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Foreword

About five decades ago, India started its nuclear power programme with the launch
of Boiling Water Reactor units at Tarapur. Now, it has more than 20 nuclear power
reactor units in operation, several more are under different phases of construction,
commissioning and planning.

A wide variety of nuclear reactor designs constitute the three-stage Indian
nuclear power programme. The pressurized heavy water reactor technology is the
one which has matured in India and such reactors are likely to remain as the
mainstay of the first stage of the programme. Advanced heavy water reactor design,
which uses slightly enriched uranium or plutonium along with thorium as fuel,
heavy water as moderator and boiling light water as coolant, has been conceived to
enhance the safety performance, consistent with the expectations from the
next-generation reactor systems through innovative configuration of the best fea-
tures of pressurized heavy water reactor designs and the light-water reactor designs
besides extracting significant energy from thorium.

Design of control systems and the control algorithms for the core and plant
control have always been challenging and more so in case of nuclear reactors in
which xenon-induced spatial oscillations too require control. Hence, in the past four
decades, spatial reactor control has attracted attention of several researchers. Thus,
besides conventional controllers which just attempt to achieve stability of the
closed-loop system, numerous modern control algorithms capable of achieving
stability along with optimum performance, have been evolved to address com-
plexities and nonlinearities of the system.

This monograph introduces most recent concepts of state and output feedback
with application to core control of advanced heavy water reactor. It presents
knowledge in structured manner and in lucid language. Mathematical equations
governing the reactor have been introduced in the initial portion of the monograph.
Subsequently, it goes on suggesting the application of different control techniques.
Simulation steps have been elaborated using block diagrams depicting the control
flow and results have been depicted by graphs making it easy to comprehend. At the
end, the monograph brings out comparison of the effectiveness of the different
techniques.
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Preface

In India, Advanced Heavy Water Reactor (AHWR), a heavy water moderated and
boiling light water cooled thermal reactor, has been designed. Its design aims at
large-scale commercial utilization of thorium and integrated technological
demonstration of thorium cycle. Control and operation of AHWR pose several
challenges. In this monograph, different spatial control techniques namely, static
output feedback, state feedback control, sliding mode control, fast output sampling
feedback, periodic output feedback, and discrete-time sliding mode control are
examined for regulation of spatial power distribution in AHWR. AHWR core is
considered to be divided into 17 relatively large nodes. The nodal core model has
been obtained based on finite difference approximation of the two group neutron
diffusion equations and the associated equations for an effective single group of
delayed neutron precursors’, xenon and iodine concentrations. Further, nonlinear
model characterizing important thermal hydraulics parameters of AHWR has been
integrated with the neutronics model to obtain a coupled neutronics–thermal
hydraulics model of AHWR. From these nonlinear equations of AHWR system, a
vectorized nonlinear model of AHWR has been developed and is implemented in
MATLAB/Simulink environment. The model of the reactor is then linearized at the
rated power and put into standard state variable form. It is characterized by 90
states, 5 inputs, and 18 outputs. Viability of achieving control over total power and
spatial power distribution of AHWR through static output feedback has been
investigated and a strategy utilizing conventional concepts for control of global
(total) power as well as spatial power distribution is evolved.

As is the case with several large-scale physical systems, the model of the AHWR
is seen to possess the simultaneous presence of slow, medium, and fast varying
dynamic modes, thereby exhibiting a multi-time-scale property. Hence, in this
monograph further, innovative techniques based on singular perturbation are
developed for decomposition of the original multi-time-scale system into smaller
order subsystems. Four control techniques based on two-time-scale decomposition
and two on three-time-scale decomposition are explored for AHWR.

Finally, all the spatial control strategies are compared in terms of their com-
putational intensiveness, sensitivity, robustness, and response under the same
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representative transients. Various time-domain specifications and error performance
indices are calculated for each transient and the most appropriate control technique
is identified for spatial control of AHWR. Although the mathematical model of
reactor core, controller design and simulation methodologies have been proposed
for AHWR, they can be easily adopted to other types of nuclear reactors.

This monograph can be beneficial to mathematicians, scientists, as well as
researchers working on nonlinear modeling and control for a better fundamental
understanding of numerically ill-conditioned large-scale systems. The authors
acknowledge IEEE and Elsevier for granting the permission to reuse materials
copyrighted by these publishers in this monograph. The authors express sincere
thanks to Board of Research in Nuclear Sciences, Department of Atomic Energy,
Government of India for funding the project entitled “Comparison of Controllers
for Advanced Heavy Water Reactor” under the grant 2009/36/102-BRNS/3284.
The authors would like to express their deep sense of gratitude to their parents and
teachers who have made them competent enough to write this monograph. The
authors wish to thank many individuals who had helped them directly or indirectly
in completing this monograph particularly Dr. S.R. Shimjith and Mr. P.S. Londhe.
Finally, authors wish to acknowledge the support, patience, and love of their
spouses and children during the preparation of this monograph.

Nashik, India Ravindra Munje
August 2017 Balasaheb Patre

Akhilanand Tiwari
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Chapter 1
Introduction

1.1 Introduction

Even though atoms are tiny, their nuclei together hold huge amount of energy. In
1904, the father of nuclear science, Ernest Rutherford wrote:

If itwere possible to control atwill the rate of disintegration of the radio element, an enormous
amount of energy could be obtained from a small amount of matter.

In 1934, physicist Enrico Fermi demonstrated splitting of many kinds of atoms using
neutrons. In the fall of 1938, German scientists Otto Hahn and Fritz Strassmann
revealed that bombarding neutrons on the nucleus of the uranium atom convert some
of the uranium into barium. This Hahn’s experiment of splitting the uranium atom
was well acknowledged by Austrian physicist Lise Meitner and Otto R. Frisch in
1939, and named as nuclear fission process. The promising design for a uranium
chain reaction was recommended by Fermi and his associate Leo Szilard in 1941.
Early in 1942, a group of scientists guided by Fermi congregated at the University
of Chicago for developing their theories. They all were prepared for construction
to begin on the world’s first nuclear reactor by November 1942. On the morning
of December 2, 1942, they successfully established the first self-sustaining nuclear
chain reaction at University of Chicago, Illinois and transformed scientific theory
into technological realism [38]. Among the peaceful use of this form of energy, is
the generation of electricity. A system used to transform nuclear energy into electri-
cal energy is called nuclear power plant. The first commercial nuclear power plant
started operation in 1950s. According to World Nuclear Association [8], there are
around 440 commercial nuclear power plants operating in 31 countries with over
380,000MWe (Mega Watt Electrical) of total capacity. About 65 more reactors are
under construction. They provide about 11.5% of world’s electricity as continuous,
reliable base load power, without carbon dioxide emission. Fifty-six countries oper-
ate a total of about 240 research reactors. Further, 180 nuclear reactors power some
140 ships and submarines.

© Springer Nature Singapore Pte Ltd. 2018
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2 1 Introduction

In India, nuclear power is the fourth largest source of electricity after thermal,
hydroelectric, and renewable sources of electricity. According toNuclear Power Cor-
poration of India Limited [7] as of 2016, India has 21 nuclear reactors in operation in
7 nuclear power plants, generating 5780MWe while 3 other reactors are under con-
struction and are expected to generate an additional 3800MWe. Except for two units
at Tarapur which have Boiling Water Reactors and one unit at Kudankulam which
has Pressurized Water Reactor (PWR), all nuclear power plants in India employ
Pressurized Heavy Water Reactor (PHWR) concepts in which natural uranium is
used as fuel and heavy water as moderator. India has been operating and develop-
ing improved versions of its current generation PHWR on the basis of operating
experience, international trends and indigenous research and development inputs as
a first stage of nuclear power program. In the second stage, Fast Breeder Reactor
programs were launched with the Fast Breeder Test Reactor, which operates with
a uranium-plutonium mixed carbide fuel. Considering the large thorium reserves in
India, thorium utilization for large-scale energy production has been an important
goal of the third stage of nuclear power program [29–31]. For the timely develop-
ment of thorium-based technologies for the entire thorium fuel cycle, the Advanced
Heavy Water Reactor (AHWR) has been designed.

1.2 An Overview of Advanced Heavy Water Reactor

The active core of AHWR is 3.5m long and is divided into 513 lattice locations as
shown in Fig. 1.1. Out of these lattice locations, 452 house fuel assemblies and the 24
host reactivity control devices which include Absorber, Shim, and Regulating Rods
(RRs) each 8. Absorber Rods are usually fully inside and Shim Rods are fully out
of the reactor core whereas; RRs are partially inside the reactor core under normal
operating conditions for fine regulation of reactor power. Again, out of the eight RRs,
four are controlled automatically and the remaining 4 are controlled manually. The
rest 37 lattice locations are engaged by Shut-Off Rods of the shutdown system-1.
Out-of-core ion chambers as well as in-core detectors are used to measure neutron
flux. The total power of the reactor is inferred from ion chambers in low power
range and from in-core detectors in power range. In-core detectors, however, are
provided primarily for monitoring of spatial flux distribution in the core [23, 26–28,
30]. 452 coolant channels in the reactor core, the same number of tail pipes and inlet
feeders, 16 downcomers, 4 horizontal cylindrical steam drums, and an inlet header
form main heat transport system. For illustrating the structure, main heat transport
system with a coolant channel, a tail pipe, an inlet feeder, a downcomer, a steam
drum, and an inlet header is depicted in Fig. 1.2 (for simplicity only one steam drum
is shown). On absorbing the fission heat, boiling of coolant in the reactor core takes
place. Coolant channels associated with each quadrant of the reactor core are joined
to separate steam drums through individual tail pipes. The coolant flow is driven by
natural convection through tail pipes to steam drum at 7MPa. Within steam drums,
separation of steam–water phase and mixing of feed water occur. This steam is then
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Fig. 1.1 AHWR Core map [27]

Fig. 1.2 AHWR main heat transport system

fed to the turbine whereas, the subcooled water flows back to the coolant channels
through the four downcomer pipes to a common inlet header. Individual coolant
channels of the core are fed from this common header through individual feeder
pipes [5, 23, 26, 30].
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The operation and control of nuclear power plants, like AHWR, represent a dif-
ficult problem due to the possibility of accidents or sabotage. Therefore, a number
of safety and control aspects are taken into consideration while designing power
plant and operational policies are incorporated to circumvent accidental release of
radioactivity to the general population. Further, the severity of the problem increases
with increase in the size of nuclear reactor.

1.3 Spatial Control Problem

Fission reactions taking place in the reactor core give birth to numerous nuclear
species. One of the isotopes is xenon (135Xe), which requires attention, due to the
large cross section of thermal neutron absorption. A small portion of 135Xe is created
directly in fission but themajor part results from the radioactive decay of iodine (135 I ).
Furthermore, it decays at a comparatively slower rate than 135 I does. Therefore, an
abrupt increase in neutron flux in the reactor core decreases the concentration of
135Xe, which further increases neutron flux. This persists for few hours and then an
opposite action takes place, in which the increased neutron flux results into formation
of more xenon which in turn reduces the neutron flux. In this way, oscillations of the
neutron flux are initiated by 135Xe [4, 6]. In small nuclear reactors, these oscillations
can be effectively controlled by appropriate control rod algorithm and hence do not
pose serious concern in operation and control. However, in ‘large’ nuclear reactors
where physical size is quite a lot of times the neutron migration length, spatial
oscillations are significantly important. If these oscillations in the spatial power are
not controlled, the power density and the rate of change of power at some positions
in the core may go beyond their respective thermal limits, and may result in fuel
failure. Therefore, in large thermal nuclear reactors, it becomes essential to utilize
automatic power distribution control system, apart from the control of the total power
of the reactor. The main intention is to maintain the core power distribution close to
a preferred shape.

The foremost problemencountered in control analysis and design of a large reactor
is the development of mathematical model. Nuclear reactors of small core size are
adequately represented by the well-known point kinetics model which depicts the
dynamics of the core averaged neutron flux/power and the associated delayed neutron
precursor groups. For large reactors, however, this model will not suffice since the
flux shape in large reactor undergoes variations which the point kinetics model is
unable to capture [4]. Therefore, for large nuclear reactors, it is essential to adopt
more detailed space-time kinetics models for analysis. Thus, it becomes essential to
develop a suitable mathematical model which captures all the essential properties of
the reactor core and then to develop and implement a computer code in the form of
an offline computer algorithm to regulate the behavior of system in various proposed
transient situations.
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As far as the power distribution control in a nuclear reactor is concerned, it is
important to note that the model of a nuclear reactor belongs to a special class of
systems called singularly perturbed systems. The simultaneous presence of both the
slow as well as the fast varying dynamical modes could cause ill-conditioning of the
problem. Fortunately, the rich literature on singular perturbations and control makes
it feasible to analyze such systems and design the controller. Using these techniques,
model of the nuclear reactor can be transformed into a proper form whereby stiffness
is completely removed. Once, this has been done, numerous approaches are available
for carrying out the design of spatial power distribution control systems.

Feedback of total power (or core averaged power) is normally sufficient for
control of small or medium size nuclear reactors, whereas large reactors may neces-
sitate feedback of spatial power distribution along with the total power feedback for
efficient spatial control. However, a major limitation of the static output feedback
is that it may not guarantee arbitrary pole placement. Hence, static output feedback
is not preferable as it may not meet all the performance specifications. Employing
dynamic output feedback may be feasible but it again leads to sophisticated feed-
back system. Therefore, spatial control using state feedback would have been a better
option for arbitrary pole placement. Again, practical implementation of such a con-
troller would require a state observer which will increase the complexity. A better
candidate would be the use of output information throughmodern control techniques
such as fast output sampling or periodic output feedback. However, in such applica-
tions, the intricacies associated with multi-time-scale properties of the model need
to be handled carefully.

1.4 Nuclear Reactor Control: A Review

Application ofmodern control techniques for spatial control of large nuclear reactors,
like Pressurized HeavyWater Reactor and Advanced HeavyWater Reactor, becomes
difficult because of interacting dynamic phenomena of widely different speeds, giv-
ing rise to widely separated groups of eigenvalues. In this situation, singular pertur-
bation techniques prove to be superior. Application of singular perturbation approach
to a different type of reactor control problem is given by Reddy and Sannuti [16].
Further, in [36], numerically ill-conditioned model of PHWR is decoupled into two
subsystems based on singular perturbation technique. Subsystem regulator problems
are designed separately and then they are combined to obtain the near-optimum com-
posite control, for original model, for the regulation of spatial power distribution in
the reactor core. As an extension to this, simultaneous decomposition of singularly
perturbed three-time-scale system of AHWR into three subsystems is achieved in
[24]. These singular perturbation techniques eliminate numerical ill-conditioning
issues associated with PHWR and AHWR. However, these methods require all the
states for feedback. Several mechanisms for detection of neutron flux or power are
known but there is not any instrument for measuring delayed neutron precursor,
xenon, and iodine concentrations in the reactor. As a consequence of this, it is diffi-
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cult to implement the control laws based uponmodern concepts characterized by state
variable feedback. To overcome this problem, a deterministic, linear, and reduced
order observer has been designed in [34] for estimation of an average delayed neutron
precursor, xenon, and iodine concentrations in different regions of the PHWR core.
However, observer-based design results in complex structured closed-loop system
requiring expensive hardware and processing network which increase the implemen-
tation cost and reduces the reliability of control system.Hence, it is desirable to go for
an output feedback design. Spatial control strategy based on static output feedback
control (SOFC) has been attempted in [26] and it is shown that spatial stabilization
of AHWR is possible with the feedback of total power and spatial power distribution
signals. This technique is easy to implement. However, complete pole assignment
and guaranteed closed-loop stability are still not obtained by using SOFC [32]. The
dynamic output feedback controller involves more dynamics and is more complex
to design.

Recently, multirate output feedback (MROF) has drawn much interest of many
researchers and the application to nuclear reactor for spatial control is successfully
demonstrated. In contrast to observer-based design in which accuracy of estimation
of states improves after long time, exact computation of states in just one sampling
period is feasible if MROF is employed. In MROF, sampling rates of input and out-
put are different. In one type of MROF technique called periodic output feedback
(POF), the input is sampled at faster rate than the output. In the other type of MROF
called fast output sampling (FOS) feedback, output is sampled faster than the input.
Application of periodic output feedback control for PHWR is reported in [33, 37].
In [37] using linear transformation of state variables, the singularly perturbed model
of PHWR is converted into a block triangular form in which the fast subsystem is
decoupled. Then, an output injection gain matrix stabilizing the slow subsystem is
obtained. The periodic output feedback gain is subsequently calculated only for the
slow subsystem and the same for the fast subsystem is set equal to zero. Finally, the
POF gain for the composite system is obtained using the POF gains computed sepa-
rately for the slow and fast subsystems. A decentralized periodic output feedback is
proposed for PHWR in [33], which proves to be simpler for practical implementa-
tion. Fast output sampling technique for PHWR and AHWR is suggested in [17, 18,
25]. A robust controller for uncertain systems using FOS technique is examined for
PHWR in [18]. The FOS control allows the realization of the robust state feedback
gain simultaneously for family of linear models. The issues of noise sensitivity and
error dynamics are overcome by posing the problem as linear matrix inequality prob-
lem. In [17], the discrete system of PHWR is transformed into block diagonal form
in which slow and fast subsystems are decoupled. State feedback control is designed
for the slow subsystem while the state feedback for fast subsystem is taken as zero.
Then, composite state feedback controller is obtained and it is realized by fast output
sampling feedback gain. The technique presented in [18] is extended for three-time-
scale system and has been successfully applied to AHWR in [25]. However, these
methods lack robustness. Also, these control techniques may not work satisfacto-
rily in the presence of disturbances, parameter variations and perturbations in the
operating conditions. Robust control techniques could be useful in such situations.
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In recent years, one of the robust control techniques named, sliding mode control
(SMC) has attracted the attention of many researchers. Sliding mode spatial control
of PHWR is documented in [12–15]. In [14], sliding mode observer is proposed to
estimate the states of PHWR. Further in [12, 13, 15], MROF-based sliding mode
control is proposed for PHWR. Thesemethods do not require state information of the
system for feedback purpose and hence may be easier to implement. Sometimes, it
is required to design a closed-loop system which is fault tolerant in the sense that the
stability is not lost even if sensors or control actuators have failed. Incorporating such
a consideration in the design leads to multi-model plant description for which usual
designmethods are not tractable. Fault-tolerant spatial control systems for PHWRare
presented in [19, 35]. Approach presented in [35] is based on POF whereas in [19] it
is based on FOS. Spatial control means to suppress xenon oscillations from growing.
A modified method based on the concept of three axial offsets has been presented
in [20] for controlling xenon oscillations in large PWR. This method gives contin-
uous information of oscillations in reactor to operator, which helps the operator to
understand the situation rather clearly. As an extension to this, concept of monitoring
and control of radial xenon oscillations in PWR has been suggested in [21], which
utilizes feedback of not only axial offsets but also uses information of power reactor
distribution in respective core regions. Further, similar kind of approach based on
characteristics ellipse trajectory drawn by three axial offsets is proposed in [22].

In recent years, fuzzy logic controllers (FLCs) are very promising for nuclear
reactor applications [9–11]. They provide a high degree of robustness and immunity
to external disturbances. Furthermore, they can be configured to be self-learning and
adaptive.A fuzzymodel predictive controlmethod [11] is used to design an automatic
controller for thermal power control in PWRs. In this, the future reactor power is
predicted by using fuzzy model identified by a subtractive clustering method of a
fast and robust algorithm. The objectives of the presented fuzzy model predictive
control law are to minimize both the difference between the predicted reactor power
and the desired one, and the variation of the control rod positions. These objectives
are subject to maximum and minimum control rod positions and maximum control
rod speed. The genetic algorithm, useful to accomplish multiple objectives, is used
to optimize the fuzzy model predictive controller. Recently, Londhe et al. [9] have
proposed spatial control ofAHWRusing single-input fuzzy logic controller (SIFLC).
TheSIFLC reduces the conventional two-input fuzzy logic controller to a single-input
FLC. It is shown that the SIFLC offers a significant reduction in rule inferences and
simplifies the tuning of control parameters. Also, SIFLC requires less execution time
compared to conventional two-input fuzzy logic controller for the control of spatial
oscillations in AHWR. Further in [10], a simplified fuzzy like proportional derivative
controller is proposed for spatial control of AHWR. Some other control techniques,
based on discrete Proportional–Integral–Derivative (PID) and fractional order PID,
are recommended in [1–3].

In the subsequent chapters of this monograph, systematic investigation of applica-
bility of multivariable spatial control techniques for power regulation of AHWR has
been accomplished.More specifically, comparison of these spatial control techniques
is presented.
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1.5 Overview of Monograph

The remaining chapters of this monograph are organized as follows:

• Chapter2 discusses the mathematical model of AHWR, its representation in the
standard state-space form, vectorization ofmodeling equations, and spatial control
based on static output feedback.

• Chapter3 recommends a state feedback technique based on two-stage decompo-
sition for AHWR nonlinear system for spatial control.

• Chapter4 presents application of spatial control technique based on two-time-scale
decomposition using quasi-steady-state method to nonlinear model of AHWR.

• Chapter5 illustrates application of robust sliding mode controller for AHWR sys-
tem, based on two-stage decomposition. Since, fast subsystem is found to be stable,
SMC is designed using slow subsystem alone. This is then applied to vectorized
nonlinear model of AHWR and simulation results are discussed.

• Chapter6 demonstrates the application of fast output sampling control strategy
to AHWR system and nonlinear simulations carried out under different transient
conditions.

• Chapter7 suggests a novel periodic output feedback control technique for three-
time-scale system and its application to AHWR for spatial stabilization.

• Chapter8 investigates discrete-time sliding mode control technique with two dif-
ferent reaching conditions, based on three-time-scale decomposition. These tech-
niques are applied to AHWR and spatial control is achieved.

• Chapter9 compares all the controllers under the same representative transients.
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Chapter 2
Modeling of AHWR and Control by Static
Output Feedback

2.1 Introduction

The physical dimensions of Advanced Heavy Water Reactor (AHWR) are
comparatively larger than the neutron migration length in the reactor core. As a
result, a severe condition called flux tilt may take place in AHWR. Additionally, cir-
cumstances such as online refueling might cause momentary variations in flux shape
from the equilibrium flux shape. For analysis of such conditions, it is required to
develop an appropriate space-time kinetics model of AHWR. Moreover, the models
used for detailed core physics calculations, thermal hydraulics analysis or burnup
optimization are usually of very large order and are not readily suited to control
studies. A simplified model for representing the space-time kinetics phenomena in a
Pressurized Heavy Water Reactor has been derived in [15] based on finite difference
approximation of multigroup diffusion equations. In a similar manner, mathematical
model of AHWR is obtained in [11, 12, 14] and the same has been used for the study
carried out in this monograph.

Designing a robust spatial control technique for a nuclear reactor heavily depends
on thorough understanding of system/plant dynamics. These dynamics are nothing
but the interactions among the various state variables. To explore reactor dynamics
and investigate spatial control strategies, a suitable reactor model, capturing impor-
tant features and reasonable in its complexity, is required. So, simulation studies can
be carried out in the form of offline computer programs to study the performance of
nuclear reactor in various predicted accident conditions [1, 7, 10, 16].

This chapter provides mathematical modeling of AHWR. This includes modeling
of core neutronics and thermal hydraulics behaviors along with internal reactivity
feedbacks. Subsequently, model is linearized and design of static output feedback
control (SOFC) is investigated. This chapter also serves as basis for subsequent
chapters in this monograph.

© Springer Nature Singapore Pte Ltd. 2018
R. Munje et al., Investigation of Spatial Control Strategies
with Application to Advanced Heavy Water Reactor, Energy Systems
in Electrical Engineering, https://doi.org/10.1007/978-981-10-3014-7_2
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2.2 Mathematical Modeling of AHWR

Complete AHWR model is developed by combining models of core neutronics
behavior and thermal hydraulics of main heat transport system.

2.2.1 Core Neutronics Modeling

The simplified core neutronics model is obtained by the nodal approach, based on
finite difference approximation of the two group neutron diffusion equations and the
associated equation for an effective single group of delayed neutron precursor’s con-
centration. In this, for decoupling the space and time dependence, the AHWR core
is divided into 17 nodes as depicted in Fig. 2.1. This 17 nodes division is obtained
by considering a central region (node 1) in the core and concentric radial regions.
The inner radial region consists of nodes 2–9 which also contain individual reg-
ulating rods (RRs). The outer radial region consists of nodes 10–17. The top and
bottom reflector regions are divided into 17 nodes in an identical pattern, whereas
the side reflector region is divided into 8 nodes. Within each node in the reactor core,
the neutron fluxes and other neutronic parameters are represented by the respective
average values integrated over its volume. The nodes 2, 4, 6, and 8 contain RRs under

Fig. 2.1 17 nodes AHWR
scheme
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automatic control [13]. For convenience, the RRs under automatic control are num-
bered according to the nodes containing them as RR2, RR4, RR6, and RR8. These
nodes are considered as 17 small cores, each of which is coupled to its neighboring
nodes through neutron diffusion. The following nonlinear equations constitute the
neutronics model of the reactor core without internal reactivity feedback.

dQi

dt
= (ρi − αi i − β)

Qi

�
+

17∑

j=1

α j i
Q j

�
+ λCi , (2.1)

dCi

dt
= β

�
Qi − λCi , i = 1, 2, ..., 17, (2.2)

where α j i and αi i denote the coupling coefficients between j th and i th nodes and
self-coupling coefficients of i th node, respectively,β andλ, respectively, are effective
one group delayed neutron yield and decay constant, � is the neutron lifetime. Qi and
Ci are the nodal power level and the effective one group delayed neutron precursor
concentration of i th node, respectively.

The most important fission product poison is xenon because of its exceptionally
large capture cross section for thermal neutrons and half-life of 9.2h.Main proportion
of this isotope in a reactor originates from radioactive decay of iodine with half-life
of 6.7h [4, 5]. To formulate xenon reactivity feedback, iodine and xenon dynamics
in each node are represented as

d Ii
dt

= γIΣ fi Qi − λI Ii , (2.3)

dXi

dt
= γXΣ fi Qi + λI Ii − (λX + σ̄Xi Qi )Xi , (2.4)

where γI and γX are fission yields of iodine and xenon respectively, λI and λX are,
respectively, decay constants of iodine and xenon and σ̄Xi = σXi /Eef f Σ fi Vi ; Ii
denotes iodine concentration and Xi the xenon concentration of i th node. Also, Eef f

is energy liberated in each fission, Vi is the node volume, and Σ fi is thermal neutron
fission cross section of i th node.

Regulating rods are driven by the respective reversible variable speed-type three-
phase induction motor and static frequency converter. The speed of RR is directly
proportional to the voltage applied to the drive motor and it is given by

dHk

dt
= κvk, k = 2, 4, 6, 8; (2.5)

where vk is control signal applied to the RR drives in the range of ±1 volt, κ is a
constant having value 0.56, and Hk is ‘% in’ position of RR of kth node. Differential
equations (2.1)–(2.5) characterize the nodal model of AHWR core neutronics. The
neutronic parameters, coupling coefficients, nodal volumes, and cross sections are
given in Tables2.1, 2.2, and 2.3, respectively.
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Table 2.1 Neutronic parameters

Parameter Corresponding value

β 2.643 × 10−3

λ 6.4568 × 10−2 s−1

� 3.6694 × 10−4s

λI 2.878 × 10−5 s−1

λX 2.1 × 10−5 s−1

γI 5.7 × 10−2

γX 1.1 × 10−2

σX 1.8 × 10−22 cm−1

Eef f 3.2 × 10−11 J

Table 2.2 Coupling coefficients for the AHWR model

α1,1 = 3.1567 × 10−2

α2,2 = α5,5 = α6,6 = α9,9 = 5.4918 × 10−2

α3,3 = α4,4 = α7,7 = α8,8 = 6.2052 × 10−2

α10,10 = α13,13 = α14,14 = α17,17 = 3.8351 × 10−2

α11,11 = α12,12 = α15,15 = α16,16 = 4.3567 × 10−2

α1,2 = α1,5 = α1,6 = α1,9 = 6.5746 × 10−3

α1,3 = α1,4 = α1,7 = α1,8 = 6.5204 × 10−3

α2,1 = α5,1 = α6,1 = α9,1 = 4.5833 × 10−3

α3,1 = α4,1 = α7,1 = α8,1 = 4.3309 × 10−3

α2,3 = α5,4 = α6,7 = α9,8 = 1.3044 × 10−2

α3,2 = α4,5 = α7,6 = α8,9 = 1.2428 × 10−2

α3,4 = α4,3 = α7,8 = α8,7 = 1.6097 × 10−2

α2,9 = α5,6 = α6,5 = α9,2 = 1.0445 × 10−2

α2,10 = α5,13 = α6,14 = α9,17 = 2.3481 × 10−2

α3,11 = α4,12 = α7,15 = α8,16 = 2.7555 × 10−2

α10,2 = α13,5 = α14,6 = α17,9 = 1.9198 × 10−2

α11,2 = α12,5 = α15,6 = α16,9 = 5.6901 × 10−3

α2,11 = α5,12 = α6,15 = α9,16 = 5.4963 × 10−3

α11,3 = α12,4 = α15,7 = α16,8 = 2.9941 × 10−2

α10,17 = α17,10 = α11,12 = α12,11 = α13,14 = α14,13 = α15,16 = α16,15 = 9.9912 × 10−3

Rest all αi, j = 0

2.2.2 Thermal Hydraulics Model

Thermal hydraulics model of main heat transport system of AHWR has been devel-
oped by evolving separate models for reactor core thermal hydraulics and for the
steam drums, and afterwards clubbing them together [2, 12] as given below.
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Table 2.3 Nodal volumes and cross sections

Node No. Volume (m3) Σ f (cm−1) Σa (cm−1)

1 8.6822 2.6657×10−3 6.9514×10−3

2, 5, 6, 9 5.4042 2.3898×10−3 6.6828×10−3

3, 4, 7, 8 5.1384 2.5325×10−3 6.7898×10−3

10, 13, 14, 17 4.4297 2.5665×10−3 6.8991×10−3

11, 12, 15, 16 5.5814 2.5665×10−3 6.8991×10−3

2.2.2.1 Core Thermal Hydraulics

A thermal hydraulics model of the reactor core is obtained assuming an equivalent
coolant channel for each node, ignoring the pressure drops in downcomers, feeders
and tail pipes, and taking uniform distribution of nodal power along the flow axis.
Also, the steamquality is considered to be uniformly increasing along the axial length
in the channels after the point of onset of boiling. Now, applying mass and energy
balance equations to the boiling section and solving them together, the core thermal
hydraulics model is written as

evpi
d P

dt
+ evxi

dxi
dt

= Qi − qdi (hw − hd) − xi hcqdi , (2.6)

where P is drum pressure, hw, hd and hc are water, downcomer, and condensation
enthalpies, respectively, xi is the nodal average exit quality, qdi is flow rate of the
coolant entering the i th node through downcomer and evpi and evxi are constants of
i th node.

2.2.2.2 Steam Drums

A simple lumped model of the steam drums is developed assuming (1) insignificant
carry over and carry under effects; (2) a mixture of saturated water and steam enters
the steam drum and subcooled water leaves steam drum into the reactor core; and
(3) average values of density and enthalpy of the water in the steam drum. Mass and
energy balance equations of the steam drums are respectively represented by

epv
dVw

dt
+ epp

d P

dt
= −

17∑

i=1

(qdi − qri ) + q f − qs, (2.7)

exv
dVw

dt
+ exp

d P

dt
= q f h f + xqrhs + (1 − x)qrhw − qdhd − qshs, (2.8)

where q f , qs , qr , and qd are average values of feed water, steam, saturated steam,
and subcooled water flow rates, respectively, and Vw is the volume of water in the
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Table 2.4 Constant
coefficients of thermal
hydraulics model

Node No. evxi
1 2.4406

2, 5, 6, 9 1.0909

3, 4, 7, 8 1.2160

10, 13, 14, 17 1.9861

11, 12, 15, 16 1.1677

exi 0.5114

steam drum. Finally applying energy balance equation to water volume in steam
drum yields

epi
d P

dt
+ evi

dVw

dt
+ exi

dhd
dt

= q f h f + (1 − x)qrhw − qdhd . (2.9)

Complete thermal hydraulics model is given by set of equations (2.6)–(2.9). Further,
drum pressure and water volume are being regulated at respective set points by plant
control system. Hence, derivatives of P and Vw vanish from Eqs. (2.6) to (2.9). The
above equations, therefore, reduce to

evxi
dxi
dt

= Qi − qdi (hw − hd) − qdi xi hc, (2.10)

exi
dhd
dt

= q f (k̂2h f − k̂1) − qd(k̂2hd − k̂1), (2.11)

where k̂2 = hs
hc

and k̂1 = hwk̂2. Values of evxi and exi are listed in Table2.4. The
coolant flow rate through the channels is the function of normalized nodal powers,
and is given as

qdi =
{
k1

[
Qi

Qi0

]3

+ k2

[
Qi

Qi0

]2

+ k3

[
Qi

Qi0

]
+ k4

}
qdi0 (2.12)

where k1 = 0.2156, k2 = −0.5989, k3 = 0.48538, and k4 = 0.8988. Qi0 denotes the
power produced by i th node under full power operation and qdi0 is the corresponding
coolant flow rate.

