ambiguity and underspecificity), in the spirit of
honest risk assessments, differences of opinion about scientific detail and
ethical issues can be made transparent, without compromising the ability
of a group to reach a decision. Methods for carrying uncertainty through
a risk assessment are explored in the following chapters.

4.9 Numerical aggregation
Numerical aggregation uses quantitative strategies, rather than be-
havioural ones, to arrive at a combined estimate. If the information is
probabilistic, then the tools of formal statistics are appropriate. In partic-
ular, Bayesian analysis provides a mechanism for combining knowledge
from subjective sources with current information to produce a revised es-
timate of a parameter. Approaches such as evidence theory (see Sentz and
Ferson 2002, Ferson et al. 2003) have been developed to cope with non-
probabilistic uncertainty (see Chapter 2). When probabilities are them-
selves uncertain, the analyst may use bounds on probabilities (Walley
1991). Avenues for dealing with linguistic uncertainty and imprecise
probabilities are outlined in Chapters 2 and 9.

Numerical aggregation involves tradeoffs between pieces of expert
evidence. Sentz and Ferson (2002) described some extreme possibilities.
Conjunctive pooling (A∩B) retains only those opinions that are com-
mon to all experts. Disjunctive pooling (A∪B) retains the full breadth of
opinion offered by all experts. Tradeoffs involve something in between.
For instance, disjunctive pooling may be used once the experts’ opinions
have been weighted for their reliability. The following sections outline
some options.
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4.9.1 Dempster’s rule

Assuming there are no disjoint subsets, it may seem a good idea to use only
the information about which everyone agrees. Dempster’s rule applies the
conjunctive AND to combine evidence. More formally, the probability
density of the combined evidence is limited to the interval over which
experts agree (see Klir and Wierman 1998).

The rule completely ignores areas of disagreement. Sentz and Ferson
(2002) related a counterintuitive example from Zadeh (1986). A doctor
believes one of her patients exhibiting neurological symptoms has viral
meningitis with probability 0.99, or a brain tumour with a probability of
0.01. A second doctor believes the patient suffers from concussion with
probability 0.99, but will also allow the possibility of a brain tumour,
with probability 0.01. Dempster’s rule would combine these by ignoring
the conflicting opinions between viral meningitis and concussion, and
conclude the patient has a brain tumour, with probability 1, a result that
both doctors would consider to be unlikely.

Where there is substantial overlap between numerous experts, Demp-
ster’s rule may be used to trim the outliers and provide a central focus
for further analysis. Dempster’s rule is a generalization of Bayes’ theorem
(Sentz and Ferson 2002).

4.9.2 Bayes’ theorem

Decision-making is deciding the ‘best’ course of action. We want to use,
and therefore to combine, information from all available sources in a
way that is repeatable and that gives due weight to the credibility of the
evidence.

When using subjective estimates of a parameter, information may be
combined with other evidence (updated) with Bayes’ theorem. It asks,
‘What is the probability that a proposition is true, given the data?’. It
requires the experts to specify their subjective belief in a distribution,
prior to the analysis, even if no data are available. This step would not be
upsetting to anyone with experience in expert elicitation and empirical
model building. But it can get under the skin of someone who trusts
only direct measurement.

Estimates of the prior probabilities (or probability distributions) rep-
resent the probability that the data would be observed, if the various
hypotheses were true. These values are combined with Bayes’ theorem,
giving posterior probabilities, the updated degrees of belief that the hy-
potheses are true. More formally, given two hypotheses, H1 and H2, and
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Table 4.6. Frequency of presence of a toxic chemical and a diatom species
supposedly useful in indicating the presence of the chemical in 1000 independent
samples of lake water ( from Murtaugh 1996)

Contaminant Contaminant
Sample data present absent Marginal totals

Diatom absent 6 800 806
Diatom present 54 140 194
Marginal totals 60 940 1000

some data, D, the probability that H1 is true given the data, is:

p (H1 |D) = p (H1) × p (D|H1)
p (H1) × p〈D|H1〉 + p (H2) × p〈D|H2〉 ,

where p(D) is the probability of observing the data given all possible
hypotheses, p(H1) is the ‘prior’ probability of H1, p(H2) is the ‘prior’
probability of H2 and p (D |H1) is the probability of observing the data
when H1 is true.

Murtaugh (1996; see also Anderson 1998b, Wade 2000) provided
the following example of data for the presence of a toxic chemical in
a lake, and the presence of an indicator of the toxicant, a diatom species
(Table 4.6). In the future, if the diatom species is again observed in a single
sample taken during a standardized survey of a particular lake, what is the
probability that the contaminant is actually present? The solution to this
problem is seen most easily if the data are presented as raw frequencies in
a tree (Figure 4.17).

Of the 806 observations where the diatom was absent, the proportion
without the contaminant was 800/806 = 0.99. Of the 194 observations
where the diatom was present, the proportion with the contaminant
was 54/194 = 0.28. The data suggest the presence of the diatom is a
poor indicator of the presence of the contaminant. They suggest that
the absence of the diatom is a good indicator of the absence of the
contaminant. The same analysis is presented as a numerical example of
Bayes’ theorem in Box 4.2.

Morris (1977) outlined the process of using Bayes’ theorem to aggre-
gate information from a set of experts. It can be used to aggregate point
information or probability distributions. Clemen and Winkler (1999) de-
scribed four approaches to combining discrete probabilities under Bayes’
theorem, one of which is a linear weight function like the equation in
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60 observations 
with contaminant present

940 observations
with contaminant absent

1000 observations

6 observations
with diatoms absent

54 observations
with diatoms present

800 observations
with diatoms absent

140 observations
with diatoms present

Figure 4.17. The observations in Table 4.6 rearranged in a logic tree (see Chapter
8) to give a frequency interpretation of Bayes’ theorem.

Box 4.2 · Numerical interpretation of Bayes’ theorem for diatoms and a
contaminant (see Murtaugh 1996)

H1: the contaminant is present in the lake.
H2: the contaminant is absent from the lake.

The data are: the diatom was observed/not observed (a binomial prob-
lem). The first step is to estimate the necessary inputs for the Bayesian
analysis:

p(H1), the ‘prior’ probability of H1

= probability that the contaminant is, in fact, present
= 60/1000 = 0.06.

p(H2), the ‘prior’ probability of H2

= probability that the contaminant is, in fact, absent
= 940/1000 = 0.94.

p (D |H1), the probability of observing the data, when H1 is true
= probability of observing diatoms when the contaminant is present
= 54/60 = 0.90.

p (D |H2), the probability of observing the data, when H2 is true
= probability of observing diatoms when the contaminant is absent
= 140/940 = 0.149.
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Bayes’ theorem (for two hypotheses) p(H1|D) results in an estimate for
the probability that H1 is true, given the data (Chapter 6). Using the
Equation on p. 109, the probability that the contaminant is present,
given the observation of diatoms in a standard survey, is:

p〈H1 |D〉 = 0.06 × 0.9
0.06 × 0.9 + 0.94 × 0.149

= 0.054
0.194

= 0.28.

The Bayesian analysis suggests that the presence of the diatom is not a
particularly good indicator of the presence of the contaminant.
How about if the diatom species is not observed? What is the proba-
bility that the contaminant is absent?

p(H2|D), the probability that H2 is true, given the data
= probability that the contaminant is absent, given no observation
of diatoms in a standard survey.

p〈H2 |D〉 = p (H2) × p〈D |H2〉
p (H1) × p〈D |H1〉 + p (H2) × p〈D |H2〉

p〈H2 |D〉 = 0.94 × 0.851
0.06 × 0.1 + 0.94 × 0.851

= 0.8
0.806

= 0.99.

As above, the Bayesian analysis suggests that the absence of the diatom
is a good indicator of the absence of the contaminant.
The posterior odds ratio measures the relative confidence in each of
two competing explanations:

odds = p (H1 |D)
p (H2 |D)

= 0.28
0.99

= 0.28 : 1.

That is, the contaminant is roughly four times more likely to be present
when diatoms are present than it is when diatoms are absent.

Section 4.9.3 below, assuming expert information is composed of inde-
pendent trials.

A ‘robust’ Bayesian analysis would implement all of these (and others)
in a sensitivity analysis and would interpret the full set of potential pos-
terior distributions. It can be difficult to account for differences in the
precision and bias of individual assessments, and correlations between ex-
perts. We will return to robust Bayesian methods in Chapter 11, but for
the moment, it is sufficient to be aware that these problems are common
to all methods of aggregation. Bayesian methods make the difficulties
apparent.
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Posterior distributions are a compromise among expert judgements. In
an example analogous to the diagnosis problem described above by Sentz
and Ferson (2002), Clemen and Winkler (1999) described a situation in
which two experts give estimates for a parameter:

g 1 = 2,

g 2 = 10.

Both experts estimate the variance to be 1. The Bayesian posterior will
be g = 6 and s = 0.5, values that neither expert would agree with. A
bimodal distribution would represent their opinions better. It is necessary
to be careful to assess how aggregation works before deciding on the most
appropriate method.

Because prior probabilities for Bayesian analysis may be estimated sub-
jectively, they are subject to the same suite of cognitive illusions that af-
fect all subjective science. In routine applications, risk analysts who use
Bayesian estimation find that overestimation of single-event probabilities
is quite common. Mutually exclusive events should sum to 1, but often
people provide estimates that together exceed 1. Conjunction fallacies,
such as p(A+B) = p(A) + p(B) occur when people confound probability
with plausibility, tendency or confidence (Chapter 1 and Section 4.5).
These issues are largely unresolved.

4.9.3 Mixing and averaging

Probabilites associated with belief may be combined as weighted linear
combinations of opinions (Cooke 1991, Vose 1996, Valverde 2001):

p1...n (A) = 1
n

∑
w i pi (A),

where wi are non-negative weights, pi is the subjective belief of expert
i associated with the value of A and n is the number of experts. This is
sometimes termed mixing or averaging.

Cooke (1991) generalized this expression to include a range of options
from arithmetic averaging to logarithmic weights based on the products
of the probabilities given by the experts,

p (A) = k
n∏

i=1

pi (A)w i .

This is useful when input estimates are probabilities. k is a normaliza-
tion value to ensure probabilities add to 1. The formula can be used
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with cumulative probabilities and p-bounds (Chapter 10, Ferson et al.
2003). However, there is no underlying general theory that can justify
the selection of the weights or the function that combines them (Clemen
and Winkler 1999) beyond the empirical strategies developed by Cooke
(1991, see Section 4.11 below).

Sentz and Ferson (2002) continued the example of two doctors (1
and 2) and a patient with neurological symptoms. As above, the doc-
tor believes her patient has viral meningitis with probability 0.99, or a
brain tumour with a probability of 0.01. A second doctor believes the
patient suffers from concussion with probability 0.99, but will also allow
the possibility of a brain tumour, with probability 0.01. Mixing their
evidence and assigning equal weights to the reliability of the two experts
results in:

P12(meningitis) = 1/2 (0.99) + 1/2 (0) = 0.445
P12(brain tumour) = 1/2 (0.01) + 1/2 (0.01) = 0.01.
P12(concussion) = 1/2 (0) + 1/2 (0.99) = 0.445.

Mixing retained the full suite of uncertainty in the original advice, and
gave a sensible distribution of frequencies of different values within the
interval of possible values.

Simple numerical averages of individual judgements seem to perform
slightly better than group judgements by behavioural consensus when
the focus is on unambiguous, value-free and sharply defined parameter
estimates (Gigone and Hastie 1997, Clemen and Winkler 1999). More
complicated formulae are possible, involving, for example, updating of
weights following discussion among experts or the acquisition of new
data (Cooke 1991), or based on the performance of an expert against a
set of known values (Goossens and Cooke 2001).

There is unlikely to be a single rule or set of weights appropriate for all
circumstances. Ferson et al. (2003) outlined a range of alternatives. The
choice of rules for combining evidence is an important aspect of a risk
assessment. It should be explicit and its consequences explored through
sensitivity analyses.

4.10 Combined techniques
Cooke (1991) pointed out that subjective estimates of probabilities and
utilities may only be meaningful for individuals. He argued that they
cannot be defined for a group. If so, the solution when experts disagree is
not to try to maximize group utility, but to develop a position on which
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a sufficient number of experts agree. A few methods have been devel-
oped that combine elements of numerical aggregation and behavioural
consensus.

4.10.1 Consensus convergence

Behavioural consensus techniques work when participants agree to ne-
gotiate to resolve conflict. Lehrer and Wagner (1981) combined opinions
based on measures of respect provided by members of a group for the
opinions of other members.

Suppose there are n experts who each assign probabilities (or degrees
of belief ) p1

0, p2
0, . . . , pn

0 to a set proposition. The first step involves
each expert, i, assigning a weighting, wij, to the other experts’, j, opinions,
where

n∑
j=1

w i j = 1.

The higher the weight, wij, the greater the respect expert i has for the
opinion of expert j. Typically, these weights are assigned before the other
experts’ opinions are known. Experts are obliged to assign a positive
weight to at least one other member of the group apart from themselves.

Initial probabilities are updated to incorporate the opinions of the
other members of the group according to the weights assigned to them.
A revised, weighted average is formed for expert i’s probability assignment
as:

p1
i = w i1 p0

1 + w i2 p0
2 + · · · + w in p0

n, i = 1, . . . , n.

The group may then view the weights and agree among themselves
on a consensus position. If consensus is not reached on the first iter-
ation, the process may be repeated with the same weights (if the experts
have not changed their opinions about other members) or with new
weights (if new information is available or people change their opinions).
Matrix algebra may be used to find consensus positions for the group
(Box 4.3).

4.10.2 The ‘Procedures guide’ for structured expert judgement

Cooke (1991; see also Cooke and Goossens 2000, Goossens and Cooke
2001) developed a protocol for elicitation in risk assessment called the
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Box 4.3 · An algebraic solution for group consensus (Lehrer 1997)

If experts keep the same weights, then the second round of aggregation
will give a probability for expert i:

p2
i = w i1 p1

1 + w i2 p1
2 + · · · + w in p1

n, i = 1, . . . , n.

When all experts are considered simultaneously the consensus model
becomes:

W =




w 11 w 12 . . . w 1n

w 21 w 22 . . . w 2n

. . . . . . . . . . . .

w n1 w n2 . . . w nn


 , P =




p1
1

p1
2

. . .

p1
n




where W is the table of constant weights, w12 is the weight assigned
by expert 2 to the opinion of expert 1, and P is the column of ini-
tial probability assignments for each of the n members in the group.
Probabilities from the first round of aggregation are given by the ma-
trix multiplication WP. When the same weights are maintained for
m rounds, probabilities are calculated by W mP. When m is large, the
probability assignments converge on a consensus probability (pc, i.e.
the probability such that pc = p1

c = p2
c = · · ·= pn

c).
Convergence may be blocked, for instance, by one expert assigning
weights = 0 to all other members. Constraints may be applied to the
matrix of weights to guarantee convergence in a variety of circum-
stances (Lehrer 1997). In its simplest form, convergence is guaranteed
when weights are constant and positive.

‘Procedures guide’ (Box 4.4). It is intended for ‘practical scientific and
engineering contexts’ (Goossens and Cooke 2001) in which uncertainty
is removed through observation, and where decision-making is supported
by quantitative models with large uncertainties.

Expert judgement is, for them, another form of scientific data. They
assume that some unique, real value exists but we are uncertain what
the value is, so uncertainty may be described by a subjective probability
distribution with values in a continuous range.

Their method embodies performance measures of expert assessments
based on assessments of variables whose values are made known to experts
after they have completed their assessments. The goal is to combine
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Box 4.4 · The procedures guide for expert judgement (after Cooke 1991)

The procedure has 15 steps:
1. Definition of case structure: this is achieved by creating a document

that specifies all the issues to be considered during the expert
judgement exercise. It provides information on where the results
of the exercise will be used, and outlines the physical phenomena
and models for which expert assessment is required.

2. Identification of target variables: a procedure is used to select variables
for expert elicitation, to limit them to a manageable number. Vari-
ables are included if they are important and if historical data are
insufficient or unavailable.

3. Identification of query variables: if target variables are not appropriate
for direct elicitation, surrogate ‘query’ variables are constructed
that ask for observable quantities, using questions formulated in a
manner consistent with the experts’ knowledge base.

4. Identification of performance variables: performance (seed) variables
are supported with experimental evidence that is unknown to the
experts, but known to the analyst, usually from within or closely
associated with the domain of the enquiry at hand.

5. Identification of experts: as large a list as possible is compiled of people
whose past or present field contains the subject in question and
who are regarded by others as being knowledgeable about the
subject.

6. Selection of experts: a subset is selected by a committee based on rep-
utation, experimental experience, publication record, familiarity
with uncertainty concepts, diversity of background, awards, bal-
ance of views, interest in the project and availability.

7. Definition of elicitation format: a document is created that gives the
questions, provides explanations and the format for the assess-
ments.

8. Dry run exercise: two experienced people review the case structure
and elicitation format documents, commenting on ambiguities
and completeness.

9. Expert training: experts are trained to provide judgements of un-
certain variables in terms of quantiles for cumulative distributions,
anchoring their judgements to familiar landmarks such as the 5th,
50th and 95th quantiles.

10. Expert elicitation session: each expert is interviewed individually by
an analyst experienced in probability together with a substantive
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expert with relevant experience. Typically, they are asked to
provide subjective judgements for the query variables as quantiles
of cumulative distributions.

11. Combination of expert assessments: estimates are combined to give
a single probability distribution for each variable. Experts may be
weighted equally, or by assigning weights reflecting performance
on seed questions.

12. Robustness and discrepancy analysis: robustness may be calculated for
experts by removing their opinions from the data set, one at a
time, and recalculating the combined functions. Large informa-
tion loss suggests that the results may not be replicated if another
study was done with different experts. A similar evaluation may
be conducted for seed variables. Discrepancy analysis identifies the
items on which the experts differ most.

13. Feedback: each expert is provided their assessment, an informative-
ness score derived from the robustness analysis, weights given to
their opinion, and passages from the final report in which their
name is used.

14. Post-processing analysis: aggregated results may be adjusted to give
appropriate distributions for the required input parameters.

15. Documentation: this involves the production of the formal report.

experts’ judgements into a ‘rational consensus’ that is transparent, fair,
neutral and subject to empirical quality control.

To elicit expert opinion about the relative ranks of unknown attributes
(as in the subjective risk assessment of consequences and likelihoods,
Chapter 6), the attributes may be presented pairwise to the experts. For
each pair, the experts are asked to indicate their preference. Each attribute
is evaluated n − 1 times. Within-expert consistency is measured by the
frequency of inconsistent triads (e.g. if after specifying A>B and B>C,
they specify A<C). Between-expert agreement is measured by the fre-
quency with which pairs of assessors agree, compared to random as-
signments. Between-expert concordance is measured by the similarity in
ranks assigned to attributes.

Cooke (1991) measured the ‘information’ contained in an expert’s
distribution with the Shannon entropy index, where

H(p ) = −
M∑

i=1

pi ln pi
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and pi is the probability assigned to integer (interval or class) i. H( p)
measures the spread and the evenness of the expert’s judgements. The
quantity is maximized at ln(M) when all pi = 1/M and it is minimized
if any pi = 1. The wider the range of judgements and the more even
the assignment of probabilities to each possibility, the greater will be
the entropy. The expert whose judgements give the lowest entropy is
preferred (all other things being equal).

Calibration was defined as the likelihood that the expert’s probabilities
correspond with a set of repeated experimental results; namely, the proba-
bility that the difference between the expert’s judgement and the observed
values in the seed distribution have arisen by chance. Cooke (1991) meas-
ured the degree to which experts are ‘calibrated’ by the probability of
observing by chance the differences between the expert distribution and
the true distribution, where

2nC(s , p ) = 2n
M∑

i=1

s i ln
pi

s i

in which si is the true (observed) frequency and n is the sample size. The
quantity 2nC is χ2-distributed with M − 1 degrees of freedom.

To derive uncertainty distributions for model parameters, opinions are
pooled with the linear weight function (Section 4.9.3 above). Weights
are derived from calibration and information performance measured on
seed variables. Global weights may be calculated for each expert from the
product of their calibration and information scores.

Goossens et al. (1998) reported the performance of experts against
seed values for tasks ranging from crane failure and space debris risk to
groundwater and water pollution problems. Two environmentally rele-
vant examples are shown in Table 4.7.

Experts may be given a weight of zero if their calibration score falls
below a threshold. In the groundwater transport example in Table 4.7,
‘domain’ seed variables were used. These have the same physical di-
mensions as the variables of interest, measured from past studies at the
same site or from similar circumstances. The water pollution example
used ‘adjacent’ variables. They have different dimensions from the vari-
ables of interest but were drawn from the experts’ relevant knowledge
base.

Only gross differences in calibration scores (factors of 2 or 3) were
regarded as important. Information scores cannot be compared across
studies.
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Table 4.7. Calibration and information for two sets of expert
judgements of parameters (frequencies of events) (after Goossens
et al. 1998)

Groundwater
Case transport Water pollution

Number of experts 7 11
Number of variables 48 21
Number of seeds 10 11
Calibration
Performance weights 0.70 0.35
Equal weights 0.05 0.35
Best expert 0.40 0.16
Information
Performance weights 3.01 1.87
Equal weights 3.16 1.75
Best expert 3.97 2.76

Most studies identify habitually overconfident experts. They are people
whose information content is high (the spread of judgements is small)
but calibration is low (they are far from the truth) compared to other
experts. Typically, performance-based weights give more informative es-
timates than equal weights. The best expert is only rarely better than the
performance-weighted group.

Cooke (1991) did not seek closure or resolution. His philosophy differs
from that of Valverde (2001). Expert judgement is assumed intrinsically
not to be consensual. Different experts are expected to have different, le-
gitimate expectations (Cooke and Kraaikamp 2000). Instead, the method
relies on accountability (transparency), empirical quality controls and
methods that encourage honesty by giving experts their maximum scores
when they state their true beliefs (Cooke and Goossens 2000).

There are other, related ways of attacking the problem of elicitation.
Kaplan (1992) for instance, outlined a method that uses some of the
structured approach of Cooke (1991) together with some elements of
consensus and negotiation described by Valverde (2001). It is similar
to the structured expert judgement procedure because it assumes a real
valued parameter that experts try to estimate in a structured elicitation
process. It is similar to the framework developed by Valverde (2001)
in insisting that experts document and communicate the evidence they
bring to any argument, and that they should be prepared to negotiate to
a group consensus.
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4.10.3 Eliciting judgements for biosecurity

Horst et al. (1998) used experts to estimate the chances that new dis-
eases would arrive in the Netherlands on imported foods. They were
concerned about viral diseases including foot-and-mouth disease, swine
fever, swine vesicular disease, Newcastle disease and avian influenza.

Horst et al. (1998) used 43 disease control experts. Social strata included
people with policy, research and field expertise. Participants answered
questions about only one of the diseases. Elicitation used a single work-
shop (one evening). Participants used self-explanatory computer systems
designed to ‘minimize interaction of the participants with each other and with
the workshop facilitators’ (p. 255). After the workshop, individuals were pre-
sented with group results and their own estimates and were asked if they
wanted to revise their estimates.

Three-point estimation (minimum, maximum, best estimate) was used
to obtain information about high-risk periods during which viruses were
most likely to spread. The experts were provided with a list of haz-
ards, including importation of livestock, importation of animal products,
tourists, wildlife movements and so on. They were asked to rank their
relative importance in contributing to disease introduction. They also es-
timated the expected number of outbreaks of various diseases in different
European countries. The analysts used median results to aggregate expert
opinions.

The protocols employed in Horst et al.’s (1998) analysis are a mix-
ture of the methods outlined above. They did not make use of seed
variables with known quantities, and therefore did not weight the con-
tributions of different experts. Protocols such as this could be informed
by statistical data bases on disease prevalence maintained by organiza-
tions such as the Office Internationale des Epizooties. There were no
indications that Horst et al.’s (1998) results would be validated subse-
quently. The breadth of uncertainty and areas of disagreement among
experts did not contribute in any transparent way to their results or dis-
cussion. While there can be no single method appropriate for all circum-
stances, some of the methods outlined above have the potential to improve
elicitation and aggregation protocols in environmental risk assessments
generally.

4.11 Using expert opinion
Overconfidence can be substantially improved by asking people to con-
sider the reasons why they may be wrong (Morgan and Henrion 1990).
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Performance is also enhanced when experts possess appropriate models
and are trained to translate subjective assessments into numerical esti-
mates. Using a consistent format allows experts to familiarize themselves
with a consistent means of communication, providing them with the
necessary normative skills.

The compelling conclusion is that the people who are asked to pro-
vide expert judgement of uncertain quantities must have the substan-
tive knowledge to provide a reliable answer, and must also be trained to
provide unbiased estimates. Training may take the form of estimates of
relatively frequent and infrequent events, and immediate feedback to pro-
vide experience in estimating the central tendencies and tails of distribu-
tions. Guidelines may be tailored for specific circumstances. For example,
Andelman et al. (2001) outlined options to elicit expert judgement to as-
sess the viability of threatened species under the US Forest Management
Act. The results of Wright et al. (2002) suggest strongly that experts
require training and ongoing feedback to be competent.

Bier et al. (1999) noted that people have opinions about the output of
risk assessments as well as the inputs. It is common to have people revise
their estimates of parameters once they have seen the consequences of
their beliefs. It is difficult for people to integrate parameters through
complex functions intuitively. When the operations are done explicitly,
the results may be viewed as impossible or unlikely, forcing a revision of
the parameters or of the functions that link them.

While some analysts resist the revision of judgements based on knowl-
edge of the result, I believe this is one of the fundamental benefits
of formal risk assessments. Revision embodies the notions of learn-
ing and model updating that close the loop for environmental risk
management.

4.12 Who’s a stakeholder?
Proponents of risk assessment who appeal to them as a vehicle for ‘sound
science’ take a traditionally narrow view of risk. Technical risks analysts,
usually without training in sociology, often ignore the issue of public
participation or treat it superficially with a ‘public comment’ phase.

The usual interpretation of the term ‘stakeholder’ in law is some-
one who has custody of the possessions of other people; for instance,
when the possessions are held in trust or their possession is contested. In
business, stakeholders usually are shareholders, the people to whom most
corporations owe primary legal responsibility.
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Dewey (1927) defined ‘public participation’ as deliberation on the is-
sues by those affected by a decision. Interest group politics were a ‘separate
issue’. Recently, definitions of stakeholders in business have broadened to
include shareholders, employees, suppliers, customers and the commu-
nities in which the firm operates (Walker and Marr 2001; see Freeman
1984).

More generally, stakeholders may be virtually anyone who might have
an interest in an issue, and may include public interest groups, protest
groups, government agencies, trade associations, competitors, unions,
employees, customers and shareowners ( Jennings 1999). In a social con-
text, a stakeholder usually is an individual or a representative of a group
affected by or affecting the issues in question (Glicken 2000). Some defi-
nitions include disenfranchised social groups and nonhuman entities such
as threatened species of plants and animals.

Rights and obligations under stakeholder theory depend upon the
understanding of the term ‘stakeholder’. Whenever people decide to co-
operate in seeking benefits that entail risk, there exists the possibility
of free-riding. People may receive the benefits without bearing risk or
making a contribution. Fairness among the participants in a coopera-
tive scheme is achieved by allocating benefits in proportion to risk and
contribution ( Jennings 1999). But such views must be tempered by the
opportunity to participate, and should consider a broad spectrum of costs
and involuntary or indirect risks.

Donaldson and Preston (1995) created a definition of a stakeholder
based on a concept of property rights. To them, all contributors to a
firm’s (or government’s or undertaking’s) success or those who carry
some of the burden of risk associated with its activities have a legitimate
claim to its success. They argued that anyone having a legitimate ‘stake’
should have recognized stakeholder status and be treated as an ‘owner’.
They distinguished the role of a stakeholder from that of an agent acting
on behalf of stakeholders and that of a steward who holds things in trust,
without any personal stake in the outcome (Preston 1998).

Windsor (1998) noted counter-movements favouring stronger stock-
holders’ rights and corporate-governance standards, in which economic
considerations predominate. For instance, Jennings (1999) argued that
nothing precludes a company from doing more than the law requires or
less than the law allows but, she argued, those standards should not be
imposed by ‘roving bands of stakeholders’ who have not invested their
resources and who do not share the risk of failure of the enterprise.
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When public resources are disposed of or social equity and risk toler-
ance are debated, there are no general rules that ensure that all relevant
stakeholders are adequately represented. Stakeholder maps can assist to
ensure coverage is relatively complete. Some common elements of most
maps include (Glicken 2000):

� government organizations,
� scientists,
� residents,
� traditional land owners,
� nongovernmental organizations (NGOs),
� industry representatives,
� unions, and
� consumer groups.

The character and the weight given to each group will change as issues
change. Geography, organizational structures, local politics and history
of the issue contribute to the construction of stakeholder maps. Social
landscapes may be surveyed. The scope of the survey should depend on
what is wanted from the process.

Freudenburg (1999) outlined sources of information to support un-
derstanding of the sociopolitical settings of risk analyses. They included
existing data (archival and agency information), first-hand data collec-
tion (stratified random surveys and targeted interviews) and methods to
identify gaps and oversights (sensitivity analyses, interdisciplinary double-
checks and public involvement techniques).

Models for stakeholder involvement include (Glicken 2000):

� Paternalistic: governments or regulators invite participation under
strictly controlled conditions such as public comment phases.

� Consensus: self-designated representatives from all affected groups at-
tempt to find consensus positions, with the aid of a chair or an inde-
pendent facilitator.

� Conflict: resolution is by arbitration or litigation.

I believe the best solution is to involve those affected by the out-
comes of risk assessments closely and continuously in the risk assessment
process, making a marriage of the technical and social dimensions of
risk. Nontechnical information should enter at the planning stage, and
nontechnical participants should contribute to all the elements of the risk
assessment.
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Plans for stakeholder involvement usually need to anticipate resistance
from technical experts who discount the opinions of nontechnical partic-
ipants (Freudenburg 1999). Interest groups should be involved in initial
scoping and hazard analysis. A suite of social values relevant to the issues of
interest should be elicited from stakeholders. The elicitation process may
include survey data, behavioural data, demographic statistics, facilitated
meetings involving people who have been actively recruited, open public
forums, or structured interviews of a sample of the population. These val-
ues may be converted into assessment endpoints, used to structure model
formulation, data collection and analysis (Glicken 2000).

4.12.1 Stakeholder experts and expert stakeholders

Almost all experts have personal, value-laden opinions about the out-
comes of environmental decisions (e.g. Campbell 2002). It is naı̈ve to
think that scientists are anything but advocates of scientific positions.
They also advocate personal value systems.

In many circumstances, experts are members of interest groups. The
stakeholder and the expert are the same person. In other circumstances,
experts are retained by an interest group. If so, it is likely that their personal
values will resonate favourably with the people who employ them.

When the analyst is a translator, as was proposed in Chapter 3, then
‘experts’ may include all those with a stake in the outcome. Including
all views in construction of a model has the advantage that the result
expresses what must happen if the assumptions and causal relationships
specified by the stakeholders are true. Showing people the consequences
of what they believe to be true can go a great deal of the way towards
resolving conflicts and achieving consensus. If the analyst takes a realistic
view and allows the participation of people with transparently divergent
opinions, then the strategies for selection, elicitation and aggregation
need to be explicit.

4.13 Discussion
Numerical approaches are useful mainly for circumstances in which ex-
perts estimate a parametric quantity that is, in theory, knowable, and in
circumstances in which linguistic ambiguities and vagueness play a small
role.

They are less appropriate when the risk analyst must contribute expert
judgement to policy formation. It is unclear how they would function



4.13 Discussion · 125

when the expert has a passionate commitment to the outcome of an
assessment. Campbell’s (2002) survey of marine turtle experts underlines
the importance of the selection of experts, a topic on which so little is
written.

Most formal risk assessment protocols adopt the view that risks are
amenable to decomposition and objective measurement, and that subjec-
tivity is the domain of risk communication (see Baker 1996). The degree
to which an expert tends to be protective of the environment is strongly
influenced by his or her values, and by what the expert stands to gain
or lose, personally, by the outcome of a false-positive or false-negative
judgement. When an analyst makes a judgement about an ‘objective’ el-
ement of a risk assessment, they provide a statement about confidence in
available information, overlain by morals, values and beliefs of the analyst
themselves, as well as those from whom information has been elicited.
Baker (1996) suggested that risk decisions with subjective components
can best be protected from damaging bias through consensus-building
activities.

Sharpe (1996), in contrast, argued that acknowledging the values about
what constitutes harm, who or what is harmed, and comparative risks and
benefits, is a representation of the reality of human concerns. Differences
should be retained and communicated. To avoid bias, it may be necessary
to know what forces may influence a decision and what stake participants
have in the outcome.

Scientific opinion involves advocacy of a position (a hypothesis) in
which the advocate tries to convince others of the correctness of their
position. Advocacy groups take advantage of this uncertainty to select
experts whose position is sympathetic to a social position. They try to
use the expert’s authority to have views fixed in government, courts and
other institutions.

Science reinforces obedience to authority, called the fallacy of the
appeal to authority, by encouraging uncritical acceptance. Those who
dispute scientific opinion may be dismissed as people who do not think
rationally. Walton (1997) pointed out that scientific argument may be
rigid in the sense that it is beyond refutation by nonexperts. Fischer
(2000) and O’Brien (2000) argued that technical methods confer on the
expert the appearance that they transcend partisan interests. Furthermore,
the assessments become too complex to be challenged. When scientific
opinion becomes irrefutable, it generates what Walton called a culture
of technical control. The solution to decisions about new technologies,
for instance, is seen to be through public education so that the correct
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solution embodied in scientific knowledge will be transferred to correct
policy. There is a naked assertion in this situation that the identity of the
proponent warrants acceptance of the proposal (Walton, 1997, p. 12).

Expert opinions have become widespread and accepted as scientific
support tools in conservation and environmental management. Reliance
on expert opinion relaxes the pressure to collect data (see Ruckelshaus
et al. 2002). It is often difficult to distinguish direct measurements from
expert opinion in data bases and official reports. This makes it hard to
challenge expert opinion.

The appeal to expert opinion should be a fallible but legitimate strategy
(Walton 1997). It is legitimate only if it can be challenged by anyone. It
is broadly accepted that because experts often are advocates of a theory,
and they therefore have a stake in the outcome, methods are required
that balance different opinions. The methods outlined above attempt to
achieve this goal. We will return to this issue in Chapter 12.



5 � Conceptual models and hazard
assessment

Hazard assessment attempts to answer the question. ‘What can go
wrong?’.

A hazard is a situation that in a particular circumstance could lead
to harm (Royal Society 1983). Hazard identification is the process of
creating an exhaustive list of hazards. It involves documenting all events
with unwanted outcomes that may result from natural circumstances, a
proposal or human activity. Hazard assessment estimates the consequences
of those hazards, if they were to occur. It relies on understanding cause
and effect.

This chapter outlines the role of conceptual models in summarizing
ideas and providing a platform for identifying alternative management
options. It describes several hazard identification methods developed and
applied mostly in engineering contexts, but which have much broader
utility. It evaluates their strengths and weaknesses and provides some ex-
amples of environmental applications.

5.1 Conceptual models
All steps in a risk assessment, including hazard identification and assess-
ment, depend on a decent conceptual model. Models are abstractions.
They represent how we think the world works. We build models to
answer specific questions, to assist us in making decisions.

As was outlined in Chapter 3, the purpose of a model determines its
structure and limits. The kind of model and its complexity are a compro-
mise between the questions and available time, expertise and knowledge.
It is the responsibility of the person who builds a model to communicate
the full range of uncertainties and assumptions.

A diagram is the simplest form of a conceptual model. Figure 5.1
shows the thinking of a group of hydrogeologists about the source and
fate of toxic chemicals on a disused factory site in Italy. The diagram
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Figure 5.1. Conceptual model of the hydrology of a disused industrial site in Italy
and the movement of a plume of polycyclic aromatic hydrocarbons (PAHs) from
factories into groundwater and to adjacent sites (redrawn from Carlon et al. 2001).
The model was used to develop ideas for building quantitative models to estimate
risks of off-site contamination.

communicates several issues: the spatial scale of the problem, the level of
detail (at least, the detail captured at this stage of problem formulation),
conceptual compartments (factories, tanks, soil layers, groundwater layers
and groundwater movement), soil composition in the layers, discontinu-
ities such as clay caps and the boundary of the permanent aquifer, and at
least two classes of chemicals. Thus, Figure 5.1 represents a conceptual
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Figure 5.2. Influence diagram showing conceptual relationships among system
components in a freshwater catchment (after Hart et al. in prep.). This diagram
could be used as a starting point in an FMEA analysis (see Section 5.2).

model at a different organizational level than that represented by the fate
of toxicants within a vertebrate body (Figure 3.4).

Influence diagrams represent the kinds of pictures in Figure 5.1 in a
slightly different form, although there may be a one-to-one correspon-
dence between them. They are a visual representation of the functional
components and dependencies of a system. Shapes (ellipses, rectangles)
represent variables, data and parameters. Arrows link the elements, spec-
ifying causal relations and dependencies (e.g. Figure 5.2).

The hazards in Figure 5.2 include salinity increases, changes in river
flow, and deterioration in water quality and soil condition. Each con-
tributes to at least one of the consequences that management is trying
to avoid (the two diamonds). Data on changes in vegetation cover are
available (shown by the rectangle). Major direct influences among system
components are represented by arrows. Note, for example, that there
are no compartments within the river. This captures an assumption that
the chemical and biological composition within the river is more or less
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uniform. The figure assists in identifying causal relationships. It defines
processes and pathways by which materials and energy flow through the
system.

The model in Figure 5.2 postulates a number of relationships. As land
is cleared of vegetation, transpiration rates decline. The water table rises,
mobilizing salt from the soil profile as it moves. Agriculture can affect river
flow rates by modifying direct runoff and by capturing water in dams.
Water quality depends largely on agricultural practices and is defined in
terms of pesticides and herbicides. Soil condition is a function of stocking
densities and stock access to water courses.

The analyst works with experts, stakeholders and background infor-
mation. The conceptual model may be developed iteratively until all
participants in the risk assessment are happy that it captures adequately
the way the system works. The model may then help to identify hazards
or it may become a template for developing a mathematical model.

5.2 Hazard identification and assessment
Even with good conceptual models, it is easy to overlook something. A
single hazard can lead to multiple adverse effects. Several hazards can have
the same effect.

Consider identifying the hazards associated with burying high-grade
nuclear waste underground (see Section 4.2). The facility needs to last
10 000 years, the time required for the wastes to degrade to the point
where they are safe. What things would you consider? Earthquakes and
volcanism may rupture tanks. The storage containers may corrode or
leak, and material may be carried off site by groundwater. Are there any
others?

In one such exercise, assessors simply overlooked the possibility that
people over the next 10 000 years are likely to drill into the Earth’s crust
looking for oil, gas, minerals, fossils, water and so on. Some holes are
drilled obliquely so even if the surface is protected, a drill may strike a
long-term nuclear waste storage facility. It would generate a catastrophic
release, perhaps even into the atmosphere.

It is often worthwhile separating proposals into phases. Things such as
mines and storage facilities involve:

� exploration or site evaluation,
� benefit-cost (investment) analysis and facility design,
� construction,
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� commissioning,
� operations and
� decommissioning.

Usually, different hazards need to be considered during construction (hu-
man health and ecological impacts of construction), commissioning (risks
of release of radioactive materials during transport, for example) and oper-
ations (earthquake risk). Industrial production activities involve different
phases, such as:

� research and design,
� feasibility trials and development,
� process design and purchasing,
� production,
� sales, training, use and customer service, and
� decommissioning and disposal.

The process may be iterative, including performance monitoring and
redesign. The hazards (human health, economic, social and ecological)
associated with each phase may be best treated separately.

A good hazard identification and assessment phase makes use of as many
tools as possible, in an attempt to form as complete a list as possible. If
you have been through this process once, you’ll know how easy it is to
overlook things, and how reckless it seems to perform this part of a risk
assessment without using such tools.

In risk management systems, hazard identification continues through-
out the life of a product or project. Hazards encountered by users, for in-
stance, may not have been anticipated by developers or project managers.
New hazards should be added to the register as they arise. Corrective
management actions should then seek to reduce risks.

This chapter explores several approaches including hazards and oper-
ability analysis (HAZOP), failure modes and effects analysis (FMEA), and
hierarchical holographic modelling (HHM) employed in engineering ap-
plications. Other useful tools such as fault and event trees will be covered
in Chapter 8, although they can also be useful in conceptual modelling
and in identifying and assessing hazards.

5.2.1 Checklists and brainstorming

Checklists and unstructured brainstorming are among the most common
methods for assembling a list of hazards. Checklists are simple to construct
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and easy to use. They provide a record of the experience of people
who have worked with the system. Brainstorming has the advantages of
bringing new perspectives and of identifying causal relationships between
system components and hazards.

Checklists and brainstorming usually identify most of the hazards that
lie within the operating experience of the people involved. Their disad-
vantages are that they do not encourage the participants to extend their
thinking to new possibilities. They may lead to the false impression that
all potential hazards have been considered, particularly when existing lists
are long and cumbersome (Hayes 2002a). They tend to overlook hazards
when new technologies are introduced or new stresses are imposed on a
system.

Lists and unstructured brainstorming are particularly susceptible to
linguistic ambiguities and vague definitions. Words and phrases used to
describe hazards may be misinterpreted by participants and by people who
later use these lists to rank or quantify risks. They can be used most
effectively in tandem with conceptual models and some of the other
strategies outlined below. Because they represent a repository of collective
experience and wisdom, they can be used after application of a more
inductive strategy as an additional check on completeness.

5.2.2 Structured brainstorming

The Delphi and related techniques are outlined in detail in Chapter 4.
While they may be used for a variety of purposes including elicitation of
parameters, they are often useful in putting together a relatively complete
list of hazards, and scoping alternative conceptual models. When used for
conceptual modelling and hazard identification, some of the steps may
include:

� problem formulation and development of questionnaires,
� selection of experts,
� provision of background information, definitions and context to

experts,
� elicitation of conceptual models and lists of hazards (often performed

by participants independently),
� aggregation of results,
� review of results by experts and revision of answers, and
� aggregation of results, or iteration of feedback until consensus is

achieved.
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Figure 5.3. Part of a hazard matrix for an environmental impact assessment of a new
mine (after Zaunbrecher 1999).

The drawbacks are that these methods can sometimes encourage uni-
formity. Some approaches do not give participants much opportunity to
learn from one another. Variations on the theme detailed in Chapter 4
have useful applications in this arena, especially when many experts and
stakeholders are involved.

5.2.3 Hazard matrix

Hazards may be characterized as a matrix of interactions between activities
and components of the environment that may be affected by the actions
(e.g. Figure 5.3). Hazard matrices are particularly helpful in identifying
hazards that have multiple effects, and in identifying hazards associated
with different operational components of a project. Construction depends
usually on checklists and brainstorming.
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The links between aspects and environmental components represented
by the crosses in Figure 5.3 are a kind of conceptual model of environ-
mental interactions, although the exact nature of the relationships is not
specified. The matrix improves the probability that no interactions are
overlooked, generating a more comprehensive list of hazards than brain-
storming alone.

The Burrup Peninsula in Western Australia is home to a suite of unique
marine and terrestrial biological communities. The broader region of
Dampier Archipelago was listed as having ‘extreme conservation value’
by the Western Australian Department of Environmental Protection. It
is also the location of Aboriginal heritage sites, and National Estate listed
heritage sites. During the 1990s, a large international corporation (then
called BHP) wanted to build a plant there to produce methanol.

BHP conducted a hazard identification exercise. The first step was to
develop designs for the project, and to collect baseline information on
heritage values, local communities, and the natural and physical environ-
ment. The project was broken up into commissioning, operations and
decommissioning phases. The baseline information provided background
against which potential impacts of human activities could be assessed, us-
ing a hazard matrix to identify causal factors associated with potential
effects.

Consequence tables were constructed separately for the marine envi-
ronment, the terrestrial biological environment, the social environment,
heritage values and traditional Aboriginal cultural values.

The design of the operations phase included a cooling tower. The
tower would generate a plume of salt-laden spray, derived from the ocean
water used in the cooling process. The engineering plan was to minimize
impact through ‘facility design’ and to assess vegetation for potential
impacts. That is, the engineers had identified an environmental hazard
and wanted to know the magnitude of the consequences.

The ecologist who did the assessment was not able to specify the likely
extent of changes in the vegetation that would result from the deposition
of several tonnes of salt per hectare per year from the cooling tower.
Certainly, salt spray is a natural feature of the environment, but not in
the quantities envisaged from the cooling tower. The spray plume would
extend several kilometres. The impact was outside her (or anyone else’s)
experience.

The ecologist communicated her judgements by saying that there
would almost certainly be at least a minor change in vegetation cover
and composition, because several species were not especially salt tolerant,
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Table 5.1. Part of a HAZOP table used to elicit judgements about hazards
resulting from wildfire from national park managers in Victoria, Australia

Guide
word Interpretation Causes Consequences Action

‘None’ No fire No ignition
Too wet
Suppressed

Build up of fuel
Aging of

vegetation

Fuel
reduction

‘More of ’ Greater extent
of burn

Ignition
High temperatures
High winds
High fuel

Water quality
decline

Water yield
increase

Change in
habitat
quality for
animals

Suppression

‘More of ’ Additional fire Ignition
High temperatures
High winds
Residual fuel

Elimination of
reseeding
plant species

Suppression

while others were. She also judged that it was at least possible that a major
change would occur in the vegetation within the salt plume, with many
species and most of the cover lost because of the additional salt load.
The consequences of a major change would accrue to both the environ-
ment and corporate reputation (visible, substantial damage to the envi-
ronment adjacent to company operations in a socially sensitive area).

The issue was taken with sufficient seriousness for engineers to re-
design the cooling tower to use fresh water. The costs of the solution
were well worth the benefits of avoiding a substantial hazard (Zaunbrecher
1999).

5.2.4 Hazard and operability analysis (HAZOP)

Hazard and operability analysis (HAZOP) is a kind of structured, expert
brainstorming session. It uses conceptual models and influence diagrams
together with guide words such as ‘more of’, ‘less of ’ and ‘reverse flow’
to prompt the thinking of a small team of experts (e.g. Table 5.1). The
experts, guided by a facilitator, apply ‘what if ’ type questions to each
component of a system in a systematic manner (Kumamoto and Henley
1996, Kletz 1999, Lihou 2002). The words are designed to encourage a
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group of experts to interrogate a system and apply their expertise beyond
their own experience (Hayes 2002a).

HAZOP has been used to assess technical risks for several decades
(CIA 1977). It was pioneered in the chemical industry and spread to
civil, pharmaceutical, food processing industries and, to a lesser extent,
to nuclear power and defence.

The process generates a repository of information containing actions,
responses, dates and details of implementation, and references to exter-
nal information. The facilitated meeting involving people with broad
knowledge and experience aims to reduce the chance that something
is overlooked (Kletz 1999). It depends on a conceptual model of the
system. It is open-ended, more likely to identify all potential hazard sce-
narios than checklists or unstructured brainstorming, as are HHM and
FMEA (below; Hayes 1997, 2002b).

Box 5.1 · Structure of HAZOP procedures (after Kletz 1999, Hayes
2002a).

The process operates as follows:

1. A group of experts is assembled.
2. A list of key words is compiled that describes the system, its com-

ponents and operational characteristics.
3. If the list is large (usually they are), the words are split into man-

ageable sections associated with different subsections of the system.
4. The list is distributed to the experts. They discuss potential problems

in the system.
5. A facilitator (or a computer program) prompts the use of keywords

and guide-words to stimulate thinking.
6. Potential problems are recorded as they are discussed.
7. The group aims to reach consensus on hazards associated with each

part of the system and to specify what needs to be done. These
deliberations are summarized in an action sheet that summarizes
cause, consequence, safeguards and actions for each hazard.

8. Action sheets including deadlines for implementation are dis-
tributed to relevant operational personnel.

9. Personnel are required to submit response files that document im-
plementation, feedback and any recommended additional actions.
These are available for review and audit.
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HAZOP elicitation is tedious. Kletz (1999) recommended developing in-
fluence diagrams and conceptual models beforehand. Meetings should be
restricted to half-day sessions to avoid fatigue. Assessing complex projects
may take many weeks.

5.2.5 Failure modes and effects analysis (FMEA)

Failure modes and effects analysis (FMEA) is a deductive process that
aims to reduce risk (FMEAInfo Center 2002, Haviland 2002). Failure
Modes are categories of failure, describing the way in which a product
or process could fail to perform its desired function, defined in terms of
the needs, wants and expectations of people (shareholders, customers or
stakeholders). An FMEA is defined as ‘a systematic process for identifying
potential design and process failures before they occur, with the intent to
eliminate them or minimize the risk associated with them’ (FMEAInfo
Center 2002).

FMEA shares this primary objective with HAZOP procedures but does
not rely on structured brainstorming. Instead, it examines the behaviour
and interaction of individual components (‘elements’) of a system to
enable the consequences of undesired events to be assessed. It provides a
detailed examination of causal relationships between elements in a system,
in addition to generating a list of hazards.

The process involves calculating a ‘risk priority number’ (RPN) for
each hazard (Figure 5.4). The number is the product of three quanti-
ties, Severity, Occurrence and Detection. A cause is the means by which a
particular element of the process fails.

� Severity: an assessment of the seriousness of the effect of the failure.
� Occurrence: an assessment of the likelihood that a particular cause will

lead to a failure mode during a specified time frame.
� Detection: an assessment of the likelihood that the current controls (de-

sign and process) will detect the cause of the failure mode or the failure
mode itself, thus preventing it from occurring.

The RPN is used to set priorities for action on hazards and to identify
elements that require additional planning. Critical thresholds may be set,
above which action is mandatory. Actions are usually attempts to lower
severity or occurrence. Adding validation or verification controls can
increase the chances that a problem will be detected (thereby reducing
detection scores). Design or process improvements may result in lower
severity and occurrence ratings.
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Identify functions

Identify Failure 
Modes

Identify effects of the
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Determine severity
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Identify possible
causes

Determine 
occurrence

Calculate criticality

Identify design or
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Final risk
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Identify the root
cause

Identify special
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Figure 5.4. The elements of FMEA in a typical quality system (after Haviland
2002).

FMEA ‘elements’ are the individual components of a conceptual
model. Typically, they are identified and analysed in the FMEA process.
They appear as column headings in the forms resulting from the process.
Commonly, the forms list Functions, Failure Modes, Causes, Effects,
Controls and Actions.
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Failure Modes are defined by the perspectives of the people involved in
the risk assessment, or by those who bear the consequences of failures (see
Haviland 2002). This recognizes the inherently subjective nature of hazard
definition and would translate in a setting dealing with environmental risk
to specifying the reasons why particular outcomes are considered to be
hazards, from the perspectives of different stakeholders.

The method accommodates the fact that a single cause may have mul-
tiple effects, and that a combination of causes may lead to a single effect.
Causes can themselves have causes (fish kills may be caused by elevated
salinity, in turn caused by vegetation clearance; Figure 5.2). Similarly,
effects can have downstream effects. Causes do not automatically result
in a Failure Mode. The term ‘potential’ is often used to describe causes,
to reflect this uncertainty.

Logic trees (described in Chapter 8) and influence diagrams (e.g.
Figure 5.2) are complimentary techniques. They assist in describing and
understanding causal relationships among system elements. FMEA input
usually involves a multidisciplinary team with expertise in all aspects of
the function and control of a system. The process by which information
is elicited and gathered is not formally specified. Methods described in
Chapter 4 may be adapted to this protocol.

FMEA has a great deal in common with the risk ranking methods de-
scribed in detail in Chapter 6. It was developed originally by the United
States Military in the 1940s and was later adopted and developed by auto-
motive manufacturers (FMEAInfo Center 2002). In 1988, for example,
the International Organization for Standardization issued the ISO 9000
series of business management standards. A task force including people
from Chrysler Corporation, Ford Motor Company and General Motors
Corporation developed QS 9000 to standardize supplier quality systems.
QS-9000-compliant automotive suppliers must use FMEA in the plan-
ning process (FMEAInfo Center 2002).

FMEA (together with fault tree analysis (Chapter 8) and HAZOP
procedures) is recommended by the international standard for risk man-
agement of medical device manufacture and operation (ISO 14971–1
1998). The US FDA (1998) evaluated 582 design control systems used
by medical device manufacturers. A total of 285 firms used risk analysis
techniques in their control systems. Of these, 71% of firms used some
form of FMEA. A total of 15% included fault trees.

In a contrasting application, Hayes (2002b) used the approach to
identify hazards when assessing the risks of invasive species. However,
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applications in environmental and natural resource management remain
rare.

5.2.6 Hierarchical holographic modelling (HHM)

Hierarchical holographic models (HHM) recognize that more than one
conceptual (or mathematical) model is possible for any system. They try to
capture the intuition and perspectives embodied in different conceptual
and mathematical models of the same system (see Haimes 1998, Haimes
et al. 2000).

As noted above, sources of risk may be decomposed into different
kinds, such as functional, operational, spatial, social and ecological risks.
Each of these sources may be further decomposed hierarchically so that
ecological risks may include marine, estuarine and terrestrial environ-
ments. Within the marine environment, it may be useful to explore
benthic, pelagic and shore environments separately. Each submodel is a
complete view of the system from a single perspective, a holographic
submodel (Bier et al. 1999).

One modeller’s view of a system carries with it biases, assumptions and
simplifications that are peculiar to that modeller. Recognizing this means
that it becomes impractical to represent any system by a single model.

HHMs aim to be holographic in the sense of embodying as many
perspectives as possible. The broad perspective they bring should result
in relatively comprehensive lists of hazards. HHM’s are most effective
when the analyst is able to identify and list all the important components
and processes in a hierarchical fashion. HHM provides an ordered way
of dealing with structural uncertainties in models.

HHM was designed to deal primarily with infrastructure (Haimes
1998) but has potential for much broader application (Hayes et al. 2004).
It has been used to ensure more complete assessments of failure modes in
a wide range of disciplines (Bier et al. 1999). The collective knowledge
embodied in a number of models may provide an adequate summary
of a range of opinions from different stakeholders and decision-makers
(Haimes et al. 2000).

Hayes et al. (2004) developed an HHM to explore hazards associated
with growing herbicide-tolerant Canola (Figure 5.5). The ecological sys-
tem is large and complex. Many elements are poorly understood. Data
are missing that would support a full, quantitative examination of risks.
HHM deals with these uncertainties by identifying ‘components’ and
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Figure 5.5. Hierarchical holographic model for hazards associated with herbicide
resistant Canola (a subset of the elements explored by Hayes et al. 2004).

‘processes’ of subsystems. Tables are then used to suggest interactions and
organize supporting information.

Each subsystem is a ‘perspective’, part of the hologram. They may be
subjective conceptual models or detailed mathematical models. The ana-
lyst is responsible for finding appropriate perspectives, system boundaries
and levels of detail/aggregation.

Hayes et al. (2004) avoided sociopolitical, economic and geographic
(regional) perspectives, although they may have been legitimate. They
restricted themselves to human, biological, chemical and physical com-
ponents and processes of the environment (Figure 5.5).

A study team composed of technical experts considered 1356 poten-
tial interactions between these components and processes. They evaluated
each one and ranked their potential to cause adverse environmental im-
pacts. Team members scored a ‘degree of concern’ (high, medium, low)
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and their degree of confidence in the plausibility of the hazard (a value
between 0 and 1). Scores were aggregated over individuals by summing
concern scores and multiplying by average confidence (Hayes et al. 2004).

The ranks provided a basis for setting priorities for further analysis
(Table 5.2). The process identified hazards that had been overlooked in
checklists and unstructured brainstorming conducted previously.

Scenarios are a useful conceptual device for hazard identification and
assessment akin to HHM, relying on verbal models rather than quantita-
tive or qualitative models. They are hypothetical sequences of events that
are put together to focus attention on causal relationships and decision
points in a conceptual model (Cooke 1991, Van der Heijden 1996). They
provide insight into precisely how an event may occur, and what man-
agement options exist to avoid the event or remediate its consequences.
Kahn and Wiener (1967) developed this approach. It is outlined in greater
detail in Chapter 12 because of its utility in risk management.

5.3 Discussion
Hayes (2002a) reviewed eight risk regulatory approaches. Only one –
New Zealand’s Environmental Risk Management Authority – identified
a range of deductive and inductive hazard identification techniques, in-
cluding brainstorming, checklists, logic trees and HAZOP analysis. The
Organization for Economic Co-operation and Development (OECD)
safety considerations recommended fault and events trees as a means to
quantify probability but otherwise provided a simple checklist of potential
environmental hazards.

Four of the remaining frameworks reviewed by Hayes (2002a) provided
similar checklists. The UK Department of Environment, Transport and
Regions and the Office for Gene Technology Research provided the
most comprehensive lists. The European Community directive simply
listed five generic hazards including toxicity, impacts on population dy-
namics, altered susceptibility to pathogens and effects on biogeochemistry.
The Cartagena Protocol on Biosafety and United Nations Environment
Program guidelines did not provide checklists or discuss any hazard iden-
tification techniques.

There is an opportunity to improve routine risk assessments for envi-
ronmental management and conservation because there is a wide range of
methods for hazard assessment that are rarely used. More complete lists of
hazards should result from structured identification and assessment pro-
tocols. Confidence in the hazard assessment process would be enhanced
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Table 5.2. Ranked potential hazards (and benefits) associated with
herbicide-resistant Canola. Hazards that were not identified in an equivalent
checklist approach are noted by an X (hazards are from a list of several hundred,
after Hayes et al. 2004)

Hazard category Potential hazard Rank Checklist

Farming practice Greater extent of Canola
increases chance of weed
tolerance development

14.8

Dispersal Off-site transport of pollen
by insects

14.7

Volunteers Subsequent crop seed
contamination

14.3

Dispersal Off-site transport by farm
machinery

13.8

Segregation Consumer demand for
segregation of harvest

12.9 X

Dispersal Seed dispersal along
transport routes

12.2

Volunteers Seed loss during harvest 12.0
Segregation Building and processing

costs to maintain
segregation

12.0 X

Volunteers Need for alternative weed
strategies to eliminate
volunteers

11.3

Unexpected expression Gene expression in roots
may modify exudation

11.2

Volunteers Additional monitoring
requirements for
volunteers and other
herbicide-resistant weeds

11.2

Farming practice Inhibition of organic
farming in region

10.7 X

Farming practice Avoidance of region by
beekeepers

10.2 X

Farming practice Reduction of crop rotation
options

10.1 X

Dispersal Pollen spreads to
conservation areas

10.1
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if lists of potential hazards and their interactions were continually updated
to accommodate new knowledge and experience. Monitoring systems
may influence risk assessments qualitatively by providing information
to revise conceptual models and to identify novel causal relationships
between components and processes in a system.

FMEA and HHM have properties that make them close relatives of the
risk ranking methods outlined in Chapter 6. In particular, arithmetic is
performed on subjective degrees of belief to generate ranks. These ranks
may be used to set priorities for subsequent actions. The advantages and
weaknesses of this approach are outlined in detail in Chapter 6.

Risk assessments should be tiered. For instance, Hill et al. (2000) de-
scribed ‘screening-level’ and ‘detailed’ risk assessments. Different tools
are useful in different contexts and at different levels of analysis. If haz-
ards are unacceptable, the risk analysis may need to go no further than
identifying hazards to be avoided or engineered out of existence. The
benign nature of potential consequences may guide the analyst towards
a simple qualitative assessment. More severe consequences may lead to
monitoring and contingency plans, or to a more detailed exercise involv-
ing data collection and mathematical modelling. Everything is contingent
on the premise that risk assessment has been guided at the outset by good
conceptual models.



6 � Risk ranking

Risk ranking represents one of the most common forms of risk analy-
sis. It is used extensively in engineering, mining, land development and
industrial contexts in many countries. Yet, as currently practised, it is par-
ticularly susceptible to the vagaries of human perception and the incon-
sistencies of expert judgement outlined in previous chapters. Fortunately,
there are some remedies to these problems.

This chapter describes how risk ranking is done. It explores some of
the characteristics of the approach. It outlines ways of conducting risk
ranking to evaluate more reliably the risk-weighted costs and benefits of
environmental management options. These modifications will make risk
ranking more useful in the context of the risk management cycle to guide
managers to develop strategies that eliminate, reduce or mitigate risks.

6.1 Origins of risk ranking methods
Risk ranking is a risk assessment that relies on qualitative, usually sub-
jective, estimates of likelihoods and consequences. It avoids the technical
demands of more formal techniques and may use quantitative information
where it is available.

In the late 1960s and 1970s, NASA followed examples set by the US
military and adopted ‘risk assessment tables’ to assist analysts to quantify
and set priorities for risks (Table 6.1). The objective was to create risk
assessments that were more reliable than those conducted subjectively and
without any guiding principles. Reliability was judged by the repeatability
of the resulting relative risk assignments.

The tables had four components. The ‘hazard probability rank’ was
a verbal description of the relative likelihood of the event (the hazard)
(Table 6.1a). They ranged from frequent or continuous to improbable.
Terms were based on Kent charts used to relate linguistic terms to fre-
quencies (Chapter 4). It was not necessary to estimate frequencies of
events, although frequency data could assist.
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Table 6.1. Elements of the NASA Risk Assessment Table (after Wiggins
1985, in Cooke 1991)

a. Hazard probability rank

Level /
scale Description For an individual item For fleet or inventory

A Frequent Likely to occur frequently Continuously experienced
B Probable Will occur several times

in the life of an item
Will occur frequently

C Occasional Likely to occur at some
time in the life of an item

Will occur several times

D Remote Unlikely but possible in
the life of an item

Unlikely, but can be
expected to occur

E Improbable So unlikely it can be
assumed it may not be
experienced

Very unlikely, but possible

b. Hazard severity categories

Level / scale Description Scenario / details

I Catastrophic Deaths or system loss
II Critical Severe injury, major system damage
III Marginal Minor injury, minor system damage
IV Negligible Less than minor injury or system damage

c. Risk management matrix

Hazard Hazard severity
probability

Catastrophic Critical Marginal Negligible

Frequent 1 3 7 13
Probable 2 5 9 16
Occasional 4 6 11 18
Remote 8 10 14 19
Improbable 12 15 17 20

d. Risk acceptance index

Score Category

1–5 Unacceptable
6–9 Undesirable
10–17 Acceptable with review
18–20 Acceptable without review
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‘Severity categories’ were verbal descriptions of the importance
(dreadfulness) of the consequences of the hazard (Table 6.1b). They were
defined in terms of loss of human life, injuries, dollars or some other
metric representing cost.

The method worked by assigning point scores to various combinations
of hazard probability and severity (Table 6.1c). These scores represented
the ‘risk’, although the values were not probabilities. Rather, they were
weights reflecting judgements about the importance of the hazard for risk
managers. The risks were compared to a table of thresholds describing
acceptability (ranging from ‘unacceptable’ to ‘acceptable without review’;
Table 6.1d).

These tables carry assumptions. For instance, the time frames within
which probabilities were judged were implicit. Despite being called
‘quantitative’ assessments, no attempt was made to quantify probabilities
or consequences. Cooke (1991) thought this reflected distrust of subjec-
tive numerical representations of uncertainty, and concerns that numbers
would be interpreted as though they were exact.

6.2 Current applications
Risk ranking procedures rely on experts to estimate qualitative categories.
They are used to assess both technical and social risks in a range of institu-
tions. They combine a subjective judgement of the relative likelihood that
each hazard will be manifested with a subjective assessment of the magni-
tude of its consequences. The estimation procedure is subjective, implicit
and undescribed. Risk is the product of the likelihood and magnitude of
the consequences of a hazard. Figure 6.1 shows a general framework for
risk ranking.

The framework in which risk ranking is done (Figure 6.1) has a great
deal in common with the framework promoted by the US EPA (Chap-
ter 3). There is little doubt that the compartmentalization of consultation
and risk communication, for instance, is a result of the cross-fertilization
of ideas.

This approach was recommended by the British Institution of Civil
Engineers, the British Institute of Actuaries, and Standards Australia
(ICE/FIA 1998, AS/NZS 4360 1999). It is an accepted part of the
machinery by which corporations achieve compliance with Interna-
tional Standard ISO14001, a hallmark of environmentally sustainable
practices. Evans (1999) called AS/NZS 4360 (1999) ‘. . . a welcome evo-
lutionary development in the general application of risk management
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Figure 6.1. Risk ranking framework (after AS/NZS 4360 1999).

principles . . . ’. It is an integral part of Failure Modes and Effects Analyses
(FMEA) developed by the US military and the US automotive industry
and recommended by the International Organization for Standardiza-
tion (Chapter 5). It represents perhaps the most common form of risk
assessment.

Despite the long list of approvals, the method has some serious weak-
nesses if applied carelessly. The following section outlines how risk rank-
ing exercises are conducted, examines the extent and consequences of
uncertainty in these kinds of analyses, provides an example of their ap-
plication and recommends approaches that will maximize their reliability
and utility for decision-making.
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6.3 Conducting a risk ranking analysis
Risk ranking depends on a sound conceptual model and completion
of a hazard identification and assessment phase. Usually, the list of haz-
ards and a description of their consequences is the result of unstructured
brainstorming. It could involve the techniques that are part of FMEA or
Hazards and Operability Analysis (HAZOP) procedures, or even Hier-
archical Holographic Modelling (HHM) if the problem is well defined
and there are a number of conceptual or mathematical models available
(see Chapter 5).

Once hazards have been uniquely defined and their consequences
have been specified and described, estimates for both probabilities and
severities (likelihoods and consequences) are made. However, usually
quantitative estimates of these quantities are unavailable and there may
be no quantitative expression for some consequences. For example,
it may not make sense to try to quantify the outrage felt by people
about exposure of infants to a carcinogen. Most often, likelihoods and
consequences are classified subjectively into one of a few classes (e.g.
Table 6.2a,b).

Once each hazard has been allocated to a likelihood and a consequence
class, the scales associated with the subjective categories are multiplied
together to give a nonprobabilistic ‘risk’ (Table 6.2c). This value is used to
rank risks and to set priorities for evaluation, communication, treatment
and monitoring.

Not much has changed in 40 years. Scores and ‘probabilities’ have
been added to Table 6.1a. Otherwise, there is little difference between
the recent set of tables and the earlier ones developed by the US aerospace
industry. In other examples, the classes are defined with words tailored to
suit the specific context of the risk assessment. There may be as few or as
many classes as suit the purposes of the problem at hand. Other systems use
as many as 10 categories for both consequence and likelihood although
more than five to six categories may be unwieldy. When outcomes are
unambiguous and data are available, the thresholds for likelihood are
sometimes tied to specific probabilities.

