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Preface

With recent advances in biotechnology spurred by the Human Genome Proj-
ect, tremendous amounts of sequence, gene, protein, and pathway data have
been accumulating at an exponential rate. Ontologies are emerging as an in-
creasingly critical framework for coping with the onslaught of information
encountered in genomics, transcriptomics, and proteomics. This onslaught
involves not only an increase in sheer volume but also increases in both com-
plexity and diversity. An ontology is a precise formulation of the concepts
that form the basis for communication within a specific field. Because of this
it is expected that the use of ontology and ontology languages will rise sub-
stantially in the postgenomic era. This book introduces the basic concepts
and applications of ontologies and ontology languages in bioinformatics.
Distilling biological knowledge is primarily focused on unveiling the fun-

damental hidden structure as well as the grammatical and semantic rules
behind the inherently related genomic, transcriptomic, and proteomic data
within the boundary of a biological organism. Sharing vocabulary consti-
tutes only the first step toward information retrieval and knowledge discov-
ery. Once data have been represented in terms of an ontology, it is often nec-
essary to transform the data into other representations which can serve very
different purposes. Such transformations are crucial for conducting logical
and critical analyses of existing facts and models, as well as deriving bio-
logically sensible and testable hypotheses. This is especially important for
bioinformatics because of the high degree of heterogeneity of both the format
and the data models of the myriads of existing genomic and transcriptomic
databases. This book presents not only how ontologies can be constructed
but also how they can be used in reasoning, querying, and combining infor-
mation. This includes transforming data to serve diverse purposes as well as
combining information from diverse sources.



xii Preface

Our purpose in writing this book is to provide an introductory, yet in-
depth analysis of ontologies and ontology languages to bioinformaticists,
computer scientists, and other biomedical researchers who have intensive
interests in exploring the meaning of the gigantic amounts of data generated
by high-throughput technologies. Thus, this book serves as a guidebook for
how one could approach questions like ontology development, inference,
and reasoning in bioinformatics using contemporary information technolo-
gies and tools.
One of the most common ways that people cope with complexity is to

classify into categories and then organize the categories hierarchically. This
is a powerful technique, and modern ontologies make considerable use of it.
Accordingly, classification into hierarchies is the starting point of the book.
The main division of the book is in three parts. We think of the parts as

answering three questions: What ontologies are, How ontologies are used,
and What ontologies could be. The actual titles are less colorful, but more
informative. Since the audience of the book consists of scientists, the last
part focuses on how ontologies could be used to represent techniques for
reasoning with uncertainty.
The first part introduces the notion of an ontology, starting from hierar-

chically organized ontologies to the more general network organizations. It
ends with a survey of the best-known ontologies in biology and medicine.
The second part shows how to use and construct ontologies. Ontologies

have many uses. One might build an ontology just to have a better under-
standing of the concepts in a field. However, most uses are related in some
way to the problem of coping with the large amount of information being
generated by modern bioinformatics technologies. Such uses can be classi-
fied into three main categories: querying, viewing, and transforming. The
first of these can be done using either imprecise natural language queries
or precise queries using a formal query language. The second is actually
a special case of the third, and this is explained in the first chapter in the
subpart devoted to transformations. The other two chapters on transforma-
tions show two different approaches to transformations. The last part covers
how to create an ontology.
The first two parts of the book consider only one style of reasoning: de-

ductive or Boolean logic. The third part of the book considers the process of
thinking in which a conclusion is made based on observation, also known
as inductive reasoning. The goal of this part is to achieve a synthesis that
supports both inductive and deductive reasoning. It begins by contrasting
inductive and deductive reasoning. Then it covers Bayesian networks, a
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popular formalism that shows great promise as a means of expressing uncer-
tainty. One important activity of science is the process of combining multiple
independent observations of phenomena. The third chapter in this part gives
a brief introduction to this very large subject. The final chapter of the part
and the book is the most speculative. It proposes that the World Wide Web
can be extended to support reasoning with uncertainty, as expressed using
Bayesian networks. The result is an inductive reasoning web which we have
named the Bayesian Web.
The authors would like to thank the many friends and colleagues who

contributed their time and expertise. We especially appreciate John Bottoms
who read the manuscript more than once and contributed many insightful
suggestions. Wewish to thank JoAnnManson, Simin Liu, and the Division of
Preventive Medicine, Brigham and Women’s Hospital, for their help and en-
couragement. We also appreciate the contributions by our many colleagues
at Northeastern University, Versatile Information Systems, and Composable
Logic, including Mitch Kokar, Jerzy Letkowski, and Jeff Smith. We thank Xi-
aobin Wang at Children’s Memorial Hospital in Chicago for sharing with us
the microarray data on preterm delivery. KB would like to acknowledge his
debt to his mentors, the late Gian-Carlo Rota andMark Kac. Robert Prior and
Katherine Almeida deserve special praise for their patience in what turned
out to be a rather larger project than we originally anticipated. Finally, we
wish to thank our families for their love, support and encouragement to com-
plete this work.
Throughout the book there are many references to web resources. These

references are Uniform Resource Identifiers (URIs). A Uniform Resource Lo-
cator (URL) is a special case of a URI that specifies the location of a web
resource. A URL is used by a web browser to find and download a re-
source, such as a webpage. A URI is a unique identifier of a web resource
and need not correspond to a downloadable resource, although they often
do. Some web resources have a URL that is not the same as its URI. This is
becoming an increasingly common practice for ontologies and schemas. The
“typewriter” font was used in this book for URIs. Most URLs begin with
http://. This initial part of the URL specifies the protocol for obtaining
the resource. When the protocol is omitted, one obtains the Uniform Re-
source Name (URN). Most web browsers are capable of finding a resource
even when the protocol has not been specified. In this book we will usually
use the URN rather than the URL to save space. For typographical purposes,
some URIs (and other constructs) in this book have been split so as to fit in
the space available.
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The URI for this book is ontobio.org, and this URI is also the URL of
the website for the book. Because URIs are constantly changing, the website
for the book has updated information about the URIs that appear in the book
as well as new ones that may be of interest to readers. The book website also
has additional exercises and solutions to them.



P A R T I

Introduction to Ontologies



2

Recent technological advances have resulted in an onslaught of biological
information that is accessible online. In the postgenomic era, a major bottle-
neck is the coherent integration of all these public, online resources. Online
bioinformatics databases are especially difficult to integrate because they are
complex, highly heterogeneous, dispersed, and incessantly evolving. Scien-
tific discovery increasingly involves accessing multiple heterogeneous data
sources, integrating the results of complex queries, and applying further
analysis and visualization applications in order to acquire new knowledge.
However, online data are often described only in human-readable formats
(most commonly free text) that are difficult for computers to analyze due
to the lack of standardized structures. An ontology is a computer-readable
system for encoding knowledge which specifies not only the concepts in a
given field but also the relationships among those concepts. Ontologies pro-
vide insight into the nature of information produced by that field and are
an essential ingredient in any attempts to arrive at a shared understanding
of concepts in a field. Thus the development of ontologies for biological
information and the sharing of those ontologies within the bioinformatics
community are pivotal for biologists who rely heavily on online data.
The first part of the book introduces the basic concepts and semantics of

ontologies. It begins with the fundamental notions of hierarchies and rela-
tionships. The web is becoming the primary mechanism for the exchange
of information and data. Accordingly, the emphasis in this book is on the
eXtensible Markup Language (XML) and XML-based languages. The next
three chapters explain the semantics of XML, rules and the newly proposed
Semantic Web, a layer above the World Wide Web that adds meaning to hy-
pertext links. Finally, chapter 5 provides a survey of ontologies and data-
bases in Bioinformatics. This chapter covers the major bio-ontologies used
in computational biology, including the Gene Ontology and open biological
ontologies.



1 Hierarchies and Relationships

1.1 Traditional Record Structures

One of the most common ways to represent information with computers is
to use “records.” Records are stored in a file, with one record per line. Such a
file is called a flat file. A record consists of a series of data items, called “fields”
or “columns.” Here are some records from a health study (NHS 2004):

011500 18.66 0 0 62 46.271020111 25.220010
011500 26.93 0 1 63 68.951521001 32.651010
020100 33.95 1 0 65 92.532041101 18.930110
020100 17.38 0 0 67 50.351111100 42.160001

The actual records are considerably longer. It should be apparent that one
cannot have any understanding of the meaning of the records without some
explanation such as the following:

NAME LENGTH RANGE FORMAT MEAN OR CODES
instudy 6 MMDDYY
bmi 8 13.25-60.07 Num 26.03
obesity 3 0-1 Num 0=No 1=Yes
ovrwt 8 0-1 Num 0=No 1=Yes
Height 3 49-79 Num 64.62
Wtkgs 8 38.1-175.1 Num 70.2
Weight 3 84-386 Num 154.75

NAME LABEL
instudy Date of randomization into study
bmi Body Mass Index. Weight(kgs)/height(m)**2
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obesity Obesity (30.0 <= BMI)
ovrwt Overweight (25 <= BMI < 30)
Height Height (inches)
Wtkgs Weight (kilograms)
Weight Weight (pounds)

The explanation of what the fields mean is called metadata. In general, meta-
data are any “data about data,” such as the names of the fields, the kind of
values that are allowed, the range of values, and explanations of what the
fields mean.
In this case each field has a fixed number of characters, and each record

has a fixed total number of characters. This is called the fixed-width format
or fixed-column format. This format simplifies the processing of the file, but it
limits what can be said within each field. If the text that should be in a field
does not fit, then it must be abbreviated or truncated. There are other file
formats that eliminate these limitations. One commonly used format is to use
commas or tabs to delimit the fields. This allows the fields to have varying
size. However, it complicates processing when the delimiting character (i.e.,
the comma or tab) must be used within a field.
The information in the record is often highly redundant. For example, the

obesity and ovrwt fields are unnecessary because they can be computed from
the bmi field. Similarly, the bmi field can be computed from the Height and
Weight fields. Another common feature of flat files is that the field formats are
often inappropriate. For example, the obesity field can only have the values
“yes” or “no,” but it is represented using numbers.
Each field of a flat file is defined by features such as its name, format,

description, and so on. A database is a collection of flat files (called tables)
with auxiliary structures (e.g., indexes) that improve performance for certain
commonly used operations. The description of the fields of one or more flat
files is called the schema.
A database schema is an example of an ontology. In general, whenever

data are structured, the description of their structure is the ontology for the
data. A glance at the example record makes it clear that the raw data record
is completely useless without the ontology. The ontology is what gives the
raw data their meaning. The same is true for any kind of data, whether
they be electronic data used by a computer or audiovisual data sensed by a
person. Ontologies are the means by which a person or some other agent
understands its world, as well as the means by which a person or agent com-
municates with others.



1.2 The eXtensible Markup Language 5

Summary

• A flat file is a collection of records.

• A record consists of fields.

• Each record in a flat file has the same number and kinds of fields as any
other record in the same file.

• The schema of a flat file describes the structure (i.e., the kinds of fields) of
each record.

• A schema is an example of an ontology.

1.2 The eXtensible Markup Language

Flat files are simple and easy to process. A typical program using and pro-
ducing flat files simply performs the same operation on each record. How-
ever, flat files are limited to relatively simple forms of data. They are not
well suited to the complex information of genomics, proteomics, and so on.
Accordingly, a new approach is necessary.
The eXtensible Markup Language (XML) is a powerful and flexible mech-

anism that can be used to represent bioinformatic data and facilitates com-
munication. Unlike flat files, an XML document is self-describing: the name of
each attribute is specified in addition to the value of the attribute. The health
study record shown above could be written like this in XML:

<Interview RandomizationDate="2000-01-15" BMI="18.66" Height="62".../>
<Interview RandomizationDate="2000-01-15" BMI="26.93" Height="63".../>
<Interview RandomizationDate="2000-02-01" BMI="33.95" Height="65".../>
<Interview RandomizationDate="2000-02-01" BMI="17.38" Height="67".../>

The basic unit of an XML document is called an element. It is analogous
to a record in a flat file, except that a single XML document can have many
kinds of element. Onewould need a large collection of flat files (or a database
with many tables) to represent the elements of a single XML document, and
even that would not capture all of it, because the kinds of element in an XML
document can be intermixed. Each kind of element is labeled by a name
called its tag. The example given above is an Interview element.
The fields of an XML element are called its attributes. Flat files generally

distinguish fields from one another by their positions in the record. XML
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attributes can appear in any order, and an attribute that is not needed by an
element is not written at all.
An attribute in general is a property or characteristic of an entity. Linguis-

tically, attributes are adjectives that describe entities. For example, a person
may be overweight or obese, and the BMI attribute makes the description
quantitative rather than qualitative. The notion of attribute represents two
somewhat different concepts: the attribute in general and the attribute of a
specific entity. BMI is an example of an attribute, but one would also speak
of a BMI equal to 18.66 for a specific person as being an attribute. To avoid
confusion we will refer to the former as the attribute name, while the latter is
an attribute value.

<!ATTLIST molecule
title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"
dictRef CDATA #IMPLIED
count CDATA #REQUIRED

>

Figure 1.1 Part of the Chemical Markup Language DTD. This defines the attribute
names that are allowed in a molecule element.

Just as a database is described by its schema, an XML document is de-
scribed by its Document Type Definition (DTD). The DTD specifies the at-
tribute names that are allowed for each kind of element. For example, in the
Chemical Markup Language (CML) (CML 2003), a molecule can have a ti-
tle, identifier, convention, dictionary reference, and count. Figure 1.1 shows
how this is specified in the CML DTD. A #REQUIRED attribute is one that
must be specified in every element of this kind; an #IMPLIED attribute is
optional. If a value is specified in the DTD, then it is the default value of the
attribute. For example, if no convention is specified, then it has the value
“CML.” CDATAmeans “character data” which means that the attribute value
can use any kind of text except for elements.
One enters or updates data for an XML element in the same manner that

one enters or updates data for a database table. An example of such a data
entry screen is given in figure 1.2.
XML reserves two characters for indicating the presence of markup. The

left angle bracket (<) is used by XML to mark the beginning of each element.
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It is also used to show where an element ends. To include the left angle
bracket in ordinary text, write it as “&lt;”. Writing a special character like
the left angle bracket as “&lt;” is called escaping. The ampersand character
(&) is also reserved by XML, and it must be written as “&amp;”.

Figure 1.2 Data entry screen for the molecule element of the Chemical Markup
Language.

Summary

• XML is a format for representing data.

• An XML element is analogous to a record in a flat file.

• An XML attribute is analogous to a field of a record.

• An XML DTD is a schema that describes the structure of the elements of
an XML file.

1.3 Hierarchical Organization

Modern biology and medicine, like much of society, is currently faced with
overwhelming amounts of raw data being produced by new information-
gathering techniques. In a relatively short period of time information has
gone from being relatively scarce and expensive to being plentiful and inex-
pensive. As a consequence, the traditional methods for dealing with infor-
mation are overwhelmed by the sheer volume of information available. The
traditional methods were developed when information was scarce, and they
cannot handle the enormous scale of information.
The first and most natural reaction by people to this situation is to attempt

to categorize and classify. People are especially good at this task. We are
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constantly categorizing objects, experiences, and people. We do it effortlessly
and unconsciously. The very words we use to express ourselves represent
categories. It is only when a categorization is problematic that we notice that
we have been categorizing at all. Biology was the first discipline to engage
in systematic, large-scale classification because of the enormous complexity
of its domain.

Figure 1.3 A BioML document showing some of the information about the human
insulin gene. Boxes were drawn around each XML element so that the hierarchi-
cal structure is more apparent. XML documents normally indicate the hierarchical
structure by successive indentation, as in this example.

What makes XML powerful is the ability to organize data hierarchically.
XML elements are much more than just self-describing records; each element
can contain other elements, which can contain other elements, to arbitrary
depth. Figure 1.3 shows a small part of the genomic data for the insulin gene



1.3 Hierarchical Organization 9

represented using the Biopolymer Markup Language (BioML) (BioML 2003).
This XML document consists of a bioml element containing an organism
element. The organism element, in turn, contains chromosome elements,
which contain locus elements, which contain genes, which contain the
DNA sequence, domains, exons, introns, and so on. Along the way, the el-
ements also contain references to database entries that furnish the source
material for the genomic information. This example shows the organization
of information about biopolymers starting at the organism level and succes-
sively elaborating until one sees individual DNA bases.
Because of the hierarchical nature of an XML document, there is always

a “top” of the hierarchy called the root. In figure 1.3 the root is the bioml
element. The root is split into a series of branches, which in turn split into
branches, and so on, like the branching of a tree. The terminology of fam-
ily trees is commonly used for the relationships within the hierarchy. The
elements contained in an element are called its child elements, and the con-
taining element is the parent. The children of the same parent are siblings.
Note that this family tree is asexual: each element (except for the root) has
exactly one parent.
The tags and attributes occurring in an XML DTD constitute the vocabu-

lary of the ontology. When one is creating an ontology it is important to
choose the tags and attributes so that they correspond to how people use the
words. Ontologies should facilitate communication between people as well
as between computer systems. Because of this emphasis on communication,
ontologies are often referred to as languages. Ontologies are also important
for information retrieval from databases, and the terminology in an ontology
is called a controlled vocabulary in this context. An ontology is a specialized
language for communication in a particular domain. The communication
can be between people, between people and computers, or between comput-
ers. Ontologies based on XML are more specifically called markup languages
because of the historical origin of XML as a means of marking up text for
the purpose of typesetting documents. Thus the “ML” in BioML and CML
both stand for “Markup Language” even though neither of these ontologies
is concerned with typesetting.

Summary

• Classification is one way in which people organize a domain in order to
understand it more easily.
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• Classifications are frequently organized in the form of a hierarchy.

• XML elements are hierarchical: each element can contain other elements,
that in turn can contain other elements, and so on.

1.4 Creating and Updating XML

This little example illustrates how statements can be much worse than just
being false: they can bemeaningless. One of themain functions of a good on-
tology is that it limits what can be said, so that statements using the ontology
always make sense to a member of the community served by the ontology.
This is done by using constraints. Some constraints have already been dis-
cussed in section 1.2 where we saw that one can specify what attributes are
allowed for each kind of element. One can also specify which elements can
be contained in other elements as well as how many are allowed. These
constraints are especially useful when one is creating and updating XML
documents, and that is the topic of this section.
Viewing and updating an XML document may seem to be a formidable

task, but one rarely looks directly at an XML document any more than one
would look at the page source of an HTML (Hypertext Markup Language)
document. One uses an XML tool for creating, viewing, and updating. The
single term “editing” is used for all three of these activities. An XML editor is
a tool that supports the editing of an XML document. XML editors automat-
ically take care of routine tasks such as escaping special characters and mak-
ing sure that the document is consistent. There aremany such tools available.
The examples in this book used Xerlin (Xerlin 2003), an open source XML ed-
itor that is available from the Apache project. XML viewers and editors make
good use of the hierarchical structure of an XML document. This structure
is analogous to a file folder or directory structure: The XML document is
viewed and updated in much the same way as files in a directory. In fig-
ure 1.4 one can see a typical file manager compared with an XML document
editor showing the BioML insulin gene document.
The DTD of an XML document specifies more than just the attributes of

each element. For example, in CML, a molecule contains an atomArray
and a bondArray, and they must occur in this order: the atomArray must
occur first, and the comma indicates that the bondArray must occur sec-
ond. An atomArray element contains one or more atom elements, and a
bondArray consists of one or more bond elements. The DTDwould specify
this as follows:
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Figure 1.4 File management vs. XML document management. The image on the
left used the Windows file manager. It shows disk drives, folders, and files on a PC.
The image on the right used the Xerlin XML document editor. It shows the elements
of a single XML document.

<!ELEMENT molecule (atomArray,bondArray)>
<!ELEMENT atomArray (atom+)>
<!ELEMENT bondArray (bond+)>

The ELEMENT statements above determine the content of these elements. A
specification such as (atom+) is called a content model. The ATTLIST state-
ment for molecule given earlier determines the attributes that can be in
an element. A DTD will normally have one ELEMENT statement and one
ATTLIST statement for each kind of element that can be in the document. A
more complete DTD for molecules is shown in figure 1.6. Because the same
attributes are allowed in many elements, a DTD can be very long. ENTITY
statements are a method for simplifying the writing of DTDs, by allowing
one to specify content and lists of attributes just once. In figure 1.7 two enti-
ties were defined and then used several times. Large DTDs such as CML use
a large number of entities. These are just two of the entities in CML.
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Figure 1.5 Data entry screen for an element of an XML document. The window on
the left shows the hierarchical structure of the XML document in the same manner
as a file manager. A gene element is highlighted, indicating that this is the currently
open element. The attributes for the gene element are shown in the right window.
The window on the right acts like a data entry screen for viewing and updating the
attributes of the element.

<!ELEMENT molecule (atomArray, bondArray)>
<!ATTLIST molecule

title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"
dictRef CDATA #IMPLIED
count CDATA "1"

>
<!ELEMENT atomArray (atom+)>
<!ATTLIST atomArray

title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"
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>
<!ELEMENT atom EMPTY>
<!ATTLIST atom

elementType CDATA #IMPLIED
title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"
dictRef CDATA #IMPLIED
count CDATA "1"

>
<!ELEMENT bondArray (bond+)>
<!ATTLIST bondArray

title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"

>
<!ELEMENT bond EMPTY>
<!ATTLIST bond

title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML"
dictRef CDATA #IMPLIED
atomRefs CDATA #IMPLIED

>

Figure 1.6 Part of the Chemical Markup Language DTD. This part defines the con-
tent and some of the attributes of a molecule element as well as the content and
some of the attributes of elements that can be contained in a molecule element.

<!ENTITY % title_id_conv ’
title CDATA #IMPLIED
id CDATA #IMPLIED
convention CDATA "CML" ’>

<!ENTITY % title_id_conv_dict
%title_id_conv;
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’dictRef CDATA #IMPLIED’>

<!ELEMENT molecule (atomArray, bondArray)>
<!ATTLIST molecule
%title_id_conv_dict;

count CDATA "1"
>
<!ELEMENT atomArray (atom+)>
<!ATTLIST atomArray
%title_id_conv;
>
<!ELEMENT atom EMPTY>
<!ATTLIST atom

elementType CDATA #IMPLIED
%title_id_conv_dict;

count CDATA "1"
>
<!ELEMENT bondArray (bond+)>
<!ATTLIST bondArray
%title_id_conv;
>
<!ELEMENT bond EMPTY>
<!ATTLIST bond
%title_id_conv_dict;

dictRef CDATA #IMPLIED
atomRefs CDATA #IMPLIED

>

Figure 1.7 Part of the Chemical Markup Language DTD. This DTD uses entities to
simplify the DTD in figure 1.6.