2.2.3 Reactivity Feedbacks

The reactivity term ρi in (2.1) is expressed as
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ρi = ρiu + ρiX + ρiα , (2.13)

whereρiu is the reactivity introduced by the control rods,ρiX is the reactivity feedback
due to xenon, and ρiα is the reactivity feedback due to coolant void fraction. The
reactivity contributed by the movement of the RRs is expressed as

ρiu =
{

(−10.234Hi + 676.203) × 10−6, if i = 2, 4, 6, 8.
0 elsewhere.

(2.14)

The xenon reactivity feedback in node i can be expressed as

ρiX = σ̄Xi Xi

Σai

. (2.15)

The reactivity contribution by the coolant void fraction is

ρiα = − 5 × 10−3(9.2832x5i − 27.7192x4i + 31.7643x3i
− 17.7389x2i + 5.2308xi + 0.0792). (2.16)

The reactivity contributed by the coolant, fuel, and moderator temperature feed-
backs are neglected due to their lesser significance. Equations (2.1)–(2.5), (2.10), and
(2.11) constitute complete coupled neutronics–thermal hydraulics model of AHWR.
Seventeen equations each of power, delayed neutron precursor, xenon, iodine con-
centrations, and exit quality, four equations of RR positions, and one equation of
downcomer enthalpy result into 90 nonlinear first-order differential equations. Four
control signals to RRs and feed flow rate are input variables with 17 nodal powers and
total power as output variables. The nodal powers and coolant flow rates are constants
as given in Table2.5 under steady-state full power operation. The equilibrium posi-
tions of all RRs are 66.1% inside the core. Coolant enters the core at a temperature
of 260 ◦C and feed water enters the steam drum at 130 ◦C. The operating pressure of
the main heat transport system is 7MPa. Equilibrium values of other variables like
delayed neutron precursor, iodine and xenon concentrations, exit quality, and feed
flow rate can easily be computed from the steady-state forms of respective equations.

2.3 Linearization and State-Space Representation

The set of nonlinear equations given by (2.1)–(2.5), (2.10), and (2.11) can be lin-
earized around steady-state operating conditions (Hk0 , Xi0 , Ii0 , hd0 ,Ci0 , xi0 , Qi0) and
the linear equations, so obtained, can be represented in standard state-space form.
For this, define the state vector as

z = [
zTH zTX zTI δhd zTC zTx zTQ

]T
, (2.17)
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Table 2.5 Nodal powers and coolant flow rates under full power operation

Node No. Steady-state values of

Power (MWt) Coolant flow rate (kg/s)

1 91.8743 187.32

2, 5, 6, 9 54.9991 130.20

3, 4, 7, 8 55.7410 125.38

10, 13, 14, 17 42.6967 97.06

11, 12, 15, 16 53.7146 125.78

Total 920.480 2101.0

where zH = [
δH2 δH4 δH6 δH8

]T
and the rest zξ = [

(δξ1/ξ10) · · · (δξ17/ξ170)
]T
,

ξ = X , I , C , x , Q, in which δ denotes the deviation from respective steady-state
value of the variable. Likewise, define the input vector as

u = [
δv2 δv4 δv6 δv8

]T
(2.18)

and output vector as

y = [
yT y1 · · · y17

]T
, (2.19)

where yT = ∑17
i=1

δQi∑17
j=1 Q j0

and yi = δQi

Qi0
correspond to normalized total reactor

power and nodal powers, respectively. Then, the system given by (2.1)–(2.5), (2.10)
and (2.11) can be expressed in standard linear state-space form as

ż = Az + Bu + B f wδq f w, (2.20)

y = Mz, (2.21)

where q f w is feed water flow rate. The characteristic matrix A is of 90th order,
expressed as

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 AXX AX I 0 0 0 AXQ

0 0 AI I 0 0 0 AI Q

0 0 0 Ahh 0 0 AhQ

0 0 0 0 ACC 0 ACQ

0 0 0 Axh 0 Axx AxQ

AQH AQX 0 0 AQC AQx AQQ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.22)

where the first row corresponds to four rows of zeros and 0 stands for null matrix of
appropriate dimensions. Remaining submatrices are given as follows.
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AQC = β

�
E17;

AQQ(i, j) =
⎧
⎨

⎩

1
�

(
−Σ17

k=1αki
Qk0
Qi0

− β
)
if i = j

1
�
α j i

Q j0
Qi0

if i �= j

AQX = diag
[
aqx1 aqx2 · · · aqx17

]
, where aqxi = −1

�

(
σ̄Xi Xi0

Σai

)
;

AQx = 1

�
diag

[
kα1Q10 kα2Q20 · · · kα17Q170

] ;

where kαi = −5 × 10−3
(
46.416x4i0 − 110.8787x3i0 + 95.229x2i0 − 35.4779xi0 + 5.2308

)
;

ACQ = λE17;
ACC = −ACQ;
AI Q = λIE17;
AI I = −AI Q;
AXQ = λXE17 − diag

[
λI

I10
X10

· · · λI
I170
X170

]
;

AXX = −diag
[
λX + σ̄X1Q10 λX + σ̄X2Q20 · · · λX + σ̄X17Q170

] ;
AX I = λI diag

[ I10
X10

· · · I170
X170

]
;

Ahh = −k̂1
qd0

exhhw
;

AhQ = k̂1
exh

(3k1 + 2k2 + k3)

(
1

hd0
− 1

hw

)[
qd10 qd20 · · · qd170

]
;

Axh =
[
qd10

hd0
evx1 x10

qd20
hd0

evx2 x20
· · · qd170

hd0
evx17 x170

]T
;

Axx = −hcdiag
[ qd10
evx1

qd20
evx2

· · · qd170
evx17

]
;

AxQ = diag
[
axq1 axq2 · · · axq17

] ;
where axqi = 1

evxi xi0

(
Qi0 − (hw − hd0 + xi0hc)qdi0 (3k1 + 2k2 + k3)

) ;

AQH (i, j) =
{

−10.23×10−6Qi0
�

for i = 2, 4, 6, 8; j = i/2,
0 elsewhere.

Matrix B of dimension (90 × 4) is as follows

B = [
BT

H 0 0 0 0 0 0
]T

(2.23)

where BH is a diagonal matrix of dimensional (4 × 4), with κ as diagonal entries
and all other submatrices are zero. Matrix B f w is of dimension (90 × 1) with

b2 = k̂1q f0

(
h f0−1
exi hd0

)
on the 39th row and remaining all entries zero.
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The normalized total reactor power and the nodal powers are measured and they
constitute the output vector y. Hence, in (2.21), matrixM is of dimension (18× 90),
given by

M = [
M1 M2

]
(2.24)

where M1 is a null matrix of dimension (18 × 73) and

M2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

Q10

Σ17
j=1Q j0

Q20

Σ17
j=1Q j0

· · · Q170

Σ17
j=1Q j0

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎦
. (2.25)

2.4 Linear System Properties

2.4.1 Stability

The linear system (2.20) is said to be asymptotically stable if

�e{ϕi (A)} < 0, ∀i,

where ϕi (A) is an eigenvalue of A. Unstable modes of the system are those ϕi ’s
such that �e{ϕi (A)} ≥ 0 [3]. Hence, stability can be assessed by checking the
eigenvalues of the corresponding open-loop linear systemmatrixA defined by (2.22).
The eigenvalues of systemmatrixA are given in Table2.6. It can be observed that the
system has six eigenvalues with positive real parts (eigenvalues 1–6) besides the four
eigenvalues at the origin (eigenvalues 7–10), which indicates instability. The unstable
eigenvalues are represented by shaded region in Table2.6. Hence, it is necessary to
devise a closed-loop control that effectively maintains the total power of the reactor
while the xenon-induced oscillations are being controlled.

2.4.2 Controllability

The linear system (2.20) with order n is said to be controllable, if and only if

rank
{[

A − ϕiEn B
]} = n, ∀i,

where ϕi is i th eigenvalue of A and En is an identity matrix of dimension n. If this
is satisfied, then it is commonly mentioned that (A,B) pair is controllable. Uncon-
trollable modes of the system are those ϕi ’s for which rank

{[
A − ϕiEn B

]} �= n.



2.4 Linear System Properties 21

Table 2.6 Open-loop eigenvalues with thermal hydraulics feedback

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1 7.4551×10−3 39 −1.2514 × 10−2 66 −1.6316 × 10−1

2–3 (8.8268± j1.8656)×10−5 40 −1.6108 × 10−2 67 −1.6325 × 10−1

4–5 (8.0470± j2.4129)×10−5 41 −5.0954 × 10−2 68 −1.6405 × 10−1

6 3.9654×10−6 42 −5.1159 × 10−2 69 −1.6576 × 10−1

7–10 0 43 −5.7730 × 10−2 70 −1.8037 × 10−1

11–12 (−3.5182 ± j7.7577)×10−5 44 −5.7893 × 10−2 71 −1.8049 × 10−1

13 −3.7781 × 10−5 45 −5.9707 × 10−2 72 −1.8122 × 10−1

14–15 (−3.7785 ± j7.6475)×10−5 46 −5.9723 × 10−2 73 −1.8395 × 10−1

16 −3.7993 × 10−5 47 −6.0344 × 10−2 74 −7.2516

17 −4.0124 × 10−5 48 −6.0642 × 10−2 75 −3.2844 × 101

18 −4.1520 × 10−5 49 −6.1848 × 10−2 76 −3.3372 × 101

19 −4.2245 × 10−5 50 −6.1942 × 10−2 77 −6.6599 × 101

20 −4.4204 × 10−5 51 −6.2200 × 10−2 78 −6.8323 × 101

21 −4.7476 × 10−5 52 −6.2380 × 10−2 79 −9.3653 × 101

22 −4.8866 × 10−5 53 −6.2458 × 10−2 80 −9.4612 × 101

23–24 (−6.4855 ± j5.3109) × 10−5 54 −6.2608 × 10−2 81 −1.0868 × 102

25–26 (−6.5890 ± j5.4696) × 10−5 55 −6.2865 × 10−2 82 −1.1705 × 102

27–28 (−7.3359 ± j3.9319) × 10−5 56 −6.2893 × 10−2 83 −1.6967 × 102

29–30 (−7.7407 ± j2.9929) × 10−5 57 −1.1714 × 10−1 84 −1.7568 × 102

31 −1.4107 × 10−4 58 −1.4712 × 10−1 85 −1.9497 × 102

32 −1.4624 × 10−4 59 −1.4713 × 10−1 86 −2.1110 × 102

33 −1.5717 × 10−4 60 −1.4809 × 10−1 87 −2.1904 × 102

34 −1.6524 × 10−4 61 −1.4849 × 10−1 88 −2.3591 × 102

35 −1.6720 × 10−4 62 −1.5580 × 10−1 89 −2.7163 × 102

36 −1.7308 × 10−4 63 −1.5585 × 10−1 90 −2.7626 × 102

37 −1.8807 × 10−4 64 −1.5662 × 10−1

38 −1.8870 × 10−4 65 −1.5759 × 10−1

The condition of controllability governs the existence of a complete solution to the
control system design problem [6]. Designing a controller to stabilize an unstable
system and to achieve any specified transient response characteristics may not be
possible if the system is uncontrollable. In case of AHWR, with matrices A and B
given by equations (2.22) and (2.23) respectively, test has been performed, which
results that the pair (A,B) is controllable, i.e., rank

{[
A − ϕiEn B

]} = n,∀i , where
n = 90.
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2.4.3 Observability

The linear system (2.20)–(2.21) of order n is said to be observable, if and only if

rank

{[
A − ϕiEn

M

]}
= n, ∀i.

If this is satisfied, then it is commonly mentioned that (A,M) pair is observable.

Unobservable modes of the system are those ϕi ’s for which rank

{[
A − ϕiEn

M

]}
�=

n. Observability denotes whether every state can be determined from the observation
of the outputs over a finite interval of time [6]. The concept of observability thus
helps in solving the problem of reconstructing unmeasured state variables from the
measured variables. This plays a significant role in control system design, since the
information of all the state variables is many a times essential for designing a suitable
controller. The observability test of AHWR model has been carried out using pair

(A,M) given by (2.22) and (2.24) and it is found that rank

{[
A − ϕiEn

M

]}
= n,∀i .

This concludes that system given by (2.20)–(2.21) is observable.

2.5 Vectorization of AHWR Model

For brevity, the equations governing the coupled neutronics–thermal hydraulics
model of AHWR are revisited here:

dQi

dt
= (ρi − αi i − β)

Qi

�
+

17∑

j=1

α j i
Q j

�
+ λCi , (2.26)

dCi

dt
= β

�
Qi − λCi , (2.27)

d Ii
dt

= γIΣ fi Qi − λI Ii , (2.28)

dXi

dt
= γXΣ fi Qi + λI Ii − (λX + σ̄Xi Qi )Xi , (2.29)

dHk

dt
= κvk, (2.30)
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evxi
dxi
dt

= Qi − qdi (hw − hd) − qdi xi hc, (2.31)

exi
dhd
dt

= q f (k̂2h f − k̂1) − qd(k̂2hd − k̂1), (2.32)

where i = 1, 2, . . . , 17; k = 2, 4, 6, 8; and

qdi =
{
k1

[
Qi

Qi0

]3

+ k2

[
Qi

Qi0

]2

+ k3

[
Qi

Qi0

]
+ k4

}
qdi0 , (2.33)

ρi = ρiu + ρiX + ρiα , (2.34)

ρiu =
{

(−10.234Hi + 676.203) × 10−6, if i = 2, 4, 6, 8
0 elsewhere,

(2.35)

ρiX = σ̄Xi Xi

Σai

, (2.36)

ρiα = −5 × 10−3(9.2832x5i − 27.7192x4i + 31.7643x3i
− 17.7389x2i + 5.2308xi + 0.0792). (2.37)

The dynamic equations (2.26)–(2.37) can be written in vector/matrix form to imple-
ment in MATLAB/Simulink environment [8]. For that rearrange Eq. (2.26) of nodal
powers as

dQi

dt
= 1

�

⎡

⎣ρi Qi − αi i Qi − βQi +
17∑

j=1

α j i Q j + λ�Ci

⎤

⎦ . (2.38)

In the above equation �, β are constants, ρi , αi i , Ci , and Qi are column vectors and

α j i is a matrix. However, the terms ρi Qi , αi i Qi , βQi ,
∑17

j=1 α j i Q j and λ�Ci are all
column vectors of the same dimensions. If scalar multiplication is denoted by ‘·’,
element-wise multiplication is denoted by ‘�’, and array multiplication is denoted
by ‘∗’ then (2.38) can be rewritten as

dQi

dt
= 1

�
·
⎡

⎣ρi � Qi − αi i � Qi − β · Qi +
17∑

j=1

α j i Q j + (λ�) · Ci

⎤

⎦ . (2.39)

Above equation is implemented using only one integrator, instead of 17 different
integrators. Simulink ofMATLABautomatically expands the equation to appropriate
size as shown inFig. 2.2. Initial values of nodal powers canbe inserted in the integrator
in vector form by double clicking ‘integrator’ block.

Similarly, the delayed neutron precursor, iodine, xenon concentrations, and rod
position dynamics can be structured in vector/matrix form as
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Fig. 2.2 Implementation of nodal powers

dCi

dt
= β

�
· Qi − λ · Ci , (2.40)

d Ii
dt

= (γI · Σ fi ) � Qi − λI · Ii , (2.41)

dXi

dt
= (γX · Σ f i ) � Qi + λI · Ii − (λX + σ̄Xi � Qi ) � Xi , (2.42)

dHk

dt
= κ · vk, k = 2, 4, 6, 8; i = 1, 2, ..., 17. (2.43)

After defining vector gains, above Eqs. (2.40)–(2.43) can be easily realized in
Simulink as a core neutronics model subsystem block, as depicted in Fig. 2.3. In the
similar manner, the thermal hydraulics model involving dynamics of exit quality and
downcomer enthalpy, given by (2.31) and (2.32), is represented in vectorized form
as

dxi
dt

= 1

evxi
� [

Qi − qdi · (hw − hd) − (qdi � xi ) · hc
]
, (2.44)

dhd
dt

= 1

exi
� [

q f · (k̂2h f − k̂1) − qd · (k̂2hd − k̂1)
]

(2.45)

and employed in Simulink as given in Fig. 2.4. The instantaneous coolant flow rate
through the channels can be evaluated as per (2.33) and is represented in Fig. 2.4 as
‘coolant flowrate’ subsystem block. Reactivity on account of RR movements is the
function of its position, as defined by (2.30) and (2.35). These two equations can
be collectively implemented as represented in Fig. 2.5. All these equations can be
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Fig. 2.3 Block of core neutronics model

Fig. 2.4 Block of thermal hydraulics model

combined together, in the form of different subsystems, considering proper relation-
ship between different variables and reactivity feedbacks, to form complete AHWR
model. This complete model, shown in Fig. 2.6, eventually leads to an automatic
program that solves nonlinear equations (2.26)–(2.32). Advantages of this type of
model constructed in Simulink are:
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Fig. 2.5 Block of reactivity due to control rod positions

Fig. 2.6 Complete AHWR model

1. It can be used for different types of reactors with different number of nodes, pro-
vided that the coupling coefficients matrix and reactivity feedbacks are modeled
properly,

2. Variations of any variable with respect to time or any other variable can be studied
by applying ‘scope’ block across that variable,

3. Visualization of calculations and their recording for further applications is
possible,
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4. Different methods of solving nonlinear differential equations with different time
steps can be studied, and

5. The computations are performed in much less time compared to the transient
duration.

2.6 Static Output Feedback Control for AHWR

As mentioned in Sect. 2.4.1, the existence of multiple eigenvalues at the origin and
eigenvalues with positive real part depicts instabilities in the AHWR. Hence, it is
necessary to devise a closed-loop control that efficiently maintains the total power
of the reactor core while the xenon-induced oscillations are being controlled.

Generally feedback of total power is sufficient to control small and medium size
nuclear reactors, however, large reactors, like AHWR, require feedback of spatial
power distribution along with the total power feedback for effective spatial control.
Based on these considerations, let us consider the input u in (2.20) of the form

u = −Ky = −K ∗ y, (2.46)

where K is a (4 × 18) matrix. With the above control and (2.21), the system (2.20)
becomes

ż = (A − BKM)z + B f wδq f w = Âz + B f wδq f w, (2.47)

where Â = (A − BKM).

2.6.1 Total Power Feedback

First consider that

K = [
K̄T 0 · · · 0 ]

(2.48)

in which 0 represents vectors of (4 × 1) dimension and K̄T = [
KT KT KT KT

]T

such that the feedback gain corresponding to total power is KT for all RRs and is zero
corresponding to nodal powers. The total power feedback control scheme is depicted
in Fig. 2.7. The stability characteristic of the system (2.47) is investigated by varying
the value of KT and for KT = 12.5, the gross behavior of the system seems stable
though the system can show spatial instability. To reveal this, a transient involving
a spatial power disturbance was simulated using vectorized nonlinear model of the
reactor obtained from Eqs. (2.26)–(2.37) developed in MATLAB/Simulink. It was
assumed that the reactor was operating initially at full power, with control signal
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Fig. 2.7 Output feedback control scheme for AHWR (QT,0 and QT are respectively steady-state
and instantaneous values of total reactor power)

generated by (2.46). The RR2 which was initially at its equilibrium position was
driven out by about 1% by giving proper control signal. Immediately after that RR2
was driven back to its original position and thereafter left under the influence of
controller. The response of the model to this disturbance was investigated in terms
of variations in total reactor power and tilts in the first and second azimuthal modes
defined as

First azimuthal tilt = QL − QR∑17
i=1

Qi

2

× 100% (2.49)

where QL = 1

2
Q1 +

9∑

i=6

Qi +
17∑

i=14

Qi ,

QR = 1

2
Q1 +

5∑

i=2

Qi +
13∑

i=10

Qi ;

Second azimuthal tilt = Qp1 − Qp2∑17
i=1

Qi

2

× 100% (2.50)

where Qp1 = 1

2
Q1 + Q2 + Q3 + Q6 + Q7 + Q10 + Q11 + Q14 + Q15,

Qp2 = 1

2
Q1 + Q4 + Q5 + Q8 + Q9 + Q12 + Q13 + Q16 + Q17.
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Fig. 2.8 Unstable modes of spatial instability

From simulation results, it was noticed that although the total power is being
regulated at steady state, the power distribution in the core experiences oscillations.
In 38h, the first and second azimuthal tilts raise to the amplitudes of the order of 1.4
and 0.75% respectively as shown in Fig. 2.8. The period of the oscillations for first
and second azimuthal modes are observed to be 20 and 12h, respectively. If coolant
void fraction reactivity feedback is not modeled, the amplitudes of first and second
azimuthal tilts are observed to be markedly higher than as given in Fig. 2.8. Whereas,
if xenon reactivity feedback is removed, then no oscillations were observed in power
distribution, signifying that these are certainly xenon-induced spatial oscillations.
These spatial oscillations and following local overpowers pose a potential threat to
the fuel integrity of any nuclear reactor and hence necessitate control. Therefore, it
is needed to devise an appropriate spatial power controller for AHWR.

2.6.2 Spatial Power Feedback

As observed in the Sect. 2.6.1, the AHWR system is showing spatial instability even
with total power feedback. This is because the system (2.47) has still four eigenvalues
with positive real parts and three eigenvalues at the origin. Hence, in addition to total
power feedback, feedback of spatial power is required. Here, spatial stabilization
of AHWR system is achieved with the feedback of nodal powers, in which RRs
are placed along with total power feedback. Thus, in (2.48), K that was restricted
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Fig. 2.9 Effect of feedback of nodal powers wherein RRs are located on location of unstable
eigenvalues

to contain nonzero values only in the first column, will now be allowed to have
nonzero values in other locations. This can be realized in such way that feedback
gain corresponding to total power is KT and feedback gain to power in nodes 2, 4,
6, and 8 is KR , that is

K =

⎡

⎢⎢⎣

KT 0 KR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KT 0 0 0 KR 0 0 0 0 0 0 0 0 0 0 0 0 0
KT 0 0 0 0 0 KR 0 0 0 0 0 0 0 0 0 0 0
KT 0 0 0 0 0 0 0 KR 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎦ . (2.51)

Figure2.9 shows the locus of both stable and unstable eigenvalues near origin
when KR was increased progressively from zero. It is observed that all the unstable
eigenvalues are stabilized for KR ≥ 2, which proves that the feedback of nodal
powers in which RRs are placed can be effectively used to stabilize the system. Most
of the eigenvalues near to the origin are found to have settled at their respective
new locations for KR ≈ 10. With this consideration value of KR is selected as 10.
Closed-loop eigenvalues with KR = 10 and KT = 12.5 are found to be in the left
half of s-plane, as listed in Table2.7. This shows that the control law (2.46) stabilizes
the system (2.47) with K given by (2.51). Spatial power feedback control scheme
can be implemented with the same Fig. 2.7, where K is given by (2.51) [9].
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Table 2.7 Closed-loop eigenvalues of AHWR model

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1 −2.8773 ×10−5 37 −5.8834 ×10−2 69 −1.751 ×10−1

2 −2.8773 ×10−5 38 −5.9364 ×10−2 70 −1.8053 ×10−1

3 −2.8773 ×10−5 39 −5.966 ×10−2 71 −1.8078 ×10−1

4 −2.8773 ×10−5 40 −5.9845 ×10−2 72 −1.8221 ×10−1

5 −4.0085 ×10−5 41 −6.1191 ×10−2 73 −2.6345 ×10−1

6 −4.0237 ×10−5 42 −6.1316 ×10−2 74 −6.9796

7 −4.3283 ×10−5 43–44 (−5.9085
± j1.6901) ×10−2

75 −3.2787 ×101

8 −4.3593 ×10−5 45 −6.1803 ×10−2 76 −3.3327 ×101

9 −6.755 ×10−5 46 −6.1872 ×10−2 77 −6.6584 ×101

10 −7.1457 ×10−5 47 −6.235 ×10−2 78 −6.8302 ×101

11–12 (−7.6810 ± j3.0862)
×10−5

48 −6.2387 ×10−2 79 −9.3652 ×101

13–14 (−7.6926 ± j3.0637)
×10−5

49 −6.2702 ×10−2 80 −9.4604 ×101

15–16 (−2.0967 ± j8.2771)
×10−5

50 −6.2723 ×10−2 81 −1.0867 ×102

17–18 (−3.7556 ± j7.6706)
×10−5

51–52 (−6.5120
± j2.2626) ×10−2

82 −1.1704 ×102

19–20 (−6.4610 ± j5.6114)
×10−5

53–54 (−6.8026
± j2.3457) ×10−2

83 −1.6966 ×102

21–22 (−3.5386 ± j7.7973)
×10−5

55 −8.4982 ×10−2 84 −1.7567 ×102

23–24 (−5.6889 ± j0.8659)
×10−6

56 −1.1257 ×10−1 85 −1.9496 ×102

25 −9.4731 ×10−5 57 −1.3375 ×10−1 86 −2.1109 ×102

26 −1.0049 ×10−4 58 −1.4715 ×10−1 87 −2.1903 ×102

27 −1.5741 ×10−4 59 −1.4718 ×10−1 88 −2.359 ×102

28 −1.5881 ×10−4 60 −1.4844 ×10−1 89 −2.7162 ×102

29 −1.7621 ×10−4 61 −1.5045 ×10−1 90 −2.7625 ×102

30 −1.7705 ×10−4 62 −1.5592 ×10−1

31 −2.3573 ×10−4 63 −1.5602 ×10−1

32 −2.3586 ×10−4 64 −1.5749 ×10−1

33 −2.4991 ×10−4 65 −1.6038 ×10−1

34 −2.5026 ×10−4 66 −1.6324 ×10−1

35 −1.5734 ×10−4 67 −1.6339 ×10−1

36 −5.7761 ×10−2 68 −1.6499 ×10−1
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Fig. 2.10 Effect of RR disturbance on regulating rod positions

2.6.3 Transient Simulations

The controller performance was examined by simulating the nonlinear system of
AHWR. Assuming that the reactor is operating at full power steady-state condition,
with control signal generated by (2.46) andK given by (2.51), shortly, RR4, initially
under auto control was driven out by almost 1% manually by giving proper control
signal after 2 s and left under the influence of automatic control thereafter. As shown
in the Fig. 2.7, deviations in nodal powers from their respective equilibrium values
are given as input to the feedback gain K. This gain is designed such that it utilizes
only the deviations of nodal powers in which RRs are placed, along with total power
deviation. From the transient simulation, it was noticed that the RRs are driven back
to their equilibrium position, as shown in Fig. 2.10. As a result of the controller
action, disturbance in total power and spatial powers are suppressed in around 80s.
The variation in total power is depicted in Fig. 2.11 and variations in nodal powers,
measured in terms of azimuthal tilts, are shown in Fig. 2.12. Since the transient is of
very short duration, amplitudes of first and second azimuthal tilts are, respectively,
0.0128 and 0.0048%.

In one more transient, the reactor is assumed to be operating at steady-state full
power condition, i.e., at 920.48MW1 with nodal powers as given in Table2.5. Con-
centrations of iodine, xenon, and delayed neutron precursor are also in equilibrium
with the respective nodal powers. Now, the demand power is decreased uniformly

1MW is used to represent Mega Watt Thermal.
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at the rate of 1.5MW/s to 828.43MW, in around 61s and thereafter held steady.
Figures2.13, 2.14, 2.15, 2.16, and 2.17 represent respective variations in total power,
nodal powers, nodal xenon, and delayed neutron precursor concentrations during the
transient period. From Fig. 2.13 it is noticed that the total power is maintained close
to the demand power. The total power variation during initial 0.06h (216s) is shown
in Fig. 2.14. The total power is near about 822.42MW at 0.02h (72s) and it settles
within ±0.12% of new demand power approximately in next 90 s. The nodal powers
achieve new steady-state values within about 90 s as represented in Fig. 2.15 and do
not show any variation during the remaining prolonged simulation. The xenon con-
centrations become stable at their respective new steady-state values in about 50h.
The delayed neutron precursor concentrations take only 90s to achieve new steady
state (Fig. 2.17). Though the change in stabilization time for delayed neutron precur-
sor and xenon concentrations is several hours, this does not create any intricacy in
simulation, which is achieved in Simulink proficiently using suggested vectorization
of modeling equation.

Finally, to test the performance of controller under disturbance condition, nonlin-
ear model was once again simulated. Apart from four voltage signals to RRs, feed
flow is the fifth input of the AHWR system. Change in the feed flow rate is nothing
but the disturbance for the system. When reactor was operating at equilibrium con-
dition, a 5% positive step change was introduced in feed flow as shown in Fig. 2.18
after 100s. Due to this, the downcomer enthalpy is decreased by 0.64% as shown in
Fig. 2.19 and total power experienced variations as depicted in Fig. 2.20. The total
power rises from 920.48 to 920.70MW and becomes stable at its original value in
about next 100s. It is evident from the Fig. 2.21, that in order to maintain total power
at equilibrium level, all the RRs are moved inside almost by 1%. Since the varia-
tion in total power is observed to be very small, i.e., 0.02% (Fig. 2.20), variations in
delayed neutron precursor and xenon concentrations are also found to be very small,
as indicated in Figs. 2.22 and 2.23. Again in spite of huge difference in time constants
for delayed neutron precursor and xenon concentrations, the simulations are carried
out without any difficulty. This shows the efficacy of the controller.

2.7 Conclusion

Analysis of nuclear reactor system and design of suitable control require amathemat-
ical model. In this chapter, a simplified coupled core neutronics–thermal hydraulics
model of AHWR system is presented. The final model equations are represented into
standard state-space form for control system studies and stability, controllability, and
observability properties of the AHWR system are examined. Thereafter, nonlinear
model of AHWR is developed in MATLAB/Simulink environment by vectorization
and steady state is achieved by giving feedback of total power. When this model is
simulated for transient condition, it is observed that total power remains constant
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Fig. 2.15 Effect of power maneuvering on nodal powers
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Fig. 2.17 Effect of power maneuvering on delayed neutron precursor concentrations
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Fig. 2.23 Effect of step change in feed flow on nodal xenon concentrations

but the power in opposite regions of the core undergoes oscillations. Therefore, the
feedback of nodal powers where RRs are placed is given in addition to total power
feedback. Effectiveness of this static output feedback control is justified by testing
the performance under different transient conditions.
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Chapter 3
State Feedback Control Using Pole Placement

3.1 Introduction

Singularly perturbed systems are the systems that possess small time constants or
similar ‘parasitic’ parameters which usually are neglected in simplified modeling.
When those small quantities are taken into consideration, the order of the model
is increased and the computation needed for control design can be time-consuming
and even ill-conditioned. Singular perturbation methods have been developed for
years to address the stability and robustness of those systems. Singularly perturbed
systems, more generally multi-time-scale systems, often occur naturally in mathe-
matical models due to the presence of small time constants, masses, large feedback
gains, weak coupling [3, 6], etc. It was recognized long ago that the singular pertur-
bations are present in most classical and modern control schemes based on reduced
order models, and it led to the development of time-scale methods for a variety of
applications including state feedback, output feedback, filter, and observer design
[9, 12]. Controllers for the large-scale system are effectively designed by splitting
the original system into slow and fast subsystems using singular perturbation tech-
niques [3]. The system decoupling, achieved either by quasi-steady-state method [2]
or by direct block diagonalization [4, 6, 7], results in reduction in order. For quite
a small perturbation parameter ε, the quasi-steady-state is an efficient technique for
decoupling. On the other hand, for systems like nuclear reactor, the perturbation
parameter is not zero. Consequently, the eigenvalues of the slow and fast subsystems
are no longer in the same position as the eigenvalues of the full-order system, when
quasi-steady-state method is used. For that reason, block diagonalization process [6,
7] can be utilized. In this technique, accurate decoupling is accomplished. Control
law synthesis for such systems may be carried out for each individual subsystem
and then outcomes are merged to get a composite feedback control for the original
system. The state feedback control cases are discussed in [1, 7, 8, 11]. In [1]; the
technique for singularly perturbed linear system is developed using linear quadratic

© Springer Nature Singapore Pte Ltd. 2018
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with Application to Advanced Heavy Water Reactor, Energy Systems
in Electrical Engineering, https://doi.org/10.1007/978-981-10-3014-7_3
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optimal design, in which a cost functional of the subsystems is taken out from the cost
functional for the full-order system. Further, it is shown that a composite controller
is stabilizing and is near-optimal with the optimal cost. Suzuki [11] has revealed
that controllability and stabilizability features of the slow subsystem are invariant
about the feedback from fast subsystem. This feature is again investigated in [8]. Fur-
thermore, two-stage eigenvalue placement via two-stage decomposition is presented
in [7].

In Chap.2, mathematical model of Advanced HeavyWater Reactor (AHWR) was
discussed and was represented into standard state-space form. Thereafter, nonlinear
model was implemented in MATLAB/Simulink by vectorization of modeling equa-
tions and control strategy based on feedback of total power and nodal powers in
which regulating rods (RRs) are located was presented for spatial control. However,
it would be more interesting to investigate the other spatial control strategies for
better transient performance and robustness characteristics than those obtained with
static output feedback. Also, closed-loop stability is not guaranteed in static output
feedback in general [13].

In this chapter, specifically speaking, model of AHWR is represented into the
singularly perturbed two-time-scale form. It is then decoupled into a slow subsystem
of 73rd order and fast subsystem of 17th order, using the technique presented in [7]
and a composite controller is formulated. Contrary to the previous work of [10], in
which quasi-steady-state approach was used to get three subsystems, this two-stage
decomposition approach offers higher degree of accuracy.