Often, the consequence table is split into categories, each of which
deals with a different dimension of effects (such as human health, social,
ecological and economic risks). For instance, tables may be created for
the influence of hazards on share prices or the public reputation of a
corporation. Different tables may represent consequences for different
segments of society, reflecting exposure, or attitude to an impact.
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Table 6.2. Elements of the British Risk Ranking Table (after ICE/FIA
1998. cf. AS/NZS 4360 1999; Burgman 1999)

a. Qualitative measures of likelihood

Level / scale Description Scenario / details Probability

16 Highly likely Expected to occur in most
circumstances

Over 85%

12 Likely Will probably occur in most
circumstances

50–85%

8 Fairly likely Might occur at some time, quite often 21–49%
4 Unlikely Could occur at some time 1–20%
2 Very unlikely Not expected to happen < 1%
1 Extremely unlikely Just possible but very surprising < 0.01%

b. Qualitative measures of consequence

Level / scale Description Scenario / details

1000 Disastrous /
catastrophic

Deaths, toxic release off-site with substantial
detrimental environmental effects, bankruptcy

100 Severe / major Extensive injuries, release off-site with
detrimental effects, serious threat to business

20 Substantial /
moderate

Medical treatment required, toxic release on-site
contained with outside assistance, or off-site
release with no detrimental effects, significant
reduction in profit

3 Marginal / minor First-aid treatment, on-site release immediately
contained, small effect on profit

1 Negligible /
insignificant

No injuries, no important environmental effect,
trivial effect on profit

c. Risk management matrix

Likelihood Consequence

Negligible Marginal Substantial Severe Disastrous

Highly likely 16 48 320 1 600 16 000
Likely 12 36 240 1 200 12 000
Fairly likely 8 24 160 800 8 000
Unlikely 4 12 80 400 4 000
Very Unlikely 2 6 40 200 2 000
Extremely unlikely 1 3 20 100 1 000

d. Risk acceptance index

Score Category

Over 1000 Intolerable
101–1000 Undesirable
21–100 Acceptable
Up to 20 Negligible
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The information from such assessments usually is compiled and sup-
plied to project planners, design engineers, quality control people, regu-
lators and stakeholders. Reviews, updates and monitoring are sometimes
implemented.

There is no need to be guided rigidly by the product of likelihoods
and consequences. A likely hazard with a negligible consequence may
be ranked lower than an extremely unlikely hazard with a severe conse-
quence. These may be adjusted to reflect the attitude to risk of the assessor
or the decision-maker. Some stakeholders may be more risk averse than
others, necessitating different classifications for different elements of the
community.

6.4 Pitfalls
6.4.1 Selection, elicitation and aggregation

Perhaps the most obvious difficulty is the use of (usually) expert subjec-
tive estimates. Most risk ranking exercises are composed almost entirely
of expert judgement, ‘supported’ by various amounts of background in-
formation and technical detail.

Yet proposals for risk ranking do not provide any advice on how to se-
lect experts, elicit estimates or combine judgements. In most applications,
rules for elicitation and aggregation are unspecified.

These deficiencies do not make subjective risk ranking exercises use-
less. At the least, risk ranking provides a means by which environmental
hazards are treated by decision-makers in the same way as social and eco-
nomic hazards. They are guaranteed a hearing. But the process could be
more complete and honest.

The utility of different approaches to expert elicitation and aggregation
will depend on the nature of the problem, the kinds of uncertainties
involved, and the social and cultural context (Chapter 4). These issues
should be resolved before a risk ranking exercise commences.

6.4.2 Discrete hazards

Another difficulty is that hazards are treated as discrete events with discrete
consequences, whereas many events have a continuous range of potential
outcomes.

For example, ADD (1995) assessed the possibility of a ship grounding
and releasing oil in a new port facility (Chapter 1). We could draft a
conceptual model for an oil spill but, as we noted in Chapters 1 and 2,



152 · Risk ranking

1

0

P
ro

ba
bi

lit
y 

of
 e

ffe
ct

s

Magnitude of effects

Figure 6.2. The likelihood and consequences of a hazard that would be best
represented by a continuous range of outcomes (after Suter 1993).

there are many kinds of ships, different kinds of oil and a range of sizes
of oil spill. Any single event could generate a continuous range of out-
comes. Consequences of the greatest magnitude typically occur with low
probability (Figure 6.2).

Some applications select the most likely consequence, or select a small
range of relatively likely outcomes, and ignore the rest. One of the errors
sometimes committed in risk ranking is to ignore events with catastrophic
consequences, treating them as unrealistically unlikely and therefore triv-
ial. This essentially truncates consideration of extreme events. It runs
contrary to the spirit of risk assessment, which is to explore the extremes
of possibility, the tails of event distributions.

Alternatively, the range of potential outcomes may be subdivided into
a few discrete classes and each range treated as a separate hazard. Analysts
define hazards in terms of their consequences, and then estimate the like-
lihoods of events with the specified consequences. This accommodates
extreme outcomes and makes thinking about consequences easier, but it
may create additional linguistic uncertainty.

6.4.3 Model complexity

The degree of disaggregation in a conceptual model (Chapter 5) often de-
pends on the knowledge of the people involved. This problem is common
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to all methods for risk assessment but it is especially apparent in risk rank-
ing exercises.

Engineers assessing the environmental risks of a new port facility will
spend a great deal of time breaking down and evaluating the likelihoods
of failures in things such as pumps, structures and storage facilities. A
hazard such as a fire that starts in adjoining vegetation on-shore is likely
to be treated as a single hazard.

If an ecologist joins the team, they are likely to lump engineering
structures into a few crude baskets. They will, however, be preoccupied
by whether the fire is a summer or a winter fire, whether it is a relatively
hot fire, whether there was a fire the year before and so on, because these
things determine its ecological consequences.

Arbitrary model complexity may be redressed by employing teams
with broad technical expertise. Stakeholder involvement broadens the
professional narrowness of experts. In addition, once conceptual models
are complete, it is important to revise and simplify them in the light of
the questions it is necessary to answer.

6.4.4 Susceptibility to risk perception

Risk ranking is particularly susceptible to the psychology of risk percep-
tion. Recall the things that affect judgement outlined in Chapters 1 and 4.
They include the level of personal control, understanding of the issues,
extent of personal experience, apparent dreadfulness of the outcome,
equitability of distribution of the risk, cultural context, cognitive biases
( judgement bias, framing effects, anchoring and insensitivity to sample
size), motivational biases and advocacy.

The rich and extensive literature on the consequences of human psy-
chology for judgements about risk has been ignored in the design of risk
ranking protocols. There is an opportunity to design methods that antic-
ipate biases and cognitive deficiencies, and thereby produce more reliable
and transparent assessments. Some recommendations are outlined below.

6.4.5 Susceptibility to linguistic uncertainty

The idiosyncracies of human psychology that may affect subjective risk as-
sessments are compounded by linguistic uncertainty (Regan et al. 2002a,
Chapter 2). It is difficult to define terms and concepts in such a way as to
ensure they are interpreted the same way by all those involved in the pro-
cess. However, behavioural elicitation methods (Chapter 4) can eliminate
elements of linguistic uncertainty.
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Ambiguity may be reduced by careful attention to the definition of
terms and is usually improved by allowing participants to discuss mean-
ings and context. Vagueness may be dealt with most simply by defining
arbitrary, discrete classes, although it is not always satisfactory to do so
(Chapter 2).

6.4.6 Acceptability

Defining an acceptable level of risk is ultimately a social decision. It in-
volves risk-weighted trade-offs between the prospect of unacceptable en-
vironmental damage and interference in relatively benign and productive
activities (Fischhoff et al. 1981, Finkel 1995). Decisions about acceptabil-
ity are tied to the thresholds in risk acceptance tables (e.g. Table 6.2d).
The choices of these thresholds are rarely justified or explored. Often,
acceptability depends on the way in which risks are expressed and com-
municated. This topic is addressed in greater detail in Chapter 12.

6.4.7 Sensitivity and validation

It is a striking feature of Figure 6.1 that it omits sensitivity analysis and
validation. The general framework doesn’t prescribe these things and
they are almost never done. This creates a substantial gap in the risk
management cycle (Chapter 3). Without them, the risk assessment is
incomplete.

Risk ranking protocols could include a step in which an alternative
set of hazards is identified and ranked, to determine the sensitivity of
results to the way the conceptual model was interpreted. There is no
reason why the reliability of ranks for a given set of hazards could not
be assessed independently by different people or groups, and their results
compared. The process could involve specifying conditions under which
monitoring data could be used to evaluate the ranks for a set of hazards.

There is clearly room for improvement. Steps may be implemented to
explore the sensitivity of management priorities and decisions to assump-
tions. Guidelines could be developed to validate estimates of likelihoods,
consequences and risk ranks.

6.4.8 Unacknowledged uncertainty in results

Expert psychology, the complex nature of most ecological systems and
the lack of attention paid to linguistic precision in risk ranking suggest
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that assessments of the ranks of environmental hazards will be unreliable.
Despite the considerable uncertainty in all risk ranking exercises, ranks
are presented as points, as though they were exact. This convention has
the potential to mislead everyone involved.

In one example, UDMH, a breakdown product of the growth regula-
tor Alar used on apple crops, was considered to be dangerous to humans.
Ames and Gold (1989) explored the claim that Aflatoxin in a daily ra-
tion of peanut butter was 17.6 times more dangerous than UDMH in a
daily ration of apple juice. The implicit rationale suggested that if you eat
peanut butter, you should be prepared to eat treated apples.

Finkel’s (1995) analysis revealed that the central tendencies (both me-
dian and mode) of the pdfs for Aflatoxin and Alar were nearly the same.
However, one could be only 90% certain that the relative risk of Aflatoxin
to UDMH lay somewhere between 300 : 1 in favour of Aflatoxin and
35 : 1 in favour of UDMH. The pronouncement of 17.6 might be both
imprecise and of the wrong sign. Finkel concluded that such point esti-
mates are only useful if they are accompanied by a statement of the degree
of certainty one can have in the value. Interval arithmetic (Chapter 9)
provides a way to combine uncertain likelihoods and consequences that
could be applied routinely in risk ranking.

6.5 Performance
The claims of pitfalls above are based on inference. It remains to be seen
if such problems result in important differences in ranks for hazards in
real applications.

To explore the extent of uncertainties in risk ranks, groups of five or six
assessors (senior undergraduate students, together with a few engineers
and EPA scientists) were provided with information describing a range of
projects. The projects included mining, engineering, transport and waste
disposal proposals. The groups were asked to assess the environmental
risks of the proposals, using a risk ranking table modelled after Table 6.2.

Each group selected a project (there were five projects on offer). Par-
ticipants were provided with training in the psychology of perception,
concepts of probability and uncertainty, and so on. Most had backgrounds
in engineering or science.

The participants met and agreed on common definitions for terms
such as likelihood and consequence, to eliminate some linguistic uncer-
tainty. They independently created lists of hazards, and then compared and
combined their independent lists into an agreed list of hazards. They then
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Figure 6.3. Disagreements between pairs of assessors ranking hazards. The x-axis
labels are upper class limits. A total of 63 assessors were divided into groups of five,
six or seven people, comprising as wide a range of disciplinary backgrounds as
possible. Each group selected a project for which an Environment Effects
Statement had been published. The information available to the assessors was a
mixture of technical summaries, empirical data, expert judgement, and inferences
based on other sites or similar projects. People compared their results to one
another, within groups, using Spearman’s rank correlation coefficient. These are
plotted above (after Burgman 2001).

ranked the hazards independently. In Figure 6.3, a value of 1 represents
perfect agreement between two assessors, and –1 represents complete
disagreement.

The median value of 0.395 in Figure 6.3 reflects the extent of overall
agreement over the ranks for each hazard. There were substantial areas of
disagreement between assessors, represented by values near and less than
zero. Strong agreement between assessors (represented by values of 0.8
or greater) was rare.

These results may underestimate the degree of uncertainty in most risk
ranking exercises. The circumstances are artificially constrained and uni-
form. Differences in ranks are attributable to differences in risk perception
and linguistic uncertainty because most people had identical information
at their disposal. Furthermore, rank correlations ignore absolute values
for likelihood and consequence.

The groups of assessors met a second time and discussed the basis
for discrepancies. Sometimes this involved the introduction of new evi-
dence, as people contributed knowledge about the process and new data.
Most discussion centred on time horizons, resolution of context, and
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Figure 6.4. Disagreements between pairs of assessors conducting subjective risk
assessments after repeated attempts to define terms and context.

redefinition of hazards, likelihoods and consequences. The groups then
repeated the ranking exercise independently, and again compared the
results (Figure 6.4).

The situation improved after the groups reconsidered definitions of
terms and interpretation of the context of the project (Figure 6.4). The
median value of the Spearman rank correlation coefficients increased
from 0.395 to 0.66, reflecting substantially better agreement.

The same patterns of disagreement and change emerged when assessors
were asked to judge human health or social and financial risks associated
with the same projects. The changes were partly due to an improve-
ment in shared understanding of the context and definitions of terms,
reflecting the assessors coming to terms with some elements of linguistic
uncertainty. In addition, some assessors were persuaded to change their
estimates by argument, a result that is not necessarily due to linguistic
uncertainty.

The majority of pairs of assessors improved their level of agreement
after discussion, although a few disagreed more. When people’s opinions
diverged, it was because they found previous agreements were based on
linguistic misunderstandings.

New information is added during discussion. Further resolution of
differences may be possible given further discussion and redefinition.
However, there remains a residual disagreement between assessors that
is not resolvable by further negotiation. These are honest differences of
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opinion between assessors regarding the likelihoods and consequences of
hazards. Often, they reflect different personal values.

These results are not due to the inexperience of the assessors. The
experiment was repeated with other groups of senior undergraduate stu-
dents, experienced professional ecotoxicologists, analytical chemists, en-
gineers and ecologists, and each time gave the same qualitative results.
Risk ranking exercises should anticipate this effect and deal with it using
the approach documented above.

6.6 Examples
6.6.1 Risk ranks for the US National Ignition Facility

The US National Ignition Facility is working to focus laser beams on
spherical targets containing deuterium and tritium. The intention is to
make them implode, creating fusion energy in the laboratory for the first
time.

Brereton et al. (1998) outlined the need to deal with a range of novel
social and technical risks. They used a risk ranking procedure based on
tables similar to those developed by NASA (Table 6.1a), although they
employed only three likelihood categories.

Brereton et al. (1998) identified several hazards among the highest
category of risk. ‘High risk’ hazards included successful legal challenges
to stockpile stewardship, significant injury during construction, severe
accident during start-up and subsequent operations, and performance
shortfall. The analysis was used to implement risk management strate-
gies and monitoring protocols across a range of social, construction and
operation activities.

It is interesting that a facility devoted to quantitative understanding of
physical systems did not report a process model for the construction and
operation of the facility. Nor did it quantify uncertainties in judgements
and present them in the results. There was no description of plans to eval-
uate the sensitivity of assumptions, or to validate the results. The analysis
was incomplete and lacked transparency about uncertainty. However, it
may have been a useful vehicle to tier detailed model development and
monitoring.

6.6.2 The Paper risk rank calculator

The company Australian Paper uses a card with the relationships between
likelihood and consequence printed on it (Figure 6.5; it is an example
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Figure 6.5. Australian Paper’s risk score calculator showing an example application.
The probability of a hazard is assessed as somewhere between remotely possible and
unusual, with ‘infrequent’ exposures (black squares). This gives a score on the
frequency tie line of –4. If it occurs, the event will cause a fatality (the black square
on the consequence line), resulting in a classification on the border between a class
2 and a class 3 hazard.

of tools developed for occupational health and safety). Anyone in the
company can estimate risk using the same standard.

The way it works is:

1. Estimate the probability that an event (an incident / hazard) will occur.
2. Estimate exposure to the hazard.
3. Mark points on the ‘probability’ and ‘exposure’ lines (represented by

black squares in Figure 6.5); connect them with a straight line and
extend it across to the ‘frequency tie line’ (the open circle).

4. Estimate the consequence of the hazard (the black square).
5. Draw a line from the intersection of the frequency tie line, through

the point on the consequence line, extending to the ‘risk rating’
line.
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Figure 6.6. Distribution of the Western Rock Lobster (from IRC 2002).

6. The resulting score (1–4) is the risk priority rating (the example gives
a value on the border between categories 2 and 3).

The method is simple, transparent and repeatable. Obviously, the subjec-
tive judgements make it susceptible to the linguistic and psychological
uncertainties that affect other risk assessment, but no more so. It clarifies
the order of terms describing probabilities, exposures and consequences.
The visual interpretation of scales is a particularly useful feature.

6.6.3 Western Rock Lobster ecological risk assessment

The Western Rock Lobster (Panulirus cygnus) is distributed on the con-
tinental shelf of Western Australia (Figure 6.6, IRC 2002). The animals
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Figure 6.7. Catch and an index of effort in the Western Rock Lobster fishery since
it began in the 1940s (from IRC 2002).

can live for more than 20 years, maturing at about 6 years and reaching
weights of 5.5 kg. Larvae spend 9–11 months as plankton before moult-
ing, and settle in shallow inshore reefs. Recruitment success depends on
the strength of ocean currents and winds. About 4 years after settlement,
the lobsters migrate to deeper reefs on the shelf.

The fishery began in the 1940s. The catch has stabilized at about
10 000 tonnes per year but varies depending on recruitment (Figure 6.7).
The annual catches in the commercial fishery have varied between 7000
and 14 000 tonnes. The variation in the number of post-larval animals that
successfully return to the shallow reefs each year is used to estimate the
number of lobsters recruiting to the fishery, and consequently the catch,
three to four years later (Caputi et al. 1995). The catch in 1999/2000 was
worth about US$200 million, fished by about 600 boats (IRC 2002).

In March 2000, it was the world’s first fishery to be certified as sustain-
able by the Marine Stewardship Council. Part of the certification process
involved undertaking a ‘comprehensive, and scientifically defensible eco-
logical risk assessment’ (IRC 2002).

A risk assessment of the Western Rock Lobster fishery in Australia
(IRC 2002) employed the principles of risk ranking based on expert
judgement. Problem formulation involved segmentation of activities into
functional groups associated with different kinds of ecological conse-
quences (e.g. Table 6.3).
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Table 6.3. Subset of the segmentation of activities associated with the
Western Rock Lobster fishery (after IRC 2002)

Ecological consequences Activities

Removal / damage of organisms Physical impact on benthic communities
Bait collection
Rock lobster fishing
Ghost fishing
Physical impact on coral

Addition / movement of biological Stock enhancement
material Discarding

Displacement
Bait

Other Air, water, substrate quality
Bird interactions

By-catch Sealions
Moray eels
Turtles
Whales
Manta rays
Dolphins

The assessment commenced with an expert group that constructed
conceptual models using influence diagrams (e.g. Figure 6.8). These sum-
marized functional relationships between human activities, elements of
the fishery and the broader ecosystem. They were then sent to partic-
ipants to support brainstorming and further refinement of ideas about
causal relationships.

These diagrams were used together with other background informa-
tion to support a workshop. They formalized the rationale for the design
of monitoring systems and performance reviews.

The workshop had 15 participants selected for their involvement in the
industry or in conservation groups, and for their scientific expertise. Thus,
the sample of experts was stratified to represent a number of stakeholder
positions, although the basis for the stratification was not explicit. The
qualifications and experience of the participants were presented with
the workshop findings and were used to justify the composition of the
workshop participants, a useful feature of any process that uses experts.

Expert assessments were used to avoid the need for ‘time-consuming
collection and review of data’ (IRC 2002). A total of 11 out of the 15



6.6 Examples · 163

Nonretained species

Captured
in pots

Direct impact
but not captured by pots

Threatened species Other Turtles

Sealions Moray eels Leatherback turtles

Whales / 
dolphins

Manta rays

Figure 6.8. Influence diagram for the ‘nonretained’ species, termed a ‘component
tree’. Shaded elements were identified as warranting further investigation
(from IRC 2002).

experts had training in science. Expert selection was not discussed beyond
attribution of expertise.

The composition of the expert group may have influenced the result-
ing list of hazards. There were no social scientists, indigenous represen-
tatives, seasonal island residents, marine engineers or toxicologists, for
instance. It is difficult to judge the importance of group composition,
but the evidence from cognitive psychology suggests it is not a trivial
consideration.

The classification of hazards was conducted by judging consequences
and likelihoods for each hazard (both on scales of 1 to 5). If the prod-
uct of the numbers was between 5 and 14, the hazard was classified as
‘moderate’. Thus, the threshold of 15 was anchored to the notion of an
acceptable risk by consensus following inspection of the table of con-
sequences of the hazards. Moderate risks were judged to be acceptable
as long as management was implemented to reduce them to be as ‘low
as reasonably practicable’ (see Chapter 12 for more on acceptability of
risks).
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Unfortunately, no justification was provided for selecting this value. It
is difficult for someone looking at the results of the assessment to know
what values and standards the expert group used. The absolute level of
risk classification is important because it affects public perception and
how managers react.

The experts identified 33 hazards by brainstorming and iterative re-
finement of component trees, supported by generic checklists. A total of
4 hazards were ranked as ‘moderate’ and 29 were classified as ‘low risk’,
based on a table of likelihoods and consequences similar to Table 6.2.
Moderately risky hazards included:

� mortality of sealion pups in lobster pots,
� direct damage to coral by pots,
� entangling of leatherback turtles in fishing ropes, and
� dumping of domestic waste at islands within the fishery.

Facilitators sought group negotiation to a consensus (Chapter 4). This
group approach is susceptible to psychological artefacts such as anchoring
and hazard visibility. The process is also susceptible to the motivational
biases resulting from vested interests of the participants. Deference to
authority and the hierarchical relationships between individuals in the
group may also be problematic. It is difficult to know how much influence
any of these factors has in any instance, but elicitation procedures should
anticipate them. One weakness, common to most risk ranking exercises,
was that the summary of the elicitation process did not report the full
breadth of opinion.

The Rock Lobster risk assessment is a good example of an application
of risk ranking. It had several innovative features including the stratifi-
cation of experts, detailing their credentials, using trees to structure the
hazard elicitation process, and specifying tiered responses to monitoring
and subsequent model development for the most serious hazards. For
instance, the fishery is an excellent opportunity to develop population
models for the sealion population, and to use it to identify sensitive life-
history parameters. This would allow managers to estimate biologically
important impacts on variables affected by the fishery. The risk man-
agement cycle could then be closed by creating monitoring strategies
capable of detecting important changes, and by selecting management
options that allow for unexpected outcomes.

The risk assessment could have been made more honest and complete
by using a more broadly based group of participants, providing a more
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detailed report of uncertainty, and anchoring values for unacceptable risks
to something tangible or external to the group of experts. It would have
been useful to know if decisions were sensitive to uncertainty in the
assessments.

6.7 Discussion
Risk ranking has the advantages of operational simplicity and trans-
parency. Given a little training, most people can perform one and achieve
useful results. Ecosystems and other systems are too complex to model
explicitly. This approach allows ecologists (and others) to integrate com-
plex qualitative and quantitative information and generate assessments
without extensive data and full understanding.

Perhaps the greatest single advantage in operational circumstances is
that risk ranking allows environmental managers to communicate with
stakeholders, board members, financial staff, engineers and others in a
common language. The same language communicates social, financial
and human health risks, so that environmental risks are seen as equally
worthy of consideration. As a result, environmental issues are treated in
the same way as other corporate and public issues, and are included in
discussions about the costs and benefits of actions.

Stakeholders should be involved in the process of building, testing, re-
vising and interpreting risk assessments (Beer 2003). The most important
skill of the analyst in these circumstances is to communicate the detail of
alternative conceptual models and the consequences of their assumptions.
Risk ranking creates a natural framework for including stakeholders. They
may be part of the group that drafts a conceptual model and estimates
likelihoods and consequences. This gives people ownership of the solu-
tions to environmental risks and enhances the chances of acceptance of
the outcome.

It is a relatively common strategy, once the list of hazards is known
and ranked, to eliminate the most important hazards by re-engineering
the system, or by selecting management options that avoid some hazards
altogether. Some corporations direct all ‘extreme’ risks to the board or the
managing director. Often, more detailed evaluation of technical risk is not
warranted because boards decide that all extreme risks are, by definition,
unacceptable, and projects will not go forward until all extreme risks have
been eliminated from the design.

Risk ranking provides a natural basis for tiered risk assessments. Risks
that are (confidently) ranked as acceptable may be given relatively little
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Box 6.1 · A method for risk ranking

1. Set context and compile background information.
2. Identify a pool of potential experts and verify their substantive and

normative knowledge.
3. Survey stakeholders, assessing their influence and importance.
4. Set stratification criteria for potential participants (experts, stake-

holders).
5. Approach potential participants in a random sequence within

strata until a sufficient number can participate (the number will
depend on the breadth of scientific and social issues, time frame
and budget).

6. Employ models for elicitation (Chapter 4) that suit the context.
7. In consultation with stakeholders and experts, set rules for elici-

tation and aggregation of opinions and estimates.
8. Anchor thresholds for the acceptability of risk on other broadly

accepted probabilities and outcomes.
9. Distribute information to participants.

10. Meeting 1:
a. create conceptual models,
b. identify hazards (using structured brainstorming, FMEA, re-

lated methods),
c. agree on numbers of categories and on definitions of likelihood

and consequence,
d. agree on acceptability thresholds,
e. train participants to distinguish subjective and objective prob-

ability, and to estimate objective probabilities, and
f. test abilities to estimate against known standards.

11. Individually, rank hazards using the risk ranking tables, including
best estimates and bounds for estimates of likelihood and conse-
quence, and for final risk ranks.

12. Meeting 2:
a. discuss differences in ranks,
b. introduce new information,
c. refine conceptual models,
d. disaggregate elements of the model,
e. redefine hazards, and
f. eliminate ambiguities, sharply define vague concepts, clarify

underspecific terms.
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13. Individually, re-rank hazards using the risk ranking tables and re-
estimate bounds.

14. Combine information on ranks from all participants.
15. Present aggregated ranks and full detail of the remaining uncer-

tainties and disagreements.
16. Attribute opinions to identified individuals.
17. Assess the sensitivity of ranks and resulting decisions to:

a. choice of acceptability thresholds,
b. exclusion of individual participants (one by one), and
c. exclusion of participant strata (if there is more than one repre-

sentative per stratum).
18. Specify data collection that will verify ranks and audit management

decisions.
19. Identify hazards that will be subjected to more detailed analysis

(tiered response).
20. Nominate a time, place and participants to meet and revise the

conceptual model and risk ranks, based on data collected and
analyses conducted in the interim.

attention. Others may warrant further data collection and analysis using
more formal tools described in Chapters 7–12.

However, the framework fails to acknowledge the uncertainties sur-
rounding assessments. There are no conventions for communicating the
degree of certainty that may be placed in an assessment, or for measuring
the reliability or repeatability of an assessment. There are no conventions
for assessing the validity of ranks, or for exploring the sensitivities of
decisions to arbitrary assumptions.

Because decisions about the use of the environment almost always
involve conflicts with other priorities, they are laden with subjective
values and interpretations. Risk ranking conventions fail to acknowledge
linguistic uncertainty, personal values, the role of cognitive psychology
and other sources of bias. They provide no advice or any mechanisms to
deal with them, although they could do so.

The consequences of failing to recognize values, context and linguistic
imprecision is that people who use risk ranking will make more mistakes
than they would had these issues been taken into account. It is difficult
to measure the frequency or the costs of these mistakes because they are
submerged in the operational detail of project management and are con-
founded by stochastic processes. In the absence of a detailed monitoring
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programme, the feedback that would highlight the flaws in risk ranking
is unavailable.

Because risk ranking suffers from the weaknesses outlined above, the
results typically present a less than honest and complete picture to those
who decide on whether to tolerate, avoid or mitigate a risk. From this
perspective, it seems irresponsible not to employ strategies for stakeholder
involvement, elicitation and aggregation, sensitivity analysis, validation
and representation of uncertainty. If risk acceptability levels could be
independently established, there would be robust grounds for developing
a tiered analytical process. These changes are essential not because they
guarantee a more accurate answer, but because, if properly employed,
they result in an answer that is relatively internally consistent, transparent
and free of linguistic uncertainty.

The insights offered by expert elicitation, the risk management cycle,
taxonomies of uncertainty and observations from psychology create op-
portunities to make risk ranking more robust. The method in Box 6.1 is
designed to take advantage of these advances.



7 � Ecotoxicology

Ecotoxicological risk assessments have their roots in the social activism
of the 1960s (inspired by such things as Rachel Carson’s Silent Spring,
1962). Governments in many countries created protocols that matured
over the period from the mid 1960s to the mid 1990s and that con-
tinue to evolve. These methods have a particular focus: the assess-
ment, approval and auditing of pollutants and toxicants in a regulatory
system.

Circumstances demanded the rapid development of conventions, ex-
perimental techniques and standards for interpretation of evidence. These
things coalesced into the ecotoxicological paradigm (Chapter 3). The sys-
tem rests on the foundations summarized by Suter (1993): management
and policy goals, assessment endpoints as well as indicators and measures
of effect. This chapter examines the system’s relationships with epidemi-
ology and toxicology, and with broader concepts of environmental risk
assessment.

To reiterate the ecological hierarchy outlined in Chapter 3, manage-
ment goals encapsulate the spirit of a management or monitoring pro-
gramme. As such, these goals have a social mandate and are ecologically
relevant. Assessment endpoints are formal expressions of the environmen-
tal values to be protected. They provide a means by which management
goals may be measured and audited.

Measures of effect (measurement and test endpoints, US EPA 1998)
are quantitative biological responses, such as toxic effects on survival and
fecundity. Indices are created from field measurements or laboratory tests.
They represent sensitivities of ecosystem components to toxic substances
and act as surrogates for other elements of the ecosystem.

Ecotoxicology provides a basis for assessing whether chemicals are
likely to have adverse effects on ecosystems and to provide a basis for
managing those effects. The broad objectives are to protect ecosystems,
usually by protecting individual species and avoiding irreversible ecolog-
ical changes (Calow and Forbes 2003).
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Table 7.1. Approximate acute LD50 values for animals
exposed to some chemicals ( from Klaassen 1996)

Chemical Dose (LD50) mg / kg body weight

Sodium chloride 4000
Ferrous sulfate 1500
Strychnine sulfate 2
Nicotine 1
Dioxin (TCDD) 0.001
Botulinum 0.00001

This chapter provides a sketch of the ecotoxicological approach to
risk assessment. It begins with dose–response relationships. It outlines
methods for estimating and extrapolating toxicological responses in pop-
ulations, species and ecosystems, documenting places where assumptions
make the methods susceptible to uncertainty. It then describes methods
for establishing ‘safe’ exposures, and for developing models to estimate
exposure from transport and fate models. Examples illustrate the role of
uncertainty, the value of accounting for it explicitly and the need to carry
uncertainty through chains of conventional calculations.

7.1 Dose–response relationships
The evolution of ideas in ecotoxicology was motivated by the need to
regulate potentially damaging chemicals. This led to the definition of
functions relating measured effects (proportion dying, mean weight, pro-
portion germinating) to exposure (dose, concentration, duration). Some
of the more common measures are:

� LC50: median lethal concentration.
� LD50: median lethal dose.
� EC50: median effective concentration.
� LC01: lethal threshold concentration.

L stands for ‘lethal’, E is ‘effective’, C is ‘concentration’ and D is ‘dose’.
An effective concentration is the concentration that elicits the specified
response in that percentage of test organisms. It may be the concentration
at which a percentage of organisms fails to produce eggs, germinate or
achieve a specified height.

Typically, these measurement endpoints are acute: short-term and as-
sumed to be severe or lethal. An LD50, for instance, is the quantity of
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Figure 7.1. Toxic effects as a function of concentration. Usually, concentration is
represented on a log scale.

the toxicant imbibed by organisms at which 50% die within a speci-
fied time, usually 96 h (e.g. Table 7.1). An EC10 is the concentration
at which 10% of individuals exhibit the effects of exposure to a con-
taminant within a specified time. The tests are replicated under standard
conditions, with increasing quantities or concentrations of the chemi-
cal, resulting in a concentration or dose that causes a specific outcome
(Figure 7.1). LC10 values must be less than LC50s for the same organism.
EC50s are less than LC50s because they measure an effect other than death.
LOEC (lowest observed effect concentration) and NOEC (no observed
effect concentration) are lower again (see below).

In laboratory conditions, it is relatively easy to supply a constant con-
centration of a toxicant to the air, water or soil in which a test organism
lives. When exposures require doses (inhalation, dermal, intravenous, in-
traperitoneal or intragastric), by convention animals usually are dosed
once or several times per day. That is, the pattern of dose exposure is not
continuous.

When these tests are carried out on fish, it is usual to use a 96-h LC50

test. It has been a standard procedure in the past to subject vertebrates,
such as laboratory rodents, to acute, oral doses designed to estimate the
median lethal dose.

It is possible to examine sublethal effects. For example, tests may meas-
ure the growth response of plants to different levels of a chemical (e.g.
Figure 7.2), resulting in an EC50 value.

A full life-cycle (egg to egg) test may examine the time for a cycle
to complete, or the sensitivity of different stages to changes in temper-
ature, as a function of the concentration of the contaminant. Relatively
comprehensive tests are rare because of the time and money involved,
and the difficulty in replicating experimental conditions for more com-
plex designs. Survival analysis (e.g. Newman and McCloskey 1996) more
completely characterizes risk than LC50 and related statistics.
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Figure 7.2. Chronic, sublethal test measuring growth reduction in the yield of
beans (after McLaughlin and Taylor 1988, in Suter 1993).

7.1.1 NOELs and LOELs

A no observed effect level (NOEL, or concentration, NOEC) is the
largest dose at which there is no statistically significant increase in the
fraction of an exposed population who exhibit some effect (Crawford-
Brown 1999, p. 130). A LOEL is the smallest dose at which a statistically
significant effect has been demonstrated.

Crawford-Brown (1999) argued that it is important to reject increases
that might be accounted for by random fluctuations, ‘since such increases
might not be due to exposure to the substance.’ (p. 131). In contrast,
he argued that confidence intervals used to interpret the significance of
NOELs and LOELs need not necessarily be 95%, but could be, say, 90%,
to give greater weight to the cost of false-negatives.

A no observed adverse effect level (NOAEL) is the level at which
a statistical hypothesis test failed to reject the null hypothesis of no ef-
fect. NOAELs typically drive regulatory decisions. They usually result
in higher levels of pollutants than NOELs because they encompass both
statistical significance and biological importance. The ‘true’ threshold lies
somewhere between a LOAEL and a NOAEL (Crawford-Brown 1999,
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Figure 7.3. Three dimensions of the toxic effects: concentration (on a log scale),
duration and proportions of test organism populations that die (after Nimmo et al.
1977 in Suter 1993).

p. 134). However, these arguments run the risk of being confounded by
statistical power (or a lack of it).

NOELs, NOAELs and related statistics are a curious invention be-
cause their value depends on experimental design and sample size, rather
than potency alone. Very large samples may detect significant differ-
ences between treatments and controls that are biologically unimportant.
More usually, small samples and substantial experimental variation in-
flate NOAEL thresholds, decreasing the apparent toxicity of the chem-
icals (Laskowski 1995, Chapter 11). If a test is underpowered it may
be nonsignificant despite important effects. Nevertheless, they are used
throughout the world to set regulation guidelines and provide a basis to
infer ecosystem effects from single-species data.

When the logarithms of chemical concentrations are plotted against
the percentage of organisms exhibiting an effect, typically the curve is
s-shaped. If the y-axis is transformed to a probability scale, the relationship
between concentration and effect is approximately linear.

Clark (1933) noticed this pattern and pointed out that it is consis-
tent with the relationship expected for the formation of a drug–receptor
complex according to the law of mass action. The sigmoidal curves have
the characteristics of a normal curve, suggesting an underlying lognormal
distribution of sensitivity among individuals in the population (see Byrd
and Cothern 2000 for more detail).

When tests are extended over time, they result in logarithmic rela-
tionships between effect and time (Figure 7.3). Often, the relationship
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Table 7.2. Hypothetical data on leukaemia occurrence resulting
from occupational exposure to EMF radiation

Cancer No cancer Prevalence

Exposed A B A/(A+B)
Unexposed C D C/(C+D)
Ratio A/C B/D

Exposed 2 9 998 0.0002
Unexposed 10 99 990 0.0001
Ratio 0.2 0.1

between exposure or concentration and effect is estimated using logistic
regression (Box 7.1).

‘Equivalence’ of the toxic effects of two chemicals is sometimes in-
ferred by comparing replicates of LC50 or NOEC test results for a species
(with a t-test of their means, for instance). If the test returns a result of
‘do not reject the null hypothesis’, people infer that the potency of the
chemicals is (roughly) the same. Instead of using a single potency value,
Piegorsch and Bailer (1997) recommended comparing the slopes and in-
tercepts of regression models, thereby making better use of available data.
The latter approach is better but, other assumptions aside, both suffer
from the same weakness as the interpretation of NOELs. That is, the
inference depends on statistical power. Substantial differences between
the potency of two chemicals may be masked by small sample sizes and
large experimental variation.

7.1.2 Odds ratios and relative risks

Odds ratios express the probability of one outcome relative to the prob-
ability of its opposite. They are independent of the relative numbers of
different kinds of events and can have any value between 0 and infinity.

Take an example in which there was a suggestion that exposure to
electromagnetic radiation may cause cancer in electricity workers. You
collect some new data (Table 7.2). The 10 cases in the unexposed popu-
lation represent the background rate, the risk of getting leukaemia from
causes other than EMF radiation. Assuming all other things are equal,
we could make the inference that the prevalence of leukaemia is twice
as high in the exposed population as it is in the unexposed population
(ignoring the tiny sample size).
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Box 7.1 · Logistic regression for toxicity estimation and odds ratios

The binary nature of toxicity tests is an example of a wide class of rela-
tionships in environmental risk assessment in which a binary outcome
(e.g. alive / dead, present / absent, true / false) is a function of one or
more variables (e.g. chemical concentration, habitat quality).
In logistic regression, the response variable is binary. A condition or
event (present, alive) is coded as 1, and the alternative condition (ab-
sent, dead) is coded as 0. The logistic model is:

Logit(p ) = ln
(

p
1 − p

)
= a + b x

where p is the probability that the condition or event occurs. Taking
the exponent of both sides and solving for p gives:

p = e(a+b x)

1 + e(a+b x)
.

Because the response can take only two values (presence / absence,
alive / dead), the errors are assumed to follow a binominal distribu-
tion. Maximum likelihood is used to estimate parameters. The model
may be used to compare the number of predicted versus observed
occurrences of an event, or to fit a dose–response model. The y-axis
(symptom) is whether the organism is alive or dead, and the x-axis
is concentration of the chemical. Even if a logistic regression model
is correct, classification ability is limited by how clearly responses are
separated by the causal variable.
Odds ratios are a natural part of logistic regression. Let x = 1 if an
event occurs and x = 0 if it does not. We can write the logistic
regression as:

p
1 − p

= e(a+b x).

Since x = 1 for an event, the odds become
p

1 − p
= e(a+b )

and the odds for a nonevent are
p

1 − p
= e a .
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Figure 7.4. Risks of leukaemia through occupational exposure to EMF radiation.
The data are from 31 studies in which combined relative risks for all leukaemia was
reported (solid bars) and 15 studies in which the relative risks of acute myelogenous
leukaemia were reported (dashed error bars) (after Oak Ridge Associated
Universities 1992, in Shlyakhter 1994).

The odds ratio (OR) is the chance of exposure among diseased cases
relative to the chance of exposure among healthy cases. The ratio is
calculated from the table most easily as

OR =
A/C
B/D

= A × D
B × C

which gives an odds ratio in the case of Table 7.2 of 2 : 1 (after Byrd and
Cothern 2000). The odds are often scaled so that the second number is 1.
Relative risks (RR) are a closely related measure. They express the chance
that a disease occurs in an exposed population relative to the chance in
the unexposed population. They are given by

RR = A/(A + B)
C/(C + D)

.

The relative risks of the event in Table 7.2 are 2 : 1. When events are rare,
OR and RR are approximately equal. The terms are used more or less
interchangeably in epidemiological literature (L. Flander, pers. comm.).

Relative risks are a common measure in public health and ecotoxicol-
ogy. Figure 7.4 shows the relative risks measured in a number of studies
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Figure 7.5. Alternative models for dose–response relationships below the level of
detection (after Beer and Ziolkowski 1995, Adams 1995).

into the effects of exposure to large doses of electromagnetic radiation,
compared to people not habitually exposed. The relative risks of acute
myelogenous leukaemia are somewhat higher than background expected
levels, even though the individual results from several studies are not
significantly different from 1.

7.2 Extrapolation
Once a dose–response test is complete, the challenges remain to extrap-
olate the results to other taxa, and to decide on what a ‘safe’ level for a
toxic substance might be.

7.2.1 Extrapolating to low concentrations

A concentration in a laboratory test that results in zero mortality (or no
greater mortality than the controls) is not necessarily safe. If a safe level
is, say, less than 1% mortality in a 96-h test, sample error may give results
that are not significantly different from zero, or from the controls.

Extrapolations below the detection level are usually resolved by mod-
elling the response of the species to the contaminant. There are numerous
possible models. The choice could make a substantial difference to recom-
mendations for ‘safe’ levels, depending on attitude towards and tolerance
of the risk involved (Figure 7.5).
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Figure 7.6. Alternative models for toxicity response below the detection threshold.
a. Threshold response; b. linear response; c. hormesis; d. elevated low-dose
response. Increasing response indicates greater damage.

The different conceptual models in Figure 7.6 emphasize the as-
sumptions in extrapolating from high to low doses. Linear and loglin-
ear extrapolations have been conventionally accepted since the 1930s
(Figure 7.6b). It is easy to imagine responses in which a small increase in
the concentration of a toxicant elicits little measurable response up to a
threshold, beyond which another small increase causes a large response
in an individual (Figure 7.6a).

Calabrese and Baldwin (2001) argued that benefical responses may
be observed to some toxicants at very low exposures, termed hormesis
(Figure 7.6c). They explained it as an adaptive response to low stress levels
resulting in improved fitness. That is, hormesis occurs because response
systems have beneficial effects until the system becomes overloaded at
higher concentrations.

In striking contrast, Olson et al. (1987) and Cavieres et al. (2002)
found higher mammalian responses at very low exposures to insecticide
and herbicide mixtures (Figure 7.6d, Figure 7.7). They attributed the
response to different physiological, neurological, endocrine and immune
system responses across different ranges of chemical concentration.

The possibilities for responses at low doses place a burden on the analyst
to make an explicit choice of a model and justify it with available data,
where possible. In addition, irrespective of the choice, a complete risk
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Figure 7.7. Effect of a chemical mixture on mice litter sizes (after Cavieres et al.
2002). The chemical was a mixture of 2,4D, mecoprop and dicamba, applied at
levels well below regulatory guidelines, applied in the summer months (means and
95% confidence intervals).

assessment should put in place monitoring systems designed to detect
biologically important effects below conventional thresholds.

7.2.2 Structure activity relationships (SARs)

The kinds of tests and the expected levels for safety of a new chemical
may be established by inferring its mode of action and toxicity from sim-
ilarly configured chemicals. SARs represent the assumption that similar
chemical structures tend to interact in the environment through similar
mechanisms. They are used to predict qualitative effects and quantitative
exposure–response relationships.

Interactions between a toxicant and its receptor may be predicted ac-
curately from knowledge of the structure of a chemical and its biological
receptor. Metabolism and expression of toxic effects are not as easily
predicted. Sometimes, regression equations are used to describe the rela-
tionship between the structure of a compound and its toxicity, resulting in
quantitative structure activity relationships (QSARS). Uncertainty arises
when the analyst makes a choice about how to describe the structure
(how to interpret the chemical ‘space’). The quality of data describing
toxicity often is poor (Warren-Hicks and Moore 1995).

Some responses to toxins are continuous and some are discrete. For ex-
ample, organophosphates interact with an enzyme site in nerve synapses.
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The toxin blocks the normal function of the enzyme. The mode of ac-
tion is common to all organophosphates. Toxicity depends on the rate of
the reaction and the formation of the enzyme-inhibitor complex. This
knowledge allows analysts to predict toxicity effects of new chemicals in
this class. There has been some work on the reliability of such extrapo-
lations (see Warren-Hicks and Moore 1995).

7.2.3 Extrapolating from single tests to species sensitivity

Usually, the toxicity threshold for a species is assessed using tests of a single
attribute such as adult or juvenile mortality. Hanson and Solomon (2002)
recommended determining effective concentrations (ECX) for a number
of endpoints for a single species. They assumed the ECX values for a
species would be lognormally distributed and replaced NOEC values
with a low quantile of this distribution in hazard quotients and other
calculations.

For example, they monitored plant length, total biomass, root number,
root length, node number, chlorophyll a, chlorophyll b and carotenoid
content in the water plant Myriophyllum. They estimated EC10, EC25 and
EC50 values for 4-, 7-, 14- and 28-day exposures to monochloroacetic
acid. The thresholds from this approach are more conservative than single
attribute tests and give a fuller picture of potential ecological responses.

7.2.4 Extrapolating species sensitivities

Extrapolating test results to a level that is deemed safe for all species
requires additional assumptions and uncertainty. The results of toxicity
tests on a small group of organisms are used to infer the effects that might
be expected on a much larger group, assuming a few species provide a
useful guide to the sensitivities of a much larger range of taxa.

For instance, fathead minnows are a standard test organism. LC50 values
for fathead minnows may be a reasonably reliable guide to the responses of
a range of fish, amphibians and invertebrates (Figure 7.8). LC50s for a set
of test species are assumed to represent a sample from the distribution of
all possible LC50 results from all species. EC values for a range of attributes
(Section 7.2.3) would be more complete. Typically, a model is selected
to represent the variation in LC50 values over all species. Its parame-
ters are estimated from the sample data. Lastly, a quantity is estimated
(sometimes called the final acute value or FAV) such that most of the
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Figure 7.8. The LC50 response values for fathead minnows plotted against the LC50

responses of other organisms. The lines show a linear regression and 95%
prediction intervals for the relationship (after Suter 1993).

(unsampled) LC50s are expected to be greater than the estimated quan-
tity (e.g. Figure 7.9).

The simplest extrapolation is to assume the logs of LC50 tests from a
set of organisms are normally distributed. A FAV may be selected that is,
for instance, two standard deviation units less than the mean LC50 (e.g.
Figure 7.9). This implies that 97.5% of LC50s from unsampled taxa will
be greater than the threshold. Concentrations as high as the threshold
will kill at least 50% of the individuals from 2.5% of the species exposed
within 96 h.

One of the problems with these protocols is that LC50s, FAVs and
related values are treated as though they are exact. Of course, each one
will include measurement error. In addition, natural variation will perturb
values around any central tendency, affecting estimates of a ‘safe’ threshold
(Figure 7.9d).

Hart et al. (2003) recommended an approach that accommodates vari-
ability in the likelihoods and the consequences of events. If information
on variation in the contaminant is available, then a threshold may be
selected that satisfies a level of safety with a given degree of probability,
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Figure 7.9. Uncertainties in setting a final acute value, a safe threshold for a toxicant
based on extrapolations among species (after Suter 1993). The vertical bars show
the lower 5th percentile of the distribution. a. Distribution fitted to LC50 values for
eight species; b. distributions fitted to four samples of eight LC50s; c. distribution
fitted to eight LC50s, each of which shows measurement error; d. distribution
fitted to LC10s for eight species extrapolated from LC50s, each of which shows
measurement error.

for a given proportion of the biota. The ‘consequence’ curve is the cu-
mulative distribution of LC50s for a large set of species. The ‘likelihood’
curve is the cumulative distribution of contaminant concentrations in the
environment, measured over time. These curves may be plotted on the
same concentration axis, giving, for example, the concentration at which
the tolerance of about 5% of species is expected to be exceeded about
90% of the time (Figure 7.10).

The supervising scientist is an environmental regulator charged with
monitoring the effects of uranium mining in Kakadu National Park in
northern Australia. One of their concerns is the potential for uranium to
contaminate the Magela Creek downstream from mining operations and
tailings dams (Figure 7.11).
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Figure 7.10. The ‘likelihood’ distribution represents the distribution of salinities
experienced by species in Hughes Creek, in the Goulburn-Broken Catchment in
Victoria, Australia in 2000. The ‘consequences’ distribution represents species
sensitivities to salinity, based on field observations of species presence and salinity
measurements in a range of systems (from Hart et al. 2003; see also Verdonck et al.
2003). The dotted line in the bottom panel indicates that 10% of the EC estimates
for the site exceed the ECmax for about 1.8% of the species.
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Figure 7.11. Tailings dam, mining operations and the Magela Creek at the Ranger
Uranium site in northern Australia (after Bayliss, P. and van Dam, R., in prep.,
pers. comm.).

Data from sample point 009 suggest that ‘Action Levels’ are exceeded
occasionally, a consequence of flow from the mine site during the wet
season. The spikes in uranium concentration are attributed to human
activities (Figure 7.12).

If the uranium concentration reaches 5.5 µg/l, then 99% of species will
be ‘protected’ and 1% will be at risk, with 50% certainty (Figure 7.13).
‘Protected’ implies that the species’ response will be less than the crit-
ical threshold in a toxicity test. In this case, sublethal effects (changes
in reproductive output and population growth) were documented. The
chance that uranium concentrations will exceed 5.5 µg/l is about 1 in
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Figure 7.12. Uranium concentration at Magela Creek sample site 009, taken at
weekly intervals over the wet season when the risk of contamination is high due to
high rainfall runoff (after Bayliss, P. and van Dam, R., in prep., pers. comm.).
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Figure 7.13. Exposure and effect distributions for aquatic organisms in the Magela
Creek (after Bayliss, P. and van Dam, R., in prep., pers. comm.).

16 million, assuming the samples taken to date are a random sample of
all concentrations and that the mean and variance of the process do not
change in the future.

Exposure data were instantaneous whereas effects were measured over
72–148 hs, depending on the species. Direct comparisons (Figure 7.13)
probably overestimate exposure. Extrapolations among species are
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difficult. It may be that the threshold is not sufficiently conservative or that
it is too conservative. Extrapolated tests do not say anything about long-
term (chronic) or other, more subtle, sublethal effects. They give little
indication of population or ecosystem-level consequences. Laboratory
bioassays do not predict responses under field conditions. Laboratory-
based tests ignore the potential for toxins to interact with other chemicals
or environmental variables. These issues are rarely discussed or resolved
in ecotoxicological studies.

Lastly, the taxa selected are, in theory, a random sample of all exposed
and susceptible taxa. In practice, they are a small set of vertebrates and
invertebrates used conventionally in toxicity tests and do not sample the
full spectrum of physiologies, life histories and behavioural traits.

Verdonck et al. (2003) outlined methods to calculate probabilistic risk
from exposure to toxins. They described how several methods compare
distributions improperly. They outlined methods for assessing risk that
take into account exposure, environmental concentration and species
sensitivity distributions. For example, they recommended interpreting
the joint probability distribution formed from the environmental con-
centration distribution and the species sensitivity distribution. Routine
toxicological protocols employ much cruder approaches to account for a
range of uncertainties. They are outlined below.

7.2.5 Extrapolating from acute to chronic effects

Ecotoxicological studies may evaluate mortality, changes in life-cycle,
reproduction or the survival of different stages. In the environment,
species are exposed for extended periods, or continually, and the ana-
lyst has to infer long-term (chronic) responses from short-term (acute,
usually 96-h) tests.

Regression relationships have been used to predict chronic NOEC
values from acute LC50s based on large numbers of tests for a few test
organisms (e.g. Suter 1995). Because there are so few species for which
these analyses are available, ‘assessment factors’ (commonly = 10) are
used to extrapolate acute effects into chronic NOECs:

Chronic NOEC = LC50/10.

In a few instances, the responses of test organisms to short- and long-
term exposures have been compared. There is substantial variation be-
tween acute and chronic responses (Table 7.3), with variation among the
responses of different species ranging over three orders of magnitude.
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Table 7.3. Ratios of chronic to acute toxicities for different animal
species exposed to groups of chemicals with different modes of action
(after Calow and Forbes 2003). The ratios are arranged from
highest to lowest

Nonpolar Polar Specific chemicals
Metals organics organics (e.g. pesticides)

125 5.6 5 012 126
15.8 3.2 112 20
6.3 1.6 10 7.1
1.8 1.3 2 4
0.9 1.1 1 0.8

Observations such as those in Table 7.3 make simple assessment factors
unreliable. More reliable extrapolations will depend on better characteri-
zation of the responses of populations to short- and long-term exposures.

7.2.6 Extrapolating from toxicity tests to ecological effects

If a toxin affects only one life history stage, it may have almost no effect on
the dynamics of a population, even given substantial mortality. Similarly,
small changes in life history parameters (fecundity, survival, dispersal and
so on) may have important effects on the chances that a population will
persist. The ecological effects of exposures to toxins may be assessed by
propagating the effect of the toxin through a population model.

Caswell (2001) summarized the effects of changes in individual ele-
ments in a life history table by measuring their effect on the long-term
growth rate of the population. An alternative is to represent changes in
a population through a model that accounts for uncertainty, resulting
in changes in the probability of decline or loss of the population (see
Burgman et al. 1993).

For example, we may represent the dynamics of a population with the
expressions:

the number of adults next year = the number of adults that survive
+ the number of young that survive

and mature into adults,

and

the number of young next year = the number of offspring per adult
× the number of adults,
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or more succinctly,

Adults (t + 1) = Adults (t ) × s + Young (t ) × s
Young (t + 1) = Adults (t ) × f

where s is the proportion of adults and young that survive from one year
to the next in the absence of the toxin, and f is the average number of
young produced by each adult.

Given LC50 data, the dose–response curve converts to additional mor-
tality in a population through the slope of the mortality curve at the LC50

point

x = ln(1 − m )
T

where m is the reduction in biomass (mortality), T is the test duration (in
units of the time step of the model) and x is additional mortality (/ unit
biomass per unit time) (see Spencer and Ferson 1998).

If the toxin kills only the young, to include mortality due to the toxin,
we calculate

Young (t + 1) = Adults (t ) × f × e−x

Bartell (1990) estimated the chances of 25% and 50% reductions in the
annual production of fish in a temperate lake from exposure to chloro-
paraffins (Figure 7.14) using calculations such as these. The probabilities
were calculated using Monte Carlo simulation (Chapter 10) of a bioen-
ergetic population model. A food web model incorporating elevated
mortality from a contaminant is developed in Chapter 10.

Statistical extrapolations are an alternative to model-based extrapola-
tions. They depend on extensive data on laboratory and field testing of
the responses of populations to exposure to a contaminant. The risk man-
agement cycle would suggest that the population models should guide the
development of field measurements and experiments. The results should
be used to revise model structures and parameter estimates.

7.3 Deciding a safe dose
The regulation of toxicants, pollutants, carcinogens and other substances
involves the extrapolation of exposure–response tests to determine safe
circumstances. In the USA, the FDA accomplishes regulation by publish-
ing lists of ‘allowed’ substances and tolerances. Tolerances are maximum
amounts of approved substances allowed in different circumstances (in
foods, in the air and so on).
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Figure 7.14. Chances of decline of a fish population resulting from exposure to
chloroparaffins (after Bartell 1990).

Deciding on a safe level involves building conceptual models for expo-
sure, and calculating the exposure experienced by an average person in a
population when they consume normal amounts of a food (for instance).
The allowable amount from all foods is called an acceptable daily intake
(ADI, termed a reference dose by the EPA). It is the amount ingested
every day without experiencing much likelihood of an adverse effect.

Politicians write legislation for safe food. No chemical, food or food-
additive is risk free. The ADI concept rests on the concept of ‘reasonable
certainty of no harm’, a term invented by the FDA which Byrd and
Cothern (2000) call bureaucratic code for ‘following FDA’s traditional
practices’. These are as follows (Byrd and Cothern 2000):

1. The proponent submits data to the regulator, following guidelines
published by the regulator, and usually requiring animal toxicological
studies and exposure scenarios that match the anticipated exposure
(acute for acute, chronic for chronic).

2. Scientists working for the regulator review the data for quality and
completeness.
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3. The regulator derives a NOEL, (or a NOAEL in mg/kg·day), the
highest dose that does not induce an adverse effect in any of the sub-
mitted studies. This threshold is determined by biological judgement,
rather than statistical criteria.

4. The regulator converts the NOEL to an ADI by dividing the NOEL
by a safety factor of 100. The implication is that regulators believe that
an average person could consume this much of the substance every
day of their lives without experiencing a toxic effect.

5. The regulator publishes tolerances for foods, label directions, condi-
tions of use and so on. Usually, the proponent remains liable for adverse
effects. The regulator compares the ADI to the exposures expected
from the uses intended by the proponent and will set conditions for
use if anticipated exposures exceed the ADI.

The use of safety factors in human health assessments embodies an un-
dertaking to protect the normal range of human behaviour. Byrd and
Cothern (2000) claimed that no substance approved by the FDA had
adverse effects on humans, out of more than 1000 that were listed.

7.3.1 Reference doses, benchmark doses and uncertainty

Species sensitivity distributions (Figure 7.9) often are based on a small and
unrepresentative set of species. Even so, the data are relatively expensive
and time consuming to collect. Building models and collecting additional
data to estimate population and ecosystem-level effects are more difficult
still. It is likely that point estimates of potency, fixed extrapolation fac-
tors and acute tests will continue to play a role in setting standards for
ecosystem protection (Calow and Forbes 2003).

A benchmark dose is the dose that corresponds to a predetermined
level of response, such as the dose at which, say, 10% of the population
exhibit an effect. If only a LOAEL / LOAEC has been recorded, then
dose–response models may be used to extrapolate to a benchmark dose.
The EPA depends on available scientific literature, rather than requir-
ing specific studies and uses an extensive list of ‘uncertainty’ factors as
denominators, to translate test results into no-effect levels.

If all doses above a zero dose cause an adverse effect, the LOAEL is used
as the threshold (because it represents an upper bound on the threshold)
together with a safety (uncertainty) factor (Crawford-Brown 1999).

Uncertainty factors account for interspecies variability (UFA), in-
traspecies variability (UFH), uncertainty in the duration of exposure and
the duration of the study (UFS), the use of a LOAEL, incomplete data
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bases, age dependence of thresholds (such as the greater susceptibility of
children) and additional modifying factors (MF). The intent is to gen-
erate confidence that the true threshold for the most sensitive members
of a population is greater than this value, reflecting application of the
precautionary principle (Crawford-Brown 1999).

The reference dose (Rf D) is given by:

Rf D = NOAEL
UFA × UFH × UFS × MF × . . .

The factors are assumed by default to have values of 10, usually making
the denominator in the above equation range between 1000 and 100 000.
Reference concentrations (RfCs) are used for inhalation pathways. Rf Ds
are used for ingestion (Crawford-Brown 1999).

Uncertainty factors are a crude way of providing assurances that actual
doses and responses are no greater than those specified. They are designed
to be protective. Unfortunately, the level of protection is unevenly ap-
plied between substances, reflecting the level of knowledge rather than
the potential for harm. Furthermore, the absolute level of protection is
unknown. This has led to accusations that regulatory thresholds for chem-
icals are hyperconservative to the point of disallowing many substances
that might, on balance, be beneficial (Breyer 1993, Burmaster and Harris
1993, Finkel 1995). We explore this conundrum in detail in Chapters 9
and 12.

7.3.2 A bootstrap estimate of Rf Ds

It is a standard procedure to regress ranked, transformed LC50, NOEC
and EC50 data on concentration for a range of species to estimate a
specified level of protection (see the example below). Suter (1993) and
Newman et al. (2000) raised a number of concerns, including:

� Standard toxicity tests such as LC50s do not give an adequate measure
of effects on populations in the field. In particular, in situ exposures
depend on life stage, behaviour, dispersal dynamics and so on.

� Any species loss may be unacceptable.
� The approach does not discriminate among species and it may be more

important to protect ecologically important species (keystone species,
dominants).

� The data ignore many sublethal effects.
� The assumption of a lognormal distribution usually is not verified.
� The sample sizes and the taxa used in tests are arbitrary.
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Box 7.2 · A bootstrap estimate of uncertainty factors (after Newman
et al. 2000)

The data are composed of a set of LC50s or related information for a
set of species (usually 30 or more). Their procedure works as follows:

1. The data (the species) are sampled randomly, with replacement,
generating a set of 100 observations.

2. The taxa are ranked from lowest to highest (LC50).
3. The value at the 5th percentile is taken to be the allowable threshold

(the hazardous concentration).
4. The first three steps above are repeated, say, 10 000 times, giving

10 000 estimates of the hazardous concentration.
5. The 10 000 concentrations are ranked and the median value is taken

to be the hazardous concentration.

The 2.5th and the 97.5th percentiles are the 95% bootstrap confidence
intervals. The concentration corresponding to the 5th percentile gives
the concentration that protects 95% of species with 95% certainty. The
main cost of this approach is the computational overhead, a modest
price for the benefits.

The choice of concentrations and the scale implied by the interval be-
tween concentrations can affect interpretations. For instance, when log
scales are used, analysts are more likely to specify low-dose thresholds be-
cause the scale places greater emphasis on low concentrations compared
to a linear scale (see Figure 4.6 and Nabholz et al. 1997).

The uncertainty factors outlined above are intended to compensate
for these uncertainties. Newman et al. (2000) proposed an alternative
analytical procedure based on a bootstrap (Efron and Tibshirani 1991,
Box 7.2).

7.4 Transport, fate and exposure
Once a reference dose has been established, it must be translated into a
concentration that is allowed in the environment, usually a concentration
that will produce a dose below the threshold, expressed as the average
daily intake (in units of mg/kg·day). The ways in which chemicals enter
and move through the environment determine, to a large extent, what is
allowed by regulators.
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Figure 7.15. Conceptual model for the steady-state mass balance of a chemical in a
lake (from Suter 1993).

Exposure modelling involves the collection of data on things such as
discharge rates and concentrations of the chemical or its structurally sim-
ilar alternatives within various environmental compartments. Defining
important elements and pathways at an appropriate scale is an exercise
in conceptual model building (Chapter 3). The model summarizes com-
ponent species, the locations of people relative to emission sources and
plumes, as well as hydrology, soil characteristics, or other elements and
processes with which the chemical may interact.

The conceptual model for exposure may be formalized mathemati-
cally, or may be represented as a diagram (e.g. Figure 7.15), an influence
diagram or a hazard matrix (Chapter 5). It is used to estimate amounts
and concentration of the chemical in different parts of the environment,
its transportation rates and estimates of the time for which it will remain.

The various elements in a model such as that in Figure 7.15 may be
reduced to a set of reasonably well-understood physical and chemical
processes (a few are summarized in Box 7.3).
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Box 7.3 · Chemical processes important in many exposure pathways

� Advection: the transportation of a chemical from one medium to
another by a carrier unrelated to the presence of the chemical. Such
vehicles include dust, rainfall, food, or sediment particles suspended
in a water column.

� Diffusion: occurs when a chemical migrates between media because
it is in a state of disequilibrium.

� Partitioning coefficient: the name given to the ratio of concentrations
of chemicals in two phases at equilibrium. This is also known as
fugacity (a measure of the chemical’s tendency to escape from the
phase it’s in).

� Volatilization: processes in which a chemical changes from a solid or
liquid form to a vapour.

� Bioconcentration factor: the steady-state ratio of chemical concentration
in organisms relative to the concentration of the chemical in the
media in which the organisms live. It is the net result of the uptake,
distribution and elimination of a substance, and depends on a variety
of physicochemical and physiological factors.

� Transformation: describes the set of processes and reactions by which
chemicals change composition, including physical processes such as
oxidation and biologically mediated transformations.

� Hydrolysis: the term given to chemical reactions in which organic
compounds react with water to produce other compounds. The
hydrolysis rate depends on the pH of the medium, temperature and
the presence of anions and cations. The rate is often expressed as a
half-life.

� Photolysis: refers to reactions caused by light, such as sunlight pho-
tolysis of organic chemicals in surface waters, on soil and in the
atmosphere. The photoreaction rate depends on sunlight intensity,
UV absorption tendencies of the organic compound, and the effi-
ciency with which absorbed light causes the reaction.

The chemical processes in Box 7.3 reflect the degree of maturity of
the ecotoxicology paradigm for risk assessment. Conceptual modelling
in this domain has been routine for several decades. In contrast, in some
arenas, there is no consensus on how to write appropriate models, or
even if models are useful.
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7.4.1 Exposure assessment

Exposure assessment measures the exposure of components of a pop-
ulation or ecosystem to a contaminant. The assessment answers ques-
tions such as: ‘Given output of fate models, which media are signifi-
cantly contaminated?’, ‘To which contaminated media are the endpoint
organisms exposed?’, ‘How are they exposed (i.e. routes and rates of
exposure)?’, ‘Given an initial exposure, will the behavioural response
of exposed organisms modify subsequent exposure (i.e. attraction and
avoidance)?’.

Estimation of exposure relies on creating exposure scenarios, descrip-
tions of the circumstances in which a chemical is likely to be used. The
scenarios determine the equations that are used to estimate exposure and,
subsequently, the level of the chemical that will be tolerated by regulators.

Exposure pathways reflect the way a chemical reaches a target, usually
an assessment endpoint. For example, respiration provides opportuni-
ties for hazardous substances to reach organisms through inhalation of
contaminated air, intake of contaminated water through gills, dermal
sorption, or uptake of a gaseous contaminant through leaves. Solid me-
dia may provide opportunities for ingestion of contaminated sediments
and sediment-associated food, vegetative uptake of contaminants through
soil, or inhalation of contaminated dust particles.

For example, Suter (1993) noted that if you eat or drink methyl-
mercury, it may damage your central nervous system, impair your hearing
and cause tunnel vision, severe mental abnormalities, headaches, fatigue,
death and deleterious effects on a developing foetus. Methylmercury may
be found in sediment and suspended sediments in water. It is taken up
by aquatic organisms via their gills and reaches humans through food and
drinking water contaminated by suspended sediment particles.

The last step in the chain of logic used to set regulatory conditions is
to assess the dose a person (or other endpoint) is likely to receive from
different pathways. The typical approach is to use the ‘dose’ equation
(see, for example, Crawford-Brown, 1999, p. 84):

DOSE = Cpathway x × Ipathway x

bw

DOSE = total daily dose (mg/kgbw·day),
Cpathwayx = concentration of chemical in medium x (mg/kg),
Ipathwayx = intake rate, total daily intake of this medium (kg/day),
bw = average human body weight (70 kg).
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water, Cw water fish, Cf 
uptake, ku elimination, ke 

Figure 7.16. A model for bioconcentration.

This equation summarizes the thinking in the exposure scenarios. In the
case of methylmercury, the dose would include the sum of exposures
from consumption of fish and shellfish, and from drinking contaminated
water. It’s then up to the regulator to set conditions for use of the chem-
ical such that the concentrations do not result in doses that exceed the
ADI.

7.4.2 Modelling transport, fate and exposure

Creation of exposure scenarios is essentially a process of constructing
conceptual models. The dose equation translates the qualitative ideas
into a quantitative framework. The models we build to understand and
predict the consequences of human activities can be more complex than
the dose equation, and should be if the problem warrants a more detailed
treatment.

For example, a two-compartment submodel of some of the biocon-
centration processes may be that represented in Figure 7.16. If we assume
that the amount of material excreted by the fish has a tiny effect on the
concentration in the water (because of the relative sizes of the fish and
the lake) or because the excreted material is not dissolved, then the rate
of change of concentration depends on the rate at which it is absorbed
and the rate at which it is excreted.