In addition to simplifying a DTD, there are other uses of XML entities:

• Entities can be used to build a large DTD from smaller files. The entities
in this case refer to the files being incorporated rather than to the actual
value of the entity. Such an entity would be defined like this:
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<!ENTITY % dtd1 SYSTEM "ml.dtd">

To include the contents of the file ml.dtd, one uses %dtd1; in your DTD.
One can use a URL instead of a filename, in which case the DTD informa-
tion will be obtained from an external source.

• Entities can be used to build a large document from smaller documents.
The smaller documents can be local files or files obtained from external
sources using URLs. For example, suppose that an experiment is con-
tained in five XML document files. One can merge these files into a single
XML document as follows:

<?xml version="1.0"?>
<!DOCTYPE ExperimentSet SYSTEM "experiment.dtd"
[

<!ENTITY experiment1 SYSTEM "experiment1.xml">
<!ENTITY experiment2 SYSTEM "experiment2.xml">
<!ENTITY experiment3 SYSTEM "experiment3.xml">
<!ENTITY experiment4 SYSTEM "experiment4.xml">
<!ENTITY experiment5 SYSTEM "experiment5.xml">

]>
<ExperimentSet>

&experiment1;
&experiment2;
&experiment3;
&experiment4;
&experiment5;

</ExperimentSet>

Note that entities used within documents use the ampersand rather than
the percent sign. This example is considered again in section 11.6 where
it is discussed in more detail.

When one is editing an XML document, the DTD assists one to identify
the attributes and elements that need to be provided. Figure 1.5 shows the
BioML insulin gene document. The “directory” structure is on the left, and
the attributes are on the right. In this case a gene element is open, and so the
attributes for the gene element are displayed. To enter or update an attribute,
click on the appropriate attribute and use the keyboard to enter or modify the
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attribute’s value. When an attribute has only a limited list of possible values,
then one chooses the desired value from a menu. Attributes are specified
in the same manner as one specifies fields of a record in a database using a
traditional “data entry” screen. An XML document is effectively an entire
database with one table for every kind of element.
In addition to attributes, an XML element can have text. This is often re-

ferred to as its text content to distinguish it from the elements it can contain.
In an XML editor, the text content is shown as if it were another child ele-
ment, but labeled with #text. It is also shown as if it were another attribute,
also labeled with #text.

Figure 1.8 The process of adding a new element to an XML document. The menus
shown were obtained by right-clicking on the gene element and then selecting the
Add choice. The menu containing dna, name, and so on shows the elements that are
allowed in the gene element.
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The hierarchical structure of an XML document is manipulated by open-
ing and closing each element just as one opens and closes directories (folders)
when managing a collection of files. Unlike file management, the DTD of an
XML document can be very precise about what elements are allowed to be in
another element, as well as the order in which they must appear. Figure 1.8
shows how to add an element to the gene element of a BioML document.
Click (with the right mouse button) on the gene element and a menu ap-
pears that allows one to Add another element. Selecting this choice in the
menu displays another menu. This second menu shows all the kinds of child
elements that are allowed at this time in the parent element. In figure 1.9 a
note element was chosen. Figure 1.10 shows the result of making this se-
lection: the gene element now has a new note child element. The right
window now displays the attributes for the newly created element.
The elements that are allowed in an element depend on the editing context.

The molecule element must have exactly two child elements: atomArray
and bondArray. As a result, when a molecule is selected the first time, the
only choice for a child element will be atomArray. After adding such an
element, the only choice will be bondArray.
The file directory metaphor is a compelling one, but it is important to note

how XML differs from a directory structure. The differences are explained in
table 1.1. Just as a database schema is an example of an ontology, an XML
DTD is also an example of an ontology. However, unlike a database, an XML
document is self-describing. One can understand much of the meaning of
the data without recourse to the ontology. Indeed, there are tools which can
guess the DTD for an XML document that does not have one.

Summary

• XML documents are examined and updated by taking advantage of the
hierarchical structure.

• The XMLDTD assists in updating a document by giving clues about what
attributes need to be entered as well as what elements need to be added.

1.5 The Meaning of a Hierarchy

Each kind of element in an XML document represents a concept. Concepts
are the means by which people understand the world around them. They
classify the world into units that allow comprehension. They also make it
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Figure 1.9 Adding a new element to an XML document. A note element has been
chosen to be added to a gene element.

possible for people to communicate with each other. Individuals must have a
shared conceptual framework in order to communicate, but communication
requires more than just a shared conceptualization; it is also necessary for
the concepts to have names, and these names must be known to the two
individuals who are communicating.
Biochemistry has a rich set of concepts ranging from very generic notions

such as chemical to exquisitely precise notions such as Tumor necrosis factor
alpha-induced protein 3. Concepts are typically organized into hierarchies to
capture at least some of the relationships between them. XML document
hierarchies are a means by which one can represent such hierarchical organi-
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Figure 1.10 Result of adding a new element to an XML document. A note element
has been added to a gene element. The active element is now the note element, and
its attributes appear in the window on the right side.

zations of knowledge.
Aristotle (384-322 BC) was the first who understood the difficulty of cat-

egorizing living organisms into classes according to their anatomical and
physiological characteristics (Asimov 1964). Since then, this tradition of clas-
sification has been one of the major themes in science. Figure 1.11 illustrates
a hierarchy of chemicals taken from EcoCyc (EcoCyc 2003). For example,
protein is more specific than chemical, and enzyme is more specific than pro-
tein. Classifications that organize concepts according to whether concepts
are more general or more specific are called taxonomies by analogy with bio-
logical classifications into species, genera, families, and so on.
Hierarchies are traditionally obtained by starting with a single all-inclu-
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File Manager XML Editor
A file or directory (folder) name An XML element tag is for
uniquely identifies it. Such a name specifying what the element
is not well suited for describing means, not how to obtain it.
the contents, or for specifying
what it means.
In a directory each file or other In an XML element one can
directory within it must have a have more than one child
unique name. element with the same tag.
There are essentially no constraints XML elements can only
on what names can be used, as long as have tags that are allowed
they are unique within the directory. by the DTD.
The attributes of files and directories XML elements can have any
are always the same, and serve only attributes that are allowed
for administrative purposes by the by the DTD.
operating system.
File names are sometimes case XML is case sensitive. Upper-
insensitive. Case insensitivity means and lower-case letters are
that there is no difference between different.
upper- and lower-case letters.

Table 1.1 Comparison of directory/file management with XML document editing

sive class, such as “living being,” and then subdividing into more specific
subclasses based on one or more common characteristics shared by the mem-
bers of a subclass. These subclasses are, in turn, subdivided into still more
specialized classes, and so on, until the most specific subclasses are identi-
fied. We use this technique when we use an outline to organize a task: the
most general topic appears first, at the top of the hierarchy, with the more
specialized topics below it. Constructing a hierarchy by subdivision is often
called a “top-down” classification.
An alternative to the top-down technique is to start with the most specific

classes. Collections of the classes that have features in common are grouped
together to form larger, more general, classes. This is continued until one
collects all of the classes together into a single, most general, class. This ap-
proach is called “bottom-up” classification. This is the approach that has
been used in the classification of genes (see figure 1.12). Whether one uses a
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Figure 1.11 Chemical hierarchy (EcoCyc 2003).

top-down or bottom-up technique, it is always presumed that one can define
every class using shared common characteristics of the members.
There are many algorithms for constructing hierarchical classifications, es-

pecially taxonomies, based on attributes of entities (Jain and Dubes 1988).
Such algorithms are usually referred to as data-clustering algorithms. An ex-
ample of a hierarchy constructed by a data-clustering algorithm is shown in
figure 5.3. The entities being clustered in this case are a set of genes, and the
hierarchy appears on the left side of the figure. Such automated classifica-
tions have become so routine and common that many tools construct them
by default.
The notions of taxonomy and hierarchy have been an accepted part of

Western civilization since the time of Aristotle. They have been a part of
this culture for so long that they have the status of being completely obvious
and natural. Aristotle already emphasized that classifications must be “cor-
rect,” as if they had the status of a law of nature rather than being ameans for
understanding the world. This attitude toward classification was not ques-
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tioned until relatively recently, and is still commonly accepted. By themiddle
of the nineteenth century, scholars began to question the implicit assump-
tions underlying taxonomic classification. Whewell, for example, discussed
classification in science, and observed that categories are not usually speci-
fiable by shared characteristics, but rather by resemblance to what he called
“paradigms.” (Whewell 1847) This theory of categorization is now called
“prototype theory.” A prototype is an ideal representative of a category from
which other members of the category may be derived by some form of modi-
fication. One can see this idea in the classification of genes, since they evolve
via mutation, duplication, and translocation (see figure 1.13). Wittgenstein
further elaborated on this idea, pointing out that various items included in a
category may not have one set of characteristics shared by all, yet given any
two items in the category one can easily see their common characteristics and
understand why they belong to the same category (Wittgenstein 1953). Witt-
genstein referred to such common characteristics as “family resemblances,”
because in a family any two members will have some resemblance, such as
the nose or the eyes, so that it is easy to see that they are related, but there
may be no one feature that is shared by all members of the family. Such a cat-
egorization is neither top-down nor bottom-up, but rather starts somewhere
in the middle and goes up and down from there.
This is especially evident in modern genetics. Genes are classified both

by function and by sequence. The two approaches interact with one another
in complex ways, and the classification is continually changing as more is
learned about gene function. Figure 1.12 shows some examples of the clas-
sification of genes into families and superfamilies. The superfamily is used
to describe a group of gene families whose members have a common evolu-
tionary origin but differ with respect to other features between families. A
gene family is a group of related genes encoding proteins differing at fewer
than half their amino acid positions. Within each family there is a structure
that indicates how closely related the genes are to one another. For exam-
ple figure 1.13 shows the evolutionary structure of the nuclear receptor gene
family. The relationships among the various concepts is complex, including
evolution, duplication and translocation.
The hierarchies shown in figure 1.11, 1.12, and 1.13 are very different from

one another due to the variety of purposes represented in each case. The
chemical hierarchy in figure 1.11 is a specialization/generalization hierarchy.
The relationship here is called subclass because mathematically it represents
a subset relationship between the two concepts. The gene families and su-
perfamilies in figure 1.12 are also related by the subclass relationship, but the
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Figure 1.12 Some gene families. The first row below Gene in this classification con-
sists of superfamilies. The row below that contains families. Below the families are
some individual genes. See (Cooper 1999), Chapter 4.

individual genes shown in the diagram are members (also called instances)
of their respective families rather than being subsets. However, the nuclear
receptor gene diagram in figure 1.13 illustrates that the distinction between
subclass and instance is not very clear-cut, as the entire superfamily evolved
from a single ancestral gene. In any case, the relationships in this last dia-
gram are neither subclass nor instance relationships but rather more complex
relationships such as: evolves by mutation, duplicates, and translocates.
Although hierarchical classification is an important method for organiz-

ing complex information, it is not the only one in common use. Two other
techniques are partitioning and self-organizingmaps. Both of these can be re-
garded as classification using attribute values rather than hierarchical struc-
tures. In partitioning, a set of entities is split into a specified number of subsets
(MacQueen 1967). A self-organizing map is mainly used when a large num-
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Figure 1.13 The human nuclear receptor gene superfamily. A common ancestor
evolved into the three gene families. Unlabeled arrows represent evolution over time.
Labeled arrows indicate translocation between families or subfamilies. See (Cooper
1999), Figure 4.28.

ber of attributes for a set of entities is to be reduced to a small number of
attributes, usually two or three (Kohonen 1997). The attributes are then dis-
played using visual techniques that make the clusters easy for a person to
see. There are also many clustering techniques that combine some or all of
these techniques.

Summary

• Classifications can be constructed top-down, bottom-up, or from the mid-
dle.

• Classifications can be based on many principles: subclass (subset), in-
stance (member), or more complex relationships.

• It is even possible for a classification to be based on several relationships
at the same time.
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1.6 Relationships

Of course, most titles are like this, and the abstract quickly clears up the
confusion. However, it does point out how important such connecting
phrases can be to the meaning of a document. These are called relationships,
and they are the subject of this section.
The organization of concepts into hierarchies can capture at least some

of the relationships between them, and such a hierarchy can be represented
using an XML document hierarchy. The relationship in an XML document
between a parent element and one of its child elements is called containment
because elements contain each other in the document. However, the actual
relationship between the parent element and child element need not be a
containment. For example, it is reasonable to regard a chromosome as con-
taining a set of locus elements because a real chromosome actually does
contain loci. Similarly, a gene really does contain exons, introns, and do-
mains. However, the relationship between a gene and a reference is not
one of containment, but rather the referral or citation relationship.
One of the disadvantages of XML is that containment is the only way to

relate one element to another explicitly. The problem is that all the various
kinds of hierarchy and various forms of relationship have to be represented
using containment. The hierarchy in figure 1.13 does not use any relation-
ships that could reasonably be regarded as being containment. Yet, one must
use the containment relationship to represent this hierarchy. The actual rela-
tionship is therefore necessarily implicit, and some auxiliary, informal tech-
nique must be used to elucidate which relationship is intended.
Unfortunately, this is not a small problem. One could not communicate

very much if all one had were concepts and a single kind of relationship.
Relating concepts to each other is fundamental. Linguistically, concepts are
usually represented by nouns and relationships by verbs. Because relation-
ships relate concepts to concepts, the linguistic notion of a simple sentence,
with its subject, predicate, and object, represents a basic fact. The subject and
object are the concepts and the predicate is the relationship that links them.
One can specify relationships in XML, but there are two rather different

ways that this can be done, and neither one is completely satisfactory. The
first technique is to add another “layer” between elements that specifies the
relationship. This is called striping. A BioML document could be represented
using striping, as in figure 1.14. If one consistently inserts a relationship
element between parent and child concept elements, then one can unam-
biguously distinguish the concept elements from the relationship elements.
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Striping was first introduced in the Resource Description Framework (RDF)
(Lassila and Swick 1999).

Figure 1.14 Using striping to represent relationships involving the human insulin
gene. The shaded elements in the figure are the relationships that link a parent ele-
ment to its child elements.

Another way to specify a relationship is to use a reference. A reference is an
attribute of an XML element that refers to some other data. The referenced
data can be anything and anywhere, not just XML elements and not just in
the same XMLdocument. This technique ismuchmore flexible and powerful
than striping. An example of a molecule with two atoms bound to each other
is shown in figure 1.15. The two atoms in the atomArray are referenced by
the bond in the bondArray. In general, a reference could be to anything that
has a URI.
Striping and references can be used in the same document. In RDF, the

two techniques can be used interchangeably, and they have exactly the same
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Figure 1.15 The use of references to specify a bond between two atoms in a
molecule. The arrows show the atoms that are being referenced by the bond element.

meaning. A relationship specified with either striping or a reference forms
a statement. For example, in figure 1.14 there is the statement “The human
insulin gene is cited by db entry 80129725.” Both striping and references help
organize XML documents so that relationships are explicit. They contribute
to the goal of ensuring that data are self-describing. References are com-
monly used in bioinformatics ontologies, but striping is seldom used outside
of RDF ontologies.
One feature of RDF that makes it especially attractive is that its semantics

have been formalized using mathematical logic. There are now a number
of ontology languages that extend RDF and that also have formal seman-
tics. The DARPA Agent Markup Language (DAML) is a DARPA project
that produced the DAML+OIL language. This language has recently been
superseded by the Web Ontology Language (OWL). OWL is a standard of
the World Wide Web Consortium (W3C). The RDF and OWL standards are
available on the W3C website (www.w3c.org). Both RDF and OWL will be
discussed in much more detail in the rest of this book.

Summary

• Relationships connect concepts to each other.

• XML has only one explicit kind of relationship: containment.

• Relationships can be specified in XML in two ways:

1. adding a new layer (striping),

2. using references.
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• RDF and languages based on it allow one to use either striping or refer-
ences interchangeably.

1.7 Namespaces

So far, all of the examples of XML documents used a single DTD. It is becom-
ing much more common to use several DTDs in a single document. This has
the important advantage that markup vocabulary that is already available
can be reused rather than being invented again. However, simply merging
the vocabularies of multiple DTDs can have undesirable consequences, such
as:

• The same term can be used in different ways. For example, “locus” is an
attribute in the Bioinformatic Sequence Markup Language (BSML), but it
is an element in BioML.

• The same term can have different meanings. This is especially true of
commonly occurring terms such as “value” and “label.”

• The same term might have the same use and meaning, but it may be con-
strained differently. For example, the “Sequence” element occurs in sev-
eral DTDs and has the same meaning, but the content and attributes that
are allowed will vary.

Namespaces were introduced to XML to allow one to use multiple DTDs
or XML schemas without confusing the names of elements and attributes
that have more than one meaning. A namespace is a URI that serves as means
of distinguishing a set of terms. For example, reaction is used both in the
Systems Biology Markup Language (SBML) (SBML 2003) and in CML. The
SBML namespace is http://www.sbml.org/sbml/level2. The CML
namespace dealingwith chemical reaction terminology is http://www.xml
-cml.org/schema/cml2/react. By using the namespaces one can en-
sure that any use of reaction is unambiguous.
Within an XML document namespaces are specified using an abbreviation

called the namespace prefix. For example, if one wishes to use both CML and
SBML reactions in the same document, then one must declare prefixes as
follows:

xmlns:cmlr="http://www.xml-cml.org/schema/cml2/react"
xmlns:sbml="http://www.sbml.org/sbml/level2"
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These declarations are attributes that can be added to any element, but
they are most commonly added to the root element. Once the prefixes have
been declared, one can use the prefixes for elements and for attributes. For
example, the following document mixes CML, BioML and SBML terminol-
ogy:

<bioml:organism

xmlns:cml="http://www.xml-cml.org/schema/cml2/core"

xmlns:cmlr="http://www.xml-cml.org/schema/cml2/react"

xmlns:bioml="http://xml.coverpages.org/bioMLDTD-19990324.txt"

xmlns:sbml="http://www.sbml.org/sbml/level2"

>

<bioml:species>Homo sapiens</bioml:species>

<sbml:reaction sbml:id="reaction_1" sbml:reversible="false">

<sbml:listOfReactants>

<sbml:speciesReference sbml:species="X0"/>

</sbml:listOfReactants>

<sbml:listOfProducts>

<sbml:speciesReference sbml:species="S1"/>

</sbml:listOfProducts>

</sbml:reaction>

<cmlr:reaction>

<cmlr:reactantList>

<cml:molecule cml:id="r1"/>

</cmlr:reactantList>

<cmlr:productList>

<cml:molecule cml:id="p1"/>

</cmlr:productList>

</cmlr:reaction>

...

</bioml:organism>

There are several ambiguities in the document above. As we have already
noted, CML and SBML both use reaction. The meanings are the same, but
they are specified differently. For example, CML uses reactantList for
what SBML calls listOfReactants. A more subtle ambiguity is the use of
species by both SBML and BioML. Here the the meanings are different. In
SBML a species is a chemical species. In BioML it is an organism species.
One can use any prefix to designate a namespace within an XML element.

For example, one could have used xyz instead of bioml in the document
above. However, it is better to use prefixes that clearly abbreviate the name-
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space URI. When an element name or attribute has a namespace prefix, it is
said to be qualified by the namespace.
One can also declare a namespace to be the default namespace. When there

is a default namespace, then unqualified element names belong to the default
namespace. The example above could be simplified somewhat by using a
default namespace as follows:

<organism

xmlns="http://xml.coverpages.org/bioMLDTD-19990324.txt"

xmlns:sbml="http://www.sbml.org/sbml/level2"

xmlns:cml="http://www.xml-cml.org/schema/cml2/core"

xmlns:cmlr="http://www.xml-cml.org/schema/cml2/react"

>

<species>Homo sapiens</species>

<sbml:reaction sbml:id="reaction_1" sbml:reversible="false">

<sbml:listOfReactants>

<sbml:speciesReference sbml:species="X0"/>

</sbml:listOfReactants>

<sbml:listOfProducts>

<sbml:speciesReference sbml:species="S1"/>

</sbml:listOfProducts>

</sbml:reaction>

...

</organism>

It is important to note that the default namespace applies only to element
names, not to attributes. Because of this limitation, many authors have cho-
sen to avoid using default namespaces altogether and to explicitly qualify
every element and attribute. This has the advantage that such documents
are somewhat easier to read, especially when one is using more than two or
three namespaces.
The namespace URI need not be the same as the location of the DTD

or schema. For example, the CML core has the namespace http://www.
xml-cml.org/schema/cml2/core, but the actual location of the schema
is www.xml-cml.org/dtdschema/cmlCore.xsd. Consequently, for each
namespace one needs to know the URI, the location and the most commonly
used abbreviation. The namespaces that are the most important for ontolo-
gies are
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bioml: Biopolymer Markup Language
http://xml.coverpages.org/bioMLDTD-19990324.txt

cellml: Cell Markup Language
http://www.cellml.org/cellml/1.0

cmeta: Cell Meta Language
http://www.cellml.org/metadata/1.0

cml: Chemical Markup Language
http://www.xml-cml.org/schema/cml2/core

dc: Dublin Core Elements
http://purl.org/dc/elements/1.1/

dcterms: Dublin Core Terms
http://purl.org/dc/terms/

go: Gene Ontology
http://ftp://ftp.geneontology.org/pub/go/xml/dtd/go.dtd

mathml: Mathematics Markup Language
http://www.w3.org/1998/Math/MathML

owl: Web Ontology Language
http://www.w3.org/2002/07/owl

rdf: RDF
http://www.w3.org/1999/02/22-rdf-syntax-ns

rdfs: RDF Schema
http://www.w3.org/2000/01/rdf-schema

sbml: Systems Biology Markup Language
http://www.sbml.org/sbml/level2

stm: Technical Markup Language
http://www.xml-cml.org/schema/stmml

xmlns: XML Namespaces
http://www.w3.org/XML/1998/namespace

xsd: XML Schema (original)
http://www.w3.org/2000/10/XMLSchema

xsd: XML Schema (proposed)
http://www.w3.org/2001/XMLSchema

xsi: XML Schema instances
http://www.w3.org/2001/XMLSchema-instance

xsl: XML Transform
http://www.w3.org/1999/XSL/Transform

xtm: Topic Maps
http://www.topicMaps.org/xtm/1.0/
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Summary

• Namespaces organize multiple vocabularies so that they may be used at
the same time.