3.2 Singular Perturbation Model

Consider a linear time-invariant controllable and observable continuous-time system
of order n, as

ż = Az + Bu, (3.1)

y = Mz, (3.2)

where z ∈ �n is the system state, u ∈ �m is the control input, and y ∈ �p is the
system output. The matrices A, B, and M are constants of appropriate dimensions.
Now, the system (3.1)–(3.2) is represented into standard singularly perturbed two-
time-scale form as

ż1 = A11z1 + A12z2 + B1u; z1(t0) = z10 , (3.3)

εż2 = A21z1 + A22z2 + B2u; z2(t0) = z20 , (3.4)

y = M1z1 + M2z2, (3.5)

where z1 ∈ �n1 and z2 ∈ �n2 represent states such that n1 + n2 = n, the matrices
Ai j , Bi and Mi are of suitable dimensionality, and parameter ε > 0 is a scalar
denoting the speed ratio of the slow versus fast phenomena. When ε approaches

http://dx.doi.org/10.1007/978-981-10-3014-7_2
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zero, the solution behaves nonuniformly, producing so-called singularly perturbed
stiff problem. The scalar ε represents all the small parameters to be neglected. The
parameter ε can be picked up on the basis of knowledge of the process/system and
components. Suppose ϕ(A) be the eigenvalues of matrix A arranged in increasing
order of absolute values as

ϕ(A) = {
ϕ1, ϕ2, ..., ϕn1 , ϕn1+1, ..., ϕn

}
,

where
0 ≤ |ϕ1| < |ϕ2| < ... < |ϕn1 | � |ϕn1+1| < ... < |ϕn|.

Thus the system (3.1) has n1 dominant (slow) modes and n2 nondominant (fast)
modes. The system (3.3)–(3.4) can also be rewritten in the matrix form as

[
ż1
ż2

]
=

[
A11 A12
A21
ε

A22
ε

] [
z1
z2

]
+

[
B1
B2
ε

]
u (3.6)

and recall that

A =
[
A11 A12
A21
ε

A22
ε

]
,B =

[
B1
B2
ε

]
, z =

[
z1
z2

]
. (3.7)

3.3 Design of Controller

Design of state feedback controller using eigenvalue placement for singularly per-
turbed two-time-scale system is done by decoupling higher order system into two
lower order subsystems by direct block diagonalization. In doing this, controllabil-
ity and observability properties of individual subsystems, of an original higher order
controllable and observable system, are retained. Thereafter, controllers are designed
for individual subsystems and then they are combined to formulate a composite con-
troller.

3.3.1 Two-Stage Decomposition

The main purpose of employing two-stage decomposition technique in obtaining
reduced order models is to decouple the nondominant modes from dominant modes.
This is achieved by two-stage linear transformation. The first stage includes applying
change of variables

[
z1
z f

]
=

[
En1 0
L En2

] [
z1
z2

]
= T1

[
z1
z2

]
(3.8)
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to system (3.6). Here En1 and En2 are, respectively, n1 and n2 identity matrices and
(n2 × n1) matrix L satisfies

εLA11 + A21 − εLA12L − A22L = 0. (3.9)

Then system (3.6) transforms into

[
ż1
ż f

]
=

[
As A12

0 A f

ε

] [
z1
z f

]
+

[
B1
B f

ε

]
u, (3.10)

where As = A11 − A12L, A f = A22 + εLA12, and B f = B2 + εLB1. If A22 is
invertible, unique solution of L in (3.9) can be determined by iterative procedure.
Now the second linear transformation is applied as

[
zs
z f

]
=

[
En1 −εN
0 En2

] [
z1
z f

]
= T2

[
z1
z f

]
(3.11)

to system (3.10) and choose (n1 × n2) matrix N such that

A12 − NA22 − εNLA12 + ε(A11 − A12L)N = 0. (3.12)

Then system (3.10) is transformed into

[
żs
ż f

]
=

[
As 0
0 A f

ε

] [
zs
z f

]
+

[
Bs
B f

ε

]
u, (3.13)

whereBs = B1−NB f .Thus, the system (3.6) is decoupled into separate slow and fast
subsystems in (3.13) by the application of two-stage linear transformation fromwhere
the slow and fast variables, zs and z f , respectively, can be solved independently.
Moreover, the magnitude of the smallest eigenvalue of A f

ε
is much larger than the

magnitude of the largest eigenvalue of As , i.e., max |ϕ(As)| � min|ϕ
(
A f

ε

)
|. The

transformations (3.8) and (3.11) relate the slow and fast variables zs and z f with the
original variables z1 and z2 as

zd = Tz (3.14)

where zd = [
zTs zTf

]T
, z = [

zT1 zT2
]T

and T = T2T1.

3.3.2 Design of Composite Controller

The complete controllability of (3.6) means the same for the individual subsystems
in (3.13), i.e., for the pairs (As,Bs) and (A f ,B f ). Now, so as to devise the state
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feedback for system (3.6), a two-step process is exercised. The input u is written as
u = us + u f . The input us is calculated as

us = [
Ks 0

]
[
zs
z f

]
, (3.15)

where Ks is (m × n1) feedback matrix to place eigenvalues of (As + BsKs) at n1
desired locations. Substituting the value of us from (3.15) into (3.13) yields

[
żs
ż f

]
=

[
As + BsKs 0

B f Ks

ε

A f

ε

] [
zs
z f

]
+

[
Bs
B f

ε

]
u f . (3.16)

Now using transformation

[
zs
g f

]
=

[
En1 0
U En2

] [
zs
z f

]
= T3

[
zs
z f

]
(3.17)

system (3.16) is changed to

[
żs
ġ f

]
=

[
As + BsKs 0

0 A f

ε

] [
zs
g f

]
+

[
Bs
B̄ f

ε

]

u f , (3.18)

where B̄ f = B f + εUBs and (n2 × n1) matrix U satisfies

εU(As + BsKs) − A fU + B fKs = 0. (3.19)

As systems (3.16) and (3.18) are related via linear transformation (3.17), pair
(A f , B̄ f ) is also controllable. Therefore, the second input u f is selected as

u f = [
0 K f

]
[
zs
g f

]
, (3.20)

where K f is (m × n2) feedback matrix to place eigenvalues of (
A f +B̄ f K f

ε
) at n2

desired locations. Closed-loop system, obtained after application of u f to (3.18), is
given by

[
żs
ġ f

]
=

[
As + BsKs BsK f

0 A f +B̄ f K f

ε

] [
zs
g f

]
. (3.21)
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Thus, the control input u = us + u f can be expressed as

u = [
Ks 0

]
[
zs
z f

]
+ [

0 K f
]
[
zs
g f

]
, (3.22)

= ([
Ks 0

] + [
0 K f

]
T3

)
Tz.

Consequently, composite state feedback gain for the system (3.13) is given by

Kd = [
Ks + K fU K f

]
, (3.23)

from which state feedback gain matrix for (3.6) is obtained as

K = KdT. (3.24)

Applying linear control u = Kz to (3.1), one can get closed-loop system as

ż = (A + BK)z (3.25)

which is stable, i.e., (A + BK) has all the eigenvalues in the left half of the s-plane.

Lemma 3.1 If the fast subsystem is asymptotically stable, i.e., ϕ
(
A f

ε

)
< 0 then

state feedback designed for the slow subsystem alone can stabilize the system (3.6).

Proof State feedback control designed for the slow subsystem is given by (3.15).
Closed-loop system obtained by applying this control to the system (3.13) is given by

[
żs
ż f

]
=

[
As + BsKs 0

B f Ks

ε

A f

ε

] [
zs
z f

]
. (3.26)

As (As + BsKs) is stable by design and A f

ε
is assumed to be stable, system (3.26)

is stable. Further, system formulation (3.13) is related to its original form (3.6) via
linear transformation (3.14). Therefore, system (3.6) will also be stabilized with state
feedback designed for slow subsystem alone.

Remark 3.1 If ϕ
(
A f

ε

)
< 0, then one can assume K f = 0 in (3.23), which yields

reduced order approximation to Kd as K̄d = [
Ks 0

]
.

3.4 Application to AHWR System

The model of 920.48MWAdvanced HeavyWater Reactor was discussed in Chap. 2.
This complex nonlinear model was linearized around steady-state operating values
and represented by (2.20)–(2.21). The same is rewritten here for convenience as

http://dx.doi.org/10.1007/978-981-10-3014-7_2
http://dx.doi.org/10.1007/978-981-10-3014-7_2
http://dx.doi.org/10.1007/978-981-10-3014-7_2
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ż = Az + Bu + B f wδq f w, (3.27)

y = Mz. (3.28)

Important characteristics of the model such as stability, controllability, and observ-
ability were also investigated. Further, vectorized nonlinear model of AHWR was
developed and a spatial control technique based on static output feedback was pre-
sented. In this section, eigenvalue placement by state feedback control is examined
for AHWR. For that, consider the input u in (3.27) of the form

u = ugp + usp, (3.29)

where ugp is global (total) power feedback component and usp is spatial power
feedback component. Total power feedback was discussed in detail in Chap. 2 and it
was given by

u = ugp = −KGy (3.30)

whereKG
1 is (4×18)matrix given by

[
K̄T 0 · · · 0 ]

and K̄T = [
KT KT KT KT

]T

such that the feedback gain corresponding to total power is KT for all RRs and is
zero corresponding to nodal powers. Using (3.30) the state equation (3.27) becomes

ż = Âz + Busp + B f wδq f w, (3.31)

where Â = A−BKGM has eigenvalues falling in three different clusters. First cluster
of 38 eigenvalues is ranging from 6.2899 × 10−3 to (8.8268 ± j1.8656) × 10−5,
second cluster of 35 eigenvalues ranges from −1.8396 × 10−1 to −1.1779 × 10−2,
and the third one of 17 eigenvalues ranges from −2.7626 × 102 to −7.2513. This
shows that the system of AHWR has 38 slow modes, 35 fast modes, and 17 very
fast modes, as depicted in Fig. 3.1. Feedback control design for systems containing
interaction of slow, fast, and very fast modes often suffers from ill-conditioning. In
singular perturbation approach to feedback control design, the interaction of slow,
fast, and very fast phenomena is taken advantage of by decomposing the original
ill-conditioned system into lower order subsystems representing the slow, fast, and
very fast phenomena. Feedback design may then proceed for each subsystem and
results are combined to yield a composite feedback control for original system. Here,
state feedback control employing two-stage decomposition is designed for AHWR
model. For that, slow and fast modes, represented in Fig. 3.1a and b, respectively,
are grouped to form slow subsystem of order 73 and very fast modes, illustrated in
Fig. 3.1c, are considered as fast subsystem of order 17.

1Notation of total power feedback is changed fromK in (2.48) toKG , in order to avoid repeatability
of symbol.

http://dx.doi.org/10.1007/978-981-10-3014-7_2
http://dx.doi.org/10.1007/978-981-10-3014-7_2
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Fig. 3.1 Eigenvalues of Â in s-plane: amerely those eigenvalues which are very near to imaginary
axis, b those eigenvalues which are not very far to the left of imaginary axis in addition to those
shown in a, and c all eigenvalues

3.4.1 Singularly Perturbed Form of AHWR Model

In case of AHWR, after linearization of set of equations given by (2.1)–(2.5), (2.10)
and (2.11), it is indeed observed that coefficients in the 17 equations for nodal powers,
contain � in their denominator. Its value is 3.6694 × 10−4 s. This parameter can be
picked up as ε. Therefore, the states of system defined by (2.17) are grouped into
slow and fast ones as

http://dx.doi.org/10.1007/978-981-10-3014-7_2
http://dx.doi.org/10.1007/978-981-10-3014-7_2
http://dx.doi.org/10.1007/978-981-10-3014-7_2
http://dx.doi.org/10.1007/978-981-10-3014-7_2
http://dx.doi.org/10.1007/978-981-10-3014-7_2


3.4 Application to AHWR System 51

z1 = [
zTH zTX zTI δhd zTC zTx

]T
, (3.32)

z2 = zQ . (3.33)

Now, the AHWRmodel is transformed into standard singularly perturbed two-time-
scale form, given by (3.6), where n1 = 73 and n2 = 17. Submatrices A11, A12,

A21
ε
,

A22
ε
, B1, and

B2
ε
are, respectively, of dimensions (73 × 73), (73 × 17), (17 × 73),

(17× 17), (73× 4), and (17× 4). This grouping of states also justifies the selection
of modes of AHWR system, given in Fig. 3.1, for two-time-scale representation.

3.4.2 Controller Design

Singularly perturbed model of AHWR, discussed in Sect. 3.4.1, is decoupled into
slow and fast subsystems of orders 73 and 17, respectively, by using the procedure
described in Sect. 3.3.1. In this case, compared to quasi-steady-state method, exact
decoupling of subsystems into slow and fast is achieved. This is evident from slow
subsystem eigenvalues, given in Table3.1, in which the unstable eigenvalues are
shown highlighted. Here unstable eigenvalues 1–3 are zero which are exactly same
as those of original system matrix Â. Further, from Table3.2 it can be observed

that the eigenvalues of fast subsystem are asymptotically stable, i.e., ϕ
(
A f

ε

)
< 0.

Hence, composite control law can be constructed using the slow subsystem alone, as
proved in Lemma 3.1 and Remark 3.1. For that, the state feedback gain matrixKs is
obtained for the slow subsystem, so as to place slow subsystem eigenvalues between
−4.5 × 10−6 and −1.9 × 10−1. The state feedback gain matrix Ks is given by

Ks =

⎡

⎢
⎢
⎣

1.4607 0.0328 0.0267 0.0321 6.4861 57.8428 −13.0624 2.1041 0.3645
0.0328 1.4634 0.0321 0.0299 3.0597 1.7011 −15.6783 57.2228 −31.1424
0.0267 0.0321 1.4607 0.0328 6.4861 1.3260 1.5459 1.9882 −18.6444
0.0321 0.0299 0.0328 1.4634 3.0597 1.6699 0.3899 1.5436 −1.3853

1.3260 1.5459 1.9882 −18.6444 −31.1100 −26.8332 0.7897 −0.3391 0.2953
1.6699 0.3899 1.5436 −1.3853 −1.6230 −28.1566 −40.1151 −27.9088 −5.5588
57.8428 −13.0624 2.1041 0.3645 0.2953 0.7270 −1.3270 −26.9278 −31.1100
1.7011 −15.6783 57.2228 −31.1424 −5.5588 −0.1955 0.7869 −1.8258 −1.6230

0.7270 −1.3270 −26.9278 −3.0499 0.9599 −7.3877 −0.2164 0.0736 −0.0198
−0.1955 0.7869 −1.8258 −4.2472 −0.1843 −9.5829 0.9768 −11.5154 −0.1619

−26.8332 0.7897 −0.3391 −3.0499 −0.0198 −0.0538 −0.1929 −6.6967 0.9599
−28.1566 −40.1151 −27.9088 −4.2472 −0.1619 −0.26526 −0.0442 −0.2186 −0.1843

−0.0538 −0.1929 −6.6967 −13.5515 −6.7902 0.0250 0.0973 0.0310 0.0159
−0.2652 −0.0442 −0.2186 −0.2721 −5.2128 −21.8045 −4.4168 −0.6406 −0.1009
−7.3877 −0.2164 0.0736 0.0310 0.0159 −0.5022 −4.2451 −13.5515 −6.7902
−9.5829 0.9768 −11.5154 −0.6406 −0.1009 −0.0208 −0.0373 −0.2721 −5.2128
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−0.5022 −4.2451 −0.0492 −1.9240 −1.7899 −1.3715 −0.9872 −0.7566 −0.7035
−0.0208 −0.0373 −0.0491 −2.0298 −0.9759 −1.4135 −1.8874 −1.3658 −0.9419
0.0250 0.0973 −0.0492 −1.9240 −0.7035 −0.8069 −0.9528 −1.2057 −1.7899

−21.8045 −4.4168 −0.0491 −2.0298 −0.9419 −0.8622 −0.8152 −0.7881 −0.9759

−0.8069 −0.9528 −1.2057 −1.2583 −1.2295 −0.7882 −0.5017 −0.4749 −0.6426
−0.8622 −0.8152 −0.7881 −0.6495 −1.1594 −1.5988 −0.9468 −0.7073 −0.7093
−1.3715 −0.9872 −0.7566 −0.4749 −0.6426 −0.8145 −0.9545 −1.2583 −1.2295
−1.4135 −1.8874 −1.3658 −0.7073 −0.7093 −0.6557 −0.5517 −0.6495 −1.1594

−0.8145 −0.9545 −0.0019 −2.5479 −0.3134 0.0693 0.0041 0.0107 0.0134 0.0603
−0.6557 −0.5517 −0.0511 −0.0064 −0.4038 −2.4207 −0.5067 0.0037 −0.0010 0.0157
−0.7882 −0.5017 −0.0019 0.0107 0.0134 0.0603 −0.3248 −2.5479 −0.3134 0.0693
−1.5988 −0.9468 −0.0511 0.0037 −0.0010 0.0157 −0.0149 −0.0064 −0.4038 −2.4207

−0.3248 −0.6753 −0.3514 0.0131 −0.0019 0.0026 0.0056 −0.0084 −0.2686
−0.0149 −0.0172 −0.2778 −0.9070 −0.2751 −0.0491 −0.0026 0.0061 −0.0150
0.0041 0.0026 0.0056 −0.0084 −0.2686 −0.6753 −0.3514 0.0131 −0.0019

−0.5067 −0.0491 −0.0026 0.0061 −0.0150 −0.0172 −0.2778 −0.9070 −0.2751

⎤

⎥
⎥
⎦ .

(3.34)

No state feedback is designed for fast subsystem; hence, these eigenvalues are left
unaltered. However, for controller implementation, reduced order approximation of
Kd , designed for decoupled system (3.13), is represented into original states using
relation (3.24). This is the feedback gain for original system (3.6). Hence, it should
be noted that, although composite controller is obtained from slow subsystem alone,
feedback of all the states is required for implementation purpose. Desired closed-
loop eigenvalue locations are selected such that the system is stable as well as the
closed-loop system maintains two-time-scale structure. Closed-loop eigenvalues of
the system with composite control law are given in Table3.3 [5].

3.4.3 Transient Simulations

The closed-loop response of the system with a composite controller is assessed by
nonlinear simulations using a vectorized AHWR model. The component in the RR
control signals corresponding to the total power feedback was generated and applied
in each time step. The spatial control component using a composite controller was
generated and superimposed on the total power control signal. The system was ini-
tially assumed to be at full power steady-state condition, with all RRs at their equi-
librium positions. RR2, which was originally under automatic control, was suddenly
moved out by around 1% by giving appropriate manual control signal after 2 s. Sub-
sequently, it is left on automatic control as shown in Fig. 3.2. All other RRs (RR4,
RR6, and RR8) moved in under the influence of the controller so as to bring the total
reactor power at steady-state value back. Following the time period during which
the manual control signal was imposed on RR2, all RRs were being moved by the
controller to their initial steady-state positions in 120s. However, the response was
observed to be underdamped. Variations in spatial power measured in terms of first
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Table 3.1 Eigenvalues of slow subsystem (As) obtained by two-stage decomposition

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1–3 0 33 −1.5717 ×10−4 54 −6.2608 ×10−2

4 −2.6799 ×10−5 34 −1.6524 ×10−4 55 −6.2865 ×10−2

5 −3.7781 ×10−5 35 −1.6653 ×10−4 56 −6.2893 ×10−1

6 −3.7993 ×10−5 36 −1.7308 ×10−4 57 −1.1715 ×10−1

7 −4.0124 ×10−5 37 −1.8807 ×10−4 58 −1.4712 ×10−1

8 −4.152 ×10−5 38 −1.8870 ×10−2 59 −1.4713 ×10−1

9 −4.2044 ×10−5 39 −5.2501 ×10−2 60 −1.4809 ×10−1

10 −4.4204 ×10−5 40 −1.5867 ×10−2 61 −1.485 ×10−1

11 −4.7371 ×10−5 41 −5.0954 ×10−2 62 −1.5580 ×10−1

12 −4.8866 ×10−5 42 −5.1159 ×10−2 63 −1.5585 ×10−1

13–14 (−7.7407 ± j2.9929) ×10−5 43 −5.773 ×10−2 64 −1.5662 ×10−1

15–16 (−7.3359 ± j3.9319) ×10−5 44 −5.7893 ×10−2 65 −1.5585 ×10−1

17–18 (−6.5952 ± j5.4785) ×10−5 45 −5.9707 ×10−2 66 −1.5662 ×10−1

19–20 (−6.4855 ± j5.3109) ×10−5 46 −5.9723 ×10−2 67 −1.5761 ×10−1

21–22 (−3.9003 ± j8.9009) ×10−5 47 −6.0344 ×10−2 68 −1.6325 ×10−1

23–24 (−3.7785 ± j7.6475) ×10−5 48 −6.0642 ×10−2 69 −1.6405 ×10−1

25–26 (−3.5380 ± j7.7343) ×10−5 49 −6.1848 ×10−2 70 −1.8037 ×10−1

27–28 ( 8.8268 ± j2.1800) ×10−5 50 −6.1942 ×10−2 71 −1.8049 ×10−1

29–30 ( 8.0470 ± j3.9864) ×10−5 51 −6.22 ×10−2 72 −1.8122 ×10−1

31 −1.4107 ×10−4 52 −6.238 ×10−2 73 −1.8402 ×10−1

32 −1.4532 ×10−4 53 −6.2458 ×10−2

Table 3.2 Eigenvalues of
fast subsystem (A f ) obtained
by two-stage decomposition

Sr. No. Eigenvalues Sr. No. Eigenvalues

1 −7.2484 10 −1.6967 ×102

2 −3.2844 ×101 11 −1.7568 ×102

3 −3.3372 ×101 12 −1.9497 ×102

4 −6.6599 ×101 13 −2.111 ×102

5 −6.8323 ×101 14 −2.1904 ×102

6 −9.3653 ×101 15 −2.3591 ×102

7 −9.4612 ×101 16 −2.7163 ×102

8 −1.0868 ×102 17 −2.7626 ×102

9 −1.1705 ×102
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Table 3.3 Closed-loop eigenvalues of the AHWR model

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1 −4.5625 ×10−6 36 −7.9531 ×10−3 64 −1.5662 ×10−1

2–3 (−3.5399 ± j 7.7474)
×10−5

37 −7.9591 ×10−3 65 −1.5761 ×10−1

4 −3.7779 ×10−5 38–39 (−9.7370 ± j
0.11351) ×10−3

66 −1.6316×10−1

5 −3.7991 ×10−5 40 −1.5769×10−2 67 −1.6324 ×10−1

6–7 (−3.8092 ± j7.6314)
×10−5

41 −5.0952 ×10−2 68 −1.6405 ×10−1

8–9 (−6.4915 ± j5.2981)
×10−5

42 −5.1157 ×10−2 69 −1.6579 ×10−1

10–11 (−6.5894 ± j5.4694)
×10−5

43 −5.7730 ×10−2 70 −1.8037 ×10−1

12–13 (−7.3379 ± j3.9266)
×10−5

44 −5.7892 ×10−2 71 −1.8049 ×10−1

14–15 (−7.7423 ± j2.9886)
×10−5

45 −5.9707 ×10−2 72 −1.8122 ×10−1

16–17 (−8.1067± j3.8606)
×10−5

46 −5.9723 ×10−2 73 −1.8401 ×10−1

18–19 (−8.8817± j1.8965)×10−5 47 −6.0344 ×10−2 74 −7.2484

20 −4.0122 ×10−5 48 −6.0642 ×10−2 75 −3.2844 ×101

21 −4.1518 ×10−5 49 −6.1848 ×10−2 76 −3.3372 ×101

22 −4.2241 ×10−5 50 −6.1942 ×10−2 77 −6.6599 ×101

23 −4.4224 ×10−5 51 −6.2200 ×10−2 78 −6.8323 ×101

24 −4.7464 ×10−5 52 −6.2380 ×10−2 79 −9.3653 ×101

25 −4.8903 ×10−5 53 −6.2458 ×10−2 80 −9.4612 ×101

26 −1.4098 ×10−4 54 −6.2608 ×10−2 81 −1.0868 ×102

27 −1.4626 ×10−4 55 −6.2865 ×10−2 82 −1.1705 ×102

28 −1.5720 ×10−4 56 −6.2893 ×10−2 83 −1.6967 ×102

29 −1.6526 ×10−4 57 −1.1715 ×10−1 84 −1.7568 ×102

30 −1.6722 ×10−4 58 −1.4712 ×10−1 85 −1.9497 ×102

31 −1.7311 ×10−4 59 −1.4713 ×10−1 86 −2.1110 ×102

32 −1.8809 ×10−4 60 −1.4809 ×10−1 87 −2.1904 ×102

33 −1.8871 ×10−4 61 −1.4850 ×10−1 88 −2.3591 ×102

34 −3.3851 ×10−3 62 −1.5580 ×10−1 89 −2.7163 ×102

35 −7.9331 ×10−3 63 −1.5585 ×10−1 90 −2.7626 ×102

and second azimuthal tilts, and total power are, respectively, shown in Figs. 3.3 and
3.4. The azimuthal tilts were also observed to be oscillatory in nature with decreas-
ing amplitude and completely suppressed after 120s. First and second azimuthal
tilts attended steady-state value after approximately 10 and 5 cycles of oscillation,
whereas no significant oscillations were observed in total power.
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Fig. 3.6 Comparison of controllers: a Response due to three-time-scale approach [10] and b
Response due to two-stage decomposition
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Fig. 3.8 Response due to temporary change in the feed flow: a Change in feed flow, bDowncomer
enthalpy, c Total power and d RR positions

Closed-loop response of the AHWR system in one more transient, generated by
the abrupt disturbance in the position ofRR2, is shown inFig. 3.5. Itwas observed that
the reactor was originally working at full power steady state with the control obtained
only by total power feedback. The RR2, which was originally at its equilibrium state,
was moved in by 1.5% and at once moved out to its earlier position. As a result of this
disturbance, it was noticed that the first and second azimuthal tilts started picking
up as illustrated in Fig. 3.5a. The spatial power control signal was introduced in
the existing control signal after about 17.5h. As a result, magnitudes of the tilts
are reduced in about 5min and are completely controlled in 1.5h. The tilts stay
suppressed afterward during the remaining extended simulation. Figure3.5b depicts
the variations in the total power. It shows variation only at the time of initiation of
transient and introduction of spatial power component. Total power remains steady
at other time instants.

Furthermore, the performance of suggested controller is compared with the con-
troller presented in [10]. In this, positions of two RRs are simultaneously changed
by giving suitable manual control signal. RR6 was moved out and RR4 was moved
in by 2%. Instantaneously after that RRs were moved back to their earlier positions.
Simulation results are obtained for variations in control rod positions for both the
controllers using the nonlinear model of AHWR as shown in Fig. 3.6. It is noticed
that, with both the controllers, RRs are moved back to their steady-state positions
but time needed to do so is significantly less in the presented controller.
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So as to evaluate the reaction of the AHWR system to disturbance in feed flow, the
nonlinear model was again simulated when 5% positive step change was initiated
in the feed flow as depicted in Fig. 3.7a. As a consequence of this, the incoming
coolant enthalpy decreased by about 0.64% (Fig. 3.7b). The total powerwas observed
to be stabilizing at its steady-state value due to the controller action (Fig. 3.7c).
Nevertheless, RRs are moved in by 0.9% (Fig. 3.7d). For the short-term disturbance
in feed flow the total power is found to be stabilizing back at their initial value and
RRs also came back to their steady positions as shown in Fig. 3.8.

3.5 Conclusion

In this chapter, using two-stage decomposition, model of advanced heavy water
reactor is decoupled into slow and fast subsystems of orders 73 and 17, respectively.
Out of the two subsystems, fast subsystem is found to be asymptotically stable.
Hence, stabilizing state feedback control is designed only for slow subsystem. It is
then represented into original states by linear transformation and composite state
feedback control for full-order system is derived. This composite controller is found
to be stabilizing the linear AHWR system. It is then applied to the nonlinear model of
AHWR system to test the performance under various transient conditions. From the
simulation results, it is noticed that the response of controller under representative
transients is satisfactory. It is also compared with the three-time-scale controller to
show the effectiveness.
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Chapter 4
State Feedback Control Using Linear
Quadratic Regulator

4.1 Introduction

Higher order and interacting dynamics of widely different speeds complicate the
analysis and control of large-scale systems. These types of systems are comprehen-
sively studied by singular perturbations and time-scale methods. Over the period of
time, excellent overviews and surveys have been published for the periods up to 1976
[7], 1976–1983 [14], 1984–2001 [11] and 2002–2012 [21]. Survey on modeling of
physical systems using singular perturbation and time-scale is also documented in
[19]. Singular perturbation approach has proven to be an effective tool for control
design.

Singular perturbationmethods are also useful formodel order reduction. The order
reduction procedure and its validation for both linear and nonlinear systems can be
found in [7]. The approach makes use of the standard singularly perturbed form rep-
resentation of dynamic systems in which the derivatives of some state variables are
multiplied with a small positive scalar, ε. Recall that this type of representation was
discussed in Chap. 3 in context to two-time-scale explicit decomposition. Here, the
model reduction is achieved by setting ε = 0 and substituting the solution of states,
whose derivatives are multiplied with ε, in terms of the other state variables [6]. In
application, models of physical systems are put in the standard singularly perturbed
form by expressing small time constants, small masses, large gains, etc., in terms of
ε. In power systemmodels ε can represent machine reactance or transients in voltage
regulators, in industrial control systems it may represent time constants of drives and
actuators, and in nuclear reactor models it is due to prompt neutrons.

The two-time-scale behavior of singularly perturbed systems suggests that a trans-
formationmay separate the slowand fast subsystems. Such a transformation for linear
systems is constructed by Chang [1]. Optimal control of nonlinear as well as linear
singularly perturbed systems is extensively studied in the control literature and the
most actively investigated optimal control problem in the case of singularly perturbed
systems is the linear quadratic regulator (LQR) problem. A key point in studying the
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asymptotic behavior of the Riccati equation, as ε → 0, is seeking the solution of a
particular form,

S =
[

S11 εS12
εST

12 εS22

]
, (4.1)

which was first done by Sannuti and Kokotovic [15]. With this, the Riccati equation
for the full singularly perturbed system is partitioned into three equations, which
are solved independently. Such a formulation results into the decomposition of the
original higher order problem into two lower order problems. Feedback designs
for systems containing interaction of slow and fast phenomena often suffer from
ill-conditioning. In the singular perturbation approach to feedback design, the inter-
action of slow and fast phenomena is taken advantage of by decomposing the orig-
inal ill-conditioned system into two lower order subsystems. Design of feedback
controller may then proceed for each subsystem independently and the results are
combined to yield a composite feedback control for the original system. The design
procedure usually starts by neglecting the fast dynamics, equivalently setting ε = 0,
to get the slow subsystem model. A state feedback control is designed such that the
closed-loop slow subsystem is stable and meets other design criteria. Next, with the
slow subsystem state fixed at the equilibrium point, a control is designed for the fast
subsystem such that the closed-loop fast subsystem is stable and meets other design
criteria. Finally, the composite control for the original system is obtained as the sum
of the slow and fast subsystem state feedback controllers. Several papers justify this
design approach for various cases. The advantages of this method are not limited
to the computational ones. The method, in fact, provides a systematic approach for
designing a feedback control strategy that matches the time-scale configuration of
the open-loop system, which if executed properly can lead to better designs and/or
efficient implementations. In many control problems, the design criteria for the slow
dynamics of a system are more strict than those for the fast dynamics; on the other
hand, fast dynamics are less accurately modeled than the slow dynamics. Decompos-
ing the design problem, into subproblems for slow and fast subsystems, provides the
designer with the opportunity of making different compromises for the slow and fast
parts of a system depending upon the design criteria and model inaccuracies for each
part. On the implementation side, it is seen that the design procedure leads naturally
to a hierarchical structurewhich could be very efficient when factors like cost of com-
munication and multirate sampling are taken into consideration. The cases of state
feedback are treated in [3, 5, 10, 12, 13, 16, 18]. In [3], conditions are formulated for
exact separation of slow and fast subsystem regulator designs and a near-optimum
state regulator combining two subsystem regulator, is developed. Suzuki [18] has
proved that controllability and stabilizability properties of the slow subsystem are
invariant with respect to the feedback from fast subsystem state variables. This prop-
erty is again investigated in [13]. Furthermore, in [17], a two-stage design procedure
of the two-time-scale system to decompose the original higher order system into three
subsystems is considered. Another technique of direct decoupling of a higher order
multi-time-scale singularly perturbed linear systemwith multiparameters is given by
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Ladde et al. [8]. Also, they formulated a threefold version of Chang’s transformation
[2]. However, the study is restricted only to autonomous systems, i.e., aspects of
controller design are not discussed. Comparable results in three-time-scale decom-
position of autonomous systems, with more extensive mathematical background,
can also be found in [4]. As an extension, simultaneous decomposition of a nonau-
tonomous singularly perturbed system into three subsystems is described in [16]. In
addition to this, composite controller design in terms of the individual subsystem
controllers is obtained and the decomposition of the optimal control problem of the
original system into three lower order optimal control problems is explained.

