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PREFACE

There is increasing awareness that in many nanoscale systems the formation of
ordered phases involves nonstandard nucleation and growth processes. Extensive
experimental, theoretical, and computational efforts have been reported in a vari-
ety of cases, from simple fluids to protein solutions and colloidal matter. They
reveal among others the occurrence of metastable phases, multistep nucleation,
intermediate-mediated self-assembly and roughening types of transitions, inter-
fering significantly with the yield of the process and the quality of the resulting
material.

Despite the potential interest of this emerging field there is so far no systematic
attempt to bring together representative contributions of the researchers involved,
summarizing the state of the art and providing ideas on future directions. To fill
this gap a 2-day workshop entitled Kinetics and Thermodynamics of Multistep
Nucleation and Self-Assembly in Nanosize Materials was organized in Brussels
on March 25 and 26, 2010 with the support of the Belgian Federal Science Policy
Office, the European Space Agency, the Université Libre de Bruxelles, and the
Vrije Universiteit Brussel. The present volume contains contributions based to a
large extent on invited talks presented in this workshop.

The chapters by Nicolis and Nicolis, Van Erp, and Potenza et al. review some
recent theoretical, simulation, and experimental methodologies for analyzing and
monitoring nucleation and growth-related processes. The following chapters by
Vekilov, Savage et al., Lutsko and Grosfils are devoted to experimental and theoreti-
cal aspects of two-step nucleation in a variety of materials, from proteins to colloids
to simple fluids. Finally, the chapters by Kozak, Sleutel et al., and Garcia-Ruiz deal
with nonstandard features underlying certain crystal growth and self-assembly
problems. These contributions highlight the need to reassess our views of phe-
nomena long thought to be “classical” and well understood where, unexpectedly,
nonlinear dynamics, irreversible thermodynamics, and self-organization turn out
to play a prominent role. In addition to its intrinsic interest this realization should
constitute a jumping-off point for applications in a number of problems of concern,
where nanoscale systems are ubiquitous.

We are much indebted to Professor Rice for accepting to include this volume
in the Advances in Chemical Physics series and for his constructive comments.

Gregoire Nicolis and Dominique Maes
Brussels, May 2011
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PREFACE TO THE SERIES

Advances in science often involve initial development of individual specialized
fields of study within traditional disciplines followed by broadening and overlap,
or even merging, of those specialized fields, leading to a blurring of the lines
between traditional disciplines. The pace of that blurring has accelerated in the
last few decades, and much of the important and exciting research carried out
today seeks to synthesize elements from different fields of knowledge. Examples
of such research areas include biophysics and studies of nanostructured materials.
As the study of the forces that govern the structure and dynamics of molecular
systems, chemical physics encompasses these and many other emerging research
directions. Unfortunately, the flood of scientific literature has been accompanied
by losses in the shared vocabulary and approaches of the traditional disciplines,
and there is much pressure from scientific journals to be ever more concise in the
descriptions of studies, to the point that much valuable experience, if recorded at
all, is hidden in supplements and dissipated with time. These trends in science
and publishing make this series, Advances in Chemical Physics, a much needed
resource.

The Advances in Chemical Physics is devoted to helping the reader obtain
general information about a wide variety of topics in chemical physics, a field
that we interpret very broadly. Our intent is to have experts present comprehensive
analyses of subjects of interest and to encourage the expression of individual points
of view. We hope that this approach to the presentation of an overview of a subject
will both stimulate new research and serve as a personalized learning text for
beginners in a field.

Stuart A. Rice
Aaron R. Dinner

ix
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I. INTRODUCTION

Many physical systems obey, at the macroscopic level of description, evolution
equations of the form[1]

dxi

dt
= vi({xj}, λ) (1)

Here {xi}, i = 1, · · · , n are state variables such as density, temperature, or concen-
tration; {vi} represent the evolution laws, leading eventually an initial state {xi(0)}
toward an invariant part of phase space referred to as the attractor; and λ is a set
of parameters expressing the coupling between the system and its environment.

In most situations of interest the vi’s are nonlinear functions of the {xj}’s. One of
the principal signatures of such nonlinearities is the multiplicity of simultaneously
available states that can be reached in the long time limit. On the other hand, at the
level of description afforded by Eq. (1) a transition between these states, signaling
a qualitative change of behavior of the underlying system, can only be realized
by the action of an external preparation bringing the initial condition from the
domain of attraction of the initially prevailing asymptotic state to that of the new
one. If these two regimes are separated by a finite distance the corresponding initial
perturbation needs to be quite massive, and hence hardly realizable under normal
conditions.

Now systems composed of several subunits—as is typically the case of physical
systems—are subjected to spontaneous deviations from the state predicted by a
description like in Eq. (1) owing to microscopic-level processes such as thermal
motion and interparticle collisions. Furthermore, they are as a rule embedded in a
complex environment with which they continuously exchange matter, momentum
and energy. To account for these universal sources of variability we augment Eqs.
(1) by the addition of random forces {Ri(t)}. This leads to a set of stochastic
evolution equations of the form [1–3]

dxi

dt
= vi({xj}, λ) + Ri(t) (2)

We refer to the descriptions afforded by Eqs. (2) and (1) as the mesoscopic and
the mean-field description, respectively.

At the level of the observables, the action of Ri(t) will be manifested in the
form of fluctuations around the deterministic path as provided by Eq. (1). Our main
objective in this chapter is to identify the principal features of these fluctuations
starting from a set of assumptions on the nature of the random forces. A most
important point for our purpose is that fluctuations provide a natural mechanism
of transitions between states and much of the analysis will aim at determining the
mean rates and other probabilistic properties of these transitions.
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The general formulation is laid down in Section II. The case where the mean-
field dynamics derives from a kinetic potential is considered in Section III, where
the conditions of existence of such a potential and its connection with the thermo-
dynamic potentials are also analyzed. We show that there exists a general class of
phenomena for which this connection can be implemented and which includes a
variety of nucleation phenomena associated to phase transitions, one of the prin-
cipal themes of this volume. Section IV is devoted to the type of kinetic potentials
compatible with two-step nucleation as observed, in particular, in protein solutions.
State diagrams and phase space portraits are derived and different generic scenar-
ios are identified. A discrete state model of transitions between states compatible
with this information is derived in Section V, where the mean transition times are
computed and compared with the result of full-scale stochastic simulations. It is
shown that the presence of intermediate metastable states may be responsible of
an enhancement in the transition rates. The repercussions of different transition
scenarios on the dissipation generated by the system are studied in Section VI. The
main conclusions are summarized in Section VII.

II. FORMULATION

Our starting point is Eq. (2) under the additional assumption that the random forces
Ri define a multivariate stationary Gaussian white noise process,

〈
Ri(t)Rj(t′)

〉 = 2εDijδ(t − t′) (3)

it being understood thatDij form a positive definite matrix and are time independent
(stationary process). ε is a small parameter related, depending on the case, to the
thermal energy kBT or to the inverse of the system size.

As is well known, under the above conditions the stochastic variables {xi}
undergo a diffusion process in phase space, whose probability density P satisfies
the Fokker–Planck equation [1–3]

∂P

∂t
= −

n∑
i=1

∂

∂xi

vi({xj})P + ε

n∑
i,j=1

∂

∂xi

Dij

∂P

∂xj

(4)

There is an abundant literature on both the stationary and time-dependent solutions
of Eq. (4) in the case of a single variable, but the situation becomes markedly more
involved in the presence of two or more variables. We summarize hereafter some
results of special relevance for the purposes of the present chapter.
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A. Stationary Distribution

Let us write Eq. (4) in the form

∂P

∂t
= −

∑
i

∂Ji

∂xi

(5a)

where the ith component Ji of the probability flux J is given by

Ji = vi({xj})P − ε
∑

j

Dij

∂P

∂xj

(5b)

For P to be stationary the divergence of J must vanish. Now, in a multivariate
system subjected to nonequilibrium constraints this does not imply automatically
the vanishing of J itself, since a circulating probability flow with nonzero curl may
subsist, even if the state is globally stationary [4]. This entails that the stationary
solution of (4) cannot be found analytically by a simple algorithm. Nevertheless,
the presence of an ε factor in Eq. (4) suggests to seek approximate stationary
solutions of the form [1–3]

Ps({xj}) = exp[−�({xj})/ε] (6)

Substituting into (4) and keeping dominant terms (in ε−1) one obtains a Hamilton–
Jacobi type equation satisfied by � [5, 6],∑

i

vi

∂�

∂xi

+
∑
ij

Dij

∂�

∂xi

∂�

∂xj

= 0 (7)

which can be solved approximately by expanding � in an appropriate basis.
There are two cases where the above difficulties do not arise: One variable

systems; and closed physical systems, where Ps must coincide with one of the
classical distributions given by equilibrium statistical mechanics. This latter type
of systems is of special relevance in the problem of multistep nucleation and will
be considered in detail in Section III.

An important point is that � possesses a local extremum along the solutions of
the mean-field equations (1). On these grounds it has been suggested that it may
be viewed as a generalized entropy-like function [7]. This analogy will be taken
up again in Section III.

B. Exit from an Attraction Basin

Consider now the case where the system admits several simultaneously stable
steady-state solutions xi,α, α = 1, · · · , M and let Cα be the corresponding at-
traction basins. Clearly, Cα partition the full phase space into nonoverlapping cells
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separated by boundaries constituted by the stable manifolds of the unstable steady-
state solutions of Eqs. (1) xi,β, β = 1, · · ·, N. Within each Cα the vector field {vi}
will tend toward {xi,α}. Still, under the effect of a noise defined on an unbounded
support, as in Eq. (3), a trajectory emanating from a point inside cell Cα will
sooner or later cross the boundaries of this cell and will find itself in the domain
of attraction of another stable fixed point. Two natural questions arise then in this
context.

(i) Let c be a point on Cα. What is the distribution π(x, c) of points c by which
the trajectory escapes from Cα starting from point x ∈ Cα?

(ii) What is the mean exit time from Cα?

Just like for the stationary distribution, an exact analytic answer to these questions
is not available in the most general case of a multivariate system subjected to
nonequilibrium constraints. But in the limit ε → 0 some asymptotic estimates can
again be obtained [2]. First, the distribution of exit points is given essentially by
exp(−�(c/ε)), that is, by the stationary distribution [Eq. (6)]. And second, the
mean exit time is given by the inverse of the lowest eigenvalue λ1 of the Fokker–
Planck operator, which in the case of multistable systems is exponentially small,
λ1 ≈ exp(−K/ε) where K is a finite positive number determined by the structure
of velocity field v and by the diffusion matrix D.

III. CLOSED SYSTEMS AND DETAILED BALANCE

We now limit ourselves to closed systems operating in the linear range of irre-
versible processes. On the one side, this implies the absence of systematic ex-
ternally imposed nonequilibrium constraints, the only source of nonequilibrium
being the initial deviation of {xi} from the equilibrium values {xi,e}. And on
the other side, it implies that the fluxes j associated to the various irreversible
processes present are connected to the associated thermodynamic forces by the
relation [8, 9]

j = L · X (8)

where the matrix L of kinetic (Onsager) coefficients is assumed to be positive
definite. The forces X are in turn related to the derivatives of a thermodynamic
potential such as the free energy function F

X = −∂F

∂x
(9)

Furthermore, under an appropriate choice of variables the fluxes j can be identified
to the time derivatives of the x’s, it being understood from now on that these
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variables belong to the class of even variables under time reversal [2, 3]. Equation
(2) takes now the form

dx
dt

= −L · ∂F

∂x
+ R(t) (10)

expressing the evolution of the state variables as the overall result of thermody-
namic driven processes accounted for by F and of kinetically driven ones ac-
counted for by L and R. Nonlinearity and in particular the multiplicity of steady
states stems in this setting entirely from F , the states being thus related to different
phases in which the system of interest can exist. As for L and R they account
for the relaxation processes and for the fluctuations around each state as well as
for transitions between the states. It has to be emphasized that in writing Eq. (10)
we have lumped together the spatial degrees of freedom. In this view {xi} repre-
sent averaged quantities, such as for instance the mass fractions of the material in
different states/phases at a given stage of the transformation.

The Fokker–Planck equation [Eq. (4)] associated to Eq. (10) reads

∂P

∂t
=

n∑
i=1

∂

∂xi

 n∑
j=1

Lij

∂F

∂xj

P + ε

n∑
j=1

Dij

∂P

∂xj

 (11)

To secure consistency with equilibrium statistical mechanics this equation must
admit as stationary solution the equilibrium distribution

Ps = Pe ≈ exp(−F/ε) (12)

Inserting into Eq. (11) one sees that the diffusion matrix D and the kinetic matrix
L must be proportional (a fluctuation–dissipation type relationship) and Eq. (11)
simplifies further to

∂P

∂t
=

n∑
i,j=1

∂

∂xi

Lij

(
∂F

∂xj

P + ε
∂P

∂xj

)
(13)

Notice that this equation in conjunction with (12) implies a vanishing probability
flux in the stationary (here equilibrium) state, Ji,e = 0 for all {xj}’s within each of
the attraction basins of the fixed points. This latter property implies by itself that
the velocity field must be a linear combination of the derivatives of some potential
function with respect to the state variables but is actually more general than detailed
balance, in the sense that it may in principle be compatible with the presence of
nonequilibrium constraints.
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To extract from Eq. (13) information concerning the time-dependent properties
we introduce a linear transformation of variables

x = A · z (14a)

∂

∂x
= Ã−1 · ∂

∂z
(14b)

Ã being the transposed of matrix A, and set

F (x(z)) = U(z) (14c)

P(x(z)) = ρ(z) (14d)

We assume from now on that the kinetic matrix L is state independent. By virtue
of the fluctuation–dissipation theorem this applies to the correlation matrix D of
the fluctuations as well (additive noise). Substituting into the equation we obtain,
after some straightforward manipulations,

∂ρ

∂t
=

(
Ã−1 · ∂

∂z

)
·
{

L ·
[(

Ã−1 ∂U

∂z
ρ + εÃ−1 ∂ρ

∂z

)]}
or, in more explicit form,

∂ρ

∂t
=

∑
jm

(
A−1LÃ−1

)
jm

(
∂

∂zj

∂U

∂zm

ρ + ε
∂2ρ

∂zj∂zm

)
(15)

Equation (15) features the matrix


 = A−1LÃ−1 (16)

linked to L by a congruent transformation. As well known under such a trans-
formation a symmetric matrix can be diagonalized and actually, upon a further
linear scaling, be reduced to the unit matrix. This requirement determines fully the
transformation matrix A and upon substituting into Eq. (15), one obtains [10]

∂ρ

∂t
=

n∑
j=1

∂

∂zj

(
∂U

∂zj

ρ + ε
∂ρ

∂zj

)
(17)

where t is a rescaled time. This is the standard form of the Fokker–Planck equation
of a system whose deterministic part of the evolution is driven by a kinetic potential
U and which is subjected to additive fluctuations of identical variance. A system
of this kind undergoes a process of isotropic diffusion in phase space described by
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the Langevin equation [cf. also Eq. (10)]

dzi

dt
= −∂U

∂zi

+ ri(t) (18a)

where the random forces satisfy the properties

〈ri(t)〉 = 0,
〈
ri(t)rj(t′)

〉 = 2εδkr
ij δ(t − t′) (18b)

As a corollary the invariant (equilibrium) probability density is given by

ρs(z) = ρe ≈ exp(−U(z)/ε) (18c)

Equations (18) establish the possibility to cast the evolution equations of a multi-
variate system, under the assumptions of detailed balance and of additive noise, in
a form deriving from a kinetic potential generating both the dynamical evolution
and the invariant probability of the relevant variables zi. These properties of the
kinetic potential U are to be contrasted from those of quantity � introduced in
Section II, for a system subjected to nonequilibrium constraints and not satisfying
the detailed balance property. The extent to which they subsist if the matrices L

and D are state dependent will be discussed briefly in the subsequent sections.
It should be pointed out that the conjunction of fluctuations and nonlinearities

implies that the evolution of the mean values generated by Eq. (17),

〈dzi〉
dt

= −
〈

∂U

∂zi

〉
is not closed with respect to 〈zi〉, but involves higher moments of the probability
density as well. It is only when the mean-field approximation can be justified that
these latter equations reduce to a closed set of deterministic evolution laws,

dzi

dt
= −∂U

∂zi

(19)

Otherwise, one needs to resort to the full Eq. (18a).
Let {zi,α} be the steady-state solutions to which the solutions {xi,α} introduced

in Section II transform through Eq. (14a). It follows from (19) that they are extrema
of the kinetic potential U and, by virtue of Eqs. (12) and (14c), of the free energy
and thus of the invariant probability itself as well. Linearizing around these states,
setting zi = zi,α + δzi,α yields

dδzi,α

dt
= −

∑
j

(
∂2U

∂zi∂zj

)
α

δzj,α

≡ −
∑

j

Hijδzj,α (20)
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where H = {Hij} is the Hessian matrix of U. If all eigenvalues of H are positive
the reference state {zi,α} is asymptotically stable and, at the same time, a minimum
of both U and F . If at least one eigenvalue of H is negative the reference state
is unstable. Typically it corresponds to a saddle of the potential surface U as a
function of zi and, exceptionally, (if all eigenvalues are negative) to a maximum.

Under the conditions of existence of a kinetic potential considered in the present
section the exit problem formulated in Section IIB simplifies considerably. Specif-
ically, it can be shown that in the limit, again, of small ε the transition between
stable states {xi,α} and {xi,α′ } will follow a path across the saddle point {xi,β}
lying on the manifold separating the corresponding attraction basins. Further-
more, in the same limit the mean exit time depends principally on the following
elements [11]:

(i) The value of the potential barrier �U, that is, the difference of values
of U on the unstable (transition) state and the stable state. Since U has a
local minimum on the stable state, �U is necessarily a positive quantity.
Furthermore, by virtue of Eq. (14c) �U is equal in magnitude to the free
energy barrier separating the states concerned by the transition.

(ii) The Hessian determinant, that is, the product of the eigenvalues of the
Hessian matrix {Hij}, evaluated at the minimum of the potential on the
stable state.

(iii) The curvature of U on the unstable state in the direction across the saddle
point.

In contrast to �U which as pointed out in (i) is determined from the thermody-
namics, the two latter quantities depend on kinetic effects and are thus different
from those associated to the free energy. Explicit expressions will be provided in
Section IV for generic potentials U involving two variables.

We close this section by an application of the above outlined formalism to first-
order phase transitions mediated by intermediate metastable phases [12–15]. As
alluded already in the Introduction and discussed extensively in the chapters by
Vekilov, Dinsmore et al., and Lutsko in this volume transitions of this kind are
known to occur in a variety of materials, from protein solutions to aerosols to
plasma crystals. Of special relevance is protein crystallization, where the weak-
ness and short-range character of the attractive part of the interactions favors the
existence of a long-living metastable phase in the form of a high concentration
liquid. This phase tends to enhance significantly, under certain conditions, the rate
of nucleation of crystals. Here we focus on the kinetic aspects of the process and,
in particular, on the role of the kinetic potential U and its relationship with the free
energy F . For this purpose nucleation is formulated as the dynamics of two coupled
order parameters x1 and x2 related respectively to density—or concentration—and
structure (crystallinity), evolving in an effective force field provided by the first
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part of Eq. (10) and subjected to thermal fluctuations in the form of Gaussian white
noise,

dx1

dt
= −L1

∂F

∂x1
− L

∂F

∂x2
+ R1(t)

dx2

dt
= −L

∂F

∂x1
− L2

∂F

∂x2
+ R2(t) (21)

where the matrix L of the kinetic coefficients has been taken to be symmetrical
by virtue of Onsager’s reciprocity relations. We stress that in the absence of the
intermediate phase Eq. (21) collapse into a single equation for a unique order
parameter, which can be cast straightforwardly in a variational form.

Switching to the Fokker–Planck description and assuming that the fluctuation–
dissipation theorem is valid we seek for a congruent transformation (14) diagonal-
izing L with a matrix A of the form Aii = ai, Aij = Aji = a. Upon carrying out
the algebra one obtains

a1 = L1 ±
√

L1L2 − L2

L
a

a2 = L2 ±
√

L1L2 − L2

L
a (22a)

and the Fokker–Planck equation in the z1, z2 variables

∂ρ

∂t
=

√
L1L2 − L2L2

a2(L1 + L2 + 2
√

L1L2 − L2){
∂

∂z1

∂U

∂z1
ρ + ∂

∂z2

∂U

∂z2
ρ + ε

(
∂2ρ

∂z2
1

+ ∂2ρ

∂z2
2

)}
(22b)

Notice that the argument in the square root is positive, owing to the positive defi-
niteness of the matrix L. This relation can be further reduced to the form of Eq. (17)
by rescaling the variables z1, z2 or, more straightforwardly, the time,

t = τ
a2(L1 + L2 + 2

√
L1L2 − L2)

L2
√

L1L2 − L2
(22c)

yielding

∂ρ

∂τ
= ∂

∂z1

∂U

∂z1
ρ + ∂

∂z2

∂U

∂z2
ρ + ε

(
∂2ρ

∂z2
1

+ ∂2ρ

∂z2
2

)
(23)
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In the context of the two-step nucleation the free energy F possesses three
minima. Now, from Eq. (14) one has

∂F

∂xi

=
2∑

k=1

Ã−1
ik

∂U

∂zk

∂2F

∂xi∂xj

=
2∑

k,=1

Ã−1
ik A−1

j

∂2U

∂zk∂z

(24)

The first of these relations implies that the extrema of F transform into extrema
of U, since the matrix A is nonsingular. The second relation implies that the
Hessians of U and F (in their respective variables) are related by the congruent
transformation used to reduceL to the unit matrix which, by construction, preserves
positivity. The nature of the extrema of F is thus not affected in the evolution in
terms of the transformed variables. In short, the nucleation of crystals of the solid
phase is reflected by fluctuation-induced transitions removing the system, initially
located in a minimum of U associated to the fluid phase, toward a minimum
associated to the solid phase.

An interesting question from the standpoint of irreversible thermodynamics is
whether the processes associated to the density and crystallinity (structure) fields
can be thermodynamically coupled, as implied in Eq. (21) by the presence of the
off-diagonal element L of the Onsager matrix. Now density is a true scalar whereas
structure is accounted for by a tensor. At first sight, in an isotropic medium, this
would rule out a thermodynamic coupling on the grounds of the Curie symmetry
principle [8, 9]. On the other hand, a tensor T can be split in the following way

T = 1

3
I tr T + T (a) + T (s) (25)

where I is the unit tensor, tr T the trace of T that is a scalar, T (a) its antisymmetric
part that can alternatively be viewed as an axial (“pseudo”) vector, and T (s) its
symmetric traceless part that can be alternatively be viewed as a polar (“true”)
vector. Clearly, then, the density field x1 can legitimately be coupled to the first
part of the decomposition in Eq. (25) or, alternatively, to any other structure related
quantity x2 of scalar nature such as the first coefficient of a Fourier series expansion
of the solid-phase density. The terms in L at the level of Eq. (21) stand, precisely,
for this type of coupling. Notice that even in the absence of a nondiagonal term
L in this equation x1 and x2 would still be coupled kinetically, through the x1, x2
dependence of the potential.

IV. GENERIC POTENTIALS AND THEIR UNFOLDINGS

In this section, we develop some generic models of transitions between states com-
patible with different types of nucleation scenarios observed in nanosize materials
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such as protein solutions, under the conditions of existence of a kinetic potential
put forward in the preceding section. The latter is viewed as a Landau type poly-
nomial [16, 17] that depends nonlinearly on appropriate linear combinations of
the original variables—the order parameters—the main question being to deter-
mine for each given scenario the minimal number of relevant order parameters
and the minimal relevant nonlinearities displayed in this potential providing a
qualitative explanation of the process of interest.

Now the above described program is reminiscent of the philosophy underly-
ing bifurcation theory [18, 19] or more appropriately catastrophe theory [20–22],
which deals more specifically with the classification of the different behaviors of
dynamical systems deriving from a potential. Applications of catastrophe theory
to phase transitions have been the subject of several investigations [23–25], but
to our knowledge they have so far been concerned with the structure of the phase
diagrams of a material as some key parameters are varied. Here we also focus
on dynamical aspects, including the kinetics of the transitions between different
states. The particular class of phenomena that we address are transitions between a
reference state, denoted by 1, to a final state, denoted by 3 it being understood that
under certain conditions another state 2 may also exist such that transitions from 1
to 2 and from 2 to 3 are possible. In the literature of multistep nucleation [12–15],
1 can be a dilute protein solution phase, 3 a crystalline phase with high protein
concentration, and 2 a dense protein solution phase, but in actual fact the approach
is generic: it extends beyond this example and covers a wide class of materials,
including colloidal systems. All states 1, 2, 3 are supposed to be locally stable and
thus to correspond to minima of the kinetic potential U. We place ourselves in
conditions where 3 is much more stable than 1 and 2, entailing that U(3) is signif-
icantly less than U(1) and U(2). The relative stability of states 1 and 2 can change.
Of special interest will be situations where state 2 represents a metastable phase.

The simplest “reference” situation is when state 2 does not exist. The transition
between 1 and 3, a first-order phase transition, can then be understood qualitatively
in terms of a Landau polynomial of 4th degree involving a single order parameter
z related, for example, to the protein concentration,

U4(z) = z4

4
+ λ

z2

2
+ uz (26)

This type of nonlinearity along with the two control parameters λ and u are suffi-
cient to account for all different behaviors. Criticalities separating these behaviors
are associated with the cusp catastrophe [21], one of the seven known elementary
catastrophes. The transition per se from 1 to 3 occurs through an intermediate
unstable state (13), lying between 1 and 2.

Let us now place ourselves under conditions that state 2 also exists. Different
situations can be envisaged.
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A. Transitions from 1 to 3 Occur Necessarily Through State 2

This scenario is in turn compatible with the presence of both a single or two order
parameters.

(i) In the first case the minimal Landau polynomial compatible with the exis-
tence of three local minima is of 6th degree [21].

U6(z) = z6

6
+ w

z4

4
+ c

z3

3
+ λ

z2

2
+ uz (27)

It involves the four control parameters w, c, λ, and u [21] and generates at
criticality the butterfly catastrophe [21]. The transition from 1 to 3 involves
two steps [26]. One from 1 to 2 via an intermediate unstable state (12); and
one from 2 to 3 via an intermediate unstable state (23).

(ii) In the second more realistic case, in addition to order parameter z1 related
to, for example, concentration in the example of protein crystallization one
also accounts for a second order parameter z2 associated to the structure
of the solid phase. We require that the associate potential switches, as
the control parameters are varied, from a two-well geometry (minima at
states 1 and 3) to a three-well one (minima at states 1, 2, and 3). This
transition scenario is typical of the parabolic umbilic catastrophe [21] and
its universal features can be captured by the potential involving four control
parameters [21]

U(z1, z2) = z2
1z2

2
+ z4

2

4
+ λ

z2
1

2
+ µ

z2
2

2
+ uz1 + vz2 (28)

In spite of the presence of the additional variable z2 the transition from 1 to
3 still occurs necessarily via state 2 [27] and involves two intermediate un-
stable states, (12) and (23) behaving as saddle points in the two-dimensional
phase space spanned by z1 and z2.

B. Transitions from 1 to 3 Need Not Occur Through State 2

In this more flexible scenario, which is compatible with the experimental data on
crystallization of protein solutions or of colloidal systems, we are led to require that
all three states 1, 2, and 3 must be able to communicate with each other directly.
In a two-dimensional phase space this entails three stable nodes whose attraction
basins are separated by the stable manifolds of three saddle points. If only these
six fixed points were present this would lead to a forbidden configuration in the
form of a closed loop delimited by the unstable manifolds of the three saddles. One
thus needs to stipulate the existence of a seventh fixed point, which for topological
reasons must be an unstable node and thus a maximum of the kinetic potential.
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To accommodate this configuration it is necessary to go beyond the potentials
associated to the seven elementary catastrophes, the minimal solution satisfying the
necessary genericity properties being the unfolding of the double cusp catastrophe
[28, 29], which we write here in the form

U(z1, z2) = z4
1 + z4

2

4
+ k

z2
1z

2
2

2
+ a

z3
1

3
+ b

z2
1z2

2

+ λ
z2

1

2
+ µ

z2
2

2
+ cz1z2 + uz1 + vz2 (29)

with k> −2 and k /= 2. This potential involves eight control parameters. It reduces
along z1 = 0 and along z2 = 0 to a potential of the form (26) associated to the clas-
sical cusp catastrophe—whence the “double cusp catastrophe” denomination. In
what follows we will be interested in the dynamical behaviors and the bifurcations
generated by the partial unfolding in which we set k = b = 0.

The mean-field evolution equations of the two order parameters generated by
the potential in Eq. (29) are [cf. Eq. (19)]

dz1

dt
= −z3

1 − az2
1 − λz1 − cz2 − u

dz2

dt
= −z3

2 − µz2 − cz1 − v (30)

In the limit where the coefficient c is zero these equations are uncoupled. Their
steady-state solutions are thus solutions of two independent cubic equations. De-
pending on the sign of the corresponding discriminant each of these can have one
to three real solutions, the transition between these different regimes being condi-
tioned by the cusp catastrophe. Globally therefore, barring nongeneric situations
where two real solutions merge into a single one (discriminant of one of the cubics
vanishes) the full system can have for given parameter values one, three, or nine
real solutions.

Consider now the case of c being nonzero. Equation (30) become then coupled
and their steady state solutions z1s, z2s satisfy the relations

z2s = −1

c

(
z3

1s + az2
1s + λz1s + u

)
(31a)

− 1

c3

(
z3

1s + az2
1s + λz1s + u

)3

− µ

c

(
z3

1s + az2
1s + λz1s + u

)
+ cz1s + v = 0 (31b)
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The stability of these solutions is determined by the eigenvalues ω of the Jacobian
matrix of (30), which satisfy the characteristic equation

ω2 +
{

3
(
z2

1s + z2
2s

)
+ 2az1s + λ + µ

}
w

+
(

3z2
1s + 2az1s + λ

)(
3z2

2s + µ
)

− c2 = 0 (32)

We notice that Eq. (31b) is of ninth degree. It can thus have up to nine real solutions
continuing those of the uncoupled case, as long as c is sufficiently small. The
situation will change as c is gradually increased. Since there cannot be more than
nine solutions, one expects that the number of solutions will decrease. Furthermore,
degenerate situations where two real solutions were merging for c = 0 should
now give rise to two structurally stable solutions following the splitting of the
degeneracy caused by the “perturbation” terms cz2 and cz1.

Figure 1 depicts the bifurcation diagram of solution z1s [Eq. (31b)] versus pa-
rameter c keeping a, λ, µ, u, and v fixed such that in the limit c = 0 one has nine
real solutions. As can be seen, increasing c leads successively from four simulta-
neously stable solutions (among a total of nine solutions) to three simultaneously
stable solutions (among a total of seven solutions) and finally to two simultane-
ously stable solutions (among a total of three solutions). This is in full agreement

0.5

1

1.5

2

2.5

0 0.1 0.2

z1

c

(3)

(1)

(2)

(N)

(23)

(12)

(13)

Figure 1. Bifurcation diagram of solution z1s of Eq. (31b) versus parameter c for a = −5,
λ = 7.75, µ = −7/4, u = −3.75, and v = 1/2. Full and dashed lines denote stable and unstable states,
respectively. (1) Reference stable state; (3) final stable state; (2) intermediate stable state; (12), (13),
(23) intermediate unstable saddle-type states; (N) unstable node.
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(2)(1)

(13)
(23)

(12)

Figure 2. Location of steady states of Eq. (30) and of the unstable manifolds in the two-
dimensional phase space (z1, z2) for c = 0.1. Other parameter values as in Fig. 1.

with the qualitative arguments advanced above. Notice that from the standpoint of
phase transition theory four coexisting stable phases is compatible with the Gibbs
phase rule [30] as long as one is dealing with a two-component system, as is the
case of a protein solution.

The location of the steady states in phase space in the range of three simultane-
ously stable states is indicated in Fig. 2, where the unstable manifolds of the other
fixed points are also sketched. We obtain a configuration corresponding exactly
to what was anticipated in the beginning of Section IVB showing clearly the ex-
istence of two a priori competing pathways, of transitions from state 1 to state 3,
1 → (13) → 3 and 1 → (12) → 2 → (23) → 3. This configuration also suggests
associating in the particular case of protein crystallization order parameter z1 to
“concentration” and order parameter −z2 to “structure” or “crystallinity.”

Naturally, the transitions between the stable states present in the bifurcation
diagram of Fig. 1 will be governed by the augmented version of Eq. (30) in which
fluctuations are incorporated, see Eq. (18a):

dz1

dt
= −z3

1 − az2
1 − λz1 − cz2 − u + r1(t)

dz2

dt
= −z3

2 − µz2 − cz1 − v + r2(t) (33)

where the random forces r1, r2 satisfy conditions (18b).
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V. KINETICS OF TRANSITIONS BETWEEN STATES: MAPPING
INTO A DISCRETE MARKOV PROCESS

As stressed in Sections II and III, a case of special interest when studying transitions
between states is the weak noise limit. For a system whose evolution is generated
by a kinetic potential U, in the notation of Eq. (18b) and in the light of the comments
following Eq. (20), this means that ε is much smaller than the various potential
barriers �Uij . The latter are given by the differences of the value U(ij) of U on the
unstable (transition) state (ij) across which the system will leave attraction basin
of stable state i to enter that of stable state j, and of the value U(i) of U on the
reference stable state i.

The mean waiting time τij for a transition from state i across state (ij) is given
by an extension of a classic theory originally elaborated for one-variable systems
by Kramers [2, 3] in the multi (here two-) dimensional case. In what follows we
will be especially interested in the corresponding transition rates kij = τ−1

ij that in
the above specified limits take the form [11, 31]

kij = 1

2π

(
σ

(1)
i σ

(2)
i

)1/2
(

σ+
(ij)

|σ−
(ij)|

)1/2

exp

(
−�Uij

ε

)
(34)

Here σ
(1)
i , σ(2)

i are the eigenvalues of the Hessian of U (or equivalently the solutions
of Eq. (32) on the stable reference state i); and σ±

(ij) stand, respectively, for the
unstable and stable eigenvalue of the Hessian [or equivalently the solutions of Eq.
(32)] evaluated on the unstable (saddle) transition point.

Under the same assumptions the diffusion type of stochastic process described
by Eq. (33) can be mapped into a jump process between the (discrete) stable states,
in which the transition probabilities per unit time are given by Eq. (34), see Refs 2,
26, 27. This leads to the following simple kinetic schemes, it being understood that
state 3 is by far the most stable state and thus plays the role of an absorbing barrier.

A. Three Simultaneously Stable States (Seven-Steady-State Region)

21

3

k21

k12
k23k13

(35)

The pobabilities p1 and p2 to be in the attraction basins of states 1 and 2 satisfy
the rate equations

dp1

dt
= −(k12 + k13)p1 + k21p2

dp2

dt
= k12p1 − (k21 + k23)p2 (36a)
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with

p3 = 1 − p1 − p2 (36b)

The overall transition rates from 1 to 3 will be determined by the eigenvalues
ω± of the transition matrix associated to Eq. (36a),

ω2
± + (k12 + k21 + k23 + k13)ω± + k12k23 + k21k13 + k23k13 = 0

Actually, following a short initial transient the dominant time scale of the transition
will be determined by the smallest (in absolute value) eigenvalue ω−,

ω− = 1

2
{−(k12 + k21 + k23 + k13)

+
√

(k12 + k21 + k23 + k13)2 − 4(k12k23 + k21k13 + k23k13)} (37)

B. Two Simultaneously Stable States (Five-Steady-State Region)

k13
1 3

k′
13

(38)

This configuration arises past the limit point where states (23) and 2 merge in the
bifurcation diagram of Fig. 1. There are two independent pathways leading from 1
to 3, a first past unstable state (13) exactly as in case A and a second past unstable
state (13)′ that is actually a smooth continuation of unstable state (12) of case A.
The probability p1 to be in the attraction basin of state 1 satisfies the equation

dp1

dt
= −(k13 + k′

13)p1 (39a)

with

p3 = 1 − p1 (39b)

The overall transition rate from 1 to 3 is here determined by

|ω| = (k13 + k′
13) (40)
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C. Two Simultaneously Stable States (Three-Steady-State Region)

This configuration arises past the limit point where states (12) and N merge in the
bifurcation diagram of Fig. 1. It corresponds to the simple kinetic scheme

k13
1 3 (41)

with

dp1

dt
= −k13p1 (42a)

p3 = 1 − p1 (42b)

The transition rate is simply determined by

|ω| = k13 (43)

Equations (37), (40), and (43) in conjunction with Eqs. (34), (29), and (31) allow
one to determine the mean transition times τ13 = 1/|ω−|, 1/(k13 + k′

13), and 1/k13
as the parameter c runs from left to right across the bifurcation diagram of Fig. 1.
The result is represented by the curve in full line in Fig. 3. For reference we also
plot (dashed line) the transition times τ

(0)
13 from 1 to 3 ignoring the presence or not

of state 2, evaluated as τ
(0)
13 = k−1

13 . Finally, the crosses in Fig. 3 stand for the result
of a simulation of the full stochastic differential equations (33). As can be seen the
analytic and the simulation results agree remarkably well. Deviations do occur but
they are limited to situations near transition points where the potential barrier is
small, a case for which Eq. (34) needs to be amended as one of the assumptions of
the theory (ε � �U) is no longer fulfilled. More importantly, we see that as one
is entering the region of existence of stable state 2 the transition times decrease
dramatically as compared to those that would prevail had the direct path 1 → 3
via unstable state (13) been the only one available. In particular, for values of c

slightly less that 0.1 state 2 turns out to be less stable than state 1 and the barrier
�U23 less than �U13. The transition from 1 to 3 occurs then in an accelerated way
through a “secondary nucleation” mediated by state 2. Remarkably, state 2 has
an accelerating effect even in the vicinity of the transition point where it merges
with unstable state (23). This occurs near x ≈ 0.16 in the bifurcation diagram of
Fig. 1 and may be referred to as “transient intermediate state nucleation,” see also
chapter by J. Lutsko in this volume. These conclusions are in accord with the
results of observations [13], simulations [12], and microscopic approaches [14,
15] according to which the presence of an intermediate dense fluid phase enhances
the nucleation of protein crystals. It also shows that intermediate state-mediated
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Figure 3. Mean transition times τ13 between states 1 and 3 versus parameter c. Full line: analytic
result [Eqs. (34) and (37)]; crosses: result of the simulation of the full stochastic differential equations
(33); dashed line: direct transition from 1 to 3 ignoring the presence of state 2. Noise strength 2ε =
0.025. Number of realizations is 1000 and other parameter values as in Fig. 1.

enhancement is a generic phenomenon, extending beyond the specific case of
protein crystallization.

VI. IRREVERSIBLE THERMODYNAMICS OF
FLUCTUATION-INDUCED TRANSITIONS

According to the setting adopted throughout this chapter, the transition between
the initial state 1 and the final state 3 (direct or indirect via state 2) is a transient
irreversible process: starting from state 1 with probability equal to one the state
is gradually depleted and eventually state 3 invades the entire system, owing to
its higher stability (U(3) � U(1)) in conjunction with the weak noise limit ε <

�U13 � �U31. In this section, we analyze this transition from the standpoint of
irreversible thermodynamics by evaluating the entropy production [8, 9] associated
to the different scenarios considered in the previous sections.

As a reference we start with the direct transition scenario (cf. Section VC)

1
k13�
k31

3 (44)
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where we introduce a small backward transition rate (k31 � k13) in order to avoid
the complication arising from the presence of purely irreversible steps. We also
adopt a “chemical” interpretation where the variables associated to 1 and 3 are the
mass fractions x and s of the material in these states [see also comment prior to Eq.
(11)]. The rate equation associated to scheme (44) is then [to be compared with
Eq. (42)]

dx

dt
= −k13x + k31s (45a)

with

s = 1 − x (45b)

The solutions of Eqs. (45) corresponding to the initial conditions x(0) = 1,
s(0) = 0 read

x(t) = k′
1

k1 + k′
1

+ k1

k1 + k′
1

exp[−(k1 + k′
1)t]

s(t) = k1

k1 + k′
1

− k1

k1 + k′
1

exp[−(k1 + k′
1)t] (46)

The instantaneous entropy production (normalized by the gas constant) associated
to this “direct” transformation is

σd(t) = (k13x − k31s) ln
k13x

k31s

where for simplicity we adopted the assumption of an ideal mixture. Integrating
this expression from time t = 0 to t = ∞ and using Eq. (46) one obtains the total
dissipation undergone by the system to complete the transition,

�d =
∫ ∞

0
dtσd(t) = ln

k13 + k31

k31
= ln(Keq + 1) (47)

where Keq = k13/k31 is the equilibrium constant of the “reaction” in Eq. (44). In
the limit k31 � k13 this expression reduces to ln Keq, that is, to the standard free
energy change associated to the reaction.

We next evaluate the dissipation in the “secondary nucleation” scenario, where
the 1 to 3 transition occurs via state 2. The corresponding scheme, rate equations
and entropy production are (compare with Section VA)

1
k12�
k21

2
k23�
k32

3 (48)
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dx

dt
= −k12x + k21y

dy

dt
= k12x − (k21 + k23)y + k32s

s = 1 − x − y (49)

σ = (k12x − k21y) ln
k12x

k21y
+ (k23y − k32s) ln

k23y

k32s

Integrating again σ from 0 to ∞ we obtain for x(0) = 1 and in the limit of small k21,
k32 the following expression for the total dissipation during the transformation:

� = �1 + �2 (50a)

with

�1 = ln
k12

k21
+ ln

k23

k32
(50b)

and

�2 = −k12

∫ ∞

0
dt exp[−k12t] ln

k12(1 − exp[−(k23 − k12)t])

k23 − k12
+ k12k23

k12 − k23

×
∫ ∞

0
dt(exp[−k12t] − exp[−k23t])

× ln
k23 − k12 − k23 exp[−k12t] + k12 exp[−k23t]

k12(exp[−k12t] − exp[−k23t])
(50c)

Here part �1 corresponds to the contribution of the standard part of the chem-
ical potentials in the entropy production and part �2 to the contribution of the
composition-dependent part. Clearly,

�1 = ln
k12k23

k21k32
= ln Keq

where Keq was already introduced in Eq. (47). In the limit of small k32, �1 becomes
thus identical to �d . On the other hand, as it turns out �2 = 0 for all values of the
ratio k23/k12. We therefore conclude that

� = �d (51)

that is, at least in the limits considered the total dissipation associated to transition
from 1 to 3 is independent of whether the transition is direct or occurs via the
intermediate state 2. This is at variance with some results reported in the literature
in a somewhat different context [32], where the presence of intermediate steps
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seems to lower the entropy production. What it happening here is, rather, that the
contribution to dissipation due to the distance from equilibrium of the ratio x/y

counteracts exactly that due to the distance from equilibrium of the ratio y/s. We
emphasize that nonequilibrium is manifested here as a transient phenomenon, as
eventually the whole system is invaded with probability one by the single final
state 3, whatever the pathway for reaching this state might have been.

VII. CONCLUSIONS

In this chapter we outlined a general approach for analyzing the transitions between
simultaneously stable steady states in the presence of thermodynamic or externally
driven fluctuations. Emphasis was placed on transitions between two given states
taking place under conditions allowing for the presence of a third one, which could
be metastable with respect to the other states or even appear as a transient in the
vicinity of criticalities of certain kinds. Conditions were defined under which the
presence of such “intermediate” states can enhance the rate of transitions between
the two “reference” states. We have shown that these mechanisms are likely to
be generic and underlie a wide range of phenomena including the nucleation of
crystalline materials from a liquid mixture in the presence of a second liquid phase
as observed, in particular, in the crystallization of globular proteins or colloids.

Throughout the analysis we considered a closed system evolving eventually
toward the state of thermodynamic equilibrium and satisfying the condition of
detailed balance, entailing a vanishing probability flux in each phase space point
and the proportionality between the Onsager matrix of kinetic coefficients and
the diffusion matrix of the fluctuations. Under the additional condition that these
matrices are state independent we showed that the evolution of the state variables
could be mapped into a form deriving from a kinetic potential. We have constructed
generic potentials compatible with various nucleation scenarios, some of which
are identical to experimentally observed scenarios in the context of crystallization
of globular proteins or colloids, see Ref. 13 and the Chapters by Vekilov and by
Dinsmore et al. in this volume. These potentials provide also valuable information
on the nature of the free energy surface of the system concerned which, despite its
complex dependence on microscopic-level properties, is ultimately topologically
equivalent to them.

More than one century ago, Wilhelm Ostwald proposed a step rule to explain
certain observations on the formation of crystalline materials from the melt [33].
According to this rule, typically it is not the most stable form of the material but
the least stable one that crystallizes first. The status of this rule in the light of
present day knowledge on nucleation has been discussed recently in the literature
[34, 35]. Our analysis shows that Ostwald’s step rule is a consequence of a general
underlying mechanism: the transition from an initial state (a liquid phase) to a final
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one (a stable crystalline phase) may occur preferably via a pathway involving an
intermediate state (a second, metastable liquid phase), possessing the necessary
properties (e.g., high concentration of a key substance) for the appearance and
growth of nuclei possessing the structure of the final phase. The analysis also
shows that this is only one out of several scenarios and provides information on
its realizability depending on the values of the parameters present in the problem.

Transitions between states are a generic phenomenon observed in a multitude
of systems of interest in physical, life, engineering, and environmental sciences
[36]. It constitutes one of the principal signatures of the dynamics of complex
systems as it endows them with the ability to evolve, to choose, and to adapt and
extends in this respect beyond the examples of protein or colloid crystallization
and similar phase transition phenomena. Viewed in all its generality it constitutes
a largely open problem likely to witness important developments in the future.

A first direction would be to account for the presence of several intermediate
states as it may be the case, for instance, in transitions between different confor-
mations of proteins and other biomolecules [37].

From the standpoint of stochastic processes and thermodynamics an interest-
ing extension would be to assess whether some of our conclusions subsist when
the condition of detailed balance breaks down. There are two broadly different
mechanisms at the origin of such a breakdown.

(i) The evolution vector v in Eq. (1) contains an additional contribution beyond
the one involving the thermodynamic or the kinetic potential. Typically,
this will reflect the presence of constraints in, for instance, the form of
concentration or temperature gradients, that do not allow the system to
reach the state of equilibrium as provided by the extremum of the potential,
even in the long time limit.

(ii) The diffusion matrix Dij of the fluctuations accounts for the fact that the
medium in which the system of interest is embedded is itself maintained
out of equilibrium—for instance, by an external time-periodic driving.

In both cases, while Eqs. (6) and (7) will remain valid Eqs. (18) will break down
and much of the analysis of Sections III–V will need to be extended. In particular,
the exit from the attraction basin of a stable state need no longer follow a path
across an intermediate unstable state of the saddle point type.

The influence of intermediate states on the kinetics of the transitions between
two reference states can also be viewed as a new mechanism of control and opti-
mization of the rate of production of the “material” associated to the final state. In
this perspective, it would be of interest to study its interference with other known
control mechanisms. Most prominent among them is stochastic resonance [38,
39], whereby the passage over a potential barrier is facilitated by the presence of a
weak external periodic forcing. In the context of phase transitions and in particular
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of protein crystallization a coupling of nucleation kinetics with an external field
is expected to exist and play a nontrivial role in view of the presence of charged
groups in the individual molecules [26]. Ordinarily, studies in stochastic resonance
focus on the case of two simultaneously stable states separated by an unstable state
of the saddle point type. Recently, an extension to the case of several stable states
in the presence of a spatially periodic potential has been reported [40]. It would
undoubtedly be interesting to adapt this work to the type of potentials considered
in this chapter and assess the additional effect of the external periodic forcing in
different parts of the bifurcation diagram of Fig. 1.

Finally, future developments in this area should aim at the elucidation of the
microscopic basis of the mesoscopic-level approach developed in this chapter. This
should clarify the limits of validity of some of the assumptions adopted, such as
the use of spatially lumped variables and the independence of matrices L and
D on the state variables {xi} in Eqs. (14) and onward, and provide the basis for
appropriate refinements and generalizations.
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I. INTRODUCTION

Molecular dynamics (MD) is the ultimate method to gain detailed atomistic infor-
mation of dynamical processes that are difficult to access experimentally. How-
ever, an important bottleneck of atomistic simulations is the limited system- and
timescales. Depending on the complexity of the forcefields (ab initio MD be-
ing extremely more expensive than classical MD) systems typically consist of
100 to 100,000 molecules that can be simulated for a period of nanoseconds
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till microseconds. Therefore, many activated processes cannot be studied using
brute-force MD because the probability to observe a reactive event within reason-
able CPU time is basically zero. Typical examples are protein folding, conforma-
tional changes of molecules, cluster isomerizations, chemical reactions, diffusion
in solids, ion permeation through membranes, enzymatic reactions, docking, nu-
cleation, DNA denaturation, and other types of phase transitions. If these processes
are treated with straightforward MD, the simulations will endlessly remain in the
reactant states. Still, if an event would happen, it can go very fast. The time it
actually takes to cross the barrier is usually much shorter than this computational
accessible timescale. Therefore, rare event algorithms aim to avoid the superflu-
ous exploration of the reactant state and to enhance the occurrence of reactive
events. The methods that I will discuss are the reactive flux (RF) method [1, 2] and
the more recent algorithms that originate from the transition path sampling (TPS)
[3–7] methodology. These comprise the transition interface sampling (TIS) [8] and
the replica exchange TIS (RETIS) [9, 10], which are successive improvements on
the way reaction rates were determined in the original TPS algorithm. Partial path
TIS (PPTIS) [11] is an approximative approach in order to reduce the simulated
path length for the case of diffusive barrier crossings. PPTIS is similar to Mile-
stoning [12], that was developed simultaneously and independently from PPTIS.
For nonequilibrium systems, the forward flux sampling (FFS) was designed [13].
This method is based on the TIS formalism, but does not require prior knowledge
on the phasepoint density. All these methods have in common that they aim to sim-
ulate true molecular dynamics trajectories at a much faster rate than naive brute
force molecular dynamics. I will discuss the advantages and disadvantages of the
different methodologies and introduce a few new relations and derive some known
relations using a nonstandard approach. The descriptions of these methods given
here are far from complete and, therefore, to obtain a more complete picture of
the path sampling techniques I would like to recommend some very recent com-
plementary reviews on these methodologies [14–17]. In the end, I compare all the
methods by applying them on a simple, though tricky, test system. The outcome
illustrates some important pitfalls for the nonequilibrium methods that have no
easy solution and show that caution is necessary when interpreting their results.

II. REACTIVE FLUX METHOD

Low dimensional systems, such as chemical reactions in the gas phase, are usually
well described by transition state theory (TST). TST assumes that the transitions
from reactant to product state always follow a path on the potential energy surface
such that it passes the barrier nearby the transition state (TS). The TS refers to the
point on the energy barrier having to the lowest possible potential energy difference,
with respect to the reactant state, that any trajectory must overcome in order to reach
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the product state. In this description, TS corresponds to a unstable stationary point
on the potential energy surface having one imaginary frequency (saddle point). In
condensed systems, the saddle point of the full potential energy surface is usually
less meaningful. For instance, if we would consider the dissociation of NaCl in
water, the TS would correspond to a state where the interion distance is fixed to
a critical value while all surrounding water molecules are full frozen into an icy
state. It is needless to say that this does not correspond to our daily experience
when dissolving some pinch of salt in a glass of water. TST can be generalized for
higher dimensional systems using the free energy instead of the potential energy.
The TS is then no longer a single point, but a multidimensional surface. In this
case, the TST equation is determined by the free energy difference between the
TS dividing surface and the reactant state. An important limitation of TST is that
the free energy barrier depends on the selected degrees of freedom that are used
to describe the free energy surface. In addition, TST implicitly assumes that any
trajectory will cross the free energy barrier only once when going from reactant to
product state. Kramers’ theory [18] provides an elegant and insightful approach
to correct for correlated recrossings if these originate from the diffusive character
of the dynamics. However, there are several other sources for recrossings. For
instance, if the selected degrees of freedom are not well chosen, the barriers in
the free energy landscape do not always correspond the barriers in the underlying
potential energy surface which ultimately determine the dynamics. The RF method
is able to correct for recrossings regardless their origin and is very powerful when
TST is close but not sufficiently accurate.

The theory of the method originated from the early 1930s, far before the first
applications of computers for molecular dynamics simulations [19]. After Wigner
and Eyring introduce the concept of the TS and the TST approximation [20, 21],
Keck [22] demonstrated how to calculate the dynamical correction, the transmis-
sion coefficient. This work has later been extended by Bennett [23], Chandler [24],
and others [25, 26], resulting in a two-step approach. First the free energy as func-
tion of a single reaction coordinate (RC) is determined. This can be done by, for
example, umbrella sampling (US) [27] or thermodynamic integration (TI) [28].
Then, the maximum of this free energy profile defines the approximate TS dividing
surface and the transmission coefficient can be calculated by releasing dynamical
trajectories from the top.

Traditionally, the equation for the dynamically corrected rate constant is de-
rived by applying a small perturbation to the equilibrium state and invoking the
fluctuation–dissipation theorem and Onsager’s relation [1, 2, 25]. However, as I
will show here, there is an alternative derivation that naturally evolves to a formula
for transmission coefficient that is probably more efficient that the standard one
[23, 24].

There are several definitions for the rate constant kAB between two states A

and B, such as the transition probability per unit time, the inverse mean residence
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time in state A, or the inverse mean first passage time toward state B [29]. How-
ever, all these different definitions become equivalent for truly exponential re-
laxation, which is the case whenever the stable states A and B are separated by
large free energy barriers. If this is not the case, the rate constant becomes ill-
defined. To start the derivation I will use the first definition, which can be expressed
as follows:

kAB = lim
dt→0

1

dt

number of states A that transform into state B within dt

number of states A
(1)

Let us denote x = (r, v) the phasepoint which includes the positions r and velocities
v of all particles in the system. We define the reaction coordinate λ(x) that can be
any function of x, though in practice it will generally only depend on r. The RC
function should describe the progress of the reaction, but there is a lot of flexibility
in designing this RC function.

We will assume that the collection of phasepoints {x|λ(x) = 0} defines the tran-
sition state dividing surface that separates region A and B. For convenience, we
will also assume that the RC will increase when going from A to B. Consider-
ing the phenomenological equation (1), we can directly write down the reaction
rate as

kAB = lim
dt→0

1

dt

∫
dx0 θ (−λ (x0)) θ (λ (xdt)) ρ(x0)∫

dx0θ (−λ (x0)) ρ(x0)

= lim
dt→0

1

dt

〈θ (−λ (x0)) θ (λ (xdt))〉
〈θ (−λ (x0))〉 (2)

where x0 and xdt are phasepoints at times t = 0 and t = dt. ρ(x) denotes the
phasepoint density. For equilibrium statistics this is simply given by Boltzmann
ρ(x) = exp(−βE(x)), where E the energy and β = 1/kBT , T the temperature, and
kB the Boltzmann constant. θ is the Heaviside-step function with θ(y) = 0 if y < 0
and θ(y) = 1 otherwise. The brackets 〈. . .〉 ≡ ∫

dx . . . ρ(x)/
∫

dx ρ(x) denote the
ensemble average over the initial condition x0. Equation (2) is basically the TST
expression of the rate, but written in a somewhat unusual form.

To transform this equation into the standard form, we can use λ (xdt) = λ (x0) +
dtλ̇(x0) + O(dt2), where the dot denotes the time derivative. If we neglect the
second order terms, we can write for an arbitrary function a(x):∫

dx0 θ (−λ (x0)) θ (λ (xdt)) a(x0) =
∫

dx0 θ (−λ (x0)) θ
(
λ (x0) + dtλ̇ (x0)

)
a(x0)

(3)

Clearly, θ(−λ)θ(λ + dtλ̇) is only nonzero if λ̇ > 0 and dtλ̇ < λ < 0. Instead of
integrating over x0, we will apply a coordinate transform such that we can integrate
Eq. 3 over λ, λ̇ and a remaining set coordinates x′

0. Assume that J(x′
0, λ, λ̇) is the
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corresponding Jacobian of this transformation. We can then integrate out the (λ, λ̇)
coordinates ∫

dx0 θ (−λ (x0)) θ
(
λ (x0) + dtλ̇ (x0)

)
a(x0)

=
∫

dx′
0

∫ ∞

0
dλ̇

∫ 0

−dtλ̇

dλ a(x′
0, λ, λ̇)J(x′

0, λ, λ̇)

=
∫

dx′
0

∫ ∞

0
dλ̇

∫ 0

−dtλ̇

dλ

{
a(x′

0, 0, λ̇)J(x′
0, 0, λ̇)

+ λ
∂(a(x′

0, λ, λ̇)J(x′
0, λ, λ̇))

∂λ

∣∣∣
λ=0

+ · · ·
}

=
∫

dx′
0

∫ ∞

0
dλ̇

{
(dtλ̇)a(x′

0, 0, λ̇)J(x′
0, 0, λ̇)

− 1

2
(dtλ̇)2 ∂(a(x′

0, λ, λ̇)J(x′
0, λ, λ̇))

∂λ

∣∣∣
λ=0

+ · · ·
}

= dt ×
∫

dx′
0

∫ ∞

0
dλ̇ λ̇a(x′

0, 0, λ̇)J(x′
0, 0, λ̇) + O(dt2) (4)

where we applied a Taylor expansion in terms of λ in the second line. Clearly, as

∫
dx0 λ̇ (x0) δ (λ (x0)) θ

(
λ̇ (x0)

)
a(x0)

=
∫

dx′
0dλ̇dλ λ̇δ(λ)θ(λ̇)a(x′

0, λ, λ̇)J(x′
0, λ, λ̇)

=
∫

dx′
0

∫ ∞

0
dλ̇ λ̇a(x′

0, 0, λ̇)J(x′
0, 0, λ̇) (5)

we have proven that

lim
dt→0

1

dt
θ (−λ (x0)) θ (λ (xdt)) = λ̇ (x0) δ (λ (x0)) θ

(
λ̇ (x0)

)
(6)

Using this expressing into Eq. (2), we obtain the standard form of the TST formula:

kAB = 〈λ̇ (x0) δ (λ (x0)) θ(λ̇(x0))〉
〈θ (−λ (x0))〉 (7)

It is often very convenient to switch back to the other formalism, Eq. (2), as some
relations follow more naturally from this expression, especially in path sampling
simulations where dt can simply be taken as the MD timestep. The TST approach
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rewrites Eq. (7) into two factors

kAB = 〈λ̇ (x0) δ (λ (x0)) θ(λ̇ (x0))〉
〈δ(λ (x0))〉 × 〈δ (λ (x0))〉

〈θ (−λ (x0))〉 ≡ RTST × e−βF (0)∫ 0
−∞ dλ e−βF (λ)

(8)

where the free energy F is defined as F (λ) ≡ − ln〈δ(λ − λ(x))〉/β. Numerous
techniques exist to calculate the free energy profile along the barrier region [27,
28, 30–35]. The kinetic term RTST usually follows from a simple numerical or
analytical integration. For instance, if the RC is a simple Cartesian coordinate of
a target particle then RTST = 1/

√
2πβm where m is the mass of the particle.

The TST expression neglects correlated fast recrossings and, therefore, overes-
timates the reaction rate. Recrossings can occur due to a diffusive motion on top
of the barrier or by kinetic correlations when the kinetic energy of the RC is not
dissipated. Another important source of recrossings is when the one-dimensional
RC gives an incomplete description of the reaction kinetics [2]. To correct for
recrossing we can apply the effective positive flux formalism that neglects the
crossings that are not “effective.” At each side of the barrier we define regions that
are the stable regions A and B. These might be smaller than the regions that we
associate to the product and reactant state. Entering A or B implies that the system
is committed to that side, that is, it might leave region A or B shortly thereafter,
but the chance to rapidly recross the barrier is of the same order as an independent
new event. An effective positive crossing is then defined as the first crossing on
the trajectory that makes the transition from A to B (see Fig. 1). This leads to the

Stable state B

R
C

Time

λ = 0

Stable state A

Figure 1. Definition of an effective positive crossing on a very long MD trajectory. The EPF
algorithm will ignore all crossing with the TS dividing surface except one (black dot). These are the
first crossing points with the TS dividing surface for the parts of the MD trajectory that start at A and
end at B (without revisiting A again).
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effective positive flux expression for the reaction rate:

kAB = lim
dt→0

1

dt

〈θ (−λ (x0)) θ (λ (xdt)) hb
A0(x0)hf

BA (x0)〉
〈θ (−λ (x0))〉

= 〈λ̇ (x0) δ (λ (x0)) θ
(
λ̇ (x0)

)
hb

A0(x0)hf
BA (x0)〉

〈θ (−λ (x0))〉 (9)

where h
b/f
uv (x0) detects whether a backward/forward time trajectory crosses or en-

ters a certain interface/region u before interface/region v. If this is true, the function
is one. It is zero otherwise. In the second line we applied again equality 6. Naturally,
the ensemble average 〈. . .〉 should now not only integrate over the phasepoint x0,
but also sum over all possible trajectories backward and forward in time starting
from x0. The ratio between the exact expression [Eq. (9)] and the transition state
expression [Eq. (7)] is the transmission coefficient: kexact = κkTST so that

κ = 〈λ̇(x0)δ(λ(x0))θ(λ̇(x0))hb
A0(x0)hf

BA(x0)〉
〈λ̇(x0)δ(λ(x0))θ(λ̇(x0))〉

= 〈λ̇(x0)θ(λ̇(x0))hb
A0(x0)hf

BA(x0)〉λ=0

〈λ̇(x0)θ(λ̇(x0))〉λ=0
(10)

Here the subscript λ = 0 denotes an ensemble average on the TST dividing surface.
Strictly speaking, the above expression is correct for any surface that separates the
two stable states. However, the efficiency to calculate the above expression is sig-
nificant better if κ is maximized. Therefore, λ = 0 should be defined on the top
of the free energy barrier. If we assume that λ(x) = λ(r) depends on configuration
space only, the calculation requires to generate a representative set of configura-
tion points on the TST surface. Then, we attribute to these points r a randomized
set of velocities taken from a Maxwellian distribution and integrate the equations
of motion backward and forward in time. However, as θ

(
λ̇
)
hb

A0 = 0 if λ̇ < 0 or
when the backward trajectory recrosses the TST dividing surface before entering
A, only a very few trajectories need to be fully integrated in both time direc-
tions until reaching stable states. It is surprising that the effective positive flux
counting strategy is not so common. To our knowledge only two slightly differ-
ent expressions of a transmission coefficient based on the effective positive flux
have been proposed in Refs 36, 37. All other expressions in the literature do not
avoid the counting of recrossings. In these algorithms, the final rate constant fol-
lows through cancellation of many negative and positive terms. For instance, the
most popular formulation of the rate constant and transmission coefficient is the
Bennett–Chandler (BC) expression that appears in many textbooks on molecular
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simulation [1, 2].

k̃AB(t) = 〈λ̇ (x0) δ (λ (x0)) θ (λ (xt))〉
〈θ (−λ (x0))〉 ⇒

κ̃(t) = 〈λ̇ (x0) θ (λ (xt))〉λ=0

〈λ̇ (x0) θ(λ̇ (x0))〉λ=0
(11)

Here, the reaction rate and transmission coefficient are expressed as time-
dependent functions. However, the actual rate constant and transmission coeffi-
cient, which should not depend on time, follow from a plateau value of these
time-dependent functions: kAB = k̃AB(t′), κ = κ̃(t′) with τmol < t′ < τrxn. In other
words, k̃(t) and κ(t) will generally show oscillatory behavior at small t. However,
after some molecular timescale τmol, the system will basically enter either region A

or B (see Fig. 1) after which we would not expect any recrossing until reaching the
actual relaxation time τrxn 	 τmol. The equivalence between Eq. (11) and Eqs. (9)
and (10), can be shown by invoking θ (λ (xt′ )) = h

f
BA(x0), Eq. (6), and its mirror

equivalent limdt→0 θ(λ(x0))θ(−λ(xdt))/dt = −λ̇(x0)δ(λ(x0))θ(−λ̇(x0)):

k = k̃(t′) = 〈λ̇(x0)δ(λ(x0))θ(λ(xt′ ))〉
〈θ(−λ(x0))〉 = 〈λ̇(x0)δ(λ(x0))hf

BA(x0)〉
〈θ(−λ(x0))〉

= 〈λ̇(x0)δ(λ(x0))θ(λ̇(x0))hf
BA(x0) + λ̇(x0)δ(λ(x0))θ(−λ̇(x0))hf

BA(x0)〉
〈θ(−λ(x0))〉

= lim
dt→0

1

dt

(
〈θ(−λ(x0))θ(λ(xdt))h

f
BA(x0) − θ(λ(x0))θ(−λ(xdt))h

f
BA(x0)〉

〈θ(−λ(x0))〉

)

(12)

We have now transferred the BC expression in an unitary ensemble average; each
phasepoint x0 either returns 1, 0, or −1. Consider a very long MD trajectory with a
timestep of dt (like the one in Fig. 1). It is clear that any detailed-balance simulation
method should sample each phasepoint x0 on this trajectory equally often. As such,
an unreactive B → B trajectory will always have an equal number of phasepoints
returning +1 as −1. The B → B trajectories are therefore effectively not counted
due to this cancelation. The phasepoints on the A → A trajectory are always
zero due to the h

f
BA characteristic function. Finally, any trajectory A → B always

has one x0 more that is +1 than −1. A more formal mathematical proof of the
equivalence between Eq. (11) and Eq. (9) can be found in Ref. 38.