In continuous time (a reasonable assumption for continuous diffusion
processes), the simplification above may be further abstracted into an
expression

dCf

dt
= kuCw − keCf

where

Cf = concentration of the chemical in the fish (mol/kg),
Cw = concentration of the chemical in the lake (mol/kg),
ku = uptake rate of water (l/(kg·day)),
ke = elimination rate (1/kg·day).
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The bioconcentration factor (BCF) = Cf / Cw = ku / ke.
This equation is an example of many that may be written to represent

the way we think the system works. As in all models, the level of detail
is a compromise between the questions we need to answer, the data and
our understanding of the system. There may be other equations that are
just as plausible, or that fit the data equally well. A complete analysis
would consider structural alternatives. In addition, both variability and
incertitude affect our knowledge of the parameters. In Chapter 11, we
will see methods that allow us to include uncertainty in models such as
these.

7.4.3 Hazard quotients and mixtures

The goal of the regulator is to prevent exposures that will produce doses
above the benchmark. If the expected dose (the average daily rate of
intake, ADRI) exceeds the reference dose (Rf D), the regulator may be
judged to have failed in its duty to protect the exposed population.

A hazard quotient (HQ) is the estimated exposure divided by a toxicity
threshold. Typically,

HQ = ADRI
Rf D

in which an HQ above 1 indicates the Rf D has been exceeded in the
exposed population. The job of the risk manager is to ensure that even
the most heavily exposed members of the population have an HQ less
than 1.

A hazard index is the sum of the HQs for all of the substances to which
an individual is exposed, and that act by a similar mechanism. A value of
the ratio above 1 does not mean that the effect will certainly occur. The
chance of the event is unknown but it is assumed to be acceptably small
for hazard indices less than 1.

This approach assumes the effects of different substances are additive.
If substances with different modes of action are experienced, they are
treated and regulated separately. Thus, there is no allowance for syner-
gistic effects between substances. Just as importantly, even when using
‘reasonable maximum exposures’, point estimates for hazard quotients
typically are conservative and the level of conservatism is variable (Cullen
1994).
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Table 7.4. Parameter estimates for the state variables and
flows in the conceptual model represented by Figure 7.15
(Suter, 1993)

Volume of water in lake, Vw = 107 m3

Flow into and out of lake, WI, WO = 1000 m3/h
Inflow of suspended sediment, IS = 0.05 m3/h
Deposition to bottom of lake, DL = 0.03 m3/h
Sediment flowing out of lake, SO = 0.02 m3/h
Hydrolysis rate, Kh = 10–4 h−1 (half-life = 289 days)
Evaporation rate of water, Ew = 10 m3/h
Air-water partition coefficient, Kaw = 0.01 (i.e. Ca/Cw)
Particle-water partition coefficient, Kpw = 5450
Biota-water partition coefficient, Kbw = 5000
Volume of particles, Vp = 200 m3

Volume of biota (including fish), Vb = 50 m3

Discharge rate of chemical, Dc = 40 g/h
Concentration of chemical in inflow, CI = 0.01 g/m3

7.4.4 Model-based assessments

We could continue to build the submodels into a cohesive whole. One
of the benefits is to make it plain just how complex dynamics such as
these can be, even for an extremely simple abstraction such as that in
Figure 7.15. For example, Suter (1993) provided parameter estimates for
a one-compartment aquatic model (Table 7.4).

This list is dauntingly long and complex. Usually, most of the parameter
estimates will be missing, or based on expert judgement or on estimates
made for other species and other lakes.

Note, in addition, that each parameter is represented by a best estimate
alone. The analyst did not bother to report bounds, or any other measure
of uncertainty in the parameters or the model structure. This is not a rea-
son to disavow an explicit model. Rather, the analyst has the opportunity
to make the lack of data clear by providing bounds for each parameter. At
least, the point estimates mean that terms in the model are defined unam-
biguously. If we take care with units and the construction of equations,
the logic of the problem may then be internally consistent. These pro-
perties are difficult to obtain in a model based on language and concepts.

This model represents just one kind of abstraction of the problem of
evaluating the exposure and consequences of the release of a chemical.
It is possible to write a set of equations for all of the pathways, and
then to solve the equations to generate expected outcomes and their



7.5 Examples · 199

Table 7.5. Threshold values for classification of chemicals (after Beer and
Ziolkowski 1995)

Very toxic Toxic Harmful
(mg/l) (mg/l) (mg/l)

96-h LC50 for fish ≤ 1 ≤ 10 ≤ 100
48-h EC50 for Daphnia ≤ 1 ≤ 10 ≤ 100
72-h EC50 for algae ≤ 1 ≤ 10 ≤ 100

associated probabilities using Monte Carlo simulation or other methods
(Chapter 10).

7.5 Examples
7.5.1 Atrazine

Atrazine is a chemical used to control weeds in crops. Tarplee (2000) pro-
vided an example of the thinking behind estimation of reference doses in
a re-evaluation of Atrazine. Measured LOAELs and NOAELs are com-
bined with uncertainty factors in a qualitative process to generate an
acceptable concentration. Atrazine has been shown to disrupt the re-
productive development of rats, raising concerns that it may affect the
development of children, although there is no direct evidence for this
effect. Tarplee (2000) settled on an acute Rf D of 0.1 mg/kg, ‘ . . . based
on delayed or absence of ossification found in a rat development study
(NOAEL 10 mg/kg; LOAEL 70 mg/kg) and an uncertainty factor of
1000 . . . Three other studies were considered to support this Rf D’. They
included two other studies on rats and one on rabbits that showed similar
effects using similar concentrations of the chemical.

7.5.2 OECD protection thresholds

OECD policy aims to protect the structure and component species of
ecosystems and, by doing so, protect ecosystem functions. It uses risk
limits of chemical substances in soil, air and water. Chemicals are classified
as very toxic, toxic or harmful on the basis of standard laboratory toxicity
tests (Table 7.5).

Maximum permissible risk concentrations are an extrapolation of tox-
icity tests. They are intended to protect 95% of species. For human health,
thresholds are set at 10−6 additional deaths per year for noncarcinogens,
and at 10−4 for genotoxic carcinogens (based on NOEL). Negligible



200 · Ecotoxicology

risk concentrations are calculated to be 100 times below the maximum
permissible risk concentration.

Thus, like the Atrazine example, the approach uses evidence of toxic
effects together with uncertainty factors in a qualitative process to arrive
at an acceptable concentration.

7.5.3 Cotton pyrethroid risk assessment

Cotton pyrethroid insecticides are chemicals used to control insects. They
interfere with ion channels in insect nervous systems.

Companies seeking to register pyrethroid products have used farm
pond monitoring, contained field experiments, runoff monitoring and
research into bioavailability to establish toxicity levels. Registrants are re-
quired to recommend no-spray distances that will buffer nontarget species
from the effects of the insecticides.

Cotton pyrethroids have a half-life of about four days and low toxicity
to mammals and birds. The main environmental concern is their potential
to affect aquatic organisms. These concerns led in the USA to studies of
toxic effects on organisms in several trophic levels and with different
ecosystem functions and physiological characteristics.

Solomon et al. (2001) obtained all available data for aquatic species and
created a cumulative frequency distribution. They combined the results
of LC50 studies with EC50 studies because EC studies of insects usually
record immobility, which leads to death. There were few LC10 or EC5

results available. They used acute assays (over 24–96 hs) because uptake
is rapid and the half-life of the chemicals is short. For multiple studies
of a single species, they used the geometric mean of the results, giving a
conservative estimate of the species’ value.

Transformed ranks of species were calculated as (100 × i)/(n + 1)
where i is the raw numerical rank of a species and n is the number of
points (species). These transformed ranks were plotted on a lognormal
transformed axis against the log of the concentration (Figure 7.17).

Solomon et al. (2001) fitted a linear regression to the points and used
it to estimate the 10th percentile of the distribution. This value was used
in calculating reference doses to regulate the chemicals. When discussing
extrapolation uncertainties, Solomon et al. (2001) noted acute to chronic
ratios ranged from 2 to 415, with an average of about 44.

The analysis ignores interactions between chemicals. It does not inves-
tigate responses of species under a range of field conditions. In common
with all such assessments, it is simply too costly and time consuming to
pursue all potential lines of enquiry.
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Figure 7.17. Distribution of acute toxicity values for cypermethrin, a cotton
pyrethroid, in aquatic arthropods and vertebrates. The outlier represents a very
insensitive species. This data point was omitted from subsequent analysis (after
Solomon et al. 2001).

Unfortunately, the uncertainties involved in the analysis were not rep-
resented in the final value of the threshold. Instead, a conservative bound
is offered that conveys the sense that real concentrations and levels of
harm will be less than the threshold implies. Like the examples above,
there is no way of knowing what the level of protection is, or how it
compares to the levels applied to other chemicals.

7.5.4 Integrating pesticide risks in Italy

A variety of classification systems for pesticide risk have been developed by
European countries. Some select a pesticide with the least impact among a
candidate set. Others guide farming practices. All systems measure risk to
water organisms (such as EC50s) and most consider risks of groundwater
contamination. Despite these similarities, Finizio and Villa (2002) noted
that when the various methods were applied to a set of chemicals, the
ranks generated were very different.

Finizio and Villa (2002) took elements from the various systems to
create a rating system for pesticides on behalf of the Italian Environmental
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Table 7.6. Risk classification intervals and scores for nontarget organisms in
surface water (after Finizio and Villa 2002). Scores were determined for each
chemical, for each of algae (A), Daphnia (B) and fish (C), based on the results
of tests. The scores were combined into a final score using P = 3A + 4B +
5.5C. The coefficients (weights) were determined subjectively. PEC is the
predicted environmental concentration calculated from dilution, transport and fate
models (see below). The toxicity exposure ratio (TER) is the EC50 (or LC50)
divided by the PEC

TER Score

>1000 0
1000–100 1
100–10 2
10–1 4
<1 8

Protection Agency. For example, they used measurement endpoints for
algae, Daphnia and fish and assigned scores to different toxicity intervals.
They then used a weighted linear combination of these scores to create
a final score (Table 7.6). This score was used to rank pesticides, and to
classify them as low-, medium- and high-risk hazards (Figure 7.18).

The purpose of the Italian system was to provide a basis on which to
create incentives for more sustainable agricultural practices. People who
used chemicals at the low end of the index were to be rewarded with
financial incentives.

Like the risk assessments above, the analysis did not carry uncertainties
through the chain of calculations. Several parameters were subjectively
estimated, while other parameters such as LC50s came with statistical
bounds. Thresholds used in various jurisdictions were arbitrary. It would
have been useful to conduct analyses that evaluated the sensitivity of
ranks to uncertainties. The absolute values of the indices and the associ-
ated classifications may be less important because hazards are treated in a
relative way.

7.5.5 Human health thresholds in Australia

Typically, health experts arrive at a consensus based on toxicity results,
epidemiological data and any other available information. In theory, these
standards integrate all exposure pathways and take into account individual
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Figure 7.18. Integrated toxicity index scores for phenylurea herbicides in Italy (after
Finizio and Villa 2002). The scores and classes are used to support financial
incentives for farmers to reduce the polluting effects of agriculture.

sensitivities. However, the detailed reasoning used to arrive at such thresh-
olds is rarely explicit and there are no standard equations.

For example, the Australian National Environment Protection Meas-
ures (NEPC 2000) provided ambient air quality standards and goals
(Table 7.7). The standards specified details for the endpoints including
the periods over which measurements should be taken, and the frequency
with which the regulatory standards may be exceeded.

Like the reference dose thresholds set by the EPA, there is no way of
knowing how protective each standard is, or how the level of protection
varies between substances.

7.5.6 Methylmercury in the u’Mgeni River

A large mercury incinerator was commissioned near the u’Mgeni River
in South Africa in 1986. In the early 1990s, effluent from a holding pond
overflowed into a tributary that flows into the u’Mgeni River and the
Inanda Dam, in a densely populated catchment in which the people rely
on the dam for drinking water, watering livestock and fish (Oosthuizen
2001).
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Table 7.7. The Australian national criteria for ambient air pollution for carbon
monoxide, nitrogen dioxide, photochemical oxidants, lead and particulate matter

Goal within
10 years for

Averaging Maximum maximum allowable
Pollutant period concentration exceedances

Carbon monoxide 8 h 9.0 ppm 1 day a year
Nitrogen dioxide 1 h/1 year 0.12 ppm/0.03 ppm 1 day a year/none
Photochemical oxidants 1 h/1 day/ 0.20 ppm/0.08 ppm/ 1 day a year/

(as ozone) 1 year 0.02 ppm 1 day a year/none
Lead 1 year 0.05 µg/m3 none
Particles as PM10 1 day 50 µg/m3 5 days a year

Mercury poisoning causes neurological and developmental disorders.
The World Health Organization (WHO 1994) estimated that a reference
daily intake of methylmercury of 0.48 µg/kg body weight would cause
no adverse effect in humans. Mercury concentrates in human hair follicles
in a predictable way and the WHO estimated that the daily intake would,
at equilibrium, equate to hair mercury concentration of 11 µg/g of hair.

The US EPA (1997c) specified a benchmark dose of methylmercury of
0.1 µg/kg body weight, based on the lower bound of the 95% confidence
interval of the dose that produces a 10% prevalence of adverse effects, and
an uncertainty factor of 10. Their calculations equated this dose with
methylmercury concentrations of 44 µg/l in blood or 2.3 µg/g in hair.

Oosthuizen (2001) collected data on consumption and methylmercury
concentrations in fish, and estimated the dose from the standard dose
equation as:

DOSE = Cfish × Ifish

bw
.

He collected hair samples from a small population of ‘high-risk’ indi-
viduals, young boys who swam, played, drank and fished in the u’Mgeni
River daily (n = 9), and from a control group of people with similar
characteristics upstream from the plant (n = 5).

Hazard quotients are the calculated daily dose divided by the reference
value representing a tolerable daily dose (see above). Hazard quotients
relative to the WHO standard ranged from 0.8 to 2.7 with a median
value of 2.3. Hazard quotients for the US EPA benchmark ranged from
4 to 13, with a median value of 11. These results suggested that the
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population of exposed children were at risk from elevated methylmercury.
In contrast, the analysis of hair samples from the same children returned
concentrations less than 0.5 µg/g, below the measurement detection
limit for all cases in the control and the exposed groups, and well below
concentrations that are typical of people who exhibit effects.

The samples sizes were small but the results raise some interesting issues.
Oosthuizen (2001) questioned the effects of seasonal variation in diet, the
reliability of dietary information, the possibility that chelating agents in
the diet help eliminate mercury, the assumed relationship between blood
and hair mercury concentrations, the hyperconservative assumptions in
US EPA and WHO calculations, and the fact that previous studies on hair
mercury levels were conducted on people predominantly of European
and Asian origin. The physiology of mercury in African hair and blood
may be different.

7.6 Discussion
The ecotoxicological paradigm has evolved ways of dealing with uncer-
tainty that make it difficult to estimate just how protective the system
is. Some say it is hyperconservative (Breyer 1993). Others say it is about
right (Finkel 1995). The main problem is that the level of conservatism
is uncontrolled and probably varies substantially between applications.
Other methods share this problem (Chapter 9).

At least some levels of protection are higher than may be warranted
by the effects of individual toxicants. Swartout et al. (1998) explored the
extent to which uncertainty factors are biased in correcting a dose to
a safe level. They used data for substances for which there were both
human and animal studies of effects. They limited the studies to those in
which data on variability in human responses were available, where studies
of different durations had been conducted, and where both LOAELs
and NOAELs had been estimated. These data allowed them to estimate
directly, unbiased correction factors for each of these elements (between-
species variability, within-species variability, duration of the study, and use
of LOAELs). They combined lognormal distributions for each of these
elements using Monte Carlo techniques (see Chapter 10).

They estimated that a correction factor of 234 for three uncertainty
factors would produce a threshold that is 95% certain to provide sufficient
protection for a randomly selected person from the exposed population.
The default protocols would have created a denominator of 1000 for
three factors, providing a confidence level far in excess of 99%.
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But these estimates ignore interactions between chemicals, undiscov-
ered pathways and so on. The degree of conservatism is intended in the
USA to reflect a ‘margin of safety’. Judge Bork made rulings (reported in
1994, recounted by Crawford-Brown 1999) over the effects of benzene
and vinyl chloride (both carcinogens) that established several precedents.
‘Reasonable protection’ against risk does not require zero risk. Instead
there is some social and legal threshold of acceptable additional risk. So
long as the EPA established exposures that would keep the risk below
an acceptable level, even for the most exposed individual, the regulated
activity could continue.

The Judge ruled that the EPA must first establish a goal for risk (e.g.
keeping added annual risk of dying below a value of 10−6), and then
recognize that the actual risk to individuals is subject to considerable
uncertainty. If regulatory decisions ensure that the individual with the
highest risk is below the target risk, even if the upper confidence limit
is used to assess exposure, then the regulations may be said to provide an
‘ample margin of safety’.

Ideally, to satisfy this stipulation, it would be necessary to specify the
risk target, the acceptable fraction of people above the risk ceiling, and
the confidence with which it can be stated that the actual fraction of the
population is above the ceiling (Crawford-Brown 1999). The levels of
conservatism in toxicological risk assessments and ways for dealing with
them are explored in more detail in Chapters 9 and 10.

Measures of effect are difficult to relate to specific ecological outcomes
when viewed in isolation. It is difficult to relate the objective of protecting
sensitive elements of an ecosystem to an allowable dose that kills less than
50% of the adults of 5% of the species in a system. Ignoring population
or higher-level effects, focusing only on individual-level endpoints can
lead to biased judgements about risk (Pastorok et al. 2003). Ecological
models of population processes may be used to translate the individual-
level effects of toxicological tests into more concrete terms. The output
of the ecological model will correspond to one or more of the assessment
endpoints (see the examples documented in Pastorok et al. 2003). Models
of this kind will be discussed in more detail in Chapter 11.



8 � Logic trees and decisions

Logic trees are diagrams that link all the processes and events that could
lead to, or develop from, a hazard. There are two approaches: a fault tree
works from the top down, linking chains of events to the outcome (fault
tree analysis); an event tree takes a triggering event and follows all possible
outcomes to their final consequences (event tree analysis).

These approaches are best developed in engineering where they are
used to formalize conceptual models. They are sometimes called cause-
consequence diagrams (Hayes 2002a). Logic trees use the same structured
reasoning that appears in diagrams of arguments in informal logic (Walton
and Batten 1984) although argument diagrams are not usually causal
(Korb and Nicholson 2003). Logic trees are also intimately related to
expert systems.

This chapter describes event trees and their extensions into decision
trees, decision tables and related methods. It introduces classification and
regression trees, probabilistic trees and Bayes’ networks. Lastly, it describes
the structure and function of fault trees. Logic trees are pervasive, even if
sometimes the trees are not drawn. Examples from conservation biology,
toxicology, human health and safety, engineering, freshwater ecology and
invasive species risk assessment illustrate their utility and limitations.

8.1 Event trees
Event trees link possible outcomes following an initiating event. They
are constructed as a series of dichotomies (yes/no). Each node is an event
(or a decision). The tree represents a model of the causal pathways for the
system. The focus is on a primary (initiating) event and consequences are
traced forwards from it.

Most event trees have been constructed for engineering systems. Fig-
ure 8.1 shows a typical application outlining the possible outcomes result-
ing from a crack in a container containing a toxic substance. The branch
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Initiating event:
Crack in
material
container

Occurs

Does not occur

Exterior
vessel
containment

Ventilation
system
shutdown

Cleanup

Failure

Failure

Failure

Success

Success

Success

Plant and ambient
air contamination

Plant contamination
only

No contamination

No contamination

Figure 8.1. Event tree for toxic material container leak (after Stewart and Melchers
1997).

Initiating 
event

Tree clearing

Yes

Recharge
increase

Water table
rises

Salt is
mobilized

Outcome

Yes

Yes

No

No

Yes

No

No

Saline seeps

Waterlogged soils

Ground water
salinity increases

No salinity outbreak

No salinity outbreak

Figure 8.2. Event tree analysis for assessing risk of salinity effects after tree clearing
(Bui 2000).

points are logical statements about the system, simplified into binary
questions. Release into the atmosphere will occur only if there is a crack
in the container AND the exterior containment vessel fails AND the
ventilation system does not shut down AND the cleanup procedures are
not executed properly.

The same kind of structure can be used to understand ecological
consequences of land management decisions (Figure 8.2). This example
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makes some of the assumptions embedded in the logic tree clearer. Like
hazard identification, the discrete nature of a logic tree is awkward when
applied to continuous processes. It forces the analyst to apply sharp def-
initions to vague boundaries. For example, recharge is the volume of
water that flows into an underground aquifer. If trees are cleared, the
amount of water reaching the aquifer may increase because the tran-
spiration rate of the vegetation is reduced. But what qualifies as an
increase? The volume of water flowing into the aquifer is a continu-
ous variable. The question is whether the recharge rate has increased
substantially, compared to any increase that may have been expected in
the presence of the trees. Water table changes and salt mobilization are
likewise continuous variables. It can be useful to subdivide the range
of a continuous response into categories, and treat each as a separate
outcome.

In the container example (Figure 8.1), it is easy to accept the implicit
assumption that the events either occur or do not occur. The tree clearing
example illuminates the assumption. So, for the problem in Figure 8.1
we could ask, how much of a cleanup represents ‘proper execution’. A
cleanup may involve many operations and the outcome is likely to be
the containment of a proportion of the released substance (a continuous
variable).

Similarly, what represents ventilation system shutdown? Not all ven-
tilation systems are airtight, and there may be a delay between the event
and the shutdown that allows some emissions. There may be simple and
sufficient answers to these questions, but they are worth asking.

8.1.1 Decision trees

Decision trees are event trees in which one or more of the branch points
are decisions. They are not necessarily causal or binary. A famous example
is of a person who wants to locate a gas valve in a dark room. If the person
lights a match to locate the valve, there is a risk of an explosion if the
valve has been left open. But finding it in the dark is difficult.

The decision-maker can decide to light a match, or not (the decision
node). There is gas in the room or not (two possible states of the world).
This gives four possible combinations of circumstances: no gas + no
match, no gas + match, gas + no match, gas + match. Only the latter
leads to an explosion (Figure 8.3).

This example is deceptively simple and the embedded assumptions
are not easy to see. Of course, there may be gas in the room, but
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Acts States Outcomes

Light match

Don't light
match

Decision node
Chance node

Gas

No gas

Gas

No gas

Explosion

No explosion

No explosion

No explosion

Figure 8.3. The gas valve problem represented as a decision tree.

not enough to cause an explosion. So the gas / no gas dichotomy is a
sharp threshold through a continuous variable, and actually represents the
condition ‘enough gas to cause an explosion’. Similarly, there may be an
explosion but it may be an acceptable one, small enough to cause no
harm.

The structure of the decision is an example of many problems that
people are asked to solve every day. It is a benefit-cost analysis, in which
the cost of failing to light a match (crawling around in the dark for an
interminable period) is weighed against the cost of lighting a match (an
explosion). Imagine that you are a telephone operator and your job is to
field calls to an emergency line. You are also required to dismiss ‘obvious’
cases of hoax calls. The structure of this problem is identical to the gas
valve problem (Figure 8.4).

False alarms are costly. Ambulances and police are expensive. False
alarms divert scarce resources from other urgent cases. But the cost of
failing to report an urgent case, because it is thought to be a hoax, is also
considerable and is highly visible, making the perception of this outcome
an important consideration (Figure 8.5; Chapter 1).

It is possible that the person who incorrectly dismissed the call alerting
them that someone was in trouble nevertheless made the right decision.
The ‘expense’ in Figure 8.4 is more than just money. Hoax calls result in
delays to other cases that may result in deaths. But they are less apparent
and therefore the reaction to them is muted.
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Call

No cost

Potential
harm

Unnecessary
expense

Benefits

Dismiss

hoax

serious

Take seriously

hoax

serious

Figure 8.4. The hoax emergency call problem.
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to die
By DARREN GOODSIR
and LES KENNEDY

A police phone operator dismissed
as a hoax a 000 emergency call that
an elderly woman had been left tied
up alive after being bashed and
raped in her home. Her body was
discovered by chance 10 days later.
     Police last week apologised to Joy
Golbey Alchin’s family, saying the
70-year-old probably would have
been found alive if they had
responded to the call. 

OOO  call
woman
left

Figure 8.5. The cost of a false-negative decision about an emergency call
(D. Goodsir and L. Kennedy, ‘The Age’, Melbourne, June 7, 2001).
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If the person responsible for the error makes many such decisions and
they are mostly right, then it might be worth an occasional error, in
terms of human lives, to save the misdirected resources. Overall, more
lives might be saved with this strategy, than by assuming all calls are
serious. Unfortunately, such arguments are often lost when confronted
with a stark press report of a single case.

Many decision-making circumstances are more complex than those
involving two alternatives. A good example is provided by decisions about
managing algal blooms in a river. The blooms contaminate drinking
water, poison domestic animals, kill fish and halt recreational use of inland
waters. They are a serious problem, but their effects can be substantially
mitigated if there is early warning of an event. Domestic animals can be
moved, people can be warned about drinking water, fish hatcheries can
delay the release of hatchlings and towns can arrange independent water
supplies.

A monitoring and decision framework was developed to react to meas-
urement endpoints. Each week, a field officer travelled to several loca-
tions, took a surface water sample, measured water turbidity and recorded
water flow rates over the preceding six days. The water sample was anal-
ysed for phosphorus (P) and nitrogen (N). The information was inter-
preted as follows (Figure 8.6):

� If nutrient levels were low (defined as concentrations in the sample of
[P] less than 50 µg/l and [N] less than 500 µg/l) and sediment nutrient
release was unlikely in the next six days, then the risk was classified as
‘low’. There was no further action.

� If either nutrient condition was true (high levels or a likely release),
light conditions were queried. If turbidity levels were high, it was con-
sidered that algal growth was unlikely and the risk was classified as
‘low-medium’.

� If turbidity was low, meaning that light levels were high enough to
support algal growth, flow conditions were queried.

� If flow was high for at least one of the last six days, thereby flushing
developing algae downstream, the risk was classified as ‘medium-low’.

� If flow was consistently low over the last six days, the risk was classified
as ‘high’.

The latter condition triggered a more detailed investigation of conditions,
and may have led to advice to residents to move domestic animals away
from the river, and to warnings to people about swimming and drinking
conditions.
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Figure 8.6. Decision tree for the risk of cyanobacterial blooms in lowland rivers
caused by irrigation drainage (after Hart et al. 1999). NTU stands for
nephalometric turbidity unit.
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The advantage of Figure 8.6 over the dialogue above is that the
train of logic is easy to see and understand. The decision tree is ap-
plied every week. Algal blooms are rare and, mostly, the tree leads to
no action. The tree carries with it the assumption that cyanobacterial
growth is controlled by nutrients, light and flow conditions (Hart et al.
1999).

It could lead to two kinds of mistakes: the analyst could advise low
risk, and an algal bloom occurs; or, the analyst could advise high risk,
and no algal bloom occurs.

Both mistakes have costs. Failing to warn about a bloom could result
in the deaths of domestic animals and those who drink or swim may
become ill. Rapid transport of water is relatively expensive and the impact
on tourism may have far-reaching economic implications. Predicting a
bloom that does not occur results in unnecessary costs associated with
domestic animal movement, water transport and restrictions on recreation
and tourism.

The thresholds for nutrient concentrations, turbidity levels and flow
conditions are arbitrary, sharp boundaries applied to continuous variables.
Different thresholds would lead to different frequencies for both kinds of
mistakes. Increasing the frequency of one would decrease the frequency
of the other. We will return to the issue of how to set thresholds to make
optimal decisions in Chapter 11.

8.1.2 Probabilistic event trees

The critical elements in the gas valve problem and the hoax emergency
call problem are that the decisions are weighted by a judgement about
the probability of the true state of the world. In both cases, there is a fact:
there is enough gas in the room for an explosion, or not; and there is
someone in trouble, or not.

Decision-makers cannot affect the truth of the matter, or its likelihood
of being true. Rather, they have a subjective belief in the truth of each
condition. If their subjective belief is that the gas level is safe, or the call
is a hoax, they will act accordingly. The consequences of a mistake are
large, relative to the benefits, so that it only makes sense to light a match
or ignore a call if the chance of a mistake is small.

An analyst or expert may estimate probabilities for each branch of an
event tree subjectively. Sometimes, a model or data from similar cases
support subjective estimates. For example, the engineers who designed
the material container in Figure 8.1 may have data for failures in similar
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Table 8.1. The gas problem as a decision table

States

Explosive gas level Little/no gas

Acts Light match Explosion No explosion
Don’t light match No explosion No explosion

components, or the design specifications may allow the failure rate to be
estimated from theory.

If it is possible to quantify the consequences in equivalent terms, then
the decision-making problem reduces to one in which the expected ben-
efit can be calculated by the product of the probability times the expected
gain (or loss).

8.1.3 Decision tables and expert systems

One problem with logic trees of all kinds is that they become unreason-
ably large and unwieldy, even for modestly sized problems. There is a
one-to-one correspondence between decision trees and decision tables.
The latter are not visually appealing and do not communicate the
problem as easily as decision trees, but they are much more compact
(Table 8.1).

Like decision tables, expert systems may have a one-to-one corre-
spondence with a decision tree. They were invented so that the thinking
behind the tree would be more accessible to the person using it.

They differ in that the branch points of the logic tree are expressed in
natural language. The rationale behind the branches is expressed as dia-
logue and may be accessed by the person using the tree. This provides the
opportunity, for instance, to include information about the uncertainty
associated with each branch, at least in narrative form.

Starfield and Bleloch (1992) described a protocol for building decision
tables and translating them into expert systems:

1. Write relevant statements (states of the world) in the left-hand side of
a table (e.g. Table 8.2).

2. Write potential acts (management options) across the top of the table.
3. Take the first column (the first decision): ask what combinations of true

(T), false (F) and irrelevant (X) conditions will lead unambiguously to
that decision.
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Table 8.2. A decision table for the question of how to manage fire in an
African nature reserve (after Starfield and Bleloch 1992)

States Acts

Do not Do not Defer for Burn after
burn burn a year 1st rain

Need to remove old
vegetation

F X T T

Area recently burned X T F F
Vegetation is degraded

(and a fire would help)
X X F T

Grazers need grass (fire
stimulates growth)

X X F T

4. Ask what other combinations of T, F, and X will lead to the same
decision.

5. Keep adding columns after the first decision until you have included
all sensible routes.

6. Move to the next decision.

An expert system, in its simplest form, is a system for communicating
the logic and evidence that supports a decision table. For instance, in
support of a decision to burn, the expert system should communicate the
fact that a fire is expected to restore degraded vegetation by stimulating
the germination of the soil-stored seed bank and to encourage grass
germination and growth by providing a release of nutrients from woody
vegetation in ash. We would decide to burn after the first rain this year,
for instance, IF we need to remove old vegetation AND the area has not
been recently burned AND grazers need grass AND the vegetation is
degraded.

There is no way of knowing, after the event, if a decision was ‘right’.
Sometimes, we can know it was wrong (as in the case of the phone
call). Even then, people who make routine decisions must occasionally
get them wrong, even if their decision strategy is optimal. The best we
can do is to update decision criteria as experience and monitoring data
accumulate, taking into account the costs of wrong decisions.

8.1.4 Classification and regression trees

Classification and regression trees (sometimes called CART analyses) pro-
vide a way of summarizing the knowledge of experts so that it may be
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used by less expert people. They create event trees in a repeatable and
transparent way.

Explanatory variables are treated as ‘classification’ variables. The end-
point of a tree is a labelled partition of the set of possible observations and
may be a factor or attribute (in a classification tree) or a predicted value
(in a regression tree). The methods work by separating observations of
the response variable into subsets, so that the response data in each subset
are relatively uniform (Venables and Ripley 1997). Branch points are like
chance nodes although they may be interpreted as decisions.

At each step, the data are partitioned in a way that is likely to pro-
duce good classifications or predictions in the future. The distributions of
classes usually overlap to some extent so there is no unique way of parti-
tioning that completely describes the classes. The easiest way to compare
alternative partitions is to count the number of errors, and to choose the
one that minimizes them.

One set of data called the ‘training set’ is used to build the model. An
independent ‘test’ set is used to measure how well the tree predicts. The
training set is assumed to be an independent random sample from the full
set of observations.

The modeller must decide if a node is terminal, or whether it should
be further subdivided. In most cases, the stopping rule is a practical choice
about the desired size of the tree. Sometimes, the analyst is guided by
the decrease in improvement in predictive accuracy. The most common
strategy for building a tree is to build a large tree (one with more subdi-
visions and nodes than is desired) and then to prune the tree back to an
acceptable size, a strategy that is similar to variable selection procedures
in regression modeling (Elith 2000).

Most tree construction methods look ahead just one step when choos-
ing the next split. Some methods allow only binary splits. Some split linear
combinations of continuous variables (Venables and Ripley 1997).

Classification trees have been applied to habitat modelling (e.g.
Franklin 2002). Kolar and Lodge (2002) used a classification tree to
predict the potential for introduced fishes to invade freshwater lakes
in North America. They used data on 13 life-history characteristics,
5 habitat requirements and 6 aspects of invasion history, and human
use from 24 established (defined as ‘successful’) and 21 introduced
but not established (defined as ‘failed’) alien fish species in the Great
Lakes to build the model (Figure 8.7). They claimed that classifica-
tion trees built in this way were relatively transparent and repeatable,
compared to expert systems based on categorical attributes and expert
judgements.
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Relative growth 
at 2 years (%)

Number of taxa
in diet

Minimum 
temperature (°C)

Number of taxa
in diet

Relative growth
at 1 year (%)

Succeed

Succeed

SucceedFail

Fail

Fail

< 68.5 > 68.5

< 4.5 > 4.5 < 5.5 > 5.5

< 1.5 > 1.5 < 26.5 > 26.5

1 success / 0 fail 0 success / 13 fail

3 success / 1 fail 0 success / 5 fail

0 success / 1 fail 20 success / 1 fail

Figure 8.7. CART for successful and failed alien fish species in the Great Lakes.
Ovals represent decision points and rectangles are the final classes. Each species is
assigned to a class, depending on its characteristics. The tree based on minimum
temperature threshold, diet breadth and relative growth classified ‘failed’ and
‘successful’ fishes with 94% accuracy (82% on cross-validation). The results of the
predictions, applied to the species used to build the model, are shown beneath the
nodes (after Kolar and Lodge 2002).

They pointed out that their model was likely to be unreliable when
extrapolated to species with ecological characteristics outside the range
of those used to build the model, and when applied to novel ecological
circumstances such as tributaries and streams, rather than the lake envi-
ronments. The cross-validation procedure (giving 82% accuracy) was also
likely to be optimistic about performance, even for ecological conditions
and species attributes equivalent to those used in model construction.

8.1.5 Bayesian networks

Bayesian networks (also called probability networks, influence networks
and Bayes belief nets) are graphical models that represent relationships
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Figure 8.8. Probability network for the Neuse River Estuary (a subset of the
relationships described by Borsuk et al. 2001a, 2003). Variables are shown as ovals
and predictive endpoints as hexagons. Dashed lines represent relatively uncertain
relationships.

among uncertain variables (Pearl 1988). Pearl (2000) recommended they
be used to explain causal relationships and to integrate observations so as
to eliminate models that are incompatible with data.

In the graph, nodes represent variables. A line between one variable
and another represents a relationship (a dependency) between the vari-
ables. A node with no incoming edges can be described by an indepen-
dent (marginal) probability distribution. A node with incoming edges
depends on other variables and is described by a set of conditional proba-
bility distributions. The network describes the probabilistic relationships
between all elements of a system. Probability distributions that depend
on other distributions can be updated using Bayes’ theorem.

Borsuk et al. (2003) used a probability network to model the ecological
dynamics of an estuarine system in North Carolina (Figure 8.8). Building
the model required each variable to be defined, reducing the chances that
linguistic uncertainty would cloud issues (Borsuk et al. 2001a).
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Figure 8.9. Anticipated effect of a 50% reduction in nitrogen inputs on the
frequency of violations of the regulatory standard for chlorophyll a (40 µg/l) in the
Neuse River Estuary (after Borsuk et al. 2003).

Each of the arrows represented a function that described how each
element of the system depended on others (Borsuk et al. 2001b). Because
functions were defined for all variables, the model involved some com-
promises in the level of detail. The endpoints in Figure 8.8 were adopted
after public consultation (Borsuk et al. 2001a). They accord with the
recommendations of Suter (1993) in that they satisfied ecological, oper-
ational and social demands.

Borsuk et al. (2001a) emphasized the need for subsequent monitor-
ing to ensure the model is updated. Probability networks update new
information through Bayes’ theorem (see Section 4.9). Borsuk et al.
(2003) used the model to explore ‘what if ’ scenarios, an informal sensi-
tivity analysis that displayed the consequences of predicted outcomes to
potential management decisions (Figure 8.9).

Stow and Borsuk (2003) used networks to explore the relationship
between fish kills and the presence of toxic algae Pfiesteria. Conventional
wisdom was that Pfiesteria kill fish, implied by the dashed arrow in Fig-
ure 8.8. Toxic Pfiesteria are a subset of Pfiesteria-like organisms (PLOs).
The conceptual model is that unknown environmental cues stimulate
some PLOs to develop into toxic forms (Figure 8.10a).

The probabilities associated with each branch in a probability net-
work are calculated using Bayes’ theorem. Stow and Borsuk (2003) knew
that the independent probability that toxic Pfiesteria would occur in a
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Figure 8.10. Alternative fish kill models. a. The model assumes a causal influence
from Pfiesteria-like organisms (PLOs) to toxic Pfiesteria to fish kills. b. This model
assumes fish kills stimulate the formation of toxic Pfiesteria from a population of
PLOs that happen to be present at the site (after Stow and Borsuk 2003).

sample was 0.03. The probability that PLOs would be detected was
0.35. Because Pfiesteria are a form of PLO, if toxic Pfiesteria are present,
by definition PLOs are present. Specifying the conventional model
first:

P (Pfiesteria| PLO) = P(PLO| Pfiesteria) · P(Pfiesteria)
P (PLO)

= 1.0 × 0.03
0.35

= 0.09.

The next step is to calculate the probability that a fish kill will occur,
given that toxic Pfiesteria are present. Stow and Borsuk (2003) knew that
if toxic Pfiesteria were detected, it was always in the presence of a fish
kill:

P (KILL | Pfiesteria) = 1.

The independent probability of a fish kill was 0.073 and the probability
that toxic Pfiesteria are present when a kill occurs is 0.38 (Pfiesteria are not
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the only thing that can kill fish):

P (KILL | no Pfiesteria) = P (no Pfiesteria | KILL) · P (KILL))
P (no Pfiesteria)

= (1 − P (Pfiesteria | KILL)) · P (KILL)
(1 − P (Pfiesteria))

= (1 − 0.38) × 0.073
(1 − 0.03)

= 0.047.

Stow and Borsuk (2003) were uncomfortable with this conceptual model
because they had noticed that toxic Pfiesteria were present only at fish kill
sites, and never elsewhere. Furthermore, Pfiesteria were present at every
fish kill site at which there were also other PLOs. What if, they asked,
the fish kills cause the toxic Pfiesteria, rather than the other way around
(Figure 8.10b)?

The Bayesian arithmetic changes. Since toxic Pfiesteria are present only
if PLOs are present, then:

P (Pfiesteria | no PLO, KILL) = P (Pfiesteria | no PLO, no KILL) = 0.

Because Pfiesteria were never detected at sites where there were no fish
kills,

P (Pfiesteria | PLO, no KILL) = 0

P (Pfiesteria | PLO, KILL) = 1,

and since PLO and KILL are unconditionally independent under the
second conceptual model,

P (KILL | PLO) = P (KILL | no PLO) = 0.073.

This interpretation is consistent with all of the data. A particularly
telling distinction is the expectation, under the model in which toxic
Pfiesteria kill fish, that

P (PLO | no Pfiesteria, KILL) = 0.33,

whereas under the model in which fish kills cause Pfiesteria,

P (PLO | no Pfiesteria, KILL) = 0.
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The data suggest that the probability is 0 of detecting PLOs at sites at
which there was a fish kill and at which toxic Pfiesteria were absent (0 out
of 35 such kills).

This may look like nothing more than the application of common
sense. Hopefully, it is. But the presence of toxic Pfiesteria at 0.38 of the fish
kills in the Neuse River Estuary had been enough to lead most researchers
to believe in the first model. The advantage of the networks is that
they make the logic of conceptual models plain, illuminating alternative
explanations.

The assumption of causation illustrated by the fish kill example is an
example of many embedded in most network models. When a cause,
C, results in an effect, E, then C should not be positively or negatively
correlated with (for instance) things that prevent E, other causes of E,
or triggers for these (Cartwright 2003). There are so many possible net-
works, even for small numbers of elements (Table 4.1), that we settle on
maps of causal interactions almost by intuition.

Bayesian networks may be built using continuous variables but it is
easier to break variables into continuous classes (Korb and Nicholson
2003). Each value is a subrange of the original continuous variable. Most
current software tools require it. Appropriate choices for class boundaries
depend on the context of the problem and how sensitively the choice
affects decisions or outcomes (Korb and Nicholson 2003).

8.2 Fault trees
Fault trees are built from hazard to consequence, and map what must oc-
cur for a hazard to be expressed. They express ‘failure logic’ and the con-
tributing causes (and, optionally, associated probabilities for an unwanted
event). Care is required to handle what is called ‘failure modes’, events
outside the modelled system that affect different components simulta-
neously. Similarly, fault trees may not adequately model dependencies
between system elements.

Fault trees are different to event trees because they are constructed
around branch points that represent either a logical AND or a logical
OR. They conclude with the primary (initiating) event with which event
trees begin. Fault trees use some standard symbols (Figure 8.11). They
have many of the same strengths and weaknesses as event trees. They are a
versatile tool for mapping causal links between system components. Like
event trees, they can become large and cumbersome even for modest
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Basic event: events that indicate the limit of resolution of the fault tree. 
 
 
Underdeveloped event: indicating the level of detail could be greater. 
 
 

AND gate: output occurs only if all inputs are true (or occur simultaneously).

 
 
OR gate: output occurs if any input is true.  
 
 
Event: an event or condition within a fault tree.  

Figure 8.11. Symbols used in fault trees (after Hayes 2002a).

problems. They are used most often to identify hazards and help design
mitigation strategies (Hayes 2002b). Figure 8.12 is an example in which
a fault tree was used to identify critical hazards in the management of the
introduction of marine pests in ballast water.

The tree allows a risk manager to see readily if there are any system
components that provide efficient monitoring and remediation strategies.
Branches that depend on AND conditions, for example, are valuable
because management needs to focus on only one component of the set
linked by the AND statement. Different strategies are indicated on the
tree, together with areas where managers need to conduct additional risk
assessments.

Fault trees complement failure modes and effects analysis (Chapter 5).
Trees use structured brainstorming to define each component of a sys-
tem, and consider the causal links and consequences of failure of each
component.

8.2.1 Probabilistic fault trees

The various AND and OR statements that make up fault trees are subject
to ordinary probability calculus. Events may be mutually exclusive or
independent. If they are mutually exclusive, then the probability that one
or the other will occur is given by:

p (A ∪ B) = p (A) + p (B)
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Figure 8.12. Part of a fault tree for marine pest introductions in ballast water (after
Hayes 2002b). In this example, the assessor recommended a HAZOP assessment
(Chapter 5) to further explore one of the branches.
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and the chance that both will occur is, by definition,

p (A ∩ B) = 0.

If two events are independent, then the chance that either one or the
other, or both, will occur, is:

p (A ∪ B) = p (A) + p (B) − p (A ∩ B)

where,

p (A ∩ B) = p (A) × p (B).

For three events, A, B and C, the chance of (A, B or C ) is given by

p (A ∪ B ∪ C) = p (A) + p (B) + p (C) − p (A ∩ B) − p (A ∩ C)

−p (B ∩ C) + p (A ∩ B ∩ C).

Johnson et al. (2001) evaluated the probability that zebra mussels (Dreissena
polymorpha), an invasive species of freshwater lakes in North America, will
be transported overland by recreational boats moving from one isolated
lake to another. They did not represent their analysis as a fault tree, but
they could have. It would have looked like Figure 8.13.

Either adults or larvae may be transported, and Johnson et al. (2001)
identified six pathways by which the event might occur. They interviewed
boat owners, counted boats and sampled bilge water, cooling systems,
hulls and anchors, producing the probabilities in Figure 8.13.

Employing the rules for combining independent events, the probability
of transport of adults in macrophytes (entangled in trailers) or anchors
is (ignoring hulls, because no adults were ever observed in their samples
and the probability is assumed to be zero):

p (A ∪ B) = p (A) + p (B) − p (A ∩ B)

= 0.009 + 0.053 − (0.009 × 0.053) = 0.0615.

Likewise, the probability of the transport of larvae in bait buckets or wells
on board used for storing live bait (live wells) is

p (A ∪ B) = p (A) + p (B) − p (A ∩ B)

= 0.071 + 0.011 − (0.071 × 0.011) = 0.0812.

The logic tree makes the rationale behind the conditional probability
calculations plain. Fishing equipment will transport larvae if either wells
or bait buckets are used. Adult mussels will be transported in macrophytes
if the macrophytes are entangled and if they contain mussels. It is also plain
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Figure 8.13. Fault tree for the transport of zebra mussels from infested lakes to
uninfested lakes on recreational boats. The numbers next to the branches are the
probabilities estimated from data by Johnson et al. (2001).

that the chance that adults are transported is 0.0615 while the chance of
transporting larvae is 1. All boats transport larvae because all boats have
engine cooling systems, all engine cooling systems use and store lake
water and all lake water in infested lakes contains mussel larvae.

Of course, contamination of lakes also depends on the probability
that a boat will move from an infested to an uninfested water body, that
adults will live for the period during which the move takes place and
that introduced animals are able to survive and reproduce in the new
environment (see Johnson et al. 2001). Such assumptions should be made
plain by the analyst when the results are communicated.

The operations above make the general assumption that events are un-
correlated. This has been a substantial failing of logic trees, making them
susceptible to a phenomenon known in engineering as ‘common failure
mode’. If events occur that influence several branches simultaneously,
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Box 8.1 · Calculating dependencies in logic trees

Ferson (1996a) suggested using Frank’s (1979) operators and labelled
them ANDF and ORF. If p(A) = p and p(B) = q, then,
A ANDF B


pq if s = 1

1 − logs

[
1 + (s p − 1)(s q − 1)

(s − 1)

]
otherwise

A ORF B


p + q − pq if s = 1

1 − logs

[
1 + (s 1−p − 1)(s 1−q − 1)

(s − 1)

]
otherwise

where

s = tan
(

π (1 − r )
4

)
and r is a correlation coefficient that describes the dependence.
Above, we calculated the chance equals 0.0812 that larvae would be
transported off-site in fishing gear from the independent combination
of the use of live wells or bait buckets. Assume that people tend to use
both or neither. However, their combined use is not guaranteed and
data give the correlation between their use as 0.7.
Intuitively, the chance that at least one event occurs should be less if
the events are correlated than if the events are independent because
they will tend to be coincident more often than by chance. With p =
0.071 and q = 0.011, Frank’s (1979) OR operator gives,

s = 0.0041,

and

A ORF B = 1 − logs (0.0064) = 1 − ln 0.0064
ln s

= 1 − −5.0515
−5.4968

= 0.0810.

Thus the tendency for people to have both live wells and bait buck-
ets, or neither, does not have an important effect on the probability
of transporting larvae off-site, reducing the estimate from 0.0812 to
0.0810.



8.3 Logic trees and decisions · 229

their responses will be correlated. The probabilities on the tree will be
wrong. One solution is to redesign the tree so that the various indepen-
dent causes and their consequences are shown appropriately. The other
is to calculate probabilities that account for dependencies (Box 8.1).

8.3 Logic trees and decisions
A decision is a choice between two or more acts, each of which will
produce one of several outcomes. Decision trees render decisions into
a logical structure that reflects understanding of the system. Economists
developed decision theory and defined decisions under risk and decisions
under uncertainty (Morgan and Henrion 1990).

When making decisions under risk, states of the world are uncertain
and probabilities are assigned to states. When making decisions under un-
certainty, probabilities cannot be assigned to states. In the latter circum-
stance, a decision tree can map the structure of the problem but cannot
say anything about the chances of different outcomes. Sometimes, risk
assessors will allocate equal values to unknown probabilities. The princi-
ple of insufficient reason suggests that each state is equally likely because
there are no data on which to discriminate among them.

Risk assessments acknowledge that the objective of decision theory
is to clarify decisions. The specification of states and acts itself requires
decisions. Problem specification is not necessarily unique. Elements of
subjectivity, choice and linguistic uncertainty ensure that the values and
perceptions of the risk assessor affect the construction of something as
superficially objective as a logic tree.

8.3.1 Decisions under risk

Table 8.1 may be generalized, and the benefits (or costs) of each act may
be specified quantitatively, together with the chance that the world is in
each of the specified states (Table 8.3 and Figure 8.14).

States must be mutually exclusive and exhaustive, such that
∑

pi = 1.
The framework assumes that acts are independent and that the decision-
maker is an ideal reasoner and will act to maximize utility.

A utility is a measure of the total benefit or cost resulting from each of
a set of alternative actions (decisions). It represents a scale of preferences
among outcomes. A utility function may be a continuous representa-
tion of utilities (see Resnik 1987). Calculations depend on a probability
associated with each state.
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Table 8.3. Decision table for two acts (A) and three states
(S), with utilities (u and v) for each state, given an act, and
probabilities for each state (p and q)

S1 S2 S3

u1 u2 u3

A1

p1 p2 p3

v1 v2 v3

A2

q1 q2 q3

u1

p
2 u2

u
3

q
1

q
2

q
3

v1

v2

v3

p
3

p
1

A1

A1

Figure 8.14. Decision tree for the decision problem represented by Table 8.3.

In this framework, the expected utility (E) of each act is the sum of
the utilities for each state, Ai

E(Ai ) = ui,1 × pi,1 + ui,2 × pi,2 + · · · ,

where pi is the probability of the state, and ui is the utility of the state.
When p1 = p2 = · · · (decisions under uncertainty), expected utility is
the mean of the utilities for each state.

When utilities are used to assist in evaluating problems, two assump-
tions are common and important.
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� Transitivity: if X is preferred to Y and Y to Z, it implies X is preferred

to Z.
� Connectedness: there are preferences for all outcomes.

A strategy is a series of acts. This formalism provides for some general
strategies, such as the MaxiMin strategy (Morgan and Henrion 1990).
Given an ordinal scale for outcomes, in which larger numbers represent
greater utility, the procedure is to:

� Identify the minimal outcome associated with each act.
� Select the act with the largest minimal value.

When the variable of interest is a loss not a gain, employ MiniMax:

� Identify the maximal outcome associated with each act.
� Select the act with the smallest maximal value.

The table helps to collect and order thoughts about the costs and ben-
efits of management alternatives. It is most likely to be used to support
thinking in a collective decision-making environment. It could be less
than useful if used as a decision-making tool because it fails to account
for the uncertainty inherent in the probabilities for states of the world,
or the likelihoods and utilities of outcomes of management alternatives.

8.3.2 Bayesian decision analysis

Bayesian decision networks represent causal structure and also include
prediction and the consequences of intervention. Decision nodes and
utilities (values) are added to the network. The model may include a
single decision, a sequence of decisions, or combinations of decisions
(strategies). The latter are not available in many software packages (Korb
and Nicholson 2003).

Robb and Peterman (1998) used Bayesian decision analysis to assist the
management of the salmon (Oncorhynchus nerka) fishery on the Nass River
in British Columbia, Canada. They used Bayesian statistics to calculate
probabilities in a decision tree that accounted for uncertainty in annual
recruitment, the timing of the salmon run and the catchability of fish.
The analysis resulted in an optimal rule for timing the opening of the
fishery. The result was sensitive to assumptions about the shape of the
stock-recruitment model (Figure 8.15).
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Figure 8.15. Alternative stock-recruitment models for a salmon fishery in Canada
(from Robb and Peterman 1998; see also Varis and Kuikka 1999 ). β is a parameter
of a density dependence model.

8.3.3 Gains from management of orange-bellied parrots

Orange-bellied parrots migrate annually from breeding grounds in Tas-
mania to spend winter in the coastal areas of mainland Australia. At the
turn of the twentieth century tens of thousands of birds migrated to win-
ter feeding habitat between Adelaide and Sydney. By 1990, there were
about 200 birds and fewer than 30 breeding pairs remaining. The recov-
ery team is not sure why the decline occurred or what the best recovery
strategy is (Drechsler et al. 1998). There are several alternatives, and some
of them are summarized in a decision table (Table 8.4).

In this case, utilities are defined as the percentage increase in the
minimum expected population size within 50 years that results from
implementation of the management option, as measured by a detailed
population model for the species (of the kind developed in Chapter 10).

The expected result, E, from management option A is given by:

E(A) =
∑

pi ui1 = 0.2 × 20 + 0.3 × 5 + 0.4 × 5 + 0.1 × 0 = 7.5.
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Table 8.4. Decision table (utilities and probabilities) for three management
options and four states. Utilities are the expected percentage increase in the
minimum expected population size resulting from management aimed at
alleviating the effects of the potential cause of decline

System state (cause
of decline)

Likelihood of
each state
(subjective
probability that
this is the
primary factor
inhibiting
recovery)

Option A
(predator
control)

Option B
(habitat
rehabilitation)

Option C
(reducing
exposure to
toxins)

p u1 u2 u3

Feral predators 0.2 20 0 0
Grazing impacts 0.3 5 15 0
Loss of habitat area 0.4 5 10 0
Ecotoxicological 0.1 0 5 30

effects

Expected utilities 7.5 9 3

Management options A and C promise a bigger response to individual
causes, resulting in greater benefit if the diagnosis of the primary cause of
decline is correct. But the best option is management option B, because
the action provides a measure of recovery from two different potential
causes, which together are the most likely. Management option A has
collateral benefits for habitat but does not do enough to outweigh the
advantages of option B.

8.3.4 Interpreting decision trees

Decision trees are presented as though they were exact. Interpretation
relies on subjective judgements about likelihoods and utilities. There will
always be considerable uncertainty associated with these values, not least
because they are the product of expert opinion and represent subjective
beliefs about the state of the world. In most cases, utilities will be value-
based, especially when dealing with environmental issues. They are likely
to change from one context to another.

Probabilities are required to obey the rules of probability calculus.
Transitivity is a cornerstone of rational decision-making. It is easy to
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create examples in which preferences are not transitive. Keynes (1936,
p. 161), one of the founders of modern economics, objected to ex-
pected utilities, saying that most decisions are instinctive, and are not,
‘the outcome of a weighted average of quantitative benefits multiplied
by quantitative probabilities’. More importantly, it is rare that we have
reliable, measured estimates for probabilities of states of the world. These
values are much closer to degrees of belief.

Decision tables and the associated arithmetic are a curious abstraction
of real thought processes and should be treated cautiously. In Chapter 11
we will explore info-gap methods that accommodate uncertainty in de-
cision problems.

In addition, interpretation cannot be limited to a single currency. The
alternative management options in the parrot example have different
costs. There are social costs associated with poisoning, shooting or trap-
ping introduced predators. Excluding birds from sources of toxicants is
an expensive business, far more expensive than rehabilitating habitat. The
analysis performed above had an embedded assumption that the associated
costs were equal.

All decisions involve trade-offs and usually the currencies of the ele-
ments of the trade do not match. There are no general solutions to the
problem of weighing the value of, say, a 10% reduction in risk of extinc-
tion against the value of $100 000 or the value of public perception to an
organization involved in shooting foxes at the boundary of a residential
area. Issues such as the voluntary nature of a risk, visibility and potential
for outrage (Chapter 1) become important.

8.3.5 Conservation status

The IUCN (1994, 2001) developed a protocol for assessing the risk of
extinction of species. The intent is to classify each species as belonging
to one of several categories. It is worthwhile examining in this context
because it includes a decision tree, each branch of which ends at a fault
tree. It results in a risk ranking for species.

The system is usually represented as a table (e.g. Table 8.5). The overall
structure of decisions about the status of a species is given by Figure 8.16.
This table is set in a broader context in which the adequacy of data
are evaluated (Figure 8.16). Species may be assessed as extinct, critically
endangered, endangered, vulnerable, near threatened, conservation dependent or
low risk. Thus, the table forms part of a decision tree that ends in a
classification of species.
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Figure 8.16. Structure of IUCN classification decisions (after Akçakaya and
Colyvan, in Burgman and Lindenmayer 1998).
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Each branch in the decision tree above asks a question. The answer
to the question (yes / no) is determined by the conditions outlined in
Table 8.5. The logic in this table may be reduced to a few rules. For
example, a species is regarded as being critically endangered:

IF Decline of ≥ 80% in 10 years or 3 generations
OR Range < 100 km2 or occupied habitat < 10 km2

AND
at least two of the following three conditions are met:

1. Severely fragmented or in one subpopulation
2. Continuing to decline.
3. Fluctuations > one order of magnitude.

OR Number of mature individuals < 250

AND
at least one of the following two conditions is met:

1. ≥ 25% decline in three years or one generation.
2. Continuing decline and ≤ 50 per subpopulation, or a single

sub-population.

OR < 50 individuals
OR ≥ 50% risk of extinction in 10 years or 3 generations.

This logic may in turn be represented as a fault tree (Figure 8.17). The
‘fault’ is the condition of being ‘critically endangered’ and it occurs if the
various conditions are met. If the fault is true, the species is classified at
that level.

Much of the IUCN (1994, 2001) classification scheme for threat-
ened species is calibrated to apply most effectively to terrestrial verte-
brate species. Alternative classification criteria have been proposed for
plant and butterfly species so they can be considered in the context of
relevant threats and demographics of plants and butterflies, using sharp
boundaries for vague terms that make better sense for these taxa (Keith
1998, Swaay and Warren 1999).

The logic tree for classifying conservation status has the same weak-
nesses as other logic trees. It imposes sharp boundaries such as 80%,
10 years and three generations on vague criteria. The importance of the
choices of the kind and level of thresholds and logical structures depends
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Figure 8.17. Logical structure of the IUCN (2001) fault rule set (resulting in the
classification of a species as either critically endangered or not critically
endangered).

on how they affect decisions. As with other trees, the best we can do is to
accumulate outcomes by monitoring the consequences of decisions, and
updating the thresholds and structures iteratively. Revision must account
for the relative frequencies and costs of false-positive and false-negative
judgements.
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A complete risk assessment would be distinguished by monitoring
outcomes, evaluating the costs and benefits of decisions and revising the
logic tree tools based on the outcome. An honest risk assessment would be
distinguished by operations that carry uncertainties through calculations
and display them in the results. Chapter 9 outlines methods that can be
used to include uncertainties in arithmetic calculations for logic trees,
including the IUCN methods.

8.4 Discussion
When different people are confronted by the same problem, they will
often draft different logic trees to represent it. This kind of structural
uncertainty reflects different conceptual models, but it is rarely, if ever,
considered in the building and reporting of logic trees.

Cooke (1991) reported a test in which teams of experts from 10
countries built fault trees for a feedwater system for a nuclear power
plant. The teams made independent estimates of the probability that the
system would fail. The test was conducted in four stages to examine the
influence of different data and different fault trees on the estimates of
failure.

Each team undertook a qualitative analysis of the data and made point
estimates for the failure probability independently. They met and dis-
cussed their differences. Each group produced a fault tree and made a
second estimate. In the third stage they agreed on a consensus fault tree
but used the data they had collected independently to assess the prob-
lem. In the final stage, the groups used the same data and the same fault
tree. Clearly, different ideas about the logical structure of a problem can
contribute to substantial differences in risk estimates (Table 8.6).

Similarly, differences in data collection and interpretation may influ-
ence the construction of a logic tree. It is important to subject both the
structure and the parameters in logic trees to sensitivity analyses by cre-
ating circumstances in which the data acquisition and tree construction
are independently replicated.

To represent structural uncertainty, the analyst has the option to re-
solve linguistic differences and other misunderstandings. Remaining dif-
ferences in the results may be represented in the form of two (or more)
logic trees, or as a consensus tree.

Differences reflect different beliefs about dependencies and opinions
about causes and their effects. Data can often resolve at least some
of these differences. But, as in the treatment of risk assessments using
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Table 8.6. Differences in estimates of the probability that a feedwater system
will fail (after Cooke 1991)

1. 2. 3. 4.
Independent
qualitative
estimate

Estimate based
on independent
fault trees and
independent
data

Common fault
tree with
independent
data

Common fault
tree and
common data

Range of 8 × 10−4 to 7 × 10−4 to 1.4 × 10−3 to ∼1.4 × 10−4 to
estimates 2 × 10−2 2.5 × 10−2 1.3 × 10−2 1.4 × 10−4

Ratio: 25 36 9 1
max/min

subjective methods (Chapter 5), it would be a mistake to submerge resid-
ual, honest differences of opinion in a consensus or an average tree.
Residual differences should be reported and their effects on decisions
evaluated.

Sensitivity analyses might be undertaken for logic trees. Clearly, the
tree structure can lead to different estimates of the probability of an
event, or the calculation of utilities associated with decisions. In addition,
decision thresholds often are arbitrary. The sensitivity of a classification
or of a decision to the specification of thresholds should be a routine part
of a risk assessment.



9 � Interval arithmetic

All steps in environmental risk assessments are uncertain. Risk assessments
involve arithmetic, even if it is as simple as multiplying a likelihood by a
consequence to generate a rank for a hazard (Chapters 5 and 6). Risk an-
alysts choose whether to make the uncertainties apparent, or to submerge
them in the assumptions of the analysis. Risk analysts should make all rel-
evant uncertainties, and the sensitivity of decisions to these uncertainties,
as plain and as accessible as possible.

Interval arithmetic provides an exceptionally simple tool that can be
used on a routine basis to carry uncertainties through chains of calcula-
tions. It may be applied appropriately in all of the methods outlined so
far, including risk ranking, ecotoxicological methods and logic trees. This
chapter starts by describing some methods that share a few of the char-
acteristics of interval arithmetic. It explores different kinds of intervals
and how they may be estimated and elicited. Lastly, it describes the basic
operations of interval arithmetic and applies them to some examples.

9.1 Worst case analysis
The people whose job it is to protect human health and the environment
from the harmful effects of toxins have always faced substantial uncer-
tainty. In many instances, they chose to be cautious and err in favour of
health. This caution is applied through an approach known as worst case
analysis (see Burmaster and Harris 1993).

Recall the exposure equation (Chapter 7),

Dose = C × I R × E F
bw

,

where

C = concentration of chemical in medium (mg/l)
IR = intake/contact rate (l/day)
EF = exposure frequency
bw = body weight (mg).
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Each term in the standard dose equation is uncertain. Concentrations may
vary from day to day depending on industrial activity, the direction of
the wind and so on. Intake rate varies between individuals and between
days, depending on activity levels. Exposure depends on the location,
behaviour and body weights of individuals.

Despite these uncertainties, the regulator is required to set an accept-
able target. In 1989, the US EPA (1989, section 6.1.2) stated that actions
to clean contaminated sites ‘ . . . should be based on an estimate of the
reasonable maximum exposure (RME) expected to occur under both
current and future land-use conditions. . . . Estimates of the RME nec-
essarily involve the use of professional judgement . . . The intent of the
RME is to estimate a conservative exposure case (i.e., well above the
average case) that is still within the range of possible outcomes.’ Setting
aside the involvement of experts and their judgements, this definition is
vague and ambiguous. The solution was to make a set of conservative
assumptions that were likely to provide a level of protection at least equal
to that required.

The process of worst case analysis may be summarized as follows:

� estimate an upper bound for potency,
� estimate an upper bound for exposure,
� estimate the risk to the most susceptible individual who receives the

highest dose.

To calculate dose, for example, the EPA recommended that 95th per-
centile values may be used for each of the parameters in the numerator of
the equation, and the 5th percentile values for body weight. Uncertainty
is incorporated by replacing the point (best) estimates by more ‘conser-
vative’ locations in the distributions. It assumes that daily concentrations,
intake rates and exposure frequencies are all relatively high, and that they
affect a relatively small or young (a susceptible) person. For example,
while many calculations involve the number of hours per day a person
is exposed to a pollutant, the common (but not universal) assumption is
that exposure is 24 h/day.

Burmaster and Harris (1993) calculated post-clean-up concentration
targets for carcinogens. They estimated that an exposed person had a
risk of developing cancer in the range from 10−6 to 10−4 per year. The
calculations were made such that the cancer risk goal was exceeded by
no more than 5–10% of the potentially exposed population.

Sometimes, the median is used in place of the lower 5th quantile of
the body weight distribution. The effect is to increase the tolerable
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Box 9.1 · Worst case calculations and their effect on tails of distributions

If we have random variables X1, . . . , Xn with corresponding probability
density functions f1, . . . , fn, with

P = X1 X2 · · · Xn,

in general

C0.95(P ) �= C0.95(X1) × (X2) × · · · × C0.95(Xn ),

where C0.95 is the 95th quantile of a distribution.
With S = X1 + · · · + Xn

C0.95(S) �= C0.95(X1) + C0.95(X2) + · · · + C0.95(Xn ).

These inequalities apply whether the variables are dependent or inde-
pendent. For example, if X and Y are independent, the sum of upper
bounds [C0.95(X) + C0.95(Y)] lies between the 90.25% and 99.75%
quantiles of the distribution for S = X + Y. If the variables are de-
pendent, a greater range of error is possible (see Cogliano 1997).

concentration of the contaminant. Combining upper-bound and mid-
range exposure factors is intended to estimate an exposure scenario that
is both protective and reasonable (and not the ‘worst case’). The choices
involve implicit trade-offs between the costs of exposure and the bene-
fits of use of a chemical. Methods for trading the costs and benefits of
assumptions explicitly are outlined in later sections of this chapter and in
Chapter 11.

9.1.1 The trouble with worst case

The level of protection resulting from worst case analysis often is arbitrary
and unknown. The reason is that the product of the 95th quantiles of
a set of distributions is not equal to the 95th quantile of the product of
the distributions. The degree to which these two quantities diverge, a
measure of the conservatism associated with a regulatory target, depends
on the number of arithmetic operations (Box 9.1) and the distributions
involved.

The results of worst case analyses may be hyperconservative, much
more protective of the environment than the data warrant. Hypercon-
servatism results in litigation, direct and indirect market costs, blocking
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potentially beneficial chemicals and the misdirecting of scarce re-
sources for protecting the environment (Breyer 1993, Chapter 7; see
Section 9.1.2).

Because the level of conservatism is uncontrolled, comparisons across
studies are not meaningful, making it difficult to compare and rank man-
agement options. Ranking on conservative or worst case estimates of risk
is unlikely to optimize protection of public health or the environment.

These problems are compounded by the fact that not all parameters
are replaced by extreme values. The mix of upper and lower tails with
means or medians makes it difficult to have even an intuitive feel for the
degree of conservatism in the regulatory target.

Lastly, the result of worst case is a single number. Whatever information
was available about the contributing distributions is lost. There is no
information on how reliable the estimate is, or how sensitively it depends
on the assumptions.

