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Foreword

The increasing integration and complexity of electronic system design requires
constant evolution of the used languages as well as associated design methods and
tools. The Forum on specification and Design Languages (FDL) is an established
international forum devoted to the dissemination of research results, practical expe-
riences, and new ideas in the application of specification, design, and verification
languages. It considers descriptions means for the design, modeling, and verification
of integrated circuits, complex hardware/software embedded systems, and mixed-
technology systems.

FDL is the main platform to present and discuss new trends as well as recent
work in this domain. The 2016 edition of FDL was an interesting and lively meeting
thanks to the commitment of the authors and presenters.

This book is devoted to FDL 2016 and contains the papers that were evaluated
best by both the members of the program committee as well as the participants of
the forum which took place in September 2016 in Bremen, Germany. It reflects
thereby the wide range of topics which have been covered at this event. The
selected contributions particularly highlight the increasing role of AMS languages
and verification tools—as essential, e.g., in the fields of smart systems and IoT,
where devices are the result of a deep integration of heterogeneous analog and
digital components. The papers propose state-of-the-art methodologies for their
design, verification, and safety analysis. By this, the portfolio of papers in this book
provides an in-depth view on the current developments in our domain which surely
will have a significant impact in the future.

We would like to thank all authors for their contributions as well as the members
of the program committee and the external reviewers for their hard work in
evaluating the submissions. Special thanks go to Rolf Drechsler and his team from
the University of Bremen, who were responsible for a splendid organization of FDL

v
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2016, as well as Sophie Cerisier from the Electronic Chips and Systems design
Initiative (ECSI). Finally, we would like to thank Springer for making this book
possible.

Verona, Italy Franco Fummi
Linz, Austria Robert Wille
May 2017
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Knowing Your AMS System’s Limits: System
Acceptance Region Exploration by Using
Automated Model Refinement and Accelerated
Simulation

Georg Gläser, Hyun-Sek Lukas Lee, Markus Olbrich, and Erich Barke

Abstract Virtual prototyping of Analog/Mixed-Signal (AMS) systems is a key
concern in modern SoC verification. Achieving first-time right designs is a challeng-
ing task: Every relevant functional and non-functional property has to be examined
throughout the complete design process. Many faulty designs have been verified
carefully before tape out but are still missing at least one low-level effect which
arises from interaction between one or more system components. Since these extra-
functional effects are often neglected on system level, the design cannot be rectified
in early design stages or verified before fabrication. We introduce a method to
determine system acceptance regions tackling this challenge: We include extra-
functional effects into the system models, and we investigate their behavior with
parallel simulations in combination with an accelerated analog simulation scheme.
The accelerated simulation approach is based on local linearizations of nonlinear
circuits, which result in piecewise-linear systems. High-level simulation speed-
up is achieved by avoiding numerical integration and using parallel computing.
This approach is fully automated requiring only a circuit netlist. To reduce the
overall number of simulations, we use an adaptive sampling algorithm for exploring
systems acceptance regions which indicate feasible and critical operating conditions
of the AMS system.

Keywords Parameter space • Acceptance region • Piece-wise linear • Simula-
tion • Modeling • Bordersearch • Mixed-signal • Virtual prototyping • Auto-
mated model refinement • Design automation • Extra-functional properties •
Accelerated simulation • System level • Verification
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1 Introduction

Many carefully verified designs fail due to flaws which neither the design nor the
verification engineer has identified. As shown in Fig. 1 the design flaw might even
be located outside the functional behavior of the system’s components: Distorted
supplies or parasitic couplings can raise severe problems that are only visible in
certain conditions but are crucial to the overall functionality. Such design flaws
are usually not covered by abstract system-level models since they neglect low-
level effects. Within this contribution, we consider a common DC–DC converter
circuit as shown in Fig. 2 for demonstration. This hysteretic current-mode buck
converter will always be stable in simulation assuming idealized models and
reference voltages [1]. However, its stability can be influenced by distortions not
visible on system level. For example, distortions due to ground-bounce or crosstalk
from the supply to the reference voltages may cause malfunction. Uncovering these
interactions by simulation on transistor or layout level is virtually impossible for
such a demonstrator or even more complex systems due to enormous computing
times.

Fig. 1 System-level
verification targets at
verifying all functional
properties using abstract
models

Fig. 2 Hysteretic current-mode buck converter as application scenario. The output current is
determined via references generated by digital-to-analog converters (DAC)
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In this contribution, we introduce a methodology to determine the system accep-
tance regions (SAR), i.e., the safe operating regions in the system-level parameter
space of the distorting effects. In contrast to process and design parameters, they are
not usually included in predefined models since they emerge from parasitic effects
not visible on the regarded level of abstraction. We make their parameter space
accessible by refining the existing models with parasitic effects using an automated
procedure. Its exploration requires a large number of simulations in order to identify
the system acceptance regions. This number can be reduced by using a systematic
sampling methodology based on the Bordersearch algorithm [2]. However, further
optimization of the simulation performance is needed due to the analog components
in the simulation. We avoid time-consuming numerical integration algorithms by
utilizing a piecewise-linear (PWL) modeling scheme that results in a piecewise-
linear system. Considering nonlinear system behavior, the switching from one
linearized circuit state to another state is a key issue. We have implemented an
algorithm for determining the switching points along with multi-core processing
for further performance improvement.

Following the discussion of the state of the art in Sect. 2, we introduce a new
methodology to refine models with extra-functional properties in Sect. 3. Aiming at
a high simulation performance, we use the accelerated analog simulation presented
in Sect. 4. Based on the introduced methods, we explain the concept and exploration
of system acceptance regions in Sect. 5. In Sect. 6 we demonstrate the method for a
designed and fabricated DC–DC converter.

2 Related Work

Modern embedded AMS systems have been subject to research for a long time [3].
Still, the challenges arising in today’s complex system-on-chips demand new
methods for design and verification. Effects like crosstalk causing signal integrity
issues have been studied [4, 5] especially in the digital domain. Addressing these
challenges in analog systems is subject to ongoing research [6] since they are only
visible on system level by considering effects from lower levels of abstraction. If
the parameters of these effects are not specified at the beginning of the design phase
they impose a significant design risk.

The evaluation of the system performance influenced by additional low-level
effects requires appropriate models to be implemented. These methods have been
studied, e.g., by Alassir et al. [4] and Eo et al. [7]. Introducing these effects
automatically into system-level simulation is still uncommon: Fault injection by,
e.g., distorting signals with saboteur modules was proposed by Leveugle and
Ammari [8] but those approaches lack a general framework for AMS model
refinement that could be used for exploring the newly introduced parameter space.

Procedures for extracting fault and acceptance regions were developed, e.g., by
Dobler et al. [2] who also discussed the use of Design of Experiments based methods
[9] in this context. Similarly, methods for extracting feasible regions in parameter
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spaces have been developed by Stehr et al. for sizing and optimizing purely analog
circuits [10]. However, the use of these methods for extracting acceptance regions
in combination with model refinement to gain knowledge about the given system
has not yet been published.

Each parameter space exploration algorithm demands for many simulations
to be executed—especially for high-dimensional problems. Hence, the simulation
performance is crucial to efficiently explore these regions. To speed-up our simu-
lations, we use an accelerated analog simulation approach [11, 12]. This approach
uses piecewise-linear models to avoid numerical integration and nonlinear equation
solving.

This combination of accelerated analog simulation and automated refinement of
component models with extra-functional properties is used to identify the critical
scenarios in a AMS system at a very early design stage.

3 Automated Model Refinement

A large number of simulations is necessary to reach a sufficiently high verification
coverage. Executing these simulations using low-level models on, e.g., transistor
or layout level is clearly not feasible due to extreme high computing times. More
abstract models try to solve this problem by reducing the simulation complexity
by only implementing purely functional properties. However, additional effects
as for instance power-supply rejection are usually neglected. The decision which
effects can be neglected is crucial: If only a single relevant effect is neglected, the
verification might falsely accept the system behavior—whereas the critical effect is
not visible in simulation causes the design to fail. Since this set of relevant effects is
unique for each design, a flexible modeling approach is needed to adapt to the actual
use case.

The implementation and maintenance effort significantly increases if different
combinations of effects have to be modeled and their impact on the system
evaluated. Consider a system demanding for five effects and their interactions to
be regarded. This raises the task of implementing 25 � 1 D 31 variants of the model
to be realized and maintained and urges for an automated approach.

Whereas our approach is not limited to a specific modeling language, we consider
an existing system-level component model in SystemC-AMS [13] because of the
availability of tools for code analysis. The system refined by an additional effect
is shown in Fig. 3. Analyzing the model code automatically using libClang [14]
yields structural information—e.g., ports, signals, internal structure, and locations
of functions—about the targeted component model and its instances in the overall
system. Based on this, a predefined generic text-template [15] is rendered to
generate the model code for a wrapper realizing the actual effect. This procedure
is repeated for all refinements to be applied to the model. Note that refinements
might not be commutative: Consider, e.g., a multiplicative and an additive noise
source at a given port of a model or one effect depending on another. In such cases,
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Fig. 3 Refinement flow of a component model

a predefined order of applying refinements has to be ensured. Since the template
rendering engine has no knowledge about the nature of the effect, the order has to
be defined by the user.

Effects arising in the interaction of several system components cannot be
modeled by refining a single component. These effects demand for additional
connections to be introduced to the system model. Therefore, it is necessary to
modify the given modules by inserting and connecting new ports and signals. In
the context of SystemC this results in adding member variables to the classes
representing the component’s models and connecting them in the constructor code
of the top-level module. We realize this direct modification of the model code using
information about the code structure obtained by libClang [14].

We limit the approach to refine SystemC-AMS models in this contribution.
However, the presented method is also applicable to other modeling languages such
as Verilog-AMS as long as the required structural information can be extracted.

4 Accelerated Analog Simulation Using Piecewise
Linearization

An accelerated simulation of AMS circuits based on piecewise-linear models has
been presented in a previous work [12]. Our simulation environment focuses on
analog subcircuits as shown in Sect. 1. It provides an accelerated simulation kernel
for transient simulations of analog circuits. Speed-up is achieved by avoiding
numerical integration and directly using the linear time-domain solution of the
system. The time-domain solution is described by sums of exponential terms of
the form (1), which can be efficiently evaluated during simulation.
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To succeed, this approach requires piecewise-constant inputs (implicitly given
by the digital part of AMS circuits) and a linear or at least linearized circuit. We
solve the latter problem by replacing all nonlinear devices by piecewise-linear
models [16]. Exemplary PWL models for diodes (one-dimensional input: VOLED)
and MOS field-effect transistors (two-dimensional inputs: VGS and VDS) are shown
in Fig. 4. The models are generated by taking advantage of geometric methods
[17, 18].

The use of PWL device models results in the generation of multiple linear
state-space circuit models describing the analog circuit behavior. The possible
combinations of these piecewise-linear models result in a switched-linear systems
[19] with different circuit states, which can also be described as a hybrid automaton
[20]. It is natural that exactly one state of the automaton is valid at the same time.
The modeling approach of static components (i.e., no dynamic nonlinearities) can
be applied to nonlinear semiconductor devices as well as to nonlinear macro models.
For example operational amplifiers or entire analog driver stages can be treated as a
macro model.

Approximating a circuit by a hybrid system with linear continuous dynamics has
been used before, see e.g. [21–23]. It is proven and applicable method to control
the complexity of system-level modeling. Each circuit state v corresponds to a
discretized state-space representation of the form (2) and (3).

Px.t/ D Avx.t/ C Bvu.t/ (2)

y.t/ D Cvx.t/ C Dvu.t/. (3)
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4.1 Switching Between State-Space Models

To generate simulation results it is necessary to retransform the prepared circuit state
to the time domain. The time domain solution yields the monitored output functions.
The computed output functions are only valid until the input excitation changes to a
new (constant) value or an event was triggered by switching the valid circuit state.
It should be noted that all continuity conditions (capacitor voltages and inductor
currents) must be fulfilled.

Switching between different PWL models is a significant step for our simulation
methodology. The switch-over time depends on the threshold voltages and currents
of nonlinear components (e.g., diodes, MOSFETs, and operational amplifiers) and
can be determined by finding the first root of the function

f .t/ D VPWLdevice.t/ � VPWLdevicelimit (4)

in a given interval, where

• VPWLdevice is the node voltage of a PWL device and
• VPWLdevicelimit is a limit of the validity range defined by the linear section of each

PWL model.

Several root-finding algorithms for such functions are known. We found that the
Newton–Raphson method and the bisection method yield unsatisfactory results,
as they often do not converge towards the first root and exhibit long runtimes.
A specialized root-finding algorithm for this task has been presented in [11]. It
guarantees to find the first root in a given interval. This means that for each valid
circuit state, which is composed by the combined PWL component model states, the
root-finding algorithm must be executed

R D 2K C 3L (5)

times, where

• K is the number of one-dimensional models and
• L is the number of two-dimensional models.

The factors of Eq. (5) yield from the number of PWL section limits. In case of
straight lines of a one-dimensional model there are two limits: one upper limit
and one lower limit of each linear section. For two-dimensional models exist three
limits: all edges of the triangle. After the determination of all first roots in a given
interval the earliest switch-over time indicates the next valid circuit model selection.

Figure 5 shows a comparison between our simulation approach with existing
analog circuit simulators. Instead of performing numerical integration, linearization
and solving the system of equations during each time step, our approach is only
sensitive to input changes and internal model switching. As mentioned before, a
circuit model switch is triggered by a transition from one linear section of a PWL
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Numerical Integration

Linearization

Solving

Time Step

State-of-the-art Simulator

Model Selection

On-the-fly Model Generation
(if not yet in cache)

Evaluation of
Exponential Terms

Input or Model Change

Our Simulation Approach

Fig. 5 Comparison between the state of the art and our analog simulation flow

component to another. The active linear section, selected by the simulator kernel,
remains valid as long as no change at any input occurs and the circuit does not
exceed the current section due to its dynamics. In case of an input change, a new
valid section must be calculated along with its new initial values to satisfy the
continuity of inductor currents and capacitor voltages. In contrast to an input change,
the dynamics of the circuit make switching to an adjacent linear section necessary.

4.2 Parallelizing the Specialized Root-Finding Algorithm

Most of today’s advancements in the computing power of processors result from
higher levels of parallelization. The processing power available to sequential work-
ing threads grows comparably slowly. A sequential program can only use a fraction
of the theoretical processing power of most state-of-the-art processors. Therefore,
parallelization is of growing importance for performance-critical applications like
simulations.

Simulating a large analog circuit including a large number of nonlinear devices
causes a long runtime. The root-finding algorithm must be executed very often
which can be seen from Eq. (5). The determination of all first roots can be processed
independently within a simulation run. For such cases the computations can be run
in parallel to speed-up the simulation.

We demonstrate our simulation approach for a scalable nonlinear transmission
line (NLTL) with N stage, see Fig. 6.

In case of a NLTL128 for each circuit model change the root-finding algorithm
must be executed 256 times. Table 1 shows different simulation speed-ups caused
by different degrees of parallelization within the simulation kernel.
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Fig. 6 Example of nonlinear transmission line (NLTLN )

Table 1 Simulation runtimes
of circuit NLTL128

Tend Speed-up

Our approach (single threaded) 74:87 s 1:00�
Our approach (multi threaded: 2 threads) 43:01 s 1:74�
Our approach (multi threaded: 4 threads) 26:43 s 2:83�
Our approach (multi threaded: 8 threads) 17:26 s 4:34�
Our approach (multi threaded: 16 threads) 14:73 s 5:08�

In case of the demonstrated buck converter circuit merely including three non-
linear element the parallelization approach is unfortunate. We found that due to the
additional parallelization overhead multi-threaded simulations are profitable only
for larger circuits.

5 System Acceptance Regions

Acceptance and fault regions are well known in Integrated Circuit (IC) testing,
e.g., in Shmoo plotting [24]. The concept is shown in Fig. 7: For each point in the
parameter space, the corresponding system’s behavior is classified into correct or
incorrect using simulations or measurements. The system acceptance region, i.e.,
the typically continuous region with correct behavior, represents all parameter com-
binations ensuring the system’s function. Note that the border between acceptance
and fault region might be fuzzy due to stochastic influences on the system (e.g., noise
sources) [2].

In this contribution, we assume the system model’s parameters to live in an
acceptance region. Still, additional parameters not included in this model might
cause the final system to fail. Extracting these cases in a conventional verification is
hardly possible due to a missing specification value to test for and a missing model
to test with.

These critical scenarios emerge, if an additional effect severely interacts with the
parameters included in the simulation. This situation is shown in Fig. 7: The system
with parameters p1s; p2s; and p3s is in the acceptance region taking only the first
parameters into account as shown in Fig. 7a. The additional effect with parameter
p3 results in incorrect system behavior due to its interaction shown in Fig. 7b. Hence,
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Fig. 7 System acceptance regions example: a system may live in an acceptance region for two
parameters p1 and p2 but may be distorted by an additional effect with parameter p3. (a) Without
p3. (b) Acceptance region with p3

it is important to know the shape of the SAR: Based on the knowledge of the shape,
an additional test can be implemented to reduce the design risk. Additionally, the
shape unveils the interactions between different parameters. In the figure, the region
in the first plot could be parameterized independently for each p1 and p2. The other
plots show interactions between parameters, i.e., the description of the regions must
include this relationship.

Our goal is to extract the acceptance regions for effects not present in the system-
level model by using automated model refinement as introduced in Sect. 3. Based
on this, we propose an extraction flow as shown in Fig. 8. After analyzing the
given model of the system, the components are refined with the targeted properties.
For performance reasons, the analog portions are substituted by PWL models as
described in Sect. 4. The extraction of the SAR is done by sampling of the newly
introduced and possibly multidimensional parameter space. Since naive sampling
strategies are clearly not feasible in higher dimensions, an adaptive strategy is
needed. We utilize the Bordersearch algorithm described by Dobler et al. [2] for
reducing the number of parameter combinations to be simulated.

This algorithm aims to model the border between acceptance and fail regions.
Based on this, it automatically selects the parameter combinations to be evaluated
close to this border. This adaptive sampling significantly improves exploration
quality and runtime especially for high-dimensional problems.

6 Application Scenario

For demonstration, we examine the design of a hysteretic buck converter [1] for
driving organic LEDs (OLED, organic light emitting diode) shown in Fig. 2. As a
first step, the system-level model is created to verify properties of the functional
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Fig. 8 System acceptance region extraction flow

behavior—in this case, the stability of the overall system. In this context, short
circuit between supply and ground through S1 and S2 must not occur and the
switching frequency must be limited to a certain value. This has been done, e.g.,
by Dietrich et al. [1] with idealized components. This autonomously switching,
externally controlled system has not yet been analyzed formally under influence
of low-level parasitic effects. We want to evaluate this question by simulation, since
a fabricated test chip for finding out the most critical effects is clearly unwanted for
economical reasons (Fig. 9).

We create the simulation setup as shown in Fig. 10 using the methodology
presented before. The reference voltage generators (reference and DAC circuits)
are refined by additional effects. Additive white noise is used here to model various
distortions. A testbench block generates stimulus signal exercising the system in
usual use-cases while observing internal signals. The observed waveforms are
checked by the testbench for instable behavior.

To assure the stability of the final system, we explore the acceptance regions
for all additional parameters. The simulation runtimes for different exploration
strategies are shown in Table 2. Both Bordersearch and PWL simulation make this
exploration feasible with rather high accuracy. For rough estimates, the simulation
runs can be reduced even further. The estimated computing time for normal
equidistant sampling of the parameter space is clearly not applicable due to the
extremely high number of points to be simulated.
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Fig. 9 Projection of 3D system acceptance region of noise-variances of distortion models

In Fig. 9, we show 2D-projections of the estimated three-dimensional acceptance
regions for illustration. Here, we examined the variance of the annotated noise-
effects as parameters between 0 and 2 � 10�6. The axis labels are given by the
horizontal or vertical captions. For example, the upper-right plot axis are given by
RefL Noise (variance) as x-axis and Ref. Src. Noise (variance) as y-axis. The region
exhibits typical behavior for noise-effects: The border between acceptance and fail
regions are not sharp and the projection of the 3D SAR to 2D also contributes to
this effect. In the design process, these regions give the designer a deep insight
into the impact of effects to the system, as for instance the interaction distortions
of RefH and RefL. This provides the designer with the knowledge for extending
the specification and verification plan with checks for the position in the parameter
space. Moreover, possibly occurring trade-offs in the design can be evaluated at a
very early point in the design process for enhancing the overall system performance.
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Fig. 10 Preprocessed model of hysteretic buck converter circuit for acceptance region exploration

Table 2 cpu time of acceptance region exploration based on different simulation approaches
and sampling strategies

Reference Sampling Bordersearch

Number of points 1 1� 106 1� 104

CPU time (our approach) 2:09 s 580 h 5:8 h

CPU time (Saber) 54:3 s 628 d (est.) 6:28 d (est.)

7 Conclusion

In this contribution, we addressed the challenges in virtual prototyping of AMS
systems achieving first-time right designs. We proposed a method for automated
modeling of extra-functional effects for efficient system-level simulations. It pro-
vides system acceptance regions for AMS systems using automated refinement of
component models. Since the simulation runtime needed for this process is very
high even for small AMS systems, we integrated an accelerated and parallelized
simulation approach. Applying the proposed method in later design phases is also
possible but challenges the method by even higher complexity due to more signals
and possible effects.

For demonstrating our methodology, we examined a DC–DC converter circuit.
In this circuit, we regarded exemplarily distortions to generated reference volt-
ages to evaluate their impact on the system’s stability. The extracted acceptance
regions show interactions between the effects introduced in the refinement process.
This provides the design and the verification engineers with information about
critical scenarios and crucial points to avoid or test for.

In future research, this information could be extracted in a more automated
way by examining the shape of these regions. This can also be used to reduce the
dimensionality of the parameter space to be explored: If the interactions are known,
they could be possibly treated in several groups separately. Even a ranking of the
criticality of extra-functional effects can be realized.
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Abstract Cyber-physical systems, that consist of a cyber part—a computing
system—and a physical part—the system in the physical environment—as well as
the respective interfaces between those parts, are omnipresent in our daily lives. The
application in the physical environment drives the overall requirements that must be
respected when designing the computing system. Here, reliability is a core aspect
where some of the most pressing design challenges are:

• monitoring failures throughout the computing system,
• determining the impact of failures on the application constraints, and
• ensuring correctness of the computing system with respect to application-driven

requirements rooted in the physical environment.