Whenever, there are a significant number of recrosssings, the BC formalism
has obvious disadvantages. In general, we note that any averaging method count-
ing only zero and positive values will show a faster convergence than one that is
based on cancelation of positive and negative terms. Moreover, in the effective flux
formalism many trajectories will be assigned as unreactive after just a few MD
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steps, thus reducing the number of required force evaluations. Another important
advantage of the EPF formalism is that is generates a set of trajectories that are un-
ambiguous interpretable as reactive or unreactive, while the BC scheme generates
only forward trajectories of which some actually belong to unreactive B → B tra-
jectories. Instead of integrating the equations of motion until reaching stable states,
one can also use a time-dependent expression for the EPF [39] similar to Eq. (11).

There are several other formulations of the transmission coefficient [40], but
most of them rely on a cancelation between positive and negative flux terms. A
comparative study of ion channel diffusion [41] showed that the algorithm based
on effective positive flux expression was superior to the other transmission rate
expressions. Moreover, it was as efficient as an optimized version of the more
complicated method of Ruiz-Montero et al. [42]. The implementation of the EPF
scheme is as simple as algorithms that are based on the BC transmission coeffi-
cient. Therefore, the EPF implementation of the RF method should in principal be
preferred above the standard implementations that require cancelation.

III. TRANSITION PATH SAMPLING

In the previous section, I showed how the standard transmission coefficient cal-
culations can be improved using the effective positive flux expression. However,
this approach cannot fully eliminate the main bottleneck of the RF methods. If
κ 
 1, the number of trajectories that are required for sufficient statistics can be
tremendous. In specific, if one is unable to find a proper RC, the overwhelming
majority of trajectories that are released from the top of the barrier will be either
A → A or B → B trajectories [2]. In practice, it has been discovered that finding a
good RC can be extremely difficult in high dimensional complex systems. Notable
examples are chemical reactions in solution, where the reaction mechanism often
depends on highly nontrivial solvent rearrangements [43]. Also, computer simula-
tions of nucleation processes use very complicated order parameters to distinguish
between particles belonging to the liquid and solid phase. This makes it unfeasible
to construct a single RC that accurately describes the exact place of crossover tran-
sitions. As a result, hysteresis effects and low transmission coefficients are almost
unavoidable.

This has been the main motivation of Chandler and collaborators [3–7] to de-
vised a method that generates reactive trajectories without the need of a RC. This
method, called transition path sampling TPS, gathers a collection of trajectories
connecting the reactant to the product stable region by employing a Monte Carlo
(MC) procedure called shooting.

Suppose x is a path {x0, xdt, x2dt, . . . , xndt} of n timeslices. The statistical
weight given to this path equals

P[x] = ρ(x0)p(x0 → xdt)p(xdt → x2dt) · · · p(x(n−1)dt → xndt) ĥ(x) (13)
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BA

Figure 2. Illustration of the TPS shooting move using flexible path length. From an existing path
a random timeslice is selected. Positions and/or velocities of this point are slightly modified giving a
new phasepoint. From this point, the equations of motion are integrated forward and backward in time
until the trajectory hits A or B.

where ρ(x0) is the usual phasepoint density and p(xjdt → x(j+1)dt) is probability
density that the MD integrator generates x(j+1)dt starting from xjdt . The charac-
teristic function ĥ(x) equals 1 (otherwise 0) if a specific condition is fulfilled. For
instance, one could imply that the trajectory x needs to start in state A and end in
state B.

By means of the shooting algorithm, TPS performs a random walk in path space
to generate one trajectory after the other (see Fig. 2). The first step of this approach
consists of a random selection of one of the timeslices of the old path, called the
shooting point. This timeslice is modified by making random modifications in the
velocities and/or positions. Then, there is usually an acceptance or rejection step
based on the energy difference between modified and unmodified shooting point.
If accepted, the equations of motion are integrated forward and backward in time
until a certain path length is obtained or until the condition function ĥ(x) can be
assigned 0 or 1. In the last case the trial move will be accepted. Any rejection along
this scheme implies that the whole trial path will be rejected and the old path is
counted again just like in standard Metropolis MC. Naturally, the random walk in
path space should obey detailed balance

Pgen[x(o) → x(n)]

Pgen[x(n) → x(o)]

Pacc[x(o) → x(n)]

Pacc[x(n) → x(o)]
= P[x(n)]

P[x(o)]
, (14)

where the superscripts (o) and (n) denote the old and new path, respectively, and
Pgen[x → x′] is the probability to generate path x′ staring from x. Following the
Metropolis-Hastings scheme, the acceptance rule of the whole shooting move can
be written as

Pacc[x(o) → x(n)] = ĥ(x(n)) min

[
1,

P[x(n)]

P[x(o)]

Pgen[x(n) → x(o)]

Pgen[x(o) → x(n)]

]
(15)
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The generation probability is a product of different subprobabilities. These are
Psel, to select the shooting point, Pran, for the random modification of this shooting
point, and Ptraj, which is the probability to obtain x(n) by integrating the equations
of motion backward and forward in time starting from the modified shooting point.

Pgen[x → x′] = Psel(xshoot|x) Pran(xshoot → x′
shoot) Ptraj(x′|x′

shoot) (16)

If we generate paths of a fixed length n and if each timeslice has an equal probability
to be selected then Psel = 1/n. We come back to this point later on. In addition,
TPS algorithms generally utilize a symmetric random modification of the shooting
point: Pran(xshoot → x′

shoot) = Pran(x′
shoot → xshoot). Therefore, both Psel and Pran

cancel out in Eq. (15). The acceptance rule simplifies even further if we also assume
that the dynamics obey the microscopic reversibility condition

ρ(x)p(x → y) = ρ(y)p(ȳ → x̄) (17)

where x̄ is the phasepoint x with reversed velocities: x̄ = (r, −v). This relation is
very general and valid for a broad class of dynamics applying to both equilibrium
and nonequilibrium systems [7]. By applying Eq. (17) several times on Eq. (13)
we can show that

P[x] = ρ(xjdt)p(x̄jdt → x̄(j−1)dt)p(x̄(j−1)dt → x̄(j−2)dt) · · · p(x̄dt → x̄0)

× p(xjdt → x(j+1)dt)p(x(j+1)dt → x(j+2)dt) · · · p(x(n−1)dt → xndt) (18)

is true for any timeslice j. For time-reversible dynamics the backward integration is
simply obtained by reversing the velocities and integration forward in time. Hence,
the generation probability Ptraj(x|xshoot) depends on exactly the same transition
probabilities p(x → x′) and p(x̄ → x̄′). This implies that all terms cancel out
except the phasepoint density of the shooting point

Pacc[x(o) → x(n)] = ĥ(x(n)) min


1,

ρ
(
x

(n)
shoot

)
ρ

(
x

(o)
shoot

)

 (19)

This is very convenient as this acceptance/rejection step can take place before
the expensive trajectory generation takes place. Still, some (partly) completed
trajectories will be rejected in the end due to the condition ĥ(x). However, as the
new trajectory was generated from a small modification of an existing trajectory
with ĥ(x) = 1 the chances are relatively high that the condition will be satisfied
for the trial trajectory as well.

The sampling of trajectories under a given condition ĥ might benefit from using
a path ensemble that has a nonfixed length. Using a fixed path length to sample
all possible trajectories between A and B is expensive as this length needs to be
adapted to the longest pathway connecting these states. Many trajectories will
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reach A to B in a much shorter time and will, therefore, consist of unnecessary
parts that are not relevant for the actual barrier crossing event. In addition, if
trajectories have significant parts outside the barrier region, the shooting move
becomes inefficient as many shooting points will lie inside the reactant or product
well. Shooting from these points gives a very low probability to connect both states.
Using flexible path lengths was first introduced in Ref. 8 within the context of the
TIS rate evaluation. However, also for the generation of reactive trajectories, the
flexible path ensemble is very useful and allows to generate paths that start and
end just at the boundaries of A and B (see Fig. 2). The only difference with the
previous example is that Psel = 1/n is not canceled as the trajectory length can be
different. Therefore, if the shooting procedure selects the timeslices by an equal
probability, the acceptance rule becomes

Pacc[x(o) → x(n)] = ĥ(x(n)) min


1,

ρ
(
x

(n)
shoot

)
ρ

(
x

(o)
shoot

) n(o)

n(n)


 (20)

with n(o), n(n) the length of the old and new path. This expression is not so con-
venient as a rejection can only be made whenever the whole path is completed.
Hence, the integration needs to be carried out even if ρ(x(n)

shoot) 
 ρ(x(o)
shoot) imply-

ing an almost certain rejection. We can, however, separate the acceptance into two
steps by writing

Pacc[x(o) → x(n)] = ĥ(x(n)) min


1,

ρ
(
x

(n)
shoot

)
ρ

(
x

(o)
shoot

)

 × min

[
1,

n(o)

n(n)

]
(21)

This acceptance rule obeys detailed balance as well and allows to reject a modi-
fication of the shooting move that gives a too high energy. Still, even if the first
step is accepted, the final trajectory might be rejected whenever it becomes too
long compared to the previous path. We can improve the efficiency even further
using following trick [8]. Instead of taking a random number α ∈ [0 : 1] after fin-
ishing our trajectory and then accept if α < n(o)/n(n), we will actually draw this
random number before starting the integration of motions. As we now know that
we will have to reject our trajectory whenever α < n(o)/n(n), we can simply define
a maximum allowed path length of this trial move in advance

nmax = int[n(o)/α] (22)

This allows to directly stop our trial move whenever it exceeds this maximum path
length.

The original TPS method also provided an algorithm to determine the reaction
rate of the process. This approach has been improved by the TIS [8] and RETIS [9,
10] algorithms. Like RF, the TPS rate evaluation does require a RC (I will not
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make the distinction between orderparameter or RC). However, one can show
that, compared to the RF method, the efficiency of TPS, TIS, and RETIS, is less
sensitive to an improper choice of the RC [39].

The original TPS rate evaluation is based on following correlation function

C(t) = 〈hA(x0)hB(xt)〉
〈hA(x0)〉 (23)

where hA/B(x) = 1 if x ∈ A/B and 0 otherwise. Just like Eq. (11), C(t) will ini-
tially show some oscillations. However, if there is a separation of timescales, this
correlation function grows linearly in time, C(t) ∼ kABt, for times τmol < t < τrxn.
Hence,

k̃AB(t) = d

dt
C(t) =

〈
hA(x0)ḣB(xt)

〉
〈hA(x0)〉 , kAB = k̃AB(t′) for τmol < t′ < τrxn (24)

The correlation function C(t) is calculated in the TPS scheme using the shooting
algorithm in combination with umbrella sampling. First, the fixed path length
t′ is fixed to a value where C(t) should give a plateau. Then a series of path
sampling simulations will be performed in which the final region B is slowly shrunk
in successive steps from the entire phase space to the final stable state B [7]. For
each step numerous trajectories are generated with that condition that the path
should start in A and end in the extended region B at time t′. The distribution of
the path’s endpoint will be binned into histograms that will be matched just like
ordinary umbrella sampling. Once the fully matched histogram is obtained, C(t)
is obtained by integration of this histogram over the actual region B.

The approach is rather time-consuming because it can take a relatively long
time τmol before C(t) reaches a plateau (longer than in a transmission coefficient
calculation [7]). In Ref. 5 an improvement of this approach was presented in
which the umbrella sampling series could be performed with paths shorter than
τmol. The results were then corrected by a factor that is obtained from a single
path sampling simulation using the longer paths. Unfortunately, the relative error
in this correction factor is large if the path length is reduced too much, so that the
gain in CPU efficiency remains limited [8]. Moreover, inspection of Eqs. (23) and
(24) shows that a necessary cancellation of positive and negative terms can slow
down the convergence of the MC sampling procedure.

IV. TRANSITION INTERFACE SAMPLING

TIS is a more efficient way to calculate reaction constant than the method discussed
above. The TIS methodology is also the basis of several other algorithms [9, 11,
13, 44, 45] of which the PPTIS, RETIS, and FFS methods will be discussed in
following sections. The TIS rate equation is related to both the EPF expression,
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Eq. (9), and to the correlation function used in TPS, Eq. (23), albeit using different
kind of characteristic functions. Instead of using the characteristic functions of
the stable states A and B, we will redefine the correlation function using overall
states A and B. These states do not only depend on the position at the time of
consideration but also on its past behavior. Overall state A covers all phase space
points lying inside stable region A, which constitutes the largest part, but also all
phase space points that visit A, before reaching B when the equations of motion
are integrated backward in time. In other words, all phasepoints that were more
recently in A rather than in B. Similarly, state B comprises stable state B and all
phasepoints, coming directly from this state in the past, that is, without having
been in A. The corresponding correlation function is

C(t) = 〈hA(x0)hB(xt)〉
〈hA(x0)〉 (25)

where hA(x0) = hb
AB(x0) and hB(x0) = hb

BA(x0). Contrary to Eq. (23), this corre-
lation function has no oscillatory behavior during a molecular timescale τmol. On
the contrary, it exhibits a linear regime ∼kABt for 0 < t < τrxn. The system will
only transfer from overall state A to overall state B when it enters region B for the
first time since it left region A. If it leaves state B shortly thereafter, it will remain
in B. Therefore, hB(xt) and hA(xt) do not show the fast fluctuations that are found
for hB(xt) and hA(xt). As Eq. (25) is linear from the start, we can simply take the
time derivative at t = 0, which gives

kAB =
〈
hA(x0)ḣB(x0)

〉
〈hA(x0)〉 = lim

dt→0

1

dt

〈
hb

AB(x0)θ(λB − λ(x0))θ(λ(xdt) − λB)
〉

〈hA(x0)〉

=
〈
hb

AB(x0)λ̇ (x0) δ(λ(x0) − λB)θ
(
λ̇ (x0)

)〉
〈hA(x0)〉 (26)

The resulting expression is basically the EPF expression [Eq. (9)] through the inter-
face λB. At a first sight it might seem that generating long trajectories is no longer
needed. As we only need dC(t)/dt at t = 0, the minimum time range over which
we need to calculate C(t) is [0 : dt] instead of [0 : τmol]. Unfortunately, unlike
hA(x0) and hB(x0), the determination of hA(x0) and hB(x0) cannot be done instan-
taneously. For this we still need to integrate the equations of motion. However,
for most x0, hA(x0)/hB(x0) can be assigned 1 or 0 using a much shorter back-
ward trajectory than τmol. For stochastic dynamics hA(x0)/hB(x0) can be, strictly
speaking, a fractional number. However, there is generally no need to know this
fractional number for a specific phasepoint, except for committor analysis [14, 46–
49]. Hence, TIS algorithms will generally compute hA(x0)/hB(x0) for one specific
path to which x0 belongs. Conceptually, it is therefore more accurate to speak of a
MC sampling in pathspace rather than phase space. The TIS correlation function
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has an additional advantage that the reaction rate is somewhat better defined if the
separation of timescales τmol 
 τrxn is not sufficiently obeyed. The fact that the
derivative of C(t) is taken at t = 0 makes corrections like the one suggested in
Ref. 50 unnecessary.

The TIS algorithm expresses the rate equation, Eq. (26), as a product of different
terms. Each term has a much higher value than the final rate and is, therefore, much
easier to compute. To introduce the TIS and PPTIS expression, that I will discuss in
the next section, it is convenient to introduce following crossing probabilities that
depend on four nonintersecting interfaces {x|λ(x) = λi}, {x|λ(x) = λj}, {x|λ(x) =
λk}, {x|λ(x) = λl}

P
(

k
l |ji

)
= lim

dt→0

〈hb
ij(x0)θ(λj − λ(x0))θ(λ(xdt) − λj)hf

kl(x0)〉
〈hb

ij(x0)θ(λj − λ(x0))θ(λ(xdt) − λj)〉

= 〈hb
ij(x0)λ̇(x0)δ(λ(x0) − λj)θ(λ̇(x0))hf

kl(x0)〉
〈hb

ij(x0)λ̇(x0)δ(λ(x0) − λj)θ(λ̇(x0))〉 for λj > λi (27)

For λj < λi, we simply need to replace θ(λj − λ(x0))θ(λ(xdt) − λj) by
θ(λ(x0) − λj)θ(λj − λ(xdt)) in the first line or λ̇(x0)δ(λ(x0) − λj)θ(λ̇(x0)) by
−λ̇(x0)δ(λ(x0) − λj)θ(−λ̇(x0)) in the second line of the above definition. Equa-
tion (27) defines a conditional crossing probability. It is the probability that the
system will cross interface λk before λl under a twofold condition. These condi-
tions are that the system should cross interface λj right now at time t = 0, while
λi was more recently crossed than λj in the past.

Using these crossing probabilities, one can prove that Eq. (26) is equivalent to
the product of the initial flux times the overall crossing probability [8]

kAB = 〈λ̇(x0)δ(λ(x0) − λ0)θ(λ̇(x0))〉
〈hA(x0)〉 × P(n0|00− ) ≡ fAPA(λn|λ0) (28)

where λ0 and λn are the boundaries of the stable states A and B. fA is just the flux
out of state A that can be computed with standard MD as the boundary of A is
set at the left side of the barrier region. The minus in 0− is to denote an interface
λ0 − ε that is put there to indicate the direction of the crossing at t = 0. The
overall crossing probability PA(λn|λ0) = P(n0|00− ) is the probability that once λ0
is crossed, λn will be crossed before a recrossing with λ0 occurs. This probability
is very small, but it can be calculated by defining n − 1 nonintersecting interfaces
in between λ0 and λn and express the overall crossing probability as the following
product [8]

PA(λn|λ0) =
n−1∏
i=0

PA(λi+1|λi) (29)
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Figure 3. The TIS path ensemble [i+] is required to calculate the conditional crossing probability
PA(λi+1|λi). For this purpose we apply the shooting move to generate all possible trajectories starting
at λ0 and ending at λ0 or λn with at least one crossing with λi. Suppose the algorithm starts with the
middle path that already fulfills these requirements. A shooting point is randomly selected and modified.
However, the trajectory that starts out from this point (top trajectory) fails to cross λi and is therefore
rejected and the old path is counted again. A new shooting generates a valid trajectory that not only
crosses λi but λi+1 as well. This trajectory is called “successful.” The fraction of successful trajectories
in this ensemble determine PA(λi+1|λi).

The factorization ofPA(λn|λ0) into probabilitiesPA(λi+1|λi) that are much higher
than the overall crossing probability, is the basis of the importance sampling ap-
proach. It is important to note that PA(λi+1|λi) are in fact complicated history
dependent conditional probabilities. If we consider all possible pathways that start
at λA and end by either crossing λA or λB, while have at least one crossing with
λi in between, the fraction that crosses λi+1 as well equals PA(λi+1|λi). This ba-
sically reduces the problem to a correct sampling of trajectories that should obey
the λi crossing condition (see Fig. 3). From now on we will call this the [i+] path
ensemble. In TIS, this is done via the shooting algorithm for flexible path lengths
as is discussed in previous section. (For a full flowchart diagram of the TIS al-
gorithm, see Ref. 51.) The number of interfaces and their separation should be
set to maximize efficiency. In Refs 39, 40, it was found that the optimal interface
separation is obtained when one out of five trajectories reach the next interface.
In addition, one can define a set of subinterfaces of arbitrary separation in order
to construct the crossing probability as a continuous function. This strictly de-
creasing function could be viewed as the dynamical analogue of the free energy
profile F (λ).

There are some small differences how to treat the path ensemble [i+] regarding
the end point of the path. In the first TIS algorithms, the trajectory could reach up
to λi+1, where the trajectory was stopped and assigned successful. More recent
simulations continue the trajectory until reaching the stable states A or B each time.
The additional cost is very limited as about 80% is not reaching λi+1 and need to
be followed until reaching A anyway. The choice to continue the trajectory even
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after λi+1 has the advantage that one can start the [i+] path ensemble without the
need to fix a value for λi+1 beforehand. After some simulation cycles the λi+1 can
be set to have the optimal 20% success rate after which one can start the [(i + 1)+]
path ensemble. In addition, the new approach makes it much more easy to use
replica exchange which we will discuss in Section VII.

The simplicity of Eq. (29) is deceptive and could be mistaken as a Markovian
approximation. The reason that the equation is still exact lies in the fact that the
crossing probabilities are history dependent and by the fact that it only considers
first crossing events. We can argue the exactness of the equations also in another
way. Suppose we want to calculate the probability to go from λ0 to λ1 to λ2 . . . to
λn in successive jumps. This probability can be expressed as

P(λ0 → λ1 → λ2 → · · · → λn)

= P(λ0) × P(λ0 → λ1|λ0) × P(λ1 → λ2|λ0 → λ1)

× P(λ2 → λ3|λ0 → λ1 → λ2) × · · ·
× P(λn−1 → λn|λ0 → λ1 → λ2 → · · · λn−2 → λn−1) (30)

This is an exact non-Markovian expression for this specific crossing sequence
that looks similar to Eq. (29). However, it does not say anything about the many
different trajectories that could connect λ0 with λn. For instance, we should also
take into account the sequenceλ0 → λ1 → λ2 → λ1 → λ2 → λ3 → . . . λn−1 →
λn. Therefore, it might seem that the right expression should look much more
complicated than Eq. (29). The trick, however, is that this last sequence cannot
occur if we only consider first crossing events. When we move back to λ1 in the
third step, this move will simply not considered as it is a second visit since leaving
λ0. Hence, the successive sequence λ0 → λ1 → λ2 → · · · λn−1 → λn is the only
possible sequence of first crossing events that brings you from λ0 to λn.

V. PARTIAL PATH SAMPLING

The PPTIS is a variation of the TIS algorithm that was devised to treat diffusive
barrier crossings [11]. Despite the existence of a fine separation of timescale, that
is, the time to cross the barrier is still negligible compared to the time spend in the
reactant well, the path length can become too long for an effective computation
of the reaction rate. This is the case if the barriers are sufficiently high to ensure
exponential relaxation, but not very sharp so that system can move backward and
forward on the barrier before it eventually drops off. The PPTIS equation depends
on the same rate equation as TIS

kAB = fAP
(

n
0|10

)
(31)
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The only difference with Eq. (28) is that we now consider the condition |10) instead
of |00− ), but this is just a technical detail. If we take λ1 = λ0 + ε the equations
become equivalent. However, λ1 can be any value that is somewhat larger than
λ0 by redefining fA as the effective flux through λ1. This implies that we should
count the positive crossings with λ1 whenever the system leaves the stable state
A : {x|λ(x) < λ0}. However, the next positive crossing should only be counted if
the system has revisited A again. The PPTIS approach tries to avoid the genera-
tion of very long trajectories using a soft Markovian approximation. The PPTIS
scheme assumes that for a well positioned set of interfaces the system will lose its
memory over a distance that is similar to the interface separation. This implies for
any m > 1

P
(

l
k|jj±m

)
≈ P

(
l
k|jj±1

)
(32)

The PPTIS algorithm consist again of a series of path sampling simulations. Each
PPTIS simulation samples a certain path ensemble in which trajectories are con-
fined within two next-nearest interfaces. For instance, the [i±] path ensemble will
consist of all possible trajectories starting and ending at either λi+1 or λi−1 hav-
ing at least one crossing with the middle interface λi. From these simulations the
following short-distance crossing can be obtained

p±
i ≡ P

(
i+1
i−1|ii−1

)
, p=

i ≡ P
(

i−1
i+1|ii−1

)
, p∓

i ≡ P
(

i−1
i+1|ii+1

)
, p

‡
i ≡ P

(
i+1
i−1|ii+1

)
(33)

with p±
i + p=

i = p∓
i + p

‡
i = 1. For instance, p±

i is determined by dividing the
number of trajectories in the [i±] ensemble that start at λi−1 and end at λi+1
divided by all trajectories that start at λi−1.

Once these short-distance crossing probabilities are obtained with sufficient ac-
curacy, the overall crossing probability can be obtained. One way to do this is to use
these probabilities as input for a kinetic MC simulation [52]. However, this is not
needed for a one-dimensional RC that allows an elegant analytical treatment [11].
Naturally, P(2

0|10) = p±
1 , but the calculation of P(3

0|10) requires already to sum up
the trajectories 0 → 1 → 2 → 3, 0 → 1 → 2 → 1 → 2 → 3, and so on. How-
ever, as shown in Ref. 11, one can derive following recursive relations to make this
infinite summation of all trajectories (include the ones of infinite length!). These
PPTIS recursive relations are the following

P
(

m+1
0 |10

)
= p±

mP
(
m
0 |10

)
p±

m + p=
mP

(
0
m|m−1

m

) , P
(

0
m+1|mm+1

)
= p∓

mP
(

0
m|m−1

m

)
p±

m + p=
mP

(
0
m|m−1

m

)
(34)
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or, by defining the long-distance crossing probabilities P+
m ≡ P

(
m
0 |10

)
, P−

m =
P

(
0
m|m−1

m

)
kAB = fAP+

n

P+
m+1 = p±

mP+
m

p±
m + p=

mP−
m

, P−
m+1 = p∓

mP−
m

p±
m + p=

mP−
m

, for m > 1, P+
1 = P−

1 = 1
(35)

Hence, starting from the initial conditions for (P+
1 , P−

1 ) = (1, 1), one can succes-
sively solve (P+

2 , P−
2 ), (P+

3 , P−
3 ), . . . , (P+

n , P−
n ) via Eq. (35). It is important to

note that P−
j is not exactly the same as P+

j in the reverse direction. Only for j = n

these two probabilities can be viewed as mirror images.
Here, I will derive an alternative recursive relation that does not require the

auxiliary reverse probabilities P−
j . The derivation is similar to the one presented

in the supplemental information of Ref. 53 that treats the simpler hopping process.
To achieve this, we will bring P(0

m|m−1
m ) in front of Eq. (34).

P
(

0
m|m−1

m

)
=

p±
m

[
P

(
m
0 |10

) − P
(

m+1
0 |10

)]
p=

mP
(
m
0 |10

) (36)

or by incrementing m

P
(

0
m+1|mm+1

)
=

p±
m+1

[
P

(
m+1
0 |10

)
− P

(
m+2
0 |10

)]
p=

m+1P
(

m+2
0 |10

) (37)

Moreover, we can write for P(m+1
0 |10)

P
(

m+1
0 |10

)
= P

(
m
0 |10

)
P

(
m+1
0 |mm−1

)
= P

(
m
0 |10

) (
1 − P

(
0
m+1|mm−1

))
= P

(
m
0 |10

) (
1 − P

(
0
m+1|mm+1

)
p=

m/p∓
m

)
(38)

Then, we substitute Eq. (37) in Eq. (38) and bring P(m+2
0 |10) in front which yields

P
(

m+2
0 |10

)
=

p=
mp±

m+1P
(
m
0 |10

)
P

(
m+1
0 |10

)
(
p∓

mp=
m+1 + p=

mp±
m+1

)
P

(
m
0 |10

) − p∓
mp=

m+1P
(

m+1
0 |10

) (39)

or

kAB = fAP+
n

P+
m+2 = p=

mp±
m+1P

+
mP+

m+1(
p∓

mp=
m+1 + p=

mp±
m+1

)
P+

m − p∓
mp=

m+1P
+
m+1

, P+
1 = 1, P+

2 = p±
1

(40)
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In the case of a full Markovian assumption, p±
i = p

‡
i and p∓

i = p=
i , we reobtain

the simpler expression of Ref. 53. For some this new expression might seem more
esthetic as the set of two equations has now been transferred into a single recur-
sive equation without relying on the auxiliary probability P−

m . The new function
has its utility [53], but is numerically somewhat problematic as it can sometimes
produce zeros in both nominator and denominator that cancel, but is not practical
for numerical calculations.

The positioning of interfaces is crucial in PPTIS. On one hand, one would like
to put them close together to improve efficiency. On the other hand, putting them to
close will introduce systematic errors due to a decrease of history dependence of
the hopping probabilities, which invalidates Eq. (32). A way to measure whether
the interfaces are sufficiently far is the calculation of a memory-loss function [11].
However, the memory-loss function can only provide a necessary but not neces-
sarily sufficient condition for this separation. In Fig. 4 we give two examples of
well and badly placed interfaces.

λ 2 λ 3 λ 0 λ 1 λ 2 λ 4λ 1λ 0 λ 3

λ 0 λ 3
λ 1 λ 2λ 0 λ 1 λ 2

Good Bad

Figure 4. Examples of well and badly positioned interfaces with respect to the memory-loss
assumption Eq. (32). The top situation requires a good description of the kinetic correlations whenever
the top of the barrier has many small local wells. At the left, the interfaces are correctly placed. Once
the system crosses λ1 it will gain a lot of kinetic energy when arriving at λ2. Henceforth, the chances are
high that the system would not get trapped and directly moves upward to cross λ3. The PPTIS simulation
for this interface configuration will show that p±

2 	 1
2 as it should. At the right-hand side we have put

an additional interface inside the local well. The [3±] path ensemble will consists of trajectories having
a much lower kinetic energy than the [2±] ensemble of the left-hand side. Henceforth, the right-hand
side will overestimate the probability to get trapped. The bottom picture shows impermeable wall (thick
black line) with a small hole. The left-hand side shows a correct positioning of interfaces. The pathways
that are generated from λ0 to λ2 all have to move through the small hole. Conversely, the right-hand
side shows a bad overlap between the [1±] and [2±] path ensembles which might give the impression
that trajectories can tunnel through the wall.
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The milestoning method [12] is very similar to PPTIS. There are basically two
important differences. Milestoning assumes full memory loss once the system
hits an interface. In our notation this could be rephrased as P(lk|jj±m) ≈ P(lk|jj).
This is a stronger approximation than Eq. (32). The approximation of milestoning
becomes exact, if the interfaces coincide with the isocommittor functions [54],
but these are difficult determine. On the other hand, milestoning is more precise
in the construction of the time evolution of the system by making the crossing
probabilities time dependent. This is important if there is not a clear separation of
timescales and also allows to calculate other dynamical properties like diffusion.
Hence, instead ofp±

i , p=
i , p∓

i , p
‡
i withp±

i + p=
i = p∓

i + p
‡
i = 1, milestoning cal-

culates for each interface the time-dependent probability densities p+
i (t), p−

i (t)
with

∫ ∞
0 [p+

i (t) + p−
i (t)]dt = 1. The strengths of PPTIS and milestoning do not

exclude each other and could be unified into a single method as was suggested in
Ref. 55. A realization of such a method was recently published [56].

VI. FORWARD FLUX SAMPLING

FFS was originally developed for the special case of biochemical networks that
do not obey equilibrium statistics nor time reversibility [13]. However, its ad-
vantageous implementation and apparent efficiency has gained this method a fast
increasing popularity for equilibrium systems as well. FFS is based on the same
theoretical TIS rate equations (28) and (29). However, the fundamental difference
is the sampling move. While the principal sampling move in TIS is the shooting
move, FFS is based on a non-Metropolis MC scheme called splitting [57, 58]. This
approach requires stochastic dynamics, although it has been suggested that FFS
is able to treat deterministic dynamics utilizing the Lyapunov instability [59, 60]
using small “invisible” stochastic noises [61]. Like TIS, FFS consists of a straight-
forward MD simulation, from which the escape flux fA is obtained, followed by
a series of path sampling simulations. However, besides giving the flux value, the
MD simulation also provides the starting conditions for the path sampling sim-
ulations. Each time that the first interface λ0 is crossed in the positive direction,
this phasepoint just after the interface is stored on the hard disk. In the first path
simulation, performing the [0+] path ensemble, these points are used as starting
points for the trajectories that are continued until reaching λ1 or returning to λ0.
Naturally, stochasticity is of eminent importance, otherwise all these trajectories
would just reproduce parts of MD simulation. The endpoints of the trajectories that
successfully reach λ1 are stored again and serve as initial points for the [1+] en-
semble. The path ensembles are executed one after the other by the same procedure
until reaching state B (see Fig. 5).

There are advantages and disadvantages compared to the TIS algorithm. The
most important advantage of FFS is that it allows to treat nonequilibrium systems
as it does not require any knowledge about the phasepoint density. TIS employs the
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Figure 5. Illustration of FFS algorithm. (a) Shows the initial MD simulation that is needed to
calculate the flux fA. The positive crossing points (black dots) are stored. (b) Starting from the stored
MD crossing points a number of trajectories are released. The endpoints of the successful trajectories
(that reach λ1) are stored again and used for the next path ensemble simulation (c). Finally, the reactant
state will be reached (d).

shooting move that requires to know ρ(x) for the acceptance, Eq. (19). In addition,
FFS does not require any integration of motion backward in time. Therefore, time
reversibility is not required. Moreover, unlike PPTIS, FFS is, in principle, equally
exact as TIS. However, if one has to chose between TIS and FFS for equilibrium
dynamics, one has to consider following points. FFS will generally create more
trajectories for the same number of MD steps as it recycles previously generated
trajectories. Moreover, there are no rejections like there are in TIS and any other
Metropolis based MC scheme. In practice, the reduction in MD steps will be lim-
ited to a certain factor (≈2,3) as the unsuccessful trajectories, which is the largest
part, have to be followed until reaching state A. On the other hand, the FFS trajec-
tories will be much more correlated than the TIS trajectories. This implies that FFS
needs much more trajectories than TIS to obtain the same accuracy. One reason
for this, is that FFS generates several trajectories having the same starting point.
Absence of stochasticity will result that all these trajectories basically coincide.
Fully Brownian motion does not exclude correlation effects either as the successful
trajectories starting from the same point will hit the next interface in a confined
region. The size of this region is determined by the diffusion orthogonal to the RC
and the time it takes to go from interface to the other. Besides correlations within
a certain path ensemble, the FFS method also introduces correlations between the
different ensembles. This is a crucial difference with TIS where the MD simulation
and all path simulations are independent. One of its consequences is that the FFS
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is more sensitive to the RC than TIS or even RF [39]. An efficiency analysis of
FFS [62] ignores this correlation effect. This can be a rather crude approximation
that is probably only valid when interfaces are approximately equal to the iso-
committor surfaces. Suppose λ⊥ denotes a coordinate orthogonal to the RC. Let
PA(λn|λ0; λ⊥) be the overall crossing probability from λ0 to λn starting from a
point λ⊥ on the first interface. Then, the full overall crossing probability is given by

PA(λn|λ0) =
∫

dλ⊥ PA(λn|λ0; λ⊥)ρ(λ⊥|λ0) (41)

where ρ(λ⊥|λ0) is the probability density of λ⊥ on interface λ0. FFS will
suffer considerably when the distributions ρ(λ⊥|λ0) and PA(λn|λ0; λ⊥) are
not overlapping. In that case, FFS will miss important crossing points that
are significant for the rate evaluation. Some studies have shown that FFS can
significantly underestimate reaction rates [63, 64] in practical cases. Sampling
artifacts like this, are also not yet fully excluded as possible explanation for some
surprising results on nonequilibrium nucleation [65].

This issue will be most sensitive to the MD and the first interface ensembles
on which all the further results will depend. If λ1, λ2, . . . , λn−1 are isocommittor
surfaces then PA(λn|λi; λ⊥) is a constant as function of λ⊥. This eliminates the
problem. This is the reason that Borrero et al. devised a FFS scheme in which the
interfaces are repositioned on-the-fly in order to obtain a proper RC [66].

TIS has the advantage that it can relax the history of the path via the backward
integration. Therefore, the distribution density ρ(λ⊥|λ0) can change when consid-
ering the different path ensembles. TIS can give correct results even if the sampled
distribution of starting points λ⊥ of the final [n − 1+] trajectories do not overlap
with the initial MD crossing points [67].

VII. REPLICA EXCHANGE TIS

In Ref. 9, I showed that a special type of replica exchange [68, 69] can significantly
improve the TIS efficiency (see also Ref. 10 for some extensions of this approach).
A crucial difference with standard RE, which has also been applied to TPS [70],
is that the RETIS method does not require additional simulations at elevated tem-
peratures. Instead, swaps are attempted between the different TIS path ensembles.
For this purpose, RETIS has replaced the initial MD simulation by another path
ensemble, called [0−], that consists of all path that start at λ0 = λA, then go in
the opposite direction away from the barrier inside state A, and finally end at λ0
again. The flux is then obtained from the average path length of the [0−] and [0+]
ensembles as follows [9].

fA =
( 〈

t
[0−]
path

〉
+

〈
t
[0+]
path

〉 )−1
(42)
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where 〈t[0−]
path 〉, 〈t[0+]

path 〉 are the average path lengths in the [0−] and [0+] path ensem-
bles, respectively.

As the dynamical process is now fully described by path simulations with
different interface-crossing conditions, the exchange of trajectories between them
becomes extremely efficient, especially if the process possesses multiple reaction
channels [67]. The methodology avoids the need of doing additional simulations
at elevated temperatures and even gives paths for free as for most swapping moves
whole trajectories are being swapped. Only when a swapping between the [0−]
and [0+] ensembles are attempted, two phase points are interchanged. From the
last point of the [0−] trajectory a new path in the [0+] is generated. Reversaly,
the first point of the old [0+] path will serve to generate a new path in the [0−]
ensemble by integrating the equations of motion backward in time (see Fig. 6).

The RETIS algorithm is then as follows. At each step it is decided by an equal
probability whether a series of shooting or swapping moves will be performed. In

[0−]

[0+]

[1+]

[2+]

[0−]

[0+]

[1+]

[2+]

[0−]

[0+]

[1+]

[2+]

[0−]

[0+]

[1+]

[2+]

State
B

State
A

0λ 2λ 3λ 1λ

0λ 2λ 3λ 1λ

0λ 2λ 3λ 1λ

0λ 2λ 3λ 1λ

SWAP [0+]     [1+] 

SWAP [0−]       [0+], [1+]       [2+]

(a) (b)

(c) (d)

Figure 6. Parallel path swapping move in RETIS. The picture illustrates a RETIS simulation
using four interfaces. (a) shows the initial “superstate” that contains one trajectory per ensemble
[0−], [0+], [1+], and [2+]. (b) Shows the superstate after the [0+] ↔ [1+] swap. The original [0+] tra-
jectory crossed λ1 and is therefore a valid path in the [1+] ensemble. The swapping move is, therefore,
accepted. (c) Shows the trial superstate that is obtained after the simultaneous swaps [0−] ↔ [0+] and
[1+] ↔ [2+]. The first swap requires the integration of motion forward or backward in time starting
from the last or first timeslice of the swapped trajectories. This swap will always generate acceptable
trajectories for the [0−], [0+] ensembles. The other swap [1+] ↔ [2+] is rejected because the old [1+]
path does not cross λ2. (d) Gives the final situation after the whole move.



dynamical rare event simulation techniques 51

the first case, all simulations will be updated sequentially by one shooting move.
In the second case, again an equal probability will decide whether the swaps
[0−] ↔ [0+], [1+] ↔ [2+], . . . or the swaps [1+] ↔ [2+], [3+] ↔ [4+], . . . are
performed. Each time that [0−] and [(n − 1)+] do not participate in the swapping
move they are left unchanged. Also when the swapping move does not yield valid
paths for both ensembles, the move is rejected for these two simulations and the
old paths are counted again. Note that the swapping moves do not require any force
calculations except for the [0−] ↔ [0+] swap.

Like FFS, the path ensembles in RETIS are not fully uncorrelated. However,
their dependence fundamentally different. In FFS, the path ensemble [i+] is fully
determined by its predecessors, the MD simulation and the path simulations [j+]
with j < i. Conversely, the separate RETIS simulations generate a large part of
their trajectories independently. The exchange between the ensembles is, therefore,
an additional help instead of a strict dependence as it is for FFS. Moreover, the
benefit of the exchange works in both directions and is mutual for all ensembles,
that is, the [i+] path ensemble can improve the sampling in both [(i + 1)+] and
[(i − 1)+] via the swapping moves [i+] ↔ [(i − 1)+] and [i+] ↔ [(i + 1)+], and
will improve itself due to the same moves.

VIII. NUMERICAL EXAMPLE

We will apply the different methods on a simple one-dimensional test system
using Langevin dynamics with finite friction. The Langevin dynamics was chosen
because its inhibits stochasticity that is required for FFS. Hitherto, most studies
on FFS have applied Brownian dynamics. As the dynamics we are considering
are not overdamped, the dimensionality of the system becomes effectively two-
dimensional. We could consider the velocity as an orthogonal coordinate [like λ⊥ in
Eq. (41)]. This makes the choice of a proper RC not such a triviality as one would
think at first sight. However, we will simply take the RC to be configurational
dependent, which is the standard approach. The system that we will consider
consist of a single one-dimensional particle inside a double well potential

V (r) = k4r
4 − k2r

2 (43)

with k4 = 1 and k2 = 2. The corresponding potential has a maximum at r = 0
and two minima at r = ±1. We use reduced units where the mass and the Boltz-
mann constant are set to unity, kB = m = 1. The system is coupled to a Langevin
thermostat with friction coefficient γ = 0.3 and temperature T = 0.07. The equa-
tions of motion are integrated using MD timestep of dt = 0.002. The RF method
was applied using the EPF formalism for the transmission coefficient calcula-
tion. For this purpose 100,000 trajectories were released from the TST dividing
surface r = 0. The free energy term

∫ 0
−∞ dλ e−βF (λ) was obtained by a simple
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numerical integration. The RF method is by far the most efficient method for this
system because there is basically no error in the free energy calculation and the
transmission coefficient is close to unity. The RF results will therefore be the
reference for the other methods. The escape flux fA for TIS, FFS, and PPTIS
was determined using a MD simulation of 10,000,000 timesteps. The same MD
result was used for these three methods. We performed an additional MD simula-
tion using less timesteps, 4,000,000, for a second FFS calculation in order to see
how this effects the final FFS result. I defined eight interfaces λ0 = −0.9, λ1 =
−0.8, λ2 = −0.7, λ3 = −0.6, λ4 = −0.5, λ5 = −0.4, λ6 = −0.3, and λ7 = 1.0.
For each path ensemble 20,000 trajectories were generated. For TIS and PPTIS,
50% of the MC moves were shooting moves. I applied the aimless shooting [71]
approach in which the velocities at the shooting point are completely regener-
ated from Maxwellian distribution. However, unlike Ref. 71, shooting points were
picked with an equal probability for all timeslices along the path without consid-
ering the previous shooting point [9]. The other 50% were time-reversal moves.
Time-reversal moves simply change the order of the timeslices of the old path
while reversing the velocities. Time reversal can sometimes increase the ergodic
sampling and is basically cost-free as it doesnot require any force calculations.
However, as aimless shooting is also able to reverse velocities in a single step, the
time-reversal move could actually have been omitted for this case. In the RETIS
algorithm there was at each step a 25% probability to perform a shooting move,
another 25% probability to do a time-reversal move, and a 50% probability to do
a replica exchange move. The FFS simulations consist of a single move which
is the forward integration of the equations of motion. The Langevin thermostat
served for the necessarily stochasticity. The results are shown in Table I. The
RF method gives the most accurate results as expected. The value for κ can be

TABLE I
Results of the Rate Evaluations Using RF, TIS, PPTIS, RETIS, and FFS

Reactive Flux Method 1√
2πβm

e−βF (0)∫ 0

−∞ dλ e−βF (λ)
κ k = κ × 1√

2πβm
× e−βF (0)∫ 0

−∞ dλ e−βF (λ)

EPF algorithm 0.106 2.63 · 10−6 0.874 ± 4% 2.42 × 10−7± 4 %

Path Sampling fA PA(λn|λ0) k = fA × PA(λn|λ0)

TIS 0.263 ± 1% 1.52 · 10−6 ± 20% 4.02 · 10−7 ± 20%
PPTIS 0.263 ± 1% 1.04 · 10−6 ± 19% 2.73 · 10−7 ± 19%
RETIS 0.265 ± 1%∗ 1.05 · 10−6 ± 25%∗ 2.79 · 10−7 ± 25%∗
FFS (long MD run) 0.263 ± 1% 4.69 · 10−8 ± 6%∗ 1.23 · 10−8 ± 6%∗
FFS (short MD run) 0.259 ± 2% 8.45 · 10−9 ± 9%∗ 2.18 · 10−9 ± 9%∗

Final errors were obtained by block averaging and error-propagation rules. The errors of RETIS and
FFS are given a star as these errors should not be considered exact due to the neglect of covariant
terms that arise due the correlations between path ensembles and initial MD simulation. The FFS was
repeated using a shorter (4,000,000 instead of 10,000,000 timesteps) initial MD run.
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Figure 7. Overall crossing probabilities using TIS, RETIS, and FFS.

compared to Kramer’s expression κ ≈ (1/ωb)(−γ/2 +
√

γ2/4 + ω2
b) = 0.9 with

ωb = √
k2/m = √

2. If we compare the TIS, PPTIS, and RETIS simulations we
see that they are all close (within a factor 2) to the RF result. The TIS result is
somewhat too high that is probably due to a single path ensemble calculation that
was not fully converged after 20,000 steps. The RETIS results are clearly better
despite the apparent errors that are somewhat smaller for TIS. The RETIS result
is much closer to the RF reference. Moreover, it uses only halve the number of
shooting moves compared to TIS, which is the most expensive move for realistic
systems as it requires a large number of force evaluations. Also, the construc-
tion of the overall crossing probabilities in Fig. 7 shows a much better matching
between the different ensembles in the RETIS method. The PPTIS result is also
very close to the reference value. The PPTIS approximation, Eq. (32), becomes
not only exact for very diffusive systems, but is also exact for steeply increasing
barriers as all trajectories from λi to λi+1 come directly from λ0 in the past. FFS
on the other hand, that is in principal exact unlike PPTIS, gives an unacceptable
value that is about a factor 20 too low. Still, if we calculate the error using standard
error propagation rules without taking care of the correlations between the ensem-
bles [62], we get errors that seem very low. I also repeated the FFS simulation only
changing the length of the initial MD simulation. A decrease of 60% for the initial
MD simulation resulted in a final result that is again five times smaller. For TIS,
PPTIS, and RETIS the impact of this MD reduction would not even be noticed as
it only effects the error in the flux term that is negligible compared to the error
in the crossing probability. Figure 7 shows that the two different FFS crossing
probabilities are similar at the start, but then start to deviate exponentially. The
reason for this behavior is that the true set of reactive trajectories have an aver-
age kinetic energy distribution at the start that is considerably shifted compared to
the equilibrium distribution. Therefore, a too short MD simulation might not gener-
ate sufficient crossing points having a high velocity. As result, the FFS trajectories
mainly climb up the barrier helped by the stochastic force instead of a high initial
velocity. In Fig. 8, we compare five randomly selected crossing trajectories for TIS
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Figure 8. TIS and FFS trajectories in the (r, v) plane.

and for FFS. The FFS trajectories are clearly unrealistic as they are not symmetric
in the (r, v) plane, which should be the case for a symmetric barrier. The velocities
at the start are much lower than at the other side of the barrier. Moreover, two of
the five trajectories, that were randomly picked from the 166 successful ones, start
exactly from the same MD crossing point (from a total of 5260 crossing points).
TIS, that is able to relax the history of the path, does not show this artifact.

These results have important consequences. It shows that attempts to use FFS
for deterministic MD [59, 60] by applying some small level of stochastic noise
can only work when inertia effects are not important. In other words, when the
deterministic dynamics behaves effectively Brownian. This sampling problem is
not unique to FFS, but to any splitting-type method such as weighted ensemble
Brownian dynamics [72, 73], Russian Roulette [57, 58], vector walking [74], and
S-PRES [75], in which the equations of motion are only followed forward in time.
There is not an easy solution for this problem. Still, this is very much desired for
nonequilibrium systems for which there are no good alternatives. Possibly, the
original nonequilibrium TPS approach of Crooks and Chandler [76] could do bet-
ter in this situation as it continues rebuilding trajectories from the beginning. Still,
the set of starting points follows from a straightforward MD trajectory. Therefore,
also this approach is likely to miss these rare initial points that have high potential
to become reactive. Time-reversal moves might alleviate the problem [10], but
can only be applied for time-reversible dynamics and velocity-symmetric steady-
state distributions. The other possibility is to adapt the RC, λ(x), to the phasepoint
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committor, for instance via an on-the-fly optimization scheme [66]. Such an ap-
proach would need to be carried out in full phase space, which is presently not the
standard.

However, redefining the intermediate interfaces to lie on the isocommittor sur-
faces alone will not be sufficient. If we keep the r-dependent definition for stable
state A, the committor probability can jump from zero to one is a single timestep
(at the point when it leaves state A with a high velocity). Hence, also the state
definition A should be redefined in phase space. For this particular system it seems
intuitive to use constant energy curves λ(x) = 1/2mv2 + V (r) as RC. FFS will
probably work in that case. However, it is yet unclear if it is practically feasi-
ble to design appropriate RCs using full phase space in more complex systems.
Present algorithms [14] have always assumed that is sufficient to use configuration
dependent committor functions.

On the other hand, the TIS methods seems to work properly using configuration
dependent RCs. Only to ensure the stability of state A it is sometimes convenient
to let λ0 be velocity dependent [8] (For this system, the friction coefficient is
sufficiently high to neglect kineticaly correlated recrossing). On the contrary, it
seems that TIS and its variations do not necessarily improve when the RC equals
the true isocommittor, a hypothesis that was postulated in Ref. 54. If interfaces are
placed at constant energy curves, the trajectories will become much longer than in
the present case.

IX. CONCLUSIONS

I have reviewed some dynamical rare event simulation techniques. The RF method
is likely the most efficient approach when studying low dimensional systems for
which an appropriate RC can easily be found. The most efficient implementation
of the RF approach to calculate the dynamical factor is probably the EPF algorithm
that is considerably more efficient than the more common transmission coefficient
calculation schemes. However, even with this more efficient EPF approach, the RF
efficiency will decrease exponentially with barrier height and inverse temperature,
if a proper RC cannot be found [39]. The TPS reactive trajectory sampling does not
require a RC. However, a definition of a RC is still needed in the TPS rate calcu-
lation algorithm, which has been improved by the TIS and RETIS methodologies.
The TPS/TIS/RETIS efficiency only scales quadratically with barrier height and
inverse temperature when using an “improper” RC [39]. The RC insensitivity of
these methods gives them a strong advantage compared to RF methods in com-
plex systems. Of these methods, RETIS is significantly faster than the other two.
However, its implementation is somewhat more difficult than TIS. PPTIS (and the
similar milestoning) is not an exact method as it assumes memory loss beyond a
traveling distance between two interfaces. Using this approximation, PPTIS is able
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to reduce the required path length considerably, which can be important for diffu-
sive barrier crossings. FFS does not require information on the phasepoint density
and is, therefore, ideally suited to study nonequilibrium events. The advantageous
implementation and its apparent efficiency have made FFS a very popular method
for equilibrium systems as well. However, the numerical study, presented here,
shows that FFS has certain pitfalls that have not yet been reported. It shows that
the RC sensitivity of FFS is even more troublesome than it is for RF methods.
Present simulation studies have almost always assumed that RC are functions of
configuration space alone. My example shows that an appropriate RC for FFS
needs to be defined phase space while configurational space would be sufficient
for the RF method and the equilibrium path sampling algorithms TPS/(RE)TIS.
Still, there are presently no alternative methods that can treat nonequilibrium pro-
cesses and do not have the same problem. The fact that FFS and other forward
MC methods get so easily trapped toward unfavorable reaction paths, by miss-
ing an important orthogonal coordinate or velocity in an early stage, requires the
uppermost caution when applying these methods and interpreting their results. In
addition, this article poses challenges for developing improved nonequilibrium
path sampling methods that are either less sensitive to a chosen RC or are able to
find an appropriate phase space-dependent RC on the fly.
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I. INTRODUCTION

Particles in solution exhibit both translational and rotational diffusion. The trans-
lational diffusion is routinely employed to derive accurate estimates of the size
of the scattering particles through the determination of the mass diffusion coeffi-
cient D and using the Stokes–Einstein relation D = kBT/6πηR [1, 2], the standard
technique being dynamic light scattering [3]. Often the experimental procedure in-
volves measurement at different scattering wavevectors q = (4π/λ)sin(θ/2), where
θ is the scattering angle and λ the wavelength. The value of D is then derived
by determining the diffusive time constants at various wavevectors q, and fitting
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them with the relation τD = 1/(2q2D). The dynamic scattering method for the
translational diffusive processes is by now a very well established and widely
used method for various applications in physics, chemistry, biology, and medical
applications.

Much less known and used is the rotational diffusion. Random kicks from sol-
vent molecules do impose random rotations as well translations to the scattering
particle, and while translational diffusion time constants depend on the scattering
angle, rotational diffusion has one specific value τR = 1/(6�) = (8πηR3)/(6kBT)
and quite remarkably, it coincides with the time constant associated to a transla-
tional diffusion over a distance equal to the particle diameter. Rotational diffusion
via a scattering experiment can be performed only if the scattering particle has
an optical anisotropy, either induced by its form, or by the birefringence of the
material of the particle itself. It turns out that the index of refraction mismatch for
the anisotropic part is in general vastly smaller than the isotropic part, and there-
fore the intensity of the depolarized scattered light is very weak compared to the
polarized part. Apart from weakness of the signal, there is an additional difficulty
due to the inevitable presence of multiple scattering. Indeed, even with perfectly
isotropic scattering particles, multiple scattering generates depolarized contribu-
tions. Because multiple scattering involves subsequent scattering processes, the
associated time constants can be in the range of the expected depolarized compo-
nents [4], and this is one of the greatest difficulties that prevent the exploitation of
depolarized scattering.

One way out has been in the past to adjust the index of refraction of the solvent so
it matches the average refractive index of the anisotropic particle, thus drastically
reducing the polarized component, and making the procedure viable [5–7]. For
water solutions, this limits the method to fluorinated particles, whose average
index of refraction is reasonably close to that of water, and addition of urea or
similar liquids allows best matching.

In this work, we will present in some details the advantages offered by a scheme
that we have recently introduced [8] to drastically reduce the ill effects due to
multiple scattering in connection with depolarized dynamic scattering. The method
minimizes the region from which the scattered light is fed to the sensor via a tight
confocal arrangement. This makes it possible to work under nonindex matching
conditions, and the comparison with index matched case is discussed in detail. This
possibility opens new perspectives in the study of high concentration anisotropic
particles suspended in a fluid, and the application to the study of the first stages of
crystal growth is now in progress.

A coverage of basic working formula will be given together with some more
recent theoretical results [9]. Possibility of extracting estimates for the translational
diffusion from number fluctuations in the very small scattering volume will also
be given.
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II. FUNDAMENTALS OF DEPOLARIZED SCATTERING:
THE STATE OF THE ART

Following the same formalism in Ref. 3, we will refer to the coordinate system
shown in Fig. 1.

Coordinates x, y, z identify the laboratory reference system. Axis x is chosen
to be along the wavevector of the scattered beam, ks, while the wavevector ki of
incoming beam is in the plane xy. The polarization plane of the incoming light
is assumed to be parallel to z-axis, which will be referred to as the “vertical”
(V) direction. The scattered light can be selected through an analyzer to be either
parallel or perpendicular to the vertical polarization, thus defining the two scattered
fields EVV and EVH, respectively, the so called polarized and depolarized scattered
fields.

The scatterer is assumed to have two components of the polarizability tensor
(with respect to the solvent), α|| and α⊥, respectively, parallel and perpendicular
to the symmetry axis. The average polarizability and the anisotropy of the particle
polarizability are usually defined as follows:

α = 1

3

(
α|| + 2α⊥

)
(1)

β = (
α|| − α⊥

)
(2)

Figure 1. The coordinate sys-
tem adopted in the text: XY is the scat-
tering plane, � is the scattering angle,
angles θ, ϕ identify the orientation of
the optical axis (OA).
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For a particle with optical axis oriented along the direction θ, ϕ as depicted in
Fig. 1, the resulting components of the polarizability tensor are then given by [3]

αzz = α +
√

16π

45
βY2,0 (θ, ϕ) (3)

αyz = j

√
2π

15
β

[
Y2,1 (θ, φ) + Y2,−1 (θ, ϕ)

]
(4)

As shown in Ref. 3, if a sample containing N scatterers is illuminated by a
plane wave polarized along the z, vertical axis, and the scattered light emitted at
a given angle θ is measured either with polarization along axis z (VV) or with
polarization along axis y (VH), then the following temporal correlation functions
can be obtained:

GVV (q, t) = 〈N〉α2 e−q2Dt + 4

45
〈N〉β2 e−6�te−q2Dt

= GISO (q, t) + 4

3
GVH (q, t) (5)

GVH (q, t) = 1

15
〈N〉β2 e−6�t e−q2Dt (6)

where, as mentioned above, VV and VH indicate the mutual polarization direc-
tions of the incoming beam and the measured scattered light, q = ki − kf is the
transferred momentum, D is the mass diffusion coefficient:

D = kBT

6πηR
(7)

and � is the rotational diffusion coefficient:

� = kBT

8πηR3 (8)

It is worth noticing that the first term in Eq. (3) solely depends on the isotropic
part of the polarizability tensor, thus being independent of the scatterer orientation.
This term is due only to mass diffusion, and it is the only contribution surviving in
the simpler case of optically isotropic scatterers.

Both Eqs. (5) and (6) contain terms depending on the temporal changes of the
optical axis orientation, decaying with a time constant given by �. This terms
describes the rotational diffusion. Apart from inessential numerical factors, the
amplitude of this terms compared to the polarized term in Eq. (5) scales as β2/α2

that is typically smaller that 10−4.
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For short correlation times, Eqs. (5) and (6) obtained above also provide two
important formulas relating just the coefficient α and β:

GISO = 〈N〉α2 (9)

GVH = 1

15
〈N〉β2 (10)

Finally, it can be easily proved that

GVV = GISO + 4

3
GVH (11)

and

GVH

GISO
= 1

15

β2

α2 = 3

5

[
α|| − α⊥
α|| + 2α⊥

]2

(12)

meaning that the ratio β2/α2 can be measured from both the correlation functions
of the isotropic diffusion [see Eq. (5)] and for the VH component [Eq. (6)].

Especially for small particles, the main contribution in Eq. (6) is given by
the depolarized component. That’s why it becomes imperative to collect the IVH
scattered light to measure rotational diffusion coefficients.

III. THE TRADITIONAL APPROACH

A peculiar geometry used in the past [7], takes advantage from heterodyning the
zero-angle scattered field by using the beam transmitted by the sample.

The great advantage in exploiting this configuration is related to the time depen-
dence of both the translational and rotational diffusion. As it appears from Eqs. (5)
and (6), the translational characteristic times are q dependent, becoming shorter
for larger scattering angles, or q. By contrast, the rotational characteristic times
are q independent. Therefore, by looking toward the scattering sample at very low
angles one will see the scattered field affected by fast, minute fluctuations changing
with rotational times, and a much slower modulation of the intensity that eventually
will destroy the correlation. Moreover, due to the 1/R3 dependence of the rotational
diffusion coefficient [Eq. (8)] to be compared to the 1/R dependence of the Stokes–
Einstein relation [Eq. (7)], by increasing r the rotational characteristic times can
easily be comparable to the translational, and thus undistinguishable from them.
So one is forced to extend as much as possible the translational correlation times
by working at low angle, ideally at zero angle.

Heterodyning the signal by collecting the scattered light at zero angle together
with the transmitted beam brings to the following superposition of fields:

E = Et + EVV + EVH (13)
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where Et is the transmitted beam acting as the local oscillator, and EVV, EVH the
two field with polarizations parallel and perpendicular to the polarization plane of
the incoming beam (see above).

More precisely, since the scattered field is in quadrature with the transmitted
[10], the superposition of fields expressed by Eq. (13) is not effective in changing
the intensity. A quarter wave plate inserted downstream the sample was used to the
aim, as described in detail in Ref. 7. In such a way the depolarized scattered field
is phase shifted by π/2 and the superposition [Eq. (13)] operates as a destructive
interference. The corresponding intensity can be written under the hypothesis that
the amplitude of the scattered radiation is much smaller than the transmitted, so
that the second-order terms can be neglected. In such a way

I (q = 0) = It + 2
√

It� [EVV] + 2
√

It� [EVH] (14)

where � indicates the real part of the complex numbers.
Notice that the polarization plane of the field EVV is the same of the much more

intense Et. This prevents for any measure of this depolarized component. The only
depolarized component that can be measured is the EVH that can be selected by
crossing an analyzer with the polarization plane of the incoming beam. By accu-
rately changing the axis of the analyzer one can change the amount of transmitted
light by a factor f accordingly, thus determining a new local oscillator that has
a much smaller amplitude. By contrast, the depolarized intensity is completely
transmitted.

The light intensity after the analyzer is given by

I ′ (q = 0) ≈ ILO + 2
√

ILO� [
fEVV

] + 2
√

ILO� [EVH] (15)

where the new local oscillator is ILO = fIt.

IV. THE NOVEL APPROACH

The method exploits recent results obtained about the fundamentals of the optical
theorem (OT) [9]. By using the adimensional scattering amplitudes as in Ref. 10,
for a collection of N monomers with both positions and orientations at random,
the polarized and the depolarized scattered amplitudes are given by

SVV(0, t) =
[
ik3α + 2

3
k6α2 + 4

27
k6β2

]
N(t)

+
[
ik3β + 2

9
k6

(
α2

3 − α2
1

)] N∑
j=1

[√
16π

45
Y2,0(θj(t), ϕj(t))

]
(16)
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SVH(0, t) =
[
ik3β + 1

3
k6(α2

3 − α2
1

)] N∑
j=1

×
[√

2π

15

(
Y2,1(θj(t), ϕj(t)) + Y2,−1(θj(t), ϕj(t))

)]
(17)

where k = 2π/λ and λ is the wavelength, ϕj and θj are the Euler angles giving the
orientation of each monomer j (for fixed time; see Fig. 1) and Yh,k indicate the
spherical harmonics functions (see above, and for further details [3]). As it can
be immediately appreciated, as monomers change their orientations just the result
of the sum changes, thus making the first- and second-order terms fluctuating
synchronously. Indeed, one can equally measure rotational diffusion from one
of the two terms at will. The first-order term has been considered only for the
previous DDLS experiments. It was the only known at the time, and under index
matching conditions the first term is by far the leading one, the other being actually
negligible. That’s imposed to phase shift the depolarized scattered field by π/2
for making it interfering with the transmitted beam in heterodyne measurements
as mentioned above [7]. Here we propose a method exploiting the measurement
of the second-order term. Indeed, Eq. (17) shows that the same dynamic of the
scattered field could in principle be obtained by heterodyning the second-order
scattered component with the transmitted field, with no need for any phase shifting.
Incidentally the experimental apparatus becomes simpler than the one needed
for studying the index matched samples. Moreover, well out of index matching
conditions, the second term increases and, depending on the particle size, can also
be predominant. This is due to the peculiar combination of α1 and α3, α2

3 − α2
1,

that is not immediately related to β. Just to have an example, a plot of k3β and
k6 (α2

3 − α2
1) is presented in Fig. 2 as a function of the solvent refractive index,

for a suspension of colloids 160 nm in diameter. Typical values for the ordinary
and extraordinary indexes have been assumed, namely n1 = 1.59 and n3 = 1.58.
While the first-order (k3β) term is almost constant across the whole index range,
the second-order one rapidly increase out of index matching.

Well out of index matching conditions the term SVV can be enormous compared
to the SVH, so that the multiply scattered field can be comparable or larger than
the depolarized component. The spurious depolarized field generated by multiple
scattering can fluctuate with characteristic times fast enough to hide the genuine,
fainter depolarized signal [4].