9.1.2 Arbitrary thresholds and acceptable levels of risk

Different perspectives on the consequences of worst case analysis created
a fascinating debate in the 1990s. A US judge, Justice Breyer (1993),
claimed that the practice of dividing a result from worst case analysis
or the LOAEL by an ‘uncertainty factor’ (Chapter 7) to arrive at a safe
human dose errs too far on the safe side. He suggested that the results were
damaging, leading to a ‘vicious circle’ of biased technical methods, skewed
public perceptions and haphazard political actions, leading to excessive
regulation of some areas, and a complete lack of necessary regulation in
others (paranoia and neglect).

More generally, Breyer’s concern stemmed from his observations of
risk assessment procedures including:

� the use of conservative values for uncertain parameters,
� the choice of conservative models to deal with ‘scientific ambiguity’,
� the practice of estimating risks for relatively exposed individuals,
� the choice of sharp thresholds between acceptable and unacceptable

risks,
� an emphasis on probabilities of death, disease, and other losses perpet-

uating an overdeveloped sense of fear in the public,
� the fixation on achieving reductions in already trivial risks, leading to

unnecessary constraints on economic activity, and
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� risk protection measures that may result in circumstances more danger-
ous than the risks we are trying to prevent.

For example, concern for air safety results in more regular flight checks,
and shorter life-times for aeroplane components. The frequency of plane
crashes falls marginally. Air fares rise to accommodate the changes, and
a small proportion of people elect to drive instead of fly. Driving is
inherently more dangerous, the death rate in the population as a whole
increases, and is apportioned among those least able to pay for protection.
In a similar vein, Breyer (1993) argued that fear of cancer is ‘the engine
that drives much of health risk regulation’ but only 3–10% of all annual
cancer deaths in the US (i.e. 10 000–50 000 annual deaths) are caused by
pollution and industrial products. He claimed that only a small proportion
of these is likely to be reduced by legislation.

Finkel (1995) argued that Breyer’s analysis was confused and jaun-
diced, that his diagnosis of risk assessment was incomplete and unduly
pessimistic. Defending conservative assumptions, he argued that they ac-
count implicitly for a broader set of unacknowledged uncertainties. He
outlined a more complete set of uncertainties, including:

� extrapolations of toxicity data into new environments,
� extrapolations to new taxa (data on most species are unavailable),
� the quality of toxicity data,
� interaction between toxicants,
� unanticipated exposure pathways,
� unanticipated speciation of toxicants,
� structural uncertainties in fate and transport models, and
� unpredictable bioavailability of toxicants.

His position was that current levels of protection are only conservative if,
for instance, each hazard is taken in isolation, it is assumed that all hazards
are evaluated, and that the extrapolations between laboratory and field
conditions, laboratory and field exposure levels, and between taxa are
reliable. Finkel argued that ‘plausible conservatism’ reflects public pref-
erences to reduce health risks over unnecessary economic expenditure.

Leaving aside the social question of what is a ‘small’ number or a
trivial risk, a benchmark for an acceptable risk in the US from pesticide
residues on food is fewer than 10−7 additional deaths per year, a threshold
derived from studies of seven known carcinogens. Finkel (1995) argued
that there were at least 200 potential carcinogens, most of which had not
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been tested. Typically, it is assumed that untested carcinogens have effects
similar to those tested. Thus, the probability of cancer from pesticide
residues on food is 200 × 0.000 000 1 = 0.000 02. Essentially, we assume
that the effects of these carcinogens are independent and additive, as well as
approximately equal in effect. There are about 300 000 000 people in the
US, making about 6000 additional deaths per year from this source alone.

If interactions between components give rise to cancer, then elimina-
tion of one of them may have a much larger effect than if the consequences
are due to the additive influences of the carcinogens.

Uncertainty creates circumstances in which we choose a number to
represent a distribution – the median will be too high or too low with
equal probability. The 95th quantile has a 95% chance of being too high.
Breyer (1993) and Finkel (1995) agree that the choice of thresholds should
be conditioned by the balance between the cost of underestimating versus
that of overestimating the risk. Levels of stringency reflected in intervals
should be equivalent when risks are compared. Otherwise, inefficient risk
reduction, and greater overall risk will result when limited budgets are
directed to the wrong risks (Nichols and Zeckhauser 1988, Bier 2004).
We return to this topic in Chapters 11 and 12.

9.2 Defining and eliciting intervals
Some of the problems of worst case analysis can be avoided by using
interval arithmetic. Interval arithmetic is useful in circumstances far be-
yond the narrow confines of setting contamination thresholds for toxic
substances. Before outlining the mechanics, we need to explore different
kinds of intervals and how they may be obtained.

Intervals may be defined by their source. They may be calculated
from data, estimated based on expert knowledge, result from optimistic
and pessimistic assumptions about models, or elicited based on subjective
individual judgement.

Intervals may be defined by their end use. They may be employed
to make decisions, to reduce uncertainty about the distribution of data
or parameters, to predict future observations, or as a heuristic device to
explore the attitudes of stakeholders towards an issue.

Different kinds of intervals have different utilities in these circum-
stances. It may be best to use probability intervals indicating where 50%,
75% or 95% of the data are located. It may be necessary to indicate a range
encompassing 100% of the data, so-called sure bounds. Sure bounds may
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be based on theory or judgement suggesting thresholds beyond which
observations are impossible. Alternatively, circumstances may require us
to estimate confidence intervals with a specified probability of enclosing
an unknown numerical parameter. It may be best to view an interval as
bounds on a random variable with its own distribution.

Intervals acknowledge uncertainty and are therefore more informative
than point estimates. If a point estimate has been provided, it is also
possible to provide an interval of one kind or another. The following
sections outline some more formal approaches to defining intervals.

9.2.1 Confidence intervals based on measurements

The upper and lower confidence limits for the mean are

c =x ± t
s√
n

where t is a value from Student’s t-distribution for appropriate α and sam-
ple size, n, and s is the measured standard deviation, assuming normality.
The interval, c, defined above has a 100(1 − α)% chance of hitting the
true population mean (where t depends on α). In the long run, some-
one who computes 95% confidence intervals will find the true values of
parameters lie within the computed intervals 95% of the time.

Prediction intervals provide an estimate of the confidence interval
within which you expect the next single observation to lie. They are
calculated knowing that the parameters are estimated from the data. Typ-
ically, confidence intervals are not used in interval arithmetic.

9.2.2 Probability intervals

A median divides an ordered set of data into two equal parts. A quantile
is a point in the ordered data set below which a specified percentage
of the data lie. The first quartile is the point below which 25% of the
data lie. The third quartile is the point below which 75% of the data
lie. The interquartile range is the interval between the first and third
quartiles and it encloses 50% of the data. This thinking can be generalized
to any quantiles, so that they enclose a pre-specified percentage of the
data.

In a set of m ordered observations, x1 < x2 < · · · xm , the easiest way
to estimate a quantile, Q̂ i

m+1 , is to interpret the xith observed value as
the ( i

m+1 )th quantile (Morgan and Henrion 1990).
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Table 9.1. Values of d2 for estimating the standard deviation of a population
from the range of a sample (Montgomery 2001)

d2 n

2 3 4 5 6 7 8 9 10

1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078

For example, if we have nine independent estimates of the population
size for a threatened species (say, 78, 81, 89, 89, 93, 95, 101, 102, 103),
the 50th quantile is 93, which is the 5th observation (5/(9 + 1) = 0.5).
The 90th quantile is 103, which is the 9th observation (9/(9 + 1) =
0.9).

For a normal distribution, interquantile ranges can then be calculated
as

x ± s .z(1−p ).

They enclose a specified proportion ( p) of a probability distribution.
These empirical approaches estimate the proportion of a distribution

between two limits. They work best if the data have been transformed to
conform with the normal distribution as closely as possible. They depend
on the availability of at least some direct data.

Experts often can recall extreme values from a larger set of observations.
The range of observations (max(xi) − min(xi)) depends on the sample
size (the number of times the expert has observed the outcome) and the
variation in the process. If the outcomes are independently and normally
distributed, then:

σ̂ = max(xi ) − min(xi )
d2n

where d2 is a constant that depends on sample size, n (Table 9.1). The
result can be used to estimate an interquantile range, using the formula
above.

For instance, given an expert recalls only the smallest and largest es-
timates of population size from those in Section 9.2 above, the standard
deviation is estimated to be (103 − 78)/2.97 = 8.41. Computed from
the full set of nine measurements, it turns out to be 8.99. The range is
an efficient estimator of σ when sample sizes are small (n < about 7;
Montgomery 2001).
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9.2.3 Bayesian credible intervals

Bayesian intervals for a parameter take the view that the parameter varies
randomly. A Bayesian credible interval can be defined in two ways. It
may be the shortest interval that contains a specified amount of a (pos-
terior) probability distribution. Alternatively, it may be the amount of a
probability distribution contained within specified bounds ( Jaynes 1976).
An interval must be accompanied by ‘some indication of the reliability
with which one can assert that the true value lies within it’ ( Jaynes 1976,
p. 179).

9.2.4 Imprecise probabilities

Betting rates can be used to set the bounds for a probability, an idea that
dates at least to Laplace in the 1800s ( Jaynes 1976). The procedure works
as follows.

� Give a person a ticket and say that it is worth a reward (say, $100) if the
event, E, occurs.

� Then, offer the person a reward (in cash, $X), payable immediately, for
the ticket.

� Begin with a small value for $X and increase it slowly until a point is
reached at which the person is willing to part with the ticket (this is
called the point of indifference). The point of indifference is termed
the selling price, $XS.

If the person is rational, $XS < $100. Even if they view the event as
certain, $100 now is more valuable than $100 at some time in the future.
The person’s estimate of the probability of the event is:

p (E) = XS/100

Savage (1972) recommended betting analogies to elicit probabilities.
However, people sometimes exhibit irrational behaviour when con-
fronted by bets. A propensity to gamble can cloud judgement and people
are willing to lose money to support what they believe to be true (Morgan
and Henrion 1990).

de Finetti (1974) developed the reference lottery strategy that, theo-
retically, avoids problems with gambling behaviour. The objective is to
elicit a judgement for a probability, p, that event E will occur. The ref-
erence lottery is in the form of a tree and the idea is to ask the expert
to adjust the value of p to the point that they are indifferent to which
lottery they could be involved in (Figure 9.1).
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Reward 1

Reward 2

Reward 1

Reward 2

p

1−p

E occurs

E does not occur

Choice

Lottery 1

Lottery 2

Figure 9.1. Reference lottery for elicitation of the probability that event E will
occur. The respondent is asked to choose between Lottery 1 and Lottery 2.
Usually, Reward 1 is less than Reward 2 when E is a low-probability event. The
value of p is adjusted until the person is indifferent between the choice of the two
lotteries (after de Finetti 1974, Morgan and Henrion 1990).

The value for p that results from application of the reference lottery is
taken to be the probability that the event will occur. The same strategy
has been used to elicit cumulative density functions by letting the event be
the probability that the value of a parameter is less than a specified value.

Analogous systems can be used to elicit preferences (utilities) and ranks
for nonprobabilistic quantities (see Chapter 12). It can be cumbersome to
use in routine elicitation procedures and requires training (Morgan and
Henrion 1990). People want to jump to an estimate. It is the analyst’s
responsibility to engineer circumstances that ensure estimates are reliable.
The details of an elicitation protocol always involve trade-offs between
the repeatability and reliability of expert judgements (Chapter 4), the
number of parameters and time.

You may turn the questions for betting around, as follows:

� Say to the person that you have a ticket and that it is worth $100 if the
event, E, occurs.

� Ask if they would be willing to give you $X for the ticket.
� Start with a small value of X and gradually increase it.
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A person should be willing to buy it at small values of X and will reach a
point of indifference. This is the buying price, $XB. Interestingly, in most
situations, $XB < $XS < $100. The buying and selling prices provide
bounds for the uncertainty the person feels about the event, E. Their
answers can be used to construct an interval around the probability of the
event,

p (E) = [p lower, pupper] =
[

$XB

100
,

$XS

100

]
.

Walley (1991, 2000a,b) defined imprecise probabilities as a gamble. Sub-
jective upper and lower probabilities based on buying and selling prices
for gambles have comparable meanings (Walley and DeCooman 2001).

The probabilities [plower, pupper] embody a commitment to act in cer-
tain ways (a behavioural model; Walley and DeCooman 2001). For ex-
ample, E might be the amount of rain that will fall next week, regarded
as a reward. It is rational to pay any price smaller than $XB for the un-
certain reward E. It is rational to sell the reward for any price higher
than $XS.

If the price is between $XB and $XS, it may be reasonable to do noth-
ing, to buy or to sell E. The buying and selling prices for risky invest-
ments offered by traders in financial markets are examples of such bounds
(Walley 2000a). This approach differs from other forms of decision anal-
ysis (Chapters 8 and 12) in that it may produce only a partial ordering
of the possible actions; we may be unable to determine which of two
actions is preferable without regarding them as equally good (Walley
2000a, b).

9.2.5 Which intervals?

The choice of an interval may be determined by use. Sometimes, inter-
vals are used to measure and convey attitudes (Chapter 12). When they
are used to further investigate an issue, the analyst is responsible for ensur-
ing that people share understanding about the meaning of the intervals.
Eliciting judgements using gambling analogies is consistent. Resulting
intervals should have comparable meanings.

If, instead, the parameters are subjectively estimated quantities,
Bayesian credible intervals may be appropriate. If the purpose of a study
is to detect outliers or implausible outcomes, sure bounds may be use-
ful. If the purpose of the assessment is to provide probabilistic thresholds
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and data are available, the analysis will require quantiles of appropriate
probability distributions.

In most environment risk assessments, most parameter estimates are
composed of either subjectively estimated quantiles or plausible limits
derived from experts applying optimistic and pessimistic assumptions.
For example, Morgan and Henrion (1990) reported that in the 1970s,
under the guidance of the statistician John Tukey, the Impacts Committee
of the US National Academy of Sciences concluded that if the release of
chlorofluorocarbons continued at 1977 levels, there was a 50% chance
that atmospheric ozone depletion would eventually reach 10–23%. The
committee was ‘quite confident’ (translated as equivalent to 19 chances
in 20) that depletion would be in the range 5–28%.

Making such judgements is not easy. A few years later, a similar com-
mittee constituted without Tukey was unable to make the same kind of
interval estimate (Morgan and Henrion 1990). In all such circumstances,
analysts are obliged to consider the issue of elicitation (Chapter 4) and
the use of imprecise probabilities.

Generally, upper and lower bounds are intended to provide an envelope
that brackets the true value and the majority of possible outcomes. The
locations of intervals are sensitive to the tails of a distribution. Even with
measurement data, underestimation of the full extent of uncertainty will
result in intervals that are too narrow. If the absence of data obliges the use
of expert judgement, it is useful to know beforehand that experts often
are optimistic and provide bounds that are too narrow. It is difficult to
know what to do with this knowledge, other than to correct judgements
arbitrarily. A better strategy is to measure the bias and correct accordingly
(Chapter 4; Cooke 1991).

Many ecologists and environmental scientists refrain from making
judgements about parameters because there are insufficient data. We
are poorly trained to handle uncertainty. Without knowing exactly how
much more data would be needed to make a reliable decision, we wait
until a threshold of information is reached and then provide a point esti-
mate. Instead, we should begin with bounds that capture the breadth of
uncertainty, and successively reduce the intervals as knowledge and un-
derstanding improve. With training and coherent elicitation protocols,
such as betting analogies, expert performance may improve.

It is important to discriminate between parameter estimation, predic-
tion and decision making. Risk assessments involve all three. The meth-
ods outlined in this chapter are appropriate for parameter estimation and
prediction. Other methods for dealing with uncertainty in predictions
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and decisions are outlined in later chapters. Irrespective of how they are
constructed, intervals are a substantial improvement on point estimates
that allow us to imagine there is no uncertainty at all.

9.3 Interval arithmetic
The objective of interval analysis is to carry quantitative uncertainties
through chains of calculations in a way that is guaranteed to enclose
an estimate with at least the surety required. The method is transpar-
ent and simple to calculate. It depends on extreme assumptions about
dependencies. The value lies in the fact that if the results of the arith-
metic do not straddle a decision threshold, dependencies and other un-
certainties may be ignored because they do not affect the decision. If,
however, the results do straddle a threshold, we need to find out more
about sources of uncertainty and dependencies between variables, and
make decisions that take into account the possibility of being wrong
(Chapter 12).

For each parameter, we specify a range within which we are confident
of the true value (to a certain degree). Typically, the same degree of
confidence is assessed for each interval. Each operation ensures that the
result encloses the true value with at least the level of confidence specified
for the individual parameters. The operations in Box 9.2 are sufficient
for most environmental risk assessment applications.

For example, an expert believes the probability that a ship will run
aground creating a damaging oil spill is in the interval [0.6, 0.8]. The
expert estimates that a proportion of the coastline in the interval [0.2,
0.7] will be substantially affected. If we take the conceptual approach
outlined in Chapter 6, the ‘risk’ is the likelihood times the consequence
(see Section 9.3.3 for another such example). In this case:

Risk = [a1, a2] × [b1, b2] = [0.6, 0.8] × [0.2, 0.7]
= [0.6 × 0.2, 0.8 × 0.7] = [0.12, 0.56].

To rank the hazards, we could compare this interval to others. The rules
we adopt to rank intervals depend on our attitude towards uncertainty.
If we are risk averse, for instance, we may decide to rank on the upper
bound of the risk interval (the worst case for each).

More detailed background including the rules for back-calculation,
dealing with zeros and other useful tricks can be found in Moore (1966),
Neumaier (1990) and Ferson (2002).
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Box 9.2 · Interval arithmetic operations (for a1 < a2, b1 < b2, 0 <

a1 < b1)

Addition

[a1, a2] + [b1, b2] = [a1 + b1, a2 + b2]

Subtraction

[a1, a2] − [b1, b2] = [a1 − b2, a2 − b1]

Multiplication

[a1, a2] × [b1, b2] = [a1 × b1, a2 × b2]

Division

[a1, a2]/[b1, b2] = [a1/b2, a2/b1]
Operations with a constant (h ≥ 1)

h × [a1, a2] = [ha1, ha2]

h + [a1, a2] = [a1, a2] + [h, h ] = [a1 + h, a2 + h ]

Powers (b1, b2 ≥ 1)

[a1, a2][b1,b2] = [
a b1

1 , a b2
2

]

9.3.1 Dependencies

Interval arithmetic gives assurances about the reliability of the results by
making conservative assumptions about dependencies. It assumes that
quantities that are added or multiplied are perfectly, positively correlated.
Quantities that are subtracted or divided are assumed to be perfectly
negatively correlated.

It may seem that these assumptions make the intervals as wide as possi-
ble. In fact, they are as narrow as possible, while remaining faithful to what
you are willing to specify about dependencies. If you know something
about two variables, the arithmetic should reflect it. Monte Carlo simu-
lation is capable of handling dependencies if they are specified exactly.

For example, you may know from data that body size is positively,
linearly correlated with intake rate. But if subjective knowledge tells you
they are positively correlated but no more, then Monte Carlo will struggle
to provide the full set of potential outcomes, and interval arithmetic will
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be too broad, ignoring the positive association. Other methods such as
p-bounds may provide the appropriate solutions (Chapter 10).

9.3.2 Intervals for the dose equation

Assume the following data describe exposure of a crustacean to a con-
taminant (the example is from Ferson et al. 1999). The question is, what
dose should be expected?

C = [0.007, 3.30] × 10−3 mg/l (5th and 95th percentiles from data)
IR = [4, 6] 1/day (subjective range estimate by experts)
EF = [45/365, 65/365] = [0.12, 0.18] (subjective range estimate by

experts)
bw = [8.43, 4.514] g (5th and 95th percentiles from data for a different

population, assumed to have the same life history characteristics as the
population under study)

Dose = C × I R × E F
bw

= [0.000 007, 0.0033] × [4, 6] × [0.12, 0.18]
[8430, 45 140]

= [3.36, 3564] × 10−6

[8430, 45 140]

= [3.36/45 140, 3564/8430] × 10−6

= [7.44 × 10−11, 4.23 × 10−7] (mg/day)/mg.

The result spans four orders of magnitude. Providing a point estimate for
the dose would have been misleading. The regulator is free to use the
upper bound to set regulatory limits. This would be equivalent to using
a form of worst case analysis, but the benefit is that at least some of the
uncertainty is apparent.

9.3.3 Intervals for site contamination

Consider another example provided by Lobascio (1993, in Ferson et al.
1999). Groundwater contamination is an especially important issue in
urban areas. Hydrogeologists use physical equations to estimate the time
it will take a contaminant to move from the point of contamination
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through the soil to some target or sensitive site. For example, hydrocarbon
contamination travelling time may be calculated from:

T = L(n + Dfockc)
Ki

.

A point estimate may be reported as 500 years. On that basis, you might
be prepared to plan the development of a school in the path of the plume,
thinking that the scheduled life of the school is a maximum of 100 years.

Consider the same problem recast in interval arithmetic. You are given
uncertainty in each of the parameters:

L = distance to well = [80,120] m
i = hydraulic gradient = [0.0003,0.0008] m/m
K = Hydraulic conductivity = [300,3000] m/year
n = effective soil porosity = [0.2,0.35]
D = soil bulk density = [1500,1750] kg/m3

f = soil carbon fraction = [0.0001,0.005]
kc = partition coefficient = [5,20] m3/kg.

Each interval represents a measured or subjectively estimated interval
such that you are 90% certain it contains the true value. You have no
knowledge of dependencies among the parameters. Then:

T = 80 × (0.2 + 1500 × 0.0001 × 5)
3000 × 0.0008

,

120 × (0.35 + 1750 × 0.005 × 20)
300 × 0.0003

= [32, 234 000] years.

That is, the time it will take for the plume of contamination to move from
the point of contamination to the school grounds could reasonably be
anywhere between 32 and 234 000 years. An interval of this magnitude
seems very unsatisfactory but it serves to illuminate the implicit deceit
entailed in using point estimates.

Would you still recommend the school building to go ahead, knowing
there is a chance the plume could arrive within 32 years, and a higher
chance it could arrive within 100 years? Of course, the plume may never
arrive, so the answer depends on the risk-weighted health costs of decid-
ing it is safe, versus the social and economic costs of relocating the school
when it is perfectly safe for it to be where it is planned.
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This example illustrates the importance, and the difficulty, of estimat-
ing bounds. Taking a small part of this analysis further, Renner (2002)
summarized reviews of the octanol-water partition coefficient. One re-
view of 700 publications between 1944 and 2001 found estimates for
the coefficient that varied over four orders of magnitude. There was no
evidence that estimates over time were converging. The value of the co-
efficient in a given circumstance depends on many chemical and physical
variables. Substantial understanding of the conditions at hand would be
necessary before a range for kc as small as [5, 20] used above could be
justified.

9.3.4 Intervals for risk ranking

Risk ranking combines likelihoods (estimated on a scale of, say, 1 to
5) with consequences (on a scale of, say, 1 to 5) to produce a value (a
‘risk’). The ‘risk’ is compared with threshold values (producing a clas-
sification of high, medium and low risks) and with the values for other
hazards (producing a rank). Most ranking exercises use a range of judge-
ments derived from expert opinion and quantitative data (Chapters 5
and 6).

When point estimates are used for likelihoods and consequences, in-
formation about the degree of certainty in judgements is lost. Interval
arithmetic can be used in subjective risk assessments to preserve this in-
formation so that it may be considered when assessments and decisions
are made.

For example, take a case of expert assessment of the ecological effects
on local vegetation of the construction and operation of an industrial
plant (Section 5.2). Construction and operation create the possibilities
of fire, road construction, the introduction of invasive plant species and
modification of vegetation caused by emissions from the industrial com-
plex. A typical assessment would look like Table 9.2.

Often, the values are generated by a single assessor, making them sus-
ceptible to the values, perceptions and biases of the individual (Chapters 1
and 4). Better methods achieve a consensus from a range of experts, or
use indirect or direct empirical data (Chapter 4). If the range of data or
opinions are retained (Table 9.3) then the range of risk estimates may also
be retained with interval arithmetic.

The analysis makes it plain that the experts are happier to agree about
the risks of road construction than they are about the risks of changed fire
frequencies. The basis for disagreement about fire lay in the estimation
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Table 9.2. Subjective risk assessment of four hazards associated with the
construction and operation of a methanol plant

Hazard Likelihood Consequence Risk Rank

Increased fire frequency 2 2 4 5
Road construction 5 1 5 4
Pest plant introduction 2 3 6 3
Emissions leading to minor

vegetation change
4 2 8 2

Emissions leading to vegetation
loss

2 5 10 1

Table 9.3. Range of expert opinion about two hazards from Table 9.2, together
with interval calculations for the resulting risk

Hazard Likelihood Consequence Risk

Increased fire frequency
Expert 1 1 2 2
Expert 2 2 2 4
Expert 3 2 3 6
Expert 4 5 3 15
Interval [1,5] [2,3] [2,15]

Road construction
Expert 1 5 1 5
Expert 2 4 2 8
Expert 3 5 1 5
Expert 4 5 1 5
Interval [4,5] [1,2] [5,8]

of its consequences, rather than the estimation of its likelihood. There is
even a chance that the risk resulting from fire effects is greater than the
risk resulting from emissions.

This wealth of information is lost from most risk ranking exercises.
There is no reason to hide the uncertainties, unless it is to create an
undeserved veil of certainty. Interval arithmetic provides a means for
retaining them. The results provide an opportunity to rank the hazards
on the basis of a best guess or consensus (Table 9.2), and on the basis of,
say, the upper or lower bound from each assessment. The latter analysis
would provide a measure of the sensitivity of risk ranks to underlying
uncertainties in the assessments.
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Box 9.3 · Interval operations for logical operators when a and b are prob-
ability intervals (limited to [0,1]; after Akçakaya et al. 2000)

Let p (A) ∈ [a1, a2] and p (B) ∈ [b1, b2] be likelihood intervals.
If A and B are independent,

p (A ∩ B) = p (A)p (B)

= [a1, a2] × [b1, b2]

= [a1b1, a2b2].

The probabilistic sum, ⊕, is:

p (A ∪ B) = p (A) + p (B) − p (A) ∩ p (B)

[a1, a2] ⊕ [b1, b2] = [a1 + b1 − a1 × b1, a2 + b2 a2 × b2].

It is possible to make different assumptions about dependencies. The
following operators contribute to other interval versions of logical
conjunctions:

The minimum, ‘min’, is defined as:

min([a1, a2], [b1, b2]) = [min(a1, b1), min(a2, b2)].

The maximum, ‘max’, is defined as:

max([a1, a2], [b1, b2]) = [max(a1, b1), max(a2, b2)].

The envelope,‘env’, is defined as:

env([a1, a2], [b1, b2]) = [min(a1, b1), max(a2, b2)].

Akçakaya et al. (2000) developed a method for dealing with uncer-
tainty in the IUCN decision tree. They used fuzzy numbers instead of
intervals but the operators they selected work for interval operations.
The logic tree uses comparisons (greater than, less than) and logical
operations (a OR b, a AND b). They evaluated comparisons using
rules such as:

a ≤ b =



1 if a2 ≤ b1

0 if b2 ≤ a1

[0, 1] otherwise.

Akçakaya et al. (2000) used operators that assumed dependence was
positive but otherwise unknown. For example:

a AND b = env [a × b , min(a , b )],

a OR b = env(max(a , b ), 1 − (1 − a ) × (1 − b )).
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With two intervals, a = [0.2, 0.5] and b = [0.4, 0.9]:

a AND b = env [a × b , min(a , b )]

= env ([0.08, 0.45], [0.2, 0.5])

= [0.08, 0.5].

9.3.5 Intervals for logic trees

Logic trees outline the inter-relationships between basic events or con-
ditions, to assist with decisions and risk evaluation. They include logical
operations such as IF, AND and OR (Chapter 8). If information is avail-
able to estimate intervals for the probabilities of the basic component
events in the tree, then interval arithmetic can be used to produce likeli-
hood intervals for other tree nodes corresponding to the various logical
combinations of basic events (Box 9.3). Intervals are defined for most log-
ical operations (Neumaier 1990, Ferson 1996a), preserving uncertainties.

The bounds that assume independence are considerably tighter than
those resulting from operators that do not assume independence. These
two assumptions represent the extremes of normal assumptions about
dependencies. Other operators provide the intervals for other assumptions
about dependence (Ferson 1996a, 2002; Box 9.3).

Akçakaya et al. (2000) used the logic tree for the IUCN protocol
outlined in Chapter 8 to assess the status of the Towhee (Pipilo crissalis
eremophilus) in California. Some data for the species had been published
(Gustafson et al. 1994, Laabs et al. 1995). Destruction of habitat resulted in
a decline in the population (Akçakaya et al. 2000; see also Akçakaya et al.
1999). Some things were known with certainty, such as that there was only
one remaining population in California. Some things were unknown,
such as the rates of past and future decline. A few important variables
were known imprecisely and were represented as intervals, including:

Population size = [194, 300] mature individuals
Extent of occurrence = [431, 100 000]km2

Area of occupancy = [246, 430]km2.

Interval operations applied to the logic tree generated a rank for the
subspecies: [critically endangered, endangered]. Either rank is plausible.
There is insufficient information to distinguish between them reliably.
It is reasonably certain, however, that the species is threatened to some
extent.
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9.4 Discussion
Intervals may be able to cope with all types of numerical uncertainty
(i.e. the uncertainty about a parameter value) simultaneously. For in-
stance, uncertainty in the number of endangered species in a region
that arises due to vagueness, measurement and systematic error, natural
variation and subjective judgement can be subsumed within upper and
lower bounds. Walley and DeCooman (2001) proposed an approach for
translating linguistic uncertainty into imprecise probabilities with betting
analogies.

One of the costs of using intervals is that they do not use all available
information about a number. Using an interval loses information about
the central tendency, standard deviation, sample size, distribution shape
and so forth. In addition, intervals compound uncertainty and may intro-
duce underspecificity where none existed before. Lastly, intervals are only
appropriate for numerical uncertainty. Many instances of linguistic un-
certainty are not numerical and should be treated in the most appropriate
manner for their subcategory (Regan et al. 2002a).

Probabilistic and other methods may be combined. In such appli-
cations, the probabilities of vague events are quantified (see Gabbay and
Smets 1998) and the sources of uncertainty are treated separately – proba-
bilistic methods are used for epistemic uncertainty and fuzzy set methods
for vagueness. This is different from an interval-based method where
all the uncertainty is combined (see Ferson and Ginzburg 1996, Ferson
et al. 1999).

Treatments of uncertainty in environmental science have focused
largely on epistemic uncertainty. Few studies have acknowledged and
dealt with both epistemic and linguistic uncertainty simultaneously. One
notable example is the IUCN categories and criteria for the classification
of threatened species. The IUCN categories deal with non-numerical
vagueness in the terms vulnerable, endangered and critically endangered and
accommodate natural variation in elements such as population size. Fur-
thermore, a formal method exists based on intervals to deal with the
various types of uncertainty in each of the parameters in the criteria
(Akçakaya et al. 1999, 2000), as well as a method to deal with numerical
vagueness in the categories (Regan et al. 2000).

Some authors have objected to intervals because they have sharp
boundaries. It seems unreasonable to say nothing about a distribution
within the limits, and yet to specify the boundaries as though they are
exact. There are some solutions that are not outlined here. Fuzzy numbers
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are essentially stacks of intervals, each level of which represents a differ-
ent degree of surety about the boundary (Kaufmann and Gupta 1985).
Info-gap theory generalizes the problem of specifying what is not known
about a decision, leading to a model of uncertainty that does not require
assumptions about sharp boundaries (Ben-Haim 2001, Chapter 12).



10 � Monte Carlo

The name ‘Monte Carlo’ dates from about 1944 and the Los Alamos
project in the US that produced the atomic bomb. The work involved
simulating the random diffusion of neutrons. Von Neumann, Ulam and
others worked on the bomb project and later disseminated the idea
of Monte Carlo methods to solve both deterministic and stochastic
problems.

Ulam (1976) related how the idea for Monte Carlo arose while he was
in hospital after a bout of meningitis. While playing solitaire, it occurred
to him that one could get an idea of the probability of an event such as a
successful outcome in a game of cards, simply by recording the propor-
tion of successful attempts. At the time, people were trying to estimate
probabilities by following all chains of possibilities, a difficult task for all
but the simplest cases.

This idea formed the foundation of what came to be known as Monte
Carlo analysis (alluding to uncertainty in gambling). The methods origi-
nally focused on analytical solutions, but computers gave rapid solutions
to complex problems by simulation.

Some of the earliest applications of Monte Carlo were to environ-
mental problems. Hammersley and Handscomb (1964) noted a report in
The Times of London from 1957 in which Monte Carlo methods were
used to design controls of floodwater and the construction of dams on
the Nile. The problem was inherently probabilistic because rainfall is un-
predictable. The data consisted of weather, rainfall and water levels over
48 years. The problem was to see what would happen if certain dams were
built and policies for water control exercised. There were a large number
of combinations of dams and policies, each to be evaluated over a range of
meteorological conditions, including typical and extreme scenarios. The
model included details of dams, river hydrology, losses to evaporation and
so on. The behaviour of the system had to be assessed in terms of engi-
neering costs and agricultural, hydrogeological and economic outcomes.
The problem was explored using Monte Carlo simulation.
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Hammersley and Handscomb (1964) reported isolated and undevel-
oped instances from much earlier. In 1901, Lord Kelvin used Monte Carlo
techniques to find solutions to mathematical equations. In 1908, W. S.
Gosset (who worked for the Guinness company, did his mathematics in
his spare time, and published as ‘Student’) used repeated random sam-
ples to help him to discover the statistical distribution of the correlation
coefficient and to confirm his derivation of the t-distribution.

Monte Carlo methods provide a way to solve numerical problems. This
is important for environmental risk assessment because explicit models
provide a framework for the development of internally consistent ideas
and a platform for exploring the consequences of intuition. They allow
us to study systems in compressed time. They are often used where it is too
expensive, risky or slow to test a proposed change in a real system. Such
models encourage us to justify decisions, clarify problems, and identify
important parameters.

10.1 The modelling process
In the risk management cycle (Chapter 3) at the point at which model
building begins, the context has been determined, assumptions have been
specified and hazards and their consequences have been identified. The
purpose of the model determines the level of detail and the specifics of the
modelling approach, within the constraints of time and money. Monte
Carlo simulation models are built around the same conceptual models
that support risk ranking (Chapter 6), exposure assessment (Chapter 7)
and logic trees (Chapter 8).

The full value of model-based risk assessment is gained through an
iterative process of model construction, calibration, sensitivity analysis and
validation (Box 10.1). In this context, sensitivity analysis and verification
of model predictions are among the most valuable parts of the exercise.
The formalism of modelling ensures that terms are fully specified and
relatively free from ambiguity. These attributes do not guarantee that
linguistic uncertainties and biases won’t arise during risk communication
and management, but they go some way towards acknowledging and
alleviating the problems.

10.1.1 Random variables

Random variation lies at the heart of Monte Carlo analysis. If a parameter
in a model is uncertain, it is necessary to build a model for that uncertainty.
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Box 10.1 · A simple approach to stochastic model building

The following steps summarize a useful strategy for building a model:

1. Develop a deterministic (mechanistic) model.
2. Add stochastic elements to represent uncertainties.
3. Add assumptions about dependencies.
4. Use the stochastic model to estimate the statistical distribution of

the result.
5. Compare the result with reality and update the model.

In most cases, simulation is used to solve difficult or intractable math-
ematical calculations.
Some important elements of modelling include:

� Calibration: adjusting model parameters, structures and assumptions
so that they fit available data and intuition, i.e. refinement of
ideas.

� Sensitivity analysis: calculating the magnitude and rank order of re-
sponses of consequences as a function of model parameters, assump-
tions and model structure, i.e. exploring assumptions and judge-
ments.

� Validation: comparing independent field observations with predic-
tions, i.e. testing ideas.

It may require choosing a statistical distribution and specifying its param-
eters. Then, to solve the problem, a source of random variation is used
to play the game over and over, providing estimates of the likelihoods of
different outcomes.

Dice are a source of random variation. We let X (or Y ) denote a
random variable (formal definition comes later), and x (or y) the values
the random variable can take. We may decide to use the dice because we
are interested in estimating the number of offspring that a bird may lay
in a clutch of eggs (between 1 and 6). The random variable (X) in this
instance is clutch size, which may take any one of six values (x).

If empirical evidence suggests that each clutch size is equally likely, the
dice are an excellent model for the variation in the system. The variable
would be represented by a discrete form of the uniform distribution, in
which each value has a 1/6 chance of occurring. The distribution of
relative frequencies of different kinds of events is known as a probability
density function. Formally, f (x) denotes the probability density function.
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f (x)
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Figure 10.1. A continuous uniform probability distribution and the associated
cumulative probability distribution.

It is often useful to record both the frequency of each event and the
cumulative frequencies of events up to a given magnitude. A cumulative
probability distribution gives the probability, p, that the random vari-
able X will be less than or equal to some value x. It sums the value of
the probability distribution from left to right.

The cumulative probability distribution for the dice is a step function
that increases from 0.167 (the chance of throwing a 1), to 1 (the chance
of throwing a number less than or equal to 6). This can be written as,

F (x) = p (X < x),

where F(x) is the cumulative probability function and ranges from 0 to 1.
We know the value of p(x) because we can measure it through repeated
trials. For example, if we didn’t know the chance of throwing a 1 was
1/6, we could measure it by throwing the dice 1000 times. The number
1 would turn up in about 167 instances.

If the distribution was continuous instead of discrete, the interpretation
would be the same (Figure 10.1). Instead of summing over values of x,
the cumulative probability distribution would be:

F (x) =
x∫

−∞
f (x)dx.
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10.2 Kinds of distributions
Monte Carlo uses statistical distributions to represent different kinds of
uncertainty, combining them to generate estimates of a risk. It is im-
portant to be familiar with the properties of a few of the most widely
used distributions. Complete details of methods for estimating the pa-
rameters of these and other distributions are provided by Johnson et al.
(1992, 1994, 1995; see also Morgan and Henrion 1990, Stephens et al.
1993, Vose 1996, Hilborn and Mangel 1997, Knuth 1981). The summary
below presents a few simple ones.

It is useful to recall that the mean and standard deviation of any sample
are given by the familiar formulae,

µ =
∑

x
n

and

s =
√∑

(x − x)2

n − 1
.

10.2.1 Uniform

The discrete and continuous forms of the uniform distribution are de-
scribed above. Specifying the parameters of a uniform distribution is
equivalent to specifying an interval in interval arithmetic. Formally, a
uniform distribution is defined as:

X ∼ U (l , u),

where l is the lower bound, and u is the upper bound. The expression
says that the parameter X is drawn from (∼) the uniform (U ) distribution
with bounds l (lower) and u (upper). The probability that X lies between
a and b is given by:

p (a < X < b ) = p (X < b ) − p (X < a ) = F (b ) − F (a )

where

p (X < b ) = b/(u − l ) and p (X < a ) = a /(u − l ).

The mean is l+u
2 . The standard deviation is

√
(u−l )2

12 .
When uncertainties are unknown, it is common practice to assign

equal probabilities to different events. The logic is that when there is
no evidence to the contrary, the best assumption is that all events are
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equipossible, and therefore equiprobable. This assumption is attributed
to Laplace around the end of the eighteenth century although it was in use
at least a century earlier; Leibniz made this assumption in 1678 (Hacking
1975).

It is possible to argue that there is never ‘no’ knowledge about the
probability density within an interval, that there will almost always be
some central tendency. The tails of at least one end of the distribution
are likely to occur less frequently than intermediate values (Seiler and
Alvarez 1996). Even when representing expert opinion, it is rare that
experts will have opinions about sharp boundaries for a parameter, but
have no opinions about its central tendency.

The primary role of the uniform distribution is that it is a model for
independent random variation from which other distributions may be
constructed. This role only becomes important once the Monte Carlo
engine starts to perform its calculations, outlined below.

10.2.2 Triangular

The triangular distribution accommodates a lower bound, a central ten-
dency (a ‘best guess’), and an upper bound for a parameter. It has no
theoretical basis but is used particularly to represent expert judgement or
belief. It tends to weigh the tails of a distribution more heavily than most
other distributions (except the uniform). The notation

X ∼ Triang(a , b , c )

says that the parameter is drawn from a distribution within the bounds
a , c and the best estimate of the parameter, represented by the mode, is at

b. The mean is a+b+c
3 . The standard deviation is

√
a 2+b 2+c 2−a b−a c −b c

18 . Its
simplicity, intuitive definition and flexible shape have made it a popular
tool, but it can generate biases for skewed data. The distribution of mass is
such that when, for instance, the maximum value is large (the distribution
is right skewed), the value of the mean will be sensitive to it, resulting in
inordinately large estimates for the mean. The weight it gives to the tails
is unrealistically large in most circumstances.

10.2.3 Normal

Parameters that result from the sum of a large number of independent
random processes tend to produce normal distributions, no matter what
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the shape of the processes that contributed to them. The normal is used
extensively, particularly for measurement errors and other random pro-
cesses. When sampling a normal distribution, the notation

X ∼ N(µ, σ )

indicates that X is drawn from a normal distribution (N ) with mean µ

and standard deviation σ .

10.2.4 Lognormal

Parameters that result from the product of a large number of independent
random processes tend to produce lognormal distributions. The notation

X ∼ LN(µ, σ )

says that X is drawn from a lognormal distribution (LN ) with mean µ and
standard deviation σ . The lognormal is a popular choice for quantities
that are positive and right skewed, such as river flows, rainfall and chemical
concentrations. It is also used commonly in situations in which expert
judgement uses multiplicative assessments such as ‘known to be within a
factor of three’, or ‘to within an order of magnitude’.

10.2.5 Beta

The most direct use of the beta distribution is to represent the probability
of a random event in a series of trials. It can take on a wide variety of
shapes, including both symmetric and asymmetric forms (either left or
right skewed), and horseshoe shapes. The notation

X ∼ beta(α1, α2)

indicates that X is drawn from a beta distribution with parameters α1, α2.
The uniform is a special case of the beta distribution with α1 = α2 = 1.
One special use of the discrete form of the beta is to model the number
of successes, r, from a given a number of trials, n. Then α1 = r + 1 and
α2 = n − r + 1.

In general, the mean is α1
α1+α2

. If α1, α2 > 1 then the mode is α1−1
α1 + α2−2 ,

and is 0 or 1 otherwise. The standard deviation is
√

α1α2
(α1+α2)2(α1+α2+1) . It can

be a useful model for uncertainty when a process is bounded and the mean
and/or the mode are known. Because of its flexibility, it is a popular tool
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for representing expert judgement about statistical processes. To model a
variable that is limited to an interval [a , b ], the beta distribution (X ) can
be rescaled (X+) (Vose 1996) by:

X+ = [a + beta(α1, α2) × (b − a )].

10.2.6 Binomial

The binomial distribution is closely related to the beta. The binomial
gives the number of successes, r, in n trials where the probability, p, of
any single trial succeeding is known and constant. The notation

X ∼ binomial(n, p )

says that X is drawn from a binomial distribution with a probability of
the event, p.

For large n (roughly > 30), the binomial is close to the normal, N{np,

[np (1 − p )]1/2}. This fact is useful because it is often more efficient to
sample a normal distribution than to sample a binomial distribution.
The latter usually involves repeated trials and can be computationally
expensive.

The mean number of successes in n trials is np. The standard deviation
of the mean number of successes in n trials is

√
np(1 − p ).

The binomial is used routinely to model things such as the survival of
individuals in a population, the failure of components in power plants and
the presence of physical features at different locations in the landscape.

10.2.7 Exponential

When an event occurs at random and the probability of this event is
constant, the time between successive events is described by an exponen-
tial distribution, sometimes called the negative exponential distribution.
The occurrence of independent, random events is called a Poisson pro-
cess. The notation

X ∼ exp(t )

says that X is drawn from an exponential distribution with a mean time
until the next event, t.

The mean of the process is t. The standard deviation of the inter-event
interval is also t.
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The exponential can also be parameterized by the rate of the Poisson
process, which generates it as a waiting time. In this case, X ∼ exp(λ)
with mean 1/λ and standard deviation 1/λ.

It is important in risk assessment because it provides an excellent model
for many processes, including the expected time until the next earth-
quake, the next failure of a tailings dam wall and the next forest fire. It
forms the basis for the gamma (not described here) and the Poisson distri-
butions. The exponential distribution is a special case of a more general
distribution called the Weibull distribution (see Morgan and Henrion
1990).

10.2.8 Poisson

The Poisson distribution models the number of occurrences of an event
that are likely to occur within a time, t, when the probability of an event
occurring per interval of time is constant, and independent of any other
events that may have occurred. The notation

X ∼ Poisson(λt )

says that X is drawn from a Poisson distribution with a mean of λt (i.e.
the number of events in an interval of length t in a Poisson process with
rate λ events per unit time).

Like the negative exponential from which it is derived, it has only a
single parameter. The mean is λ and the standard deviation is

√
λ.

The distribution is used to estimate the number of failures in a repet-
itive process such as manufacturing, and the distribution of births per
female in natural populations of plants and animals.

10.3 Choosing the right distributions
The shape of the gamma distribution is like the lognormal, although less
of the gamma lies in the extreme tails. Like the lognormal, it is used
routinely in some circumstances to represent rainfall and contaminant
concentrations. The Weibull distribution is often used to model time
to failure, material strength and related properties. It can take on shapes
similar to the gamma distribution and tends to be less tail heavy than the
lognormal.

In contrast, the popular triangular and uniform distributions make
the tails of distributions much heavier than most other distributions and
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Table 10.1. An example of guidelines for use of probability density functions in
stochastic models of nuclear reactor safety (after Stephens et al. 1993)

Type Used for parameters Examples

Constant With a well-known, fixed value Radionucleotide decay
constants

Uniform For which few data are
available, but firm bounds are
known

Rate constant

Normal For a variable made up of the
sum of a set of independent,
random variables

Permeability of backfill in a
toxic waste repository

Lognormal For a variable made up of the
product of a set of
independent, random
variables

Coefficients for element
mobility in soil

Triangular For which the upper and lower
bounds and most likely value
have been estimated, but
little else is known

pH of groundwater in a
repository

Beta For which the upper and lower
bounds and most likely value
have been estimated, and
other qualitative information
is available on shape

Coefficient for calculations
with redox potential of water
in contact with used nuclear
fuel

are hard to justify on empirical grounds (Seiler and Alvarez 1996). Vose
(1996) used a modified beta distribution (the ‘Betapert’) because of the
relative simplicity of interpretation of its moments, making it easier to
use in elicitation processes.

Despite the importance in risk analysis of correctly estimating the tails
of distributions, convention usually determines the choice. For example,
Stephens et al. (1993) provided examples of rules of thumb for eliciting
a choice of a distribution from experts (Table 10.1). Often, the normal
distribution is used in cases where it is clearly unsuitable (for instance,
where the data are strongly skewed or the tails are poorly fitted).

Theory may provide a basis for the choice. A process may consist
of a series of effectively random, time-invariant, independent events.
The beta, the negative exponential, the binomial or the Poisson may be
appropriate, depending on what it is we need to estimate. If processes
affecting the uncertainty in a parameter are known to be independent
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and additive, such as when estimating the magnitude of measurement
error, then the normal distribution might be justified.

Often theory doesn’t tell us what we need to know. Usually, we
know so little about empirical phenomena that we cannot construct the
expected distributions from their fundamental properties. We are then
obliged to guess at the correct distribution by simply observing the rela-
tive frequencies of events or outcomes.

If direct measurements are available, the response variable is continuous
and the values are right skewed, it is conventional to adopt the lognormal
distribution. If the process is thought to be skewed and experts guess
its shape and parameters, it is conventional to estimate parameters for
a triangular or a beta distribution. In Section 10.10, a method called
‘p-bounds’ is outlined that does not require specific guesses about distri-
butional shape. Alternatively, empirical data may guide choice through
goodness-of-fit.

10.3.1 Goodness of fit

Several tests provide a p value, the probability that a fitted distribution
would produce a test statistic as large, or larger, than the one observed,
by chance alone. The Kolmogorov–Smirnoff (K–S) statistic compares
the maximum distance between an empirical cumulative distribution
and a theoretical, fitted distribution, with a table of critical values. The
chi-square test compares the numbers of sample observations in discrete
classes with those expected under the proposed distribution, perhaps best
suited for discrete random variables.

The Anderson–Darling (A–D) statistic sums the squared vertical dis-
tances between two cumulative distributions. The A–D statistic is useful
in risk analysis because it pays greater attention than the K–S statistic to
the tails of the distribution. However, it is computationally more difficult
and can’t be done easily by hand or in a spreadsheet.

It is a sensible idea simply to plot the expected and observed cumulative
distributions and examine them for patterns of deviation. Outliers in the
main body of the distribution and in the tails may be informative. Plots
can be made of cumulative probabilities, of probability versus probability,
or of quantile versus quantile.

The main problem with goodness-of-fit tests is that calculating the
probability that the fitted distribution could have produced the data is
not the same thing as calculating the probability that the data came from
the fitted distribution. Other distributions could have produced a similar
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outcome. Goodness-of-fit is a necessary but not a sufficient condition
for selecting a distribution.

Usually, the problem comes down to one of choosing between a lim-
ited set of plausible alternatives. There are a few methods for choosing,
including maximum likelihood.

10.3.2 Estimation and maximum likelihood

There are many ways of estimating the parameters of statistical distribu-
tions (see Johnson et al. 1992, 1994, 1995, Hilborn and Mangel 1997).
Maximum likelihood is one of these. It may also be used to choose a
distribution and to evaluate the goodness-of-fit of data to a model.

In many cases, the parameters of a distribution may be estimated using
a simple equation. For example, if there are x observations in n trials, the
probability of the event may be estimated as x/n. Some of the formulae in
Section 10.2 give maximum likelihood estimates of the parameters of the
distributions. For complete details of the maximum likelihood equations
for these and other distributions, see Johnson et al. (1992, 1994, 1995). In
situations where several unknown parameters must be estimated from data
simultaneously, a brief introduction to maximum likelihood estimation
may be helpful (Box 10.2).

10.3.3 Other selection criteria

Selection of appropriate distributions should draw on all available in-
formation. There are many relevant questions. Is the variable discrete
or continuous? What are the bounds of the variable? Is the distribu-
tion skewed or symmetric? If the distribution is skewed, is it left or
right skewed? What other properties of the shape of the distribution are
known? Is there a mechanistic basis for choosing a distributional family?
Is the shape of the distribution likely to be dictated by physical or biolog-
ical properties or other mechanisms? Are there data from other, similar
systems that provide support for one distribution or another?

One of the most serious difficulties in choosing a distribution is that
normal and lognormal distributions (for instance) may look good over
most of the range of the data, but deviate substantially in the tails, where
risks are expressed most seriously (Hattis 1990, Hattis and Burmaster
1994). For example, Shlyakhter (1994) estimated the parameters of a
normal distribution for human global population size estimates and for
several physical constants. He then measured the deviations of subsequent
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Box 10.2 · An example showing how maximum likelihood estimation
works

Table 10.2 gives counts for diatoms in water samples taken downstream
from a source of a chemical used on a farm to control insects. The
diatom is an indicator of the presence of the contaminant.
The average natural ‘background’ frequency of the diatom in samples
from these streams is about 0.5 cells per sample. In other studies,
diatom frequencies of about two cells per sample reflect concentrations
that led to increased risks of fish kills and changes in stream insect
fauna. The first objective is to measure the average number of cells
in the stream water, to see if the count is ‘above background’. The
second objective is to evaluate if there is any gradient in the effect of
the contaminant downstream from the source, and about how far it
extends.
The samples are made up of independent counts so we model variation
with the Poisson distribution. We can calculate the likelihood of ob-
serving four cells, for example, from the probability density function
for the Poisson,

L1 = P (4|λ) = e−λλx

x!
= e−λλ4

4!
.

Thus, if we guess that λ = 1.2, the likelihood of observing a cell
count of four is 0.026 and the natural log of that likelihood (the ‘log
likelihood’) is –3.65. For a count of three (again assuming λ = 1.2),
the log likelihood is –2.44 (see the first two elements of Table 10.2,
under the column for λ = 1.2).
If we calculate the likelihood of each observation for a given value of
λ, the log-likelihood of the model (for example, a Poisson distribution
with a parameter λ = 1.2) is given by the sum of the log-likelihood
values for each observation,

lnL = ln(l1) + ln(l2) + · · · ln(ln ) = −24.91

(see the values at the foot of Table 10.2).
The value of λ = 1.2 may not be the best estimate. We can then try
a range of values of λ. The maximum likelihood estimate of λ is the
value of λ that maximizes the value of the sum of lnL.
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Table 10.2. The number of diatom cells per sample in 30 samples from a
range of locations downstream from a source of an agricultural chemical
(hypothetical data)

Distance Count λ = 1.2 ln(li) λ = 1.47 ln(li) λ = 2 ln(li)

1 3 −2.44 −2.11 −1.71
1 4 −3.65 −3.11 −2.41
1 2 −1.53 −1.39 −1.31
2 4 −3.65 −3.11 −2.41
2 2 −1.53 −1.39 −1.315
4 0 −1.20 −1.47 −2.00
4 0 −1.20 −1.47 −2.00
6 1 −1.02 −1.08 −1.31
6 1 −1.02 −1.08 −1.31
8 2 −1.53 −1.39 −1.31
8 1 −1.02 −1.08 −1.31

10 0 −1.20 −1.47 −2.00
10 0 −1.20 −1.47 −2.00
12 2 −1.53 −1.39 −1.31
12 0 −1.20 −1.47 −2.00

lnL = ∑
ln(li) −24.91 −24.50 −25.67

The sum, L, of the log (likelihoods) for each observation, i, in
Table 10.2 is maximized at a value of λ = 1.47, assuming the Poisson
distribution (Figure 10.2). The average number of cells per sample,
1.47, is somewhat above background (0.5 cells) but not as high as the
frequency associated with serious environmental change (two cells).
So far, we have ignored the distance information. We expect the
concentration of the chemical and the frequency of the diatom to
decline as we move further from the source. It seems reasonable to
expect the decline to approach zero gradually. An exponential decline
will probably be a good approximation. We can use maximum like-
lihood to estimate the parameters of this slightly more complicated
model.
We make the expected frequency of each observation equal to
exp(a + b × distance), instead of λ, where a and b are the slope and
intercept of the exponential decline of chemical concentration with
distance. Using maximum likelihood estimation to fit the parameters,
we get a = 1.30 and b = −0.23 (these details are not shown here,
but the calculations were done using Microsoft Excel’s ‘solver’). At zero
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Figure 10.2. Log likelihood versus a range of values of λ for the Poisson model
of diatom frequencies.

distance, we expect about 3.5 cells per sample, declining to an average
of about 1 cell per sample at a distance of about 5 km downstream.
We could choose another discrete statistical distribution and repeat the
exercise, comparing the log likelihoods of the two models, adjusted
for the number of parameters in each model. Akaike’s Information
Criterion provides one way of making such comparisons. Hilborn and
Mangel (1997) and Burnham and Anderson (2002) give a number of
other examples.

observations from the original mean, and compared the extreme values
to the tails of the normal distribution (Figure 10.3).

The plots of the tails of four sets of observations, three for physical pro-
cesses and one for human population estimates, demonstrated unexpect-
edly large deviations in successive measurements of the same quantities.
Shlyakhter (1994, p. 480) described this as a ‘pattern of overconfidence’
in which the normal distribution seemed adequate but underestimated
the frequencies of extreme events in subsequent measurements.

Sometimes a process is best described by a mixed distribution in which
the parameter(s) of a distribution is itself a random variable. For example,
Shlyakhter (1994) solved the problem of poorly fitted tails by assuming
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Figure 10.3. Probability of extreme (unexpected) results in physical measurements
and population estimates. Cumulative probability plots that new measurements (a)
are at least |X| standard deviations (s) away from reference values drawn from
previous results (A), where x = (a − A)/s (after Shlyakhter 1994).

that the normal distribution included a parameter that was a random
variable.

The question will often remain, in the absence of underlying theory
and high-quality, relevant data, what is the best assumption? The analyst
has the option of averaging the expectations of different plausible models,
weighted by their likelihood (see Section 10.6.3). If the context demands
that the analysis be risk averse, it may be best to avoid strong assumptions
about distribution type, and to choose the widest distribution consistent
with the state of knowledge. But conservative assumptions about risk
may have other costs, and the degree of conservatism should be made
explicit and should be communicated when decisions are made.

10.3.4 Knowledge and inherent uncertainty

Parameters vary naturally and lack of data and knowledge of the shape and
moments of the distributions (incertitude, see Chapter 2) adds another
layer of uncertainty. Most risk assessments do not distinguish between
these sources of uncertainty, and do not account for them separately when
performing calculations (see Hilborn and Mangel 1997). For example, if
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F(x)

Figure 10.4. Representation of the inverse function, Q(F(x)) = x.

the task of the risk assessment is to make a prediction, then measurement
error should be deducted from the uncertainty surrounding a parameter,
before projections are made. The same issue arises for expert judgement.
In practice, it is not easy to distinguish natural variation from incertitude,
especially if the shapes of the tails of the distributions are important
(Shlyakhter 1994, Hattis and Burmaster 1994, Haas 1997).

10.4 Generating answers
Once parameters have been defined and models have been selected to
represent uncertainties, the (random) parameters have to be combined
into a solution. Usually, the solutions are found using computers to iterate
the problem over and over, thereby generating a distribution of answers
that combines the uncertain parameters (and their dependencies, but
more on that later).

Assume you have a cumulative probability distribution for a variable x
which you call F(x). Monte Carlo asks the question: ‘What is the value
of x for a given value of F(x)?’ The function that outputs x values for
given values of F(x) is called the inverse function. Often it is written as
Q(F(x)) = x, where Q is the inverse of F (sometimes written as F−1 or
F−1) (Figure 10.4).

This is a convoluted way of asking: ‘What value of the variable will
produce a risk less than or equal to the one specified?’ Monte Carlo
simulation provides an answer to that question by running repeated trials.
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Table 10.3. A table of random digitsa

86515 90795 66155 66434
69186 03393 42502 99224
41686 42163 85181 38967
86522 47171 88059 89342

a To generate a number with three significant fig-
ures, select the digits from the sequence (e.g.
0.865, 0.159 and so on).

10.4.1 Random numbers

A few simple examples illustrate the nuts and bolts of Monte Carlo simu-
lation. How are random numbers drawn from the interval [0,1]? We could
mark the digits 0, 1, 2, . . . , 9 on identical slips of paper, place them in a
hat, mix them, take out one number, return it to the hat and repeat the
process. If we wrote down the digits obtained in this way, it would form
a table of random digits (e.g. Table 10.3).

We can simulate the toss of a coin using Table 10.3. Assign the numbers
0, 1, 2, 3, 4 to heads, and the numbers 5, 6, 7, 8, 9 to tails. Starting with
the first row of numbers, the outcome would be T, T, T, H, T, T, H, T,
T, T, T, T, H, T, T, T, T, H, H, H, giving just 6 heads out of 20.

Starting with the second row, the outcome is T, T, H, T, T, H, H, H,
T, H, H, H, T, H, H, T, T, H, H, H, giving 12 heads.

This is a Monte Carlo simulation of a coin toss.
The long-run outcome of p(head) = 0.5 is trivial. But series like these

can answer slightly more interesting questions than can be answered by
providing the point estimate. For instance: ‘What is the chance of more
than 10 heads in a row (which, if I’m a gambler, may spell ruin)?’ or,
‘What is the chance of a sequence of 20 alternating heads and tails?’.
The answer is obtained simply by going to the output and counting the
number of times, out of the total, the event in question occurred.

Assume you manage a population of koalas and you know the average
annual survival rate is 0.7. We could multiply the population size by
the average, 0.7, to calculate the number of survivors expected in the
following year. Or we could follow the fate of each individual.

At each time step, generate uniform random numbers between 0 and
1. If a random number is greater than the survival value (0.7 in this case),
then the individual dies. Otherwise, the individual lives. We ask the
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question for each individual in the population, using a different random
number each time. Thus, if there are 10 individuals in the population,
there is no guarantee that 7 will survive, although it is the most likely
outcome. There is some smaller chance that 6 or 8 will survive and some
smaller chance still that 5 or 9 will survive.

This kind of uncertainty represents the chance events in the deaths of
a real population, sometimes called demographic variation. We can then
ask, what is the chance that all the koalas survive? Or none of them?

Binomial probabilities will also give the answers to these questions
(the answer to the question, ‘What is the chance that all the koalas
survive?’ is 0.710 = 0.0282). The beauty of Monte Carlo is that exactly
the same logic may be applied to questions of (almost) arbitrary complex-
ity, for which there is no convenient analytical answer (the majority of
cases).

10.4.2 Pseudorandom numbers

A slightly more complex problem would be one in which there are three
possible outcomes. We could assign a part of the uniform distribution to
each outcome, dividing it into three buckets. Using Table 10.3 to select
random numbers to generate a series of outcomes in a simulation, we
could then take the first 3 digits from the table and divide by 1000. For
the next random number from 0 to 1 select the next 3 digits and divide
by 1000 and so on.

Suppose we have a discrete random variable X with the following
distribution:

X ∼
(

x1 x2 . . . xn

p1 p2 . . . pn

)
.

Consider partitioning the interval [0,1] into n sub-intervals with lengths
equal to p1, p2, . . . , pn.

y1 = [0, p1]

y2 = [p1, p1 + p2]

yi = [p1 + · · · pi−1, p1 + · · · + pi ]

yn = [p1 + · · · pn−1, p1 + · · · + pn ]

Each time we generate a random number between 0 and 1, we check to
see which interval it falls into. If it falls into the interval labelled yi, where
i = 1 . . . n, then the random variable X assumes the value xi .
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The trouble with this approach is that tables of random digits are
cumbersome to use. We need a ‘source’ of variation, an engine that
will generate arbitrarily long sequences of uniformly distributed random
numbers, from which other distributions may be generated.

The most popular algorithm for generating pseudorandom numbers is
called the congruential method. It provides a sequence of numbers from
a two-step iterative process. The initial number (the ‘seed’) is specified
by the user. The algorithm then produces numbers that satisfy a range
of properties including that, after many iterations, pairs of random values
densely fill the unit square. The period of the sequence is very large, so
that repetition is unlikely (for details see Knuth 1981, Barry 1996).

The equations and algorithms that produce the answers are known as
inverse probability distribution functions. Computational formulae ex-
ist for generating samples from almost any statistical distribution, using
uniform random numbers as a source of variation (Box 10.3).

10.5 Dependencies
A correlation describes the extent to which two variables are associ-
ated (the degree to which they co-vary). A dependency implies that
variation in one variable contributes to or causes the values in another
variable. This kind of relationship is usually modelled with regression.
Scatter plots are a useful way of establishing the form of a relationship
between two variables. Typically, the dependent variable is plotted on the
y-axis.

It may be argued that models that involve dependencies are not suffi-
ciently resolved. If something is causing two variables to co-vary, then the
cause should be included as an explicit process. In practice when variables
are correlated, often there is no mechanistic or theoretical explanation
for the pattern.

In general, positive correlations between variables in additive or mul-
tiplicative steps increase the spread of results and increase the risks of
extreme events. The effects may be dramatic for strong correlations or
for calculations involving several correlated variables. Dependent rela-
tionships demand careful consideration in risk assessments.

10.5.1 Rank correlations

Spearman’s rank correlation measures the similarity in the rank order
of objects (samples) in two lists. When objects have the same ordering,
they have a rank correlation of 1. When the orders are reversed, the
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Box 10.3 · Algorithms for normal and lognormal random numbers

One of the simplest algorithms for generating normal random deviates
is (Knuth 1981):

1. Generate a list of 12 independent, uniform deviates from the in-
terval [0,1].

2. Sum the 12 numbers.
3. Subtract 6.

This algorithm produces a single number from a normal distribution
with a mean of 0 and a variance of 1 (a standard normal deviate). It
may be translated to other locations and dispersions by:

x′ = x + sy
where s is the standard deviation of the distribution, x is its mean, and
y is the standard normal deviate.
This algorithm produces an approximation with poor tails. The dis-
tribution is truncated between −6 and +6 standard deviations from
the mean. Knuth (1981) described the alternative ‘polar’ method:

1. Sample two numbers from a uniform distribution, U1 and U2.
2. Let V1 = 2U1 − 1.
3. Let V2 = 2U2 − 1.
4. Compute S = V2

1 + V2
2 .

5. If S is greater than or equal to 1, return to 1.

6. Compute X1 = V1

√
−2 lnS

S .

7. Compute X2 = V2

√
−2 lnS

S .
8. Compute Y1 = µ + σ X1.
9. Compute Y2 = µ + σ X2.

To sample a lognormal deviate, Knuth (1981) suggested:

1. Let c = σ/µ.
2. Calculate m = ln(µ) = 0.5 ln(c 2 + 1).
3. Calculate s = √

ln(c 2 + 1).
4. Sample a random number, y, from a normal distribution with a

mean m and a standard deviation, s.
5. The lognormal number, l = e y .

The utility of a method depends on its purpose. The best is the fastest
and easiest to implement that is ‘sufficiently’ accurate.
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rank correlation is −1. When the orders are random with respect to one
another, the rank correlation is 0. It is calculated by

r s = 1 −
(

6
∑

(�R)2

n(n2 − 1)

)
,

where n is the number of objects (the number of pairs of samples) and �R
is the difference in rank for each pair of objects. The statistic ignores the
shape and dispersion of the distributions from which the lists are drawn.

Rank correlations are not intuitive and elicitation of rank correlations
from experts is error prone (Vose 1996). However, rank correlations may
be measured in some circumstances. They provide an alternative to unre-
alistic assumptions about the nature of dependencies when the processes
causing dependencies are unknown.

In Monte Carlo simulation, it is possible to constrain the samples drawn
from two distributions so that a specified rank correlation is generated. A
method by Iman and Conover (1982) allows multiple rank correlations
to be generated between many variables. It is not limited by the kinds of
distributions involved.

10.5.2 Linear correlations

Dependencies are most often measured by linear correlations. Appro-
priate transformations may make the assumption of approximately lin-
ear relationships between variables reasonable. In complex models with
many variables, we may wish to replicate the pairwise correlation coef-
ficients that emerge from data. Pearson’s correlation coefficient is given
by:

r = cov(X, Y )
s (X )s (Y )

,

where cov(X,Y) is the covariance between the two variables, and s(.) is
their standard deviations. Correlated random numbers may be generated
for simulation using the algorithm in Box 10.4.

10.5.3 Fitted models of dependent relationships

If the form of the relationship between two variables is known from
theory, or can be seen in scatter plots, then a function can be fitted to
it (Box 10.5). Fitting a model removes the necessity of assuming linear
relationships between the variables.
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Box 10.4 · An algorithm for correlated random numbers

If correlations between pairs of variables have been estimated, linear
relationships are assumed and unexplained variation is assumed to be
normally distributed, then correlated random variables may be simu-
lated by the following method:

1. Estimate the correlation, r, between the variables.
2. Generate two standard normal deviates, x1 and x2, with means,

m = 0 and standard deviation, s = 1.
3. y1 = m 1 + s1x1.
4. y2 = m 2 + s2(r x1 + x2

√
1 − r 2).

y1 and y2 will have appropriate means and standard deviations, with a
correlation of r between them. Linear correlations may be generated
between many variables simultaneously. These methods are outlined
by Knuth (1981, p. 551) and Ripley (1987).