This chapter gives an overview of the state-of-the-art techniques developed within
the Horizon 2020 project IMMORTAL that tackle these challenges throughout
the stack of layers of the computing system while tightly coupling the design
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methodology to the physical requirements. (The chapter is based on the contribu-
tions of the special session Designing Reliable Cyber-Physical Systems of the Forum
on Specification and Design Languages (FDL) 2016.)

Keywords Adaptive test strategy generation • Automatic test case generation
• Checker minimization • Checker qualification • Concurrent online checkers •
Counterexample-guided inductive synthesis • CPS • Cross-layered fault man-
agement • Cyber-physical systems • Dependable CPSoC • Embedded systems
• Fault classification • Fault management infrastructure • Fault tolerance •
Gating-aware error injection • Gradual degradation • Health monitors •
Heterogeneous • IDDQ • IEEE 1687 • Many-core • NBTI aging • Parameter
synthesis • Reliability analysis • Resource management software • Run-time
resource mapping • Satisfiability modulo theories • System-on-chip

1 Introduction

Cyber-physical systems (CPS) [30] are smart systems that integrate computing
and communication capabilities with the monitoring and control of entities in
the physical world reliably, safely, securely, efficiently, and in real-time. These
systems involve a high degree of complexity on numerous scales and demand
for methods to guarantee correct and reliable operation. Existing CPS modeling
frameworks address several design aspects such as control, security, verification, or
validation, but do not deal with reliability or automated debug aspects.

Techniques presented in this chapter are developed in the EU Horizon 2020
project IMMORTAL.1 These techniques target reliability of CPS throughout several
abstraction layers during design and operation, considering fault effects from
different error sources ranging from design bugs via wear-outs and soft errors
towards environmental uncertainties and measurement errors [3].

We consider the cyber part of CPS at four layers of abstraction shown in Fig. 1.
The analog/mixed-signal (AMS) layer models the components, especially sensors
and actuators, using Matlab/Simulink or VHDL-AMS. In this layer we focus on the
aging behavior of the design. Thermal and electrical stress can degenerate sensor
quality, actuator quality, or reduce the overall performance characteristics of the
design. In Sect. 2 we present a health monitoring approach to warn the system early
if functional parts of the system degenerate to such an extent that reliable operation
can no longer be ensured and, e.g., redundant components must be activated.

At the digital hardware layer the CPS is either described at the Register
Transfer (RT)-level, e.g., in a synthesizable subset of VHDL or Verilog, or as gate-
level netlists. At this layer the analog signals of the analog/mixed-signal layer are
abstracted to binary values. During operation of the CPS, even correctly designed

1Integrated Modelling, Fault Management, Verification and Reliable Design Environment for
Cyber-Physical Systems, http://www.h2020-immortal.eu.

http://www.h2020-immortal.eu
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Fig. 1 The stack of layers
of a CPS

Physical environment

Behavioral layer

Architectural layer

Digital hardware layer

Analog/mixed-signal layer

Cyber part

systems may behave incorrectly, e.g., radiation may change values in latches or
change the signal level in wires. Such effects are called soft errors and appear as
bit-flips at the digital hardware layer. Error detection codes, e.g., parity bits, or
Error Correction Codes (ECC), e.g., Hamming codes, are used to mitigate soft
errors. In Sect. 3 we present approaches to automatically detect storage elements
that are not protected by error detection or error correction codes or prove that
storage elements are protected. Moreover, Sect. 4 provides advanced online-checker
technology beyond traditional ECC schemes achieving full fault coverage.

At the architectural layer, we consider the CPS as a set of computational units
with different capabilities, a communication network between those computational
units, and a set of tasks that are described at a high level of abstraction, which
should be executed on the CPS. Section 5 proposes an infrastructure for reading out
the information about occurrences of faults in the lower layers and accumulating
this information for preventing errors resulting from those faults. Section 6 explains
how to use this infrastructure to (re)allocate and (re)schedule resources and tasks of
the CPS if a computational unit can no longer provide reliable operation. As a result
the CPS is enabled for fault-tolerant operation.

The behavioral layer considers the functional behavior and tasks of the CPS.
The elements at this layer are modeled as behavioral descriptions of the system’s
functionality and can be realized either in software or in hardware. In Sect. 7
we consider the generation of test strategies from a system’s specification given
as temporal logic formulæ. Here, we focus on specifications which are agnostic
of implementations and allow freedom for the implementation. Therefore the
generated test cases must be able to adapt to different implementations. In Sect. 8
we present an approach to automatically synthesize parameters for behavioral
descriptions of a CPS. The parameter synthesis approach can be used to assist a
designer in finding suitable values for important design parameters such that given
requirements are met, eliminating the need for manual error prone decisions.
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2 Health Monitoring at the Analog/Mixed Signal Layer

CPS have to cope with analog input and provide analog output signals in the physical
world, and be able to carry out computational tasks in the digital world. Practice has
shown that major problems in terms of failures occur in the analog/mixed-signal
part, which includes (on-chip) sensors and actuators. In contrast to the digital world,
the (parametric) faults in the analog/mixed-signal parts of a CPS are much more
complex to detect and repair.

In the case of wear-out, e.g., resulting from Negative-Bias Temperature Insta-
bility (NBTI) [51], it has been shown that analog stress signals cause different
wear-out results as compared to digital ones, leading to more sophisticated NBTI
models. The NBTI aging mechanism usually results in increased delay times (lower
clock frequencies) in pure digital systems [54] while in analog/mixed-signal systems
several key system-performance parameters will change, like for instance the offset
voltage in OpAmps and data converters [50]. Experiments have also shown that drift
of sensors [53] and actuators are often key parameters to cause faulty behavior in a
CPS as a result of aging.

Stress voltages, stress temperatures, and duration of them (mission profile)
are the principal factors of wear-out. Hence, in the case of a real CPS, these
stress parameters must be measured during life-time and subsequently handled
as mission profiles cannot be predicted accurately in advance. A combination of
environmental Health Monitors (HMs) [4] and key performance parameters [50],
nowadays implemented as embedded instruments, are required for this purpose.
Temperature, voltage, and current health monitors, as well as gain, offset, and delay
monitors have been developed for this purpose. It is obvious that these embedded
instruments should be extremely robust against aging and variability.

In the new generation of CPS, these embedded instruments will be connected
by the new IEEE 1687 standard [4]. The embedded instrument will consist in that
case of the original raw instrument and the IJTAG wrapper part. An example of
an IJTAG-compatible IDDT health monitor [24] is shown in Fig. 2. It is related to
the well-known reliability-sensitive quiescent power supply IDDQ measurements.
The embedded instrument consists of a current-to-voltage conversion, remaining
as close to VDD for the core under test as it is possible. As the resulting voltages
are small, several amplification stages are required after this. The last step is the
conversion to a 14-bits digital word, via the frequency. In addition several supporting
circuits are required, like controller and samples memory.

In order to obtain highly dependable CPS, which includes reliability, availability,
and maintainability [26], more than just health monitors and embedded instruments
are required. It also includes software and computational capabilities to extract
the correct information from the HMs, and calculate the remaining lifetime of
Intellectual Property (IP) components being part of a CPS from that [54]. Useful
HMs for the digital cores have shown here to be IDDQ and IDDT embedded
instruments as well as delay monitors.
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Fig. 2 An IJTAG-compatible IDDT health monitor for lifetime prediction

For digital systems, like multi-core processor System-on-Chips (SoCs) this
platform is already well on the way. To know the remaining life-time is essential
in dependable CPS, as many applications are safety-critical and hence do not allow
any down-time to ensure high availability. Existing digital systems have already
been shown to be capable to react after a failure has occurred, mainly by the use of
pseudo online Build-In Self Test (BIST) of processor cores. In addition, the (on-chip)
repair in the case of multi-core processor SoCs has been successfully accomplished
by shutting down the faulty core and replace it by a spare processor core, or increase
the workload of a partly-idle processor core.

In the case of the analog/mixed-signal part of a CPS-on-Chip (CPSoC), the
situation is much more difficult. Phenomena like NBTI aging result in this case in
changing key system parameters of IPs (OpAmps, filters, ADCs, and DACs), like
offset, gain, and changing frequency behavior. Using our new analog/mixed-signal
NBTI model in our local designs of 65 and 40 nm TSMC OpAmps and SAR-ADCs,
higher-level system key parameters were derived which were used subsequently in a
Matlab environment. Figure 3 shows four possible degradation scenarios, as well as
the application of our two-stage repair approach. First, key parameters are monitored
and digitally tuned if changing; when the maximum tuning range is accomplished,
a bypass and spare IP counter action is carried out.

One can see from the figure that the CPSoC remains within its green boundaries
(of parameter P) of correct operation. The figure also shows that the different degra-
dation mechanisms trigger tuning and replace counter measures at different times.
The dependability improves by several factors at the cost of more sophisticated
health monitors, software and embedded computational resources, all translating
into more silicon area.
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Fig. 3 Simulation of a redundant and digital IP tuning platform for highly dependable mixed-
signal CPS system for four different degradation scenarios

3 Comprehensive and Scalable RT-Level Reliability Analysis

The dependability of CPS crucially depends on the reliability and availability of
their digital hardware components. Even if all digital hardware components are free
of design bugs, they may still fail at run-time due to, e.g., environmental influences
such as radiation or aging and wear-out effects that result in occasional misbehavior
of individual hardware components. In the following we subsume such transient
errors under the term soft error [33].

A common approach to achieve resiliency against soft errors adds circuitry to
automatically detect or even correct such errors [35]. This can be achieved by
including redundancy, e.g., in the form of parity bits or more sophisticated error
detection or correction codes [33]. Soft error reporting in the RT level can be done
by using error checkers. Once a soft error is reported by a checker, it is up to the
Fault Management Infrastructure (FMI) to decide how to react to this transient fault.

Therefore, the ability to understand the reliability of a given hardware component
in a CPS becomes a key aspect during the component design phase. In order to cope
with the ever shrinking design cycles it is highly desired that this analysis is per-
formed in pre-silicon. Many methods for pre-silicon resiliency analysis have been
proposed. These methods can be roughly classified into two categories: simulation-
based methods, e.g., [22, 28, 31, 32], and formal methods, e.g., [16, 27, 43]. At
the heart of the simulation-based methods lies the concept of error injection. In
this approach the design is simulated and verified for robustness in the presence of
transient faults injected deliberately during simulation. This approach is workload-
dependent and achieves low state and fault coverage due to the enormous state space
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size. In an attempt to alleviate the coverage issues of the simulation-based approach
formal methods have been suggested. A common practice in this approach is to
perform formal verification using a fault model which models single event upsets.
Being applied monolithically, this approach suffers from capacity limits inherent to
formal verification methods which makes it impractical in many real-life industrial
cases.

Many hardware mechanisms used for soft error protection are local in their
nature. For example, parity-based protection, Error Correction Code (ECC) logic,
and residue checking mechanisms are all examples of design techniques aimed at
protecting relatively small parts in the design, referred to as protected structures. An
error detection signal is a Boolean expression that is assigned true when an error has
occurred. A protected structure consists of an error checker fed by error detection
signals, of protected sequential elements and of various gating conditions on the
way to the checker. Gating conditions are required in high performance designs to
turn off reliability checks when certain parts of the logic are not used.

Based on the locality of the protected structures, we propose a novel approach for
reliability analysis and verification, a basic version of which was presented in [7].
We divide the reliability verification process into an analysis stage and a verification
stage. In the analysis stage the local protection structures are identified, and in the
verification stage it is verified that the protection structures work properly. There
are aspects of the verification that can be proved with formal verification, e.g., it
can be proved formally that a certain sequential element is protected by a certain
checker under certain gating conditions [7]. Since each protection is local in its
nature, applying formal techniques is scalable. Other aspects may require dynamic
simulation; for example, proving that the gating conditions are not over-gating
the protected structure [6]. In the following we provide an overview of our new
approach, and give a glimpse at the technical “how.”

3.1 Analysis Stage

The analysis stage identifies the protected structures and is divided into two
substages. The identification of error detection signals stage and the structural
analysis stage.

Identification of Error Detection Signals In this stage the building blocks of
the error detection and correction logic are identified. For this purpose we use the
error checkers as anchors and employ formal and dynamic methods to accurately
and efficiently identify various error detection constructs. An example for parity
checking identification is described in [7]. Other examples of error detection logic
that can be identified accurately and locally in this stage are residue and one-hot
checking. Error correction code, however, doesn’t need to be connected to error
checkers. To detect ECC computation we rely on the fact that we are looking for
linear ECC, a computation of the form v D Au for vectors v; u over Z2. To achieve
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Fig. 4 A parity protected structure

this, we iterate over all the vectors in the design and identify the vectors with bits
that are leaves of a XOR-computation tree. After discovering an ECC-like matrix
we first purge non-ECC instances, such as the case of the identity matrix, or matrix
with too many one-hot columns indicating that most input bits are used only once.
We determine whether this is an ECC generation or an ECC check by searching for
a unit submatrix with dimensions corresponding to the output size.

Structural Analysis In order to identify the protected structure of each error
detection signal, we analyze the topology of the netlist representing the design. The
objective is to identify the set of sequential elements protected by an error detection
signal. The challenge here is twofold:

• Understating the boundaries of the protection, e.g., if the protection is parity-
based, the parity generation logic and the parity checking logic form the
boundary of the protected sequential elements.

• Proper identification of the corresponding gating logic.

For example, in Fig. 4 the protected sequential elements are the encircled ones, plus
more sequential elements connected to data bus D2 and the corresponding parity bit
which are out of scope. Specifically, the c_enable signal is the gating condition of
the error detection signal—an erroneous parity check will make the error checker
fire only if the value of the sequential element is 1, and this sequential element is
not a part of the protected structure; similarly, the mux signal is not protected. Also,
the data bus D1 is located before the parity generation logic and thus is not a part of
the protected structure either. Due to lack of space, the full algorithm for detecting
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the protected structure, will not be provided here. However, we will give a glimpse
of the way the algorithm copes with the above challenges.

Consider a parity protected structure. When the parity generation is in the scope
of the given netlist, then the boundary of the parity protection can be easily identified
by detecting the parity generation. Moreover, in this case the protected data bus
and parity bits are the intersection of the input cone of the parity check and the
output cone of the parity generation, whereas the gating conditions are not in that
intersection. Hence, the boundaries of the protection and the gating condition logic
can be identified quite easily.

However, when the parity generation is not in the scope of the given netlist, it is
more difficult to distinguish between the protected structure and gating conditions.
In industrial systems this situation is quite common. In order to distinguish between
data and gating conditions in such cases, the analysis is performed on the parse tree
which represents more clearly the designer intent than the corresponding Boolean
logic representation. Consider the following assignment for a vector bus data:

data.0 : : : 7/ ( data1.0 : : : 7/ when cond1 else 00000000

It is quite easy to understand from the parse tree that cond1 is a gating condition,
while data1.0 : : : 7/ is the data source, while it is more challenging to infer the same
from a set of logical assignments of the form

data.i/ ( data1.i/ ^ cond1

Moreover, it is impossible to distinguish between data source and the gating
condition when a statement

bit1 ( bit2 when cond else 0

is represented by a logical equivalent

bit1 ( bit2 ^ cond

Therefore, in order to cope with the above challenge we perform the analysis using
the parse tree.

3.2 Verification Stage

At this stage we verify that the constructs found at the earlier stage indeed protect the
relevant sequential elements. The verification that is required here has two aspects:
(a) verifying that under the relevant gating conditions the sequential elements are
indeed protected by the corresponding error detection signals or error correction
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logic; (b) verifying that the gating conditions are not over-gating and will not prevent
a checker from firing when it should, causing silent data corruption.

For the former, formal verification can be used, leveraging the locality of
protection structures. In [7] we perform it for simple parity protection. More
research is still required to expand the approach from [7] to include other protection
types and more complex parity structures.

The challenge in the latter verification aspect is that in order to verify that the
gating conditions are not over-gating a global scope is required, since the gating
conditions can be dependent on various parts of the design. In [6] we present a
novel and effective approach to verify that the gating conditions are not over-gating.
We use the identification of the analysis stage to synthesize drivers that perform
smart gating aware error injection. These drivers are then integrated in the standard
functional verification environment existing for any industrial system.

4 Qualification and Minimization of Concurrent
Online Checkers

Besides standard approaches for fault detection we also consider advanced error
detection schemes on the digital hardware layer for CPS. Particularly, the proposed
online checkers enable cost-efficient mechanisms for detecting faults during life-
time of the state-of-the-art many-core systems. These mechanisms must detect
errors within resources and routers as well as enable reconfiguration of the routing
network in order to isolate the problem and provide graceful degradation for the
system.

Our approach [41, 42] exceeds the existing state of the art in concurrent online
checking by proposing a tool flow for automated evaluation and minimization of
the verification checkers. We show that starting from a realistic set of verification
assertions a minimal set of checkers are synthesized that provide 100% fault
coverage with respect to single stuck-at faults at a low area overhead and the
minimum fault detection latency of a single clock-cycle. The latter is especially
crucial for enabling rapid fault recovery in reliable real-time systems.

An additional feature of the proposed approach is that it allows formally proving
the absence or presence of true misses over all possible valid inputs for a checker,
whereas in the case of traditional fault injection only statistical probabilities can
be calculated without providing the user with full confidence of fault detection
capabilities. The formal proof as well as the minimal fault detection latency is
guaranteed by reasoning on a pseudo-combinational version of the circuit and
by the application of an exhaustive valid set of input stimuli as the verification
environment.

The checker qualification and minimization flow starts with synthesizing the
checkers from a set of combinational assertions. Thereafter, a pseudo-combinational
circuit is extracted from the circuit of the design under checking. The pseudo-
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combinational circuit is derived from the original circuit by breaking the flip-flops
and converting them to pseudo primary inputs and pseudo primary outputs. Note
that, at this point, additional checkers that also describe relations on the pseudo
primary inputs/outputs may be added to the checker suite in order to increase the
fault coverage.

Subsequently, the checker evaluation environment is created by generating
exhaustive test stimuli for the extracted pseudo-combinational circuit. These stimuli
are fed through a filtering tool that selects only the stimuli that correspond to
functionally valid inputs of the circuit. As a result, the complete valid set of
input stimuli that serve as the environment for checker evaluation is obtained. The
obtained environment, pseudo-combinational circuit, and synthesized checkers are
applied to fault-free simulation. The simulation calculates fault-free values for all
the lines within the circuit. Additionally, if any of the checkers fires during fault-
free simulation, it means a bug in the checker or an incorrect environment.

If none of the checkers is firing in the fault-free mode, then checker evaluation
takes place. The tool injects faults to all the lines within the circuit one-by-one and
this step is repeated for each input vector. As a result, the overall fault detection
capabilities for the set of checkers in terms of fault coverage metrics are calculated.
In addition, each individual checker is weighted by summing up the total number
of true detections by the checker. Finally, the weighting information is exploited
in minimizing the number of checkers, eventually allowing to outline a trade-off
between fault coverage and the area overhead due to the introduction of checker
logic.

Experiments carried out on the control part (routing and arbitration) of a
Network-on-Chip (NoC) router showed on a realistic application the feasibility and
efficiency of the framework and the underlying methodology. Experimental results
showed that the approach allowed selecting the minimal set of 5 checkers out of 31
verification assertions with the fault coverage of 100% and area overhead of only
35% [41, 42].

5 Managing Faults at SoC Level During In-Field Operation
of CPS

When a fault occurs during in-field operation in a complex SoC within a CPS, which
is working under the control of the software, it is necessary that the latter becomes
aware of the fault and reacts to it as quickly as possible. The SoC management
software, e.g., Operating System (OS), must then take actions to isolate and mitigate
the effects of the fault. These actions include fault localization, classification based
on diagnostic information, and proper handling of affected resources and tasks by
the OS. This implies a cross-layer Fault Detection, Isolation, and Recovery (FDIR)
procedure, since the faults can be detected on the hardware layer, and recovery
actions can be taken throughout the stack of layers.
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5.1 Fault Management Infrastructure

In order to deliver the information from the instruments, store health and statistics
information, and provide the required inputs to the OS, the SoC contains the FMI
which consists of both hardware and software side.

We propose a hierarchical in situ FMI (see Fig. 5) with low resource overhead
and high flexibility during operation. IEEE 1687 IJTAG is used as a backbone
of FMI to implement a hierarchical instrumentation and monitoring network for
efficient and flexible access to the instruments which are attached to the monitored
resources. The main benefit of using IEEE 1687 IJTAG infrastructure for in situ fault
management is based on considerable reuse of existing test and debug infrastructure
and instrumentation later in the field for the new purpose of fault management. In
our architecture, traditional IJTAG is extended with asynchronous fault detection
signal propagation to significantly improve the fault detection latency.

Fault Manager (FM) is a part of OS (kernel) which is responsible for updating
both health and resource maps. If a fault is detected in the system, FM must start
a diagnostic procedure to find out the location of the fault as precisely as possible.
This location information must be reflected in the Health Map (HM) by setting the
fault flag for the appropriate resource and updating the fault statistics.

Instrument Manager (IM) is a hardware module which is responsible for the
communication with the instruments through IJTAG network. It informs FM about
fault detections and provides the read/write access to the instruments.

Health map (HM) is a data structure in a dedicated memory which holds
the detailed information about the faults and the fault statistics. HM is the run-
time model of CPS including fault monitors and implements a structural view of
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the system’s hardware resources and its important parts identified by the static
(design time) analysis. To retain the information about the known faults across
power cycles, HM should be stored in a reliable non-volatile memory.

Resource map (RM) is a data structure in the system memory which holds the
information about the current status of the system’s resources. It should be modified
on the fly during system’s normal operation, should a fault be detected by an
instrument or a diagnostic routine.