The depolarized light will be heavily dominated by the multiply scattered con-
tributions, thus hiding the much fainter depolarized scattered light. To get rid of
it, we have proposed to illuminate the sample with a beam that is strongly focal-
ized, and to collect light from the focal region with a tight confocal scheme. The
scattering region is then actually reduced to the superposition of the illuminated
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Figure 2. The behavior of k3β and k6 (α2
3 − α2

1) for 160 nm diameter colloids suspended in a
solvent with refractive index changing from 1.3 to 1.8. The colloids have been assumed to be endowed
with refractive indexes n1 = 1.59 and n3 = 1.58. The first order term is almost constant, across the
whole index range, while the second order one significantly increases out of index matching.

focal spot and the region from which light is drawn into the collection fiber. If
the light emitted within the scattering region has a mean free path that is much
larger than the linear size of the scattering volume, the light propagating along the
transmitted beam is just the pure depolarized component to be analyzed (see Fig. 3
for a carton representation of the scattering region). Double or in general multiple
scattering events just occur out of the scattering region, and are then effectively
gotten rid of. Very concentrated samples can then be used and the second term
in Eq. (17) gives a deceivingly measurable contribution to be measured with a
traditional photomultiplier for DLS.

By introducing the standard definition for the intensity autocorrelation function:

G2(τ) = 〈I(0)I(τ)〉 (18)

O

Q

Q′
O′

Figure 3. Schematic representation of two typical scattering events. The light emerging from
the scattering volume (shaded region) is drawn into the optical fiber. The light originated outside the
scattering region is focused out of the fiber, contributing with negligible power to the collected light.
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the polarized and depolarized scattered amplitudes [see Eqs. (16) and (17)] can be
written as

� [SVV(t)] = 2

3
k6α2N(t) (19)

� [SVH(t)] = 1

3
k6(α2

3 − α2
1

) N∑
j=1

[√
2π

15

(
Y2,1(t) + Y2,−1(t)

)]
(20)

where next to the leading order contributions are neglected.
The averages and mutual correlations of the polarized and depolarized scattering

fields are

〈SVH(0)〉 = 〈SVH(t)〉 = 0 (21)

〈SVV(0)〉 = 〈SVV(t)〉 = 2

3
k6α2〈N〉 (22)

〈SVV(0)SVH(τ)〉 = 〈SVV(τ)SVH(0)〉 = 0 (23)

〈SVV(0)SVV(τ)〉 = 4

9
k12α4〈N〉2 + 4

9
k12α4〈δN(0)δN(τ)〉 (24)

〈SVH(0)SVH(τ)〉 = 1

135
k12

(
α2

3 − α2
1

)2〈N〉e−6�τ (25)

The autocorrelation intensity function is then

G2(τ) =
[
|Et|4f 2 + 8

3
|Et|3f 2k6α2〈N〉 + 16

9
|Et|2f 2k12α4〈N〉2

]

+16

9
|Et|2f 2k12α4〈δN(0)δN(τ)〉 + 4

135
|Et|2fk12

(
α2

3 − α2
1

)2〈N〉e−6�τ

(26)

In Eq. (26) three terms are present: the first one is a constant, the second brings
information about the number fluctuations within the scattering volume, and the
third just depends by the rotational diffusion dynamics.

Equation (26) can be normalized for the squared average intensity:

g2(τ) ≈ 1 + gNF(τ) + gROT(τ) ≈ 1 + B

(
16

9
f 2α4〈δN(0)δN(τ)〉

+ 4

135
f

(
α2

3 − α2
1

)2〈N〉e−6�τ

)
(27)

where B is a instrumental constant. Also Eq. (12) becomes

gROT(τ = 0)

gNF(τ = 0)
= 1

15

β2

fα2 (28)
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M M A L FCP

Figure 4. Schematic of the optical layout. P: polarizer; M: microscope objectives; C: cell; A:
analyzer; L: focusing lens; F: optical fiber.

which shows that the correlation function also contains the information about the
optical anisotropy of the particles.

V. THE OPTICAL LAYOUT

The optical layout is schematically shown in Fig. 4. The beam of a He–Ne laser
(He–Ne JDS Uniphase 1100, λ = 632.8 nm, 20 mW) is sent through a Glan-
Thomson polarizer, spatially filtered, expanded and collimated through a lens
doublet. Two identical long distance microscope objectives (M: Nachet 20x,
NA = 0.30) are used to focus the laser light into the sample cell (C) and for collect-
ing in the forward direction both the transmitted and the scattered light coming from
a small region within the sample. A focal spot 1.5 �m in diameter determines the
scattering volume, approximately 7.5 �m long. The cell is 2 mm thick with plane
parallel walls 2.5 mm thick. The emerging collimated beam passes through an an-
alyzer (A) in conditions of not complete extinction and launched by an aspheric
lens (L: focal length f = 45 mm, NA = 0.55) into a monomode optical fiber (FS-
SN-3224, core diameter 4.3 �m) coupled with the cathode of a photomultiplier
(model PMT120-OP). The electronic signal is sent to a digital multi-tau correlator
(FLEX-02-01-D, Correlator.com, CA), with a minimum lag time of 3.3 ns. It pro-
vides a normalized correlation function evaluated in 1120 lag times and a history
of the intensity sampled each 0.17 s. The leakage of the main beam through the
analyzer acts as a local oscillator, tunable in amplitude by varying the position
of the analyzer, heterodyning the weak depolarized scattered light as described in
Section II.

VI. DATA REDUCTION SCHEME

A typical correlation curve plotted in a log–log plane is shown in Fig. 5, obtained
with a water suspension of depolarized monomers 100 nm in radius at a concen-
tration as described below. Two different modes are evident. The fast mode is
determined by the decorrelation in the depolarized light induced by the rotations
of the monomers, and provides the rotational characteristic times. To extract the
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Figure 5. A typical correlation curve obtained with monomers 80 nm in radius.

rotational correlation function we need to separate the two processes, taking care
of the slow mode for first and subtracting it to the overall curve.

The slow mode is determined by the fluctuations of the local oscillator, and can
be either due to an intensity instability of the laser or to the intensity changes due to
the number fluctuations within the scattering volume. The optical system has then
been designed to minimize the characteristic times of the number fluctuations. In
literature, the number fluctuations traditionally introduced for the simple case of
a flat-top illuminating laser beam. Here we present the behavior of the correlation
function obtained for a Gaussian beam profile, that is exactly what we have at the
scattering volume. It can be easily shown that for small lag times the correlation
function for the VV contribution is proportional to the number of monomers within
the scattering volume, N, and decays with an exponential behavior:

〈N(0)N(τ)〉 τ→0−→ N e−τ/τ0 (29)

where the characteristic time is related to the mass diffusion coefficient D as
follows:

τ0 ≈ w0
2

2D
(30)
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The asymptotic behavior in Eq. (29) is more than enough for fitting the slow
mode. For longer times the dependence is not straightforward, but can be easily
obtained through numerical computation.

The dependence upon N is explained as follows. The power of the extinguished
light is proportional to N, and its fluctuation to N1/2 because of Poisson’s statistics
arguments. But the light being collected forward, all the emitted fields sum up
coherently, the intensity turning out to be proportional to N.

Notice that the function describing Eq. (26) also contains the leakage fraction
f, that determines the relative amplitudes of the two modes in Eq. (28).

The VH contribution is proportional to N as well. The physical origin of this
dependence is completely different, being the sum of N random phased scattered
fields, each one depending on the corresponding monomer orientation. It results
that the relative amplitude of the two modes provides information about the ratio
R between 〈S2

VV〉 − 〈SVV〉2 and 〈S2
VH〉, R = bfα2/β2, that is related to the particle

anisotropy.
In order to extract the fast mode from the correlation function in Fig. 6, we first

need to characterize the slow mode. From the characteristic time of this mode a
rough estimate of the mass diffusion coefficient can be attempted.

Figure 6. The time correlation function shown in Fig. 5 plotted on a log–log scale. The continuous
line shows a best fitting with a single exponential. The insert shows the same plot on a log-lin scale,
making evident the exponential decay of the slow mode, providing the characteristic time of the diffusive
brownian motions.
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Figure 7. The fast mode obtained from the correlation function subtracted for the slow mode
shown in Fig. 6. Notice the strong nonexponential decay due to a small polydispersity of the sample
(see text for discussion).

The fast mode is then obtained by subtracting the slow mode from the cor-
relation function, turning out with the curve plotted in Fig. 7. Due to the sam-
ple polydispersity it is not a single exponential decay. A rough estimate of the
characteristic time can be extracted from the slope of the curve for small lag times.
A better description of the curve can be obtained by taking into account the poly-
dispersity through a revisitation of the cumulant theory, applied to the rotational
case. A fundamental difference arise from the 1/R3 dependence of the rotational
diffusion, that introduces a strong asymmetry in the contributions to the correlation
curve also with a small, symmetric polydispersity.

Let W(�) be the distribution of the characteristic times, that is related to the
distribution of radii of the monomers, n(R). Then the field correlation function can
be described as follows:

gROT(τ) =
∫ ∞

0
W(�)e−�τ d� (31)

For a monomodal size distribution, W(�) can be expanded, and this brings to
the following form for the correlation function:

gROT(τ) = e−6〈�〉τ
(

1 + µ2

2!
τ2 + · · ·

)
(32)
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where 〈�〉 is the characteristic rotational diffusion time �, and µ2 = σ2
� is the

second cumulant. Keeping into account the dependence of the rotational diffusion
coefficient, as shown in Eq. (8), the second cumulant can be related to the radii
variance through the following relation:

µ2 = σ2
� ≈

(
6kBT

8πη

)2 9

〈R〉8 σ2
r . (33)

where 〈R〉 is the average hydrodynamic radius R of the monomers.

VII. RESULTS

To test the reliability of the method we have performed a number of measures
with known samples in several experimental conditions. The samples have been
chose to be quasimonodisperse water suspensions of spherical particles endowed
with strong optical anisotropy. The monomers have been produced by the group of
M. Ballouff (see, for example [11–15] and references therein). A PMMA sphere is
included in a protein network constituted by PNIPAM, encapsulating much smaller
palladium nanospheres giving the optical anisotropy. Due to the thermal properties
of the PNIPAM, the volume of the whole network can be changed by changing the
temperature T of the system, more precisely it shrinks by increasing temperature.
At T = 32◦C a phase volume occurs. The samples are suspended in a water solution
of KCl 0.05 M.

The two samples provided by M. Ballouff have been previously characterized
through the Cryo-TEM analysis at many temperatures, and they have been de-
termined to have radii of approximately 80 and 100 nm, with a polydispersity of
9.5% both. Due to the intrinsic high resolution of the rotational measurements, as
well as to the temperature dependence due to both the PNIPAM network behavior
and the water viscosity changes, accurate temperature measurements have been
necessary. Moreover, traditional dynamic light scattering measurements have been
performed at 90◦ by strongly diluting the samples with proper solutions, down to
1.3 × 10−5 w/w and 5.4 × 10−6 w/w, respectively. Data are reported in Fig. 8 (cir-
cles and squares) together with exponential best fits that gives the average radii,
78.2 ± 0.9 nm (at 23◦C) and 108.4 ± 0.8 nm (at 24◦C).

For each measurement a simple turbidity estimate has also been done. The
sample cell has been transilluminated by a collimated laser beam and the intensity
measured in the far field through a calibrated photovoltaic cell. Attenuation can
be varied from a few percent up to 99% under controlled conditions. The data
presented below have been obtained with transmissions of approximately 50%.
Moreover, an example of the reliability of the method at different concentrations
is shown at the end of this section.
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Figure 8. Dynamic Light Scattering measurements of the two samples used to measure the
rotational dynamics. Strong dilutions have been used (see text).

The data reduction scheme described in Section V has been used to recover
the rotational correlation functions by subtraction of the slow modes. Data are
represented in Fig. 9 for the two samples. Experimental points show a relatively
small noise upon more than a decade on the vertical axis.

For large lag times the tail of the curve is evidently not exponential, accordingly
to the polydisperse nature of the sample. Solid lines are best fit obtained with
the cumulants method as previously described. The best fits, corresponding to a
polydispersity of approximately 10%, has to be compared to the Cryo-TEM data
reported above and to our own traditional DLS results (see below).

The measured hydrodynamic radii resulted to be respectively 79.6 ± 0.6 nm
(T = 23.2◦C) and 106 ± 3 nm (T = 24.5◦C), to be compared to the Cryo-TEM
data at the same temperatures, 79.9 and 102.7 nm, and to the DLS measurements,
78.2 ± 0.9 and 108.4 ± 0.8 nm.

Uncertainties in radii are limited to a few percent, due to the strong dependence
of the characteristic times on the radii. Our data seem consistent also with the
presence of a non-negligible skewness, but no data dealing with this feature exist
to compare our result.

In Table I, we report the results of a series of measurements at different con-
centrations obtained with the smaller monomers.
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Figure 9. Typical rotational modes obtained with the described method from measurements of
known anisotropic monomers. Dots represent experimental points. Solid lines are best fits obtained
with the cumulant method (see Section IV).

TABLE I
The Measured Rotational Radii as a

Function of the Colloid Volume Fraction

c (Volume Fraction) R (nm)

1.3 × 10−4 82 ± 2
2.6 × 10−3 79 ± 2
6.5 × 10−3 80 ± 3
9.8 × 10−3 79 ± 2
1.3 × 10−2 77 ± 2

The stability within a few percent is found for concentrations ranging upon
two decades. Notice that at higher concentrations the contributions from multiple
scattering begin to affect the data, by reducing the correlation times. At the lowest
concentrations the uncertainties are mainly due to the relative small signals due to
the small number of monomers within the small scattering volume. Indeed, this
method takes advantage just from the high concentration of the suspension that
increases the rotational signal with respect to the power of the local oscillator and
then brings to faster measurements.
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VIII. CONCLUSIONS

In conclusion we have proved that huge advantages can be obtained by using
a heterodyne DDLS method operated in confocal configuration to measure the
rotational time constants of highly concentrated colloidal suspensions. This over-
comes the typical limitations affecting the traditional DDLS methods. Operated
with known samples, the method brings the expected results for the size as well as
the polydispersity, determined through the cumulant methods modified to the aim.
To the best of our knowledge this possibility has never been possible before, and
opens a completely new approach in the study of colloidal suspensions. Besides the
precise characterization of radii and crystallinity degree of particles in concentrated
suspensions, the method could be applied to the modern approaches to the physics
of nonequilibrium phenomena, phase transitions, as well as we foresee the applica-
tion of this technique operated with known spheres for the study of local viscosity
in fluids, especially close to transitions and critical points. Work is in progress to
apply the method for studying the first stages of protein crystallization, starting
from submicron sized structures that are expected to exhibit a degree of order that
can be gauged through relatively simple control mechanisms related to the specific
phase diagram of the systems (see, for example [16] and references therein).
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I. INTRODUCTION

The nucleation of crystals determines many properties of the emerging crystal
population. Since nucleation selects the polymorphic form, if a different poly-
morph is desired, conditions at which its nucleation is faster than that of the other
possible polymorphs should be sought. If nucleation is fast, many crystals form
nearly simultaneously. Their growth depletes the solution of solute and may lead
to cessation of nucleation at the later stages of crystallization. Thus, the majority
of crystals grow to approximately identical sizes. In contrast, if nucleation is slow
and fewer crystals nucleate at a time, the supersaturation in the solution drops
slowly, the nucleation of new crystals continues and a population of crystals of
various sizes forms. Ultimately, if nucleation is hindered everywhere in the growth
container but at a few selected spots, crystals only nucleate at these spots and grow
large before the solution is depleted of nutrient. Hence, control of nucleation is
a means to control size, size distribution, polymorphism, and other properties of
the crystals.

Here, we review recent advances in the understanding of nucleation of crystals
from solution. Solution crystallization underlies a broad range of industrial, lab-
oratory, and physiological processes. Single solution-grown crystals of inorganic
salts or mixed organic–inorganic materials are used in nonlinear optics elements
[1] and for other electronic and optical-electronic applications; chemical prod-
ucts, and production intermediates are precipitated as crystals in thousands-of-
tons amounts. Another area that relies on solution-grown crystals is pharmacy: the
slow crystal dissolution rate is used to achieve sustained release of medications:
small-molecules organic [2], or protein such as insulin, interferon-α, or the human
growth hormone [2–6]. If the administered dose consists of a few equidimensional
crystallites, steady medication release rates can be maintained for longer periods
than for doses comprised of many smaller crystallites. The formation of protein
crystals and crystal-like ordered aggregates underlies several human pathological
conditions. An example is the crystallization of hemoglobin C and the polymer-
ization of hemoglobin S that cause, respectively, the CC and sickle cell diseases
[7–10]. The formation of crystals in the eye lens underlies the pathology of several
forms of cataract [11, 12]. A unique example of benign protein crystallization in
humans and other mammals is the formation of rhombohedral crystals of insulin
in the islets of Langerhans in the pancreas [13]. Traditionally, protein crystals have
been used for the determination of the atomic structure of protein molecules by
X-ray crystallography [14]; this method contributes ∼87% of all protein struc-
tures solved, with the majority of the other determinations carried out by nuclear
magnetic resonance (NMR) spectroscopy [15]. Nanoparticle synthesis can benefit
from the advances in these and other research areas.

Below, we first discuss the thermodynamic and kinetic aspects of the classical
nucleation theory, which still represents the main framework for the understanding
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of nucleation phenomena. Then we consider recent data on the rates of nucleation
of protein crystals and show that several of the features of the experimentally
determined kinetic dependencies do not comply with the predictions of the classical
theory. We then discuss the two-step mechanism of nucleation, according to which
the crystalline nuclei appear inside metastable clusters of size several hundred
nanometers, which consist of dense liquid and are suspended in the solution. We
review recent evidence suggesting that while this mechanism was first proposed
for the nucleation of protein crystals, it applies to the nucleation of small-molecule
organic and inorganic, as well as colloid and biomineral crystals. We also show that
at the high supersaturations employed in many crystallizing systems the nucleation
barrier becomes negligible, that is, the generation of the crystals proceeds in the
spinodal regime. We discuss the implication of these findings for the nucleation
rate, for the nucleation’s response to the presence of foreign surfaces, and for the
selection of the polymorph form of the crystallizing material.

II. THE CLASSICAL NUCLEATION THEORY

A. The Crystallization Driving Force

In correspondence to the typical physiological, laboratory, and industrial condi-
tions, nucleation is typically considered under constant temperature and pressure.
With such constraints, the transfer of solute molecules from solution to the crystal
is driven by the change of Gibbs free energy [16]. The change in Gibbs free energy
of crystallization, �G

◦
cryst, at constant temperature T, is the sum of the contribu-

tions of the enthalpy �H
◦
cryst and entropy �S

◦
cryst: �G

◦
cryst = �H

◦
cryst − T�S

◦
cryst.

The associated crystallization equilibrium constant

Kcryst ≡ exp
(
−�G

◦
cryst/RT

)
, Kcryst = C−1

e (1)

where Ce is the protein solubility with respect to the studied crystalline form, R is
the universal gas constant, and T is the absolute temperature.

Crystal formation occurs in supersaturated solution, in which the concentration
C is higher than the solubility Ce. Accordingly, the chemical potential of the solute
µ in the solution is greater than the one at equilibrium µe, which in turn is equal
to the chemical potential of the crystallizing material in the crystal, µe = µcrystal.
The chemical potential µ = µ0 + RT ln γC and µe = µ0 + RT ln γeCe, where γ

and γe are, respectively, the activity coefficients of the solute in the crystallizing
solution and in a solution with equilibrium concentration Ce, and µ0 is the chemical
potential in a standard solution. Then the nucleation driving force �µ = µ − µe =
RT ln(γC/γeCe). Often, it is assumed that γ = γe so that �µ = RT ln(C/Ce).

Since γ is a function of concentration, if C � Ce, the assumption γ = γe is
unjustified. In protein and colloid solutions, the activity coefficients are evaluated
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from the relation ln γ ∼= 2B2C, where B2 is the second osmotic virial coefficient. B2
depends in the intermolecular interactions between the solute molecules and can
be independently determined from the dependence of the osmotic compressibility
(d�/dC) = RT(KC/Rθ) on the concentration C, where � is the osmotic pressure,
K is an instrument constant, and Rθ is the Raleigh ratio of intensity scattered at
angle θ to the incident light intensity; the dependence KC/Rθ(C) is measured by
static light scattering [17, 18].

In solutions of biominerals and other complex salts the supersaturation is defined
as �µ = RT ln(a+a−/Ksp), where the solubility product Ksp = ae+ae− takes the
role of Kcryst. The activities of the cations a+ and anions a− in the growth solution
and at equilibrium, denoted with superscript e, are calculated from the concen-
trations of the respective species, accounting for the other solution components
[19]. For compounds more complex than the binary salts assumed in the above
expressions for �µ and Ksp, they become correspondingly more complex.

This definition of �µ = µ − µe = µ − µcrystal, accepted in the fields of phase
transformations, nucleation and crystal growth, contradicts the standard definition
of the change of a thermodynamic variable in a physical or chemical process. In the
standard definition, � signifies the difference between the final and initial states,
while in the above definition, the crystal is the final state and the solution—the
initial. Hence, the two definitions of �µ differ in sign.

B. The Thermodynamic Theory of J.W. Gibbs

The formation of crystals is a first-order phase transition. Accordingly, it is char-
acterized with nonzero latent heat, the crystallization enthalpy �H

◦
cryst discussed

above. More significant for the kinetics of nucleation is the second feature of
first-order phase transitions: the discontinuity of the concentration at the phase
boundary. As a result of this discontinuity, the solution–crystal boundary pos-
sesses nonzero surface free energy. If a small piece of a condensed phase forms in
a supersaturated solution, the surface free energy of the emerging phase boundary
makes this process unfavorable. Thus, a very limited number of embryos of the
condensed phase appear as a result of the few fluctuations that overcome the free
energy barrier. The first step in the formation of a new phase, in which the kinetics
of the phase transformation is determined by this barrier, is called nucleation.

The thermodynamic part of the classical nucleation theory was developed by
J.W. Gibbs in two papers [20, 21]. We present it here with a slight modification: we
consider the free energy balance of creating a cluster consisting of n molecules of
size a, instead of a cluster of radius r, as in the Gibbs’s papers. In a supersaturated
solution, that is, one in which the solute chemical potential is higher than that of
molecules in the crystal so that �µ > 0, the formation of such a cluster leads to a
free energy loss of −n�µ. On the other hand, the creation of the phase boundary
with area S and surface free energy α between the cluster and the solution leads
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Figure 1. Illustration
of the thermodynamic ef-
fects of formation of a crys-
tal. n, number of molecules
in crystal; �µ, solution su-
persaturation; α, surface free
energy; �G, free energy;∗
denotes critical cluster.

to a free energy gain Sα. Assuming that the crystal cluster is a cube, S = 6a2n2/3;
other shapes will lead to coefficients different than 6a2 in this relation, but the 2/3
scaling with n will be preserved for all three-dimensional nuclei. Thus,

�G(n) = −n�µ + 6a2n2/3α (2)

This dependence is plotted in Fig. 1.
Differentiating �G(n), we find the cluster size n* for which �G passes through

a maximum �G*

n∗ = 64�2α3

�µ3 and �G∗ = 32�2α3

�µ2 = 1

2
n∗�µ (3)

where � = a3 is the volume occupied by a molecule in the crystal.
The main assumptions behind Eq. (2) are that (i) the nucleus size changes

continuously, and that (ii) the surface free energy α does not depend on the nucleus
size. Clearly, assumption (i) constrains the applicability of the classical theory to
large nuclei, for which describing the addition of or detachment of a new molecule
with a continuous variable leads to a relatively small error. For nuclei consisting
of less than 100 molecules, and in particular those with fewer than 10 molecules,
the application of Eq. (2) and its corollaries may lead to significant deviations
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between theoretical predictions and experimental facts [22, 23]. Assumption (ii)
is often read to imply that the surface free energy between the nucleus and the
solution is the same as the surface free energy of a macroscopic crystal and the
same solution. Since determinations of the surface free energy of macroscopic
crystals is nearly impossible [24], one cannot claim that the predictive power of
Eq. (2) is limited by this version of assumption (ii). The other interpretation of
assumption (ii) appears more dangerous: small nuclei of size n would clearly have
a different surface structure than small nuclei of size n + 1. Thus, for small nuclei α
would be a function of the nucleus size and this would lead to a different functional
form of �G(n) and different location of its maximum in Eq. (3).

There are numerous treatments in which the dependencies �G(n) and n∗(�µ)
have been derived or computed without the help of these two assumptions [23, 25,
26]. Importantly, while they lead to different functional forms of the �G(n) and
n∗(�µ), the main features of Eqs. (2) and (3) are preserved: �G(n) passes through
a maximum, from which n∗ is defined, and n∗ is roughly inversely proportional
to �µ3.

�G∗ from Eq. (3) is the barrier that must be overcome to form a crystal from
solute molecules. The growth of clusters smaller than n∗ is associated with an
increase of free energy and is unfavorable. Clusters may still grow to such sizes
as a result of a fluctuation, but since a driving force exists for the decay of these
clusters, such events are rare. On the other hand, if as a result of a fluctuation a
cluster reaches a size greater than n∗, its growth is accompanied by a decrease of
free energy and occurs spontaneously. A cluster of size n∗ has equal probabilities
of growth and decay and, hence, such clusters are called critical and they represent
the nuclei of the new phase. Note that by this definition all nuclei are critical and
the term “critical nuclei” is redundant [25].

C. The Rate of Crystal Nucleation

To model the nucleation rate J, that is, the number of nuclei that appear in a unit
solution volume per unit time, M. Volmer postulated—in analogy to the Arrhenius
equation—that J = J0 exp(−�G∗/kBT), where kB is the Boltzmann constant [27].
The external parameters, such as temperature, concentration, and pressure, as well
the solution supersaturation, affect the nucleation rate through �G∗ according to
Eq. (3). There are numerous statistical–mechanical derivations of the nucleation
rate law within the assumption of the classical nucleation theory, for an example,
see Ref. 26. The final expression of these derivations can be represented as [28]

J = ν∗Zn exp(−�G∗/kBT ) (4)

where ν∗ is the rate of attachment of monomers to the nucleus, Z is the Zeldovich
factor, which accounts for the width of the free energy profile �G(n) in the vicinity
of the maximum �G∗, see Fig. 1, and n is the number density of molecules in
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the solution. Equation (4) assumes that the replacement partition function of the
nucleus [26, 28] is equal to 1. This factor accounts for the additional stabilization
of the nuclei due to their translational and rotational degrees of freedom [29].
Neglecting it is a reasonable assumption for crystal nuclei suspended in a viscous
solution; this would not be the case for nucleation in the gas phase.

A major assumption in the derivation of Eq. (4) is that the solution molecules
exchange directly with an ordered cluster. To understand the meaning of this as-
sumption and why it might not apply to nucleation of crystals in solution, we need
to step back and consider the distinction between a solution and a crystal.

Let us consider the phase diagram of a solution or any other two-component
system in coordinates concentration and temperature at constant pressure. This
phase diagram typically contains three phases: a dilute solution, a dense liquid,
and crystal; a higher number of phases are possible if more than one crystalline
polymorph may form. While with some solutions of small-molecule compounds
the dense liquid might not be observable because it would occur at temperatures
lower than the solvent freezing point, the dense liquid is readily seen in protein,
colloid, and some organic solutions [30–33]. To distinguish between the three
phases present in the phase diagram, at least two parameters, called order parame-
ters, are needed. Thus, the dilute solution and the dense liquid differ by the solute
concentration, the dense liquid and the crystal differ by structure (there may be a
slight difference in concentration), and the dilute solution and the crystal differ by
both concentration and structure.

From this point of view, the formation of crystals in solution should be viewed
as a transition along two order parameters: concentration and structure [18]. While
a fluctuation along the concentration axis is easy to imagine, structure transitions
appear less trivial. Pure structure transitions are only possible in melts, whose
concentration is similar to that of the emerging crystalline phase. Crystalline nuclei
form as a result of a fluctuation along the structure axis. The smallest structure
fluctuation can be viewed as a pair of molecules from the melt that has an orientation
identical to the orientation of a pair of molecules in the crystal [34, 35]. This
crystal-like orientation in the pair is preserved over times significantly longer than
the lifetime of a “bond” in the melt. A nucleus arises as a result of accumulation
of such ordered pairs into an ordered piece of new phase. In a sense, structure
fluctuations can be viewed as fluctuations of the density of ordered pairs.

If a crystal nucleates not from its melt, but from a dilute solution or gas, both a
concentration and a structure fluctuation are needed so that a crystalline nucleus
may form (Fig. 2a). Thus, the above assumption that an ordered nucleus forms
directly in the dilute solution corresponds to the assumption that the solution to
crystal transformation occurs as a transition along both order parameters, density
and crystallinity, simultaneously; in Fig. 2a this pathway is represented by the arrow
along the diagonal of the (concentrations, structure) plane. It could be argued that a
more logical pathway for the transition is to proceed along the two order parameters
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Figure 2. Schematic illustration of the two-step mechanism of nucleation of crystals. A dense
liquid cluster forms. A crystal nucleus may form inside the cluster. (a) Microscopic viewpoint in the
(concentration, structure) plane; (b) macroscopic viewpoint of events along dashed line in (a). (c) The
free energy �G along two possible pathways for nucleation of crystals from solution. If dense liquid is
unstable and �G0

L−L > 0 (�G0
L−L—standard free energy of formation of dense liquid phase), dense

liquid exists as mesoscopic clusters, �G0
L−L transforms to �G0

C, and upper curve applies; if dense

liquid is stable, �G0
L−L < 0, reflected by lower curve. �G∗

1 is the barrier for formation of a cluster of
dense liquid, �G∗

2—for a structure fluctuation leading to an ordered cluster.



the two-step mechanism and the solution–crystal spinodal 87

in sequence. Such a sequential pathway would correspond to the formation of
droplet of a dense liquid followed by the formation of a crystalline nucleus inside
this droplet, as illustrated in Fig. 2b.

This mechanism was first suggested by simulations and analytical theory [36–
38]. These theoretical efforts predicted that the density and structure fluctuations
are only separated near the critical point for liquid–liquid (L–L) separation oc-
curring in model protein solution systems [36, 39, 40], while for off-critical com-
positions, the fluctuations of the density and structure order parameters occur
synchronously [36], similarly to the classical viewpoint.

The experiments discussed below demonstrate that nucleation of crystals of the
protein lysozyme, under a broad range of conditions, proceeds in two steps: the
formation of a droplet of a dense liquid, followed by nucleating a periodic crystal
within the droplet [41–44], as schematically illustrated in Fig. 2. If the dense liquid
is stable with respect to the dilute solution, the nucleation of crystals occurs inside
macroscopic droplets of this phase. A far more common case is when the dense
liquid is not stable but has a higher free energy than the dilute solution [31, 32]. In
these cases, the dense liquid is contained in metastable clusters, intriguing objects
in their own right, and crystal nucleation occurs within the clusters.

After and concurrently with the evidence for the operability of the two-step
mechanism in the case of lysozyme crystallization, additional experimental results
demonstrated that this mechanism applies to many other proteins, to small molecule
organic and inorganic compounds, including biominerals, and colloids. Below, we
discuss these and other issues related to the two-step nucleation mechanism.

III. THE TWO-STEP MECHANISM AND THE
SOLUTION–CRYSTAL SPINODAL

A. Experimental Data on the Rate of Nucleation of Crystals

To understand the mechanism of nucleation of crystals in solution we turn to data
on the dependence of the nucleation rate on supersaturation for crystals of the
protein lysozyme, a convenient and often used model system. The dependencies
of the homogeneous nucleation rate of lysozyme crystals on the thermodynamic
supersaturation σ ≡ �µ/kBT at three different concentrations of the precipitant,
NaCl, are presented in Fig. 3. The data in Fig. 3 were obtained using the technique
for direct determination of the nucleation rates of proteins discussed in Refs 45, 46,
which allows distinction between homogenously and heterogeneously nucleated
crystals so that the data points in Fig. 3 are homogenous nucleation rates. In
support of the conclusion that the rates plotted in Fig. 3 characterize homogeneous
nucleation is the fact that they are lower by several orders of magnitude than those
stemming from less careful measurements that may have been contaminated by
heterogeneous nucleation events [46–49].
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Figure 3. The dependence of the rate of homogeneous nucleation J of lysozyme crystals on
supersaturation σ ≡ �µ/kBT at T = 12.6◦C and at the three concentrations of the precipitant NaCl
indicated on the plots. Solid lines: fits with exponential functions; dashed lines: fits with the classical
nucleation theory expression, Eq. (4). Vertical dotted lines at σ = 3.8 indicate the liquid–liquid coexis-
tence boundary at this T and CNaCl = 4%; this supersaturation corresponds to lysozyme concentration
67 mg mL−1. (a) Linear coordinates; (b) semilogarithmic coordinates. With permission from Ref. 50.

Each data series in Fig. 3 corresponds to nucleation experiments carried out at
a fixed precipitant concentration and at fixed temperature. In agreement with gen-
eral expectations, the nucleation rate increases exponentially with supersaturation
at each of the three precipitant concentrations, and, overall, is higher at higher
precipitant concentrations. However, the dependencies contain four peculiarities.
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(i) The J(σ) dependence at the highest precipitant concentration, CNaCl = 4%,
breaks at σ > 3.1 and, in dramatic contrast to prediction of Eqs. (3) and (4),
the section above this concentration is practically steady as supersaturation
increases.

(ii) At σ > 3.45 in the same J(σ) dependence, the data scatter increases and
three of the recorded points deviate significantly from the dominant trend.

(iii) The measured nucleation rates are of order 0.1–1 cm−3 s−1, which is about
10 orders of magnitude less than the prediction of the classical nucleation
theory; the estimate of J stemming from the classical nucleation theory is
discussed below.

(iv) The dependence of the nucleation rate on temperature, shown in Fig. 4
presents another puzzling complexity: as supersaturation is increased upon
lowering of temperature, the nucleation rate first increases exponentially,
as expected from the classical theory, but then passes through as sharp
maximum and recedes following a weaker dependence.
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Figure 4. The dependence of the rate of homogeneous nucleation J of lysozyme crystals on
temperature T at two fixed lysozyme concentration indicated in the plot. The temperatures of equilibrium
between crystals and solution are 315K at Clys = 50 mg mL−1 and 319K at Clys = 80 mg mL−1. The
temperatures of L–L separation are 285K at Clys = 50 mg mL−1 and 287K at Clys = 80 mg mL−1 [32]
and are marked with vertical dashed lines. Symbols represent experimental results from [43]. Lines are
results of Eqs. (6)–(8). With permission from Ref. 51.
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In the following sections, we address these four peculiarities and use them to
draw conclusions on features of the nucleation mechanism that go beyond the
classical nucleation theory.

B. The Nucleus Size and Solution-to-Crystal Spinodal

To understand the breaking J(C) dependency, feature (i) above, we use the nu-
cleation theorem to determine the size of the critical nucleus for crystallization.
According to Eq. (3), the number of molecules in the nucleus n∗ largely determines
the height of the free energy barrier for nucleation �G∗, and hence the nucleation
rate J. To determine n∗, we employ the nucleation theorem [52–55], a universal,
model-independent nucleation law. Importantly, the nucleation theorem does not
rely on the assumptions on the surface free energy of the nucleus, its continuous
growth, or the way, in which molecules join the nucleus, discussed above in rela-
tion to Eqs. (2)–(4). The nucleation theorem provides an estimate for n∗ from the
nucleation rate J,

n∗ − n0 = kBT
∂ ln J

∂�µ
+ α1 (5)

where α1 is a correction that takes values between 0 and 1 [53].
Figure 3b indicates that at CNaCl = 2.5 and 3%, n∗ does not change through-

out the respective supersaturation ranges, while at CNaCl = 4% the nucleus size
changes abruptly at σ = 3.1, corresponding to C = 33.5 mg mL−1. The value of
the parameter n0, which roughly corresponds to the number of solution protein
molecules displaced by the nucleus, can be roughly estimated as less than 1. Then
the nucleus sizes n∗ − n0, extracted from the four linear segments in Fig. 3b are
10, 4, 5, and 1 molecules, respectively. From here we see that the breaking in the
J(C) dependence at CNaCl = 4% is due to the transition of the nucleus size from
five to one molecules.

Nucleus size n∗ − n0 = 1 means that every molecule in the solution can be an
embryo of the crystalline phase, and the growth to dimer and larger clusters occurs
with a free energy gain. Thus, the free energy barrier for the formation of the
crystalline phase �G∗ is below the thermal energy of the molecules. In analogy
to the nucleation of a fluid within another fluid, we call spinodal the phase line at
which the nucleation barrier vanishes and the rate of generation of the new phase is
only limited by the kinetics of growth of its clusters. The spinodal is defined as the
boundary between metastability and instability of an “old” phase, supersaturated
with respect to a “new” phase [20, 21, 56].

The case discussed here, the solution-to-solid phase transition, is one for which a
mean-field free energy expression encompassing both phases cannot be formulated
because of different standard states. Since the inflection point in the dependence
of �G on the order parameter along which the phase transition occurs is typically
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Figure 5. The phase diagram of a lysozyme solution determined experimentally in 0.05 M
Na acetate buffer at pH = 4.5 and 4.0% NaCl. Liquidus, or solubility lines [61, 62], liquid–liquid
(L–L) coexistence and respective spinodal [32], gelation line [31, 32]. Solution-to-crystal spinodal is
highlighted in grey and is from Ref. 63.

used to define the spinodal [57–59], a thermodynamic definition of the solution-
to-crystal spinodal is impossible [57]. The definition proposed here is a kinetic
one, based on the transition to nucleus size of one molecule, that is, to where no
thermodynamic barriers for the formation of the crystalline phase exist.

In Fig. 5, we have depicted the solution-to-crystal spinodal line in the
(C,T) plane, determined as the concentration C at the transition to n∗ − n0 = 1
from Ref. 60. Since at concentrations and temperature below this spinodal line
�G∗ ≈ 0, the nucleation rate J does not increase as supersaturation is increased
by increasing C or lowering T. This explains puzzle (i) above. The existence of a
solution-to-crystal spinodal also helps to explain the maxima in the dependencies
of the nucleation rate J on temperature in Fig. 4, puzzle (iv) above; for further
details and a theoretical model of these factors, see below.

The transition to a spinodal regime of crystal formation also explains the in-
creased data scatter of J(σ) at σ > 3.45, puzzle (ii) above. As shown in Refs 43, 51,
at the point of transition from nucleation to spinodal decomposition the nucleation
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rate undergoes a sharp maximum: on the one side is an ascending branch due
to the decrease of the size of the nucleus, and on the other side is a descend-
ing branch due to the temperature decrease and associated kinetic factors. Near
this maximum, the nucleation rate is very sensitive to variations of the experi-
mental conditions: temperature, protein and precipitant concentrations, and others.
Hence, minor inconsistencies of these parameters may lead to significant variations
in J [42].

C. The Classical Theory Overestimates the Crystal Nucleation
Rate by 10 Orders of Magnitude

To understand puzzle (iii) above, we use Eq. (4) for an estimate of the crystal
nucleation rate based on the classical nucleation theory. The rate ν∗ can be evaluated
from the rate of attachment of molecules to lysozyme crystals at similar protein
concentrations. As discussed in Ref. 64, the surfaces of crystal growing in solution
are smooth and molecules only attach to growth steps which occupy about 10−3–
10−2 of the crystal surface. Hence, the rate of attachment to crystals should be
estimated from the velocity of step propagation rather than from the rate of growth
of the crystal faces.

There are numerous determinations of the step velocities of lysozyme crystals
[65–67]. At temperatures and concentrations similar to those during the determina-
tion of the nucleation rate in Fig. 3, the step velocities are ∼1 �m s−1. This yields,
with molecular size of lysozyme of 3.5 nm, attachment rate to the steps ∼300 s−1.
In contrast to that of large crystals, the nucleus surface is likely rough (because
of the small size of the nucleus) and molecules can attach anywhere. Hence, we
assume that ν∗ ≈ 300 s−1.

The Zeldovich factor Z accounts for the width of the free energy profile along the
nucleation reaction coordinate around the location of the maximum [25, 26, 34, 35].
It is expected to be of order 0.1–0.01 for nucleation of any protein condensed phase
[25, 35, 50]. The protein number density in a solution of concentration ∼50 mg
mL−1 as the one used for the experiments in Fig. 3 [68] is n = 2 × 1018 cm−3.
With these values for ν∗, Z, and n, the pre-exponential factor in Eq. (4) is of order
1019–1020 cm−3 s−1.

The nucleation barrier �G∗, determined from the slope of the dependencies in
Fig. 3b �G∗ ≈ 10−19 J. We can use Eq. (3) to evaluate the surface free energy
α of the interface between the dense liquid and the solution from the value of
�G∗. From the crystal structure, � ∼= 3 × 10−20 cm3 [69]. We get α = 0.5–0.6 erg
cm−2 [50], which is close to determinations for number of other protein crystals
[70, 71] and this correspondence supports the estimate of �G∗ from the data
in Fig. 3.

Combining the estimate for the pre-exponential factor with this estimate for
�G∗ from Eq. (4) we get a prediction for J ≈ 108–109 cm−3 s−1. This value is
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about 10 orders of magnitude higher than the one in Fig. 3. It is important to note
that since we estimate �G∗ from experimental data, the difference between the
experimentally determined J and the prediction of the classical nucleation theory
is due to a lower pre-exponential factor.

D. The Two-Step Mechanism of Nucleation of Crystal in Solution

To understand puzzles (iii) and (iv) above, that the nucleation rate is lower by
many orders of magnitude than the prediction of the classical theory and the non-
monotonic dependence of the nucleation rate on temperature, we show below that
the nucleation of crystals occurs inside metastable mesoscopic clusters of dense
protein liquid, as illustrated in Fig. 2.

Direct observations of ordered nuclei forming within the dense liquid exist,
but only for the case of stable dense protein liquid, Figs. 6 and 7 [72, 73]. Such
direct imaging would be difficult or impossible for the more common case in
which the dense liquid is unstable. The action of the two-step mechanism in this
case is inferred from two pieces of evidence: First, we demonstrate the existence
metastable mesoscopic dense liquid clusters in solutions. Then, we analyze the
complex kinetic curves in Figs. 3 and 4, propose a kinetic law for the two-step
mechanism and show that its predictions qualitatively and quantitatively agree
with the experimental data.

Figure 6. Confocal scanning laser fluorescence microscopy imaging of nucleation of crystals
of glucose isomerase within dense liquid droplets. Bright field imaging; polyethylene glycol with
molecules mass 10,000 g mol−1 (PEG 10000) used to induce crystallization. The time interval between
the left and right images is 380 s. Cprotein = 55 mg mL−1, CPEG = 9.5%, 0.5 M NaCl, 10 mM Tris pH
7; dimensions of each image: 326 �m × 326 �m. With permission from Ref. 72.
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Figure 7. The nucleation of polymers of deoxy sickle cell hemoglobin (HbS) in dense liquid
droplets existing in solution of this protein. Concentration of HbS is 220 mg mL−1. (a)–(d) Temperature
is lowered from 42 to 35◦C, the smaller of the dense liquid droplets disappear, while the larger ones
serve as nucleation centers for HbS spherulites. Spherulites also appear at the locations where smaller
droplets have been, apparently because of the undissipated locally higher concentration. Time elapsed
between (a) and (d) is 27 s, as indicated in the panels. With permission from Ref. 73.

E. Dense Liquid Clusters

If crystallization is carried out at a point in the phase diagram where the dense liquid
is unstable, all density fluctuations are expected to decay with a characteristic time
of order of the diffusion time of the protein molecules, 10 �s, see below [74–76].
Since the molecules in the region of high concentration within the fluctuation
move with the same characteristic time, it would be impossible for them to probe
various structures and find the right one for the crystalline nucleus. Thus, the
crucial question for the understating of nucleation from dilute media is: How does
the transition along the order parameter concentration occur? The answer lies in
the recently discovered metastable mesoscopic clusters of dense liquid.

The evidence for metastable dense liquid clusters comes from monitoring so-
lutions of three hemoglobin variants, oxy-HbA, oxy-HbS, and deoxy-HbS, and
the proteins lumazine synthase and lysozyme, by dynamic light scattering (DLS).
Figure 8a shows a typical intensity correlation function of a lysozyme solution in
the homogeneous regions of the phase diagram. The correlation function reveals
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Figure 8. Characterization of dense liquid clusters. (a) Examples of correlation function of
the scattered intensity g2(τ) and the respective intensity distribution function G(τ) of a lysozyme so-
lution with C = 148 mg mL−1 in 20 mM HEPES buffer; data collected at angle 145◦. (b) Atomic
force microscopy imaging of liquid cluster landing on the surface of a crystal in a lumazine syn-
thase solution. Tapping mode AFM imaging, scan width 20 �m. Apparent lateral cluster dimensions
are misleading, cluster height is 120 nm. (c) Time dependence of the radius of dense liquid clusters in
the same lysozyme solution as in (a). (d) The dependence of the decay rate τ−1

2 of the cluster peak in the
correlation function on the squared wavevector q2 for a lysozyme solution as in (a). With permission
from Ref. 78.

two processes: the faster process, with characteristic time of ∼10–100 �s, is the
Brownian motion of single lysozyme molecules; it is present at all solution con-
centrations. The corresponding hydrodynamic radius, determined via the Stokes–
Einstein equation, is about 1.5 nm and matches well the diameter of a lysozyme
molecule of 3.2 nm. The slower process takes milliseconds; its amplitude increases
with higher lysozyme concentrations. This longer time could come from either
compact lysozyme clusters suspended in the lysozyme solution, or from single
lysozyme molecules embedded in a loose network structure constraining their free
diffusion. Since the measured low shear viscosity of lysozyme solutions is equal
to those determined using high shear rates [77], no loose networks in lysozyme
molecules exist in these solutions and we conclude that long times in Fig. 8a indeed
correspond to lysozyme clusters [74]. The time-dependence of their radius is shown
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in Fig. 8c. The clusters appear immediately after solution preparation; their ra-
dius is relatively steady (Fig. 8). We therefore conclude that these are clusters of
dense liquid.

The number density n2 of the dense liquid clusters and the fraction of the total
solution volume ϕ2 they occupy are evaluated from the amplitudes A1 and A2 of the
respective peaks in the distribution function [74]. Further results on the behavior
of clusters of dense liquid in solutions of hemoglobin and lumazine synthase are
presented in Refs 74, 76, 78. It was found that with all studied proteins, the clusters
exist in broad temperature and protein concentration ranges. The clusters occupy
ϕ = 10−6 − 10−3 of the solution volume [74].

To evaluate the lifetime of the lysozyme clusters, we note that cluster decay
processes contribute a q-independent component to the overall rate sensed by DLS
Ref. 79, �2 = �0 + D2q2, and can be distinguished from cluster diffusion. (�0 is the
rate of cluster decay, D2 is the cluster diffusion coefficient, and q is the wavevector.)
The q-dependent, diffusion component indeed dominates the DLS signal (Fig.
8d). Using �0 � D2q2 with q2 = 3.5 × 1010 cm−2 and D2 = 2 × 10−9 cm2 s−1,
�0 � 70 s−1, we obtain a lower bound 1/�0 ≈ 15 ms for cluster lifetimes.

The determination of the lifetime of the clusters of lumazine synthase was more
straightforward and yielded an estimated of ∼10 s [76, 78]. In addition to detection
by dynamic light scattering, clusters of lumazine synthase were directly imaged
by atomic force microscopy (Fig. 8b) [76, 78], which confirmed their macroscopic
lifetimes.

The lifetimes of the clusters (>15 ms for Hb and lysozyme and ∼10 s for
lumazine synthase) significantly exceed the equilibration times of the protein con-
centration at submicrometer length scales, that is, ∼10−5 s. Thus, the compact
clusters represent a metastable phase separated from the bulk, dilute solution by a
free energy barrier.

Attempts to rationalize the finite size of clusters have focused on a balance
of short-range attraction, due to van der Waals, hydrophobic or other forces, and
screened Coulombic repulsion between like-charged species [80, 81]. While small
clusters that contain about 10 particles, naturally appear in such approaches, large
clusters are expected only if the constituent particles are highly charged, with
about hundreds elementary charges. Such high charges are feasible for micron-size
colloidal particles; however, proteins in solution are known to carry less than 10
elementary changes per molecule. Hence, while for colloidal suspensions these the-
ories successfully predict aggregation [82–84], or even the existence of metastable
clusters [85], we conclude that a distinct mechanism is at work in protein systems,
where clusters contain as many as 106 molecules [75]. A recent study concluded
that the clusters consist of a nonequilibrium mixture of single protein molecules
and long lived but ultimately unstable complexes of proteins [75]. The puzzling
mesoscopic size of the clusters is determined by the lifetime and diffusivity of
these complexes. Several possible mechanisms of complex formation: domain
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swapping, hydration forces, dispersive interactions, and other, system-specific in-
teractions were highlighted.

F. The Rate Law for the Two-Step Mechanism of Crystal Nucleation

A phenomenological theory was developed that takes into account intermediate
high-density metastable states in the nucleation process [51]. The rate law for
the dependence of the nucleation rate on protein concentration and temperature
emerging from this theory is

J = k2C1T exp(−(�G∗
2/kBT ))

η(C1, T )[1 + (U1/U0)exp(�G0
C/kBT )]

(6)

where the constant k2 scales the nucleation rate of crystal inside the clusters, C1 is
the protein concentration inside the clusters, that is, ∼300 mg mL−1, �G∗

2 is the
barrier for nucleation of crystals inside the clusters, η is the viscosity inside the
clusters, U1 and U0 are the effective rates of, respectively, decay and formation
of clusters at temperature T, and �G0

C is the standard free energy of a protein
molecule inside the clusters in excess to that in the solution, depicted schematically
in Fig. 2c [51]. Recent experimental determinations indicate that �G0

C is of order
10 kBT [75].

Following Ref. 86, the nucleation barrier �G∗
2 in the vicinity of the solution-

to-crystal spinodal was modeled as

�G∗
2(T ) = E∗

(Te − T )

[
1 − (Te − T )2(

Te − Tsp
)2

]
(7)

where E∗ is a parameter, Te is the temperature, at which a solution of the studied
concentration is in equilibrium with a crystal, and Tsp is the spinodal temperature.
Te and Tsp are determined from the phase diagram in Fig. 5, and E∗ is determined
by fitting Eq. (7) to the slope of the J(C) dependencies in Fig. 3b.

The viscosity inside the dense liquid clusters was modeled as

η = η0
{

1 + [η] C1 exp
(
kη [η] C1

)}
exp

(−Eη/kBT
)

(8)

where [η] is the viscosity increment, and kη and Eη are constants; all three viscosity
parameters are determined from the known dependencies of viscosity in the studied
solution on temperature and concentration.

A crucial assumption in Eq. (8) is that the concentration inside the dense liq-
uid clusters C1 increases as temperature is lowered, in agreement with the phase
diagram in Fig. 5 and the likely similarity between the dense liquid in the clus-
ters and the stable dense liquid depicted in the phase diagram [51]. As a result of
this C1(T) dependence, the viscosity η increases much more strongly in response
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to decreasing temperature T then suggested by the quasi-Arrhenius member of
Eq. (8) with Eη about 10–20 kJ mol−1 [87].

The denominator of Eq. (6) offers another pathway by which decreasing tem-
perature affects the nucleation rate J, besides the temperature dependence of the
viscosity. Since (U0/U1)exp(−�G0

C/kBT) is the nonequilibrium volume fraction
occupied by the clusters, the term in the square brackets in the denominator of
Eq. (6) is approximately the reciprocal nonequilibrium volume fraction occupied
by the clusters, φ−1

2 . Since �G0
C > 0, see above, lower T leads to a greater value of

the denominator, which corresponds to a lower volume of the dense liquid clusters
and accordingly to lower J. This contributes about factor of five in the decrease in
J as temperature is lowered from Tsp to the lowest values probed in Fig. 4.

Using Eqs. (6)–(8) nucleation rate data at varying temperature and protein
concentrations in Fig. 3 and Ref. 63, as well as nonmonotonic dependencies of the
nucleation rate on temperature in Fig. 4 were reproduced with high fidelity using
literature values or independently determined parameters of the thermodynamic
and kinetic parameters of the system [51]. The good correspondence between
the model results and the experimental data supports the validity of the two-step
nucleation mechanism. According to Eq. (6), the increasing part of the J(T) as
temperature is lowered below Te is due to the increase of the supersaturation �µ

that shrinks �G∗
2 according to Eq. (3); this leads to exponential increase in the

nucleation rate J. The maximum in J(T) is reached exactly at T = Tsp, where �G∗
2

vanishes; note that Tsp is independently determined from plots similar to the one at
4% in Fig. 3c [63]. The steep decrease in the nucleation rate as T is lowered beyond
the maximum at Tsp is a crucial part in the proof of the validity of the two-step
mechanism: within the two-step mechanism this steep decrease is explained by the
smaller volume of the dense liquid clusters at lower temperature, and by the higher
concentration inside them, leading to higher viscosity. Both the lower volume of
the clusters and the higher viscosity lead to lower nucleation rate.

No pathway of steep decrease of nucleation rate beyond the spinodal temper-
ature exists if one assumes one-step nucleation: nuclei forming within the dilute
solution would be exposed to its viscosity, which is a weak function of temper-
ature. Thus, the nucleation rate would decrease almost imperceptibly, by ∼16%,
assuming Eη = 20 kJ mol−1, within the 5–6K range probed. Note that the decrease
in nucleation rate in glass forming melts in response to temperature decrease, in-
terpreted as a result of viscosity increase in the melt, occurs over 40–50K [88];
furthermore, this response is significantly enhanced by the stronger temperature
dependence of viscosity of melts as compared to the viscosity of solutions.

To understand puzzle (iii) above, that the nucleation rate is lower by 10 orders
of magnitude than the prediction of the classical theory, we compare the nucleation
kinetic law in Eq. (6) to that in Eq. (4). We see that φ2k2C1T/η takes the place of
the product νZn. In solutions of concentration C in the range 20–60 mg mL−1 as
the ones in which the nucleation rates in Fig. 3 were measured, the cluster volume



the two-step mechanism and the solution–crystal spinodal 99

fraction φ2, represented by the denominator in Eq. (6), is of order 10−7–10−6. With
the concentration C1 in the clusters around 300 mg mL−1, Eq. (8) shows that the
viscosity η of the dense liquid in the clusters is around 100 cP, or ∼100 × higher
than in the normal solution. We get that the nucleation rate should be ∼109 × lower
than the prediction of the classical theory, which assumes nucleation in the solution
bulk. Thus, the two-step mechanism explains the third peculiarity of the nucleation
rate data in Fig. 3: the significantly lower pre-exponential factor in the nucleation
rate law.

G. The Rate-determining Step in the Two-Step Nucleation Mechanism

The derivation of Eq. (6) is based on the assumption that the first step in the two-step
mechanism, the formation of the dense liquid clusters is fast and that the second
step, the formation of the crystal nuclei within the dense liquid clusters, is rate
determining. While the excellent agreement between the experimental data and
the prediction of Eq. (6) in Fig. 4 can be viewed as a support of this assumption,
it should and can be tested independently.

As first evidence in favor of the fast rate of generation of the dense liquid
clusters, we view data on the time dependence of three characteristics of the cluster
population: average radius, number density, and volume fraction, illustrated for the
case of average cluster radius in Fig. 8c. All of these dependencies, monitored for
the proteins lumazine synthase [76, 78], lysozyme [75], and three hemoglobin
variants [74] reveal that the clusters appear within several seconds of solution
preparation. After that, the cluster populations are stable for several hours.

For an additional test, we use the similarity between the clusters and stable
droplets of dense liquid that exist below the liquid–liquid coexistence line in the
phase diagram in Fig. 5. The rate of nucleation of the dense droplets was deter-
mined by monitoring the increase in time of the number of droplets appearing in
an isothermal solution supersaturated with respect to the formation of dense liquid
[68]. These data yield droplet nucleation rates, which are of order 108 cm−3 s−1.
These rates are about 10 orders of magnitude faster than the rates of crystal nucle-
ation and support the conclusion that the nucleation of the dense liquid precursors,
stable or unstable, is much faster than the rate of crystal nucleation within these
precursors.

The conclusion that the rate of nucleation of crystals within the dense liquid
clusters is the rate-determining step in the two-step nucleation mechanism supports
the applicability of Eq. (6) as the rate law for this process. Another important
consequence of this conclusion is related to the applicability of the nucleation
theorem to the two-step nucleation mechanism. Since cluster formation is fast,
the clusters can be considered in equilibrium with the solution. Then the chemical
potential of the protein in the clusters is equal to the chemical potential of the
protein in the solution, and �µ = µsolute − µcrystal is the supersaturation to which
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the crystal nuclei are exposed within the clusters. Since the cluster number is
steady, J is the rate of nucleation of crystals inside the clusters. From the latter
two conclusions, it follows that applying the nucleation theorem, Eq. (5) with
the macroscopically observed nucleation rate and the external supersaturation, is
equivalent to applying the nucleation theorem to the nucleation of crystalline the
dense liquid. Hence, the size of the nuclei determined using the nucleation theorem
refers to the crystalline nuclei within the clusters. Furthermore, the transition to
spinodal regime occurs when the crystalline nuclei reach size one molecule and
this transition corresponds to �G∗

2 = 0.
Finally, we can resolve an apparent controversy. From the above estimate of the

lowering of the nucleation rate due to the low volume fraction and the high viscosity
of the dense liquid, it may appear that the selection of the two-step mechanism
violates the principle of fastest increase of entropy [89, 90]. This principle governs
the selection of kinetic pathways toward, in most cases, the mechanism leading
to the fastest rate: faster consumption of supersaturation corresponds to faster
increase of the total entropy of the universe. This is an incorrectly posed problem:
the estimate of the nucleation rate above used the value of the nucleation barrier
�G∗ extracted from the experimental data. As just demonstrated, this barrier is in
fact�G∗

2 from Fig. 2c and Eq. (6), that is, the barrier for nucleation of crystals inside
the clusters. Since the surface free energy at the interface between the crystal and
the solution is likely significantly higher than at the interface between the crystal
and the dense liquid, the barrier for nucleation of crystals from the solution would
be much higher. This would lead to much slower nucleation of crystals directly
from the solution than inside the clusters. Thus, the protein crystal nucleation
follows the two-step nucleation mechanism because it provides for faster rate of
the solution to crystal phase transition and in this way for faster decrease of the
free energy of the system, which corresponds to faster increase of the entropy of
the universe.

H. The Role of Heterogeneous Nucleation Substrates

Knowing that the nucleation of crystal within the dense liquid clusters is the rate-
limiting step in the two-step mechanism, we can address a broader related question:
Since from a general point of view, the rate of nucleation via the two-step mecha-
nism depends on two pre-exponential factors, J01 and J02, and two barriers, �G∗

1
and �G∗

2, which of these four parameters is the most significant. Clearly, the
answer should be sought between J02 and �G∗

2. Since nucleation occurs in the
vicinity of the solution-to-crystal spinodal, �G∗

2 is very small, and hence, the most
important parameter is J02. This is a surprising conclusion, and it sheds light on
the role of heterogeneous substrates in nucleation.

Nucleation is often facilitated by heterogeneous centers [57, 91]. The generally
accepted mechanism of heterogeneous nucleation is that it follows the kinetic law
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for homogeneous nucleation but is faster due to lowering of the nucleation free
energy barrier [57]. Since we now know that �G∗

2 is insignificant, we conclude that
in contrast to the generally accepted viewpoint heterogeneous nucleation centers
assist nucleation not by lowering �G∗

2, but by assisting the growth of the ordered
clusters through the factor accounted for in the pre-exponential factor J02.

There may be many mechanisms by which a surface may facilitate the growth
of the ordered clusters. The most obvious one is that the “right” crystal structure,
that is, the one that minimizes the free energy of the system, is similar to the struc-
ture of the surface. Alternatively, the surface structure may stabilize a necessary
intermediary en route to the “right” crystal structure, similar to the way enzymes
stabilize the transition state, and not the final product of the catalyzed reaction
[92]. Another possibility is that the surface may catalyze the formation of the in-
termolecular bonds in the crystal. If the structure of a substrate is similar to the
structure of the growing crystal, this is referred to as templating [93, 94]. Exam-
ples were found for crystallization of proteins on mineral substrates and on ordered
lipid layers [95, 96]. One may view the acceleration of nucleation of γ-glycine
crystals in the bulk of a supersaturated solution by elliptically polarized light, and
α-glycine crystals by linearly polarized light as examples of assisted structuring
of the dense liquid by appropriately structured electric field [97].

I. The Broad Applicability of the Two-Step Nucleation Mechanism

Above, we analyzed in detail data on the kinetics of nucleation of crystals of the
protein lysozyme, which allow a rather confident conclusion about the applicability
of the two-step mechanism. The evidence for the applicability of this mechanism
to the nucleation of crystals of other proteins is less direct. In Ref. 98, crystals
of several intact immunoglobins were found to coexist for extended lengths of
time with dense liquid droplets without the droplets generating additional crystal
nuclei. The crystals that were nucleated on the droplet boundaries grew into the
dilute solution, rather than into the dense liquid. This was interpreted in favor of
nucleation of the crystals within dense liquid clusters suspended in the solution.

Besides the nucleation of protein crystals, the action of the two-step mechanism
has recently been demonstrated for the homogeneous nucleation of HbS polymers,
with metastable dense liquid clusters serving as precursor to ordered nuclei of the
HbS polymer [74, 99, 100]. Other studies have shown that the nucleation of amyloid
fibrils of several proteins and peptide fragments, such as Alzheimer-causing A-β-
peptide or the yeast prion protein follows a variant of the two-step mechanism in
which the role of the intermediate liquid state is played by a molten globule of
consisting of unfolded protein chains [101, 102].

The applicability of the two-step mechanism to the nucleation of crystals of
urea and glycine was deduced in a series of experiments, in which high power
laser pulses were shone on supersaturated solutions [97, 103]. It was fond that the
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nucleation rate increases as a result of the illumination by 8–9 orders of magnitude
and that by using elliptically or linearly polarized light, α- or γ-glycine crystals
could be preferentially nucleated. Since glycine does not absorb the illumination
wavelength, and the electric field intensity was insufficient to orient single glycine
molecules, it was concluded that the elliptically or linearly polarized pulses stabi-
lize the structure fluctuations within the dense liquid, which lead to the respective
solid phases [41, 103].

Colloid systems are the ones for which the evidence in favor of the applicability
of the two-step mechanism is the strongest. By tracking the motions of individual
particles of size a few microns by scanning confocal microscopy, the nucleation of
crystals in colloidal solutions was directly observed [104–106]. These experiments
revealed that the formation of crystalline nuclei occurs within dense disordered
and fluid regions of the solution.

The role of an amorphous precursor in the nucleation of crystal of biominerals
has been speculated for a long time, for a historic overview, see [107]. However, it
was envisioned that the precursor does not facilitate that formation of the crystalline
nuclei, but only serves as a source of material for reprecipitation into a crystalline
phase. Only recently it was shown that amorphous or liquid clusters of calcium
and carbonate ions are present in calcium carbonate solutions and facilitate the
nucleation of calcite crystals, in a manner similar to the role of the mesoscopic
clusters in lysozyme crystallization discussed above [108, 109]. The free energy
landscape along the nucleation reaction pathway in Fig. 2c was used to characterize
kinetics of the process of calcite crystallization [109].

A two-step nucleation mechanism going through metastable clusters (in this
case, swollen micelles) has also been theoretically predicted for a ternary system
of two homopolymers and their block copolymer [110].

Stable dense liquid was found to exist in solutions of organic materials and serve
as location where crystals nucleate and grow [33]. The existence of the dense liquid
in these solutions has been attributed to the same fundamental physical mechanism
as the one acting in protein solutions: the size of the solute molecules is larger than
the characteristic lengthscale of the intermolecular interactions in the solution
[40]. On the other hand, unpublished evidence from the pharmaceutical industry
suggests that in many other cases the stable dense liquid, referred to as “oil” by
the practitioners in the field, is so viscous that no crystals can form in it. This
is in contrast to the observations in Figs. 6 and 7, in which crystals and sickle
cell hemoglobin polymers form in the relatively nonviscous dense protein liquid.
While this has not been tested, it is possible that the two-step mechanism operates
in these organic systems by utilizing dense liquid clusters, similar to those seen in
protein, colloid, and calcium carbonate solutions.

In general, the two possible intermediate states for the two-step mechanism,
the stable dense liquid and the metastable clusters, have distinct mechanisms: the
discrepancy of the lengthscale of the intermolecular interactions in the solution
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and the size of the crystallizing molecules for the stable dense liquid, and the
existence of limited lifetime complexes for the clusters. Thus, for a given system
the availability of any of these two intermediate states is independent of the other;
both of them depend on the exact physicochemical characteristics of the system.