Box 10.5 · A procedure for generating dependent variables (after Vose
1996)

1. Plot the data with the dependent variable on the y-axis.
2. Find a line that best fits the relationship between the two variables,

and that is consistent with whatever theory might suggest.
3. Use the equation of the line to find the expected value of the

dependent variable for each value of the independent variable, ŷ =
f (x).

4. Decide on a model for the ‘unexplained’ portion of the varia-
tion. For example, you may choose a normal distribution because
the residuals in a deviance plot appear to be normally distributed.
Alternatively, you may use expert opinion of uncertainty together
with some other distribution (such as the beta) to implement the
judgement.

5. Estimate the parameters of the unexplained variation from the data.
For instance, you may calculate the standard deviation, s, of the
residuals in the deviance plot and use it as an estimate of the standard
deviation of the source of variation.

6. For each value of the independent variable in each iteration of
the simulation, calculate the corresponding value of the dependent
variable [e.g. yt = ŷ + N(0, s )].
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If the magnitude of the variation is not constant, then the parameters of
the model for the unexplained variation may themselves be a function of
the independent variable (see Vose 1996 for some examples).

10.6 Extensions of Monte Carlo
10.6.1 Second-order Monte Carlo

If analysts are honest, in many circumstances it is difficult to judge the
form of the relationship between two variables or the values of pa-
rameters. Two-dimensional Monte Carlo is used to separate variability
(‘true’ natural variation) from incertitude (lack of knowledge; see Chap-
ter 2). Variability may be represented by a set of statistical distributions
for each naturally varying parameter. Incertitude may be represented by
sets of alternative model scenarios, structures and parameter distributional
shapes.

In ordinary, ‘first-order’ Monte Carlo, stochastic parameters are es-
timated to reflect true variability. The shape of the distribution, its pa-
rameters and other attributes of the model are fixed. In ‘second-order’
Monte Carlo, the stochastic parameters are themselves drawn from statis-
tical distributions that reflect uncertainty about true values (Figure 10.5).

The results of these kinds of simulations generate families of risk curves,
one set for each step along the axes representing incertitude and variability.
Thus, the results may be presented as a set of risk curves, one set for
each scenario and structural alternative. It produces a kind of qualitative
sensitivity analysis in which the importance of structural and scenario
assumptions may be explored and compared. For example, Cohen et al.
(1996) used it to explore exposure and the effects of contaminant levels
in the environment.

If the risk analyst judges that a lack of knowledge dominates some pa-
rameters, and if the risk assessment is sensitive to these parameters, then
additional fieldwork may substantially improve a risk estimate. Despite
its intuitive appeal, the method is rarely used because it involves many
computations and dealing with dependencies is complex. Software sup-
porting these analyses is improving and their complexity need not be
debilitating.

Two-dimensional Monte Carlo cannot guarantee to include the cor-
rect answer. None of the models may be accurate. There are many possible
choices for parameters, distributional shapes and kinds of dependence.
While strategic choices might provide good coverage of possibilities,
Monte Carlo cannot do them all (Ferson 1996b).
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Figure 10.5. Structure of a two-dimensional Monte Carlo simulation to account
for variability and incertitude (after Frey and Rhodes 1996).

Markov Chain Monte Carlo (known as MCMC) is useful in analysing
large and complicated data sets. It is beyond the scope of this book to treat
this method in detail, but it is especially useful in problems with some
form of hierarchical structure such as chemical speciation and exposure
relationships, and life history parameters in natural populations of plants
and animals. The idea was introduced by Metropolis et al. (1953). It is used
in conjunction with Bayesian prior distributions to estimate parameters
when conventional methods are too complicated (see Link et al. 2002).

10.6.2 Models with incertitude and variability

Data usually include such things as measurements of input variables, para-
meters and output variables. The variation we observe in a time series for
the size of a population (say) is composed of natural variation and meas-
urement error (incertitude). To build a model, we need to decompose
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the variability in observations into its two components (Hilborn and
Mangel 1997).

Taking the population example a step further, uncertainty in the num-
ber of animals we observe next year will be composed of variability,

Nt+1 = s Nt + f t + Wt ,

and incertitude,

Nobserved,t+1 = Nt+1 + Vt ,

where s and f are survival and fecundity, and W and V represent the process
and observation error, respectively. Hilborn and Mangel (1997) provide
guidance on how to estimate the two contributions to uncertainty and
how to include them subsequently in making projections and inferences.

10.6.3 Model averaging

Analysts’ lack of knowledge extends beyond the form of the relation-
ship between two variables, the relative contributions of incertitude and
variability, and the values of parameters. Hilborn and Mangel (1997) rec-
ommended that we retain different ideas and weight their credibility by
how well they are supported by the data. This is an eminently sensi-
ble strategy, but in many circumstances it may not be helpful to provide
decision-makers with a large number of assessments, one for each co-
herent set of ideas (a sample from the space of uncertainty), each with
an associated likelihood. The alternative and most common strategy is
to choose the single ‘best’ model, ignoring much uncertainty, result-
ing in overconfident predictions, particularly if plausible alternatives give
different predictions (Wintle et al. 2003).

Model averaging combines the predictions of a set of plausible mod-
els into a single expectation in which individual weights based on
information criteria reflect the degree to which each model is trusted
(Draper 1995, Burnham and Anderson 2002). Prediction uncertainty is
calculated from within- and between-model variance. More specifically
(Raftery 1996, Wintle et al. 2003), the first step is to define a set of possi-
ble model structures (Si) and a set of parameters specific to each structure.
Data (D) are used together with the models to make predictions (O) such
as the probability of an event (i.e. the presence of a species at a location,
or the chance that a contaminant will exceed a threshold concentration),

P (O |D) =
I∑

i=1

P (O |Si , D)P (Si , D),
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where Si are the plausible models, P (Si |D) is the posterior model prob-
ability and P (O |Si , D) is the posterior prediction of O using model Si

and the data, D. Thus, the weight given to each model Si is the degree
of belief in that model, P (Si |D).

Model averaging has been used to incorporate model selection uncer-
tainty in microbial risk assessment (e.g. Kang et al. 2000), nuclear waste
disposal risk assessment (e.g. Draper et al. 1999), survival analysis (Raftery
et al. 1996), and numerous health effects studies (e.g. Raftery 1996, Clyde
2000). Typically, the prediction intervals from model-averaging are much
broader than those from any single model (e.g. Wintle et al. 2003) because
the intervals incorporate uncertainty about the choice of models. The
single best models often generate optimistic prediction intervals.

Wintle et al. (2003) give details and examples of how to estimate terms
for average general linear models. Other guidance for averaging model
predictions may be found in Draper (1995), Burnham and Anderson
(2002), Hoeting et al. (1999) and other references in Wintle et al. (2003).

10.7 Sensitivity analyses
Models may be explored by examining how a model’s output responds
to changes in a variable or an assumption. Deterministic sensitivities may
be ascertained analytically for many models, including those that use
matrices to represent the structure of natural populations (see Caswell
2001). This is equivalent to asking, ‘If a parameter is changed by a small
amount in the region of the best estimate, what is the magnitude of
change we should expect in model output, relative to the amount of
change in the parameter?’.

Numerically, this is

sP =
�V/V
�P/P

,

where sP is the sensitivity of the output variable V to a small change (�)
in parameter P.

Values larger than 1 indicate the model is sensitive to P, and values
close to 0 indicate that the parameter has little influence on V. Values for
V and P may be summed over time in dynamic models.

The analytical approach examines the mathematical stability of a model
in the region of the parameters. This perspective on sensitivity analysis
can help us to understand which parameters in the model determine
outcomes, or which might give the greatest return for management effort.
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Risk analysts have broader interests than this. Different structural rep-
resentations of an ecological system reflect different conceptual models. It
is important to explore the sensitivity of model output to the uncertain-
ties that arise because of different views of the way an ecological system
works.

It is important to examine the sensitivities of risk estimates. Stochas-
ticity in a model creates the opportunity to evaluate the sensitivity of
model output to estimates of the shape and magnitude of uncertainty,
and to estimates of dependencies among parameters.

Thus, sensitivity analysis should examine:

� Parameter uncertainty: rates, transitions, moments of distributions.
� Structural uncertainty: alternative representations of the model.
� Shape uncertainty: reflecting choices about statistical models for stochas-

tic parameters.
� Dependency uncertainty: the existence, form and strength of dependen-

cies.

The simplest approach is to estimate a risk and then calculate how much
it changes for a small change in each parameter or structural element,
relative to a ‘standard’ case. Sensitivities may be expressed as percentage
changes in the output variable (say, the area under a cumulative proba-
bility distribution, or the area between two cumulative probability dis-
tributions).

Risk analysts may be interested in examining the importance of a
variable over a range of realistic scenarios. They may limit their interest
to those variables that are under some degree of management control.
Changes in parameters may reflect management activities with different
costs, so that the �P prescribed for each parameter may be standardized
against the cost of an increment in P.

The analyst may explore sensitivities with a view to providing advice
on further field studies, so the analysis may concentrate on those param-
eters that are amenable to further study. In general, the details of the
analysis depend on the kind of model, the context of the problem, and
the kinds of risks being considered.

10.8 Some examples
10.8.1 Monte Carlo for the dose equation

Each term in the equations used to estimate dose is uncertain. There are
a number of alternatives to modelling this uncertainty.
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Figure 10.6. Schematic representation of the combination of uncertain variables in
the dose equation using Monte Carlo (after Suter 1993).

In Chapter 9 on interval arithmetic, data and expert judgement on
the values in the equation were combined to generate bounds for the
result. However, the bounds did not give any indication of the relative
likelihood of values within them. Monte Carlo can be used to combine
the terms, accounting for uncertainty and retaining information about
relative likelihoods within prescribed bounds (Figure 10.6).

Data for crustaceans in a stream exposed to a chemical are:

C = 0.63 × 10−3 mg/l,
IR = 5.0 l/day,
EF = 0.15 (part of a year: unitless),
bw = 25.11 g,

Dose = C × I R × E F
bw

= 0.00063 × 5 × 0.15
25.11

= 1.88 × 10−5(mg/day)/g.

For the corresponding probability distribution functions for each of these
parameters, assume that the following information is available describing
inherent uncertainty for each parameter:

C = concentration of chemical in medium (mg/l), C ∼ N(0.00063,
0.000063),
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IR = intake/contact rate (l/day), IR ∼ N(5, 0.5),
EF = exposure frequency, EF ∼ U(0.12, 0.18) and
bw = body weight (mg), bw ∼ N(25.11, 2.51).

The standard deviations for C, IR and bw represent coefficients of vari-
ation of 10% in each of the parameters. The Monte Carlo method com-
bines the distributions for the random variables C, IR, EF and bw to
form a probability distribution for the random variable dose (Box 10.6).
The first 20 rows of random numbers sampled from the four parameters
generated the first four columns in Table 10.4. These values were com-
bined to give the dose (column 5). A total of 1000 replications of these
operations generated the distribution of dose values in Figure 10.7.

This model has made a few assumptions. Each value in Table 10.4
was sampled independently of the other values. That is, there were no
dependencies between the parameters. This may not be entirely reason-
able. Intake rate is probably related to body weight. The greater the body
weight, the higher the intake rate.

With this distribution in hand, it is possible to ask questions that were
inaccessible when a deterministic (point) estimate for dose was calculated.
Thus, even though the point estimate was less than 2 × 10−5 (mg/day)/g
body weight, the distribution says there is more than a 2.5% chance that
an animal will experience a dose in excess of 3 × 10−5 (mg/day)/g.

Box 10.6 · Computation scheme for the dose equation

1. Select a uniformly distributed pseudorandom number from the
interval [0,1] and calculate the corresponding C value using an ap-
propriate inverse probability distribution function (e.g. Table 10.4,
row 1, column 1).

2. Select another pseudorandom number and calculate IR from the
appropriate inverse probability function (e.g. Table 10.4, row 1,
column 2).

3. Continue the procedure for EF and bw (e.g. Table 10.4, row 1,
columns 3 and 4).

4. Use the dose equation to obtain a single value for ‘dose’ for these
parameter values (e.g. Table 10.4, row 1, column 5).

5. Repeat this procedure many times to obtain a distribution of ‘dose’
values.
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Table 10.4. First 20 of 1000 iterations of the process outlined in
the text for sampling doses of a contaminant to freshwater
crustaceans. Row 1 referred to in the text is shaded

C IR EF BW Dose

0.000578 4.78 0.133 23.11 0.0000160
0.000651 5.07 0.165 25.83 0.0000212
0.000545 5.42 0.148 20.90 0.0000209
0.000617 4.25 0.124 22.00 0.0000148
0.000553 5.11 0.143 25.36 0.0000159
0.000575 5.25 0.151 26.95 0.0000169
0.000604 6.07 0.133 28.44 0.0000171
0.000637 4.13 0.155 24.01 0.0000169
0.000754 4.68 0.148 21.67 0.0000241
0.000560 4.70 0.133 25.80 0.0000136
0.000547 4.53 0.129 25.72 0.0000125
0.000534 4.77 0.171 26.51 0.0000164
0.000653 5.44 0.156 24.39 0.0000227
0.000670 4.97 0.151 20.21 0.0000248
0.000631 5.44 0.168 24.67 0.0000234
0.000704 4.69 0.159 27.23 0.0000193
0.000673 5.26 0.179 27.04 0.0000235
0.000645 5.55 0.159 25.43 0.0000224
0.000708 5.42 0.131 26.44 0.0000190
0.000617 5.42 0.176 25.64 0.0000230

0

50

100

150

200

250

300

0
.0

0
0
 0

1

0
.0

0
0
 0

1
2
 5

0
.0

0
0
 0

1
5

0
.0

0
0
 0

1
7
 5

0
.0

0
0
 0

2

0
.0

0
0
 0

2
2
 5

0
.0

0
0
 0

2
5

0
.0

0
0
 0

2
7
 5

0
.0

0
0
 0

3

0
.0

0
0
 0

3
2
 5

0
.0

0
0
 0

3
5

0
.0

0
0
 0

3
7
 5

0
.0

0
0
 0

4

M
o

re

Dose

F
re

q
u

e
n

c
y

Figure 10.7. Frequency distribution of dose values resulting from 1000 samples
taken from each of the four distributions defined above. The x-axis labels are the
upper class marks for each interval.
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The upper bound for the doses from interval arithmetic, using bounds
from 95th percentage quantiles, is given by:

Doseupper = 0.000 756 × 5.84 × 0.173
20.09

= 3.80 × 10−5.

The distribution in Figure 10.7 indicates that this value has a probability
of less than 0.1% of occurring (it is more extreme than any of the 1000
dose values generated in the simulation). Note that if C, IR and EF are
perfectly positively correlated with each other, and they are perfectly
negatively correlated with BW, the 95% confidence intervals would be
the same as the interval arithmetic result.

The model could be modified to take dependencies into account.
Other modifications are possible that would make the dose equation more
realistic. We could consider the possibility that exposure frequency is also
related to body weight, because different stages (sizes) reflect a dominance
hierarchy, and larger animals inhabit the deeper waters, reducing their
exposure. Thus, the dependence of intake rate on body size might be
counteracted by a negative relationship between exposure and body size.

We may want to estimate doses received by this population using
different parameter estimates for different seasons, because exposure to
the contaminant depends strongly on flood conditions. The equation has
embedded in it an implicit assumption about the long-term period of
exposure, assuming some kind of equilibrium for the concentration of
the contaminant in the stream.

10.8.2 Monte Carlo for algal blooms

A dynamic model for reducing phosphorus loads in a lake was developed
by Lathrop et al. (1998). The model is:

[P ]t = [P ]t−1 +
(

(1 − R)It + U
V

)
− λ[P ]t−1,

where [P] is the mid-April phosphorus concentration (mg/l), V is average
lake volume (m3), R is reduction (proportion) of P input loading after
nonpoint pollution controls are implemented, I is the controllable input
loading (kg/year), U is the uncontrollable input loading (kg/year) and λ

is loss by sedimentation and outflow (unitless).
Uncertainty in the uncontrollable load and the rate of loss by sedi-

mentation and outflow may be introduced by sampling U and λ from
random distributions. Assume that, after accounting for measurement
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error, the empirical data suggest U is normally distributed with a mean
of 100 and a coefficient of variation of 10%. λ is lognormally dis-
tributed, also with a coefficient of variation of 10%. The sources of
random variation are independent. Thus, U is introduced into the system
using:

Ut = U + sR yt

where Ut is the value taken by the variable x at time t, sR is the standard
deviation of x, and yt is a deviate chosen from an appropriate distribution
with mean = 0 and variance = 1 (see Box 10.3).

The values of λ and U at each time step were sampled using the
algorithms described in Box 10.3. Simulations were run over 20 time
steps. The resulting values of [P] were used to generate a probability that
[P] will exceed a threshold.

Three scenarios were explored. In the first, management was un-
changed (R = 0). In the second, controllable input was reduced by 30%
(R = 0.3). In the third, the rate of sedimentation and outflow (λ) was
doubled from 0.1 to 0.2. There is about a 22% chance that the phospho-
rus concentration will exceed 4.5 mg/l at least once in the next 20 years
if management does not change. There is about a 10% chance that the
threshold will be exceeded if controllable load is reduced by 30%. If the
rate of loss from the lake can be doubled, there is almost no chance of
exceeding the threshold (Figure 10.8).

The model could be developed to include some details of the sedi-
mentation and outflow processes. Currently, they are lumped under the
parameter λ. Sensitivity analysis could involve the construction of sce-
narios representing management options. These options would translate
into different values for the parameters in the model. Each of the proba-
bility curves in Figure 10.8 could be bounded by an envelope of curves
representing the extreme combinations of pessimistic and optimistic as-
sumptions about model parameters and structures.

10.8.3 Population viability analysis

Model-based risk assessments for species are called population viability
analyses (PVAs). In this context, risk is viewed as the magnitude of a
decline of a population (or a set of populations) within some time frame,
and the probability that a decline of that magnitude will occur.

Natural populations live in uncertain environments. The best that
managers can do is to estimate the chances of particular outcomes based
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Figure 10.8. Cumulative probability distribution of [P] generated from the dynamic
model for phosphorus and assuming uncertainty in R was normally distributed.
The parameters were λ = N(0.1, 0.01), U = LN(100,10), R = 0,
I = 50, V = 500, [P ]t=0 = 4.

on the variations observed in the past and any mechanistic understanding
of the processes that control the population. The objective of PVA is to
provide insight into how resource managers can influence the probability
of extinction (Boyce 1992, Possingham et al. 1993). PVA may be seen as
any systematic attempt to understand the processes that make a popula-
tion vulnerable to decline or extinction (Gilpin and Soulé 1986, Shaffer
1990). Much of what follows in this section is taken from Burgman
et al. (1993), Burgman and Lindenmayer (1998), Akçakaya et al. (2000),
Burgman (2000), Brook et al. (2002), Morris and Doak (2002), Ralls et al.
(2002) and Reed et al. (2002).

The most appropriate model structure for a population depends on the
availability of data, the essential features of the ecology of the species or
population and the kinds of questions that the managers of the population
need to answer. The model may include elements of age or stage structure,
behavioural ecology, predation, competition, density dependence, or any
other ecological mechanism that is important in determining the future
of the population. The result of this formulation is a projection showing
the expected future of the population, a single prediction made without
any notion of uncertainty.

Once the deterministic form of the model is established, elements
of stochasticity are added to represent specific kinds of uncertainty. De-
mographic uncertainty may be represented by sampling the number of
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offspring per pair from a binomial distribution. Environmental uncer-
tainty may be represented by time-dependent survivorships and fecundi-
ties, often sampled from lognormal distributions (Burgman et al. 1993).
The result is a cloud of possibilities for the future of the population. Each
of these possibilities has a probability of occurrence.

The simplest way to represent population dynamics is as a process of
births and deaths. The population size next year is the sum of:

1. The number of individuals that survive to the next time step (out of
those that were already in the population for one time step).

2. The number of offspring produced by them that survive to the next
time step.

This gives:

N(t + 1) = s N(t ) + f N(t )

= (s + f )N(t )

= RN(t ),

where s is the proportion of the population that survived from last year
to this year, and f is the number of offspring raised by each individual and
that survive to the next population census.

This model makes some implausible assumptions:

� There is no variability in model parameters due to the vagaries of the
environment.

� Population abundance can be described by a real number. In other
words, the model ignores that populations are composed of discrete
numbers of individuals.

� Populations grow or decline exponentially for an undefined period.
� Births and deaths are independent of the ages, or other features of the

individuals. Essentially, we assume that individuals are identical.
� The species exists as a single, closed population; there is no immigration

or emigration.
� Within the population, the individuals are mixed.
� The processes of birth and death in the population can be approximated

by pulses of reproduction and mortality; in other words, they happen
in discrete time steps.

To add the potential for emigration from the population (say, a fixed
proportion of the local population per year), and immigration into the
population (a fixed number of individuals arrive each year, independent
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of the local population size), the model becomes:

N(t + 1) = s N(t ) + f N(t ) − e N(t ) + I

= (s + f − e )N(t ) + I .

Rates of dispersal between populations often are determined by their dis-
tances apart, usually represented by a (negative) exponential distribution.
Things such as hunting, captive breeding, or supplementary feeding may
be modelled by adding terms or adjusting parameter estimates to reflect
the effect of the management actions.

It may be important to distinguish between different genders, ages or
life stages because, for instance, different kinds of individuals respond in
different ways to management activities. Age or stage structure is simply
a matter of replicating the equations for birth and death for the different
stages, and incrementing the composition of the stages appropriately. For
example, to model adults, yearlings and juveniles separately,

J (t + 1) = A(t ) f

Y(t + 1) = J (t )s j

A(t + 1) = A(t )s a + Y(t )sy,

where A is the number of adults, Y is the number of yearlings, J is the
number of juveniles, f is the average number of offspring born to adults
alive at time t that survive to be counted at time t + 1. In this model,
juveniles and yearlings do not breed, and juveniles, yearlings and adults
have different survival rates (s). This may be represented by a simple
conceptual model (Figure 10.9).

The inherent variability that results from random birth and death pro-
cesses may be represented by sampling survival parameters from binomial
distributions, and by sampling the number of births per adult from a
Poisson distribution (Akçakaya 1990). Variation in the environment also
will affect survival and fecundity, driving the parameters down in poor
years. The biology of these processes suggests the variation would be
well represented by a lognormal distribution. Thus, the equations for the
number of juveniles and yearlings in the stage-structured model may be
rewritten as:

J (t + 1) = Poisson[A(t ).LN( f , σf)]

Y(t + 1) = Binomial[ J (t ), LN( s j, σj)].

This equation says that the number of new juveniles born into the juvenile
class between time t and time t + 1 is a Poisson sample of the number of
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Figure 10.9. Conceptual model of a stage-structured population for a mammal.

adults alive at time t multiplied by their fecundity, in which the fecundity is
drawn from a lognormal distribution with mean f and standard deviation
σ f. Similarly, the number of juveniles that survive from time t to time
t + 1 to become yearlings is a binomial sample of the number alive at
time t, in which the probability of survival is drawn from a lognormal
distribution with mean s j and standard deviation σ j.

Wildlife managers implement plans to minimize risks of decline, and
sometimes to maintain populations within specified limits, so that the
chances of both increase and decline are managed. The probabilities
generated by stochastic models allow different kinds of questions such
as: ‘What is the worst possible outcome for the population?’ or ‘Which
parameter is most important if variability resulting from uncontrolled
wildfires can be reduced?’.

Answers to such questions are a kind of sensitivity analysis. They pro-
vide guidance on where it would be best to spend resources in field
measurements to estimate a parameter as accurately as possible, and to
understand ecological processes.

10.8.4 Managing Sindh ibex

Population models sometimes include spatial structure. A metapopula-
tion is defined as ‘a set of local populations which interact via individuals
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moving between local populations’ (Hanski and Gilpin 1991, p. 7). The
concept is useful for describing the spatial arrangement of subpopula-
tions of species in fragmented environments (Hanski and Gyllenberg
1993).

The ecological and behavioural mechanisms governing dispersal, the
distances between patches and the strength of environmental correlation
between patches are important considerations determining the persis-
tence of species in fragmented habitats (Harrison 1991, Hanski 2002). A
metapopulation may be in a state of dynamic equilibrium that depends
sensitively on these parameters.

Ibex are found in most arid-zone mountain ranges in Pakistan. The
Sindh ibex, Capra aegagrus blythi, is restricted to remote areas near Karachi
in southern Pakistan. It is a large game animal and the most common
native ungulate in Khirthar National Park. It has a high profile among
overseas trophy hunters who prize the curved horns of adult males.

Ibex form groups that live around springs and other freestanding water
within the mountain ranges. Their main requirements are crags, safe
from direct disturbance because the terrain is inaccessible to domestic
goats and shepherds. Ibex have survived here despite hunting, human
encroachment on habitat and overgrazing of habitat by domestic live-
stock. Khirthar National Park is home to a large and growing human
population, and there is speculation that oil and gas reserves may also ex-
ist within the Park boundaries. There may be more than 70 000 people
living permanently within the boundaries. The total population of ibex
decreased to about 200 before legal protection was introduced in 1967.
Protection has resulted in significant increases in the population to about
12 500 animals (Yamada et al. 2004). There has been legal hunting within
the adjacent Khirthar Game Reserve for over 50 years.

Park managers are faced with a range of potential pressures and alter-
native management options. Yamada et al. (2004) developed a population
model for Sindh ibex to explore the importance of assumptions, to guide
further research and to help make better management decisions for this
species.

Yamada et al. (2004) began with a model for habitat based on ter-
rain and elevation information (Figure 10.10). Each patch supported
(or had supported) a more or less separate subpopulation. Yamada et al.
(2004) modelled the species using a stage-structured population model
within each patch, each with three stages ( juveniles, yearlings and adults).
They modelled both males and females. The model included occasional
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Figure 10.10. Habitat model for Sindh Ibex in Khirthar National Park, Pakistan
(from Yamada et al. 2004).

dispersal between patches, spatial correlation of rainfall, droughts and
limits to the carrying capacity of the environment.

Each of the curves in Figure 10.11 represents a different, plausible set
of parameters and model structures. Each cumulative probability line is a
different, plausible combination of parameter values and model assump-
tions. The result is that almost anything is possible.

Such variability is not debilitating. Rather, it is informative, not least
because the uncertainty is transparent. Despite uncertainties in parameters
and model details, sensitivity analyses proved it was easy to generate sce-
narios that led to substantial reductions or even the elimination of the
ibex from the Park. For example, the species could be eliminated by a
trend in habitat loss across the Park reflecting expansion of agricultural
activities and unrestricted hunting. Simulations showed that the range of
the species will almost certainly contract to the two central large pop-
ulations if agriculture and other human activities expand in the other
patches.
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Figure 10.11. Probability curves for a range of parameter values and model
structures. The probabilities represent the chance of the population of ibex in the
park falling below the specified population size at least once in the next 20 years
(from Yamada et al. 2004).

Given a broad range of plausible model assumptions, if current man-
agement prescriptions remain in place and the human population does
not further encroach on habitat, the species is likely to persist. There is
also some appreciable risk that the species may fall into the vulnerable
category because of substantial population decline if vital rates are lower
than expected, or if illegal harvest rates are higher than believed (Yamada
et al. 2004).

Yamada et al. (2004) combined the model and field survey results to
develop a monitoring strategy, closing the risk management cycle (Chap-
ter 3). Monitoring effort was concentrated on the Khirthar and Dumbar
outcrops, the two most important, central populations (Figure 10.10)
with reconnaissance surveys in outlying patches to document persistence
of the species and encroachment of agricultural activities.

10.8.5 Managing Baltic cod

It may be important to implement limitations to the size of the popula-
tions, reflecting changes in birth and death rates that occur because per
capita resources decline with increasing population size. For example, if
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survival, sj, or fecundity, f, is made a function of the difference between
the total number of adults and the carrying capacity of the environment,
it would create a feedback between population size and the rate at which
the population grows. This is the standard definition of density depen-
dence. The choice of the function that limits population growth should
be determined by the biology and behaviour of the species (see Burgman
et al. 1993 for some alternatives).

For example, Jonzen et al. (2002) used a model with density depen-
dence for a commercially harvested fish population. Some management
options may have no effect on mean population size but greatly affect
variability, affecting the chances of population increase or decline. Their
model may be written

N(t + 1) = N(t )e((r̄ +s y)−N(t )/K ) − C(t ),

where K is the total population size that the environment can support,
C(t) is the commercial catch, r is the average (long run) growth rate of
the population in the absence of density dependence and harvesting, s
is the standard deviation of the growth rate, and y is a standard normal
deviate (the ‘source’ of variation in the Monte Carlo simulation).

Jonzen et al. (2002) used the stochastic version of their fish model to
explore the consequences of different harvesting levels. They could not
distinguish observational error from inherent variation in their data, so
instead they performed a sensitivity analysis. They assumed first that the
uncertainty in their observations was due to inherent variation. Then they
assumed it was due exclusively to measurement error. The results were
insensitive to the choice of the model for uncertainty. The exploration
of management alternatives is one element in the sensitivity analysis of
PVAs. There are numerous other options (Mills and Lindberg 2002).

10.8.6 Multispecies and food web risk assessments

Food webs involve multispecies interactions. They are important, for in-
stance, in understanding the fate of contaminants in ecosystems. However,
models for multiple species are rare, mainly because there is considerable
uncertainty surrounding the ways in which species interact. Tools for
building dynamic, population-based models for relatively complex eco-
logical systems have only recently become available (see, for example,
Spencer and Ferson 1998, Regan et al. 2002b).
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Figure 10.12. The probabilities of decline in the initial abundance of fish and
benthic invertebrate populations in a lake in Quebec as a consequence of elevated
concentrations of PCPs (after Bartell et al. 1999).

In an unstructured model, for instance, contaminant effects may be
modelled simply as an additional mortality term:

N(t + 1) = (s + f − x)N(t ).

Mortality, x, due to the contaminant may be a function of time or some
other process. We may build a model for the toxicant itself, making it a
function of flows (inputs and losses), internal and environmental concen-
trations, and rates of movement between environmental compartments.

When more than one species is involved, the relationships between the
species must be specified. With such equations, it is possible to estimate
toxicant concentrations and their consequences for predators, prey and
the environment.

Bartell et al. (1999) used a detailed ecosystem model to predict the
effects of a toxicant on a freshwater ecosystem. Their model included
predators, prey, the physical environment and nutrient dynamics. They
included both parameter and model uncertainty.

They assessed the consequences of elevated levels of contaminants
including pentachlorophenol (PCP) for the biota of lakes and rivers in
Quebec (Figure 10.12). The model suggested that substantial declines
in fish and invertebrate populations were likely given plausible increases
in PCP concentration.
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10.9 How good are Monte Carlo predictions?
In Chapter 4, we asked the question, ‘How good are subjective expert
judgements?’ It seems fair to ask the same question of more detailed,
model-based predictions.

10.9.1 Predicting radioactive fallout

In the 1990s, 13 research groups in Europe participated in an exercise
to predict (retrospectively) the consequences of the Chernobyl nuclear
accident. Participants were provided with a detailed description of a site
during the time of arrival of the Chernobyl plume of radioactive waste
in central Bohemia and Finland.

They were given data on the amount of radionucleotides measured
in air, soil and water in 1986, intake rates for various components of
local human diets, and 137Cs concentrations in foods. They were asked
to predict the whole-body concentration of 137Cs over time, including
the variability in whole-body concentration among individuals. The par-
ticipants used a total of 14 different models although only four groups
provided a full set of answers. Some estimates were very good, some less
so (Figure 10.13).

The geometric mean of the (approximately) lognormal distribution of
concentrations predicted by Lindoz for 1987 matched the outcome quite
well. However, the Lindoz group overestimated the geometric standard
deviation resulting in underestimates at the low end and overestimates
at the high end. In 1989, the predictions by the Lindoz group were
nearly perfect. They calibrated their models using conditions in Romania,
similar to the test site in central Bohemia.

The Ternirbu group overestimated individual 137Cs concentrations in
1987 due to an overestimate of the amount of the contaminant in people’s
diets. The group underestimated 137Cs concentrations in 1989 based on
an incorrect assumption that soils would be tilled, which would have
decreased bioavailability. Their agreement at the high end in 1989 was
due to the fact that they also overestimated variability (a good example
of compensating errors).

Most of the 13 groups confounded variability and incertitude, leading
to estimates of standard deviations greater than reality and confidence
intervals around predictions that failed to capture the true cumula-
tive distribution. Only one participant used two-dimensional Monte
Carlo.
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Figure 10.13. The predictions for Cs concentrations in individuals from
Chernobyl fallout made by two research groups (Ternirbu and Lindoz) together
with the actual outcomes for the site (continuous curve) in central Bohemia in
1987 and 1989. The curves represent the probability (the proportion of individuals)
that the concentration exceeds the concentration indicated on the x-axis. The
confidence intervals encapsulate incertitude and the slopes of the distributions (for
the sets of points and the continuous curve) reflect modelled and actual variability
among individuals (after Hoffman and Thiessen 1996).

10.9.2 Predicting extinction risk

McCarthy et al. (2004, see also Brook et al. 2000, Ellner et al. 2002) created
four hypothetical species with different life histories (a frog, snail, small
mammal and small plant). They created a scenario for each species. These
data made up a hypothetical ‘truth’. They then used simulation models to
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Figure 10.14. Models and subjective judgements were used to estimate the chance
that a population of plants would fall below 50% of the initial population size
(929 plants) at least once in the next 10 years. The results show the estimates
from 12 independently constructed models and 10 independent subjective
estimates.

generate survey data for each species, the kinds of data that are typically
available in surveys of threatened species. They included observational
bias, sampling error and several sources of natural variation.

They posted the survey results on the web and invited other researchers
to predict the chances of decline of the species. One group of partici-
pants estimated a number of risk-based attributes for each population
using Monte Carlo models. Another group used subjective judgement.
Accuracy was assessed by comparing predictions with the ‘true’ outcomes
from the models used to create the hypothetical scenarios.

Both the models and subjective judgements were more accurate than
random numbers. Four of the five best predictions (as measured by abso-
lute error) were from models, but this apparently superior performance
of the models could have occurred by chance alone (p = 0.218, based
on combinatorial probabilities). The five least-biased predictions were all
from models, an unlikely chance occurrence (p = 0.030).

The results in Figure 10.14 are representative of those obtained by
McCarthy et al. (2004) for a range of predictions (the chance of falling to
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zero, the chance of falling to 50% if reproductive rates fall, and so on) for
the four hypothetical species. The accuracy (the spread) of estimates from
models and subjective estimates were about the same. The average result
over all models was close to the correct answer, whereas the average of the
subjective estimates was consistently pessimistic, tending to overestimate
risks (Figure 10.14). Changes in relative risks of decline were predicted
more accurately than the absolute risks. Predictions over shorter time
frames tended to be more accurate than over longer time frames.

Subjective judgements took between 1 and 2 hours for most entrants
(most of that time was involved in synthesizing the information provided),
whereas the predictions using models took about 1–2 days or more. Given
the comparatively good performance of the subjective judgements in
terms of overall error, the question remains: ‘Is it worthwhile to develop
models for species?’.

10.9.3 Limitations and strengths of Monte Carlo

Monte Carlo has a number of limitations, apart from sometimes getting
it wrong. There are a number of things that Monte Carlo simulation
cannot do (easily) (Ferson 1996b). It:

� cannot propagate nonstatistical uncertainty (ignorance versus statistical
uncertainty),

� requires detailed knowledge of input distributions,
� cannot do back-calculations,
� cannot yield a realistic answer when:

� dependencies are unknown (dependency uncertainty),
� input distributions are unknown (parameter or shape uncertainty),
� model structure is unknown (structural uncertainty).

Solutions such as two-dimensional Monte Carlo and trial and error back
calculation are cumbersome and computationally costly.

It can be difficult to estimate the parameters, shapes and dependen-
cies required for a simulation, and to accommodate the full spectrum of
possibilities for parameters and alternative models, even when using two-
dimensional Monte Carlo (Ferson 1996b, Ferson and Moore 2004). Most
models confound variability with incertitude. To accomplish a successful
analysis requires time and appropriate expertise.

Many analysts and managers find uncertainty dispiriting. Models for
environmental risk assessment are hampered by lack of data and lack of
validation. Results often are sensitive to uncertainty in the data (Taylor
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1995, Ruckelshaus et al. 1997). It can be difficult to verify stochastic
predictions. Models are sometimes misinterpreted and they impose over-
heads in terms of computational effort and technical skill that may not
be warranted by the problem at hand (Beissinger and Westphal 1998,
Burgman and Possingham 2000).

If all that is required is an estimate of risk, subjective judgements
and other approaches may be cost-effective. However, model-based risk
assessments have additional advantages (Brook et al. 2002, McCarthy et al.
2004). The rationale behind their predictions is explicit. The models
are open to analysis, criticism and modification when new information
becomes available. Their assumptions may be tested. The models can
be used to help design data collection strategies. They help to resolve
inconsistencies. Models may be more useful for their heuristic than for
their predictive capacities.

Approaches that seem certain only submerge the breadth of uncer-
tainty within assumptions. Despite their relative transparency and com-
pleteness, even Monte Carlo analyses make only a portion of the full range
of uncertainty apparent. In fact, one could argue that the bounds are not
broad enough because the suite of future possibilities is at the mercy
and patience of the inventiveness of the analyst. They could easily have
missed a combination of plausible parameters that further extended the
set of possibilities. Other methods such as p-bounds make less restrictive
assumptions.

10.10 p-bounds
The notion of bounds encapsulates a deeper philosophy about honesty
in risk assessments. Risk assessments should be honest in the sense that
they should not make unjustified assumptions, and should seek to convey
the full extent of uncertainty about a forecast or decision. At the same
time, they should not assume any greater uncertainty than is necessary.
Thus, the machinery of risk assessment should strive to generate bounds
on answers that are as narrow as possible, and that are faithful to what is
known.

Monte Carlo techniques struggle to encompass the full breadth of un-
certainty. For example, Cohen et al. (1996) developed a two-dimensional
Monte Carlo for contaminant exposures and effects. At one point they
noted, ‘We know of no data quantifying the fraction of ingested soil from
the site’ (p. 950) and subsequently assumed the distribution was uniform
over the interval [0,1]. However, this assumption is quite specific: a linear
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cumulative probability distribution with a mean of 0.5. It makes a num-
ber of unjustified assumptions. Methods need to be more honest about
what is not known.

Robust Bayesian analyses estimate a set of posterior distributions for
a quantity, based on prior distributions and likelihoods selected from
classes believed to be plausible by the analyst. Standard Bayesian analyses
are conducted for all combinations. Results are robust if the posterior
distributions are not much affected by the choice of priors and likelihoods,
at least with respect to a particular decision. This approach has a great deal
in common with two-dimensional Monte Carlo conducted together with
thorough sensitivity analyses. Like two-dimensional Monte Carlo, there
is no comprehensive strategy for dealing with the full range of plausible
alternatives for distributions, dependencies and model structures (Ferson
and Moore 2004).

Instead of concentrating on estimating a quantity, bounding meth-
ods attempt to bound the value. Interval arithmetic introduced in Chap-
ter 9 is the simplest approach to bounding. Unfortunately, interval arith-
metic ignores whatever information may be available on values within
the intervals such as distribution shapes and dependencies, and it does
not quantify the likelihoods of extremes.

The ‘p-bounds’ method was developed by Frank et al. (1987) and
implemented and extended by Williamson and Downs (1990) and
Ferson et al. (1999). ‘p-bounds’ calculations bound arithmetic operations,
making only those assumptions about dependencies, distribution shapes,
moments of distributions, or logical operations that are justified by the
data (Ferson 2002). ‘p-boxes’ are ‘sure’ bounds on cumulative distribu-
tion functions. It is easiest to think about p-boxes as though they were
real numbers. They represent a quantity (in the form of bounds on a
distribution) and the objective is to do calculations with them. The
bounds can be any pair of lines that do not cross and that increase mono-
tonically from 0 to 1 (e.g. Figure 10.15).

When bounds straddle a decision threshold, the results can be used
to make it clear what more needs to be known before a robust decision
is possible. The width of the bounds represents incertitude about the
shape and other characteristics of a risk model. They provide an oppor-
tunity for a risk analyst to explore how sensitively the uncertainty about
a risk estimate depends on lack of knowledge about parameters and other
relationships (e.g. Regan et al. 2003).

If only range information is available, p-bounds provide the same
answers as interval analysis. When information is sufficient to indicate
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Figure 10.15. Two p-boxes corresponding to two random variables, A and B, and
the p-box for the sum A + B assuming independence (after Ferson and Moore
2004). The p-box for A is partitioned into the three interval-mass pairs: A ε [1, 2],
p = 1/3; A ε [2, 4], p = 1/3 and A ε [3, 5], p = 1/3. A ε [1, 2] p = 1/3 means
that the value of A is some value between 1 and 2, inclusive, with probability 0.33.
The p-box for B is B ε [2, 4], p = 1/3; B ε [3, 5], p = 1/3 and B ε [4, 6],
p = 1/3 (from Ferson and Moore 2004).

precisely the distributions and dependencies for a problem, they give the
same answers as Monte Carlo. Thus, they generalize both interval anal-
ysis and Monte Carlo (Ferson and Moore 2003). Possibilities within the
bounds are not equally likely. Thus, bounding analyses do not replace the
insight one might gain from a sensitivity analyses using a Monte Carlo
model.

Dempster-Shafer structures (Shafer 1976) define sets of plausible val-
ues that the available evidence does not distinguish. The lower bound
is termed a ‘belief ’ function. The upper bound is termed a ‘plausibility’
function. The set defines the (epistemic) limits of the evidence. Cumu-
lative plausibility and belief functions may define p-boxes (Ferson et al.
2003).

Alternative data-gathering options may be explored with separate
Monte Carlo runs, generating distributions that lie within the enve-
lope resulting from the bounding analysis. p-bounds may have technical
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difficulties with repeated variables in arithmetic expressions and all results
must be expressed as cumulative probability distributions, which can be
difficult to interpret (Ferson and Moore 2004). The choice of an analyt-
ical strategy will depend on the questions that need to be answered, and
the technical skills available.

10.10.1 Monte Carlo and p-bounds: an exposure model example

Regan et al. (2002b) developed a detailed food web model of exposure
of mink to a toxin, Aroclor-1254. They applied both two-dimensional
Monte Carlo and p-bounds analysis. The p-bounds provided a useful way
of summarizing the parameters that contributed most to the uncertainty
in the risk estimates.

For example, the model included a parameter for the proportion of
water in insect tissue (part of the exposure pathway of the chemical).
The Monte Carlo analysis assumed natural variation resulted in a normal
distribution. Regan et al. (2002b) estimated the mean and standard devia-
tion from US EPA data. p-bounds used a minimum, maximum, mean and
standard deviation but made no assumption about shape (Figure 10.16).

The envelope of cumulative density functions resulting from the p-
bounds analysis captures the full extent of the uncertainty in knowledge
of this parameter. Including both incertitude and natural variation gave a
much broader picture of potential exposure than did Monte Carlo analysis
of natural variation alone (Figure 10.17).

10.11 Discussion
Model-based risk assessments are transparent, relatively free from ambi-
guity and internally consistent. Explicit models can capture all available
knowledge and be honest about uncertainty. Bounds can enclose the full
scope of possibilities. So why is model-based risk assessment not universal?

One of the most serious impediments is regulatory inertia. Organi-
zations and regulatory conditions can be slow to change. Appropriate
numerical skills may be lacking, delaying the adoption of methods that
would otherwise provide useful answers.

It can be costly and misleading if the quantitative tools drive decisions,
rather than provide decision support. Often, the temptation to use a
package as a ‘black box’ is too great and models are used without under-
standing their limitations. If stakeholders and managers are divorced
from the model-building process, they will be unable to criticize its
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Figure 10.16. Normal cumulative density function and p-bounds for the
proportion of water in insect tissue (after Regan et al. 2002b). The Monte Carlo
simulation assumed a normal distribution (shown as the line marked by circles)
whereas p-bounds (solid lines) made no assumption about shape.

assumptions. They will not develop an intuitive feel for its strengths and
weaknesses. In many ways, this loses the most valuable aspect of the
process.

There is also the perception that requirements for data are heavy.
Monte Carlo analyses are sometimes criticized because they demand more
data than are available. Both Monte Carlo and bounding methods are crit-
icized because they provide such a wide range of potential risks. How is
a manager to decide when anything is possible? Often, when confronted
by images like Figure 10.11, managers and policy-makers despair of the
risk assessment, calling it uninformative.

However, I see these outcomes as a consequence of being honest about
uncertainty. The family of risk curves representing the range of possible
outcomes is the strength of model-based risk assessments, rather than a
reason for criticism or despair. The solution is not to dispense with model-
based risk assessments. Rather, it is to learn from the model and change
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Figure 10.17. p-bounds and two-dimensional Monte Carlo estimates of
Aroclor-1254 dose to mink, and the toxicity reference value for reproductive
effects (after Regan et al. 2002b).

the questions so that they can be answered with available information, or
to defer the decision until the critical information is available.

Each curve represents a particular set of assumptions. There is a single
curve roughly in the centre of Figure 10.11 that reflects the best guess
about parameters, dependencies and other assumptions. But the extent
of our ignorance is such that a broad range of futures is possible. Futures
are not all equally plausible. The extremes of the envelope will occur
only if all the uncertainties turn out to be pessimistic (at one extreme)
or optimistic (at the other extreme). It is unlikely that all judgements are
biased in one direction.

Perhaps most importantly, it would be professionally negligent not to
communicate the full extent of uncertainty to a manager. Such figures
are an honest representation of what is not known. The decisions that
flow from this representation of uncertainty will depend on the decision-
making context and the attitude to risk of those involved in it.

The curves may also disaggregate variability and incertitude. The single
risk curve reflecting the best guess at parameters and assumptions reflects
the risks that result from inherent uncertainty. The spectrum of curves (the
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Box 10.7 · Steps in a Monte Carlo analysis designed to work in the
context of the risk management cycle

1. Build a conceptual model of important processes, on the basis
of theory, data and expert opinion, linking human activities to
critical endpoints.

2. Identify key parameters and relationships.
3. Write equations to represent the deterministic elements and pro-

cesses.
4. Collect and analyse the data.
5. Quantify uncertainties in each term of the equations.
6. Decide on a development platform (choose a simulation environ-

ment with sufficient flexibility and computational power, with the
kinds of features that suit the problem at hand).

7. Develop the model.
8. Design calibration, verification and validation protocols.
9. Make predictions for calibration.

10. Debug the model (eliminate logical inconsistencies, coding errors
and related problems). The complexity of programs is related to
the number of ways that their components interact. Debugging is
hard and time consuming but various techniques exist to help min-
imize errors including using good design, good style, exploring
boundary conditions, documenting assumptions and implement-
ing sanity checks in the code.

11. Calibrate the model (iteratively improve the structure and pa-
rameter estimates of the model to agree with data and subjective
judgement about plausible outcomes).

12. Verify the model’s performance (reasonableness checks: confirm
that the model predictions conform to common sense and to
expert judgement of system behaviour, compare the results with
other models, explore limiting cases).

13. Conduct sensitivity analyses.
14. Make predictions for validation.
15. Implement monitoring strategies to validate predictions and up-

date model assumptions and parameter estimates.
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envelope) encloses the extent of uncertainty, ignorance about processes
and lack of knowledge about parameters.

Judgements as to what are and what are not acceptable risks involve
social, political, economic and ethical reasoning. The relevance of models
for environmental decision-making is in the mind of the policy-maker.
An analyst who builds a model provides a service, a skill, and the end
product is a set of recommendations that are bounded by assumptions and
uncertainties. It is as important, if not more important, for the analyst to
communicate those uncertainties and assumptions, as it is to communicate
the set of predictions.

10.11.1 Monte Carlo for the risk management cycle

One of the reasons why managers become disenchanted with models is
that different models often produce different expectations. This is because
the bounds and structural details of the analysis are coloured by what the
analyst believes to be important. The fact that models of the same natural
system may generate different expectations is not surprising to modellers,
but it is a source of frustration to decision-makers. The creation of a sense
of frustration implies that the sensitivities, limitations and assumptions of
the models have not been explained.

Much of the value comes from the process of building the model,
rather than interpreting its output. The object of environmental models
should be to improve communication and understanding. To achieve
these ends, models must be carefully and thoroughly documented, and
limitations, sensitivities and assumptions must be stated explicitly. The
fact that model-based risk assessments encourage such thinking is one of
their main strengths.

Numerous lists specify what makes a good Monte Carlo analysis. For
instance, the US EPA (1997a, b) published policy and guiding principles
for Monte Carlo analysis. Similar guidelines can be found for model
building in other circumstances in Kammen and Hassenzahl (1999),
Burgman and Possingham (2000) and Ralls et al. (2002).



11 � Inference, decisions, monitoring
and updating

Risk assessments are prey to unacknowledged ambiguity and vagueness,
as well as the psychological idiosyncracies and social contexts of those
involved. Chapters 1 and 4 outlined the factors that lead people to colour
their judgements, including such things as the level of personal control, as
well as the visibility and dreadfulness of the outcome. These frailties lead
to a number of identifiable symptoms including insensitivity to sample
size and overconfidence (Fischhoff et al. 1981, 1982, Fischhoff 1995,
Morgan et al. 1996).

Risk-based decisions should weight the probability of an incorrect de-
cision by the consequences of an error. The preceding chapters outline
techniques that can be used to build models that serve to protect stake-
holders, risk analysts, experts and managers against some of the worst
excesses of their own psychologies and contexts.

Once the analytical phase of the risk assessment is complete, the task
remains to interpret the results, decide a course of action and design
feedback mechanisms that will ensure that decision-making capability
improves through time. This chapter outlines a number of methods that
have particular utility for monitoring environmental systems, providing
information to revise assumptions and models and to support decisions.

11.1 Monitoring and power
Monitoring is sampling and analysis to determine compliance with a
standard or deviation from a target or prediction. It may be undertaken to
gauge the effectiveness of policy or legislation, to test model assumptions,
or to validate predictions.

Monitoring by focusing on the outputs of a system is like navigat-
ing ‘by watching the white line in the rearview mirror’ (Thompson
and Koronacki 2002, p. 41). Monitoring should include both input vari-
ables (‘pressures’ such as nutrient loads, toxicant emissions, flows, hunting



11.1 Monitoring and power · 319

Table 11.1. The structure of inferences from a null hypothesis test

Conclusion of the study

Impact No impact

Actual state of the
environment

Impact has
occurred

Correct Type II error (β)

No impact has
occurred

Type I error (α) Correct

levels) and output variables (‘responses’ such as fish kills, algal blooms,
trends in species population sizes or epidemiological data).

It is the responsibility of the risk analyst to close the risk management
cycle by developing monitoring strategies that will satisfy two primary
goals: to measure the state and response of the system to management
strategies, and to provide information about the components of the system
that were both uncertain and important in influencing decisions. There
are usually subsidiary goals, such as compliance with a set of regulatory
thresholds and audits of environmental performance.

To achieve these goals, the monitoring system must be sufficiently
sensitive to reliably detect changes that matter. The details will depend
on the choice of assessment endpoints, the magnitudes of risks and the
sizes of changes that are deemed unacceptable.

11.1.1 Null hypotheses

Most regulatory protocols assume that if no problem is observed, then
none exists. Monitoring usually depends on traditional statistical infer-
ence. Significance tests evaluate the question, ‘What is the probability that
the deviations observed were caused by chance variation, assuming no
underlying, true difference?’. In these circumstances, reliability depends
on the ability of a method to detect real outcomes, usually against a back-
ground of natural environmental variation, measurement error, semantic
ambiguity, vague concepts and ignorance of biological processes.

To protect the environment, society and the economy, monitoring
systems should (a) tell us there is a serious problem when one exists
(thus avoiding overconfidence, called ‘false negatives’ or type II errors)
and (b) tell us there is not a serious problem when there isn’t one (thus
avoiding false alarms, called ‘false positives’ or type I errors) (Table 11.1).
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The first is crucial for detecting serious damage to environmental and
social values. The second is important to ensure that the economy is not
damaged by unnecessary environmental regulations. The probability that
a monitoring programme will detect important changes if they exist is
known as ‘statistical power’.

For example, in an experiment to test the effectiveness of a farming
strategy designed to reduce the impact of an agricultural chemical on a
population of fishes, one possibility is that the treatment has no effect
while the alternative is that it is indeed effective. To distinguish between
the two hypotheses, the possibility that the treatment has no effect is
termed the null hypothesis (H0). The other possibility, that it is effective,
is the alternative hypothesis (H1).

The example contains what is termed a ‘negative’ null hypothesis,
because if it were true there would be no benefit from applying the treat-
ment. Often environmental monitoring is designed to test a negative null
hypothesis that a given human action has no impact on the environment
(Fairweather 1991).

While type I and type II errors are two sides of a statistical coin, the
attitude of the scientific community and of society in general to the two
kinds of errors is different. The probability of a type II error is usually
arbitrary and depends upon how a study was designed. Convention spec-
ifies that, generally, a type I error rate of 0.05 is acceptable. If scientific
protocol, convention or regulatory guidelines were to specify a particular
type II error rate, it would be necessary to plan for this before a study
was undertaken.

Unfortunately, type II error rates are rarely calculated. Regula-
tory authorities and scientific conventions do not suggest acceptable
thresholds. When reviewing more than 40 environmental impact state-
ments, Fairweather (1991) did not find a single estimate of type II error
rates. Mapstone (1995) noted that environmental assessment has inher-
ited a preoccupation with type I error rates. It appears to be the re-
sult of nothing more than convention. The same focus on type I errors
predominates in environmental management journals (Anderson et al.
2000).

11.1.2 Monitoring trends in a bird population

Consider the circumstance in which you are required to monitor the
effects of tree death on a bird population (after Burgman and Lindenmayer
1998). The birds depend on large hollow-bearing trees for nest sites. The
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Table 11.2. Surveys of bird population size in an
agricultural region conducted in two consecutive years

Year Bird population size Standard error

2002 303 41
2003 291 37

number of hollows is known to limit the size of the population. While
large hollow-bearing trees are retained on farms, no provision has been
made for the recruitment of new hollow-bearing trees as the older trees
decay and collapse. Thus, the number of large trees is thought to be
decreasing exponentially.

Field observations and aerial photo interpretation establish that the
rate of collapse of nest trees is about 2% per year. The conceptual model
suggests that the bird population may be declining at the same rate, de-
termined largely by the collapse of nest trees.

You collect some new data to test the hypothesis that the bird popula-
tion is declining (Table 11.2). These data represent a change in population
size of about 4%, somewhat higher than that predicted by the hypothesis
that a decline in population size is due to nest tree collapse. However, a
standard statistical test of the difference between the means in 2002 and
2003 shows no significant difference between these values. We cannot
reject the null hypothesis. Convention stipulates that we accept that, so
far, there is no ‘significant’ change in the size of the bird population.

Before reaching any final conclusions, we should ask how likely it
is that the sampling programme could have detected an impact, if one
actually exists. Given that the means of two populations must be about two
standard deviation units apart before they could be considered different,
we would have to observe a decline to about 220 individuals before the
result would be statistically significant. This is a decline of about 25%,
more than 10 times greater than the expected decline. Therefore, even
without calculations, it is possible to see that the observations made in
this test were insufficient to test the hypothesis of a 2% decline per year.
The sampling design was inadequate.

The bottom line is that the absence of a statistically significant result
should not be taken as evidence that there is no difference (no effect).
Unfortunately, insensitivity to sample size and overconfidence would lead
most people to conclude that there was no difference (no trend). This
interpretation would be wrong.
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The options are to increase the sample size, accept a higher type I er-
ror rate, reduce the measurement error by using more reliable counting
methods, use a different method for inference, or temper the interpreta-
tion of results based on power calculations. The remainder of this chapter
is devoted to outlining some of these alternatives.

11.2 Calculating power
Frequently, monitoring programmes are used when time and money are
limited. For environmental monitoring to be useful, it must be sensitive
to important changes. The notion of ‘importance’ is embodied in the
effect size. The effect size is the magnitude of change that we wish to
detect, if there is an impact. Low power for a particular test may mean
insensitivity and inconclusive results (Fairweather 1991). High power
may mean unnecessarily conservative protection of environmental val-
ues, or prohibitive costs. An effect size must be specified prior to an
analysis of the power of a monitoring study (Cohen 1988, Fairweather
1991, Mapstone 1995). It is a decision that may involve considerations
of biology, chemistry, physics, aesthetics, politics, ethics or economics.
It is not simply a statistical or procedural decision, and involves a raft of
judgements about the ecological and sociological importance of effects
of different magnitudes (Mapstone 1995).

This section outlines the details of power calculations for three standard
circumstances: comparing observations with a standard, comparing two
samples and inferring the absence of an attribute. These are all relatively
simple cases for which power calculations are easy. Luckily, they make up
a large portion of the routine problems confronted by risk analysts.

11.2.1 How many samples?

This is one of the first questions to occur to people responsible for mon-
itoring. Scientists and others have developed a bad habit of assuming that
numbers between 5 and 30 are adequate, irrespective of the question,
the decision context, or the within- or between-sample variability. This
is at least in part due to psychological constraints such as insensitivity to
sample size and judgement bias.

To answer the question, two value judgements are required. The first
is, ‘How far from the true mean can we afford to be, and not be seriously
compromised?’. The second is, ‘How reliably do we wish to know that
our estimate is in fact within the critical range?’.
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Put another way, we need to specify a tolerance for our estimate, and
to specify a degree of reliability for our knowledge. An estimate of the
number of samples comes from the formula for the confidence interval.
The upper bound for a confidence interval is:

U = µ + s√
n

z(1−α).

Rearranging the terms gives:

n = s 2z2
(1−α)

(U − µ)2
= s 2z2

d 2
.

The ‘tolerance’, d, is a region around the true mean within which we
would like our estimate to lie. The reliability is given by the value of z
and reflects the chance (1−α) that the estimate lies within d of the true
mean. To use the formula, we also need to come up with an estimate of
s, which can be difficult in novel circumstances. Theory, experience or
data from analogous circumstances can help.

The formula is used routinely to estimate the number of samples
required to provide reliable measurements of timber volumes in forest
resource inventories (Philip 1994). It was used by scientists from the
United States, Canada and Japan to estimate the observer effort required
to monitor high-seas drift-net fisheries (Hilborn and Mangel 1997). De-
spite these applications, it is rarely used to assist the design of monitoring
programmes.

11.2.2 Comparing observations with a regulatory threshold

Toxicological analyses and environmental impact assessments routinely
establish ‘safe’ thresholds. How many samples are needed to be reasonably
certain of detecting noncompliance? Such cases include, for example,
whether factory air emissions are safe, stream turbidity at a road crossing
exceeds a limit set by the regulator, or the numbers of trees retained in
harvested areas meet agreed standards.

What do we mean by noncompliance? If a single measurement on a
single occasion exceeds the threshold, should we prosecute? If so, we may
run a substantial risk of falsely accusing someone, especially if measure-
ment error is large. Are we more concerned that the mean of the process
should comply with the standard?

The appropriate choice for a decision rule (prosecute / don’t prosecute)
depends on the underlying conceptual model of cause and effect. If effects
of the hazard are cumulative, the mean of the process matters. If effects
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are the result of spikes in exposure or single events, then single instances
should trigger a regulatory response.

The conceptual model for uncertainty also plays a part. If we are
concerned about single events that exceed a threshold and variation in
measurements is due to process variation, all values that exceed a threshold
should be acted on. If variation is due to measurement error, we may
falsely accuse someone in up to 50% of instances, even if the true values
are less than the threshold (or more, if the distribution of measurement
uncertainty is skewed).

Take the case in which we want to be reasonably sure the mean of
a process complies. Comparing a set of observations with a regulatory
standard is equivalent to conducting a statistical test for the differences
between two populations. Power is the probability of detecting a given
true difference. It is the chance that you will catch someone who is, in
fact, in breach of regulations.

Assume we set the significance level at 0.05. We will find the subject
of the test in breach of regulations if the observed sample mean is signif-
icantly higher than the threshold, µ. The distance above the threshold is
measured in terms of its standard deviation (Figure 11.1). For α = 0.05,
the critical value is µ + z/

√
n, where z = 1.645 comes from the standard

normal distribution.
Since we are only interested in values that exceed the threshold, the

test is one-tailed. Essentially, we are relying on the fact that the sample
mean will exceed µ by 1.645 or more of its own standard deviation about
5% of the time.

Expressed in algebraic form, the significance level α is equal to this
probability, i.e.

α = p
(

x > µ + z
s√
n

)
,

where the parameter x has been estimated from a sample of size n. Note
that this formula is the expression for estimating confidence intervals.
We use one-tailed tests when it is important to know if values exceed
an expected value or a compliance threshold. For a one-tailed test, z is
equal to 1.645. We use two-tailed tests when it is important to know if
a process deviates from an expected value, but the direction of deviation
(smaller or larger) is not important. For a two-tailed test, z is 1.96.

Consider an example in which natural levels for stream turbidity are
around 6.3, based on long-term environmental monitoring. The biologi-
cal implications of increases in stream turbidity are such that it is important
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Figure 11.1. Illustration of the terms and meaning of statistical power. Any
population mean drawn from the hatched area may be (incorrectly) interpreted as
confirming the null hypothesis. The proportion of the area under the curve of the
alternative (true) hypothesis (the actual population) from which samples may be
drawn that fail to lead to a rejection of the null hypothesis represents the chance of
making a type II error. The power of the test is 1 − the type II error rate.

to detect any level greater than 8.8 (2.5 units above the threshold of 6.3).
This is the effect size we wish to detect.

An environmental audit takes 20 samples of stream turbidity at a station.
The standard deviation of this sample is 5.4. How likely it is that we
can detect environmental changes that result in elevated turbidities that
exceed the critical effect size of 8.8 units?

Assume initially that there has been no increase in turbidity. The prob-
ability that the mean of 20 measurements will exceed the background
level +z × standard error of the mean is:

p
(

x > 6.3 + 1.645
5.4√

20

)
= p (x > 8.28) = 0.05.

Thus, there is a 5% chance that the mean of 20 measurements will exceed
8.28, even if there has been no change and the true mean is 6.3.
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The value of 8.28 may become the critical value (the decision cri-
terion) for a test. If we want to know if there has been any change in
turbidity, the mean of any sample of 20 that exceeds 8.28 will be in-
terpreted as significantly greater than the background of 6.3 when the
standard deviation is 5.4.

The power of the test asks, ‘What is the chance of observing a value
greater than 8.28 (our decision criterion), given that the true state of the
environment is that turbidity levels have a mean of 8.8?’. The power is
then the chance of concluding, correctly, that the threshold of 6.3 has
been exceeded:

power =
(

x > 8.28 |x ∼ N
(

8.8,
5.4√

20

))

= p
(

z >
8.28 − 8.8

5.4/
√

20

)

= p (z > −0.43), which from a table of areas
of the normal curve,

= 1 − 0.3336

= 0.6664

= 67%.

The result of this example says that, even in the case where the subject of
the test exceeds the threshold by 2.5 units, the chance that we will catch
them out, given 20 samples, is only about 67%.

With 10 samples, the chance is about 43%. The relationship between
number of samples and the power of a test may be plotted on a graph
(Figure 11.2). This kind of plot is known as a power curve, and it displays
graphically the chance of successfully identifying a breach of regulations
for the problem at hand. It can be used to decide if a particular monitoring
strategy is effective, and how much more money and effort would be
required to make the monitoring programme sufficiently reliable.

The three vertical lines on Figure 11.2 represent the number of samples
needed if one wishes to be 80%, 90% and 95% certain of concluding
correctly that there is a difference, when the true mean turbidity is 8.8 (i.e.
the effect size is 2.5). Approximately 30, 40 and 50 samples, respectively,
are required to achieve these goals. To be 99% certain of detecting a
difference, under conditions in which the true mean is 8.8, more than
70 samples would be required.
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Figure 11.2. A power plot for the example in which we wish to detect deviations
in water turbidity of 2.5 above the regulatory threshold, with a specified degree of
reliability, given a standard deviation of the samples of 5.4.

We may use plots such as this in an iterative fashion, to explore the
costs of detecting different effect sizes with different degrees of reliability.
Budgetary constraints often are traded against the requirement for relia-
bility. Power curves provide a means of making such trade-offs explicit
and quantitative.

To avoid false prosecutions, we may conclude that a system is ‘in
compliance’ if a proportion, β, of values are less than the threshold, T,
with probability γ . That is, conformity is demonstrated if:

X ≤ T − ks ,

where s is the sample standard deviation and k depends on n (Table 11.3).

11.2.3 Comparing differences among means

The problem of comparing the mean of a set of observations with a
standard may be generalized to the problem of finding the sample size re-
quired to detect a difference among two or more means. In circumstances
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Table 11.3. Values for k in calculating the compliance of a sample mean, X,
given a requirement that a proportion of values, β, should be less than a
threshold, T, with probability γ (after ANZECC / ARMCANZ 2000)

γ = 0.95 γ = 0.90 γ = 0.50

n β = 0.95 β = 0.90 β = 0.95 β = 0.90 β = 0.95 β = 0.90

2 22.26 20.58 13.09 10.25 2.34 1.78
3 7.66 6.16 5.31 4.26 1.94 1.50
4 5.14 4.16 3.96 3.19 1.83 1.42
5 4.20 3.41 3.40 2.74 1.78 1.38

6 3.71 3.01 3.09 2.49 1.75 1.36
7 3.40 2.76 2.89 2.33 1.73 1.35
8 3.19 2.58 2.75 2.22 1.72 1.34
9 3.03 2.45 2.65 2.13 1.71 1.33

10 2.91 2.36 2.57 2.07 1.70 1.32

15 2.57 2.07 2.33 1.87 1.68 1.31
20 2.40 1.93 2.21 1.77 1.67 1.30
30 2.22 1.78 2.08 1.67 1.66 1.29

in which there is a set of controls and a set of treatments, each of which
may be replicated, it is important to know the chance of detecting an
overall difference among the means of the samples.

One approach to this problem assumes the following things are known:

� The standard deviation (note that all populations are assumed to have
the same underlying variability and to be approximately normally dis-
tributed).

� The number of groups in the planned experiment (>1).
� The smallest true difference that you desire to detect.

Sokal and Rohlf (1995) outlined a method for circumstances in which
there are two groups. This method answers the question, ‘How many
samples are required such that there will be a probability, p, that the
observed difference will be found to be statistically significant at the α

level (the type I error rate)?’. The formula gives the number of replicates
per sample such that the difference will be detected, with the reliability
specified, between the means of any pair of samples. The formula is

n ≥ 2
(σ

δ

)2
{tα[υ] + t2(1−power)[υ]}2,
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where:

n is the number of replications per sample.
σ is the true common standard deviation, estimated prior to the analysis.
δ is the smallest true difference it is desired to detect (note that it is

necessary only to know the ratio of σ to δ).
υ is the degrees of freedom of the sample standard deviation; for example,

with 2 samples and n replications per sample, υ = 2(n − 1).
α is the significance level (the type I error rate).
Power is the desired probability that a difference will be found to be

significant, if it is as small as δ.
tα[υ] and t2(1−power)[υ] are values from a 2-tailed t-table with υ degrees of

freedom and corresponding probabilities α and (1-power).