5.2 Fault Classification and Handling

Ability to classify errors, malfunctions, and faults is an important basis for health
map management, effective system recovery, and fault management. We propose
to classify the faults according to their severity levels and their contribution to the
permanent malfunction of system’s components and modules. Such classification
has a strong relation to fault management processes and the architecture of the
Health Map.

The classification of faults to be used in FM procedures consists of the following
categories:

• Persistence: This parameter shows what the nature of the fault occurrence is, i.e.,
whether it is transient, intermittent, or permanent.

• Severity: Faults can be different in their influence on the resource. While one
fault can be benign (e.g., one of several similar execution units in a superscalar
CPU fails), another can make the resource useless (e.g., program counter in a
CPU core).

• Criticality: Depending on the resource where the fault has occurred, its conse-
quences for operability and stability of the system as a whole can span from none
to total system failure.

• Diagnostic Granularity: A fault is found by an instrument or deducted by
diagnostic procedure. A fault entry in the data structure of fault management
system should be assigned with the information about how it was found, e.g., by
an instrument, diagnostic procedure, or an OS self-test.

• Fault location: The attributed location of the fault is the result of a fault detection
or a fault diagnosis procedure.

When a fault occurs in the system and is detected with the help of FMI,
the system must react and handle that fault in order to mitigate the current or
future effects it can have on the system. The information which the proposed
fault classification method offers is used in this process. The complete procedure
which allows for quick and efficient fault handling should consist of the following
steps: fault detection, fault localization, coarse-grained fault classification (before
detailed diagnostic information becomes available), immediate system response
(e.g., rescheduling a task affected by the fault), fault diagnosis, and, finally, a
conclusive fine-grained fault classification.
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6 Many-Core Resource Management for Fault Tolerance

On the architectural layer advanced CPS will rely on heterogeneous many-core
SoCs to provide the demanded throughput computing performance within the
allowed energy budget. Heterogeneous many-core architectures typically have many
redundant and distributed resources for processing, communication, memory, and
IO. This inherent redundancy can potentially be used to implement systems that
are fault tolerant and degrade gradually. To realize this potential, we combine the
FMI with run-time resource management software. First, the many-core architec-
ture is instrumented with FMI and online checkers and health monitors. As we
have explained in the previous sections, the online checkers and health monitors
report faults and physical degradation at the lower hardware layers through the
FMI that makes the information available for system and application software.
The proposed instrumentation can thus provide a system wide HM showing the
health and the functioning of the hardware resources of the running system.
It reports on faulty components and also on health issues warning about fault
expectancy. The former allows reacting on and recovering from faults whereas the
latter allows anticipating and reconfiguring before faults occur. Second, the health
information is lifted and abstracted to augment run-time resource management
software [23, 47, 48] with information about hardware resources to be used less
or entirely avoided by reconfiguring the way tasks and communications are mapped
to resources.

The resource manager partitions computation, communication, and memory
resources based on resource reservations of the application [1, 46]. The run-
time mapping algorithms of the resource management software relies on abstract
representations of task and platform graphs and are optimized for embedded
systems [48].

In [2, 49] and [45] it was shown how reconfigurable multi/many-core architec-
tures in combination with run-time resource management software can be used to
implement fault-tolerance features. This work depended on ad hoc detection and
reporting of faults and did not include health information about physical wear-out
or accelerated aging. Here an important next step is taken to combine resource
management with detailed health information systematically reported by a cross-
layered fault management infrastructure at run-time.

The run-time resource management [23, 47] is made health-aware. Figure 6
illustrates the resource management with integrated HM information. Through the
fault manager described in the previous section, measurements of health monitors
and checkers provide domain-specific and/or hardware-specific information. For
separation of concerns and extensibility, it is desired to hide this domain-specific
knowledge from the upper software layers. At the lower layers, the domain-specific
knowledge is required to map the sensor/checker data (the domain) onto a fixed
range of values. So, the health data stored in the HM is modeled as a health
function health W R ! Œ0; 1� that maps each hardware resource (provider) r 2 R
to a health value v 2 Œ0; 1�, where R is the finite set of resources in the target
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architecture. A high health value health.r/ indicates that a resource r 2 R is
functioning correctly, whereas a low health value indicates the deterioration of the
resource.

The advantages of using a health function with a range in the real numbers, as
opposed to a function with a Boolean range, is that degradation can be modeled. The
resource manager may circumvent the use of specific resources to reduce aging and
hot spots. These resources are assumed to function correct when the health function
is still positive, and can, therefore, still be activated when the system utilization
increases.

The health function can be further extended to cover more details about
the resource providers which could help the resource manager to choose best
fitting resources for each task. As Fig. 6 illustrates, the fault manager reads the
sensor/checker data out of the FMI, and processes the measurements by mapping the
outcome to the range of the health function. Multiple sensors measuring the same
hardware component should apply sensor fusion to conform to this HM function. In
this fusion, again domain-specific knowledge is leveraged to weight the importance
and possible relation between the sensors.

The health function is subsequently used in the selection process of the resource
management, in which two use cases are identified:
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1. New resource requests are handled according to the information contained in
the HM.

2. For a resource in use, if the health indicator exceeds a configurable threshold,
the resource manager will isolate the resource and attempt to reconfigure the
applications currently using the corresponding resource.

For use case (1), a new request for resources is made by an application and the
resource manager consults the RM to find the most suitable resources to fulfill
the request. Both the assignment of tasks to processing elements and inter-task
communication through the interconnect are taken into account. In this process,
the resource manager uses a cost function to determine the best fit of the (partial)
application onto the available resources of the platform. The configurable cost
function takes the health map into account to define optimization objectives such
as wear leveling. The cost function is designed to assign increasingly higher cost
to a hardware resource r 2 R, which should be used less or should not be used
according to the HM, such that

�
lim

health.r/!0
cost.r/

�
D 1

For use case (2) whenever the HM is updated with new measurements, the new
values are compared with a configurable threshold. When the threshold is exceeded,
action needs to be taken to reduce the usage of that resource or completely stop
using it. For resources currently in use possibly by several applications, this can
require one or multiple granted resource requests to be reassigned to a different
resource.

In a system including the proposed FMI and fault management approach, the
FDIR procedure is facilitated by the results of the fault classification based on
different fault categories determined by monitoring in lower layers, information
from the instruments as well as the accumulated fault statistics.

7 Deriving Adaptive Test Strategies from LTL-Specifications

To obtain confidence in the correctness of a CPS system at the behavioral layer,
model checking [13, 39] can prove that (a model of) the system satisfies desired
properties. However, it cannot always be applied effectively.

This may be due to third-party IP components for which no source code or model
is available, or due to high effort for building system models that are precise enough.
Since our System Under Test (SUT) is safety critical, we desire high confidence in
its adherence to specification '. Nevertheless, even though ' may be simple, the
implementation of the SUT can be too complex for model checking. Especially, if
it considers further signals to synchronize with other systems. And finally, model
checking can only verify an abstracted model and never the final and “live” system.
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Testing is a natural approach to complement verification, and automatic test case
generation allows to keep the effort at reasonable size. Deriving tests from a system
specification instead of the implementation, called black-box testing, is particularly
attractive as (1) tests can be generated way before the actual implementation work
starts, (2) these tests can be reused on various realizations of the same specification,
and (3) the specification is usually way simpler than the actual implementation.
In addition, the specification focuses on the most important aspects that require
intensive testing. Fault-based techniques [25], in which test cases are generated to
detect certain fault classes, are particularly interesting to detect bugs.

Various methods focusing on coverage criteria exist to generate test sets from
executable system models (e.g., finite state machines). Methods to derive tests from
declarative requirements (see, e.g., [19]) are less common, as the properties still
allow implementation freedom and, therefore, cannot be used to fully predict the
system behavior under given inputs. Thus, test cases have to be adaptive, i.e., able
to react to observed behavior at run-time. This is especially true for reactive systems
that interact with their environment. Existing techniques often get around this by
requiring a deterministic model of the system behavior as additional input [18].

In [10] we presented a new approach to synthesize test strategies from temporal
logic specification. This approach is also applicable on a CPS if a temporal logic
specification is given. The derived adaptive strategies can be used during the
development process for system verification as well as after deployment for run-
time verification to detect faults that occur only after a certain amount of time,
for example due to aging. Figure 7 outlines our proposed testing setup. The user
provides a specification ', expressing requirements for the system under test in
Linear Temporal Logic (LTL) [37]. The specification can be incomplete. The user
also provides a fault model, for which the generated tests shall cause a specification
violation, in form of an LTL formula that has to be covered.

Based on hypotheses from fault-based testing [36], we argue that tests that reveal
faults as specified by our fault models are also sensitive to more complex bugs. We
assume permanent and transient faults by distinguishing various fault occurrence
frequencies and computing tests to reveal faults for the lowest frequency for which
this is possible. Test strategies are generated using reactive synthesis [38] with
partial information [29], providing strong guarantees about all uncertainties: If the
synthesis is successful and if the computed tests are executed long enough, then
they reveal all faults satisfying the fault model in every system that realizes the
specification. Finally, existing techniques from run-time verification [9] can be used

Specification 

Fault Model Synthesis

Runtime 
Verification

Adaptive 
Test 

Strategy

System Under 
Test (SUT)

Oracle

input

ou
tp

ut

Test case 
generation

Test case executionInput Verdict

Pass/
Fail/
Inconcl.

Fig. 7 Synthesis of adaptive test strategies from temporal logic specifications [10]



32 G. Aleksandrowicz et al.

to construct an oracle that checks the system behavior against the specification while
tests are executed.2

If the specification is incomplete, tests may have to react to observed behavior
at run-time to achieve the desired goals. Such adaptive test cases have been studied
by Hierons [21] from a theoretical perspective, however, relying on fairness (every
non-deterministic behavior is exhibited when trying often enough) or probabilities.

Testing reactive systems can be seen as a game between two players: the tester
providing inputs and trying to reveal faults, and the SUT providing outputs and
trying to hide faults, as pointed out by Yannakakis [52]. The tester can only
observe outputs and has, therefore, partial information about the SUT. The goal
for the game is to find a strategy for the tester that wins against every SUT. The
underlying complexities are studied by Alur et al. [5]. Our work builds upon reactive
synthesis [38] (with partial information [29]). This can also be seen as a game,
however, we go beyond the basic idea. We combine the concept of game theory
with fault models defined by the user. Nachmanson et al. [34] synthesize game
strategies as tests for non-deterministic software models. Their approach, however,
is not fault-based and focuses only on simple reachability goals.

To mitigate scalability issues, we compute test cases directly from the provided
specification '. Our goal is to generate test strategies that enforce certain coverage
objectives independent of any freedom due to incomplete specification. Some uncer-
tainties about the behavior of the SUT may also be rooted in uncontrollable
environment aspects like weather conditions. For our proposed testing approach,
this makes no difference.

We follow a fault-centered approach. The definition of the fault class is a
composition of the fault kind and the fault frequency. While the fault kind expresses
the type of the fault, such as a bit flip or a stuck-at fault, the fault frequency describes
the frequency of the fault being present in the system. This can be (1) a permanent
fault that is present all the time, (2) a fault that occurs from some point onwards, (3)
a fault that occurs again and again, or even (4) a fault that occurs only once in the
future. A test strategy that is capable of detecting a fault that occurs only at a low
frequency, for example only once in the future, is also capable of detecting a fault
that occurs at a higher frequency, for example from some point in time onwards.
Thus, the goal is to derive a strategy for the lowest fault-frequency possible.

Certain test goals may not be enforceable with a static input sequence. We thus
synthesize adaptive test strategies that direct the tester based on previous inputs and
outputs and, therefore, can take advantage of situational possibilities by exploiting
previous system behavior. The derived strategies force the system to enter a state in
which it has to violate the specification if the fault is present in the system.

2The semantics of LTL are defined over infinite execution traces; however, we can only run the
tests for a finite amount of time. This can result in inconclusive verdicts [9]. To overcome this
problem, we refer to existing research on interpreting LTL over finite traces [14, 15, 20].
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Our generated test strategies reveal all instances of a user-defined fault class for
every realization of a given specification and do not rely on any implementation
details.

8 Parameter Synthesis for CPS

Many problems in the context of computer-aided design and verification of CPS
can be reduced to deciding the satisfiability of logic formulæ modulo background
theories [8]. In parameter synthesis, the logic formulæ describe how the CPS evolves
over time from a set of initial states, where some parameters are kept open and have
to be filled such that none of a given set of bad states is ever reached. Parameter
synthesis can be effectively reduced to solving instances of 98-queries. An 98-
query asks for the existence of parameter values such that for all possible state
sequences, the CPS avoids reaching a bad state.

Solving such 98-queries is especially challenging in the context of CPS, where
the variables are quantified over countably infinite or uncountably infinite domains.
Different approaches for parameter synthesis for hybrid automata, e.g., [11, 12, 17],
have been proposed. The approaches considered the problems of computing one
value for the parameters as well as all possible parameter values, but are restricted
to hybrid automata with linear and multiaffine dynamics. We propose a Satisfiability
Modulo Theories (SMT)-based framework for synthesizing one value for open
parameters of a CPS modeled as logic formulæ [40] using Counterexample-Guided
Inductive Synthesis (CEGIS) [44] and introduce the notion of n-step inductive
invariants to reason about unbounded CPS correctness.

CEGIS CEGIS is an attractive technique from software synthesis to infer param-
eters in a sketch of a program leveraging the information of a provided correctness
specification. In software synthesis, CEGIS was able to infer those parameters in
many cases, where existing techniques from quantifier elimination failed.

Suppose that Q, I, and K are the sets of all possible states, inputs, and parameter
valuations, respectively. We use the correctness formula correct W I0 � K !
B; .i0; k/ 7! correct.Oi0; Ok/ that evaluates to true if and only if the CPS with concrete
parameter values Ok 2 K is correct when executed on the concrete input sequence
Oi0 2 I0, where I0 D Q � In. The basic idea of CEGIS is to iteratively refine candidate
values for parameters based on counterexamples until a correct solution is obtained.
The CEGIS loop is depicted in Fig. 8. The loop repeats two steps to compute
parameter values Ok 2 K such that 8i0 2 I0 W correct.i0; Ok/ holds and maintains
a database D � I0 of concrete parameter values, which is initially empty. The
database is used to lazily approximate the domain of I0 with a small set of values.
In the first step, a candidate parameter Ok is computed such that

V
Oi02D correct.Oi0; Ok/

holds, i.e., the parameter values Ok guarantee correctness of the CPS for (at least)
all input sequences stored in the database D. The candidate parameters are then
verified by checking if a counterexample Oi0 exists that refutes 8i0 2 I0 W correct.i0; Ok/
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Fig. 8 Counterexample-guided inductive synthesis (CEGIS) [44]

considering the entire domain I0 of input sequences. If so, the counterexample Oi0
is added to the database D. Otherwise, if no counterexample exists, the approach
terminates and returns the parameters Ok. In the general case, the CEGIS loop has
three possible outcome: (1) parameters Ok 2 K can be found such that the formula
8i0 2 I0 W correct.i0; Ok/ becomes true (Done), (2) the unsatisfiability of the formula
9k 2 K W 8i0 2 I0 W correct.i0; k/ is proven because no new parameters can be
computed (Fail), or (3) the CEGIS loop does not terminate but refines the candidate
values for the parameters forever. To guarantee termination of the loop, at least one
of the two involved domains, K or I0, has to be finite. However, even if both domains
are infinite, the approach is in many cases able to synthesize parameters.

n-Step Inductive Invariants The correctness of a CPS is defined by using an
invariant-based approach. A user symbolically defines the set of all possible initial
states init W Q � K ! B, the set of all safe states safe W Q � K ! B, the
sets of all states of an inductive invariant inv W Q � K ! B, and a transition
function T W Q � I � K ! Q of the CPS in the form of logic formulæ modulo
theories. By induction, a CPS cannot visit an unsafe state and is correct if:

1. all initial states satisfy the invariant, i.e.,

A.q; k/ W,
�
init.q; k/ ! inv.q; k/

�
;

2. all states that satisfy the invariant are also safe, i.e.,

B.q; k/ W,
�
inv.q; k/ ! safe.q; k/

�
;

3. from a state that satisfies the invariant, the invariant is again satisfied after at
most n steps of the transition relation T and all states that can be reached in the
meantime are safe, i.e.,

C.q0; i1; : : : ; in; k/ W,
�
inv.q0; k/ !

n_

jD1

inv.qj; k/ ^
j�1^

lD1

safe.ql; k/
�
;
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where qj is an abbreviation for T.qj�1; ij; k/ for all j > 0.

The CPS is correct if concrete parameter values Ok 2 K exist such that

8q0 2 Q W 8i1; : : : ; in 2 I W correct.q0; i1; : : : ; in; Ok/

holds, where the correctness formula

correct.q0; i1; : : : ; in; Ok/ W,
�

A.q0; Ok/ ^ B.q0; Ok/ ^ C.q0; i1; : : : ; in; Ok/
�

is defined over sequences of inputs .q0; i1; : : : ; in/ 2 I0 of n steps.

8.1 Heuristics and Implementation

We implemented the CEGIS loop depicted in Fig. 8 as a proof-of-concept tool,
ParSyn-CEGIS,3 based on an SMT-solver. The SMT-solver is used to find concrete
parameters and counterexamples. In case of CPS typically infinite domains are
considered such that the CEGIS loop may not converge. To improve convergence in
practice, we developed three simple heuristics:

1. Counterexample randomization: To avoid the generation of too similar coun-
terexamples, the ParSyn-CEGIS attempts to randomize every second coun-
terexample. In an iterative loop, for each value of the counterexample, a
random value of the same type is generated and substituted. If the adapted
counterexample still violates the correctness check, i.e., is still a counterexample,
the randomized value is kept. Otherwise, it is rejected.

2. Restart strategy: Inspired by the implementation of today’s solvers for Boolean
satisfiability, we implemented a restart strategy. The restart strategy aids the
SMT-solver to recover from learned information that does not help in deciding
the overall 98-query. When a restart happens, all counterexamples are removed
from the database and the CEGIS loop starts from the beginning without a priori
knowledge. After each restart, the period of the restart is increased.

3. Demand for progress: Given two subsequent values Oka and Okb of the same
parameter, we measure their progress by progress.Oka; Okb/ D kOka � Okbk. This
measure is used to restart the synthesis procedure when the CEGIS loop gets
stuck by producing similar counterexamples, but counterexample randomization
is not effective. In each iteration, for the last pair of parameter values Okc�1 and
Okc, the progress value progress.Okc�1; Okc/ is computed. If the progress value
repeatedly falls below a fixed progress threshold ı, e.g., more than 10 times,
a restart is initiated.

3ParSyn-CEGIS, https://github.com/hriener/parsyn-cegis.

https://github.com/hriener/parsyn-cegis


36 G. Aleksandrowicz et al.

Parameter synthesis automates the task of finding good values for important
design parameters in CPS and eliminates the error prone design steps involved in
determining those parameter values manually.

9 Conclusions

Within the IMMORTAL project, we have identified several challenging problems
in the context of reliability and automated debug considering advanced CPS
throughout the stack of layers and the design flow. For each of these problems
we presented in this chapter a glimpse on how to solve the issues and how tool
automation can improve the overall design process. For further details on each of
the solutions we refer to the respective publications.

Overall, reliable CPS design and the corresponding design automation is a vivid
and ongoing research topic. CPS design automation links traditional hardware-
oriented aspects with software engineering and the large body of work in control
theory.
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on a single chip. This leads to increased risk of faults, e.g., due to radiation,
aging, etc. Such a fault can lead to an observable error and failure of the system.
Therefore, an error effect simulation is important to ensure the robustness and safety
of these systems. Error effect simulation with Virtual Prototypes (VPs) is much
faster than with RTL designs due to less modeling details at TLM. However, for
the same reason, the simulation results with VP might be significantly less accurate
compared to RTL. To improve the quality of a TLM error effect simulation, a fault
correspondence analysis between both abstraction levels is required. This chapter
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1 Introduction

Ensuring the functional safety of electronic systems becomes one of the most
important issues nowadays, as these systems are being more and more deeply
integrated into our lives. Even if a system can be proved to perform its intended
functionality correctly, failures are still possible due to hardware (HW) faults
caused, e.g., by radiation or aging. The risk of such faults is rapidly increasing with
the raising complexity of design and technology scaling. To evaluate and facilitate
the development of safety measures, fault injection is a widely accepted approach,
which is also recommended in different functional safety norms such as IEC 61508
and ISO 26262.

Traditional HW fault injection approaches operate on low levels of abstraction
such as gate level or Register Transfer Level (RTL). While physical faults can be
quite accurately modeled at these abstraction levels, the slow simulation speed
becomes a major bottleneck for modern systems. This used to be a problem for
software (SW) development and system verification as well, until the emergence of
SystemC Virtual Prototypes (VPs). VPs are basically full functional SW models of
HW abstracting away micro-architectural details. This higher level of abstraction,
often termed as Transaction-Level Modeling (TLM) [12], allows significantly faster
simulation compared to RTL. Therefore, safety evaluation using VP-based fault
injection, envisioned as error effect simulation in [20], is a very promising direction.

Fault injection techniques for SystemC have attracted a large number of work,
see e.g. [16, 19, 21, 24]. They form a technical basis for error effect simulation, but
do not focus on the core problem: the higher level of abstraction of TLM poses a big
challenge in error modeling. Please note that we use the term “fault” for RTL and
“error” for TLM due to the fact that TLM is just a modeling abstraction. A high-
level error model, if not carefully designed, would yield significantly different
simulation results compared to a low-level fault model [4, 17]. This would make the
safety evaluation results using VPs to become misleading. Unfortunately, deriving
an accurate high-level error model is very difficult [4, 17].

In this chapter, we examine the idea of a novel cross-level fault correspondence
analysis to aid the design of such error model. The prerequisite of our analysis is
the availability of an RTL model and its corresponding TLM model. Then, for a
given RTL fault model, our analysis automatically identifies for an RTL fault a set
of candidates for error injection in the TLM model. These candidates are potentially
equivalent to the RTL fault, in the sense that the error-injected TLM model would
produce the same failure as the fault-injected RTL model.