The broad variety of systems in which the two-step mechanism operates sug-
gests that its selection by the crystallizing systems in preference to the nucleation
of ordered phases directly from the low-concentration solution may be based on
general physical principles. This idea is supported by two examples of general
physical theory: by Sear [111] and by Lutsko and Nicolis [112]. Of particular in-
terest is the latter work. It treated a range of points in the phase diagram of two
different model systems that likely encompass a broad variety of real solutions and
demonstrated that the two-step formation of crystalline nuclei, via a dense liquid
intermediate, encounters a significantly lower barrier than the direct formation of
an ordered nucleus and should be faster. Interestingly, the intermediate state re-
sulting from the theory was not stabilized and represents just a well-developed
density fluctuation.

IV. SUMMARY AND CONCLUSIONS

We show that the classical nucleation theory fails to provide understanding of
several features of measured kinetic curves: nucleation rates, which are orders
of magnitude lower than the classical prediction; nucleation kinetics curves that
exhibit saturation, or, even more puzzling, maxima and decreasing branches, with
increasing supersaturation, as well as the role of the other, stable and unstable,
phases possible in solution.

We show that these features of the nucleation kinetics reflect the action of two
factors, which are unaccounted by the classical nucleation theory: the existence of
a spinodal for the solution to crystal phase transition, and the action of a two-step
nucleation mechanism. As the spinodal is reached upon supersaturation increase,
the barrier for nucleation of crystals vanishes and further increases in supersatu-
ration do not yield faster nucleation rate. According to the two-step mechanism,
the nucleation of crystal, step two, occurs within mesoscopic clusters of dense
liquid, step one. While the initial thought provoking results on the nucleation ki-
netics were obtained for the nucleation of protein crystals, and, correspondingly,
the two-step mechanism was first proposed for these types of crystals only, further
investigations have shown the validity of this mechanism to organic, inorganic,
and colloid materials, including the important class of biominerals.

Since the main body of experimental data supporting the concepts of the solu-
tion to crystal spinodal and the two-step mechanism were obtained with protein
solutions, a crucial question is the general applicability of these concepts to other
crystallizing systems.
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The issue of the spinodal appears more straightforward: the nucleation of nu-
merous crystals in industrial and laboratory practice is carried out at such high
supersaturations that the nucleation occurs either in the spinodal regime or in
the immediate vicinity of this regime, where the nucleus consist of just a few
molecules.

The action of the two-step mechanism relies on the availability of disordered
liquid or amorphous metastable clusters in the homogeneous solutions prior to
nucleation. While such clusters have been demonstrated for several protein systems
and for calcium carbonate solutions it is likely that not all solutions would support
the existence of such clusters with properties allowing the nucleation of crystals
in them. In such systems the action of the direct nucleation mechanism might be
the only option. On the other hand, an intriguing hypothesis is presented by one of
the theories discussed above: that a stabilized intermediate state, as a stable dense
liquid, as seen in Figs. 6 and 7, or as a metastable mesoscopic cluster, as in Fig.
8, is not needed and the two-step mechanism will act even if the intermediate step
is just a density fluctuation. Thus, the two-step mechanism may in fact operate in
systems where no intermediate is independently found.
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I. INTRODUCTION

The process by which atoms, molecules, or particles form crystals after a tem-
perature quench is important in many natural situations and applications but still
the subject of active investigations [2–4]. The rate of crystallization is limited by

Advances in Chemical Physics, Volume 151: Kinetics and Thermodynamics of Multistep Nucleation and
Self-Assembly in Nanoscale Materials, First Edition. Edited by Gregoire Nicolis and Dominique Maes.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

111



112 john r. savage, liquan pei, and anthony d. dinsmore

the early stages, known as nucleation, in which thermal fluctuations lead to small
clusters of the new crystalline phase. The classical nucleation theory assumes that
small clusters form with the same structure as the new phase but that the inter-
facial energy leads to a rate-limiting free energy barrier and a minimum size for
stable clusters [2–5]. This model was originally envisioned for nucleation of liquid
droplets in a gas phase, but is often extended to the case of solids nucleating in
a gas or liquid phase. By this mechanism, a small cluster having the structure of
the new crystalline phase forms spontaneously. While this cluster is small, its free
energy exceeds that of the initial phase because of an energy penalty at the cluster
boundary (a surface energy term). While most of these clusters minimize their free
energy by breaking up, random collisions make a few clusters large enough that
the change in bulk energy exceeds the change in surface energy, and the clusters
can thereafter minimize their free energy by growing. In this model, the rate at
which stable clusters are formed is then related to the probability that random
fluctuations lead to a cluster of sufficient size: the rate is proportional to the expo-
nential of the free energy barrier. While it is plausible that the classical single-step
pathway might be the most rapid one, it is now known that this is not always the
case. In one alternative scenario, nucleation may occur by the sample’s passing
through multiple states in order of decreasing free energy [3, 6–8]. This proposed
mechanism is most often referred to as Ostwald’s rule of stages, which proposes
that a sequence of crystalline phases should appear on supercooling a fluid [6]. A
beautiful example of Ostwald’s rule is shown by a recent high-resolution electron
microscopy study of crystallization of LiFePO4 [9, 10]. In other cases, however,
nucleation of a solid phase might involve noncrystalline phases, with fluid or liq-
uid crystalline symmetry. Moreover, how the nature of the interactions affects the
nucleation dynamics is not well established.

Crystallization of globular proteins is a critical step in finding protein structure
and recent work on this topic has advanced our understanding of crystallization
from a supercooled liquid or gas. In 1997, ten Wolde and Frenkel described Monte
Carlo computer simulations, in which globular proteins in solution were mod-
eled as spheres having a hard-core repulsion and a short-range attraction [7, 11].
They showed that under these circumstances nucleation does not always proceed
by a classical single-step process. Instead, in a narrow range of temperatures and
concentrations, nucleation can proceed in two distinct steps. In the simulations,
droplets of a liquid phase, enriched in protein, appeared first. At a crossover size
of approximately 200 particles, these liquid droplets then became crystalline. Un-
til this point, the clusters would still most often break up because their size was
below the critical value at which the free energy reaches a peak, but thermal fluctu-
ations led some clusters to grow beyond the critical size. This two-step nucleation
process is illustrated in Fig. 1. More recent computer simulations [4, 11–14] and
theoretical models including density functional theory, liquid structure theory, and
kinetic models [15–20] have similarly predicted that two-step nucleation should
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Figure 1. Schematic illustrations of (top) the classical nucleation model and (bottom) two-step
nucleation.

occur. Indeed, density functional theory [19] and computer simulations [14, 21]
more recently predicted that two-step nucleation should also occur in the Lennard-
Jones system. Hence, the phenomenon of two-step nucleation during crystalliza-
tion might be quite common.

For predicting crystallization rates, the two-step nucleation process is crucial
because it significantly reduces the free energy barrier, which causes an expo-
nentially large enhancement of the rate of crystallization [11, 19, 20]. In some
systems, the nucleation pathway might also affect the long-time behavior if the
sample becomes trapped in one of the nucleation steps [22–25].

Despite the fact that phase transitions occur out of equilibrium and involve rela-
tively small clusters of particles, properties of the bulk equilibrium phase diagram
are nonetheless informative [6, 8]. A key distinction between atomic systems and
globular proteins is the range of the attraction. Many atomic systems (such as Ar)
can be reasonably modeled by a Lennard-Jones or similar interaction, in which
particles strongly repel one another near contact and attract one another at longer
distances over a range that is comparable to the particle diameter. By contrast,
proteins (and the colloidal particles in our experiments) have a range of attraction
that is much smaller than the particle size. This distinction has a major effect on
the equilibrium phase diagram in two- and three-dimensional systems. An atomic
(Lennard-Jones-like) system exhibits the three familiar phases: gas (g), liquid (l),
and crystalline solid (s) (Fig. 2a). This diagram has the familiar g-l critical point
(•), triple temperature (—), and regions of two-phase coexistence. For short-range
attractive systems (Fig. 2b), there are only two phases: fluid and crystal. Curiously,
no g-l coexistence exists in equilibrium because the g-l binodal is superseded by
the g-s binodal. In Fig. 2, the metastable g-l region is indicated by the shading.
Microscopically, the liquid’s metastability may be explained by the fact that when
a crystal melts into a liquid, many short-range contacts are lost and the lost bond
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Figure 2. Schematic phase diagrams for systems with isotropic hard-core repulsion and longer
range attraction. (a) When the range of attraction is comparable to the particle size (as in a Lennard-
Jones system), the phase diagram has gas (g), liquid (l), and crystalline solid (s) phases, with regions
of coexistence. The gray region denotes where g–l coexistence is metastable because the liquid is
superseded by the crystal. (b) For a short-range attraction, only g and s remain and g–l coexistence
and the critical point become metastable (gray). (c) For an even shorter range of attraction (<10% of
particle diameter), a second solid phase (s1) appears along with a new s1–s2 critical point. Adapted
from Ref. 1.

energy overwhelms the gain in entropy. If the attraction is of long range, then many
of these contacts persist in the liquid phase. Experiments with colloidal particles
with variable interactions support these predicted phase diagram topologies [26].

When a sample is cooled from gas to the region of g-s coexistence, nucleation
may be affected by the metastable g-l critical point and the metastable g-l spinodal
region. Near this region of parameter space, density fluctuations cost little energy
(or minimize energy, in the spinodal region), and these fluctuations occur imme-
diately on supercooling. Crystallization is now more likely to occur in the dense
regions, where the probability that random fluctuations lead to a large crystalline
cluster is much larger. In terms of the macroscopic phase diagram, the nucleating
clusters pass through the metastable liquid phase on their way to the solid phase. In
the Lennard-Jones-type system, the g-l critical point lies well outside the l-s region,
but a supercooled sample still forms metastable liquid clusters before crystallizing
[14, 19, 21].

When the attraction has a still shorter range (<10% of the particle diameter),
a new crystalline phase (s1) is predicted to appear with the same symmetry as
the first solid but at a higher concentration. This new phase gives rise to another
critical point, as shown in Fig. 2c. To our knowledge, this isostructural solid–solid
coexistence (s1–s2) has not been experimentally observed, possibly because it
requires a high concentration of monodisperse particles. Nonetheless, the existence
of this second solid phase can affect the dynamics of freezing and melting, even
in samples with concentrations well below the s1–s2 coexistence. Cacciuto et al.
found in simulations that spheres with very short-range attractions nucleate first
in the metastable s1 phase, and then continuously evolve into the equilibrium s2
phase [27].
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Experimental studies of crystallization of globular proteins provide evidence of
the role of the metastable liquid phase. In protein solutions, crystallites nucleate
within metastable liquid-phase droplets (glucose isomerase [28]) or evolve from
metastable clusters (sickle cell hemoglobin [29] or lysozyme [30]). Moreover,
the nucleation rate density in lysozyme solutions reaches a maximum near the
metastable gas–liquid (g-l) boundary [31]; this is consistent with the prediction
that two-step nucleation lowers the free energy barrier. These experiments suggest
that two-step nucleation is occurring over a wide region of phase space (wider, in
fact, than initially predicted [11, 15] but consistent with more recent predictions of
Lutsko and Nicolis [19]). Owing to the small particle size, however, these exper-
iments could not probe the evolving structure at the scale of individual particles
and clusters.

Experiments with colloidal particles offer the opportunity to probe phase tran-
sitions with single-particle resolution and with tunable interparticle interactions.
This approach has been exploited for several years [3] to study melting with at-
tractive or repulsive interactions [24, 32–36] and freezing of nearly hard spheres
[37, 38]. Studies of colloidal particles in 2D that attract one another by electric
field-induced flow revealed two-step nucleation of crystallites within dense liquid
droplets. The interaction, however, was of long range and possibly dependent on
cluster size, and the fluid flow might alter the dynamics [39]. Closer to the topic
of this chapter, Hobbie probed freezing in colloids confined to two dimensions
with short-range attraction and reported a two-step freezing process with amor-
phous clusters appearing first and crystalline clusters later (when the area fraction
was <30%) [24]. At larger area fractions, the metastable amorphous phase was
arrested. The dynamics of the formation of these liquid-like clusters and their size
distribution were analyzed by Smoluchowski dynamics. Here, however, we eval-
uate cluster size distributions from a thermodynamic view and focus on the role
of the liquid clusters in the crystallization process.

In this chapter, we describe our experimental studies of two-dimensional crys-
tallization of colloidal particles with a tunable short-range attractive interac-
tion. These experiments consist of “supercooling” samples via small temperature
changes and monitoring the size and evolving symmetry of individual clusters.
Figure 3 shows an image of a gas-phase sample following a temperature quench.
Initially, the sample is a supercooled, metastable gas of particles (Fig. 3a), but
after a few minutes the sample has formed large numbers of hexagonally ordered
crystallites (Fig. 3b). These samples are polycrystalline and a slow process of
coarsening continues for at least several days. Here, we focus on the nucleation
process—the rate-limiting events that occur between Fig. 3a and b. In previous
publications [35, 40], we reported evidence of two-step melting and nucleation
in this system; here, we provide a more detailed investigation. From a statistical
analysis of the size and crystallinity of clusters, we measure their free energies
and identify which samples lie within the metastable g-l region. We show that the
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Figure 3. Image of a sample following a temperature “quench” into the gas crystal coexistence
region. (a) Soon after the temperature change, the sample remains a metastable gas. (b) After 30 min,
the sample has formed several crystallites. These crystallites subsequently undergo a slow process of
growth. The white features are polystyrene spheres with a diameter of 1.4 �m and an area fraction of
24%. This chapter addresses the process by which crystallites such as these nucleate.

nucleation process consists of a single step (as in classical nucleation theory) at
the lowest and highest particle concentrations probed here (17% and 55%). Over a
range of intermediate densities, however, we observe two-step nucleation. Our data
indicate that the two-step process has a lower energy barrier because of the large
energy of the crystal–gas interface. We also find that samples cooled to within the
metastable g-l coexistence region have a much higher nucleation rate density than
do samples outside this region. Taken together, the results are consistent with the
previously predicted two-step, gas–liquid–solid process and indicate the region of
the phase diagram in which this phenomenon occurs. Remarkably, the process can
be usefully described in terms of these macroscopic phases even when the clusters
are as small as 10 particles. Finally, in the concluding section, we describe how
these results may be relevant to crystallization in three dimensions and in systems
with different forms of interaction.

II. EXPERIMENTAL METHODS: SAMPLE
PREPARATION AND IMAGING

We used video microscopy to track charge stabilized spheres dispersed in
Millipore-filtered water. The experiments reported here used either of two types of
particles, polystyrene or silica. The polystyrene spheres were purchased from Inter-
facial Dynamics (Portland, OR, USA). The average sphere radius, R, was 0.7 �m
with a polydispersity of 3.5% of the mean, according to the manufacturer. The sil-
ica particles were purchased from Polysciences, Inc. (Warrington, PA, USA) and
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Figure 4. Illustration of the mechanism of depletion attraction. The small particles (micelles, in
the present case) apply an osmotic pressure on the surfaces of the larger spheres. In the regions where
the two spheres nearly touch one another or the flat surface, the centers of mass of the micelles are
excluded. (These exclusion regions are shown by the lens-shaped features). Because of these exclusion
regions, the osmotic pressure of the micelles is imbalanced and a net pressure is applied as shown by
the arrows. The result is that spheres are attracted to the flat surface and to other nearby spheres. The
range of the interaction is set by the diameter of the micelles and the strength is set by their diameter
and concentration.

had a diameter that was nominally 1.5 �m with a polydispersity of approximately
3% of the mean.

To induce a pairwise attraction between particles and to confine the particles to
a single layer, we take advantage of the “depletion” or “macromolecular crowding”
effect (Fig. 4) [35, 41–43]. To all of our samples, we added the nonionic surfactant
hexaethylene glycol monododecyl ether (C12E6) at a concentration of approxi-
mately 4.4 × 10−2 M. This surfactant forms micelles when the concentration ex-
ceeds the critical micelle concentration, which is approximately 8.7 × 10−5 M at
25◦C. The magnitude of the depletion interaction can be described in terms of the
change of Helmholtz free energy (�Fd) when two spheres move from far apart to
contact: �Fd/(kBT) ≈ −2πRRm(T)2cm(T), where Rm(T) is the micelle radius and
cm(T) is the concentration of micelles (not the critical micelle concentration) [35,
40]. For the samples and temperatures described here, Rm(T) = 9–17 nm (mea-
sured with dynamic light scattering). The concentration of added surfactant is not
precisely known, however, because C12E6 is hygroscopic and the concentration
of the stock surfactant solution gradually changed over time. Even if the mag-
nitude of �Fd is not known, the key point for these experiments is that it can
be varied by means of temperature. For nonionic surfactants such as C12E6, the
critical micelle concentration decreases with increasing T [44], so more of the
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surfactant molecules form micelles and cm increases. In addition, Rm(T) increases
with T [45]. By a combination of these effects, heating enhances the depletion
interaction and causes crystallization. It might seem surprising that samples are
homogeneous fluids at low T and have crystals at higher T; the reason is simply that
heating scarcely changes the thermal energy kBT, but it significantly strengthens
�Fd. For the remainder of this chapter, we will refer to a temperature change that
induces crystallization as a “supercooling” into the gas–solid coexistence region,
even though it actually corresponds to a rising T.

Samples were mixed, and then injected into a glass chamber for viewing on
the microscope. A glass coverslip (#1.5) was used for the bottom surface for high-
resolution imaging and a standard glass slide was used for the top. Careful cleaning
of all glass pieces was important for reliable results. Our cleaning procedure was to
soak the glass for several hours in a mixture of concentrated sulfuric acid with “no-
chromix” powder added (Sigma-Aldrich, cat. no. 328693). (Note: this procedure
uses corrosive liquid and is hazardous. A vented chemical hood, protective gear, and
proper procedures should be used.) Afterward, the glass was rinsed thoroughly in
Millipore-filtered water and dried in an oven. Epoxy was used to seal the coverslip
to the slide, with a gap of approximately 250 �m and two holes remaining in the
epoxy seal. After the epoxy had set, the sample was injected through one of the
holes, after which the holes were sealed with epoxy. These samples typically lasted
for several days without noticeable evaporation or leakage.

In order to form crystals, we first formed a two-dimensional, weakly interact-
ing gas of spheres on the coverslip. Because the mass density of the polystyrene
particles (1.055 g cm−3) is slightly larger than water, the particles slowly sediment
toward the coverslip. The depletion attraction between each sphere and the flat
surface is approximately 2 × �Fd [35, 43], so the particles become bound to the
coverslip but are still mobile in two dimensions. Once all the particles were bound
to the coverslip, a second increase of T initiated nucleation and growth. In samples
composed of polystyrene spheres, we were unable to achieve a particle area frac-
tion in excess of 34% without having many particles in a second layer. To obtain
higher area fractions, we used silica spheres, taking advantage of the greater mass
density of silica, which leads to a single layer with few second-layer particles even
when η > 55%.

Images were acquired at 30 s−1 using a Zeiss Axiovert 200 inverted optical
microscope with a 63× Plan-Neofluar oil coupled objective (numerical aper-
ture = 1.4), a CCD video camera, an S-VHS recorder, and a frame grabber at-
tached to a computer. The microscope was placed on a mechanically isolated table
to suppress vibrations. A box made of 2 in. thick rigid foam insulation surrounded
the microscope. Samples were heated with an objective heater (Zeiss Tempcon-
trol 37). Data were acquired after enough time had passed for T to stabilize with
temperature fluctuations approximately 0.1◦C.
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III. ANALYSIS OF IMAGES: PARTICLE COORDINATES, AREA
FRACTION, CLUSTER SIZES, AND CRYSTALLINE ORDER

The positions of the particle centroids were measured by computer analysis of the
images using routines written in IDL (ITT Visual Information Solutions, Boulder
CO, USA) [46]. When imaging with visible light at high magnification, it is possi-
ble to measure the centroids of spheres with an uncertainty that is far smaller than
the Rayleigh resolution limit [46–48], even as small as 1 nm [49]. For the present
experiments, the resolution of the particle centroid finding algorithm was tested
by measuring the particles’ mean square displacement as a function of time, and
then extrapolating to zero time delay. The random error in the centroid positions
thus obtained was typically (〈�x2〉 + 〈�y2〉 )1/2 = 47 nm.

For each sample studied, we define the area fraction of particles, η, as N ap/A
(expressed as a percentage), where N is the counted number of particles, ap is the
area of each particle (πR2), and A is the total area of the imaged region. In our
samples, η ranged between 17% and 55%.

To quantify the nucleation and growth of individual clusters, we use two pa-
rameters: one that measures only size and the other that measures only crystalline
order. A cluster is defined as the set of N particles that are contiguously bonded,
where a “bond” exists between any two particles whose center-to-center distance
is within a cutoff length [35]. This definition is particularly useful for studying
phase transitions because it does not discriminate between highly ordered “crys-
talline” particles and less ordered or “liquid-like” particles. For the polystyrene
spheres (used for most of the samples discussed here), we chose a cutoff length of
1.53 �m. This length is slightly longer than the range of the depletion attraction,
2(R + RS) ∼ 1.43 �m; the longer cutoff length accounts for the random measure-
ment error that would otherwise cause us to miss bonds. While alterations of the
value of the cutoff length slightly change the values of N, the trends in the data
reported here are not altered. The sample with area fraction 55% was composed of
silica spheres that are slightly larger than the polystyrene spheres, so we adjusted
the cutoff length to 1.63 �m. The number of particles in a cluster is defined as N.
Crystallinity of clusters was quantified using the standard bond orientational order
parameter, ψ6. Following the established convention, we define for each particle
(labeled by the index j) |ψ6(j)|2 ≡ (1/Zj )|�k exp[6iθjk ]|2, where Zj is the number
of bonds with the jth particle. The sum extends over all bonded neighbors k, and
θjk is the angle between the j-k bond and the x-axis (see Fig. 5). By computing
the modulus, the result for |ψ6|2 is independent of the choice of reference axis.
With this definition, any particle whose bonds have perfect triangular symmetry
has |ψ6|2 = 1.0, even if Z < 6. By contrast, particles with random bond angles have
|ψ6|2 approaching 0. Particles that have Z = 1 are considered noncrystalline and
ψ6 ≡ 0 for these cases.
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Figure 5. Illustration of
the definition of the bond
orientational order parameter
ψ6(j). Here, the jth particle has
four neighbors.

To characterize the crystallinity of clusters, we compute the average |ψ6|2 for
all particles within the cluster; we label this parameter 〈|ψ6|2〉 . 〈|ψ6|2〉av(N) is
defined as 〈|ψ6|2〉 averaged over all clusters of size N in the sample.

IV. RESULTS

In this section, we describe the results of our experiments with colloidal particles.
We begin in Section IV.A with a description of the samples in the first minutes fol-
lowing supercooling, during which time we find many liquid-like clusters through-
out the samples. We compare these clusters with the subpopulation of clusters that
eventually become stable crystallites. In Section IV.B, we describe measurements
of the free energy as a function of cluster size. This analysis indicates which sam-
ples lie within the metastable g-l coexistence region and provides estimates of the
line tension of the g-l and g-s interfaces. In Section IV.C, we describe time-averaged
images that indicate liquid cluster formation in low-concentration samples and gas
bubble formation in high-concentration samples. In Section IV.D, we describe the
nucleation rate density and its dependence on the sample’s location in the phase
diagram.

A. Single-Step and Two-Step Nucleation of Crystallites

For an extended period of time following supercooling, our samples contained a
large number of disordered clusters with a wide range of sizes. Figure 3a shows an
image of the sample with η = 24%. In this case, more than a third of the particles
were incorporated into clusters of N > 1. These clusters varied widely in size, from
N = 2 to N > 50. The particles in these clusters were mobile and rapidly exchanged
neighbors with a characteristic timescale of several seconds. In most samples, the
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clusters themselves typically survived for a period of a few tens of seconds before
spontaneously breaking up into much smaller clusters and monomers. (In the two
most strongly supercooled samples, with η = 28.5% and 34%, the clusters tended
to grow rather than breaking up, as will be discussed later.) The characteristic life-
time of the clusters is considerably longer than the time required for an individual
particle to diffuse a distance equal to its own diameter (R2/D ∼ 1.6 s), so the clusters
do not arise simply from random collisions but are instead held together by attrac-
tive interactions. In samples with η less than approximately 34%, these clusters
were distinct entities with much greater concentration than the background.

Inspection of the image in Fig. 3a shows that these early time clusters were
disordered, lacking any discernible crystalline order. The cluster-averaged bond
orientational order parameter, 〈|ψ6|2〉av, is also relatively low, approximately 0.4
(Fig. 6). By contrast, the crystallites that appear later have 〈|ψ6|2〉av ≈ 0.8, as will
be shown later. The data of Fig. 6 were acquired during the relatively early times
after supercooling (typically within 200 s after the temperature had stabilized),

Figure 6. Plot of the average crystallinity of clusters that appear after “supercooling” and prior
to the formation of stable crystallites. The vertical axis shows the bond orientational order parameter
|ψ6|2 averaged over all particles in a cluster. The plots show data for two samples with area fractions
η = 17% and 30%.
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prior to the formation of crystallites. We verified that the distribution of cluster
sizes and the values of 〈|ψ6|2〉av did not vary significantly over this time, so the
cluster statistics represent a steady-state property.

Because of the fluid-like mobility within the clusters and the lack of bond ori-
entational order, we interpret these clusters as droplets of the liquid phase. In most
samples, these droplets were unstable and rapidly vaporized; in other samples, these
droplets were metastable, eventually changing to crystalline clusters. While the
cluster size would appear to be too small to justify rigorously a continuum treat-
ment, we find nonetheless that the stability of these clusters corresponds to the
predicted properties of the bulk liquid phase.

We now turn to the relatively small number of clusters that continued to grow in
size and eventually became stable crystallites. These stable clusters were readily
identified by the observation that once they formed, they persisted for the remainder
of the experiment (approximately 0.5 h or longer). From our images, we identify
these clusters once they become large and stable, and then trace them backward
in time to monitor their evolution. This analysis allows us to focus exclusively on
the pathway that leads to crystals.

Figure 7 summarizes the distinction between the metastable clusters and those
clusters that become large and stable. In this plot, the diamonds ( �—) show the
clusters observed prior to the appearance of stable clusters (the same data as in
Fig. 6, but now for five different samples). The solid lines show the clusters that
eventually grew to a size of 100 or greater and then continued growing. At large
N (or late time), all these curves approach 〈|ψ6|2〉av > 0.8 and the clusters appear
ordered to the eye (e.g., see inset of Fig. 7d). Moreover, the particles in these
clusters maintain their neighbors for timescales that exceed the observation time
(hours). The finite size makes the question of their long-term translational order
ill-defined (and in any case true long-range translational order does not exist in
two dimensions [50] even though there is a first-order phase transition [51]). We
refer to these clusters as crystallites.

A key result of these studies is that the pathway to forming large, stable crys-
tallites varies significantly depending on both η and depth of supercooling. In the
17% sample, even small “successful” clusters had 〈|ψ6|2〉av > 0.7, even at small
size (N < 10). That is, these clusters were already structurally distinct from the
amorphous clusters of the background and already had the order characteristic of
the late-stage crystallites. This behavior is consistent with the classical nucleation
theory, in which nucleation proceeds in a single step (see Fig. 1a).

At higher concentration, however, we find a different nucleation pathway. In
the sample with η = 30%, the growing clusters passed through two distinct stages
of growth (Fig. 7d). In the first stage (N < 20), the clusters were liquid-like and
indistinguishable from the metastable clusters in terms of crystalline order and
the mobility of individual particles. As N approached 30 particles, there was a
distinct increase in the value of 〈|ψ6|2〉av, with clusters becoming ordered when
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Figure 7. Plot of the average crystallinity of clusters that appeared in five supercooled samples
with different particle area fraction, η. As in Fig. 6, diamonds show the data for all the amorphous
clusters that appeared prior to stable clusters. The solid curves show the data for those clusters that
grew to large size and persisted for the remainder of the experiment.

N > 30 (〈|ψ6|2〉av ∼ 0.8). This is a clear example of two-step nucleation. Behavior
intermediate between classical nucleation-like and two steps were exhibited by a
range of samples.

Might this two-step behavior be explained by wetting of the crystalline phase by
a liquid? By this wetting mechanism, the interior of a cluster would be crystalline
and the perimeter would contain disordered, liquid-like particles. At small N, these
perimeter particles would comprise the majority of the cluster and cause it to appear
disordered. As clusters grow, the fraction of highly ordered particles would increase
and 〈|ψ6|2〉av increase, even as the liquid-like layer remained. To investigate the
possibility of wetting, we identified particles as being “perimeter-like” if they had
fewer than six bonds (Z < 6). We then separately tracked the ordering of these
particles. Following our earlier convention in melting experiments [35], we find
all particles j in each cluster with Z < 6. We then calculate the local orientational
order parameter C6(j) ≡ 〈|(1/Zj)�kψ6(j)ψ6*(k)|2〉 , where �k refers to a sum over
all neighbors (k) of j regardless of Zk . We then calculate the cluster-averaged value
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Figure 8. Plot of the measured correlation of each particle’s bond orientational order with
its neighbors’ order, 〈C6〉 . This plot shows data only for particles that have fewer than six bonds
(“perimeter”-like particles). In the samples with η = 24 and 30%, these particles suddenly become
ordered when N reaches 20–30.

of C6, which we term 〈C6〉. Figure 8 shows 〈C6〉 as a function of cluster size N
in successfully growing clusters, considering only those particles with Z < 6. The
sudden onset of order for the 30% sample occurs at N ∼ 25–30, showing that
ordering occurs for even “perimeter”-like and not just core particles having Z = 6.
The disordered-to-order transition occurs throughout the cluster. A similar result
is seen in the sample with η = 24% at a crossover size of N ∼ 20. The samples with
η = 17% and 18.5% had little or no crossover in the 〈C6〉 parameter.

B. The Free Energy as a Function of Cluster Size

During the interval of time between supercooling and the formation of stable
crystallites (often more than 100 s), the liquid-like clusters were highly dynamic,
but in most cases the statistical distribution of cluster sizes and cluster-averaged
|ψ6|2 were constant. Figure 9 shows a plot of the mean cluster size 〈N〉 as a
function of time in several different samples. Most of the samples shown here (17%,
18.5%, 24%, and 30%) maintained an approximately constant 〈N〉 for the first
200 s. We conclude that these systems underwent thermal fluctuations (clustering
and breakup) about a steady state. This implies that the distribution of cluster sizes
follows the Boltzmann distribution: the number of clusters of size N should be
nN ∝ exp(−�F(N)/kBT), where �F is the difference in Helmholtz free energy
between N particles in the gas and a liquid cluster of size N. Since we can readily
measure nN , we invert this formula to find �F(N)/kBT = −ln(nN/n1), where n1 is
the number of monomers (unbonded particles). (Normalization by n1 conveniently
sets �F = 0 for a monomer.)
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Figure 9. Plot of the mean cluster size 〈N〉 versus time. The time t = 0 correspond to the start
of the recording, where temperature reached a constant value.

Two samples—those with η = 28.5% and 34%—showed a continuous growth of
〈N〉 and a slight change in the cluster size distribution over time. In these cases, the
clusters were not strictly growing and shrinking in steady state, so the assumption
that �F(N)/kBT = −ln(nN/n1) is not exact. Nonetheless, we assume that because
the overall nN changes slowly, the energy landscape also changes only slightly
during the first 100 s of video.

Figure 10 shows a plot of −ln(nN/n1) versus N for six samples. These data
correspond to the early stages of nucleation (typically the first 100 s), during which
time there were no stable, growing clusters. Hence, these data describe the first step
of nucleation: the formation of (metastable) liquid clusters. As might be expected,
these clusters have higher free energy than the gas (�F > 0), so the great majority
of them eventually evaporate.

To interpret these results, we assume that these liquid clusters can be described
by a simplified classical nucleation theory: �F = (�µl−g)N + (ηc

1/2π�l−g)N1/2.
Here,�µl−g is the chemical potential of the liquid minus that of the gas. The second
term represents the interfacial energy of the liquid cluster; �l−g is the line tension in
units of kBT per sphere diameter and ηc is the area fraction of particles in the cluster.
When �µl−g > 0, this function monotonically rises, so liquid clusters would never
be stable. For �µl−g < 0, the function would first rise and then decrease when N
exceeds a critical size; this is the typical scenario in classical nucleation. In Fig.
10a, we show the result of a best fit to the simplified classical nucleation model,
which shows good agreement with the data. For clarity, we show the fit only for
η = 30%; the best-fit parameters are �µl−g = 0.04 ± 0.02kBT. To obtain estimates
of the numerical values of the line tension, we simplify the analysis by assuming
that clusters were circular and ηc = (3/π)2 = 0.91. It should be noted, however,
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Figure 10. (a) Plot of the free energy versus cluster size N for samples with different area
fractions η and T. Since these samples maintained a steady-state distribution of cluster sizes, we
assumed that the fluctuations followed the Boltzmann distribution and hence the vertical axis is the
free energy of a cluster, in units of kBT. These clusters are disordered, and therefore indicate the free
energy of the liquid phase. (b) Rescaled plot, showing F/

√
N versus

√
N. By classical nucleation

theory, F/
√

N = (�µl−g)
√

N plus a constant related to line tension. The slope of the data indicates
whether the sample lies within the metastable g-l coexistence region.

that these clusters are not always circular, and there is good evidence that classical
nucleation in general would not lead to circular or spherical clusters [5] and the
numerical value of �l−g should therefore be interpreted with care. By this best-
fit analysis, the 28.5% and 34% samples both had �l−g = 0.48 kBT/diameter and
�µl−g = −0.06(1)kBT for t < 100 s.

To extract the sign of �µl−g more directly, we also plot −ln(nN/n1)/N1/2 versus
N1/2 (Fig. 10b). According to the classical model, the result should be a straight line
with slope �µl−g/kBT and y-intercept ηc

1/2π�. The data are consistent with this
scaling for N larger than approximately 4. This plot shows clearly that the samples
with η = 28.5% and 34% both have �µl−g < 0, indicating that these particles
lay inside the metastable g-l coexistence regions. A sufficiently large liquid cluster
would spontaneously grow, but the global stability of the liquid phase is superseded
by the crystal phase once N is sufficiently large.

By contrast, the samples with η = 17%, 18.5%, and 30% lay outside the g-l
region (i.e., �µl−g > 0). Most of these liquid clusters evaporated eventually as
thermal fluctuations continually made new clusters. The sample with η = 24% lay
very close to the metastable g-l binodal (�µl−g ≈ 0).

C. Locating Samples on the Phase Diagram

Further insight into the role of the metastable liquid phase is obtained by a coarse-
grained view of the supercooled samples. Samples with low η tended to have
dense clusters in a dilute background, but the highest η sample showed a structure
more accurately described as dilute “voids,” akin to gas bubbles. To identify these
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Figure 11. Time-averaged images of three samples prior to formation of stable crystallites. The
image each averages 10 s of video as described in the text; the white regions are particles and the black
are voids. (a) The cluster-in-gas structure is clearly visible at area fraction η = 17%. (b) At η = 28.5%,
the clusters and voids have nearly equal area fraction. (c) At the relatively high fraction, η = 55%, there
are voids in a concentrated background. The clusters at low η and the voids at high η persist for tens
of seconds.

structures more clearly, we first created images in which the particles were repre-
sented by white circles on a black background (using the particle positions known
from image analysis) and then calculated the time average of these reconstructed
images from t = 0 to t = 10 s. In Fig. 11, we show these images for samples with
η = 17%, 28.5%, and 55%.

At the lowest concentration, we find dense liquid clusters (white) surrounded
by a dilute, gas-like background (black). As described previously, these clusters
persisted for roughly several tens of seconds before breaking up into smaller clus-
ters and monomers. In the language of continuum thermodynamics, the clusters
are unstable liquid droplets appearing spontaneously in the gas phase. This be-
havior would be expected for a sample that lies outside the g-l binodal on the
low-concentration side.

In the strongly supercooled 28.5% sample, we find comparable areas of “clus-
ter” and “void” regions. In terms of continuum thermodynamics, this structure
resembles the bicontinuous gas–liquid structure characteristic of spinodal decom-
position. (We point out, however, that we do not currently have sufficient statistics
to establish this point without ambiguity.) This type of morphology is consistent
with our finding that �µl−g < 0, so the sample was supercooled into the metastable
g-l region. These void regions persisted in time and coarsened as crystallites ap-
peared.

At the highest concentration studied here (η = 55%), the situation is reversed:
here, we find small discrete voids in a concentrated liquid background. The time
lapse movies show that these voids persisted for roughly 20 s before vanishing.
Again, this behavior can be described in the language of continuum thermody-
namics as gas “bubbles” that are unstable with respect to the surrounding liquid
phase. The bubbles form, but rapidly vanish. This behavior would be expected
for a system that lies just outside the g-l binodal on the high-concentration side.
(Alternatively, it is possible that this sample lay within the metastable g-l region
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Figure 12. (a) Plot of the free energy versus size of crystalline clusters, Nc, for the sample with
η = 55%. (b) The same data, plotted as �F/

√
Nc versus

√
Nc. The negative slope indicates that the

chemical potential is lower in the crystalline phase than in the initial fluid phase.

but that the gas bubbles (voids) never reached the critical size before the sample
crystallized.) In this sample, crystallization can be viewed as classical nucleation
of the crystal directly from the liquid phase.

Following the classical nucleation model for the sample with η = 55%, we mea-
sured the distribution of crystalline clusters. We began by calculating |ψ6|2 for each
particle, and then defined as “crystalline” those particles with |ψ6|2 ≥ 0.90. (This
choice of cutoff value is justified by the fact that the distribution of |ψ6|2 values in
crystallizing samples typically has a sharp peak near 1; this peak is distinct from the
broad background distribution.) We then looked for contiguous clusters of these
“crystalline” particles and defined the size of each cluster as Nc. We defined nNc
as the number of clusters of size Nc and then found the free energy of crystalline
clusters from −ln(nNc) (Fig. 12). The rescaled plot shows an approximate consis-
tency with the classical nucleation model, �F = (�µs−l)Nc + (ηc

1/2π�s−l)Nc
1/2

with �µs−l < 0. From the extrapolated y-intercept, we estimate the line tension
as �s−l ≈ 0.8 kBT/diameter. Interestingly, this line tension is approximately 50%
larger than �l−g (Fig. 10). We will return to this point in Section V.

D. Measured Nucleation Rates

Because the rate of nucleation is expected to depend exponentially on the free
energy barrier, it is usually the case that the rate should vary significantly. To
measure the nucleation rate density, we begin at the end of each of our videos and
count the number of stable, persistent clusters. We then play the movie backward
and count the number of such clusters at earlier times. Our images show a sample
area of 1.37 × 104 �m2, so the data may be converted to density.

In Fig. 13, we show the number of persistent clusters (which are all crystalline)
as a function of time for seven samples with η ranging from 17% to 55%. The
nucleation rate density varied widely. The most rapid nucleation occurred in the
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Figure 13. Plot of the number of observed stable (growing) crystallites in the full field of view
as a function of time.

28.5% sample, in which 60 stable crystallites appeared within the first 3 min.
The 34% sample contained 25 crystallites over the same time and area. These
are the two samples for which �µl−g < 0, so it seems clear that the metastable
gas–liquid region enhanced the nucleation rate. By contrast, the other samples
contained at most four stable crystallites after 3 min, and some samples showed
no stable crystallites for more than 5 min. The rate is not simply related to η, since
the most concentrated sample was one of the slowest ones. Rather, it appears that
proximity to the g-l coexistence region is the key factor, and the nucleation rate was
enhanced by approximately an order of magnitude by entering the metastable g-l
binodal. This result is consistent with simulations [11, 12] and density functional
theory [15, 19], which predict large enhancement of the crystallization rate near the
metastable g-l critical point. They are also broadly consistent with the experiments
with proteins [31], which were done systematically as a function of T. In our
experiments, however, it is clear that two-step nucleation occurs even in samples
that lay outside the metastable g-l coexistence region (e.g., η = 30%).

For an overview of the relative roles of cluster size and crystalline symmetry of
the “successful” clusters during their nucleation, we collected statistics of both the
total cluster size N and the size of the crystalline part of the cluster, Nc. (As above,
Nc is defined as the set of particles for which |ψ6|2 ≥ 0.9). For this analysis, we
measured a two-dimensional histogram, collecting the number of clusters (nN,Nc)
with given N and Nc. The values N and Nc were measured for all successfully
nucleating clusters in 10 s intervals. We assume that the system undergoes fluctu-
ations about a stationary free energy function so that the logarithm of nN,Nc gives
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Figure 14. Plots of the
free energy, �F/kBT, of suc-
cessfully nucleating clusters
are shown as a function of N
and Nc for four samples. The
black curves show contours
of equal �F and the thicker,
gray curves are drawn by eye
to illustrate the most proba-
ble trajectories. The classical
nucleation model would have
N = Nc, which is indicated by
the dashed line.

the (free energy)/kBT. (A similar kind of analysis was reported by ten Wolde and
Frenkel for short-range interactions [11] and by Moroni et al. to study nucleation
in a Lennard-Jones liquid [52].)

Figure 14 shows the free energy plots measured from our data. The data are
noisy because of limited statistics (especially near the edges of the plotted data),
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but some important trends are nonetheless apparent. To identify what would plau-
sibly be the most likely nucleation pathway, we have drawn curves that follow
the gradient in the �F. For the sample with η = 17%, this pathway has a nearly
steady slope that resembles the classical model: size increases along with order. In
the sample η = 30%, however, the clusters tend first to grow in size, and then to
become ordered. A similar trend was reported for nucleation in short-range sys-
tems in three dimensions (by ten Wolde and Frenkel [11]). Those authors found
that near the metastable g-l critical point, a precritical liquid cluster developed
crystalline order at a crossover size of approximately 200 particles. In the present
experiments, the crossover size has a maximum value of approximately 35 in the
30% sample. These sizes (200 in 3D and 35 in 2D) correspond to different spatial
dimensions and different systems, and they need not be related. Nonetheless, it
may be significant that (200)2/3 ≈ 34, which implies that the radial length of a
cluster is the same in these two systems. Whether there exists a universal value of
the crossover cluster near the metastable g-l point and the question of which pa-
rameters quantitatively determine this size are interesting topics of future research.

The free energy contours also reveal the extent to which the classical nucleation
theory would likely overestimate the nucleation rate density. In the 30% sample, for
instance, the classical pathway and the measured pathway probably differ by a few
kBT (we lacked sufficient statistics to measure �F along the line N = Nc). For the
34% sample, the difference is approximately 2.5kBT when N = 30, which would
correspond to an enhancement of the nucleation rate by a factor of approximately
e2.5 = 12.

V. SUMMARY AND CONCLUSION

By direct visualization of the clusters throughout the nucleation process, we have
measured the evolution of crystalline order for the ensemble of clusters and sepa-
rately for the “successful” clusters, which eventually grew to large size and survived
for the duration of our experiments. In samples with intermediate area fractions
(roughly, 20% ≤ η ≤ 34%), nucleation proceeded in two steps: liquid first, then
solid. From the distribution of liquid cluster sizes, we measured the cluster free
energies. By comparing the first of these two nucleation steps to the classical model
for nucleation of a liquid in gas, we determine which samples have �µg−l < 0 that
must lie within the (metastable) g-l coexistence region. Combining these data with
the observed mesoscopic-scale structure of the 17% and 55% samples (Fig. 11),
we conjecture that the samples are arranged in a phase diagram as shown in Fig.
15a. The sample that had the largest size for crossover from liquid to solid had
η = 30%, which we assume lies near the metastable critical point. Computer simu-
lations of two-dimensional systems with short-range attraction provide an estimate
of the g-l critical area fraction: ηc ≈ 40% in 2D [51]. Possibly the critical ηc in our
experiments is lower than in the simulations, or the effect of the metastable critical
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Figure 15. (a) Illustration of the conjectured phase diagram based on the reported behavior of
the samples discussed here. (The plot symbols are the same as those used in Fig. 10.) (b) A schematic
plot of the conjectured free energies for nucleating a crystalline cluster or a liquid droplet in a gas at
moderate area fraction η. Because the crystal has larger line tension, it has a steeper curve at small size
N. Hence, a liquid cluster is more readily formed even if it has positive �µ. The heavy solid curve
shows the optimal trajectory.

point extends over a fairly broad region of phase space. Previous experiments with
short-range depletion attraction in dilute samples (η = 2% in two dimensions [53]
and 16% in 2D [54]) showed nucleation of crystals after a shallow quench, which
appears consistent with our reported classical nucleation at 17%. These prior ex-
periments, however, found that amorphous diffusion-limited structures appeared
after a deeper quench. In addition, Hobbie also reported amorphous gel structures
in samples with η > 20%, with no crystals even after several hours [24]. These re-
sults are contrary to our results, since crystals eventually form in all of our samples.
The difference in behavior might arise from difference in range of the potential
(7% of the diameter for Ref. 24), salt concentration (stability against van der Waals
aggregation), or polydispersity of the particle size.

To explain in general terms why samples undergo two-step nucleation, we
return to the free energy measurements of Figs. 10 and 12. Monitoring the size of
crystalline clusters led to a measurement of the gas crystal line tension that was
approximately 50% greater than the gas–liquid line tension. This result might arise
from the difference in symmetry in the g-s case. If we were to plot the free energy
�F of a nucleating cluster, we would find something like the schematic shown in
Fig. 15b, with a minimum free energy path that switches from the fluid branch to
the crystal branch at a size that is larger than the critical size of a crystalline cluster.
Qualitatively, this curve describes the behavior of the samples with intermediate
area fraction (20–34%): in these samples once the cluster crystallized, it grew;
crystalline clusters rarely broke apart. The absence of the two-step mechanism in
the 17% sample might be explained by the relatively large and positive �µl−g,
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which would make fluid clusters too energetically costly. Further studies of the
line tensions in various regions of the phase diagram are in progress.

In two-dimensional systems of spheres (or disks), the optimal short-range pack-
ing (hexagonal) is the same as the crystal packing [51]. This explains why crys-
tallization occurred rapidly in our samples once the crystallites were energetically
favorable. In three dimensions, the locally optimal packing is incommensurate
with the crystal and crystallization might be slowed down [5, 55] so that the effect
of two-step nucleation on the nucleation rate might be more dramatic. In this case,
the fluid clusters might grow to even larger size before ordering, or alternatively
they might become trapped in a disordered gel or glass [8, 53]. In three dimensions,
multistep nucleation is also expected to be relevant among atoms and molecules
with long-range interactions below the triple point [6, 14, 19, 21, 39, 56].
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I. INTRODUCTION

The goal of this work is to describe, at a semimicroscopic level, the process of
homogeneous nucleation of solids from solution. This is studied in the approxima-
tion that the effects of the solvent can be accounted for by an effective interaction
between the solvate molecules so that at low concentrations, the molecules in so-
lution are treated as a single-component gas with the crystalline phase being the
corresponding solid phase in the effective single component system. In this picture,
there is also the possibility of a dense liquid-like phase that simply corresponds
to the liquid phase of the effective single-component system. Thus, the following
work is intended to be applicable both to nucleation in single-component systems,
such as simple fluids, and to nucleation of a solid phase from macromolecules in
solution. For the sake of consistency, most of the discussion will be phrased in the
language of nucleation of solids in a single component system. So, in the following,
all statements concerning the “vapor phase” should be understood to be equally
applicable to the “low-concentration” or “low-density” phase of molecules, such
as proteins, in solution and statements concerning the “liquid phase” are equally
applicable to the “high-concentration” or “high-density” phase of a solution.

In general, homogeneous nucleation involves at least two phases: the stable
phase, S, and the metastable phase, M. Initially, the system consists of M in its
homogeneous, bulk state. Fluctuations give rise to small volumes of S which will
here always be taken to be spherical clusters. By definition, the free energy of
bulk S is lower than that of bulk M but finite clusters also involve an interface that
has higher free energy, on average, than either phase. Hence, sufficiently small
clusters are typically unstable, having higher free energy even than the equivalent
amount of M. Furthermore, for small clusters, there is no reason to believe that
the material inside the cluster is in the bulk S state since the interface can have a
volume comparable to that of the bulk region. Thus, small clusters will be unstable
with respect to M: indeed, will be unstable with respect to smaller clusters thus
leading to cluster dissolution. For sufficiently large clusters, the interior will consist
mostly of material near the bulk S state, and the volume of the interface will be
small compared to the volume of the bulk so that the cluster is stable with respect
to M but unstable with respect to cluster growth thus driving the transition of the
whole system from M to S [1].

In recent years, it has become apparent, first for proteins [2–6] but then even
for simple fluids [4, 7, 8], that homogeneous nucleation of solids from vapor can
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be more complicated than this simple picture. This is because in many cases, the
conditions for solid nucleation also allow for a second metastable phase, namely
that of the bulk liquid. In cases where the bulk liquid is more stable than the bulk
vapor (i.e., has lower free energy) but less stable than the solid, it can be that, in-
stead of directly nucleating a crystalline cluster from the vapor, it is energetically
favorable to first nucleate a liquid cluster which then grows and, subsequently,
to complete the transition to the crystalline state via a second homogeneous (liq-
uid crystal) nucleation event within the liquid cluster (thus creating a growing
solid cluster within the growing liquid cluster). This process will be referred to as
“double nucleation”. Whether or not this actually occurs will depend on the free
energy barrier encountered in the vapor-crystal and vapor–liquid transition. Alter-
natively, even if direct vapor-crystal nucleation is favored, it is still possible that
the growing cluster nevertheless passes through a liquid-like stage that, however,
is always subcritical, as a transient on the way to creating a solid-like critical clus-
ter. In this case, small clusters would be liquid like in structure, becoming more
crystalline as they grow larger. This scenario, involving only a single nucleation
event, will be referred to as “transient two-step nucleation.” The simulations of ten
Wolde and Frenkel [2] are clear illustrations of transient two-step nucleation: they
exhibit a nucleation pathway that involves liquid-like small clusters followed by
solidification as the cluster approaches the critical size. Vekilov discusses both sce-
narios and suggests that even when double nucleation is possible and energetically
favored, it may be suppressed by kinetics [3]. Kaschiev and Vekilov have ana-
lyzed the effect of double nucleation on observed nucleation rates [9]. van Meel
et al. report simulation results showing double nucleation for a Lennard–Jones
fluid [7].

The key to understanding these processes is the construction of models for
the free energy of inhomogeneous—multiphase—systems. Indeed, Classical nu-
cleation theory (CNT), from which we take our lead, is fundamentally based on a
description of the free energy as a function of the size of the cluster. In CNT (which
should be thought of in terms of the simpler vapor–liquid transition) the width of
the cluster interface is taken to be zero and the interior of the cluster is assumed
to be in the bulk state, S. The only variable is then the size of the cluster and it
is assumed that homogeneous nucleation consists of the growth of a cluster from
size zero until it is arbitrarily large [10, 11]. This, in other words, is understood
to be the “nucleation pathway.” This idea can be developed more rigorously to
include finite width of the interface and nonbulk properties of the interior in which
case the nucleation pathway involves a description of the variation of all these
properties—size, interfacial width, and interior density—simultaneously [12].

The process of solid nucleation is more complex, as the phenomenology above
would imply. First, the vapor–solid transition involves at least two order parame-
ters: the density and the crystallinity [4, 5, 13, 14]. Since the typical solid density
is close to that of the metastable liquid (if it exists), the double nucleation sce-
nario involves a separation of these order parameters: the vapor–liquid transition
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involves two different densities but occurs at zero crystallinity while the liquid–
solid transition occurs at (nearly constant) density and involves a change from zero
to finite crystallinity. In the transient two-step scenario, a small (unstable) cluster
begins to form at zero crystallinity but at some point, as the cluster becomes larger,
the crystallinity increases so that the critical cluster has both finite density differ-
ence compared to the vapor and finite crystallinity. Both of these can be viewed
as “two-step” scenarios compared to the possibility that, from the beginning, the
crystallinity and density change at the same time. Clearly, description of these
processes must involve a model for the free energy of inhomogeneous systems
that is sufficiently detailed so as to describe liquid and solid clusters embedded in
a vapor bulk. In order to capture the transient scenario, this must be supplemented
by some means of determining the nucleation pathway.

Here, the basic tool for calculating the free energies will be classical, finite-
temperature density functional theory (DFT). If DFT were sufficiently well devel-
oped and technically simple, nothing more would need to be said about this part of
the study: unfortunately, neither of these conditions holds for the solid phase. In
contrast, direct calculations for liquid–vapor systems are possible [11, 15]. DFT is
only sufficiently well understood so as to give an a priori description of bulk fluid,
bulk solid, and inhomogeneous fluid–solid systems for hard-sphere interactions.
For any more realistic potential—particularly those with attractive interactions—
some sort of modeling is necessary. Typically, this will involve the introduction
of an effective hard-sphere diameter and the representation of the free energy as
the sum of the hard-sphere functional and a second term accounting for the at-
tractive part of the interactions. Futhermore, even for the hard-sphere functional,
the calculation of the free energy for an inhomogeneous system (i.e., of a solid
cluster embedded in a fluid background) is very complicated and computationally
expensive [16]. Fortunately, an easier alternative is available. It has been shown
that the exact free energy for a solid can be expanded in terms of gradients of the
order parameters [17–19] thus providing a connection between DFT and the older
gradient theories of Cahn et al. [20, 21], as well as the phase-field theories com-
monly used to study solid–solid transitions [22]. This is the justification for using a
gradient model in the present work. A significant advantage is that the free energy
functional is then only needed for the case of homogeneous (i.e., bulk) systems,
thus placing less stress on the accuracy of the DFT model. On the other hand,
expressions for the coefficients of the gradient terms must be found. In principle,
the exact results express these in terms of derivatives of the bulk free energy but
in practice, they are hard to calculate except for the case of a fluid. In this work,
a semiempirical procedure will be used to fix these terms. The main difference
between the present work and that of Gunton et al. [5], which is similar in spirit,
is that the latter made use of toy free energy models whereas here realistic models
are used that give semiquantitatively accurate bulk phase diagrams as well as of
the liquid–vapor phase transition [15].
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Given these approximations, the free energy for any configuration of order pa-
rameters can be calculated. The practical exploration of the models will make
use of energy-surface techniques commonly applied to the study of chemical re-
action pathways and structural transitions [23]. A recently developed method—
involving the approximation of the spatially varying order parameters as piecewise-
continuous functions, will be used to determine the critical clusters—that is, sad-
dle points of the free energy—for homogeneous nucleation. This will already give
enough information to identify if and when double nucleation is possible. The
nucleation pathway will be identified, as is commonly done for chemical reaction
pathways, using steepest descent paths. These identify the most likely path for
the transition given the free energy surface and are a natural generalization of the
CNT pathway. They do not take into account kinetic factors, such as rates of mass
transport, that could play a significant role particularly for small molecules.

Section II will describe the technical details of the free energy models used. The
bulk thermodynamics is used in Section III to limit the regions of the phase diagram
in which double nucleation is possible. A simple model for double nucleation is
also used to illustrate the role of bulk free energy differences and of surface tension.
Section IV describes the application of the model to planar interfaces and illustrates
the role of wetting. Detailed calculations of the energy barriers for direct nucleation
of the crystal and of double nucleation are presented in Section V. The possibility
of transient double nucleation is also described. The paper ends with a summary
and with a discussion of future directions.

II. THE FREE ENERGY MODEL

A. Density

The central quantity defining the system state in DFT is the local density, ρ(r). It is
possible to formulate the theory with no a priori restrictions placed on the density,
but this is computationally expensive. A commonly used alternative is to represent
the density in terms of a set of basis functions. For bulk crystalline systems, this
usually means a sum of Gaussians localized at the lattice sites,

ρ (r; x, ρlatt, α) = x
∑

i

(α

π

)3/2
exp

(
−α (r − Ri (ρlatt))

2
)

(1)

where Ri is a lattice vector, α controls the width, x is the occupancy and ρlatt is
the lattice density. The average density is

ρ = 1

V

∫
V

ρ (r; x, ρlatt, α) = xρlatt (2)
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The density can also be written in Fourier representation as

ρ (r; x, ρlatt, α) = xρlatt

∑
i

exp (ir · Ki (ρlatt)) exp
(
−K2

i (ρlatt) /4α
)

(3)

where Ki is a reciprocal lattice vector. Notice that in this representation, it is clear
that the limit α → 0 gives a uniform density ρ(r) = ρ that describes a fluid. It is
therefore natural to characterize the crystallinity by the size of the amplitude of a
typical nonzero wavevector term such as

χ = exp
(
−K2

1 (ρlatt) /4α
)

so that the density can also be written as

ρ (r; x, ρlatt, α) = xρlatt

∑
i=0

exp (ir · Ki (ρlatt)) χ(Ki(ρlatt)/K1(ρlatt))2
(4)

thus showing that the density is parameterized entirely by x, ρlatt and χ. In the
following, we neglect the variation of the lattice density and generalize to inho-
mogeneous systems by allowing the occupancy and the crystallinity to depend on
position. It is also convenient then to replace the occupancy by the average density
so that we have

ρ (r) = ρ (r)
∑
i=0

exp (ir · Ki (ρlatt)) (χ (r))(Ki(ρlatt)/K1(ρlatt))2
(5)

The order parameters are then the local average density, ρ (r), and the crystallinity,
χ (r). It will sometimes be more convenient to replace the latter by the amplitude
of the smallest nonzero wavevector, ρ1(r) = ρ (r) χ (r).

B. Gradient Expansion

In order to determine the density, a model for the (grand canonical) free energy
functional, �[ρ] is necessary. Good models exist for liquids and can be used to
study, for example, the liquid–vapor transition in great detail [15]. However, the
theory is less well developed for the solid phase and in any case calculations
for inhomogeneous solids are very expensive. The present work therefore makes
use of a gradient expansion of the free energy that focuses attention on the order
parameters and only requires information about homogeneous solids [17–19]. The
grand-canonical free energy is written as

�[ρ] = F [ρ] − µ

∫
ρ(r) dr (6)
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where µ is the chemical potential. In general, if the density can be written in terms
of n order parameters, � = {�1, ..., �n} , as

ρ (r) = f (r; � (r)) (7)

so that the density of the uniform, bulk system is

ρ� (r) = f (r; �) (8)

and if � (r) in some sense “slowly varying”, then the squared-gradient approxima-
tion (SGA) for the functional F [ρ] is

F [ρ] �
∫ {

f (� (r)) + 1

2
K

ij
ab (� (r))

∂�i (r)

∂ra

∂�j (r)

∂rb

}
(9)

where the summation convention is used. The first term of the free energy involves
the bulk free energy density defined as

f (�) = 1

V
F [ρ�] (10)

For the order parameters used here, the free energy is explicitly

F [ρ] �
∫ {

f (ρ (r) , χ (r)) + 1
2K

ρρ
ab (ρ (r) , χ (r)) ∂ρ(r)

∂ra

∂ρ(r)
∂rb

+K
ρχ
ab (ρ (r) , χ (r)) ∂ρ(r)

∂ra

∂χ(r)
∂rb

+ 1
2K

χχ
ab (ρ (r) , χ (r)) ∂χ(r)

∂ra

∂χ(r)
∂rb

}

(11)

C. Bulk Free Energy

The bulk free energy model used here is based on the idea of separating the free
energy into a hard-sphere contribution, for which the DFT is well developed, and
a second contribution that accounts for the long-ranged attractive interactions. A
particularly simple model is based on the observation that the local structure of an
FCC solid and a simple fluid are quite similar so that, as a simplest approximation,
one can imagine that the correction to the hard-sphere model is independent of the
local structure [4, 24] giving

1

V
F [ρ�] = 1

V
FHS

[
ρ�d (�)3

]
+ ftail (ρ�, d (�)) (12)

where d (�) = d (ρ) is the effective hard-sphere diameter and

ftail (ρ�, d (�)) = 1

V
F [ρ] − 1

V
FHS

[
ρd3

]
(13)
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is the contribution of the attractive part of the interaction to the liquid free energy.
The effective hard-sphere diameter is determine using the WCA expression as
modified by Ree et al. [25, 26].

D. Bulk Phase Diagram

In DFT, one is always working in the grand-canonical ensemble so the external
parameters are the temperature, the chemical potential, µ, and the applied external
field, φ (r). The latter includes any confining walls: if the walls are hard, then the
volume is a fixed parameter (as will always be assumed here). The appropriate free
energy is the grand potential,

� [ρ] = F [ρ] − µ

∫
ρ (r) dr+

∫
φ (r) ρ (r) dr

and it should be noted that all information about the state is encoded in the lo-
cal density function, ρ (r). The equilibrium states (i.e., density distributions) are
determined by minimization,

0 = δ� [ρ]

δρ (r)
(14)

which is to say

δF [ρ]

δρ (r)
= µ − φ (r) (15)

For parameterized profiles, the requirement that the free energy be a minimum
gives

0 = δ� [ρ�]

δ� (r)
(16)

and if the parameters are constants, then

0 = ∂� [ρ�]

∂�
(17)

For a given value of chemical potential, there may be multiple solutions for the
density in which case the equilibrium state is the one corresponding to the absolute
minimum of the grand potential. Two phase coexistence therefore requires that

δF [ρ]

δρ (r)

∣∣∣∣
ρ1

= µ − φ (r) = δF [ρ]

δρ (r)

∣∣∣∣
ρ2

(18)

� [ρ1] = � [ρ2]
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In particular, using the chain rule for functional differentiation,

∂F [ρ]

∂ρ
=

∫
δF [ρ]

δρ (r)

∂ρ (r)

∂ρ
dr (19)

=
∫

δF [ρ]

δρ (r)
dr

gives the usual thermodynamic relation

∂ 1
V

F [ρ]

∂ρ
= µ − 1

V

∫
φ (r) dr (20)

Thus, for uniform densities, ρi (r) = ρi and, for example, F [ρi] → F
(
ρi

)
, the

conditions for coexistence are

∂ 1
V

F
(
ρ1

)
∂ρ1

= µ − 1

V

∫
φ (r) dr = ∂ 1

V
F

(
ρ2

)
∂ρ2

(21)

� (ρ1) = � (ρ2)

which is to say equality of chemical potentials and of pressures since in the bulk,
� = −PV .

For the crystalline system, the parameterization used here involves not just the
average density but also the crystallinity and the lattice parameter. The conditions
for an extremum of the free energy are then

∂ 1
V

F (ρ, χ, ρlatt)

∂ρ
= µ − 1

V

∂

∂ρ

∫
ρ (r; ρ, χ, ρlatt) φ (r) dr (22)

∂ 1
V

F (ρ, χ, ρlatt)

∂χ
= − 1

V

∂

∂χ

∫
ρ (r; ρ, χ, ρlatt) φ (r) dr

∂ 1
V

F (ρ, χ, ρlatt)

∂ρlatt
= − 1

V

∂

∂ρlatt

∫
ρ (r; ρ, χ, ρlatt) φ (r) dr

In principle, the chemical potential and external field are specified and these equa-
tions solved for ρ, χ, and ρlatt: in practice, it is simpler to choose a value of the
lattice density and to use these conditions to determine ρ, χ, and µ. Further tech-
nical details are discussed in Appendix A.

III. THERMODYNAMICS OF TWO STEP NUCLEATION

A. Independent Variables and Ensembles

The main calculational tool used here, DFT, is formulated in the grand-canonical
ensemble in which the independent variables are the temperature, chemical
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potential, and volume (or, more generally, applied field) and the free energy of
interest is the grand potential. Experiments are typically performed at constant
pressure, temperature, and volume for which the Gibbs free energy is relevant.
Fortunately, in discussing nucleation, one is always interested in free energy dif-
ferences and these are independent of the ensemble [27]. In the following, since it
is based on DFT, the grand-canonical ensemble is always used, however in many
cases the difference between ensembles can be suppressed by focusing on physical
quantities. Thus, rather than specify the chemical potential (for the grand ensem-
ble) or the pressure (for the PVT ensemble) one can specify the density of the
final phase that is a meaningful variable in both formulations and in either case is
uniquely related to the state variable.

B. Interaction Potentials and the Fluid Phase

In this study, the nucleation properties of two different systems will be considered:
simple fluids as described by the Lennard–Jones potential,

vLJ (r) = 4ε

((σ

r

)12 −
(σ

r

)6
)

(23)

and globular proteins as described by the ten Wolde–Frenkel model interaction,

vtWF(r) =



∞, r > σ

4 ε
α2

( (
1

( r
σ

)2−1

)6 − α
(

1
( r
σ

)2−1

)3
)

, r ≥ σ
(24)

which will be studied here for the value α = 50 as is appropriate to model the
phase behavior of globular proteins.