These formulae answer the question, ‘How large a sample is needed
in each of the two groups so that the probability of a ‘false alarm’, an
unnecessarily cautious approach, is no more than α, and the probability
of detecting a real difference of magnitude δ among group means (the
power) is at least 1−β?’.

The following example is based on Sokal and Rohlf (1995). The co-
efficient of variation of a variable is 6%. The plan is to conduct a t-test,
comparing this variable in two populations. The question of power may
be stated as, ‘How many measurements are required from each popula-
tion to be 80% certain of detecting a true 5% difference between the two
means, at the 1% level of significance?’.

The equation above must be solved iteratively. This process begins by
making a guess at n, the number of replicates required to achieve the
required power. We try an initial value of 20. Then υ = 2(20 – 1) = 38.

Since CV = 6%, s = 6x/100 (remembering that CV = 100s /x). The
problem, as stated above, specifies that we wish δ to be 5% of the mean,
that is, δ = 5x/100. Thus, the ratio σ/δ becomes (6x/100)/(5x/100) =
6/5.

This example makes it clear that it is necessary to know only the ratio
of σ to δ, not their actual values. Using these values, we have:

n ≥ 2
(

6
5

)2

{t0.01[38] + t2(1−0.8)[38]}2

n ≥ 2
(

6
5

)2

{2.713 + 0.853}2

= 36.6.
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Our first guess for n was 20, which is not larger than 36.6. The inequality
above is false, so we have to try again. This time, we use 37 as our initial
guess. This gives υ = 2(37 – 1) = 72, and:

n ≥ 2
(

6
5

)2

{2.648 + 0.847}2 = 35.2.

The convergence between the left and right hand sides of the equation
is close. We can assume that for the required power (to be 80% certain of
detecting a true difference of 5%), we would require about 35 replicates
per population.

In using this equation to explore the power of alternative designs, we
could associate a monetary cost with the number of replicates and the
number of populations sampled. We could attribute an environmental
cost to various true differences between the populations.

Mapstone (1995) recommended using a ratio of α to (1 − power) that
reflects the relative costs of the two kinds of errors. In the context of
environmental risk assessment, this recommendation seems eminently
sensible.

Marvier (2002) provided an interesting application of this formula.
Some crops have enhanced insecticidal properties, a result of either con-
ventional breeding or genetic modification. One of the concerns for
environmental managers is the potential for harm to nontarget species.

Marvier (2002) focused on tests conducted on crops in which genes
from Bacillus thuringiensis were inserted, causing the crops to produce Bt
toxin. In the USA, the EPA is responsible for determining the environ-
mental risks posed by a crop and for recommending a minimum number
of replicates in trials. Petitions for deregulation of a genetically modified
crop are accompanied by experimental evidence of the magnitude of the
effect of the crops on nontarget insect species and, as of January 2001,
the US Department of Agriculture had approved 15 such petitions.

Testing involves exposing nontarget organisms to high concentrations
of Bt toxin, usually 10–100 times the concentration that is lethal to 50%
of the target organisms. If no statistically significant effect is detected, it
is assumed that the chance of effects at the more realistic lower doses is
acceptably small.

The number of replicates specified by the EPA does not take into
account the variation within samples. Marvier (2002) found for the five
studies where sufficient data were available that variation and sample
sizes were such that only one study had a 90% chance of detecting a
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Figure 11.3. Actual and required sample sizes for studies of Bt toxicity of transgenic
crops. The values give the sample sizes required to be 90% certain of detecting a
50% change and a 20% change in nontarget species (after Marvier 2002). Test 1,
change in weight; Test 2, survival; Test 3, number emerged; Test 4, progeny
production; Test 5, progeny production.

50% change in the nontarget species, and none of the studies had a 90%
chance of detecting a 20% change (Figure 11.3).

Changes of this magnitude are likely to be ecologically important and
yet the studies submitted in support of deregulation had a substantial
chance of failing to detect them. The tests lacked power. The implicit
conclusion that there was no effect was incorrect.

The only reliable way of establishing the ecological consequences
would be to use a population model (such as the population viability
models in Chapter 10) to establish the magnitude of change in these
parameters that would result in important biological changes in the pop-
ulations. Then, equations such as those above could be used to calculate
the number of replicates necessary to detect important changes.

11.2.4 When is something absent?

Surveys are used to establish the presence or absence of important features
within a prescribed area (such as the presence of rare or invasive species,
or the detection of a disease or a contaminant). However, it is never
possible to be absolutely sure that something is absent unless the sample
takes in all of the statistical population.
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For example, it was reported in The Melbourne Times (14 February
2001):

Mr Preston (the construction union health and safety boss) is at a loss to explain
how the hazardous asbestos came to be at a site which was investigated by an
environmental auditor and . . . pronounced free of asbestos and a low contamina-
tion risk. But disturbingly, environmental scientist David Raymond says audits
are simply ‘indicative’ and give ‘an approximation of what’s on a site’.

Environmental scientists in such circumstances need to communicate how
reliably they can assert that a site is free of a contaminant. The reliability
of methods to detect the presence or absence of an attribute depends on
the spatial and temporal allocation of sampling units, the sampling effort
at a site and the detectability of the event or attribute.

McArdle (1990) defined f to be the probability that an attribute (a
species, a disease, an indicator) would appear in a single, randomly selected
sampling unit. This number includes the probability that the attribute will
be present in a sample, and the probability that it will be detected, given
that it is present. The probability with which the attribute will be detected
in a sample of size n is:

p = 1 − (1 − f )n .

For example, if an attribute on average turns up in 1 sample in 50 ( f =
0.02), the chance that it would be found at least once in 20 samples is
only 0.33. If it is necessary to determine what level of scarcity could be
detected with a given likelihood, then we may use:

f = 1 − (1 − p )1/n .

This gives the upper 100 × p confidence interval (one-sided) for the
proportion, if n samples are taken without detecting the species or at-
tribute of interest. For example, a total of 20 samples will detect, with a
probability α of 0.9, an attribute of scarcity, f, of 0.1.

For the design of surveys, it is often useful to know the number of
samples required to achieve a given level of effectiveness. To estimate the
number of samples to detect an attribute with a level of scarcity f, at least
once with a probability p,

n = log(1 − p )
log(1 − f )

.

Thus, to detect species of scarcity f = 0.02 with a probability of 0.9 would
require more than 100 samples.
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Figure 11.4. The probability of detecting a species (or other attribute) in a sample
of size n. The parameter f is the probability that the attribute will appear in a single,
randomly selected sampling unit.

For example, Figure 11.4 answers the question, ‘How much survey
effort is required to be reasonably certain that a particular area does not
contain a given species?’. The approach is independent of the sampling
strategy used to establish the presence or absence of a species at a location.
For species that are relatively rare in samples (in fewer than about 1
in 50 samples), considerably more than 100 samples are required to be
reasonably certain (with a probability of more than 95%) of detecting
these species at least once, in places where they occur.

Jones (1997) calculated the probability that habitat patches suitable for
the lizard Aprasia parapulchella were inhabited. The species is cryptic and
fossorial in sites dominated by native grasses (particularly Themeda spp.).
Its diet consists only of the eggs and larvae of ants and it may be located
only by lifting rocks. Jones (1997) used individual rocks as her sample
unit and found the species to be present at a density of 1 in 250 rocks at
two known locations. How many rocks need to be lifted before we are
more than 95% certain that the species is absent from a patch of potential
habitat?

n = ln(1 − 0.95)/ ln(1 − 0.004)

∼ 750.
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The study involved sampling 855 and 8063 rocks at two sites of potential
habitat. In both cases, no animals were found, and the study concluded
that the species was absent from these locations or, if present, then at
densities significantly less than 1 in 250 rocks. The same equation has been
used to estimate the disease rate in feral animal populations (Hone and
Pech 1990), the number of patches that should be sampled to be certain
of detecting species of forest birds (Robbins et al. 1989), the number of
times it is necessary to visit a site to be sure that a particular frog species
is absent (Parris et al. 1999) and the likelihood that species have become
extinct (see Solow 1993, Solow and Roberts 2003, Reed 1996).

McArdle (1990) pointed out that these formulae assume that the value
of f is constant in all sampling units (true for any random sample) and that
the sampling units are independent. In the case of the lizard, for instance,
the probability of detection may be assumed to be independent of the
search, and samples may be assumed to be independent of each other
because the animal is sedentary and not territorial. Erdfelder et al. (1996)
provide convenient software for power calculations.

11.3 Flawed inference and the precautionary principle
Psychology interacts with the structure of null hypothesis significance
tests, leading people to make irrational inferences. There is a yawning
gap between the ways in which statistical tests are described in textbooks
and the ways in which the tests are routinely used and interpreted. As
noted above, an important and quite common error in environmental
risk assessment is to take the lack of a significant result as evidence that
the null hypothesis is true. For instance, p values are often interpreted as
a measure of confirmation of the null hypothesis, something that neither
Neyman and Pearson nor Fisher would have agreed with (Mayo 1996,
Johnson 1999b).

For example, Crawley et al. (2001) conducted a 10-year-long study,
planting four different genetically modified, herbicide-resistant or pest-
resistant crops (oilseed rape, corn, sugar beet and potato) and their con-
ventional counterparts in 12 different habitats. Within four years, all plots
had died out naturally. One plot of potatoes survived the tenth year, but
that was a conventional potato plot.

Goklany (2001, p. 44) interpreted this result as follows, ‘In other words,
GM plants were no more invasive or persistent in the wild than their
conventional counterparts . . . The study confirms that such GM plants
do not have a competitive advantage in a natural system unless that system
is treated with the herbicide in question.’ Goklany (2001) was convinced



11.3 Flawed inference and the precautionary principle · 335

that there is no risk because no difference was observed between the
treatment and the control.

The same flawed logic extends beyond null hypothesis tests. In an-
other example, the US Department of Energy evaluated the suitability
of the Yucca Mountains in Nevada to store high-level nuclear wastes
for 10 000 years. They argued that, ‘. . . no mechanisms have been iden-
tified whereby the expected tectonic processes or events could lead to
unacceptable radionucleotide releases. Therefore . . . the evidence does
not support a finding that the site is not likely to meet the qualifying
condition for postclosure tectonics.’ (DOE 1986, in Shrader-Frechette
1996b). Shrader-Frechette (1996b) criticized the inadequacies of the de-
cision framework, which implied that if a site cannot be proved unsuitable,
scientists assume it is suitable.

It is hard to make intuitive estimates of adequate sample size reliably.
Consequently, the power of most tests is too low. Because power typically
is low, null hypothesis tests applied to environmental monitoring imply
it is important to avoid declaring an impact when there is none, but
less important to avoid declaring that an activity is benign when there
is an impact. Thresholds for statistical significance usually are unrelated
to biologically important thresholds. Poor survey, monitoring and testing
procedures reduce apparent impacts.

These observations are not new (see Johnson 1999b, Anderson et al.
2000). Some summary judgements on null hypothesis significance tests
include (all made by eminent statistians, in Johnson 1999b):

‘. . . no longer a sound or fruitful basis for statistical investigation’
‘. . . essential mindlessness in the conduct of research’
‘. . . the reason students have problems understanding hypothesis tests is

that they may be trying to think’
‘. . . significance testing should be eliminated; it is not only useless, it is

also harmful . . . ’
‘In practice, of course, tests of significance are not taken seriously’
‘. . . hypothesis testing does not tell us what we want to know . . . out of

desperation, we nevertheless believe that it does’

Power calculations can be considerably more complicated than those
above. Many standard statistical packages do not offer them although
Monte Carlo simulation can be used to calculate the power of arbitrarily
complex null hypothesis tests, so there is really no excuse. The omission is
simply the result of the preoccupation of mainstream science with type I
error rates. Type II error rates are forgotten. However, they matter to
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Figure 11.5. Time series plot of nitrate concentration at USGS benchmark station
on Upper Three Runs Creek, Aiken South Carolina (after Dixon 1998). Closed
squares represent measurements taken after the station was moved in October
1989.

environmental risk analysts because errors are costly. It is the responsibility
of the analyst to be aware of the chance of false inference, even if the
machinery is unavailable.

Monitoring is usually the first element of the risk control cycle to
be jettisoned when resources are constrained. Yet it plays two essential
roles. It provides a means of validating model predictions and sensitivities.
And it provides new knowledge that may be used to revise assumptions,
ideas, decisions, model structures and parameter estimates. Monitoring
programmes should be designed with both objectives in mind.

11.3.1 The precautionary principle

In applications such as the examples in the previous section, scientists have
lost sight of type II errors, blinkered by the constraints of null hypothesis
testing and urged on by pathological overconfidence. Such mistakes are
common ( Johnson 1999b).

For example, a standard approach to interpreting the data in Fig-
ure 11.5 would be to fit a trend line and examine the statistical signifi-
cance of the coefficient. A simple linear regression fitted to the data for the
period from 1973 (when measurements commenced) to October 1989
results in a line with a slope of 0.000417 mg/l (per time step between
measurements). However, the null hypothesis for the statistical test of the
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slope is that the true slope is zero. The analysis results in a p value of 0.124,
a nonsignificant result. The classical inference is that we have insufficient
evidence (for a threshold of α = 0.05) to reject the null hypothesis that
the slope is zero.

Common sense suggests that there might be a true trend but the test
was not powerful enough to detect it. How long do we have to wait before
enough evidence accumulates that we can confidently conclude there is
a trend in nitrates in the creek? Waiting until 1995 would have been
enough. The full data set, including the solid squares, gives a statistically
significant slope coefficient, although we might worry about the effect
of moving the station. If nitrates are increasing, the cost is that we would
have waited four or five years before acting.

But even if scientists have become confused, the general public has
been savvy. Stakeholders have argued that even if ‘statistically signifi-
cant’ changes in the environment have not been detected, environmental
degradation may still occur. We may need to act before ‘scientific cer-
tainty’ (a statistically significant result) is available.

The term ‘precautionary principle’ was coined by German bureaucrats
in 1965 (see Cross 1996), although it almost certainly has earlier roots
(Goklany 2001). It appears in various forms in numerous national and
international agreements and treaties. The most common definition is
from Principle 15 of the Rio Declaration (UN 1992:10):

Where there are threats of serious or irreversible damage, lack of full scientific
certainty shall not be used as a reason for postponing cost-effective measures to
prevent environmental degradation.

The principle has been used as a basis for broad-reaching policy goals by
international nongovernmental organizations (Myers 1993, Harremoes
et al. 2001). Irreversibility should lead to more conservative and flexible
decisions, a rationale that is long established in economics (Arrow and
Fischer 1974, Gollier et al. 2000). Yet the principle has been repudiated
as an unnecessary evil by others. It is viewed by some as a tool of tech-
nological scepticism, casting a too-pessimistic light on the inventiveness
and adaptability of human technology to solve problems (Brunton 1995,
Cross 1996, Goklany 2001; see Deville and Harding 1997).

For instance, Anderson (1998a) suggested, in a talk entitled ‘Caution:
precautionary principle at work’ that

. . . recently, a sinister and irrational variation of this principle has also evolved,
which effectively reverses the burden of proof . . . This has particular impact on
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the mining industry, which is by definition a risky business – given geological,
political and market uncertainties, the role of a mining executive has more to do
with risk management than digging holes.

Brunton (1995) argued that the principle would be used to justify nonex-
istent links between human actions and environmental effects based on
spurious correlations. It would jeopardize the development of resilient
management systems, ignoring the potential benefits of development on
the environment.

The precautionary principle is an antidote to the scientific myopia of
null hypothesis significance testing that results in failures to detect im-
portant environmental impacts. Goklany (2001) argued that propositions
examined in the light of the precautionary principle should weigh the
risks they may reduce against those they may create. Routine, effective
application of statistical power tests and consensus on effects sizes is one
way to operationalize it.

However, there is a long and unsuccessful record of people trying
to correct the slanted vision of scientists (Anderson et al. 2000). Few
environmental studies consider statistical power in the design of sampling
and monitoring programmes or report confidence intervals (Peterman
1990, Fairweather 1991, Taylor and Gerrodette 1993, Underwood 1997).
Statistical power can be a difficult concept to teach or to explain to an
audience of stakeholders.

Below, we explore other tools that avoid some of the problems of
null hypothesis tests, that provide information to update models and test
assumptions, and to estimate and trade risks of different kinds.

11.4 Overcoming cognitive fallacies: confidence intervals
and detectable effect sizes
Routine measurements are used to determine whether air emissions are
safe, stream turbidities at road crossings are acceptable, the numbers of
retained trees in harvested areas meet agreed standards, or a species should
be classified as vulnerable. In all these circumstances, inferences are made
from samples.

The discussion above describes a few well-documented fallacies asso-
ciated with null hypothesis testing. Empirical studies in cognitive psy-
chology have demonstrated that these fallacies are widespread and deeply
engrained (e.g. Tversky and Kahneman 1971, Oakes 1986; see Chapters 1
and 4). As outlined above, a common and serious error is to interpret a
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statistically nonsignificant result as ‘no impact’, that is to treat the p value
as a measure of confirmation of the null hypothesis. In fact, probabilistic
statements of this kind (e.g. the p value of a traditional null hypothesis
test) belong to tests, not hypotheses. They tell us how often, when a
particular hypothesis is true, our test will lead to an error. This section
outlines some tools that help overcome the cognitive fallacies.

There are two potential outcomes of a traditional null hypothesis sig-
nificance test: ‘reject H0’ or ‘do not reject H0’ (Table 11.1). If the statistical
power of the test is low, the chance of committing a type II error may be
unacceptably large. This is frequently the case when environmental risks
are evaluated. In fact, there are several possible outcomes:

a. There is evidence of an important trend or effect (‘reject H0’).
b. There is evidence of an effect but it is unimportant (‘reject H0’).
c. The evidence is equivocal; there is no evidence of an effect but the

study was unlikely to find an effect even if there was one (‘do not
reject H0’).

d. There is no sufficient evidence of an effect (‘do not reject H0’).
e. There is evidence of no effect or, rather, if there is an effect, it is small

(‘do not reject H0’).

Conventional interpretations of statistical data confuse these possibilities
(‘fallacies of acceptance and fallacies of rejection’, Mayo 1985; see also
Shrader-Frechette and McCoy 1992). These interpretations do not dis-
tinguish a statistically powerful test from a test that is not powerful enough
to detect a real, potentially important effect.

Confidence intervals make the possibilities clearer by presenting them
graphically (Tukey 1991, Cumming and Finch 2004). They provide in-
formation about the size of the effect, not just its presence or absence.
Furthermore, the width of a confidence interval is a measure of precision;
a wide interval indicates a lot of uncertainty.

Consider an example in which treatments to control invasive weeds
are expected to increase the numbers of a threatened plant. Managers
are aware that the treatments might also be detrimental. According to
planning guidelines, a 20% increase in abundance would be considered a
success.

Confidence intervals and tests are based on a given statistic (such as
the mean), with assumptions about its distribution and the independence
of samples. If the 95% confidence interval for the estimate of the change
in the population of the threatened plant includes the null value (no
change in population size) and also the biologically important threshold
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Figure 11.6. Percentage change in the abundance of threatened species. This
provides an example of an uninformative test of the null hypothesis (H0: that there
was no change in population size). There is evidence that the true increase does
not exceed 25% and that there was less than a 5% decrease in population size.
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Figure 11.7. There is evidence that the population did not decline at a rate greater
than 15%, or increase at a rate more than 15%. There is evidence that the rate of
change was not acceptable.

(a 20% increase), more data are needed before an informed decision can
be made (Figure 11.6 illustrates such a result). The confidence interval
draws our attention to the fact that the data are consistent with there
being a biologically important effect. However, a traditional hypothesis
testing interpretation would lead us to accept the null hypothesis, because
the null value is also within the interval; it would clearly be erroneous to
regard the data as evidence that there has been no increase.

In many instances, a one-sided test for positive discrepancies from 0 is
appropriate – the threshold of interest only concerns increases (in decline
rate or chemical concentration, for instance). A one-sided interval corre-
sponding to a one-sided test would give a lower bound. A supplementary
principle such as power (or severity, see Mayo 1996, 2003) is necessary
to justify looking at upper bounds to avoid fallacies of acceptance.

Consider a different outcome (Figure 11.7) in which the 95% confi-
dence interval included the null hypothesis but excluded the values reflect-
ing important change. Here, there is evidence that the rate of increase in
the size of the threatened population is unacceptably small. In fact, the
two-sided test would reject the null hypothesis (at α = 0.05) only if the
observed increase was about 15%.
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Figure 11.8. There is evidence that the true rate of increase was at least 10%,
although less than 40%. Given a target rate of increase of 20% or greater, there is
evidence the treatment was successful.

The third possibility (Figure 11.8) is that the 95% confidence interval
includes the target value and excludes the null hypothesis. In this case,
we may infer that the treatment was successful.

Confidence intervals provide a visual interpretation of precision.
Three-valued frames have been used for some time together with con-
fidence intervals to try to improve the interpretation of evidence in
medicine (e.g. Berry 1986, Tukey 1991). They should assist scientists and
others to distinguish the decision of setting the criteria for ‘important’
effects from the scientific data gathered from the study. For example,
Dixon (1998) recommended an alternative approach to the definition
of no observed effect concentrations (NOECs, Chapter 7). The analyst
specifies an ‘equivalence’ region, the discrepancy between the null case
and a response that may be considered unimportant or tolerable. The
analyst should conclude that two groups (such as a treatment and a con-
trol) are equivalent if there is a sufficiently high probability that the true
difference lies within the equivalence region.

However, one of the drawbacks of confidence intervals is that they
display only central tendency and limits. Often, in practice, all values
within the intervals are assigned equal plausibility. A confidence interval
licenses us to exclude values greater than the upper bound and less than
the lower bound. However, it does not alert us that, for example, we
have reasonable evidence that µ is less than values slightly below the
upper bound.

However, if a testing perspective is adopted, a (1 − α) confidence
interval can be regarded as the set of null hypotheses that would not
be rejected with an α level test. Mayo and Spanos (2004) described the
‘detectable effect size’ principle: if data x are not statistically significantly
different from H0, and the power to detect effect d is high, then x consti-
tutes good evidence that the actual effect is no greater than d. Conversely,
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if data x are not statistically significantly different from H0, and the power
to detect effect d is low, then x constitutes poor evidence that the actual
effect is no greater than d.

Looking at our previous example, the most we can say with confidence
intervals is that we are not sure (Figure 11.6), the effect is insufficient
(Figure 11.7) or the treatment is successful (Figure 11.8). But, in the case
of Figure 11.7, what is the evidence for the proposition that the decline is
less than 10%? What is the evidence that it is greater than 15% or greater
than 20%? The confidence interval alone cannot give us answers to these
questions.

Mayo (1996) introduced the idea of making post-test inferences that
make fuller use of the data than is possible with confidence intervals. The
idea is to distinguish effects (or effect sizes) that are and are not warranted
from the results of tests. In the case of ‘accept H0’, i.e. a statistically
nonsignificant result, this combats the fallacy of acceptance by indicating
the upper bounds that are (and are not) licensed; in the case of reject H0,
it helps to combat fallacies of rejection by indicating which discrepancies
from the null are and are not indicated (Mayo 1996, 2003).

11.5 Control charts and statistical process control
Statistical process control was created to improve the stability and op-
eration of production systems. It was invented by Shewhart (1931) in
Bell National Laboratories in the 1920s and 1930s. It was forgotten for a
while, and then picked up by an engineer, W. E. Deming, who applied
it in Japanese automobile and audio/video production (Thompson and
Koronacki 2002). There are few applications in environmental monitor-
ing although it has potential to be useful.

Systems influenced only by chance variation are said to be in ‘statistical
control’. If properties of the system can be attributed to ‘assignable causes’,
the convention is that patterns should be explored and the explanations
verified and perhaps corrected by intervention.

Statistical process control has a few essential components (Thompson
and Koronacki 2002):

� Flowcharting of the production process (constructing a conceptual
model).

� Random sampling over time at numerous stages of the process.
� Identification of nonrandom characteristics in the measurements.
� Identification and removal of causes of unwanted change.



11.5 Control charts and statistical process control · 343

It acknowledges that stochasticity is unavoidable. However, if samples
from the system display nonrandom behaviour, then the system’s man-
ager should explain them. The kind of management response may be
calibrated against the importance of different kinds of patterns. Thus, sta-
tistical process control differentiates between the deterministic processes
that may push a system towards an unwanted state, and the stochastic
processes that result from natural variation. Both kinds of processes may
be managed.

11.5.1 Planning

Statistical process plans are developed with the intention of improving
management of the system. The first step is to identify what can be
measured that will provide useful information about the system, a process
analogous to the identification of measurement endpoints and indicators
(Chapter 3). The plans include specification of:

� The aspects of the process it is intended to improve.
� What can be measured and how it is to be measured.
� Details of data collection: time of sampling, by whom, what qualifi-

cations and experience are necessary in the data collection team, how
data collection protocols will be standardized, how measurement error
will be calibrated, the number of replications, use of composite samples,
observations, and so on.

In industrial applications, the overriding motivations are to ‘delight the
customer’, manage by fact, manage both people and processes, and create
circumstances that lead to continuous improvement (Kanji 2000). Indus-
try motivations are the same as those of environmental management.
Customers are stakeholders. The statistical process control ‘cycle’ has all
of the important attributes of the risk management cycle: explicit recog-
nition of uncertainty and of the importance of stakeholders, planning,
modelling, implementation, monitoring, acting on monitoring outcomes
to improve management and iteration for further improvement.

A process is ‘in control’ when most of the endpoints in a monitoring
programme fall within specified bounds or ‘control limits’. ‘Shewhart’
control charts use multiples of the standard deviation to set control lim-
its. The threshold values for triggering a test failure may be adjusted to
suit circumstances. The method assumes the process under observation
generates values that are independent, normally distributed and with a
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Figure 11.9. A subset of control chart applications. If the effect size is small relative
to background variation, then most authors recommend using CUSUM or EWMA
charts (after Montgomery 2001). Variable control charts are applied to continuous
variables. Attribute control charts are applied to binary or discrete variables.

constant mean and variance,

xi = m + ε,

where ε is drawn from a normal distribution with mean zero and standard
deviation s. Control limits may be specified as a product of the magnitude
of the natural variation in the system,

control limits = µ ± Lσ,

where L is the distance of the limits from the centre line (the mean)
in standard deviation units. The approach is flexible because it provides
a huge range of potential numerical devices for detecting changes in
the behaviour of a system, and for conditioning management responses
tailored for specific kinds of processes.

Control charts are useful for tracking environmental parameters over
time and detecting the presence of abnormal events or trends. Variable
control charts plot statistics from measurement data, such as salinity. At-
tribute control charts plot count data, such as the number of times a
criterion was exceeded or the number of noncompliances in a set of
samples (Figure 11.9).

ANZECC/ARMCANZ (2000) highlighted the potential for appli-
cation of these methods in environmental risk assessment when it com-
mented:

They are particularly relevant to water quality monitoring and assessment. Reg-
ulatory agencies are . . . recognising that, in monitoring, the data generated from
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Figure 11.10. Essential features of an Xbar control chart (after Gilbert 1987,
Thompson and Koronacki 2002). The statistic is the average nitrate concentration
in Upper Three Runs Creek (Dixon 1998). For the sake of the example, each
group of six points is assumed to be sampled simultaneously rather than
consecutively, forming ‘rational subgroups’ (see below). Each point is the mean of
six samples shown in Figure 11.5. The control limits are two times the standard
error (0.012 mg/l) of the mean (0.19 mg/l) based on the first 24 individual samples.

environmental sampling are inherently ‘noisy’. The data’s occasional excursion
beyond a notional guideline value may be a chance occurrence or may indicate a
potential problem. This is precisely the situation that control charts target. They
not only provide a visual display of an evolving process, but also offer ‘early
warning’ of a shift in the process level (mean) or dispersion (variability).

11.5.2 Xbar charts

An Xbar chart is a control chart of subgroup means. Figure 11.10 shows
the essential features of a control chart for means. It tracks the mean
response of a system and detects the presence of unusual events.

The Xbar chart requires an estimate of process variation, usually the
pooled standard deviation s, from a set of samples. Historical data or
theoretical understanding of the system may also provide a basis for an
estimate. The context may suggest that values that exceed ±2 standard
deviations are important and should be investigated. The control limits
in Figure 11.10 were drawn ±2 standard errors either side of a long-term
average. Each sample (subgroup) was composed of six individual samples.

Subgroup means are plotted. This strategy takes advantage of the
central limit theorem, so that, irrespective of the kind of distribution
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Figure 11.11. S chart for nitrate concentration (data from Dixon 1998). Each point
is the subgroup standard deviation for six consecutive measurements (Figure 11.5).
The centre line was constructed from the average of the first four sets of
measurements. The control limits were set using scaling factors in Table 11.5.

from which the samples are drawn, the subgroup averages will have
approximately normal distributions. The approximation to the normal
will be determined by the size of the subgroups, and how different the
underlying distributions are from the normal.

Warning limits may be placed inside the control limits initiating dif-
ferent kinds of actions. Actions may be tiered, reflecting the seriousness
of deviations.

The control limits may be updated as new data are added to historical
data, generating a revised estimate of the standard errors for the subgroup
samples. They may vary seasonally, with sample size or with location.

11.5.3 R and S charts

An R chart is a control chart of subgroup ranges. An S chart is a con-
trol chart of subgroup standard deviations (Figure 11.11). They are used
to monitor process variation. If processes become more variable, sub-
group standard deviations and ranges will increase. They may also detect
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Table 11.4. Form of data for Xbar, R and S charts

Number of
measurements in Standard

Subgroup the subgroup Average Range deviation

1 n1 x1 R1 s1
2 n2 x2 R2 s2
. . . . . . . . . . . . . . .
k nk xk Rk sk

abnormal events that affect process variation. Usually, R charts are used
to track process variation for samples of size 5 or less, while S charts are
used for larger samples. In the example in Figure 11.11, managers are not
concerned about downward trends. Only the upper control and warning
limits are labelled.

11.5.4 Rational subgroups

Points may lie outside control limits because the mean of the process
drifts, or because it becomes more variable. Shewhart (1931) termed the
subgroups selected for display ‘rational subgroups’. The term is intended
to emphasize that the choice should generate averages that are sensitive
to the kinds of processes the monitoring system is intended to reflect.
Subgroups should minimize measurement error and the effects of other
sources of variation that might cloud the detection of trends or changes
in the nature or magnitude of variation.

Montgomery (2001) defined rational subgroups as those that maxi-
mize the effects of ‘assignable causes’ between groups and minimize their
effects within groups. The selection of subgroups, allocation of sampling
effort, setting response thresholds and specification of management ac-
tions should be sensitive to deviations from a simple random process when
unacceptable ‘assignable’ causes operate.

An example of a rational subgroup for air quality monitoring might be
five air quality measurements collected once per week at a particular point
in a city, by a given instrument, over a given period, at a given time of
the day and week. For the water samples above, subgroups may be made
up of samples collected at locations in a single reach of the river, in late
summer when water levels are at their lowest ebb. If collection conditions
are made as uniform as possible, extraneous variation within subgroups
is minimized, maximizing the potential to detect trends and changes.
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Table 11.5. Factors for computation of control limits in Xbar and S charts.
These limits generate thresholds equivalent to 3 standard deviations (3 sigma
limits), accounting for subgroup sample size. These values are appropriate when
about 25 subgroups are plotted (see Montgomery 2001, p. 761, for formulae
and additional values). The factor labels (A, B and D) are conventions in process
control literature

n A2 A3 B3 B4 D3 D4

2 1.880 2.659 0 3.267 0 3.267
3 1.023 1.954 0 2.568 0 2.575
4 0.729 1.628 0 2.266 0 2.282
5 0.577 1.427 0 2.089 0 2.115
6 0.483 1.287 0.030 1.970 0 2.004
7 0.419 1.182 0.118 1.882 0.076 1.924
8 0.373 1.099 0.185 1.815 0.136 1.864
9 0.337 1.032 0.239 1.761 0.184 1.816

10 0.308 0.975 0.284 1.716 0.223 1.777
12 0.266 0.886 0.354 1.646 0.283 1.717
15 0.223 0.789 0.428 1.572 0.347 1.653
25 0.153 0.606 0.565 1.435 0.459 1.541

11.5.5 Control chart parameters

The data for the control charts outlined above generally have a form like
that in Table 11.4.

The Xbar centre line is the weighted mean of the observations,

x =
∑

ni xi∑
ni

.

Control limits for Xbar charts and the centre lines and control limits for S
charts and R charts are given by various formulae that account for sample
sizes in the subgroups (see Gilbert 1987, Montgomery 2001, Hart and
Hart 2002, for details).

The upper and lower control limits for Xbar charts are

x ± A3s ,

where A3 is from Table 11.5 and s is the standard deviation. An alternative
construction is

x ± A2 R,

based on the notion that, in small samples, the range provides a good
approximation of the sample standard deviation (Montgomery 2001).
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The upper and lower control limits for S charts are s B4 and s B3.
The upper and lower control limits for R charts are RD4 and RD3.
When substantially fewer or more than about 25 groups are plotted,
control limits need to be further adjusted to control the experiment-wise
error rate (see Montgomery 2001, Hart and Hart 2002, Thompson and
Koronacki 2002).

Often Xbar, S and R charts are plotted underneath one another so that
the analyst can look for covariation in fluctuations. For instance, if Xbar
and S charts vary in phase, it is likely that the underlying data are skewed
to the right, generating correlations between the mean and the variance.
Transformation may be in order. Or it may mean that attributes of the
system explain the covariation and may be monitored independently or
eliminated.

11.5.6 p-charts

p-charts monitor the relative frequency of binary events (such as alive /
dead, flawed / not flawed, present / absent). The centre line, p, is the
long-run mean relative frequency (the frequency of one of the condi-
tions divided by the frequency of both conditions in the reference set).
The standard deviation is simply the standard deviation of the binomial
distribution. Control chart limits are created by adding and subtracting
the standard deviation from the mean:

p ± 3s p = p ± 3

√
p (1 − p )

n
,

where p is the mean relative frequency of the event and n is the subgroup
size. A disadvantage is that points may be left or right skewed, depending
on whether p is greater or less than 0.5, unless subgroup size exceeds 4/p
(Hart and Hart 2002; see Montgomery 2001).

11.5.7 u- and c-charts

u- and c-charts monitor count data in time-ordered or subgroup data.
Count data are assumed to be Poisson distributed and, therefore, right
skewed. c-charts show raw count data and assume the population from
which they are drawn does not vary in size from time to time, or from
subgroup to subgroup.

u-charts are used when subgroup size varies, and counts are standard-
ized by dividing each count by the relevant subgroup size. The centre line,
u , is the long-run mean (standardized) count. To create a control chart,
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usually a multiple of the standard deviation is added to and subtracted
from the mean:

u ± 3su = u ± 3

√
u
n
.

11.5.8 CUSUM and EWMA Charts

CUSUM and EWMA charts make use of sequential information and
are more sensitive to correlated processes and small changes than are the
other kinds of charts described so far.

Cumulative sum (CUSUM) charts accumulate deviations above the
target in one statistic (C+) and deviations below the target in another
(C−). There are numerous forms of CUSUM charts (Thompson and
Koronacki 2002) including kinds that apply when the data are binary
or Poisson (Reynolds and Stoumbos 2000). One of the most common
forms for continuous variables is:

C +
i = max[0, xi − (µ + K ) + C +

i−1]

C −
i = max[0, (µ − K ) − xi + C −

i−1]

where µ is a target value for the process mean (Montgomery 2001).
Starting values for C+ and C− usually are 0. K is usually selected to lie
halfway between the target µ and a value for the process that would be
considered out of control (a value we are interested in detecting quickly).

Thresholds are chosen and if either C+ or C− exceeds them, the pro-
cess is considered to be out of control. Limits often are selected to be five
times the process standard deviation (Box and Luceno 1997, Montgomery
2001), although they may be adjusted to be sensitive to the costs of dif-
ferent kinds of errors.

An EWMA chart is a chart of exponentially weighted moving averages,
defined as:

zi = λxi + (1 − λ)zi−1,

where λ is a value between 0 and 1 and the starting value z0 is the process
target or the average of preliminary data (µ). Thus, each point is simply
a weighted average of all previous sample means and λ is the discount
rate applied to earlier observations. The rate may be adjusted so that
(squared) deviations between fitted values of z and observed values of z
are minimized (Box and Luceno 1997).

EWMA charts can be tailored to detect any size shift in a process. Be-
cause of this, they are often used to monitor processes to detect small shifts
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Figure 11.12. EWMA chart for nitrates in Upper Three Runs Creek (Dixon
1998). The plot used the data in Figure 11.5. The reference value (the centre line)
is the mean (0.19 mg/l) based on the first 24 samples. The calculations used a value
for L of 3, a value for λ of 0.1, and the standard deviation of the first 24 samples
(0.03 mg/l).

away from a target. They are insensitive to assumptions about normality
and are therefore ideal to use with individual observations (Montgomery
2001). The usual way to set control limits is:

µ ± Ls

√
λ

(2 − λ)
[1 − (1 − λ)2i ].

The plot points can be based on either subgroup means or individual
observations, where L is a weight defined by the user. Exponentially
weighted moving averages are formed from subgroup means. By default,
the process standard deviation, s, is estimated from a pooled standard
deviation. In a broad range of applications, values of λ between about
0.05 and 0.4, and a value of L of 3 provide useful starting points (Box
and Luceno 1997, Montgomery 2001; e.g. Figure 11.12).

The trend in the data is clear, and there are warnings that action may be
warranted as early as halfway through the sampling period. The choice
of parameters (L and λ) should be adjusted to account for the relative
costs of false-positive and false-negative warnings. The value of s may be
updated at each time step.

Like CUSUM charts, EWMA charts can be applied when data are
Poisson or binary. Like CUSUM charts, they react sensitively to small
shifts in process behaviour but do not react to large shifts as quickly as the
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Figure 11.13. Test/reference (control/impact) chart for concentration of heavy
metals in an estuary. The 80th percentile of the reference site provides an upper
control limit for the monitoring programme. Values from the test site that exceed
the control limit (filled circles) trigger detailed investigations of the sources of the
pollutant. At the reference site, the 24 most recent monthly observations are ranked
from lowest to highest. The reference value is the 80th percentile, calculated as the
mean of the 19th and 20th observations (from ANZECC/ARMCANZ 2000,
Figure 6.7).

more traditional Shewhart control charts. If subgroups are used instead
of individual observations, then xi is replaced by xi , and s x = s /

√
n.

Montgomery (2001) gives formulae for EWMA charts for Poisson data
and other applications.

11.5.9 Test/reference (control/impact) charts

In many circumstances, ecological systems are not stationary, but change
in response to such things as disturbance and successional processes. It
is nevertheless important to gauge the response of a system to manage-
ment actions. ANZECC/ARMCANZ (2000) devised a control chart for
triggering action through comparison with a control area (Figure 11.13).

Conceptually, the method makes use of the control/impact scenarios
used routinely in environmental impact assessment studies. The system
also makes use of medians and quantiles, to avoid the difficulties that may
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Figure 11.14. Zones and the probability of a point being in the zone, given
normally distributed data (after Hart and Hart 2002).

arise from non-normal data. Action is required when the median of the
test site exceeds the 80th percentile of the reference site. Values close to
the threshold (from months 4, 5 and 6, for instance) may trigger a tiered
response, so that action in the form of investigations about the source
would have begun before the concentrations substantially exceeded the
control limits.

11.5.10 Pattern response and decision thresholds

Setting thresholds for decisions is a balancing act between type I and
type II errors. Too frequent, unnecessary action is expensive and coun-
terproductive. Too infrequent action leads to unacceptable environmental
damage. To some extent, the choice of thresholds involves social decisions
about the merits and costs of action and inaction.

Experience will also shape decisions about thresholds and modes of re-
sponse. We may elect to use a 90th quantile, or a 70th, depending on how
past events have been dealt with and are perceived by the broader commu-
nity. Other tiers of action may be invoked to better balance the tradeoffs
between intervention and inaction. The strength of control charts lies in
their flexibility and adaptability to changing circumstances.

Triggering management actions by exceeding a threshold is just one
of many options for interpreting control charts. More sensitive decision
rules may be based on the frequency with which points have particular
attributes. For normally distributed Xbar charts, Nelson (1984) suggested
dividing the region around the centre line into three zones (A, B and C;
Figure 11.14) so that interpretation could follow general rules such as:

a. One point beyond zone A.
b. Nine points in a row in zone C or beyond.
c. Six points in a row increasing or decreasing.
d. Fourteen points in a row alternating up and down.
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e. Two out of three points in a row in zone A or beyond.
f. Four out of five points in zone B or beyond.
g. Fifteen points in a row in zone C (above and below the centre line).
h. Eight points in a row on both sides of the centre line with none in

zone C.

Of course, these decision rules may be generalized with:

� K points in a row on the same side of the centre line.
� K points in a row, all increasing or all decreasing,
� K out of K − one point in a row more than one standard deviation

from the centre line,
� K out of K + n points in a row decreasing or increasing, and so on.

The number of possibilities is almost limitless. This flexibility allows
the monitoring programme to be designed to be sensitive to specific
attributes. If anticipated changes generate unique signals that affect ei-
ther the trend of the process or its stochastic properties, the monitoring
strategy could anticipate them. These expectations may be derived from
theories or from the model of the system.

Given a control limit or trigger value, the probability of getting r values
worse than the limit from a total of n samples is:

p (r ) = [n!/(n − r )!r !]pr (1 − p )n−r

To compute a p value, sum the probability of this event and those that
are more extreme. The probability of at least one exceedence is then
1 − p(zero exceedences) (ANZECC/ARMCANZ 2000).

11.5.11 Dependencies

Most control charts assume that samples or sets of samples in rational
subgroups are independent. It may be that the characteristics of the system
and the sampling strategy result in samples that are not independent. If
the value of a variable, x, at time t depends in some way on the value of
x at time t − 1, the variables will be autocorrelated. If x at time t − 1 is
relatively high, the chances are that x at time t will be high.

Many ecological processes generate time-dependent correlations. For
instance, take the case of a lake with volume V being fed by a stream
with a flow rate f. Samples taken from the outflowing water may be
correlated, even if the concentration flowing into the lake is a random
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variable. Assuming the lake is mixed, the correlation between samples
from the outflowing stream will be:

r = e−�t/T,

where �t is the interval between samples and T = V/f (Montgomery
and Mastrangelo 2000). The correlations will generate patterns that will
elicit a response in normal Shewhart control charts.

When data are autocorrelated, the alternatives are to use an appropriate
time series model and apply control charts to the residuals, or use an
EWMA chart with an appropriate choice of λ. Box and Luceno (1997)
and Montgomery and Mastrangelo (2000) provided details and examples.
However, care must be taken to establish that the trend eliminated from
the data is an artefact of sampling or uninteresting physical characteristics
of the system, and is not an important trend from an assignable cause that
warrants action.

11.5.12 Power and operating characteristic (OC) curves

The cost of employing a large number of triggers is that each one con-
tributes to the chance of a type II error. If there are k rules, each with a
type I error rate α, then the false alarm probability is:

α = 1 −
k∏

i=1

(1 − αi ).

If false alarms are expensive or damaging to corporate reputation or public
confidence compared to failures to act, a regulator may set limits so that
a response is elicited only when the evidence for nonrandom behaviour
is relatively strong. The values for ‘K ’ above may be adjusted upwards,
and the limits may be extended further from the mean. Alternatively, if
failures to act are expensive or unacceptably damaging, compared to false
alarms, then ‘K ’ may be reduced or the control limits contracted.

Montgomery (2001) recommended adaptive (variable) sampling to
combat the problem of type I and type II errors. In adaptive sampling,
the sample size or the interval between samples depends on the position
of the current sample. The relative costs of ‘false alarms’ versus ‘fail-
ure to act’ should contribute to the allocation of sampling effort such
that warning thresholds equalize the relative costs of the two kinds of
errors.
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The average run length (ARL) for in-control processes is defined as
the average number of samples between points that results in false alarms.
The average interval is:

ARL0 = 1
α

.

Characteristics such as the average number of samples to a signal (follow-
ing a change in the process) are used to design limits and other triggers
(see Reynolds and Stoumbos 2000). The ARL for out-of-control pro-
cesses is defined as the average number of samples between true alarms,
the average delay before an alarm is raised. It is:

ARL1 = 1
1 − β

.

Average run lengths may not be the best measure of the performance
capabilities of a control chart because they are geometrically distributed
and therefore skewed. Errors in estimates of process parameters lead to
overestimates of ARLs (Montgomery 2001). Despite these drawbacks,
ARLs illustrate the potential for manipulating decision thresholds to give
acceptable decision errors.

The ability of Xbar and R charts to detect shifts in process quality
is described by their operating characteristic curves (OC curves). In the
simplest case of an Xbar chart with a known standard deviation, s, the
probability of failing to detect a shift of ks in the mean of the first sample
following the shift is (Montgomery 2001):

β = �(L − k
√

n) − �(−L − k
√

n),

where � is the cumulative standard normal distribution, k is the size of
the shift in standard deviation units, and n is the subsample size. If the
chart has 3 − σ limits (L = 3) and the sample size if 5, then the chance
of failing to detect a shift equal to 2s is:

β = �(3 − 2
√

5) − �(−3 − 2
√

5)

= �(−1.47) − �(−7.47)

= 0.0708.

The chance of failing to detect a 2s shift in the mean of the process is
about 7%. Plots of β versus k are called operating characteristic curves
(Figure 11.15).

Many of the difficulties that stem from hypothesis tests and the in-
terpretation of numerical thresholds such as α = 0.05 in monitoring
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Figure 11.15. Operating characteristic curves for the Xbar control chart with 3s
control limits, and three sample sizes (after Montgomery 2001). The value of β for
k = 2 and n = 5 given in the text is shown by arrows on the figure.

contexts may be circumvented by adopting control charts for interpret-
ing evidence and making decisions.

A decision-maker may condition control limits to make them sensi-
tive to the relative magnitudes of the costs of type I and type II errors
(for methods, see Montgomery 2001). The response parameters may be
adjusted as more is learned about the system, creating opportunities to
develop more sensitive and better-conditioned rules, so that false-positive
and false-negative error rates are reduced over time.

11.6 Receiver operating characteristic (ROC) curves
Receiver operating characteristic (ROC) curves are used to judge the
effectiveness of predictions for repeated binary decisions (act / don’t act,
present / absent, diseased / healthy, impact / no impact). They are a
special case of operating characteristic curves in which a binary decision
is judged against a threshold for a continuous variable (an indicator). They
are built around confusion matrices that summarize the frequencies of
false and true positive and negative predictions, for various values of a
prediction threshold.
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Figure 11.16. Hypothetical distributions of indicator values, X, when Y = 0 (left)
and when Y = 1 (right). Where the value of the indicator is less than C, we
conclude there is no impact (for instance, that the contaminant is absent). Where
the value is greater, we conclude there is an impact (after Murtaugh 1996).

11.6.1 Confusion matrices

When we select a continuous indicator variable, X, its value may depend
on a binary response variable, Y. For instance, Murtaugh (1996) used
counts of diatoms (a continuous variable) to indicate the presence of a
contaminant in water because, in the conceptual model, diatom abun-
dance depended on the contaminant. Diatoms are sometimes present,
usually in lower numbers, even when the contaminant is absent. There-
fore, we define a critical threshold, c, above which we assume the con-
taminant is present, and below which we assume it is absent.

Diatom abundance has two statistical distributions, one in the absence
of the contaminant and one in its presence. Figure 11.16 shows statis-
tical distributions of an indicator variable (X) in unstressed and stressed
environments (denoted by Y = 0 and Y = 1, respectively) and C is the
threshold (cutoff ) for the variable.

Binary predictions may be either true or false, giving the two-by-
two classification table called a confusion matrix (Table 11.6). Its struc-
ture is identical to the structure of inferences from null hypothesis tests
(Table 11.1).
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Table 11.6. Confusion matrix: classification of true and false
prediction rates

True situation Indicator (prediction)

Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

Table 11.7. Predicted and actual ecological
status (weed and nonweed) for 980 plant species
introduced onto the Australian continent (after
Smith et al. 1999b)

True outcome Predicted outcome

Weed Nonweed

Weed 17 3
Nonweed 147 833

Figure 11.16 illustrates that error rates depend on the choice of the
threshold. If it is more costly to mistakenly predict that there is an impact
than to mistakenly predict that there is none, then we might move the
cutoff, C, to the right, increasing the frequency with which we conclude
there is no impact. Thus, the decision threshold should be conditioned
by the cost of a wrong decision.

The following statistics summarize the performance of the indicator:

� Number correctly classified = TP + TN.
� True positive fraction (Sensitivity) = TP/(TP + FN) = proportion of

outcomes correctly predicted positive.
� True negative fraction (Specificity) = TN/(FP + TN) = proportion

of outcomes correctly predicted negative.
� False positive fraction = FP/(FP + TN).
� False negative fraction = FN/(TP + FN).

Smith et al. (1999b; Lonsdale and Smith 2001) gave an example in which
introduced plant species were assessed (retrospectively) as being weeds
or nonweeds. They defined a weed as an invasive species that causes
significant damage to agricultural or natural ecosystems (Table 11.7).



360 · Inference, decisions, monitoring and updating

Table 11.8. Raw data for algal
bloom occurrence and phosphorus
concentration in a lake

Response
Indicator [P] (algal bloom)

0.11 Absent
0.15 Absent
0.33 Absent
0.41 Absent
0.44 Absent
0.45 Present
0.48 Present
0.52 Absent
0.61 Present
0.86 Present

Their forecast was based on a point-scoring system that took into ac-
count each species’ life history, reproduction, dispersal potential, toxicity
and environmental tolerance in its home range and in other places where
it had been introduced (Pheloung 1995).

Smith et al. (1999b) defined the ‘accuracy’ of the method to be the
total number of weeds rejected divided by the total number of weeds
assessed (17/20 = 85%). They estimated the average cost of introducing
a new weed species to be $3 × 106, and the worth of a useful species
(discounted by the uncertainty that a purposefully introduced species
will be useful) to be $2 × 105, making the cost of allowing in a weed 15
times greater than the opportunity cost of disallowing a useful plant (see
Lindblad 2001 for another example).

11.6.2 ROC curves

The values in a confusion matrix and the associated measures of sensitivity
and specificity depend on the cutoff, C. We could move the value of C
from small values to large ones, and watch how specificity and sensitivity
change. The plot of these values is an ROC curve.

Consider an example in which we attempt to predict the occurrence
of an algal bloom from the value of a related indicator, the phosphorus
concentration in the water. We have data from previous observations
(Table 11.8).
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A threshold of 0.50 gives:

Indicator
+ −

Response + 2 2 True positive fraction =2/4
− 1 5 True negative fraction = 5/6

If we use a decision threshold of 0.45, then the classification table would
be:

Indicator
+ −

Response + 4 0 True positive fraction = 4/4
− 1 5 True negative fraction =5/6

The lower decision threshold improves our ability to predict positive out-
comes (a bloom), without compromising our ability to predict negative
outcomes (no bloom).

A receiver operating characteristic (ROC) curve is a plot of sensitivity
versus specificity or (more traditionally) sensitivity versus 1 − specificity,
for all values of C. The area under the ROC curve summarizes the overall
accuracy of the indicator. It is expected to be 0.5 for a noninformative
indicator, and 1 for a perfect indicator.

Figure 11.17 is a map of the potential habitat of a plant species. The
model for its distribution was generated by linking the probability of
occurrence of the species (presence / absence) to a set of predictor vari-
ables using logistic regression. The predictor variables are spatially dis-
tributed attributes such as aspect, radiation and temperature. Predictions
of presence can be made at all points in the landscape. A prediction
of occurrence was made for each point on Figure 11.17 and, subse-
quently, data were collected to validate the model’s predictions (Elith
2000).

The rate of true positive and true negative predictions of the species’
presence depends on the threshold chosen for making a judgement. As
the value of the threshold increases from 0 to 1, the frequency with
which presence is predicted falls. Figure 11.18 shows the ROC curve for
Figure 11.17.

ROC curves can help to assess the utility of a continuous variable
for predicting a binary outcome. The area under the curve summarizes
performance over all decision thresholds. The shape of the curve can be
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Figure 11.17. Predictions of the presence of a plant (Leptospermum) in a southern
region of eastern Australia. The model was a logistic regression giving the
probability of occurrence of the species as a function of terrain, soil and climate
variables (after Elith 2000). Darker areas are higher probabilities of occurrence.

used to select a threshold that minimizes the relative costs of false-positive
and false-negative errors (Zweig and Campbell 1992).

Shine et al. (2003) explored the utility of different approaches to as-
sessing toxicity of metals in marine sediments. Acute toxicity was defined
as a concentration that killed more than 24% of test organisms in toxicity
tests. The standard compliance threshold used by managers is a ratio of
SEM/AVS of 1 (see Figure 11.19).

These bounds divide the response figure into four regions. The top
right quadrant represents correct predictions of toxic effects (true positive
predictions). The bottom left quadrant represents correct predictions of
nontoxic effects (assuming less than 24% mortality is nontoxic; true neg-
ative predictions). The off-diagonal quadrants represent false predictions.

The ROC curve for these data (Figure 11.20) illustrates the perfor-
mance of the indicator (SEM/AVS) in predicting toxicity. Shine et al.
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Figure 11.18. ROC curve for the predictive map of Leptospermum habitat in
Figure 11.17 (after Elith 2000).

(2003) argued that thresholds commonly used by environmental man-
agers such as SEM/AVS = 1, although yielding high sensitivity, come
at the expense of low specificity. That is, the threshold does a good job
of avoiding false negative predictions of toxic effects, but at the cost of a
large number of false-positive predictions. They suggested that a threshold
providing a more ‘desirable’ tradeoff between sensitivity and specificity
would be higher than the commonly used threshold.

This interpretation relies on the definition of ‘acute toxicity’, a con-
centration that results in more than 24% mortality in test organisms.
A threshold set at, say, 10% mortality would generate a different ROC
curve. The desirability of a change in a threshold should take into ac-
count the ecological importance of an effect, and should make explicit ac-
count of the costs of decisions that lead to false-positive and false-negative
outcomes.

Most countries import exotic plant species for ornamental purposes or
for agricultural trials. Some of these species become weeds detrimental
to agriculture or the environment. Various federal agencies worldwide
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Figure 11.19. Percentage mortality of test organisms as a function of SEM/AVS
(heavy metals in sediments, measured as the ratio of simultaneously extracted
metals to acid-volatile sulphides; from Shine et al. 2003). Acute toxicity was defined
as >24% mortality (horizontal dashed line). An SEM/AVS value of 1 (vertical line)
is used commonly as a threshold to separate toxic from nontoxic samples. The four
quadrants are areas where toxicity is correctly predicted (B), toxicity is incorrectly
predicted (D), nontoxicity is correctly predicted (C), and nontoxicity is incorrectly
predicted (A).

are responsible for decisions about which plants to allow and which to
exclude. Allowing weedy species may result in substantial economic and
environmental costs. Excluding valuable species may carry substantial
economic opportunity costs. Table 11.7 summarized the success and
failures recorded by a quarantine service that applied a scoring system
to assess the risks posed by new plant species based on their ecological
attributes (Smith et al. 1999b).

Hughes and Madden (2003) examined the data used to predict if
370 plant species would become weeds. Attributes were scored and the
scores added into a weed risk assessment (WRA) score (Pheloung 1995,
Pheloung et al. 1999, Lonsdale and Smith 2001) (Figure 11.21).

Outcomes were evaluated after introduction so that true-positive, false
positive, true-negative and false-negative predictions could be compiled
(Pheloung et al. 1999). Hughes and Madden (2003) used logistic regres-
sion to link the predictor variable (WRA score) to the outcome (weed
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Figure 11.20. ROC curve for percentage mortality of test organisms as a function
of heavy metal concentration in marine sediments (from Shine et al. 2003). The
common threshold for distinguishing toxic from nontoxic sediments (SEM/AVS =
1) is shown. The area under the curve (AUC) measures the performance of the
measure over a range of thresholds.

or nonweed) (Figure 11.22). A probability of 0.5 corresponds to a WRA
score of about −1.

The people responsible for deciding whether to admit a new plant
species use a value of the WRA score as a decision threshold. The use of
a threshold is analogous to applying a diagnostic test and is guided by the
need to balance the costs of false-positive and false-negative predictions.

Hughes and Madden (2003) used the logistic regression relationship
to construct an ROC curve for predictions about the future weed status
of a candidate species (Figure 11.23).

A threshold that falls towards the top right-hand corner of Figure 11.23
would reflect a regulatory policy that avoids false-positive predictions.
Plant species will be prohibited unless there is strong evidence that they
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Figure 11.21. Frequency distribution of weed risk assessment (WRA) scores
plotted separately for weeds (circles) and nonweeds (diamonds) (after Hughes and
Madden 2003). The status of species (weeds or nonweeds) was determined
retrospectively from data on invasive behaviour after introduction. The vertical
dashed line represents a threshold score of 4 used to discriminate weeds from
nonweeds before introduction.

are safe. A threshold in the extreme top right-hand corner of the plot
would reflect a total embargo on the import of all new exotic plant species.
A threshold towards the bottom left-hand corner of the plot would reflect
a regulatory policy that avoids false-negative predictions. Plants will be
allowed unless there is strong evidence that they will become weeds. A
threshold in the extreme bottom left-hand corner would represent no
control over imports (Hughes and Madden 2003).

As in the case of deciding a threshold for heavy metals, the choice
should be conditioned by the relative costs of false positives and false
negatives. Decision thresholds can be interpreted in terms of benefits and
costs using cost-weighted probabilities. The utility (CT) of a decision
threshold is given by the costs of the four possible outcomes (Table 11.6),
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Figure 11.22. Logistic regression analysis for data linking ecological attributes to
weed status, for 286 weed species and 84 nonweed species (after Hughes and
Madden 2003). The curve shows the fitted relationship between probability (of
being a weed, equal to the proportion of species in a class that were weeds) and the
explanatory variable, their WRA score, based on a scoring system summarizing
ecological attributes.

weighted by their probabilities of occurrence (Metz 1978):

CT = (pTP × CTP) + (pTN × CTN) + (pFP × CFP) + (pFN × CFN).

where, for instance, pTP is the true positive fraction, pFP is the false positive
fraction, pFN is the false negative fraction and pTN is the true negative
fraction. The threshold may be adjusted and the costs recomputed to
find the threshold that minimizes overall cost. This approach can be
generalized to find the optimal decision point such that the overall costs
of wrong decisions are minimized (see Mathews 1997, Smith et al. 1999b,
Hughes and Madden 2003).

While most formulations of these methods require that the costs and
benefits be accounted using the same currency (usually money), there
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Figure 11.23. ROC curve for WRA scores (after Hughes and Madden 2003). The
arrow indicates a threshold WRA score of 4.

is ample opportunity for decision-makers to weigh the relative worth
of nonmonetary outcomes. Chapter 12 outlines some mechanisms for
estimating and comparing nonmonetary values.

11.7 Discussion
Monitoring detects unacceptable ecological impacts and provides infor-
mation that may improve conceptual models, forecasts and decisions.

The notion of effect size is embedded in all monitoring programmes
and all decisions. How big an effect is it important to detect? Who cares if
the population declines by X ? At what point should we react, prosecute
or invoke option X ? How bad would it be to ban a harmless pesticide?
How bad would it be to license a dangerous pesticide?

The methods above illustrate that it is possible to control the twin
statistical errors: false positives and false negatives. For instance, ROC
curves oblige the user to consider type I and type II errors simultaneously
(Tables 11.1 and 11.6; Murtaugh 1996, Swets et al. 2000). However, the
question remains of how to specify the sizes of the environmental mistakes
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that society is willing to tolerate, and therefore how to set the standards
of proof by which the statistical tests are to be evaluated.

Setting a standard of proof is a device for both controlling error and
assuring fairness. It requires an assessment of the priority of the risk in
question. For example, people are generally more willing to risk envi-
ronmental error that causes the deaths or damage of natural populations
than to risk human lives (Fischhoff et al. 1982). A standard of proof can-
not reasonably be set without an appreciation of its consequences for
the perceived fairness of the decision-making process. Such judgements
require legal, technical, social and ethical considerations.

Ideally, the relative costs and benefits of different actions could be
converted into a common currency. Risk assessments could then provide
a platform to summarize ecological processes, hazards, human activities
and management options in an internally consistent form. If a change in
an ecological parameter produced a change in risk of an unwanted event
of a given magnitude, it would be possible to make a social judgement
about the acceptability of that change. All that would then be required
would be to specify the reliability with which a change of that magnitude
should be detected (a question of power).

Benefit cost analysis suggests that policy debates may be translated into
analytical, value-free, technical questions. The approach assumes rights
can be balanced with expected utilities (Brown 1996). There are other
positions (e.g. MacLean 1996) in which treating ‘public trust’ resources as
commodities is viewed as subverting the responsibility of stewardship. For
instance, Adams (1995) argued that ‘Decisions about risk are essentially
decisions about social priorities. . . . The degree and mode of compensa-
tion and behavioural adaptation exhibited by people can be explained,
in large part, by their beliefs.’ Chapter 12 explores methods that accom-
modate different ways of viewing the world.

Monitoring produces observations of trends and deviations from ex-
pectations. The expectations embody the best judgement about eco-
logical processes and their sensitivities to human activities. When the
monitored processes drift from expectations, or when the model’s pre-
diction fails to occur, the monitoring data provide the basis for revising
conceptual models, re-estimating parameters, re-evaluating sensitivities,
generating new predictions and re-designing the monitoring programme.
In this fashion, the risk management cycle can be completed, resulting
in an iterative process that will produce environmental decisions that are
sensitive to the costs and benefits of false alarm and unjustified security.



12 � Decisions and risk management

Risk management makes use of the results and insights from risk assess-
ment to manage the environment.

Morgan et al. (1996) argued that risk management requires negotiat-
ing human perception and evaluation processes of the kind outlined in
Chapters 1 and 4 (Figure 12.1). It is easy to misinterpret Figure 12.1.
It emphasizes that human perceptions overlie the physical interactions
between human actions and environmental responses. It does not intend
to suggest a kind of linear system in which risks are identified and anal-
ysed and in which, subsequently, the range of options are passed to an
evaluative box in which social and political consequences of decisions are
assessed.

In Morgan et al.’s (1996) view, risk analysis includes issues such as
accountability and trustworthiness. Those bearing the risk should enter
the picture before the risks have been identified and analysed.

This view of risk assessment accords with the risk management cycle
(Chapter 3) that suggests the people bearing the risk should be involved
from the outset in all stages, including hazard identification and model
building. It is important to recognize that human perceptions and values
affect experts and analysts as strongly as other participants.

12.1 Policy and risk
Policy makers are concerned with ensemble risks. They are obliged to
consider all potential sources, including those not examined formally by
risk analysts. In many circumstances, risks compete with one another for
attention. Some may be political or intangible. Some may affect policy
makers personally. For example, a consequence of risk aversion is that
resources are allocated disproportionately to preventing any concentrated
loss of human life. The newsworthiness of an event and the desire of
officials to avoid being held to blame become important (Graham and
Hammitt 1996).
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Figure 12.1. The interaction between physical and ecological processes and the way
they are perceived and evaluated (from Morgan et al. 1996).

Policy makers decide among risk-reduction options. Ideally, options
may be ranked in terms of net risk reduction, accounting for both tar-
get risks and competing risks. It may then be possible to compute the
expected amount of risk reduction for each option, and rank decision
options according to the ‘mean’ estimate of risk reduction. Expected
value and ‘rational choice’ arguments suggest that options ranked by ex-
pected risk reduction will result in the maximum long-run risk reduction
(Graham and Hammitt 1996).

If feedback from monitoring is timely and informative, then the ranks
of decision options could reflect the degree of scientific certainty about
net risk reduction and resource costs. Monitoring may provide useful
information about the effects of management on risk. If there is an option
to learn more, then actions about which there is greater uncertainty may
become relatively more attractive.

Despite such seemingly fundamental tenets, policy decisions do not
attempt to maximize net benefits. Risk, costs and benefits are highly
uncertain. Often, communication is vague and ambiguous, even when
measurable risks are thought to exist. Decision options that reduce catas-
trophic possibilities are sometimes upgraded because of public perceptions
and outrage. Rational aversion to seemingly attractive gambles occurs
when the consequences of the loss are not acceptable. Risks that are cor-
related among individuals or populations (spatially or temporally) may be
viewed as more serious than similar, but uncorrelated risks. In circum-
stances such as these, policy makers appeal to the concepts of comparative
risks and acceptable risks.
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12.1.1 Comparative risks

Before decisions are made, hazards may be ranked by their relative risks,
a process known as comparative risk ranking. It is used to compare risks
from two similar sources (e.g. cancer from two pesticides), from dissimilar
sources (e.g. accidents and benzene exposure) and the risk reduction from
two options (e.g. use of chlorine or ozone to purify water). Comparative
risk ranking is used to set regulatory and budgetary priorities. It may
involve comparisons among large numbers of hazards before deciding
strategies.

However, the task is complicated by the fact that different social seg-
ments and demographic groups are exposed to different risks (Silbergeld
1994). Contributing factors usually interact and there are limited data,
further limiting the ability of analysts to evaluate risk distributions com-
pletely and equitably. For example, Freudenburg and Rursch (1994) doc-
umented an example in which people became less tolerant of a proposed
hazardous waste incinerator after its risks were compared to the risks of
smoking. The objective of the comparison was to show that the risks
of the incinerator were relatively small. The additional information was
overwhelmed by the change of context, which affected trust in the pro-
ponents and the government.

UDMH, a breakdown product of Alar used on apple crops, was con-
sidered to be less dangerous to humans than eating Aflatoxin found in
peanut butter (see Chapter 6, Section 6.4.8). Finkel (1995) analysed the
uncertainty in the judgement and revealed that one could be only 90%
certain that the relative risk of Aflatoxin to UDMH lay somewhere be-
tween 300 : 1 in favour of Aflatoxin and 35 : 1 in favour of UDMH. Ac-
cording to Finkel, this meant that decision makers must balance ‘the 5%
chance that ignoring or delaying action on [UDMH] would erroneously
leave unaddressed a problem 34 times greater than aflatoxin, against an
equal chance that the opposite decision would focus attention on a prob-
lem 376 times smaller than aflatoxin . . . ’ (p. 383). Finkel concluded that
either substance could be considered riskier, depending on what out-
come the decision maker wanted to avoid: ‘it is entirely a question of
policy and values, not of science’ whether this analysis, or even an anal-
ysis that showed a smaller probability of Alar being riskier than aflatoxin,
‘could legitimately be reduced to the overconfident pronouncement that
“peanut butter is riskier”’ (Finkel 1995, p. 381).