The core idea of this RTL-to-TLM fault correspondence analysis is inspired by
the concept of formal fault localization (see [9] for C and [13] for SystemC TLM).
These approaches automatically identify candidates for modifications in the model
under verification, which would make a given set of failing testcases to become
passing testcases. Such a candidate potentially points to the location of the bug that
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causes a failure. Our analysis is dual to this: Given successful TLM simulations,1 we
search for locations to inject an error to produce the same failure observed in faulty
RTL simulations. Hence, we can apply the same set of techniques: instrumenting the
TLM model to include nondeterministic errors and leveraging existing TLM model
checkers to compute the candidates.

The chapter also presents first results of a case study on the Interrupt Controller
for Multiple Processors (IRQMP) of the SoCRocket VP, which is being used by
the European Space Agency [22], to demonstrate the feasibility of the analysis.
In particular, we implement the cross-level analysis on top of the recent symbolic
simulation approach for SystemC [14, 15] and apply our analysis to find TLM error
injection candidates for transient bit flips at RTL. To the best of our knowledge, it
is the first time such results on fault correspondence between TLM and RTL are
reported.

2 Related Work

As mentioned earlier, a large number of fault injection techniques for SystemC
TLM models exists. These approaches assume some TLM error models without
qualitative or quantitative assessment of their correspondence to RTL faults.
Beltrame et al. [1] includes a comprehensive list of TLM errors that might result
from RTL bit flips. The paper also provides a set of guidelines on how to (manually)
derive corresponding TLM errors, whereas our analysis is automated.

Another line of work is mutation analysis for SystemC TLM models [3, 18, 23].
At the heart of any mutation analysis is also an error model. However, the purpose of
such model is to mimic common design errors, but not HW faults caused by external
impact.

The most close work to ours is the one in [2], which proposes an automatic
RTL-to-TLM transformation to speed-up RTL fault simulation. The transformation
produces an equivalent TLM model from each fault-injected RTL model. The
obtained results can be mapped back to RTL. However, this approach relies on
a particular RTL-to-TLM transformation. Such transformation might not provide
the best possible speed-up compared to hand-crafted TLM models. In contrast to
our analysis, this approach is not applicable when the corresponding TLM model
already exists.

1A successful TLM simulation produces the same output as RTL simulation under the same inputs.
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3 Preliminaries

In this section we first briefly describe the interrupt controller IRQMP of the
SoCRocket VP used later in the case study. The second half of this section briefly
describes the (extended) intermediate verification language to enable the formal
representation of TLM models as well as leveraging advanced symbolic execution
techniques.

3.1 Interrupt Controller for Multiple Processors (IRQMP)

The IRQMP is an interrupt controller from the SoCRocket VP supporting up to 16
processors [22]. It consists of a register file, several input and output wires, and an
APB Slave bus interface for register access. The register file contains shared and
processor-specific registers. Every register has a bit width of 32. Each bit naturally
represents an interrupt line.

The IRQMP supports incoming interrupts (using the irq_in wire or force register)
numbered from 1 to 31 (interrupt line 0 is reserved/unused). Lines 15:1 are regular
interrupts and lines 31:16 are extended interrupts. In regular operation mode,
IRQMP ignores all incoming extended interrupts. The irq_req and irq_ack wires
are connected with every processor and allow to send interrupt requests and receive
acknowledgements.

The functionality of the IRQMP is to process incoming interrupts by applying
masking and prioritization of interrupts for every processor. Prioritization of
multiple available interrupts is resolved using the level register. A high (low) bit
in the level register defines a high (low) priority for the corresponding interrupt line.
On the same priority level, interrupt with larger line number is higher prioritized.
See the specification [10] of the IRQMP for more details.

3.2 Extended Intermediate Verification Language (XIVL)

The XIVL has been proposed in [15] as an extension to the SystemC Intermediate
Verification Language (IVL) [14] to act as high-level intermediate representation
with formal verification support for SystemC TLM. In essence, the XIVL provides
a small core of instructions to capture the cooperative multi-threaded simulation
semantics of SystemC and supports all arithmetic and logic operators of C++. For
verification purposes it provides symbolic expressions as well as the assume and
assert functions with their usual semantics. Control flow is modeled using high
level control flow structures. A small set of object-oriented programming features—
including virtual functions, inheritance, and dynamic dispatch—is supported for
modeling TLM designs more naturally.
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Symbolic simulation for SystemC as proposed in [5, 6, 11, 14] essentially
combines symbolic execution with complete exploration of all process schedules.
Partial Order Reduction techniques are employed to improve scalability by pruning
redundant schedules [7, 8].

A formal verification approach based on symbolic simulation has been presented
in [15] and demonstrated for the IRQMP TLM model. In this work, we instrument
the available TLM model to include nondeterministic errors and leverage the
existing TLM model checker based on symbolic simulation for fault localization.

4 RTL-to-TLM Fault Correspondence Analysis

Our proposed RTL-to-TLM fault correspondence analysis allows to find errors in a
TLM model that corresponds to faults in the RTL model. We assume that the RTL
and TLM model are functionally equivalent, i.e., they produce the same outputs
when given the same inputs. Furthermore, we assume that a set of (representative)
inputs, e.g., in the form of testcases, is available for the RTL or TLM (since
both use the same inputs) model. These inputs should preferably cover a large set
of functionality of the design. Similarly, we assume that a set of fault injection
locations is available for the RTL model. Otherwise, the fault injection locations
can be obtained by tracing the execution of the RTL model, e.g., using an observer
class, based on the available testcases. Please note that a fault injection location
consists of three pieces of information: (1) a source line, (2) an injection time, i.e., a
number that denotes which execution of this source line should be fault injected,
and (3) the bit position which shall be flipped. The reason for information (2) is that
we consider transient faults in this work.

4.1 Correspondence Analysis Overview and Algorithm

Figure 1 shows an overview of our analysis approach. A corresponding algorithm
is shown in Fig. 2. It computes a set of corresponding error candidates on TLM
level for every injected fault on RTL. The algorithm considers every fault injection
location L on the RTL model. First we construct the faulty RTL model with respect
to L (Line 4). In our implementation, we attach a fault injection class as observer to
our RTL model that can inject an error at runtime. Then we simulate the correct and
faulty RTL model with the same input. There are two possible cases: (1) Both RTL
models produce the same output. In this case the injected fault had no observable
effect and simulation is repeated with a different input (Line 5). (2) Otherwise, both
RTL models produce a different output. Then we apply a formal fault localization
analysis based on symbolic simulation on the TLM model (Line 9) to produce a
set of possible corresponding error locations C on the TLM model. Essentially, all
these reported error locations C produce the same failure, i.e., same output, as the
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Fig. 1 Fault correspondence analysis overview

1 result ¿ /* Mapping from RTL fault injection location to set
of corresponding TLM error injection candidates */

2 for L 2 RTL-fault-injection-locations do
/* Start with empty result set for L */

3 resultŒL� ¿
4 RTL-ModelE RTL-Model with L injected
5 for input 2 testcases do

/* Check if RTL fault L has observable effect */
6 output simulate(RTL-Model, input)
7 outputE simulate(RTL-ModelE, input)
8 if output¤ outputE then
9 candidates fault-localization-analysis(TLM-Model, input, outputE)

10 if result[L] = ¿ then
/* First set of candidates */

11 result[L] candidates
12 else

/* Combine with existing set */
13 result[L] result[L] \ candidates

14 if result[L] = ¿ then
/* No corresponding TLM error for L found, check

next RTL fault */
15 break

Fig. 2 Fault correspondence analysis
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faulty RTL model for the given input. The set C is integrated into the result set for
L by computing a set intersection (Line 13)—or simple assignment in case C is
the first result (Line 11). If the result set is empty, our analysis concludes that no
corresponding TLM error can be found for the current RTL fault and we consider
the next RTL fault. The reason is that a corresponding TLM error must produce the
same output as the faulty RTL model for all inputs. Otherwise, the result set is not
empty, we continue with the next input.

4.2 Example

Method Overview

As an example, consider a bit flip fault in the RTL model of the IRQMP (interrupt
controller, see preliminaries Sect. 3.1) when initially configuring the mask register
using a bus transfer operation as fault injection location L. Furthermore, consider
three test scenarios with different inputs:

1. Send interrupt using the irq_in (incoming interrupt) wire
2. Send interrupt using the force register
3. Send the same interrupt twice using the irq_in wire

All of these inputs result in different outputs for the RTL model with and without
injection of the fault L. In particular no interrupt is generated by the interrupt
controller for the masked interrupt line. On the TLM model, our analysis identifies
different candidates for corresponding errors. In particular, it identifies different
transient bit flip errors during computations as well as wire/bus transfer that lead
to the same observable behavior.

The results are summarized in Table 1. For the first and second input we obtain
multiple possible error locations in the TLM model. By sending the same interrupt
twice (third input) to the interrupt controller, the effects of a transient computation
error and non-related transfer error are eliminated. By computing the intersection
of all possible error locations for these inputs, the corresponding TLM error is
obtained—bus transfer error during configuration of the mask register.

Fault Correspondence

To further illustrate this fault injection example, Figs. 3 and 4 show relevant code
of the IRQMP for configuring the mask register at RTL and TLM, respectively. The
source line where the fault has been injected at RTL and the corresponding error
location at TLM are highlighted. The RTL code is available in VHDL, and the TLM
code in SystemC.

The RTL code stores internal signals for registers separated for regular (lines
15:1, reg type) and extended interrupts (lines 31:16, ereg type). The processing
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Table 1 Corresponding
TLM error injection
candidates (corresponding
error highlighted in bold)

TLM error injection location
Inputs
1 2 3

Bus transfer

Mask register configuration X X X
Force register configuration X

Wire transfer

Incoming interrupt wire X

Computation

Prioritization logic 1 X X

Prioritization logic 2 X X

1 -- combinatorial VHDL process, which essentially contains the whole logic
of the IRQMP - sensitive on the reset signal, update of internal
signals as well as incoming bus and interrupt signals

2 comb : process(...)
3 -- send out current internal signal values and compute new values which

will overwrite the current values in the next clock cycle
4 variable v : reg_type; -- registers to store regular interrupt lines

for local computation
5 variable v2 : ereg_type; -- registers to store extended interrupt lines

for local computation
6 begin
7 -- ... prioritize interrupts, register read ...
8
9 -- register write

10 if ((apbi.psel(pindex) and apbi.penable and apbi.pwrite) = ’1’ and
11 (irqmap = 0 or apbi.paddr(9) = ’0’)) then -- essentially, check

that bus is enabled and used in write mode
12 case apbi.paddr(7 downto 6) is -- decode target register
13 -- ...
14 when "01" => -- write to processor specific mask register
15 for i in 0 to ncpu-1 loop -- iterate over all processors
16 if i = conv_integer( apbi.paddr(5 downto 2)) then -- decode and

check target processor
17 v.imask(i) := apbi.pwdata(15 downto 1); -- write to mask of

processor i, RTL fault injected here
18 if eirq /= 0 then -- check if extended interrupts are also

handled
19 v2.imask(i) := apbi.pwdata(31 downto 16); -- in this case

also update the extended interrupt lines of the mask
register

20 end if;
21 end if;
22 end loop;
23 -- ...
24 end case;
25 end if;
26
27 -- ... register new interrupts, interrupt acknowledge, reset ...
28 end process;

Fig. 3 Example IRQMP code excerpt in VHDL showing register configuration, to illustrate fault
injection on RTL (line with fault injection highlighted)
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1 // generic (using templates) and re-usable TLM register class, the
inherited class provides the basic interface and some default
implementation

2 template<typename DATA_TYPE>
3 class sr_register : public sc_register_b<DATA_TYPE> {
4 //...
5 public:
6 void bus_write(DATA_TYPE i) {
7 // callbacks notify observers about register access directly without

context switches
8 raise_callback(SR_PRE_WRITE);
9 // corresponding TLM error location - update the internal register

value, the write mask allows selective updates
10 this->write(i & m_write_mask);
11 // the IRQMP will trigger interrupt re-computation after the mask

register is updated
12 raise_callback(SR_POST_WRITE);
13 }
14 //...
15 }
16
17 // a register bank groups multiple registers - similarly, this is a

generic implementation
18 template<typename ADDR_TYPE, typename DATA_TYPE>
19 class sr_register_bank : public sc_register_bank<ADDR_TYPE, DATA_TYPE> {
20 typedef typename std::map<ADDR_TYPE, sr_register<DATA_TYPE> *>

register_map_t;
21 register_map_t m_register; // use a mapping (address to register) to

store registers
22 //...
23 public:
24 // bus read/write transactions matching a register address are

automatically redirected to this class
25 bool bus_write(ADDR_TYPE offset, DATA_TYPE val) {
26 sr_register<DATA_TYPE> *reg = get_sr_register(offset); // retrieve

register for the given (bus) address
27 if(reg) {
28 reg->bus_write(val); // update register value
29 }
30 return true;
31 }
32 //...
33 }
34
35 // register bank used as member variable in the IRQMP
36 sr_register_bank<unsigned int, unsigned int> r;

Fig. 4 TLM code for register configuration, showing a corresponding TLM error (line high-
lighted) for Fig. 3

logic of the IRQMP is available in the combinatorial process comb, shown in Fig. 3.
Essentially, it contains the whole logic of the RTL model and is triggered whenever
some input or internal signal changes. It is responsible for interrupt prioritization,
processing of register read/write requests and interrupt acknowledgements, and
writing output signals. Internal signal values are updated in a separate process at
every clock cycle. In particular Fig. 3 shows processing code for a bus write request
to the CPU specific mask register for normal (Line 17) and extended interrupts
(Line 19). The target register and processor are encoded in the bus address signal,
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they are decoded in Line 12 and Line 16, respectively. In this example a fault is
injected in Line 17 during mask register configuration.

The TLM implementation, shown in Fig. 4, of the IRQMP keeps a register bank
(Line 36), which essentially contains a mapping of an address value to a register
(Line 21). A bus write transaction will call the bus_write function of the register
bank (Line 25–31). The function will retrieve the target register directly based on
the write address in Line 26 and dispatch the write access to the register class in
Line 28. The register will finally update its internal value in Line 10, which is the
corresponding TLM error. Before and after the update, callback functions are used to
notify the IRQMP and update its internal state directly without any context switches.
In this case the main processing thread of the IRQMP will be notified to recompute
outgoing interrupts. Please note that the register bank implementation is not specific
to the IRQMP but a generic and reusable implementation. Furthermore, the TLM
model can update the whole register, while the RTL model only updates bits 15:1
when extended interrupts are ignored. This is not a problem, since the prioritization
logic of the TLM model simply ignores the extended interrupt lines in this case and
therefore produces the same failure (when the corresponding error is injected) as the
faulty RTL model.

5 Formal Fault Localization Analysis

This section describes our formal fault localization analysis, to obtain candidates
for corresponding TLM errors, in more detail. We reduce this problem to a
verification problem of assertion violations by encoding error injection selection
nondeterministically and adding appropriate constrains to prune invalid solutions.
Then we employ symbolic simulation for an efficient exhaustive exploration to find
all possible solutions. In general different formal verification techniques besides
symbolic simulation could also be used to find solutions.

Figure 5 shows an overview of our approach. The analysis requires the TLM
model as well as the input and output of the faulty RTL model (marked grey in
Fig. 5). We assume that the TLM model is available in the XIVL format to apply
formal analysis techniques. The TLM model contains annotations for a fine grained
selection of instruction where error injection can take place (see 1 in Fig. 5).

First a testbench is generated by using the input and output to construct an
input driver and result monitor, respectively (see 3 in Fig. 5). The testbench is also
available in the XIVL format and contains the simulation entrypoint—the main
function—which is responsible to setup all components. The result monitor contains
the assertions which constrain valid solution.

Then the TLM model and testbench are automatically combined to a complete
TLM model. During this process, the TLM model will be instrumented with
symbolic error injection logic to nondeterministically select an error injection
location for a transient one bit error (see 3 in Fig. 5). The annotations on the TLM
model are used to guide the instrumentation.
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Fig. 5 Formal fault localization analysis overview

Finally, the complete TLM model is passed to our symbolic simulation engine for
a formal analysis. Based on the symbolic error injection logic instrumented into the
TLM model, the symbolic simulation will find and report all concrete error injection
locations that will cause the TLM model to produce the same failure, i.e., same
output, as the faulty RTL model for the given input.

In the following we will discuss (1) annotations, (2) symbolic error injection
logic, and (3) testbench encoding in more detail.

5.1 Annotations

We use annotations in the TLM model for a fine grained control of error injection.
Assignment instructions are annotated to denote that error injection can take place.
During instrumentation, every annotated assignment will be modified to either stay
unchanged or toggle a bit flip in the result—based on a nondeterministic choice
during analysis (at runtime). For convenience, we also support function annotations.
These will be propagated to all assignments in the function. Using annotations is a
flexible approach to control error injection more precisely. These annotations can
happen manually, or using a static analysis that modifies the code automatically,
e.g., based on a specification provided by the user. This ensure that meaningful
locations for error injection are reported—otherwise the initial state or the output
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values would be modified. Furthermore, injection can be selectively activated and
deactivated at runtime, based on a boolean global variable. This allows to run the
same code blocks, e.g., functions, with and without error injection. We use it to
deactivate error injection during initialization of the TLM model. The reason is
that the same code is also used during testbench specific configuration, where error
injection should be allowed.

We use a reusable modeling layer for registers and wires based on [15], which
are used by many TLM peripheral models including the IRQMP. Error injection
in bus and wire transfer operations, as well as many computations can be handled
by injecting errors in the modeling layer itself. An example for the register class is
shown in Fig. 6. The injectable annotation on the set_bit function is propagated to
both assignments.

1 // XIVL implementation of the TLM register class
2 struct Register {
3 // write mask allows selective updates on bus access
4 uint32_t value;
5 uint32_t write_mask;
6
7 bool get_bit(Register *this, uint32_t index) {
8 return this->value & (1 << index);
9 }

10
11 @injectable
12 void set_bit(Register *this, uint32_t index, bool value) {
13 // injectable annotation is automatically propagated to both

assignments
14 if (value) {
15 // set bit
16 this->value |= 1 << index;
17 } else {
18 // clear bit
19 this->value &= �(1 << index);
20 }
21 }
22
23 uint32_t read(Register *this) {
24 return this->value;
25 }
26
27 void write(Register *this, uint32_t value) {
28 // errors can be injected at assignments marked with @injectable
29 @injectable this->value = value;
30 }
31
32 void bus_write(Register *this, uint32_t value) {
33 // ... PRE/POST write callback handling omitted in this example ...
34 @injectable this->value = value & write_mask;
35 }
36 }

Fig. 6 Excerpt of an annotated TLM register class in XIVL
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5.2 Symbolic Error Injection Logic

We integrate a set of global variables and functions, shown in Fig. 7, into the
complete TLM model for symbolic error injection. In particular the functions
inject_bitvector_error and inject_bool_error are used from within the TLM model.
Consider again the example in Fig. 6. For example, the assignment @injectable
this->value D value; in the write function in Line 29 is transformed to this->value
D inject_bitvector_error(value, 32); when annotations are resolved during instru-
mentation.

The inject_bitvector_error function (defined in Fig. 7) expects two arguments, an
integer and its bitwidth. The bitwidth argument denotes the range of bits from which
one is selected nondeterministically for flipping. The bitwidth argument is auto-
matically generated based on static type informations during the instrumentation
process, which rewrites the annotations. By using a 64 bit integer type as argument
and return value, we also automatically support all integer types with smaller
bitwidth. For this case study, 32 bit values are sufficient. The inject_bool_error
function in principle works analogously.

For convenience we use short names in Fig. 7 for the global variables, in the TLM
model they have a unique name prefix to avoid name clashes with existing code.
The boolean active variable allows to selectively toggle error injection and thus
control it more precisely. It is accessed by means of the activate/deactivate_injection
functions defined in Line 8 and Line 4, respectively.

The condition variable is initialized with a symbolic integer value in Line 15
and together with the id variable allows nondeterministic selection of an injection
location. This works as follows: Consider an invocation of inject_bitvector_error
and assume that active is true. If no error has been injected yet, then both branch
directions in Line 33 are feasible, i.e., condition D id can evaluate to true and
false. Therefore, symbolic execution will split into two independent paths ST and
SF, respectively, and explore both branch directions. This will update the path
conditions of ST and SF with condition D id and condition ¤ id, respectively.
Please note, that id is a concrete integer value in this case, e.g. the number 4. Since
id is incremented on every call of inject_bitvector_error, the true branch of the if
statement in Line 33 becomes infeasible for the ST path and all its descendants.
Therefore, at most a single error is injected on every execution path. The location
variable stores a copy of the injection id for debugging purposes.

The @track instruction is specifically recognized by our symbolic simulation
engine and records a snapshot of all instruction pointers of the callstack of the
currently executed thread, i.e., essentially the currently executed instruction in the
active thread and all of its called functions. This allows to pinpoint the error injection
location for later inspection.

The function flip_single_bitvector_bit is used in Line 39 as a helper function
to inject a single bit error into an integer variable. It creates and constrains a
symbolic integer value to nondeterministically select a single bit in the range
defined by the bitwidth argument (Line 20–21). The global bit variable records
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1 // dynamically toggle error injection
2 bool active = false;
3
4 void deactivate_injection() {
5 active = false;
6 }
7
8 void activate_injection() {
9 active = true;

10 }
11
12 // variables store injection choices for inspection and ensure that only

single error is injected
13 int id = 0;
14 int location = -1;
15 int condition = ?(int);
16 int bit = -1;
17
18 int64_t flip_single_bitvector_bit(int64_t val, uint8_t bitwidth) {
19 // non-deterministically choose a single bit in *bitwidth* to flip
20 uint8_t x = ?(uint8_t);
21 assume (x >= 0 && x < bitwidth);
22 // perform the actual bit flip
23 val = val ^ (1 << x);
24 // store choice for later inspection
25 bit = x;
26 // result is symbolic due to non-deterministic choice
27 return val;
28 }
29
30 int64_t inject_bitvector_error(int64_t val, uint8_t bitwidth) {
31 // unique id ensures only a single error is injected
32 id += 1;
33 if ((condition == id) && active) {
34 // record the injection choice for later inspection
35 @track "one bit error injection";
36 location = id;
37
38 // perform a non-deterministic bit flip
39 val = flip_single_bitvector_bit(val, bitwidth);
40 }
41 return val;
42 }
43
44 bool inject_bool_error(bool val) {
45 // essentially similar to injecting a bitvector error
46 id += 1;
47 if ((condition == id) && active) {
48 @track "boolean error injection";
49 location = id;
50
51 val = !val;
52 }
53 return val;
54 }

Fig. 7 Encoding details for transient one bit error injection
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the nondeterministic choice in Line 25 for later inspection (eventually the SMT
solver will provide concrete values for nondeterministic choices). Based on the
nondeterministic choice, the function performs the bit flip in Line 23 and returns
the result. Please note that the result itself becomes a symbolic expression.