Both of these potentials are long ranged in the sense of decaying as power laws.
In simulation, infinite-ranged potentials are difficult to deal with, so any long-
ranged potential v(r) is typically cutoff at some distance, rc. For Monte Carlo, a
simple shift of the potential to make the energy continuous at the cutoff is typically
used so that the so-called truncated and shifted potential is

vmc (r) =
{

v(r) − v (rc) , r ≤ rc

0, r > rc
(25)

In molecular dynamics simulations, the force is usually required to be continuous
so that the force-shifted potential is commonly used,

vmd (r) =
{

v(r) − v (rc) − v′ (rc) (r − rc) , r ≤ rc

0, r > rc
(26)
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where v′(r) = dv(r)/dr. Other forms are also important, particularly the
Broughton–Gilmer modification of the LJ potential:

vBG (r) =




vLJ(r) + C1, r ≤ 2.3σ

C2
(

σ
r

)12 + C3
(

σ
r

)6 + C4
(

σ
r

)2 + C5, 2.3σ < r ≤ 2.5σ

0, r > 2.5σ

(27)

where C1 = 0.016132ε, C2 = 313.66ε, C3 = −68.069ε, C4 = 0.083312ε, and
C5 = 0.74689ε [28].

All of these details significantly affect the liquid–vapor phase diagram. The
DFT model described above requires as input both the interaction potential and the
equation of state for the fluid phase. For the LJ potential with no cutoff, essentially
exact empirical equations of state are available for temperatures above the triple
point [29–31]. For finite cutoffs, these must be modified with inexact mean-field
corrections. Although useful for studying liquid–vapor coexistence [11, 15], they
are of limited utility for vapor–solid nucleation since the interesting affects occur
below the triple point. Less accurate, but more broadly applicable, are mean-field
equations of state based on thermodynamic perturbation theory such as the Weeks–
Chandler–Andersen (WCA) theory [25, 26, 32–34] which will be used here.

C. Solid Phase Diagrams and Intermediate Phases

Figure 1 shows the calculated vapor–liquid–FCC solid phase diagram for the
infinite-ranged LJ potential and for the truncated and shifted tWF potential com-
pared to simulation in terms of the reduced temperature T ∗ = kBT/ε. The LJ phase
diagram possesses both a liquid–vapor critical point and a triple point whereas for
the protein model, the liquid–vapor transition is metastable. Since the fluid equa-
tion of state is being calculated from thermodynamic perturbation theory, which
is a mean-field theory, the critical point is, as expected, poorly described for both
potentials. Apart from this expected inaccuracy, the model is in semiquantitative
agreement with simulation for all three phases.

1. Nucleation Scenarios for Globular Proteins

In order to clarify the thermodynamics of metastable states, we consider in more
detail the phase diagram derived from the tWF potential. Figure 2 shows a line
crossing the phase diagram at constant temperature. The points A and B identify
coexisting vapor and solid phases which, by definition, have the same free energy
and the same control parameter (chemical potential or pressure). Starting at the
vapor point A and moving along the isotherm in the direction of increasing den-
sity, that is, to the right, corresponds to increasing the chemical potential and to
each value of the density there will be a point on the isotherm to the right of the



148 james f. lutsko

Figure 1. Phase diagrams for the Lennard–Jones potential, left panel, and the tWF potential,
right panel, together with simulation data. The tWF potential was cutoff and shifted at r = 2.8σ.

solid-branch of the binodal, that is, to the right of point B, having the same chemi-
cal potential; however, under these conditions the solid phase will have lower free
energy than the vapor phase so that the vapor points to the right of A are metastable
with respect to the solid phase. Eventually, as one moves along the isotherm, the
point in the vapor region reaches the vapor–liquid coexistence curve so that there
is a coexisting liquid phase. However, by definition, this particular liquid state
has the same free energy as the vapor, one knows that it has higher free energy
than the solid and so can only be metastable. This remains true as one moves
along the isotherm to densities to the right of the vapor branch of the liquid–vapor
binodal. Eventually, one reaches the vapor–liquid spinodal and above this density,
the vapor phase does not exist. The set of liquid points with the same chemical
potential as the vapor points on the spinodal will therefore divide region to the
right of the liquid binodal into a lower density region, for which a vapor with the
same chemical potential can always be found, and a higher density region with no
corresponding vapor.

What is the role of the metastable liquid phase in vapor–solid nucleation? We
can only address this question here with respect to double nucleation. (Transient
metastable states are a property of the nucleation pathway and its presence or ab-
sence cannot be answered solely from a consideration of the bulk phases.) First,
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Figure 2. The phase diagram for the tWF potential as in Fig. 1 but without the simulation data
and showing the spinodal for the vapor–liquid transition (broken line). The figure also shows, to the
right of point A, the boundaries for the existence of the intermediate liquid phase: there is no liquid
phase for chemical potentials corresponding to vapor densities to the left of the new line. A similar line
for the solid phase is nearly indistinguishable from the solid binodal. Similar boundaries also exist on
the Lennard–Jones phase diagram but are so close to the binodals as to be almost indistinguishable.
The horizontal line, an isotherm, picks out coexisting states with the coexisting vapor and solid states
being labeled A and B, respectively.

consider again the vapor–liquid coexistence curve. By a reversal of the reason-
ing above, vapor states to the left of the vapor branch correspond to liquid points
to the left of the liquid branch of the coexistence curve and are more stable than
the corresponding liquid state. Moving to the left away from the vapor branch, the
corresponding liquid point also moves left until it reaches the liquid–vapor spin-
odal: beyond this point, there is no corresponding liquid. This therefore defines a
line in the phase diagram with the property that vapor states to the left have no
corresponding liquid states, shown as a red line in Fig. 2. In particular, points on the
vapor branch of the vapor–solid coexistence curve have no corresponding liquid.
This line therefore divides the metastable vapor region into two parts: a low-density
part in which there is no corresponding liquid state (i.e., no liquid with the same
chemical potential) that can play a role in nucleation and a higher density region
where the corresponding liquid exists as a metastable state. Hence, for systems
prepared with the vapor density between the vapor branch of the solid–vapor co-
existence curve and the new demarcation line, double nucleation is not possible
as there is no metastable liquid. The region within which vapor and liquid states
with the same chemical potential can be found is therefore an envelope around the
binodal and will be referred to as the �-nodal curve.
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Starting at the vapor branch of the vapor–solid coexistence curves, and moving
to the right we therefore find that

1. From coexistence to the �-nodal line, there is no liquid phase and so, double
nucleation is not possible. In this region, the solid free energy is less than
that of the vapor.

2. From the �-nodal line, to the vapor branch of the vapor–liquid coexistence
curves, there is a liquid state but it has higher free energy than the vapor
(which has higher free energy than the solid). Nucleation via a liquid cluster
is possible, with the solid cluster nucleating within the liquid but the liquid
cluster would always be metastable. This is a form of transient two-step
nucleation.

3. From the vapor branch of the liquid–vapor coexistence curve to the vapor–
liquid spinodal, the liquid has lower free energy than the vapor but higher
than the solid. True double nucleation is possible depending on the barriers
for the formation of a critical liquid cluster within the vapor, a critical solid
cluster in the liquid as compared to the barrier for directly forming a critical
solid cluster in the vapor. Even if the latter is favored, a transient scenario is
possible.

All of this is shown in a more direct way for the tWF potential in Fig. 3 where
supersaturation, S = Pv/Pcoex with Pv the vapor pressure and Pcoex the vapor–
solid coexistence pressure, is used as the independent variable. By definition, for
S < 1, the vapor is the stable phase and for S > 1 the solid is the stable phase. The
latter region is divided into three sections: that for which there is no corresponding
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Figure 3. Phase diagrams for the tWF potential with (vapor–solid) supersaturation as the
independent variable.
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liquid state, that in which there is a liquid but it has higher free energy than the
vapor, and that in which there is a liquid state with lower free energy than the vapor
but higher free energy than the solid. Only in the latter case is liquid nucleation
possible so it is only in this region of the phase diagram that double nucleation can
occur. This therefore represents a set of necessary conditions for double nucleation.
Nucleation pathways that do not involve double nucleation but which pass through
liquid-like state, that is, transient two-step nucleation, can in principle occur for
any value of S > 1. The primary goal of detailed DFT calculations is to determine
the necessary conditions for double nucleation and to assess for what conditions,
if any, transient two-step nucleation occurs.

2. Nucleation Scenarios for Simple Fluids

In some ways, the phase diagram for simple liquids is more complex because the
various coexistence curves cross. As shown in Fig. 2, the calculations indicate that
there is liquid–vapor coexistence below the triple point. However, just as in the
case of the globular proteins, the vapor branch of the vapor–liquid coexistence
curve is to the right of the vapor branch of the vapor–solid coexistence curves
thus indicating that the coexisting liquid and vapor have higher free energy than
does the solid phase (at the value of chemical potential or pressure corresponding
to liquid–vapor coexistence). Hence, below the triple point, the liquid phase is
again metastable just as in the case of the globular proteins. Similarly, below the
triple point the liquid branch of the liquid–solid coexistence curves lies to the left
of the liquid branch of the liquid–vapor coexistence curve, that is, it is in the
metastable (or even unstable) region of the liquid–vapor phase diagram. So, these
liquid states have higher free energy than the corresponding vapor phase and
the coexisting liquid and solid phases are metastable with respect to the vapor.
Taking all of this together, only the vapor–solid transition is usually drawn below
the triple point, but there is a metastable liquid and a liquid–vapor coexistence
curve in this region. It is this metastable liquid phase that gives rise to the pos-
sibility of two-step nucleation even for simple liquids. However, the fact that the
vapor branches of the vapor–solid coexistence curves and the vapor–liquid coexis-
tence curves are very close together makes it more difficult to display the various
metastability boundaries. Figure 4 shows the phase information in terms of the
supersaturation and the similarities and differences to the model protein behavior
are evident. The main difference is that the intermediate liquid state exists for all
values of the supersaturation leaving only the two regions distinguishing liquids
which are less or more stable than the vapor phase.

D. A Simple Picture of Double Nucleation

In this section, the goal is to anticipate the following, more technical, developments
to give an idea of how double nucleation can be described by something that looks
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Figure 4. Phase diagram for the LJ potential with (vapor–solid) supersaturation as the indepen-
dent variable.

like an extension of CNT. We begin with the free energy functional defined above
specialized to spherical symmetry,

� [ρ] �
∫ {

ω (ρ (r) , χ (r)) + 1

2
Kρρ

(
∂ρ (r)

∂r

)2

+ Kρχ ∂ρ (r)

∂r

∂χ (r)

∂r

+ 1

2
Kχχ

(
∂χ (r)

∂r

)2
}

(28)

where ω = f − µρ is the grand potential per unit volume and the coefficients of
the gradient terms are taken to be constants. It is assumed that the temperature and
chemical potential are such that there are three bulk states: a solid with order
parameters

(
ρs, χs

)
, a liquid with order parameters

(
ρl, 0

)
, and a vapor with

parameters
(
ρv, 0

)
. We now introduce a very simple model for the order param-

eters for a (spherically symmetric) vapor–solid cluster that nevertheless captures
the important physics of the real system:

ρ (r) =




ρs, r < R

ρs + (
ρv − ρs

)
r−R
w

, r < R

ρv, r > R + w

(29)

χ (r) =




χs, r < R

χs − χs
r−R
w

, r < R

0, r > R + w
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This piecewise-linear model can be extended to give arbitrarily complex approx-
imations and will play an important role below. For now, it is substituted into the
expression for the free energy that is then simplified to get

� [ρ] − �v � 4π

3
R3 (ωs − ωv)

+ 4πR2
(

wω
(
ρs, ρv, χs

) + 1

2w
Kρρ

(
ρs − ρv

)2

+ 1

w
Kρχχs

(
ρs − ρv

) + 1

2w
Kχχχ2

s

)
+ O(Rw, w2) (30)

with

�v =
∫

ω
(
ρv, 0

)
dr (31)

ω
(
ρs, ρv, χ

) =
∫ 1

0
ω

(
ρs + λ

(
ρv − ρs

)
, (1 − λ) χ

)
dλ

In the present discussion, it is assumed that the clusters are not small (in the sense
that w/R � 1) so that lower order terms in the expression for � can be neglected.

The critical cluster is a stationary point of the free energy so that the width is
determined from

0 = ω
(
ρs, ρv, χs

) − 1

2w2

(
Kρρ

(
ρs − ρv

)2 + 2Kρχχs
(
ρs − ρv

) + Kχχχ2
s

)
(32)

and the radius from

0 = R (ωs − ωv) + 2

(
wω

(
ρs, ρv, χs

) + 1

2w
Kρρ

(
ρs − ρv

)2

+ 1

w
Kρχχs

(
ρs − ρv

) + 1

2w
Kχχχ2

s

)
(33)

= R (ωs − ωv) + 4wω
(
ρs, ρv, χs

)
giving

��vs � 64π

3
√

2

ω3/2
(
ρs, ρv, χs

)
(ωv − ωs)

2

(
Kρρ

(
ρs − ρv

)2 + 2Kρχχs

(
ρs − ρv

) + Kχχχ2
s

)3/2

(34)
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The same model applied to the vapor–liquid and liquid–solid critical clusters gives

��vl � 64π

3
√

2

ω3/2
(
ρl, ρv, 0

)
(ωv − ωl)

2

(
Kρρ

(
ρl − ρv

)2
)3/2

(35)

��ls � 64π

3
√

2

ω3/2
(
ρs, ρl, χs

)
(ωl − ωs)

2

(
Kρρ

(
ρs − ρl

)2 + 2Kρχχs
(
ρs − ρl

) + Kχχχ2
s

)3/2

Finally, let us make the further approximation that the density of the liquid and
solid states are almost the same so that

��vl � 64π

3
√

2

ω3/2
(
ρs, ρv, 0

)
(ωv − ωl)2

(
Kρρ

(
ρs − ρv

)2
)3/2

��ls � 64π

3
√

2

ω3/2
(
ρs, ρs, χs

)
(ωl − ωs)2

(
Kχχχ2

s

)3/2
(36)

Double nucleation will be possible if ωs < ωl < ωv and will be the energetically
preferred pathway provided ��vs > ��vl that in turn is more likely if one or
more of these conditions is fulfilled:

1. The barrier for a direct transition is larger than that for an indirect transition
ω

(
ρs, ρv, χs

)
> ω

(
ρl, ρv, 0

)
, ω

(
ρl, ρv, 0

)
. (It was this condition that was

studied previously by Lutsko and Nicolis [4]).

2. ωv − ωl 
 ωv − ωs

3. Kρχ, Kχχ are not small compared to Kρρ.

Clearly, the factor (ωv − ωl)2 occurring in the denominator of ��vl can be
important in raising the vapor–liquid barrier compared to the vapor–solid barrier.
On the other hand, the factor involving the gradient coefficients is always going to
be smaller for the vapor–liquid cluster than for the vapor–solid cluster due to the
terms related to crystallinity.

IV. GRADIENT COEFFICIENTS AND PLANAR INTERFACES

In the standard CNT model, the excess free energy of a cluster is the sum of a bulk
term and a surface term with the latter being proportional to the planar surface
tension at coexistence. In the same way, for the model considered here, the planar
surface tension will play a key role in determining the gradient coefficients.

A. Gradient Coefficients

Since the second-gradient approximation is the result of a formal expansion of the
free energy, exact expressions for the gradient coefficients exist (see Appendix B).
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Their evaluation requires full knowledge of the direct correlation function in the
bulk system for all densities and crystallinities that is of course not known. While
reasonable models could be used to make approximate evaluations of the coeffi-
cients, the results would probably be disappointing when used to evaluate physical
quantities such as the liquid–solid or vapor–solid planar surface tension simply
because the squared-gradient model is a crude approximation. In fact, the relevant
interfaces tend to have widths of only a few times the typical atomic separation
so that the assumption of slowly varying order parameters that underlies the SGA
is unlikely to be very good, although for the particular case of the liquid–vapor
interface that involves only a single order parameter and no structural change, it
is actually rather good [12]. Thus, while it would be interesting to make good
evaluations of the exact expressions for the coefficients, the approach used here is
more pragmatic. First, it is noted that a systematic expansion in crystallinity and
density gives

Kρρ (ρ, χ) = Kρρ (0, 0) (1 + O (χ, ρ))

Kρχ (ρ, χ) = C (T ) ρχ (1 + O (χ, ρ))

Kχχ (ρ, χ) = C (T ) ρ2 (1 + O (χ, ρ)) (37)

with

C (T ) ≡
[
∂2Kρχ (ρ, χ)

∂ρ∂χ

]
ρ=χ=0

=
[
∂2Kχχ (ρ, χ)

∂ρ2

]
ρ=χ=0

Second, there is evidence that the density–density coefficient can be well modeled
in the liquid, that is, for χ = 0, by a density-independent quantity [12]. Third,
explicit calculations in the accessible limit of low density indicate that all three
coefficients are relatively insensitive to the crystallinity (aside from the explicit
factors shown above) at least up to crystallinities about half that of the bulk solid.
Finally, Laird has noted [35, 36] that the structural properties tend to be dominated
by the short-range repulsion of the pair potential so that the liquid–solid surface
tension can be approximated by that of the hard-sphere solid evaluated with an
effective hard-sphere diameter giving the useful approximation that the excess
surface free energy for a planar liquid–solid interface is

γls ≈ 0.617d2 (T ) /kBT. (38)

This suggests that Kρχ and Kχχ should be dominated by hard-sphere contributions,
which would imply that they scale linearly with temperature. It is also consistent
with the model free energy functional used here in which all of the dependence of
the free energy on the crystallinity enters through the hard-sphere part of the free
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energy. All of this suggests a simple approximation for the structural coefficients
along the lines of

Kρχ (ρ, χ) ≈ CρχρχkBTσ3 (39)

Kχχ (ρ, χ) ≈ Cχχρ2kBTσ6

In a final simplification, the low-density limit gives Cρχ = Cχχ.

B. Planar Interfaces

Figure 5 shows the result of using this model to calculate the liquid–solid, vapor–
solid, and vapor–liquid surface tensions at various temperatures as compared to
the available simulation data. It is evident that, for example, choosing Cρχ = Cχχ

to give, for example, a value of the liquid–solid surface tension in agreement
with a single point of either simulation or the Davidchack–Laird approximation is
enough to give a reasonable description of the liquid–solid and vapor–solid surface
tensions over a range of temperatures. Furthermore, reasonable values for all of
the physical quantities are found for a range of choices of the coefficient so that
the model is relatively robust with respect to this choice.

Figure 6 shows the planar profiles calculate using Cρχ = Cχχ = 2 for a tem-
perature below the triple point, one near the triple point and one above the triple
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Figure 5. Excess surface free energy for the solid–vapor, liquid–vapor, and liquid–solid inter-
faces for a system interacting via the LJBG pair potential. The small symbols are simulation data taken
from Broughton and Gilmer [37] (solid–vapor and liquid–vapor) and from Davidchack and Laird [36]
(solid–liquid). The diamonds show the Laird approximation for the solid–liquid planar surface tension
[35]. The simulation results at each temperature are, from highest to lowest, for the 111, 100, and 110
planes, respectively.
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Figure 6. The order parameters (upper panels) and the 100 planar-averaged density (lower
panels) for the solid–fluid interface at three temperatures that are, respectively, below, near, and above
the triple point. In the upper panels, the higher curve is ρ(z) and the lower curve is χ(z). All quantities
are in reduced units.

point. The profiles above and below the triple point share common features: the
width and position of the transition regions for both the average density and the
crystallinity are roughly the same and the overall width of the interfaces is about
three atomic planes. The profile near the triple point is broader and is actually
composed of two distinct regions: the first part in which there is a modest drop in
density and the crystallinity goes to zero, and the second region in which the den-
sity drops to that of the vapor with the crystallinity equal to zero. The first region
has the nature of a solid–liquid transition while the second has the structure of a
liquid–vapor transition. In fact, this can be interpreted as a caricature of a wetted
interface. True wetting, with a liquid region of finite width, is not possible in this
model because the long-ranged van der Waals forces that give rise to the fluid are
not being explicitly modeled. Hence, the results shown are as close as this model
can come to representing wetting—basically, wetting with the bulk fluid region
having zero width.

V. VAPOR-CRYSTAL NUCLEATION

A. General Considerations

Given a model for the free energy of interfacial systems it is now possible to con-
sider the process of nucleation. In this context, nucleation means the formation of
clusters that eventually become supercritical. As mentioned above, the most impor-
tant issue that arises in vapor–solid nucleation is the description of the nucleation
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pathway, for which there are at least three possibilities. The first is the conven-
tional pathway in which the subcritical cluster has essentially bulk solid properties
(density and crystallinity) except for an interfacial region. When the clusters are
small, they are subcritical and the free energy increases with cluster size until a
transition state—a critical cluster—is reached, after which further growth lowers
the free energy. This pathway is therefore characterized by a single nucleation
barrier and by near-bulk solid properties of the interior of the cluster. The second
pathway involves double nucleation. First, a purely liquid-like cluster forms and
grows until it reaches a critical size after which it is supercritical and stable with
respect to the vapor. Within this liquid cluster, a second cluster forms, this time
having the properties of the bulk-solid, and goes through a similar process of sub-
critical growth reaching a transition state and then becoming stable with respect
to both the vapor and the liquid. This pathway is therefore characterized by two
nucleation events and two energy barriers. The final possibility is termed transient
two-step nucleation and is in some sense intermediate between the classical and
double-nucleation scenarios. Sufficiently small clusters, which are of course sub-
critical, are liquid-like but at a certain size, below the critical size for the liquid,
the crystallinity begins to increase so that there is a single critical cluster, perhaps
more solid-like than liquid-like, and a single energy barrier to be crossed on the
path toward crystallization. In this case, the liquid need not even be stable with
respect to the vapor—indeed, there is not even a priori reason why the liquid must
exist as a thermodynamic state (e.g., minimum of the bulk free energy) at all.

The question therefore arises as to how one uses the free energy model to char-
acterize the nucleation pathway? Nucleation is of course a rare, noise-driven event
and a dynamical description would seem most appropriate. In fact, in this sense,
characterizing nucleation pathways is similar to the problem of characterizing
chemical reaction pathways, for which the same issues occur.

B. Double Nucleation

The first step in characterizing any structural transition or reaction is the identifi-
cation of the saddle points of the free energy surface, that is, the transition states.
In general, the beginning state (the bulk vapor) and the end state (the bulk crystal)
are local minima of the free energy and the transition states are the critical nuclei
that define the energy barrier separating the minima. Here, it is assumed that the
relevant density distributions are spherically symmetric and the order parameter
fields, ρ (r) and χ (r) are again modeled by piecewise continuous functions,

ρ (r) =




ρ0, r < R

ρ0 + (ρ1 − ρ0) r−R
w0

, R < r < R + w0

ρ1 + (ρ2 − ρ1) r−R−w0
w1

, R + w0 < r < R + w0 + w1

...
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with a similar model for the crystallinity. In order to refer to different realizations of
these models, the notation m(i, j) will be used indicating that there are i links for the
density profile (which means 1 + 2i parameters since there is the initial radius and
then one density and one width for each link) and j links for the crystallinity profile,
giving 1 + 2j parameters for a total of 2 + 2i + 2j parameters. The free energy
is then a function of those parameters and the transition states are identified by
searching the 2 + 2i + 2j parameter space for stationary points of the free energy
surface. This is done using standard eigenvector-following techniques [23].

Three specific models will be studied here. First is the “CNT” model in which
there is a single link in both the density and crystallinity profiles together with the
additional constraint that the radii and widths of the two profiles are the same and
that the density and crystallinity in the bulk region are the same as for the bulk
crystal for the given temperature and chemical potential. This model therefore
depends on only two parameters (the radius and width of the profiles) and is the
simplest possible model. The other models studied will be m(1, 1), a single link for
each profile, and m(2, 1), in which there are two links in the density profile. As for
the planar interfaces described above, this is necessary to allow for wetting of the
surface and will be seen to lead to a substantial reduction of the free energy over the
single link model. On the other hand, including additional links in the crystallinity
has very little effect. (For example, at T = 0.6 and S = 1.25, the change in free
energy of the critical nucleus found using the m(2, 1) model and the m(2, 2) model
is on the order of 1%.)

The interesting feature of this problem is that for sufficiently high supersatura-
tions, both the liquid and the solid are more stable than the vapor so that there are
three transition states: one corresponding to the vapor–liquid transition, another
to the vapor–solid transition, and a third to the liquid–solid transition. All of this
follows simply from the bulk free energies as discussed above and illustrated in
Fig. 7. The question addressed here is which of the possible paths will occur: di-
rect transition from vapor to solid or a two-step transition via first a vapor–liquid
transition and then a liquid–solid transition. It is assumed that whichever transition
involves the lowest free energy barriers will dominate.

Tables I and II give the relevant free energy barriers for transitions at differ-
ent supersaturations for kBT = 0.5 and 0.6, respectively. It is found that for low
supersaturation, corresponding to the case of large critical nuclei, the barrier for
the direct vapor–solid transition is lower than that for the vapor–liquid transition.
However, at larger supersaturations, the vapor–liquid transition becomes less costly
thus implying that the double-nucleation scenario is favored.

Figures 8 and 9 show the structure of the critical nuclei for a few cases. In
all cases, the crystallinity drops to zero before the density reaches that of the
bulk vapor so, in some sense, the crystalline interior is separated from the bulk
vapor by a liquid buffer. This is especially true if one considers that the structure
is essentially liquid like for crystallinities less than about 0.3. However, at the
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Figure 7. Phase diagram for the LJ potential with (vapor–solid) supersaturation as the indepen-
dent variable. Double nucleation occurs in the region to the right and above the upper line: between the
upper line and middle line, the liquid is metastable but double nucleation has a higher energy barrier
than single-step nucleation of the solid.

higher temperature, a more distinctive wetting of the cluster is seen whereby the
crystallinity drops to zero over a region in which the density drops from a solid-like
to a liquid-like value followed by a drop of the density from liquid to vapor values.
This is analogous to the planar wetting illustrated above and shows that this is also
a feature of the critical clusters near the triple point.

TABLE I
Properties of Critical Nuclei for the LJBG Interaction as a Function of Supersaturation at kBT = 0.5

S 2.08 3.46 5.92
ρlatt 1.00 1.005 1.01

Model β�VL β�SV β�LS β�VL β�SV β�LS β�VL β�VS β�LS

CNT 2063 1738 78 356 587 66 135 269 57
m(1,1) 2053 1440 73 355 463 62 133 * 53
m(2,1) 1899 1304 72 335 * 61 128 * 53
�β�Bulk −0.32 −0.74 −0.41 −0.78 −1.24 −0.46 −1.27 −1.78 −0.51

The supersaturation and lattice density are given in the first two rows followed by the excess free energy
for the nuclei for vapor–liquid (VL), vapor–solid (VS), and liquid–solid (LS) nucleation. The last row
gives the difference in bulk free energies for the various transitions. Blank entries occur for cases where
it was not possible to find a transition state.
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TABLE II
Properties of Critical Nuclei for the LJBG Interaction as a Function of Supersaturation at kBT = 0.6

S 1.26 1.76 3.68
ρlatt 0.975 0.98 0.99

Model �LV �SV �LS �LV �SV �LS �LV �SV �LS

CNT 4045 7013 758 396 1142 407 59 189 184
m(1,1) 4033 5171 708 392 783 379 58 * 171
m(2,1) 3714 4176 704 368 * 377 57 * 170
β��Bulk −0.128 −0.227 −0.099 −0.408 −0.547 −0.139 −1.029 −1.252 −0.223

C. Transient Liquid State

Even in regions where double nucleation is not possible, the metastable liquid
state could still play a role in nucleation. This becomes a question of the nucle-
ation pathway that requires much more information than just the properties of the
critical nucleus. A full description of the pathway would necessarily have to be
dynamical in nature accounting for a variety of kinetic effects including heat and
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Figure 8. The structure of the critical nucleus for T ∗ = 0.6 and S = 1.25 as determined using
the CNT, m(1,1) and m(2,1) parameterizations of the profiles. In each figure, the upper curve is the
average density and the lower curve is the crystallinity. In the figure for the m(2,1) model, a dashed line
is drawn at the radius where the crystallinity becomes zero: the fact that the second link of the density
profile begins at nearly this point is a clear illustration of the role of the intermediate liquid state in
wetting the cluster.
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Figure 9. The same
as Fig. 8 for T ∗ = 0.5 and
S = 2.08. Desipite the ex-
istence of a metastable in-
termediate liquid, there is
no significant wetting be-
havior in this case.

mass transport. It goes without saying that such a detailed description, while highly
desirable, can be expected to be very difficult to implement.

Alternatively, one might imagine beginning at the transition state that is a saddle
point of the free energy functional and is characterized by a size (in numbers of
atoms), Nc. It would be natural then to find other stationary points under the
constraint of fixed number of atoms in the cluster and thus to trace a path from
the critical cluster to the bulk vapor. This is in fact similar to the methods used
in simulations [2]. However, even in the case of the liquid–vapor transition this
gives discontinuous paths whereby the structure changes discontinuously for some
value of N. For the liquid–vapor transition, this is a transition from a well-defined
cluster with a liquid-like central density to a much larger structure with a central
density slightly larger than the vapor. In the present case, the transition observed
is from a well-defined crystalline cluster to one with zero crystallinity.

An alternative, widely used in quantum chemistry and in the study of clusters,
is the construction of steepest descent pathways away from the transition state.
These are expected to be approximations to the dynamical pathway, especially in
the case of quasiequilibrium dynamics due to some sort of damping: an example
might be the behavior of colloids (which can often be modeled as simple fluids)
or macromolecules in solution. Many different methods are used to construct the
steepest descent paths (also commonly called the minimum free energy pathway or
MFEP) including heuristic methods such as the nudged elastic band and the string
method. Both methods have been applied to nucleation problems [10, 15] but here
I expand on recent work that seeks to construct the exact MFEP for parameterized
density profiles [12].

All methods of constructing steepest descent paths require the notion of a dis-
tance between two points in parameter space since “steepest descent” literally
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means the path for which the energy varies most rapidly per unit distance in pa-
rameter space. The problem is that the various parameters used here—densities,
widths, crystallinity—are incommensurate. However, since they exist only to spec-
ify a density profile, a natural solution is to define a metric in density–space and
then to use this to induce a metric in parameter space. In the study of fluids, the
metric was taken to be the Euclidean distance between two density profiles,

d
[
ρ, ρ′]2 =

∫ (
ρ (r) − ρ′ (r)

)2
dr (40)

It would be natural to continue to use this definition however, it is unsuitable for two
reasons. The first is simply that it is technically difficult to evaluate. The second,
more importantly, is that it leads to the metric being sensitive to details of the lattice
structure. For example, as the radius parameter varies there is little variation in the
metric until the radius crosses an atomic shell at which point there is very rapid
variation. This is unacceptable in the present context since the free energy surface
constructed above is based on a separation of length scales according to which the
order parameters vary slowly over atomic length scales.

In order to motivate a simple alternative more in keeping with the present
approach, note that for the liquid–vapor transition the crystallinity is identically
zero, χ (r) = 0, so that the Euclidean distance function becomes

d
[
ρ, ρ′]2 =

∫ (
ρ (r) − ρ′ (r)

)2
dr (41)

which is the Euclidean distance between the K = 0 amplitudes in the expansion
of the density. In fact, the parameterization of the density used here is

ρ (r) = ρ (r) +
∑
jεNN

ρ (r) χ (r) eiKj ·r + · · · (42)

where the first sum is over the first (nearest-neighbor) shell in wavevector space.
Hence, the quantity ρ (r) χ (r) is the spatially varying amplitude of the smallest
nonzero wavevector. It therefore seems reasonable to treat this on a par with the
amplitude of the zero-wavevector component and to define a distance function as

d
[
ρ, ρ′]2 =

∫ (
ρ (r) − ρ′ (r)

)2
dr+

∫ (
ρ (r) χ (r) − ρ′ (r) χ′ (r)

)2
dr (43)

which is what will be used henceforth. When the order parameters are expressed
in terms of a collection of scalar parameters as ρ (r) = ρ (r;�) and χ (r) = χ (r;�)
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this then defines a distance between points in parameter space

d
[
�, �′]2 =

∫ (
ρ (r;�) − ρ

(
r;�′))2

dr

+
∫ (

ρ (r;�) χ (r;�) − ρ
(
r;�′) χ

(
r;�′))2

dr (44)

Assuming this function is sufficiently continuous, the distance function implies a
metric

gij (�) =
∫ (

∂ρ (r;�)

∂�i

∂ρ (r;�)

∂�j

+ ∂ρ (r;�) χ (r;�)

∂�i

∂ρ (r;�) χ (r;�)

∂�j

)
dr (45)

The steepest descent paths are then determined by

d�i

ds
= −

gij (�) ∂β�
∂�j

∂β�
∂�a

gab (�) ∂β�
∂�b

(46)

This equation is obviously similar to a dynamics consisting of simple relaxation
driven by free energy gradients as discussed in Appendix C. However, since nu-
cleation is, fundamentally, a noise-driven process, there is no reason to expect a
priori that the correct path can be determined by running a deterministic dynamics
backward from the transition state. The idea of steepest descent is that it includes
the idea of being a most probable path since it is in some sense the most efficient
path over the barrier. (An analogy would be a multidimensional random walker in
a potential field. In order for the walker to pass over a barrier, it must take some
number of improbable steps in the right direction until it reaches the top of the
barrier. The steepest descent path is the one involving the fewest number of steps.
Other paths must cross the same barrier, but by including more steps, say in the
“wrong” direction, the probability of falling backward toward the local minimum
increases.)

The nucleation pathways have been calculated using this model for values of the
supersaturation such that the metastable liquid is more stable than the vapor, but
below the double-nucleation threshold. Figure 10 shows the pathway for kBT =
0.5 and S = 2.08 plotted as a function of the total number of atoms in the cluster. It
is clear that both the central density and central crystallinity begin at the values of
the bulk vapor. This is because the surface tension depends on the gradient of these
quantities and for very small clusters, the dominance of the surface tension term
over the bulk free energy contribution forces the gradients to be zero. As the cluster
grows, the density increases very rapidly while the crystallinity increases more
slowly. The core of the cluster therefore densifies more quickly than it crystallizes
but the effect is minor. Figure 11 shows the same quantities for kBT = 0.6, close
to the triple point, and for S = 1.25. In this case, transient two-step nucleation is
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Figure 10. The aver-
age density (upper curve) and
crystallinity (lower curve) at
the center of the cluster as
a function of cluster size for
T ∗ = 0.5. The inset shows an
expanded view of the early
stages of nucleation.

clearly in evidence: the density increases while the crystallinity remains almost at
zero until the cluster consists of well over 100 atoms. These contrasting behaviors
are compared in Fig. 12 where the number of “crystalline” atoms, defined as

Ncrys = 1

χbulk

∫
ρ (r) χ (r) dr (47)

is plotted as a function of N. Near the triple point, the number of crystalline
atoms does not increase appreciably until the cluster is over 100 atoms in size
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Figure 11. The average density (upper curve) and crystallinity (lower curve) at the center of the
cluster as a function of cluster size for T ∗ = 0.6. The inset shows an expanded view of the early stages
of nucleation.
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Figure 12. The number of crystalline atoms as a function of the total number of atoms in the
cluster showing transient two-step nucleation near the triple point, T ∗ = 0.6, and almost completely
one-step nucleation away from the triple point.

whereas it increases almost immediately at the lower temperature. This behavior
is, incidentally, quite similar to the observations of ten Wolde and Frenkel who
noted that for their model of globular proteins, the favored nucleation path involved
two-step nucleation near the triple point but that this was not seen further below
the triple point [2].

VI. CONCLUSIONS

The primary goal of this work has been they study of different pathways for the
homogeneous nucleation of crystals from solution based on mean-field, DFT mod-
els. Simply from the bulk thermodynamics, it is possible to divide the phase di-
agram into regions for which double nucleation is and is not possible. When the
bulk models are extended to inhomogeneous, multiphase systems—here via the
squared-gradient approximation—it becomes possible to determine when double
nucleation is more energetically favorable than single-step nucleation. Finally, by
studying steepest-descent pathways connecting the transition states to the bulk
states it was possible to illustrate transient two-step nucleation for the Lennard–
Jones fluid. A summary of these investigations would be that

1. there is a lower supersaturation limit for double nucleation: at the triple point,
the limit goes to one and it increases rapidly as the temperature is lowered;

2. transient two-step nucleation seems to be closely tied to wetting and to
therefore occur most distinctly near the triple point.

Almost all phases of this study could be improved. The underlying DFT model
is highly simplified and in particular the inclusion of a long-ranged van der Waals



on the role of metastable intermediate states 167

term would give a more realistic description of wetting including a finite wetting-
layer thickness. The modeling of the gradient coefficients is crude and quite em-
pirical. One can estimate them directly from the DFT model [13, 17–19] and this
might give a more realistic dependence on density and crystallinity. The piecewise
continuous models could be used with more than the minimal number of links
used here or some other, perhaps more physical, basis functions could be chosen
(or the Euler–Lagrange equations could be solved directly without parameterizing
the fields). Finally, instead of the minimum free energy pathways studied here, a
more physically meaningful approach would be to search for the most probable
pathways that requires the introduction of dynamics and noise, but which seems
quite feasible based on the approach of Heymann and Vanden-Eijnden [38].
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APPENDIX A: BULK SOLID PROPERTIES

The calculation of bulk thermodynamic properties for the hard-sphere solid using
the given parameterization is complex. The reason is that the hard-sphere free en-
ergy functional diverges for ρ slightly greater than ρlatt—at typical solid densities,
the divergence occurs for ρ − ρlatt ∼ 10−10. It might seem that this is no problem
as one simply takes ρ = ρlatt, however, upon closer inspection, this does not work.

To explain the problem, let us consider the “correct” way to fix these two
densities. In principle, an equilibrium state must satisfy three conditions:

∂F [ρ�]

∂ρ

∣∣∣∣
ρlatt,α

= µ (A1)

∂F [ρ�]

∂ρlatt

∣∣∣∣
ρ,α

= 0

∂F [ρ�]

∂α

∣∣∣∣
ρlatt,ρ

= 0

Let the solution to these equations be ρ∗, ρ∗
latt, α

∗. Solution of these three simul-
taneous equations is delicate due to the fact that (a) |ρ − ρlatt| � 1 and (b) the
surprising fact that∣∣∣∣∣ ∂F [ρ�]

∂ρ

∣∣∣∣
ρ=ρ∗

latt,ρ
∗
latt,α

∗
− ∂F [ρ�]

∂ρ

∣∣∣∣
ρ∗,ρ∗

latt,α
∗

∣∣∣∣∣ = O (µ) (A2)

In words, the free energy is a very rapidly varying function of ρ for ρ near ρlatt.
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This situation is somewhat better than it seems since in practical calculations,
we are almost always performing some sort of search over, or tabulation in terms of,
the chemical potential. Hence, rather than being given µ and having to solve three
simultaneous equations, we can often take, for example, ρlatt as the independent
parameter and search for ρ∗, α∗ satisfying

∂F [ρ�]

∂ρlatt

∣∣∣∣
ρ∗,ρlatt,α

∗
= 0 (A3)

∂F [ρ�]

∂α

∣∣∣∣
ρ∗,ρlatt,α

∗
= 0

We then calculate µ given these values. (Note however that even evaluating the
various derivatives numerically is quite delicate when the range over which ρd3

can be varied symmetrically might be 10−10 or smaller.)
There is a heuristic that alleviates many of these problems. Intuitively, one tends

to think in terms of the density and not to distinguish between the lattice density
and the average density. In fact, in most calculations for the hard-sphere solid, the
approximation ρ = ρlatt is made and the results appear quite reasonable. Since

df (z, z)

dz
= ∂f (x, y)

∂x

∣∣∣∣
x=y=z

+ ∂f (x, y)

∂y

∣∣∣∣
x=y=z

(A4)

this suggests that it must be the case that

∂F [ρ�]

∂ρ

∣∣∣∣
ρ=ρ∗

latt,ρ
∗
latt,α

∗
+ ∂F [ρ�]

∂ρlatt

∣∣∣∣
ρ=ρ∗

latt,ρ
∗
latt,α

∗
� ∂F [ρ�]

∂ρ

∣∣∣∣
ρ∗,ρ∗

latt,α
∗

= µ (A5)

In fact, this suspicion is borne out in practice. Combining these two points, and
noting that the value of � that makes the free energy stationary varies slowly as
a function of the various densities, an efficient practical procedure is to choose a
value of ρlatt, to set ρ = ρlatt, to determine the stationary value of α and to use
the left-hand side of Eq. (A5) to evaluate µ. This involves a simple, controlled
minimization and no need to evaluate the free energy near the divergence. A proof
that Eq. (A5) is exact, or at least a good approximation, is to my knowledge missing
and would be useful.

Finally, an important point is that these technicalities play no role in the calcu-
lations presented here. Since we deal here with interfacial problems, the important
thing is how the free energy varies as the average density varies from that of
the solid down to a relatively low value (that of a liquid or vapor). Furthermore,
in clusters, the interior density is always somewhat below that of the bulk solid
(dwarfing the comparatively tiny difference between ρ∗ and ρ∗

latt) . The only way
these technical points would be important if we tried to do a free minimization of
the free energy for a planar interface in which case the algorithm would have to
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find the correct values for the bulk system. This would essentially mean solving
Eq. (A3) that, because of the divergences very near the correct solution, leads to
numerical challenges. However, using the piecewise-continuous approximation,
we always set the bulk values “by hand” and thereby avoid this problem.

APPENDIX B: FORMAL RESULTS FOR GRADIENT COEFFICIENTS

They are given by

βK
�a�b

ab (�) = − 1

2V

∫
r12,ar12,bc (r1, r2; �)

∂ρ (r1; �)

∂�a

∂ρ (r2; �)

∂�b

dr1dr2

where c (r1, r2; �) is the direct correlation function for the bulk solid. Unfortu-
nately, the DFT models used here do not give realistic expressions for this quantity
although some useful results are possible. In particular, expanding in the crys-
tallinity gives

Kρρ = I1 (ρ) + O (χ)

Kρχ = ρχI2 (ρ) + O
(
χ2)

Kχχ = ρ2I2 (ρ) + O (χ) (B1)

with

I1 (ρ) = 2π

3

∫ ∞

0
c (r; ρ) r4dr

I2 (ρ) = 2π

3
N1

∫ ∞

0

sin (K1r)

K1
c (r; ρ) r3dr (B2)

which only requires the DCF in the bulk fluid (albeit, at solid densities). Similarly,
expanding in density gives

βK
�a�b

ab (�) = − 1

2V

∫
r12,ar12,b

(
1 − e−βv(r)

) ∂ρ (r1; �)

∂�a

∂ρ (r2; �)

∂�b

dr1dr2 + · · ·
(B3)

and combining the two expansions gives

Kρρ = I1 (0) (1 + O (χ, ρ))

Kρχ = ρχI2 (0) (1 + O (χ, ρ))

Kχχ = ρ2I2 (0) (1 + O (χ, ρ)) (B4)

and even if they did, the coefficients evaluated from these expressions might
well give poor values of the surface tension due to the truncation of the gradient
expansion.
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Coexistence occurs at a given temperature for a single value of the chemical
potential corresponding, by definition, to supersaturation equal to 1.

APPENDIX C: STEEPEST DESCENT AND DYNAMICS

Typical dynamical models depend on a distinction between order parameters that
are densities of conserved quantities (such as the total mass in the canonical en-
semble) and those that are densities of nonconserved quantities (such as the mass
in the grand canonical ensemble). We begin with the latter case of a nonconserved
order parameter. Then, the evolution is often assumed to be of the form

dψt (r)

dt
= −�

δ� [ψt]

δψt (r)

where � is a transport coefficient. If space is discretized and we denote ψt (ri) =
ψti, this takes the form

dψti

dt
= −�

∂� [ψt]

∂ψti

Here, the notation indicates that � is a function of all of the order parameters
{ψti}. Let us suppose that the system is described by some alternate set of order
parameters, {φti}, which is complete in the sense that the two sets are equivalent
and the relation between them is invertible: φti = φti [ψ] and ψti = ψti [φ]. Then,
it follows that

dφti

dt
= −�

∑
j

∂� [ψt]

∂ψtj

∂φti

∂ψtj

= −�
∂� [φt]

∂φtl

∑
j

∂φtl

∂ψtj

∂φti

∂ψtj

(C1)

Suppose we did not know about this dynamics and simply wanted to write
down the steepest descent equations for these models. In that case, it is necessary
to specify a metric. We assume that the ψ-space is Euclidean so that the distance
between two sets of fields is

d2 [
ψt (r) , ψ′

t (r)
] =

∫ (
ψt (r) − ψ′

t (r)
)2

dr (C2)

→
∑

i

(
ψti − ψ′

ti

)2
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This implies that

d2 [
φt (r) , φ′

t (r)
] →

∑
i

(
ψti [φt] − ψti

[
φ′

t

])2 (C3)

Assuming sufficient analyticity, this prescribes a Riemann geometry with metric

glm =
∑

i

∂ψti [φt]

∂φtl

∂ψti [φt]

∂φtm
(C4)

In general, the steepest descent equations are

dφti

ds
= −

gil ∂� [φt]

∂φtl(
∂� [φt]

∂φta

gab ∂� [φt]

∂φtb

) (C5)

Comparison of this to Eq. (C1) shows that the dynamics is equivalent to steepest
descent with the relation between time and the distance parameter being

�dt = ds(
∂� [φt]

∂φta

gab ∂� [φt]

∂φtb

) (C6)
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I. INTRODUCTION

Proteins in solution show a variety of phase transitions, conformational transitions,
and aggregation phenomena that are the subjects of active research in different ar-
eas. Understanding protein condensation is, for example, important in biomedical
research because certain diseases, such as human cataracts, result from this pro-
cess [1]. Protein crystallization is another subject of extensive research as protein

Advances in Chemical Physics, Volume 151: Kinetics and Thermodynamics of Multistep Nucleation and
Self-Assembly in Nanoscale Materials, First Edition. Edited by Gregoire Nicolis and Dominique Maes.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

173



174 patrick grosfils

Figure 1. Two-step crystallization pathway from proteins in solution (gas) to a crystal (solid)
via an intermediate metastable dense cluster (liquid).

crystals of good quality are required in X-ray crystallography for protein structure
determination. A large body of work has been devoted to this topic and especially
to nucleation, the process that initiates protein condensation.

It follows from various numerical, theoretical, and experimental studies that
protein nucleation does not always conform to the classical nucleation theory, but
it is often subject to a more complex process. According to the proposed new
theory, protein crystallization is a two-step process that proceeds via an interme-
diate metastable protein-rich state similar to the liquid state [2–6]. Thus, inside
the solution, a dense cluster is first formed, followed by a rearrangement of the
molecules within the cluster into an ordered structure (see Fig. 1). This mechanism
appears to apply to many crystallization processes from solutions irrespective of
structure and size of molecules. One way in which the molecular size can affect
nucleation is through its impact on stability of the dense phase. Indeed, for po-
tentials with a range sufficiently short with respect to the excluded volume, the
dilute-phase/dense-phase transition becomes metastable with respect to the dilute-
phase/crystal transition [6]. Moreover, the size of the molecule appears to have
also an impact on the second step of the nucleation process, that is, protein rich to
crystal transition, through an increase in organization time that goes with a greater
molecular size [7].

In this chapter, the effects of the molecular size on the metastable liquid phase are
examined in the light of results obtained by simulating a model of globular protein
using the Monte Carlo method. Particular attention is paid to interfacial properties
that have so far been little studied. The coexistence curve and the interfacial tension
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are determined for different molecular sizes. Globular proteins constitute one of
the main classes of proteins. The spherical structure is here induced by their tertiary
structure that results from the hydrophobic effect. In the next section, it is shown
how these biophysical informations can be incorporated into a model potential. The
Monte Carlo simulation method is then described and some problems inherent to
metastable phase and steep interaction potential are discussed. This is followed by
a section presenting and discussing the results of the simulations. In the concluding
section, we discuss in the light of our finding a possible explanation of why in some
systems intermediate structured units are first built before their incorporation to a
growing phase.

II. MODELING STRUCTURE AND INTERACTION
OF GLOBULAR PROTEINS

Proteins are long-chain molecules with specific monomer sequences that fold and
form compact and ordered arrangements. One view of the protein folding process
assumes that it is the nonlocal interaction between amino acids that are widely sep-
arated in the sequence that drives the collapse of the chain and gives the protein its
structure. The idea, coming from polymer modeling, is that protein chain contains
two kinds of residues that interact strongly with water and contribute predomi-
nantly to the folding process [8, 9]. Nonpolar segments interact unfavorably with
water and during folding they tend to be buried in the protein interior away from
contact with water. Polar segments, on the contrary, interact favorably and very
strongly with water and form the outer shell of the folded protein. This hydrophobic
effect is the major force for folding proteins and stabilizing their structure [10].

Most of the theoretical models that have been introduced to study protein crys-
tallization or phase coexistence are based on the idea that under conditions that
favor native state, proteins can be approximated as colloids with short-range at-
tractions. This suggests the use of an effective potential for the theoretical study
of globular proteins in solution. Since this model ignores the polymeric character
of the protein, it might seem that results drawn from this approach could hardly be
generalized to real protein solutions. Actually, information such as the amino acid
sequence can be integrated into an effective protein–protein interaction potential
using protein folding models. Of particular interest is the pair potential

V (r) = 4 ε

α2

(
1

((r/σ)2 − 1)6 − α

((r/σ)2 − 1)3

)
(1)

originally proposed by ten Wolde and Frenkel [3] to study the phase behavior of
globular proteins in solution. As briefly discussed next, the parameters entering in
Eq. (1) can be related to average structural characteristics of native and denatured
protein states using Dill’s heteropolymer collapse theory [8, 11].
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According to Dill’s theory, proteins are heteropolymers whose segments can be
considered as hydrophobic or polar. Such a two-species model is in contrast to the
biophysical representation of the primary protein structure in terms of 20 amino
acids. This seemingly oversimplified description is nevertheless able to emulate
the collapse of the chain driven by the formation of hydrophobic contacts and a
loss of conformational entropy. Also, the state of the protein, native or denatured,
is deduced depending on sequence and the temperature. The model also predicts
that in the native state, there are less hydrophobic segments exposed to the solvent
than in the denatured state.

Heteropolymer collapse (HPC) theory is based on the principle that interac-
tions between hydrophobic segments and the solvent are less favorable than those
between polar segments and the solvent. The theory integrates this principle by
means of Kauzmann’s model [12] that treats the protein interior as a liquid so that
the hydrophobic interaction can be evaluated as the change of free energy that
results from the transfer of a hydrophobic side chain from the solvent (H2O) to the
interior of the protein considered as a pure hydrophobic liquid [13–17]. The nature
of each segment, that is, hydrophobic or polar, is taken into account statistically
by �, the fraction of segments that can be considered as hydrophobic among the
Ns segments that comprise the chain. From this information, the theory predicts
the size of the protein, expressed by a radius of gyration, in the native (Rnative) and
denatured (Rdenatured) states. Because these structural characteristics of native and
denatured proteins follow from the sequence of hydrophobic/polar segments along
the chain, they are affected by � in such a way that increasing the hydrophobicity
will lead to a more compact protein state.

Interaction between proteins follows from the same principle that governs pro-
tein folding, namely, the hydrophobic effect. HPC theory predicts the fraction of
segments in contact with the solvent (fe) and θ(T ), the fraction of hydrophobic
residues present on the surface. From θ(T ), the protein–protein interaction is de-
rived if one assumes that protein interaction follows from the desire to desolvate
the hydrophobic surface segments by burying them into hydrophobic patches on
interacting proteins.

In short, protein structure, stability, and interaction are closely connected
through the primary structure of the protein, that is, the amino acid sequence,
with the result that interaction strength should depend on protein state. This is
evidenced by the fact that in the denatured state, the protein is larger than in its
native state and its surface contains more hydrophobic segments, and as a result the
interaction energy becomes state dependent. All this information is incorporated
into the effective potential (1) by allowing different interaction energies, εNN, εDD,
or εND, and different contact distances, σNN, σDD, or σDN, for interaction between
native states (NN), denatured states (DD), or native and denatured states (ND).

Protein hydrophobicity is an important parameter that drives protein stability,
because highly hydrophobic proteins destabilize more easily through the formation
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Figure 2. Coarse-grained model for protein structure and protein interaction. The native state
of the protein becomes a spherical shell with a radius δ that depends on the number of amino acids.
The protein–protein interaction (2) is a function of the distance r between the centers of the shells.

of contacts between proteins. This aspect of the problem is not explored in this
chapter, where only the effects of the size parameter on phase behavior are ana-
lyzed. It would, however, be interesting to investigate the effect of a temperature-
dependent strength on the phase diagram and to take into account structural fluctu-
ations of the protein state that have an impact on the protein solubility. While such
an effect could, in principle, be incorporated by using a detailed protein model, this
is for the moment much too complicated. Thus, a coarse-grained model derived
from HPC theory as represented in Fig. 2 is a good compromise as it incorporates
some effects of the protein structure while being at the same time computationally
efficient.

III. METHODOLOGY

A. Model and Monte Carlo Method

The behavior of protein solutions as a function of the molecule size and potential
range has been investigated by Monte Carlo simulations. The model potential used
is based on Eq. (1) slightly generalized to include the molecule size δ,

V (r) = 4 ε

α2

(
1

(r2
� − δ2)6 − α

(r2
� − δ2)3

)
(2)

where r� is the reduced distance r/σ. As the ten Wolde–Frenkel original potential,
the potential in Eq. (2) captures the essential properties of protein solutions and
in particular the fact that for sufficiently short-range attractions, the liquid–liquid
coexistence becomes thermodynamically metastable. According to generally ac-
cepted criteria, this should occur when the range of the attraction is ∼25% of the
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range of the repulsive part that for Eq. (1) is expected to be found when α � 10
[18]. Here, we consider Eq. (2) starting with α = 1 and δ = 0, which corresponds
to the Lennard-Jones potential, and increase the molecular size δ at different values
α in order to study the transition between a simple fluid that possesses a stable liq-
uid state to a fluid characterized by a metastable liquid–liquid coexistence curve.
Because the parameters entering the potential are fixed during each Monte Carlo
simulation, configurational fluctuations of the protein, such as native–denatured
transition, are not incorporated into this analysis.

To characterize the metastable phase, we measured the coexistence densi-
ties and the surface tension at different temperatures using a standard Metropo-
lis Monte Carlo algorithm (MC-NVT) [19]. This method raised some problems
because at low temperature the dense fluid tends to decay to the stable crystal
phase. This is the reason why the Gibbs ensemble Monte Carlo [20] or the grand
canonical Monte Carlo [19] methods are usually preferred to measure metastable
coexistence curve.

A number of procedures exist that prevent crystallization of the liquid in a
simulation. One possibility is to use the restricted Monte Carlo method [21] or to
impose some geometric constraints on the molecular configurations, such as the
number of neighbors per particle. Our solution to this problem was to start from
a Lennard-Jones fluid (δ = 0 and α = 1) in the stable two-phase region and to
gradually modify δ until reaching the desired molecular size. Then the system was
simulated in a temperature range starting from the high temperature to the lowest
achievable temperature, that is, the temperature at which we could not prevent
crystallization.

B. Surface Tension Measurement

Many surface tension calculation methods have been developed over the years.
Clearly, the best method is the one that gives a good estimate of the surface ten-
sion, that is, with small numerical errors, at the lowest computational cost. In
the present case, however, the selection has proven to be difficult (see discussion
below) and different approaches to measure the surface tension were tested. Most
of the approaches implemented had only limited success for reasons relating to
the range of the effective potential or to the instability of the liquid phase.

In the mechanical approach, the surface tension is derived from a microscopic
definition of the pressure tensor [22, 23]. This is a widely used method that requires
computing the virial that in the case of steep and short-range potential can cause
numerical difficulties.

Thermodynamic approaches allow to calculate the surface tension without eval-
uating the virial but by perturbating the system by increasing or decreasing the
interface area by a small amount. The way this is implemented is in some cases
problematic. To understand the cause of the problem, consider the Bennett method
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[24], where the surface tension γ is obtained by measuring the relative free en-
ergy between two systems differing only by their interface areas or more explicitly
using the definition

γ =
(

∂F

∂A

)
N,V,T

(3)

where F is the free energy and A is the area of the interface. In practice, the en-
ergies of two configurations of the systems with equal volumes but with interface
areas A0 /= A1 should be compared. Because the surface change is done at con-
stant volume, the system is expanded along one direction and compressed along
the transverse direction. The difficulty lies in the choice of the magnitude of the
expansion–compression that should give a reliable average of the ensuing free en-
ergy change. In our case, the compression along one direction generates most of
the time particle configurations with many particle overlaps due mainly to the size
of the excluded volume with respect to the small attraction range of the potential.
Besides, the compression is also a major source of difficulty for the stability of the
liquid phase because compression may trigger crystallization of the liquid slab.
One solution is to vary very slightly the interface, which implies small free energy
differences. Unfortunately, it turns out that the surface tension of this system is
particularly small, so large perturbations are necessary to have a measurable free
energy difference.

We have therefore used instead the interface wandering approach [25]. This
method relies on an analysis of the interface area distribution function that is
allowed to fluctuate when the system is subject to shape perturbations, which
means that the positions of the particles are rescaled so as to preserve the volume
of the system [26]: x′ = x (A1/A0)1/2, y′ = y (A1/A0)1/2, and z′ = z (A0/A1).
In practice, the system is perturbed according to this scaling procedure and the
rescaled configuration is allowed to replace the previous configuration. This is in
contrast to what is done in the Bennett method, where the rescaled configuration
does not replace the previous configuration but is used to obtain only the energy
difference between configurations with different interface areas. As a result of
configuration change, the interface area wanders driven by competing pressures, p‖
andp⊥, respectively, parallel and perpendicular to the interface [25]. Consequently,
the interface area A becomes distributed according to

f (A) = e−β (2 γA− p V ) (4)

where γ is surface tension, V is the volume, and β = 1/kBT . If interface area is
collected during simulation, a fit of Eq. (4) through the observed distribution of
areas gives the surface tension value. According to Eq. (4), for positive surface
tension, the most probable interface area is the smallest one that in the absence
of any competitive constraint leads to a vanishing interface. This problem can
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be solved either by imposing additional work on the system to thwart the effects
of surface tension or by limiting the fluctuations of the area within an interval
[Amin , Amax]. The latter method was chosen to measure the area distribution law
in our simulations. Practically, an area A1 is chosen randomly within the interval
and this new value is accepted with the probability

Paccepted = min
(

1 , e−β (E1−E0)
)

(5)

where E0 is the previous energy of the system, with an area A0, and E1 is the
energy obtained after rescaling to have an area A1. The method requires the use
of very small changes in the shape to avoid particles overlaps. As shown Fig. 3,
the numerical value of the surface tension can nevertheless be extracted from the
distribution law despite the random fluctuations inherent to small systems.

As regards technical details of the simulations, the systems simulated consisted
of N = 1885 molecules contained in a region of fixed volume V kept at constant
temperature T . The interaction potential between two molecules separated by a
distance r is Eq. (2) with a cutoff at rc = 2.8 and the potential is not shifted.
The simulation box with dimensions Lx = Ly = 9σ and Lz = 108σ contained
a slab of proteins in the liquid phase surrounded along the z-direction by two
slabs of proteins in the gas phase. The thickness of the liquid slab (�z � 27σ)
was such that most of the proteins were in the liquid phase. Periodic boundary

83 83.5 84 8584.5
A

0.5

1

1.5

2

P(A)

Figure 3. The distribution function of interface area P(A) as determined by the interface wan-
dering method. The distribution law given is fitted by f (A) ∼ e− 2 βγ , which gives a precise estimate
of the surface tension γ .
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conditions were imposed on the system in the three directions. The systems were
equilibrated during 5 × 105 Monte Carlo updates per molecule. To ensure the
stability of the liquid phase, the equilibration step started from a stable molecular
configuration obtained in a previous simulation at (T + �T , α + �α, δ + �δ) and
slowly modified these parameters until reaching (T , α, δ). Then during 106 Monte
Carlo cycles, densities were measured and box rescalings were performed to get
interface areas distributed between Amin and Amax.

IV. MOLECULAR SIZE EFFECTS ON THE METASTABLE
PROTEIN-RICH/PROTEIN-POOR PHASE COEXISTENCE

The molecular size impacts on the metastable liquid phase through an excluded
volume effect. This effect can be observed particularly on the phase coexistence
curve and on the interfacial tension in the metastable region of the phase diagram.
Globular proteins are modeled typically using α = 50 and δ = 1. However, sim-
ulations were mostly performed for α = 1 and 5 at excluded volume parameter δ

between 0 and 1, the reason being that at α = 50 the interparticle potential is very
steep and the coexistence curve lies deep inside the metastable region, which, as
discussed above, makes simulation extremely difficult.

Coexistence curves for different protein sizes obtained for the cases α = 1
and α = 5 are shown in Fig. 4. The simulation data are displayed together with
theoretical curves as predicted by the theory [27, 28]. The phase diagram pertaining
to globular proteins, which corresponds to α = 50 and δ = 1, is shown in Fig. 5.
The figure contains, in addition to the data obtained in this work, some original
data obtained by ten Wolde and Frenkel using the Gibbs ensemble Monte Carlo
method and therefore correspond to a physically different situation, as in this case
there is no interface between the liquid and the gas phase [3].

By merely looking at these figures, one can easily see the dramatic effect of the
molecular size on the phase diagram. Interestingly, the phase diagram is hardly
affected by the change in the potential range α for small excluded volume (δ < 0.4).

An estimate of the critical density and temperature for each system is given in
Table I. The data clearly indicate that an increase in the molecular size results in
lowering of the critical temperature and that this effect becomes more pronounced
with increasing α. However, there are similarities in the thermodynamic properties
of these systems as evidenced by Fig. 6, which shows coexistence curves with the
density and the temperature scaled to the estimated critical density and critical
temperature, respectively, although it is apparent that systems with δ > 0.6 tend
to deviate from scaling. This is presumably due in part to a larger error in the
estimation of the critical parameters, but this could also indicate that, in addition
to the temperature and density, a third parameter related to the volume of the
particle must be included in the law of corresponding states.
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Figure 4. The phase diagrams for α = 1 (a) and for α = 5 (b), as determined by simulation and
theory for different values of the molecular size δ. At fixed temperature, the points on the left part of the
curves give the protein concentration in the protein-poor phase and points on the right part of the curve
give the protein concentration in protein-rich phase. The curves, from top to bottom, are for reduced
protein size δ = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, respectively.

There is a relation, noticed by Vliegenhart and Lekkerkerker, that relates the
critical temperature of many different systems to the volume of their particles. In
Ref. 29, these authors showed that the second virial coefficient

B2(T ) = 2π

∫ ∞

0

(
1 − exp

(
−V (r)

kB T

))
r2 dr (6)

when evaluated at the critical temperature Tc appears to lie in a narrow range
around −6 v0, where v0 = π/6 r3

0 is the volume and the particle diameter r0
is the distance at which the potential crosses zero. In the case of potential (2),
r0/σ =

√
(1/α)1/3 + δ2.

The relation between B2 and v0 has been tested by evaluating this coefficient at
the critical temperatures obtained from the coexistence curves. The results of these
calculations are listed in Table II. We note that the values of B2(Tc)/v0 are close
to −6, but this value tends to decrease when the volume of the molecule increases.
This behavior seems to be confirmed by experimental data as evidenced by the
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Figure 5. The phase diagram for the model of globular protein (α = 50 and δ = 1.0). At fixed
temperature, protein concentrations located inside the shaded region separate into protein-rich and
protein-poor domains inside which the protein concentration is given by the two points on the coex-
istence curve. The figure includes the theoretical curve and the simulation data, shown as circles (this
work) and squares (from Ref. 3).

analysis of the experimental data reported in Ref. 29 and that concern proteins of
widely differing sizes.

More interesting is the possibility to predict the critical temperature from the
relationship

B2(Tc) = −6 v0 (7)

TABLE I
Critical Properties Estimated from the Coexistence Data

for α = 1 and α = 5

α = 1 α = 5
δ Tc (coex) ρc (coex) Tc (coex) ρc (coex)

0.0 1.24 0.31 1.28 0.68
0.2 1.19 0.29 1.20 0.62
0.4 1.08 0.25 1.01 0.49
0.6 0.93 0.21 0.83 0.37
0.8 0.80 0.17 0.66 0.27
1.0 0.66 0.15 0.57 0.19

Adapted from Ref. 31.
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Figure 6. As in Figs. 4 and 5 with the density and temperature scaled to the critical density and
temperature for each potential.