Preceding chapters were devoted to modeling of Advanced Heavy Water Reactor
(AHWR), output feedback design, and state feedback design using pole placement.
In this chapter, again the controller obtained is based on state feedback; however, the
design approach isLQR.AHWRmodel is decoupled into slowand fast subsystemsby
quasi-steady-statemethod and separate linear regulators are designed for subsystems.
Finally they are combined to construct composite control law.

4.2 Linear Quadratic Regulator Design for
Two-Time-Scale System

For brevity let us rewrite the general linear time-invariant controllable and observable
two-time-scale system (3.3)–(3.5) of order n, as

ż1 = A11z1 + A12z2 + B1u; z1(t0) = z10 , (4.2)

εż2 = A21z1 + A22z2 + B2u; z2(t0) = z20 , (4.3)

y = M1z1 + M2z2, (4.4)

where z1 ∈ �n1 and z2 ∈ �n2 denote states such that n1 + n2 = n, the matrices
Ai j , Bi , and Mi are of appropriate dimensions, and parameter ε > 0 is perturbation
parameter. It must be noted that the system is having n1 slow and n2 fast modes.

Among the slow and fast modes in the system given by (4.2)–(4.4), the fast modes
are important only during a short initial period. After that period they are negligible
and the behavior of the systemcan be described by its slowmodes. Themodelwith the
fast modes neglected is called quasi-steady-state model [3]. Neglecting fast modes is
equivalent to assuming that they are infinitely fast, i.e., letting ε → 0 in (4.2)–(4.3).
When ε = 0, the order of the system in (4.2)–(4.3) reduces from (n1 + n2) to n1,
because the differential equation (4.3) degenerates into algebraic equation

0 = A21z̄1 + A22z̄2 + B2ū, (4.5)

where the bar is used to indicate that the variables belong to a system with ε = 0.
The model (4.2)–(4.3) is in standard form if and only if (4.5) has a unique solution
or a finite number of distinct solutions in the domain of interest. If A−1

22 exists, then

http://dx.doi.org/10.1007/978-981-10-3014-7_3
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the solution z̄2 is obtained as

z̄2 = −A−1
22 A21z̄1 − A−1

22 B2ū. (4.6)

Substituting the solution of z̄2 from (4.6) in (4.2) and (4.4), slow subsystem model
is obtained as

żs = Aszs + Bsus, (4.7)

ys = Mszs + Nsus, (4.8)

where zs = z̄1, us = ū, As = A11 − A12A−1
22 A21, Bs = B1 − A12A−1

22 B2, Ms =
M1 − M2A−1

22 A21, and Ns = −M2A−1
22 B2. In order to derive fast subsystem, slow

variables are assumed constant during fast transients. The fast subsystem model is
given as

εż f = A f z f + B f u f , (4.9)

y f = M f z f , (4.10)

where z f = z2 − z̄2, u f = u − ū, A f = A22, B f = B2, and M f = M2. Thus
the original higher order system described by (4.2)–(4.4) is decomposed into n1-
dimensional slow subsystem given by (4.7)–(4.8) and n2-dimensional fast subsystem
given by (4.9)–(4.10).

4.2.1 Linear State Feedback Control

For convenience, system (4.2)–(4.4) is again given in the following form:

ż = Az + Bu, (4.11)

y = Mz, (4.12)

where z = [
zT1 zT2

]T
is the n1 + n2 = n dimensional state vector and recall that

A =
[

A11 A12
A21

ε

A22

ε

]
,B =

[
B1
B2

ε

]
,M = [

M1 M2
]
.

In particular, it is considered to minimize the quadratic performance index

J =
∫ ∞

0

[
zTQz + uTRu

]
dt, (4.13)
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where Q ≥ 0 and R > 0 are, respectively, (n × n) and (m × m) matrices. The
solution to the problem (4.13) is the optimal linear feedback

u = −R−1BTS
[
zT1 zT2

]T = Kopt
[
zT1 zT2

]T
(4.14)

where (n × n) matrix S in (4.14) can be obtained by solving the Riccati equation

SA + ATS − SBR−1BTS + Q = 0. (4.15)

The simultaneous presence of the slow and fast phenomena in the system results in
ill-conditioning of the system so that it becomes difficult to solve (4.15) for finding S.
However, by application of singular perturbation approach, the original higher order
ill-condition system is decomposed in two subsystems and the linear regulator design
is carried out for two separate subsystems individually. Finally, separately designed
regulators are combined to obtain control given by (4.14). For design purpose, the
matrices Q and S are assumed to be partitioned as

Q =
[
Q11 Q12

QT
12 Q22

]
and S =

[
S11 εS12

εST
12 εS22

]
. (4.16)

Now, for fast subsystem (4.9), optimal control [3, 20] is given by

u f = −R−1BT
f S22z f = K2z f , (4.17)

where

S22A f + AT
f S22 − S22B fR−1BT

f S22 + Q f = 0 (4.18)

withQ f = Q22 ≥ 0 andR > 0. A unique solution of S22 exists if the fast subsystem
pair (A f ,B f ) is controllable. The optimal control [3, 20] for (4.7) is given by

us = −R−1
0

(
H0 + BT

0 S0
)
zs = K0zs, (4.19)

where S0 is obtained by solving

S0A0 + AT
0 S0 − S0B0R−1

0 BT
0 S0 + Q0 = 0, (4.20)

in which

A0 = As − BsR−1
0 H0,

B0 = Bs,

R0 = R + (
A−1

22 B f
)T

Q22A−1
22 B f ,

Q0 = Q̄0 − HT
0 R

−1
0 H0,
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where

H0 = − (
A−1

22 B f
)T [

QT
12 − Q22A−1

22 A21
]
,

Q̄0 = Q11 − Q12A−1
22 A21 − (

A−1
22 A21

)T [
QT

12 − Q22A−1
22 A21

]
.

4.2.2 Composite Controller Design

Separately designed optimal controllers (4.17) and (4.19) should ensure the stability
of subsystems, i.e.,

�e{ϕ(A f + B fK2)} < 0 and �e{ϕ(As + BsK0)} < 0. (4.21)

As a result, an asymptotically stable closed-loop behavior can be obtained if com-
posite control

u = K0zs + K2z f (4.22)

is applied to the system (4.2)–(4.3). In terms of states z1 and z2, one can write

u = [
(Em + K2A−1

22 B2)K0 + K2A−1
22 A21

]
z1 + K2z2

= [K1K2]
[
zT1 z

T
2

]T
, (4.23)

where K1 = (Em + K2A−1
22 B2)K0 + K2A−1

22 A21, in which Em is (m × m) identity
matrix. Further (4.23) can be written as

u = Koptz, (4.24)

whereKopt = [K1 K2]. This composite control serves as a near-optimum control for
the actual higher order system.

Remark 4.1 If the system is having stable fast modes, then K2 can be taken as null
matrix of (m × n2) dimension. This yields reduced two-time-scale approximation to
Kopt as K̄opt = [K0 0].

4.3 Application to AHWR Model

Singularly perturbed model of AHWR, discussed in Sect. 3.4.1, is decoupled into
slow and fast subsystems of orders 73 and 17, respectively, by using (4.7)–(4.10).
The eigenvalues ofmatricesAs andA f are given in Tables4.1 and 4.2, respectively. It
is seen that the eigenvalues of the fast subsystemmatrixA f are in excellent agreement

http://dx.doi.org/10.1007/978-981-10-3014-7_3
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Table 4.1 Eigenvalues of slow subsystem (As ) obtained using quasi-steady-state method

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1 2.4139×10−17 31 −1.5717×10−4 53 −6.2865×10−2

2 6.1105×10−17 32 −1.6524×10−4 54 −6.2894×10−2

3 −2.2396×10−17 33 −1.6573×10−4 55 −9.7168×10−2

4 −2.8757×10−5 34 −1.7308×10−4 56 −1.0708×10−1

5 −3.7781×10−5 35 −1.8807×10−4 57 −1.3169×10−1

6 −3.7993×10−5 36 −1.8870×10−4 58 −1.4712×10−1

7 −4.0124×10−5 37 −2.4408×10−4 59 −1.4713×10−1

8 −4.1520×10−5 38 −1.5738×10−2 60 −1.4808×10−1

9 −4.1968×10−5 39 −5.0954×10−2 61 −1.5063×10−1

10 −4.4204×10−5 40 −5.1179×10−2 62 −1.5580×10−1

11 −4.7338×10−5 41 −5.7743×10−2 63 −1.5585×10−1

12 −4.8866×10−5 42 −5.7898×10−2 64 −1.5662×10−1

13–14 (−7.7407± j2.9929)×10−5 43 −5.9709×10−2 65 −1.6019×10−1

15–16 (−7.3360± j3.9319)×10−5 44 −5.9727×10−2 66 −1.6316×10−1

17–18 (−6.4855± j5.3109)×10−5 45 −6.0346×10−2 67 −1.6324×10−1

19–20 (−3.5444± j7.7360)×10−5 46 −6.0644×10−2 68 −1.6404×10−1

21–22 (−3.7785± j7.6475)×10−5 47 −6.1849×10−2 69 −1.7531×10−1

23–24 (−6.5949± j5.4819)×10−5 48 −6.1946×10−2 70 −1.8031×10−1

25–26 (8.0471± j3.9863)×10−5 49 −6.2200×10−2 71 −1.8049×10−1

27–28 (8.8268± j2.1800)×10−5 50 −6.2385×10−2 72 −1.8122×10−1

29 −1.4107×10−4 51 -6.2458×10−2 73 −2.7823×10−1

30 −1.4441×10−4 52 −6.2608×10−2

Table 4.2 Eigenvalues of fast subsystem (A f ) obtained using quasi-steady-state method

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1 −7.2028 7 −9.4608×101 13 −2.1110×102

2 −3.2833×101 8 −1.0868×102 14 −2.1904×102

3 −3.3361×101 9 −1.1704×102 15 −2.3591×102

4 −6.6593×101 10 −1.6967×102 16 −2.7163×102

5 −6.8317×101 11 −1.7568×102 17 −2.7626×102

6 −9.3649×101 12 −1.9497×102

with the last 17 eigenvalues of matrix Â. Similarly, the slow subsystem eigenvalues
compare well with remaining 73 eigenvalues of matrix Â. Hence, it can be concluded
that the singularly perturbed form of model (3.31), discussed in Sect. 3.4.1, is valid
in case of AHWR. Slow subsystem contains the eigenvalues which are unstable
along with those near the origin, whereas fast subsystem contains stable eigenvalues.
Observe the unstable eigenvalues (1–3 and 25–28) in slow subsystem, as shown in

http://dx.doi.org/10.1007/978-981-10-3014-7_3
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Table4.1. It is important to note that the unstable eigenvalues 1–3 are zero in original
system matrix Â. However, there is no much change in remaining 70 eigenvalues of
slow subsystem. It may further be noticed that the submatrix B2 of the input matrix
is null matrix, thereby leading to B f = 0. In other words, the fast subsystem is
uncontrollable. However, it can be verified that the slow subsystem is controllable
and hence only K0 needs to be designed for slow subsystem as

usp = K0z1. (4.25)

The regulator design is carried out using equations described in Sect. 4.2.1 with R
as a (4 × 4) identity matrix and the matrix Q, given in [16], as

Q = diag
[
QH QX QI Qh QC Qx QQ

] × 10−3, (4.26)

whereQH = 0.2×E4,QX = 0.1×E17,QI = 0.1×E17, Qh = 1.0,QC = 0.2×E17,
Qx = 1.0 × E17, and QQ = 10 × E17. The matrix S0 is evaluated by solving (4.20)
and the optimal control gain K0 for the slow subsystem is determined from (4.19).
Finally, the composite gain matrix Kopt is determined from (4.23) and is given by

Kopt = − [KH KX KI Kh KC Kx 0] , (4.27)

where 0 denotes a null matrix of (4 × 17) order and KH , KX , KI , Kh , KC , and Kx

are feedback gains corresponding to regulating rod (RR) positions, xenon, iodine
concentrations, enthalpy, delayed neutron precursor concentration, and exit quality,
respectively, given by

KH =

⎡
⎢⎢⎣

−19.9545 −5.7393 −4.9452 −5.6978
−5.7393 −20.7841 −5.6978 −5.7178
−4.9452 −5.6978 −19.9545 −5.7393
−5.6978 −5.7178 −5.7393 −20.7841

⎤
⎥⎥⎦ × 10−3, (4.28)

KX =

⎡
⎢⎢⎣

−10.7345 −8.3090 −8.0272 −5.9800 −3.7218 −2.8063 −3.9180
−11.4554 −5.8965 −8.3055 −9.2395 −7.9956 −5.7743 −4.4195
−10.7345 −2.8063 −3.9180 −5.8549 −7.3040 −8.3090 −8.0272
−11.4554 −5.7743 −4.4195 −3.5621 −3.7827 −5.8965 −8.3055

−5.8549 −7.3040 −6.8392 −7.4296 −4.7889 −1.9474 −1.3720
−3.5621 −3.7827 −3.8666 −7.2293 −8.4341 −6.1019 −4.6704
−5.9800 −3.7218 −1.3720 −2.7189 −5.2149 −6.1906 −6.8392
−9.2395 −7.9956 −4.6704 −3.5452 −2.4453 −2.5284 −3.8666

−2.7189 −5.2149 −6.1906
−3.5452 −2.4453 −2.5284
−7.4296 −4.7889 −1.9474
−7.2293 −8.4341 −6.1019

⎤
⎥⎥⎦ × 10−1, (4.29)
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KI =

⎡
⎢⎢⎣
2.6987 2.8876 2.0075 1.5505 0.5708 0.0338 0.9088
2.8489 1.6278 2.2559 2.4676 2.7771 1.4134 0.8170
2.6987 0.0338 0.9088 1.3398 2.3417 2.8876 2.0075
2.8489 1.4134 0.8170 0.5847 0.3009 1.6278 2.2559

1.3398 2.3417 3.2291 3.2090 1.3042 −0.4368 −0.9069
0.5847 0.3009 0.8915 3.0851 3.9466 2.6712 1.4555
1.5505 0.5708 −0.9069 −0.3615 1.4543 2.7375 3.2291
2.4676 2.7771 1.4555 −0.0985 −0.9381 −0.2702 0.8915

−0.3615 1.4543 2.7375
−0.0985 −0.9381 −0.2702
3.2090 1.3042 −0.4368
3.0851 3.9466 2.6712

⎤
⎥⎥⎦ × 10−2, (4.30)

Kh =

⎡
⎢⎢⎣

−6.4051
−6.9423
−6.4051
−6.9423

⎤
⎥⎥⎦ × 10−2, (4.31)

KC =

⎡
⎢⎢⎣
14.0427 7.6659 8.0974 7.8364 7.0751 6.9674 7.5856
15.0907 7.8229 8.6745 8.8328 8.0833 7.7858 8.1696
14.0427 6.9674 7.5856 7.7988 7.4837 7.6659 8.0974
15.0907 7.7858 8.1696 8.0781 7.5728 7.8229 8.6745

7.7988 7.4837 5.7549 6.9890 6.6659 5.1516 5.0851
8.0781 7.5728 5.7310 7.4248 7.6125 5.9913 5.8023
7.8364 7.0751 5.0851 6.4267 6.6905 5.6319 5.7549
8.8328 8.0833 5.8023 6.9652 6.8531 5.5769 5.7310

6.4267 6.6905 5.6319
6.9652 6.8531 5.5769
6.9890 6.6659 5.1516
7.4248 7.6125 5.9913

⎤
⎥⎥⎦ × 10−3, (4.32)

Kx =

⎡
⎢⎢⎣

−6.8688 −1.1302 −1.9942 −2.0213 −1.3383 −1.3331 −1.9952
−7.3973 −1.4558 −2.1455 −1.9598 −1.4153 −1.4642 −2.1597
−6.8688 −1.3331 −1.9952 −2.0278 −1.3277 −1.1302 −1.9942
−7.3973 −1.4642 −2.1597 −2.1471 −1.4462 −1.4558 −2.1455

−2.0278 −1.3277 −1.1880 −1.3670 −1.4090 −1.3058 −1.3009
−2.1471 −1.4462 −1.4287 −1.4971 −1.3839 −1.4077 −1.4420
−2.0213 −1.3383 −1.3009 −1.3943 −1.4180 −1.2997 −1.1880
−1.9598 −1.4153 −1.4420 −1.5168 −1.5035 −1.4205 −1.4287

−1.3943 −1.4180 −1.2997
−1.5168 −1.5035 −1.4205
−1.3670 −1.4090 −1.3058
−1.4971 −1.3839 −1.4077

⎤
⎥⎥⎦ × 10−4. (4.33)
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Table 4.3 Closed-loop eigenvalues of the AHWR model with Kopt

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1 −2.8369×10−5 35 −7.9732×10−3 63 −1.5662×10−1

2–3 (−3.6054± j7.7099)×10−5 36 −8.0749×10−3 64 −1.6022×10−1

4–5 (−3.9491± j7.5495)×10−5 37 −8.1030×10−3 65 −1.6316×10−1

6 −3.7779×10−5 38 −5.7736×10−2 66 −1.6324×10−1

7 −3.7985×10−5 39 −5.7892×10−2 67 −1.6405×10−1

8 −4.1515×10−5 40 −5.9706×10−2 68 −1.7542×10−1

9 −4.1942×10−5 41 −5.9723×10−2 69 −1.8037×10−1

10 −4.0111×10−5 42 −6.0344×10−2 70 −1.8049×10−1

11 −4.4291×10−5 43 −6.0642×10−2 71 −1.8122×10−1

12 −4.7331×10−5 44 −6.1848×10−2 72 −2.8889×10−1

13 −4.9080×10−5 45 −6.1945×10−2 73 −1.0800×10−1

14–15 (−6.5115± j5.2628)×10−5 46 −6.2200×10−2 74 −6.9171×100

16–17 (−6.5926± j5.4855)×10−5 47 −6.2384×10−2 75 −3.2844×101

18–19 (−7.3405± j3.9069)×10−5 48 −6.2458×10−2 76 −3.3372×101

20–21 (−7.7414± j2.9910)×10−5 49 −6.2608×10−2 77 −6.6599×101

22–23 (−8.3203± j3.3684)×10−5 50 −6.2865×10−2 78 −6.8323×101

24 −8.4318×10−5 51 −6.2893×10−2 79 −9.4612×101

25 −9.6873×10−5 52 −5.0944×10−2 80 −9.3653×101

26 −1.4048×10−4 53 −5.1151×10−2 81 −1.0868×102

27 −1.4459×10−4 54 −1.5738×10−2 82 −1.1705×102

28 −1.5742×10−4 55 −9.6913×10−2 83 −1.6967×102

29 −1.6516×10−4 56 −1.3225×10−1 84 −1.7568×102

30 −1.6590×10−4 57 −1.4712×10−1 85 −1.9497×102

31 −1.7323×10−4 58 −1.4713×10−1 86 −2.1110×102

32 −1.8816×10−4 59 −1.4809×10−1 87 −2.1904×102

33 −1.8871×10−4 60 −1.5068×10−1 88 −2.3591×102

34 −2.4746×10−4 61 −1.5580×10−1 89 −2.7163×102

62 −1.5585×10−1 90 −2.7626×102

It can be observed that the feedback gains corresponding to xenon concentration are
large and that of exit quality are small. The diagonal dominance of KH can also be
noticed. Using total power feedback (3.30) and spatial power feedback (4.25) with
gain (4.27), the overall control input (3.29) becomes

u = −KGy − KHzH − KXzX − KI zI − Khzh − KCzC − Kxzx . (4.34)

Table4.3 lists the closed-loop eigenvalues of (3.27) with control input (4.34). From
(4.34) it is evident that controller demands feedbacks of RR positions, enthalpy,
xenon, iodine, and delayed neutron precursor concentrations and hence, only a
reduced order observer would be sufficient for the controller implementation [9].

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
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4.3.1 Transient Simulations

Performance of the control technique was examined by simulating the nonlinear
system of AHWR, given by (2.26)–(2.32), for the transient involving a disturbance
in the spatial power distribution. Initially, the reactor was observed to be working at
full power steady-state condition. Suddenly, RR2, initially under automatic control
signal, was moved out using manual control by about 1% by giving suitable control
signal after 2 s and afterward left on automatic control as depicted in Fig. 4.1. All
other RRs were driven in under the influence of control action so as to regulate the
total power of reactor. Following the time period when the manual control signal was
applied to RR2, all RRs were being moved by the controller to their initial positions
in about 135s. Variations in spatial power, measured in terms of first and second
azimuthal tilts and defined by (2.49)–(2.50), quadrant powers, and total power are,
respectively, shown in Figs. 4.2, 4.3, and 4.4.

With the purpose of testing the performance of controller to the disturbance in
feed flow, the nonlinear model was again simulated when positive step change of
5% was initiated in the feed flow. As a consequence of this, the incoming coolant
enthalpy decreased by around 0.64%. However, due to controller action the total
power was observed to be stabilizing at its steady-state value (Fig. 4.5a). This is
compensated by moving the RRs inside the reactor by 0.9% (Fig. 4.5b). When the
temporary disturbance was initiated in the feed flow the total reactor power was
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Fig. 4.1 Deviations in regulating rod positions during the transient
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Fig. 4.6 Variations in total power during power maneuvering from 920.48 to 828.43MW

found to be stabilizing back at its original value and all RRs also came back to their
steady-state positions.

In one more transient, originally, the reactor is under equilibrium condition and
is observed to be working at 920.48MW with nodal power distribution as given in
Table2.5. Now, the demand power is decreased uniformly at the rate of 1.5MW/s
to 828.43 MW, in 61s and maintained constant subsequently. Throughout the tran-
sient, it is found that the total power is tracking the demand power as indicated
in Fig. 4.6 and settles after 90 s. It is observed that the feed flow decreases at the
rate of 0.66kg/s/s (Fig. 4.7a), whereas downcomer enthalpy increases at the rate of
0.28kJ/kg/s (Fig. 4.7b) and attains new steady states in 90s. However, the nodal
xenon concentrations reach to their respective new equilibrium values in about 50h.

Furthermore, the performance of controller is compared with the controller sug-
gested in [16]. In this case, RR6 was moved out by manual control signal by 2%
by giving suitable control signal and at the same time RR4 was moved in by same
amount, instantly after that RRs were moved back to their initial positions. Simula-
tion results are generated for variations in RR positions using both the controllers as
depicted in Fig. 4.8. It is noticed that, with both the controllers, RRs are moved back
to their equilibrium positions but time required to do so is significantly less in case
of the present controller. For this transient quadrant power variations are illustrated
in Fig. 4.9.

http://dx.doi.org/10.1007/978-981-10-3014-7_2
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Fig. 4.9 Quadrant power variations during the transient

4.4 Conclusion

The numerically ill-conditioned 90th order linear system of AHWR is decoupled
into two lower order subsystems by quasi-steady-state method. After that, linear
quadratic regulators are designed for the slow and fast subsystems separately and a
composite controller for original system is derived. An asymptotic approximation
to the closed-loop system is achieved and at the same time ill-conditioning issues
linked with AHWR system are eliminated after application of composite controller.
Performance of the presented controller is tested through simulations carried out
under various transient conditions. Also, the performance of controller is compared
with three-time-scale composite controller for the same transient condition. It is
noticed that the performance of the suggested controller is superior to three-time-
scale composite controller.
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Chapter 5
Sliding Mode Control

5.1 Introduction

Variable structure control (VSC) with sliding mode control (SMC) was first
proposed and elaborated in the early 1950s in the Soviet Union by Emelyanov and
several coresearchers [6, 10]. Thereafter, a considerable interest was generated on
variable structure system (VSS) and SMC in the research community exploring con-
trol applications. In VSS, the control is permitted to alter its structure by changing to
another member of a set of possible continuous function of states. The VSS then may
have new features which individual controls may not hold. It is possible to design
control which drives the system to predefined manifold, known as sliding manifold.
Once the system motion is confined to the sliding manifold, it asymptotically moves
towards the origin. Thus, designing a sliding mode control is a two-step method.
First, a stable sliding manifold is designed and second a control law is designed
which forces the system states to the sliding manifold in finite time. Afterwards, it
keeps the states on the manifold at all instant. This peculiar system characteristics is
claimed to result in superb system performance which includes insensitivity to para-
meter variations and complete rejection of disturbances [6, 22]. Fast control action
is needed to maintain the states on the predefined manifold [5].

System imperfections, for example, delays and hysteresis, are notorious to create
high-frequency oscillations, i.e., chattering. Chattering is characterized by the states,
continually crossing the sliding surface, rather than remaining on it. This type of
motion is highly undesirable and results in damage to the actuator components [21].
To avoid this, discontinuous control action is modified, in which instead of forcing
the states to rest on the sliding surface, they are forced to stay within an arbitrarily
small boundary layer close to it [19]. In the literature it is often referred to as a
pseudo-sliding motion. In this case, the total invariance property associated with
ideal sliding will be lost. Nevertheless, an arbitrarily close approximation to ideal
sliding can be achieved.

© Springer Nature Singapore Pte Ltd. 2018
R. Munje et al., Investigation of Spatial Control Strategies
with Application to Advanced Heavy Water Reactor, Energy Systems
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Designing a sliding mode control for multi-time-scale (singularly perturbed) sys-
tem is difficult due to interactions of slow, fast, and very fast dynamical modes
of the system and discontinuous nature of control law. Over the period of time,
variety of techniques discussing application of SMC to singularly perturbed systems
are published in the literature [1, 4, 9, 11–14, 16, 17, 23]. For stabilizing a class
of linear time-invariant system composite SMC is derived from the individual sub-
system SMCs [9]. A similar kind of approach is studied by Li et al. [12, 13], in
which the upper bound problem of singular perturbation parameter in such a control
system is also determined. Global stability of closed-loop system decoupled into
lower order subsystems using singular perturbation approach with small perturba-
tion parameter is discussed in [11]. Nevertheless, the effect of external disturbances
is not considered in above methods. Yue and Xu [23] suggested SMC design for a
singularly perturbed system with external disturbances and parameter uncertainties,
but it is complicated to calculate some parameters for the control law design. SMC
design using merely slow subsystem states for the full-order system is examined in
[1]. In recent times, Nguyen et al. [16] claimed a method where a state feedback
control is initially designed to stabilize either slow or fast dynamics and then an
SMC is worked out for remaining dynamics to guarantee stability and rejection of
disturbance. Furthermore, in [17] SMC scheme for singularly perturbed systems in
the presence of matched bounded external disturbance is elaborated. In [4], SMC
is designed by means of reduced model approach, where higher order system is
decoupled by direct block diagonallization into slow and fast subsystems. In addi-
tion, it is demonstrated that the SMC designed for only slow subsystem can result in
sliding mode motion for the original full-order system. All the SMC techniques dis-
cussed above use two-time-scale decomposition of singularly perturbed system, i.e.,
either quasi-steady-state method or direct block diagonalization. Recently, Munje et
al. [14] have designed SMC for three-time-scale system, in which singularly per-
turbed system is decomposed into three subsystems, namely, slow, fast 1, and fast
2 by quasi-steady-state method. Composite controller is then designed and applied
to point kinetics model of nuclear reactor. Few other applications of sliding mode
control for nuclear reactor are presented in [2, 3, 7]. All these are based on point
kinetics model of nuclear reactor, which is of lower order.

The basic philosophy of the variable structure control is that the structure of the
system varies under certain conditions, from one to anothermember of a set of admis-
sible continuous-time functions. A variable structure system can inherit combined
useful properties from the structures. In addition, it can be endowedwith special prop-
erties which are not present in any of the structures [6, 20]. In this chapter, sliding
mode control technique is explored for Advanced Heavy Water Reactor (AHWR).
Implementation of SMC requires state feedback, as was the case of pole placement
and linear quadratic regulator designs presented in earlier chapters. Two-time-scale
structure built in the Chap.3 has been utilized in this chapter for SMC design via
two-time-scale formulation.

http://dx.doi.org/10.1007/978-981-10-3014-7_3
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5.2 Sliding Mode Control

Sliding mode control is a type of variable structure control, where sliding surfaces
or manifolds are designed such that system trajectories exhibit desirable properties
as confined to these manifolds. A system using an SMC strategy can display a robust
performance against parametric uncertainties and exogenous disturbances [8]. This
property is of extreme importance in practice where most of the plants are heavily
affected by parametric and external disturbances.

The SMC design includes design of a switching surface s = 0 to represent the
desired dynamics of system, which is of reduced order than the original system and
then design of an appropriate control, such that any system state outside the switching
surface is moved toward the surface in finite time.

Consider a linear time-invariant controllable and observable continuous-time sys-
tem of order n, as

ż = Az + Bu, (5.1)

y = Mz, (5.2)

where z ∈ �n is the system state, u ∈ �m is the control input, and y ∈ �p is the
systemoutputwith 1 ≤ m ≤ n. ThematricesA,B, andM are constants of appropriate
dimensions. As (5.1) is completely controllable there exists a transformation matrix
Tr ∈ �n×n such that

TrB =
[
0
B0

]
, (5.3)

where B0 ∈ �m×m and is nonsingular. Under this transformation, system (5.1) is
transformed into regular form given as

[ ˙̄z1˙̄z2
]

=
[
Ā11 Ā12

Ā21 Ā22

] [
z̄1
z̄2

]
+

[
0
B0

]
u, (5.4)

where z̄1 and z̄2 are of orders (n − m) and m, respectively, and

z̄ =
[
z̄1
z̄2

]
= Trz. (5.5)

5.2.1 Sliding Surface Design

Consider the sliding surface [6, 10] of form C̄T z̄ = 0 with sliding function parameter
of the form
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C̄T = [
K Em

]
. (5.6)

The normal form (5.4), when restricted on sliding surface C̄T z̄ = 0, would obey the
relationship

z̄2 = −Kz̄1. (5.7)

Thus, the dynamics of z̄1 can be represented as

˙̄z1 = Ā11z̄1 − Ā12Kz̄1,

= (Ā11 − Ā12K)z̄1. (5.8)

From (5.4), variable z̄2 should be regarded as a control input to the dynamic equation
of z̄1. The controllability of (A,B) implies controllability of (Ā11, Ā12). As a result,
from (5.8) if K is selected such that eigenvalues of (Ā11 − Ā12K) are assigned in
desired locations, then z̄1 is stabilizedwhenconfined to sliding surface.Consequently,
due to algebraic relationship (5.7), z̄2 is also stable and confined to sliding surface.
Thus, stability requirement of the sliding surface is satisfied and it can be expressed
in terms of original state coordinates as

s = C̄T z̄ = C̄TTrz = CT z. (5.9)

5.2.2 Control Law Design

When sliding surface (5.9) is designed, it is essential that for all initial conditions,
the system states converge towards the switching surface. In other words, if s < 0
then ṡ > 0 and, if s > 0 then ṡ < 0. This may be combined to yield

ṡs < 0. (5.10)

This is the existence condition for sliding mode motion. And, when sliding motion
takes place after finite time ts , s = CT z = 0 and ṡ = CT ż = 0 for all t ≥ ts .
Substituting for ż from (5.1) gives equivalent sliding mode control [6] as

ueq = −(CTB)−1CTAz. (5.11)

The control law (5.11) satisfies only the sliding condition. One must add a regulating
control force udis (also called as discontinuous control law) in order to satisfy the
reaching condition. Thus, define

u = ueq + udis, (5.12)
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where udis can be designed by using sigmoid function [13] so that chattering is
eliminated and is implemented as

udis = −(CTB)−1ξsig(CT z)sgn(CT z), (5.13)

where ξ is a positive scalar and

sig(CT z) = 1 − e−|CT z|

1 + e−|CT z| ≥ 0, (5.14)

sgn(CT z) =
{
1 for CT z > 0
−1 for CT z < 0.

The system (5.1) is asymptotically stable in sliding mode on sliding surface (5.9)
[13].

5.3 Sliding Mode Control Design for Two-Time-Scale
System

It is complex and difficult to devise a sliding mode control for numerically
ill-conditioned two-time-scale system (3.6) because of different time-scales and the
discontinuous nature of control action. Therefore, the higher order system is decou-
pled into slow and fast subsystems as given by (3.13). Assuming fast subsystem

as asymptotically stable, i.e., ϕ
(
A f

ε

)
< 0, SMC is formulated by using only slow

subsystem states. For that, from (3.13) slow subsystem can be written as

żs = Aszs + Bsu. (5.15)

The relationship between the slow subsystem states (5.15) and states of system (3.13)
is given as

zs = [
En1 0

] [
zs
z f

]
= Tzzd , (5.16)

where transformation matrix Tz ∈ �n1×n . Let ss = CT zs be a stable sliding surface
for slow subsystem (5.15). Hence, the motion around ss can be obtained by setting
ṡs = 0. Therefore, equivalent sliding mode control is

ueq = −(CTBs)
−1CTAszs . (5.17)

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
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Thus, motion along ss is given by

żs = Aszs − Bs(CTBs)
−1CTAszs,

= (As − Bs(CTBs)
−1CTAs)zs . (5.18)

As the system (5.18) is stable by design, eigenvalues of (As − Bs(CTBs)
−1CTAs)

will be stable.

Lemma 5.1 If motion around ss = CT zs for system (5.15) is stable then the motion
around

s = CTTzTz (5.19)

for system (3.6) is also stable.