• Namespaces are URIs that are declared in an XML document.

• Each namespace is either the default namespace or it has an abbreviation
called a prefix.

• Element names and attributes may be qualified by using the namespace
prefix.

• The default namespace applies to all unqualified elements. It does not
apply to unqualified attributes.

1.8 Exercises

1. A spreadsheet was exported in comma-delimited format. The first few
lines look like this:

element_id,sequence_id,organism_name,seq_length,type
U83302,MICR83302,Colaptes rupicola,1047,DNA
U83303,HSU83303,Homo sapiens,3460,DNA
U83304,MMU83304,Mus musculus,51,RNA
U83305,MIASSU833,Accipiter striatus,1143,DNA

Show how these records would be written as XML elements using the
bio_sequence tag.

2. For the spreadsheet in exercise 1.1 above, show the corresponding XML
DTD. The element_id attribute is a unique key for the element. As-
sume that all attributes are optional. The molecule type is restricted to the
biologically significant types of biopolymer.

3. Here is a relational database table that defines some physical units:
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name prefix unit exponent
millisecond milli second 1
per_millisecond milli second -1
millivolt milli volt 1
microA_per_mm2 micro ampere 1
microA_per_mm2 milli meter -2
microF_per_mm2 micro farad 1
microF_per_mm2 milli meter -2

A physical unit is, in general, composed of several factors. This was en-
coded in the relational table by using several records, one for each factor.
The microF_per_mm2 unit, for example, is the ratio of microfarads by
square millimeters.

This relational database table illustrates how several distinct concepts can
be encoded in a single relational table. In general, information in a re-
lational database about a single concept can be spread around several
records, and a single record can include information about several con-
cepts. This can make it difficult to understand the meaning of a relational
table, even when the relational schema is available.

Show how to design an XML document so that the information about the
two concepts (i.e, the physical units and the factors) in the table above are
separated.

4. This next relational database table defines some of the variables used in
the Fitzhugh-Nagumomodel (Fitzhugh 1961; Nagumo 1962) for the trans-
mission of signals between nerve axons:

component variable initial physical_unit interface
membrane u -85.0 millivolt out
membrane Vr -75.0 millivolt out
membrane Cm 0.01 microF_per_mm2
membrane time millisecond in
ionic_current I_ion microA_per_mm2 out
ionic_current v in
ionic_current Vth millivolt in

The physical units are the ones defined in exercise 3 above. Extend the
solution of that exercise to include the data in the table above. Note that
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once again, multiple concepts have been encoded in a single relational
database table. This exercise is based on an example on the CellML web-
site (CellML 2003).

5. Use an XML editor (such as Xerlin or XML Spy) to construct the examples
in the previous two exercises. Follow these steps:

(a) Cut and paste the following DTD into a file:

<?xml version="1.0">
<!DOCTYPE model [

<!ELEMENT model (physical_unit*,component*)>
<!ELEMENT physical_unit (factor)*>
<!ATTLIST physical_unit name ID #REQUIRED>
<!ELEMENT factor EMPTY>
<!ATTLIST factor

prefix CDATA #IMPLIED
unit CDATA #REQUIRED
exponent CDATA "1">

<!ELEMENT component (variable)*>
<!ATTLIST component name ID #REQUIRED>
<!ELEMENT variable EMPTY>
<!ATTLIST variable

name CDATA #REQUIRED
initial CDATA #IMPLIED
physical_unit IDREF "dimensionless"
interface (in|out) #IMPLIED>

]>
<model/>

(b) Open the file with your XML editor.

(c) Create the elements and enter the attributes shown in the two database
tables in the two previous exercises.

(d) Save the file, and open it with an ordinary text editor.

(e) Verify that the resulting file has the data as shown in the answers to the
exercises above.
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2.1 The Meaning of Meaning

Semantics is a surprisingly simple notion. It is concerned with when two
terms or statements are the same. For example, one can write the number
6 in many ways such as: 3 + 3, 06, six and VI. All of these ways to write 6
look different, but they all have the same meaning. The field of semantics
is concerned with extracting a single abstract concept from the many ways
that the concept can be represented, such as words, phrases, sounds, and pic-
tures. Semantics is part of a more general field called semiotics which studies
the relationship between concrete representations and the phenomena in the
world they signify.
Meaning is always relative to a context. For example, “lumbar puncture”

and “spinal tap” are synonymous in the context ofmedical procedures. How-
ever, they are not synonymous in the context of movies (the latter being the
name of a movie, while the former has never been used in the name of a
movie).
Semantics is often contrasted with syntax. The syntax of a language de-

fines what statements can be expressed in the language. Syntax is concerned
with the grammar of the language. However, there can be many ways to say
the same thing. The common concept behind the syntactic variations is the
semantics.
The usual method for defining the sameness relationship is to use mathe-

matics. Terminology and statements are then mapped to an abstract mathe-
matical structure, usually called the model. Two terms or statements are the
same when they map to the same model. Integers, for example, have an
abstract formal model which is used to define their semantics. Medical ter-
minology can be defined using a standard vocabulary such as the Unified
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Medical Language System (UMLS). In the UMLS, “spinal tap” has concept
identifier C0553794. All terms with this same concept identifier are synony-
mous.
An ontology is a means by which the language of a domain can be formal-

ized (Heflin et al. 1999; Opdahl and Barbier 2000; Heflin et al. 2000; McGuin-
ness et al. 2000). As such, an ontology is a context within which the semantics
of terminology and of statements using the terminology are defined. On-
tologies define the syntax and semantics of concepts and of relationships
between concepts. Concepts are used to define the vocabulary of the do-
main, and relationships are used to construct statements using the vocabu-
lary. Such statements express known or at least possible knowledge whose
meaning can be understood by individuals in the domain. Representing
knowledge is therefore one of the fundamental purposes of an ontology.
Classic ontologies in philosophy are informally described in natural lan-
guage. Modern ontologies differ in having the ability to express knowledge
in machine-readable form. Expressing knowledge in this way requires that
it be represented as data. So it is not surprising that ontology languages and
data languages have much in common, and both kinds of language have
borrowed concepts from each other. As we saw in section 1.1, a database
schema can be regarded as a kind of ontology. Modern ontology languages
were derived from corresponding notions in philosophy. See the classic work
(Bunge 1977, 1979), as well as more recent work such as (Wand 1989; Guarino
and Giaretta 1995; Uschold and Gruninger 1996). Ontologies are fundamen-
tal for communication between individuals in a community. They make it
possible for individuals to share information in a meaningful way. Formal
ontologies adapt this idea to automated entities (such as programs, agents,
or databases). Formal ontologies are useful even for people, because infor-
mal and implicit assumptions often result in misunderstandings. Sharing
of information between disparate entities (whether people or programs) is
another fundamental purpose of an ontology.
It would be nice if there were just one way to define ontologies, but at the

present time there is not yet a universal ontology language. Perhaps there
will be one someday, but in the meantime, one must accept that there will be
some diversity of approaches. In this chapter and in chapter 4, we introduce
the diverse mechanisms that are currently available, and we compare their
features. The ontology languages discussed in chapter 4 make use of logic
and rules, so we introduce them in chapter 3.
Two examples are used throughout this chapter as well as chapter 4. The

first one is a simplifiedMedline document, and the second is the specification
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for nitrous oxide using CML. The document-type definitions were highly
simplified in both cases. The simplified Medline document is figure 2.1. The
original Medline citation is to (Kuter 1999). The DTD being used is given
in figure 2.2. The nitrous oxide document is figure 2.3. The simplified CML
DTD being used is given in figure 1.6.

<MedlineCitation Owner="NLM" Status="Completed">
<MedlineID>99405456</MedlineID>
<PMID>10476541</PMID>
<DateCreated>

<Year>1999</Year>
<Month>10</Month>
<Day>21</Day>

</DateCreated>
<ArticleTitle>Breast cancer highlights.</ArticleTitle>

</MedlineCitation>

Figure 2.1 Example of part of a Medline citation using the Medline DTD.

<!ELEMENT MedlineCitation
(MedlineID, PMID, DateCreated, ArticleTitle?)>

<!ATTLIST MedlineCitation
Owner CDATA "NLM"
Status (Incomplete|Completed) #REQUIRED>

<!ELEMENT MedlineID (#PCDATA)>
<!ELEMENT PMID (#PCDATA)>
<!ELEMENT DateCreated (Year, Month, Day)>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Month (#PCDATA)>
<!ELEMENT Day (#PCDATA)>
<!ELEMENT ArticleTitle (#PCDATA)>

Figure 2.2 Simplification of the Medline DTD.
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<molecule id="m1" title="nitrous oxide">
<atomArray>
<atom id="n1" elementType="N"/>
<atom id="o1" elementType="O"/>

</atomArray>
<bondArray>

<bond atomRefs="n1 o1"/>
</bondArray>

</molecule>

Figure 2.3 The representation of nitrous oxide using CML.

2.2 Infosets

Although XML is not usually regarded as being an ontology language, it is
formally defined, so it certainly can be used to define ontologies. In fact, it
is currently the most commonly used and supported approach to ontologies
among all of the approaches considered in this book.
The syntax for XML is defined in (W3C 2001b). The structure of a docu-

ment is specified using a DTD as discussed in section 1.2. A DTD can be re-
garded as being an ontology. A DTD defines concepts (using element types)
and relationships (using the parent-child relationship and attributes). The
concept of a DTD was originally introduced in 1971 at IBM as a means of
specifying the structure of technical documents, and for two decades it was
seldom used for any other purpose. However, when XML was introduced,
there was considerable interest in using it for other kinds of data, and XML
has now become the preferred interchange format for any kind of data.
The formal semantics for XML documents is defined in (W3C 2004b). The

mathematical model is called an infoset. The mathematical model for the
XML document in figure 2.1 is shown in figure 2.4. The infoset model con-
sists of nodes (shown as rectangles or ovals) and relationship links (shown as
arrows). There are various types of nodes, but the two most common types
are element nodes and text nodes. There are two kinds of relationship link:
parent-child link and attribute link. Every infoset model has a root node. For
an XML document, the root node has exactly one child node, but infosets
in general can have more than one child node of the root, as, for example,
when the infoset represents a fragment of an XML document or the result of
a query.
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Figure 2.4 XML datamodel for a typical Medline citation. Element nodes are shown
using rectangles, text nodes are shown using ovals, child links are unlabeled, and
attributes are labeled with the attribute name.

The formal semantics of XML documents is concerned with whether two
infoset models are the same. The most obvious requirement for two infosets
to be the same is that the nodes and links correspond with one another. The
more subtle requirement is concerned with the arrangement of the nodes.
For two infosets to be the same, the children of each node must be in the
same order. For example, suppose that the two first two child elements of
the Medline citation were reversed as follows:

<MedlineCitation Owner="NLM" Status="Completed">
<PMID>10476541</PMID>
<MedlineID>99405456</MedlineID>
<DateCreated>

<Year>1999</Year>
<Month>10</Month>
<Day>21</Day>

</DateCreated>
</MedlineCitation>
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The corresponding infoset is shown in figure 2.5 and differs from that in
figure 2.4 in only one way: the MedlineID and PMID child nodes have been
reversed. These two infosets are different.
By contrast, the attribute links can be in any order. For example suppose

that the attributes of the MedlineCitation were reversed as follows:

<MedlineCitation Status="Completed" Owner="NLM">

The corresponding infoset is shown in figure 2.6 and differs from that in
figure 2.4 in only one way: the owner and status links have been reversed.
These two infosets are the same.

Figure 2.5 XML data model for a Medline citation in which the MedlineID and
PMID nodes are in the opposite order.

This example illustrates that the semantics of XML does not always cor-
rectly capture the semantics of the domain. In this case, the XML documents
in which the PMID and MedlineID elements have been reversed have a dif-
ferent meaning in XML but are obviously conveying the same information
from the point of view of a bibliographic citation. One can deal with this
problem by specifying in the DTD that these two elements must always ap-
pear in one order. In this case, the MedlineID element must occur before the
PMID element.
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Figure 2.6 XML data model for a Medline citation in which the status and owner
attributes are in the opposite order.

The infoset for the nitrous oxide document in figure 2.3 is shown in fig-
ure 2.7. If the first two atom elements were reversed the infoset would be
as in figure 2.8. These two infosets are different. However, from a chemical
point of view, the molecules are the same. This is another example of a clash
between the semantics of XML and the semantics of the domain. Unlike the
previous example, there is no mechanism in XML for dealing with this ex-
ample because all of the child elements have the same name (i.e., they are
all atom elements). So one cannot specify in the DTD that they must be in a
particular order. One also cannot specify that the order does not matter.

Summary

• An XML DTD can be regarded as an ontology language.

• The formal semantics of an XML document is defined by its infoset.

• The order of attributes does not matter.

• The order of elements does matter.
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Figure 2.7 XML data model for a molecule represented using CML.

2.3 XML Schema

As XML began to be used for applications other than technical documents,
the limitations and flaws of DTDs soon became apparent.

1. The DTD uses a very different syntax from that of XML.

2. There are only a few data types. Because of this limitation, nearly all
attributes are defined to have type CDATA, that is, ordinary text, more
commonly known as strings. Important types such as numbers, times,
and dates cannot be specified.

3. Techniques that are common in modern databases and programming lan-
guages such as customized types and inheritance are not available.

As a result, an effort was started to express DTDs in XML and to support
more general data-structuringmechanisms. The end result was XML Schema
(W3C 2001c), often abbreviated as XSD. There are two parts to XSD:

1. Part 1: Complex data types. These can be used to define all of the com-
monly used data structures used in computer science, such as lists and
records.

2. Part 2: Simple data types. These include numbers, times, durations of
time, dates, and web addresses. One can also introduce customized sim-
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Figure 2.8 XML data model for the same molecule as in figure 2.7 except that the
two atoms have been reversed.

ple data types for specialized needs. For example, one could define a
DNA sequence to be text containing only the letters A, C, G, and T.

There is a tool written in Perl, called dtd2xsd.pl (W3C 2001a) that trans-
lates DTDs to XML schemas. However, one must be cautious when using
this tool. It does not support all of the features of XML. For example, con-
ditional sections are not supported. As one of the authors pointed out, “It
is worth pointing out that this tool does not produce terribly high quality
schemas, but it is a decent starting point if you have existing DTDs.” When
one is using this tool one must manually check that the translation is correct.
One can then enhance the schema to improve the semantics using features of
XSD that are not available in DTDs.
Applying the dtd2xsd.pl program to figure 2.2 gives the XML schema

shown below. The XML schema is considerably longer than the DTD. We
leave it as an exercise to do the same for the molecule DTD in figure 1.6.

<schema
xmlns=’http://www.w3.org/2000/10/XMLSchema’
targetNamespace=’http://www.w3.org/namespace/’
xmlns:t=’http://www.w3.org/namespace/’>

<element name=’MedlineCitation’>
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<complexType>
<sequence>
<element ref=’t:MedlineID’/>
<element ref=’t:PMID’/>
<element ref=’t:DateCreated’/>
<element ref=’t:ArticleTitle’
minOccurs=’0’ maxOccurs=’1’/>

</sequence>
<attribute name=’Owner’ type=’string’

use=’default’ value=’NLM’/>
<attribute name=’Status’ use=’required’>
<simpleType>
<restriction base=’string’>
<enumeration value=’Incomplete’/>
<enumeration value=’Completed’/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>

<element name=’MedlineID’>
<complexType mixed=’true’>
</complexType>
</element>

<element name=’PMID’>
<complexType mixed=’true’>
</complexType>
</element>

<element name=’DateCreated’>
<complexType>
<sequence>
<element ref=’t:Year’/>
<element ref=’t:Month’/>
<element ref=’t:Day’/>
</sequence>
</complexType>
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</element>

<element name=’Year’>
<complexType mixed=’true’>
</complexType>
</element>

<element name=’Month’>
<complexType mixed=’true’>
</complexType>
</element>

<element name=’Day’>
<complexType mixed=’true’>
</complexType>
</element>

<element name=’ArticleTitle’>
<complexType mixed=’true’>
</complexType>
</element>
</schema>

The XML schema shown above has exactly the same meaning as the DTD.
Having translated this DTD to XSD, one canmake use of features of XSD that
are not available in a DTD. Some examples of these features are shown in the
next section.
Abstract Syntax Notation One (ASN.1) is another mechanism for encoding

hierarchically structured data. The development of ASN.1 goes back to 1984,
and it was a mature standard by 1987. It is mainly used in telecommunica-
tions, but it is also being used in other areas, including biomedical databases.
ASN.1 and XSD have similar capabilities and semantics. The main difference
is that ASN.1 allows for much more efficient encoding than XML. XER is an
encoding of XSD using ASN.1 and the xsdasn1 script translates from XSD
to ASN.1. Both XER and xsdasn1 are available at asn1.elibel.tm.fr.

Summary

• XSD adds additional data-type and data-structuring features to XML.
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• XSD does not change the semantics of XML documents.

• An XML DTD can be converted to XSD using dtd2xsd.pl.

2.4 XML Data

An XML DTD has a rich language for specifying the kinds of element that
can be contained within each element. By contrast there is very little one can
say about attributes and text content with an XML DTD. In practice, nearly
all attributes are defined to be of type CDATA which allows any kind of text
data except for XML elements. When an element has text, then its content
is defined to be of type #PCDATA which allows any kind of text data. Many
important types of data are routinely used by computer and database sys-
tems, such as numbers, times, dates, telephone numbers, product codes, and
so on. The limitations of XML DTDs have prevented XML processors from
properly validating these types. The result has been that individual appli-
cation writers have had to implement type checking in an ad hoc manner.
The XSD datatype recommendation addresses the need of both document
authors and applications writers for a robust, extensible datatype system
for XML. This standard has been very successful, and it has now been in-
corporated into other XML-related standards such as RDF and OWL, to be
discussed in chapter 4.
For example, in the Medline schema part of which was shown in sec-

tion 2.3, the Day element specifies the day of the month, but this schema
allows one to use any text whatsoever as a day. At the very least, one should
limit the values to positive numbers. To do this one should change the spec-
ification for the Day element to the following:

<element name=’Day’ type=’xsd:positiveInteger’/>

An even better specification would further restrict the possible numbers to
be positive numbers no larger than 31 as in

<element name=’Day’>
<simpleType>
<xsd:restriction base=’xsd:positiveInteger’>
<xsd:maxInclusive value=’31’/>

</xsd:restriction>
</simpleType>
</element>
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One can make similar restrictions for the Year and Month elements. How-
ever, this still does not entirely capture all possible restrictions. For example,
it would allow February to have 31 days. As it happens, there is an XML
datatype for a date which includes all restrictions required for an arbitrary
calendar date. To use this datatype, replace the Year, Month, and Day ele-
ments with the following:

<element name=’DateCreated’ type=’xsd:date’/>

Using this approach, the Medline citation in figure 2.1 would look like this:

<MedlineCitation Owner="NLM" Status="Completed">
<MedlineID>99405456</MedlineID>
<PMID>10476541</PMID>
<DateCreated>1999-10-21</DateCreated>
<ArticleTitle>Breast cancer highlights.</ArticleTitle>

</MedlineCitation>

The semantics of an XML datatype is given in three parts:

1. The lexical space is the set of strings that are allowed by the datatype. In
other words, the kind of text that can appear in an attribute or element
that has this type.

2. The value space is the set of abstract values being represented by the strings.
Each string represents exactly one value, but one value may be repre-
sented by more than one string. For example, 6.3200 and 6.32 are different
strings but they represent the same value. In other words, two strings have
the same meaning when they represent the same value.

3. A set of facets that determine what operations can be performed on the
datatype. For example, a set of values can be sorted only if the datatype
has the ordered facet.

For some datatypes, the lexical space and value space coincide, so what one
sees is what it means. However, for most datatypes there will be multiple
representations of the same value. When this is the case, each value will
have a canonical representation. Since values and canonical representations
correspond exactly to each other, in a one-to-one fashion, it is reasonable to
think of the canonical representation as being the meaning.
XSD includes over 40 built-in datatypes. In addition one can construct

datatypes based on the built-in ones. The built-in datatypes that are the most
useful to bioinformatics applications are:
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1. string. Arbitrary text without embedded elements.

2. decimal. A decimal number of any length and precision.

3. integer. An integer of any length. This is a special case of decimal. There
are many special cases of integer, such as positiveInteger and nonNega-
tiveInteger.

4. date. A Gregorian calendar date.

5. time. An instant of time during the day, for example, 10:00.

6. dateTime. A date and a time instance during that date.

7. duration. A duration of time.

8. gYear. A Gregorian year.

9. gYearMonth. A Gregorian year and month in that year.

10. boolean. Either true or false.

11. anyURI. A web resource.

There are three ways to construct a new datatype from other datatypes:

1. Restriction. The most common way to define a datatype is to restrict
another datatype. For example, to define a telephone number, start with
string and restrict to those strings that have an acceptable pattern of digits,
and plus and minus signs. One can restrict using any combination of the
following techniques:

(a) Bounds. The maximum and minimum, either inclusive or exclusive.

(b) Length. The number of characters of a string (minimum or maximum
or both), the number of digits of a number, or the number of digits after
the decimal point.

(c) Pattern. A pattern that must be matched. The XML pattern language
is similar to the one used by Perl; see subsection 10.1.4

(d) Enumeration. An explicit list of all possibilities.

2. Union. One can combine the set of values of several datatypes. This is
handy for adding special cases to another datatype.

3. List. A sequence of values.
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For example, suppose that it is possible for the dateCreated attribute to be
not applicable to a citation. Simply omitting this attribute would mean that
it has a value which is unknown rather than that the attribute does not apply
to the citation. To allow for such special cases, one can add additional values
to a datatype by using a union as follows:

<element name=’DateCreated’>
<simpleType>
<xsd:union memberTypes=’xsd:date’>

<xsd:simpleType>
<enumeration value=’N/A’/>

</xsd:simpleType>
</xsd:union>

</simpleType>
</element>

Summary

• XSD provides built-in datatypes for the most commonly used purposes,
such as strings, numbers, dates, times, and resource references (URIs).