TABLE II
Second Virial Coefficient B2/v0 at

T = Tc for α = 1 and α = 5

δ α = 1 α = 5

0.0 −6.33 −6.26
0.2 −6.36 −6.27
0.4 −6.38 −6.58
0.6 −6.70 −6.86
0.8 −6.93 −7.20
1.0 −7.87 −7.62

Taking it for granted, we used it to compute the critical temperature Tc. In
Table III, the critical temperatures computed in this way are compared to the
values obtained from the coexistence curves. It shows that critical temperatures Tc
given by the empirical relationship approach the values of Tc from the simulations
to within ∼2% for δ < 0.6 and is precise to within 10% for δ ≥ 0.6, with each
time a computed temperature greater than the one measured. Once again the criti-
cal temperature is seen to depend on the molecular size, but in a more pronounced
manner than expected from Eq. (7).
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TABLE III
Critical Temperature Estimated from Coexistence Compared to the Criteria

B2(Tc) = −6 v0, for α = 1 and α = 5

α = 1 α = 5
δ Tc (coex) Tc(B2 = −6v0) Tc (coex) Tc(B2 = −6v0)

0.0 1.24 1.27 1.28 1.31
0.2 1.19 1.22 1.20 1.22
0.4 1.08 1.11 1.01 1.06
0.6 0.93 0.98 0.83 0.88
0.8 0.80 0.86 0.66 0.75
1.0 0.66 0.75 0.57 0.64

V. SURFACE TENSION

The results for the surface tension as a function of δ are shown in Fig. 7 for α = 1
and α = 5. The figure also shows a representation of the coarse-grained protein
model with a scaled excluded volume. The data clearly show a lowering of the
surface tension when increasing the size of the molecule at fixed α. Furthermore,
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Figure 7. Surface tension as a function of the temperature for α = 1 (a) and α = 5 (b) determined
by Monte Carlo simulations and theory [31].
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TABLE IV
Fits to Surface Tension: γ(T ) = γ0Tc(1 − T/Tc)1.26

α = 1 α = 5
δ Tc γ0 Tc γ0

0.0 1.21 2.15 1.33 2.83
0.2 1.18 1.95 1.18 3.53
0.4 1.09 1.55 0.99 2.96
0.6 0.92 1.87 0.85 2.09
0.8 0.80 1.68 0.66 2.63
1.0 0.61 2.52 0.54 3.06

for δ > 0.4, the variation of the surface tension with the attraction range, fixed by
α, is very low. Assuming that these systems obey a simple corresponding states
law with only two parameters, the scaled surface tension (with unit molar mass)

γs = γ

Tcρ
2/3
c

(8)

obeys the relation [30]

γs = γ0 (1 − T/Tc)1.26 (9)

where γ0 is assumed to be a constant. This relation is known to describe well the
surface tension of simple fluids and in particular fluids with spherical symmetric
potentials as the Lennard-Jones potential [28].

The results of a fit of the surface tensions to the form γ = γ0 Tc (1 − T/Tc)1.26

are shown in Table IV for α = 1 and 5 and in Table V for α = 50, and the scaled
surface tensions are shown in Fig. 8a as functions of 1 − T/Tc. While the rela-
tion (9) is relatively well respected for surface tensions evaluated at fixed α, the

TABLE V
Surface Tension γ(T ) for α = 50 and

δ = 1.0

α = 50
T γ

0.375 0.1199
0.385 0.0803
0.390 0.0567
0.395 0.0350
0.400 3.8 × 10−5
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Figure 8. (a) Surface tension γ as a function of the distance from the critical point. (b) Scaled
surface tension γ� for all different values of α and for different molecular size δ. The scaled surface
tension shows a behavior that obeys the extended corresponding states law.

curves for different α values do not superposed as may be expected from a simple
application of the law of corresponding states.

The question then arises as to the possibility to extend the law of corresponding
relation by including, in an appropriate way, the parameter α. To this end, we
use the fact that the surface tension scales with the critical temperature as can be
deduced from the fact that γ0 is almost constant. The critical temperature, on the
other hand, is affected by δ, which fixes the ratio between the repulsion range,√

(2/α)1/3 + δ2, and the attractive range of the potential. So, as argued in the
previous section, the critical temperature decreases with increasing δ, but changing
α when δ = 1 has relatively little effect compared to the effect obtained when
δ = 0. In the latter case, one finds a repulsion with a range that scales as α−1/6 so
that one expects a surface tension that varies asγ = α1/3. In other words, the surface
tension depends on the number of particles that a fixed surface area may contain.
To verify the previous reasoning, a scaled surface tension, γ� = γ/Tcσ

2/3α1/3, is
represented as a function of the distance from the critical temperature 1 − T/Tc.
The result is shown in Fig 8b for α = 1 and 5 for all values of δ and for α = 50
with δ = 1. It shows that despite a wide range of α and δ values, the scaled surface
tension obeys to a good approximation this extension to the law of correspon-
ding states.
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VI. NUCLEATION AND PROTEIN SIZE

In the process of protein crystallization from solution, the metastable liquid phase
is thought to play a key role as it is within it that a crystalline nucleus forms [2,
3, 6]. According to the classical nucleation theory, the formation of a droplet of
radius R has excess free energy

�� = 4π

3
R3 (ω(ρl) − ω(ρv)) + 4πR2γ (10)

where ω(ρ) = f (ρ) − µρ, f (ρ) is the bulk Helmholtz free energy per unit volume
of the fluid at density ρ, µ is the chemical potential, and γ is the dilute-phase/dense-
phase surface tension at coexistence. The first term is the free energy change due
to the phase transition, while the last term is the free energy change requires for
the formation of the surface. In the transition from protein-poor to protein-rich
phases, the first term describes the spontaneous tendency to form a protein-rich
droplet that as the protein-rich phase is more stable than the protein-poor phase is
a negative term. The interface term, on the other hand, increases the free energy by
an amount proportional to the surface area of the liquid droplet. As a result, there is
a critical radius, Rc = 2γ/�ω, for which the excess free energy is the greatest and
whose value at R = Rc, ��max = 16πγ3/3�ω, defines the barrier for nucleation.

On the basis of the above discussion concerning the relation between surface
tension and protein size, one can conclude that the free energy barrier will de-
crease with increasing molecular size δ and it will be affected to a lesser extent by
the range of the potential α. These results suggest that increasing, even slightly, the
effective excluded volume of a molecule will lead to a decrease in the surface ten-
sion and hence decrease the nucleation barrier. The question then is whether the
excluded volume can be modified experimentally with the objective to control
the nucleation process. According to the HPC theory presented in Section II, the
protein diameter depends on the state of the protein, native or denatured, and
therefore it must be possible to control its value by modifying the hydrophobic
interactions through a change in pH. An important aspect of the transition between
native and denatured states is that it is a phenomenon that occurs spontaneously
through thermal fluctuations, and therefore molecular size variations do exist at
all temperatures.

Another important aspect of the link between surface tension and molecular size
is the support it gives to some growth mechanisms and to the fact that in some cases
intermediate structures are formed prior to incorporation into a growing cluster.
A typical example is the large population of tetrameric structure often observed
during droplet formation and, presumably, during crystallization as well. If one
assumes that a tetramer is nothing more than a big molecule whose volume is four
times the volume of a monomer but keeping the same interaction range, then the
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Figure 9. The two path-
ways for particles aggregation.
In the first pathway (1) the
monomers are directly incorpo-
rated to the cluster. The second
pathway is a two-step mecha-
nism that contains as interme-
diate step the formation of a
tetramer (2a), which is then in-
corporated into the cluster (2b).

surface tension of the tetrameric system will be smaller than the system made of
monomers. As shown in Fig. 9, instead of the aggregation pathway that consists
of adding monomers, there is an alternative pathway, energetically more efficient
and that, as an intermediate step, goes through the formation of tetramers. The
explanation given here for a preferred aggregation pathway should, of course, be
supported by theoretical work. However, the important advantage of the proposed
mechanism is that it is suitable for further theoretical analysis.

VII. CONCLUSION AND FINAL REMARKS

In this chapter, the effects of molecular size on the metastable dilute liquid–dense
liquid phase coexistence have been discussed on the basis of results obtained by
the Monte Carlo method. The behavior of the coexistence curve and the protein-
rich/protein-poor surface tension have been analyzed as a function of the molecular
size. The starting point of the method is the construction of a pair potential that
allows to move smoothly from a simple fluid, that is, Lennard-Jones interaction,
to the short-ranged, “hard Lennard-Jones” used as a model for globular protein
interactions. The potential contains as parameters the molecular size, δ, and the
range of the potential, controlled by the dimensionless parameter α. It has been
briefly outlined how in the framework of HPC theory these parameters can be
related to biophysical characteristics of proteins in solution.

The key result of this study is that it is the increase in the hard-core diameter
rather than the decrease in range of the potential that causes a dramatic decrease in
the surface tension and has the most important impact on the protein-rich/protein-
poor phase coexistence. However, despite the changes arising from these modi-
fications, the validity of the law of corresponding states can be preserved when
extended by introducing another length scale as a new parameter.
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An important aspect of the relation between surface tension and molecular size
is its implication for the nucleation process. Thus, all other things being equal, an
increase in the molecular size leads to a decrease in the nucleation barrier. From
this result, we suggest that the apparition of small aggregates during the growing
phase of droplet or crystal is a necessary intermediate step because it helps the
nucleation process through a decrease in the nucleation barrier. This two-steps
mechanism should also apply to other systems that present intermediate structures
that self-assemble into superstructures such as zeolites.

There are many ways in which this work can be improved. First, the model
potential can be refined to capture more specific properties of protein systems. One
development of this kind currently receiving attention is anisotropic attraction [1].
Patchy interactions better capture the inhomogeneous surface of globular proteins.
Another direction for refinement is to take into account the nonrigidity of the
protein and the fluctuations between native and denatured states. In the denatured
state, the number of hydrophobic residues at the surface is larger than the number
in the native state. Therefore, denatured state aggregates more easily because the
hydrophobic attraction is stronger. Therefore, including transitions between protein
states could significantly modify the behavior of protein solutions, but in a way
that does not contradict the conclusions of this chapter.
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I. INTRODUCTION

Models of platelet and dendrite formation have been developed and studied ex-
tensively in the literature for generations [1]. Insights drawn from extensive ex-
perimental and theoretical studies on a related problem, thin film growth, have
done much to clarify the factors determining specific island morphologies. As
elaborated by Lagally and coworkers [2], there are, broadly speaking, two classes
of shapes, one compact with relatively straight and equiaxed island edges and
the other fractal-like having rough island edges or highly anisotropic shapes. In
this chapter, we focus on geometrical factors governing the self-assembly of is-
land morphologies by considering different scenarios for the sequential deposition
of adatoms.

Advances in Chemical Physics, Volume 151: Kinetics and Thermodynamics of Multistep Nucleation and
Self-Assembly in Nanoscale Materials, First Edition. Edited by Gregoire Nicolis and Dominique Maes.
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The patterns displayed by inorganic dendrites and platelets are among Nature’s
most remarkable, long celebrated using the imagery of language but first described
in terms of a “formative principle” by Kepler. Four centuries ago, his 1611 treatise,
“On the Six-Cornered Snowflake,” launched the field of “self-assembly,” with
advances since then reflected in the diverse contributions presented at the Brussels
Workshop. In the concluding section of this chapter, we discuss the relevance of
our results to dendrite and platelet formation in two mineral systems, the hollandite
group of manganese oxides and zincite (zinc oxide).

To account for excluded volume effects and attendant steric constraints in-
fluencing the immobilization of a randomly diffusing adatom, a lattice model is
introduced and the efficiency of “docking” at a particular site j is studied using
the theory of finite Markov processes. By solving the underlying stochastic mas-
ter equation, the (time-dependent) probability distribution function ρ(t) describing
the process can be determined. In this chapter, we shall report values of the first
moment of ρ(t), the average number 〈n〉j of displacements of the diffusing particle
before being trapped at site j, a useful, intuitive measure of the efficiency of the
underlying process.

Once 〈n〉j has been calculated, the diffusion and subsequent immobilization of
a second adatom on the array can be studied, subject to the constraint that once the
first adatom has been immobilized at a particular site, that site is inaccessible to a
second diffusing adatom (i.e., the site occupied by the first adatom is “blocked”).
The 〈n〉j (j = 2) corresponding to this second event in a j-stage process can be
calculated, as can the 〈n〉j for each subsequent stage, all subject to the constraint
that as the island morphology begins to unfold, sites occupied previously at that
stage of pattern formation are inaccessible to subsequent diffusing adatoms.

Two features of the above description are worth emphasizing before proceeding.
First, as sites become “blocked,” the diffusion space accessible to a diffusing
adatom is modified: not only do subsequent adatoms have available a (somewhat)
smaller space within which to diffuse but, more importantly, they also have to
negotiate “obstacles” (i.e., the blocked sites). Here, we consider first diffusion
restricted to a basal plane only, and then diffusion in an expanded space, basal plane,
and overlayer; this to account for the possible detachment from and redeposition
on the basal surface. Blocked sites on the template are sterically excluded to an
adatom diffusing in the overlayer (as well as on the basal plane).

Second, in a j-step deposition/docking process, depending on the symmetry of
the island assembly, there are at least j! different ways in which a final morphology
can be realized (i.e., there are many developing configurations of blocked sites that
can lead (eventually) to the same final pattern). In the simplest case, if a “square”
island has been assembled and the deposition of a new j-site boundary layer is
initiated, there are j! different ways in which the sequential addition of adatoms
can occur leading to the same final configuration. More important, in forming,
say, a platelet of M sites, there are reaction pathways involving a manifold of
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possible, geometrically distinct “intermediates” that can result in the same final
morphology. Our calculations show that after the first few structural generations,
the former combinatorial effect results in only small quantitative changes in the
signatures 〈n〉j , but evolution via different pathways to a given final configuration
can lead to significant differences in the 〈n〉j values.

II. DESCRIPTION OF THE MODEL

We have developed a lattice statistical model and followed the evolution of specific
patterns by obtaining numerically exact solutions to a stochastic master equation
formulated for this problem. This strategy provides an approach complementary to
the kinetic Monte Carlo or molecular dynamics simulations that have been reported
[3]. The approach elaborated here has the advantage that once the problem is
formulated, no further approximations, analytic or computational, are introduced
in characterizing the dynamics [4].

The lattice model developed is d > 2 dimensional and may be thought of as
stacked “checkerboards,” two in number (see, however, later discussion). The basal
layer is represented by a lattice of valence ν = 4 or 6. The overlayer is characterized
by the same planar symmetry as the basal lattice, but with an additional “bond”
linking the overlayer to corresponding sites on the basal plane. For example, if the
basal plane is characterized by square-planar symmetry, introducing an overlayer
of square-planar symmetry generates a lattice each site of which is of valence
ν = 5; stacking triangular lattices generates an extended lattice, each site of which
is of valence ν = 7.

We imagine that an atom or molecule can initiate its motion at any site on
the basal plane or at any overlayer site, subsequently undergoing random dis-
placements until localized (or “trapped”) at a lattice site on the basal plane. If
the particle happens to be situated on a basal plane having square-planar sym-
metry, six motional degrees of freedom are assigned, namely, four in the plane,
one vertical displacement to the overlayer (to account for detachment of adatoms
from the substrate), and one “reset” (or “stall”) at the same lattice site (to account,
approximately, for surface forces). If the particle happens to be in the overlayer,
we assign four motional degrees of freedom to account for lateral diffusion in
the overlayer, allow a possible excursion to the basal plane (to characterize the
adsorption or readsorption of the adatom), and impose a “reset” condition if the
particle attempts to exit the system (“zero flux” boundary conditions). For both
the basal plane and the overlayer, periodic boundary conditions are imposed when
the adatom confronts the lateral boundaries of the system.

As noted, an adatom diffusing in the overlayer and attempting to exit the
system is confined by a passive (“reset”) boundary condition. Physically, this
confinement may be a consequence of having an impenetrable barrier or as a
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consequence of the region above the overlayer being “concentrated” with re-
spect to similar diffusing species (thus simulating an unfavorable density gra-
dient). Apart from the “injected” particle, the overlayer itself is free of other par-
ticles, so this region may be thought of as the lattice equivalent of a classical
“depletion zone.”

To summarize, each lattice site of a layered system having square-planar sym-
metry has an overall valence of ν = 6, and each site on layered system having
triangular symmetry has an overall valence of ν = 8. In this formulation, sites on a
d = 2 dimensional basal template of triangular symmetry have the same valence as
sites on stacked lattices of square-planar symmetry, namely, ν = 6, a circumstance
that will permit later comparison of pattern formation on strictly d = 2 dimensional
versus quasi-two-dimensional systems.

The formation of patterns is studied as follows. We specify a docking site at
some location on the basal plane, and by solving the stochastic master equation,
we determine the eigenvalue spectrum characterizing the evolution of the system
until the diffusing particle is trapped (here) irreversibly at the basal site. From
the theory of finite Markov processes [5], we know that the smallest eigenvalue
dominates the long-time behavior of the system. We also know that in the limit
of large lattices, the smallest eigenvalue is related to the reciprocal of the first
moment of the underlying probability distribution function, the mean walklength
〈n〉, a relationship that becomes exact in the infinite system limit.

The mean walklength will be used here as a surrogate for the rate constant
characterizing the formation of a specific pattern for two reasons. First, the lattices
are large. The basal plane of both square-planar and triangular lattices was set
at N = 272 sites, so each composite system has 544 sites. Explicit calculation
shows that the error introduced in using the reciprocal of the mean walklength
to portray the smallest eigenvalue is less than 1%. Second, the mean number of
displacements of a diffusing particle before localization provides a more intuitive
understanding of the event than reporting the values of rate constants (unless, of
course, one is tying the calculation to a specific experimental study for which rate
data are available). Note that specifying both lattice systems to have the same
number N of total lattice sites allows a direct (and unambiguous) comparison of
the consequences of adopting different lattice symmetries.

After the first “docking” event has occurred, the immobilization of a second
adatom can be studied by following the fate of a new “injected” particle. Imple-
menting this protocol M times, the development of arbitrary patterns on the host
template can be explored. We shall consider here patterns having the morphology
of thin dendrites, thick dendrites, and faceted platelets.

Finally, we comment briefly on the stochastic calculation itself. There are two
checks on the accuracy of the calculations, which we illustrate for the case of a
single trap. First, the imposition of periodic boundary conditions on the lateral
faces of the lattice demands that the value of 〈n〉 calculated should be invariant
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with respect to the position of the trap on the basal plane. Second, for lattices
of uniform valence ν, Montroll [6] proved that in any Euclidean dimension, the
mean walklength from sites nearest neighbor to the trap is given by the integer
〈n〉 (ν) = N − 1, a result that is satisfied numerically if (and only if) the values of
〈n(i)〉 are numerically exact. These two criteria for the accuracy of our Markovian
calculations have been confirmed for all cases studied here.

III. ISLAND GROWTH IN d = 2

First, we consider the stochastic consequences of adopting different scenarios in
the self-assembly of a specific nucleation pattern on a d = 2 dimensional template.
In an earlier study [7, 8], arrays having square-planar or triangular symmetry were
considered, with the total number N of sites defining the host lattice fixed at N = 48.
The consequences of following different pathways leading to the formation of an
M = 16 platelet on the host lattice were studied quantitatively; these pathways
defined possible modes of island growth via a “row filling,” a “dendrite,” or a
“compact” mechanism.

The present work enlarges the program elaborated in Refs 7, 8 in three specific
ways. First, more robust patterns were considered, namely, dendrites having both
thin and thick branches and larger platelets. In each case, the final assembled unit
has M = 37 sites; hence, much larger lattices were necessary to support an expanded
diffusion space (see earlier specification). Second, only confined systems were
studied only in Ref. 8; that is, self-assembly was studied on domains of finite extent.
Here, we impose periodic boundary conditions specifically to avoid considering
“boundary effects.” Third, the study [8] was restricted to patterns assembled on
a basal plane only; here, the diffusion space is augmented by the presence of an
overlayer (see following section).

The patterns generated via sequential atom-by-atom deposition are illustrated
and specified in Figs. 1 and 2. For each lattice geometry, three pathways are studied,
two of which lead to the same, final pattern of M = 37 sites (Fig. 1a and b), and
the third that has the same number (M = 37) of total sites, but a different final
morphology (Fig. 1c). These choices were motivated by the interest in studying
the relative efficiency of two pathways that lead to the same final localized pattern
(a platelet) versus a third pathway that leads to a dendrite having a fractal-like
distribution of deposited adatoms.

We focus first on the relative efficiency of two pathways, both of which lead to
an eventual, common pattern, a platelet. The 〈n(i)〉 values for platelet formation
generated via a “boundary layer” growth mechanism versus a “thick dendrite”
growth mechanism on templates of triangular versus square-planar symmetry can
be compared. To make the comparison more transparent, we normalize the results
obtained at each stage of growth by the 〈n〉 value for a single trap on a d = 2
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Figure 1. (a–c) Three patterns generated via
a sequential atom-by-atom deposition on a triangular
lattice. Here, we denote (a) platelet, (b) thick dendrite,
and (c) thin dendrite.

dimensional lattice of the same size and symmetry and subject to the same boundary
conditions. We denote the normalized metric, 〈n〉/〈n〉single trap, by η.

Figure 3a compares the growth histories for scenarios shown in Fig. 1a and
b for lattices of triangular symmetry, and Fig. 3b compares the growth history
diagrammed in Fig. 2a and b for lattices of square-planar symmetry. Then, in Fig.
4a, the relative efficiency of “thick” dendrite growth versus “thin” dendrite growth
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(b)

Figure 1. (Continued)
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(c)

Figure 1. (Continued)
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(a)

Figure 2. Three patterns generated via a sequential atom-by-atom deposition on a square-planar
lattice. Here, (a–c) are as specified in Fig. 1.
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(b)

Figure 2. (Continued)
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(c)

Figure 2. (Continued)
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Figure 2. (Continued)

on lattices of triangular symmetry is compared; a similar comparison is shown
in Fig. 4b for lattices of square-planar symmetry. Again, for emphasis, we note
that, in our model, both the triangular and square-planar lattices have the same
number N of lattice sites (N = 272) and the same number M of sites defining the
final configuration generated (M = 37). The results presented in Figs. 3 and 4 will
be discussed in Section V.
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IV. ISLAND GROWTH IN d = 3

To study the consequences of expanding the diffusion space, a program of calcu-
lation companion to that reported in Section III can be carried out by considering
a composite system, basal plane plus overlayer. Figure 5a and b may be placed in
tandem with Fig. 3a and b, and (a) and (b) parts of Fig. 6 are the counterparts of Fig.
4a and b. In Figs. 5 and 6, the value of 〈n〉 used to normalize the walklength data
is the mean walklength for a walker on the composite lattice (of given symmetry)
with a single trap on the basal plane. These results and the conclusions drawn will
be discussed in the following section.

We conclude this section with a discussion of the consequences of expanding
further the diffusion space of the system, specifically by adding additional over-
layers. One anticipates that the quantitative results will change (walklengths will
become longer), but the more interesting question is whether, and to what extent,
the qualitative behavior remains unchanged as the diffusion space is expanded.

Calculations were performed for the three scenarios shown in Fig. 1 and for a
template positioned on layer 3 of a five-layer expanded lattice. Each layer of this
expanded lattice has triangular symmetry, and each site is of valence ν = 8, with
the overall number N of sites equal to N = 5 × 272 = 1360 sites. As expected, the
mean walklength at each stage of self-assembly of a given pattern is numerically
much larger, a factor of 5 or greater.

To compare the qualitative results obtained for diffusion-reaction processes on
a composite lattice having a single overlayer (N = 524 sites) versus those generated
for a five-layer composite system (N = 1360 sites), we normalize (as before) the
calculated 〈n(i)〉 values in each case by the 〈n〉 value for a single trap positioned
on the given host template. As shown in Fig. 7, for each of the three scenarios
diagrammed in Fig. 1, and for both composite lattices, the qualitative behavior is
remarkably the same. We conclude that the qualitative results obtained by adding
multiple overlayers are already captured by those obtained considering a single
overlayer.

V. DISCUSSION

We now review the principal results obtained in this work. Recall that for large
lattices, the smallest eigenvalue obtained in solving the underlying stochastic mas-
ter equation is safely approximated by the inverse of the mean walklength 〈n〉. In
effect, the larger the mean walklength, the slower the chemical rate of deposition.

Focusing first on self-assembly in strictly d = 2 systems, and using the mean
walklength as a diagnostic tool, several conclusions follow from examination of
the results shown in Figs. 3a and 4a, which compare final platelet formation as
generated via two different pathways, a “boundary-deposition” pathway versus a
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η

(a)

η

(b)

Figure 7. Comparison of growth history for the three growth scenarios diagrammed in Fig. 1a–c
for a composite system having single overlayer (solid line) versus a system with five overlayers (dashed
line) with deposition in the latter on the central plane. Each set of results is normalized with respect to
the 〈n〉 value for a single trap; same axes conventions as in Fig. 3a. (a) Platelet; (b) thick dendrite; (c)
thin dendrite.
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η

(c)

Figure 7. (Continued)

“thick dendrite” pathway, on lattices of triangular and square-planar symmetries,
respectively.

The most obvious point to be made about the results shown in Figs. 3a and
4a is that evolution to the final platelet structure (shown in Fig. 1a and b and
Fig. 2a and b) is far from uniform; the self-assembly is neither smooth nor con-
tinuous. Translating this observation into the language of chemical kinetics, the
rate constants characterizing particular stages in the evolution change, discontin-
uously, as adatoms are deposited sequentially, a reflection and consequence of
the site-specific local geometry. It is noteworthy that there are sequences where
boundary deposition is more efficient (higher rate constants) than thick dendrite
formation, and vice versa. Empirically, one finds that “crests” in the “sawtooth”
patterns generated correspond to deposition at “notches” in a developing growth
pattern, whereas the “troughs” correspond to deposition at boundary sites flank-
ing the “notch.” While an interesting observation, it is clear that to compare the
overall efficiency of competing pathways in a more systematic way, one needs to
go beyond a simple visual scan of the displayed profiles; a diagnostic “index” is
needed to quantify differences. We shall return to this point later.

The profiles shown in Figs. 3b and 4b are much easier to interpret. In these
plots, we compare thick versus thin dendrite growth, eventually leading to a final
(M = 37) assembly having two distinct morphologies (Figs. 1b and c and 2b and c).
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η

(a)

η

(b)

Figure 8. (a) Consequences of adsorption/desorption in platelet formation (Fig. 1a). Growth on
a basal plane (solid line) versus basal plane plus overlayer (dashed line), both of triangular symmetry.
(b) Consequences of adsorption/desorption in thick dendrite formation (Fig. 1b). Growth on a basal
template versus basal plane plus overlayer, both of triangular symmetry. Same convention as in Fig.
8a. (c) Consequences of adsorption/desorption in thin dendrite formation (Fig. 1c). Growth on a basal
template versus basal plane plus overlayer, both of triangular symmetry. Same convention as in Fig. 8a.
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η

(c)

Figure 8. (Continued)

Formation of thin dendrites is characterized by faster growth. In qualitative lan-
guage, the more distributed the set of deposited adatoms, the more efficient is
self-assembly to a final pattern. A similar conclusion was reached and documented
extensively in an earlier study of diffusion-reaction processes on d = 2 templates
[9, 10]. Turning next to d > 2 dimensional composite lattices (basal plane and
one overlayer), we find that the results shown in Figs. 5a and 6a for systems of
triangular and square-planar symmetry, respectively, are qualitatively the same as
those obtained when diffusion-reaction processes on a basal plane only are con-
sidered. This similarity can be seen most convincingly by examining Fig. 8 for
lattices of triangular symmetry and Fig. 9 for lattices of square-planar symmetry.
In these plots, (normalized) walklength data are compared directly for d = 2 versus
d > 2 lattices for each pathway diagrammed in Figs. 1 and 2. Also of interest are
the results presented earlier, Fig. 7, for multilayered lattices of triangular symme-
try. When the latter are compared with the results shown in Fig. 8, we find that
the qualitative similarities/differences among different pathways of self-assembly
in multilayered systems are already captured by the diffusion-reaction behavior
displayed on a basal template (only).

All the above results have been obtained for strictly entropic processes, namely,
no attractive forces are at play in influencing the pattern formation. In his bench-
mark experimental and analytical studies on the physics of snow crystals, Libbrecht
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η

(a)

η

(b)

Figure 9. (a) Consequences of adsorption/desorption in platelet formation (Fig. 2a). Growth on
a basal template versus basal plane plus overlayer, both of square-planar symmetry. Same convention as
in Fig. 8a. (b) Consequences of adsorption/desorption in think dendrite formation (Fig. 2b). Growth on
a basal template versus basal plane plus overlayer, both of square-planar symmetry. Same convention
as in Fig. 8a. (c) Consequences of adsorption/desorption in thin dendrite formation (Fig. 2c). Growth on
a basal template versus basal plane plus overlayer, both of square-planar symmetry. Same convention
as in Fig. 8a.
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η

(c)

Figure 9. (Continued)

[11] has emphasized the sensitivity of the deposition process to the “condensa-
tion coefficient” α at particular sites. Libbrecht notes that α embodies the surface
physics that governs how water molecules are incorporated into a host lattice. He
notes [11] that “α will depend on T, σsurf , the surface structure and geometry,
surface chemistry, etc.,” where T is temperature and σsurf is the supersaturation
just above the growing surface. “If molecules striking the surface are instantly
incorporated into it, then α = 1; otherwise we must have α ≤ 1.” More recently,
the sensitivity of the “docking” efficiency to a range of values of an “attachment
coefficient” (0 ≤ α ≤ 1) has been documented in a model of the early stages of
self-assembly in nanophase materials [12, 13].

The sensitivity of the results obtained here to the coefficient α can be illustrated
by focusing on site (19) in Fig. 1b versus site (19) in Fig. 1c; both sites are on
a basal plane of triangular symmetry. In a purely entropic process, attachment at
site (19) in Fig. 1c is favored over attachment at site (19) in Fig. 1b. The results
shown in Fig. 10 show the consequences of increasing α from its “random walk”
value, α = 1/6, to α = 1. There, the 〈n〉 value for localization at site (19) in Fig.
1c (horizontal line) and the 〈n〉 values for attachment at site (19) in Fig. 1b for a
range of α values can be compared. Even setting α = 1, attachment at site (19) in
the “thin” dendrite, Fig. 1c, is still favored, suggesting that steric factors play the
more decisive role in island growth.
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η

α

Figure 10. Dependence of localization of a diffusing adatom at site (19) in Fig. 1b on the
condensation coefficient α . The vertical axis is specified as in Fig. 3a. The horizontal axis specifies α .
The horizontal line corresponds to the value of 〈n〉 for site (19) in Fig. 1c. All 〈n〉 values are normalized
with respect to the 〈n〉 value for the setting α = 1/6 for the case of Fig. 1b.

VI. CONCLUSIONS

Remarkable patterns ranging from fractal-like dendrites to platelets can be formed
by minerals deposited on surfaces. Among the many examples that can be cited,
we draw attention to patterns formed by the hollandite group of manganese oxides
[14–16] in, for example, desert varnishes, and the recently discovered “snowflake”
patterns formed in zinc oxide synthesis [17]. Chopard et al. [18] have emphasized
that “mineral dendrites are distinct from the ‘dendritic’ crystal morphologies ob-
tained by solidification from an undercooled melt.” The latter class of problems
has been examined extensively in the literature [1], with notable contributions by,
among others, Langer [19] and Viscek [20]. Chopard et al. also argue that diffusion-
limited aggregation (DLA) [21] “cannot explain all features of mineral dendrites,”
pointing out that the chemistry is more complex, and “observed dendrites have
varying fractal dimensions, whereas DLA results in a unique value D ∼ 1.70.” A
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related point is made by Zhang and Lagally [2d] in their discussion of thin film
growth. They note that “in the DLA model, the average branch thickness b of the
fractal island is about one atom wide (b ∼ 1), while the fractal islands observed
with the STM all have wider branch thicknesses” (see also Refs 22–27).

Chopard, Herrmann, and Vicsek (CHV) developed a diffusion-reaction model
[18] to study the structure and growth of mineral dendrites, with particular refer-
ence to the oxidation of Mn4+ ions diffusing out of cracks (e.g., in limestone) and
combining with O2− to form MnO2 (the mineral pyrolusite). We note that Pot-
ter and Rossman [14] pointed out (nearly 30 years ago) that “although dendrites
have long been considered to be pyrolusite, no example of pyrolusite mineralogy
has been identified.” Recognizing that the hollandite group of minerals (hollan-
dite, BaMn8O16, cryptomelane, KMn8O16, coronadite, PbMn8O16) are chemi-
cally distinct from pyrolusite, MnO2, the simulations presented in Ref. 18 are
nonetheless still of considerable interest. There, a square-planar lattice was used
to describe the diffusion space. Two species, A and B, diffuse randomly until en-
countering each other at a particular site. The resulting product, C, subsequently
diffuses (randomly) until precipitating (C → D) at a particular site and is thereafter
localized.

The authors note that two conditions will lead C to being deposited, that is,
transformed to D (designated the “black” particle in their study): “first, when at
least k particles of type C simultaneously meet on the same site, saturation occurs,
and the C particles precipitate to form D; second, when a C particle becomes
nearest neighbor to a black site D, it aggregates to the cluster.”

With respect to the first of these deposition scenarios, numerically exact results
generated via a Markovian theory, complementary Monte Carlo simulations and a
kinetic analysis [28, 29], allowed a quantitative assessment of the relative efficiency
of synchronous versus asynchronous motion of two diffusing reactants. As the
number of reactants increases, the probability of simultaneous encounter of these
species decreases. In the CHV model, the authors set k = 4, which is a relatively
rare event, even in concentrated systems. The second deposition scenario proposed
in Ref. 18 (deposition of C upon encountering a stationary D) is much more
probable and also closely linked to models of thin film growth [2]. For these
reasons, we have focused attention in this study on the second growth mechanism
identified in the CHV model.

Our study was designed to explore the geometrical (steric) constraints governing
and delimiting the final deposition of D. In addition to examining reaction pathways
leading to thin or thick dendrites, we also considered platelet formation, the intent
being to compare and analyze the relative efficiency of different diffusion-reaction
schemes leading to a specific final self-assembled unit. The consequences of having
available different reaction pathways in the self-assembly of nanophase systems
have also been explored recently using a Markovian model [12, 13], and it was
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documented that the observed kinetics depends decisively both on the number of
reaction channels leading to a final self-assembled unit and (as here) on the relative
efficiency of each of the competing reaction channels.

Turning next to the work of Gao and coworkers [17], these authors augmented
their experimental study of “snowflake” formation in ZnO synthesis by carrying out
Monte Carlo simulations in the “nonequilibrium growth regime.” Although details
of their simulations were not provided (nor any reference to the comprehensive
study of Gravner and Griffeath [30]), they state that “periodical conditions were
used and particles were added one by one into the region.” Qualitatively, this
scenario is similar to the one implemented here, and we will examine whether the
results obtained in their Monte Carlo study are supported by the exact numerical
results reported in previous sections. In their simulations, Gao and coworkers
[17] distinguish between attachment at a kink site versus at “the straight part
of the island edge,” with the former characterized by α = 1 and the latter by a
probability p, or α < 1. Gao and coworkers believe that “the dendritic patterns are
mainly modulated by the total coverage,” giving the following intuitive reason:
“When the coverage is low, there is plenty of void space between the islands. Most
of the particles attaching to the islands reach the islands from the outside “shores”
rather than in the ‘bays’.” Our results show that even for a single island, geometric
constraints already dictate the relative rate of formation of self-assembled units
having different morphological structures, even when the attachment coefficient
assumes the maximal value α = 1. The “sawtooth” character shown in Figs. 3–
9 dramatizes the relative efficiency of attachment to (in their language) “main
branches” versus “side branches.”

Whereas the relevant symmetry for ZnO “snowflake” formation is triangular,
the “building blocks” for the hollandite group of manganese oxides are “blocks,” as
illustrated in Ref. 31. Considering dendrite formation for these minerals, reference
to the results for lattices of square-planar symmetry is more relevant. Differences
in the growth rate of two dendrite patterns here, “thick” and “thin,” support and
exemplify the importance attached to differences in the fractal dimension of the
patterns simulated in Ref. 18. Chopard et al. comment that although their “numeri-
cally obtained pictures are very similar to the photographs of mineral dendrites, the
underlying square lattice is still recognizable in the simulated precipitates. There-
fore, off-lattice simulations would be interesting.” The results presented here, es-
pecially Fig. 9 for diffusion-reaction processes on d = 2 versus d > 2 composite
lattices of square-planar symmetry, argue that the main qualitative features of den-
drite formation are already exhibited on d = 2 templates (see also the following
discussion).

We now return to a point made earlier, the desideratum of characterizing in
a more quantitative way the differences noted in, for example, the different pro-
files shown in Figs. 3–6. Perhaps the simplest signature that can be identified to
characterize the differences is to compute and compare the area under each of
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TABLE I
Normalized Areal Values Corresponding to Cases Considered in This Study

Pattern Symmetry Platelet Thick dendrite Thin dendrite

Basal Layer Triangular 1.12 1.32 1.00a

Square planar 1.19 1.28 1.00b

One Overlayer Triangular 1.17 1.25 1.00c

Square planar 1.18 1.22 1.00d

aArea = 52.667.
bArea = 50.109.
cArea = 45.322.
dArea = 43.705.

the curves generated.1 If, then, one normalizes the results obtained to the smallest
area calculated, one has a simple measure of the relative efficiency of “thin” versus
“thick dendrite growth, versus “platelet” growth. Data for the different scenarios
considered in this chapter are shown in Table I.

Using the calculated ratios to assess the overall (relative) efficiency of the three
growth scenarios, one finds that “thin” dendrite formation is the most favorable
pathway, followed by the “platelet” formation, and, finally “thick” dendrite forma-
tion. This conclusion is valid for both lattice geometries considered (basal layer
(only) versus basal layer plus overlayer) and for both lattice symmetries (triangu-
lar and square planar). We also find that the ratio differences tend to be somewhat
smaller for the overlayer calculation than for the basal layer only. In fact, if one
carries out the areal calculation for the five-layer composite lattice described ear-
lier, the differences are less than 5% among all three growth scenarios. The latter
observation is a consequence of the fact that for very large lattices, the diffusing
adatom spends most of its time diffusing in the overlayer; the structural differences
among the three morphologies are a secondary factor. Conversely, geometrical dif-
ferences among the patterns generated at each stage of self-assembly assume their
greatest importance when diffusion-reaction processes are restricted to the basal
plane only.

Given the design of our model, we noted earlier that by choosing a d = 2
basal plane of triangular symmetry and a d > 2 composite lattice (basal plane
and overlayer) of cubic symmetry, both lattice systems are characterized by the
same valence, namely, ν = 6; we conjectured that our results might cast light on
the efficiency of “docking” in d = 2 versus quasi-two-dimensional systems. Re-
call that in his analytic study of random walks on lattices of a given symmetry,

1 The (very efficient) algorithm used to calculate the area under the piecewise continuous curves
displayed in the figures was designed by Professor P. Hammer of Hollins College; her assistance is
much appreciated.
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having a single trap, and subject to periodic boundary conditions, Montroll [6]
derived asymptotic expressions for the dependence of 〈n〉 on the system variables
[N, d, ν]. He proved that for d = 2 triangular lattices (ν = 6), the mean walklength
behaves as 〈n〉 ∼ (

√
3/2π)N ln N. He also showed that for simple cubic lattices

(also, ν = 6), 〈n〉 ∼ 1.52N. Thus, for fixed [N, d], one expects from Montroll’s
theory that (in the limit of large N) trapping will be more efficient in the higher
dimension.

In the growth scenarios considered here, while the docking of a diffusing adatom
occurs at a single site (trap), the stochastic event is complicated by the morphol-
ogy of already deposited adatoms. Furthermore, the composite lattices considered
here are quasi-two-dimensional, not “fully” d = 3 dimensional, so Montroll-type
estimates are only approximate guides to the relative efficiency of the diffusion-
reaction event. One can, however, use the calculated areal values for formation of
platelets, thick dendrites, and thin dendrites to construct the following ratios:

Platelet (d > 2)/platelet (d = 2) = 0.869

Thick dendrite (d > 2)/thick dendrite (d = 2) = 0.750

Thin dendrite (d > 2)/thin dendrite (d = 2) = 0.830

For all three morphologies (platelet, thick dendrite, and thin dendrite), the overall
efficiency of self-assembly on the basal plane is enhanced by enlarging the diffusion
space to d > 2 (by including a single overlayer). However, as documented earlier, if
one enlarges the diffusion space to include multiple overlayers, thereby simulating
a d = 3 dimensional lattice, the diffusing adatom spends most of its time wandering
around in the depletion zone before docking on the basal plane. This suggests
that there is a spatial “bifurcation point”, that is, a point where adding additional
overlayers compromises, rather than enhances, the efficiency of the diffusion-
reaction process. Simply stated, keeping fixed the number N of sites on the basal
plane, while increasing the number n of overlayers so that the overall diffusion
space has n × N sites, the advantages of expanding the diffusion space from d = 2,
to 2 < d < 3, to d = 3 are (eventually) lost.

In light of the above results, it is of interest to recall the observations of Pot-
ter and Rossman [14], who note that dendrite formation occurs “within the rock
matrix (internal), along fracture surfaces of the rock, or on its surface,” and the
experimental data reported by Chopard et al. [18] that show dendrites “emerging
from cracks in limestone,” or “within the plane of a crack inside a quartz crystal.” It
would appear that restricting the dimensionality of the diffusion space to “cracks”
and “fractures” (where 2 < d < 3) enhances the deposition of mineral dendrites.

Perhaps the most remarkable morphological difference between the dendrites
formed in the two mineral systems considered here [17, 18] is the “perfect” sym-
metry of the zincite “snowflakes” formed in ZnO synthesis versus the fractal-like,
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but not perfectly symmetric, branches of hollandite dendrites. In their compre-
hensive computational study of snow crystal growth, Gravner and Griffeath [30]
state that their “algorithm assumes a mesoscopic (micrometer) scale of basic units
for the ice crystal and water vapor, which eliminates inherent randomness in the
diffusion and the attachment mechanism,” noting that “by contrast, any three-
dimensional approach based on microscopic dynamics is completely beyond the
scope of present computing technology.” Once a “building block” is introduced
to “seed” the symmetry, Graver and Griffeath demonstrate that, implementing
their algorithm, a manifold of pathways can lead to a manifold of final symmetric
“snowflake” patterns.

Our results, both for d = 2 and for 2 < d < 3, were obtained by introducing
a single-site (structureless) “seed,” documenting that the primary determinant
influencing the evolution of patterns is geometrical. We show that, owing to steric
constraints, different pathways to the same final structure are characterized by
markedly different efficiencies. Whereas the final structures generated, faceted
platelets (Figs. 1a and b and 2a and 2b) or fractal-like dendrites (Figs. 1c and 2c),
are indeed symmetric (by design), intermediate stages in the evolution of the final
structure certainly are not. It follows that, to the extent a deposition process is in-
terrupted before the final stage of self-assembly is realized, it is highly improbable
that the structures formed will have the remarkable symmetry of snow crystals.
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I. INTRODUCTION

A. Protein Crystallization: An Intricate Part of Structure Determination

Protein crystallization has been a separate research area for over 30 years now. The
major driving force for its development has been the strong growth in molecular
biology, where the main aim is to understand biological systems from a micro-
scopic perspective. This requires a multilevel approach where both the thermo-
dynamics that govern the collective properties of a system of macromolecules
need to be studied, as well as the molecular-level details of the constituting com-
ponents. The latter requires insights into the protein structure/function relation-
ship to fully reveal the inner workings of the molecular machinery. To reach this
goal, structural biologists have benefited immensely from the determination of the
three-dimensional structures of proteins using X-ray diffraction methods. The first
structural entries in the protein databank based on this method date back to 1976
[1]. Since then, macromolecular structure determination at an atomic resolution
has seen an enormous increase in impetus. The number of published structures
has increased exponentially with a doubling time of approximately 3.8 years,
reaching the 60,000 mark in 2010. Such vast efforts have been made to reach a
single goal, that is, the vindication of the fundamental tenet of molecular biology,
namely that true understanding of biological reactions is derived from the struc-
ture/function relationship of the participating proteins. When aspiring to achieve
this goal, scientists are faced with multiple bottlenecks in the gene-to-structure
pipeline; a term first coined in high-throughput structural genomics projects that
seek to catalogue the protein structures associated with the whole genome of a tar-
get organism [2]. These bottlenecks include cloning, expression, “solubilization,”
purification, obtaining diffraction-quality crystals, phasing, structure solving, and
relating structure to function. Macromolecular crystallization still poses one of
the greatest challenges en route to determining the 3D structure and success de-
pends strongly on the scientists’ ability to obtain low-defect density crystals of
high compositional and structural uniformity. A natural starting point to eluci-
date and overcome the difficulties in resolving this crystallization bottleneck is to
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understand, through fundamental and applied research, the nature of the barriers
associated with the three main processes of crystallization, that is, macromolecular
interaction, nucleation, and growth.

B. Protein Crystallization In Vivo

Protein crystals are not only the focus of interest from the practical standpoint
of structure determination, they are used by nature as well [3]. This might seem
contradictory given that millions of years of “evolutionary negative design” are be-
lieved to have stripped proteins of their propensity to self-assemble into aggregates
or crystals [4]. Given that cellular solutions are crowded multicomponent protein
mixtures with packing fractions of up to 40%, avoiding self-aggregation would
seem quite logical. Under these cramped conditions, undesirable crystallization
would most likely compromise the cells’ viability, serving as a strong negative
selection mechanism. Indeed, many condensation diseases are related to the loss
of protein solution stability resulting in the formation of a condensed phase, such
as crystals, polymers, dense liquids, aggregates, etc. For example, liquid–liquid
demixing of γ-crystallins in the eye retina underlies the pathology of cataract for-
mation. Here, lens opacification temperatures are strongly dependent on specific
surface amino acid residues [5–7]. A similar sensitivity is found for hemoglobin,
where point mutations that lead to intraerythrocytic crystals [8] or polymers [9]
contribute to the pathogenesis of sickle cell anemia [10]. However, many examples
do exist of proteins that do crystallize in vivo. These crystals serve specific pur-
poses, such as storage [11], secretion [12], solid-state catalysis [13], encapsulation
[14], sealing [15], and so on. One of the most well-known examples is the regulated
secretion of crystalline granules of insulin [16]. Additionally, protein crystals are
also being used in biomedical areas of research where a slow sustained release of
administered medications in vivo is being pursued. To achieve such a maintained
release over prolonged periods of time, control is required over both the number
and size-distribution of the crystallized substances, such as insulin for the case of
diabetes [17].

C. Model System for Self-Assembly in General

Protein crystallization has benefited greatly from 100 years of research on the
crystallization of small molecules. In fact, most models on both protein nucleation
and growth are firmly rooted within the vast theoretical frameworks that have been
developed for small molecule crystallization. Although it is generally accepted that
macromolecular and small molecule crystallization are both governed by the same
underlying principles, there is still great merit in studying protein crystallization.
In addition to their role in structural biology and biomedicine, protein crystals can
be used as a model system for crystallization and first-order phase transitions in
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general. Protein crystallization is a process of self-assembly by molecular (self)-
recognition at a high degree of reliability. Many functions of biological molecules
depend on the correct recognition of complementary partners, and as such are of
fundamental interest. Hence, insights into the intricacies of the recognition mech-
anisms involved in protein crystallization may provide a new and/or improved
perception of self-assembly processes in general. In comparison to colloids, ther-
mal equilibration times remain relatively short for proteins due to the smaller
molecular mass, making macromolecules a more meaningful model system [18].
For small molecules, however, crystal growth rates are within two to three orders of
magnitude higher than protein crystals [19]. Such fast incorporation kinetics com-
plicates the detailed observation of sequential discrete growth events. Conversely,
for proteins the interval time between two successive molecular attachment events
and the molecular sizes are compatible with the temporal and spatial resolution of
current observation techniques. For instance, recent experimental and theoretical
studies on (protein) nucleation (reviewed in Ref. 20 and Chapter 4 of this book;
[21]) have lead to novel insights and modifications of existing models that have
already been applied successfully to different crystallization systems.

In this chapter, however, we focus on postnucleation events, that is, crystal
growth. In the last two decades, experimental protein crystal growth studies have
been focused on growth phenomena operating on either a microscopic or macro-
scopic scale. For excellent overviews on the matter, the reader is encouraged to
examine the following Refs. 18, 22–30. The most widely used techniques have
been atomic force microscopy and phase shifting Michelson interferometry, re-
spectively. The former has allowed the investigation of nanoscale processes with
molecular-level resolution on a (highly) local scale. These include the identification
and characterization of dominating growth mechanisms at various supersaturation
intervals, visualization of the formation of critical nuclei, molecular level defect
formation such as point defects, vacancies, stacking faults, dislocations, impu-
rity incorporation, etc. Michelson interferometry, however, has been successful
at elucidating growth phenomena that operate on a crystal-wide scale that do not
necessarily require superior lateral resolution. Main subjects using this technique
have been normal growth and surface morphology, the coupling of incorporation
kinetics and mass transport, step bunching and accompanying growth instabilities,
and so on. Processes that operate at the intermediate level and thus require the
combination of a crystal-scale observation area and the ability to discern elemen-
tary steps on the surface have remained largely unexplored. This can be attributed
due to limited accessibility to such regimes by the techniques present at the time.
In situ analysis of these mesoscopic processes is, however, vital in linking elemen-
tary incorporation processes at the kink-level to macroscopic crystal properties
such as crystal face kinetics, diffraction characteristics, crystal morphology, and
so on. This mesoscopic level has become fully accessible to the experimentalist
with the advent of laser confocal differential interference contrast microscopy.
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In the current contribution, we provide a nonexhaustive overview of the recent
advances in mesoscopic protein crystal growth studies. We focus on a number
of case studies to demonstrate the strengths and weaknesses of the mesoscopic
experimental approach. We begin by discussing the three main techniques for
studying crystal growth (Section II). In the following three sections, crystal growth
close to equilibrium (Section III), at intermediate driving forces (Section IV), and
at high supersaturation levels (Section V) is addressed, respectively. Next, effects
of impurity species on crystal growth kinetics is focused on (Section VI) followed
by concluding remarks (Section VII).

II. TECHNIQUES FOR MESOSCALE IN SITU OBSERVATIONS OF
PROTEIN CRYSTAL GROWTH

During the last decades, protein crystal growth from aqueous solution has been
monitored in situ using different observation techniques such as optical microscopy
[31], atomic force microscopy (AFM) [26, 32], regular and phase shifting Michel-
son interferometry [33, 34] (PSMI), and the more recently developed laser confocal
microscopy combined with differential interference contrast microscopy (LCM-
DIM) [35]. With the exception of regular optical microscopy, the remaining tech-
niques can be used for the collection of accurate data on mesoscopic dynamic
processes occurring on crystal surfaces. AFM [26, 32] and LCM-DIM [35–38]
can image in situ spiral hillocks and two-dimensional (2D) islands, allowing the
direct measurement of tangential step velocities and 2D nucleation rates. Using
interferometry, it is very difficult to achieve a resolution that allows the observa-
tion of monolayer steps on spiral hillocks or 2D islands of elementary height [39].
Hence, measurements of step velocities, vstep using interferometry are performed
on spiral hillocks [33, 34] and step velocities are obtained indirectly from the slope
p of a hillock and the normal growth rate R by [40]

R = pvstep (1)

where the slope p of the vicinal is given by the ratio of the step height h and the
interstep distance λ.

An appropriate choice of the observation technique is vital for the collection
of useful data with the frequency and lengthscale resolution best suited for the
problem at hand. Inappropriate usage of experimentally determined kinetic data
can lead to biased results of limited applicability. Therefore, in this first section, we
evaluate the usefulness of AFM, PSMI, and the novel LCM-DIM as observation
techniques at a mesoscopic level for crystal growth kinetics. Results on growth
kinetics obtained by these techniques are compared and differences are discussed,
pointing out the advantages and limitations thereof.
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Figure 1. Kossel crystal composed of kinked (K), stepped (S), and flat (F) faces.

A. F-Faces

The mechanism of crystal growth is unambiguously determined by the structure
of the crystal surfaces. Crystal habits are composed of three types of faces [41,
42], kinked (K), stepped (S), and flat or facetted (F) faces (Fig. 1). The former two
have the highest density of uncompensated bonds and thus the lowest density of
molecules. They are rough on a molecular scale and abundant in favorable growth
sites (kinks) and therefore grow very fast. Owing to the substantial kink density in
K faces and to a lesser extent in S faces, it follows that during growth these 2 types
of faces disappear first, giving rise to a crystal fully enclosed by low index F faces
[43]. The structure of these flat F faces [42] of perfect crystals, however, offer no
kink sites and rely on kink generating mechanisms to procure their growth. The high
energetic costs and kinetic barriers for the creation of kinks and/or steps result in
relatively slow growth rates and a flat surface topography. From an experimentalists
point of view, these characteristics make F-faces highly compatible with both the
temporal and spatial resolution of the techniques discussed below. Unlike K and
S faces, which have a limited lifetime due to their morphology, F faces can grow
indefinitely making them ideal research objects for fundamental crystal growth
studies. Not surprisingly, all crystal growth studies (including this work) have
been focused on growth phenomena on F-faces.

B. Measuring Growth Kinetics with AFM, LCM-DIM, and PSMI

Atomic Force Microscopy A typical AFM image of a growing (110) face
of a tetragonal lysozyme crystal is shown in Fig. 2a. At relatively high
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Figure 2. AFM, LCM-DIM, and PSMI images of growing (110) faces of tetragonal lysozyme.
(a) AFM image showing nucleation and growth of 2D islands (black line indicates transition from a
time–space scan to a space–space scan). (b) Time–space AFM scan of step trains advancing at constant
velocity (the vertical represents time). (c) LCM-DIM image of an entire (110) face showing monolayer
2D islands. (d and e) Time–space plots of step advancement in the 〈001〉 and 〈110〉 directions. (f) A
typical phase shift interferogram of a spiral hillock on a (110) face. Along the line A–B a time–space
plot is constructed for the entire length of the experiment (g).

supersaturation (C−Ce = 54.6 mg mL−1) crystal growth proceeds by 2D nu-
cleation. The upper part (labeled “2D”) shows the XY (space–space) image
depicting a high density of 2D islands, which correspond to the relatively
high supersaturation at which the crystal was growing. The lower part of the
image (labeled “1D”) shows a time–space image recorded with the slow-scan
axis Y disabled so that the vertical direction encodes time [44]. This picture
summarizes the kind of kinetic information one can obtain from an AFM ex-
periment: 2D nucleation density, roughness of the surface, and step velocity.
Figure 2b shows a time–space scan of steps on the (110) face growing at low
supersaturation (C−Ce = 6.9 mg mL−1) in the 〈001〉 direction. Step trains
are moving at constant velocity and the interstep distance remains constant
over time. Since the scan frequency is known, step velocity can be directly
determined from these time–space images provided that the angle between
the step line and the scan direction is known [45, 46].

Step velocities as a function of supersaturation measured using tapping
(intermittent contact between AFM tip and surface) and contact mode (con-
tinuous contact) in the 〈001〉 direction are shown in Fig. 2a. Contact mode
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Figure 3. Step velocities measured in the 〈001〉 direction on the (110) face of tetragonal lysozyme
crystals growing from purified lysozyme solution. (a) Comparison of step velocities measured by
tapping and contact mode AFM. (b) Comparison of step velocities obtained by AFM, LCM-DIM,
and PSMI. Open triangles indicate step velocities calculated from PSMI data obtained above a critical
supersaturation (C−Ce > 30 mg mL−1) where 2D nucleation becomes appreciable (*unpublished data
from Nakada et al.).

AFM data are taken from Nakada et al. (unpublished data) and were col-
lected under identical experimental conditions. No significant difference is
observed between data obtained by these two AFM operational modes. The
comparison of step velocities measured as a function of supersaturation us-
ing PSMI, contact mode AFM, and LCM-DIM in the 〈001〉 direction on
(110) faces of tetragonal lysozyme are shown in Fig. 3b. As could be ex-
pected from the indirect nature of the measurement, the PSMI data show the
largest scatter, but, more importantly, significant differences are observed
between step velocities measured using different techniques. From the plot
shown in Fig. 3b, it is clear that step velocities measured by AFM (either
in tapping or contact mode) are significantly higher than those measured
by LCM-DIM and PSMI. A similar discrepancy was observed for the (011)
face of orthorhombic glucose isomerase (GI) crystals [38, 47].

The possible influence of AFM imaging on liquid dynamics and incorpo-
ration kinetics is still a matter of debate. With this technique, a cantilever
is oscillating at a high frequency inside the solution (tapping mode) and
scanning rapidly in a horizontal plane (tapping and contact mode), close to
the crystal surface. Effects of cantilever movement during AFM observations
were reported by Land et al. [48] who found that the growth rates of canavalin
crystals were locally enhanced by the scan of the cantilever. Gliko et al.
[49] hypothesized that large variations in step velocities of lumazine syn-
thase crystals could be the result of the cantilever oscillation. Van Driessche
et al. argue that cantilever movement disturbs the diffusive boundary layer
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developed in the vicinity of a growing crystal, thereby exposing the step edge
to a higher effective concentration [50]. Conversely, Gasperino et al. con-
clude from finite element modeling that mass transfer limitations between the
liquid and crystal surface can lead to local solute depletion, thus reducing the
surface supersaturation [51]. Alternatively, Chen et al. have reported absence
of inhibition or acceleration of step propagation by cantilever scanning [52].
Given the wide spectrum of observations, additional comparative kinetic ex-
periments on well-characterized model systems are required to unravel this
matter further.

Laser Confocal Microscopy A representative LCM-DIM image of a growing
(110) face of a tetragonal lysozyme crystal is shown in Fig. 2c. The vertical
resolution of the image allows for the observation of individual steps on the
surface. The same information available from AFM experiments can there-
fore also be obtained with LCM-DIM using the similar time–space images
for the tangential growth of 2D islands or dislocation hillocks (Fig. 2d and e).
These time–space images are constructed by extracting the pixels of a spe-
cific line in the bitmap (white lines in Fig. 2c) along which the step advance-
ment over time is observed. Each of these lines from consecutive frames will
be a row in the time–space picture. Figure 2d shows one such time–space
plot for the birth and spread of a 2D island (C−Ce = 9.9 mg mL−1). The
island spreads with equal velocity, vstep = 8.7 nm s−1, into the positive and
negative 〈110〉 direction. The same observations were made for the 〈001〉
direction having steps growing at vstep = 1.4 nm s−1 (Fig. 2e). Step velocities
were found to be constant over time.

Normal growth rates can also be measured using LCM-DIM (if previous
data about the step height is available), and AFM as well, simply by counting
the newly formed layers over time, but this is only possible for supersatura-
tion values low enough as to avoid step overlapping at a lateral scale smaller
than the microscope resolution. In both cases the unambiguous identifica-
tion of single monolayer steps is central to their use in the evaluation of
kinetic data.

Phase Shifting Michelson Interferometry A typical PSMI interferogram of a
spiral hillock is shown in Fig. 2f. From a series of phase shifting interfer-
ograms collected at regular intervals, a time–space picture along a certain
line can be constructed (Fig. 2g) from which the normal growth rate can be
directly determined by plotting the height at the given point against the cor-
responding time. Step velocities are then computed from the normal growth
rate using Eq. (1) and the hillock slopes measured in the 〈110〉 and 〈001〉
directions on the space–space image. From such a time–space picture, step
velocities can be directly obtained but the lateral resolution is much lower
than the vertical resolution and data obtained in this way will have a much
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larger error range. Step velocities obtained from PMSI data show signifi-
cant scattering but are comparable to those directly measured by LCM-DIM
at low supersaturation. For larger values (ln(C/Ce) >1.3), a steep increase
in the step velocities is observed from the PSMI data (Fig. 2b). This is,
most likely, the result of significant 2D nucleation on the terraces of spiral
hillocks at higher supersaturations. This leads to an underestimation of p
and subsequent overestimations of vstep. For mixed or purely 2D nucleation
growth regimes, the slope p in Eq. (1) can no longer be approximated by h/λ.
Hence, step velocities should not be readily extracted from PMSI interfero-
grams without prior knowledge of 2D nucleation rates. Additional care must
be taken when using PSMI to determine the slope of a hillock over a short
lengthscale. Bunched steps that traverse the surface will temporally modify
the slope of the hillock. When applying Eq. (1), these local slope changes
can lead to artificial step velocity fluctuations. Thus, temporal and/or local
slope variations explain a larger dispersion of the data points found for PMSI
measurements compared to AFM or LCM-DIM.

With interferometry, obtaining data at low supersaturation is difficult be-
cause normal growth rates are hardly detectable in the case of 2D nucleation-
mediated growth, while lateral (step) growth rates are large enough to be
detected. For example, 2D heterogeneous nucleation at low supersatura-
tion has never been observed with interferometry for protein crystal growth
(and seldom for small molecules) [53, 54], while AFM studies were able
to detect heterogeneous nucleation for thaumatin [55, 56] and catalase [56]
crystal growth. With LCM-DIM, 2D nucleation could be studied in detail
for tetragonal lysozyme crystals [37] and orthorhombic glucose isomerase
crystals [38].

The significant differences in step velocities found in the growth rates of
lysozyme are reflected back in the kinetic proportionality constant between
the supersaturation and the tangential growth rate, that is, the step kinetic
coefficient βstep defined by

vstep = βstep� (C − Ce) (2)

where � is the crystal volume per molecule and C and Ce the bulk and
equilibrium protein concentration. For the data shown in Fig. 3, one obtains
for βstep 4.4 × 10−5 cm s−1, 2.6 × 10−5 cm s−1, and 1.7 × 10−5 cm s−1

for AFM, LCM-DIM, and PSMI, respectively. βstep is, however, an intrinsic
kinetic parameter that should be technique-independent. The scatter in βstep
therefore partly reflects the experimental artifacts, introduced by the differ-
ent techniques that cloud an unambiguous physical interpretation. Potential
artifacts are improper AFM settings resulting in high tip–surface interac-
tion forces, step advancement rates comparable to or larger than scanning
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tip velocity, step velocity extraction of 2D hillocks from PMSI interfero-
grams with nonzero 2D nucleation rates, and so on. Differences in sample
cell geometry may also have a profound influence on the recorded data.
Sample cell thickness and bulk solvent accessibility to the crystal surface
will significantly affect mass transport rates in the system. Edge effects,
crystal size distribution, and local depletion by neighboring crystals com-
plicate matters further, greatly influencing local surface supersaturation. Of
course, one can introduce forced convection by imposing a solutal flows and
thus diminishing gradients in the system and exposing the surface to bulk
solute concentrations. However, potential enhancement of impurity effects
on step kinetics and induced step bunching should be taken into account.
These effects certainly contribute to the observed scatter and make the de-
termination of βstep a nontrivial task. In general, AFM data will correspond
better to situations were forced convection is present (i.e., no concentration
gradient around the growing crystal) while LCM-DIM data, and PSMI data
(after suitable correction) will correspond better to diffusive mass transport
situations or reduced natural convection situations (i.e., when a developed
concentration depletion zone exists around the crystal).

C. Spatial and Temporal Resolution

Unambiguous quantitative information on the surface topography is available from
AFM and PSMI, but not from LCM-DIM. Therefore, additional information from
the other techniques is needed to compute normal growth rates from LCM-DIM
data. The vertical resolution of LCM-DIM is close to 1 nm and with AFM a vertical
resolution around 1 Å is possible [26, 57]. Thus, both techniques have adequate
vertical resolution for studying single-step dynamics on protein crystals (usually
nanometer step height). The theoretical vertical resolution of the PSMI is around
1 nm, but in practice this resolution depends on the reflectivity of the crystal face,
the disturbances originating at the solution or the cover glass, and the overall qual-
ity of the optical parts. Consequently, this resolution is worse for the protein surface
having low reflectivity. Due to the limited resolving power of interferometry for
direct observation of single steps, experimental data must be carefully evaluated
to avoid biased interpretations or extrapolations beyond the resolution of the in-
strument. Although, recently developed, advanced PSMI techniques extend the
vertical resolution to the molecular scale and are able to observe single steps at
low supersaturation [39].