5.3 Testbench

This section provides more details on the testbench focusing on assertion generation
to guide the formal analysis. For illustration purpose, we discuss a (simplified)
concrete example testbench for the IRQMP. Essentially, the input specifies incoming
interrupts for the IRQMP and the output is a prioritized list of interrupt requests
generated by the IRQMP.

When sending the interrupt mask 0b110 as input and injecting a fault in the RTL
model that results in wrong prioritization, the output Œ2; 3� is observed instead of
the expected output Œ3; 2�—since higher interrupt lines have higher priority. Based
on the input and faulty output the testbench is constructed. The monitoring logic
records the observed interrupts in an array irq. Furthermore, it keeps track of the
number of received interrupts in the num_irqs variable. Finally, the monitor asserts
that ((irq[0] ¤ 2) jj (irq[1] ¤ 3) jj (num_irqs ¤ 2)) holds at the end of simulation.
Essentially, it asserts that the observed output for the TLM model is not equal to the
output of the faulty RTL model. Thus, the symbolic simulation engine will search
for all possible error inject locations that violate the assertion, i.e., produce the same
failure at TLM as the faulty RTL model.

As an optimization, to prune irrelevant search paths which cannot produce the
output of the faulty RTL model, we place assume instructions in the monitor. For
this example, we would assume that the first received interrupt is 2 and the second
is 3. Furthermore, we would assume that num_irqs < 2. Then a simple assert
(false); can be placed at the end of simulation. Using stepwise assumptions during
symbolic simulation, instead of a single assert in the end, can significantly reduce
the considered search space, by pruning irrelevant search paths early.

6 Case Study

We have evaluated our proposed fault correspondence analysis on the IRQMP model
from the SoCRocket VP [22] as a case study. Our formal fault localization analysis
is based on symbolic simulation approach of [14, 15]. In the following we report
first experimental results for our proposed approach.
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6.1 Experiments

All experiments were performed on an Intel 2.6 GHz machine with 16 GB RAM
running Linux. We employ Z3 v4.4.1 as our SMT solver.

For the experiments we use a set of representative test scenarios to cover different
functionality of the IRQMP. Every scenario is using different inputs. Incoming
interrupts are sent from the testbench to the IRQMP via register access (using a bus-
transfer operation) or by writing to the irq_in wire. Furthermore, different priority
levels are tested and resending of interrupt requests. Please note, all tests only use a
single CPU and do not consider extended interrupts. The reason is that the RTL and
TLM model are not functionally equivalent when using these features.

We use a set of representative fault injection locations for the RTL model. For
every of these fault locations, a fault is injected in the RTL model for every test
scenario. Table 2 shows a summary of our experimental results for injecting a
bit flip during register configuration, interrupt prioritization computation as well
as interrupt sending and acknowledgment. In particular, the following faults are
injected:

1. a bit is flipped in the mask register, therefore the corresponding interrupt line is
not processed or additional interrupt line activated;

2. a bit is flipped in the force register, therefore an additional interrupt needs to be
processed or is omitted;

3. an incoming interrupt line is flipped, which has similar effect as the previous
fault, but covers different functionality of the IRQMP;

Table 2 Combined results of experiments (runtimes in seconds)

Average runtime Sym. error
injections

SMT
queries

TLM errors

RTL fault location Type TOTAL SMT Max Min Result

(1) Mask register
configuration

BT 285.86 184.18 162 30,992 6 1 1

(2) Force register
configuration

BT 317.88 210.14 196 34,690 7 4 4

(3) Incoming
interrupt wire

WT 317.80 207.18 166 35,057 6 2 2

(4) Incoming
interrupt wire reset

WT 690.74 454.03 311 74,595 0 0 0

(5) Missing
acknowledgement

WT 395.10 262.00 211 42,839 7 6 6

(6) Wrong
acknowledgement

WT 363.81 241.43 211 41,502 1 1 1

(7) Prioritization
logic 1

Comp 209.41 154.01 127 21,856 12 4 4

(8) Prioritization
logic 2

Comp 373.88 242.48 201 40,538 9 0 0
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4. a bit is flipped when resetting the incoming interrupt lines to zero;
5. the activation signal of the active interrupt acknowledgment wire is flipped,

therefore an acknowledgment is missed;
6. a bit is flipped when sending the acknowledgment, this results in a wrong

interrupt being acknowledged.
7. a bit is flipped when computing the interrupt prioritization, therefore a wrong

interrupt is sent or the order of two incoming interrupts is changed (e.g., flipping
the second bit in 0b11 results in 0b01, thus interrupt line 1 is sent first, even
though line 2 has higher priority—since line 2 is still in the pending register, it
will eventually be sent out too);

8. similar to the previous one, but at different location, where interrupts are
interpreted as number instead of lines, e.g., 0b11 is interpreted as number 3
instead of interrupt lines 1 and 2;

Essentially, Table 2 combines the analysis results for all test scenarios for every fault
injection location and reports the average values over all analysis runs. The first
column shows a description of the RTL fault. The second column shows the type
of the fault: BT=Bus Transfer, WT=Wire Transfer, and Comp=Computation. The
third and fourth columns show the average runtime (in seconds), which is further
divided into total analysis and SMT time. The SMT time shows how much of the
analysis time is spent with solver queries. The number of solver queries is reported
in the column SMT Queries. The column Sym. Error Injections shows how many
errors have been injected during analysis of the TLM model. Please note that every
error injection represents a nondeterministic bit flip. Finally, the column TLM Errors
shows the maximum, minimum, and result of error injection locations detected on
the TLM model. The result denotes the number of TLM errors when computing
the intersection of TLM errors for every test scenario. In other words the result
column denotes the number of candidates for corresponding TLM errors found by
our analysis.

For the RTL faults 4 and 8, no corresponding TLM errors are found (result
column contains 0). The reason is that the TLM model is designed on a higher level
of abstraction. For performance reasons callbacks are used that directly modify the
internal model state without any delta cycles and context switches. Therefore, in
case of RTL fault 4, a reset of the incoming interrupt lines is not necessary (and not
available in the TLM model - setting the interrupt lines to a specific value is only
applied once and not permanently until change). In the other case (RTL fault 8)
it is due to a signal line where an error effect is delayed and propagated across a
delta cycle. For both cases, it is possible that the RTL fault corresponds to multiple
simultaneous TLM errors. For their localization, the symbolic error injection logic
must be extended to support multiple errors. This extension is left for future work.
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7 Conclusion

In this chapter we proposed an RTL-to-TLM fault correspondence analysis to
improve the quality of error effect simulation using VPs. We employ formal methods
to identify TLM error injection candidates for transient bit flips at RTL. First exper-
iments on the IRQMP from the SoCRocket VP demonstrated the applicability and
effectiveness of our approach in finding a small set of candidates for corresponding
TLM errors.
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Error-Based Metric for Cross-Layer Cut
Determination

A. Rafiev, F. Xia, A. Iliasov, R. Gensh, A. Aalsaud, A. Romanovsky,
and A. Yakovlev

Abstract With the increase of system complexity in both platforms and applica-
tions, power modelling of heterogeneous systems is facing grand challenges from
the model scalability issue. To address these challenges, this chapter studies two
systematic methods: selective abstraction and stochastic techniques. The concept
of selective abstraction via black-boxing is realised using hierarchical modelling
and cross-layer cuts, respecting the concepts of boxability and error contamination.
The stochastic aspect is formally underpinned by Stochastic Activity Networks
(SANs). The proposed method is validated with experimental results from Odroid
XU3 heterogeneous 8-core platform and is demonstrated to maintain high accuracy
while improving scalability.

Keywords Extra-functional properties • Power modelling • Task affinity • Hier-
archical modelling • Selective abstraction • Model scalability • Error contamina-
tion • Order Graphs • Cross-layer cut • Stochastic Activity Networks • Möbius
tool • Monte-Carlo simulation • Heterogeneous systems • ARM big.LITTLE
• Odroid XU3

1 Introduction

Continued scaling of semiconductor technology has caused an increase of comput-
ing system capabilities, and with it, a seemingly unstoppable expansion of system
application space. This is leading to a rapid increase of system complexity and
diversity, exacerbating the scalability of system modelling. A typical example of
such complex and diverse systems is multi-core heterogeneous platforms.

A. Rafiev (�) • F. Xia • A. Iliasov • R. Gensh • A. Aalsaud • A. Romanovsky • A. Yakovlev
Newcastle University, Newcastle upon Tyne, UK
e-mail: ashur.rafiev@ncl.ac.uk; fei.xia@ncl.ac.uk; alexei.iliasov@ncl.ac.uk; r.gensh@ncl.ac.uk;
a.m.m.aalsaud@ncl.ac.uk; alexander.romanovsky@ncl.ac.uk; alex.yakovlev@ncl.ac.uk

© Springer International Publishing AG 2018
F. Fummi, R. Wille (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 454,
DOI 10.1007/978-3-319-62920-9_4

59

mailto:ashur.rafiev@ncl.ac.uk
mailto:fei.xia@ncl.ac.uk
mailto:alexei.iliasov@ncl.ac.uk
mailto:r.gensh@ncl.ac.uk
mailto:a.m.m.aalsaud@ncl.ac.uk
mailto:alexander.romanovsky@ncl.ac.uk
mailto:alex.yakovlev@ncl.ac.uk


60 A. Rafiev et al.
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Addressing the model complexity is highly challenging due to the trade-off
between quality (i.e. the accuracy, precision, and fidelity) of the model and its
usability (defined by scalability, computation complexity, and design effort), as
shown in Fig. 1.

Modelling non-functional properties, e.g. power dissipation, is as crucial as
modelling functional properties, such as operational correctness [2]. Non-functional
models typically include functional representations. A widely used method of
modelling power uses Virtual Prototypes (VP) to generate states from a functional
simulation for use in power simulators forming a co-simulation [8, 15].

Analogue hardware models such as SPICE models provide some of the highest
representational quality, but they are not usable for studying entire computers with
software running on hardware. For such studies, discrete event models, such as
Instruction Set Architecture- (ISA-)accurate [3], cycle-accurate, and RTL mod-
els [16], are useful when studying functional properties. Instruction Set Simulators
(ISS), however, commonly have simulation speeds of the order of a few Million
Instructions Simulated per Second (MISPS) [15, 17], and this puts a limit on
their usability when the system scales to many-cores, especially for statistical
analysis [4].

There have been, as a result, significant efforts in model simplification for
power studies. One way of simplifying away from ISA- or cycle-accuracy targeting
multiple cores is extrapolation [5]. In this approach, a typical subsystem (e.g. a
single core) is fully characterised and represented with a complete model, and other
similar cores are represented by simplified models obtained through extrapolation.
However, this method tends to be less effective for highly heterogeneous systems.
It is also possible to depart from ISA-accuracy through abstraction. For instance,
Transaction Level Modelling (TLM) concentrates on the functional properties of
larger system blocks [1, 10].

Functional modelling can be highly abstracted by using stochastic techniques,
shrinking models by regarding system behaviours as stochastic, rather than deter-
ministic [4].
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Non-functional parameters like power also open up further ways to systematic
model simplifications based on what may be called the “significance factor” [12].
During any particular operation of a heterogeneous system consisting of multiple
parts, some parts of the system may consume more power than other parts. If a
quantitative power model is to be precise to a certain degree, it makes sense to make
the model power-proportional by using a simpler model for a less power hungry part
and a detailed model for a more power hungry part. This approach can be broadly
described as selective abstraction, i.e. the level of abstraction (and therefore the
cost and quality) of each part of the model depends on the part’s contribution to the
parameter under study.

This work aims towards the scalable modelling of multi-core heterogeneous sys-
tems by concentrating on stochastic modelling and selective abstraction. By doing
so, we seek to support designers to systematically traverse the trade-off space
between modelling quality and model scalability in “good” trajectories, shown in
Fig. 1 as vectors, as opposed to ad-hoc techniques targeting specific points in this
trade-off.

1.1 Research Methodology and Contributions

In order to validate the presented ideas, we created a model of a real hardware
multi-core heterogeneous system using a mature stochastic modelling method,
applied the proposed method of selective abstraction to optimise the model for
scalability, and evaluated the cost and the accuracy against the actual measurements.
Stochastic Activity Networks (SANs) [14] is a well-known modelling method with
an extensive support by the Möbius tool [18] provides the capabilities to model
power as a reward function, thus has been used to facilitate the stochastic modelling
aspect of the method. Odroid XU3 development board [11] based on the ARM
big.LITTLE architecture has been selected as the target system for modelling.

The following contributions have been made:

• We developed new structuring methods to tackle complexity and scalability in
modelling by providing a power-proportionality metric for selective abstraction
and methods to retain accuracy by avoiding error contamination.

• We validated these methods using power modelling in SANs and showed their
effectiveness in improving the trade-offs between accuracy, scalability, and
usability.

The chapter is organised as follows. Section 2 describes the workflow and the
method. Section 6 presents the design of supporting experimental studies. Section 7
describes the developed model and discusses the results from the simulation results.
Section 8 concludes the work.
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2 The Proposed Method

The workflow of the proposed method is illustrated in Fig. 2. A hierarchical
representation of the system resources in the form of an Order Graph (OG) [12]
is derived from the system design knowledge. The behaviour of the system is
captured in a detailed SAN model [14]. System power characteristics, usually
obtained from initial experiments, are applied to the OG to compute the power-
proportionality metric for selective abstraction, which determines the regions for
black-boxing in the SAN model. The next step is to combine OG and SAN to capture
dependencies within the model in the form of a graph, which will help identify any
error contamination. If no contamination found, the SAN model can be used further
in power studies, e.g. simulations. In case of error contamination, the designer has to
redo the abstraction selection with the updated knowledge on the model’s boxability,
or even redesign the system.

2.1 Hierarchical Modelling and Selective Abstraction

Hierarchical representations have been used for modelling complex systems for
a long time. The idea of separating the “vertical” relation between the layers of
abstraction from the “horizontal” knowledge of the system at each particular layer of
abstraction has been hinted in [21] and then formally defined in Zoom structures [6]
as the concepts of verticality and horizontality. Zoom structures are based on partial
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Fig. 2 The flowchart of the proposed method
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Fig. 3 Example vertical view
of an Order Graph with a
cross-layer cut
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orders and are very permissive. In contrast, OGs put a number of constraints on the
modelling, which guarantee consistency between the abstraction layers.

An OG is a graph with nodes representing various system resources arranged
in tree hierarchies; different concepts can be represented by separate trees. For
example, in Fig. 3, T can represent the hierarchy of tasks, and C—computational
units. The hierarchies can be built from the knowledge of the system structure and
by similarities of its constituents. The distance from the root relates to the level of
abstraction. The formal definition and properties can be found in Sect. 3.

OG contains the static knowledge of the system and needs to be paired with a
dynamic model to capture the system behaviour (in our case: SANs). Each branch
of a tree must have a representative element in the dynamic model, but multiple
nodes from a single branch cannot be included. The nodes in OG that are included
in this model relation form a cut. If the cut goes through different depths in the
hierarchy (layers of abstraction), it is called a cross-layer cut. The cut containing all
leaves relates to the most concrete (detail) model of the system.

3 Hierarchical Modelling in Order Graphs

The following discussion revisits the definition of a hierarchy as a sequence of
model transformations, which thereafter is applied to graph models leading to Order
Graphs. The latter combines the notions of resource modelling with the hierarchical
representation of system layers.
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3.1 Introducing Hierarchies

An underlying approach for having adjustable fidelity in the models relies on
different levels of abstraction. Naturally, these layers have to be consistent with each
other; however, the very definition of consistency may vary from model to model
and depend on the system properties that need to be preserved.

A common way to define a model of a system is to represent it as a set tuple
M D .E1; E2; : : : En/, where each set Ek contains system elements of a particular
type, e.g. vertices, edges, labels, etc. We can also generalise these to a single type—
“system elements”, E—so E1 � E ; E2 � E ; : : :. Thus, we can have a type-agnostic
representation of a model: M D E0 [ E1 [ : : : [ En:

Let Ma and Mb be some system models with corresponding sets of system
elements Ma;Mb, and some relation between these elements � � Ma � Mb.
Given a boolean predicate ˚ , such that:

˚ W P .Ma/ � P .Mb/ � P .Ma � Mb/ ! f0; 1g ; (1)

the relation � is called a consistency relation between models Ma and Mb under the
predicate ˚ if ˚ .Ma; Mb; �/ D 1. ˚ is called the rule set, and for convenience can
be specified as a conjunction of smaller predicates of the same type (1).

The predicate ˚ is called strongly consistent if it requires � to be a total surjective
relation, i.e. for every element in Ma there must be at least one related element in
Mb, and for every element in Mb there must be at least one related element in Ma.
In this case, � is called a transformation; transformations are further denoted as
� D Ma ` Mb (or � D Ma ` Mb since Ma;Mb are derived from Ma and Mb).

Let
˚
: : : ; M.k�1/; M.k/; M.kC1/; : : :

�
be an infinite or finite set of models of the

same system, where each M.k/ models the system in a specific level of details. An
abstraction hierarchy is a total order of models where any two adjacent models form
a transformation �k D M.k/ ` M.kC1/ under a given strongly consistent predicate
˚k, and the size of models monotonically decreases (or increases) with k:

H D : : : ` M.k�1/ ` M.k/ ` M.kC1/ ` : : : (2)

Each M.k/ is k-th level of abstraction, also called order k.
A hierarchy is called homogeneous if it uses the same rule set ˚ for all its

consistency relations; this implies that P
�
M.k/

� D P
�
M.kC1/

�
for all k.

Every hierarchy contains both horizontal and vertical knowledge: each abstrac-
tion layer M.k/ is a horizontal view of the system, while the set of relations
f: : : ; �k; �kC1; : : :g stores the information on how different layers interlink. Notions
of horizontality and verticality can be found in [6].

Figure 4a shows the conventional approach to hierarchical graphs, which is based
on clustering and uses tree structures [9]. Each node of a higher layer zooms into
a subgraph in a lower layer. Consequently, an edge between two nodes becomes
multiple edges between the corresponding subgraphs. The notation used in the
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Fig. 4 Conventional hierarchy representation (a) compared to Order Graphs (b); k is the higher
level of abstraction and k � 1 is the lower level

diagram is based on Zoom Structures [6]. A convenient way to display graph
hierarchies is zoom views, showing verticality and horizontality with vertical and
horizontal arcs, respectively. The following is a redefinition of hierarchical graphs
in the terms presented in Sect. 3.1.

A Hierarchical graph is a homogeneous hierarchy, such that, each k-th order is
a graph G.k/ D .V; E/, where V is the set of vertices and E � V � V is the set of
edges; and all consistency relations in this hierarchy are defined as follows:

Inclusion function represents vertex clustering by relating multiple vertices in
the lower order to a single vertex in a higher order.

Supplementary inclusion function ensures that all edges within a cluster are
also included, i.e. if two vertices in the lower order relate to the same vertex in the
higher order, any edge connecting them is automatically related to the same high-
level vertex.

Edge grouping function groups edges connecting vertex clusters: an edge in the
lower order connects vertices iff there is an edge in the higher order connecting
related high-order vertices.

A more formal definition of these rules can be found in [12]. The inclusion
function can be chosen arbitrarily, and from it, the other two uniquely describe the
edges in the hierarchical graph.

The most important property of the rule set defined above is that it preserves all
paths in the graph during the mapping. In other words, for any vertices v1; v2 2 V
and related vertices v01; v02 2 V 0, if there exists a path between v1 and v2 in G.k/,
there will be a path between v01 and v02 in G.kC1/, and vice versa:

8v1; v2 2 V; v01; v02 2 V 0 W �v .v1/ D v01 ^ �v .v2/ D v02
) �

P .v1; v2/ , P
�
v01; v02

��
; (3)

where P .x; y/ is a function that is true iff there is a path between x and y. This
property ensures that the dependencies between resources are consistent throughout
the hierarchy.
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3.2 Order Graphs

The central subject of our method is the study of a computational platform
comprising a number of diverse resources and the way resources may be handled
in order to realise a computation. Can we say that the edges of a graph are also
resources? It is actually true, and this contradiction is explained and solved by OGs.
As an example, let’s imagine that Fig. 4a models a network interaction, where a is a
server and b is a client. On the very abstract level we do not care about the structure
of the network, we just need to know that the client and the server are connected
somehow, thus we model this entire system as the client and the server connected
directly with a single dependency. However, in a more detailed model we can no
longer ignore the network protocols and have to introduce it at least as a single
resource node as shown in Fig. 4b.

A distinct property of the proposed OG modelling method is that a high-order
edge relates to a node at the next lower order. In this case we say that the node
supports an edge, while in fact this is the same entity viewed from the different
abstraction levels. In real-life systems, any dependency is always supported by a
resource of some kind, and this “fractal” structure goes down to the smallest details,
including atoms and below. We may not want to include all these in the model, and
this is pragmatically solved by saying that an edge is either supported by a resource
at the lower layer or stays an edge like in conventional hierarchical graphs.

An Order Graph is a homogeneous hierarchy, such that, each k-th order is a graph
G.k/ D .V; E/, where V is the set of vertices and E � V � V is the set of edges; and
all consistency relations in this hierarchy are defined as follows:

Inclusion, supplementary inclusion, and edge grouping are defined as in
Sect. 3.1.