• New datatypes can be defined by restricting another datatype, combining
several datatypes (union), or allowing a sequence of values (list).

2.5 Exercises

1. Convert the molecule DTD shown in figure 1.6 to an XML schema.

2. Revise themolecule schema in exercise 2.1 above so that the elementType
attribute can only be one of the standard abbreviations of the 118 currently
known elements in the periodic table.

3. Define a simple datatype for a single DNA base. Hint: Use an enumera-
tion as in exercise 2.2 above.

4. Define a simple datatype for a DNA sequence.

5. Define a more realistic datatype for a DNA sequence. It is a common
practice to break up amino acid and DNA sequences into more manage-
able pieces. For example, the following is a sequence in the European
Molecular Biology Laboratory (EMBL) database:
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cctggacctc ctgtgcaaga acatgaaaca nctgtggttc ttccttctcc tggtggcagc 60
tcccagatgg gtcctgtccc aggtgcacct gcaggagtcg ggcccaggac tggggaagcc 120
tccagagctc aaaaccccac ttggtgacac aactcacaca tgcccacggt gcccagagcc 180
caaatcttgt gacacacctc ccccgtgccc acggtgccca gagcccaaat cttgtgacac 240
acctccccca tgcccacggt gcccagagcc caaatcttgt gacacacctc ccccgtgccc 300
nnngtgccca gcacctgaac tcttgggagg accgtcagtc ttcctcttcc ccccaaaacc 360
caaggatacc cttatgattt cccggacccc tgaggtcacg tgcgtggtgg tggacgtgag 420
ccacgaagac ccnnnngtcc agttcaagtg gtacgtggac ggcgtggagg tgcataatgc 480
caagacaaag ctgcgggagg agcagtacaa cagcacgttc cgtgtggtca gcgtcctcac 540
cgtcctgcac caggactggc tgaacggcaa ggagtacaag tgcaaggtct ccaacaaagc 600
cctcccagcc cccatcgaga aaaccatctc caaagccaaa ggacagcccn nnnnnnnnnn 660
nnnnnnnnnn nnnnnnnnnn nnnnngagga gatgaccaag aaccaagtca gcctgacctg 720
cctggtcaaa ggcttctacc ccagcgacat cgccgtggag tgggagagca atgggcagcc 780
ggagaacaac tacaacacca cgcctcccat gctggactcc gacggctcct tcttcctcta 840
cagcaagctc accgtggaca agagcaggtg gcagcagggg aacatcttct catgctccgt 900
gatgcatgag gctctgcaca accgctacac gcagaagagc ctctccctgt ctccgggtaa 960
atgagtgcca tggccggcaa gcccccgctc cccgggctct cggggtcgcg cgaggatgct 1020
tggcacgtac cccgtgtaca tacttcccag gcacccagca tggaaataaa gcacccagcg 1080
ctgccctgg 1089

The sequence is divided into groups of 60 bases, and these groups are
divided into subgroups of 10 bases. A number follows each group of 60
bases. The letter n is used when a base is not known.

6. Define a datatype for an amino acid sequence (protein). Here is an exam-
ple of such a sequence:

1 meepqsdpsv epplsqetfs dlwkllpenn vlsplpsqam ddlmlspddi eqwftedpgp
61 deaprmpeaa ppvapapaap tpaapapaps wplsssvpsq ktyqgsygfr lgflhsgtak

121 svtctyspal nkmfcqlakt cpvqlwvdst pppgtrvram aiykqsqhmt evvrrcphhe
181 rcsdsdglap pqhlirvegn lrveylddrn tfrhsvvvpy eppevgsdct tihynymcns
241 scmggmnrrp iltiitleds sgnllgrnsf evrvcacpgr drrteeenlr kkgephhelp
301 pgstkralpn ntssspqpkk kpldgeyftl qirgrerfem frelnealel kdaqagkepg
361 gsrahsshlk skkgqstsrh kklmfktegp dsd

Like DNA sequences, it is divided into groups of 60 amino acids, and
these groups are divided into subgroups of 10 amino acids. A number
precedes each group. The letter x is used for an unknown amino acid.
The letters j, o, and u are not used for amino acids.
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Rules and inference are important for tackling the challenges in bioinformat-
ics. For example, consider the Biomolecular Interaction Network (BIND).
The problem of defining interactions is very complex, and interactions must
be obtained from several sources, such as the Protein Data Bank (PDB), met-
abolic/regulative pathways, or networks. Rules can be used to model and
query these interaction networks.

3.1 Introduction to Rule-Based Systems

An enzyme is a protein that exerts an effect on a specific molecule called its
substrate. The enzyme and its substrate combine to form the enzyme-substrate
complex. The active site of the enzyme and the corresponding part of the sub-
strate have shapes that match each other in a complementarymanner, known
as the lock-and-key model, proposed by Emil Fischer in 1890. The substrate
fits into the enzyme just as a key fits into a lock. This is a good model for
visualizing how enzymes catalyze reactions. More recently, in 1958, Daniel
E. Koshland, Jr. described how the active site of an enzyme can change when
the substrate binds to the enzyme. Thus enzymes can take an active role in
creating a shape into which the substrate fits. This process is known as the
induced-fit model.
A regulatory transcription factor is a protein that exerts an effect on the rate at

which a gene is transcribed. Such a protein forms a complex with a chromo-
some at specific binding sites determined by the sequence of bases at these
sites. One may consider the binding site of a transcription factor to be a
“word” encoded in the DNA. The “words” are the DNA binding motifs for
their respective transcription factors. The binding sites for a gene encode the
mechanism by which cells control such important biological functions as cell
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growth, proliferation, and differentiation. It is common for this binding to
be somewhat imprecise, so that the resulting binding is not too tight. This
allows genes to be turned on and off dynamically in response to chemical
signals.
Both of these situations illustrate a common theme in protein-mediated bi-

ological processes. Proteinsmatch targets, andwhen amatch takes place (i.e.,
the protein forms a complex with its target), then the protein exerts a biolog-
ical effect (e.g., catalysis or gene regulation). The match can be exquisitely
precise, as in the classic Fischer lock-and-key model that characterizes many
enzymes, or it can be less precise, as in the Koshland induced-fit model or in
transcription factor bindings.
Not surprisingly, a similar theme is used in many computer systems. This

style of programming goes by various names, such as the “pattern-action
paradigm,” “expert systems,” “rule-based inferencing,” or “declarative pro-
gramming.” When programming in this style, one specifies a collection of
rules. Each rule has two parts:

1. The pattern, also called the antecedent or the hypothesis. This part of the rule
specifies the match condition.

2. The action, consequent, or conclusion. This part of the rule specifies the
effect that is exerted when the match condition holds.

A rule can be regarded as a logical statement of the form “if the match con-
dition holds, then perform the action.” When considered from this point of
view, the match condition is a “hypothesis,” and the action is a “conclusion.”
Just as in organisms, match conditions range from being very precise to being
very generic.
The condition of a rule is a Boolean combination of elementary facts, each

of which may include constants as well as one or more variables. A query is
essentially a rule with no conclusion, just a condition. At the other extreme, a
fact is a rule with no condition, just a conclusion. The result of a query is the
set of assignments to the variables that cause the rule to fire. From the point
of view of relational databases, a query can be regarded as a combination
of selections, projections, and joins. The variables in a rule engine query
correspond to the output variables (i.e., the projection) and join conditions of
a relational query. The constants occurring in a rule engine query correspond
to the selection criteria of a relational query. Both rule engines and relational
databases support complex Boolean selection criteria.
When the match condition of a rule is found to hold and the consequent
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action is performed, the rule is said to have been “invoked” or “fired.” The
firing of a rule affects the environment, and this can result in the firing of
other rules. The resulting cascade of rule firings is what gives rule-based
systems their power. By contrast, the most common programming style (the
so-called procedural programming or imperative style) does not typically
have such a cascading effect.
Rule-based inferencing has another benefit. Rules express the meaning

of a program in a manner that can be much easier to understand. Each rule
should stand by itself, expressing exactly the action that should be performed
in a particular situation. In principle, each rule can be developed and verified
independently, and the overall system will function correctly provided only
that it covers all situations. Unfortunately, rules can interact in unexpected
ways, so that building a rule-based system is not a simple as one might sup-
pose. The same is true in organisms, and it is one of the reasons why it is so
difficult to understand how they function.
Rules have been used as the basis for computer software development for

a long time. Rule-based systems have gone by many names over the years.
About a decade ago they were called “expert systems,” and they attracted
a great deal of interest. While expert systems are still in use, they are no
longer as popular today. The concept is certainly a good one, but the field
suffered from an excess of hubris. The extravagantly optimistic promises led
to equally extreme disappointment when the promises could not be fulfilled.
Today it is recognized that rules are only one part of any knowledge-based
system, and it is important to integrate rules with many other techniques.
The idea that rules can do everything is simply unreasonable.
The process of using rules to deduce facts is called inference or reason-

ing, although these terms have many other meanings. Systems that claim
to use reasoning can use precise (i.e., logical reasoning), or various degrees
of imprecise reasoning (such as "heuristic" reasoning, case-based reasoning,
probabilistic reasoning, and many others). This chapter focuses on logical
reasoning. In chapter 13 logical inference is compared and contrasted with
scientific inference.
Logical reasoners act upon a collection of facts and logical constraints (usu-

ally called axioms) stored in a knowledge base. Rules cause additional facts to
be inferred and stored in the knowledge base. Storing a new fact in the know-
ledge base is called assertion. The most common action of a rule is to assert
one or more facts, but any other action can be performed.
Many kinds of systems attempt automated human reasoning. A system

that evaluates and fires rules is called a rule engine, but there are may other
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kinds of automated reasoners. Including rule-based systems, the main kinds
of automated reasoners are

1. forward-chaining rule engines,

2. backward-chaining rule engines,

3. theorem provers,

4. constraint solvers,

5. description logic reasoners,

6. business rule systems,

7. translators,

8. miscellaneous systems.

These are not mutually exclusive categories, and some systems support more
than one style of reasoning. We now discuss each of these categories in detail,
and then give a list of some of the available software for automated reason-
ing.

Summary

• Rule-based programming is a distinct style from the more common pro-
cedural programming style.

• A rule consists of an antecedent and a consequent. When the antecedent
is satisfied, the consequent is invoked (fired).

• Rule engines logically infer facts from other facts, and so are a form of
automated reasoning system.

• There are many other kinds of reasoning system such as theorem provers,
constraint solvers, and business rule systems.

3.2 Forward- and Backward-Chaining Rule Engines

Forward-chaining rule engines are the easiest rule engines to understand.
One simply specifies a set of rules and some initial facts. The engine then
fires rules as long as there are rules whose match condition is true. Of course,
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theremust be amechanism to prevent rules from firing endlessly on the same
facts. A rule is normally only invoked once on a particular set of facts that
match the rule. When the rule engine finds that no new facts can be inferred,
it stops. At that point one can query the knowledge base.
Backward-chaining rule engines are much harder to understand. They

maintain a knowledge base of facts, but they do not perform all possible
inferences that a forward-chaining rule engine would perform. Rather, a
backward-chaining engine starts with the query to be answered. The engine
then tries to determine whether it is already known (i.e., it can be answered
with known facts in the knowledge base). If so, then it simply retrieves the
facts. If the query cannot be answered with known facts, then it examines
the rules to determine whether any one of them could be used to deduce the
answer to the query. If there are some, then it tries each one. For each such
rule, the rule engine tries to determine whether the hypothesis of the rule is
true. It does this the same way as it does for answering any query: the en-
gine first looks in the knowledge base and then the engine tries to deduce it
by using a rule.
Thus a backward-chaining rule engine is arguing backward from the de-

sired conclusion (sometimes called the “goal”) to the known facts in the
knowledge base. In contrast with the forward-chaining technique thatmatch-
es the hypothesis and then performs the corresponding action, a backward-
chaining engine will match the conclusion and then proceed backward to the
hypothesis. Actions are performed only if the hypothesis is eventually veri-
fied. Rules are invoked only if they are relevant to the goal. Thus actions that
would be performed by a forward-chaining engine might not be performed
by a backward-chaining engine. On the other hand, actions that would be
performed just once by a forward-chaining engine could be performed more
than once by a backward-chaining engine.
The best-known example of a backward-chaining rule engine is the Prolog

programming language (Clocksin et al. 2003). However, there are many oth-
ers, especially commercial business rule engines, which are discussed later
in this chapter.
Backward chainers have some nice features. Because of their strong focus

on a goal, they only consider relevant rules. This can make them very fast.
However, they also have disadvantages. They are much more prone to infi-
nite loops than forward-chaining engines, and it is difficult to support some
forms of reasoning such as paramodulation, which is needed by OWL on-
tologies (see section 4.4). Programming in backward-chaining mode is also
counterintuitive. As a result it takes considerable skill to do it well com-
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pared with programming in forward-chaining mode or programming with a
procedural language.
Forward-chaining engines behave much more like the protein-substrate

binding process introduced at the beginning of this chapter. Modern forward-
chaining rule engines are nearly always based on the Rete algorithm intro-
duced by (Forgy 1982). The Rete algorithm processes the rules and facts with
a network of interrelationships that captures all of the ways that rules can be
fired, either fully or in part. By capturing partially fired rules, it is much eas-
ier to introduce new facts. The Rete network matches the new fact against all
of the partially fired rules to determine whether it can be extended to form a
rule that fires or at least is closer to firing.

Summary

• Both forward- and backward-chaining rule engines require a set of rules
and an initial knowledge base of facts.

• Forward-chaining rule engines apply rules which cause more facts to be
asserted until no more rules apply. One can then query the knowledge
base.

• Backward-chaining rule engines begin with a query and attempt to satisfy
it, proceeding backward from the query to the knowledge base.

3.3 Theorem Provers and Other Reasoners

As the name suggests, a theorem prover attempts to prove theorems. A pro-
gram consists of a theory expressed using axioms and facts. A conjecture is
presented to the system, and the theorem prover attempts to find a proof. A
proof consists of a sequence of rule invocations which start with the axioms
and end with the conjecture. A proved conjecture is called a theorem. Con-
jectures can be regarded as queries, and the theorem-proving process is a
mechanism for answering the queries. However, this is not quite the same as
the query mechanism supported by rule engines or relational databases. In
the latter systems, the result of a query is the set of ways that it can be satis-
fied, not whether it can be satisfied. Theorem provers are not usually capable
of dealing with queries in the same way as a relational database system.
To illustrate this distinction between theorem provers and rule engines,

consider the case of consistency checking. This is an important problem for
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logical theories that corresponds to type checking in modern programming
languages. If one uses a theorem prover for consistency checking, the result
will normally be only one of these three possibilities: consistent, inconsistent,
or unknown. By contrast, with a rule engine the result will also show, in
some detail, the reasons why the theory is inconsistent or why the theory
could not be shown to be either consistent or inconsistent. Needless to say,
this is much more useful. Of course, some theorem provers are much better
at explaining the reason for their conclusion, but the most popular ones give
up this capability for the sake of efficiency.
Theorem provers use a variety of strategies, and many systems offer sev-

eral strategies and considerable customization of those strategies. Theorem
proving in general is undecidable, so there is always a possibility that an
attempt to prove a theorem will fail. One popular strategy is the use of
“tableaux.” When attempting to prove a theorem, one must try many pos-
sibilities. When one attempt fails, it is necessary to backtrack to an earlier
point in the attempt and then try again. From this point of view, theorem
proving is a search in a very large (potentially infinite) space of proofs, and
tableaux are a means of controlling the search.
Because theorem provers and rule engines can be inefficient, a large num-

ber of specialized automated reasoners have been introduced that are limited
to specific kinds of reasoning problems but are much more efficient than the
general reasoners. We discuss some of the most popular of these in this sec-
tion.

Constraint solvers allow one to specify a collection of constraints on vari-
ables. The constraints are most commonly linear equalities or inequalities,
and the variables are usually real-valued. A solution is an assignment of real
values to the variables so that all of the constraints hold. Sometimes one also
asks for the solution that maximizes some linear function. Constraint solvers
are not reasoning about the variables in the same way that rule engines and
theorem provers are reasoning about their variables. However, constraint
solvers are sometimes sufficient for some classes of reasoning problems, and
they are much more efficient at finding solutions than a rule engine or theo-
rem prover would be on the same problem.
Although constraint solvers are excellent for multivariate constraint prob-

lems, they are rarely compatible with the reasoning needed for ontologies.
So they will not be discussed in any more detail.

Description logic (DL) reasoners are a form of theorem prover that is opti-
mized for a special class of theories. Biological information captured using
DLs is classified in a rich hierarchical lattice of concepts and their interrela-
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tionships. Most biological concepts can be defined using DLs, and they allow
limited forms of reasoning about biological knowledge (Baker et al. 1999).
However, not all concepts can be defined using DLs, and many forms of rea-
soning cannot be expressed in this framework. Database joins, for example,
cannot be expressed using DLs. A DL reasoner will be very efficient, but the
limitations of DL reasoners can be too severe for many application domains.
This efficiency leads to another problem: it is difficult to extract the reasons
for conclusions made by the reasoner. Consequently, DL reasoners provide
little feedback in tasks such as consistency checking.
The Web Ontology Language (OWL) was discussed in section 1.6 and will

be covered in detail in section 4.4. OWL has three language levels, depending
on what features are supported. The lowest level, OWL Lite, has the mini-
mum number of features that are necessary for specifying ontologies. The
intermediate level, OWL-DL, has more features than OWL Lite, but still has
some restrictions. The restrictions were chosen so that OWL-DL ontologies
could be processed using a DL reasoner. The highest level, OWL Full, has no
restrictions. The OWL Full level cannot be processed by a DL reasoner, and
one must use a theorem prover.

Business rule systems can be classified as rule engines (and some of them
are excellent in this regard). However, they tend to emphasize ease of use via
graphical user interfaces (GUIs) rather than support for underlying function-
ality. They are intended to be used by individuals who do not have a back-
ground in logic or reasoning systems. Business rule systems are nearly al-
ways proprietary, and their performance is usually relatively poor, although
there are exceptions. Typically the rule system is only part of a larger sys-
tem, so the poor performance is effectively masked by the other activities
occurring at the same time. Web portal servers often contain a business rule
system. Some business rule systems have full support for ontologies, most
commonly ontologies expressed in RDF or OWL.
Many systems simply translate from one language to another one, perform

the reasoning using a different system, and then translate back to the original
language. The advantage is flexibility. The disadvantage is that they can be
much less efficient than systems that are optimized for the target language.
Translators are commonly used for processing ontologies.
Many other kinds of reasoning system exist, such as Boolean constraint

solvers and decision support systems. These may be regarded as optimized
reasoners (just as a DL reasoner is an optimized specialization of a theorem
prover). However, such reasoners are generally much too limited for pro-
cessing ontologies.
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Summary

• Theorem provers prove theorems.

• Queries to a theorem-proving system are expressed as conjectures.

• Theorem proving is very difficult, so numerous strategies have been de-
veloped.

• Specialized theorem provers limit the kind of theory so as to improve per-
formance:

1. Constraint solvers

2. Description logic

3. Business rule systems

3.4 Performance of Automated Reasoners

Any particular reasoning operation (whether it is an inference or a query) is
always performed within a fixed, known context. If the reasoning context
(also known as the knowledge base) changes over time, then steps must be
taken to ensure that the operation is not affected by the changes. This is the
same as query processing in a relational database which uses transactions
(most commonly implemented by using a locking mechanism) to ensure that
updates do not interfere with the results. Because it can be inefficient for
each query to be performed by scanning all of the data, relational databases
usually maintain indexes on the data. However, there is a cost, both in time
and in storage space, to maintain the indexes. An index is useful only if
the cost of maintaining the index is compensated by the improvement in
performance that it provides. If most uses of the database require examining
most of the data, then an index should not be maintained.
A similar situation occurs in automated reasoners. Specialized indexing

structures, such as the Rete network maintained by a Rete engine, requires
additional computer time and storage space tomaintain. This overheadmust
be compensated by an improvement in performance for the indexing struc-
ture to be worthwhile. The way that the knowledge base is used will de-
termine whether the Rete network provides an overall improvement in per-
formance. Generally speaking, the theorem provers (including description
logic systems) are suitable primarily for static knowledge bases. Backward
chainers and non-Rete forward chainers are intermediate. They have some
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support for dynamic knowledge bases, but not as much as a Rete forward
chainer. The Rete-based systems are especially well suited for knowledge
bases that both add data (and rules) and retract them.
It is important to bear in mind that a system in one class can be used to

perform reasoning that is normally associated with another class. Prolog, for
example, is a general-purpose programming language, so one can, in prin-
ciple, implement a theorem prover or a DL reasoning system in Prolog (and
this is commonly done). However, by itself, Prolog is not a theorem prover.

Summary

• Automated reasoners use specialized indexes to improve performance.

• A Rete network is a specialized index that improves the performance of
forward-chaining rule engines.

• Most reasoning systems require an unchanging knowledge base. Only
forward-chaining engines and some backward-chaining engines allow for
dynamically changing knowledge bases.



4 The Semantic Web and
Bioinformatics Applications

Many people have had the experience of suddenly realizing that two of their
acquaintances are actually the same person, although it usually is not as dra-
matic as it was for the main characters in the movie You’ve Got Mail. The
other kind of identity confusion is considerably more sinister: two persons
having the same identity. This is a serious problem, known as identify theft.
The issue of whether two entities are the same or different is fundamental to
semantics.
Addressing logical issues such as whether two entities are the same re-

quires substantially more powerful reasoning capabilities than XML DTDs
or schemas provide. Someday, automated reasoners and expert systems may
be ubiquitous on the web, but at the moment they are uncommon. The web
is a powerful medium, but it does not yet have any mechanism for rules
and inference. Tim Berners-Lee, the director of the World Wide Web Consor-
tium, has proposed a new layer above the web which would make all of this
possible. He calls this the Semantic Web (Miller et al. 2001).
TheWorldWideWeb is defined by a language, the HypertextMarkup Lan-

guage (HTML), and an Internet protocol for using the language, the Hyper-
text Transfer Protocol (HTTP). In the same way, the Semantic Web is defined
by languages and protocols. In this chapter, we introduce the languages of
the Semantic Web and explain what they mean.