People use a variety of techniques to estimate risks, making risk com-
parisons difficult. For instance, cost per life-year saved is sometimes used
to help set risk reduction priorities (Table 12.1).
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Table 12.1. Cost effectiveness of life-saving interventions in the USA (after
Paté-Cornell 1998)

Intervention Cost per life-year Risk assessment method

Mandatory seat belt use $1 300 Current risk, subjective
and child restraint laws estimate of benefit

Chlorination of drinking $4 200 Before/after measures
water (existing statistics)

Smoke detectors in $30 000 Probabilistic analysis
airplane lavatories

Asbestos ban in pipeline $65 000 Plausible worst-case,
wraps dose–response

Vinyl chloride emission $1 700 000 Plausible worst-case,
standards dose–response

Sickle cell screening for $65 000 000 Current risk, subjective
newborns estimate of benefit

Some interventions are unlikely to provide the benefits indicated. For
instance, risks from exposure to asbestos and vinyl chloride are conser-
vative estimates by regulators resulting from worst-case bounds. In many
such cases, the estimates are made in response to public perceptions of
threat. Analysts have a vested interest in being conservative. There is a
large, personal and direct cost to them if they underestimate the risk (the
cost of a false negative is high). There are few costs to the analysts from
overestimating the risk (to the analyst, the relative cost of a false positive
is low).

12.1.2 ‘Real’ and perceived risks

Policy makers have to deal with different advice from different risk analysts
about the nature of risk and how best to deal with it. To some analysts,
there is a sharp dichotomy between real risks (objective, analytical, evi-
denced based) and perceived risks (subjective, emotional, irrational). To
other analysts, no such dichotomy exists.

The dichotomy is maintained mainly by people with technical and
scientific training. It was reflected in the observation made by P. Sandman
(in Watts, 1998),

the essence of environmental risk for companies is the hazard itself, which they
define in technical terms, where you multiply the magnitude of the hazard by the
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frequency of the problem . . . For the public, risk is not a technical phenomenon
at all. It is influenced by factors like fairness, trust and who has control.

For example, apparent disparities in spending to save lives can be traced
to public perceptions of risk (Tengs et al. 1995). Epidemiologists and
occupational safety analysts are often frustrated in their attempts to be
‘efficient’ by media reports that increase the visibility of particular hazards.
In some cases, the political and social imperatives to act are insensitive to
the ‘real’ risks.

Salvation from ‘irrational’ responses to perceived risk was sought
through risk communication. However, experience over the last few
decades shows that communication has been only partly successful in re-
solving disputes between scientists and engineers on the one hand, and
the public on the other (Freudenburg 1996, Slovic 1999).

An alternative view is that risk assessments are inherently subjective and
value laden because subjective judgements are used at every step (Adams
1995, Slovic 1999). Subjectivity enters through problem formulation,
adoption of a definition of risk, selecting experts, creating conceptual
models, deciding endpoints, estimating and extrapolating exposures, set-
ting thresholds for risk classification, and so on.

Scientists, too, are subjective. They are encouraged to indulge their bi-
ases behind a mask of scientific authority, protected by pervasive linguistic
and epistemic uncertainty and flawed conventions for inference.

For example, Meer (2001) documented the subjective judgements re-
quired of people involved in comparative risk ranking of toxic chemicals
(Table 12.2). The table underscored that the central judgements in com-
parative risk assessment are to decide what types of evidence will be
considered, and what weight will be given to different types of evidence.
The key choice was between overprotection (accepting less certain ev-
idence) and underprotection (accepting only more certain evidence).
There are no professional standards to guide the analyst to the right po-
sition. It is a matter of personal values and personal exposure to wrong
decisions.

Naı̈ve interpretations of context may be misleading. Slovic (1999)
gave the example that society may be best served by minimizing the
number of worker deaths per tonne of coal produced, whereas a union
representative is obliged to minimize the number of deaths per worker
per year. All lives may be equal under the law, but the death of a young
person elicits a stronger social reaction than the inadvertent death of
an old person, suggesting people are sensitive to loss of life expectancy,
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Table 12.2. Some of the value judgements associated with the New York
Comparative Risk Project, a comparative risk assessment of toxic chemicals (after
Meer 2001)

Source of uncertainty Nature of value judgement required

Only a limited number of Choose what type and weight of evidence
stressors can be screened and will qualify a stressor for screening;
a small number selected for choose what type and weight of evidence
further evaluation will qualify a stressor for further evaluation

(e.g. decide whether or not to consider
evidence beyond quantitative data)

Data are lacking for the majority Determine whether and how to consider the
of chemicals used potential risk from unstudied chemicals

Data are lacking for noncancer Determine what type of evidence regarding
risks noncancer risk will be considered

Data are lacking on additive, Determine whether the potential for such
synergistic or antagonistic effects should be considered; determine
effects what type of evidence will be considered

Data are lacking on low-dose Determine whether the potential for low-
and chronic effects dose and chronic effects should be

considered; determine what type of
evidence will be considered

Data are lacking on variations in Determine whether to consider the potential
human sensitivity, including for increased sensitivity in certain
the sensitivity of children population groups, including children;

determine what type of evidence of
sensitivity will be considered

Direct human evidence of Determine whether animal data will be
toxicity (i.e. clinical or considered; determine the weight that will
epidemiological data) is not be given to different kinds of evidence for
available for most chemicals ranking purposes; for example, determine

how to compare evidence based on human
exposure to animal studies, and how to
compare quantitative evidence to
qualitative evidence

Data are lacking on cumulative Determine whether the potential for such
exposures and pathways exposures should be considered; determine

what type of evidence will be considered
and the weight evidence will be given in
ranking

Uncertainty is magnified when Determine how to combine toxicity and
toxicity data are compared to exposure data into one overall rank for
exposure data each stressor
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Figure 12.2. The ALARP principle (after Stewart and Melchers 1997).

rather than simple loss of life ( Johansson 2002). Thus, the importance of
different kinds of fatalities depends on your point of view.

12.1.3 ‘As low as reasonably practicable’: defining acceptable risks

Many standard treatments of risk assessment take the traditional view that
real risks are measurable. Risk acceptance is achieved through trust and
appeal to the authority of scientific principle. This notion is embodied in
the idea that risks should be reduced to a level called ‘as low as reasonably
practicable’, sometimes termed the ALARP principle (Figure 12.2).

There’s nothing wrong with this principle as it stands. However, equi-
tability depends on who defines terms such as ‘tolerable’ and ‘reasonable’.

Acceptable risks have been defined operationally in a range of circum-
stances. For instance, the US Nuclear Regulatory Commission supported
risks to people in the vicinity of nuclear power plants from nuclear ac-
cidents of < 0.1% of the sum of fatalities from all other accidents, and a
risk of cancer fatality that was < 0.1% of the sum of cancer risks from all
other sources (Morgan and Henrion 1990).

If a risk of a given magnitude is deemed acceptable in one domain,
often the acceptability is extrapolated to another. However, there is no
general standard for acceptable risk. If time and experience lead to public
acceptance of a standard, it may become embedded in regulations and
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operating guidelines. But it would be unreasonable to assume that such
standards can be identified in all technical and social circumstances (see
Freudenburg 1996).

Acceptability is a social quality (Fischhoff 1994). It will always be in-
fluenced by context, visibility, trust and equitability. Slovic (1999) argued
that because risks are socially constructed (see Adams 1995), whoever
controls the definition of risk controls the ‘rational’ solution to the prob-
lem. The antidote he proposed is to increase public participation to make
risk assessments more democratic. As a result, he argued, the quality of
technical analysis would improve and the results would have increased
legitimacy and public acceptance.

In a more inclusive paradigm for risk assessment, likelihood and con-
sequence would be two of several factors. The others would include
voluntariness, equity, catastrophic potential, novelty and control. None
would be essential. Rather, the rules governing the conduct and out-
comes of the risk assessment would be agreed by participants. The risk
management cycle recommended in Chapter 3 puts these suggestions
into operation.

12.2 Strategic decisions
Strategic risk management involves using risk assessment to determine
organizational activities, the process of deciding what actions to take in
response to a risk. It involves forecasting, setting priorities, formal de-
cision making and reconciling viewpoints (Beer and Ziolkowski 1995).
Typically, judgements consider environmental, social, economic and po-
litical factors. They involve determining the acceptability of damage that
could result from an event, and what action, if any, should be taken (Suter
1995).

12.2.1 Decision criteria

The problem formulation stage of a risk assessment carries an implicit
value judgement regarding the criteria to be used to discriminate good
from bad decisions (Morgan and Henrion 1990). Utility-based criteria
involve decisions based on the valuation of outcomes (e.g. Table 12.3).
Rights-based criteria involve consideration of process, allowed actions
and equity independent of benefits and costs.

When the values under consideration can be simplified to one or a
few criteria, valuation and hybrid techniques are useful. For example,
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Table 12.3. Examples of decision criteria that might be employed in risk
management (after Morgan and Henrion 1990, p. 26)

Criterion Description

Utility-based criteria
Probabilistic benefit-cost Estimate benefits and costs of alternatives in

economic terms, and use expected value
(weighted by risk) to find the option with
the greatest net benefit

Maximize multi-attribute In place of economic value, use a utility
utility function that incorporates the outcomes in

terms of all important attributes
Maximize / minimize chances Minimize the chance of the worst outcome,

of extreme outcomes or maximize the chance of the best
outcome, usually dictated by the political
or social context.

Rights-based criteria
Zero risk Eliminate risks entirely, irrespective of costs

or benefits
Constrained risk Constrain risk so that it does not exceed a

specified threshold
Approval / compensation Impose risks on only those parts of the

population that have given consent,
perhaps after compensation

Hybrid Maximize probabilistic cost-benefit within
the constraint of an upper bound on risk
to an element of the system

Haight (1995) sought to maximize cost-benefit estimates for a species
adversely affected by timber harvesting within a constraint of an upper
bound on risk. He calculated optimal strategies for harvesting, given that
the option should result in a 99% chance of achieving a population goal
that gave a required standard of safety for resident species (an upper bound
on acceptable extinction risk, Figure 12.3).

Haight (1995) measured population risk by the size of the population
at the end of the harvesting period. The uncertainty in the projection
of future populations meant that decisions on acceptable risk could be
based on the mean expected population size (with a 50% chance that the
outcome would be above or below this target), or on an assessment that
gave a 99% chance of providing at least the degree of security wanted.
The economic costs of these different attitudes to risk are plotted.
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Figure 12.3. Tradeoff between risk to a threatened species and foregone timber
revenue in a model with three patches of forest habitat (after Haight 1995).

In the cases above, the choices of decision criteria are social and ethical,
rather than scientific. Safety costs money. There is no simple solution to
the problem of whether to accept a 50% or a 1% chance of an unwanted
outcome from timber harvesting (Figure 12.3). The acceptability of an
institutional strategy dealing with risk will be affected by the same fac-
tors that affect personal attitudes to risk; namely, trust, control, visibility,
equitability and so on.

12.2.2 Risk regulation

Environmental managers regulate the environmental effects of indus-
try with two basic approaches: regulatory rules and agreements (applied
before the impacts occur) and liability and damage penalties (applied
after effects have occurred). Shavell (1987) pointed out that rules and
agreements are preferable to penalties when industry is unable to pay for
damage, if it is difficult to attribute responsibility, or industry does not
anticipate the risks.

Bier (2004) argued that environmental regulation may be better
couched as a game than a set of decisions. If monitoring is regular (so that
a breach of compliance is likely to be detected) and penalties are strin-
gently applied, the firm should weigh the costs of compliance against
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the penalties of noncompliance. If a firm’s liability is limited by what it
actually knows, the private value of information may be negative. It may
be better to be ignorant of consequences, a rationale that Bier (2004)
argued supported failures in the tobacco and asbestos industries.

Bier noted that regulators often establish cooperative relationships with
the people they regulate. Penalties may be diluted by the probability of
nondetection, especially if the frequency of monitoring is low and penal-
ties are rare. But a firm may have an incentive to comply, even though
the costs of compliance exceed the penalties of noncompliance. A more
lenient, cooperative system saves the regulator the cost of monitoring.
The firm saves in the long run through cost-of-compliance tradeoffs that
allow it to use lower cost methods to achieve goals. Both sides avoid the
cost of prosecution. Such systems work best if the regulator demonstrates
a willingness to prosecute noncooperative firms and if the penalty for
failing to disclose exceeds the penalty for violation (Bier 2004).

Viscusi (2000) provided an example of the negative private value of
information. He surveyed the attitudes of almost 500 jury-eligible citizens
towards cases involving risk and compensation. He found that if the group
responsible for a hazard had completed a systematic analysis of risks and
costs, and had decided the benefits of proceeding outweighed the risks,
it triggered a bias against the defendant. Juries were likely to penalize a
defendant for having undertaken a risk analysis, substantially increasing
the chance of punitive damages. Furthermore, juries used the value placed
on safety by a firm as an anchor when awarding punitive damages. Firms
that valued safety more highly were more likely to experience higher
damages.

The risk regulation environment will determine, to a large extent, the
strategies available to individuals, firms and industries. Those who set
the contexts for risk assessments should be aware that the criteria used
to compare risks and evaluate the success of management strategies will
mould outcomes, and are sensitive to personal values.

12.2.3 Where model-based assessments fit in

The results of risk assessments do not translate easily to policy and man-
agement decisions. I have argued that model-based risk assessments may
provide results that are internally consistent, relatively transparent and free
of linguistic ambiguity. They make an attempt to incorporate uncertainty
plainly and, in doing so, oblige those who interpret the results to consider
the possibility and consequences of wrong decisions.
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The impediments to the use of model-based risk assessments include
regulatory inertia, a lack of requisite skills and the perception that data
requirements are heavy. There is also a perception that the model will be
a black box that will tend to drive decisions. It can be difficult to dissent
from the predictions of a model, particularly if the modeller is part of a
kind of scientific priesthood and the model’s assumptions are inaccessible.

Many models assume decision makers are ‘rational’ in the sense that
they will act to maximize expected net social benefits, even though there
is ample evidence to the contrary. Power and McCarty (1998) examined
the ecological risk protocols adopted or recommended by agencies in the
Netherlands, the US EPA, Australia, UK Department of the Environ-
ment, US National Research Council, Canadian Standards Association,
and the US Risk Commission. They concluded:

Trends toward greater stakeholder involvement, decreased emphasis on quan-
titative characterization of risk and uncertainty, and development of iterative
decision-based analysis . . . suggest a move toward embedding risk assessment
within risk management . . . This is because technical analysis and command-
and-control regulation have either failed to deal satisfactorily with environmen-
tal problems or, in suggesting solutions, have created conflict with other valued
social objectives.’

This apparent dichotomy of ideas (‘rationality’ on one hand, ‘subjective
judgement’ on the other) is a consequence of the level at which some
risk assessments are conducted and their results viewed. Separating analysis
from the communication phase erodes the credence they are given in a
decision-making framework. Tools exist that may assist decision makers
to deal with different values and preferences. Some of these are outlined
below.

12.2.4 The advantages of deciding under uncertainty

When people are presented with a point estimate for the future, they are
obliged to be risk-neutral. People rarely are. The consequence of dealing
in point estimates is that the people involved in a decision will be more
often dissatisfied with the outcome than they otherwise would have been.

Providing bounds on judgements creates new opportunities for making
good decisions. Risk seeking or risk averse behaviour may be warranted
by context (Morgan and Henrion 1990, Bernstein 1996).

Burgman et al. (2001) provided an example of a risk-based environ-
mental tradeoff. Eight patches of habitat were proposed for development
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Figure 12.4. Habitat suitability index (HSI) estimates and bounds for eight patches
of habitat for the Florida Scrub Jay (after Burgman et al. 2001).

within the range of a threatened species (the Florida Scrub Jay). The
decision problem was, which patch? The developer was indifferent to
the choice on other grounds, and so supported the selection of the
patch that minimized environmental harm. Burgman et al. (2001) con-
structed a model based on expert judgement of the relationship between
the bird and a range of environmental variables. These variables were
mapped. The subjective uncertainties about relationships were included
in the model. The suitability of each patch was calculated using inter-
val arithmetic, resulting in a best estimate and bounds for each patch
(Figure 12.4).

Attitude to the decision problem should affect the way the sites are
ranked. If we protect one site, we may decide to choose the most valuable
location. Patch 8 is the best, although it is possible that patches 3, 6 and
7 have higher suitability.

If the consequences of being wrong are catastrophic, our strategy
should change. Assume, for instance, that these are the last remaining
patches for the bird. If we get it wrong, we lose the species. Then the
best strategy may be to rank the sites on the basis of the lower bounds of
the intervals. We would select a site for which we are certain the habitat
suitability should be at least this good. This is termed ‘minimizing maxi-
mum regret’ (French 1986, Morgan and Henrion 1990). Again, patch 8
has the highest lower bound, making it the best choice from the perspec-
tive of expected value and of avoiding unacceptable risk.

Now consider the strategy if we are asked to eliminate one site. Patch 1
has the lowest best estimate. But we may consider it to be more important
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to avoid losing high-quality habitat. We would then rank on the basis of
the upper bounds of the intervals, and then choose the smallest upper
bound. Under this view, patches 1 and 2 are about equal.

If we are risk averse, a patch that is known with greater certainty may
be more valuable than another with higher expected value. For instance,
if the decision problem involved choosing between patches 5, 6 and 7,
we may choose patch 5, even though it has a slightly lower expected
value. Its value is much more reliably estimated than the other two, both
of which carry a possibility of being much worse (and much better) than
we expect.

The full spectrum of decision possibilities is only available to us because
we have taken the trouble to carry uncertainties through the chain of
calculations that produce a habitat suitability index, and to present them
in an accessible form.

12.3 Stochastic analyses and decisions
Decisions involve choices among options. Because the expected utilities
of various options are uncertain, choices between options often are not
self-evident. This section describes some grounds for making choices.

12.3.1 Stochastic dominance

Stochastic dominance describes the extent to which a given decision is
‘best’, depending on the source or magnitude of uncertainty. Manage-
ment options based on forecasted cumulative probabilities of benefit or
loss oblige the decision maker to be explicit about risk aversion or risk
tolerance at different levels of likelihood of outcomes.

In the simplest case, strategies are clearly distinguished because cu-
mulative probability plots do not cross (Figure 12.5). Choosing the least
risky option requires the assumption that more of the ‘benefit’ is always
better.

To simplify the decision context, decisions that are always inferior may
be eliminated from the list of candidate actions, irrespective of the status
of the uncertainty surrounding parameters (Morgan and Henrion 1990,
Clemen 1996).

In some instances, scenarios are broadly distinguished but the cumu-
lative probability plots cross at one extreme or the other. An option may
be almost always better than the others. The choice of a strategy requires
an additional assumption of at least some risk aversion.
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Figure 12.5. Scenarios in which one option is always better than another.
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Figure 12.6. Scenarios in which the benefits of the options are equivocal.

Management options become more equivocal when the cumulative
probability distributions cross (Figure 12.6). It is not clear what the best
decision should be without making additional assumptions about the de-
cision maker’s attitude to risk. The probability that the rate of decontami-
nation will be below 0.5 ppm/year is higher under Method B. The proba-
bility that the rate will be below 2 ppm/year is higher under Method A.

The decision should be weighted by the decision maker’s attitude to
either outcome. If one is much more costly than the other, it may be best
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to be risk averse and choose a decontamination method that is more likely
to achieve at least a specified rate. For instance, if it is socially, politically,
or ecologically important to achieve a rate of at least 1 ppm/year, and a
rate lower than 1 would be damaging, then the best option is to choose
Method A because it is unlikely to deliver a rate less than 1. When
we choose it, we forgo the prospect that Method B could result in rates
above 2 ppm/year. This thinking is embedded in the benefit-cost analyses
used to set decision thresholds in receiver operating characteristic (ROC)
curves (Chapter 11).

In most instances, choices are equivocal. Because circumstances are
often politically and emotionally charged, the risk analyst is obliged to
manage the social context as much as the analytical one, using tools such
as those outlined in Chapters 4 and Sections 12.4 and 12.5, together with
results such as those above.

12.3.2 Benefit-cost analysis

Usually, benefit-cost analysis takes into consideration the consequences
of options in monetary terms. Valuations are based on well-developed
theories for willingness-to-pay or to accept compensation.

The discussion and methods in preceding sections outline several ap-
proaches to benefit-cost analysis for environmental decisions. Risk treat-
ment, remediation and education cost money and there is never sufficient
to reduce risks from all sources, to the satisfaction of everyone. A tra-
ditional view of the optimal strategy is the one that reduces risk most
efficiently (Figure 12.7).

In hypothesis tests (Chapter 11), the error rates α and β define accep-
tance or rejection of the null hypothesis. They may be adjusted so that
their ratio equals the ratio of the ‘costs’ of making a type I error versus a
type II error (Mapstone 1995). Costs may be measured in any currency
(dollars, jobs, quality of life, habitat loss). The acceptable ratio is a social
choice, not a scientific one.

When using control charts (Chapter 11), warning and action thresholds
combine with the number of different triggers to determine the effective
error rates (‘false alarm’ and ‘failure to act’). Operating curves show these
rates explicitly. The rates may be adjusted by manipulating control limits
and the number and kinds of tests. In the end, the problem reduces to
the same one as is confronted in traditional hypothesis testing. The costs
and benefits need to be expressed in a form so that people can make
judgements about acceptable tradeoffs (see Chapters 8 and 11).
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Figure 12.7. A traditional, economic view of benefit-cost analysis (from Morgan
1990) in which the optimal level of risk minimizes the sum of abatement cost and
losses from risk.

Finding equivalent currencies can be difficult. Among economists,
contingent valuation is perhaps the most popular method. It has been
applied to a wide range of environmental issues including wilderness
protection, water quality and soil erosion. It uses questionnaires and/or
interviews to elicit preferences and demand functions for environmental
goods and services (Freeman 1993, Garrod and Willis 1999). Variations
take into account ownership, access, social context and perceptual biases
(Slovic 1999).

The method has unresolved technical and theoretical problems (Chee
2004) including the influences of context and framing (Bingham et al.
1995), and free-riding (Garrod and Willis 1999). There are alternatives
including ‘hedonic’ pricing (using market valuations such as house
prices), and stated preference techniques that use direct consumer
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valuations of environmental values. Most rely on converting environmen-
tal preferences to monetary preferences and each has its own peculiarities
(Chee 2004). Haimes et al. (2000) recommended multi-objective tradeoff
and surrogate worth tradeoff to evaluate options. There is no easy solution
when the problem involves values that have inherently different scales.

But these are not reasons for dispensing with benefit-cost analysis.
Rather, it is important to be aware of assumptions and to interpret re-
sults accordingly. They are practical in situations in which the values of
alternatives are expressed naturally in the same currency. These data can
be important in a broader multi-criteria analysis (Section 12.5.2).

For example, Akçakaya and Atwood (1997) used benefit-cost analysis
to evaluate management options resulting from a Monte Carlo model
for the California gnatcatcher (Polioptila c. californica). It is a threatened
subspecies inhabiting coastal sage scrub in southern California. Its habitat
has declined due to agricultural and urban development.

Akçakaya and Atwood (1997) first developed a habitat model using
logistic regression to link GIS data to records of species occurrences.
Variables included percentage of coastal sage scrub, elevation, distance
from grasslands, distance from trees and various interactions among these
variables. They validated the habitat model by building it on data from
the northern half of its range and predicting observations in the southern
half. They then used it to define patches of habitat as a basis for building
a metapopulation model. This model included demographic data such as
fecundity, survival, as well as variability in these demographic rates.

The model predicted a high risk of decline in the next 50 years with
most combinations of parameters. However, there was a considerable
range of outcomes due to uncertainties in parameters. Results were most
sensitive to assumptions about density-dependent effects, the probability
of weather-related catastrophes, adult survival and adult fecundity.

Akçakaya and Atwood (1997) then explored management and con-
servation alternatives. They examined the scenario in which three of the
habitat patches were potential candidates for restoration. If these patches
vary in size, then there would be a total of seven alternatives (ranging
from restoring only the smallest patch to restoring all three).

These, plus the ‘no action’ alternative, were evaluated by running a
series of simulations. They incorporated the expected improvements in
the carrying capacity and other parameters of the patches where habitat
would be restored (Figure 12.8).

They ranked the eight options in order of increasing effectiveness
(measured by the reduction in the risk of extinction). The obvious choice
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Figure 12.8. The risks and costs associated with restoring habitat patches A, B and
C for the California gnatcatcher (from Akçakaya and Atwood 1997).

is to improve the habitat in all three patches. In reality, improving all
three patches may exceed the budget for conservation of the species.
The ranked options allow managers and stakeholders to evaluate each
action in terms of costs and benefits (Akçakaya and Atwood 1997).

In another example, Reckhow (1994) explored the economic costs
associated with the control of biological oxygen demand (BOD) in in-
dustrial waste water. Deviations from a target BOD resulted in costs of
additional treatment and the potential for fines if permit conditions were
violated. Designs to reduce BOD were uncertain because of natural vari-
ation in BOD. The cost function was asymmetric. As a result, Reckow
(1994) concluded that the greater the cost of fines, the larger the safety
margin should be.

Weitzman (1998) proposed a method to set priorities for species re-
covery that accounted for opportunity, cost and outcome (gain). Taxon
i is given a rank, Ri, with,

Ri = [(Ii + Di )�Pi ]/c i



12.3 Stochastic analyses and decisions · 389
P

ro
ba

bi
lit

y 
of

 e
xt

in
ct

io
n

Resources allocated to each species ($)

Critically endangered

Endangered

Vulnerable

Extinction probabilities with no action

Figure 12.9. Allocating resources to recover threatened species. The lines represent
the way in which risk of extinction declines for each species as money is spent on
that species. One species is listed as critically endangered (dots), one as endangered
(dashes) and another as vulnerable (continuous line). To minimize loss of species,
allocate funds so that the marginal rate of gain for each species is the same. With a
small allocation of funds (•) the optimal strategy allocates most funding to the
vulnerable species, less to the critically endangered and none to the endangered.
With a larger budget (�) most of the money should be spent on the critically
endangered species, some on the vulnerable species and little on the endangered
species (after Possingham et al. 2002a).

where Ii is ‘intrinsic’ utility yielded by taxon i, Di is genetic distinc-
tiveness, �Pi is reduction in extinction risk and ci is conservation effort
(expenditure). The term (I + D) allows taxa to be differently weighted
(from whatever perspective). Possingham et al. (2002a) used a similar idea
when they argued that resource allocation would be globally more effi-
cient, thereby minimizing species loss, if funds are allocated to recovery
to maximize extinction risk reduction (Figure 12.9).

Such ideas have been extended to the valuation of ecosystem services.
The probabilities of different environmental outcomes may be evalu-
ated against cost under alternative management options. For instance,
Carpenter et al. (1998) used expected utility to evaluate environmental
remediation versus ‘business as usual’ for a catchment in which phospho-
rus loads and algal blooms were linked in an ecological model.

Benefit-cost analyses are prey to the full range of uncertainties that
affect other kinds of analysis. The points on Figure 12.8, for instance, are
themselves uncertain. They do not illustrate the extent of uncertainty.
All such analyses should be subjected to sensitivity analyses to evaluate
the sensitivity of the best course of action to the full range of knowledge
limitations.
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If minor changes in probabilities, utilities or model structure give rise
to significant changes in the best course of action, the options are to
gamble on what appears to be the best strategy (Bier et al. 1999), or to
choose a strategy that delivers an acceptable outcome, no matter what the
true state of the world (Ben-Haim 2001; see below). The latter course
may deliver suboptimal outcomes but it will avoid catastrophes. The best
strategies usually will involve decisions that leave options open and gather
useful information.

12.3.3 Stochastic dynamic programming

When the objective is to control a stochastic process, stochastic dynamic
programming (SDP) finds the optimal decision at each time step in the
control period (Possingham et al. 2002b).

The first step is to define ‘payoffs’ (benefits) for achieving each state
of a system. For example, when managing a threatened species, the sim-
plest interpretation is that the benefit is measured by population size.
In an environment with several patches, one could account the pay-
off as ‘1’ if the population persists, or ‘0’ if it becomes extinct in a
patch. In a contaminated stream, benefit may be ‘1’ if water quality
measurements fall within safe bounds and ‘0’ if regulatory thresholds are
exceeded.

Starting at the end of a specified time period, the optimal strategy is
found by stepping back through time, choosing the optimal decision each
time step (the one that maximizes payoffs), assuming that later decisions
are made optimally.

Possingham et al. (2002b) provided the following example. A threat-
ened species occurs in two patches. Suitability of the patches changes
with time since the last fire. The environmental fluctuations experienced
by the two patches are correlated. Managers may make one of four pos-
sible decisions at each time step: burn neither patch, burn patch 1, burn
patch 2, or burn both patches.

To determine the best decision for every state of the system, we begin
at some time horizon, T. The payoff is 0 if both patches are empty, and
is 1 otherwise. This may be written

PayoffT(x1, x2, F1, F2) = 0 if x1 = x2 = 0
= 1 otherwise,

where x1 and x2 are the population sizes in patches 1 and 2, and F1 and
F2 are the times since the last fire in patches 1 and 2.
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The best decision at time T − 1 optimizes the expected payoff at time
T, in state (x1, x2, F1, F2). The expected payoff is a function of transition
probabilities between states. These transition probabilities are derived
from the population model, depending on the current state of the system
and the decision chosen from the strategy set.

This generates the best strategy for decisions one year ahead. The best
long-term strategy is found by back stepping repeatedly until an equilib-
rium strategy is found. It turned out in their example that the optimal
strategy depended on whether organisms moved between patches.

Stochastic dynamic programming depends on a Markov chain that
gives the transition probabilities among the possible states. Unfortunately,
most environmental applications are plagued by gaps in knowledge, in-
cluding complete ignorance of processes, parameters and uncertainties.
The following section explores methods that can be applied to generate
assessments when information is severely limited.

12.4 Info-gaps
Simon (1959) introduced the idea of ‘bounded rationality’. He argued
that perception and uncertainty limit the ability of people to achieve
goals. People construct simple models to deal with these difficulties.
The key idea is that people ‘satisfice’ rather than optimize. Satisfic-
ing means taking decisions that do well enough and that are robust
to a wide range of uncertainty. Ideas began to emerge in the 1950s
about how to make good decisions when critical information is missing
(Box 12.1).

For example, Cooper (1961, in Ignizio 1985) suggested that, instead
of trying to maximize some objective, y, it may be better to aspire to ‘at
least x units of y’. Techniques such as goal programming (Ignizio 1985)
may be used to minimize unwanted deviations from an objective, one
way of implementing the idea of satisficing.

Info-gap theory (a term borrowed from economics) was invented by
Ben-Haim (2001) to perform model-based decision analysis in circum-
stances in which reliable probability models are unavailable. It can func-
tion sensibly when there are ‘severe’ knowledge gaps.

Info-gap analysis requires three elements:

1. A mathematical process model.
2. A measure of performance.
3. A model for the uncertainty.
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Box 12.1 · Minimizing maximum regret

Savage (1951, in French 1986) defined ‘regret’ as the difference be-
tween the result of the best action and the result of the action taken.
Given n actions, ai, and m states of the world with probabilities, pj,
regret of action ai is

r i j = maxm
l=1{vl j } − vi j .

The worst regret possible from action ai is given by:

maxn
j=1{r i j }.

To minimize regret, choose the option with the smallest regret. That
is, choose ai such that:

minm
i=1{ρi } = minm

i=1

{
maxn

i=1{r i j }
}
.

This was called the ‘minimax regret’ criterion (see French 1986,
Morgan and Henrion 1990).

Info-gap asks, ‘What do we need to know to make a decision?’. It en-
tertains two dimensions in making a decision: robustness (immunity from
unacceptably bad outcomes) and opportunity (chances of windfall that
exceed our expectations). Thus, it recognizes implicitly that uncertainty
can be good or bad.

The process model is a mathematical representation of a conceptual
model. It summarizes what the analyst (or the expert) believes to be true
and important in the system. It could be a population model, an expert
system, a logic tree or any other quantitative model.

The quality of the outcome of a decision is assessed by the measure of
performance. It may be the risk of population decline, the concentration
of a contaminant, the density of algal cells in a freshwater stream, or the
size of a managed fish population. The objective may be to reduce the
first three, or to enhance the latter. Performance measures may include
multiple attributes.

The model for uncertainty describes what is unknown about the pa-
rameters in the process model. An info-gap model is an unbounded family
of nested sets of possibilities. Typically it is a set that encloses all possible
values for a parameter or function. For instance, if the process model is a
function for the growth of a population, the uncertainty in the growth
rate may be bounded by an interval. But it is not an interval in the usual
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Box 12.2 · Some axioms of info-gap theory

This section is taken from Regan et al. (2004). Info-gap models have
an uncertainty parameter, α, and a centre, ṽ . They have two basic
properties, nesting and contraction. Nesting means that α is a horizon
of uncertainty such that α ≤ α′ implies

U (α, ṽ ) ⊆ U (α′, ṽ ).

For any given value of α,U (α, ṽ ) is a set of possible values of v. What
‘nesting’ means is that as α gets larger, the set U (α, ṽ ) gets more
inclusive. This imbues α with its meaning as a ‘horizon of uncertainty’.
An info-gap model of uncertainty is a family of nested sets of possible
values of the uncertainty entity, U (α, ṽ ), α ≥ 0, rather than a single

~v

~V

V

V

~V + α

~V − α

2α

α

2α'

a.

b.

0

Figure 12.10. Nesting and contraction properties of the interval uncertainty
model (after Regan et al. 2004). Contraction is illustrated in b. v is a scalar; its
value is shown on the vertical axis. The horizon of uncertainty, α, increases to
the right. At any given value of α the range of variation of v is shown by the
growing cone of uncertainty. For instance, the vertical double arrow in b
corresponds to the upper of the two horizontal double arrows in a. As the
horizon of uncertainty is reduced, the range of variation of v diminishes, until v
precisely equals the nominal value when there is no uncertainty: at α = 0 the
info-gap model ‘contracts’ to the singleton set containing only the centrepoint
ṽ . Note that the centrepoint is a possible value of v at all horizons of
uncertainty. In contrast, ṽ is the only possibility in the absence of uncertainty.
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set (Ben-Haim 2001). Contraction means the nominal value, ṽ , is the
only possible value in the absence of uncertainty,

U (0, ṽ ) = {ṽ }.
The elements of the set U (α, ṽ ) are often a scalar, but they could be
virtually anything including functions or vectors.
The properties of nesting and contraction are illustrated in Figure 12.10
where the uncertain entity, v, is a scalar. In Figure 12.10a the value
of v is displayed along an axis. The nominal, or best-estimate, of v
is ṽ . At the horizon of uncertainty α, v can vary in an interval of
size 2α, from ṽ − α up to ṽ + α, as indicated by the double arrow
labelled ‘2α’. At a greater horizon of uncertainty, α′, the range of
possible variation of v is wider as shown by the longer double arrow.
Since the horizon of uncertainty is unknown, the info-gap model is
an unbounded family of nested intervals like those shown in Figure
12.10a that contract to zero uncertainty at the nominal value (Fig-
ure 12.10b).

sense. The uncertainty parameter, α, may take on any value so the interval
is infinitely wide.

The robustness function answers the question, ‘How wrong can the
model be without causing failure?’. The decision maker can trade robust-
ness for performance. The opportunity function answers the question,
‘How much should the model be changed to allow ‘windfall’ perfor-
mance?’. It implies that we may make decisions that facilitate the possi-
bility of better-than-expected outcomes. This provides a formal frame-
work to explore the kinds of speculations that occur intuitively when
examining decision options.

The process model, performance measure and uncertainty model pro-
vide a system of equations that may be solved for estimates of robustness
and opportunity. The decision maker can then play ‘what-if’ games, usu-
ally focusing on a critical parameter that represents failure (a threshold
reflecting the limit of unacceptable performance).

12.4.1 A process model and measure of performance

The orange-bellied parrot is listed as ‘critically endangered’ by the IUCN
(2001). The total population size is less than 200. Birds breed during
summer in the coastal areas of Tasmania. In winter, they migrate north
to mainland Australia, sheltering and feeding in coastal salt-marsh areas



12.4 Info-gaps · 395

Table 12.4. Decision table (utilities and probabilities) for three management
actions and four states. Utilities are the minimum expected population sizes
resulting from management aimed at alleviating the effects of the potential cause
of decline (Chapter 8). The example is hypothetical but is based on a plausible
set of scenarios (after Drechsler et al. 1998)

System state Likelihood of Action 1 Action 2 Action 3
(i) (cause of each state (predator (habitat (reducing
decline) (subjective control) rehabilitation) exposure to

probability toxins)
that this is the
primary factor
inhibiting
recovery)

(a1) (a2) (a3)

p v1 v2 v3

Feral predators 0.2 30 5 0
Grazing impacts 0.3 5 5 0
Loss of habitat 0.4 5 10 0

area
Ecotoxicological 0.1 0 5 30

effects
Expected utilities

∑
pivj1 = 9.5

∑
pivj2 = 7

∑
pivj3 = 3

of south-eastern Australia. High mortality during winter seems to be
responsible for its persistent small population size. The population was
many thousands of individuals around 1900, but declined steadily until
reaching its current size about 20 years ago. The options for managing
winter habitat include control of grazing, expansion of suitable habitat,
minimizing exposure to potentially contaminated waste disposal ponds,
and control of predators and competitors (Drechsler et al. 1998).

Expected utilities have been used to assist environmental decision mak-
ing (e.g. Maguire 1986, Ralls and Starfield 1995, Possingham 1996).
Decision tables or decision trees involve identifying three main compo-
nents – acts, states and outcomes (Table 12.4; see Chapter 8). The acts
refer to the decision alternatives, the states refer to the relevant possible
states of the system, and the outcomes refer to what will occur if an act is
implemented in a given state. Usually, it is assumed the state of the system
does not change substantially through time, so that the chosen alternative
remains relevant or applicable.
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For decision making under uncertainty the usual procedure is to assign
probabilities to each of the relevant states and utilities to each of the
outcomes. The task then reduces to a choice that maximizes expected
utility. Probabilities assigned to the states represent the likelihood that the
system is in that state. So while the particular state in which a system exists
is uncertain, the probability that the system is in that state is assumed to
be known with certainty.

The main objective of the management team is to minimize the prob-
ability of population decline. Drechsler et al. (1998) wrote a population
viability model for the dynamics of orange-bellied parrots. We used this
to generate forecasts of population dynamics under different management
options. McCarthy and Thompson (2001) proposed measuring the util-
ity of management decisions using minimum expected population size.
It summarizes the chances of a population falling below a lower thresh-
old within a specified time period. Table 12.4 provides estimates of the
response of the parrot population to a range of management options, in
terms of the minimum expected population size of adult females.

Under ordinary utility theory, the expected utility of an action is the
sum of the products of individual utilities (assuming the system state is
true) times the probability that the state is true (Chapter 8). The best
action is the one that maximizes expected utility, in this case, action 1.

12.4.2 A model for uncertainty

A problem with using decision tables is that they are composed of utilities
v and probabilities p that are uncertain. It is difficult to quantify these
uncertainties. Utilities and probabilities of the states of the world are
assessed subjectively. Intervals can be assigned to probabilities and utilities
to incorporate the range of values these parameters might take (Walley
2000b, Walley and De Cooman 2001; see Chapter 9). In this example, we
represent uncertainty in the probabilities and utilities with unbounded
families of nested intervals (Box 12.3).

Table 12.4 was evaluated using the info-gap interval uncertainty
and process models outlined above (see Regan et al. 2004). α̂ = 0 in
Figure 12.11 corresponds to the usual maximum expected utility solu-
tion (Table 12.4). Using an expected utility strategy is risky because it
ignores uncertainty in utilities and probabilities.

Action 1 is best only when there is relatively little uncertainty in the
states of the world and in the expected utilities. For wider ranges of
uncertainty, action 2 is more robust. Action 3 is suboptimal, irrespective
of the magnitude of uncertainty.
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Box 12.3 · Info-gap uncertainty model for the orange-bellied parrot
decision table

The info-gap model for utility uncertainty, is the family of nested
intervals

Uv (α, ṽ ) =
{

v :

∣∣∣∣vi j − ṽ i j

ṽ i j

∣∣∣∣ ≤ α, i = 1, . . . , I, j = 1, . . . , J
}

, α ≥ 0.

This specifies a rectangle with dimensions I J , oriented along the
co-ordinate axes, in which vi j varies from its nominal value, ṽ i j , by
no more than α. The horizon of uncertainty, α, is unknown and
unbounded. In the application below we restrict ourselves to positive
utilities although under the formulation here they can take any value.
The model for uncertainty in the probabilities, p, is similar. There are
the additional constraints that the p’s must be positive and normalized
to sum to 1 (because they are probabilities). To bound the p values,
we may express them as fractions of the nominal value in a manner
similar to the bounds on the utilities,∣∣p j − p̃ j

∣∣
p̃ j

≤ α,

which implies that, at the horizon of uncertainty α, the jth probability
is in the interval,

(1 − α) p̃ j ≤ p j ≤ (1 + α) p̃ j .

Uncertainties for both utilities and probabilities are defined to have
identical relative uncertainties. To keep the p values non-negative and
their sum normalized, we define

Up (α, p̃ ) =
{

p : 1 =
J∑

j=1

p j ; max[0, (1 − α) p̃ j ]

≤ p j ≤ min[1, (1 + α) p̃ j ] j = 1, . . . , J

}
, α ≥ 0.

Info-gap theory takes the position that the best strategy is the one
that provides an outcome that is both ‘good enough’ and that keeps
us immune from unacceptable outcomes given some level of uncer-
tainty. That is, we choose a strategy that maximizes the reliability of
an adequate outcome. This is termed ‘robust satisficing’ (Ben-Haim
2001).
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We let C be the smallest value of a utility that is acceptable. In our
case, a value of zero is unacceptable because it implies the population
is expected to become extinct. We would like the value of minimum
population size to be as large as possible. C thus represents an aspiration.
There is no need to choose it a priori. We will return to it below.
Since pj and vi j are imperfectly known, and not effectively bounded,
we cannot determine whether or not the outcome of any action will
be adequate. Instead, we determine the greatest horizon of relative
uncertainty, α̂, within which all of the outcomes of a given action result
in an adequate performance (that is, they result in expected utilities
greater than C ). We express the robustness of an action in terms of
the maximum uncertainty that allows us to reach the performance
aspiration. The robustness of action ai, given performance aspiration
C, is

α̂(a i , C) = max


α : min

v∈Uv (α,ṽ )
p∈Up (α, p̃ )

J∑
j=1

vi j p j ≥ C


 .

The robustness α̂(ai, C) of action ai, with aspiration C, is the greatest
horizon of uncertainty α up to which all utilities v [in Uv (α, ṽ)] and
all probabilities p [in Up (α, p̃ )] result in expected utilities no worse
than C. Given a lower bound for an acceptable outcome, C, more
robustness [α̂(a i , C )] is better than less. Hence the robustness function
determines a preference ranking for the management alternatives. The
action that maximizes robustness, for a given threshold of tolerance, is
the best.

Robustness functions have the important property that they always
decrease monotonically as the aspiration for utility becomes higher. If
our aspiration is low (say, a minimum of four adult females), we can
tolerate a broad range of uncertainty in utilities and probabilities. If our
aspirations are higher (no less than eight females is acceptable), we tolerate
a narrower range of uncertainty and the best management option may
change. Another way of looking at these results is that if fewer than nine
pairs are unacceptable, we have little tolerance for uncertainty. We should
choose action 1. It’s the only option that has any chance of delivering an
outcome we can live with.

This analysis reflects the ever-present tradeoff between immunity to
uncertainty and aspiration for performance. Very demanding aspirations
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Figure 12.11. Maximal robustness curve α̂(ai, Ec) versus aspiration for expected
utility, Ec, for the three management actions in Table 12.4. The expected utility is
measured by the minimum expected number of adult female birds in the
population.

become more vulnerable to uncertainty. In the extreme, an expectation
of maximum utility (the default in most present applications) is maximally
vulnerable to uncertainty.

What does an α̂ of 0.5 mean? It means that all the parameters – utilities
vi j and probabilities pj – can vary from their nominal values fractionally
by as much as 0.5, without causing the expected utility to fall below the
critical value C. For example, it implies that the probabilities may be as
large as 0.6 or as small as 0.2 for loss of habitat area (which has a nominal
value of 0.4). The value of predator control, if predators are important,
may be anywhere between 15 and 45 (given a nominal value of 30). The
interpretation of uncertainties in each case will depend on context and
the attitudes of stakeholders and decision makers to expected outcomes
and risk.

12.5 Evaluating attitudes to decisions
12.5.1 Scenario analysis

Risk management requires a conceptual model of the future. To serve
this need, scenario analysis began to evolve at about the same time as the
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Delphi method (Chapter 4). Scenarios are shared, agreed mental models.
They are internally consistent descriptions of possible futures created in
structured brainstorming exercises (Van der Heijden 1996 describes the
methods in detail). A scenario is a hypothetical sequence of events that
focuses thinking on chains of causal relationships and their interaction
with the decisions a person or a corporation might make.

Scenario analysis shares common roots with the Delphi method, de-
veloping from methods created to deal with defence decision making
in the USA (Kahn and Wiener 1967; see Chapter 4). Over the last few
decades, it grew largely in the realm of corporate decision making.

Scenarios are constructed and communicated with a story line in
which events unfold through time through a series of imagined causes
and effects. The idea is to engage a group in the value-free exploration
of options. It distinguishes between the organization itself, over which
the strategist has control, the transitional environment made up of people
and things the strategist can influence, and the contextual environment
over which the strategist has no influence.

Scenario planning, as envisaged by Kahn and Wiener (1967), does not
rely on probabilistic forecasts although quantitative projections may sup-
port the creation of scenarios. Rather, it uses qualitative causal thinking
to generate decisions that are robust to as wide a range of plausible, alter-
native futures as possible (Van der Heijden 1996). In that sense, it shares
a philosophical position with info-gap theory (above).

Scenario planning depends on the cooperation of participants. It re-
quires that they are forthcoming about outcomes, dependencies and un-
certainties. Open dialogue may be more easily achieved in settings where
participants share common objectives, than in environments in which
resource allocation is being debated and stakeholders stand to gain by the
outcome, at the expense of others.

Operating models are constructed for underlying processes. The mod-
els are used to evaluate different control rules and other heuristics that
may be used on a routine basis by managers. Only those rules that work
effectively over the full suite of scenarios are retained.

Most applications have been in the management of large corporations.
Bennett et al. (2003) argued for greater attention to ecological issues in
global environmental scenario development. Buckland et al. (1998, in
Harwood 2000) used scenario planning to explore the consequences of
different red deer (Cervus elaphas) culling programmes in Scotland. Sce-
nario analysis has the potential for supporting the development of alter-
native conceptual models in environmental risk analysis. The models may
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form the basis of an on-going dialogue between stakeholders. They may
provide a framework for data acquisition, model testing and monitoring,
all components of the risk management cycle.

12.5.2 Multi-criteria decision analysis

Evaluating management decisions and performance measures may re-
quire a detailed examination of the values and perceptions of participants.
Multi-criteria decision analysis (MCDA) measures preferences by elicit-
ing and ordering judgements from people affected by a decision. The
objectives may include arriving at a decision that reflects social values,
identifying opportunities, and improving understanding among stake-
holders. It can work when problems are complex and include monetary
and nonmonetary values (Keeney and Raiffa 1976).

MCDA works by defining all criteria against which an action may
be evaluated, and identifying a preference scale or some other measure
of performance. A ‘coherent’ set of criteria has the following properties
(Roy 1999):

1. Stakeholders are indifferent to alternative actions if they rank them the
same against all criteria (implying the set is exhaustive).

2. An action will be preferred to others if it is substantially better than
all others on one criterion and equal on all others (implying the set is
cohesive).

3. The set is understood and accepted by all stakeholders.
4. The conditions above may be violated if any criterion is omitted (im-

plying the set contains no redundant elements).

If the endpoints of preference scales are meaningful to stakeholders, they
may be evaluated in terms of costs and benefits using multi-attribute
utility functions (Borsuk et al. 2001a).

Successful MCDA depends on an effective social process. The analyt-
ical process should be preceded by rationalization of aims and scope, and
by identification of stakeholders and experts who may contribute usefully.
The rules governing selection, interactions between participants and ag-
gregation of opinions (Chapter 4) largely determine the acceptability of
outcomes.

Saaty (1992) described a process to structure and map the opinions of
experts, generating a cohesive picture of areas of agreement and disagree-
ment. Many factors influence stakeholder choices. An analytical hier-
archy (a decision tree; see Chapter 8) may be used to order thinking about
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Box 12.4 · Basic steps in multi-criteria decision analysis (see Dodgson
et al. 2001)

1. Establish criteria that may affect a decision and outline options
(scenario analysis may be helpful).

2. Classify criteria under broad headings (social, political, economic,
landscape, ecological). Criteria are used to assess the performance
of options, arranged under a hierarchy of objectives. The endpoints
of the decision tree are the criteria (e.g. Figure 12.13).

3. Assign weights (each person assigns scores or preferences) at each
branch of the tree that reflect the importance in determining out-
comes.

4. Assign weights to each option (by experts or by group consensus).
5. Aggregate weighted scores (usually these are linear combinations,

assuming that preference scores on one criterion are unaffected by
scores on other criteria).

6. Present scores (anonymously) to the group and discuss differences
of opinion. Participants revise their scores and generate new ranks
for each criterion.

7. Aggregate the performance of each option across all criteria. Most
approaches use linear numerical aggregation, adding the products
of scores and weights for each criterion.

8. Conduct a sensitivity analysis (vary scores and weights, delete cri-
teria in turn and create new options).

The value tree represents a model of values that affect the decision over
management priorities (Belton 1999). The weights given to different
criteria define acceptable tradeoffs.

these factors, and to provide a means for quantifying the priorities. The
approach documents the diversity of opinions in a group that allows
opinions to be examined and revised subsequently.

The gambling analogy introduced in Chapter 9 may be used to elicit
preferences for nonmonetary values. Starmer (1998) provided an exam-
ple of the method to elicit attitudes towards a state of health. Begin by
selecting two extreme health states (they become endpoints for the util-
ity scale). In this example, they are ‘perfect health’ and ‘death’. Then the
participant imagines a choice between two alternatives (Figure 12.12).
Alternative 2 is to experience a state of health, Hi, for sure. Alternative
1 offers a chance, p, of perfect health and a chance, 1−p, of death. The
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Figure 12.12. Choice strategy for elicitation of preferences for nonmonetary values
(from Starmer 1998).

objective is to find a value for p such that the participant is indifferent to
the choice of alternatives. Strategies such as those outlined in Chapter 9
(eliciting ‘buying’ and ‘selling’ prices) usually will result in a range of
values for p.

At the ‘point’ of indifference, the expected utility of health state Hi ,
is E(Hi ) = p × utility (perfect health) + (1 − p ) × utility (death).

If we define the utility of perfect health to be 1 and the utility of death
to be 0, then E(Hi) = p (or [p1, p2] if an interval has been elicited).

The method may be used to elicit preferences for any aspiration or
environmental decision. Sometimes, it is useful to ask for utilities directly
(on a 0–1 scale) and compare the ranks with those derived from the
alternative choice strategy.

Another way to elicit preferences is to ask participants to score criteria
on a scale 0–100. Then, they are asked to compare how much a change
from 0 to 100 on one criterion compares to a 0 to 100 change on another.
This process identifies the most important criterion (in the eyes of this
participant) and other criteria may be weighted relative to it.

Saaty (1980, 1994) described the analytical hierarchy process (AHP), a
method for converting subjective judgements of importance into scores.
It depends on a numerical interpretation of answers to questions such as,
‘How important is (criterion) A compared to (criterion) B?’. Responses
are coded by an analyst who uses a nine-point scale (Table 12.5).
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Table 12.5. Code and scale for AHP
responses (after Saaty 1980)

How important is A relative to B Index

Equally important 1
Moderately more important 3
Strongly more important 5
Very strongly more important 7
Overwhelmingly more important 9

The pairwise comparisons between criteria form a matrix of preferences.
Saaty (1980) used the elements of the first (dominant) eigenvector of the
matrix as the weights for each criterion.

Usually, criteria are clustered in a value tree. The preference matrix
is formed for each set in the tree, and then between sections at a higher
level in the hierarchy.

The same strategy is used to calculate relative performance scores for
each management option. Matrices are formed from comparisons be-
tween pairs of options. Options are judged in terms of their contribution
to each criterion. Thus, for m options and n criteria, there are n separate
m × m matrices.

There is no firm basis to link the verbal responses to the numerical
scale (Table 12.5). Sometimes, new management options are added to an
analysis once it is complete. New options can disrupt the relative ranks
of original options. Such outcomes sometimes prompt people to develop
alternative management strategies that have improved properties over a
range of criteria (see Goodwin and Wright 1998).

Fernandes et al. (1999) used MCDA to explore acceptable alternatives
to the management of a marine park. They stratified stakeholders by their
interest in the issue (hotels, government regulators, NGOs and so on).
They assessed the relative importance of each pair of objectives at each
level in the hierarchy. Comparisons were limited to groups of subcriteria
within a criterion (Table 12.6).

The assessment was determined by asking participants how impor-
tant each component was for achieving the parent objective immediately
above them in the hierarchy. Comparisons were made on a nine-point
scale ranging from ‘equally important’ to ‘overwhelmingly more impor-
tant’. At the highest level in the hierarchy, the relative importance of each
criterion was assessed independently by a single representative from each
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Table 12.6. MCDA analytical results showing assessments by stakeholders of
the relative importance of the management planning objectives in contributing to
the overall goal of preserving the marine resources of the reef for people in
perpetuity (each row sums to 1) (a subset of the values reported by Fernandes
et al. 1999)

Stakeholders Objectives (Criteria)

Ecological Economic Social Global model
sustainability benefits acceptability

Local 0.309 0.388 0.249 0.054
government

Saba 0.476 0.093 0.360 0.071
Conservation

Recreational 0.525 0.168 0.177 0.129
fishers

Hotels / 0.293 0.285 0.260 0.163
restaurants

Dive shops 0.683 0.111 0.150 0.056
Educators 0.600 0.230 0.057 0.114
Developer 0.283 0.529 0.095 0.093
Median value 0.344 0.168 0.207 0.111

stakeholder group. These values were used to generate weights for each
criterion.

Surveys of stakeholders were also used to frame five different reef
management options. Experts evaluated the extent to which each of
the high-level objectives would be achieved under each management
option. The weight of each management option depended on the weights
assigned to each objective.

The analysis resulted in consensus among all stakeholders about the
need for a managed park. It rejected options for elimination of the park
and its no-fishing zones.

In MCDA, a preference may be expressed for all pairwise comparisons
between actions [n(n − 1)/2 comparisons], against each criterion. For
instance, the following questions accommodate preference, indifference
and incomparability (Bana e Costa and Vansnick 1999):

Is one of the actions (x or y) more attractive than the other?
(YES / NO / DON’T KNOW)
If yes, which is the more attractive?
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Management goal
Preserve marine resources 

for people in perpetuity

Criteria Subcriteria
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understanding

Children
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Figure 12.13. A MCDA value tree (a criteria hierarchy) for a decision about coral
reef management on Saba, a small Caribbean island, involving economic,
ecological and social tradeoffs. It provides for an assessment of decision alternatives
against criteria (after Fernandes et al. 1999). The ‘global model’ criterion reflected
the desire by stakeholders to have a reef management system that serves as an
international standard. Economic benefits included several subcriteria such as
tourism revenue from recreational divers, hotels and restaurants, development
opportunities, fishing revenue and so on.
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‘Outranking’ methods are used when preferences cannot be expressed
as a unique numerical function, when at least one criterion is not quan-
titative or when compensating gains and losses among criteria are not
clear; the ‘Electre’ method has been broadly applied in this context (see
Roy and Vanderpooten 1996, Vincke 1999).

The structure of MCDA makes it relatively easy to assess decision al-
ternatives against criteria at any point in the hierarchy (e.g. Figure 12.13).
Visual devices such as the value tree may be used to inform stakeholders
about the importance of various preferences in determining the out-
come, and about the differences between them and other stakeholders.
It represents a model of the values that weigh on a decision.

Preferences are always uncertain. MCDA is useful in exploring sen-
sitivities interactively with stakeholders. The risk analyst may adjust the
weights and relative ranks allocated to various subcriteria by stakehold-
ers, to illustrate how much the overall outcome depended on various
judgements.

The composition of the stakeholder group may affect the outcome.
Even given a single group with well-defined preferences, there are many
ways to define and arrange criteria. These uncertainties should be ex-
plored so that important differences in opinion are identified and com-
municated, and regions of uncertainty are understood. The best way to
achieve this is through a sensitivity analysis.

The sensitivity analysis could answer the question, ‘Given uncertainty
in preferences or the structure of the criteria, what preferences and struc-
tures within the limits of uncertainty will result in each alternative being
considered the best against each criterion?’. It could answer, ‘How does
the best alternative, or the rank of all alternatives, change when inputs to
the MCDA process change?’.

Sometimes, one alternative will dominate most or all criteria for all re-
gions of uncertainty. More often, the best solution will depend sensitively
on the choice of preference scales, weights and structures (groupings) for
the criteria. To communicate subjective uncertainties in the preferences
of stakeholders, Fernandes et al. (1999) reported the ranges of relative
values of management options (Figure 12.14).

Fernandes et al. (1999) used experts to assess the utility of management
scenarios for coral reef management. These judgements could have
been supported by more explicit models. For instance, the importance
of no-fishing zones could have been explored by building models of
the fish populations and evaluating fish abundances with and without
restricted fishing. While there are some explicit guidelines for performing
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Figure 12.14. Relative value of management options to stakeholders under status
quo conditions. The range for each option represents the range of preferences
expressed by stakeholders combined with the degrees to which those objectives
could be achieved. The midpoints are the median values for 15 stakeholders
assessed (Fernandes et al. 1999).

sensitivity analysis (Tanino 1999), there is no general formula and the
details of the sensitivity analysis should be guided by the needs of the
specific circumstances of the case.

In MCDA, the person or group that defines the context is influential.
The choices of participants, objectives, criteria, weights and aggrega-
tion rules are subjective. Either the group controlling the agenda or the
participants need to decide if tradeoffs between criteria are acceptable.
If they are, good performance on one compensates for a poor perfor-
mance on another. Constraints on compensation can substantially limit
the effectiveness of MCDA (Dodgson et al. 2001). Sensitivity analysis can
alleviate some of the influence of arbitrary choices. If results are insen-
sitive to differences of opinion, the approach can resolve difficult social
differences.

12.5.3 Multi-criteria mapping

Multi-criteria mapping (MCM) takes the philosophical position that risks
are socially constructed and (mostly) difficult to measure. Instead of using
quantitative risk analyses, MCM uses the preferences of individuals to
explore alternative management options (Stirling 1997).
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Participants representing different social strata choose ‘options’, alter-
native scenarios that reflect a different decision about how best to manage
a hazard. Participants then list ‘criteria’: all the things they would want
taken into account to evaluate how best to fulfil a particular objective.
Participants are asked to weight the criteria by ranking them, from most
to least important. Participants then judge how well the options perform
in the light of each evaluation criterion, and present a range of uncer-
tainty for each assessment. Like MCDA, the process involves establishing
context and available options, and uses subjective estimates for scores and
weights for criteria.

The opinions and uncertainties of participants are shown to other par-
ticipants, together with the social stratum that the individual represents.

Stirling (1999) outlined the application of MCM to choices about
farming conventional and genetically modified (GM) crops in Europe.
A panel of 12 people, all knowledgeable but representing a broad range
of interests (expert stakeholders; Chapter 4), ranked six ways that oilseed
rape might be grown on farms in Britain including:

1. Organic agriculture (no GM crops).
2. Integrated pest management without GM crops.
3. Conventional agriculture without GM crops.
4. Segregation and labelling of the GM produce.
5. GM crops with post-release monitoring.
6. GM crops with voluntary controls on areas of cultivation.

The criteria for evaluating options included social, economic, health,
agricultural and environmental issues (Figure 12.15)

Alternative views may be created by varying weights. People were
interviewed separately. They provided preferences that were communi-
cated to other participants. The study identified a set of options that
worked ‘tolerably’ well for all participants. The results were submitted
to government prior to decisions about the use of genetically modified
crops.

Stirling (1999) argued that the method works even in a hotly dis-
puted controversy. It accommodates a broad range of perspectives. Its
transparency helps builds trust. Uncertainty is acknowledged and carried
through any calculations and summaries.

However, there is potential for ambiguity in definitions and concepts.
In the absence of group meetings, some of these ambiguities will proba-
bly remain undiscovered and unacknowledged. The method is also time
consuming, mainly because it relies on individual, face-to-face elicitation
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Figure 12.15. Multi-criteria mapping of attitudes (average and range over all
participants) towards six issues affecting the evaluation of agricultural options in
Britain (after Stirling and Mayer 1999).

procedures (Stirling 1999). Its primary value is that it makes the values
and attitudes transparent to all participants, facilitating reconciliation and
compromise decisions (Chapter 4).

MCDA and related techniques are useful when consensus, ownership
and cooperation are sought. They can be used to achieve behavioural
aggregation (Chapter 4). In other circumstances, the analyst may seek
to design an MCDA that implements a management option, despite the
conflicting self-interests of individual participants. The strategies for these
different contexts will affect the details of the techniques selected. MCM
differs in that it seeks primarily to elicit and communicate the values and
preferences of participants. It is much closer to a communication device.

12.6 Risk communication
Risk communication is an interactive process involving the exchange of
information and opinion between individuals, groups and institutions.
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Warren-Hicks and Moore (1995) provided rules that they argued should
guide risk communication. Their scheme represents a large proportion of
risk communication strategies employed over the last few decades. They
advised that analysts should:

� involve the public,
� plan for inclusiveness,
� listen to ‘the audience’,
� be honest, open and frank,
� collaborate with other ‘credible’ sources,
� meet the needs of the media, and
� follow up commitments.

Despite its positive attributes, this list carries an implicit us-and-them
structure in which the audience listens to experts, and is listened to. ‘In-
volving the public’ means creating a process for working through devices
such as public comment and response phases. This keeps stakeholders at
a comfortable arm’s length. It ensures that analysts can respond without
experiencing critical cross-examination. In honest and complete risk as-
sessments, stakeholders must have direct ownership of the process through
direct involvement in all stages, including the design of protocols for
interactions between interested parties.

Bier (2001) noted that despite a voluminous literature on the psychol-
ogy of risk perception and acceptance, there are no definitive guides on
the creation of risk communication strategies. Age, socio-economic sta-
tus, gender, language, religion and cultural background overlay individual
differences in knowledge and attitude towards risk (e.g. Flynn et al. 1994;
Chapter 1) and may cloud a message.

Bier (2001) reviewed the status of risk communication and concluded
that communication efforts should involve:

1. Understanding legal requirements or policies that may limit the design
of risk communication.

2. Determining the purpose of communication, to
a. raise awareness,
b. educate people,
c. motivate people to take action,
d. reach agreement on a controversial issue, or
e. obtain people’s trust.

3. Determining the characteristics of the target audience, including level
of knowledge, mental models, beliefs, experience, receptiveness and
concerns.
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4. Selecting a strategy that serves the purpose at hand, including the use of
explanatory tools, techniques of persuasion, the means of stakeholder
involvement, and the choice of participatory and communication for-
mats (workshops, meetings, interviews, questionnaires, press, books,
papers, surveys).

Focus groups, sociological analysis and published demographic informa-
tion can assist in forming an effective communication strategy. Issues of
detail need to be considered carefully. For instance, verbal interpretations
of risk such as ‘highly likely’ are prone to linguistic ambiguity and there
is no simple way to translate them into natural language (Chapter 4).
Bier (2001) suggested that risk communication strategies be systemati-
cally pre-tested, especially as responses are often context specific. Each
stage of the planning process may involve ethical choices, making the
process dependent on the values of the communicator (Johnson 1999a).

12.6.1 Communicating probabilities: medical cases and framing

Gigerenzer (2002) noted that linguistic ambiguities surrounding state-
ments about risk are one of the primary causes of misunderstanding.
Cases from medicine provide perhaps the clearest examples of the causes
of miscommunication. Their contexts and consequences are common to
all risk assessments.

Gigerenzer (2002) identified several ways of communicating risk,
including:

1. Single event probabilities: ‘the probability that X will happen is Y %’.
There is no indication of the reference class. If the event is unique,
the percentage may be interpreted as a belief (at best).

2. Relative risks: the change in risk experienced by a group, relative to the
risk they would have experienced had they belonged to the reference
class.

3. Number needed to treat: a concept in medicine that gives the number of
people that need to participate in a treatment to save one life.

4. Conditional probabilities: given in circumstances in which it is easy to
confuse p(A|B) with p(B|A) or p(A ∪B).

When information is presented as probabilities, high variation in judge-
ments is related to the logical strategies people use to draw inferences. For
example, from randomized trials of breast cancer screening, there were 4
deaths per 1000 people without screening and 3 deaths per 1000 people
with screening, in women 40 years of age and older. This could be
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communicated as (Gigerenzer 2002):

� a 25% risk reduction,
� 1/1000 absolute risk reduction,
� 1000 patients needed to treat to obtain one effective life saved,
� 12-day increase in mean life expectancy, or
� a risk reduction equivalent to the risk of driving a car about 500 km.

Each would elicit a different response from both experts and the public.
Furthermore, such statistics do not communicate the physical or mone-
tary costs of breast cancer screening.

Gigerenzer (2002) argued that people confronted with information
in this form are incapable of informed consent. In 1957, Justice Bray of
the California Court of Appeals coined the term ‘informed consent’ in
relation to discussions about risk. He argued, ‘. . . a certain amount of
discretion must be employed consistent with the full disclosure of the
facts necessary to an informed consent’ (Gigerenzer 2002, p. 96).

These words are ambiguous. Gigerenzer (2002) argued that doctors
should be considered expert in diagnostic tools and treatment options,
and that patients should be considered expert in personal preferences,
goals and values. That is, acceptability is a subjective term and decisions
should be left in the hands of the people who experience the risks and
the benefits.

Schwartz et al. (1999) made suggestions to improve risk communica-
tion. They used the example of tamoxifen, a drug used to treat cancer.
They reviewed software used by a national cancer institute to inform
women of the costs and benefits of a particular treatment strategy. The
message was communicated by:

‘Women [taking tamoxifen] had about 49% fewer diagnoses of invasive breast
cancer.

The benefit of tamoxifen was only expressed as a relative risk reduction
without an explicit statement about baseline risk. Physicians and patients
find the benefit of an intervention more compelling when it is expressed
as a relative risk reduction, even though this form of communication is
difficult to understand.

The baseline risk (the chance per year of developing invasive breast
cancer for women in the placebo arm of the test) was 68 cases per 10 000
women per year. Applying the 49% relative risk reduction yields a risk
of 34 cases per 10 000 women per year in the tamoxifen arm.
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In contrast, one of the more important potential harms of tamoxifen,
an increased chance of developing uterine cancer, was presented using
raw frequencies for each group by:

. . . annual rate of uterine cancer in the tamoxifen arm was 30 per 10 000 com-
pared to 8 per 10 000 in the placebo arm.

The asymmetric framing tended to emphasize the benefit of tamoxifen
while minimizing the appearance of harm. If the increased uterine cancer
was expressed as a relative risk, the statement would read, ‘. . . 275% more
uterine cancer’ and would likely elicit a different feeling. Schwartz et al.
recommended using consistent framing, and using raw frequencies.

To further enhance the message, they recommended acknowledging
uncertainty. In the presentation of both disease risk and treatment ben-
efit, only point estimates (e.g. 49% risk reduction) were provided. They
suggested comments describing lower bounds, such as:

If 1000 women do not take tamoxifen, six will be diagnosed with invasive breast
cancer in the next year. If these 1000 women all take tamoxifen, our best guess
is that three of these six women will not get breast cancer. It is possible that
tamoxifen actually prevents as few as two women or as many as four women
from getting breast cancer.