Support function is a one-to-one mapping of some vertices onto some of the
edges of a higher order graph. The first rule on this function tells that we can map
a vertex in the lower order to some edge hv1; v2i in the higher order iff this vertex
is connected to at least one vertex related to v1 and at least one vertex related to v2.
In addition, all vertices adjacent to v must be related either to v1 or v2. Finally, the
same vertex cannot be used in a vertex-to-vertex and a vertex-to-edge relation; and
the same higher order edge cannot be used in an edge-to-edge and a vertex-to-edge
relation.

Supplementary support function groups all edges adjacent to v into the same
higher order edge.

These rules are formally defined in [12]. OGs preserve paths in the same way
as (3) shows for hierarchical graphs.
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3.3 Cross-Layer Cuts

In the approach presented in this chapter, the analysis of the system is performed
on a flat model, not the entire hierarchy. The actual benefit of using hierarchies
in this case is in the possibility to obtain a flat model (or models) by cutting the
hierarchy not horizontally but across multiple layers. The level of details is selected
per element of the system, which gives high control on adjusting the precision of the
obtained models, ultimately leading to the best sized models for the given fidelity
requirement.

An elementary transformation is the minimum set of changes that may happen
between two graphs without violating the rule set of OGs. Thus, OGs have the
following types of elementary transformations, shown in Fig. 5:

Inclusion: Vertices and edges of the lower order are mapped into a single
vertex in the higher order. Figure 5a shows vertices a1; a2; a3, and edge e1 being
mapped into vertex a; relation he1; ai is implied and not drawn. This elementary
transformation also appears in conventional hierarchical graphs.

Edge grouping: Edges of the lower order are mapped into a single edge in the
higher order. Figure 5b shows edges e1; e2 being mapped into edge e. The relations
are drawn as thin black lines to be differentiated from vertex-to-vertex relations.
This elementary transformation also appears in conventional hierarchical graphs.

Support: One vertex is mapped into one edge in the higher order. Figure 5c
shows vertex c being mapped into edge e; relations he1; ei ; he2; ei are implied and
not drawn. This elementary transformation is unique to OGs.

Any transformation � D G.k/ ` G.kC1/ in OG can be represented with a sequence
of elementary transformations � D �1 ı : : : ı �n, or:

G.k/ ` G.x1/ ` : : : ` G.xn/ ` G.kC1/: (4)

For two consecutive orders G.k/; G.kC1/ of an OG, a cross-layer cut G.x/ between
order k and order .k C 1/ is a graph, such that G.k/ ` G.x/ ` G.kC1/ under the same
rule set, and G.x/ is partially equal to G.k/ and G.kC1/.

a
e

a b
e

c

a b

(a) (b) (c)

k:

k+1:

k:

k+1:

k:

k+1:

a1 a1 a1a2 a2a3

e1

e1 e2e1
e2

b1

b1b2

Fig. 5 Elementary transformations in Order Graphs and their notation: (a) inclusion, (b) edge
grouping, (c) support
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Figure 6 explains the above definition. Let �a D G.k/ ` G.x/ and �b D G.x/ `
G.kC1/. From � D G.k/ ` G.kC1/ and G.k/ ` G.x/ ` G.kC1/, it follows that � D
�a ı�b. Then, G.x/ can be split in three parts: G.x/ D ga [gb [gi, where gi is the part
that is not changed by � , so gi � G.k/; gi � G.kC1/; ga � G.k/ is the part not changed
by �a, and gb � G.kC1/ is the part not changed by �b. Thus, G.x/ contains parts equal
to subgraphs of G.k/ (namely, ga and gi) and subgraphs of G.kC1/ (gb and gi).

An example of a cross-layer cut can be found in Fig. 7.
Making a cut through more than two layers—from G.k/ to some G.kCb/—can be

done iteratively. Firstly, obtain a cut between G.k/; G.kC1/, so G.k/ ` G.x1/ ` G.kC1/.
Then, obtain a cut G.x2/ between newly created G.x1/ and G.kC2/, which may now
contain parts from G.k/; G.kC1/, and G.kC2/. Repeat the process until the final cut
G.xb�1/ ` G.xb/ ` G.kCb/ is found.

Cross-layer cuts are models of the same system and are consistent with the layers
in the corresponding OG and preserve the connectivity property. The choice, which
cut is the most appropriate, depends on the application. Section 4 presents the use
case of parametric-proportional approach to optimise the model size for modelling
system power.
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4 Selective Abstraction

Moving up in the abstraction hierarchy, thus grouping multiple nodes into one,
represents grouping the corresponding elements in SANs into a single entity by
averaging/totalling their parameters (known as black-boxing). This reduces the size
of a model for the price of added inaccuracy.

In this work we consider the simple system S that can be represented with a
hierarchy consisting of two boxable parts a and b as shown in Fig. 8. The most
detailed model of the system is k-th order of the graph. The result of this model’s
analysis is the estimated power (parameter) value

p D pa C pb; (5)

where pa is the combined power output from the part a, and pb is the combined
power output of b. It is reasonable to assume that some parameter characterisation
is done prior to modelling, so the total baseline power of the system p0 is known,
as well as the powers of system parts p0

a and p0
b. From this we can find the baseline

error of the detail model:

E D p � p0

p0
; (6)

and the local errors of its parts:

Ea D pa � p0
a

p0
a

; Eb D pb � p0
b

p0
b

: (7)

There are three possible models that can be obtained using black-boxing in this
hierarchy: .a/, .b/, and .a; b/. The latter is the fuzzy model of order .k C 1/, the
others are cross-layer models. The goal is to choose the model that introduces the
least possible error. Let’s focus on cross-layer models for now, in particular, on
doing one black-boxing at a time.

Fig. 8 Hierarchical system
structure of the example
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Let p0 is the power estimate computed from the cross-layer model:

p0 D p0a C p0b: (8)

The model errors E0; E0a; E0b are calculated similarly to (6) and (7). The added
error in the model is

�E D E0 � E D p0 � p0

po
� p � p0

po
D p0 � p

p0
; (9)

and similarly:

�Ea D p0a � pa

p0
a

; �Eb D p0b � pb

p0
b

: (10)

We can substitute (5), (8) in (9) to find that:

�E D p0a � pa

p0
C p0b � pb

p0
: (11)

When one of the parts is black-boxed then the rest remains unchanged since
we are focused on cross-layer models. We assume that, in a well-designed system
model, black-boxing of one part does not introduce errors in the other part of the
system, in other words, there is no error contamination. (In practice, this assumption
puts restriction on the number of systems we can model. However, when applied to
“designing for modelling”, this restriction is reasonable.) As a consequence, the
local parameter estimates outside of black-box are not changed. Thus, for example,
if we black-box part a, then p0b D pb.

Let x 2 fa; bg is the part we chose to black-box, and �E.x/ is the corresponding
added error, which from (11) is

�E.x/ D p0x � px

p0
: (12)

We know that from (10):

�Ex D p0x � px

p0
x

; (13)

hence we have a proportion, from which we find the added error in the system:

�E.x/ D �Ex � p0
x

p0
D �Ex � q0

x ; (14)
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where the ratio q0
x D p0

x
p0 is the portion of the local power dissipation in the total

system power. Here, p0
x and p0 are known from the initial characterisation; however,

�Ex is not possible to find before computing the cross-layer model. And since the
goal of the method is to choose the model without having to process all of them,
we need to find an appropriate replacement for this variable. Fortunately, one can
notice that, when q0

x is small, the Eq. (14) becomes insensitive to �Ex, so we can use
an approximate estimate �e – a local potentially added error, which is considered
to be constant for the underlying modelling method throughout the system.

Ideally, the goal of selective abstraction is to obtain a cut that provides the
minimal model while its added error satisfies the given threshold ": j�Ej < ". Our
proposed power-proportional metric of selecting the cut is

j�Ej D j�exqxj ; (15)

where �ex is the local change of the percentage error, as a result of the black-
boxing, in the part being black-boxed, and qx D px

p is the proportion of power
consumed by this part in relation to the total power consumption. The values of px

and p can be found from the model characterisation experiments, but �ex is typically
not known before solving the model. Thus, instead of using the precise metric,
one may rely on heuristic approximations. A number of methods are suggested
in [13]. In this work, we use constant �ex under the assumption of only black-
boxing similar component sub-models. Cross-layer cuts for deeper hierarchies can
be found iteratively in polynomial time.

Equation (15) assumes that black-boxing one part of the system does not effect
the accuracy of the other parts in the model. However, this is not the case if the
behaviour of a detail part is dependent on the behaviour of an abstract part. It is
important to remember that �ex is a percentage error, so the total deviation from
the real value is amplified when the error leaks from a part with smaller qx to a part
with larger qx. This concept of error contamination has been discovered in our work
with selective abstraction.

The proposed method of detecting and localising contaminating errors is done by
deriving a dependency graph from the dynamic model in relation to OG. The errors
from the black-boxed parts propagate along the paths in this graph: the error of a
node is maximum of its own error and errors of its preset nodes. The structure of
the dependency graph puts restrictions on what resources can be used in selective
abstraction (i.e. are boxable). Section 7 gives concrete examples of the models and
obtained dependency graphs with and without error contamination.

It is also important to note that the method benefits from heterogeneity in the
system: a bigger difference in the power consumption of the system parts provides
better error tolerance in a cross-layer cut.
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5 Background on Stochastic Modelling

SANs is an extension to General Stochastic Petri Nets (GSPNs) which is based
on Petri Nets (PNs) [14]. It inherits the general attributes of PNs including a
distributed representation of system states, making it easy to represent parts of
a system directly as local subsystems, and more straightforward representations
of such important issues as concurrency and synchronisation. A well-established
method, it is supported by the mature software tool-kit: Möbius [18].

SANs are capable of representing both deterministic and stochastic events, and
event durations in time. The elements used in this work include (a) transitions whose
firing speeds (rates) are specified as stochastic, following given distributions, (b)
transitions with multiple firing cases with specific probabilities for each case, and
(c) input and output gates with predicates and implications specified through logic
functions.

The Möbius tool, used in this work, incorporates a set of solvers including
both Monte-Carlo simulation and state-space related solvers. Numerical Markovian
solutions can be done for steady-state or time averaged interval rewards, but limited
to models with exponentially distributed firing rates. The tool’s concept of “rewards”
can be easily extended to physical parameters, such as power. In our examples, we
compute time-interval average power and use average error as an accuracy metric.
The method is not limited to this and can give probabilistic estimation for transient
power values.

6 Case Study

In this work, we aim to evaluate the impact of selective abstraction on the total error
in the model. In order to do this, we want to build three models of the same system: a
detailed model without any black-boxing, a cross-layer model with selective black-
boxing, and an abstract model with maximum black-boxing. The result of analysing
the power consumption using each of these models has to be compared with actual
measurements from the platform.

6.1 Platform Description

One of the best off-the-shelf examples of a heterogeneous system for power analysis
is the Odroid XU3 board [11]. The main component of Odroid XU3 is the 28 nm
8-core Application Processor Exynos 5422. This System-on-Chip is based on the
ARM big.LITTLE architecture [7] and consists of a high performance Cortex-A15
quad-core processor block, a low-power Cortex-A7 quad-core block, a Mali-
T628 GPU, and 2 GB LPDDR3 DRAM. The board contains four real-time current
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Fig. 9 Hierarchical structure
of Odroid XU3 CPU cores. In
the experiments, Core 0 is
reserved for OS and tools
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sensors allowing the measurement of power consumption on the four separate power
domains: A7, A15, GPU, and DRAM.

For each domain, the supply voltage and clock frequency can be tuned through
a number of preset pairs of values. The performance-oriented A15 quad core block
can scale its frequencies from 200 to 2000 MHz, whilst the low-power A7 block
has a frequency range from 200 to 1400 MHZ. Core 0 in the A7 domain has an
additional speciality of running the OS kernel and drivers, and it cannot be switched
off. We avoid using this core for stress tests and benchmarks to reduce the impact
from the OS on the measurements. The CPU structure is represented as an OG
hierarchy in Fig. 9.

6.2 Power Modelling

The average system power consumption can be found analytically as the function of
the system workload and the system’s power characteristics [20]. This work uses a
simplified workload-based power model, which has been shown to provide sufficient
accuracy [19]. The method of selective abstraction can be applied to advanced power
models as well.

In our model, the power is a function of the type of executed task T , core type
C, frequency F, voltage V , and the number of cores (of this type) running n. In the
experiments, the frequencies and voltages of the cores remain constant per power
domain, hence the values of F and V are tied to C and do not need to be considered
separately. The system workload is modelled on a per-task basis as the ratio of the
task’s CPU time t .T/ to the total duration of the experiment texp.

Additionally, the cores are never put to sleep. Because of this, there is a constant
background power Pidle consumed regardless of the workload, called idle power,
which depends only on the core type C (considering constant F and V). The power
spent to do actual computation Pact is called active power. The total power of a
power domain C is found as a time-averaged active power added to the constant idle
power:
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Ptotal .C/ D Pidle .C/ C
X

T

t .T/

texp
Pact .n; T; C/ : (16)

The values for Pact and Pidle can be characterised offline in a form of a table
function. However, the exact value of t .T/ is known only during run-time. In
our work, we use stochastic modelling to predict this value. The parameters for
workload prediction models include the spawn rates for the tasks and the average
CPU time required to complete a task (completion rates). It is reasonable to assume
these are known to the model designer.

The presented simplified power model does not take into account system
temperature. In fact, it is suspected to be the main source of error in our experimental
results, as the models were characterised on fully loaded cores, much hotter than
during the actual experiments. This baseline error contributes to all layers of
abstraction, including the detail model. The focus of the presented research is to
investigate the additional error due to black-boxing.

6.3 Experiment Setup

Figure 10 shows the model evaluation framework. The fixed rates are used to
generate random execution traces – list of task spawning events, affinities, and
completion events. These traces are executed on the platform to produce power
traces – sets of timestamped power measurements. At the same time, the rates and
platform characteristics are used to parametrise the SAN models, which are analysed
in the Möbius tool. The models do not know the actual execution traces. The mean
power from the model analysis is then compared to the mean power obtained from
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Fig. 10 Model evaluation framework



Error-Based Metric for Cross-Layer Cut Determination 75

the power traces to estimate the modelling error. The computational cost (time) of
analysing the models is also evaluated.

Execution traces reflect the following scenarios of the system operation. During
the experiment, two types of tasks (T0 and T1) spawn continuously. The spawn
intervals, in ms, are exponentially distributed with rates, respectively, �spawn;T0 D
0:003 and �spawn;T1 D 0:002. Both tasks are CPU-heavy: T0 performs a floating
point square root computation in a loop; T1 performs integer multiplication and
addition. The tasks are then scheduled on the available cores. In order to increase the
heterogeneity of the system, we assigned different probabilities to scheduling onto
different cores (affinity weights) providing three possible scenarios: Scenario EQ
represents equal scheduling chances for all cores regardless of their type, Scenario
CA differentiates between cores, while Scenario TCA has weights depending on the
type of a task as well as the core.

Each tasks is executed on a core until it is finished and then removed. Completion
times are random and exponentially distributed1 with constant rates (the frequencies
of the cores are kept unchanged during the experiments). In real-life situations,
low-power A7 cores typically operate on lower frequencies than A15, so their
performance is reduced. To mimic this behaviour in the experiments, A15 is set
to work approximately twice as fast as A7, and the completion rates for A7 domain
in the model are halved. The rate values are shown in Table 1 as “target completion
rates”. During the model characterisation, these values are re-adjusted for more
precision, as discussed in Sect. 6.4.

Table 1 Power and time characteristics

Domain A7 A15

Number of cores N 3 4

Idle power, W 0.0737 0.6211

Task T0 T1 T0 T1

1 core active power, W 0.1392 0.1427 1.4684 1.4281

N cores active power, W 0.2703 0.2771 4.0101 3.9066

Exec time, ms 8745 9730 9827 8184

Target completion rate 0.001 0.0015 0.002 0.003

Adjusted comp. rate 0.00114 0.00154 0.00204 0.00367

1We had to limit our examples to exponential distribution in order to test Markovian solvers. In
simulation-only studies, any other random distribution can be programmed in.
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6.4 Characterisation Experiments

Platform characteristics required to parametrise the models include per-core power
consumption for each core type when idle and when running each type of a task. We
set A7 cores to run at 1000 MHz, and A15 cores are set to run at 1800 MHz. The
core frequencies are set below the highest mark to avoid throttling. Since the power
can be measured only per domain, which consists of 4 cores, it requires additional
experiments and calculations to be performed.

Idle power is measured directly for each power domain. Core 0 is reserved for
running the OS, the scheduler, and the power trace logger, and is not used directly
for running the experiments. Its impact on power consumption is viewed as a
background noise included in the idle power of the A7 domain. To measure
the active power we ran each task separately on each domain, i.e. providing
characterisation data for each hT; Ci pair. Also, since we didn’t know if the power
consumption scales linearly by adding more cores, we ran each set on 1 � n � N
active cores. The active power of a single core is then related to the measured power
as Pact .1/ D .Pmeas � Pidle/ =n C Pidle. Similarly, the power of running all cores in
the domain is Pact .N/ D .Pmeas � Pidle/ � N=n C Pidle. All instances of measured
or computed values are within 3% range from the respective mean values across all
experiments with the exception of a single A7 core executions, which deviate by 5%.
This is within the acceptable error range, so we can still assume linear power scaling:
Pact .n/ D n � Pact .1/. The final values used in the model are shown in Table 1.

Since rates and characteristics are the only things connecting the models with the
actual experiment, we take extra care when generating traces and executing them on
the platform. A specialised scheduler has been designed to address this issue.

Each entry of the execution trace contains the timestamp of spawning a task, the
task type, its affinity, and input data (a single integer value T), which affects the
task completion time. To guarantee that the execution times follow the exponential
distributions with the given rates and to simplify the trace generation, T is equal to
the requested execution time in ms. The tasks T0 and T1 henceforth are required
to match their execution time to T as close as possible. It is possible to achieve
by reading the system timer, but calling kernel functions may cause unwanted
interference. Instead, we achieve this by doing a task in a loop and calibrate the
number of iterations to complete in the given time. The task calibration function for
some core i and task j is f .i; j; T/ D xi � yj � T; the constants xi and yj are found
experimentally: xA7 D 21; xA15 D 40 (confirming that A15 running at 1800 MHz
is roughly twice as fast as A7 at 1000 MHz), yT0 D 95; yT1 D 1700. Thus, for
example, in order to run T1 on A7 for 100 ms, we need to do 3,570,000 loop
iterations. However, this calibration is not perfect and requires further adjustment.

During the characterisation experiment, we request the tasks to run for 10s by
specifying T D 10; 000 and then measure the actual completion time. Considering
that the target completion rates are used for generating the traces, but the actual
times are skewed, as shown in Table 1, we apply a simple proportion to calculate
the adjusted completion rates to be used in the model.
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7 Models and Results

Following Sect. 2.1, by using black-boxing some x cores can be grouped into more
abstract meta-cores combining the performance, power consumption, and schedul-
ing probabilities of constituent cores. We sacrifice the accuracy by considering the
task completion in the meta-core to be exponentially distributed with the rate �x

exec,
while it is in fact the sum of exponential distributions.

The model template for scaling is a parametrised SAN where the elements are
replicated to a given target number of system resources. In our case, the templates
scale to n cores and m tasks. Figures 11 and 12 show example models scaled to 2
tasks and 2 (meta-)cores. Hence, some model elements are added per task (prefixed
with Ti, 0 � i < m), some appear per core (prefixed with Cj, 0 � j < n); the others
are instanced n � m times: per-core and per-task (interfaces). Different types are
shown in different colours. Colour is not a part of an actual model and is used solely
for visual aid.

All the scenarios in Sect. 6 use two types of tasks (m D 2), and the scaling
is done only on the number of cores. The models representing different levels of
abstraction are

3+4 model (n D 7) is the most detailed model considering each core separately.
1+4 model (n D 5) is the model obtained using the proposed method of selective

abstraction. Here, three A7 cores are grouped into a single meta-core representing
the entire domain.

Fig. 11 Model for the naïve scenario leading to error contamination
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Fig. 12 Fixed affinities in the scenario produce a better model

1+1 model (n D 2) is the most abstract model with two meta-cores, one
representing the A7 domain, the other representing A15.

Table 1 gives qA7 D 0:065, and from (15), under the assumption of constant �ex,
we have �E D 0:065 � �ex for the (1+4) model. This assumption can be justified by
simulation results if

ˇ̌
E.1C4/ � E.3C4/

ˇ̌ 	 qA7 � ˇ̌
E.1C1/ � E.3C4/

ˇ̌
; (17)

where E.1C1/, E.1C4/, and E.3C4/ are the total percentage errors in the respective
models.

The initial experiment setup was not specific on how exactly task affinities
are realised in the scheduler, so we implemented two variants of the system and
produced two models, respectively. Figure 11 shows the model of a system with
task-exclusive queues, where the scheduling weights are applied after the queueing,
which means that the scheduler needs to check every core for availability. Figure 12
models tasks with fixed affinities, i.e. the task is paired with a core once it is spawned
and then waits in the queue for this core to become available (idle).

Unfortunately, the first implementation proved to be of a poor quality because
of error contamination due to a high inter-dependence of its elements. Figure 14a
shows its dependency graph, obtained by the mapping rules from Fig. 13. Let’s
assume C0 elements produce extra j�ej due to black-boxing, and C1 must be
protected from error contamination. From the graph, it is evident that there is a path
connecting Co to every other element in the model propagating the error. Figure 14b,
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Fig. 13 Rules for SAN
mapping to dependency
graphs
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Fig. 14 Dependency graphs
with highlighted error
contamination paths: (a) for
Fig. 11, (b) for Fig. 12
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showing the second implementation, is able to contain the error locally: it pollutes
only the adjacent nodes, but keeps C1 unaffected.

We were unable to find a way to resolve the contamination by model transfor-
mation without changing the system’s behaviour, as the problem has roots in the
functional properties of a modelled system. This means that the algorithm modelled
by Fig. 11 has no viable selective abstraction and system redesign is needed (Fig. 2).
The main contribution of this work is to detect and identify error contamination in
models by the structural analysis, as described above, before the model is simulated.
The rest of the chapter uses the template shown in Fig. 12.