4.1 The Semantic Web in Bioinformatics

Biologists use the web heavily, but the web is geared much more toward hu-
man interaction than automated processing. While the web gives biologists
access to information, it does not allow users to easily integrate different
data sources or to incorporate additional analysis tools. The Semantic Web
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addresses these problems by annotating web resources and by providing rea-
soning and retrieval facilities from heterogeneous sources.
To illustrate a possible use of the Semantic Web, consider the following hy-

pothetical scenario. A scientist would like to determine whether a novel pro-
tein (protein Y) interacts with p21-activated kinase 1 (PAK1). To answer this
question, the scientist first goes to the kinase pathway database kinasedb.
ontology.ims.u-tokyo.ac.jp to obtain a list of all known proteins that
interact with PAK1 (e.g., MYLK and BMX). The scientist then writes a set
of rules to determine whether the protein Y is structurally similar to any
PAK1-interacting proteins. After applying the rules using a Semantic Web–
enabled protein interaction server, one hit, protein X, is found. This leads to
the prediction that protein Y will interact with PAK1, as in figure 4.1. Next,
the scientist wishes to relate this interacting pair to a particular signaling
pathway. As all the tools used refer to the same ontologies and terminology
defined through the Gene Ontology (GO), the researcher can easily map this
interacting pair to a relevant signaling pathway obtained from a Semantic
Web–enabled pathway server. During the information foraging described
above, the scientist constantly used literature databases to read relevant ar-
ticles. Despite the tremendous growth of more than 5000 articles each week,
the biologist still managed to quickly find the relevant articles by using an
ontology-based search facility.

Figure 4.1 Based on a set of user-defined rules of 3D structural similarity, align-
ments of protein X (known) and protein Y (novel protein), a novel PAX-protein Y
interaction can be predicted in silico using the Semantic Web.
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As another example, consider a biologist who has just found a novel DNA
sequence from an Anopheles clone which may be important in the devel-
opmental process. To find related sequences, the biologist runs a blastn
search based on a set of requirements (e.g., the sequence identities must be
over 60% and the E-value must be less than 10−10). These requirements can
be captured as rules and constraints which could be taken into account by
an online Semantic Web–enabled sequence comparison service. If the re-
searcher found a number of significantly similar sequences in Drosophila, the
scientist could then obtain gene expression data for the relevant genes from
a Semantic Web–enabled gene expression database. Rules can then be spec-
ified which capture the interesting expression profiles, such as genes which
are highly expressed at specified time points in the developmental process.
In both of these examples, the activities can, in principle, be carried out

manually by the researcher. The researcher reads material, selects the rele-
vant data, copies and pastes from the web browser, and then struggles with
diverse formats, protocols, and applications. Constraints and rules can be
enforced informally by manually selecting the desired data. All of this is
tedious and error-prone, and the amount of data that can be processed this
way is limited. The Semantic Web offers the prospect of addressing these
problems.

Summary

The Semantic Web addresses two important problems in Bioinformatics:

1. The dramatic increase of bioinformatics data available in web-based sys-
tems and databases calls for novel processing methods.

2. The high degree of complexity and heterogeneity of bioinformatics data
and analysis requires semantic-based integration methods.

4.2 The Resource Description Framework

One of the most basic mechanisms of computing systems and networks is
the ability to obtain information identified by an address of some kind. To
open a web page using a browser one must enter a URL either manually or
by clicking on a hypertext link. A URL identifies a resource which can be a
whole web page, an item within a webpage or a query for information that
can be obtained at a website. The ability to access resources using a URL is a
fundamental service provided by the Internet.
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Hypertext links are one of the most important features that the World
Wide Web adds to the underlying Internet. If one regards hypertext links
as defining relationships between resources, then the World Wide Web was
responsible for adding relationships to the resources that were already avail-
able on the Internet prior to the introduction of the web. Indeed, the name
“World Wide Web” was chosen because its purpose was to link together the
resources of the Internet into an enormous web of knowledge. However, as
we discussed in section 1.6, for relationships to be meaningful, they must be
explicit. As stated by Wittgenstein in Proposition 3.3 of (Wittgenstein 1922)),
“Only the proposition has sense; only in the context of a proposition has a
name meaning.” Unfortunately, hypertext links by themselves do not con-
vey anymeaning. They do not explicitly specify the relationship between the
two resources that are linked.
The SemanticWeb is a layer above theWorldWideWeb that adds meaning

to hypertext links. In other words, the Semantic Web makes hypertext links
into ontological relationships. The Semantic Web is a means for introducing
formal semantics to the World Wide Web. All reasoning in the Semantic Web
is formal and rigorous. The Semantic Web is defined by a series of progres-
sively more expressive languages and recommendations of the World Wide
Web Consortium. The first of these is the Resource Description Framework
(RDF) (Lassila and Swick 1999) which is introduced in this section. RDF is
developing quickly (Decker et al. 1998), and there are now many tools and
products that can process RDF. In section 4.4 we introduce theWeb Ontology
Language (OWL) which adds many new semantic features to RDF.
As the name suggests, RDF is a language for representing information

about resources in the World Wide Web. It is particularly intended for repre-
senting annotations about web resources, such as the title, author, and mod-
ification date of a webpage. However, RDF can also be used to represent
information about anything that can be identified on the web, even when
it cannot be directly retrieved. Thus one could use URIs to represent dis-
eases, genes, universities, and hospitals, even though none of these are web
resources in the original sense.
The following is the beginning and end of the GO database, as expressed

in RDF:

<go:go
xmlns:go="http://www.geneontology.org/dtds/go.dtd#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:RDF>
<go:term rdf:about="http://www.geneontology.org/go#GO:0003673"
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n_associations="149784">
<go:accession>GO:0003673</go:accession>
<go:name>Gene_Ontology</go:name>

</go:term>
<go:term rdf:about="http://www.geneontology.org/go#GO:0003674"

n_associations="101079">
<go:accession>GO:0003674</go:accession>
<go:name>molecular_function</go:name>
<go:definition>Elemental activities, such as catalysis or

binding, describing the actions of a gene product at the
molecular level. A given gene product may exhibit one or
more molecular functions.

</go:definition>
<go:part_of

rdf:resource="http://www.geneontology.org/go#GO:0003673"/>
</go:term>

...
</rdf:RDF>

</go:go>

The entire GO database is currently over 350 MB. The root element (named
go:go), defines the two namespaces that are used by the database: RDF
and the GO. RDF statements are always contained in an element named
rdf:RDF. Within the rdf:RDF elements look like ordinary XML elements,
except that they are organized in alternating layers, or stripes, as discussed in
section 1.6. The first layer defines instances belonging to classes. In this case,
the GO database defines two instances of type go:term. The second layer
makes statements about these instances, such as the go:accession identi-
fier and the go:name. The rdf:about attribute is special: it gives the re-
source identifier (URI) of the resource about which one is making statements.
The rdf:resource attribute is also special: it refers to another resource.
Such a reference is analogous to a web link used for navigating from one
page to another page on the web. If there were a third layer, then it would
define instances, and so on. For an example of deeper layers, see figure 1.14.
XML, especially when using XML Schema (XSD), is certainly capable of ex-

pressing annotations about URIs, so it is natural to wonder what RDF adds
to XSD. Tim Berners-Lee wrote an article in 1998 attempting to answer this
question (Berners-Lee 2000b). The essence of the article is that RDF seman-
tics can be closer to the semantics of the domain being represented. As we
discussed in section 2.2, there are many features of the semantics of a do-
main that are difficult to capture using DTDs or XML schemas. Another way
of putting this is that XML documents will make distinctions (such as the
order of child elements) that are semantically irrelevant to the information
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being represented. Recall that semantics is concerned with the abstraction
that emerges from syntactic variation. Tim Berners-Lee claims that RDF is
much better at abstracting semantics from syntax than ordinary XML.
RDF differs from ordinary XML in several important ways:

1. Explicit relationships. In XML there is only one relationship between el-
ements: the unlabeled parent-child relationship (i.e., the relationship be-
tween an element and the elements it directly contains). In RDF a resource
can participate in many different relationships. RDF relationships are ex-
pressed by adding intermediate layers (stripes) or by using attributes that
refer to another resource.

2. Order does not matter. The order of the child elements is semantically sig-
nificant in an XML document. In RDF, on the other hand, one can choose
whether order matters or not. By default, the order in which RDF state-
ments are asserted does not affect the meaning.

3. Many-to-many relationships. An XML element can have many child ele-
ments, but each child element can only be contained in one parent ele-
ment. In RDF a resource can be related to any number of other resources,
in either direction. In other words, all RDF relationships are many-to-
many, whereas XML relationships can only be one-to-many.

4. Syntactic flexibility. RDF allows a larger variety of ways to express facts
than XML. For example, a relationship can be specified using either an
XML attribute or a child element. As another example, one can specify
facts about a resource in several places in the same document or even in
documents anywhere on the web. One can mention a URI in an XML
document, but this is just another piece of data, and it is has no semantic
significance for XML.

5. Inference. RDF has a number of built-in rules that define important notions
such as inheritance. These built-in rules are part of the semantics of RDF.

6. Uniform notation. An important distinction between XML DTDs and XSD
is that DTDs use a different language than the one used for XML docu-
ments. XSD, on the other hand, uses XML for both the schemas and the
documents. RDF also uses the same language for both ontologies and
data, but it goes even further than XSD in erasing all distinctions between
ontologies and data. One can freely intermix RDF ontological and data
statements. By contrast, in XSD the schemas are distinct from any XML
data conforming to the schemas.
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7. Open vs. closed worlds. When evaluating queries it is important to know
whether the database is complete or “closed.” Whether based on the re-
lational model or on XML, databases differ markedly from RDF in this
regard: RDF is open while databases are closed.

RDF refers to relationships as properties, which includes both attributes and
the relationships specified using striping. When a property has a simple data
value, one can use either an attribute or a child element to express it. Both of
these have the same meaning in RDF, while they have very different mean-
ings in XML.When one is designing a DTD or schema, it is necessary tomake
a choice about how relationships will be expressed. The question of whether
one should use an attribute or a child element is one of the most common de-
cisions one must make. Some DTDs, such as the one for Medline, primarily
use child elements. Other DTDs, such as CML, prefer to use attributes. RDF
eliminates the need for this choice.
The mathematical model that defines the semantics of RDF is a graph

(W3C 2004a), consisting of nodes and links, much like the one used by XML
infosets. However, RDF graphs can be arbitrary graphs, while XML infos-
ets are strictly hierarchical, starting from the root. In addition, as mentioned
before, all RDF links are labeled, while XML infosets only label the attribute
links. An RDF node is a resource, and an RDF link is labeled by a prop-
erty. Resources are classified using RDF classes, and every resource is an
instance of at least one RDF class. Classes can be related to one another
by the RDF property named rdfs:subClassOf. When an RDF class is a
subclass of another, then the instances of the subclass are automatically also
instances of the other class. The subClassOf relationship defines the class
hierarchy of an RDF ontology. Properties can be related to one another by
rdfs:subPropertyOf, and it has a similar meaning to subClassOf, but
it is much less commonly used.
Classes and properties are the fundamental organizational entities of RDF.

Consider the first part of the example in figure 1.14:

<locus name="HUMINS locus">
<contains>

<gene name="Insulin gene">
<isStoredIn>

<db_entry name="Genbank sequence" entry="v00565"
format="GENBANK"/>

<db_entry name="EMBL sequence" format="EMBL"
entry="V00565"/>
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</isStoredIn>
</gene>

</contains>
</locus>

The corresponding RDF graph is shown in figure 4.2. The element names
alternate between names of classes and names of properties, depending on
the “striping” level. Thus locus is a class, contains is a property, gene
is a class, and so on. Attributes are always names of properties. The nodes
with no label (i.e., the empty ovals in the graph) are called blank or anonymous
resources. They are important for conveying meaning, but they do not have
explicit URIs. RDF processors generate URIs for blank nodes, but these gen-
erated URIs have no significance. The use of blank nodes in RDF complicates
query processing, compared with XML. However, high-performance graph-
matching systems have been developed that are efficient and scalable. This
will be discussed in section 6.6.

Figure 4.2 RDF graph for an XML document. Resources are represented using
ovals, and rectangles contain data values.

Every link in an RDF graph has three components: the two resources be-
ing linked and the property that links them. Properties are themselves re-
sources, so a link consists of three resources. The two resources being linked
are called the subject and object, while the property that does the linking is
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called the predicate. Together the three resources form a statement, analogous
to a statement in natural language. It is a good practice to use verbs for the
names of predicates so that each RDF statement looks just like a sentence,
and means essentially the same. RDF statements are also called triples. Some
of the triples of the RDF graph in figure 4.2 include the following:

_:1 rdf:type bioml:locus
_:1 bioml:name "HUMINS locus"
_:1 bioml:contains _:2
_:2 rdf:type bioml:gene
_:2 bioml:name "Insulin gene"
_:2 bioml:isStoredIn _:3
...

The underscore means that the resource is a blank node so it does not have a
URI. The other resources are part of either the BioML ontology or are part of
the RDF language. When expressed in English the triples above might look
like the following:

Anonymous node #1 is of type locus.
Anonymous node #1 has name "HUMINS locus".
Anonymous node #1 contains anonymous node #2.
Anonymous node #2 is of type gene.
Anonymous node #2 has name "Insulin gene".
Anonymous node #2 is stored in anonymous node #3.
...

Simple data values, such as the text string “HUMINS locus” are formally
defined by XSD datatypes as in section 2.4.
Unlike the conversion fromDTDs to XSD, it is not possible to automate the

conversion from DTDs to RDF. The problem is that relationships are not ex-
plicitly represented in either DTDs and XSD. In the Medline DTD shown in
figure 2.2, some of the elements correspond to RDF classes while others cor-
respond to RDF properties. A person who is familiar with the terminology
can usually recognize the distinction, but because the necessary information
is not available in the DTD or schema, the conversion cannot be automated.
The MedlineCitation element, for example, probably corresponds to an
RDF class, and each particular Medline citation is an instances of this RDF
class. After a little thought, it seems likely that all of the other elements in
the Medline DTD correspond to RDF properties. However, these choices are
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speculative, and one could certainly make other choices, all of which would
result in a consistent conversion to RDF. Converting from a DTD to RDF is
further complicated by implicit classes. When converting the Medline DTD
to RDF, it is necessary to introduce an RDF class for the date, yet there is no
such element in the Medline DTD. In general, XML element types can cor-
respond to either RDF classes or RDF properties, and both RDF classes and
RDF properties can be implicit. In other words, XML DTDs and schemas are
missing important information about the concepts being represented.
One specifies an RDF ontology using RDF itself. The fact that a resource is

an RDF class, for example, is stated using an ordinary RDF. For example, one
possibility for the classes and properties of the RDF ontology corresponding
to the Medline DTD is shown in figure 4.3. There are two namespaces used
by RDF. The first one is RDF, and the second is RDF Schema (RDFS). The RDF
namespace is sufficient for specifying ordinary facts, while RDFS is necessary
for specifying an RDF ontology.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<rdfs:Class rdf:ID="MedlineCitation"/>
<rdf:Property rdf:ID="Owner"/>
<rdf:Property rdf:ID="Status"/>
<rdf:Property rdf:ID="MedlineID"/>
<rdf:Property rdf:ID="PMID"/>
<rdf:Property rdf:ID="DateCreated"/>
<rdfs:Class rdf:ID="Date"/>
<rdf:Property rdf:ID="Year"/>
<rdf:Property rdf:ID="Month"/>
<rdf:Property rdf:ID="Day"/>
<rdf:Property rdf:ID="ArticleTitle"/>

</rdf:RDF>

Figure 4.3 One possible way to represent the Medline DTD of figure 2.2 using an
RDF ontology.

The Medline citation in figure 2.1 is already almost in a form that is com-
patible with RDF. All that is needed is to add a Date element as shown in
figure 4.4. However, RDF gives one the freedom to represent the same infor-
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mation in many other ways. The document shown in figure 4.5 is equivalent.
Both representations have the same RDF graph, shown in figure 4.6.

<MedlineCitation Owner="NLM" Status="Completed">
<MedlineID>99405456</MedlineID>
<PMID>10476541</PMID>
<DateCreated>

<Date>
<Year>1999</Year>
<Month>10</Month>
<Day>21</Day>

</Date>
</DateCreated>
<ArticleTitle>Breast cancer highlights.</ArticleTitle>

</MedlineCitation>

Figure 4.4 Part of a Medline citation written using RDF.

<MedlineCitation Owner="NLM" Status="Completed"
MedlineID="99405456" PMID="10476541"
ArticleTitle="Breast cancer highlights">

<DateCreated>
<Date Year="1999" Month="10" Day="21"/>

</DateCreated>
</MedlineCitation>

Figure 4.5 Part of a Medline citation written using RDF. Although it looks different,
the information is the same as that in figure 4.4.

In an XML DTD or schema one can restrict the content of an element.
The analogous kinds of restriction in RDF are called domain and range con-
straints. A domain constraint of a property restricts the kinds of resource that
can be the subjects of statements using that property. A range constraint re-
stricts the kinds of resource that can be objects of that property. For example,
the DateCreated property is only allowed to link a MedlineCitation to
a Date. An RDF ontology would state this as follows:
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Figure 4.6 RDF graph for a typical Medline citation. Resource nodes are shown
using ovals, text nodes are shown using rectangles. All links are labeled with the
property. The ml: prefix stands for the Medline ontology.

<rdf:Property rdf:ID="DateCreated">
<rdfs:domain rdf:resource="#MedlineCitation"/>
<rdfs:range rdf:resource="#Date"/>

</rdf:Property>

The rdf:ID attribute is used for defining a resource. Each resource is de-
fined exactly once. At this point one can also annotate the resource with
additional property values, as was done above. The rdf:about attribute is
used for annotating a resource. Use this when one is adding property values
to a resource that has been defined elsewhere. The rdf:resource attribute
is used for referring to a resource. In terms of statements, use rdf:ID and
rdf:about for a resource that is to be the subject of the statement, and use
rdf:resource when the resource is to be the object of the statement. We
leave it as an exercise to the reader to restate the molecule DTD as an RDF
ontology and to write the nitrous oxide molecule document in RDF.
The last important feature that distinguishes RDF from XML is its incor-

poration of built-in inference rules. The most important built-in rule is the
subClass rule because this is the rule that implements inheritance and taxo-
nomic classification of concepts. Although there are many notions of hier-
archy, as discussed in section 1.5, the most commonly used is the notion of
taxonomy which is based on the mathematical notion of set containment.
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The fundamental relationship between classes in a taxonomy is the subclass
relationship. For example, in the chemical hierarchy in figure 1.11, Macro-
molecule is a subclass of Chemical, and Protein is a subclass ofMacromolecule.
In RDF, the subclass relationship is called rdfs:subClassOf. To specify

that Protein is a subclass of Macromolecule, which is a subclass of Chemical,
one would use these RDF statements:

<Class rdf:about="#Protein">
<subClassOf rdf:resource="#Macromolecule"/>

</Class>
<Class rdf:about="#Macromolecule">
<subClassOf rdf:resource="#Chemical"/>

</Class>

Now suppose that one is describing a particular protein using RDF:

<Protein rdf:ID="rhodopsin"/>

RDF will automatically infer that rhodopsin is also a macromolecule and a
chemical. In other words, the fact that rhodopsin is a macromolecule is inher-
ited from the fact that it is a protein. This can be important for information
retrieval and information transformation. Without this inference, a query for
a chemical would not recognize rhodopsin as being a chemical.
As discussed in chapter 3, a rule has an antecedent and a consequent. The

antecedents for RDF rules consist of one or more RDF statements. The con-
clusion consists of exactly one RDF statement. If the antecedent statements
have been previously asserted (i.e., either explicitly stated or previously in-
ferred), then the consequent statement is inferred. The most important infer-
ence rules that are built into RDF are the following:

1. Subclass rule. If class A is a subClassOf class B, and if the resource
R has rdf:type A, then the resource R also has rdf:type B. In other
words, class A is a subset of class B.

2. Subproperty rule. If property P is a subPropertyOf property Q, and if
the resource R is linked to resource S using property P, then the resource
R is also linked to resource S using property Q. In other words, the links
(statements) using property P are a subset of the links using Q.

3. Domain rule. If property P has domain D, and if the resource R is linked
to resource S using property P, then the resource R has rdf:type D.
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4. Range rule. If property P has range C, and if the resource R is linked to
resource S using property P, then the resource R has rdf:type C.

The full list of all RDF inference rules is in (Hayes 2004).
The meaning of an RDF graph is intimately connected with the RDF rules.