To capture the uncertainty associated with extrapolating from pop-
ulations to individuals they recommended qualifying statements, such
as:

There is no way of knowing [beforehand] whether you will be one of the women
who gets breast cancer. In addition, if you take tamoxifen, there is no way of
knowing whether you will be one of the women who benefited from it.

All risk communication exercises should take these and similar steps to
make the message clear and to avoid the worst psychological pitfalls.
Woloshin et al. (2002) had these considerations in mind when they con-
structed ‘risk charts’ to communicate the relative risks from different
sources as a function of behaviour (smoking) and demography (gender
and age) (Table 12.7).

12.6.2 Communicating comparative risks

When one risk is not unambiguously larger than another, any choice
may turn out to be wrong. Risk management is balancing probabilities
and consequences in a way that reflects the preferences of stakeholders
(Finkel 1996).
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Finkel (1996) argued that risk assessment is essentially comparative.
Even if a single hazard is evaluated, it involves comparing the hazard with
and without management. To understand risks, we need to compare them
with concepts that make intuitive sense (such as an annual fatality risk of
10−6 is less than the risk of being struck by lightning).

Pairwise comparisons of risks fell into disrepute because comparing
dissimilar risks was seen to be misleading. It doesn’t make sense to com-
pare the risk of exposure to pesticides with the risk of abseiling. Com-
paring risks may be invalid because the metrics differ. Comparisons often
are misleading because they ignore uncertainty and the costs of preven-
tion, and they fail to account for involuntary and inequitable exposure
(Silbergeld 1994). Thus, risk comparisons can be used to manipulate re-
actions, rather than inform. They are even more misleading when they
report relative importance based on the subjective opinions of experts, as
though they were wholly objective observations.

Finkel (1996) suggested that it is possible to make risk comparisons
informatively. We compare risks every day, breaking options into com-
ponent attributes, making judgements about the value of attributes and
aggregating the assessments before making a decision. MCDA formalizes
this process. The ‘unmet’ challenge, according to Finkel, is to describe
risks in informative and nonmanipulative ways. The first step is to use
language that communicates variability and incertitude. Most compara-
tive risk statements use point estimates. ‘Which risk is larger’ should be
replaced by ‘How confident can we be as to which risk is larger, and
by how much, and with what consequences if I’m wrong?’. To account
for variation, the question may be, ‘Where, when and for whom is the
risk larger?’. The tools that better communicate medical risks will help
in communicating comparative risks in a wide range of environmental
contexts.

12.7 Adaptive management, precaution and
stakeholder involvement
Adaptive management was developed for the environment by Holling
(1978) and Walters (1986). It had its foundations in the economic theory
of the expected value of information (Ludwig and Walters 2002).

Raiffa and Schlaifer (1961) defined the expected value of information
as the difference between the current state of knowledge and what might
be learned from a given strategy. The more a strategy informs the manager
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Box 12.5 · Basic elements of adaptive management (see Holling 1978,
Walters 1986)

Adaptive management involves:

� planned learning though active management,
� probing the system to elicit a response,
� having a diversity of alternative, potential and applied management

actions,
� selecting management options based on alternative conceptual mod-

els that represent understanding of the system,
� including environmental, social and economic considerations, and
� monitoring to inform managers about the state of the system and

the likelihood of the alternative conceptual models.

It relies on a closed loop of activity. In many ways, the risk manage-
ment cycle is just the adaptive management cycle in which formal
environmental risk assessments and multiple models are accentuated.

about the state of a system, the more valuable it is. Valuable strategies
retain flexibility for management to adapt through time. Such systems
demand tailored monitoring programmes and regular, planned revision
of strategies (Borsuk et al. 2001a,b).

Adaptive management has been applied in natural resource manage-
ment, mainly in fisheries management. Precautionary approaches to har-
vest levels may result in lost benefits. The benefits of novel approaches
may remain unexplored. On the other hand, aggressive approaches risk
the collapse of fisheries. Adaptive management in this context uses rou-
tine management prescriptions to make large-scale, ongoing experiments.
They may employ a range of management (harvesting) intensities and al-
ternative strategies and monitor with sufficient power to detect important
changes.

Management policies are chosen partly on the basis of their ability
to accelerate learning. Marrying adaptive management with precaution
means using observations, ecological principles and knowledge from
other species and systems to build conceptual models. Managers experi-
ment with alternatives and monitor the outcomes with sufficient power
to detect important changes, while ensuring that the worst outcome from
any action has acceptable risks. It means discarding and refining models as
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information accumulates (Parma et al. 1998). In short, it means applying
the risk management cycle (Chapter 3) with the additional condition that
options have tolerable risks.

The cost of adaptive management is tied to the cost of monitoring and
of trying different management strategies, some of which may be sub-
optimal. These are set against the potential environmental and economic
benefits of improving knowledge and reducing uncertainty.

For example, Punt and Smith (1999) described the management sys-
tem for a stock of gemfish (Rexea solandri). It commenced as an open
access fishery in the 1960s. The populations appear to have experienced
a substantial decline during the 1970s and 1980s. The bulk of the his-
torical catch came from bottom trawls of the upper continental shelf,
in depths from 300 m to 500 m. Quota management was introduced in
1988. The first assessments of resource were made in the late 1980s,
indicating substantial declines. Trawl catch was banned from 1993 to
1996. Following relatively strong recruitment into the population, trawl-
ing was reopened with the condition that there be a 50% chance that
biomass (measured as 5+ males and 6+ females) exceeded 40% of the
biomass estimated to exist in 1979.

To resolve differences in attitude towards management constraints
among the members of the management committee, Punt and Smith
(1999) used models to explore a range of harvest strategies and proce-
dures, using a set of different assumptions about the ecology of the re-
cruitment of the species. One management procedure used best estimates
of model parameters, and another used estimates based on quantiles of
the distributions of each parameter to generate conservative judgements.
One harvest strategy aimed at achieving maximum sustainable yield. The
other aimed at providing at least 50% certainty of having at least 40% of
the 1979 population.

The results demonstrated tradeoffs between the expected catch and
expected levels of depletion of the stock. But performance of man-
agement (in terms of yield and depletion) was sensitive to assumptions
about the underlying biology of recruitment. The results of the sim-
ulations showed that the economic benefits of monitoring greatly ex-
ceeded the costs of running the surveys. The information had sub-
stantial value in providing assurances that management objectives had
been achieved, and in informing the development of future management
strategies. The results were embedded in a set of monitoring strategies
and harvesting recommendations that were to be updated in subsequent
years.
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12.7.1 Involving stakeholders

Perhac (1998) identified three distinct rationales that may justify stake-
holder involvement in a risk assessment. Each implies a different
motivation.

First, stakeholders may be necessary to ensure public support and ac-
ceptance. This imperative is strongest for localized decisions such as lo-
cating hazardous waste facilities. The definition of stakeholders becomes
a question of whose acceptance is necessary for political viability. Stake-
holders may provide views on acceptable alternatives, leading to end-
points and management objectives that are valued by the public (Keeney
1992, McDaniels et al. 1999). If stakeholders are used in this way, adaptive
management strategies should then be sensitive both to scientific uncer-
tainties and the uncertain and dynamic nature of public preferences.

Second, stakeholders may be considered to be the appropriate source
of value judgements, making it important to canvas a full spectrum of
viewpoints. Behavioural aggregation (see Chapter 4) may be necessary to
reconcile disparate positions. The appropriate course of action depends
on whether the question is ethical, valuational or evidentiary.

Third, stakeholders may possess important factual knowledge such as
consumption patterns or responses to management.

Stakeholders may also be involved because of legal obligations. For ex-
ample, the US Comprehensive Environmental Response, Compensation
and Liability Act, aimed at cleaning up old waste sites, requires extensive
‘interested party’ participation in risk assessments. Stakeholders may mo-
bilize public sentiment, reduce antagonism and prevent or reduce liability
issues (Warren-Hicks and Moore 1995).

But political viability may be bought at the price of scientific rigor,
leading to less efficient management of things such as public health (Finkel
1996, Perhac 1998). Once the motivation for stakeholder engagement is
defined, the challenge is to develop a mode of involvement without com-
promising whatever independent evidence may be relevant to making a
decision (Perhac 1998).

In managing the gemfish fishery, for example, Punt and Smith (1999)
involved a management committee composed of fishery managers (regu-
lators), representatives from the catching and processing industries, gov-
ernment and independent scientists, an economist and a ‘conservation
member’. Smith et al. (1999a) argued that even the most sophisticated
risk assessment strategies fail if they cannot accommodate effective stake-
holder involvement in all stages of the assessment. They recommended
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Table 12.8. Stakeholder-identified objectives and measures for developing a
water management plan and monitoring its effects on the Alouette River in
British Columbia (after McDaniels et al. 1999)

Objective Measure(s)

Avoid adverse effects of flooding (on Flood frequency
people, property, cultural resources
and perceptions)

Promote river ecological health Hectares of high-quality fish habitat
Shape of the river hydrograph

Avoid cost increases for provincial $ cost of lost generation capacity
electricity supply Environmental cost of increased

generation
Promote recreational opportunities Number and quality of opportunities
Promote flexibility, learning and Learning opportunities

adaptive management Flexibility of management structure

stakeholder involvement in stock assessment, setting research priorities,
enforcement and decision making, none of which are the traditional
domains of nonexpert stakeholders.

McDaniels et al. (1999) used stakeholder values to define the objectives
of ideal management of flows in the Alouette River in British Columbia,
Canada. They also employed an ‘informative’ decision rule in which
each participant was asked what alternatives they could support, a process
termed ‘approval voting’. The final decision was not based on majority
opinion. Instead, the outcomes of discussions and approval voting were
used to form a report on tolerable alternatives to an appointed decision
maker.

The process identified five broad objectives and a set of measures
(endpoints) for each objective (Table 12.8). Having begun with a some-
what contentious social environment, after 15 meetings, they reported
complete consensus (approval) on all major issues for at least one man-
agement option.

There may be more than one mental model, and more than one quanti-
tative model. Hilborn and Mangel (1997) argued that it is entirely sensible
to have multiple descriptions of nature. They are, after all, metaphorical.
Several may be consistent with the data. Hilborn and Mangel advised
that we should avoid acting as though one model is true and the others
false. We would do better to weigh the costs and consequences of each
against the likelihood that it is correct.
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Experience in fisheries management suggests that useful predictive
models often are simpler than intuition suggests. But if models are used to
explore the consequences of decisions, more complexity may be needed.
Certainly, the simplest way of dealing with irreconcilable differences of
opinion among stakeholders is to retain them in the analysis as different
alternative models and parameter values. Alternatives may be discarded
and others constructed as information accumulates.

12.7.2 Equity and efficiency

Decisions involve criteria on which a final judgement will be made. It
may be to minimize cost, to elect the option that has greatest support and
that also satisfies management objectives, or to select the ‘best’ option on
some other grounds.

The outcomes of decision processes may lead to the inequitable distri-
bution of risk. It can result in what Wigley and Shrader-Frechette (1996)
call ‘environmental racism’. In the USA, minorities disadvantaged by
education, income and occupation bear disproportionate environmental
risk. In most circumstances they have assumed the risks involuntarily. It
is likely that the same kinds if inequities exist in other countries, as risk
management decisions are influenced by political and social context.

Risk equity is defined as the distribution of risk among individuals in a
population. Risk efficiency is defined as the magnitude of risk reduction
obtained under an option. Efficiency might also consider the magnitude
of risk reduction within a stratum of a population, against the background
risks they already carried. Good decisions should consider equity and
efficiency. Risk reduction strategies could favour those who already carry
the largest individual risks from all sources.

Both risks and risk-reduction decision options should be ranked. A
90% reduction of the third largest risk may be more valuable than a 5%
reduction in the largest risk. Solutions may affect more than one risk.
Ranking decision options can sidestep the issue of how to aggregate risks
for the purpose of ranking.

12.8 Conclusions
The effectiveness of risk management depends on trust, more easily
destroyed than created (Slovic 1999). The asymmetry is caused by things
such as the visibility of negative events, and that sources of bad news are
seen as more credible than sources of good news. The public is aware
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that special interest groups use experts selectively to find solutions that
are best for the interest group, often in an adversarial legal system.

Risk communication and management work best when those affected
by the risks are involved closely and continuously in the risk assessment
process. The best risk assessments involve stakeholders and experts in an
iterative process, making a marriage of the technical and social dimensions
of risk. The best we can hope for is decisions informed by honest and
complete risk assessments that seek tolerable outcomes that are robust to
as broad a range of uncertainty as possible.

Adams (1995), O’Brien (2000), Fischer (2000) and many others have
been critical of technical risk assessments. O’Brien characterized risk
analysis as a process which makes the illegitimate exercise of power by
scientists and vested interests acceptable. She saw it as a collection of
selective assumptions, data and assertions that justify business as usual.
Risk assessments may create an aura of unassailable authority (Walton
1997, Fischer 2000). Much of the evidence concerning the importance
of psychology in expert judgement supports their position.

O’Brien’s (2000) solution was to require businesses and government
to explore publicly, in understandable language, options for causing least
environmental damage. Stakeholders should formulate the options. To
do so implies that preferences are shaped by context and that there is no
single, best vantage point (Fischer 2000).

I agree with this position. It is beyond the capabilities of technical risk
analysts to anticipate the full range of legitimate points of view and ideas
about cause and effect. The role of risk assessment is to cross-examine
the ideas of stakeholders, to ensure internal consistency, to eliminate lin-
guistic uncertainty and other sources of arbitrary disagreement, to clarify
the implications of assumptions, and to leave honest disagreements in
plain view. This role depends on partnerships between stakeholders and
scientists (Poff et al. 2003) in which the position of the analyst is subor-
dinate to the stakeholder. In this context, quantitative risk assessment has
an essential role to assist people to critically examine their ideas and to
understand the ideas and values of those with whom they disagree.
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acceptable daily intake (ADI) Termed a reference dose by the
EPA, it is the amount of a food
ingested every day without
experiencing much likelihood of an
adverse effect.

acute (effect) Short term, usually 96 hours.
adaptive sampling The sample size or the interval

between samples depends on the
position of the current sample. The
relative costs of ‘false alarms’ versus
‘failure to act’ should contribute to
the allocation of sampling effort
such that warning thresholds
equalize the relative costs of the two
kinds of errors.

advection The transportation of a chemical
from one medium to another by a
carrier unrelated to the presence of
the chemical. Such vehicles include
dust, rainfall, food, or sediment
particles suspended in a water
column.

ALARP principle The idea that risks should be
reduced to a level called ‘as low as
reasonably practicable’.

algorithm A logical arithmetical or
computational step by step
procedure that, if correctly
applied, ensures the solution of a
problem.

alternative hypothesis see Null hypothesis.
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ambiguity Uncertainty arising from the fact
that a word can have more than one
meaning and it is not clear which
meaning is intended.

analytical hierarchy process A method for converting subjective
(AHP) judgements of importance into

scores. It depends on a numerical
interpretation of answers to
questions such as; ‘how important is
(criterion) A compared to
(criterion) B?’ It may be used to
quantify priorities.

anchoring The tendency to be influenced by
initial estimates – people will be
drawn to the guesses made by
others, and will defer their
judgements to people they believe
have greater authority.

Anderson–Darling (A-D) Sums the squared vertical distances
statistic between two cumulative

distributions. The A–D statistic is
useful in risk analysis because it pays
greater attention to the tails of the
distribution than the
Kolmogorov–Smirnoff (K–S)
statistic.

arbitrary evidence Describes the situation where there
is no evidence common to all
subsets, even though some subsets
have elements in common

area under the curve (AUC) Measures the performance of a
measure over a range of thresholds,
equivalent to a Mann–Whitney
statistic

assessment endpoints Formal expressions of the
environmental values to be
protected. They provide a means by
which management goals may be
identified, measured, audited and
evaluated.
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atrazine A chemical used to control weeds
in crops.

autocorrelation (temporal) If the value of a variable, x, at time
t, depends in some way on the value
of x at time t–1, the variables will
be temporally autocorrelated.

average run length (ARL) For in-control processes, it is
defined as the average number of
samples between points that result
in false alarms. The ARL for
out-of-control processes is defined
as the average number of samples
between true alarms, the average
delay before an alarm is raised.

averaging see Mixing or averaging
probabilities.

backing Background assumptions or
foundations that support a warrant,
including axioms, theory and
formal principles.

Bayesian analysis Provides a mechanism for
combining knowledge from
subjective sources with current
information to produce a revised
estimate of a parameter.

Bayesian credible intervals The shortest interval that contains a
specified amount of a (posterior)
probability distribution, or the
amount of a probability distribution
contained within specified bounds.

Bayesian networks (also called probability networks,
influence networks and Bayes’
belief nets) Graphical models that
represent relationships among
uncertain variables, in which
probabilities may be estimated
subjectively and updated using
Bayes’ theorem.

behavioural aggregation Uses behavioural strategies, rather
than quantitative ones, to arrive at a
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combined estimate (see closure,
Delphi technique and resolution).

belief The degree to which a proposition
is judged to be true, often reported
on an interval (0, 1) or percent scale
creating an analogy with ‘chance’.

belief function see Dempster–Shafer structures.
benchmark dose The dose that corresponds to a

predetermined level of response,
such as the dose at which, say, 10%
of the population exhibit an effect.

benefit-cost analysis Examination, usually in economic
terms, of the advantages and
disadvantages of a particular course
of action.

beta (betaPert) distribution Defined by three parameters,
usually used to represent the
probability of a random event in a
series of trials. It can take on a wide
variety of shapes, including both
symmetric and asymmetric forms
(either left or right skewed), and
horseshoe shapes.

binomial distribution A statistical distribution giving the
probability of obtaining a number
of successes in a specified number
of Bernoulli trials.

bioconcentration factor The steady-state ratio of chemical
concentration in organisms relative
to the concentration of the
chemical in the media in which the
organisms live.

‘bounded rationality’ Perception and uncertainty limit the
ability of people to achieve goals.
People construct simple models to
deal with these difficulties. The key
idea is that people ‘satisfice’ rather
than optimize.

bounds (statistical) Limits within which we are sure (to
some extent) the truth lies.
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Generally, upper and lower bounds
are intended to provide an envelope
that brackets the true value and the
majority of possible outcomes.

Brier score Summarizes one of the elements
of calibration between judgement
and outcome. It is the weighted
average of the mean squared
differences between the proportion
correct in each category and the
probability associated with the
category.

c-charts see Control (statistical process)
calibration The likelihood that the expert’s

probabilities correspond with a set
of repeated experimental results, the
probability that the difference
between the expert’s judgement and
the observed values have arisen by
chance.

calibration curves Expert judgements plotted against
reality.

calibration of models Adjusting model parameters,
structures and assumptions so that
they fit available data and intuition,
i.e. refinement of ideas.

carrying capacity The maximum number of
individuals that a given environment
can support indefinitely, usually
determined by the organism’s
resource requirements.

cause-consequence diagram Another name for a logic tree.
central tendency The tendency of the values of a

random variable to cluster
around the mean, median and
mode.

chance The frequency of a given outcome,
among all possible outcomes of a
random process, or within a given
time frame.
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charts see Control (statistical process):
charts.

chi-square test Compares the numbers of sample
observations in discrete classes with
those expected under the proposed
distribution.

chronic effects Long-term effects.
claim An assertion or proposition, usually

the end result of an argument, but
neither necessarily certain or true.

closure see Sound argument, consensus,
negotiation, natural death,
procedures guide.

coefficient of variation A measure of the relative variation
of a distribution independent of
the units of measurement; the
standard deviation divided by the
mean.

cognitive availability The tendency to judge the
probability of an event by the ease
with which examples are recalled.

common failure mode Occurs when events influence
several branches of a logic tree
simultaneously, so that responses are
correlated, making the probabilities
on the tree wrong.

conceptual models Verbal models, diagrams, logic trees,
or sets of mathematical equations
representing components in a
system, including input and output,
flows, cycles, system boundaries,
causal links and so on.

conditional lethality Deaths per 100 000 from a disease
given the disease is diagnosed.

conditional probabilities The probability of occurrence of an
(statistics) event given the occurrence of

another conditioning event.
confidence The degree to which we are sure

that an estimate lies within some
distance of the truth.
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confidence intervals In the long run, someone who
computes 95% confidence intervals
will find that the true values of
parameters lie within the computed
intervals 95% of the time.

confusion matrix A two-by-two classification table
showing the number of true and
false positive and negative
predictions.

congruential method The most popular algorithm for
generating pseudorandom numbers.

conjunctive pooling (A∩B) retains only those opinions
that are common to all experts.

connectedness There are preferences for all
outcomes.

consensus A means of achieving closure in
which the experts agree that a
particular position is ‘best’.

consensus tree Also known as an average tree, it
summarizes the common properties
of a set of trees linking the same set
of objects (vertices).

consequence curve The cumulative distribution of
LC50s for a large set of species.

consistent evidence At least some evidence is common
to all of the subsets.

consonant evidence Can be represented by nested
subsets. The content of the smallest
set is contained within the next
largest, and so on.

context The setting of the problem at hand.
contingent valuation A method for valuing intangibles in

benefit-cost analysis. It uses
questionnaires and/or interviews to
elicit preferences and demand
functions for environmental goods
and services.

contraction (of info-gap The nominal value, ṽ is the only
models) possible value in the absence of

uncertainty.
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convergence Behavioural consensus techniques
in which participants agree to
negotiate to resolve conflict.

co-optation A means of achieving resolution in
which experts acknowledge that the
conflict is ‘resolvable’, and sound
argument, consensus or negotiation
may bring closure.

correlation (statistical) The extent of correspondence
between the ordering of two
variables.

correlation coefficient A statistic measuring the degree of
correlation between two variables.

cost-benefit analysis see Benefit-cost analysis.
cotton pyrethroid insecticides Chemicals used to control insects.

They interfere with ion channels in
insect nervous systems.

credibility The believability of detail in a
narrative or model (acceptance of
ideas based on the skill of the
communicator, the trust placed in a
proponent).

credible intervals see Bayesian credible intervals.
cumulative probabilities A cumulative probability

distribution gives the probability, p,
that the random variable X will be
less than or equal to some value x.
It sums the value of the probability
distribution from left to right.

CUSUM charts Make use of sequential information
and are more sensitive to correlated
processes and small changes than are
the other kinds of control charts.
CUSUM charts accumulate
deviations above the target in one
statistic (C+) and deviations below
the target in another (C–).

decision A choice between two or more acts,
each of which will produce one of
several outcomes.
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decision tables Tables that link acts, states and
outcomes. The acts refer to the
decision alternatives, the states refer
to the relevant possible states of the
system, and the outcomes refer to
what will occur if an act is
implemented in a given state.

decision trees Event trees in which one or more
of the branch-points are decisions; a
graphical representation of decision
pathways.

Delphi technique A form of behavioural aggregation
that consists of questionnaires,
elicitation, aggregation of results,
review of combined results by
experts and iteration of feedback
until consensus is achieved.

demographic variation The chance events in the births and
deaths of a population.

demographic stochasticity The variation in the average
(with reference to risk chances of survivorship and
assessment) reproduction that occur because of

the demographic structure of
populations made up of a finite,
integer number of individuals;
random sampling of distributions
for variables which must logically
take a discrete integer value.

Dempster’s rule A generalization of Bayes’ theorem
that applies the conjunctive AND to
combine evidence. More formally,
the probability density of the
combined evidence is limited to the
interval over which experts agree.

Dempster-Shafer structures Sets of plausible values that the
available evidence does not
distinguish. The lower bound is
termed a ‘belief ’ function. The
upper bound is termed a
‘plausibility’ function.
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density dependence This is when survival or fecundity
is a function of the difference
between the total number of adults
and the carrying capacity of the
environment, creating a feedback
between population size, and the
rate at which the population
grows.

dependency of a variable Implies that variation in one
(statistical) variable contributes to or causes the

values in another variable.
detectable effects sizes (d) If data x are not statistically

significantly different from H0 (the
null hypothesis), and the power to
detect effect d is high, then x
constitutes good evidence that the
actual effect is no greater than d.
Conversely, if data x are not
statistically significantly different
from H0, and the power to detect
effect d is low, then x constitutes
poor evidence that the actual effect
is no greater than d.

deterministic model A model in which there is no
representation of variability.

deterministic sensitivity If a parameter is changed by a small
amount in the region of the best
estimate, it is the magnitude of
change we see in model output,
relative to the amount of change in
the parameter.

dichotomy Division into two parts or
classifications, especially when they
are sharply distinguished or
opposed.

diminishing returns The utility resulting from any small
increase in wealth is inversely
proportional to the quantity of
goods already possessed.
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disagreement see alternative hypothesis, epistemic
uncertainty, information
disagreement, preference
disagreement, semantic
disagreement.

disjoint evidence Implies that any two subsets have no
elements in common with any
other subset.

disjunctive pooling (A∪B) retains the full breadth
of opinion offered by all
experts.

dispersal (with reference to The movement of individuals
PVAs) among spatially separate patches of

habitat, including all immigration
and emigration events.

EC 50 Median effective concentration, the
concentration at which 50% of
individuals exhibit the effects of
exposure to a contaminant within a
specified time.

ecosystem services The processes through which
natural ecosystems sustain human
life.

ecotoxicology A basis for assessing whether
chemicals are likely to have adverse
effects on ecosystems.

effect size The level of impact that is required
to be detected by a study, given that
there is an effect; the magnitude of
change that we wish confidently to
detect.

Electre method (for see ‘Outranking’.

preference ranking)empirical Derived from or relating to
experiment and observation rather
than theory.

endpoints see Assessment endpoints,
management goals, measurement
endpoint.
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environmental aspect A human activity, product or
service that can interact with the
environment (such as emissions,
chemical handling and storage, road
construction).

environmental effect Any change to the environment,
whether adverse or beneficial.

‘environmental racism’ Occurs when minorities
disadvantaged by education, income
and occupation bear
disproportionate environmental
risk, in most cases through
involuntary risks.

environmental uncertainty (in The effects of the environment on
PVAs) vital rates, usually represented by

time-dependent stochastic
survivorships and fecundities.

enzyme Biological catalyst, usually a protein,
which increases the rate of a
reaction.

epistemic uncertainty Reflects incomplete knowledge,
including measurement error,
systematic error, natural variation,
model uncertainty; and subjective
judgement.

equipossible / equiprobable Different events occur with equal
probabilities. When uncertainties
are unknown, it is common practice
to assign equal probabilities to
different events. The logic is that
when there is no evidence to the
contrary, the best assumption is that
all events are equipossible, and
therefore equiprobable.

‘equivalence’ region The discrepancy between the null
case and a response that may be
considered unimportant or
tolerable.

event tree A form of logic tree, an event tree
begins with a triggering event and
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follows all possible outcomes to
their final consequences (event tree
analysis).

evidence Direct experimental observation of
cause and effect, probability or
frequency.

expected dose The average daily rate of intake,
ADRI.

expected utility The magnitude of an anticipated
gain, discounted by the chance that
the outcome will be achieved.

expected value of information The difference between the
current state of knowledge and
what might be learned from a given
strategy.

expert Someone who has knowledge, skill,
experience, training or education
about an issue at an appropriate
level of detail and who is capable of
communicating their knowledge.
See also substantive expertise and
normative expertise.

exponential distribution The time between random,
successive events, sometimes called
the negative exponential
distribution.

exposure pathway The way a chemical reaches a target,
usually an assessment endpoint.

failure modes Describe the way in which a
product or process could fail to
perform its desired function,
defined in terms of the needs, wants
and expectations of people
(shareholders, customers or
stakeholders).

failure modes and effects A systematic process for identifying
analysis (FMEA) failures before they occur, with the

intent to eliminate them or
minimize the risk associated with
them.
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false negative/ see type I and type II errors.

false positive/false alarmfault tree A form of logic tree, linking chains
of events to the outcome (fault tree
analysis).

fecundity (with reference to The number of offspring born per
PVAs) adult, and alive at the time of the

next census.
final acute value (FAV) A value summarizing the

susceptibility of a group of
organisms to a toxic substance.
Typically, a model is selected to
represent the variation in LC50

values over all species. Its parameters
are estimated from the sample data.

fixed probability Method of asking a series of
questions to elicit points on a
distribution in which values of the
variable that bound specified
quantiles were elicited. Answers to
these questions approximate points
on a cumulative density function (a
‘cdf’). The assessor concentrates on
medians, quartiles and extremes
(such as the 1% and 99% limits).

fixed value Method of asking a series of
questions to elicit points on a
distribution in which the assessor
asks experts to judge the probability
that the variable lies within a
specified interval. The answers
approximate points on a probability
density function (a ‘pdf’).

free-riding When people receive the benefits
without bearing risk or making a
contribution.

frequentist statistics See probabilities as relative
frequencies (as opposed to Bayesian
statistics).
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fugacity A measure of a chemical’s tendency
to escape from the phase it’s in (see
Partitioning coefficient).

fuzzy numbers Essentially stacks of intervals, each
level of which represents a different
degree of surety about the
boundary.

goodness of fit The probability that the fitted
distribution could have produced
the data.

hazard A situation that in particular
circumstances could lead to harm.

hazard index The sum of the hazard quotients for
all of the substances to which an
individual is exposed, and that act
by a similar mechanism.

hazard matrices A matrix of interactions between
human activities and valued
components of the environment
that may be affected by the actions.

hazard and operability A kind of structured, expert
analysis (HAZOP) brainstorming session that uses

conceptual models and influence
diagrams together with guide words
such as ‘more of’, ‘less of ’ and
‘reverse flow’ to prompt the
thinking of a small team of experts.

hazard probability rank A verbal description of the relative
likelihood of the event (the hazard),
ranging from frequent or
continuous to improbable.

hazard quotient The estimated exposure to a
chemical divided by a toxicity
threshold, i.e. the calculated daily
dose divided by the reference value
representing a tolerable daily dose.

‘hedonic’ pricing Using market valuations such as
house prices for a benefit-cost
analysis.
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hierarchical holographic An approach that recognizes that
models (HHM) more than one conceptual (or

mathematical) model is possible for
any system, and tries to capture the
intuition and perspectives embodied
in different conceptual and
mathematical models of the same
system.

hormesis Beneficial responses observed to
some toxicants at very low
exposures because response systems
have beneficial effects until the
system becomes overloaded at
higher concentrations.

hydrolysis The term given to chemical
reactions in which organic
compounds react with water to
produce other compounds.

hypothesis The error rates, α and β, define
acceptance or rejection of the null
hypothesis. They may be adjusted
so that their ratio equals the ratio of
the ‘costs’ of making a type I error
versus a type II error. See also null
hypothesis, type I/type II errors.

‘illusory certainty’ The belief that scientific tests (such
as mammograms) are infallible or
highly reliable.

incertitude Lack of knowledge about
parameters or models (including
parameter and model uncertainty).

indeterminacy Future usage of terms is not
completely fixed by past usage.

indicators Biological entities whose
interactions with an ecosystem
make them especially informative
about communities and ecosystem
processes.

influence diagrams A visual representation of the
functional components and
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dependencies of a system. Shapes
(ellipses, rectangles) represent
variables, data and parameters.
Arrows link the elements,
specifying causal relations and
dependencies.

information disagreement Experts differ in their views on
measurements, the validity of
experiments, the methods used to
obtain observations, or the rules of
inference.

interval arithmetic Arithmetic operations defined for
ranges.

interval probabilities Represent an expert’s degree of
belief, where lower and upper
bounds encompass the range of
beliefs.

Kent scales Translate the linguistic
interpretations of uncertainty into
quantitative values.

Kolmogorov–Smirnoff (K–S) Compares the maximum distance
statistic between an empirical cumulative

distribution and a theoretical, fitted
distribution, with a table of critical
values.

LCxx Lethal threshold concentration at
which xx% of individuals die within
a specified time. L stands for
‘lethal’, C is ‘concentration’.

likelihood The extent to which a proposition
or model explains available data (the
relation between hypothesis and
evidence). See also maximum
likelihood.

linguistic uncertainty Arises because language is not
exact, including vagueness, context
dependence, ambiguity,
indeterminacy and underspecificity.

LOAEL/LOEL Lowest observed adverse effect
level, the smallest dose at which a
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statistically significant effect has
been demonstrated.

LOEC Lowest observed effect
concentration, see LOAEL/LOEL.

logic trees Diagrams that link all the processes
and events that could lead to, or
develop from, a hazard. They are
sometimes called
cause–consequence diagrams. See
also fault tree and event tree.

management goals Statements that embody broad
objectives, such as clean water or a
healthy ecosystem.

Markov Chain Monte Carlo Useful in analysing large and
(MCMC) complicated data sets with some

form of hierarchical structure such
as chemical speciation and exposure
relationships, and life history
parameters in natural populations of
plants and animals. It is used often
(although not exclusively) in
conjunction with Bayesian prior
distributions to estimate parameters
from data in circumstances in which
ordinary methods are too
complicated.

MaxiMin strategy Given an ordinal scale for
outcomes, in which larger numbers
represent greater utility, the
procedure is to identify the minimal
outcome associated with each act,
and select the act with the largest
minimal value.

measurement endpoint Quantitative physical and biological
responses, things that we can
measure, such as toxic effects on
survival and fecundity, operational
definitions of assessment endpoints
that are, in turn, conceptual
representations of management
goals.
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measurement error Error caused by imprecise and
inaccurate instruments and
operators.

median The point that divides an ordered
set of data into two equal parts.

metapopulation A set of local populations which
interact via individuals moving
between local populations.

minimum expected The average minimum population
population size (in PVA) size from a set of forecasts,

summarizing the chances of a
population falling below a lower
threshold within a specified time
period.

minimum viable population The smallest isolated population
having an acceptable chance of
surviving for the foreseeable future.

mixing or averaging Probabilities associated with belief
probabilities may be combined as weighted

linear combinations of opinions.
model averaging Combines the predictions of a set of

plausible models into a single
expectation in which individual
weights reflect the degree to which
each model is trusted.

model uncertainty Uncertainty arising from the fact
that, often, many alternative
assumptions and models could be
constructed that are consistent with
data and theory, but which would
generate different predictions.

monitoring Sampling and analysis to determine
compliance with a standard or
deviation from a target or
prediction, or to measure the state
and response of the system to
management strategies.

Monte Carlo analysis Uses statistical distributions to
represent different kinds of
uncertainty, combining them to
generate estimates of a risk.
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motivational bias Biased assessments that arise because
the results benefit the people who
make the assessments.

multi-attribute utility A utility-based criterion for
decision making in which a utility
function that incorporates the
outcomes of all important
attributes is used in place of
economic value.

multicriteria decision analysis Measures preferences by eliciting
(MCDA) and ordering judgements from

people affected by a decision.
multicriteria mapping (MCM) Takes the philosophical position

that risks are socially constructed
and (mostly) difficult to measure
and uses the preferences of
individuals to explore alternative
management options.

natural death (in behavioural A means of achieving closure in
aggregation) which the conflict declines

gradually and is resolved by
ignoring it, usually because it turns
out to be unimportant.

natural variation Environmental change (with respect
to time, space or other variables)
that is difficult to predict.

‘negative’ null hypothesis An a priori assumption that there is
no effect of a treatment, or no
impact of an activity.

negotiation A means of achieving closure in
which an arranged resolution is
reached that is acceptable to the
participating experts and that is
‘fair’ rather than correct.

nesting (of info-gap models) A family of nested sets of possible
values of the uncertain entity.

no observed effect level The highest amount of a substance
(NOEL, or concentration, for which no statistically significant
NOEC) effect was found in a statistical test

between a treatment and a control.
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nonmetric multidimensional A nonparametric ordination
scaling (NMDS) technique designed to represent

multivariate information in two or
three dimensions efficiently, so that
it can be visualized.

normal distribution Parameters that result from the sum
of a large number of independent
random processes.

normative expertise The ability to communicate,
including interpersonal skills,
flexibility and impartiality.

normative theories (of Expert judgement takes the form of
rational consensus) degrees of belief about facts and in

order to estimate an uncertain
quantity, an analyst may combine
the distributions provided by more
than one expert. There is an
underlying assumption that there is
a fact and the job of the experts is
to estimate it.

number needed to treat A concept in medicine that gives
the number of people that need to
participate in a treatment to save
one life.

numerical aggregation Uses quantitative strategies, rather
than behavioural ones, to arrive at a
combined estimate. see Bayesian
analysis, Dempster’s rule.

odds ratio Expresses the probability of one
outcome relative to the probability
of its opposite.

‘outranking’ (multicriteria Methods used when preferences
decision analysis) cannot be expressed as a unique

numerical function, when at least
one criterion is not quantitative
or when compensating gains and
losses among criteria are not
clear; the ‘Electre’ method has
been broadly applied in this
context.
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p-bounds A modelling method which does
not require specific guesses about
distributional shape; ‘p-bounds’
calculations bound arithmetic
operations, making only those
assumptions about dependencies,
distribution shapes, moments of
distributions, or logical operations
that are justified by the data.

p-box ‘Sure’ bounds on cumulative
distribution functions.

p-value The probability associated with
the observed data under the
assumption that the null hypothesis
is true – if the null hypothesis is
true, and if an experiment is
repeated many times, the p-value is
the proportion of experiments that
would give less support to the null
than the experiment that was
performed.

partitioning coefficient The ratio of concentrations of
chemical in the two phases at
equilibrium.

paternalistic model for Governments or regulators invite
stakeholder involvement participation under strictly

controlled conditions such as public
comment phases.

photolysis Reactions caused by light, such as
sunlight photolysis of organic
chemicals in surface waters, on soil
and in the atmosphere.

plausibility The relative chance or relative
degree of belief (the rank) assigned
to elements of a set of possible
outcomes.

plausibility function see Dempster-Shafer structures.
point estimates A measurement or estimate of the

value of a parameter that ignores
uncertainty.
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Poisson distribution Models the number of occurrences
of an event that are likely to occur
within a time, t, when the
probability of an event occurring
per interval of time is constant, and
independent of any other events
that may have occurred. The
distribution is used to estimate the
number of failures in a repetitive
process such as manufacturing, and
the distribution of births per female
in natural populations of plants and
animals.

Poisson process The occurrence of independent,
random events.

population viability analysis The use of population models to
(PVA) estimate extinction risk and to

compare management options in
terms of the risk of decline of a
population or metapopulation.

possibility The set of things (events, outcomes,
states, propositions) that could be
true, to which some (nonzero)
degree of belief or relative
frequency might be assigned.

posterior probabilities Estimates of the prior probabilities
(probabilities, distributions) are
combined with Bayes’ theorem to
give posterior probabilities, the
updated degrees of belief that the
hypotheses are true.

power (statistical) The probability of detecting a given
true difference between two
‘populations’ (data sets) when using
a statistical test.

power curve (statistical) The relationship between number
of samples and the power of a test
plotted on a graph.

precautionary principle Where there are threats of serious
or irreversible damage, lack of full
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scientific certainty shall not be used
as a reason for postponing
cost-effective measures to prevent
environmental degradation.

prediction intervals Provide an estimate of the
confidence interval within which
you expect the next single
observation to lie.

preference disagreement Experts have different preferences
for methods and standards used to
evaluate claims.

preference matrix The result of pairwise comparisons
of preferences between criteria.
The elements of the first
(dominant) eigenvector of the
matrix can be used as the weights
for each criterion.

principle of insufficient reason Suggests that when making
decisions under uncertainty each
state is equally likely because there
are no data on which to
discriminate among them.

prior probabilities Represent the probability that the
data would be observed, if the
various hypotheses were true. It
requires the experts to specify their
subjective belief in a distribution,
prior to the analysis, even if no data
are available.

probabilistic benefit-cost A utility-based criterion for
decision making in which benefits
and costs of alternatives are
estimated in economic terms and
expected value (weighted by risk) is
used to find the option with the
greatest net benefit.

probabilistic logic trees The AND and OR statements that
make up fault trees are subject to
ordinary probabilistic calculus.
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probability The statistical frequency (or relative
frequency) with which an event is
expected to occur, or the degree of
belief warranted by evidence; see
also belief, bounds, chance,
confidence, credibility, cumulative
probabilities, likelihood, plausibility,
possibility, risk, posterior
probabilities, prior probabilities,
tendency.

probability density function The distribution of relative
frequencies of different kinds of
events (outcomes).

probability networks see Bayesian networks.
problem formulation Identification of the scope of the

problem, including the ecological,
social, geographic, temporal and
political limits.

procedures guide (for expert A method for achieving aggregation
elicitation) of expert opinion, including

weighted combination based on an
expert’s performance against known
standards.

process model A mathematical representation of a
conceptual model, such as a
population model, an expert
system, a logic tree or any other
quantitative model.

‘prosecutor’s fallacy’ In law, the probability of an event
(p(event)) is sometimes confused
with the probability that someone is
guilty, given the event (p(guilty |
event)).

pseudorandom numbers Sequences of numbers that satisfy
statistical tests for a random number
sequence, generated by algorithms;
see also congruential method.

public participation Deliberation on the issues by those
affected by a decision.
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QSAR (quantitative structure Equations that describe the
activity relationship) relationship between the structure

of a compound and its toxicity.
quantiles A point in the ordered data set

below which a specified percentage
of the data lie.

quartiles The point below which 25%, 50%
or 75% of the data of an ordered set
lie. The third quartile is the point
below which 75% of the data lie.
The interquartile range is the
interval between the first and third
quartiles and it encloses 50% of the
data.

range (statistical) The interval between the smallest
and largest values of an ordered set.

rank correlations see Spearman rank correlation.
rational consensus see normative theories (of rational

consensus).
rational subgroups (in control Those that maximize the effects of
limits) ‘assignable causes’ between groups

and minimize their effects within
groups.

‘real’ risks Objective, analytical,
evidenced-based risks.

reasonable maximum A conservative exposure case (i.e.
exposure (RME) well above the average case) that is

still within the range of possible
outcomes.

rebuttal The conditions under which and
the reasons why the claim does
not necessarily hold, and which
may apply to the warrant or the
claim.

reference dose (RfD) The dose that accounts for
uncertainty in interspecies
variability (UFA), intraspecies
variability (UFH), uncertainty in the
duration of exposure and the
duration of the study (UFS), the use
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of a LOAEL, incomplete databases,
age dependence of thresholds, and
additional modifying factors (MF)
such that the true threshold dose of
an ingested substance is lower for
the most sensitive members of a
population.

reference lottery A tree-based method to elicit a
judgement for a probability, p, that
event E will occur.

regret The difference between the result
of the best action and the result of
the action taken.

relative risk The chance of an event in an
exposed population relative to the
chance in the unexposed
population, i.e. the change in risk
experienced by a group, relative to
the risk they would have
experienced had they belonged to
the reference class.

rights-based criteria Consideration of process, allowed
actions and equity independent of
benefits and costs.

risk The chance, within a time frame, of
an adverse event with specific
consequences.

risk analysis Evaluation and communication of
the nature and extent of uncertainty.

risk assessment Completion of all stages of the risk
management cycle, a marriage of
risk analysis methods, adaptive
management, decision tools,
monitoring and validation.

risk aversion When people prefer to have a
smaller reward with greater
certainty, than a larger reward with
less certainty.

risk charts Communicate the relative risks
from different sources as a function
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of behaviour (e.g. smoking) and
demography (e.g. gender and age).

risk efficiency The magnitude of risk reduction
obtained under an option.
Efficiency might also consider the
magnitude of risk reduction within
a stratum of a population, against
the background risks they already
carry.

risk equity The distribution of risk among
individuals in a population.

risk priority number (RPN) The product of three quantities,
severity, occurrence and detection,
used to set priorities for action
on hazards and to identify elements
that require additional
planning.

risk ranking Risk assessment that relies on
qualitative, usually subjective
estimates of likelihoods and
consequences to rank hazards. See
also risk assessment tables, AS/NZS
4360 1999, failure modes and
effects analysis (FMEA), hazard and
operability analysis (HAZOP),
hierarchical holographic models
(HHM), comparative risk, relative
risk.

robust Bayesian analyses Estimate a set of posterior
distributions for a quantity, based on
prior distributions and likelihoods
selected from classes believed to be
plausible by the analyst.

robust decisions Decisions that provide a satisfactory
outcome, despite uncertainty,
thereby avoiding unacceptable
outcomes.

robust satisficing A strategy that maximizes the
reliability of an adequate outcome.
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ROC (receiver operating Used to judge the effectiveness of
characteristic) curves predictions for repeated binary

decisions (act / don’t act, present /
absent, diseased / healthy, impact /
no impact), a special case of
operating characteristic curves in
which a binary decision is judged
against a threshold for a continuous
variable (an indicator), built around
confusion matrices that summarize
the frequencies of false and true
positive and negative predictions, of
various values of a prediction
threshold.

scenario analysis An approach to creating alternatives
for problem formulation,
constructed and communicated
with a story line in which events
unfold through time through a
series of imagined causes and effects.

scenarios Shared, agreed mental models,
internally consistent descriptions of
possible futures created in
structured brainstorming exercises.

second order The stochastic parameters are
(two-dimensional) Monte themselves drawn from statistical
Carlo distributions that reflect uncertainty

about true values.
semantic disagreement Misunderstand the meanings of

words.
sensitivity analysis (for An analysis of how a model’s output
models) responds to changes in a variable or

an assumption.
Shannon entropy index Measures the ‘information’

contained in a distribution
including expert opinions.

sigmoidal curve An ‘S’ shaped curve which is typical
when the logarithms of chemical
concentrations are plotted against
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the percentage of organisms
exhibiting an effect, i.e. dose–effect
curve.

snowballing Generating lists of potential
participants in elicitation exercises
by asking people to recommend
other people.

Spearman rank correlation Measures the similarity in the rank
order of objects (samples) in two
lists. When objects have the same
ordering, they have a rank
correlation of 1. When the orders
are reversed, the rank correlation is
–1. When the orders are random
with respect to one another, the
rank correlation is 0.

stakeholder In law, someone who has custody of
the possessions of other people.
Generally, in risk assessment, it is
anyone who has an interest in an
issue, or anyone who shares the
burden of the risk of a wrong
decision. In a social context, a
stakeholder usually is an individual
or a representative of a group
affected by or affecting the issues in
question.

stakeholder expert An expert retained by a stakeholder
or group to evaluate technical
information and represent the
stakeholders in technical
deliberations.

stochastic dominance The extent to which a given
decision is ‘best’, depending on the
source or magnitude of uncertainty.

stochastic dynamic A Markov chain that gives the
programming transition probabilities among

possible states, maximizing the
chances of a desired outcome.
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stochastic models A model in which at least some of
the parameters are drawn from
statistical distributions, or in which
there is some other explicit
recognition of uncertainty.

strategic risk management Using risk assessment to determine
organizational activities, the process
of deciding what actions to take in
response to a risk.

stressors The elements of a system that
precipitate an unwanted outcome.

structure activity relationship Establishing the kinds of tests and
(SAR) the expected levels for safety of a

new chemical by inferring its mode
of action and toxicity from similarly
configured chemicals.

subjective belief Personal judgement in the truth of a
proposition.

substantive expertise Technical experience and training.
supremacy A means of achieving resolution in

which expert disagreements are
tested to determine the ‘correct’
position; experts agree on the
grounds upon which ‘supremacy’
will be based, and what evidence
would cause them to alter their
position.

sure bounds With reference to interval
arithmetic – a range encompassing
100% of the data.

surprise index (surprise The percentage of true outcomes
frequency) that lie outside expert confidence

regions.
systematic error Errors that occur when

measurements are biased; the
difference between the true value of
a parameter and the value to which
the mean of the measurements
converges as sample sizes increase.
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tendency The physical properties or traits of a
system or a test that result in stable
long-run frequencies with repeated
trials, or that yield one of several
possible outcomes.

theory-based inference Relationships and causal
mechanisms inferred from an
understanding of physical or
ecological principles.

transformation The set of processes and reactions
by which chemicals change
composition, including physical
processes such as oxidation and
biologically mediated
transformations.

triangular distribution Defined by three parameters (lower
bound, best guess (central
tendency), upper bound), based on
providing the maximum and
minimum ‘plausible’ values for a
parameter, knowing that more
extreme outcomes are possible, if
unlikely. It has no theoretical basis
but is used particularly to represent
expert judgement or belief.

type I, type II errors Monitoring systems should: (1) tell
us there is a serious problem when
one exists (thus avoiding
overconfidence, called ‘false
negatives’ or type II errors) and
(2) tell us there is not a serious
problem when there isn’t one (thus
avoiding false alarms, called ‘false
positives’ or type I errors).

underspecificity Occurs when there is unwanted
generality in language.

uniform distribution Defined by an upper and lower
bound, within which all values are
equally likely, used for parameters
for which few data are available, but
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firm bounds are known, and as a
model for independent random
variation from which other
distributions may be constructed.

utilities A measure of the total benefit or
cost resulting from each of a set of
alternative actions (decisions), a
scale of preferences among
outcomes.

utility function A continuous representation of
utilities. Calculations depend on a
probability associated with each
state.

utility-based criteria Decisions based on the valuation of
outcomes; for example, probabilistic
benefit-cost, maximizing
multi-attribute utility, or
maximizing/minimizing chances of
extreme outcomes.

vagueness Arises because language permits
borderline cases.

validation/verification (of Comparing independent field
model) observations with predictions, i.e.

testing ideas.
variability Naturally occurring, unpredictable

change, differences in parameters
attributable to ‘true’ heterogeneity
or diversity in a population.

volatilization Processes in which a chemical
changes from a solid or liquid form
to a vapour.

warrant The causal laws, inference
mechanisms, models or rules that
link the data to the claim.

Weibull distribution Used to model time to failure,
material strength and related
properties.

zero risk strategies Strategies that eliminate risks
entirely, irrespective of costs and
benefits.
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Burgman, M. A., Ferson, S. and Akçakaya, H. R. 1993. Risk Assessment in Conser-
vation Biology. London: Chapman and Hall.

Burgman, M. A., Davies, C., Morgan, D. and Maillardet, R. 1997. Statistical Power
and the Design of Flora and Fauna Survey and Monitoring Programs. Flora Section of
the Victorian Department of Conservation and Natural Resources, Melbourne.
Unpublished report.



References · 461

Burgman, M. A., Maslin, B. R., Andrewartha, D., Keatley, M. R., Boek, C.
and McCarthy, M. 2000. Inferring threat from scientific collections: power
tests and application to Western Australian Acacia species. In S. Ferson and
M. A. Burgman (eds.) Quantitative Methods for Conservation Biology. New York:
Springer-Verlag, pp. 7–26.

Burgman, M. A., Breininger, D. R., Duncan, B. W. and Ferson, S. 2001. Setting
reliability bounds on habitat suitability indices. Ecological Applications 11, 70–8.

Burmaster, D. E. and Harris, R. H. 1993. The magnitude of compounding conser-
vatisms in superfund risk assessments. Risk Analysis 13, 131–4.

Burnham, K. P. and Anderson, D. R. 2002. Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach, 2nd edition. New York:
Springer-Verlag.

Byrd, D. M. and Cothern, C. R. 2000. Introduction to Risk Analysis. A Systematic
Approach to Science-Based Decision Making. Rockville, Maryland: Government
Institutes.

Calabrese, E. J. and Baldwin, L. A. 2001. The frequency of U-shaped dose responses
in the toxicological literature. Toxicological Sciences 62, 330–8.

Calow, P. and Forbes, V. E. 2003. Does ecotoxicology inform ecological risk
assessment? Environmental Science and Technology April 1, 146–51.

Campbell, L. M. 2002. Science and sustainable use: views of marine turtle conser-
vation experts. Ecological Applications 12, 1229–46.

Capen, E. C. 1976. The difficulty of assessing uncertainty. Journal of Petroleum Tech-
nology, August 1976, 843–50.

Caputi, N., Brown, R. S. and Chubb, C. F. 1995. Regional prediction of the western
rock lobster, Panulirus cygnus, commercial catch in Western Australia. Crustaceana
68, 245–56.

Carlon, C., Critto, A., Marcomini, A. and Nathanail, P. 2001. Risk based charac-
terization of contaminated industrial site using multivariate and geostatistical
tools. Environmental Pollution 111, 417–27.

Carpenter, S. R., Bolgrien, D., Lathrop, R. C., Stow, C. A., Reed, T. and Wilson,
M. A. 1998. Ecological and economic analysis of lake eutrophication by non-
point pollution. Australian Journal of Ecology 23, 68–79.

Carpenter, S., Brock, W. and Hanson, P. 1999. Ecological and social dynamics in
simple models of ecosystem management. Conservation Ecology [online] 3(2):4.
http://www.consecol.org/vol3/iss2/art4.

Carson, R. 1962. Silent Spring. Second edition, 2002. Boston: Houghton, Mifflin.
Cartwright, N. 2003. What is wrong with Bayes nets? In H. E. Kyburg and M.

Thalos (eds.) Probability is the Very Guide to Life: the Philosophical Uses of Chance.
Chicago, Illinois: Open Court. pp. 253–75.

Casella, G. and Berger, R. L. 1990. Statistical Inference. Belmont, California: Duxbury
Press.

Caswell, H. 2001. Matrix Population Models, 2nd edition. Sunderland, Massachusetts:
Sinauer.

Cauchi, S. 2003. New fears raised about GM plants. The Age, February 6
http://www.theage.com.au/articles/2003/02/05/1044318670302.html.

Cavieres, M. F., Jaeger, J. and Porter, W. 2002. Developmental toxicity of a com-
mercial herbicide mixture in mice: I. Effects on embryo implantation and litter
size. Environmental Health Perspectives 110, 1081–5.



462 · References

Chalmers, A. 1999. What is This Thing Called Science? 3rd edition. Brisbane: Uni-
versity of Queensland Press.

Chapman, M. 1995. The expert in France. Arbitration 61, 264.
Chee, Y. E. 2004. An ecological perspective on the valuation of ecosystem services.

Biological Conservation (in press).
Chesson, P. 1978. Predator – prey theory and variability. Annual Review of Ecology

and Systematics 9, 323–47.
Christensen-Szalanski, J. and Bushyhead, J. 1981. Physicians use of probabilistic

information in a real clinical setting. Journal of Experimental Psychology: Human
Perception and Performance 7, 928–35.

CIA. 1977. A Guide to Hazard and Operability Studies. London: Chemical Industries
Association.

Clark, A. J. 1933. The Mode of Action of Drugs on Cells. Baltimore, Maryland: Williams
and Wilkins.

Clemen, R. T. 1996. Making Hard Decisions: an Introduction to Decision Analysis. 2nd
edition. California: Duxbury, Pacific Grove.

Clemen, R. T. and Winkler, R. L. 1999. Combining probability distributions from
experts in risk analysis. Risk Analysis 19, 187–203.

Clyde, M. A. 2000. Model uncertainty and health effect studies for particulate matter.
Environmetrics 11, 745–63.

Cogliano, V. J. 1997. Plausible upper bounds: are their sums plausible? Risk Analysis
17, 77–84.

Cohen, J. 1988. Statistical Power Analysis for the Behavioural Sciences. 2nd edition. New
Jersey: Lawrence Erlbaum Associates.

Cohen, J. T., Lampson, M. A. and Bowers, T. S. 1996. The use of two-stage Monte
Carlo simulation techniques to characterize variability and uncertainty in risk
analysis. Human and Ecological Risk Assessment 2, 939–71.

Colyvan, M. 2004. Is probability the only coherent approach to uncertainty? Risk
Analysis (in press).

Colyvan, M., Regan, H. M. and Ferson, S. 2003. Is it a crime to belong to a reference
class? In H. E. Kyburg and M. Thalos (eds.) Probability is the Very Guide to Life.
Chicago, Illinois: Open Court, pp. 331–47.

Cooke, R. M. 1991. Experts in Uncertainty: Opinion and Subjective Probability in Science.
Oxford: Oxford University Press.

Cooke, R. M. and Goossens, L. H. J. 2000. Procedures guide for structured ex-
pert judgement in accident consequence modelling. Radiation Protection and
Dosimetry 90, 303–9.

Cooke, R. and Kraaikamp, C. 2000. Risk analysis and jurisprudence; a recent ex-
ample. In W. M. Doerr (ed.) Safety Engineering and Risk Analysis (SERAS), Vol-
ume 10. New York: American Society of Mechanical Engineers, pp. 67–72.

Cooke, R. and Kraan, B. 2000. Processing expert judgements in accident conse-
quence modelling. Radiation Protection Dosimetry 90, 311–15.

CPR. 1999. The English Civil Procedure Rules. CPR (UK) R 35.7. Civil Procedure
Rules 1999 (UK).

Crawford-Brown, D. J. 1999. Risk-Based Environmental Decisions: Method and Culture.
Boston, Massachusetts: Kluwer Academic.

Crawley, M. J., Brown, S. L., Hails, R. S., Kohn, D. D. and Rees, M. 2001.
Biotechnology: transgenic crops in natural habitats. Nature 409, 682–3.



References · 463

Cross, F. B. 1996. Paradoxical perils of the precautionary principle. Washington and
Lee Law Review 53, 851–925.

Crossley, S. J. 2000. Joint FAO / WHO Geneva consultation – acute dietry intake
methodology. Food Additives and Contaminants 17, 557–62.

Cullen, A. C. 1994. Measures of compounding conservatism in probabilistic risk
assessment. Risk Analysis 14, 389–93.

Cumming, G. and Finch, S. 2004. Inference by eye: confidence intervals, and how
to read pictures of data (submitted).

Cushing, D. 1995. Population Production and Regulation in the Sea: a Fisheries Perspective.
Cambridge: Cambridge University Press.

Daily, G. C. 1997. Introduction: what are ecosystem services? In G. C. Daily (ed.)
Nature’s Services: Societal Dependence on Natural Ecosystems. Washington, DC:
Island Press, pp. 1–10.

Daily, G. C. 2000. Management objectives for the protection of ecosystem services.
Environmental Science and Policy 3, 333–9.

Davies, J. C. (ed.) 1996. Comparative risk analysis in the 1990s: the state of the
art. Comparing Environmental Risks. Washington, DC: Resources for the Future,
pp. 1–8.

de Finetti, B. 1974. Theory of Probability. New York: Wiley.
Dennis, B., Brown, B. E., Stage, A. R., Burkhart, H. E. and Clark, S. 1985. Problems

of modeling growth and yield of renewable resources. American Statistician 39,
374–83.

Deville, A. and Harding, R. 1997. Applying the Precautionary Principle. Sydney: The
Federation Press.

Dewey, J. 1927. The Public and its Problems. New York: Swallow.
Dixon, P. M. 1998. Assessing effect and no effect with equivalence regions. In

M. C. Newman and C. L. Strojan (eds.) Risk Assessment: Logic and Measurement.
Chelsea, Michigan: Ann Arbor Press, pp. 275–301.

Dodgson, J., Spackman, M., Pearman, A. and Phillips, L. 2001. Multicriteria Analysis:
a Manual. London: Department for Transport, Local Government and the Re-
gions. http://www.dtlr.gov.uk/about/multicriteria/17.htm.

Donaldson, T., and Preston, L. E. 1995. The stakeholder theory of the corporation.
Academy of Management Review 20, 65–91.

Draper, D. 1995. Assessment and propagation of model uncertainty. Journal of the
Royal Statistical Society Series B-Methodological 57, 45–97.

Draper, D., Pereira, A., Prado, P., Saltelli, A., Cheal, R., Eguilior, S., Mendes, B.
and Tarantola, S. 1999. Scenario and parametric uncertainty in GESAMAC: a
methodological study in nuclear waste disposal risk assessment. Computer Physics
Communications 117, 142–55.

Drechsler, M., Burgman, M. A. and Menkhorst, P. W. 1998. Uncertainty in popula-
tion dynamics and its consequences for the management of the orange-bellied
parrot Neophema chrysogaster. Biological Conservation 84, 269–81.

Efron, B. and Tibshirani, R. 1991. Statistical data analysis in the computer age. Science
253, 390–5.

Elith, J. 2000. Quantitative methods for modeling species habitat: comparative per-
formance and an application to Australian plants. In S. Ferson and M. Burgman
(eds.) Quantitative Methods for Conservation Biology. New York: Springer, pp. 39–
58.



464 · References

Ellner, S. P., Frieberg, J., Ludwig, D. and Wilcox, C. 2002. Precision of population
viability analysis. Conservation Biology 16, 258–61.

Engelhardt, H. and Caplan, H. 1986. Patterns of controversy and closure: the inter-
play of knowledge, values, and political forces. In H. Engelhardt and H. Caplan
(eds.) Scientific Controversies: Case Studies in the Resolution and Closure of Disputes
in Science and Technology. New York: Cambridge University Press, pp. 1–23.

Erdfelder, E., Faul, F. and Buchner, A. 1996. GPOWER: a general power analysis
program. Behavior Research Methods, Instruments and Computers 28, 1–11.

Evans, P. D. 1999. An evolution in risk management standards. InDepth, September
1999. Sydney: Freehill, Hollingdale and Page, pp. 1–2.

Fairweather, P. G. 1991. Statistical power and design requirements for environmental
monitoring. Australian Journal of Marine Freshwater Research 42, 555–67.

FAO / WHO. 2001. Call for experts for the Joint FAO / WHO risk assessment
activities in the areas of Campylobacter in broilers and Vibrio in seafood. Joint
Expert Consultations on Risk Assessment of Microbiological Hazards in Food. Rome,
Italy: Food and Nutrition Division, Food and Agriculture Organization of the
United Nations.

Fernandes, L., Ridgley, M. A. and van’t Hof, T. 1999. Multiple criteria analysis
integrates economic, ecological and social objectives for coral reef managers.
Coral Reefs 18, 393–402.

Ferson, S. 1996a. Reliable calculation of probabilities: accounting for small sample size and
model uncertainty. Paper presented to Intelligent Systems: a semiotic perspective.
NIST, October 1996. http://gwis2.circ.gwu.edu/∼joslyn/sem96.

1996b. What Monte Carlo methods cannot do. Human and Ecological Risk Assess-
ment 2, 990–1007.

2002. RAMAS RiskCalc Version 4.0. Software: Risk Assessment with Uncertain Num-
bers. Boca Raton, Florida: Lewis.

Ferson, S. and Ginzburg, L. R. 1996. Different methods are needed to propagate
ignorance and variability. Reliability Engineering and Systems Safety. 54: 133–144.

Ferson, S. and Moore, D. R. J. 2004. Bounding uncertainty analysis. In A. Hart
(ed.) Proceedings from a workshop on the application of uncertainty analysis
to ecological risks of pesticides. Pensacola, Florida: Society for Environmental
Toxicology and Chemistry.

Ferson, S., Root, W. and Kuhn, R. 1999. RAMAS Risk Calc: Risk Assessment with
Uncertain Numbers. Setauket, NY: Applied Biomathematics.

Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D. and Sentz, K. 2003. Constructing
Probability Boxes and Dempster-Shafer Structures. SAND2002–4015. Albuquerque,
New Mexico: Sandia National Laboratories.

Finizio, A. and Villa, S. 2002. Environmental risk assessment for pesticides: a tool
for decision making. Environmental Impact Assessment Review 22, 235–48.

Finkel, A. M. 1995. A second opinion on an environmental misdiagnosis: the risky
prescriptions of breaking the vicious circle. Environmental Law Journal 3, 295–
381.

1996. Comparing risks thoughtfully. Risk: Health, Safety and Environment 7, 349.
www.piercelaw.edu/risk/vol7/fall/.

Fischer, F. 2000. Citizens, Experts, and the Environment. Durham, North Carolina:
Duke University Press.



References · 465

Fischhoff, B. 1994. Acceptable risk: a conceptual proposal. Risk: Health, Safety and
Environment 1, 1–28.

1995. Risk perception and communication unplugged: twenty years of progress.
Risk Analysis 15, 137–45.

Fischhoff, B., Lichtenstein, S., Slovic, P., Derby, S. L. and Keeney, R. L. 1981.
Acceptable Risk. Cambridge: Cambridge University Press.

Fischhoff, B., Slovic, P. and Lichtenstein, S. 1982. Lay foibles and expert fables in
judgements about risk. American Statistician 36, 240–55.

Flynn, J., Slovic, P. and Merta, C. K. 1994. Gender, race, and perception of envi-
ronmental health risks. Risk Analysis 14, 1101–8.

FMEAInfoCenter. 2002. Links to information resources and general information.
http://www.fmeainfocentre.com/introductions.htm.

Frank, M. J. 1979. On the simultaneous associativity of F (x, y) and x + y + F (x, y).
Aequationes Mathematicae 19, 194–226.

Frank, M. J., Nelson, R. B. and Schweizer, B. 1987. Best-possible bounds for the
distribution of a sum – a problem of Kolmogorov. Probability Theory and Related
Fields 74, 199–211.

Franklin, J. 2002. Enhancing a regional vegetation map with predictive models of
dominant plant species in chaparral. Applied Vegetation Science 5, 135–46.

Freckelton, I. 1995. The challenge of junk psychiatry, psychology and science: the
evolving role of the forensic expert. In H. Selby (ed.) Tomorrow’s Law. Sydney:
Federation Press, pp. 58–9.

Freeman, A. M. III. 1993. The Measurement of Environmental and Resource Values.
Washington, DC: Resources for the Future.

Freeman, R. E. 1984. Strategic Management: a Stakeholder Approach. Boston, Mas-
sachusetts: Pitman.

French, S. 1986. Decision Theory: an Introduction to the Mathematics of Rationality.
Chichester: Ellis Horwood.

Freudenburg, W. R. 1992. Heuristics, biases, and the not-so-general publics: exper-
tise and error in the assessment of risks. In S. Krimsky and D. Golding (eds.)
Social Theories of Risk. Westport, Connecticut: Praeger Publishing, pp. 229–
49.

1996. Risky thinking: irrational fears about risk and society. Annals AAPSS 545,
44–53.

1999. Tools for understanding the socioeconomic and political settings for en-
vironmental decision making. In V. H. Dale and M. R. English (eds.) Tools to
Aid Environmental Decision Making. New York: Springer, pp. 94–125.

Freudenburg, W. R. and Rursch, J. A. 1994. The risks of ‘putting the numbers in
context’; a cautionary tale. Risk Analysis 14, 949–58.

Freudenburg, W. R., Coleman, C.-L., Gonzales, J. and Helgeland, C. 1996. Media
coverage of hazard events: analyzing the assumptions. Risk Analysis 16, 31–
42.

Frey, H. C. and Rhodes, D. S. 1996. Characterizing, simulating, and analyzing
variability and uncertainty: an illustration of methods using an air toxic emissions
example. Human and Ecological Risk Assessment 2, 762–97.

Gabbay, D. M. and Smets, P. (eds.) 1998. Handbook of Defeasible Reasoning and Uncer-
tainty Management Systems, Volume 3. Dordrecht: Kluwer.



466 · References

Garrod, G. and Willis, K. G. 1999. Economic Valuation of the Environment. Cheltenham:
Edward Elgar.

Gigerenzer, G. 2002. Calculated Risks: How to Know when Numbers Deceive You. New
York: Simon and Schuster.

Gigone, D. and Hastie, R. 1997. Proper analysis of the accuracy of group judgments.
Psychological Bulletin 121, 149–67.

Gilbert, R. O. 1987. Statistical Methods for Environmental Pollution Monitoring. New
York: Van Nostrand Reinhold.
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