Proof Since, ss = CT zs is a stable sliding surface for system (5.15), from (5.16)
sliding surface for system (3.13) can be written as

sd = CTTzzd . (5.20)

Sliding motion around sd for system (3.13) can be obtained by setting ṡd = 0. As a
result equivalent control becomes

ueq = −(CTBs)
−1CT

[
As 0

]
zd . (5.21)

Thus, motion around switching surface sd is

żd =
[
As − Bs(CTBs)

−1CTAs 0
−B f (CTBs )

−1CTAs

ε

A f

ε

]
zd , (5.22)

which is obtained from (3.13) by replacing u with ueq . As (As −Bs(CTBs)
−1CTAs)

is stable by design and A f

ε
is assumed to be stable, the sliding motion of (3.13)

is stable. System formulation (3.13) is related to its original form (3.6) via linear
transformation (3.14). Therefore, s = CTTzTz is also stable sliding surface for
(3.6).

Now setting ṡ = 0, equivalent control for system (3.6) can be obtained from (5.21)
as

ueq = −(CTBs)
−1CT

[
As(En1 − εNL) −εAsN

]
z. (5.23)

The control (5.23) satisfies only sliding condition for system (3.6), as proved in
Lemma 5.1; however, reaching condition is satisfied by (5.13), where total control
law is given by (5.12).

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
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Lemma 5.2 Full-order system (3.6) is asymptotically stable in sliding mode on
sliding surface (5.19).

Proof From (3.14), (5.16) and (5.19) sliding surface for full-order system (3.6) can
be written as

s = CT
[
En1 − εNL −εN

]
z.

Now, choosing Lyapunov function as

V (s) = 1

2
sT s, (5.24)

V̇ (s) = −(ξs)sig(s)sgn(s) < 0 (5.25)

for all z �= 0. The reaching condition is thus satisfied.

5.4 Application of SMC to AHWR System

Singularly perturbed model of AHWR, given in Sect. 3.4.1, is decoupled into slow
subsystem of order 73 and fast subsystem of order 17 by using two-stage decompo-
sition, discussed in Sect. 3.3.1. Eigenvalues of slow and fast subsystems are given in
Tables3.1 and 3.2. Since the fast subsystem is asymptotically stable, sliding mode
control law can be constructed using only slow subsystem. For that the stable sliding
surface for slow subsystem is designed and equivalent control is obtained as given
below:

ueq = Ks,smczs, (5.26)

where Ks,smc = −(CTBs)
−1CTAs is (4× 73) gain matrix of slow subsystem, given

by

Ks,smc =

⎡
⎢⎢⎣
0.0119 0.0116 0.0104 0.0116 1.0046 0.5612 0.5873 0.5659 0.5107
0.0117 0.0133 0.0116 0.0117 1.0701 0.5600 0.6234 0.6389 0.5813
0.0104 0.0116 0.0119 0.0116 1.0046 0.5030 0.5474 0.5620 0.5416
0.0116 0.0117 0.0117 0.0133 1.0701 0.5562 0.5841 0.5783 0.5416

0.5030 0.5474 0.5620 0.5416 0.4200 0.5049 0.4783 0.3713 0.3667
0.5562 0.5841 0.5783 0.5416 0.4090 0.5305 0.5490 0.4288 0.4131
0.5612 0.5873 0.5659 0.5107 0.3667 0.4609 0.4790 0.4069 0.4200
0.5600 0.6234 0.6389 0.5813 0.4131 0.4946 0.4875 0.3979 0.4090

0.4609 0.4790 0.4069 0.0154 0.0142 0.0139 0.0089 0.0034 0.0011
0.4946 0.4875 0.3979 0.0165 0.0083 0.0142 0.0165 0.0132 0.0080
0.5049 0.4783 0.3713 0.0154 0.0011 0.0036 0.0086 0.0119 0.0142
0.5305 0.5490 0.4288 0.0165 0.0080 0.0045 0.0022 0.0031 0.0083

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
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0.0036 0.0086 0.0119 0.0116 0.0120 0.0062 0.0005 −0.0008 0.0013
0.0045 0.0022 0.0031 0.0047 0.0113 0.0139 0.0097 0.0066 0.0029
0.0139 0.0089 0.0034 −0.0008 0.0013 0.0071 0.0102 0.0116 0.0120
0.0142 0.0165 0.0132 0.0066 0.0029 0.0003 0.0016 0.0047 0.0113

0.0071 0.0102 −0.6269 −0.0294 −0.0168 −0.0174 −0.0164 −0.0147 −0.0144
0.0003 0.0016 −0.6515 −0.0315 −0.0165 −0.0185 −0.0190 −0.0175 −0.0164
0.0062 0.0005 −0.6269 −0.0294 −0.0144 −0.0156 −0.0163 −0.0161 −0.0168
0.0139 0.0097 −0.6515 −0.0315 −0.0164 −0.0168 −0.0166 −0.0157 −0.0165

−0.0156 −0.0163 −0.0161 −0.0126 −0.0151 −0.0139 −0.0105 −0.0103 −0.0131
−0.0168 −0.0166 −0.0157 −0.0119 −0.0158 −0.0167 −0.0127 −0.0120 −0.0143
−0.0174 −0.0164 −0.0147 −0.0103 −0.0131 −0.0139 −0.0120 −0.0126 −0.0151
−0.0185 −0.0190 −0.0175 −0.0120 −0.0143 −0.0140 −0.0114 −0.0119 −0.0158

−0.0139 −0.0120 0.0113 0.0307 0.0169 0.0125 0.0124 0.0113 0.0105 0.0118
−0.0140 −0.0114 0.0121 0.0152 0.0179 0.0272 0.0207 0.0143 0.0111 0.0104
−0.0139 −0.0105 0.0113 0.0113 0.0105 0.0118 0.0180 0.0307 0.0169 0.0125
−0.0167 −0.0127 0.0121 0.0143 0.0111 0.0104 0.0127 0.0152 0.0179 0.0272

0.0180 0.0206 0.0181 0.0125 0.0096 0.0090 0.0104 0.0124 0.0152
0.0127 0.0117 0.0174 0.0245 0.0154 0.0120 0.0113 0.0105 0.0103
0.0124 0.0090 0.0104 0.0124 0.0152 0.0206 0.0181 0.0125 0.0096
0.0207 0.0120 0.0113 0.0105 0.0103 0.0117 0.0174 0.0245 0.0154

⎤
⎥⎥⎦ . (5.27)
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Fig. 5.1 Changes in regulating rod positions with three-time-scale [18]method and two-stage SMC
approach
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Fig. 5.2 Suppression of azimuthal tilts after introduction of spatial control

Themaximumvalue of gain is observed to be 1.0701 andminimumvalue is−0.6515.
This control is then represented into original states using (5.16) and (3.14). The
equivalent control for original system of AHWR is then formulated as Ksmc. The
reaching condition is given by (5.13). Combining these two, spatial control law is
obtained as

usp = Ksmc

[
z1
z2

]
− (CTBs)

−1ξsig(s)sgn(s), (5.28)

whereKsmc = −(CTBs)
−1CTAs

[
En1 − εNL −εN

]
and s is the switching surface,

given by

s = [
CT (En1 − εNL)

]
z1 − (

εCTN
)
z2.

In this case SMC is designed using merely slow subsystem states. For controller
implementation this has been represented in terms of the original state variables
using (5.28). Therefore, dimension of SMC gain matrixKsmc is obtained as (4×90),
which indicates that the feedback of all the states is required for controller realization
[15].

http://dx.doi.org/10.1007/978-981-10-3014-7_3
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Fig. 5.3 Effect of change in control signal on regulating rod positions

5.4.1 Transient Simulations

The reactor was initially assumed to be working at full power steady-state condition.
Suddenly, RR6, operating under automatic control, was moved out by about 2% by
giving appropriate manual control signal and at the same time RR4 was moved in
by 2%. Afterwards, these RRs were left at their new positions under the influence
of automatic control. The control signals to RR drives were generated by combining
(3.30) and (5.28). Vectorized nonlinear model of the AHWR developed from (2.26)
to (2.32) is simulated for 10 ms step size. Simulation results generated are depicted
in Fig. 5.1. As a result of controller action, RRs were driven back to their steady-state
positions (Fig. 5.1b). Performance of the controller is compared with the three-time-
scale composite controller [18] for the same transient. It is observed that both the
controllers are forcing RRs back to their equilibrium positions but time needed to do
so is relatively less in the recommended controller.

Figure5.2 depicts response of closed-loop system when one more transient is
initiated. In this case, RR2 was taken out and RR4 was moved in by 1% manually,

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_2
http://dx.doi.org/10.1007/978-981-10-3014-7_2
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Fig. 5.4 Deviations in nodal powers due to changes in RR2 and RR6 positions

immediately after that these RRs were driven back to their initial positions respec-
tively and transferred under the control action of (3.30), which is based on total power
feedback alone.As a result of this transient and at the same time as the control is based
on total power feedback alone, the azimuthal tilts started growing. The spatial power
feedback control given by (5.28) was brought in the overall control after about 16h
and 40min. Figure5.2a illustrates the variations in first and second azimuthal tilts
and Fig. 5.2b represents a zoomed version, highlighting the region near the introduc-
tion of spatial control. It was noticed that azimuthal tilts are suppressed within 50s.
Moreover, when control signal as given in Fig. 5.3a is applied to the RRs, the corre-
sponding variations are seen to be as depicted in Fig. 5.3b. This action resulted into
the perturbation in spatial power distribution, which was suppressed by the spatial
controller in about 70 s, as shown in Fig. 5.4a–d.

5.5 Conclusion

In this chapter, spatial control of AHWR is achieved using sliding mode by two-
stage decomposition. First of all AHWR system is decoupled into slow and fast
subsystems and the SMC is devised using slow subsystem states. Afterwards, SMC
for full-order system is constructed using linear transformation matrices. Efficacy

http://dx.doi.org/10.1007/978-981-10-3014-7_3
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of the recommended controller is tested via simulations carried out under various
transients with step time of 10ms. It is noticed that the controller is stabilizing the
spatial oscillations and nodal power variations instantly.

This control technique along with the technique discussed in previous Chap.3
are based on two-stage decomposition. In both the methods controllers are designed
using slow subsystem and represented into original states. Hence, these methods
utilize the feedback of all the state variables.
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Chapter 6
Fast Output Sampling Technique

6.1 Introduction

A standard result in control theory states that, the poles of a linear time-invariant
controllable system can be assigned arbitrarily by state feedback. However, if all the
states are not directly available for feedback, one usually resorts to dynamic output
feedback provided the system is observable. Arbitrary pole assignment by static
output feedback is still an open problem in control theory [8]. In [2], it is shown
that, if a system is controllable and observable, then for almost all output sampling
rates, any self-conjugate pole configuration can be assigned to the discrete-time
closed loop system by piecewise constant output feedback, provided the number of
gain changes is not less than the system’s controllability index. Multirate Output
Feedback (MROF) is the concept of sampling the system input and system output at
different rates.

In the recent past, fast output sampling (FOS) control technique, a method which
utilizes only the system output for feedback, has emerged as a promising candidate
for control of sampled data control systems. In this method, the control signal is
constrained to be a linear function ofmultirate output observation of the output signal.
The control signal is kept constant over one discretizing interval and altered only at
the input sampling intervals. The output is sampled at faster rate than the control
input rate. The number of output sampling intervals is not less than observability
index of system and input signal is constructed from these output observations. It
was shown byWerner and Furuta [10] that if a system is controllable and observable,
then for all sampling rates any self-conjugate pole configuration can be assigned
to the closed loop system by non-dynamic multirate output feedback, provided the
number of gain changes is not less than observability index. Since the feedback
gains are piecewise constant, their method could be easily implemented and indicate
a new possibility. Such a control law can stabilize much larger class of systems than
static output feedback. Design of FOS-based controller for two-time-scale system is
given in [6, 9]. Control technique presented in [9] is extended for three-time-scale
system by Shimjith et al. [7]. In this, FOS control gain for a three-time-scale system
is obtained by combining the solutions of the three subsystem problems, obtained
separately. Since three smaller order subsystem problems are to be solved in lieu of

© Springer Nature Singapore Pte Ltd. 2018
R. Munje et al., Investigation of Spatial Control Strategies
with Application to Advanced Heavy Water Reactor, Energy Systems
in Electrical Engineering, https://doi.org/10.1007/978-981-10-3014-7_6
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one high order problem, numerical ill-conditioning is completely avoided.
In contrast to the preceding chapters in which treatise was based on continuous-

time approach, in this and subsequent chapters attention is shifted to discrete-time
system approach. Fast output sampling based controller is examined for Advanced
Heavy Water Reactor (AHWR) using two-stage decomposition. By means of two-
stage decomposition approach, the initial system of AHWR is first decoupled into
slow and fast subsystems. After that state feedback gain is obtained for slow subsys-
tem alone and is taken zero for fast subsystem. A composite controller is derived,
which is then implemented using FOS feedback gain. Further the performance of the
controller is compared with the controller recommended in [7].

6.2 Fast Output Sampling

In FOS, the system state information is calculated from the system output by multi-
rate observations. The control input is maintained constant throughout the sampling
interval τ [7, 10] as depicted in Fig. 6.1. When the system (3.1)–(3.2) is sampled at
the rate of 1/τ , the corresponding discrete-time system is

zk+1 = Φτ zk + Γτuk, (6.1)

yk = Mzk (6.2)

where Φτ = eAτ and Γτ = ∫ τ

0 eAsBds. Also let

zk+1 = ΦΔzk + ΓΔuk (6.3)

Fig. 6.1 Illustration of FOS feedback

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
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be the discrete-time system equivalent to the system (3.1) sampled at the rate of 1/Δ,
where Δ = τ/N . Let μ denote the observability index [1] of (Φ,M) and N ≥ μ.
The system matrices of the τ system and Δ system have the relation

Φτ = ΦN
Δ and Γτ =

N−1∑

i=0

Φ i
ΔΓΔ.

In FOS, output measurements are taken at time instants t = lΔ, l = 0, 1, . . . , N − 1.
The control input during the interval kτ < t ≤ (k + 1)τ is formulated as a linear
combination of the last N output observations. Let F be an original state feedback
gain so that the closed loop system (Φτ + ΓτF) has no eigenvalues at the origin. In
that case, one can characterize a fictitious measurement matrix as

M̄ = (M0 + D0F)(Φτ + ΓτF)−1 (6.4)

which satisfies the fictitious measurement equation yk = M̄zk , whereM0 andD0 are
given [9] as

M0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M
MΦΔ

MΦ2
Δ

...

MΦN−1
Δ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, D0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
MΓΔ

MΦΔΓΔ + MΓΔ

...

M�N−2
i=0 Φ i

ΔΓΔ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The structure of control law is

u(t) = Lyk, kτ < t ≤ (k + 1)τ. (6.5)

For L to realize the effect of F, it must satisfy

zk+1 = (Φτ + ΓτF)zk = (Φτ + ΓτLM̄)zk (6.6)

that is,
LM̄ = F. (6.7)

For N ≥ μ, thematrix M̄ has full rank and that for N = μ,L is uniquely calculated
from (6.7). On the other hand, if N > μ, L so found is not unique. Whatsoever is
the condition, L found from (6.7) realizes the state feedback gain F [9].

At time t = 0, the control input u(t) = u0 for 0 < t ≤ τ , cannot be calculated
from (6.5) because the output measurements are unavailable for t < 0. But, u0 can
be arbitrarily chosen if the eigenvalues of (LD0 − FΓτ ) are in unit circle in z-plane
as under this condition, the initial error in input will slowly disappear [7, 9].

http://dx.doi.org/10.1007/978-981-10-3014-7_3
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6.3 Fast Output Sampling Controller for Two-Time-Scale
System

The presence of slow and fast dynamics makes the system ill-conditioned. Designing
F and later L from (6.7) for such systems is a tough task. However, the problem can
be easily solved by singular perturbation approach. In this the original system is
decoupled into slow and fast subsystems and controller design for original system is
carried out by using subsystem controller designs. Now, for determining L for (3.6),
the corresponding system is discretized with sampling period τ as

[
z1,k+1

z2,k+1

]

=
[

Φ11 Φ12

Φ21 Φ22

] [
z1,k
z2,k

]

+
[

Γ1

Γ2

]

uk, (6.8)

yk = [
M1 M2

] [
zT1,k z

T
2,k

]T
(6.9)

where [
Φ11 Φ12

Φ21 Φ22

]

= eAτ and

[
Γ1

Γ2

]

=
∫ τ

0
eAsBds

and recall that

A =
[
A11 A12

A21
ε

A22
ε

]

and B =
[
B1

B2
ε

]

.

System (6.8)–(6.9) is decoupled into slow and fast subsystems [4, 5] and represented
as

[
zs,k+1

z f,k+1

]

=
[

Φτ s 0
0 Φτ f

] [
zs,k
z f,k

]

+
[

Γτ s

Γτ f

]

uk, (6.10)

yk = [
Ms M f

] [
zTs,k z

T
f,k

]T
(6.11)

where zs ∈ �n1 and z f ∈ �n2 denote the slow and fast states, respectively. Such
decoupling of continuous-time system is discussed in Sect. 3.3.1. States zs,k and z f,k

are related to z1,k and z2,k through transformation matrix T ∈ �n×n , such that

[
zTs,k z

T
f,k

]T = T
[
zT1,k z

T
2,k

]T
. (6.12)

Likewise block diagonalized discrete-time system for the sampling interval Δ can
be given by

[
zs,k+1

z f,k+1

]

=
[

ΦΔs 0
0 ΦΔ f

] [
zs,k
z f,k

]

+
[

ΓΔs

ΓΔ f

]

uk . (6.13)

Now the composite state feedback gain for (6.10) can be found by the method
described in Appendix A, as

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
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F = [
F1 F2

] = [
Fs F f

]
T3 (6.14)

where Fs and F f are the state feedback gains for slow and fast subsystems, respec-
tively, and T3 is appropriate transformation matrix (see Appendix A, for details).
From (6.13) the equations for M0, D0 can be obtained and (M0 + D0F) and L can
be represented as

M0 + D0F =
[
Ms1 M f 1

Ms2 M f 2

]

, L = [
Lf Ls

]
(6.15)

where Ms1, Ms2, M f 1, and M f 2 are respectively (μ f p × n1), ((N − μ f )p × n1),
(μ f p × n2) and ((N − μ f )p × n1) submatrics. Similarly,Lf andLs are respectively
(m × μ f p), and (m × (N − μ f )p) submatrics, where μs and μ f are respectively
the observability indices of the slow and fast subsystems. From (6.4) and (6.7)

L(M0 + D0F) = F(Φτ + ΓτF) (6.16)

which can be manipulated using (6.10), (6.14), and (6.15) to get the following slow
and fast subsystems FOS gains:

Ls = (F̃1 − F̃2M−1
f 1Ms1)(Ms2 − M f 2M−1

f 1Ms1)
−1, (6.17)

Lf = (F̃2 − LsM f 2)M−1
f 1 (6.18)

where

F̃1 = F1(Φτs + ΓτsF1) + F2Γτ f F1, (6.19)

F̃2 = F2(Φτ f + Γτ f F2) + F1ΓτsF2. (6.20)

L is exact solution of (6.7), consequently for system (6.6) the control (6.5) gives the
sameperformance as the state feedback gainF does to it [9].As, outputmeasurements
are not available for t < 0, u0 can be chosen arbitrarily if

|ϕ(LD0 − F1Γτ s − F2Γτ f )| < 1. (6.21)

Then, any error in control input due to unknown initial conditions will slowly vanish
[9].

Remark 6.1 Since, the eigenvalues of ΦΔ f are very small, ΦΔ f , Φ2
Δ f , . . . would be

very small. Thus,M f 2 can be made zero. Further, if the fast subsystem is stable, then
FOS gains in (6.15) change to L̄ = [

0 L̄s
]
, where L̄s is given by

L̄s = Fs(Φτ s + Γτ sFs)M−1
s2 . (6.22)

This is obtained by setting F f = 0 and hence F2 = 0. However, L̄ must also satisfy
(6.21) with F2 = 0 for making error in control input to vanish slowly.
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6.4 Application of FOS to AHWR Model

The model of AHWR given by (3.31) is discretized to get

zk+1 = Φτ zk + Γτuk + Γτ f wδq f wk (6.23)

where Φτ = eÂτ , Γτ = ∫ τ

0 eÂsBds and Γτ f w = ∫ τ

0 eÂsB f wds. The discrete system
(6.23) exhibits two-time-scale property for sampling period ≥ 9s. Therefore, the Δ

is selected as 9 s, and equivalent discrete-time model is partitioned into slow and
fast subsystems with dimensions 73 and 17 respectively. Observability indices of
slow and fast subsystems are respectively noted to be μs = 5 and μ f = 1 and that
of original system as 6. Thus N is chosen as 6 and τ as 54s. The system (3.31)
is discretized with τ sampling interval and resulting system too is decoupled into
slow and fast subsystems. Fast subsystem eigenvalues are observed to be at origin,
while the slow subsystem eigenvalues are mentioned in Table6.1, with highlighted

Table 6.1 Eigenvalues of slow subsystem (Φτ s )

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1 6.0957 ×10−5 25 3.5484×10−2 50 9.9845×10−1

2 6.1378 ×10−5 26 3.7925×10−2 51 9.9845×10−1

3 6.1527 ×10−5 27 3.8557×10−2 52 9.9845×10−1

4 6.1548 ×10−5 28 3.9904×10−2 53 9.9845×10−1

5 1.5702 ×10−4 29 4.0008×10−2 54 9.9887×10−1

6 1.5775 ×10−4 30 4.4194×10−2 55 9.9887×10−1

7 1.5811×10−4 31 4.4615×10−2 56 9.9887×10−1

8 1.5815×10−4 32 6.4933×10−2 57 9.9887×10−1

9 2.2811×10−4 33 6.5723×10−2 58 9.9887×10−1

10 2.2943×10−4 34 4.2577×10−1 59 9.9887×10−1

11 2.3017×10−4 35–36 (6.5415± j6.3142) ×10−1 60 9.9887×10−1

12 2.3021×10−4 37 9.9845×10−1 61 9.9887×10−1

13 3.6970×10−4 38 9.9845×10−1 62 9.9887×10−1

14 3.7071×10−4 39 9.9845×10−1 63 9.9887×10−1

15 3.7197×10−4 40 9.9845×10−1 64 9.9887×10−1

16 3.7200×10−4 41 9.9845×10−1 65 9.9887×10−1

17 1.9509×10−3 42 9.9845×10−1 66 9.9887×10−1

18 3.3515×10−2 43 9.9845×10−1 67 9.9887×10−1

19 3.3567×10−2 44 9.9845×10−1 68 9.9887×10−1

20 3.4040×10−2 45 9.9845×10−1 69 1.0010 ± j4.7915×10−4

21 3.4320×10−2 46 9.9845×10−1 70 1.0011 ± j2.6259×10−4

22 3.4468×10−2 47 9.9845×10−1 71 1.0000

23 3.4809×10−2 48 9.9845×10−1 72 1.0000

24 3.5305×10−2 49 9.9845×10−1 73 1.0000

http://dx.doi.org/10.1007/978-981-10-3014-7_3
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unstable eigenvalues. Using the procedure discussed in the Appendix A, a composite
state feedback gainmatrix is calculated for (6.10) in order to place the slow subsystem
eigenvalues at preferred locations. Since the fast subsystem eigenvalues are already
at origin, state feedback is not devised for the same. The FOS gain matrices Lf and
Ls, respectively of dimensions (4 × 17) and (4 × 73), are calculated using these
subsystem gains and the subsystem matrices corresponding to the system (6.3). Lf

and Ls are respectively given by

L f =

⎡

⎢
⎢
⎣

0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0

⎤

⎥
⎥
⎦ , (6.24)

Ls =

⎡

⎢
⎢
⎣

9.0179 −1.7628 1.0299 2.8958 −2.4612 −0.5893 0.6912 2.9414
9.4174 −0.8632 1.2608 1.8747 −2.4210 −0.8257 0.7085 3.2260
9.0179 −0.5893 0.6912 2.9414 −2.3920 −1.7628 1.0299 2.8958
9.4174 −0.8257 0.7085 3.2260 −2.5613 −0.8632 1.2608 1.8747

−2.3920 2.2120 0.3186 −0.6533 1.4550 1.0898 0.0469 −0.6340
−2.5613 1.0569 0.1501 0.6421 1.8876 1.0715 0.0208 −0.6362
−2.4612 1.0898 0.0469 −0.6340 1.6954 2.2120 0.3186 −0.6533
−2.4210 1.0715 0.0208 −0.6362 1.4935 1.0569 0.1501 0.6421

1.6954 −31.7079 −0.6961 −6.2013 −17.4552 4.9850 −7.4895 −4.3938
1.4935 −33.0719 −6.2783 −7.5908 −11.1347 3.5526 −6.4262 −4.5134
1.4550 −31.7079 −7.4895 −4.3938 −17.6005 3.9773 −0.6961 −6.2013
1.8876 −33.0719 −6.4262 −4.5134 −19.4147 5.2192 −6.2783 −7.5908

−17.6005 3.9773 −10.0946 −4.0485 1.7283 −6.5549 −4.0465 −2.3089
−19.4147 5.2192 −3.7503 −3.0667 −6.1627 −8.4800 −3.8488 −2.2204
−17.4552 4.9850 −4.0465 −2.3089 1.6079 −7.6143 −10.0946 −4.0485
−11.1347 3.5526 −3.8488 −2.2204 1.5439 −6.6996 −3.7503 −3.0667

1.6079 −7.6143 27.1815 13.8733 13.4419 25.5601 6.9274 21.3629
1.5439 −6.6996 28.2744 20.4578 15.2662 18.9042 9.3666 20.6132
1.7283 −6.5549 27.1815 21.3629 11.8021 25.6739 8.2620 13.8733

−6.1627 −8.4800 28.2744 20.6132 12.1440 27.9029 7.0790 20.4578

11.8021 25.6739 8.2620 15.8863 12.4952 6.2797 12.8215 10.1640
12.1440 27.9029 7.0790 9.9636 11.7936 15.0631 14.6993 10.1063
13.4419 25.5601 6.9274 10.1640 10.7741 6.4258 13.5747 15.8863
15.2662 18.9042 9.3666 10.1063 10.9242 6.7574 13.1198 9.9636

10.7741 6.4258 13.5747 7.0087 −15.5062 −13.6269 −2.1135 −21.4116
10.9242 6.7574 13.1198 7.3767 −11.0564 −13.1705 −9.4905 −20.4774
12.4952 6.2797 12.8215 7.0087 −9.4751 −15.6926 −2.0954 −20.1321
11.7936 15.0631 14.6993 7.3767 −11.0461 −16.1665 −0.8352 −22.1016

−9.4751 −15.6926 −2.0954 −20.1321 −10.5580 −15.3444 −20.8889 −13.8505
−11.0461 −16.1665 −0.8352 −22.1016 −18.0174 −17.2686 −13.9233 −12.8942
−15.5062 −13.6269 −2.1135 −21.4116 −17.1904 −17.4828 −20.8310 −12.6845
−11.0564 −13.1705 −9.4905 −20.4774 −18.0499 −18.1411 −21.3344 −14.2694
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−17.1904 −17.4828 −20.8310 −12.6845 −11.4877 4.0984 5.3639 −8.8781
−18.0499 −18.1411 −21.3344 −14.2694 −11.9842 −2.2508 4.2417 −0.1469
−10.5580 −15.3444 −20.8889 −13.8505 −11.4877 −3.8004 7.6001 −8.9101
−18.0174 −17.2686 −13.9233 −12.8942 −11.9842 −2.3061 7.8344 −10.8701

11.9675 −3.8004 7.6001 −8.9101 10.2923 2.5595 6.5862 13.5410
9.9866 −2.3061 7.8344 −10.8701 12.3717 10.7526 8.3986 4.3875

10.2923 4.0984 5.3639 −8.8781 11.9675 9.9885 8.9778 13.4383
12.3717 −2.2508 4.2417 −0.1469 9.9866 10.7264 9.4237 13.6761

6.1347 9.9885 8.9778 13.4383 5.0343
4.7928 10.7264 9.4237 13.6761 6.3615
5.0343 2.5595 6.5862 13.5410 6.1347
6.3615 10.7526 8.3986 4.3875 4.7928

⎤

⎥
⎥
⎦ . (6.25)

From (6.24) and (6.25), it may be observed that the gains of fast subsystem are all
zeros, and the maximum values of the gains for the slow subsystem is 28, which
appears to be good enough for practical realization. The closed-loop eigenvalues,
mentioned in Table6.2, of the full-order system with these gains are exactly same to
those with state feedback and are observed to be stable. It can also be confirmed that
the eigenvalues of (6.21) are in the unit circle in the z-plane [3]. The control scheme
can be implemented as illustrated in Fig. 6.2.

6.4.1 Transient Simulations

The controller performance is assessed by simulating the nonlinear model of AHWR
under different transient conditions. For controlling the fast transients in the total
power, control input (3.30) was applied on every time step, i.e., on continuous time
basis. However, to control spatial power variations, input signal was generated using
FOS technique. In this, nodal powers were sampled every Δ = 9 s and matrix y was
formulated. Thereafter new values of control signal were generated every τ = 54 s
and given to the regulating rods (RRs) along with (3.30). At time t = 0, the control
signal u(t) = u0, for 0 < t ≤ τ was arbitrarily chosen as zero.

First of all, the case of state regulation is considered. The reactor was observed to
be originally working at full power steady-state condition. Suddenly, RR2, initially
under automatic control was moved out by around 1% by giving suitable manual
control signal and maintained under the influence of automatic control afterwards.
As a result of this, perturbations were created in total and spatial power distribution,
whichwere effectively controlled by the FOS controller, as depicted in Fig. 6.3. From
Fig. 6.3a it is noticed that the total power rises from 920.48 to 920.68MW and then
it achieves initial steady-state value in 70s. Spatial power variations calculated in
terms of first and second azimuthal tilts are controlled in about 200s as depicted
in Fig. 6.3b. The control input to the RRs generated by the controller is shown in
Fig. 6.4a. Corresponding positions of RRs are shown in Fig. 6.4b. It is noticed that
the RRs achieve their steady state in 200s. Figure6.5 shows the response of three-

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
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Table 6.2 Eigenvalues of (Φτ + ΓτF)

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1 6.1464×10−5 25 3.4318×10−2 50 9.9845×10−1

2 6.1563×10−5 26 3.4467×10−2 51 9.9845×10−1

3 6.1605×10−5 27 3.4808×10−2 52 9.9845×10−1

4 6.3025×10−5 28 3.5307×10−2 53 9.9845×10−1

5 1.5806×10−4 29 3.5482×10−2 54 9.9845×10−1

6 1.5819×10−4 30 3.7921×10−2 55 9.9845×10−1

7 1.5824×10−4 31 3.8551×10−2 56 9.9845×10−1

8 1.6236×10−4 32 3.9899×10−2 57 9.9845×10−1

9 2.3005×10−4 33 4.0005×10−2 58 9.9887×10−1

10 2.3029×10−4 34 4.4172×10−2 59 9.9887×10−1

11 2.3066×10−4 35–36 9.9843×10−1 ±
j1.2088×10−4

60 9.9887×10−1

12 2.3936×10−4 37 4.4613×10−2 61 9.9887×10−1

13 3.7190×10−4 38 6.4797×10−2 62 9.9887×10−1

14 3.7211×10−4 39 6.5560×10−2 63 9.9887×10−1

15 3.7270×10−4 40 4.2281×10−1 64 9.9887×10−1

16 4.0102×10−4 41 7.0510×10−1 65 9.9887×10−1

17 5.4325×10−4 42 9.9845×10−1 66 9.9887×10−1

18 5.4371×10−4 43 9.9845×10−1 67 9.9887×10−1

19 5.4558×10−4 44 9.9845×10−1 68 9.9887×10−1

20 5.6903×10−4 45 9.9845×10−1 69 9.9887×10−1

21 1.9462×10−3 46 9.9845×10−1 70 9.9887×10−1

22 3.3513×10−2 47 9.9845×10−1 71 9.9887×10−1

23 3.3565×10−2 48 9.9845×10−1 72 9.9887×10−1

24 3.4038×10−2 49 9.9845×10−1 73 9.9887×10−1

74–90 0

time-scale controller, given in [7], for the same transient level. It is observed that in
both the controllers RRs are attaining equilibrium values, but the time required in
the suggested controller is comparatively less.

In another transient, trajectory tracking performance of the controller is tested,
for which the reactor is again assumed to be working at steady-state full power of
920.48MW with distribution of nodal powers as stated in Table2.5. Iodine, xenon,
and delayed neutron precursor concentrations are also in equilibrium with the corre-
sponding nodal powers. Now, the demand power is decreased to 828.43MW in 61s
uniformly at the rate of 1.5MW/s and maintained constant afterwards. Throughout
the transient, the variations in nodal powers and xenon concentrations occur respec-
tively as shown in Figs. 6.6 and 6.7. Total power and control signal to regulating rod
drives during first 300s are shown in Fig. 6.8. The total power is about 822MW at
66s, and after that it settles at 828.43MWwithin 100s. It was noticed that throughout

http://dx.doi.org/10.1007/978-981-10-3014-7_2
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Fig. 6.2 Fast output sampling feedback control scheme for AHWR
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Fig. 6.8 Effect of power maneuvering (initial 300s) from 920.48 to 828.43MW on a Total power
and b Control signal to RR drives

the transient, total power is tracking the demand power (Fig. 6.8a). The nodal powers
achieve the new steady-state value in 100s and xenon concentrations stabilize to their
respective new equilibrium values in around 50h.