Any query or other use of an RDF graph always presumes that all applicable
inference rules have been applied. This is very different from XML where
“what you see is what you get,” that is, the meaning of XML is entirely de-
termined by what is explicitly stated. Rules can be a powerful mechanism
for expressing meaning, but this power comes at a price. The subClass rule,
for example, is very powerful and useful, but because it does not allow for
the possibility of any exceptions, it is not applicable to many taxonomies in
the real world. As another example, suppose one makes a mistake and states
that a Medline citation is owned by rhodopsin. This does not make sense:
rhodopsin is a protein not an institution. An XML processor would imme-
diately give an error message, but an RDF processor would not. The RDF
processor would just infer that rhodopsin is both a protein and an institution!
One flaw of XML is that the order of child elements is semantically signifi-

cant whether one wants it to be significant or not. RDF allows one to choose
whether the order should matter or not, and it provides two mechanisms
for this. The older mechanism is the notion of a container. For example, the
Krebs cycle is an ordered list of eight enzymes.1 Using ordinary XML, order
matters, so one could define the Krebs cycle enzymes with the following:

<Pathway name="Krebs Cycle">
<Protein name="Citrate synthase"/>
<Protein name="Aconitase"/>
<Protein name="Isocitrate dehydrogenase"/>
<Protein name="a-Ketoglutarate dehydrogenase complex"/>
<Protein name="Succinyl-CoA synthetase"/>
<Protein name="Succinate dehydrogenase"/>
<Protein name="Fumerase"/>
<Protein name="Malate dehydrogenase"/>

</Pathway>

In RDF the relationship must be explicitly specified so it would look some-
thing like this:

1. It is actually a cycle. The order is significant, but one can start with any one of the enzymes.
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<Pathway name="Krebs Cycle">
<usesEnzyme>
<Protein name="Citrate synthase"/>
<Protein name="Aconitase"/>
<Protein name="Isocitrate dehydrogenase"/>
<Protein name="a-Ketoglutarate dehydrogenase complex"/>
<Protein name="Succinyl-CoA synthetase"/>
<Protein name="Succinate dehydrogenase"/>
<Protein name="Fumerase"/>
<Protein name="Malate dehydrogenase"/>
</usesEnzyme>
</Pathway>

However, now the order is lost. The fact that the statements are in the right
order does not matter. An RDF processor will not maintain this order, and
one cannot make any use of it. Fortunately, there are two mechanisms for
retaining the ordering. The oldermethod is to place the enzymes in a sequence
container as follows:

<Pathway name="Krebs Cycle">

<usesEnzyme>

<rdf:Seq>

<rdf:li>

<Protein name="Citrate synthase"/>

</rdf:li>

<rdf:li>

<Protein name="Aconitase"/>

</rdf:li>

<rdf:li>

<Protein name="Isocitrate dehydrogenase"/>

</rdf:li>

<rdf:li>

<Protein name="a-Ketoglutarate dehydrogenase complex"/>

</rdf:li>

<rdf:li>

<Protein name="Succinyl-CoA synthetase"/>

</rdf:li>

<rdf:li>

<Protein name="Succinate dehydrogenase"/>

</rdf:li>

<rdf:li>
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<Protein name="Fumerase"/>

</rdf:li>

<rdf:li>

<Protein name="Malate dehydrogenase"/>

</rdf:li>

</rdf:Seq>

</usesEnzyme>

</Pathway>

The sequence is itself a resource as well as being the container of the other
resources. Notice the use of the rdf:li property for the members of the
container. This name was borrowed from HTML where it is used for the
members of lists. There are three kinds of container:

1. rdf:Seq. A sequence contains an ordered list of resources. In HTML one
uses the ol tag for such a list.

2. rdf:Bag. A bag is an unordered container of resources. A bag can have no
resources at all, and it can contain the same resource more than once. In
HTML one uses the ul tag for such a container.

3. rdf:Alt. An Alt container is intended to represent a set of alternatives.
The first resource is the default or preferred alternative, and there is no
preference among the others. So an Alt container is a set with one dis-
tinguished member. This corresponds to a “drop-down menu” in HTML,
and is specified by using the select tag.

More recently, a second mechanism for ordered lists was added to RDF,
called a collection. The Krebs cycle can now be expressed as follows:

<Pathway name="Krebs Cycle">
<usesEnzyme rdf:parseType="Collection">
<Protein name="Citrate synthase"/>
<Protein name="Aconitase"/>
<Protein name="Isocitrate dehydrogenase"/>
<Protein name="a-Ketoglutarate dehydrogenase complex"/>
<Protein name="Succinyl-CoA synthetase"/>
<Protein name="Succinate dehydrogenase"/>
<Protein name="Fumerase"/>
<Protein name="Malate dehydrogenase"/>
</usesEnzyme>

</Pathway>
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To get this kind of list, one only needs to say that the rdf:ParseType if the
property value is Collection. This is much simpler than using a container.

Summary

• RDF is a framework for representing explicit many-to-many relationships
(called properties) between web-based resources and data.

• The semantics of RDF is defined by RDF graphs.

• RDF has built-in inference rules for subclasses, subproperties, domains
and ranges.

• Inference is a powerful feature, but one must be careful when using it.

• Conversion from XML DTDs or schemas to RDF cannot be automated.

• Ordered structures can be defined using RDF containers and collections.

4.3 XML Topic Maps

The XML Topic Maps (XTM) language is another XML-based ontology lan-
guage that has a very different history and semantics than any of the other
XML-based ontology languages (XTM 2000). XTM provides a model and
grammar for representing the structure of information resources used to de-
fine topics, and the associations (relationships) between topics. Names, re-
sources, and relationships are characteristics of abstract subjects, which are
called topics. Topics have their characteristics within scopes, that is, the lim-
ited contexts within which the characteristics of topics apply.
Consider the Medline citation shown in figure 4.5. When written in XTM

it would look something like this:

<topic id="PMID10476541">
<instanceOf><topicRef xlink:href="#MedlineCitation"/></instanceOf>
<baseName>

<baseNameString>Breast cancer highlights</baseNameString>
</baseName>
<occurrence>

<instanceOf><topicRef xlink:href="#html-format"/></instanceOf>
<resourceRef

xlink:href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?..."/>
</occurrence>

</topic>
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<association>
<instanceOf>
<topicRef xlink:href="#citation-attributes"/>

</instanceOf>
<member>
<roleSpec><topicRef xlink:href="#owner"/></roleSpec>
<topicRef xlink:href="#NLM"/>

</member>
<member>
<roleSpec><topicRef xlink:href="#status"/></roleSpec>
<topicRef xlink:href="#completed"/>

</member>
<member>
<roleSpec><topicRef xlink:href="#date-created"/></roleSpec>
<topicRef xlink:href="#date991021"/>

</member>
</association>

<topic id="date991021">
<baseName>
<scope>

<topicRef
xlink:href="http://kmi.open.ac.uk/psi/datatypes.xtm#date"/>

</scope>
<baseNameString>1999-10-21</baseNameString>

</baseName>
</topic>

Except for some syntactic details such as striping and built-in attributes in
the RDF namespace, RDF documents can be very similar to general XML
documents. As the example above illustrates, XTM documents have no such
advantage.
XTM is a graph-based language that has much in common with RDF. Both

of them are intended to be a mechanism for annotating web resources. The
web resources that are being annotated occur within documents which fur-
nish the “primary structure” defining the resources. The annotations are a
“secondary structure” known as metadata or “data about data.”
Although XTM and RDF have many similarities, they also differ in some

important respects:

• XTM relationships (called associations) can have any number of roles. By
contrast, the RDF languages only support binary relationships.

• XTM has a notion of scope or context that the RDF languages lack.
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• The RDF languages have a formal semantics. XTM only has a formal
metamodel.

• XTM makes a clear distinction between metadata and data, while RDF
does not. In RDF one can annotate anything, including annotations.

4.4 The Web Ontology Language

We began this chapter with a story about the experience people sometimes
have of suddenly realizing that two of their acquaintances are actually the
same person. Although RDF introduces some important prerequisites for
reasoning about whether two entities are the same or different, it does not
have the ability to deal with this issue. OWL differs from RDF in a number
of ways, but one of the most important is how it deals with identity. One
can explicitly state that two resources are the same or that they are different.
It is also possible to infer one or the other of these two cases. However, it
is also possible that one will not be able to infer either one. This has a pro-
found impact on the semantics of OWL. Unlike XML or RDF, one must now
consider many “possible worlds,” differing from one another with respect to
whether resources are the same or different, yet each of the possible worlds
is compatible with the known facts.
Logicians refer to the process of equating entities as paramodulation. The

OWL paramodulation properties are sameAs and differentFrom. In ad-
dition to paramodulation, OWL extends the RDF vocabulary to include rela-
tions between classes (such as disjointness), cardinality constraints on prop-
erties (e.g., "exactly one"), characteristics of properties (e.g., symmetry), and
enumerated classes. All of these features of OWL are intimately connected to
the issue of identity. For example, suppose that one states in the molecule on-
tology that every atom has exactly one elementType. If a particular atom
does not have an elementType, then one can infer that this atom has an el-
ementType which is the sameAs one of the known element types, but one
does not know which one. No inference of this kind is possible in RDF.
The OWL language specification is given in (van Harmelen et al. 2003).

There are three distinct OWL languages: OWLLite, OWL-DL, andOWL Full.
They differ from each other primarily with respect to what constructs are
allowed in each language. OWL Lite is the most restrictive. OWL-DL is less
restrictive than OWL Lite but more restrictive than OWL Full. OWL Full is
unrestricted. Syntactically, OWL is nearly identical to RDF. Like RDF, one can
intermix ontological and data statements. The only syntactic differences are
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the additional properties introduced by OWL and the restrictions imposed
by OWL Lite and OWL-DL.
Consider the following characterization of a disease syndrome: “The irido-

corneal endothelial syndrome (ICE) is characterized by corneal endothelium
proliferation andmigration, iris atrophy, corneal oedema and/or pigmentary
iris nevi” (Jurowski et al. 2004). In this statement there are four symptoms,
and the ICE syndrome is stated to be characterized by exhibiting one or more
of these symptoms. In OWL one can specify an enumeration as follows:

<owl:Class rdf:ID="ICE-Symptoms">
<owl:oneOf parseType="Collection">
<Symptom name="corneal endothelium

proliferation and migration"/>
<Symptom name="iris atrophy"/>
<Symptom name="corneal oedema"/>
<Symptom name="pigmentary iris nevi"/>

</owl:oneOf>
</owl:Class>

This defines a class of symptoms consisting of exactly the ones specified. One
can then define the ICE syndrome as the subclass of disease for which at least
one of these four symptoms occurs:

<owl:Class rdf:ID="ICE-Syndrome">
<owl:intersectionOf parseType="Collection">
<owl:Class rdf:about="#Disease"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#has-symptom"/>
<owl:someValuesFrom
rdf:resource="#ICE-Symptoms"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

The statements above specify the ICE-Syndrome class as being the intersec-
tion of two sets:

1. The set of all diseases

2. The set of things that have at least one of the four ICE symptoms
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An OWL restriction is a way of specifying a set of things that satisfy some
criterion. It is called a “restriction” because it restricts the set of all things
to those that satisfy the criterion. Mathematically, it corresponds to the “set
constructor” whereby a set is defined by a condition on its elements. For
example, {x|x>0} defines the set of positive numbers. Classes are constructed
from classes from by using owl:intersectionOf (corresponding to the
Boolean AND operator), owl:unionOf (Boolean OR operator), and owl:
complementOf (Boolean NOT operator).
OWL has six set constructors. All of them use owl:Restriction and

owl:onProperty as in the ICE-Syndrome example above, together with
one of the following:

1. owl:someValuesFrom. This is the constructor that was used in the ICE-
Syndrome example. It defines the set of resources for which the property
has at least one value in the class.

2. owl:allValuesFrom. This constructor defines the set of resources forwhich
the property only takes values in the class. In other words, the property
does not take values of any other kind.

3. owl:hasValue. This constructor defines the set of resources for which the
property takes the specified value.

4. owl:maxCardinality. In general, a property can have any number of val-
ues. This constructor defines the set of resources for which the property
is limited to have the specified maximum number of values.

5. owl:minCardinality. This is the reverse of maxCardinality. It defines
the set of resources for which the property is at least the specified mini-
mum number of values.

6. owl:cardinality. This constructor defines the set of resources for which
the property has exactly the specified number of values.

While classes can be constructed in a large variety of ways, OWL has
only one property constructor: owl:inverseOf. The inverse of a prop-
erty is the property for which the roles of subject and object have been re-
versed. For example, in figure 1.14 there are a number of relationships such
as isStoredIn and isCitedBy. It may be useful to look at these relation-
ships from the other point of view. Here is how one would define the inverse
properties using OWL:
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<owl:ObjectProperty rdf:ID="stores">
<owl:inverseOf rdf:resource="#isStoredIn"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="cites">
<owl:inverseOf rdf:resource="#isCitedBy"/>

</owl:ObjectProperty>

There are no other ways to construct a property in OWL. However, there are
some property constraints:

1. owl:FunctionalProperty. Such a property may relate a subject to at most
one object. If a particular subject is related to two resources, then those
two resources must be the same. Mathematically, such a property is a
partial function.

2. owl:InverseFunctionalProperty. Such a property is allowed to relate an
object to at most one subject. This is the same as constraining the inverse
property to have the owl:FunctionalProperty.

3. owl:SymmetricProperty. A symmetric property is the same as its inverse
property.

4. owl:TransitiveProperty. This imposes the mathematical transitivity con-
dition on the property.

The semantics of OWL is defined in (Patel-Schneider et al. 2004). The se-
mantics is in terms of interpretations. The more commonly used term for an
interpretation is a model, and that is the term that will usually be used in
this chapter. The detailed definition of an interpretation is complicated, but
it is essentially the same as an RDF graph. An OWL document specifies a
collection of statements. One can also specify that it owl:imports other OWL
documents, and the statements in the imported documents are also regarded
as having been stated. The collection of all the statements forms a theory
about the world. Such a theory is consistent with an infinite collection of
models. These models may be regarded as possible worlds. As additional
facts become known, the collection of possible worlds gets smaller, as the
new facts eliminate possibilities. This process is analogous to scientific rea-
soning, except that in science one attaches probabilities to possible worlds,
and observations modify these probabilities (using Bayes’ law). This is cov-
ered in chapter 14. Logical theories, by contrast, assign no weights to the
possible worlds.
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Inference for a theory is conceptually simple. If a statement is true in every
possible world, then it is a fact. If a statement is true in some worlds, but not
in others, then one cannot say that it is either true or false: it is not a fact,
at least not yet. A statement that is true in every possible world compatible
with a theory is said to be entailed by the theory. Although the notion of
entailment is simple and intuitive, it is not very practical. After all, there will
always be infinitely many possible worlds so it is not possible to examine
every one. In practice, some other technique is necessary to determine what
statements are entailed.
The most commonly used technique for determining entailment is to use

rules. This is similar to how inference is done in RDF, but there is an impor-
tant difference. Applying RDF rules in any particular RDF document will
always eventually terminate. If one does the same for OWL, then it will not
terminate because OWL models are always infinite. In other words, one can
infer infinitely many facts. To perform inference with OWL one must fo-
cus on a particular question that one would like to answer. For example,
one might ask for all known diseases that are characterized by the ICE syn-
drome (i.e., all known instances of the ICE-Syndrome class). A more subtle
question would be whether two diseases are the same. By focusing on a par-
ticular question, the rule engine can restrict attention to facts and rules that
are relevant. The resulting inference process can be very efficient in practice.
Relational databases and XML differ from the Semantic Web with respect

to how each interprets the meaning of the known facts about the world. We
have already seen some examples of this distinction in the previous section
where someone made a mistake and stated that a Medline citation is owned
by “rhodopsin.” The “owned by” relationship links a citation to the institu-
tion that owns it. A relational database or an XML processor would give an
error message in this case because “rhodopsin” is not an institution. An RDF
processor, on the other hand, would infer that “rhodopsin” is an institution.
Databases and XML are said to be assuming a closed world. The Semantic
Web, on the other hand, is assuming an open world.
Logicians refer to this distinction as monotonicity. A logical system that

assumes an open world is monotonic, while a logical system that assumes
a closed world is nonmonotonic. To understand why one refers to a mono-
tonic system as open, consider another example. Suppose that the “occursIn”
property gives the species of an entity such as a gene or chromosome. It is
reasonable to require that every gene occurs in at least one species. In OWL
this would be written as follows:
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<owl:Class rdf:ID="Gene">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#occursIn"/>
<owl:someValuesFrom rdf:resource="#Species"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Now suppose that we state that hemoglobin alpha embryonic-3 (hbae3) is a
gene but neglect to mention any species that this gene occurs in:

<Gene rdf:ID="hbae3">
<rdfs:label>hemoglobin alpha embryonic-3</rdfs:label>

</Gene>

If we are assuming a closed world, then this annotation is inconsistent: one is
required to specify at least one species in which each gene occurs. In an open
world, on the other hand, one can infer that this gene occurs in some species,
we just do not know which ones they are. In an open world, one accepts that
one does not know everything, and that some facts have yet to be stated. In
a closed world, the world is assumed to be “complete”: if something has not
been stated then it is not true.
The closed world assumption has been used successfully for many years

by database management systems, and there are good reasons for making
this assumption. Databases arose in the context of commercial business ap-
plications. For example, they are used for storing employee information. If
a person does not have a record in the employee database, then the person
is not an employee. This may seem unduly harsh, but it makes perfectly
good sense for modern businesses where all significant records are stored in
databases. Modern storage systems can bemade highly reliable and fault tol-
erant, so much so that they are now more reliable than paper documents. In
this case, the database is not simply recording the state of reality, it is reality.
Being an employee is defined by records stored in the computer system.
By contrast, the closed world assumption is not appropriate for the web

where information is necessarily incomplete and fragmentary. The web con-
sists of a very large number of independent websites for which there is no
central authority. Furthermore, websites can be turned on and off at the
whim of the owners.
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Reasoning in an open world is sometimes counterintuitive. As an example
of this, suppose that we make the additional requirement that every gene
belong to exactly one species. This can be specified by adding the following
to the specification above:

<FunctionalProperty rdf:about="#occursIn"/>

If one has not specified that the hbae3 gene occurs in any species, then one
would infer that there is exactly one, as yet unknown, species where this
gene occurs. This is shown in figure 4.7.

Figure 4.7 An example of an unspecified but mandatory relationship. The blank
node represents the anonymous species that is necessary to fulfill the requirement.
The inferred resource and relationship are shown in gray.

Now suppose that one specifies that the hbae3 gene occurs in two species:

<Gene rdf:about="hbae3">
<occursIn rdf:resource="#D.rerio"/>
<occursIn rdf:resource="#D.danglia"/>

</Gene>

In a closed world, this would be inconsistent because the ontology allows a
gene to belong to only one species. In an open world, one would infer that D.
rerio is the same species as D. danglia. This is shown graphically in figure 4.8.
The inference that D. rerio and D. danglia are the same species is clearly

incorrect. There are many ways to remedy this erroneous conclusion. One
could explicitly specify that the two species are different as follows:

<Gene rdf:about="#D.rerio">
<owl:differentFrom rdf:about="#D.danglia"/>

</Gene>

This would cause an OWL processor to signal an inconsistency exactly as in a
closed world system. One could also drop the requirement that genes occur
in only one species, which is more realistic. Doing this would eliminate the
spurious inference in this case, but it would not prevent the inference from
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Figure 4.8 An example in which two resources are inferred to be the same. In this
case the ontology allows a gene to belong to at most one species. As a result if a gene
is linked to more than one species, then all of them must be the same. The inferred
relationship is shown in gray.

occurring as a result of other facts and rules. In general, one can reduce
spurious inferences in two ways:

1. Never overspecify. Declaring that occursIn is a functional property is
too strong. It may be true nearly all of the time, but even one exception
can result in spurious inferences.

2. Specify distinctions. Explicitly declare that resources are different when
they are known to be distinct. However, only specify this if one is re-
ally sure that the resources are different. It does sometimes happen that
entities such as diseases and proteins that were once thought to be dif-
ferent subsequently turn out to be the same and the consequences can be
profound.

Specifying that resources are different can get very tedious if there is a
large number of them. To deal with this problem, OWL has a mechanism for
specifying that a list of resources are all different from one another. For exam-
ple, the two species above could have been declared to be different by using
the owl:AllDifferent resource and owl:distinctMembers property
as follows:

<AllDifferent>
<distinctMembers parseType="Collection">
<Gene rdf:about="#D.rerio">
<Gene rdf:about="#D.danglia">

</distinctMembers>
</AllDifferent>
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Summary

• OWL is based on RDF and has three increasingly more general levels:
OWL Lite, OWL-DL, and OWL Full.

• An OWL document defines a theory of the world. States of the world that
are consistent with the theory are called models of the theory.

• A fact that is true in every model is said to be entailed by the theory. OWL
inference is defined by entailment.

• OWL is especially well suited for defining concepts in terms of other con-
cepts using class constructors.

• OWL has only one property constructor, but it has some property con-
straints.

• Resources can be explicitly stated to be the same or different. It is also
possible to infer that two resources are the same or different.

• To perform inference in OWL one must focus on a particular question.

• OWL inference is monotonic, which can limit inferences, but careful de-
sign can reduce this problem.

4.5 Exercises

1. Restate the molecule schema in figure 1.6 as an RDF ontology. There will
not be a single correct answer to this exercise.

2. Define the nitrous oxidemolecule in figure 2.3 using RDF. The answer will
depend on the RDF ontology.

3. Rewrite the bio sequence DTD in exercise 4.2 as an OWL ontology.

4. Rewrite the physical units DTD in exercise 4.3 as an OWL ontology.

5. Rewrite the Fitzhugh-Nagumo model and DTD in exercise 4.4 as an OWL
ontology.





5 Survey of Ontologies in
Bioinformatics

There are a large number of biomedical ontologies and databases that are cur-
rently available, and more continue to be developed. There is even a site that
tracks the publicly available sources. Ontologies have emerged because of
the need for a common language to develop effective human and computer
communication across scattered, personal sources of data and knowledge.
In this chapter, we provide a survey of ontologies and databases used in
the bioinformatics community. In the first section we focus on human com-
munication. The ontologies in this section are concerned with medical and
biological terminology and with ontologies for organizing other ontologies.
The rest of the chapter shifts the focus to computer communication. In sec-

tion 5.2 we survey the main XML-based ontologies for bioinformatics. The
remaining sections consider some of the many databases that have been de-
veloped for biomedical purposes. Each database has its own structure and
therefore can be regarded as defining an ontology. However, the focus is on
the data contained in the database rather than on the language used for rep-
resenting the data. These databases differ markedly from one another with
respect to how the data are specified and whether they are compatible with
the ontologies in the first two sections. Many of the databases are available
in several formats. Only databases that can be downloaded were included in
the survey.

5.1 Bio-Ontologies

We have seen that ontologies are a versatile mechanism for understanding
concepts and relationships. In this section the concern is with the human
communication of biomedical concepts as well as with understanding what
knowledge is available. We first consider ontologies dealing with terminol-



90 5 Survey of Ontologies in Bioinformatics

ogy. The first one was originally focused on medical terminology but now
also includes many other biomedical vocabularies, has grown to be impres-
sively large, but is sometimes incoherent as a result. The second ontology
focuses exclusively on terminology for genomics. As a result of its narrow
focus, it is very coherent, and a wide variety of tools have been developed
that make use of it. Finally, we consider ontologies that organize other on-
tologies. The number of biomedical ontologies and databases has grown so
large that it is necessary to have a framework for organizing them.