Lateral resolution of PSMI and LCM-DIM is limited to that of the mi-
croscope lens used for imaging, and can be estimated using Abbe’s equation
(0.61λ/numerical aperture). For a 40× lens the upper limit is approximately
0.7 �m. Therefore, observation of processes below this scale requires the use of
AFM. This fact is clearly seen in the space–time pictures used to evaluate the
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step velocity (Fig. 2b as compared to Fig. 2d and e). In the case of AFM, this
figure shows a certain “roughness” not observed in LCM-DIM images because it
exists at lengthscales smaller than the lateral resolution of the microscope. If one
is interested in studying the kink dynamics, AFM is superior, but when studying
mesoscopic step dynamics, the LCM-DIM is preferred.

For a fixed amount of information, the lateral resolution is the inverse of the
field of view, so high lateral resolutions means small field of view. LCM-DIM
and PSMI allows the observation of large areas, while AFM is more limited in
lateral field of view, which can be a problem when dislocation hillocks and 2D
nucleation operate simultaneously on the same surface or when the growth rate
shows inhomogeneities over the crystal face. The maximum scan area for most
AFMs is approximately 120 × 120 �m2. This limitation is principally due to the
operational set up of the AFM. Figure 2a and c show typical AFM and LCM-DIM
images of a (110) face growing by the 2D nucleation mechanism. The AFM image
was scanned in 256 s and covers an area of 10 × 10 �m, while with LCM-DIM
9.6 s were necessary to scan an area of 800 × 800 �m.

D. Optimal Operational Range

The selection of an experimental technique is not just a matter of fitting the instru-
ment to the mass transport and physical model relevant to the problem at hand.
Because the three techniques have different vertical, lateral, and time resolutions,
the length- and timescales of the problem is relevant as well. PSMI shows the
highest data acquisition rate but the lowest vertical and lateral resolution while
AFM has the lowest acquisition rate and the highest resolution. LCM-DIM fits
in between, having a vertical resolution comparable to that of AFM (at least for
protein crystal growth problems), a lateral resolution such as the one of PSMI
and an intermediate data acquisition rate. Therefore, AFM is the observation tech-
nique of choice for slow, nanoscale growth processes, LCM-DIM is a microscale
observation technique with nanoscale vertical resolution useful for slow/medium
growth processes and PSMI is the best-suited technique for fast growth processes
requiring only micrometric spatial resolution. Consequently, the three techniques
complement each other for studies on crystal growth kinetics.

In the case of protein crystal growth, the supersaturation range for which nor-
mal growth rates can be directly determined using LCM-DIM and even more so
for AFM, is outside the range used in most crystallization experiments for the
production of crystals for X-ray diffraction. At such low growth rates a crystal
will take several months or even years to grow to a reasonable size. AFM obser-
vations are most reliable and meaningful at low supersaturation levels where, for
example, kinetics at step edges can be observed in situ. With LCM-DIM excellent
observations can be carried out in the low to middle supersaturation range but at
high supersaturation levels the lateral resolution is not high enough to distinguish
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Figure 4. The typical operational supersaturation range for each technique is shown compared
to the typical supersaturation ranges in which crystals for X-ray crystallography are nucleated and
grown. The line represents crystals with a size of 200 �m. (Modified after P. Dold and K. Tsukamoto,
unpublished.)

individual steps of 2D islands. The use of interferometry is most appropriate in the
middle to high supersaturation range while at low supersaturation levels macro-
scopic growth processes are very slow and measurements become sensible to large
errors. A schematic representation of the typical operational supersaturation range
for each technique is shown in Fig. 4.

III. PROTEIN CRYSTAL GROWTH CLOSE TO EQUILIBRIUM

Protein crystal growth at low supersaturation levels can be studied by most con-
ventional techniques on a macro-, meso-, and nanoscopic level. It is therefore
a highly documented subject in literature. The very slow advancement (nm s−1;
Å s−1) of the edges of unfinished layers (steps) on the surface makes this regime an
excellent candidate for in depth, molecular resolution investigations. These works
include molecular-level defect formation, impurity effects, 2D lattice character-
ization, layer generation mechanisms, etc on a wide variety of protein systems,
ranging from bacterial to eukaryotic and viral proteins. However, most works cen-
ter either on the quantitative aspects at a mesoscopic level or on the qualitative
characteristics at a nanoscopic level. Here we focus on a combination of both, that
is, nanoscopic observations of dynamic events at the kink level.

First we discuss the determination of the enthalpy and entropy of crystallization
by monitoring step kinetics of lysozyme and glucose isomerase at near-equilibrium
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conditions using LCM-DIM. Then we use AFM to study the step dynamics of
triosephosphate isomerase from which we infer information on the solute-to-
crystal pathway and the elementary growth units that incorporate into the kinks.
This protein has a low step edge free energy combined with a low-step kinetic
coefficient (unpublished data), resulting in very high step densities (beyond the
LCM-DIM limit) that advance very slowly, that is, ideal for AFM.

A. Enthalpy and Entropy of Crystallization

A practical advantage of observing step dynamics close to equilibrium, that is,
growth and dissolution, is that the solubility of proteins in aqueous solution can
be precisely determined. From these data the numerical values for enthalpies and
entropies of crystallization can be calculated with significantly reduced experi-
mental errors compared to other macroscopic methods. As mentioned above, with
LCM-DIM elementary steps can be readily observed, and at the same time an en-
tire crystal surface can be visualized. This allows for a detailed observation of the
surface step dynamics over time. With the help of an accurate temperature control
system, equilibrium temperature intervals can be determined for a wide concen-
tration range as a function of temperature for globular proteins. From the obtained
solubility data, enthalpy, entropy, and Gibbs free energy of crystallization can be
calculated.

1. Solubility Curve Determination

The LCM-DIM method is based on the in situ observation of single steps on a
protein crystal surface, which allows a fast and precise determination of solubility
as a function of temperature. When the temperature of a protein solution is set
below/above the equilibrium temperature, growth/dissolution of the crystal surface
will occur for normal solubility dependence and vice versa for retrograde solubility.
Using this technique, the equilibrium temperature is defined as the average of the
interval between the minimum temperature at which dissolution is observed and
the maximum temperature at which growth is observed in a certain time period.
Dissolution of a crystal surface can be recognized by either retreatment of single
steps or the crystal edge and/or the nucleation of etch pits, depending on the
level of undersaturation. Growth is characterized by step advancement and 2D
nucleation. The LCM-DIM setup not only allows us to observe in situ single steps
on a protein crystal surface but also the crystal edges can be clearly visualized and
thus growth or dissolution of a crystal surface can be distinguished. LCM-DIM
requires only a slight change (micrometer range) in the position of the steps or the
crystal edge to detect growth or dissolution of a crystal surface. By establishing the
limits of growth and dissolution as a function of temperature, the true equilibrium
temperature is located in this temperature interval. It should be mentioned that
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Figure 5. (a) The solubility of tetragonal lysozyme in 50 mg mL−1 NaCl. Solid triangles indi-
cate commercial grade lysozyme (≥98.0%, Worthington) and open triangles indicate highly purified
lysozyme (99.99%, Maruwa Food Inc.). (b) The solubility of glucose isomerase in 0.6 M (squares) and
0.85 M (circles) ammonium sulfate. The curves are guides for the eye.

the accuracy of this method is only limited by the stability of the protein solution
and the precision of the temperature control system. With this method, it is also
possible to establish solubility curves as a function of precipitant concentration,
type, ionic strength, and so on.

The temperature solubility curves for GI and HEWL were determined with great
precision (±0.5◦C) by in situ observation of the crystal surface. The solubility
curves for one salt concentration in the case of HEWL (Fig. 5a) and for two
salt concentrations for GI (Fig. 5b) are shown. For each protein concentration,
the temperature interval is plotted in between which the equilibrium temperature
is located. For both proteins the solubility increases with temperature, as is the
case for most globular proteins [58]. Also note that the solubility decreases with
increasing precipitant concentration.

2. Determination of Enthalpy and Entropy of Crystallization

The solubility data shown in Fig. 5 were used to characterize the thermodynamics
of crystallization using the van’t Hoff equation [59]

ln Ke = −
(

�Ho − T�So

RT

)
= �Go

RT
(3)

where Ke is the equilibrium constant for crystallization, T is absolute temperature,
R is the universal gas constant, and �G◦, �H◦, �S◦ the standard free energy,
enthalpy, and entropy of crystallization, respectively. If we assume solution ideality
(i.e., the activity coefficient γe is equal to unity) the crystallization equilibrium
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constant Ke can be represented as

Ke = ae
−1 =

(
γe

Ce

Co

)
≈ (Ce/Co)−1 (4)

where Ce is the solubility and Co = 1 mol kg−1 is the concentration of the solution
in the standard state. In the case of protein solutions, using this value for the
standard state is thermodynamically not self-consistent [60]. But for the sake of
comparison, this value was used because most thermodynamic values reported in
literature are obtained using this value. The selection of a different standard state
(e.g., 1 mmol kg−1) does not affect the value of �H◦ and the shift in determined
values of �S◦ and �G◦ are relatively minor and will therefore not affect the
conclusions about the underlying physical processes [18]. Combining Eqs. (3) and
(4) yield the well-known equation

ln

(
Ce

C0

)
= �Ho

RT
− �So

R
(5)

From the linear plot (ln(Ce/C◦) versus 1/T), one obtains for the slope and inter-
cept �H◦/R and −�S◦/R, respectively (Fig. 6a). Note that the linear relationship
of the data indicates that the enthalpy of the system is temperature independent in
the studied temperature range. The numerical values for enthalpies and entropies
of crystallization are summarized in Table I. Using Eq. (3), the standard free energy
can also be determined (Fig. 6b).

The negative entropy contribution for both proteins indicates entropy loss dur-
ing crystallization, and hence, the entropy change disfavors crystallization. This
entropy loss is due to the constrained translational and rotational degrees of free-
dom of the protein molecules and the release, trapping, and rearrangement of water

Figure 6. (a) Log-linear plot of the solubility data for GI and HEWL used to obtain the enthalpies
and entropies of crystallization. The straight lines are least squares fits to the van’t Hoff equation;
(b) Gibbs free energy of crystallization as a function of temperature for GI and HEWL.
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TABLE I
Thermodynamics of Crystallization of Glucose Isomerase and Hen Egg White Lysozyme

�H �S
Precipitant (kJ mol−1) (J mol−1 K−1)

0.6 M ammonium sulfate: GIa −144 ± 1 −370 ± 2
0.85 M ammonium sulfate: GIa −174 ± 1 −462 ± 4
0.91 M ammonium sulfate: GI [61] −160 ± 40 −420 ± 100
50 mg mL−1 NaCl: HEWLa −96 ± 1 −220 ± 4
25 mg mL−1 NaCl: HEWL [62] −110 −241
25 mg mL−1 NaCl: HEWL [63] −72 −216

aThis study.

upon attachment to the crystal [18]. This reduces the magnitude of the crystalliza-
tion free energy from the values set by the enthalpy and in this way leads to higher
solubility. For crystallization to occur this entropy contribution needs to be com-
pensated. For the studied temperature range the entropic effect is compensated by
the negative enthalpic change, and the crystallization process is exothermic. For
GI, there is a significant difference in �Ho and �S◦ between 0.6 M and 0.85 M
AS, indicative of the salting-out effect at higher salt concentrations. In Table I the
enthalpies and entropy values of crystallization of GI and HEWL reported in this
study and by other groups for similar solution conditions (i.e., pH, precipitant)
are shown. No significant differences are found but the margin of error is strongly
reduced for the values obtained by the LCM-DIM method.

B. Step Dynamics

The formation of new layers and their subsequent advancement by attachment
events slows down significantly as the system reaches equilibrium. This leads to
an effectively arrested state where the surface is kinetically frozen when observed
macroscopically. On a molecular and mesoscopic scale, however, steps meander
around an equilibrium state due to the interplay between step stiffness and molec-
ular dynamics, which include attachment and detachment from the step due to
exchange with the bulk reservoir and surrounding terraces, line diffusion and kink
formation due to thermal motion of the molecules. The slow kinetics and molecular
lengthscales at which these dynamics operate make AFM a particularly insight-
ful technique to unravel the underlying molecular-level mechanisms that govern
crystal growth.

For example, evidence for the prevailing incorporation mechanism can be
sought in the study of step dynamics [64]. Step incorporation/detachment events
operate on a timescale (∼s) that is two orders of magnitude smaller than a typical
AFM image acquisition time (∼200 s). This incompatibility of timescales can be
remedied by disabling the slow scan axis direction, hereby scanning the same line
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Figure 7. (a) Time evolution of the step position shows the molecular step displacement with
attachment events (+) and detachment events (j−) changing the step coordinate by one unit. (b) Time
correlation curve, characterizing mean square displacement of step location as a function of time �t.

perpendicular to the nominal direction of the step edge as a function of time (1D
sampling). Moreover, this technique allows us to separate the influence of spa-
tial fluctuations on step dynamics from temporal fluctuations [65]. An example of
such a step trace image for the case of triosephosphate isomerase from Thermotoga
maritima (TmTIM) is shown in Fig. 7a. These dynamical step fluctuations can be
the result of various transport phenomena. One is where mass transport occurs
only along the step through a process called true line diffusion. Another is where
step perturbations result from mass exchange of the step with the solid surface
phase (2D surface diffusion) and the surrounding liquid phase (direct incorpo-
ration). The presence of line diffusion can be identified by interpreting the time
correlation curve F(�t) [66] of the spatial displacements of the step edge using
equilibrium step dynamics models [64, 67]. The obtained correlation curve dis-
plays three different time regimes. At smaller timescales the correlation curve
can be fitted using a power law with either exponent 1/2 or 1/3, at intermediate
timescales 1/3 and at larger timescales the exponent 2/3 is obtained. As pointed
out by Ihle et al. [64], the predicted sequence of exponents at intermediate and
large timescales depends on the limiting transport mechanism and the presence of
a weak or strong Schwoebel effect. If supply is limited to diffusion, transport on
the terrace or in the bulk solution is slow. Conversely, in the kinetically limited
case slow attachment/detachment events are the rate-determining step. Yet, irre-
spective of the limiting transport mechanism, step perturbations brought about by
a conformational reorganization of the step through line diffusion are predicted to
follow a power law 1/4 . The absence of a 1/4 power law in the fitted data presented
in Fig. 7b indicates that line diffusion contributes only marginally to the temporal
step fluctuations. This allows us to attribute the step trace displacement events to
the exchange of growth units with the surrounding phases, that is, the terrace and
solution phase.
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C. Elementary Acts of Crystal Growth

The frequencies of attachment j+ of building units to kinks and their detachment
j− are elementary parameters of crystal growth and are used in almost all models
that describe step and face advancement. Despite their fundamental importance,
they remain highly elusive parameters to attain experimentally. As such, quantita-
tive data on j+ and j− remains very scarce in literature [52, 68, 69]. Typically, only
the microscopic step growth rate is followed experimentally. Through the knowl-
edge of the interkink distance one can calculate the average net rate of growth
unit addition, that is, j+ − j−. To measure j+ and j− experimentally, however,
molecular resolution AFM experiments are required to resolve the individual at-
tachment/detachment spatially (Fig. 8a). To obtain adequate temporal resolution
as well, one-dimensional time traces need to be recorded. From such 1D-sampled
images, the one-dimensional size distribution of units attaching to and detaching
from the step edge can be determined. For example, for the case of TmTIM, the
7 nm peak can be interpreted as the addition of a single tetramer when compared
to the X-ray structural data shown in Fig. 8b. Likewise, the small 15 nm peak
can be correlated with the attachment/detachment event of a single unit cell com-
prising three tetramers. It is conceivable that the dominating peak at 11 nm stems

Figure 8. (a) Molecular resolution AFM height image of the (011) face of a TIM crystal. Thin
horizontal lines at the step edges are the resultant of attachment/detachment events occurring on a
timescale smaller than the temporal resolution of the system. (b) A [100] step edge on the (011) face.
The unit cell is comprised of three tetramers (single sphere represents a single monomer). (c) Histogram
of time intervals �t between individual attachment (light gray) and detachment events (dark gray).
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from an intermediate kinetic state, that is, a partial unit cell that is in the pro-
cess of being completed and formed during the dead zone time of the experiment,
that is, the temporal resolution of 0.4 s. The same quantitative result is obtained
through normal mode imaging at a molecular resolution of the crystal surface.
Here, we observe thin horizontal lines at the step edges that are the resultant of
attachment/detachment events occurring on a timescale smaller than the temporal
resolution of the system (Fig. 8c). Then what is the growth unit for the crystal-
lization of TmTIM? Most likely the dominating growth unit is a single TmTIM
tetramer. Although larger sized attachment/detachment events are observed, it is
probable that they are formed on a timescale smaller than 0.4 s. Indeed, when look-
ing at the kinetics of incorporation, more specifically the time intervals between
individual attachment and detachment events, we find an exponential decay as a
function of time. From this data, we conclude that the time interval between a large
part of the events is of the order of 1 s or smaller (Fig. 8c). Clearly, the kinetics
of the system operates on a timescale equal to or smaller than the temporal reso-
lution obtained in our experimental setup. This is exemplified by the absence of
a clear maximum in the time distribution of attachment events. Such a maximum
would be expected because molecules incorporate at finite velocities in the step.
This suggests that the addition of units with linear dimensions larger than a single
TmTIM tetramer, can be the result of a series of incorporation events within the
timeframe of 0.4 s. To get a better view at the molecular dynamics in the kink, a
high-speed AFM should be used on these types of systems.

D. Growth Unit Pathways Toward the Kink

Under conditions of a nonvanishing activation barrier for nucleation and kink
formation (i.e., below the kinetic roughening transition [70] and with moderate
molecular thermal energy [71], otherwise said below the thermal roughening tem-
perature) F-type interfaces are smooth surfaces where the relatively rare incor-
poration sites are situated along the molecular rows that define the edges of the
unfinished advancing crystalline layers traversing the surface. For F faces where
kinks are typically widely spaced, an interesting competition between mass transfer
through bulk and surface diffusion arises. With the presence of kink-free terraces
in between the (linear) sinks, that is, steps, the growth units can now adhere to the
surface, diffuse two-dimensionally and incorporate into kinks (Fig. 9); a pathway
previously not possible on the S and K faces that are only present in the early
stages of crystal growth. The dominating pathway (either bulk diffusion in the
convection-free liquid boundary layer normal to the surface or 2D surface diffu-
sion of adsorbed molecules (admolecules) on terraces in between the steps [72])
can have a profound effect on the surface morphological stability with respect to
local perturbations [24]. This can be understood in the following way. Irrespective
of the most prevalent solute pathway toward the kink, steps are fed by growth
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Figure 9. Two possible pathways for a growth unit from solution into a step: direct incorporation
from solution; step integration as a result of surface diffusion. Reorganization of the step occurs through
line diffusion.

units that are diffusive toward the incorporation sites. When the incorporation of
molecules at the step proceeds faster than the rate at which diffusion can supply
new growth units, a local depletion of solute molecules is established. The zone
of lower solute concentration around a step can be considered to be a half cylin-
der centered at the step. If the “supply fields” of two or more steps overlap, the
local solute concentration decreases even more, leading to a mutual deceleration
of the steps involved. Such an effective step–step attraction can lead to signifi-
cant step train instabilities (step bunching) eventually leading to the formation of
macrosteps. The latter are regions of local high step densities that incorporate im-
purities at a different rate than solitary steps. This causes impurity gradients within
the crystal bulk and subsequent stress build-up that can lead to striations, mosaicity
and cracks, which result in a diminished crystal quality. Now, scaling arguments
suggest [73] that competition for supply from the bulk should be too weak to cause
any discernible effects on step advancement. Step bunching as a consequence of
diffusion field overlap should therefore only be expected when steps are solely
being fed by admolecules. Not surprisingly, determining the molecular pathway
that a molecule follows from the solution to the F-interface of the crystal bulk
is vital to understand the mechanisms of growth. Regardless, the significance of
surface diffusion in crystallization from solution remains a long-standing problem
of fundamental interest [25].

Although the total change in the average energy of a particle as it moves from
the solution to the interface is the same for both pathways, the energy activation
barriers the particle has to overcome can differ for both trajectories. The relative
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heights of these barriers that need to be surmounted, will determine the dominating
transport mechanism. Mesoscale evidence that favors a multistage process involv-
ing adsorption on the surface and two-dimensional diffusion toward the steps has
been presented for a few model proteins only, that is, canavalin (AFM, [45]), in-
sulin (AFM, [74]), and the (110) face of lysozyme (PSMI, [75, 76]). In contrast, for
the (010) face of orthorhombic lysozyme it has been shown that surface diffusion
has a negligible contribution to tangential growth [77]. One of the possible caveats
of interpreting mesoscale data in favor of direct incorporation is that the require-
ment of interstep interaction, that is, surface diffusion field overlap, is not met in
the tested experimental conditions. This problem does not occur when studying
step dynamics at a molecular level using AFM where interstep interaction is not a
prerequisite.

Earlier we showed that line diffusion has a negligible influence on the step dy-
namics of TmTIM. Now we can test the existing models of direct incorporation
from solution and surface diffusion by examining the ratio of elementary attach-
ment j+ and detachment frequencies j− of single growth units. For the ratio of the
fluxes of molecules entering and exiting the steps, models predict [78, 79]

j+
j−

= C

Ce
(direct incorporation) (6)

j+
j−

= ns

ne
(surface diffusion) (7)

with C and Ce the actual and equilibrium bulk concentration, and ns and ne the
actual and equilibrium surface concentration, respectively.

For the time trace [80] shown in Fig. 7a, we have j+/j− ≤ 1.2. This ratio is
an upper estimate because any attachment/detachment events that occurred within
the temporal resolution remain undetected. The growth velocity for that step edge
is 0.62 nm s−1, which is very low. For the Ce we have 0.043 mg mL−1, giving for
C/Ce = 4.7 > j+/j−. This inequality indicates that the model of direct incorporation
from solution does not amply predict the measured statistics of exchange in the
kink. This suggests that bulk diffusion alone cannot be considered the sole supplier
of growth units and that the surface diffusion pathway should also be considered.
Let us test the model of surface diffusion. If we assume that all molecules entering
the kink are admolecules, then according to Eq. (2) we have ns/ne = j+/j−. Given
that ns and ne are not readily attainable experimentally (for exploratory works on
this matter, the reader is referred to Sazaki et al.) we can approximate their ratio
assuming Langmuir adsorption: ns = nsatC/(C + B)−1 where nsat is the maximum
density of admolecules and B the Langmuir constant. Assuming B is positive
(i.e., ns increases for increasing C) we get the following for a nonsaturated state
ns/ne ≤ C/Ce or equivalently j+/j− ≤ C/Ce, which is confirmed by our data. The
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mechanism of incorporation of admolecules thus corroborates our observed lower
ratios of influx to outflux.

Given that protein surface diffusion has been estimated to be 3–4 order of mag-
nitude slower [81] than diffusion in the bulk, how can admolecules still contribute
appreciably to step kinetics/dynamics? One of the potential reasons is that macro-
molecules experience a high rotational entropic barrier for kink incorporation due
to their size, geometrical complexity, and structural anisotropy [82]. Because no
sufficient torque reorienting the biomolecule for correct incorporation is expected,
the molecule approaches the kink at random orientation [27]. The probability that a
molecule will arrive at a kink with an orientation that is relevant for regular attach-
ment is estimated to be 10−2–10−3 [78]. In addition to this configurational obsta-
cle, macrobond patches between future neighbors (on the incoming molecule, the
molecules belonging to the underlying layer, and the molecules in the kink) should
partially shed their hydration layer. As opposed to direct incorporation from solu-
tion where all these events need to operate in a concerted way and therefore result
in a large activation barrier, surface diffusion is a two-step process where the bar-
riers for adsorption and incorporation into the step are separated [45]. Quantitative
data on adsorption and incorporation barriers of ferritin (Uadsorption ≤ 26 kJ mol−1;
Ustep ≤ 44 kJ mol−1) [52] compared to the potential barrier for direct incorpora-
tion ∼88 kJ mol−1 strengthen this notion. Additionally, confining the search space
of the diffusing species from the bulk liquid phase to a two-dimensional surface
may also increase the efficiency of the growth process. For instance, Adam and
Delbrück showed that biological diffusion processes such as membrane-associated
reactions and bacterial chemotaxis may benefit from a reduction in dimensionality.
Elaborating on this notion, Berg and Purcell found that the mass transfer efficiency
of 2D diffusion depends on the average distance between sinks on the surface, with
sinks being kinks in our case, or more generally steps. It is not inconceivable that
a similar mechanism may operate for the crystallization case. We also note that
dominance of a single pathway may be regime dependent, that is, supersaturation
dependent. This concept was touched upon in the work of Garza-Lopéz et al. who
approached the problem of postnucleation self-assembly using a lattice-statistical
approach to define regimes where either mechanism will dominate based on the
ratio of accompanying kinetic rate constants [83].

IV. PROTEIN CRYSTAL GROWTH AT INTERMEDIATE
DRIVING FORCES

Up to now, growth under intermediate driving forces has been the most investi-
gated supersaturation range by AFM and interferometry. From these observations,
pioneering works by Durbin and Feher [151] revealed for the first time the growth
mechanisms of protein crystals. After this breakthrough, many studies followed,
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mainly focusing on understanding the basic principles underlying these mecha-
nisms of growth. By measuring interfacial growth kinetics, such as advancement
rates of steps emanating from spiral dislocations or 2D nucleation rates on terraces,
fundamental parameters such as kinetic coefficients and surface free energy could
be determined. Studies on impurity effects and defect generation revealed that all
protein crystals deviate strongly from the idealized perfect case. These processes
take place at the mesoscopic level and are the ideal playground for LCM-DIM. In
this chapter, we therefore zoom-in on crystal growth phenomena in the intermedi-
ate supersaturation range, which require a crystal-scale observation area combined
with medium lateral resolution and the ability to discern elementary steps. First we
discuss polyhedral (in)stability issues arising from a critical crystal size and the
associated stabilizing and destabilizing factors. Then we focus on a more exotic
mode of layer generation, previously undocumented for protein crystal growth,
that is, (long term) repeated 2D-nucleation.

A. Polyhedral Stability-Limit: Starvation Flaws

The interplay between surface growth processes and the distribution of concentra-
tion around a growing crystal determines the shape and stability of the crystal habit.
When the kinetics of protein attachment onto a growing crystal face removes pro-
tein more rapidly from the region adjacent to the crystal face then mass transport
can replenish the supply of growth units, a significant concentration gradient is
established. In the absence of relatively fast convective currents, an isotropic pro-
tein depletion zone is formed which creates local solutal conditions that can differ
greatly from the bulk composition. The accompanied slow-down of the crystal
growth process is considered to promote the growth of high quality crystals [84].
By removing convection, spatial irregularities and temporal oscillations in solute
transport that cause the formation of defective regions in the crystal are reduced.
As such, a more stable mode of growth is attained [73, 85, 86]. However, the effect
of ablation of convection is system dependent and may either be advantageous
or disadvantageous to the crystal quality. For instance, it has been shown that a
reduction of the mass transport rate can enhance defect-causing step density and
velocity fluctuations [87] or augment impurity uptake [82, 88–90]. Such a mass
transport regime that is governed by diffusion can be reached by working in a zero-
or microgravity environment [91–93], in gelled solutions [94–96], or by lowering
the ratio of the buoyancy and viscous forces of the system (capillary [97, 98],
closely spaced glass plates [62, 99–101], high molecular weight PEG’s [102]).
There is one other case where elimination of convection will not be beneficial
for protein crystallization and ultimately crystal quality, that is, loss of polyhedral
stability [40, 103]. It is a kinetic phenomenon where, due to the specific interplay
of surface kinetics and mass transfer, the crystal is no longer capable to retain
its polyhedral shape and large depressions develop on the habit faces. Since the
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destabilizing mechanisms scale-up with crystal size and the limiting of nutrient
supply, polyhedral stability is expected to occur in the same conditions required for
the formation of a depletion zone. The geometry of this metastable halo encircling
the crystal does not coincide with the polyhedral shape of the crystal. Conse-
quently, edges and vertices of growing crystals are better supplied with nutrients
than facet centers. This surface concentration inconstancy is referred to as the Berg
effect [104] and can have a pronounced effect on surface kinetics and ultimately
surface morphology [105]. Polyhedral instability is a long standing problem in the
crystallization of small molecules due to their fast incorporation kinetics (for ex-
ample, see Refs. 106–109) and it is important for applications where large protein
crystals are required, for example, neutron diffraction. Initial reports of polyhedral
instability of protein crystals were made by Nanev et al. [110, 111] for ferritin,
lysozyme, and trypsin. Further steps toward a deeper understanding were made by
Vivares et al. who studied the concentration gradients in the vicinity of glucose
isomerase crystals using confocal scanning fluorescence microscopy [102]. They
achieved ablation of convection through the use of a high molecular weight PEG
(10 kDa) and correlated the polyhedral instability of crystals to the presence of a
depletion zone.

However, to gain deeper insights into the underlying principles that govern crys-
tal stability, it is essential that one has detailed knowledge on the crystal height
profiles, types and rates of layer generation, and step velocity distribution profiles
across the crystal surface. Since the typical lengthscale of the Berg effect is com-
mensurable with crystal size, classic surface imaging techniques such as AFM are
less ideal due to the limited surface scanning area. It is therefore recommended to
employ the less invasive optical method LCM-DIM which, given the fast scan rates
(on average 5 s/image), large scanning area (millimeter range) and medium lateral
resolution (±0.6 µm) is ideal to probe mesoscopic kinetic surface phenomena [35,
112]. Here we discuss two aspects of polyhedral (in)stability [113]: (1) the main
extrinsic instability mechanism that perturbs the system, that is, the Berg effect
and (2) the intrinsic anisotropy of the face kinetic coefficient that stabilizes the
face against bulk solvent induced perturbations. We will demonstrate that crystals
larger than a critical size will inevitably lose their polyhedral stability due to the
limits of the stability mechanisms. When this critical point is reached, the faceted
form is no longer capable to remain similar to itself and a central starvation flaw
will form.

1. Instability Mechanism: The Berg Effect

Figure 10a shows the manifestations of the Berg effect on 2D nucleation kinetics
and step density for protein crystallization in a nongelled medium. A clear increase
in step density is observed from the crystal edge (left-hand side) toward the facet
center (right-hand side). The reverse trend is visible with regard to the presence
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Figure 10. (a) Step and 2D island density increase and decrease, respectively, as a function of
distance to the crystal edge (left-hand side) as a consequence of the Berg effect, that is, nonconstant
surface concentration. Nucleation rates (lnJ) (b) and relative depletion Csurf /Cbulk (c) as a function of
surface coordinate along the white arrow in (a).

of 2D islands, that is, the surface density of 2D islands decreases as a function of
distance from the crystal’s edge. A similar deceleration of kinetics is observed for
the lateral step velocity vstep.

More quantitatively, time-lapse imaging of the crystal surface allows to deter-
mine 2D nucleation rates J (m−2s−1) as a function of the distance from the edge
x (in �m, taken to be zero at the crystal edge). Figure 10b shows an lnJ versus
distance from the edge plot obtained for two different crystals. A (kinked) linear
decrease in nucleation rates is observed as a function of surface coordinate. The
kink in the plot for crystal 2 can be attributed to the geometry of the system, that
is, the angle and distance between the crystal surface and the reactor walls and
edges. Given the high nucleation rates, the prevailing step-generating mechanism
is homogeneous 2D nucleation (HON) [38] characterized by a specific edge free
energy of κHON = 6.0 ± 0.3 × 10−13 J m−1. Through a model for the steady-state
2D nucleation rates J derived from classical nucleation theory [43]

ln J = ln
(
ω∗�Z

) − πκ2
HONs

k2T 2ln (Csurf/Ce)
(8)

where ω* is the frequency of attachment of molecules to the critical 2D nucleus, �
is the Zeldovich factor, Z is the steady-state admolecule surface concentration, s is
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the surface area of a single molecule in the critical 2D nucleus (9.7 × 10−17 m2) and
Csurf and Ce are the protein surface and equilibrium concentration, respectively,
the local surface supersaturation σsurf = ln(Csurf /Ce) can be calculated. Such an
approach requires that the observed retardation in surface kinetics is a direct con-
sequence of surface concentration gradients and not of step diffusion field overlap.
This requirement is fulfilled here because AFM experiments [38] have shown that
no step–step interaction occurs for distances >75 nm (3–4 lattice parameters),
well below the minimum interstep distances in this work. When no significant
temperature gradients are assumed, the relative surface depletion Csurf /Cbulk can
be determined, where Cbulk is the protein bulk concentration, which we equate with
Cedge. In reality, most likely Cedge ≤ Cbulk, however, we disregard this inequality
since we focus here on the determination of relative surface concentration gradi-
ents rather than absolute gradients. This leads to the Csurf /Cbulk versus distance
from edge plots in Fig. 10c. A depletion of approximately 11% is measured at
±250 µm from the crystal edge. Although this does change the microprofile of the
crystal surface, the overall face’s shape remains identical, that is, macroscopically
flat. We can conclude that in the presence of relatively small surface concentration
gradients (moderate Berg effect), shape stabilizing factors [114] (e.g., anisotropy
of face kinetic constant, surface tension and capillarity, nonuniform distribution
of growth-retarding impurities, temperature gradients) succeed in preserving the
polyhedral shape of the crystal. However, shape-destabilizing factors (e.g., nonuni-
formity of (impurity) concentration distribution) scale-up with crystal size and can
lead to morphological defects. In the following section, we discuss the various (mi-
cro)structures of the surface in response to supersaturation inhomogeneity while
retaining a flat macroscopic interface.

Figure 11a shows one of the “flattest” and most stable modes of growth, that is,
at random homogeneous multilayer 2D nucleation (note that layer-by-layer growth
would be flatter) with an average slope of zero. The random nature of this process
(average island density is constant as a function of surface coordinate) indicates
the absence of any significant concentration gradients on the surface. Any local
perturbations in surface height show no temporal stability and fade away. When the
crystal size increases or supply becomes hampered by reactor edge effects, concen-
tration gradients arise that affect both the kinetics and localization of 2D nucleation.
Figure 11b illustrates this phenomenon: step generation becomes limited to spe-
cific local areas of higher surface concentration leading to the formation of a 2D
hillock. In response to the concentration gradients, the step density increases as a
function of distance to the nucleation center until eventually the interstep distance
becomes smaller than the critical length of a 2D nucleus or the supersaturation
becomes smaller than the critical supersaturation for 2D nucleation. This effect
enhances the “confinement” of 2D nucleation and hence step generation to a spe-
cific region. While Fig. 11b shows straight step trains, Fig. 11c shows loss of step
straightness at a specific distance from the crystal’s edge. This step concavity is the
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Figure 11. The violation of the morphological stability of a flat, crystallographic low index face
(011) leads to the appearance of a central depressed area: (a) step generation through 2D nucleation
occurs at random across the entire surface; (b) surface concentration gradients lead to preferential 2D
nucleation at crystal edges, leading to step trains crossing the vicinal surface; (c) step train velocity
becomes nonconstant along the average direction of the step resulting in increased step concavity
toward the center of the crystal face; (d) loss of stability of semiequidistant step trains leads to the
coalescing of steps and formation of macrosteps downhill of the nucleation center; (e) step pinning
combined with increasing diminishment of step velocity in the face center lead to a singular critical
point where quasizero step velocity is reached, creating a depressed valley downhill of the critical point,
dashed white line indicates direction of step advancement. Dashed white boxes in zoom-out pictures
indicate zoom-in area (a–c). White x’s denote preferential 2D nucleation centers (b–e).

result of a nonconstant step velocity along the average direction of the steps. Since
this effect is observed for all the face’s edges at specific edge distances, the con-
cavity can be attributed to surface concentration gradients and rule out other step
retarding possibilities such as impurities. Next, very high step densities giving rise
to diffusion-field overlap and impurity pinning in the face’s center can eventually
lead to loss of stability of the step trains. This gives rise to the step bunching and
subsequently formation of macrosteps present in the center of the face (Fig. 11d).
Macrosteps can then lead to an additional slowing down of step advancement in
the central areas of the crystal face. All these effects combined, finally result in the
appearance of a singular point/region on the surface where quasizero step velocity
is reached. Upon reaching this point a cascade of events enhances the instability
even more, that is, step density increases further and faster by the arrival of new
steps to the near-zero-velocity region and step advancement slows down due to
step–step interaction. Ultimately, this nonmoving macrostep (shock wave) leads
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to the formation of a central expanding depression (Fig. 11e). This microscopic
transformation is the onset of loss of polyhedral stability. It is important to keep
in mind that this is a kinetic phenomenon that can be remedied by decreasing the
supersaturation or increasing the material supply through (forced) convection.

2. Stability Mechanism: Face Kinetic Coefficient Anisotropy

For a moderate Berg effect the crystal remains able to retain its polyhedral facetted
shape through the available compensation mechanisms. However, in the absence
of convective currents, the concentration difference between edge and center
Cedge − Ccenter scale-up with [40] βfR/D, where βf is the face kinetic constant,
R is the crystal size, and D is the diffusivity, and eventually the crystal starts to
change its habit, turning into a skeleton or dendrite. Here, we discuss the most
general (albeit limited) factor maintaining the regular polyhedral shape of a grow-
ing crystal [115], that is, the anisotropy of face growth rate V(n) as a function
of orientation n. Figure 12a shows the microcompensation profile in response to
supersaturation inconstancy, that is, a gradual increase in step density toward the
crystal center leading to a concave surface profile. The local slope p increases from
0.004◦ to 0.09◦; the reverse trend is witnessed for the tangential step velocity vstep,
that is, steps slow down farther from the edge (Fig. 12b). The crystal can offset
this step retardation generated by the supersaturation inconstancy by increasing

Figure 12. (a) The crystal’s microscopic compensation profile in response to supersaturation
inconstancy is limited by the maximum of the kinetic coefficient β. A clear failing to preserve polyhedral
stability results in the formation of a large central circular depression, (inset) zoom-out of the region
presented in (a); (b) tangential step velocity vstep (•) and local slope p (�) as a function of distance
from the edge in the direction indicated by the dashed white arrow in (a); (c) vstep × p (•) and terrace
exposure time τ (�) as a function of edge distance.
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its local slope p. The obtained surface curvature generates a higher kinetic coeffi-
cient in the central area compared to the face periphery and is able to counteract
the destabilizing effect of supersaturation surface gradients. This is illustrated in
Fig. 12c, where vstep × p, which we use as a measure of the normal growth rate,
remains constant over the first ±200 µm along the trajectory indicated by the
dashed white arrow in Fig. 12a. Note the smaller values of vstep × p close to the
edge. In this region, where 2D nucleation still occurs, the face growth rate cannot
be approximated with vstep × p and the normal growth rate is underestimated.

For regions closer to the center an “avalanche like loss of stability” sets in.
The increase in βfR/D as a result of the compensation profile leads to an ad-
ditional rise in Cedge − Ccenter thereby increasing the demand for an increased
surface curvature. Eventually, an abrupt decline is reached in the anisotropy of
the kinetic constant (expected for larger p) and the kinetic coefficient b(p) at-
tains its maximum (∂b/∂p = 0). ∂b/∂p can be calculated using the following
relationships [40]:

pcenter − pedge = 1



σedge − σcenter

σedge
(9)

 = 1

b
(∂b/∂p) with b(p) = β(p)

√
1 + p2 (10)

where  is the anisotropy of the face kinetic coefficient β(p). We derive the local
slope p(x) from the surface profile (Fig. 13a) and calculate σ(x) from the step
velocity assuming no diffusion-field overlap using [24] vstep = �βstep (C−Ce)

Figure 13. (a) Surface relief of the compensation profile in Fig. 12a; (b) surface supersaturation
derived from step velocities as a function of edge distance, bottom and right x- and y-axis, respectively,
(�); anisotropy of the kinetic coefficient as a function of local slope p, upper and left x- and y-axis,
respectively, (•).
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with βstep = 4 × 10−4 cm s−1. The results between 0 and 200 µm from the edge
are summarized in Fig. 13b.

The decrease in surface supersaturation is far more pronounced than in Fig. 10b.
Such significant depletion can arise when the crystal face is in close proximity to
the reactor wall, rendering the face’s center poorly supplied and enlarging the Berg
effect [113]. We show here for protein crystallization using LCM-DIM, that both
σsurf = ln(Csurf /Ce) and ∂b/∂p decrease steadily, demonstrating the diminishing
strength of the compensation mechanism at higher slopes. For low step densities,
the kinetic coefficient increases strongly with increasing local slopes. At larger
slopes, however, the kinetic coefficient of the face becomes practically independent
of the orientation. These data demonstrate that crystals larger than a critical size
will inevitably lose their polyhedral stability and a central starvation flaw will
form. When this critical point is reached, the faceted form is no longer capable to
remain similar to itself. In practice the depression is offset from the center of the
face and step generation is limited to only a single vertex as opposed to multiple
vertices. We believe this to be the result of a nonzero angle between the average
crystal face orientation and the reactor wall.

B. 2D Hillocks

As mentioned earlier, step bunching can have a profound effect on both the sur-
face topography of the crystal face as well as the uniformity of the crystal bulk.
Of course, for step bunching to occur, large step trains first need to be formed on
the surface. Local perturbations, for example, protein, precipitant, and temperature
gradients, can locally accelerate/decelerate steps thereby disturbing the step train.
Instability mechanisms, such as competition for supply [116, 117], solutal flows
[118, 119], impurity effects [120–122], stochastics of layer generation [123, 124],
Ehrlich–Schwoebel effect [125–128], and the coupling of bulk transport with non-
linear interface kinetics [87] can then stabilize and even amplify these bunches
into macrosteps as they move across the surface. Typically, the stable source of
steps is assumed to be one or more spiral dislocations. However, large step trains
can also be generated by the other main layer generation mechanism, that is, 2D
nucleation. Typically, surfaces that grow in the supersaturation range where steps
are generated by 2D nucleation, are relatively flat, that is, no significant slopes
exist and step trains are not present. This is because 2D nucleation is a random
mechanism where new layers are formed arbitrarily across the surface. New is-
lands merge with steps already present on the surface thereby annihilating any
significant height changes on the surface. If, however, the formation of new steps
is limited to one specific region on the crystal surface, steps will expand from that
area thereby forming a train of nonequidistant steps. This results in the formation of
a “2D-hillock,” which observed from a microscopic point of view (e.g., low resolu-
tion Michelson interferometry), may be mistakenly interpreted as a spiral hillock.



254 mike sleutel, dominique maes, and alexander van driessche

Figure 14. (a) 2D hillock on the (011) face of an orthorhombic glucose isomerase crystal; (b)
mesoscopic image of the (110) face of a tetragonal HEWL crystal dominated by two 2D hillocks formed
by 2D nucleation hotspots; (c) zoom-in area of a 2D nucleation hotspot.

To properly study such a system, there are two main requirements: (1) the imaging
area needs to allow for visualization of the regions of step generation and of step
train formation. Typically, the relevant lengthscale is commensurable to crystal
size, ranging from 50 to 1000 µm; (2) adequate lateral resolution is required to
discern between 2D nucleation and a spiral hillock. Fulfilling these requirements is
the technique LCM-DIM. In Fig. 14, two scenarios are presented for the formation
of a 2D hillock. The most straightforward case is where 2D nucleation is limited to
the edges or apexes of the crystal due to the Berg effect, that is, significant surface
concentration gradients. If the supersaturation in one apex is just high enough to
allow for 2D nucleation and no spiral dislocations are present, this will yield a
2D hillock that covers the entire surface. A second, more exotic scenario has been
observed to date for one protein only, that is, HEWL. Here, 2D nucleation is not
confined to one region but is limited to quasione point, a nucleation “hotspot” of
preferential island formation. In such a scenario, nucleation is no longer at random
spatially, but does remain at random temporally. This creates an infinite supply of
concentric islands (much akin to spiral hillocks) that are spaced irregularly (stem-
ming from the erratic nature of the process) thereby resulting in a 2D hillock (Fig.
14b and c). Most likely, this is a case of heterogeneous 2D nucleation, that is, a
local point of low step edge free energy or diminished nucleation activation barrier
facilitated by, for example, a stacking fault [129] or fibrous material [130]. The
stress generated by either a planar defect or a foreign particle incorporated into
the lattice would locally increase the solubility at the hotspot. Subsequent slow
dissolving should then generate a point-bottomed etch pit. This was, however, not
observed for this case, indicating that further studies are necessary to clarify this
rather special case of 2D nucleation.
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V. GROWTH KINETICS AT HIGH SUPERSATURATION LEVELS

A large bulk of the experimental studies on macromolecular crystal growth have
been focused at crystal growth relatively close to equilibrium conditions. Conse-
quently, a vast knowledge on protein crystal growth at low-to-moderate supersat-
uration levels is present. Juxtaposed to this build-up of experimental knowledge is
our understanding of protein crystal growth at conditions far away from equilib-
rium. Many questions concerning the mechanisms and kinetics of crystallization
at elevated driving forces remain unanswered. This is, however, contradictory to
the fact that the activation barrier for protein nucleation is very large and therefore
demands high supersaturation levels to be overcome (for an overview on protein
nucleation, we refer to Chapter 4 of this book). Hence, most if not all protein
crystals will (in the early postnucleation period) grow at conditions significantly
different from near-equilibrium conditions. In this chapter, we therefore discuss
crystal growth at high supersaturation levels, where the kinetics of growth alters
significantly.

A. Kinetic Roughening

Below the roughening temperature TR, the overall crystallographic orientation of
F-faces is generally maintained. Faceted interfaces are smooth on a molecular scale
and growth proceeds by the attachment of new growth units into kink sites along
step edges. As mentioned in previous chapters, new step edges are created by screw
dislocations intersecting the interface, through the formation of two-dimensional
nuclei or through the incorporation of microcrystals [74, 84, 131–134]. If the
temperature is equal to or above TR, the step edge free energy vanishes and the
crystal surface becomes rough at a molecular scale and undergoes a thermodynamic
phase transition, called thermal roughening [53, 71, 135–138]. At a temperature
below TR, the step edge free energy is larger than zero. Consequently, according to
the classical nucleation theory [139], a nucleation barrier for the formation of the
critical two-dimensional nucleus exists and with it, a critical nucleus size larger than
the crystal’s individual building blocks. The size of this critical nucleus is inversely
proportional to the temperature and the supersaturation. At a constant temperature,
an increase in the supersaturation will translate into a decrease in critical nucleus
size. As a consequence, in spite of the nonzero step edge free energy, a critical
supersaturation σR will exist for which the barrier for two-dimensional nucleation
essentially vanishes and the size of the critical two-dimensional nucleus is reduced
to the order of one growth unit (Fig. 15). Due to a large step density and a very
small two-dimensional critical nucleus at elevated supersaturations, the surface
becomes rough and offers many favorable sites uniformly distributed across the
surface. Consequently, arriving molecules can be incorporated quasi at any site.
This transition from a slow, layer-by-layer growth regime to a fast continuous
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Figure 15. (a) Layer-by-layer growth on the (011) face of glucose isomerase; (b) continuous
growth mode resulting in a rough surface on a molecular scale (growth unit is a tetramer; single sphere
is a monomer).

growth regime at high driving forces is called the kinetic roughening transition
[70, 140–144]. Kinetic roughening for the case of crystallization from solution
has been observed for small molecules, that is, SiO2 [145], Al2O3 [146], ZnO and
ZnS [147, 148], n-paraffins [149, 150], and many others. For the case of protein
crystallization, continuous growth has only been hinted at for apoferritin [133] and
observed for lysozyme [151–153]. However, these reports are based on average
face growth kinetics using low-resolution macroscopic techniques. Here we use
in situ techniques (AFM, LCM-DIM) to image crystals undergoing the roughening
transition in real-time.

Since kinetic roughening is not an actual phase transition, but rather a kinetic
phenomenon, it lacks a precise definition [154]. Consensus does exist, however,
on the criteria that may be employed to identify it: (i) a critical supersaturation σR
exists for which the barrier for two-dimensional nucleation essentially vanishes
and the theoretical critical radius becomes smaller than half-a-growth unit; (ii)
above σR face kinetics are expected to follow a linear relationship with the super-
saturation; (iii) kinetic roughening coincides with the observed transition from flat
to rounded crystal facets. In the following section, we shall shortly address these
three criteria for the crystallization of glucose isomerase.

(i) Due to the very small critical size of the two-dimensional nucleus in the
kinetic roughening regime, growth units can nucleate in kinks, on step
edges and terraces. Growth will therefore proceed by the random addition
of solute molecules to the crystal surface. Consequently, the notion of a
step and a terrace is no longer applicable. The onset of this process occurs
when the static mean excursion of an isolated step w is larger than the mean
terrace width. This is exemplified in Fig. 16a where the interstep distance
as a function of supersaturation is plotted. A steady exponential decrease
is observed until the interstep distance narrows down to the width of a
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Figure 16. (a) Interstep distance as a function of supersaturation (open circles) and guide for
eye (dashed line). Best fit was obtained for a first-order exponential decay (full black line). Horizontal
dashed line indicates the static mean excursion of an isolated step, full lines show the 95% confidence
interval; (b) face growth velocities as a function of protein concentration above the roughening con-
centration CR; (c) continuous growth mode as imaged using LCM-DIM: dashed line reveals very slight
crystal rounding.

single step (indicated by horizontal full and dashed lines). AFM stability
issues obstruct the determination of the interstep distance at higher super-
saturation closer to σR. The trend does, however, predict an even greater
decline in terrace width, hence corroborating the notion that steps will start
to merge and eventually cease to exist. A rough estimate can be made of
the number of macromolecules N* in the critical nucleus at the transition
supersaturation σR using the following equation [155]:

N∗ = πγ2
step

(kTσR)2 (11)

For σR = 5.0 ± 0.1 and γstep = 1.43 ± 0.01 × 10−20 J molecule−1 [47],
one obtains for N* ≈ 1.5. This agrees well with the assumption that the
kinetic roughening transition is characterized by a critical nucleus with
the size of a few molecules or smaller. Note that although a vanishing
critical nucleus size is a clear telltale sign of kinetic roughening, it is not
a fundamental prerequisite. Kinetic roughening-like transitions have been
observed in both mean-field model and kinetic Monte Carlo simulations
where surface roughening was observed at conditions with nonvanishing
critical cluster size [156].

(ii) At a temperature and supersaturation below TR and σR, respectively, crys-
tal faces that grow by the multilayer mode (2D nucleation with islands
already forming on unfinished layers) are expected to follow a near σ5/6

dependence, that is, nonlinear [155]. This is indeed observed for glu-
cose isomerase at σ below 5.0. Above the roughening supersaturation,
face growth rates Rface accelerate due to the absence of a 2D nucleation
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activation barrier resulting in

Rface = NADa2

1.6MWφ−1/3 (C − CR) exp (−Uc/kT ) (12)

with MW is the molecular weight, φ is the macromolecular volume frac-
tion, CR is the roughening concentration, and Uc is the energy barrier for
continuous growth. This model amply predicts the observed face growth
rates of glucose isomerase above the roughening transition (Fig. 16b).
From the linear kinetics at σ >σR, we estimate the energy barrier for con-
tinuous growth to be 3.74 ± 0.01 × 10−20 J molecule−1 at 20◦C which is
of the same order as the value obtained for lysozyme (6.1 ± 0.4 × 10−20

J molecule−1) [152].

(iii) The often polyhedral shape of protein crystals reflects the anisotropy in
the surface tension—the orientations present on the habit represent sharp
local minima in surface tension. At conditions far from equilibrium, crystal
shapes are less determined by thermodynamics and (can) deviate from the
equilibrium shape due to kinetic effects. For very fast modes of growth,
such as kinetic roughening, isotropic kinetics can alter the anisotropic
polyhedral shape. Typically, this is witnessed by a moderate rounding
of the crystal faces. This is to a lesser extent also observed for glucose
isomerase, although the effect remains quite limited (Fig. 16c).

VI. IMPURITY EFFECTS ON PROTEIN CRYSTAL GROWTH

Proteins are by their very nature difficult to purify to homogeneity and to free
from contaminant macromolecules compared to inorganic materials. Even highly
purified macromolecules may, for a variety of reasons, be chronically heteroge-
neous due to modifications, denaturation, the binding of ligands, or a host of
other effects. In addition, macromolecules are crystallized from generally com-
plex solutions that include not only the target macromolecule but also buffers,
salts, precipitating agents, water, and any number of small effecter molecules [23].
Up to now a large number of studies have demonstrated that the presence of macro-
molecular impurities during protein crystallization from solution can significantly
affect the solubility [157, 158], growth and nucleation kinetics [37, 73, 159–166],
morphology [167–171], lattice order [68, 172, 173], and ultimately the diffraction
properties of these crystals [88, 174–179].

Generally, impurities are considered to exhibit their effects on the growth pro-
cess after they adsorb on a crystal surface. Thus, to fully comprehend the mecha-
nisms of impurity effects, one has to observe in situ both (1) dynamics of elementary
steps and (2) adsorption of impurity molecules on a crystal surface, at a molecular
level. Then, the relation between adsorption of impurities and their effects on step
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dynamics should be studied thoroughly to gain a better understanding on impurity
effects.

To reveal their impurity effects on the growth of a protein crystal, LCM-DIM
was used to measure step velocities (Section VI.A) and 2D nucleation rates (Sec-
tion VI.C) in the presence of various protein impurities to quantify the effects of
impurities on the dynamics and kinetics of elementary growth steps. Simultane-
ously, the adsorption site of fluorescent-labeled impurity molecules (Section VI.B)
was observed in situ with a single-molecule visualization (SMV) technique [81,
180]. These observations shed light on the direct relation between the preferential
adsorption sites of impurities on the crystal surface and their effects on growth
kinetics.

A. Deceleration of Step Advancement by Impurities

Two frequently found impurities in commercially available hen egg-white
lysozyme preparations (covalently bonded lysozyme dimers and an unidentified
protein of 18 kDa molecular weight [181]) and a specially designed microhetero-
geneous impurity (fluorescent-labeled lysozyme [166]) were intentionally added
to highly purified lysozyme solutions to study their influence on the morphology
and step velocity of elementary 2D islands on (110) faces of tetragonal lysozyme
crystals. Additionally, Seikagaku lysozyme was tested in this study to serve as a
commercially available comparative sample.

A first diagnostic feature of the influence of impurities on the growth kinetics
is the change of growth step morphology in the presence of impurities in the
growth solution. In the case of tetragonal lysozyme crystals 2D islands formed in
a 99.99% purity solution (Fig. 17a) are lens shaped with sharp tips. This shape
results from an intrinsic anisotropy in the step velocities, being 〈001〉 the slow
direction and 〈110〉 the fast direction [32, 182, 183]. The ratio of fast to slow
direction is ∼6. In Fig. 17a drastic change in 2D island morphology is observed
for crystals growing from Seikagaku (98.5% purity [181]) and Sigma lysozyme
(94.5% purity [181]). When “purified” impurities (F-lysozyme, dimer, and 18 kDa)
are added intentionally to highly purified lysozyme solution, 2D islands exhibit
slightly rounded tips. However, note that Seikagaku lysozyme (b), which contains
mainly 0.5 wt% dimer and 1.0 wt% 18 kDa as impurities [181] shows significantly
stronger effects (the ratio of fast to slow direction is ∼3) than the 99.99% purity
lysozyme with intentionally added 0.5 wt% dimer and 1.0 wt% 18 kDa (g) (the
ratio of fast to slow direction is ∼4). This indicates that trace amounts of other
impurities included in Seikagaku lysozyme [163, 181] play a significant role.

To assess the effect of impurities on the growth kinetics of tetragonal lysozyme
crystals, step velocities were measured in the fast direction 〈110〉 on (110) faces
for impurity concentrations ranging from 〈0.01〉 to 2.5% (Fig. 18). In the case
of the 99.99% purity solution the step velocity versus supersaturation plot shows
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Figure 17. LCM-DIM images of 2D islands on (110) faces of tetragonal lysozyme crystals grown
from (a) purified lysozyme (99.99% purity), (b) Seikagaku lysozyme (98.5% purity), and (c) Sigma
lysozyme (94.5% purity). In (d–g), all crystals were grown from 99.99% purity lysozyme solutions
with intentionally added impurities: (d) 0.1 wt% F-lysozyme, (e) 0.5 wt% dimer, (f) 1.0 wt% 18 kDa,
and (g) 0.5 wt% dimer and 1.0 wt% 18 kDa. Scale bars represent 20 �m.

a slightly concave shape, in particular under a low supersaturation range. Since
kink density of a 2D island in the fast direction is high, nucleation of kinks (one-
dimensional nucleation) cannot be the rate-determining step of the growth process.
Hence, the concave shape of the step velocity versus supersaturation plot is most
likely due to impurities present in the purified solution (>99.99%). A similar impu-
rity effect was observed by Vekilov and Rosenberger for a 99.99% pure lysozyme
solution in forced flow experiments [184]. Figure 18 demonstrates that all three
protein impurities decreased the step velocity, as well as the case of Seikagaku
lysozyme. With increasing impurity concentration, the suppression of the step ve-
locity increases, and the shape of the plots becomes more concave. In particular,
the suppression of the step velocity by 18 kDa and impurities included in Seika-
gaku lysozyme are significant. To simulate Seikagaku lysozyme, 0.5 wt% dimer
and 1.0 wt% 18 kDa were used together with 99.99% purity lysozyme. However,
the suppression of this solution (open triangles) was not as strong as that observed
for Seikagaku lysozyme, which implies that trace amounts of other impurity(ies)
present in Seikagaku lysozyme contribute to the larger suppression of the step
velocity.

To quantitatively evaluate the effects of these protein impurities, the ratios
R of the step velocity in the quasi pure to the impure case was calculated at the
same supersaturation. R thus quantifies the suppressive capacity of these impurities
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Figure 18. Step velocities in 〈110〉 direction on (110) faces of tetragonal lysozyme crystals at
various supersaturations and protein impurity concentrations. All crystals were grown from 99.99%
purity lysozyme solutions of 40 mg mL−1. Protein impurities added intentionally: (a) 0.01–0.1 wt%
F-lysozyme, (b) 0.05–1.0 wt% dimer, (b) 0.1–1.0 wt% 18 kDa, and (c) 0.5 wt% dimer and 1.0 wt%
18 kDa. In (d), also the result of Seikagaku lysozyme (98.5% purity) solutions of 40 mg mL−1 was
plotted. The data points were fitted using a local polynomial regression [185].

on step kinetics. As shown in Fig. 19, R is supersaturation, impurity type, and con-
centration dependent. For instance, the R values of 18 kDa are significantly larger
than those of F-lysozyme and the dimer impurity. For the same impurity, however,
the shape of the supersaturation dependence plots does not change with impurity
concentration. We discern three qualitatively different dependencies: (i) R dis-
plays a plateau at low supersaturation and at higher supersaturation decreases with
increasing supersaturation (F-lysozyme), (ii) R decreases monotonically as a func-
tion of supersaturation (dimer and 18 kDa), and (iii) a mixed regime characterized
by a steady decrease with a local maximum of R (Seikagaku). Note that the alleged
Seikagaku-mimic, that is, 0.5% dimer and 1.0% 18 kDa was not able to reproduce
the Seikagaku lysozyme plot, indicative of an overseen presence of (trace amounts
of) additional impurities.
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Figure 19. Supersaturation dependence of R for various impurity types. Errors were evaluated
from the standard error (90% statistical significance) and the propagation of errors. (a) 0.01–0.1 wt%
F-lysozyme, (b) 0.05–1.0 wt% dimer, (c) 0.1–1.0 wt% 18 kDa, and (d) 0.5 wt% dimer with 1.0 wt%
18 kDa, Seikagaku lysozyme.

B. Impurity Adsorption Sites

To rationalize these dependencies, it is imperative to obtain information on the
preferential sites of adsorption of the impurities discussed above. However, accu-
rate identification of those adsorption sites requires molecular resolution imaging
combined with the ability to discern between the abundant growth species and
the rare but pernicious impurities. Ideal for this purpose is the technique, total
internal reflection fluorescence (TIRF) microscopy of the thin-solution-layer type
[81], which allows SMV. Combined with LCM-DIM, one can pinpoint the location
of fluorescent species (here, impurities) and image elementary steps on identical
field-of-views. Selected for such a study are two of the model impurities exhibit-
ing the different supersaturation dependencies, that is, F-lysozyme (class (i)) [166]
and fluorescent-labeled lysozyme dimers (F-dimer, class (ii)) [180]. The latter dis-
plays the same impurity characteristics as the nonfluorescently labeled dimers and
therefore makes for a more useful and valid analog [186]. The main results are
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Figure 20. F-lysozyme adsorbs preferentially on steps on the (110) surface of a tetragonal
lysozyme crystal. (a) Single-molecule TIRF image reveals that the majority of F-lysozyme molecules
are located in areas of high step density. (b) This becomes readily apparent when compared to the same
field-of-view imaged by LCM-DIM, from which the position of bunched steps can be inferred. We
note that these step bunches correspond to regions of high fluorescence and thus F-lysozyme surface
concentration.

summarized in Figs. 20 and 21 for F-lysozyme and F-dimer, respectively. Figures
20a and 21a show typical single-molecule TIRF images of a lysozyme crystal
surface exposed to one of these impurities. One bright dot corresponds to one F-
lysozyme/F-dimer molecule adsorbed on the crystal surface (higher intensity dots
correspond to overlapping of fluorescence spots). Figures 20b and 21b represent
the same field of view observed by LCM-DIM showing elementary and bunched
(indicated by arrows). The comparison between images 20/21a and 20/21b clearly
demonstrates the preferential adsorption of F-lysozyme on steps and the at random
adsorption of F-dimers on the terraces in between the steps.

Figure 21. F-dimers adsorb preferentially on terraces on the (110) surface of a tetragonal
lysozyme crystal. (a) Single-molecule TIRF image reveals a quasiuniform distribution of F-dimers
on the surface. (b) Comparison to the same field-of-view imaged by LCM-DIM shows that fluores-
cence spots do no correlate to the location of (macro)steps.
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What could cause such a difference in adsorption preference? To answer this,
one needs to take into account that a lysozyme dimer is composed of two covalently
bonded lysozyme molecules [181] with a bonding orientation that differs from the
symmetry between the two neighboring lysozyme molecules within the crystal
lattice [187]. Hence, it will be less favorable for a dimer to fit into a kink site
because it will suffer large steric hindrance and unfavorable bonding with its first
and possibly second neighbors. In contrast, steric restraints are relaxed on the
open areas of a terrace resulting in a higher probability of occurrence of dimers on
terraces as opposed to kinks. Monomeric F-lysozyme species do not suffer from
these incompatibilities to the same extent. The minute change in mass and volume
(3% mass increase compared to native lysozyme) do not render these labeled
molecules incompatible with the lattice. F-lysozyme will therefore be enriched in
sites of minimal energy, that is, at step edges or within kinks. The results allow
us to conclude that protein impurities whose intermolecular bonding to the crystal
surface is close to that of a solute molecule will preferentially adsorb on steps
and kinks, whereas impurity molecules with substantially different interaction
potentials will preferentially adsorb on sites less sensitive to a perfect fit, that is,
terraces.

C. Adsorption Sites, Supersaturation Dependencies, and
Relevant Timescales

From the difference in the adsorption preference (step or terrace) we can tentatively
formulate a model that accounts for the observed R versus C−Ce dependencies.
Impurity models can essentially be divided into two main groups: (i) impurities that
adsorb at kink sites leading to kink blocking, proposed by Bliznakov [188], and
presented more extensively by Chernov [40]; (ii) impurities adsorbing on terraces
(and/or steps) leading to pinning of steps first described in the pioneering work of
Cabrera and Vermileya [120].