6.5 Conclusion

In this chapter, fast output sampling control technique is designed for two-time-
scale system. Initially the singularly perturbed discrete-time system is decoupled
into two lower order subsystems, namely, slow subsystem and fast subsystem. State
feedback controls are then designed for subsystems and composite state feedback
control is obtained. This state feedback is realized by using FOS gain. The presented
method is applied to AHWR for spatial control. At first, the discrete system of
AHWR is block diagonalized to have separate slow and fast subsystems. As the
fast subsystem is observed to be stable, state feedback control is then designed only
for slow subsystem. Afterwards a composite state feedback controller is calculated
which is implemented by FOS feedback gain. Its efficacy has been confirmed by
simulations of nonlinear AHWR system. Overall performance of devised controller
is observed to be satisfactory.



106 6 Fast Output Sampling Technique

References

1. Chen, C.-T.: Linear System Theory and Design. Oxford University Press, New York (1999)
2. Chammas, A.B., Leondes, C.T.: Pole assignment by piecewise constant output feedback. Int.

J. Control 29(1), 31–38 (1979)
3. Munje, R.K., Londhe, P.S., Parkhe, J.G., Patre, B.M., Tiwari, A.P.: Spatial control of advanced

heavy water reactor by fast output sampling technique. Proc. IEEE Int. Conf. Control Appl.,
1212–1217 (2013)

4. Naidu, D.S.: Singular Perturbation Methodology in Control Systems. Peter Peregrinus Ltd.,
London (1988)

5. Phillips, R.G.: Reduced order modeling and control of two-time-scale discrete systems. Int. J.
Control 31, 765–780 (1980)

6. Sharma, G.L., Bandyopadhyay, B., Tiwari, A.P.: Spatial control of a large pressurized heavy
water reactor by fast output sampling technique. IEEE Trans. Nucl. Sci. 50, 1740–1751 (2003)

7. Shimjith, S.R., Tiwari, A.P., Bandyopadhyay, B.: Design of fast output sampling controller for
three-time-scale systems: application to spatial control of advanced heavy water reactor. IEEE
Trans. Nucl. Sci. 58(6), 3305–3316 (2011)

8. Syrmos, V.L., Abdallah, C.T., Dorato, P., Grigoriadis, K.: Static output feedback-a survey.
Automatica 33, 125–137 (1997)

9. Tiwari, A.P., Reddy, G.D., Bandyopadhyay, B.: Design of periodic output feedback and fast
output sampling based controllers for systemswith slow and fast modes. Asian J. Control 14(1),
271–277 (2012)

10. Werner, H., Furuta, K.: Simultaneous stabilization based on output measurement. Kybernetica
31, 395–414 (1995)



Chapter 7
Periodic Output Feedback

7.1 Introduction

Periodic Output Feedback (POF) is the kind of multirate output feedback in which
system output is sampled at slower rate than the input [16]. In POF, the value of input
at a particular moment is derived from the value of the output at a prior moment.
It is shown by Chammas and Leondes [2] that a controllable and observable plant
is discrete-time pole assignable by periodically varying piecewise constant output
feedback. The controller suggested by them consists solely of gain elements and
does not include any dynamical element, such as an observer. It is only required to
have provision for change of the input during an output sampling interval and the
number of input changes is required to be greater than or equal to the controllability
index. Later, it was shown by Hagiwara and Araki [4] that it is not a necessary
condition that number of input changes be greater than the controllability index.
It is seen in case of POF control that the behavior of closed-loop system at output
sampling instants meets the desired specification but the states of the system undergo
strong oscillation at instants when change of input occurs. Werner and Furuta [16]
have discussed the problem and have suggested a methodology for determination of
optimal gains whereby the behavior of the closed-loop system improves at the input
sampling instants also. In the literature, POF is found extensively implemented to the
variety of the systems [1, 5, 8, 15]. Formulation of POF for two-time-scale systems
is reported in [9–11, 13, 14]. In [14], it is shown that, the POF controller for two-
time-scale system can be readily obtained by combining the solutions of slow and
fast subsystem problems, obtained separately. Thus, ill-conditioning is completely
avoided and two lower order problems are required to be solved instead of one higher
order problem.

In the previous chapter, the attention had been focused on the control of the
920.48 MW Advanced Heavy Water Reactor (AHWR) using fast output sampling
technique. Recall that in FOS, control signal is generated as a linear combination
of a number of output samples collected in one sampling interval, i.e., the input

© Springer Nature Singapore Pte Ltd. 2018
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in Electrical Engineering, https://doi.org/10.1007/978-981-10-3014-7_7
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sampling time is larger compared to output sampling time. In this chapter, periodic
output feedback control technique is presented for spatial control of AHWR. POF
design is different from the FOS design in the sense that in POF input sampling rate
is larger than the output sampling rate. This chapter begins with the brief introduction
of POF controller. Thereafter design method of POF controller for three-time-scale
system is discussed. This design method is then used for spatial control of AHWR
and simulation results are presented.

7.2 Periodic Output Feedback

POF is a control technique, in which the poles of the controllable and observable
discrete-time system could be assigned arbitrarily by the use of periodically time-
varying piecewise constant output feedback gains. Here, the value of the input at the
particular moment depends on output value at a time prior to this moment, mainly at
the beginning of the sampling time [16]. Consider a linear time-invariant controllable
and observable continuous-time model

ż = Az + Bu, (7.1)

y = Mz (7.2)

where z ∈ �n , u ∈ �m , y ∈ �p andA, B andM are constant matrices of appropriate
dimensions. System (7.1)–(7.2) when sampled at the rate of 1/τ gives discrete-time
model as

zk+1 = Φτ zk + Γτuk, (7.3)

yk = Mzk (7.4)

where Φτ = eAτ and Γτ = ∫ τ

0 eAsBds. Also, let

zk+1 = ΦΔzk + ΓΔuk (7.5)

be the discrete-time system corresponding to the system (7.1) sampled at the rate
1/Δ, where Δ = τ/N , with integer N ≥ ν, the controllability index [3] of (Φτ , Γτ ).
The output is measured at the time instants t = kτ , k = 0, 1, · · · using a sample and
hold system. The output sampling interval τ is divided into N subintervals of length
Δ = τ/N . The hold function is assumed to be constant on the subintervals. The
graphical representation of the control law is shown in Fig. 7.1 and mathematically
control law can be written as

u(t) = Klyk, kτ + lΔ ≤ t < kτ + (l + 1)Δ, (7.6)

Kl+N = Kl , l = 0, 1, 2, · · · , (N − 1).

A sequence of N gain matrices {K0,K1, · · · ,KN−1} when substituted in (7.6) gen-
erates a time varying, piecewise constant output feedback gain K(t) for 0 ≤ t < τ .
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Fig. 7.1 Visualization of periodic output feedback control scheme

Define,

K = [
KT

0 KT
1 · · · KT

N−1

]T
(7.7)

and

u(kτ) = Ky(kτ) =

⎡

⎢
⎢
⎢
⎣

u(kτ)

u(kτ + Δ)
...

u(kτ + τ − Δ)

⎤

⎥
⎥
⎥
⎦

, (7.8)

then a state-space representation for the system (7.3) is obtained as

zk+1 = ΦN
Δ zk + Γ uk (7.9)

where

Γ = [
ΦN−1

Δ ΓΔ ΦN−2
Δ ΓΔ · · · ΓΔ

]
(7.10)

and recall that
Φτ = ΦN

Δ .

Applying (7.8) to (7.9), the closed-loop system becomes
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zk+1 = (Φτ + ΓKM)zk . (7.11)

Let G be the output injection gain which stabilizes (7.3), such that absolute eigen-
values lie within the spectral radius ϕ(.), i.e.,

ϕ(Φτ + GM) < 1. (7.12)

From (7.11) and (7.12), G is realizable through K, if and only if

ΓK = G. (7.13)

Controllability and observability of (7.3) implies controllability and observability of
(7.5). Therefore the existence ofK is certain if the number of gain changes is greater
than or equal to the controllability index, i.e., if N ≥ ν.

7.3 Periodic Output Feedback Control for Three-Time-Scale
System

Determining stabilizing output injection gain G in (7.12) and thereafter periodic
output feedback gain K from (7.13) will be a tedious task for highly ill-conditioned
singularly perturbed three-time-scale system. To overcome this difficulty, the original
higher order system could be decomposed into individual subsystems and periodic
output feedback controller design problem for original system could be addressed
in terms of these subsystem controller design problems. Such a formulation of POF
controller for two-time-scale system has been reported earlier in [14]. In this section,
this approach is extended for the design of POF controller for the system exhibit-
ing three-time-scale property. Assuming that the linear time-invariant discrete-time
system given by (7.3), holds three-time-scale structure, it can be written as

⎡

⎣
z1,k+1

z2,k+1

z3,k+1

⎤

⎦ =
⎡

⎣
Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

⎤

⎦

⎡

⎣
z1,k
z2,k
z3,k

⎤

⎦ +
⎡

⎣
Γ1

Γ2

Γ3

⎤

⎦uk, (7.14)

yk = [
M1 M2 M3

] [
zT1,k z

T
2,k z

T
3,k

]T
(7.15)

where z1,k ∈ �n1 , z2,k ∈ �n2 , and z3,k ∈ �n3 denote states such that n1+n2+n3 = n
and the matrices Φi j , Γi , and Mi are of appropriate dimensions. Let ϕ(Φτ ) be the
eigenvalues of matrix Φτ arranged in the decreasing order of absolute values as

ϕ(Φτ ) = {
ϕ1, ..., ϕn1 , ϕn1+1, ..., ϕn1+n2 , ϕn1+n2+1, ..., ϕn

}
,

where
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|ϕ1| > ... > |ϕn1 | � |ϕn1+1| > ... > |ϕn1+n2 | � |ϕn1+n2+1| > ...|ϕn| ≥ 0.

Accordingly the system has three different groups of eigenvalues, out of which n1
are near the unit circle, n2 are far, and n3 are farther from the unit circle close to
the origin. Alternatively, the system (7.14) possesses n1 slow, n2 fast, and n3 fastest
modes. Using the three-stage decomposition technique [7, 12], given in Appendix
B, system (7.14)–(7.15) can be decoupled into three subsystems named slow, fast 1,
and fast 2 respectively, and represented in block diagonal form as

⎡

⎣
zs,k+1

z f 1,k+1

z f 2,k+1

⎤

⎦ =
⎡

⎣
Φτ s 0 0
0 Φτ f 1 0
0 0 Φτ f 2

⎤

⎦

⎡

⎣
zs,k
z f 1,k

z f 2,k

⎤

⎦ +
⎡

⎣
Γτ s

Γτ f 1

Γτ f 2

⎤

⎦uk, (7.16)

yk = [
Ms M f 1 M f 2

] [
zTs,k z

T
f 1,k z

T
f 2,k

]T
(7.17)

where zs,k ∈ �n1 , z f 1,k ∈ �n2 , and z f 2,k ∈ �n3 denote respectively slow, fast 1, and
fast 2 states such that n1 + n2 + n3 = n. The relation between the states of original
system (7.14) and the states of decoupled system (7.16) is given by

[
zTs,k z

T
f 1,k z

T
f 2,k

]T = T
[
zT1,k z

T
2,k z

T
3,k

]T

or zd,k = Tzk (7.18)

where zk = [
zT1,k z

T
2,k z

T
3,k

]T
, zd,k = [

zTs,k z
T
f 1,k z

T
f 2,k

]T
and transformation matrix

T ∈ �n×n (refer Appendix B, for more details). System (7.14)–(7.15) is decoupled
into three subsystems in (7.16)–(7.17), namely, the slow subsystem (Φτ s, Γτ s,Ms),
the fast 1 subsystem (Φτ f 1, Γτ f 1,M f 1), and the fast 2 subsystem (Φτ f 2, Γτ f 2,M f 2),
of orders n1, n2, and n3 respectively. The system formulation (7.16)–(7.17) is related
to its original form (7.14)–(7.15) via linear transformation (7.18). Therefore, sub-
systems (Φτ s, Γτ s,Ms), (Φτ f 1, Γτ f 1,M f 1), and (Φτ f 2, Γτ f 2,M f 2) are controllable
and observable. In the similar manner, the discrete-time system equivalent of (7.5)
for the sampling interval Δ can also be decoupled as

⎡

⎣
zs,k+1

z f 1,k+1

z f 2,k+1

⎤

⎦ =
⎡

⎣
ΦΔs 0 0
0 ΦΔ f 1 0
0 0 ΦΔ f 2

⎤

⎦

⎡

⎣
zs,k
z f 1,k

z f 2,k

⎤

⎦ +
⎡

⎣
ΓΔs

ΓΔ f 1

ΓΔ f 2

⎤

⎦ uk . (7.19)

Design of a stabilizing output injection gain for three-time-scale system (7.16) is
described in the Appendix C. It is given by

GT = [
GT

s 0 0
] + [

0 GT
f 1 0

]
Td1 + [

0 0 GT
f 2

]
Td2Td1

= [
GT

1 GT
2 GT

3

]
(7.20)

where GT
s , G

T
f 1, and GT

f 2 are the stabilizing output injection gains for slow, fast 1,
and fast 2 subsystems respectively, and Td1 and Td2 are transformation matrices.
Now, the following form of Γ in (7.10) for the system (7.16) is assumed
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Γ =
⎡

⎣
Γs1 Γs2 Γs3
Γf11 Γf12 Γf13
Γf21 Γf22 Γf23

⎤

⎦ (7.21)

where submatrices Γs1 ∈ �n1×(N−ν f 2−ν f 1)m , Γs2 ∈ �n1×ν f 1m , Γs3 ∈ �n1×ν f 2m , Γf11 ∈
�n2×(N−ν f 2−ν f 1)m , Γf12 ∈ �n2×ν f 1m , Γf13 ∈ �n2×ν f 2m , Γf21 ∈ �n3×(N−ν f 2−ν f 1)m , Γf22 ∈
�n1×ν f 1m , and Γf23 ∈ �n1×ν f 2m , are respectively given by

Γs1 = [
ΦN−1

Δs ΓΔs · · · Φ
N−νs
Δs ΓΔs

]
(7.22)

Γs2 =
[
Φ

N−νs−1
Δs ΓΔs · · · Φ

N−νs−ν f 1

Δs ΓΔs

]
(7.23)

Γs3 =
[
Φ

N−νs−ν f 1−1
Δs ΓΔs · · · ΓΔs

]
(7.24)

Γf11 =
[
ΦN−1

Δ f 1 ΓΔ f 1 · · · Φ
N−νs
Δ f 1 ΓΔ f 1

]
(7.25)

Γf12 =
[
Φ

N−νs−1
Δ f 1 ΓΔ f 1 · · · Φ

N−νs−ν f 1

Δ f 1 ΓΔ f 1

]
(7.26)

Γf13 =
[
Φ

N−νs−ν f 1−1
Δ f 1 ΓΔ f 1 · · · ΓΔ f 1

]
(7.27)

Γf21 =
[
ΦN−1

Δ f 2 ΓΔ f 2 · · · Φ
N−νs
Δ f 2 ΓΔ f 2

]
(7.28)

Γf22 =
[
Φ

N−νs−1
Δ f 2 ΓΔ f 2 · · · Φ

N−νs−ν f 1

Δ f 2 ΓΔ f 2

]
(7.29)

Γf23 =
[
Φ

N−νs−ν f 1−1
Δ f 2 ΓΔ f 2 · · · ΓΔ f 2

]
(7.30)

in which νs , ν f 1, and ν f 2 are the controllability indices of respectively slow, fast 1
and fast 2 subsystems. Let us assume K in (7.13) as

K = [
Ks

T Kf1
T Kf2

T
]

(7.31)

where submatrices Ks, Kf1 and Kf2 are respectively of dimensions ((N − ν f 2 −
ν f 1)m × p), (ν f 1m × p), and (ν f 2m × p). Then using (7.13), (7.20), (7.21), and
(7.31), expressions for Ks, Kf1, and Kf2 can be obtained respectively as

Ks = [
(Γs1 − Γs3Γ

−1
f23 Γf21) − (Γs2 − Γs3Γ

−1
f23 Γf22)

(Γf12 − Γf13Γ
−1
f23 Γf22)

−1(Γf11 − Γf13Γ
−1
f23 Γf21)

]−1

[
(GT

1 − Γs3Γ
−1
f23 G

T
3 ) − (Γs2 − Γs3Γ

−1
f23 Γf22)

(Γf12 − Γf13Γ
−1
f23 Γf22)

−1(GT
2 − Γf13Γ

−1
f23 G

T
3 )

]
, (7.32)

K f 1 = (Γf12 − Γf13Γ
−1
f23 Γf22)

−1
[
(GT

2 − Γf13Γ
−1
f23 G

T
3 )

−(Γf11 − Γf13Γ
−1
f23 Γf21)Ks

]
, (7.33)

K f 2 = Γ −1
f23 (GT

3 − Γf21Ks − Γf22Kf1). (7.34)
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Since, G stabilizes (Φτ + GM) and K is an exact solution of (7.13), closed-loop
system (7.11) will also be stable.

Lemma 7.1 If fast 1 and fast 2 subsystems are assumed to be stable and an output
injection gain GT = [

GT
s 0 0

]
is applied to (7.16), then closed-loop system (Φτ +

GM) is stable.

Proof Since, systems (7.16) and (7.14) are related through linear transformation
(7.18), they have same eigenvalues. Now, if GT = [

GT
s 0 0

]
is an output injection

gain for (7.16), then closed-loop system becomes

zd,k+1 =
⎡

⎣
Φτ s + GsMs 0 0

GsM f 1 Φτ f 1 0
GsM f 2 0 Φτ f 2

⎤

⎦ zd,k . (7.35)

From the above system it is clear that, (Φτ s + GsMs) is stable by design and both
Φτ f 1 and Φτ f 2 are assumed to be stable. Therefore, system (7.35) is stable. Using
(7.18), system (7.35) can be transformed into original states,whichwill also be stable.
System (7.14) is three-time-scale representation of system (6.1). Hence, closed-loop
system (Φτ + GM) is stable.

Remark 7.1 For systems having stable fast 1 and fast 2 modes, G f 1 = G f 2 = 0
and therefore G1 = Gs which yields reduced three-time-scale approximation to K
as K̂ = [

K̂s K̂ f 1 K̂ f 2

]
, where submatrices are approximated as

K̂s = [
(Γs1 − Γs3Γ

−1
f23 Γf21) − (Γs2 − Γs3Γ

−1
f23 Γf22)

(Γf12 − Γf13Γ
−1
f23 Γf22)

−1(Γf11 − Γf13Γ
−1
f23 Γf21)

]−1
GT

s , (7.36)

K̂ f 1 = − (Γf12 − Γf13Γ
−1
f23 Γf22)

−1(Γf11 − Γf13Γ
−1
f23 Γf21)Ks, (7.37)

K f 2 =Γ −1
f23 (−Γf21Ks − Γf22Kf1). (7.38)

Remark 7.2 Eigenvalues of ΦΔ f 2 are very small for sampling period Δ. Hence,
ΦΔ f 2, Φ2

Δ f 2 · · · would be very small. Thus Γf21 and Γf22 can be neglected in

comparison to Γf23 in (7.36)–(7.38), which again gives approximation to K̂ as
K̄ = [

K̄s K̄ f 1 K̄ f 2
]
where

K̄s = (Γs1 − Γs2Γ
−1
f12 Γf11)

−1GT
s , (7.39)

K̄ f 1 = −Γ −1
f12 Γf11Ks, (7.40)

K̄ f 2 = 0. (7.41)

Remark 7.3 Further, if Γf11 is neglected in comparison to Γf12 and Γf13 , approx-
imation to K̄ as K̃ = [

K̃s K̃ f 1 K̃ f 2

]
is obtained, where K̃s = Γ −1

s1 GT
s and

K̃ f 1 = K̃ f 2 = 0.

http://dx.doi.org/10.1007/978-981-10-3014-7_6


114 7 Periodic Output Feedback

7.4 Application of POF to AHWR System

Linear, controllable, and observable model of AHWR with total power feedback,
given by (3.31), is rewritten here for convenience as

ż = Âz + Busp + B f wδq f w, (7.42)

where Â = A − BKGM, has eigenvalues falling in three different clusters. First
cluster of 38 eigenvalues is ranging from6.2899×10−3 to (8.8268± j1.8656)×10−5,
second cluster of 35 eigenvalues that ranges from−1.8396×10−1 to−1.1779×10−2,
and the third one of 17 eigenvalues is ranging from −2.7626× 102 to −7.2513. For
properly chosen sampling time, if the continuous-time system holds three-time-scale
structure, its discrete counterpart would also hold three-time-scale structure [14]. For
AHWR, sampling time is decided by the time constant representing the dynamics
of delayed neutron precursors. The largest unstable eigenvalue of the continuous-
time system (7.42) is 6.2899 × 10−3, which specifies that the sampling time, τ <

1/(6.2899 × 10−3) or 159s can be selected. As spatial power of the reactor can
experience great variations in small time, it is better to have small sampling time from
real-time realization standpoint without losing three-time-scale property required for
design simplification. That is why, τ is chosen as 12s and system (7.42) is discretized
to get

zk+1 = Φzk + Γ uk + Γ f wδq f wk, (7.43)

yk = Mzk (7.44)

The system (7.43) is diagonalized to have separate slow, fast 1, and fast 2 subsystems
of dimensions 38, 35, and 17 respectively, with the state vector (2.17), divided as

z1,k = [
zTH zTX zTI

]T
, z2,k = [

δhd zTC zTx
]T

and z3,k = zQ . (7.45)

Slow, fast 1, and fast 2 subsystem eigenvalues correspond superbly with largest 38,
midway 35, and the smallest 17 eigenvalues of the original system for sampling time
τ . Eigenvalues of slow and fast 1 subsystems are given respectively in Tables7.1
and 7.2, whereas eigenvalues of fast 2 subsystem are located at origin. The unstable
eigenvalues in slow subsystem have been highlighted in Table7.1.

It is verified that, all the three subsystems are controllable as well as observable. In
addition, it is seen that the eigenvalues of fast 1 and fast 2 subsystems are within unit
circle in z-plane. Therefore, design of output injection matrix is carried out for slow
subsystem alone, in order to position eigenvalues of slow subsystem from 9.9012×
10−1 to 9.9992 × 10−1. Finally, composite output injection matrix is formulated
using technique described in Appendix C. Controllability indices of slow, fast 1, and
fast 2 subsystems are found to be νs = 3, ν f 1 = 2, and ν f 2 = 1 respectively. It
can be confirmed that the controllability index of original system is 6. This impelled
the choice of N = 6. Consequently, Δ = 2 s. System (7.42) is discretized with

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_2
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Table 7.1 Eigenvalues of slow subsystem (Φτ s )

Sr. No. Eigenvalues Sr. No. Eigenvalues

1 1.0000 20 9.9947×10−1

2 1.0000 21 9.9943×10−1

3 1.0000 22 9.9941×10−1

4–5 1.0011 ± j2.6259×10−4 23–24 9.9922×10−1 ± j6.3681×10−4

6–7 1.0010 ± j4.7915×10−4 25–26 9.9921×10−1 ± j6.5606×10−4

8 9.9996 27–28 9.9912×10−1 ± j4.7141×10−4

9 9.9982 29–30 9.9907×10−1 ± j3.5881×10−4

10 9.9977×10−1 31 9.9831×10−1

11–12 9.9958×10−1 ± j9.2904×10−4 32 9.9825×10−1

13 9.9955×10−1 33 9.9812×10−1

14–15 9.9955×10−1 ± j9.1728×10−4 34 9.9802×10−1

16 9.9954×10−1 35 9.9800×10−1

17 9.9952×10−1 36 9.9793×10−1

18 9.9950×10−1 37 9.9775×10−1

19 9.9949×10−1 38 9.9774×10−1

Table 7.2 Eigenvalues of fast 1 subsystem (Φτ f 1)

Sr. No. Eigenvalues Sr. No. Eigenvalues Sr. No. Eigenvalues

1 8.7009×10−1 13 4.7554×10−1 25 1.5410×10−1

2 8.2488×10−1 14 4.7305×10−1 26 1.5267×10−1

3 5.4256×10−1 15 4.7261×10−1 27 1.5090×10−1

4 5.4123×10−1 16 4.7176×10−1 28 1.4114×10−1

5 4.9922×10−1 17 4.7030×10−1 29 1.4101×10−1

6 5.0019×10−1 18 4.7014×10−1 30 1.3965×10−1

7 4.8847×10−1 19 2.4520×10−1 31 1.3681×10−1

8 4.8837×10−1 20 1.7112×10−1 32 1.1481×10−1

9 4.8475×10−1 21 1.7108×10−1 33 1.1465×10−1

10 4.8302×10−1 22 1.6914×10−1 34 1.1365×10−1

11 4.7608×10−1 23 1.6832×10−1 35 1.0997×10−1

12 4.7407×10−1 24 1.5419×10−1

sampling time ofΔ and block diagonalized to construct Γ using (7.22)–(7.30). Here,
as per Remark7.2, Γf21 and Γf22 are ignored in comparison to Γf23 and approximated
periodic output feedback gain, K̄ is found. Here it is also confirmed that K̄ f 2 is null
matrix of order (4 × 17), while K̄ f 1 and K̄s are respectively of orders (8 × 17) and
(12 × 17) given by
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K̄ f 1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.1025 0.2941 −0.1128 0.0001 −0.1202 0.0401 0.0503 −0.0026 0.0372
−0.0582 0.3178 −0.1710 0.2989 −0.1051 0.1927 0.1667 −0.0274 −0.2082
0.0153 0.0948 −0.1092 0.2239 −0.0353 0.1111 0.0681 −0.0388 −0.1573

−0.0082 −0.0579 −0.0581 −0.1396 −0.0337 −0.0903 −0.1052 −0.0095 0.1342
−0.2040 0.3840 −0.1964 −0.0543 −0.3433 0.2840 0.0987 −0.0788 0.1799
−0.1054 0.7822 −0.3537 0.4893 −0.1812 0.3713 0.4253 0.0598 −0.5504
0.0435 0.4325 −0.3052 0.4625 −0.0230 0.0739 0.1926 0.0098 −0.4636

−0.0161 −0.1725 −0.2117 −0.1878 −0.1580 −0.0950 −0.2526 −0.2788 0.4088

−0.0696 −0.1285 0.1544 0.0755 −0.1816 0.0011 −0.0488 −0.1197
−0.2172 −0.0111 −0.1664 −0.0462 −0.1195 −0.1946 −0.0120 0.1005
−0.1357 0.0474 −0.1759 −0.1011 0.0015 −0.1658 0.0148 0.0948
0.1193 −0.0433 0.1805 −0.0208 0.0367 0.0421 −0.0306 −0.1612

−0.0650 −0.3073 0.4307 0.1771 −0.5318 −0.0252 −0.1016 −0.3197
−0.5479 −0.0490 −0.3295 −0.1270 −0.2925 −0.4847 −0.0969 0.2432
−0.4043 0.0925 −0.4046 −0.2704 0.0500 −0.4080 −0.0110 0.2265
0.3189 −0.1173 0.4169 −0.0746 0.0508 0.0827 0.0212 −0.4400

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.46)

K̄s =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1997 0.0337 0.1460 0.1571 0.5575 −0.7050 −0.0911 0.2363 −0.3959
0.0820 −1.0859 0.3867 −0.2677 0.1248 −0.3397 −0.6068 −0.2895 0.8196

−0.0689 −0.9399 0.4938 −0.4954 −0.0701 0.2310 −0.3041 −0.1840 0.7652
0.0161 0.2762 0.4204 −0.0140 0.3495 −0.0867 0.3390 0.8194 −0.6939
0.0979 0.1205 0.0569 0.1052 0.3269 −0.4509 −0.0439 0.1538 −0.2488
0.0348 −0.6095 0.1964 −0.0769 0.0467 −0.1602 −0.3456 −0.2009 0.4720

−0.0405 −0.5864 0.2873 −0.2516 −0.0589 0.1892 −0.1784 −0.1351 0.4528
0.0078 0.1653 0.2555 −0.0532 0.2181 −0.0860 0.1887 0.5357 −0.4134

−0.0023 0.2068 −0.0289 0.0530 0.1022 −0.2037 0.0030 0.0745 −0.1050
−0.0117 −0.1439 0.0114 0.1111 −0.0296 0.0164 −0.0890 −0.1140 0.1310
−0.0126 −0.2432 0.0873 −0.0130 −0.0473 0.1493 −0.0549 −0.0869 0.1467
−0.0003 0.0543 0.0968 −0.0949 0.0910 −0.0873 0.0413 0.2607 −0.1386

−0.0858 0.4106 −0.6761 −0.2227 0.8756 0.0858 0.1080 0.4885
0.7792 0.1073 0.3192 0.2031 0.4016 0.6800 0.2458 −0.3198
0.6772 −0.0831 0.5088 0.4137 −0.1443 0.5647 0.0942 −0.2927

−0.4765 0.1829 −0.5257 0.1480 −0.0008 −0.0740 −0.1920 0.6845
−0.0801 0.2279 −0.3952 −0.1231 0.5171 0.0560 0.0553 0.2815
0.4416 0.0664 0.1558 0.1176 0.2250 0.3835 0.1581 −0.1791
0.4011 −0.0399 0.2777 0.2385 −0.0952 0.3170 0.0670 −0.1631

−0.2758 0.1056 −0.2875 0.0896 0.0109 −0.0360 −0.1365 0.3970
−0.0747 0.0490 −0.1196 −0.0242 0.1664 0.0280 0.0032 0.0798
0.1111 0.0271 −0.0053 0.0349 0.0522 0.0934 0.0726 −0.0397
0.1314 0.0034 0.0504 0.0677 −0.0467 0.0747 0.0406 −0.0345

−0.0781 0.0306 −0.0532 0.0336 0.0234 0.0026 −0.0830 0.1165

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.47)

With this gain, eigenvalues of closed-loop system are observed to be inside the unit
circle in z-plane, and these are given in Table7.3.

Here, effort was taken to employ the two-time-scale POF scheme by taking into
account regrouping of states into slow and fast subsystems as

zA,k = [
z1,k

]
(7.48)

zB,k = [
z2,k z3,k

]
. (7.49)
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Table 7.3 Closed-loop Eigenvalues

Sr. No. Eigenvalues Sr. No. Eigenvalues

Slow subsystem Fast 1 subsystem

1 9.999 ×10−1 39 8.707 ×10−1

2 9.998 ×10−1 40 8.249 ×10−1

3 9.993 ×10−1 41 5.426 ×10−1

4 9.992 ×10−1 42 5.412 ×10−1

5 9.990 ×10−1 43 5.002 ×10−1

6 9.989 ×10−1 44 4.992 ×10−1

7 9.986 ×10−1 45 4.885 ×10−1

8 9.985 ×10−1 46 4.884 ×10−1

9 9.985 ×10−1 47 4.847 ×10−1

10 9.984 ×10−1 48 4.830 ×10−1

11 9.983 ×10−1 49 4.761 ×10−1

12 9.982 ×10−1 50 4.755 ×10−1

13 9.974 ×10−1 51 4.741 ×10−1

14 9.972 ×10−1 52 4.730 ×10−1

15 9.972 ×10−1 53 4.726 ×10−1

16 9.971 ×10−1 54 4.718 ×10−1

17 9.969 ×10−1 55 4.703 ×10−1

18 9.968 ×10−1 56 4.701 ×10−1

19 9.967 ×10−1 57 2.452 ×10−1

20 9.962 ×10−1 58 1.711 ×10−1

21 9.957 ×10−1 59 1.711 ×10−1

22 9.952 ×10−1 60 1.691 ×10−1

23 9.949 ×10−1 61 1.683 ×10−1

24 9.948 ×10−1 62 1.542 ×10−1

25 9.944 ×10−1 63 1.541 ×10−1

26 9.941 ×10−1 64 1.527 ×10−1

27 9.940 ×10−1 65 1.509 ×10−1

28 9.938 ×10−1 66 1.411 ×10−1

29 9.933 ×10−1 67 1.410 ×10−1

30 9.932 ×10−1 68 1.396 ×10−1

31 9.929 ×10−1 69 1.368 ×10−1

32 9.928 ×10−1 70 1.148 ×10−1

33 9.924 ×10−1 71 1.146 ×10−1

34 9.921 ×10−1 72 1.137 ×10−1

35 9.920 ×10−1 73 1.100 ×10−1

36 9.918 ×10−1 Fast 2 subsystem

37 9.912 ×10−1 74–90 0

38 9.907 ×10−1
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It should be noted that the group of fast subsystem states is formed by clubbing
states of fast 1 and fast 2 subsystems of three-time-scale system, given by (7.45).
Alternatively, fast and very fast modes represented respectively in Fig. 3.1b, c are
combined to form fast subsystem of order 52 and slow modes (Fig. 3.1a) are selected
as slow subsystem of order 38. Yet, this idea does not work as the various matrices
are as ill-conditioned as the matrices of the original system. Afterward the two-time-
scale scheme with reorganization of states

za,k = [
z1,k z2,k

]
(7.50)

zb,k = [
z3,k

]
(7.51)

was attempted. Herein, slow and fast 1 states of the three-time-scale system (7.45)
are combined to get slow subsystem of the two-time-scale system. To be exact,
slow and fast modes in Fig. 3.1a, b respectively are clubbed to form slow subsystem
of dimension 73 and very fast modes (Fig. 3.1c) are taken as fast subsystem of
dimension 17. Considering this type of regrouping, effort reduction in computation is
observed to be insignificant. On the other hand, the ill-conditioning could effectively
be avoided and the two-time-scale design method [14] could be used to get POF
gains. In Sect. 7.4.2, the simulation results generated with three-time-scale based
POF scheme are compared with two-time-scale POF and the two-time-scale fast
output sampling (FOS) design scheme with the grouping of states given by (7.50)
and (7.51) [6].