5.1.1 Unified Medical Language System

Terminology is the most common denominator of all biomedical literature
resources, including the names of organisms, tissues, cell types, genes, pro-
teins, diseases. There are various controlled vocabularies such as theMedical
Subject Headings (MeSH) associated with these resources. MeSH was de-
veloped by the U.S. National Library of Medicine (NLM). However, having
identified terminology as a key integrating factor for biomedical resources
does not imply they use standard vocabularies which would make these re-
sources interoperable. In 1986, NLM began a long-term research and de-
velopment project to build the Unified Medical Language System (UMLS)
located at www.nlm.nih.gov/research/umls. The UMLS is a repository
of biomedical vocabularies and is the NLM’s biological ontology (Lindberg
et al. 1993; Baclawski et al. 2000; Yandell and Majoros 2002).
The purpose of the UMLS is to improve the ability of computer programs

to “understand” the biomedical meaning in user inquiries and to use this un-
derstanding to retrieve and integrate relevant machine-readable information
for users (Lindberg et al. 1993). The UMLS integrates over 4.5 million names
for over 1 million concepts from more than 100 biomedical vocabularies, as
well as more than 12 million relations among these concepts. Vocabularies
integrated in the UMLS include the the taxonomy of the National Center for
Biotechnology Information (NCBI), the Gene Ontology (GO), MeSH and the
digital anatomist symbolic knowledge base. UMLS concepts are not only
interrelated, but may also be linked to external resources such as GenBank
(Bodenreider 2004).
The UMLS is composed of three main components: the Metathesaurus

(META), the SPECIALIST lexicon and associated lexical programs, and the
Semantic Network (SN) (Denny et al. 2003). We now discuss each of these
components in more detail.
META is themain component of the UMLS. This component is a repository
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of interrelated biomedical concepts that providemetadata, relationships, and
semantic information for each concept. However, META is more than a sim-
ple concordance of terms. Its developers strive to provide a concept-oriented
organization in which synonymous terms from disparate source vocabular-
ies map to the same concepts. The UMLS contains semantic information
about terms from various sources, and each concept can be understood and
located by its relationships to other concepts. This is a result of the organiz-
ing principle of semantic “locality” (Bodenreider et al. 1998). For example,
interconcept relationships can be either inherited from the structure of the
source vocabularies or generated specifically by the META editors. Relation-
ships can be hierarchical or associative. Statistical relations between concepts
from the MeSH vocabulary are also present, derived from the co-occurrence
of MeSH indexing terms in Medline citations. Finally, each META concept is
broadly categorized by means of semantic types in the SN component of the
UMLS.META has been constructed through lexical matching techniques and
human review (Tuttle et al. 1989) to minimize inconsistencies of parent-child
relationships and to minimize redundancies of multiple META concepts.
The SN is a classification system for the concepts in the META compo-

nent. As an ontology, the UMLS is an ontology with a class hierarchy con-
taining over 1 million classes, represented by the concepts in META and the
semantic types in SN. In this class hierarchy, the semantic types form the top
of the hierarchy. The SN serves the additional function of defining part of
the property hierarchy of the ontology. However, UMLS concepts can have
many other attributes (such as International Classification of Diseases [ICD-
9] codes) that implicitly define many other properties. The semantics of the
UMLS has yet to be defined precisely, and it has not yet been completely
specified using any of the ontology languages.
The SPECIALIST lexicon includes lexical information about a selected core

group of biomedical terms, including their parts of speech, inflectional forms,
common acronyms, and abbreviations.
In addition to data, the UMLS includes tools such as MetamorphoSys for

customizing theMETA, lvg for generating lexical variants of concept names,
and MetaMap for extracting UMLS concepts from text. The UMLS know-
ledge sources are updated quarterly (Bodenreider 2004). MetaMap ii.nlm.
nih.gov/MTI/mmi.shtml is one of the foundations of NLM’s Indexing
Initiative System which is being applied to both semiautomatic and fully au-
tomatic indexing of the biomedical literature at the library (Aronson 2001). It
has been used for mapping text to the UMLS META. For example, MetaMap
can be applied to free texts like the title and abstract fields of Medline cita-
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tions. MetaMap can also be used for constructing a list of ranking concepts
by applying the MetaMap indexing ranking function to each UMLS META
concept. The UMLS Knowledge Source Server (UMLSKS) umlsks.nlm.
nih.gov is a web server that provides access to the knowledge sources and
other related resources made available by developers using the UMLS.
The UMLS is a rich source of knowledge in the biomedical domain. The

UMLS is used for research and development in a range of different applica-
tions, including natural language processing (Baclawski et al. 2000; McCray
et al. 2001). UMLS browsers are discussed in section 6.3. Search engines
based on the UMLS use it either as a source of keywords or as ameans of gen-
erating knowledge representations. An example of the keyword approach is
the Medical World Search at www.mwsearch.com which is a search engine
for medical information in selected medical sites. An example of the know-
ledge representation approach is the Semantic Knowledge Indexing Platform
(SKIP), shown in section 6.6.

5.1.2 The Gene Ontology

The most prominent ontology for bioinformatics is GO. GO is produced by
the GO Consortium, which seeks to provide a structured, controlled vocabu-
lary for the description of gene product function, process, and location (GO
2003, 2004). The GO Consortium was initially a collaboration among the
Mouse Genome Database, FlyBase, and Saccharomyces Genome database ef-
forts. It has since grown to 16members. GO is now part of the UMLS, and the
GO Consortium is a member of the Open Biological Ontologies consortium
to be discussed in the next section.
A description of a gene product using the GO terminology is called an

annotation. One important use of GO is the prediction of gene function based
on patterns of annotation. For example, if annotations for two attributes tend
to occur together in a database, then a gene holding one attribute is likely to
hold for the other as well (King et al. 2003). In this way, functional predictions
can be made by applying prior knowledge to infer the function of a novel
entity (either a gene or a protein).
GO consists of three distinct ontologies, each of which serves as an orga-

nizing principle for describing gene products. The intention is that each gene
product should be annotated by classifying it three times, once within each
ontology (Fraser and Marcotte 2004). The three GO ontologies are:
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1. Molecular function. The biochemical activity of a gene product. For ex-
ample, a gene product could be a transcription factor or a DNA helicase.
This classifies what kind of molecule the gene product is.

2. Biological process. The biological goal to which a gene product con-
tributes. For example, mitosis or purine metabolism. Such a process is
accomplished by an ordered assembly of molecular functions. This de-
scribes what a molecule does or is involved in doing.

3. Cellular component. The location in a cell in which the biological activity
of the gene product is performed. Examples include the nucleus, a telom-
ere, or an origin recognition complex. This is where the gene product is
located.

The terms within each of the three GO ontologies may be related to other
terms in two ways:

1. is-a. This is the subclass relationship used by classic hierarchies such as
the taxonomy of living beings. For example, condensed chromosome is-a
chromosome.

2. part-of. This is the containment relationship in which an entity is physi-
cally or conceptually contained within another entity. For example, nucle-
olus is part-of nucleus.

An example of the GO hierarchy for the term “inositol lipid-mediated sig-
naling” is shown in figure 5.1. This shows the series of successively more
restrictive concepts to which this concept belongs.

GO:0003673 : Gene_Ontology (80972)

GO:0008150 : biological_process (56741)

GO:0009987 : cellular process (20309)

GO:0007154 : cell communication (6336)

GO:0007165 : signal transduction (4990)

GO:0007242 : intracellular signaling cascade (1394)

GO:0019932 : second-messenger-mediated signaling (219)

GO:0048015 : phosphoinositide-mediated signaling (3)

GO:0048017 : inositol lipid-mediated signaling (0)

Figure 5.1 The GO hierarchy for inositol lipid-mediated signaling. The parentheses
show the total number of terms in the category at that level.
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Because GO supports two relationships, its ontologies are more expressive
than a taxonomy. However, modern ontologies often support many more
than just two relationships. An analysis of the names of GO terms suggests
that there are many other relationships implicitly contained in the GO ter-
minology. For example, 65.3% of all GO terms contain another GO term as
a proper substring. This substring relation often coincides with a deriva-
tional relationship between the terms (Ogren et al. 2004). For example, the
term regulation of cell proliferation (GO:0042127) is derived from the term cell
proliferation (GO:0008283) by addition of the phrase regulation of. The phrase
regulation of occurs frequently in GO, yet is not itself a GO term. Furthermore,
this subterm occurs consistently in different subsets of the GO ontologies.
Derivational subterms such as this one indicate interesting semantic rela-
tionships between the related terms. Formalizing these relationships would
result in a richer representation of the concepts encoded in the ontology, and
would assist in the analysis of natural language texts.
Many programs have been developed for profiling gene expression based

on GO or the GO file format. These programs have been very useful for
translating sets of differentially regulated genes.

DAG-Edit
sourceforge.net/project/showfiles.php?group_id=36855

DAG-Edit is an open source tool written in Java for browsing, searching,
and modifying structured controlled vocabularies. DAG-Edit was previ-
ously called GO-Edit. It is applicable to any kind of structured controlled
vocabulary. Three formats are supported: GO flat file, GO serial file, and
OBO file.

GenMAPP www.GenMAPP.org
This tool visualizes gene expression and other genomic data on maps repre-
senting biological pathways and groupings of genes. Integrated with Gen-
MAPP are programs to perform a global analysis of gene expression or ge-
nomic data in the context of hundreds of pathway MAPPs and thousands
of GO Terms (MAPPFinder), import lists of genes/proteins to build new
MAPPs (MAPPBuilder), and export archives of MAPPs as well as expression
and genomic data to the web.

GoMiner discover.nci.nih.gov/gominer
This program package organizes lists of “interesting” genes (e.g., under- and
overexpressed genes from a microarray experiment) for biological interpre-
tation (Zeeberg et al. 2003). GoMiner provides quantitative and statistical
output files and two useful visualizations. The first is a treelike structure
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and the second is a compact, dynamically interactive directed acyclic graph.
Genes displayed in GoMiner are linked to major public bioinformatics re-
sources.

NetAffx GO Mining Tool
www.affymetrix.com/analysis/index.affx

This tool permits web-based, interactive traversal of the GO graph in the
context of microarray data (Cheng et al. 2004). It accepts a list of Affymetrix
probe sets and renders a GO graph as a heat map colored according to signif-
icance measurements. The rendered graph is interactive, with nodes linked
to public websites and to lists of the relevant probe sets. The GO Mining
Tool provides visualization combining biological annotation with expression
data, encompassing thousands of genes in one interactive view. An example
of using the NetAffx GOMining Tool in a preterm delivery (PTD)microarray
study is shown in figure 5.2. In this figure, it can be seen that the root GO
term (level-1 node) “response to external stimulus” has five child GO terms:
“response to extracellular stimulus,” “response to abiotic stimulus,” “taxis,”
“detection of external stimulus,” and “response to biotic stimulus.” Three of
these level-2 nodes — “response to abiotic stimulus,” “detection of external
stimulus,” and “response to biotic stimulus” — have child GO terms (i.e.,
level-3 nodes). Also, a child node can have multiple parent nodes in the GO
graph. For example, the “detection of abiotic stimulus” GO term (a level-3
node) has two parent nodes: “response to abiotic stimulus” and “detection
of external stimulus.”

FatiGO fatigo.bioinfo.cnio.es
This tool extracts GO terms that are significantly over or underrepresented in
sets of genes within the context of a genome-scale experiment (Al-Shahrour
et al. 2004).

GOAL microarrays.unife.it
The GO Automated Lexicon is a web-based application for the automated
identification of functions and processes regulated in microarray and serial
analysis of gene expression experiments based on GO terms (Volinia et al.
2004).

Onto-Tools vortex.cs.wayne.edu/Projects.html
This is a collection of tools for a variety of tasks all of which involve the use
of GO terminology (Draghici et al. 2003),

DAVID david.niaid.nih.gov
The Database for Annotation, Visualization and Integrated Discovery is a
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web-based tool for rapidly listing genes in GO categories (Dennis, Jr. et al.
2003).

GOTM genereg.ornl.gov/gotm
The GOTree Machine is a web-based platform for interpreting microarray
data or other interesting gene sets using GO (Zhang et al. 2004).

Figure 5.2 A GO network graph generated using the NetAffx Gene Ontology Min-
ing Tool.

As an example of the use of GO, consider PTD, defined as a delivery oc-
curring before the completion of 37 weeks of gestation. PTD is the major
determinant of infant mortality, yet the molecular mechanisms of this disor-
der remain largely unknown. To better understand gene expression changes
associated with PTD at the transcriptional level, we extracted total RNA
samples using the PAXgene Blood RNA kit from whole-blood samples ob-
tained from black mothers who had PTD (n=8, cases) and ethnicity-matched
mothers with term deliveries (n=6, controls) at the Boston Medical Center.
Gene expression profiling was carried out using the Affymetrix HU133A
GeneChip. Among the 6220 genes that were detected as being expressed, we
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identified a total of 1559 genes that have significantly different expression
patterns between the cases and controls using the t-test at significance level
0.05. This is still a very large number of genes to examine. To focus more
precisely on the genes that are most likely to be of importance in PTD, we se-
lected the genes that have been classified as being involved in the “response
to external stimulus” GO term of the GO biological process ontology. By
using the GO clustering tool of the DNA-Chip Analyzer www.dchip.org
software, we found 159 genes belonging to this category. The gene expres-
sion profile is shown in figure 5.3.

Figure 5.3 A gene expression profiling study of preterm delivery (PTD) of eight
mothers with PTDs and six mothers with term deliveries. In this study, 159 genes
were found to be significantly belonging to the “Response to External Stimulus” GO
term (P < .0001).

A number of efforts are underway to enhance and extend GO. The Gene
Ontology Annotation (GOA), run by the European Bioinformatics Institute
(EBI), is providing assignments of terms from the GO resource to gene prod-
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ucts in a number of its databases, such as SWISS-PROT, TrEMBL, and InterPro
(Camon et al. 2003; GOA 2003).
Although GO is the most prominent of all bio-ontologies, it did not origi-

nally make use of a formal ontological framework such as XML or RDF. To
remedy this situation, the Gene Ontology Next Generation Project (GONG)
is developing a staged methodology to evolve the current representation of
the GO into the Web Ontology Language (OWL) introduced in section 4.4.
OWL allows one to take advantage of the richer formal expressiveness and
the reasoning capabilities of the underlying formal logic. Each stage pro-
vides a step-level increase in formal explicit semantic content with a view
to supporting validation, extension, and multiple classification of GO (Wroe
et al. 2003).

5.1.3 Ontologies of Bioinformatics Ontologies

With the proliferation of biological ontologies and databases, the ontologies
themselves need to be organized and classified. This survey chapter gives
an informal classification, but a more formal approach is needed: an ontol-
ogy of biological ontologies. In this section we review two examples of such
“metaontologies.”

OBO obo.sourceforge.net
The Open Biological Ontologies seeks to collect ontologies for the domains
of genomics and proteomics. The criteria for inclusion are that the ontology
be open, use either GO or OWL syntax, have definitions and unique identi-
fiers, and complement (rather than compete with) other OBO ontologies. An
example of a zebrafish anatomy ontology (development of the zygote from
the one-cell stage to the eight-cell stage) in OBO is shown in figure 5.4.

TAMBIS img.cs.man.ac.uk/tambis
TAMBIS is a project that aims to help researchers in biological science by
building a homogenizing layer on top of various biological information ser-
vices. The acronym stands for transparent access to multiple biological in-
formation sources. The TAMBIS ontology is a semantic network that cov-
ers a wide range of bioinformatics concepts. It aims to provide transparent
information retrieval and filtering from biological information services by
building a homogenizing layer on top of the different sources. This layer
uses a mediator and many source wrappers to create the illusion of one all-
encompassing data source. TAMBIS uses a mediator (information broker)
to achieve this goal. This mediator uses an ontology of molecular biology
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$structures.goff ; ZFIN:0000000
<001_Zygote\:1-cell\,embryo ; ZFIN:0000004
<001_Zygote\:1-cell\,blastomere ; ZFIN:0000001
<001_Zygote\:1-cell\,yolk ; ZFIN:0000012
<001_Zygote\:1-cell\,extraembryonic ; ZFIN:0000005
<001_Zygote\:1-cell\,chorion ; ZFIN:0000002
<002_Cleavage\:2-cell\,embryo ; ZFIN:0000017
<002_Cleavage\:2-cell\,blastomeres ; ZFIN:0000013
<002_Cleavage\:2-cell\,yolk ; ZFIN:0000025
<002_Cleavage\:2-cell\,extraembryonic ; ZFIN:0000018
<002_Cleavage\:2-cell\,chorion ; ZFIN:0000014
<003_Cleavage\:4-cell\,embryo ; ZFIN:0000030
<003_Cleavage\:4-cell\,blastomeres ; ZFIN:0000026
<003_Cleavage\:4-cell\,yolk ; ZFIN:0000038
<003_Cleavage\:4-cell\,extraembryonic ; ZFIN:0000031
<003_Cleavage\:4-cell\,chorion ; ZFIN:0000027
<004_Cleavage\:8-cell\,embryo ; ZFIN:0000043
<004_Cleavage\:8-cell\,blastomeres ; ZFIN:0000039
<004_Cleavage\:8-cell\,yolk ; ZFIN:0000051
<004_Cleavage\:8-cell\,extraembryonic ; ZFIN:0000044

Figure 5.4 An excerpt from zebrafish_anatomy.ontology in OBO.

and bioinformatics. This ontology was originally written in a description
logic called GRAIL (Baker et al. 1998), but was later changed to OWL. The
ontology acts as a universal model to help users form queries that will be
understood by the various sources. The wrappers create the illusion of a
common query language for all information resources. The latest version
of TAMBIS has been translated to to OWL at imgproj.cs.man.ac.uk/
tambis/BabyTao-new.owl.

5.2 Ontology Languages in Bioinformatics

In this section we survey the main XML-based ontologies that have been de-
veloped for bioinformatics. The number of such ontologies is large, and con-
tinually increasing, so some of the ontologies will be mentioned only briefly.
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BSML www.bsml.org
The Bioinformatic Sequence Markup Language (BSML) is a language that
encodes biological sequence information, which encompasses graphical rep-
resentations of biologically meaningful objects such as nucleotide or protein
sequences. The current version (released in 2002) is BSML v3.1. BSML takes
advantage of XML features for encoding hierarchically organized informa-
tion to provide a representation of knowledge about biological sequences.
BSML is useful in capturing the semantics of biological objects (e.g., com-

plete genome, chromosome, regulatory region, gene, transcript, gene prod-
uct, etc.). BSML can be rendered in the Genomic XML viewer, which greatly
facilitates communications among biologists, since biologists are accustomed
to visualizing biological objects and to communicating graphically about the
these objects and their annotations.
The root element for a BSML document is tagged with Bsml. Conse-

quently, a BSML document should look like the following:

<?xml version= "1.0"?>
<!DOCTYPE Bsml PUBLIC

"http://www.labbook.com/dtd/bsml2_2.dtd">
<Bsml>

...
</Bsml>

BSML is primarily concerned with DNA, RNA, and protein. Information in
a BSML document belongs primarily to one of two broad categories: “se-
quence data” and “sequence annotation.”

1. Sequence data. The primary sequence data of the molecule of interest are
contained within the sequence element; the information of the sequence
is represented using attributes and their associated values, defined in the
BSML DTD. figure 5.5 shows an example of using BSML to represent the
amino acid sequence of human tumor suppressor p53.

2. Sequence annotation. Sequence annotation refers to information for a par-
ticular sequence that is beyond the sequence data themselves. Annota-
tions have different types, which include positional annotation, qualita-
tive annotation, quantitative annotation, and referential annotation.
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Figure 5.5 The BSML representation for the SWISS-PROT entry P04637.

BioML www.rdcormia.com/COIN78/files/XML_Finals/
BIOML/Pages/BIOML.htm

The BiopolymerMarkup Language provides an extensible framework for an-
notating experimental information about molecular entities, such as proteins
and genes. Many examples of BioML documents were shown in chapter 1.
The four chemical letters of DNA, G, C, A, and T, have their normal mean-
ings as individual nucleotides (case-insensitive). White space (e.g., spaces,
tabs, carriage returns) are ignored by the parser, and can be freely added to
aid the flow and readability of the file. The parser also ignores any character
that cannot be a nucleotide residue, allowing the author to include numbers
and other symbols that make reading the file easier. The kinds of element for
DNA, RNA, and protein in BioML are presented in table 5.1.
The BioML ontology can also be used to refer to public database entries.

For example, one can refer to the GenBank entry for the DNA sequence en-
coding the human δ-aminolevulinate dehydratase as follows:

<bioml>
<reference>

<db_entry format="GENBANK" entry="X64467"/>
</reference>

</bioml>

A notable feature of BioML is that it allows for the inclusion of nontextual
data, such as binary data (Fenyo 1999). Also, BioML possesses a mechanism
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DNA RNA Protein
<dna> <rna> <protein>

<promoter> <rdomain> <subunit>
<gene> <ra> <homolog>

<exon> <rmod> <peptide>
<intron> <rvariant> <domain>

<ddomain> <rstart> <aa>
<da> <rstop> <amod>

<dmod> <avariant>
<dvariant> <aconflict>
<dstart>
<dstop>

Table 5.1 The elements for DNA, RNA, and protein in BioML

that accepts information conforming to other standard formats, such as the
Protein Data Bank (PDB) format.