First, we address impurities that target kinks. At low-to-moderate supersatu-
ration levels, steps advance by the incorporation of solute molecules into kinks.
Consequently, step advancement is directly proportional to the density of kinks
within that step. Impurities that attach to the kink and preclude (or slow down) any
further solute attachment (kink blocking) effectively lower the density of kinks that
can contribute to step advancement, thus retarding the step [189]. Impurity attach-
ment to the kink is a kinetic event marked by a characteristic timescale referred to
as τimp. Similarly, a supersaturation-dependent kink exposure time τkink(σ) exists
that can be defined as the average time between kink creation and solute incor-
poration into the kink. At low supersaturation, τkink 	 τimp, thus enabling the
impurity to reach equilibrium density N1D within the steps (Fig. 22a), leading to
maximal impurity effect R for a given impurity concentration (Fig. 22c). The step
kinetic coefficient βstep reaches its minimal value leading to a reduced slope in the
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Figure 22. Schematic illustrations of impurity effects of F-lysozyme. Supersaturation depen-
dencies of number density N1D (m−1) of adsorbed F-lysozyme on a step (a), step velocity v (b), and
the impurity effect R (c).

vstep versus C–Ce plots (Fig. 22b, impure). If the supersaturation is increased, a
crossover regime is reached where the characteristic timescales of impurity binding
and kink exposure start to overlap, that is, τkink ∼ τimp. Impurity densities within
the step do not reach equilibrium value, less kinks are blocked and the impurity
effect diminishes. Until finally, a third regime is reached for higher supersatura-
tion where τkink 
 τimp, here impurity binding is abolished by the incompatibility
of timescales. Kink densities reach their value as obtained in the pure case and
the impurity effect on step kinetics becomes unsignificant (Fig. 22b, pure; Fig.
22c, R = 1). This model amply explains the R versus C−Ce plots observed for
F-lysozyme (a “kink-impurity”) and can be visualized as follows: maximal step
deceleration at low supersaturation followed by a steady increase in step velocity to
nominal values toward higher supersaturation. Note that the width of the plateau
in Fig. 22c depends on the initial difference between τkink and τimp. However,
limiting case may exist where slow impurities never reach equilibrium densities
within the step. For these cases, no plateau in R versus C−Ce is expected. We also
stress that the supersaturation dependencies presented here are for cases where
kink formation is not the limiting step. Steps with very low kink densities, show
considerably different supersaturation dependencies of the impurity effect [190].

Next we discuss the case of the lysozyme dimer. Similarly to the adsorption
preference of F-dimer on the (110) face (discussed above), AFM observations have
revealed that terraces are also the major adsorption sites of the nonfluorescently
labeled dimers on the (101) face [164]. To describe the impurity effects of dimer on
step advancement, we follow the step pinning model [120], which attributes step
retardation to the Gibbs–Thomson effect for curved steps. Under low supersatu-
ration, layer generation is slow and step velocities are small, yielding high terrace
exposure times τterrace. The dimer will show equilibrium adsorption and reach its
maximal surface density N2D (τterrace 	 τimp). For high dimer surface densities,
the average distance d between the adsorbed impurities will be small. When d
is smaller than the diameter 2ρcrit of a critical 2D nucleus, steps stop advancing
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Figure 23. Schematic illustrations of impurity effects of dimer. Supersaturation dependencies
of number density N2D (m−2) of adsorbed dimer on terraces (a), distance d between adjacent dimer
molecules adsorbed on a terrace and radius ρcrit of a critical 2D nucleus (b) and the impurity effect R (c).

(supersaturation range I in Fig. 23b) and R cannot be defined. However, in the
supersaturation range II (Fig. 23b), where equilibrium adsorption of the dimer still
exists (τterrace 	 τimp), with increasing supersaturation a decrease in ρcrit. results
in a decrease of the impurity effect (i.e., R). In the supersaturation range III, terrace
exposure times decrease and τterrace does become comparable to τimp. As a result,
both d and ρcrit decrease thus diminishing the impurity effect R. The supersatura-
tion range observed in Fig. 23b corresponds to ranges II and III in Fig. 23c. We
stress here again that depending on the initial values of τterrace and τimp a significant
change of the width of the regimes may occur. For instance, if τterrace is equal to or
smaller than τimp even for very low supersaturation then regimes I and II will be
significantly narrower. Similar terrace exposure time-dependent impurity effects
have also been observed for, for example, calcium oxalate monohydrate [191].

D. Impurity Effect on 2D Nucleation

Just as in the case of step advancement, 2D nucleation rates were measured for
lysozyme crystal growth under a wide supersaturation range in the presence of three
different impurities: F-lysozyme, covalently bonded dimer of lysozyme (dimer)
and the 18 kDa polypeptide. These impure proteins were intentionally added to
highly purified lysozyme solutions (99.99%). Similar to the step kinetics study,
2D nucleation rates are also measured from Seikagaku lysozyme solutions to serve
as a commercially available impurity model system.

Figure 24 shows changes in lnJ as a function of 1/[T2 ln(C/Ce)]. A clear linear
relationship is found for all the data points under a higher supersaturation range
σ > 0.80 (solid line). This result demonstrates clearly that impurities do not affect
2D nucleation rates in a high supersaturation range (i.e., homogeneous nucleation).
However, the plots of lysozyme with impurities exhibit a kink at the middle super-
saturation σ ≈ 0.80, leading to a much smaller slope under a lower supersaturation
range σ < 0.80 (dash-dotted line). This smaller slope indicates the occurrence of
heterogeneous 2D nucleation in this lower supersaturation range. Heterogeneous
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Figure 24. Changes in 2D nucleation rates as a function of 1/[T2ln(C/Ce)], measured on (110)
faces of tetragonal lysozyme crystals. The black line represent homogeneous 2D nucleation (HON)
under a higher supersaturation range, the dashed line represents heterogeneous 2D nucleation (HEN) in
the purified lysozyme solution under a lower supersaturation range, and the dash-dotted line represents
HEN in solutions containing impurities under a lower supersaturation range.

2D nucleation under a low supersaturation range in protein crystallization has also
been reported for thaumatin [55, 56], catalase [56], and glucose isomerase [38].

Liu and Maiwa [192] gave a theoretical explanation and experimental examples
for the heterogeneous 2D nucleation on inorganic crystals. This model assumes
that any kind of foreign particles (e.g., impurity molecules), can potentially serve
as nucleation centers for 2D nucleation, and they promote nucleation by lowering
the 2D nucleation barriers. This model is confirmed when looking at the edges
free energies of the (110) face obtained from measuring the 2D nucleation rates
as a function of supersaturation and using Eq. (8). Table II shows that the edge

TABLE II
Edge Free Energies κ (J m−1) and Surface Free Energies
α (mJ m−2) Obtained by the Linear Curve Fittings of the

Experimental Data Shown in Fig. 24 Using Eq. (8)

κ (J m−1) α (mJ m−2)

HON (3.5 ± 0.2)× 10−12 0.62 ± 0.03
HEN 99.99% pure (0.9 ± 0.2)× 10−12 0.16 ± 0.03
HEN impurities (0.5 ± 0.1)× 10−12 0.09 ± 0.02

α was calculated as α = κ/h, where h is a step height; HON and HEN
denote homogeneous and heterogeneous 2D nucleation, respectively.
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free energy in the low supersaturation range is significantly lower than that at
high supersaturations. Hence, the cost of creating a 2D nucleus is lower at low
supersaturations than at higher supersaturations as predicted by the model of Liu.
The ledge free energy of the heterogeneous nucleation for the 99.99% pure solution
is larger than that for the solutions intentionally containing impure proteins. This
would result from the difference in the impurity concentrations.

VII. CONCLUDING REMARKS

The past two decades, experimental protein crystal growth studies have been fo-
cused on growth phenomena operating on either a microscopic or macroscopic
scale, using atomic force microscopy and phase shifting Michelson interferome-
try, respectively. The former has allowed the investigation of nanoscale processes
(defect formation, nucleus characterization, growth mechanisms and growth ki-
netics, etc.) with molecular-level resolution on a (highly) local scale, while the
latter has been successful at elucidating crystal-scale phenomena (normal growth
and surface morphology, coupling of incorporation kinetics and mass transport,
step bunching and growth instabilities, etc.). Processes that operate at the inter-
mediate level and thus require the combination of a crystal-scale observation area
and the ability to discern elementary steps on the surface have remained largely
unexplored. This can be attributed due to limited accessibility to such regimes by
the techniques present at the time. In situ analysis of these mesoscopic processes
is, however, vital in linking elementary incorporation processes at the kink-level
to macroscopic crystal properties such as crystal face kinetics, diffraction char-
acteristics, crystal morphology, and so on. This mesoscopic level has become
fully accessible to the experimentalist with the advent of laser confocal differen-
tial interference microscopy. Additionally, the combination of the relatively new
LCM-DIM with AFM and PSMI has proven to be quite powerful as it allows the
user to investigate protein crystal growth at all lengthscales, the micro-, meso-, and
macroscopic level. To summarize, from in situ mesoscopic scale observations of
protein crystal growth we have learned and/or found direct experimental evidence
that are as follows:

• proteins can also grow by the 2D nucleation mechanism even at low super-
saturation due to the lack of active spirals on the crystal face;

• regimes exist where the destabilizing action of the Berg effect greatly exceeds
crystal face stability mechanisms leading to a profound change of protein
crystal morphology;

• at high supersaturation levels, the activation barrier for 2D nucleation be-
comes comparable to kT leading to a vanishing critical nucleus size marking
the onset of the kinetic roughening regime;
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• the adsorption site of impurities will dictate the impurity effect on step ad-
vancement as a function of supersaturation;

• even very small impurity concentration can have very fast effects on the
surface morphology;

• impurities induce a significant increase in 2D nucleation rates in a low su-
persaturation range.

In this overview, we have demonstrated that LCM-DIM is a very useful tech-
nique for in situ observations of protein crystal growth at a mesoscopic level
connecting atomic and macroscopic observations. LCM-DIM allows for noninva-
sive and in situ observation of step dynamics and surface processes on crystals
growing from solution. These characteristics make this technique very useful for
rapid, and precise, determination of protein crystal solubility [193] and the search
of ideal growth conditions for obtaining very large crystals necessary for neutron
diffraction. Some very promising applications of this technique are the study of
2D protein growth and determination of growth dynamics of membrane protein
crystals. Apart from the benefits of LCM-DIM reported in this overview, studying
in situ protein crystal growth processes taking place under experimental condi-
tions which are not accessible by AFM or PSI becomes possible, such as crystal
growth in gelled solutions [50] or under high pressure [194]. With LCM-DIM, one
can also collect information from inside the crystal volume making it possible to
visualize in situ the strain fields around the dislocations with sufficient contrast
and higher resolution than possible with X-ray topography [36].

Next to the observation of step dynamics on protein surfaces, this technique can
also be used for small molecule crystals, such as monoclinic gypsum crystals (step
height ≈ 0.7–0.8 nm) [195], ultra-flat Au(111) surfaces (step height ∼ 0.25 nm)
[196], and even ice crystals (step height ∼ 0.37 nm) [197]. Another promising
application is the combination of LCM-DIM with other observation methods, such
as AFM [198], yielding simultaneous observation of steps on a crystal scale and
height determination of the surface features. A second, very powerful, combined
observation method is LCM-DIM linked to a single molecule observation setup
which opens the door to study diffusion processes of single molecules on the
crystal surface [81] and to study the attachment–detachment dynamics of single
molecules in situ [199] during crystal growth.
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I. INTRODUCTION

The role of amorphous precursors in crystallization processes is a rapidly grow-
ing area of research and has attracted a considerable deal of attention in the past
years. Recently, particular interest stems from the field of biomineralization, where
amorphous mineral phases were identified both as temporary intermediates and
in a permanently stable state as structural elements [1–4]. Striking examples for
the latter case are the porous silica skeletons produced by various freshwater and
marine algae, such as diatoms or radiolarians [5–7]. Their abundance in nature
can readily be understood when considering the relatively high stability of amor-
phous silica against transformation to crystalline polymorphs [8]. By contrast, the
amorphous phases of other widespread biominerals, such as calcium carbonate
and calcium phosphate, are usually transient species that crystallize quickly in
aqueous media [9, 10]. Nevertheless, frameworks comprising stable amorphous
domains of both minerals were found in the tissues of diverse living organisms,
including plant cystoliths [11], ascidians [12], calcareous sponges [13], or the
cuticles of some crustaceans [14]. The advantage of using amorphous instead of
crystalline material may lie in beneficial mechanical properties such as flexibility
or in the commonly higher solubility of amorphous phases that allows intermittent
storage and fast mobilization of calcium ions when needed (e.g., during moulting
processes) [1–3, 15]. Beyond that, investigations of the formation mechanisms
leading to the complex structures of selected biominerals have revealed that at
least in some cases the inorganic component is precipitated first in an amorphous
form to later crystallize in the particular polymorph that is most suitable for the
given demands [16]. This was described in detail for the spicules, spines, and
teeth of sea urchins [17–19] and also observed during the development of the
shells of certain mollusks [20], the calciferous glands of earthworms [21], and the
teeth of chitons [22], as well as in the mineralization of vertebrate bone [23] and
dental enamel [24]. Though not clarified to date, the choice of a mineralization
pathway involving amorphous intermediates might originate from the benefit that
crystallization becomes in this way independent of solution parameters such as
solubility products or pH [3, 25]. In addition, for lack of crystallographic symme-
try restraints, amorphous phases can easily be shaped into any desired form before
they crystallize, thus enabling the generation of complex crystal morphologies as
confirmed in laboratory syntheses utilizing distinct artificial molds [26, 27]. These
observations have stimulated a broad panoply of bioinspired crystallization assays
meant to mimic strategies recognized in biomineralization in order to design novel
materials with advanced structure and properties [28].

Calcium carbonate is often the chosen model system in this context not only
due to its importance as abundant biomineral, but also in view of its rich polymor-
phism as well as its ample occurrence in geological sediments and correspond-
ing implications for the natural CO2 cycle and Earth’s climate [29–31]. Further
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fundamental relevance derives from its wide industrial application, for instance, as
a filler or ingredient of construction materials [32], and the long-standing problems
caused by incrustation and scaling due to spontaneous precipitation at elevated
temperatures [33].

In the classical picture, crystallization is treated predominantly from a ther-
modynamic viewpoint and considered to take place by the formation of critical
nuclei that subsequently grow through unit cell replication. However, such sim-
ple conceptualization often fails to explain distinct effects encountered in many
practical systems, and there appear to be other reaction channels that account in
particular for the complexity of biominerals and related synthetic materials [34].
For instance, it was demonstrated only recently that neutral ion clusters occur in
solutions of calcium carbonate prior to nucleation [35]. These so-called prenucle-
ation clusters (PNC) proved to be stable in equilibrium with the dissolved ions
and therefore differ fundamentally from the critical clusters envisaged by classical
theories that are thought to be metastable and a rare species as they result from
statistical fluctuations. This finding delineates entirely new potential scenarios for
nucleation that are currently under debate. Another circumstance complicating
the situation is the fact that, especially for a polymorphic compound such as cal-
cium carbonate, there exists an alternative pathway for crystallization controlled
by kinetics rather than thermodynamics. In this case, the mineral does not crys-
tallize directly in its thermodynamically stable modification (calcite in the case of
CaCO3), but may undergo multiple phase transitions before, along a series of inter-
mediates toward increasing stability [36]. This behavior is reflected in Ostwald’s
rule of stages, which states that during sequential precipitation, the least stable and
most soluble polymorph is formed first and, in succession, converted preferentially
to phases that are structurally and energetically closest [37]. For CaCO3, experi-
mental studies have confirmed that kinetically driven crystallization is particularly
promoted in systems at high supersaturation and initially affords nanoparticles of
amorphous calcium carbonate (ACC) [38, 39]. This is in line with Ostwald’s law,
which would predict a kinetic phase sequence according to ACC → vaterite →
aragonite → calcite on the basis of relative stabilities under ambient conditions,
as shown in Fig. 1. In fact, freshly precipitated ACC transforms to calcite rather
rapidly when left in contact with the solution, either directly or involving vaterite
as metastable crystalline intermediate [40]. Aragonite is usually not observed at
room temperature but replaces vaterite in the sequence upon heating [41]. Thus,
the determination of whether crystallization takes place under kinetic control and
which of the metastable polymorphs occur in such a multistep scenario essentially
depends on the chosen experimental parameters.

Another means to influence the process is to introduce additives that will in-
teract with one or more of the kinetic intermediates and hence potentially affect
their interconversions. For example, there have been numerous attempts to prevent
ACC from transforming to crystalline polymorphs in vitro, partly for the sake of
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Figure 1. Crystallization of calcium carbonate under kinetic control, according to Ostwald’s
rule of stages and considering the existence of ion clusters (PNC) in a minimum of Gibbs energy prior
to nucleation. The indicated relative stabilities apply to moderate temperatures and pressures. Note
that not all the possible precursor phases necessarily occur in such a sequential scenario toward the
final stable mineral calcite. Often, either vaterite or aragonite is observed as metastable intermediate,
whereas the formation of ACC as the first solid phase upon nucleation has shown to be common over
a wide range of conditions. The scheme is partly based on drawings given in Refs 35, 36.

scale inhibition [42]. Substantially prolonged lifetimes of ACC have been realized,
among others, by adding foreign ions such as Mg2+ [43] or phosphate [39], and
by the use of specific organic inhibitors such as certain surfactants [44], polymers
[45], dendrimers [46], or phytic acid [47]. Increased kinetic stability is thereby
often achieved by adsorption of additive species on the surface of the metastable
particles, which impedes dissolution and thus hampers common solution-mediated
transformation routes. On the same basis, vaterite and aragonite also could be sta-
bilized against energetically favored conversion to calcite [48, 49]. Nevertheless,
with regard to the above-described emerging body of knowledge on amorphous
intermediates in biomineralization, it seems of particular interest to temporarily
stabilize ACC in the course of CaCO3 precipitation and employ it as a precursor for
the construction of elaborate crystalline architectures. Indeed, evidence for such a
crystallization pathway has been reported frequently and for a variety of materi-
als in biomimetic approaches of morphosynthesis [50]. In analogy to phenomena
believed to occur in vivo, surfactant- or polymer-protected amorphous nanoparti-
cles were found to assemble into networks acting as depots that supply mineral
units only gradually and hence uncouple morphogenesis from particular solu-
tion conditions. Under suitable circumstances, this may excite self-organization of
small crystal building blocks into distinct superstructures [51–54], often through
mesoscale transformations via a nonclassical route of crystallization [34, 36].
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In the rich pool of additives applied for mineralization purposes to date, dis-
solved silica takes a fairly exceptional position as it is an inorganic compound
and nevertheless capable of inducing delicate effects comparable to what can be
achieved even by most complicated organic counterparts. Already around 30 years
ago, it was discovered that precipitation of alkaline earth carbonates in silica-
rich media at elevated pH can afford crystal architectures with unusual shapes
and structures [55]. Under ambient conditions, hierarchical “sheaf-of-wheat” pat-
terns consisting of cleaved calcite rhombohedra were obtained with CaCO3 [56],
while the higher homologues SrCO3 and BaCO3 self-assembled spontaneously
into aggregates of uniform elongated nanocrystals that displayed stunning non-
crystallographic morphologies such as sinuous sheets and twisted filaments [57–
59]. Coral-like polycrystalline particles of aragonite exhibiting a similar mode of
construction were later grown at elevated temperature or by adding seed crystals
[60, 61]. Owing to their striking resemblance to biogenic minerals, these materials
were named “silica biomorphs.” They exemplify that curved shapes and higher
order textures—intuitively associated with the animate nature—may very well
be produced also by the interplay of purely inorganic species, thus disqualifying
morphology as a tool to identify biogenicity [62–64].

A scenario accounting for morphogenesis of complex form in these simple sys-
tems has recently been introduced [65, 66]. It was proposed that the driving force
governing self-assembly relies on a coupling of the chemistry of the components in
aqueous solution. In this paradigm, the silica does not behave as a true soluble addi-
tive, but rather interferes with carbonate crystallization by factual coprecipitation.
Since the speciation and solubility of both carbonate and silicate are essentially
determined by the pH of the medium, their precipitation cannot be considered in-
dependent and a distinct mutual influence on short length scales is to be expected
under certain conditions. More precisely speaking, carbonate particles growing in
moderately alkaline environments provoke a sensible pH decrease in their vici-
nity due to the release of protons upon dissociation of bicarbonate ions existing in
equilibrium. This local change in pH is experienced by silicate species and triggers
their polymerization. Eventually, a skin of amorphous silica is formed around the
carbonate crystallites, which thus become stabilized at nanometric dimensions and
represent the building blocks from which crystal aggregates characteristic of silica
biomorphs are constructed [65, 66].

Inspired by these findings, we have started investigations meant to elucidate the
potential roles of added silica during polymorphic precipitation of calcium carbon-
ate on a fundamental level. In this context, interactions between silicate species
and CaCO3 precursors occurring in kinetically controlled crystallization were in
the focus of interest, rather than deliberately aiming at the synthesis of biomorphic
materials. Corresponding experiments have shown that silica is a highly versatile
additive able to substantially enhance the endurance of any metastable intermediate
if certain parameters are adjusted properly. Furthermore, a pronounced influence
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was also verified for ion clusters in the prenucleation regime and in particular
their transformation to nanoparticles of ACC. Thus, the addition of silica allows
arresting the crystallization process at virtually any of the stages shown in Fig.
1. In this manner, profound insight into the mechanisms of nucleation and sub-
sequent phase interconversion could be gained, and strategies toward a concerted
stabilization and isolation of different polymorphs were developed.

The present contribution highlights central aspects of our work concerning
the effect of silica on the initially nucleated amorphous phase. In a recent study,
we have demonstrated that the pH-based chemical coupling assumed to drive the
formation of silica biomorphs can be applied to coat ACC nanoparticles with dis-
tinct layers of silica during precipitation from solution [67]. These shells were
found to be porous and permeable to reagents at low silica concentrations. Under
these conditions, crystallization took place after considerable periods of delay and
at markedly decreased rates. By contrast, higher amounts of the additive caused
dense cementation of the ACC grains in a silica matrix and thus enabled perma-
nent conservation of the amorphous precursors on timescales of years. Here, we
extend this concept and describe how silica-mediated stabilization of ACC can
contribute to the morphogenesis of complex crystal forms in such environments,
thus facilitating structured crystallization even at nominally high supersaturation.
To that end, calcium carbonate was precipitated by adding calcium chloride to
mixtures of sodium carbonate and sodium silicate. The evolution of samples with
varying silica content was followed with time and the as-formed ACC particles,
their gradual transformation to calcite, and the morphology and structure of the
final crystalline products were characterized by different techniques. The observed
growth behavior, involving intermittently stabilized ACC, bears fundamental anal-
ogy to apparent principles in biomineralization and modern morphosynthesis, and
hence underlines the biomimetic character of these plain inorganic precipitation
systems.

II. EXPERIMENTAL SECTION

A. Crystallization Experiments

First, suitable sodium silicate solutions were prepared by diluting commercial wa-
ter glass stock (Sigma-Aldrich, reagent grade, containing 26.7 wt% SiO2 and 13.8
wt% NaOH) in ratios ranging from 1:250 to 1:1400 (v/v) with water of Milli-Q
quality. These sols were purged with H2O saturated nitrogen for about 1 h to dis-
pel previously absorbed carbon dioxide and then used to dissolve 10 mM Na2CO3
(Roth, anhydrous, ≥99%). The resulting solutions were filtered (450 nm), stored
in tightly stoppered plastic bottles, and replaced by fresh ones at least weekly.
To trigger precipitation of calcium carbonate, 5 mL silica–carbonate mixture was
filled in polypropylene vessels and the same volume of a CO2-free 10 mM solution
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of CaCl2·2H2O (Riedel-de Haën, ACS reagent, ≥99%) was added at once with
the aid of a graded pipette (t = 0). The vials were closed and samples were allowed
to age under quiescent conditions at 20 ± 1◦C. Thus, final species concentrations
were 5 mM CaCO3 and 0–750 ppm SiO2. The starting pH was confirmed to be con-
stant at 10.6 ± 0.1 over the entire studied range of silica contents, and there were no
significant changes with time when silica was present due to its buffering ability. At
the given high supersaturation, instant homogeneous nucleation of ACC nanopar-
ticles imparted a cloudy appearance to the samples straight after mixing. In the
reference system without silica, these particles usually remain suspended in solu-
tion until transformation to crystalline polymorphs is completed. Addition of silica
in turn led to partial flocculation and, after some delay, deposition of an initially
amorphous precipitate on the bottom of the vials, the amount of which increased
with the silica concentration. Crystalline structures developed in all samples and
were observed both adhering firmly to the vessel walls and growing directly on or
within the amorphous floccules, in particular at higher silica contents. The time
after mixing at which first crystals were sighted was found to be the longer the
more silica was added. Quenching of the reaction at distinct stages and isolation
of the formed precipitates were accomplished in two different ways. On the one
hand, the suspensions were passed through membrane filters (Whatman, 200 nm)
together with the sedimented floccules and potentially occurring crystals. The lat-
ter were detached from the walls by careful manipulation with a fine brush and
transferred onto the filter by rinsing with a small quantity of water. The extracted
solid was immediately frozen in liquid nitrogen and subsequently lyophilized for
several hours using an Edwards Freeze Dryer Modulyo, yielding a white pow-
der. Alternatively, to separate crystalline products from amorphous particles, the
mother liquor was withdrawn and replaced by water. The flocculated material was
then dispersed vigorously such that the crystals were released from the particle
networks and settled to the ground. Suspended floccules could thus be selectively
removed along with the supernatant by sucking with a pipette. This procedure was
repeated until no more amorphous precipitates could be distinguished. Finally, the
residual crystals were washed twice with water and ethanol and left to dry in air.

B. Analytical Methods

1. Visual Observations

The evolution of the samples with time was followed visually by inspecting the
vials in regular intervals until ongoing crystallization processes were apparently
terminated, that is, when either all amorphous particles had vanished and a clear
solution with crystals on the walls was achieved or, at higher silica concentrations,
when the amount of precipitated floccules did no longer change noticeably. Com-
plementarily, a series of photographs were taken from the solutions over periods up
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to months. For this purpose, experiments were carried out in plain glass tubes. Pic-
tures were taken with a Canon PowerShot A640 digital camera connected to a PC.

2. Light Microscopy

Crystalline architectures obtained from the syntheses were investigated first with an
optical microscope (Nikon Eclipse E400). An attached Canon EOS 350D camera
was used for imaging. Coagulated particle networks as well as crystals associated
with or embedded in them were studied by decanting the bulk volume of the
supernatant solution at defined times after mixing and loading parts of the floccules
together with the remaining mother liquid on glass slides. Comparative analyses
showed that this treatment did not affect the state of the samples and there was
no induced additional conversion of ACC species to crystalline polymorphs upon
manipulation. The observed structures can thus be considered representative of the
situation in solution at the corresponding time.

3. Electron Microscopy

Samples of the suspended nanoparticles and those in the precipitated floccules were
prepared for transmission electron microscopy (TEM) by placing aliquots from
the top solution and the bottom region of the vials, respectively, on carbon filmed
copper grids (200 mesh, Plano GmbH) that were hydrophilized previously by glow
discharge. After soaking for 1 min, the liquid was removed with a filter paper. The
adsorbed particles were cleaned of excess salt by spreading and rapidly blotting
a drop of water on the grids, followed by drying in air. This technique allows an
effective quenching of the reaction and there are no severe structural changes during
isolation, given that identical results were obtained when freezing the solutions and
studying particles in a vitrified state by cryo-TEM [67]. The crystal aggregates
formed at higher silica concentrations were examined by gathering a practicable
amount of sample, crushing the specimens, and grinding them in ethanol to yield a
fine suspension, a small volume of which was subsequently evaporated on a grid.
TEM analyses were performed on a Philips CM 12 microscope at 120 kV under
low-dose conditions, using CCD cameras from Gatan (model TV 673) and TVIPS
(model TEM1000). Images were acquired and processed with the EM-MENU 4
software package.

For field emission scanning electron microscopy (FESEM), both the freeze-
dried powders and separated crystals were transferred onto conducting double-
sided adhesive carbon tabs that were fixed on standard aluminum SEM pin stubs.
Samples were coated with carbon prior to analysis using a Balzers MED 010 sputter
coater. FESEM studies were carried out on a Zeiss LEO Gemini 1530 microscope
at an acceleration voltage of 2 or 3 kV and working distances in the range of 3–
5 mm. Most images were recorded by mixing signal from the in-lens and secondary
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electron detectors. EDX measurements were conducted at 10 kV with the aid of
an installed Oxford INCA microanalysis system. Spectra from amorphous par-
ticle networks were collected from large areas to gain the mean composition of
numerous individuals at once. In the case of the crystalline products, several typi-
cal specimens were probed independently at each silica concentration, sampling a
series of different positions per particle and averaging results for a given sample.

4. Turbidity Measurements

The duration of crystallization was estimated by monitoring the turbidity of the
solutions as a function of time. Experiments were performed using an automated
setup built in-house [68]. For measurement, reagents were mixed directly in cor-
responding cuvettes and inserted quickly into the apparatus. Data were acquired
while stirring samples, reading values approximately every 17 s. Clearing times
were determined from the inflection point of the sharp decrease in the turbidity–
time profiles seen upon completion of crystallization.

5. X-ray Diffraction

The polymorphism of the isolated crystalline objects was investigated by picking
up individuals using a microloop wetted with a drop of oil. Diffraction of the
specimens was measured with a Bruker X8 Proteum setup (Kappa configuration)
comprising a Microstar high brilliance rotating anode source (Cu-Kα radiation)
and a Smart 6000 two-dimensional CCD detector having 512 × 512 pixels. During
data collection, samples were rotated around the ϕ-axis by 180◦ in steps of 5◦, the
integration time per image being 20 s.

III. RESULTS

A. Stabilization of ACC in the Presence of Silica

Upon mixing 10 mM aqueous solutions of calcium chloride and sodium carbon-
ate, fast precipitation of calcium carbonate instantly yields an amorphous phase
consisting of fairly uniform spherical nanoparticles with typical diameters around
150 nm [67]. In the absence of any further substances, these particles persist in
solution for a certain time depending on specific parameters such as temperature
or the detailed way of mixing, but eventually and usually after no longer than a
few hours transform quantitatively into more stable crystalline polymorphs such
as vaterite or calcite. Analyses of corresponding particles formed in alkaline sys-
tems containing sodium silicate show that under these conditions, the ACC grains
become spontaneously enveloped by continuous skins of amorphous silica (see
Fig. 2a and b). The thickness of these outer layers, being in the range of 1–2 nm at
the lowest studied concentration (135 ppm), increases with the amount of silica in
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Figure 2. Deposition of silica on growing ACC particles upon precipitation of CaCO3 in alkaline
media. (a) TEM image of nanoparticles suspended in solutions at 270 ppm SiO2, isolated 1 min after
mixing. The dark blistering carbonate core is covered by a lighter thin layer of amorphous silica.
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solution to reach values of about 10 nm at 750 ppm SiO2. Deposition of silica on
the ACC nanoparticles thus produces core–shell composite materials with silica
contents of up to 40 wt% SiO2, as evidenced by EDX measurements (Fig. 2d). In
turn, the mean size of single grains decreases as more silica is added, since sheath-
ing of the carbonate particles by silica prevents further growth and the formation
of the skins is faster at higher silica concentrations. Apart from that, the presence
of silica all over the surface of the ACC precursors allows condensation reactions
(2 −Si–OH → −Si–O–Si− + H2O) in between the particles, facilitating cross-
linking and conjunction of individuals. As a consequence, networks of densely
agglomerated and partly fused silica-coated ACC nanoparticles are formed (Fig.
2c), which precipitate from solution and sediment as amorphous floccules to the
bottom of the vial.

The effect of this spontaneous coating on the temporal progress of CaCO3
crystallization was characterized by tracing the turbidity of the samples. Since
the amorphous nanoparticles remain to a certain extent suspended and therefore
becloud the mixtures, the time elapsed before the solution clears off is a direct
measure for the effective duration of crystallization, given that crystals grow only
nearby or attached to vessel walls. The detected clearing times were found to
increase exponentially with the silica concentration (Fig. 2e). Total conversion of
ACC required more than 5 h in the presence of 540 ppm SiO2, while clearing of
the solution already occurred after 2.5 min in the absence of silica. This implies
that added silica decelerates the crystallization process.

Visual observations qualitatively confirm the trend indicated by the turbidity
data. In this case, completion of crystallization can be equalized not only to a
clearing of the solutions, but also and in particular at higher silica concentrations
to the disappearance of the coagulated amorphous material. Inspecting the samples
suggests that the floccules dissolve gradually until finally only discrete crystalline
objects, adhered to the vial walls, are left. We note that the turbidity measurements
had to be performed under moderate stirring to ensure reproducibility of the data,
in contrast to the quiescent conditions chosen otherwise in this work, thus render-
ing results from the two methods not directly comparable. Durations determined

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b) Micrograph showing the border region of the flocculated material at 750 ppm SiO2 after 90 min.
The silica shells around the ACC particles are much more distinct than at lower concentrations and
frequently span over multiple individuals. (c) High-magnification FESEM image of the floccules at
750 ppm SiO2, evidencing that the presence of silica promotes cross-linking of the ACC grains and
leads to the formation of three-dimensional networks. (d) EDX spectrum of the particles shown in
(c), from which a Si/Ca atomic ratio of 1.57 ± 0.04 was calculated. (e) Semilogarithmic plot of the
clearing time determined by turbidity measurements versus the amount of added silica, with a tentative
exponential fit (full line) of the experimental data (open squares) (tc = a0 + a1·exp([SiO2]/a2) with
a0 = 3.0 ± 0.6 min, a1 = 0.021 ± 0.004 min, a2 = 55 ± 2 ppm, and R2 = 0.99998).
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visually for stagnant solutions are considerably longer than those inferred from the
turbidity curves. Values range from about 70 min in the reference experiment with-
out silica, over roughly 1 day at 375 ppm SiO2, up to several months at 540 ppm.
For the highest investigated silica concentration (750 ppm), both techniques have
verified that only a certain fraction of the initially generated ACC–silica particles
(around 50% [67]) dissolves upon aging, while the rest remains stable in the long
term regardless of whether the samples are stirred or not.

These findings demonstrate that addition of silica progressively impedes the
formation of crystalline CaCO3 polymorphs from amorphous precursors. This in-
hibition can be ascribed to the silica skins precipitated around growing ACC grains
soon after mixing. They restrain dissolution of the ACC core and prevent direct
contact of particles necessary for possible solid-state conversions, consequently
protecting the actually transient phase against ripening and energetically favored
transformation [67]. Interestingly, a stabilizing effect of silicate ions on ACC was
observed independently by Gal et al., who examined the thermal stability of both
synthetic and biogenic ACC powders containing varying amounts of silica [69].
Their results evidenced that the temperature required for crystallization of calcite
to occur increases with the silica content of the ACC samples. Based thereon, and in
light of the abundance of silica in many plants [5–7], it was suggested that silicate
species could perform the function of a stabilizing agent for ACC in biomineral-
ization processes, apart from forming mineral deposits in tissues by themselves.
The present data support this hypothesis and furthermore provide a mechanism
accounting for silica-induced stabilization of ACC.

B. Crystallization of CaCO3 from Silica-Coated ACC

The development of crystalline structures in the systems can readily be monitored
by stopping the reaction at different times and analyzing the existing precipitates
by means of SEM and TEM. In general, data show that the onset of crystallization
becomes increasingly delayed as more silica is added. Coherently, the period up
to which amorphous particles were discerned in the samples was longer at higher
silica concentrations, in line with the conclusions drawn from turbidity measure-
ments. At 270 ppm SiO2, first crystals were sighted around 30 min after mixing.
Subsequently, they grew at the expense of the nanoparticles until after about 3 h all
amorphous material had vanished and only micron-sized crystalline architectures
were left. In most cases, crystallization took place in the immediate vicinity of
coagulated floccules, and crystals were often found to evolve directly on top of the
networks, with a multitude of precursor particles decorating or tightly adhering to
crystal faces (Fig. 3a–c). This suggests in principle that transformation of ACC oc-
curs via a solid-state restructuring pathway. However, since the carbonate nanopar-
ticles are shielded against each other and the growing crystal surface by their silica
skins, this is not possible and the only feasible way of ACC conversion to crystalline
phases is dissolution of the CaCO3 core through the outer shell and subsequent
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Figure 3. Transformation of silica-stabilized ACC to calcite at 270 ppm SiO2. (a–c) FESEM
images of samples quenched 1 h after mixing, revealing that crystals emerge from networks of amor-
phous nanoparticles and grow attached to the floccules in the following. Black arrows indicate sites
where truncation of corners or edges of the rhombohedral calcite habit is obvious. (d) Closeup view
of particle agglomerates isolated after 30 min. White arrows point to individuals that appear to have
holes or cracks as a consequence of ongoing disintegration.

reprecipitation. This is supported by high-magnification SEM images of the amor-
phous particles during crystallization that, in some instances, disclose that the sur-
face of single grains is perforated and their interior seems to be hollow (Fig. 3d).
In this manner, the silica-coated ACC particles act as depots that constantly supply
the surrounding solution with growth units. Consequently, the supersaturation is
expected to be highest near the precipitated floccules, thus explaining why crystals
are preferentially nucleated upon or inside the networks. The rate of CaCO3 release
from the core of the composite particles is essentially determined by the amount
of silica added. Higher concentrations lead to the formation of less porous skins
[67], which slow down the transport of reagents and hence accretively enlarge the
window of time during which crystallization is active. At silica contents of up to
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540 ppm, all amorphous particles are eventually consumed and, remarkably, the sil-
ica shells also dissolve after having released their ACC core. Therefore, the concen-
tration of silica in solution should increase continuously as crystallization proceeds.

Similar observations were made as well for samples drawn from mixtures
containing 750 ppm SiO2. Figure 4 gives a gallery of typical images visualizing

Figure 4. Optical and FESEM micrographs illustrating the growth of peculiar crystal aggregates
from heavily condensed meshes of silica-coated ACC particles in samples at 750 ppm SiO2. Precipitates
were isolated after (a–d) 12 h and (e–h) 1 week.
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the evolution of crystalline matter in the system. In this concentration regime, the
amount of flocculated material is fairly large such that spacious three-dimensional
networks extending over the entire bottom of the vials are generated (cf. Fig. 4a
and e). Transformation of ACC sets in after around 5 h to produce rounded and
dumbbell-shaped structures with diameters of 10–20 �m in the following 7 h (Fig.
4a and b). Growth of these forms continues up to about 1 day after mixing, while
subsequently no further changes, neither in the size and morphology of particles nor
in the overall composition and crystallinity of the samples, could be distinguished.
Micrographs taken from precipitates isolated after standing for 1 week confirm that
a bulk part of the originally deposited amorphous floccules still persists at this stage,
along with numerous bigger spherical objects (or notched spheres), from which
frequently thick linear strands sprout outward (Fig. 4e and f). These uncommon
morphologies usually develop using beds of aggregated amorphous nanoparticles
as substrates, in which they appear to be partially buried (Fig. 4b and f).

Zooming into the as-grown dumbbell-like and spheroidal architectures reveals
that both are constituted by fibrous crystallites (Fig. 4c, g, and h). Often, clusters of
ACC–silica precursor particles are seen to be firmly associated with needle-shaped
individuals (Fig. 4c), decorate the crystal aggregates in the form of extended su-
perficial layers (Fig. 4g), and sometimes even interpenetrate the assembly (Fig.
4h). TEM analyses of mature samples prove the presence of condensed spheri-
cal nanoparticles next to a multitude of uniform elongate crystals. Furthermore,
frameworks of hollow particles were repeatedly observed adjacent to aggregates
of crystallites (Fig. 5), in particular during the earlier stages of crystallization.
EDX data demonstrate that these remnants consist of only silica and hence sug-
gest that the ACC core but not as yet the silica skin was dissolved. Again, this
is clear evidence that silica-coated ACC transforms into crystalline polymorphs
through dissolution–renucleation processes. Those particles that endure in solu-
tions at 750 ppm SiO2 upon prolonged aging in turn seem to be sheathed by layers
of somewhat lower porosity, which efficiently prevent exchange between the en-
closed volume and the surrounding medium.

C. Morphology and Texture of the Final Crystalline Products

The vast majority of crystals isolated at the end of experiments performed without
added silica were regular rhombohedral characteristic of calcite. The perfection
of the rhombohedral shape recognized in most cases indicates that the crystalline
phase grows via a dissolution-assisted route also in the silica-free reference [70].
Sporadically, spherical morphologies were sighted next to the euhedral forms, in-
dicating that the samples contained traces of vaterite. The presence of 135 ppm
silica was found to have no noticeable effect on the appearance of the final crystals
(Fig. 6a). Indeed, the surface of the rhombohedra happens to be covered by a film of
silica made of densely agglomerated colloidal spheres. This feature may however



292 matthias kellermeier et al.

Figure 5. TEM image of structures formed in solutions containing 750 ppm SiO2 after aging
for 1 week, with hollow silica particles lying on top of a stack of piled rod-shaped crystallites.

Figure 6. Final products of CaCO3 crystallization conducted in the presence of (a) 135 and (b)
270 ppm SiO2. Crystals were isolated after a period of 24 h, that is, well after all amorphous precursor
particles had vanished. Classical rhombohedra with colloidal silica adsorbed unspecifically on their
surfaces are observed at 135 ppm SiO2, while characteristic rounding of corners and edges occurs at
270 ppm.
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originate from secondary deposition of silica on the crystals upon isolation and
drying. On raising its concentration, the silica not only stabilizes ACC precursors
and thereby delay crystallization, but also starts to distinctly affect crystal growth
and the emerging morphologies. At 270 ppm SiO2, edges and corners of the clas-
sical rhombohedral habit become truncated especially in the later course of the
crystallization process and are thus replaced by oblique, often rough faces (Figs.
6b and 3a and b). We note that at silica contents of both 135 and 270 ppm, the for-
mation of conglomerates of intergrown crystals seems to be favored (cf. Figures
2c and 5a), whereas in the control experiment at 0 ppm predominantly individual
rhombohedra were obtained. This is reasonable when considering that the ACC–
silica particle networks are preferential sites for nucleation. Therefore, it is likely
that multiple events of nucleation will take place close to one another. Continued
crystal growth then inevitably leads to merging and the pronounced occurrence of
intergrown architectures.

Increasing the amount of silica to 375 ppm brings about further profound mor-
phological and structural changes. After equilibration and quantitative consump-
tion of all ACC materials, a relatively small number of quite large, isolated crys-
talline objects were recovered from the bottom and the walls of the vials, which
had adopted exceptional forms as shown in Fig. 7. From a phenomenological point
of view, the observed morphologies evolve at first by dilation of an initial regular
rhombohedron through extrusion of multiple fibrous projections with diameters
in the range of 150–300 nm (Fig. 7a). The resulting elongated crystal then grows
preferentially at its two outer tip regions, where the projections develop platy,
wing-like domains and hence impart a dumbbell-shaped appearance to the speci-
men (Fig. 7b). Remarkably, each strand consists of three wings arranged at angles
of ∼120◦ between one another, such that the cross section of the strand takes the
form of a three-pointed star (see inset in Fig. 7c). From these symmetry aspects, we
infer that the long axis of the projections corresponds to the crystallographic c-axis
of calcite, which is the only ternary axis in the rhombohedral lattice. Individual
wings reach widths of up to while being as thin as 100–200 nm, and often exhibit
a somewhat ribbed surface texture. Upon continued growth, such characteristic
projections eventually sprout in all directions from the central crystal, leading to
spherulitic entities decorated uniformly by three-pointed stars (Fig. 7c).

Crystallization of calcium carbonate in solutions with higher silica content
yields in the formation of further intricate morphologies that are, especially in
terms of their mode of construction, substantially different from those produced at
375 ppm (Fig. 8). Though forming on distinct timescales and consuming to varying
degrees the available ACC precursors, the growth behavior and final structure of
the crystalline products obtained at 540 and 750 ppm SiO2 are widely identical.
Once initiated, the morphological evolution in these systems can be summarized
as follows. First, elongated seeds are discerned within the precipitated amorphous
floccules, which transform consecutively into dumbbell shapes (Figs. 8a and 4b
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Figure 7. FESEM micrographs of crystal architectures produced at 375 ppm SiO2 after 24 h.

and c) and, later, closed spherulites with diameters of around 100 �m (Fig. 8b).
The latter are porous, with manifold voids characterizing their surface that lend
a flowery appearance to the architectures. In the final step, usually after some
days, rather thick trunk-like outgrowths develop from the spherulites (Figs. 8c
and 3f), such that the resulting morphologies to some extent resemble those of
natural radiolarians [5]. Mostly, one or two of these extrusions sprout from a given
spherulite and grow in a quasilinear fashion over lengths of up to 100 �m. In line
with the observations made for crystals isolated while still embedded in networks
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Figure 8. Crystal aggregates obtained at a silica concentration of 750 ppm. (a) A dumbbell-
shaped particle isolated after 12 h. (b) Porous spherulitic architecture collected after 1 day. (c) After
1 week, trunk-like outgrowths have emerged from the spherulites. (d) TEM micrograph of a crushed
sample grown for 1 week, showing aligned needle-like microcrystallites. (e and f) Zooms into the
aggregate shown in (c), spotting the voids in the central spheroidal part and the co-orientation of the
crystallites within a trunk. Note that the specimens were cleaned from amorphous material prior to
isolation (in contrast to the samples depicted in Fig. 4).

of amorphous nanoparticles (cf. Fig. 4c, g and h), the precipitates were at all
growth stages confirmed to be aggregates of myriad acicular crystallites exhibiting
a fairly narrow size distribution (Fig. 8d–f). The diameter of the needles was found
to be more or less constant throughout the entire assembly, usually measuring
between 70 and 120 nm. By contrast, their length seems to vary depending on
the position within the aggregate; that is, individuals become shorter as growth
proceeds. Typical values range in a quite broad interval of about 500 nm to 5 �m.
Generally, the needles tend to be oriented with their long axis pointing along the
respective current growth direction. Therefore, neighboring crystallites are aligned
preferentially parallel to each other (cf. Fig. 8f). In sinuous parts of the aggregates,
the needles, however, have to be arranged with a slight twist to one another, so as
to describe the given curvature. Finally, we note that on occasion the surface of
the aggregates becomes overcast by an array of blocky rhombohedra (see Fig. 4d),
most probably as a consequence of secondary crystallization.

To understand the role of the silica during the crystallization process, it is
crucial to realize that not the whole amount of silica added is coprecipitated with
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Figure 9. Estimated concentrations of dissolved silica in the mixtures after 5 min and corre-
sponding standard deviations, outlined as a function of the respective total SiO2 content. Values were
obtained by calculating the amount of precipitated silica on the basis of the Si/Ca ratio measured by
EDX spectroscopy, premising that the present 5 mM CaCO3 were completely converted to ACC.

the ACC particles at the beginning of the experiments. From the Si/Ca atomic
ratio determined by EDX for the amorphous material isolated 5 min after mixing,
the concentration of silica remaining dissolved in solution at that time can be
calculated when assuming, in an approximation, that Ca2+ reacts quantitatively to
ACC. Results are shown in Fig. 9. At 135 and 270 ppm SiO2, less than 10% of the
available silicate species have in fact been deposited on the ACC nanoparticles,
while around 15% have precipitated at 375 ppm. The fraction of silica removed
from solution increases considerably when further raising the overall content to
about 35% and 47% at 540 and 750 ppm, respectively. This implies in turn that
at least more than half of the introduced molar amount of silica exists as soluble
mono- and oligomers in the systems after initial ACC particle formation. Thus,
data evidence that addition of more silica not only entails longer term stabilization
of ACC precursors, but also implicates that crystallization of CaCO3 occurs under
the influence of a higher concentration of dissolved silicate ions in solution. On the
other hand, once crystallization has commenced, ongoing redissolution of empty
silica skins should cause a steady increase of the concentration in solution with
time and as growth proceeds.

D. Crystal Polymorphism and Composition

Powder diffraction patterns of crystals recovered from samples at 135 and 270 ppm
SiO2 demonstrate that the only polymorph formed in the experiments was calcite,
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as expected in view of the observed rhombohedral habit (cf. Fig. 6). SEM analyses
further prove that the small fraction of vaterite particles traced in the silica-free
reference was consistently absent in the presence of silica. This may indicate that
added silica promotes the formation of calcite relative to vaterite under the given
conditions and would hence support the results of a recent study on the effect
of dissolved silica on CaCO3 crystallization [71]. The polymorphism of struc-
tures generated at higher silica concentrations was investigated by monitoring the
diffraction of selected individual particles. Diffraction images of the morphologies
obtained at 375 ppm SiO2 typically display multiple pairs of isolated spots along
various virtual rings (Fig. 10a). Such behavior argues for the existence of several
larger crystallographically coherent domains maintaining different orientations.
This suggests that each of the projections eventually developing threefold symme-
try is of single-crystalline nature (cf. Fig. 7c). As opposed to that, patterns obtained

Figure 10. Single X-ray diffraction images acquired from (a) a three-pointed star-decorated
spherulite formed at 375 ppm (Fig. 7c), (b) a dumbbell consisting of fibrous microneedles at 540 ppm
(Fig. 8a), and (c) an open porous spheroidal structure at 750 ppm SiO2 (Fig. 8b). (d) Diffractograms
derived by summing up all diffraction images collected for a given specimen (after background sub-
traction) and integrating the intensity radially over all angles. The occurring reflections can be assigned
to the calcite lattice.
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for the architectures grown at 540 and 750 ppm SiO2 show arc-like reflections
(Fig. 10b) or full rings (Fig. 10c) and thus confirm that these samples are polycrys-
talline aggregates. Streaking of spots was thereby observed only for dumbbell-like
specimens and can hence likely be ascribed to the shape anisotropy of this kind of
morphology—in contrast to the quasi-isotropic geometry of spherulitic aggregates
that gives continuous rings. These differences hint at distinct morphogenetic path-
ways responsible for the formation of extraordinary structures retrieved at 375
and 540/750 ppm silica, respectively, although both share a phenomenological
growth sequence involving elongated precursors, dumbbell-shaped intermediates,
and spherulitic terminal morphologies. Furthermore, despite the fact that the rod-
like habit of the crystallites constituting the aggregates isolated at higher silica
concentrations is commonly associated with the aragonite modification, analyses
of the diffraction data evidence that all products were pure calcite and no other
phase was present (Fig. 10d).

The degree of silica incorporation to the emerging crystal architectures was
studied by measuring the content of Si relative to Ca for a series of representative
structures at each concentration by means of EDX spectroscopy. For this purpose,
specimens were washed carefully prior to measurement in order to remove poten-
tially adhering silica-containing amorphous floccules. Results were found to be
well reproducible. Averaged values for the Si/Ca atomic ratio are plotted in Fig.
11. The fraction of silica included in the final crystals is generally rather small

Figure 11. Mean silicon content of characteristic crystalline morphologies obtained from sam-
ples at different silica concentrations, given by the Si/Ca atomic ratio determined by EDX and its
standard deviation. The full line is a linear fit to the data (Si/Ca = (4 ± 4) × 10−3 + (1.02 ± 0.09) ×
10−4·[SiO2]/ppm).
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(Si/Ca < 0.1) compared to the ACC precursor particles (cf. Fig. 2d), but ap-
parently scales in more or less linear manner with the analytical amount added,
though a slight trend toward saturation can be discerned at higher concentrations.
This implies that reinforced interactions between the growing carbonate crystals
and dissolved silicate species are to be expected when increasing the total content
of silica in the samples.

IV. DISCUSSION

The data collected in this work suggest a scenario as illustrated in Fig. 12. Upon
combining 10 mM solutions of calcium chloride and sodium carbonate, the cre-
ated high supersaturation leads to rapid nucleation of calcium carbonate and the
formation of spherical ACC nanoparticles throughout the mixture. When no silica
is present, the lifetime of these precursor species is quite short and stable calcite

Figure 12. Crystallization of calcite under precipitation conditions in the absence (path A) and
presence of different amounts of sodium silicate (path B). Added silicate precipitates spontaneously
on growing ACC particles (spheres) forming continuous layers of amorphous silica all over their
surface (indicated as marbled shell). These shells impede exchange with the surrounding medium, thus
decelerating ACC redissolution and transformation to calcite. Crystallization is protracted the longer,
the higher the silica concentration, such that more time is granted for structure evolution. By this means,
dissolved silicate interferes in distinct ways and to varying degrees with crystal growth, resulting in
morphologies of increasing complexity (end of path B, hachured faces are preferential sites for silica
adsorption and precipitation). Times in brackets specify the approximate period after which first mature
crystals or crystal aggregates were observed in the respective sample. For the sake of simplicity, the
term “SiO4

4−” is meant to represent all soluble silicate species present in the systems and bicarbonate
ions existing in equilibrium with carbonate are not depicted in the sketch. Note further that structures
are not drawn to relative scale.
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crystals exhibiting classical rhombohedral equilibrium morphologies develop at
their expense after a delay on the order of minutes (path A in Fig. 12). On addition
of silica, protons generated at the surface of growing ACC particles due to disso-
ciation of bicarbonate ions virtually decrease the local pH relative to the alkaline
bulk medium (pHbulk ≈ 10.6) and thus trigger polymerization of silica in the close
vicinity [67]. This results in the deposition of silica around the nanoparticles (path
B in Fig. 12), the thickness of which increases with the amount of silica added. In
the studied range of silica concentrations, these outer layers are porous and hence
pervious to reagents (except for the fraction of long-term stable core–shell particles
at 750 ppm SiO2). Nevertheless, coating of the ACC precursors in silica clearly re-
stricts the accessibility to the solvent such that dissolution of ACC and concurrent
growth of crystalline phases are slowed down. Therefore, CaCO3 units are released
only gradually from the core volume. Since the overall porosity of the skins tends
to be lower at higher silica content [67], the rate of crystallization becomes reduced
incrementally as more silica is added and its onset is consistently retarded.

Based thereon, excess silica in solution is able to influence the growth behavior
of calcite crystals and induce extraordinary morphologies and textures, which
are discussed in the following. Generally, the precipitation conditions chosen in
this study are not favorable for the design of complex crystal architectures, since
additives have barely time to intervene with the growth process. However, with
the embedding of ACC particles in siliceous shells, the supersaturation of the
system with respect to calcite becomes relieved. This temporary storage of CaCO3
as protected solid ACC establishes a situation in which structured mineralization
over time frames of hours or days is possible.

At 135 ppm SiO2, there were no significant morphological changes discernible
on the final crystals in comparison to the control experiment at 0 ppm, apart from
irregular silica deposits on the surface of as-grown rhombohedra (Fig. 6a). This
can presumably be ascribed to the relatively low concentration of dissolved sili-
cate species in the system (cf. Fig. 9) or insufficient deceleration of crystallization,
both preventing pronounced interactions between the developing crystals and the
additive. Marked effects can in turn be distinguished starting from 270 ppm SiO2.
First, truncation of the sharp edges and corners usually delimiting the rhombohe-
dral shape is observed, causing a rounded appearance and indicating the expression
of uncommon {001} faces (Fig. 6b). Similar structures have been reported previ-
ously for calcite crystals grown in the presence of polystyrene sulfonate [72] or
double-hydrophilic copolymers comprising an anionic block of aromatic sulfonate
groups [73]. The exposure of highly charged {001} planes was thereby attributed
to stabilization via selective adsorption of the polyelectrolyte additives. We suspect
that higher silicate oligomers, generated during local polymerization and later in
the course of shell redissolution, act as polyanionic impurities modulating crystal
growth in an analogical manner and hence effectuating the found distortion of the
rhombohedral habit.
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By contrast, crystals forming in samples at 375 ppm SiO2 experience elon-
gation along their c-axes that occurs through successive splitting of an initial
rhomb and the emergence of fibrous projections, which later develop into single-
crystalline strands having three wings at mutual angles of 120◦ (Fig. 7). Calcite
morphologies with such 3m rotational symmetry were first grown by García-Ruiz
and Domínguez-Bella in alkaline silica gels [74]. Under similar conditions, Imai
et al. obtained hierarchical calcite superstructures consisting of three-pointed star-
like subunits [75]. Both elongation and the subsequent formation of projections
with threefold symmetry were explained on the basis of preferential adsorption and
condensation of silicate ions on the {110} planes parallel to the c-axis (cf. Fig. 12).
A gradually growing influence of the silica was thereby proposed to induce the
transition from fibers to three-pointed stars. Most likely, a similar mechanism
accounts for morphogenesis in the present case, especially in light of the finding
that calcite crystallization from ACC precursors is accompanied by redissolution
of silica skins and hence a continuous increase in the concentration of soluble
silicate ions during growth.

As opposed to these elaborately shaped single crystals, growth of calcite in the
presence of 540 and 750 ppm SiO2 affords polycrystalline aggregates comprising
a multitude of co-oriented microneedles (Fig. 8). Though not common, needle-
like calcite crystals have been reported in the literature. For instance, acicular
morphologies are well known in pedology, given that the so-called “needle-fiber
calcite” (NFC) represents one of the major fractions of calcium carbonate found in
vadose soil environments [76–78]. The formation of elongated crystals is thereby
thought either to be caused by drastic physicochemical conditions during crystal-
lization (such as fast evaporation) or to originate from the influence of biogenic
matter (e.g., mineralization in plant tissues or bacterial activity). Another exam-
ple for naturally occurring needle-shaped calcite is the teeth of sea urchins where
micron-sized rods grow from a base plate along the unusual [102] direction [79].
Synthetically, spicular calcite crystals have been prepared via a liquid-precursor
pathway [80], through spherulitic growth from a central core of polysaccharide-
stabilized ACC [81], or by addition of certain acrylate/styrene copolymers [82].
In the latter case, morphological control was proposed to be achieved by specific
adsorption of the polymeric additives on a subset of planes parallel to the c-axis,
onto which the carboxylate chains match stereochemically. Condensed silicate
oligomers probably perform related functions and block crystal faces parallel to c,
thus causing the observed elongation of the crystallites.

Apparently, there is a change in the mode of interaction between growing calcite
crystals and added silica when increasing the SiO2 concentration. At lower silica
content (270 ppm), it is the highly charged {001} faces perpendicular to the c-axis
that become subject to pronounced adsorption, whereas at higher concentrations
(375–750 ppm) planes parallel to c such as {110} are stabilized. Adsorption on
{001} is generally considered to be dominated by nonspecific electrostatic binding,
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while deposition of additive molecules on {110} faces typically requires a geo-
metrical conformance of the molecular structure and the arrangement of ions in
the respective crystal plane (i.e., the position and orientation of carbonate groups).
This indicates that silica exists in different speciations in the samples despite their
virtually identical bulk pH, possibly as a consequence of distinct degrees of con-
densation resulting from local polymerization and dissolution processes or due to
the varying concentration itself.

When comparing the structures formed at 375 and 540/750 ppm, there are fur-
ther peculiarities worth noting. At the lower concentration, the silica initially pro-
vokes splitting of a rhombohedral crystal that is, most probably, induced by insular
blocking of the {001} faces. In the following, fibrous projections grow from the
parent crystal maintaining its crystallographic orientation, with silicate species ad-
sorbing strongly on multiple planes parallel to c. Eventually, adsorption on {110}
becomes particularly favored and three-pointed stars are generated. Thus, by sta-
bilizing distinct faces to a different extent depending on the stage of growth, the
silica accretively deforms the regular calcite habit producing fractal architectures
of predominantly single-crystalline nature. At higher silica concentrations, elon-
gation along the c-axis occurs straight after nucleation as the effects discussed
above are significantly more pronounced. In addition, crystal growth is effectively
abandoned once the needles have reached lengths in the range of some microns,
yielding fairly monodisperse crystallites that assemble under the conditions of the
experiments to build up intriguing shapes as shown in Fig. 8. Comparable uniform
nanocrystals are known to serve as building blocks constituting the various crystal
architectures displayed by silica biomorphs [55, 58–60, 64–66]. In this case, the
stability of the crystallites against ripening is believed to be facilitated by local
silica polymerization and consequent coating of the particles [65, 66]. We specu-
late that such a scenario also accounts for the stabilization of calcite microneedles
in the present systems; that is, specific adsorption of silicate oligomers on certain
crystal faces passes into extensive silica precipitation over the entire surface at
some point. This notion is supported by the measured relative content of Si in the
aggregates (cf. Fig. 11), which complies with values reported for silica biomorphs
[83, 84]. The resulting silica deposits prevent crystallites from growing larger,
which is in full analogy to the stabilization of ACC particles traced immediately
after the onset of CaCO3 precipitation, where the presumed silica skins could be
experimentally verified (cf. Figs. 2a–d and 5).

The origin of the morphologies found at 540 and 750 ppm SiO2 remains uncer-
tain. The observed “rod-to-dumbbell-to-sphere” transition has been described in
the literature for biomimetic fluorapatite-gelatin composites, where morphogenesis
was discussed in the framework of potential intrinsic electric fields [85]. A similar
morphological evolution was recently identified to characterize the early stages of
the formation of silica biomorphs [65, 66]. In this case, a single-crystal core un-
dergoes continuous branching at noncrystallographic angles due to poisoning by
oligomeric silicate impurities, which ultimately gives fractal spherulitic clusters.
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The aggregates prepared in the present study indeed exhibit related shapes, but
are evidently composed of fibrous subunits from the very beginning (see Fig. 4c).
Interestingly, there are further analogies between the polycrystalline architectures
of the present work and silica biomorphs. First, the open porous structure of the
spherulite shown in Fig. 8b is reminiscent of distinct flower- and coral-like mor-
phologies occasionally displayed by BaCO3 and CaCO3 biomorphs [59–61]. Sec-
ond, the eventual reduction of global growth dimensionality to one (i.e., the forma-
tion of linear outgrowths) is a common feature of the two systems (see Fig. 8c) [63],
although the striking filaments of silica biomorphs are clearly distinguished by their
regular winding and helicity [55, 57–59, 64–66]. Finally, the arrangement of the
crystallites within the aggregates deserves attention. In biomorphs, the nanorods
are largely co-oriented with respect to their long axis, but maintain a coherent
mutual misalignment particularly in curved segments. This leads to specific ori-
entational ordering of the building units over extended scales [59]. Fairly akin
structural principles are encountered in the CaCO3 precipitates isolated at high
silica concentrations in the present experiments (cf. Fig. 8d–f). This suggests that
particle co-orientation is governed by similar interaction forces, which is reason-
able when assuming that in both cases the crystallites are covered by silica. Thus,
for lack of an adequate model explaining morphogenesis, we note that the crystal
aggregates obtained at 540/750 ppm SiO2 resemble silica biomorphs to a certain
extent in terms of morphology and texture, with the marked distinction that the for-
mer consist of calcite microneedles while the latter are constructed from nanorods
of aragonite-type carbonates.

V. CONCLUSIONS

Taken together, our experiments have demonstrated that adjusting the concentra-
tion of added silica during precipitation of calcium carbonate from solution is a
simple but effective way to tune the stability of the initially formed ACC phase
and, at the same time, create a variety of unusual calcite morphologies. During
the early stages of precipitation, dissolved silicate species respond to pH changes
occurring in the vicinity of growing ACC particles due to re-equilibration of the
carbonate speciation by local polymerization and the deposition of silica skins all
over the surface of the particles, which impedes energetically favored transforma-
tion to crystalline polymorphs. As crystallization sets in after increasing periods
of delay, excess silica in solution and oligomers redissolved upon disintegration
of the core–shell particles progressively affect calcite crystal growth as a result
of combined adsorption and precipitation phenomena. Preceding stabilization of
ACC precursors and the associated gradual supply of the medium with CaCO3
units are essential prerequisites for concerted structure evolution in this case, as
fast precipitation at the given high supersaturation would otherwise prevent any
significant influence of the silica. The use of stabilized ACC as temporary storage
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depot for CaCO3 to lower the concentration of ions (and hence osmotic stresses)
in solution as well as their subsequent release on demand are well-established
concepts suggested to be applied in vivo during biomineralization [1–4]. In this
regard, though purely inorganic, the studied systems mimic biogenic ones not only
with respect to the formed morphologies, as put forward already in previous work
[62–64]. Rather, the present data illustrate for the first time that there are fur-
ther fundamental analogies in terms of the mechanisms underlying nonclassical
crystallization in both cases.

On that basis, direct mixing of the components afforded crystalline structures
exhibiting a complexity previously observed only for products obtained from syn-
theses under controlled conditions [74, 75]. Specific adsorption and condensation
of silicate species on distinct planes of the calcite lattice and the concurrent al-
teration of relative growth rates led to an accretive deformation of the regular
rhombohedral habit toward single crystals with threefold symmetry when increas-
ing the amount of silica added. At high silica concentrations, enhanced adsorption
caused rapid elongation of nuclei that became stabilized at microscale dimensions,
probably through cementation in silica. The resulting needle-like crystallites were
found to self-assemble into polycrystalline aggregates exhibiting intriguing non-
crystallographic morphologies. Hence, the most prominent effect of the silica on
calcite crystal growth is to stepwise miniaturize structural building units and thus
enable hierarchical design, which again imitates strategies apparently employed
by biomineralization to create materials with higher order textures [86].

Our findings highlight the singularity of the interplay between crystallizing
carbonates and added silica, which, despite the simplicity of the reagents involved,
is capable of inducing elaborate mineralization processes traditionally thought to
rely on the presence of more complex organic additives, and show that (stabilized)
amorphous precursors are also important intermediate species in these valuable
laboratory model systems.
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