7.4.1 Controller Implementation

POF controller implementation plan for AHWR spatial control is shown in Fig. 7.2.
In this, 17 nodal powers are sensed by the appropriate in-core detectors. These are
then sampled periodically with the sampling interval of τ s and compared with
their respective equilibrium values to get the normalized deviations. From these
deviations the output vector y is constructed. Then K0y, K1y, . . ., K5y are calculated
and the spatial component of input usp is obtained by choosing the suitable Kl y
(l = 0, 1, . . . , 5). Total power deviations from its equilibrium value of 920.48 MW
is also calculated and total power-dependent term ugp is determined on a continuous
basis. Afterwards, ugp and usp, so generated, are added to obtain v2, v4, v6, and v8.
These control signals are then given to individual regulating rod (RR) drives. This
POF-based control method is extremely comparable in structure to straightforward
output feedback basedmethod, except the input in POF is changed to different values
at the input sampling intervals l = 0, 1, . . . , 5.

http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
http://dx.doi.org/10.1007/978-981-10-3014-7_3
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Fig. 7.2 POF control scheme for AHWR

7.4.2 Transient Simulations

Closed-loop performance of the AHWR system under various transient conditions
can be assessed by simulating nonlinear model discussed in Chap. 2 with POF con-
troller. As mentioned in Sect. 7.4.1, total power feedback control ugp is given on
continuous basis, i.e., on finer time steps for controlling fast transients in the total
power. However, for spatial stabilization, control signal uk is generated and given to
RRs together with the total power feedback controller, as described in Sect. 7.4.1.
For uk , τ and Δ are respectively taken as 12 and 2s.

To begin with, transient associated with the spatial power disturbance is con-
sidered. In this, the system is observed to be at steady state, with all RRs at their
equilibrium positions. Suddenly, RR2, initially under automatic control, is manually
taken out by about 1% and thereafter shifted again under automatic control. This
created spatial power disturbance. Control signals produced by spatial power con-
troller and respective RR positions are depicted in Figs. 7.3 and 7.4, respectively.
During this transient, total power experiences variations from 920.2 and 920.8MW
and reaches steady value of 920.48MW in about 120s, as shown in Fig. 7.5. Spatial
power variations determined in terms of first and second azimuthal tilts are con-
trolled within 400s as shown in Fig. 7.6. Throughout prolonged simulation no tilts
were observed.

Further to test the performance of system under feed flow disturbance, a situation
is simulated wherein the reactor is working at steady state when a 5% positive step
was initiated in the feed flow. Here, the controller performance is compared with
the fast output sampling (FOS) technique and POF control, both designed using the
two-time-scale approach, with the regrouping of states given by (7.50) and (7.51).

http://dx.doi.org/10.1007/978-981-10-3014-7_2
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Fig. 7.3 Control signal to RR drives
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Fig. 7.7 Variations in total power due to feed flow disturbance

As a result of disturbance, the incoming coolant enthalpy decreased by about 0.64%
and total power experienced variations as depicted in Fig. 7.7. It is seen that, with
all the control techniques the total power is achieving steady state value after the
introduction of disturbance. But, time required for stabilization is different. Total
power stabilizes in about 100s in FOS (two-time-scale) and POF (three-time-scale),
while in case of POF (two-time-scale) it attains steady state after 650s. Apart from
this, the overshoot is also found to be more in POF (two-time-scale) based controller.
For balancing the step change in the feed flow, all RRs are moved in by 1.02, 0.95,
and 1% respectively in POF (three-time-scale), FOS and POF (two-time-scale), as
depicted in Fig. 7.8. In this case also, the settling time of RR positions is significantly
more in POF (two-time-scale) approach.

In one more case of simulation, first, the reactor was observed to be under steady
state and working at 920.48MW with distribution of nodal powers as specified in
Table2.5. Now, the demand in total power is reduced consistently at the rate of
1.5MW/s to 828.43MW, in almost 61 s and held steady afterward. Throughout the
transient, it is noted that, the total power is tracking the demand power as shown in
Fig. 7.9. Once again the results are compared with POF (two-time-scale), and it is
found that the performance of presented POF control is better than POF (two-time-
scale) control. It is observed that, the xenon concentrations settle to their respective
new steady states in about 50h. Whereas, the nodal powers achieve the steady state
within 100s.

http://dx.doi.org/10.1007/978-981-10-3014-7_2
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Fig. 7.8 Variations in regulating rod positions due to feed flow disturbance
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7.5 Conclusion

In this chapter, three-stage design of POF controller for spatial control of AHWR
is presented. Three-stage decomposition technique is employed to decouple numer-
ically ill-conditioned model of AHWR into slow, fast 1, and fast 2 subsystems. POF
gains of the subsystems are calculated separately and then they are combined to get
the POF gains for the original system. Since fast 1 and fast 2 subsystems are observed
to be stable, output injection gains for these subsystems are selected as zero. POF
gain calculated from the slow subsystem alone is utilized in dynamic simulations,
carried out under various transient conditions. Since the controller is utilizing feed-
back of outputs only, state observer is not required. In addition to this, the controller
performance is compared with FOS technique and the performance is observed to
be superior. Overall performance of controller is observed to be acceptable.
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Chapter 8
Discrete-Time Sliding Mode Control

8.1 Introduction

The advent of digital computers and samplers in control implementation has broad-
ened the study of discrete-time systems and the design of slidingmode control (SMC)
in discrete-time. Discrete sliding mode control (DSMC) theory is being investigated
since long. As the control is constant between the sampling intervals, the switching
frequency cannot be less than sampling frequency. As a result, the use of discontinu-
ous control in the presence of sample and hold leads to a finite amplitude oscillations
[2]. This is known as chattering in DSMC. The system shows a sliding behavior if
their motion is confined to a manifold in state space which is reached in finite time
[20]. Then, the discrete-time sliding mode may arise in the systems with piecewise
constant control. Kotta [9] noticed that unlike in continuous-time SMC, the control
in DSMC case must have upper and lower bounds such that trajectory is attracted
towards the switching surface. DSMC may generally result in zigzag motion. Con-
ditions for existence of discrete-time sliding mode control, which eliminate zigzag
motion are presented in [21]. Further, Gao et al. [6] introduced a new reaching law
based approach for DSMC using state feedback.

The analysis and design of controllers of discrete two-timescale system has been
studied in [11, 12, 15, 17] using explicitly invertible linear transformation. When
certain inequalities relating the norms of subsystem matrices are satisfied, then the
original discrete model can be approximately decomposed into two lower order
models operating ondifferent time-scales.One is called slow subsystemwith absolute
large eigenvalues distributed near the unit circle and other is fast subsystem with
absolute small eigenvalues centered around the origin in the z-plane. This explicitly
invertible transformation, used to decouple slow and fast subsystems is termed as
block diagonalization. Block diagonalization of discrete three-time-scale system is
also presented in [15, 19], in which the higher order system is decoupled into three
subsystems, namely, slow, fast 1, and fast 2 subsystems.

© Springer Nature Singapore Pte Ltd. 2018
R. Munje et al., Investigation of Spatial Control Strategies
with Application to Advanced Heavy Water Reactor, Energy Systems
in Electrical Engineering, https://doi.org/10.1007/978-981-10-3014-7_8
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Regardless of other advantages, the sliding mode controller for any system has a
complexity proportional to the number of states in the system. Hence, for a higher
order ill-conditioned system, the sliding mode control design is also more compli-
cated. Control of singularly perturbed two-time-scale systems has been attempted
by several researches with discrete-time sliding mode control [1, 10, 16, 18]. In
[10], higher order system is decomposed into two subsystems, i.e., slow and fast
subsystems. Then slow and fast DSMC laws for the subsystems are designed and
composite discrete sliding mode controller is obtained. The stability of system is
assessed by Lyapunov method. Further in [1], fast subsystem is assumed to be stable
and DSMC is designed using only the slow subsystem with constant plus propor-
tional rate reaching law. This is then represented in original states and applied to the
full-order system. Since, all the states are not always available for measurement, a
chatter-free multirate output feedback based discrete-time sliding mode control for
two-time-scale system is proposed in [18]. Output feedback DSMC for singularly
perturbed system with disturbance is also addressed in [16].

This chapter describes brief backgroundof discrete-time slidingmode controlwith
both constant plus proportional rate reaching law (CPPRRL) and power rate reaching
law (PRRL). The sliding mode controller discussed in Chap.5 is different from this
one in threeways. First the design is in discrete-time, second, in the former, the control
was based only on constant rate reaching law and third, SMC implementation in
Chap.5 rests upon two-stage decomposition, whereas in this chapter formulationwill
be based on three-stage decomposition. In this chapter, a novel algorithm of DSMC
for the systemwith slow, fast, and very fast varyingmodeswith both the reaching laws
is presented. These discrete-time sliding mode controls are then examined for spatial
control of Advanced Heavy Water Reactor (AHWR). Simulation results, obtained
with both the controls under the same transient conditions, are compared.

8.2 Discrete-Time Sliding Mode Control

The term discrete-time sliding mode control was first proposed by Utkin and
Drakunov [3]. According to the concept proposed, the system shows a sliding
behavior if their motion is confined to a manifold which is reached in finite time.
Then, the discrete-time sliding mode may arise with piecewise constant control. For
discrete-time sliding mode control, the structures of the control are similar to that of
continuous-time control. Gao et al. [6, 8] used a reaching law approach to develop
control for discrete variable structure system for robust control, which possesses
following attributes:

1. Starting from any initial stage, the trajectory will move monotonically towards
the switching plane and cross it in finite time.

2. Once the trajectory has crossed the switching surface the first time, it will keep
crossing it resulting in a zigzag motion.

3. The size of each successive zigzagging step is non-increasing and trajectory stays
within specified band.

http://dx.doi.org/10.1007/978-981-10-3014-7_5
http://dx.doi.org/10.1007/978-981-10-3014-7_5
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Consider a linear time-invariant, controllable continuous-time system as

ż = Az + Bu, (8.1)

y = Mz (8.2)

where the state z ∈ �n , input u ∈ �m , and output y ∈ �p with 1 ≤ m ≤ n.
The matrices A, B, and M are constants of appropriate dimensions. Sampling the
continuous-time system (8.1)–(8.2) with sampling period τ yields discrete-time
system as

zk+1 = Φzk + Γ uk, (8.3)

yk = Mzk . (8.4)

As the system (8.1) is controllable, the system (8.3) is also generically controllable.
Further, it is assumed that input distributionmatrixΓ has full rank. Hence, there exits
an orthogonal transformation matrix Tr ∈ �n×n for system (8.3) such that TrΓ =[
0 Γ̄ T

2

]T
, where Γ̄2 ∈ �m×m and is nonsingular. This is similar to the continuous-

time counterpart of SMC as discussed in Sect. 5.2. Under this transformation, the
system (8.3) can be transformed into regular form [4], given as

[
z̄1,k+1

z̄2,k+1

]
=

[
Φ̄11 Φ̄12

Φ̄21 Φ̄22

] [
z̄1,k
z̄2,k

]
+

[
0
Γ̄2

]
uk (8.5)

such that
[
z̄1,k
z̄2,k

]
= z̄k = Trzk (8.6)

where z̄1,k ∈ �n−m and z̄2,k ∈ �m .

8.2.1 Design of Sliding Surface

Let us define a sliding function [4] for the system (8.5) of the form sk = C̄T z̄k with
the sliding function parameter be of the form

C̄T = [
K Em

]
, (8.7)

where K is (m × (n − m)) matrix and Em is identity matrix of order m. System
dynamics during sliding mode are characterized by the sliding surface. Then, the
sliding surface is given by

sk = C̄T z̄k = 0. (8.8)

http://dx.doi.org/10.1007/978-981-10-3014-7_5
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Hence, from the sliding function parameter (8.7) and sliding surface expression (8.8),
one can easily find the relationship

z̄2,k = −Kz̄1,k (8.9)

where z̄2,k constitutes the lastm states of z̄k . Then, the sliding mode dynamics of z̄1,k
can be represented as

z̄1,k+1 = Φ̄11z̄1,k − Φ̄12Kz̄1,k

= (Φ̄11 − Φ̄12K)z̄1,k . (8.10)

If K, in (8.10), is so designed that the eigenvalues of (Φ̄11 − Φ̄12K) are assigned
within the unit circle, then z̄1,k is stabilized during sliding phase. Since, the system
(8.3) is controllable, pair (Φ̄11, Φ̄12) is also controllable. Therefore, sliding surface
design problem can be considered as the pole placement problem for (Φ̄11, Φ̄12).
Consequently from (8.9), z̄2,k is also stable confined to the sliding surface. Thus, the
stability requirement of the sliding surface is achieved. Now, the sliding surface for
original system (8.3) can be expressed in terms of the original state coordinates as

sk = C̄T z̄k = C̄TTrzk = CT zk . (8.11)

8.2.2 Design of Discrete-Time Sliding Mode Controller

Once a sliding surface (8.11) is designed, DSMC can be obtained using reaching law
approach. The reaching law is a differential equation which specifies the dynamics
of a switching function. Following are the two structures of reaching law, which are
discussed for design purpose.

8.2.2.1 Constant Plus Proportional Rate Reaching Law

From [6], reaching law is given by

sk+1 − sk = −qτ sk − ητ sgn(sk) (8.12)

where τ > 0 is a sampling interval, η > 0, q > 0, (1 − qτ) > 0. Discrete-time
controller for system (8.3) using stable sliding surface (8.11) can be obtained from
(8.12) as

uk = F1zk + p1sgn(sk) (8.13)

where
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F1 = −(CTΓ )−1CT (Φ − En + qτ), (8.14)

p1 = −(CTΓ )−1ητ (8.15)

where sgn(·) is signum function and En is identity matrix of dimension n. The
inequality (1 − qτ) > 0 must hold to guarantee the stability of reaching phase
of closed-loop system. This implies that the choice of τ > 0 is restricted. Also,
the presence of signum term guarantees that once the trajectory has crossed the
switching surface the first time, it will cross the surface again in every successive
sampling period. The motion is zigzag and is non-increasing. The trajectory stays
within a specified band called the quasi-sliding mode band. The width of quasi-
sliding mode band δ [7], within which the system states remain in steady state, can
be given by

2δ ≤ 2ητ

2 − qτ
. (8.16)

8.2.2.2 Power Rate Reaching Law

The discrete power rate reaching law can be obtained from the continuous power
rate reaching law [5] as

sk+1 − sk = −qτ |sk |asgn(sk) (8.17)

where 0 < qτ < 1 and 0 < a ≤ 1. Thus, DSMC for system (8.3) with sliding
surface (8.11), based on reaching law (8.17), can be found as

uk = F2zk + p2|sk |asgn(sk) (8.18)

where

F2 = −(CTΓ )−1CT (Φ − En), (8.19)

p2 = −(CTΓ )−1qτ. (8.20)

The band in which the system remains confined can be obtained as

δ = ( qτ

2

) 1
1−a . (8.21)

In order to obtain a small band, the condition

( qτ

2

)
< 1 (8.22)

should be satisfied.
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8.3 DSMC for Three-Time-Scale System

Consider that linear time-invariant discrete-time system given by (8.3) possesses
three-time-scale property so that it can be represented as

⎡

⎣
z1,k+1

z2,k+1

z3,k+1

⎤

⎦ =
⎡

⎣
Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

⎤

⎦

⎡

⎣
z1,k
z2,k
z3,k

⎤

⎦ +
⎡

⎣
Γ1

Γ2

Γ3

⎤

⎦ uk, (8.23)

yk = [
M1 M2 M3

] [
zT1,k z

T
2,k z

T
3,k

]T
(8.24)

where z1,k ∈ �n1 , z2,k ∈ �n2 , z3,k ∈ �n3 denote states such that n1 + n2 + n3 =
n and the matrices Φi j , Γi , and Mi are of appropriate dimensionality. Using the
technique described in Appendix B, system (8.23)–(8.24) can be decoupled into
three subsystems, named, slow, fast 1, and fast 2, and can be represented in block
diagonal form as

⎡

⎣
zs,k+1

z f 1,k+1

z f 2,k+1

⎤

⎦ =
⎡

⎣
Φs 0 0
0 Φ f 1 0
0 0 Φ f 2

⎤

⎦

⎡

⎣
zs,k
z f 1,k

z f 2,k

⎤

⎦ +
⎡

⎣
Γs

Γ f 1

Γ f 2

⎤

⎦ uk, (8.25)

yk = [
Ms M f 1 M f 2

] [
zTs,k z

T
f 1,k z

T
f 2,k

]T
(8.26)

where zs,k ∈ �n1 , z f 1,k ∈ �n2 and z f 2,k ∈ �n3 denote respectively slow, fast 1, and
fast 2 states. The relation between the states of original system (8.23) and the states
of decoupled system (8.25) is given by

zd,k = Tzk (8.27)

where zd,k = [
zTs,k z

T
f 1,k z

T
f 2,k

]T
, zk = [

zT1,k z
T
2,k z

T
3,k

]T
and transformation matrix

T ∈ �n×n . System (8.23) is decoupled into three subsystems in (8.25), namely, the
slow subsystem represented by (Φs, Γs), the fast 1 subsystem given by (Φ f 1, Γ f 1),
and the fast 2 subsystem (Φ f 2, Γ f 2), of orders n1, n2, and n3 respectively. The
system formulation (8.25)–(8.26) is related to its original form (8.23)–(8.24) via
linear transformation (8.27). Therefore, pairs (Φs, Γs), (Φ f 1, Γ f 1), and (Φ f 2, Γ f 2)

are controllable. Further it is assumed that, the fast 1, and fast 2 subsystems are stable.
Hence, discrete-time slidingmode controller is designed, for the system (8.23), using
slow subsystem alone. For that, from (8.25), slow subsystem can be written as

zs,k+1 = Φszs,k + Γsuk . (8.28)

The relationship between slow subsystem states (8.28) and states of system (8.25) is
given by

zs,k = [
En1 0 0

]
zd,k = Tszd,k (8.29)
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where transformation matrix Ts ∈ �n1×n . If Γs has full rank, i.e., rank(Γs) = m,
then stable switching surface for system (8.28) can be defined as

ss,k = CT zs,k . (8.30)

The design of stable sliding surface is already discussed in Sect. 8.2.1.

Lemma 8.1 If motion around ss,k = CT zs,k , for the system (8.28) is stable then the
motion around

sk = CTTsTzk (8.31)

for system (8.3) is also stable.

Proof As ss,k = CT zs,k is a stable sliding surface for (8.28), the motion around ss,k
can be obtained by setting ss,k+1 = 0. Therefore, equivalent discrete-time sliding
mode control law is

uk = −(CTΓs)
−1CTΦszs,k . (8.32)

Thus, the motion along zs,k is given by

zs,k+1 = (Φs − Γs(CTΓs)
−1CTΦs)zs,k . (8.33)

As Eq. (8.33) is stable by design, eigenvalues of (Φs − Γs(CTΓs)
−1CTΦs) will be

stable. Now let us find motion around sk = CTTszd,k for the system (8.25) by setting
sk+1 = 0 and writing equivalent control as

uk = −(CTΓs)
−1CT

[
Φs 0 0

]
zd,k . (8.34)

Thus, the motion around the switching surface sk is

zd,k+1 =
⎡

⎣
Φs 0 0
0 Φ f 1 0
0 0 Φ f 2

⎤

⎦ zd,k −
⎡

⎣
Γs

Γ f 1

Γ f 2

⎤

⎦ (CTΓs)
−1CT

[
Φs 0 0

]
zd,k

=
⎡

⎣
Φs − Γs(CTΓs)

−1CTΦs 0 0
−Γ f 1(CTΓs)

−1CTΦs Φ f 1 0
−Γ f 2(CTΓs)

−1CTΦs 0 Φ f 2

⎤

⎦ zd,k (8.35)

As (Φs −Γs(CTΓs)
−1CTΦs) is stable by design and Φ f 1 andΦ f 2 are assumed to be

stable, the sliding motion of sk = CTTszd,k is stable. Further, systems (8.23)–(8.24)
and (8.25)–(8.26) are related through (8.27), therefore (8.31) is stable sliding surface
for (8.23) and hence for system (8.3).
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Now the discrete-time sliding mode control can be designed for the system (8.28)
using two reaching laws as discussed in Sect. 8.2.2.

8.3.1 Constant Plus Proportional Rate Reaching Law

For the slow subsystem (8.28) reaching law (8.12) can be stated as

ss,k+1 − ss,k = −qτ ss,k − ητ sgn(ss,k). (8.36)

Then, the control law can be represented as

uk = F1zs,k + p1sgn(ss,k) (8.37)

where

F1 = −(CTΓs)
−1CT (Φs − En1 + qτ), (8.38)

p1 = −(CTΓs)
−1ητ. (8.39)

This control will bring quasi-sliding mode motion for system (8.28).

Lemma 8.2 If the control (8.37) is expressed in terms of the states of the original
system (8.23) as

uk = F1TsTzk + p1sgn(CTTsTzk) (8.40)

and applied to the same, it results in a quasi-sliding mode motion of the same.

Proof From (8.30), reaching law (8.36) can be expressed as

CT zs,k+1 − CT zs,k = −qτ(CT zs,k) − ητ sgn(CT zs,k). (8.41)

Using relations (8.27) and (8.29), reaching law (8.41) can be rewritten as

CTTsTzk+1 − CTTsTzk = −qτ(CTTsTzk) − ητ sgn(CTTsTzk). (8.42)

Further using (8.31), system (8.42) can be modified to get

sk+1 − sk = −qτ sk − ητ sgn(sk). (8.43)

Thus, the reaching law (8.36) is equivalent to reaching law (8.43). Therefore, it can be
concluded that, any control that satisfies the reaching law (8.41), would automatically
satisfy the original system reaching law (8.43).
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8.3.2 The Power Rate Reaching Law

For the slow subsystem (8.28) reaching law (8.17) can be defined as

ss,k+1 − ss,k = −qτ |ss,k |asgn(ss,k). (8.44)

Then the control law can be given as

uk = F2zs,k + p2|ss,k |asgn(ss,k) (8.45)

where

F2 = −(CTΓs)
−1CT (Φs − En1), (8.46)

p2 = −(CTΓs)
−1qτ. (8.47)

This control will bring quasi-sliding mode motion for system (8.28). Again, if the
control in (8.45) is expressed in terms of the states of the original system as

uk = F2TsTzk + p2|CTTsTzk |asgn(CTTsTzk) (8.48)

and applied to (8.23), it will result in a quasi-sliding mode motion of the same. Proof
for this can be derived in the same way as that of Lemma 8.2.

8.4 Application of DSMC to AHWR Model

Three-time-scale nature of AHWR is discussed in Sect. 7.4. For properly selected
sampling time, discrete version of the continuous-time system, exhibiting three-
time-scale property, also exhibits three-time-scale property. In the case of AHWR,
selection of sampling interval is based on time constant of delayed neutron precursor,
which is of the order of 159s [13]. For the several values of sampling period above 2s,
the proposed controller gives stable response but gainmagnitude increases. However,
below 2s, time-scale property is not preserved. Hence, τ is selected as 2 s and system
(7.42) is discretized to obtain

zk+1 = Φzk + Γ uk + Γ f wδq f wk (8.49)

where Φ = eÂτ , Γ = ∫ τ

0 eÂsBds, and Γ f w = ∫ τ

0 eÂsB f wds. Now, the discrete-time
model (8.49) is block diagonalized, resulting into a slow subsystem of order 38, fast 1
subsystem of order 35, and fast 2 subsystem of order 17, with the state vector (2.17),
partitioned as

http://dx.doi.org/10.1007/978-981-10-3014-7_7
http://dx.doi.org/10.1007/978-981-10-3014-7_7
http://dx.doi.org/10.1007/978-981-10-3014-7_2
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z1,k = [
zTH zTX zTI

]T
,

z2,k = [
δhd zTC zTx

]T
,

z3,k = zQ .

The matrices Φ, Γ , andM are partitioned accordingly. The eigenvalues of the slow,
fast 1, and fast 2 subsystems agree very well respectively with the largest 38, inter-
mediate 35, and the smallest 17 eigenvalues of the original system for sampling rate
1/τ . It is verified that the slow, fast 1, and fast 2 subsystems are controllable and
rank(Γs) = m. Also, it is observed that the eigenvalues of fast 1 and fast 2 subsys-
tems are stable i.e. within unit circle in z-plane. Hence, discrete-time sliding mode
controller is designed simply for the slow subsystem.

The stable sliding surface for slow subsystem, given by (8.30), is determined
using the procedure discussed in Sect. 8.2.1. This is a common sliding surface for
both CPPRRL and PRRL. With the hyperplane matrix CT of order (4 × 38) sliding
surface for original system of AHWR is formulated as per (8.31) satisfying Lemma
8.1. All the 90 eigenvalues of AHWR system are found to be stable, defined by
(8.35). After that DSMC laws are constructed using both the reaching conditions.

First of all, DSMC is designed using CPPRRL. Sampling time τ is 2 s, therefore q
is selected as 0.05, so that the condition (1− qτ) > 0 is satisfied. Further, η is taken
as 0.005. Thus, the width of quasi-sliding mode band is found to be δ ≤ 0.0026.
Using all these parameters, F1 of order (4 × 38) is calculated with maximum value
of 43.1863 and minimum value of 39.8434 as

F1 =

⎡

⎢⎢
⎣

39.8512 39.8513 39.8506 39.8513 40.4230 40.1480 40.1710 40.1664
42.5716 42.5723 42.5715 42.5717 43.1863 42.8842 42.9152 42.9173
39.8506 39.8513 39.8512 39.8513 40.4230 40.1351 40.1612 40.1658
42.5715 42.5717 42.5715 42.5723 43.1863 42.8835 42.9054 42.9033

40.1375 40.1351 40.1612 40.1658 40.1456 40.0689 40.1229 40.1168
42.8890 42.8836 42.9054 42.9033 42.8788 42.7981 42.8625 42.8652
40.1456 40.1480 40.1710 40.1664 40.1375 40.0560 40.1114 40.1174
42.8788 42.8842 42.9152 42.9173 42.8890 42.7997 42.8529 42.8502

40.0575 40.0560 40.1114 40.1174 40.0673 39.8592 39.8583 39.8580
42.8032 42.7997 42.8529 42.8502 42.7946 42.5803 42.5726 42.5785
40.0673 40.0689 40.1229 40.1168 40.0575 39.8592 39.8453 39.8477
42.7946 42.7981 42.8624 42.8652 42.8032 42.5803 42.5723 42.5687

39.8530 39.8475 39.8453 39.8477 39.8527 39.8561 39.8558 39.8562
42.5807 42.5775 42.5723 42.5688 42.5665 42.5675 42.5692 42.5757
39.8527 39.8561 39.8583 39.8580 39.8530 39.8475 39.8434 39.8455
42.5665 42.5675 42.5726 42.5785 42.5807 42.5775 42.5711 42.5673

39.8504 39.8448 39.8434 39.8455 39.8514 39.8544
42.5783 42.5742 42.5711 42.5673 42.5647 42.5661
39.8514 39.8544 39.8558 39.8562 39.8504 39.8448
42.5647 42.5661 42.5692 42.5756 42.5783 42.5742

⎤

⎥⎥
⎦ (8.50)
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and p1 is evaluated as

p1 =

⎡

⎢
⎢
⎣

−0.0088 0.0002 0.0002 0.0002
0 −0.0088 0.0002 0.0002
0 0 −0.0088 0.0002
0 0 0 −0.0088

⎤

⎥
⎥
⎦ . (8.51)

While designing DSMC with PRRL, the width of quasi-sliding mode band is taken
same as that of CPPRRL with the same value of q [14]. Therefore a is selected as
0.5. Using these parameters F2 of order (4 ×38) is computed, with maximum and
minimum values of 0.6218 and −0.0011 respectively, as given by

F2 =

⎡

⎢⎢
⎣

0.0066 0.0067 0.0060 0.0067 0.5784 0.3034 0.3264 0.3219
0.0068 0.0075 0.0067 0.0069 0.6216 0.3195 0.3504 0.3525
0.0060 0.0067 0.0066 0.0067 0.5784 0.2905 0.3166 0.3212
0.0067 0.0069 0.0068 0.0075 0.6216 0.3188 0.3406 0.3385

0.2929 0.2905 0.3166 0.3212 0.3010 0.2243 0.2783 0.2723
0.3242 0.3188 0.3406 0.3385 0.3140 0.2333 0.2977 0.3004
0.3010 0.3034 0.3264 0.3219 0.2929 0.2114 0.2668 0.2729
0.3140 0.3195 0.3504 0.3525 0.3242 0.2349 0.2881 0.2854

0.2129 0.2114 0.2668 0.2729 0.2228 0.0146 0.0137 0.0134
0.2384 0.2349 0.2881 0.2854 0.2298 0.0155 0.0078 0.0137
0.2228 0.2243 0.2783 0.2723 0.2129 0.0146 0.0007 0.0031
0.2298 0.2333 0.2977 0.3004 0.2384 0.0155 0.0075 0.0040

0.0084 0.0030 0.0007 0.0031 0.0081 0.0115 0.0112 0.0116
0.0159 0.0127 0.0075 0.0040 0.0017 0.0027 0.0045 0.0109
0.0081 0.0115 0.0137 0.0134 0.0084 0.0030 −0.0011 0.0010
0.0017 0.0027 0.0078 0.0137 0.0159 0.0127 0.0063 0.0026

0.0058 0.0002 −0.0011 0.0010 0.0068 0.0098
0.0135 0.0094 0.0063 0.0026 −0.0001 0.0013
0.0068 0.0098 0.0112 0.0116 0.0058 0.0002

−0.0001 0.0013 0.0045 0.0109 0.0135 0.0094

⎤

⎥⎥
⎦ (8.52)

and p2 is estimated as

p2 =

⎡

⎢⎢
⎣

−0.0881 0.0024 0.0023 0.0023
0 −0.0881 0.0023 0.0024
0 0 −0.0881 0.0023
0 0 0 −0.0881

⎤

⎥⎥
⎦ . (8.53)
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8.4.1 Transient Simulations

Performances of the DSMC laws presented here, are evaluated using vectorized non-
linear model of AHWR. Consider the transient involving a spatial power disturbance
in which the systemwas initially assumed to be at full-power steady-state conditions,
with all regulating rods (RRs) at their equilibrium positions. Shortly, RR2, originally
under auto control was driven out by almost 1% manually, by giving proper control
signal and left under the effect of automatic control thereafter. This resulted in the
perturbations in total and spatial power distribution, which were suppressed by both
the controllers, as illustrated in Figs. 8.1, 8.2, and 8.3. Spatial oscillations are mea-
sured in terms of first and second azimuthal tilts, as shown in Figs. 8.1 and 8.2. Total
power variations are shown in Fig. 8.3. From Fig. 8.3 it can be noted that total power
with PRRL attains steady state value of 920.48 MW exactly after 4.5 s, whereas with
CPPRRL it reaches steady-state after 140s. When RR2 is driven out by 1%, all other
RRs are driven in by 0.33%, as shown in Figs. 8.4 and 8.5. As a result of action of
controllers, all the RRs come back to their equilibrium positions of 66.1%. However,
the settling time is different. Though the settling time for CPPRRL is less that that
of PRRL, total power settles much earlier in PRRL than in CPPRRL. It was also
observed that the chattering is effectively reduced in case of PRRL than CPPRRL.
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Fig. 8.1 Variations in azimuthal tilts with constant plus proportional rate reaching law
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Fig. 8.2 Variations in azimuthal tilts with power rate reaching law

0 50 100 150 200
920.47

920.48

920.49

920.5

920.51

920.52

920.53

Time (s)

T
o

ta
l 
P

o
w

e
r 

(M
W

)

Constant plus proportional rate reaching law

Power rate reaching law

Fig. 8.3 Total power variations for RR2 disturbance



140 8 Discrete-Time Sliding Mode Control

0 50 100 150 200 250 300
65

65.5

66

66.5

Time (s)

R
o

d
 P

o
s
it
io

n
 (

%
 I

N
)

RR2

RR4

RR6

RR8

Fig. 8.4 Variations in RR positions with constant plus proportional rate reaching law
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Fig. 8.6 Total power variations during power maneuvering

In another transient, again the reactor is under steady state and is assumed to be
operating at 920.48MW with nodal power distributions at steady state. Now, the
demand is reduced uniformly at the rate of 1.5MW/s to 828.43MW, in approx-
imately 61s and held constant thereafter. During the transient, variations in total
power obtained with different DSMCs are shown in Fig. 8.6. It can be observed that,
the total power is following the demand power exactly, in both the cases. However,
from the magnified part of Fig. 8.6, it is revealed that DSMC with PRRL is doing
well.