7.1 State-Space Analysis

Our investigation showed that state-space analysis has a number of limitations
compared to simulations. The presented models have unbounded state spaces, and,
unless we put a hard constraint on the total number of tasks in the system, the state-
space analysis is not possible. From the task spawn rates we know that on average
the number of tasks spawned during a 15 s experiment is 75. The lack of scalability
in state-space analysis makes even this number infeasibly large. The highest number
that doesn’t fail to compute is 50 for the (1 + 1) model, taking 5729 s of computation
time on a 2-core Intel i7 5500U machine. For more detailed models, the feasible
number of tasks goes down to 12 for (1 + 4) and 9 for (3 + 4), which is not enough
for trustworthy results.

Consequently, with the added restriction to exponentially distributed rates, the
state-space analysis methods appear rather impractical for the presented application.
We recommend using simulations instead, reserving state-space analysis only for
model verification purposes.
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Table 2 Simulation results
compared to measured values

Scen Model Pwr, W Pwr var Error (%) Sim, s

EQ 1 + 1 1.7662 0.0470 6.53 2.535

1 + 4 1.7287 0.0424 4.27 2.546

3 + 4 1.7215 0.0423 3.84 2.764

meas. 1.6579 0.0572

CA 1 + 1 2.0205 0.0619 7.99 2.545

1 + 4 1.9470 0.0468 4.06 2.610

3 + 4 1.9421 0.0468 3.79 2.764

Meas. 1.8711 0.0385

TCA 1 + 1 2.0038 0.0608 10.41 2.547

1 + 4 1.9274 0.0439 6.21 2.613

3 + 4 1.9245 0.0440 6.05 2.771

Meas. 1.8148 0.0279

7.2 Simulation Results

Table 2 presents the power values obtained from simulations in Möbius tool and
compares them against the actual power measurements. The simulation time is given
for 1500 simulation batches, which are required for calculating 0.01 relative interval
with 95% confidence. The variances have been calculated separately over 20,000
simulation batches. Experimental results are averaged over 50 random trace runs
for each scenario, and the variance is also calculated.

The achieved 4–6% accuracy meets the typical requirement for system-wide
power modelling and shows a good potential in using stochastic methods. The
results justify (17), thus confirming the expectations of selective abstraction metric:
the error added by moving from (3 + 4) to (1 + 4) model in comparison to going
from (3 + 4) straight to (1 + 1) is proportional to the power output of A7 domain in
relation to the total power. The difference between simulation times, however, is not
large and appears to grow linearly with the model size in the presented sample.

Figure 15 plots the simulation results in a Quality/Usability trade-off space with
the inverse of error e�1 representing Quality, and the inverse of simulation time
t�1 being the metric for Usability. The results demonstrate that the method allows
trading little accuracy for the steady increase in usability, and demonstrates the
scalability of SAN models for simulation studies.

8 Conclusions

This work aims to produce a method towards scalable power models for multi-
core heterogeneous systems. We concentrate on rationalising model sizes based on
power-proportional representation and stochastic modelling. A systematic approach
to selective abstraction using OGs is developed. The method includes ways of
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Fig. 15 Simulation results in the Quality/Usability trade-off diagram

identifying error contamination and determining boxability. Stochastic techniques
are investigated with SAN and Möbius. Selective abstraction is shown to be effective
for model size and designer effort reduction, and SAN models are demonstrated
to have excellent scalability for simulations. In these ways our method supports
the systematic discovery of good trade-offs between modelling quality and model
scalability.

In addition to further improvements to the SAN model of the platform by adding
memory and cache, the future work may include the application of cross-layer cuts
to other modelling methods.
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Feature-Based State Space Coverage Metric
for Analog Circuit Verification

Andreas Fürtig, Sebastian Steinhorst, and Lars Hedrich

Abstract This chapter proposes a systematic and fast analog coverage-driven veri-
fication methodology which could increase the confidence in verification of today’s
analog blocks. We define an appropriate coverage metric to score simulations
and then minimize the simulation effort for achieving full state space coverage
with an algorithm generating appropriate input stimuli. Our proposed method uses
characteristic properties of a discretized representation of the state space such as the
spatial distribution of eigenvalues, guiding the generation of short and purposeful
stimuli. The experimental results show a significant speed-up with similar accuracy
compared to the state of the art.

Keywords Coverage • Analog coverage • State space coverage • State space
discretization • Analog circuit verification • State space analysis

1 Introduction and Related Work

Traditionally, analog circuit design and verification needs sophisticated designers
and verification engineers to prevent faulty behavior and expensive redesigns.
Nowadays, the pressure on them due to the significant analog part on common chips
(automotive, consumer) and short design cycles is further increasing. Unfortunately
there are not many systematic approaches to tackle the functional verification
problem for analog circuits—the standard procedure to prevent hard to find bugs
is to use expert knowledge from experienced designers.
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One direction to systematically check analog circuits may be the full automatic
characterization [1] based on formalized specifications using machine readable
specifications [2] or formal languages such as PSL [3]. However, the effort to setup
these specifications is sometimes large and, even worse, they do not guarantee to find
unknown bugs because they rely on predefined input stimuli for each performance
test case. With simulation only, there still exist uncovered scenarios which may later
arise as a bug in the field.

Formal verification for analog circuits [4, 5] will certainly help as it can guarantee
to find problematic design flaws violating the specification. However it suffers from
long runtimes, hard to interpret results, and the perennial “translate specification
into a formal language” problem.

A compromise could be the use of coverage metrics and coverage-increasing
measures. The digital world has developed a lot of coverage metrics [6–8] and uses
them with success. Depending on the complexity of the Device Under Verification
(DUV), the methods are more or less complete. The complete methods investigate
for example Finite State Machines (FSM) [9] and have some means to try to restrict
the simulation input stimuli to the relevant part of the state space (see SFSM
in [9]). The less complete methods (code coverage, specification coverage) use
measures to guide the verification to the most probable bug location for example
by systematically visiting each conditional branch in an HDL-description.

For analog circuits, a very low number of coverage investigating approaches
besides the above explained formal verification techniques exist. There are some
approaches stemming from the test community measuring and increasing the analog
fault coverage [10, 11]. However, they are not intended to find functional faults.
Horowitz et al. [12] also tries to increase the confidence in the functional verification
using a high-level functional model but without a systematic method to increase
some underlying measure. Two other approaches are built for hybrid systems
[13, 14], suffering from being able to handle strongly nonlinear analog circuits on
transistor level. Steinhorst et al. [15] and Karthik et al. [16] concentrate on the
analog state space to systematically implement formal verification, hence being
accurate and complete. However, they also have no well-defined measure for the
coverage and suffer from the large state space to investigate. As a remedy, in this
chapter, we later propose a coverage optimization algorithm that takes into account
the dynamics of the state space. Consequently, the algorithm can identify regions of
critical nonlinear behavior requiring a very dense coverage, as well as regions with
highly linear behavior which is not critical for the verification coverage. The latter
will enable us to drastically reduce the volume of the visited state space.

Contributions This chapter introduces a complete methodology for optimization of
analog verification coverage by analyzing the dynamics of the state space of the
Design under Verification (DUV), providing four main contributions outlined in the
following.

• We present a state space coverage metric in Sect. 3 which creates a relation
between transient simulation waveforms and states of a discrete representation
of the DUV which we introduce in Sect. 2.
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• Based on the coverage metric, we introduce a coverage optimization algorithm
that maximizes the defined coverage metric.

• The state space coverage metric and algorithm are further developed into the
proposed � state space coverage metric to identify interesting regions and neglect
uniform parts of the state space in Sect. 4.

• Our metrics and algorithms are evaluated on several analog transistor level cir-
cuits in Sect. 5 and clearly show the advantages over a state-of-the-art approach.

2 State Space Model Generation

The state space coverage analysis we are proposing in this chapter requires a discrete
model of the analog circuit. We use a trajectory-based state space discretization
proposed in [17]. This method is based on discretizing the underlying DAE-System
of the circuit in the state space. The discretization is performed using an electrical
circuit simulator with full SPICE accuracy [18].

With this method we can construct a discrete state space model MATS:

Electrical Circuit
discrete modeling�! MATS (1)

2.1 Analog Transition System (ATS)

For the ATS we define a five-tuple MATS D .˙; R; LV ; T; L�/ where

• ˙ is a finite set of states of the system.
• R � ˙ � ˙ is a total transition relation, hence for every state � 2 ˙ there exists

a state � 0 such that .�; � 0/ 2 R.
• LV W ˙ ! R

nd is a labeling function that labels each state with the vector of nd

variables containing the values of the state space variables and the inputs of the
DAE system.

• T W R ! R
C
0 is a labeling function that labels each transition from � to � 0 with

a real valued positive or zero transition time that represents the time required for
the trajectory in the state space between these states.

• L� W ˙ ! R
n� is a labeling function that labels each state with a vector of the n�

eigenvalues associated with the state.

Within the structure MATS, a path � beginning at state � is a sequence of states
� D �0; �1; �2; : : : ; �n with �0 D � and .�i; �iC1/ 2 R for 0 � i < n.

In an extension to the method of [17] we calculate and store the eigenvalues of
each state during the discretization process. For this purpose, the system’s dynamics
are linearized in the specific state and then transformed into the frequency domain
using Laplace transformation. The number of nonzero entries in Kronecker’s
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V i
nt

Vout

Fig. 1 Discretization of the state space of a bandpass filter. Blue points represent ˙ with one DC
operating point at Vout D Vint D 0:0 V. Black arrows indicate transitions relation R of the system.
The state space is plotted for an input voltage Vin D 0:0 V

canonical form of the transformed capacitance matrix of the frequency domain
representation corresponds to the number n� of eigenvalues in the generalized
eigenvalue problem. For a detailed description of the eigenvalue decomposition,
please refer to [19].

Figure 1 shows the discrete state space of a bandpass filter. For display purposes,
the state space is plotted for a given input voltage. The complexity of the state space
modeling process is exponential in the number of energy-storing elements inside,
and inputs to a circuit. Relevant analog circuit blocks usually do not exceed a system
order of 8, which can be handled well by this approach. Moreover, by application
of an Eigenvalue-based model order reduction of the DAE system [20], circuits
with more than 200 parasitic capacitances can be handled. This is achieved by
reducing the state space to the dominant state variables of a system and discarding
the parasitic ones which are mathematically proven not to affect the system behavior
above a defined threshold.

The following section will describe how this discrete state space is used to
compute an analog coverage for a given set of different circuits.
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3 State Space Coverage

This section describes a method to match a transient simulation response to the
previously described state space. Our goal is to automatically create an input
stimulus for an analog simulator to maximize the presented analog state space
coverage. A path finding algorithm is presented afterwards, as well as possible
restrictions of this method.

The state space coverage � denotes the ratio between visited states and the sum of
all reachable states ˙R of a given circuit. The wanted coverage metric should assess
a simulation response based on the following characteristics:

• A coverage value near 100% implies a high probability that all possible faults of
the circuits could be detected.

• The measure has to be monotonic in the number of visited states: If more states
are visited, the measure should increase.

The resulting number can be used to compare different input stimuli for an
analog simulator leading the designer to much more useful test cases, reducing the
possibility of missing possible design flaws.

The Analog Transition System MATS described in Sect. 2 creates a vast number
of states which could possibly not be reachable at all. Using the number of states
j˙ j of the full system results in a metric not able to gain full coverage. Hence, a
set of reachable states ˙R is computed from all states ˙ visited by the state space
discretization using a simple set-based reachability algorithm. For our purpose, the
number of reachable states is lower or equal to the number of all states.

3.1 State Space Coverage Calculation

A transient simulation response consists of a set of different data points, representing
the state of an analog circuit at a given time step. To match each of these points to
a set inside our MATS, we use an Euclidean distance to mark a state as covered by a
simulation.

In a very first straightforward approach, one can compute a nearest neighbor for
every data point. For that, we store the previously defined Analog Transition System
MATS in a suitable space-partitioning data structure in the form of a k-d tree [21].
The number of nodes in this tree equals the number of states in the system. Hence, if
a discretization only consists of very few states, each point of a simulation response
will lead to a covered state, although the state is very far off. Obviously this simple
approach does not calculate a smooth and adequate measure. Since every point has
a nearest neighbor, the distance is not considered (cf. Fig. 2, upper left).

A much better approach is to select every state in a given distance around a
data point of the transient simulation response. This allows to have a measure
independent of the sampling distance in the state space as well as the sampling
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Fig. 2 Euclidian distance method for selecting the covered states of a simulation result. Red
crosses indicate the trajectory corresponding to the transient simulation result. Black boxes are
marked as covered, and yellow boxes are marked as uncovered

distance of the transient simulation result. Figure 2 shows different values for a
distance to accept different states inside a MATS marked as covered. It can be seen
that a maximum distance must be chosen adequately, since using a too large distance
could mark states with different behavior compared to the transient trajectory under
investigation, while a too small distance will underestimate the set of covered
states C.

A good starting point for the distance is to select the median distance between
two neighbor states in the discrete state space or to use a percentage of the diameter
of the reachable state space. Here, we conservatively take the median length of all
transitions R inside the MATS.

Consequently, the coverage of a given transient simulation response can now be
computed using the cardinality of the elements in the set C and the number of states
in the reachable discrete state space ˙R:

� D jCj
j˙Rj (2)

This gives us the possibility to rate a set of test by calculating a coverage for each
test as long as a full coverage is reached. Full coverage in this context means every
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reachable state inside a MATS was reached by simulation. Hence, no unexpected
behavior can occur. To enhance the coverage � a designer could develop new tests
as long as uncovered states exist. As we will see in Sect. 4 an alternative is to restrict
the number of “to be reached” states from j˙Rj to j˙�j.

3.2 Path Planning

As mentioned in the previous subsection, a full coverage of a discrete state space
is a desirable goal. For automation purposes, a path planning method is introduced,
as the creation of appropriate input stimuli is crucial for the usage of the coverage
described before.

First of all, the MATS is enhanced by a labeling function !� W ˙ ! N
C
0 that labels

each state with a weight, denoting the number of visits of this state by a simulation.
Together with the relation R, this eases a path finding inside the discrete state space.
Another helping aspect is an additional set ˙DC, which holds a set of DC operation
points of the MATS. As stated beforehand a path � through the discrete state space
can be directly used to create an input stimulus for a simulation software, as the
labeling function LV also holds the inputs to the system. Timing information can
be gathered from the transitions between two states in the MATS.

Using an A� algorithm, it is easy to compute a path through the state space
targeting an uncovered state. This method will lead to a vast number of very small
simulations. As a result, the startup time of the simulation software will dominate
the simulation time. To avoid this behavior, a path planning algorithm is needed to
create simulation input stimuli which meet the following characteristics:

• The resulting path should avoid already visited states.
• It should consist of as many unvisited states in the MATS as possible.

An approach to satisfying these criteria exists in [15], but with larger circuit size
a full input stimulus created using this method consists of significantly more data
points than j˙R| itself. More complex circuits lead to a very long runtime of the
simulation, due to the increased state space dimensions and more state space points.
As we will see in the results section, the constructed single stimulus by that method
performs badly in terms of the achieved state space coverage.

To improve this method, we introduce a weight-based path planning: Let � be a
set of states describing the path from a starting to a target state. The length j�j is
the number of states inside the path. Since every state has a weight !� , the weight
of a path is !� D ˙n

i !�i . An unvisited, randomly chosen state �u (indicated by its
weight !� D 0) is used to compute all possible paths from every operation point
�d 2 ˙DC. Additionally, we compute the longest path starting in state �u back to
the operating points. This gives us the possibility to concatenate the resulting paths,
producing a longer overall path. To avoid very long paths (like the ones created by
the method in [15]), the length of the resulting path is limited by the number of
unvisited states in the whole system.
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3.3 Coverage Maximization Algorithm

With bigger analog circuits, the possibility to reach full coverage with one single
input stimulus is very small. For that, we introduce an algorithm to cover all
reachable states inside a MATS. It is very easy to see that one single stimulus created
by the path finding algorithm described beforehand will not reach all states in the
system.

The presented Coverage Maximization Algorithm is shown in Fig. 3. In every
step, the algorithm selects an unvisited state and calculates a path targeting that
state. Selecting the longest path with minimum cost maximizes the possibility to
cover at most unvisited points at once. While traversing the graph, we are able to
create an input stimulus for a path. Each data point of the resulting transient response
is mapped to a state inside the MATS, increasing the weight of that state as well as
the overall coverage of the whole system. The algorithm stops if every state in the
state space is covered by a simulation.

With increasing complexity of the investigated circuits, it is furthermore not
possible to reach high coverage measures � in a reasonable computation time and
with short overall input stimuli length. Hence, the number of states to inspect must
be reduced, which will be described in the next section.

Fig. 3 Coverage maximization algorithm based on discrete state space modeling



Feature-Based State Space Coverage Metric for Analog Circuit Verification 91

4 � State Space Coverage

As we will see later on in the results section, trying to reach a full coverage is
a very time consuming procedure even for small devices like a Schmitt trigger
or lowpass filter circuit. Visiting every single reachable state in an analog circuit
often makes no sense, since many regions of the state space have a homogeneous
behavior—in most cases linear behavior—and can be investigated by one trajectory
through these regions. To reduce the number of states to cover without missing
regions with a heterogeneous behavior and important states, we are segmenting the
discrete state space into different regions. Namely, these are regions with uniform
(linear) behavior, nonlinear parts with high dynamic (such as limited output voltage
swings) or border regions of the discretization. Regions with nonlinear or static
nonlinearities need much deeper investigation, too. In this section we will describe
different classes of analog circuits and suggest some methods to detect them.

To differentiate the states in the MATS distance-based methods are used as well
as eigenvalues, which are computed and stored during the discretization process
in every state of the system. Static circuits like mixer or Low-dropout regulators
can be compared using their linear or translinear behavior. In sum, this leads to
five different coverage value vectors which will be described in the following. Each
vector has the same length as the amount of states in the discrete state space and is
either set to 0 or 1, depending on the response of the according method of inspect.

4.1 Local Linear Regions

Many analog circuits have a linear behavior and huge regions inside the discrete
state space with similar behavior. To detect those regions, we are using the
previously stored eigenvalues in every state of the system. Each state � in the system
has a list of ancestors and successor states. L� is set to 1 if one of the neighboring
states has a significantly (j � j > 50%) different eigenvalue than � , otherwise it is set
to 0. Figure 4 shows a simple lowpass filter circuit and two large linear regions. As
the circuit is ideal, no nonlinearities occur and we have a large linear region (blue).

On the other hand, in Fig. 5 the same analysis is conducted for an inverting active
RC lowpass with an operational amplifier. This circuit has a large linear region and
small nonlinear regions. The latter is due to shifted eigenvalues when the operational
amplifier output reaches saturation at the supply rails and in this case also 0:7 V
before reaching the 2:5 V positive supply rail.
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Vout

V1

Fig. 4 Detection of linear regions: The discrete state space of a simple RC-lowpass filter circuit
(left) and the values of L� (right). As the whole system is linear we got only one big linear region
(blue)

Vout

V1

Fig. 5 Detection of linear regions: The discrete state space of an inverting active RC-lowpass filter
circuit with limiting due to the used operational amplifier (left) and the values of L� (right)

4.2 Global Linear Regions

Similar to the previously described detection of local linear regions, global linear
regions can be detected using the eigenvalues of the whole system. First of all, we
compute the median of all eigenvalues of the whole MATS, as this indicates the basic
dynamic level of the analog circuit. D� is then the absolute difference to the median
value for each state � 2 ˙R. All values are normalized to Œ0; : : : ; 1� to ease the later
summation process. Figure 6 shows the results of this detector for a basic Schmitt
trigger circuit.



Feature-Based State Space Coverage Metric for Analog Circuit Verification 93

Vout

Fig. 6 Detection of global linear dynamic regions: The discrete state space of a Schmitt trigger
circuit (left) and the resulting areas with nonlinear dynamics (right, red points)

4.3 Border Regions

As mentioned before, border regions are interesting and should be visited in any
case by the path finding algorithm. To compute the states in the border region of
the reachable set, the convex hull conv.˙R/ of all reachable states of the circuit is
computed using the approach from [22]. B� is set to 1 if the state � is located within
a Euclidean distance on the edges of the resulting polytope, otherwise it is set to 0.

4.4 DC Operating Points

In the same manner as the border regions, the direct neighborhood of each DC
operating point is computed. O� is set to 1 if the state � lies in the neighborhood
of the DC operating point or is the state itself. Figure 7 shows the result of the DC
operating point detector as well as the border regions.

4.5 Static Circuits

Besides the so far described circuits, linear constant (Low-dropout regulators) or
the so-called translinear circuits (mixer circuit) exist. For these class of analog
circuits—which are easily discernible as they only consists of DC operating
points—an optimal output function fout exists. This function is currently guessed
but could be automatically gathered by some sort of optimization process. S� D
jfout � fmeasj is the absolute error between the output function and measured output
voltage of the analog circuit normalized to Œ0; : : : ; 1�. Figure 8 shows the result of
the static circuit area detector.
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V1

Vout

Fig. 7 Detection of regions at the border and around DC operating points: Discretization of an
inverter example (left) and the resulting areas (right)

Vout

Fig. 8 Detection of static circuit regions: Discretization of a mixer circuit (left) and the resulting
normalized error (right, red points indicate a high error)

As every step of the analysis described beforehand indicates possible interesting
states of the full MATS system, the region of interest of the device under test is formed
by the nonzero entries in I defined as:

I D L C D C B C O C S: (3)

The importance of each state is now indicated by the according value in the vector I.
On the other hand, if its value is 0, none of the previously described detectors marked
this state as important. This information can now be used and integrated in the path
planning algorithm presented in Sect. 3. In this algorithm, each state was initialized
with a node weight !� D 0 indicating that this state was never visited before by
a transient simulation. According to this, we initialize the weight of a state by its
interest factor I� :
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Fig. 9 Schematic of a levelshifter circuit

w� D
(

0; if I� 
 t;

1; otherwise
; (4)

where t is a given threshold. All states with a low weight !� (and therefore a high
interest value I� 
 t) are now preferred by the path finding algorithm. States with
a higher weight are not removed from the path planning algorithm, so that there is
still a small possibility that a simulation covers this state (Fig. 9).

With these information we are now able to create a reduced set of states ˙� � ˙R

which consists of all interesting state space points with an interest factor I� 
 t:

˙� D f� 2 ˙RjI� 
 tg: (5)

The � state space coverage can now be defined as the number of visited states
divided by the number of states in the reduced set ˙�, where in the numerator only
states are counted which belong to that reduced set ˙�:

�� D jC \ ˙�j
j˙�j : (6)

The definition of a � state space coverage and experimental results show clear
evidence that the concept is still very pessimistic uncovering all design flaws with
large possibility. Figure 10 shows a full � state space analysis of a levelshifter circuit
(Fig. 9). As a normal state space coverage calculation (as mentioned in Sect. 3) has
to reach 1081 different states in the system, this number can be reduced to 641 by an
analysis of the state space. Detailed results are listed in the next section and Table 2.
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Fig. 10 Results of the � state space analysis of the level-shifter circuit: (a) shows the reachable
set in the state space. The yellow points in (b) show interesting points to be covered (i.e., the ˙�

set), indicated by a high weight w� in (c). Red in (d) marks areas with high dynamic, based on
the eigenvalue in (e). (f) shows border regions. For visualization purposes, (b–f) are plotted for the
plane V1 D 0:0 V
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5 Results

In this chapter we will demonstrate our proposed method on various analog circuits
on transistor level as well as on some selected Verilog-A implementations (see
Table 1). The examples try to cover many possible types of analog circuits: static
nonlinear systems, dynamic linear systems, and dynamic nonlinear system to show
the wide scope of our method.

In Table 2 three methods are presented. The normal method is taking every
state of the discretization into account to calculate a coverage, while the proposed
method only uses interesting states based on the criterion of Sect. 4. To show the
overall speed-up, both methods are compared against the single method [15]. The
experiments are carried out on a 3.4 GHz Dual-Core machine.

Starting from some very basic analog circuits, a lowpass filter has a high amount
of states depending on the discretization accuracy. For this often used circuit, a lot of
simulations seems to be needed to gain full coverage for a straightforward “normal”
method. In comparison to that, the analysis of the state space reduces the number of
interesting states by 74%. Full coverage can be reached by one simple simulation.
This should be desired for circuits of that size. For another very basic example, the
inverter circuit, the amount of states can be reduced by 77.6% as well (Fig. 11).

A bandpass filter [20] example with one input and two dimensions (Fig. 12)
has more than 5000 states after the discretization process. Due to the heavy
nonlinearities at the limiting region of the operational amplifier full coverage in
this example is not possible, as not every as reachable marked state can really be
reached by a simulation path. This is because there are always some discretization
errors during the creation of the state space. Hence, a trajectory can be computed
with the presented path finding algorithm from Sect. 3, but the created input stimulus
for the simulation does not reach all wanted target states. After 173 simulations a
coverage of 83.06% is obtained. With the presented state space analysis, only 1948

Table 1 Statistics of applied analog circuits on transistor level

State States in States in
Number Number of space reachable � reduced

Analog circuit of inputs transistors dimensions set j˙Rj set j˙�j Schematic

RC lowpass filter 1 0 2 861 227 Basic

Inverter circuit 1 2 2 1510 338 Basic

Schmitt trigger 1 10 2 1903 356 [20]

Bandpass filter 1 8 3 5660 1948 [20]

Level shifter 1 6 3 1081 641 [23]

Log domain filter 1 13 2 2526 394 [24]

gmC filter 1 69 3 344 239 [24]

Mixer 2 – 2 442 120 Industrial

Low-dropout regulator 2 – 2 469 214 Industrial

The Mixer and Low-dropout regulator examples are implemented as a Verilog-A behavior model
and therefore have no transistors as the other examples
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Table 2 Results of the proposed coverage calculation algorithm

Coverage > 50% Coverage > 75% Overall coverage in %

Analog circuit Method # Sim. Runtime # Sim. Runtime Coverage # Sim. Runtime

RC lowpass filter Normal 1 4.88 2 5.62 �100:00 5 7.28

Proposed 1 1.60 1 1.60 ��100:00 1 1.60

Single 1 7.11 1 7.11 �100:00 1 7.11

Inverter Normal 1 0.15 2 0.23 �92:72 5 0.49

Proposed 1 0.15 1 0.15 ��94:32 2 0.24

Single 1 3.79 1 3.79 �89:93 1 3.79

Schmitt trigger Normal 3 98.96 5 134.06 �87:06 17 215.83

Proposed 1 5.62 2 8.16 ��91:40 3 10.79

Single 1 19.29 1 19.29 �30:32 1 19.29

Bandpass filter Normal 6 74.87 15 124.95 �83:06 173 556.86

Proposed 1 31.08 6 97.37 ��88:99 18 164.75

Single 1 388.96 – – �62:59 1 388.96

Level shifter Normal – – – – �43:91 9 81.46

Proposed 1 12.81 – – ��72:21 6 27.97

Single 1 266.24 – – �66:39 1 266.24

Log domain Normal 1 1.91 2 2.15 �100:00 7 3.23

filter Proposed 1 0.40 1 0.40 ��100:00 4 1.66

Single 1 16.65 1 16.65 �100:00 1 16.65

gmC filter Normal 2 0.58 7 2.98 �76:57 8 3.98

Proposed 1 0.47 3 1.18 ��85:17 4 1.92

Single 1 8.59 – – �65:71 1 8.59

Mixer Normal 2 0.49 4 2.23 �100:00 8 5.23

Proposed 1 0.43 3 1.48 ��100:00 6 3.92

Single – – – – – – –

Low-dropout
regulator

Normal 1 1.37 3 2.40 �100:00 5 2.79

Proposed 1 1.13 2 2.19 ��100:00 3 2.31

Single – – – – – – –

Normal is the presented path planning algorithm with underlying standard state space coverage
metric. Proposed is the proposed path planning algorithm with underlying � state space coverage
metric. Single is the path planning algorithm from [15] (not available for Low-dropout regulator
and mixer examples)

states are marked as interesting, so the overall sum of simulations can be reduced
to only 18 simulations, reducing the overall runtime of the simulation by 70.4%. As
the discretization error still exists, full coverage cannot be reached for that example,
too.

Another unsophisticated, but also an example with strong nonlinearities is a
Schmitt trigger circuit where the simulation runtime could be reduced by 95%. As
this circuit has big areas with linear behavior and only a small region with nonlinear
dynamics, the number of important states can be decreased dramatically.
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Fig. 11 Schematic of a real industrial gmC filter [24, 25] (top) and the result of the discretization
process with 5660 states (bottom)
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Fig. 12 Schematic of a bandpass filter [20] (left) and the result of the discretization process with
5660 states (right)

To demonstrate our approach on static nonlinear system, we calculate a coverage
for two static examples: a mixer and a Low-dropout regulator circuit. Both
implementations are used in an industrial environment. The resulting state space
could be decreased to speed-up the simulation effort. Our presented method detects
the interesting regions (e.g., high load for the LDO) automatically and calculates a
high coverage by only running few simulations to that region.
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To complete our result section, we are also able to create a discretization
of a Verilog-A model description of an analog circuit (see mixer and low-drop
regulator). This speeds up the simulation process on the one hand and also eases the
implementation effort of sophisticated circuits. Using this approach, our presented
method can also be used to create input stimuli to check the equivalence of two
different implementations of the same system with large confidence.

6 Conclusion

In this chapter, a new coverage metric for analog circuits has been proposed. The �

state space coverage uses the eigenvalues and structural properties of the reachable
state space of a nonlinear analog circuit on transistor level to extract a set of states in
the state space which have to be visited by input stimuli. It keeps strongly nonlinear
regions in that set while neglecting linear, uniform regions, resulting in 6.8 times
speed-up of the simulation time of the generated stimuli. The quality of the input
stimuli is still as high as with the presented standard state space-based coverage
method and better than state-of-the-art methods. Experimental results show that
hidden faults can be uncovered and real industrial circuits with up to 69 transistors
(see Fig. 11) can be handled efficiently. We can conclude that the confidence in the
input stimuli for a certain analog circuit can be measured by the proposed metric and
that the verification coverage can be significantly increased with a small simulation
overhead using the proposed � state space coverage maximization algorithm.
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Error-Free Near-Threshold Adiabatic CMOS
Logic in the Presence of Process Variation

Yue Lu and Tom J. Kazmierski

Abstract This paper provides the first analysis of process variation effect on the
adiabatic logic combined with near-threshold operation. One of the significant
concerns is whether reliable performance is retained with voltage scaling. We find
that typical variations of process parameters do not affect error-free operation at
the minimum-energy frequency. Monte Carlo simulations of a 4-bit full adder using
ECRL logic with 0.45 V supply voltage show that in the presence of typical process
variations, energy consumption of the circuit operating at 25 MHz increases by
10.2% in the worst case while a 100% error-free operation is maintained. The
maximum operating frequency (208 MHz) is reduced to nearly half of the nominal
value (385 MHz). To further improve the robustness of the adder against process
variation, a bit-serial adiabatic adder is considered with an even lower energy
consumption per cycle.

Keywords Adiabatic logic • Efficient Charge Recovery Logic • Near threshold •
Process variation • Low power

1 Introduction

Currently, with the emergence of energy-harvesting device [1] and biomedical
applications requiring ultra-low energy consumption, new approaches should be
explored to save more power. Voltage scaling is one of the most effective solutions
to reduce power and has been practically applied in many digital designs. The
reduction of the supply voltage causes a quadratic decrease in the dynamic power
at the expense of increased delay. NTC (Near-Threshold Computing) [2, 3] is an
important research approach, which reduces the supply voltage approximately to the
threshold voltage, accordingly much of the energy savings typical of subthreshold
operation can be retained with acceptable performance loss. Adiabatic logic [4, 5]
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is another attractive method for reducing the dynamic power, which uses ramping
supply voltage sources to recover the energy which would otherwise dissipate as
loss. Recently, some papers for near-threshold adiabatic circuits have been published
[6, 7], where the nominal supply voltage is replaced by the near-threshold voltage
to save even more power.

The impact of process variation on digital designs operating at near-threshold
voltages cannot be ignored due to the reduced noise margin [2]. The variation
sources can be divided into three major parts, process variation, supply voltage and
operating temperature, which are known as PVT (process, voltage and temperature).
This chapter considers effect of process variation on the reliability of near-threshold
adiabatic logic. The transistor length and threshold voltage are the two major
parameters affected by process variation because of sub-wavelength lithography,
etching process steps and random dopant fluctuations. It has been demonstrated [8]
that effective mobility also emerges as another leading effect of process variation
due to the local variation of mechanical stress.

The sensitivity to process variation is significantly increased when the supply
voltage is reduced to near-threshold region. As supply voltage gets close to the
threshold voltage, both the dynamic and leakage powers decrease, but their slow-
down rates are different. Leakage power shows a slower reduction, thus its ratio
in total power dissipation is increased. Since the leakage power is exponentially
dependent on the threshold voltage, the variation of the threshold voltage may
lead to serious power fluctuations in a near-threshold design. It is well known that
near-threshold adiabatic designs can save substantial energy; however, estimated
values of energy consumption would be inaccurate if process variation is not
taken into account [9]. Also the optimal frequency, where the minimum energy
point is attained, is significantly affected. To the best of our knowledge, no paper
has analysed effects of process variation on near-threshold adiabatic logic before.
As a case study, two implementations of 4-bit near-threshold adiabatic full-adder
are considered to demonstrate effects of process variation. The sensitivity of the
energy consumption and operating frequency on process variation is discussed. We
show that a bit-serial implementation reduces the energy consumption four times
and maintain an error-free operation while 0.36% of the parallel adder design are
erroneous.

Additionally, to further improve the robustness of adiabatic operation at near-
threshold voltage, a adder based on bit-serial structure is considered.

2 ECRL Logic Operating at Near-Threshold Voltage

Over the last two decades, a large number of adiabatic logic families have been
proposed [5, 10, 11]. Among them, Efficient Charge Recovery Logic(ECRL) is the
most traditional one, firstly proposed in [10]. ECRL consists of a cross-coupled
PMOS pair to store information and the pull-down network is composed with two
NMOS transistors connecting the input signals. The structure of an ECRL buffer is
shown in Fig. 1.
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Fig. 1 ECRL buffer [10]. (a) Schematic. (b) Power clock

The energy loss mechanisms of the adiabatic logic is composed of these three
energy dissipation, adiabatic, leakage and non-adiabatic losses [5].

Etotal D Eadia C Eleak C Enon-adia (1)

To be specific, adiabatic and leakage energy consumption can be expressed as,

Eadiabatic D
Z T

0

R
C2V2

DD

T2
dt D 2

RC

T
CV2

DD (2)

Eleak D VDDIleak
1

f
(3)

where C represents output capacitance, T denotes the transition time of power
clock, and f and VDD are the operation frequency and peak-peak supply voltage,
respectively.

When ECRL logic circuit operates in near-threshold regime, the supply voltage
VDD is set slightly higher than the threshold voltage, thereby causing reduction of
both adiabatic and leakage energy consumption, accordingly a substantial portion
of energy can be saved. Because of different decrease rate with reduction of supply
voltage, the leakage energy consumption would take larger part in total energy
dissipation. It is worth mentioning, although ECRL logic can work in subthreshold
region, the operation frequency range is quite small and extremely sensitive to
process variations. Once the switching probability is quite low, the optimal operating
frequency would be very close to maximum frequency, easily affected by process
variation. Comparatively, near-threshold computing of ECRL circuit can not only
save large energy cost, but also improve the robustness against process variation.
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3 Analysis of Process Variation Effect on Near-Threshold
Adiabatic Operation

To demonstrate the performance of adiabatic logic and near-threshold operation,
a 4-bit ripple carry adder is designed and simulated. Ripple carry adder consists of
full-adder, which can be realized by XOR and NAND gates. The schematic of ripple
carry adder is shown in Fig. 2. The sum and carry parts of full adder are implemented
by Efficient Charge Recovery Logic (ECRL). The transistor-level circuits can be
seen in Fig. 2.

The whole design is implemented using Hspice simulator and the functionality
of circuit can be confirmed through the simulations. In the experiment, the supply
voltage is set to 0.45 V, which is slightly larger than the absolute value of
PMOS threshold voltage (0.423 V). To compare the energy consumption of circuit
operating at different voltage region, we adjust the peak-peak voltage to 0.7 and

Fig. 2 Topology of ECRL 4-bit full adder [5]
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Fig. 3 Energy dissipation of adiabatic 4-bit full adder at 0.45, 0.7 and 1.0 V

Table 1 Optimal frequency, maximum frequency and minimum energy per cycle of adiabatic
4-bit full adder circuit operating in both super (1.0 V) and near-threshold (0.45 V) region

Vdd (V) Optimal freq (MHz) Max freq (MHz) Minimum energy/cycle (fJ)

1.0 125 1500 14.20

0.45 25 384.6 4.25

1.0 V, respectively. Figure 3 shows the changes of energy dissipation with different
supply voltage, it seems the near-threshold ECRL 4-bit full-adder operating at the
peak-peak voltage of 0.45 V saves at least 60% energy consumption compared with
nominal voltage design when the operating frequency is below 125 MHz. Besides,
optimal frequency, maximum frequency and minimum energy per cycle of the
design have been tested and shown in Table 1.

In order to verify the robustness of full-adder design operating in near-threshold
regime, process variations are taken into consideration in the design. According to
the experiment results in [12], for ECRL circuits, the effect of inter-die variations
is much smaller than that of intra-die variations; therefore, only intra-die parameter
variations are considered in the design. All the experiments are demonstrated based
on 65 nm PTM technology [13], and the relevant process variations are described in
[8]. The following three transistor parameters are recognized as the leading sources
of process variation: gate length, threshold voltage and mobility. Their mean values
and standard deviations for both NMOS/PMOS transistors are shown in Table 2.
In [14], the author compares the calculated value of the standard deviation with
another using the equation presented in [15]; it seems the difference is negligible
(approximately 5 mV) for both PMOS and NMOS transistors.
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Table 2 Varied process
parameters [8]

Parameter Mean Standard deviation (%)

Length 70 nm ˙4

Vthn 0.423 V ˙5

Vthp �0:365 V ˙5


effn 491 cm2=V s ˙21


effp 57.4 cm2=V s ˙21

Table 3 Effect of process variation on energy consumption of 0.45 V design operating in nominal
optimal frequency

Parameters Avg energy/cycle Max energy/cycle Min energy/cycle

Length 4.29 fJ(C0:79%) 4.36 fJ(C2:49%) 4.21 fJ(�0:95%)

Vth 4.29 fJ(C0:99%) 4.70 fJ(C10:63%) 4.07 fJ(�4:187%)

Mobility 4.28 fJ(C0:76%) 4.43 fJ(C4:1%) 4.18 fJ(�1:66%)

Total 4.30 fJ(C1:11%) 4.69 fJ(C10:21%) 4.06 fJ(�4:55%)

The influence of the length, threshold voltage and mobility on the energy
consumption can be seen in Table 3, where threshold voltage has stronger effect
on the average, maximum and minimum energy consumption per cycle compared
with the other two parameters. To be specific, variation for average energy per cycle
is equal to 1:11%, but in worst case, the process variations would lead to 10:21%
extra energy dissipation.

As seen in Fig. 4, the changes of maximum and minimum energy consumption
in the presence of process variation are given, and the difference with the nominal
value of energy cost can be clearly observed. In general, the variation of energy
dissipation is becoming more stable with the increase of operation frequency.
Besides, the optimal frequency of the whole design is largely affected by process
variation. To demonstrate the reliability of near-threshold design in optimal fre-
quency, the simulation waveforms of the fourth single-bit full-adder is shown in
Fig. 5. The input signals are power clock, A4, B4 and the carry bit from the previous
adder, while the results of sum and carry bits can be observed in the waveforms.
Besides, the orange, red and blue simulation waveforms are represented by design
with nominal parameters and varied parameters (maximum and minimum energy
dissipation per cycle). Clearly, the design with varied parameters can also realize
correct functionality; therefore, its reliability in nominal optimal frequency can be
confirmed.

In the presence of process variation, error rate of circuit operating in nominal
maximum frequency (385 MHz) achieves 52:55%, and it approximately becomes
zero when the working frequency is reduced to 208.3 MHz in Fig. 6. Moreover, it is
demonstrated that performance of the near-threshold adiabatic design is quite stable
at optimal frequency; even when the circuit is affected by process variation, error
rate in the optimal frequency remains zero.
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Fig. 4 Energy dissipation of 0.45 V adiabatic full-adder design with nominal and varied parame-
ters

Fig. 5 Simulation waveforms of adiabatic 4-bit full adder with varied parameters at 0.45 V voltage

As discussed before, variation of the threshold voltage has the most significant
influence on the performance of circuits. In order to further study the tolerance of
near-threshold adiabatic logic against process variations, the standard deviation of
Monte Carlo simulation for threshold voltage is increased. According to experiment
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Fig. 6 Error rate of near-threshold adiabatic full-adder design with process variation at 0.45 V
voltage

results, when the standard deviation is set to 14%, the error rate of 4-bit full-adder
operating in 200 MHz would be non-zero, approximately 0:36%. For simplicity,
the waveforms of the fourth single-bit full-adder are presented in Fig. 7 and failed
waveforms are highlighted using red cycle. Obviously, with the increase of circuit
complexity, reliability issues of near-threshold adiabatic logic would be more
serious.

4 Near-Threshold 4-Bit Adiabatic Adder Based on Bit-Serial
Structure

As shown in the previous experiment results, once the threshold voltage varia-
tion become more serious, up to 14%, the adiabatic operation at near-threshold
region would not be error-free anymore. To further improve the robustness of
the adiabatic logic circuit while ensuring its characteristics of low-power, a 4-bit
adder is reconfigured based on bit-serial structure. The bit-serial adiabatic adder
consists of a single-bit full-adder and a flip-flop, realized using the ECRL adiabatic
technique. Since adiabatic logic implements computation sequentially, a flip-flop in
an adiabatic system could be realized by three buffers.
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Fig. 7 Monte Carlo simulation waveforms of adiabatic 4-bit full adder with varied parameters at
0.45 V voltage

Simulation results shows that the energy can be reduced four times compared
with the parallel design (see Table 4). Additionally, in the serial arithmetic, 4-bit
addition can be realized using only one single-bit adder, therefore the transistor
count is also significantly reduced. Only 36 transistors are required.

Bit-serial operation also improves the robustness against process variation. In the
serial adiabatic adder, fewer transistors are connected in a stack, and accordingly
the effects of variation on the threshold voltage are alleviated. To demonstrate the
robustness of the bit-serial design, Monte Carlo simulations with varying threshold
voltage have been carried out. The results can be observed in Fig. 9. Compared with
the equivalent parallel design, when the variation of the threshold voltage reaches to
14%, the bit-serial adiabatic design can still maintain the error-free operation.

5 Conclusion

This chapter provides the first analysis of process variation effects on the energy
consumption and reliability of near-threshold adiabatic logic. As a case of study, a
4-bit full adder is tested and results show that, in the worst case, process variation
could cause 10:2% extra energy dissipation at the optimal frequency, while the
performance is not significantly affected. The maximum frequency is reduced by
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Fig. 8 A possible configuration of a 4-bit adiabatic adder based on bit-serial structure

Table 4 The comparison of the 4-bit adder based on normal and bit-serial architecture in terms
of energy consumption (operating at 25 MHz with 0.45 V supply voltage) and transistor count

Architecture Energy/cycle (fJ) Transistor count

Normal 4.25 96

Bit-serial 1.10 36

45:8% and approximately equal to 208 MHz. In a bit-serial implementation, the
energy per cycle can be further reduced while the robustness is also significantly
improved. Robustness of near-threshold adiabatic logic in the presence of process
variation makes it a promising candidate for future ultra-low-energy-consumption
digital designs.
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Fig. 9 Monte Carlo simulation waveforms of adiabatic 4-bit full adder with varied parameters at
0.45 V voltage based on bit-serial structure
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