In order to assess robustness response of the system to disturbances in feed flow,
a situation was simulated in which the reactor was operating at steady full power
when a 5% positive step change was introduced in the feed flow. As a result of this,
total power underwent variations as given in Fig. 8.7. Due to the controller action,
total as well as nodal powers are regulated at their respective steady-state values
with the error of ±2×10−4%. This is compensated by changing the position of RRs.
Variations in RR2 positions with both the reaching laws are shown in Fig. 8.8. Here
also the performance of DSMC with PRRL is found to be better.
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Fig. 8.7 Total power variations during feed flow disturbance
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8.5 Conclusion

In this chapter, DSMC laws are formulated for spatial stabilization of AHWR. The
original numerically ill-condition system is decomposed into three subsystems by
direct block diagonalization. DSMC laws are then designed using slow subsystem.
Subsequently, DSMC laws for full order system are obtained using linear transforma-
tion matrices. Performances of the presented controllers are judged via simulations
carried out under the same transient conditions. It is observed that the controllers are
stabilizing the spatial oscillations and total power variations. However, the perfor-
mance of DSMC with power rate reaching law is comparatively better than DSMC
with constant plus proportional rate reaching law. These control strategies forAHWR
utilize the feedback of nodal powers, regulating rods’ positions and xenon and iodine
concentrations. For the latter two variables, it would be necessary to employ an
observer or estimator.
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Chapter 9
Comparison of Spatial Control Techniques

9.1 Introduction

In the preceding chapters, Advanced Heavy Water Reactor (AHWR) spatial control
problem is investigated by eight different control approaches. Initially static output
feedback control (SOFC) [6] is examined for 90th order nonlinear model of AHWR.
Remaining seven control techniques are state feedback control using pole placement
(SFC-PP) [5], state feedback control usingLQR(SFC-LQR) [4], slidingmode control
(SMC) [7], fast output sampling (FOS) [8], periodic output feedback (POF) [9], and
discrete-time SMC (DSMC) [10] using constant plus proportional rate reaching law
(CPPRRL) and power rate reaching law (PRRL). These are applied to the reduced
model of AHWR, which is obtained by decomposing higher order system of AHWR
into lower order subsystems either by two-time-scale decomposition or three-time-
scale decomposition. Again this decomposition is achieved by either quasi-steady-
statemethod or direct block diagonalizationmethod. Complete formulation of design
methods and simulation results are already discussed separately in earlier chapters.
This chapter compares results obtained under the same transient conditions and tries
to make a comprehensive viewpoint on all the methods to rank them in respect of
their suitability to AHWR control. Moreover, the comparison of results helps to
appreciate the consequence of diverse spatial control strategies. Brief comparative
summary of design of spatial control techniques is given in Table9.1 [11].

9.2 Performance Comparison

Three different transient conditions have been considered for performance compar-
ison of spatial controllers. All the transients are simulated using vectorized non-
linear model of AHWR, developed in Chap. 2. For each transient, time domain
specifications [1–3] and error performance indices [3, 13] are calculated. These

© Springer Nature Singapore Pte Ltd. 2018
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Table 9.1 Design comparison of controllers

Controller Type of design System
decomposition

Subsystems
and their
orders

Type of
feedback

Remark

SOFC Continuous-
time

Not required Not
applicable

Output Feedback of
nodal powers
in which RRs
are placed

SFC(LQR) Continuous-
time

Two-time-scale
(Quasi-steady-
state)

Slow (73),
Fast (17)

Reduced state Feedback of
73 states

SFC(PP)
and SMC

Continuous-
time

Two-time-scale
(Block
Diagonalization)

Slow (73),
Fast (17)

Full state Feedback of
all the states

FOS Discrete-time Two-time-scale
(Block
diagonalization)

Slow (73),
Fast (17)

Output Feedback of
all the nodal
powers
(τ = 54 s,
Δ = 9s)

POF Discrete-time Three-time-scale
(Block
diagonalization)

Slow (38),
Fast 1 (35),
Fast 2 (17)

Output Feedback of
all the nodal
powers
(τ = 12 s,
Δ = 2 s)

DSMC Discrete-time Three-time-scale
(Block
diagonalization)

Slow (38),
Fast 1 (35),
Fast 2 (17)

Full state Feedback of
all the states
(τ = 2 s)

are well explained in control literature. Nevertheless, for brevity these are defined in
Appendix D.

9.2.1 State Regulation

Disturbance in the regulating rod (RR) position can be treated as the case of state
regulation. The system is originally assumed to be at full power steady-state con-
ditions, with all RRs at their equilibrium positions. Shortly, RR2, first under auto
control was moved out by almost 1.05% manually, by giving suitable control signal
and left under the effect of automatic control later on. This resulted in the pertur-
bations in total and spatial power distribution, which were suppressed by all the
controllers, as demonstrated in Figs. 9.1, 9.2 and 9.3. Oscillations in spatial power
are measured in terms of first and second azimuthal tilts [12], as shown in Figs. 9.2
and 9.3 respectively. Performance indices (see Appendix D, for more details), i.e.,
integral square error (ISE), integral absolute error (IAE), integral time square error
(ITSE), and integral time absolute error (ITAE), determined for total power (Fig. 9.1)
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are given in Table9.2. Equivalent deviations in RR2 position and control signals to
RR2 drive are given in Figs. 9.4 and 9.5 respectively. When RR2 is driven out by
1.05%, all other RRs are driven in. Their respective percentage values are mentioned
in Table9.3. As a result of controller action, all the RRs return to their equilibrium
positions, i.e., 66.1%. But, the settling time (ts) is different for all the controllers.
Settling time and performance indices are also calculated for position of RR2 and
are stated in Table9.3.

In Fig. 9.1, even if the maximum variation in total power is observed in POF, it
is only±0.034%. However, it takes somewhat longer time, i.e., 100 s to settle down
to steady-state value of 920.48MW. Total power variations with SOFC and FOS are
approximately 0.021% and achieve steady state in 18s. In rest of the controllers,
total power variations are insignificant (about 0.005%), as shown in zoomed part of
Fig. 9.1, and rather similar excluding SFC(PP). Performance indices for total power,
mentioned in Table9.2, are calculated by taking an error signal as e(t) = QT −QT,0,
where QT and QT,0 are, respectively, instantaneous and steady-state values of total
power in MW. From Table9.2 it can be concluded that SFC (LQR), SFC (PP), SMC,
and DSMCs have less error performance indices, which means improved, than other
controllers and in remaining methods, SOFC is having lesser values and then FOS
and POF controls.

First azimuthal and second azimuthal tilts, represented in Figs. 9.2 and 9.3
respectively, show overdamped responses for SMC, SOFC, SFC (LQR), FOS,
DSMC (CPPRRL), DSMC (PRRL), and POF with increasing damping ratio. As a
result, settling time also increases from SMC to POF. Response with SFC (PP) is
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Table 9.2 Total power results following to withdrawal of RR2

Controller SOFC SFC
(LQR)

SFC
(PP)

SMC FOS POF DSMC
(CPPRRL)

DSMC
(PRRL)

ISE
(×10−3)

79.8 2.06 1.89 2.27 110 1650 2.23 2.13

IAE 0.76 0.05 0.09 0.05 1.05 9.18 0.24 0.07

ITSE
(×10−2)

34.3 0.55 0.56 0.61 53.4 3020 2.03 0.59

ITAE 6.31 0.43 1.62 0.45 10.72 353 14.46 2.71
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oscillatory with decreasing magnitude and it attains equilibrium value after nine and
six cycles of oscillations, respectively, in first and second azimuthal tilts. Whereas
with POF controller, the overdamped response undergoes little oscillations,which are
more prominent in first azimuthal (Fig. 9.2). As the disturbance is of extremely small
period, variations in first and second azimuthal tilts are, respectively, ±9 × 10−3%
and ±6× 10−3%. Although variations in total power (zoomed part of Fig. 9.1) with
DSMCs are negligible, spatial power variations (Figs. 9.2 and 9.3) are next largest
after POF. They are suppressed after about 300s and in POF, after 350s. However,
in rest of the controllers first and second azimuthal tilts are controlled in 150 and
200s, respectively.

Variations in RR2 positions are somewhat similar to that of first azimuthal tilt.
Error performance indices forRR2are calculated by using error signal as e(t) = H2−
H2,0, where H2 and H2,0 are, respectively, instantaneous and equilibrium values of
RR2 position. Settling time calculations are done for±2% tolerance. FromTable9.3,
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Table 9.3 RR position results following to withdrawal of RR2

Controller SOFC SFC
(LQR)

SFC
(PP)

SMC FOS POF DSMC
(CPPRRL)

DSMC
(PRRL)

RR4 (% in) 0.20 0.33 0.37 0.31 0.18 0.50 0.33 0.33

RR6 (% in) 0.15 0.33 0.33 0.31 0.13 0.55 0.33 0.33

RR8 (% in) 0.18 0.33 0.36 0.31 0.26 0.50 0.33 0.33

ts (s) 50 97 112 24 123 398 150 240

ISE (×10−3) 1.4 3.1 1.2 0.8 2.3 4.3 11.9 13.5

IAE (×10−1) 1.9 4 2.2 1.0 3.2 6 11.5 14.5

ITSE (×10−2) 1.2 5 1.6 0.4 3.0 8 46 66

ITAE 3 7 1.2 12.5 8.3 27 60.75 104.60

it can be observed that performance of SMC is better compared to other controllers.
Thereafter, the performances of SOFC, SFC (PP), SFC (LQR), and FOS can be
ranked. Performance indices of RR2 obtained with POF controller are less compared
toDSMCcontrollers, however, the settling time ismore. In case ofDSMCcontrollers,
CPPRRL is performing well compared to PRRL. Control signal, in Fig. 9.5, to RR2
drive varies from 0.9 to −0.3V. Maximum variations are noted with SFC (LQR),
SFC (PP), SMC and then with POF controllers. Control signal with SFC (PP) and
POF shows oscillatory behavior with decreasing amplitude. However, negligible
variations are observed in control signal of DSMCs.
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9.2.2 Trajectory Tracking

In a further transient, yet again the reactor is under steady state and is assumed to
be in use at 920.48MWwith nodal power distributions as given in Table2.5. Iodine,
xenon, and delayed neutron precursor concentrations are in equilibrium with the
respective nodal power levels. Now, the demand is reduced uniformly at the rate of
1.5MW/s to 828.43 MW, in about 61 s and held constant afterward. This transient
can be useful to study the trajectory tracking performance of the system. Throughout
the transient, variations in total power obtainedwith different controllers are depicted
in Fig. 9.6. Maximum undershoot (Mu) and error performance indices computed for
total power are listed in Table9.4. The error signal is taken as e(t) = QT − QD ,
where QD is demand power (MW). From Fig. 9.6, it can be observed that in all the
controllers response is underdamped and Mu is observed in case of POF and then
in FOS based controllers, thereafter, in case of SOFC, SFC(LQR), and SFC(PP).
Undershoots in SMC andDSMCs (both CPPRRL and PRRL) are observed to be very
minor. Moreover in DSMC (PRRL), the total power is tracking the demand power
exactly. This is also obvious from error performance indices given in Table9.4. In all
the controllers, after attaining demand power, no variations were observed further as
seen from a long simulation.
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Table 9.4 Total power results for the period of power maneuvering

Controller SOFC SFC
(LQR)

SFC
(PP)

SMC FOS POF DSMC
(CPPRRL)

DSMC
(PRRL)

Mu (%) 0.72 0.43 0.35 0.04 1.05 1.74 0.04 0.02

ISE (×102) 13.83 3.78 3.94 0.011 26.24 102.35 0.014 0.011

IAE 421 169 261 9.09 623 1094 11.25 9.22

ITSE
(×103)

70.71 16.30 22.93 0.043 181.18 596.89 0.042 0.043

ITAE
(×103)

37.37 8.69 27.38 0.45 64.74 74.38 0.56 0.46

9.2.3 Disturbance Rejection

So as to evaluate the performance of the system to disturbance in feed flow, nonlinear
model of AHWR is again simulated, in which the reactor was working at steady full
power, when a 5% positive step change was initiated in the feed flow. Consequently,
the total power underwent variations as given in Fig. 9.7. Due to the controller action,
total as well as nodal powers are regulated at their respective steady-state values. This
is compensated by changing the positions of RRs as shown in Fig. 9.8. Delay time
(td), rise time (tr ), peak time (tp), settling time (ts), maximum overshoot (Mp), and
percentage change in RR positions are given in Table9.5.

From Fig. 9.7 it is noticed that total power varies in the range of ±0.13%. Maxi-
mum total power variations are noted in SFC (both LQR and PP). After two cycles
of oscillations, they reach steady-state value of 920.48MW. Comparable kind of
response with relatively less amplitude is observed in SMC. In case of FOS, total
power shows rapid variation and settles down in just 65 s. Same amount of time is
taken by SOFC and POF controllers, however, overshoot is seen to be less in com-
parison to FOS. Performances of DSMCs are shown in the zoomed part of Fig. 9.7.
These variations are certainly insignificant.

Deviations in RR2 position, shown in Fig. 9.8, are equivalent with related varia-
tions in total power. Settling time of RR2 position with SFC (LQR) and SFC (PP) is
almost one and the same. Settling time is calculated for±2% tolerance. Delay time,
rise time, peak time, and percent overshoot are also large for these two controllers.
Afterwards, the performance of SMC can be analyzed with moderately lesser values
of overshoot, settling time, rise time, and peak time. Even though the overshoot in
case of FOS is observed to be more in remaining controllers, settling time, peak time,
and rise time are less. For the overdamped response of DSMCs, tr is considered from
10 to 90%. All these values are given in Table9.5.
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Table 9.5 RR position results for the period of feed flow disturbance

Controller SOFC SFC
(LQR)

SFC
(PP)

SMC FOS POF DSMC
(CPPRRL)

DSMC
(PRRL)

td (s) 22 45 46 34 5 19 24 19

tr (s) 46.5 73.8 74.0 53.9 13.5 46.0 200 50

tp (s) 59.5 121 119.0 82.0 24.8 60.0 210 55

ts (s) 100 490 488 256 50 76 220 60

Mp (%) 4.4 40 36.6 25.7 16.2 2.9 0 0

% Change 0.90 0.92 0.93 0.92 0.95 1.02 1.11 0.93

9.3 Conclusion

In this chapter, various spatial controllers are studied for AHWR. All are examined
under the identical transient settings and graphical simulation results are compared.
In addition to this, time domain specifications and error performance indices are
also calculated for each transient and compared. From these results and observation
tables, it is noticed that the performance of state feedback-based controllers (i.e., SFC
(LQR), SFC (PP), SMC, DSMC) is better, in terms of total power variations for state
regulation and trajectory tracking. While for disturbance rejection, performances
of output feedback controllers (i.e., SOFC, FOS, POF) along with DSMC is good.
However, for all the transients, DSMC is doing better than other controllers. In
remaining controllers, SMC, SOFC, and FOS reasonably show good performance
and then state feedback controls and POF.
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Appendix A
Two-Stage Design

Systems (6.8) and (6.10) are related through (6.12). Therefore, controllability of
(3.1), and hence (6.8), implies the controllability of subsystems, i.e., pairs (Φτ s, Γτ s)

and (Φτ f , Γτ f ) are controllable. Now, in order to design the state feedback for (6.10),
consider two-stage pole placement problemwith the inputuk = us,k+u f,k . In the first
stage (m×n1) feedback matrix Fs is designed to place eigenvalues of (Φτ s +Γτ sFs)

at desired n1 locations. The input us,k is computed as

us,k = [
Fs 0

] [
zTs,k z

T
f,k

]T
. (A.1)

Substituting the value of us,k from (A.1) in (6.10) yields

[
zs,k+1

z f,k+1

]
=

[
Φτ s + Γτ sFs 0

Γτ f Fs Φτ f

] [
zs,k
z f,k

]
+

[
Γτ s

Γτ f

]
u f,k . (A.2)

Now using a transformation

[
zs,k
g f,k

]
=

[
En1 0
U En2

] [
zs,k
z f,k

]
= T3

[
zs,k
z f,k

]
(A.3)

where (n2×n1)matrixU satisfiesU(Φτ s +Γτ sFs)−Φτ fU+Γτ f Fs = 0, the system
(A.2) can be transformed into

[
zs,k+1

g f,k+1

]
=

[
Φτ s + Γτ sFs 0

0 Φτ f

] [
zs,k
g f,k

]
+

[
Γτ s

Γ̄τ f

]
u f,k, (A.4)

where Γ̄τ f = Γτ f + UΓτ s . In second stage, taking u f,k as

u f,k = [
0 F f

] [
zTs,k g

T
f,k

]T
, (A.5)
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where F f is (m × n2) feedback gain matrix to place eigenvalues of (Φτ f + Γ̄τ f F f )

at n2 desired locations. After applying u f,k , the closed-loop system (A.4) is of the
form [

zs,k
g f,k

]
=

[
Φτ s + Γτ sFs Γτ sF f

0 Φτ f + Γ̄τ f F f

] [
zs,k
g f,k

]
. (A.6)

The control input uk = us,k + u f,k can be expressed as

uk = [
F1 F2

] [
zTs,k z

T
f,k,

]T
(A.7)

where F1 = Fs + F fU and F2 = F f .



Appendix B
Three-Stage Decomposition

The system (7.14) can be decomposed into three subsystems, namely, slow, fast 1,
and fast 2 by three-stage linear transformation. The first stage is to apply the change
of variables

⎡

⎣
z1,k
z2,k
z f 2,k

⎤

⎦ =
⎡

⎣
En1 0 0
0 En2 0
L31 L32 En3

⎤

⎦

⎡

⎣
z1,k
z2,k
z3,k

⎤

⎦ = T1

⎡

⎣
z1,k
z2,k
z3,k

⎤

⎦ (B.1)

to system (7.14). Here En1 , En2 , and En3 are respectively n1, n2, and n3 identity
matrices and (n3 ×n1) matrix L31 and (n3 ×n2) matrix L32 satisfy the nonsymmetric
algebraic Riccati equations:

L31Φ11 − L31Φ13L31 + L32Φ21 − L32Φ23L31 − Φ33L31 + Φ31 = 0,

L31Φ12 − L31Φ13L32 + L32Φ22 − L32Φ23L32 − Φ33L32 + Φ32 = 0.

Then the system (7.14) reduces to

⎡

⎣
z1,k+1

z2,k+1

z f 2,k+1

⎤

⎦ =
⎡

⎣
Φ̄11 Φ̄12 Φ̄13

Φ̄21 Φ̄22 Φ̄23

0 0 Φτ f 2

⎤

⎦

⎡

⎣
z1,k
z2,k
z f 2,k

⎤

⎦ +
⎡

⎣
Γ1

Γ2

Γτ f 2

⎤

⎦ uk, (B.2)

where

Φ̄11 = Φ11 − Φ13L31, Φ̄12 = Φ12 − Φ13L32, Φ̄13 = Φ13,

Φ̄21 = Φ21 − Φ23L31, Φ̄22 = Φ22 − Φ23L32, Φ̄23 = Φ23,

Φτ f 2 = Φ33 + L31Φ13 + L32Φ23,

Γτ f 2 = Γ3 + L32Γ2 + L31Γ1.

The second linear transformation is applied as
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⎡

⎣
z1,k
z f 1,k

z f 2,k

⎤

⎦ =
⎡

⎣
En1 0 0
L21 En2 L23

0 0 En3

⎤

⎦

⎡

⎣
z1,k
z2,k
z f 2,k

⎤

⎦ = T2

⎡

⎣
z1,k
z2,k
z f 2,k

⎤

⎦ (B.3)

to the system (B.2) and choose (n2 × n1) matrix L21 and (n2 × n3) matrix L23 such
that

L21Φ̄11 − Φ̄22L21 − L21Φ̄12L21 + Φ̄21 = 0,

L21Φ̄13 − L21Φ̄12L23 − Φ̄22L23 + Φ̄23 + L23Φτ f 2 = 0.

Therefore, the system (B.2) gets transformed to

⎡

⎣
z1,k+1

z f 1,k+1

z f 2,k+1

⎤

⎦ =
⎡

⎣
Φτ s Φ̃12 Φ̃13

0 Φτ f 1 0
0 0 Φτ f 2

⎤

⎦

⎡

⎣
z1,k
z f 1,k

z f 2,k

⎤

⎦ +
⎡

⎣
Γ1

Γτ f 1

Γτ f 2

⎤

⎦uk, (B.4)

where

Φτ s = Φ̄11 − Φ̄12L21,

Φ̃12 = Φ̄12, Φ̃13 = Φ̄13 − Φ̄12L23,

Φτ f 1 = Φ̄22 + L21Φ̄12,

Γτ f 1 = Γ2 + L21Γ1 + L23Γτ f 2.

Finally in the third stage, linear transformation

⎡

⎣
zs,k
z f 1,k

z f 2,k

⎤

⎦ =
⎡

⎣
En1 L12 L13

0 En2 0
0 0 En3

⎤

⎦

⎡

⎣
z1,k
z f 1,k

z f 2,k

⎤

⎦ = T3

⎡

⎣
z1,k
z f 1,k

z f 2,k

⎤

⎦ (B.5)

is applied to system (B.4) and matrices L12 and L13 of dimensions respectively
(n1 × n2) and (n1 × n3) are selected such that

L12Φτ f 1 + Φτ sL12 + Φ̃12 = 0,

L13Φτ f 2 + Φτ sL13 + Φ̃13 = 0.

As a result system (B.4) is transformed into block diagonal form as

⎡

⎣
zs,k+1

z f 1,k+1

z f 2,k+1

⎤

⎦ =
⎡

⎣
Φτ s 0 0
0 Φτ f 1 0
0 0 Φτ f 2

⎤

⎦

⎡

⎣
zs,k
z f 1,k

z f 2,k

⎤

⎦ +
⎡

⎣
Γτ s

Γτ f 1

Γτ f 2

⎤

⎦uk, (B.6)

where
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Γτ s =Γ1 + L12Γτ f 1 + L13Γτ f 2.

The submatrices Li j in transformations (B.1), (B.3), and (B.5) are computed using
an iterative procedure. From (B.1), (B.3), and (B.5), one can get

[
zTs,k z

T
f 1,k z

T
f 2,k

]T = T
[
zT1,k z

T
2,k z

T
3,k

]T

where T = T3T2T1. Note that the original system (7.14) is now decoupled into three
subsystems given by (B.6).
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Appendix C
Design of Output Injection Gain

Design of output injection gain for system (7.16)–(7.17) is equivalent to design of a
state feedback for its adjoint system, given by

⎡

⎣
ẑs,k+1

ẑ f 1,k+1

ẑ f 2,k+1

⎤

⎦ =
⎡

⎣
ΦT

τ s 0 0
0 ΦT

τ f 1 0
0 0 ΦT

τ f 2

⎤

⎦

⎡

⎣
ẑs,k
ẑ f 1,k

ẑ f 2,k

⎤

⎦ +
⎡

⎢
⎣

MT
s

MT
f 1

MT
f 2

⎤

⎥
⎦uk (C.1)

yk = [
Γ T

τ s Γ T
τ f 1 Γ T

τ f 2

] [
ẑTs,k ẑ

T
f 1,k ẑ

T
f 2,k

]T
. (C.2)

In order to design a state feedback based controller for (C.1), consider three-stage
pole placement problem with input uk = us,k + u f 1,k + u f 2,k . In the first stage,
(p × n1) matrix GT

s is designed to place eigenvalues of (ΦT
τ s + MT

s G
T
s ) at desired

locations. The input us,k is computed as

us,k = [
GT

s 0 0
]
ẑd,k (C.3)

where ẑd,k = [
ẑTs,k ẑ

T
f 1,k ẑ

T
f 2,k

]T
. Substituting the value of us,k from (C.3) into (C.1)

yields

ẑd,k+1 =
⎡

⎢
⎣

ΦT
τ s + MT

s G
T
s 0 0

MT
f 1G

T
s ΦT

τ f 1 0

MT
f 2G

T
s 0 ΦT

τ f 2

⎤

⎥
⎦ ẑd,k +

⎡

⎢
⎣

MT
s

MT
f 1

MT
f 2

⎤

⎥
⎦ud1,k (C.4)

where ud1,k = u f 1,k + u f 2,k . Now, for decoupling fast 1 subsystem, let us take

ẑd1,k = [
ẑTs,k z̄

T
f 1,k z̄

T
f 2,k

]T = Td1ẑd,k , where transformation matrix Td1 ∈ �n×n is
given by

Td1 =
⎡

⎣
En1 0 0
N21 En2 0
N31 0 En3

⎤

⎦ (C.5)
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and (n2 × n1) matrix (N21) and (n3 × n1) matrix N31 satisfy

N21(Φ
T
τ s + MT

s G
T
s ) + MT

f 1G
T
s − ΦT

τ f 1N21 = 0,

N31(Φ
T
τ s + MT

s G
T
s ) + MT

f 2G
T
s − ΦT

τ f 2N31 = 0.

Then, the equivalent system is obtained as follows:

ẑd1,k+1 =
⎡

⎣
ΦT

τ s + MT
s G

T
s 0 0

0 ΦT
τ f 1 0

0 0 ΦT
τ f 2

⎤

⎦ ẑd1k +
⎡

⎢
⎣

MT
s

M̄T
f 1

M̄T
f 2

⎤

⎥
⎦ ud1,k, (C.6)

where M̄T
f 1 = N21MT

s + MT
f 1 and M̄T

f 2 = N31MT
s + MT

f 2. Systems (C.6) and (C.4)
are related through transformation matrix (C.5). As a result, when pair (ΦT

τ f 1,M
T
f 1)

is controllable, pair (ΦT
τ f 1, M̄

T
f 1) is also controllable. Therefore, in the second stage,

(p×n2)matrixGT
f 1 is designed to place eigenvalues of (Φ

T
τ f 1+M̄T

f 1G
T
f 1) at desired

locations. For that, input u f 1,k is taken as

u f 1,k = [
0 GT

f 1 0
]
ẑd1,k . (C.7)

Substituting this value of u f 1,k into (C.6) gives

ẑd1,k+1 =
⎡

⎣
ΦT

τ s + MT
s G

T
s MT

s G
T
f 1 0

0 ΦT
τ f 1 + M̄T

f 1G
T
f 1 0

0 M̄T
f 2G

T
f 1 ΦT

τ f 2

⎤

⎦ ẑd1,k +
⎡

⎢
⎣

MT
s

M̄T
f 1

M̄T
f 2

⎤

⎥
⎦u f 2,k . (C.8)

Now, fast 2 subsystem is decoupled using ẑd2,k = [
z̄Ts,k z̄

T
f 1,k z̃

T
f 2,k

]T = Td2ẑd1,k ,
where Td2 ∈ �n×n is

Td2 =
⎡

⎣
En1 N12 0
0 En2 0
0 N32 En3

⎤

⎦ (C.9)

and (n1 × n2) matrix N12 and (n3 × n2) matrix N32 satisfy

MT
s G

T
f 1 + N12(Φ

T
τ f 1 + M̄T

f 1G
T
f 1) − (ΦT

τ s + MT
s G

T
s )N12 = 0,

M̄T
f 2G

T
f 1 + N32(Φ

T
τ f 1 + M̄T

f 1G
T
f 1) − Φτ f 2N32 = 0.

Then the following equivalent system is obtained:

ẑd2,k+1 =
⎡

⎣
ΦT

τ s + MT
s G

T
s 0 0

0 ΦT
τ f 1 + M̄T

f 1G
T
f 1 0

0 0 ΦT
τ f 2

⎤

⎦ ẑd2,k +
⎡

⎢
⎣

M̃T
s

M̄T
f 1

M̃T
f 2

⎤

⎥
⎦u f 2,k,

(C.10)
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where M̃T
s = MT

s + N12M̄T
f 1 and M̃T

f 2 = N32M̄T
f 1 + M̄T

f 2. Finally, input u f 2,k is
computed as

u f 2,k = [
0 0 GT

f 2

]
ẑd2,k . (C.11)

whereGT
f 2 is designed to place eigenvalues of (Φ

T
f 2+M̃T

f 2G
T
f 2) at desired locations.

Now from (C.3), (C.7), and (C.11), the composite control uk = us,k + u f 1,k + u f 2,k

is given by

uk = ( [
GT

s 0 0
] + [

0 GT
f 1 0

]
Td1 + [

0 0 GT
f 2

]
Td2Td1

)
ẑd,k

= [
GT

1 GT
2 GT

3

]
, (C.12)

where GT
1 = GT

s +GT
f 1N21 +GT

f 2N32N21 +GT
f 2N31, GT

2 = GT
f 1 +GT

f 2N32, GT
3 =

GT
f 2.



Appendix D
Specifications and Error Indices

In specifying the transient response specifications, it is common to specify the fol-
lowing quantities.

• Delay Time (td ): It is the time required for the response to reach half the final
value the very first time.

• Rise Time (tr ): It is the time required for the response to rise from x%–y% of its
final value. For overdamped system, the 10–90% rise time is normally used and
for underdamped system, 0–100% rise time is commonly used.

• Peak Time (tp): It is the time required for the response to reach the first (or
maximum) peak.

• Settling Time (ts): It is the time required for the response to settle within a certain
percent of its final value. Typical values used are ±2 and ±5%.

• Maximum(Percent)Overshoot/Undershoot (Mp/Mu): Themaximum(percent)
overshoot/undershoot represents the value of the response overshoots/ undershoots
from its steady-state (or final) value, expressed as percentage of the steady-state
value.

An error performance index is a quantitative measure of the behavior of a system
and is chosen so that emphasis is given to the important system characteristics. Error
performance indices used in this monograph are given below.

• Integral Square Error (ISE) is given by

ISE =
∫ T

0
e2(t)dt, (D.1)

where e(t) is an error signal and T is the finite time, chosen arbitrarily, so that the
integral approaches a steady-state value.
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• Integral Absolute Error (IAE) is written as

IAE =
∫ T

0
|e(t)|dt. (D.2)

• Integral Time Square Error (ITSE) is calculated using

ITSE =
∫ T

0
te2(t)dt. (D.3)

• Integral Time Absolute Error (ITAE) is represented by

ITAE =
∫ T

0
t |e(t)|dt. (D.4)


	Foreword
	Preface
	Contents
	About the Authors
	Acronyms
	Symbols
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 An Overview of Advanced Heavy Water Reactor
	1.3 Spatial Control Problem
	1.4 Nuclear Reactor Control: A Review
	1.5 Overview of Monograph
	References

	2 Modeling of AHWR and Control by Static Output Feedback
	2.1 Introduction
	2.2 Mathematical Modeling of AHWR
	2.2.1 Core Neutronics Modeling
	2.2.2 Thermal Hydraulics Model
	2.2.3 Reactivity Feedbacks

	2.3 Linearization and State-Space Representation
	2.4 Linear System Properties
	2.4.1 Stability
	2.4.2 Controllability
	2.4.3 Observability

	2.5 Vectorization of AHWR Model
	2.6 Static Output Feedback Control for AHWR
	2.6.1 Total Power Feedback
	2.6.2 Spatial Power Feedback
	2.6.3 Transient Simulations

	2.7 Conclusion
	References

	3 State Feedback Control Using Pole Placement
	3.1 Introduction
	3.2 Singular Perturbation Model
	3.3 Design of Controller
	3.3.1 Two-Stage Decomposition
	3.3.2 Design of Composite Controller

	3.4 Application to AHWR System
	3.4.1 Singularly Perturbed Form of AHWR Model
	3.4.2 Controller Design
	3.4.3 Transient Simulations

	3.5 Conclusion
	References

	4 State Feedback Control Using Linear Quadratic Regulator
	4.1 Introduction
	4.2 Linear Quadratic Regulator Design for Two-Time-Scale System
	4.2.1 Linear State Feedback Control
	4.2.2 Composite Controller Design

	4.3 Application to AHWR Model
	4.3.1 Transient Simulations

	4.4 Conclusion
	References

	5 Sliding Mode Control
	5.1 Introduction
	5.2 Sliding Mode Control
	5.2.1 Sliding Surface Design
	5.2.2 Control Law Design

	5.3 Sliding Mode Control Design for Two-Time-Scale System
	5.4 Application of SMC to AHWR System
	5.4.1 Transient Simulations

	5.5 Conclusion
	References

	6 Fast Output Sampling Technique
	6.1 Introduction
	6.2 Fast Output Sampling
	6.3 Fast Output Sampling Controller for Two-Time-Scale System
	6.4 Application of FOS to AHWR Model
	6.4.1 Transient Simulations

	6.5 Conclusion
	References

	7 Periodic Output Feedback
	7.1 Introduction
	7.2 Periodic Output Feedback
	7.3 Periodic Output Feedback Control for Three-Time-Scale System
	7.4 Application of POF to AHWR System
	7.4.1 Controller Implementation
	7.4.2 Transient Simulations

	7.5 Conclusion
	References

	8 Discrete-Time Sliding Mode Control
	8.1 Introduction
	8.2 Discrete-Time Sliding Mode Control
	8.2.1 Design of Sliding Surface
	8.2.2 Design of Discrete-Time Sliding Mode Controller

	8.3 DSMC for Three-Time-Scale System
	8.3.1 Constant Plus Proportional Rate Reaching Law
	8.3.2 The Power Rate Reaching Law

	8.4 Application of DSMC to AHWR Model
	8.4.1 Transient Simulations

	8.5 Conclusion
	References

	9 Comparison of Spatial Control Techniques
	9.1 Introduction
	9.2 Performance Comparison
	9.2.1 State Regulation
	9.2.2 Trajectory Tracking
	9.2.3 Disturbance Rejection

	9.3 Conclusion
	References

	Appendix A Two-Stage Design
	Appendix B Three-Stage Decomposition
	Appendix C Design of Output Injection Gain
	Appendix D Specifications and Error Indices