SBML www.sbw-sbml.org
The Systems Biology Markup Language is an XML-based language for stor-
ing biochemical models (Hucka et al. 2003). Formally defined using the Uni-
fied Modeling Language (UML) (UML 2004), SBML contains structures for
representing compartments, species, and reactions, as well as optional unit
definitions, such as parameters and rules (constraints). SBML is still under
active development at the California Institute of Technology.
SBML level-1 is aimed at providing a basic representation of biochemical

reaction networks. A model in SBML consists of the following components
(Hucka et al. 2003):

1. Compartment: a container of finite volume for well-stirred substances
where reactions take place

2. Species: a chemical substance or entity that takes part in a reaction

3. Reaction: a statement describing some transformation

4. Parameter: a quantity that has a symbolic name

5. Unit definition: a name for a unit used in the expression of quantities in a
model
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6. Rule: a mathematical expression that is added to the model equations
constructed from the set of reactions

MAGE-ML www.mged.org
The MicroArray Gene Expression Markup Language is an XML ontology
for microarray data. MAGE-ML aims to create a common data format so
that data can be shared easily between projects (Stoeckert, Jr. et al. 2002).
The predecessor of MAGE-ML is the Gene Expression Markup Language
(GEML), initially developed by Rosetta Inpharmatics (Kohane et al. 2003).
MAGE-ML is a data-exchange syntax for microarray data recently created

by the microarray gene expression data group (MGED) (MAGE-ML 2003).
In order to standardize the information concerning microarray data, MGED
initially introduced the minimal information for the annotation of a microar-
ray experiment (MIAME). MIAME describes the minimum information re-
quired to ensure that microarray data can be easily interpreted and that re-
sults derived from its analysis can be independently verified (Brazma et al.
2001). Practically speaking, MIAME is a checklist of what should be supplied
for publication. MIAME-compliant conceptualization of microarray experi-
ments is then modeled using the UML-based microarray gene expression
object model (MAGE-OM). MAGE-OM is then translated into an XML-based
data format, MAGE-ML, to facilitate the exchange of data (Spellman et al.
2002).
There is a close relationship between the MAGE-ML and MGED ontolo-

gies. TheMGED ontology, being developed by the OntologyWorking Group
of theMGED ontology project, is providing standard controlled vocabularies
for microarrays. The goal of the MGED ontology is to create a framework of
microarray concepts that reflects the MIAME guidelines and MAGE struc-
ture. Therefore, the MGED ontology project has a practical aim to develop
standards, and to reduce nonuniform usage of annotation in microarray ex-
periments. Concepts for which existing controlled vocabularies and ontolo-
gies can be identified are specified by reference to those external resources,
and no new ontologies will be created. Concepts that are microarray-based
or tractable (such as experimental conditions) are specified within theMGED
ontology. MAGE-ML provides a standard XML format, which supersedes
the MicroArray Markup Language (MAML) format, for reporting microar-
ray data and its associated information.

CellML www.cellml.org
The CellML ontology is being developed by Physiome Sciences Inc. in Prince-
ton, New Jersey, in conjunction with the Bioengineering Institute at the Uni-
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versity of Auckland and affiliated research groups. The purpose of CellML
is to store and exchange computer-based biological models. CellML allows
scientists to share models even if they are using different model-building
software. It also enables them to reuse components from one model in an-
other, thus accelerating model building. CellML includes information about
model structure (how the parts of a model are organizationally related to one
another), mathematics (equations describing the underlying biological pro-
cesses), and metadata (additional information about the model that allows
scientists to search for specific models or model components in a database or
other repository).
CellML is intended to support the definition of models of cellular and sub-

cellular processes. This markup language facilitates the reuse of models and
parts of models by employing a component-based architecture. Models are
split into logical subparts called components that are connected together to
form a model.
CellML separates the specification of the underlyingmathematics of amod-

el from a particular implementation of the model’s solution. This makes a
model independent of a particular operating system or programming lan-
guage, and allows modelers to easily integrate parts of other peoples’ mod-
els into their own models. CellML also allows the generation of equations
for publishing from the same definition upon which the solution method is
based, removing inconsistencies between the model and associated results in
academic papers, and allowing others to reliably reproduce these.

RNAML www-lbit.iro.umontreal.ca/rnaml
RNAML provides a standard syntax that allows for the storage and exchange
of information about RNA sequence as well as secondary and tertiary struc-
tures. The syntax permits the description of higher-level information about
the data, including, but not restricted to, base pairs, base triples, and pseu-
doknots (Waugh et al. 2002).
Because of the hierarchical nature of XML, RNAML is a valuable method

for structuring the knowledge related to RNAmolecules into a nested-struc-
tured text document. For example, in RNAML, a “molecule” is an element
consisting of the following three lower-level elements: identity (which con-
tains two nested elements, name and taxonomy), sequence (which contains
three nested elements, numbering-system, seq-data, and seq-annotation), and
structure (which contains one nested element, model). To ensure compatibil-
ity with other existing standards of RNA nomenclature, RNAML uses in-
cluding formats such as the International Union of Pure and Applied Chem-
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istry (IUPAC) lettering and PDB ATOM records. If RNAML needs to depict
multiple interacting RNA molecules, the interactions of RNA molecules are
presented as character data in an interaction element.

AGAVE www.animorphics.net/lifesci.html
The Architecture for Genomic Annotation, Visualization and Exchange is an
XML language created by DoubleTwist, Inc., for representing genomic an-
notation data. AGAVE uses XML Schema (XSD) for describing the syntactic
structure of the data. A bioperl script can be used to convert data in the Euro-
pean Molecular Biology Laboratory (EMBL) or Genome Annotation Markup
Elements (GAME) format into the AGAVE format. The XML EMBL (XEMBL)
project of EBI is building a service tool that employs Common Object Re-
quest Broker Architecture (CORBA) servers to access EMBL data. The data
can then be distributed in XML format via a number of mechanisms (Wang
et al. 2002).

CML www.xml-cml.org
The Chemical Markup Language was discussed in chapter 1. The purpose of
CML is to manage chemical information (e.g., atomic, molecular, crystallo-
graphic information). CML is supported by tools such as the popular Jumbo
browser. CMLCore retains most of the chemical functionality of CML 1.0,
and extends it by adding handlers for chemical substances, extended bond-
ing models, and names (Murray-Rust and Rzepa 2003).

CytometryML
The Cytometry Markup Language is designed for the representation and ex-
change of cytometry data. CytometryML provides an open, standard XML
format, which may replace the Flow Cytometry Standard (Leif et al. 2003).

GAME www.fruitfly.org/comparative
GAME is an XML language for curation of DNA, RNA, or protein sequences.
GAME uses an XML DTD to specify the syntactic structure of the content of
a GAME document. GAME is extensively used within the FlyBase/Berkeley
Drosophila Genome Project (BDGP). For example, genomic regions for Rho-
dopsin 1 (ninaE), Rhodopsin 2 (Rh2), Rhodopsin 3 (Rh3), Rhodopsin 4 (Rh4),
apterous (ap), even-skipped (eve), fushi-tarazu (ftz) and twist (twi) have
been annotated in GAME format (Bergman et al. 2002; GAME 2002) in four
Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis)
covering over 500 kb of the D. melanogaster genome.
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MML
The Medical Markup Language provides the XML-based standard for medi-
cal data exchange/storage (Guo et al. 2003).

MotifML motifml.org
MotifML is a language for representing the computationally predicted DNA
motifs (often in the regulatory region such as promoters) generated by the
Gibbs motif sampler, AlignACE, BioProspector, and CONSENSUS. MotifML
was created by the authors of this book and two collaborators (Sui Huang
and Jerzy Letkowski). MotifML uses the Web Ontology Language (OWL) to
specify the data structure of a MotifML document. MotifML is supported by
Java-based visualization tools such as MotifML viewers.

NeuroML www.neuroml.org/main.html
TheNeural OpenMarkup Language is an XML language for describingmod-
els, methods, and literature for neuroscience. NeuroML uses XSD to specify
the syntactic requirements for the model descriptions (Goddard et al. 2001).

ProML
The Protein Markup Language is for specifying protein sequences, struc-
tures, and families using an open XML standard. ProML allows machine-
readable representations of key protein features (Hanisch et al. 2002).

TML
Taxonomic Markup Language is mainly an XML format for representing the
topology of a phylogeny, but also includes a representation for statistical
metadata (e.g., branch length, retention index, and consistency index) de-
scribing the phylogeny (Gilmour 2000). It is notable that for TML, the hier-
archical nature of a phylogeny is readily represented by XML.

5.3 Macromolecular Sequence Databases

The rapid expansion of nucleotide sequence data available in public data-
bases is revolutionizing biomedical research. Sequence databases such as
GenBank have a variety of uses, including the discovery of novel genes,
identification of homologous genes, analysis of alternative splicing, chromo-
somal localization of genes, and detection of polymorphisms (Pandey and
Lewitter 1999). Macromolecular sequence databases are classified according
to whether they deal with nucleotide sequences or protein sequences.
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5.3.1 Nucleotide Sequence Databases

GenBank www.ncbi.nlm.nih.gov/Genbank
GenBank is a comprehensive database that contains publicly available DNA
sequences for more than 140,000 named organisms. The sequences are pri-
marily obtained through submissions from individual laboratories and batch
submissions from large-scale sequencing projects (Benson et al. 2004). As of
February 2004, GenBank contained over 37 billion bases in over 32 million
sequence records. GenBank uses its own non-XML text format.
Most submissions to GenBank are made using the BankIt web service or

Sequin program and accession numbers are assigned by GenBank staff upon
receipt. Daily data exchange with the EMBL data library in the U.K. and the
DNA data bank of Japan (DDBJ) helps ensure worldwide coverage. Gen-
Bank is accessible through NCBI’s retrieval system, Entrez, which integrates
data from the major DNA and protein sequence databases along with taxon-
omy, genome mapping, protein structure, and domain information, and the
biomedical journal literature via PubMed.

EMBL www.ebi.ac.uk/embl
The EMBLNucleotide Sequence Database, maintained at the European Bioin-
formatics Institute (EBI), incorporates, organizes, and distributes nucleotide
sequences from public sources (Kulikova et al. 2004). The database is a part of
an international collaboration with DDBJ and GenBank. Data are exchanged
between the collaborating databases on a daily basis. The Webin web service
is the preferred system for individual submission of nucleotide sequences,
including third party annotation (TPA) and alignment data. Automatic sub-
mission procedures are used for submission of data from large-scale genome
sequencing centers and from the European Patent Office. Database releases
are produced quarterly.
EMBL uses its own non-XML text format, but the XEMBL project has made

it possible to obtain EMBL data in the AGAVEXML format (Wang et al. 2002).
The latest EMBL data collection can be accessed via ftp, email, and web
interfaces. The EBI’s Sequence Retrieval System (SRS) integrates and links
the main nucleotide and protein databases as well as many other specialist
molecular biology databases. For sequence similarity searching, a variety of
tools (e.g., FASTA and BLAST) are available that allow users to compare their
own sequences against the data in EMBL and other databases.

DDBJ www.ddbj.nig.ac.jp
DDBJ is maintained at the National Institute of Genetics in Japan (Miyazaki
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et al. 2004). It is available in several formats, including FASTA and XML.
The XML format is defined by the DTD at ftp://ftp.ddbj.nig.ac.jp/
database/ddbj/xml/DDBJXML.dtd. DDBJ cooperates with both EMBL
and GenBank.

5.3.2 Protein Sequence Databases

SWISS-PROT au.expasy.org/sprot
SWISS-PROT is the most widely used publicly available protein sequence
database. This database aims to be nonredundant, fully annotated, and highly
cross-referenced (Jung et al. 2001). SWISS-PROT also includes information
on many types of protein modifications. The database is available in both
FASTA and XML formats. The XML format is defined both as a DTD and
using XSD. The XSD schema is at www.uniprot.org/support/docs/
uniprot.xsd. The database itself is available at ftp://ftp.ebi.ac.uk/
pub/databases/uniprot/knowledgebase/uniprot_sprot.xml.gz.
Both SWISS-PROT and TrEMBL are available at this site in a variety of for-
mats.

5.4 Structural Databases

Like sequence databases, the structural databases are classified according to
whether they deal with nucleotide structure or protein structure.

5.4.1 Nucleotide Structure Databases

NDB ndbserver.rutgers.edu
The most prominent nucleotide structure database is the Nucleic Acid Data-
base. NDB was established in 1991 as a resource to assemble and distribute
structural information about nucleic acids (both DNA and RNA) (Berman
et al. 1992). The core of the NDB has been its relational database of nucleic
acid-containing crystal structures. The primary data include the crystallo-
graphic coordinate data, structure factors, and information about the exper-
iments used to determine the structures, such as crystallization information,
data collection, and refinement statistics. Derived information from experi-
mental data, including valency geometry, torsion angles, and intermolecular
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contacts, is calculated and stored in the database. Database entries are fur-
ther annotated to include information about the overall structural features,
including conformational classes, special structural features, biological func-
tions, and crystal-packing classifications. The NDB has been used to analyze
characteristics of nucleic acids alone as well as complexed with proteins. The
NDB database is available in the PDB and mmCIF formats.

5.4.2 Protein Structure Databases

Protein structure databases deal with progressively “higher-order” types of
structure: secondary, tertiary, quaternary, and functional. Protein sequence
information is also a form of structure: the primary structure. A protein
structure database will typically have information about structure on several
levels. Accordingly, we have not attempted to perform a strict classification
but rather list them approximately by the type of structure, from primary to
functional.
Structural classifications range from short motifs and domains to entire

protein families, and they derive protein classes based on the molecular sim-
ilarities in terms of secondary or higher-order structures. Functional classifi-
cations range from enzymatic roles to protein interaction networks, and they
derive protein classes based on functional similarities in terms of enzyme
reaction mechanisms, or participation in biochemical pathways.

Pfam www.sanger.ac.uk/Software/Pfam
The Protein Family database is a large collection of protein families and do-
mains (Bateman et al. 2004). The Pfam database is available in FASTA format.

SMART smart.embl.de
The Simple Modular Architecture Research Tool is a web tool for the identi-
fication and annotation of protein domains, and provides a platform for the
comparative study of complex domain architectures in genes and proteins.
The January 2004 release of SMART contains 685 protein domains. New de-
velopments in SMART are centered on the integration of data from com-
pleted metazoan genomes. SMART can be queried using GO terms (Letunic
et al. 2004).

PROSITE www.expasy.org/prosite
PROSITE is a compilation of sites and patterns found in protein sequences
(Sigrist et al. 2002; Hulo et al. 2004). The use of protein sequence patterns
(motifs) to determine the protein function has become one of the essential
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tools in sequence analysis. PROSITE was developed in 1988 to systemati-
cally collect macromolecularly significant patterns (Bairoch 1991). PROSITE
is based on multiple sequence alignments (MSAs) which use two kinds of
descriptor: patterns and generalized profiles (Hulo et al. 2004). In PROSITE,
each PROSITE signature is linked to an annotation document where the user
can obtain information regarding the signature. In order to make the three-
dimensional (3D) structure more comprehensible, there are links to the rep-
resentative PDB database. PROSITE is closely related to the SWISS-PROT
protein sequence data bank.
The PROSITE descriptors and documentation can also be accessed through

InterPro, which uses the detailed family annotation provided by PRINTS
(Attwood et al. 2003). InterPro (Mulder et al. 2003) provides an integrated
view of several domain databases and offers a large choice of methods to
identify conserved regions. ClustalW (Thompson et al. 1994) or T-Coffee
(Notredame et al. 2000) are most commonly used to construct the MSAs.
However, when the primary sequences are too divergent, it is useful to inte-
grate structural information in the MSAs. In addition, about 3% of profiles
in PROSITE are built by using the HMMER hidden Markov model package
(Eddy 1998).
The PROSITE database is available as a text file. The format is defined

in a separate file and uses a variety of characters (forward slashes, commas,
semicolons, etc.) as delimiters.

BLOCKS blocks.fhcrc.org
Blocks are defined as ungapped multiple alignments corresponding to the
most conserved regions of proteins. Blocks contain “multiple alignment” in-
formation, and the use of the BLOCKS database can improve the detection of
sequence similarities in searches of sequence databases. The BLOCKS data-
base was introduced to aid in the family classification of proteins (Henikoff
and Henikoff 1991). This database turns out to be a very important database,
because hits to BLOCKS database entries pinpoint the location of conserved
motifs, which are important for further functional characterization (Henikoff
et al. 2000). Furthermore, the BLOCKS database can be used for detecting
distant relationships (Henikoff et al. 1998). The BLOCKS database is the ba-
sis for the BLOSUM substitution tables that are used in amino acid sequence
similarity searching, as explained in section 7.1.
The BLOCKS database contains more than 24,294 blocks from nearly 5000

different protein groups (Henikoff et al. 2000). There are a variety of for-
mats for blocks, including the Blocks, FASTA, and Clustal formats. All of the
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formats are non-XML text formats.

COG www.ncbi.nlm.nih.gov/COG
The database of clusters of orthologous groups of proteins (COGs) attempts
to give a phylogenetic classification of the proteins encoded in 21 complete
genomes of bacteria, archaea, and eukaryotes (Tatusov et al. 2000). The COGs
were constructed by applying the criterion of consistency of genome-specific
best hits to the results of an exhaustive comparison of all protein sequences
from these genomes. The database comprises 2091 COGs that include 56 to
83% of the gene products from each of the complete bacterial and archaeal
genomes and approximately 35% of those from the yeast Saccharomyces cere-
visiae genome. The database is available as a flat file.

PRINTS umber.sbs.man.ac.uk/dbbrowser/PRINTS
PRINTS is a compendium of protein fingerprints (Attwood et al. 1999, 2003).
It is available in FASTA format.

ProDom http://protein.toulouse.inra.fr/prodom/
current/html/home.php

ProDom is a comprehensive set of protein domain families automatically
generated from the SWISS-PROT and TrEMBL sequence databases (Servant
et al. 2002).

TIGRFAMs http://www.tigr.org/TIGRFAMs/
The Institute for Genomic Research maintains a database of protein families
based on hidden Markov models (Haft et al. 2003). TIGRFAMs currently
contains over 1600 protein families. It includes models for both full-length
proteins and shorter protein regions grouped at the levels of superfamilies,
subfamilies, and “equivalogs,” homologous protein sets that are functionally
conserved since their last common ancestor. TIGRFAMs is a complementary
database to Pfam, whose models typically have a wider coverage across dis-
tant homologs. The data can be downloaded as a text file.

PDB www.rcsb.org/pdb
The Protein Data Bank is the largest source of publicly available biomolecu-
lar 3D structures (Bateman et al. 2004). PDB was established at Brookhaven
National Laboratories (BNL) in 1971 as an archive for biological macromolec-
ular crystal structures. According to the PDB holdings list of 9 September
2003, the PDB contains a total of 22,448 structures, 19,062 of which are re-
solved by X-ray, and the remaining 3386 are resolved by Nuclear Magnetic
Resonance (NMR). Generally speaking, NMR structures are more problem-
atic than crystallographic ones, because structures in solution are generally
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more flexible and less stable than those in a crystal. Indeed, solution struc-
tures determined by the NMR data are slightly different from crystal struc-
tures. Therefore, NMR is often used to study small and peculiar proteins.
Protein glycosylation is probably the most common and complex type

of co- and post-translational modification encountered in proteins (Lutteke
et al. 2004). Inspection of the protein databases reveals that 70% of all pro-
teins have potential N-glycosylation sites - Asn-X-Ser/Thr, where X is not
Pro (Mellquist et al. 1998). O-glycosylation is even more ubiquitous (Berman
et al. 2000). Consequently, PDB entries contain not only protein structures
but also pure carbohydrate structures. However, to date, there is no standard
nomenclature for carbohydrate residues within the PDB files (Westbrook and
Bourne 2000). For example, although many monosaccharide residues are de-
fined in the PDB Het Group Dictionary pdb.rutgers.edu/het_dictio
nary.txt, there is no distinction between the α- and the β-forms. Thus, it
is difficult for glycobiologists to find relevant carbohydrate structures from
PDB.
The PDB database has two non-XML formats, PDB and mmCIF, that are in

use by many other molecular structure databases. Recently an XSD format,
PDBML, has been introduced in PDB and automated generation of XML files
is driven by the data dictionary infrastructure in use at the PDB. The current
XML schema file is located at deposit.pdb.org/pdbML/pdbx-v1.000.
xsd, and on the PDBmmCIF resource page at deposit.pdb.org/mmcif/.

SCOP scop.mrc-lmb.cam.ac.uk/scop
The Structural Classification of Proteins database classifies proteins by do-
mains that have a common ancestor based on sequence, structural, and func-
tional evidence (Murzin et al. 1995; Andreeva et al. 2004). In order to under-
stand how multidomain proteins function, it is important to know how they
are created during evolution. Duplication is one of the main sources for cre-
ating new genes and new domains (Lynch and Conery 2000). For examples
of this, see section 1.5. In fact, 98% of human protein domains are duplicates
(Gough et al. 2001; Madera et al. 2004; Muller et al. 2002). Once a domain or
protein has duplicated, it can evolve a new or modified function.
Access to SCOP requires a license. It is available in a non-XML text format.

CATH www.biochem.ucl.ac.uk/bsm/cath_new
This database contains domain structures classified into superfamilies and
sequence families (Orengo et al. 1997, 2003). Its name stands for Class/-
Architecture/Topology/Homology. Each structural family is expanded with
domain sequence relatives recruited from GenBank using a variety of ef-
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ficient sequence search protocols and reliable thresholds. The database is
available as a collection of flat files using the fixed-width format, as in sec-
tion 1.1.

FSSP www.embl-ebi.ac.uk/dali
The FSSP database and its new supplement, the Dali Domain Dictionary,
present a continuously updated classification of all known 3D protein struc-
tures (Holm et al. 1992; Holm and Sander 1998). FSSP stands for the fold
classification based on structure-structure alignment of proteins. The classi-
fication is derived using an automatic structure alignment program, called
Dali, for the all-against-all comparison of structures in the PDB. From the re-
sulting enumeration of structural neighbors (which form a surprisingly con-
tinuous distribution in fold space) a discrete fold classification is derived in
three steps: (1) sequence-related families are covered by a representative set
of protein chains; (2) protein chains are decomposed into structural domains
based on the recurrence of structural motifs; and (3) folds are defined as tight
clusters of domains in fold space. The database is available as an SQL dump,
using a fixed-width format.

SCOP, CATH, and FSSP are structure classification databases that define,
classify, and annotate each domain in the PDB. A systematic comparison of
SCOP, CATH, and FSSP found that approximately two thirds of the protein
chains are common to all three databases (Hadley and Jones 1999).

REBASE rebase.neb.com/rebase/rebase.html
REBASE contains information about restriction enzymes, including their re-
cognition specificities and their sensitivity to DNAmethylation (Roberts et al.
2003). There are three major categories of restriction enzymes: type I, type
II, and type III. The type II restriction enzymes are among the most valu-
able tools available to researchers in molecular biology. These enzymes rec-
ognize short DNA sequences (four to eight nucleotides) and cleave at, or
close to, their recognition sites (Pingoud and Jeltsch 2001). Type II enzymes
are widely used not only for molecular cloning and genotyping but also
for molecular diagnostics. REBASE contains comprehensive information on
all types of restriction enzymes, as well as related kinds of proteins such
as methyltransferases, homing endonucleases, and related proteins such as
nicking enzymes, specificity subunits of the type I enzymes, control proteins,
and methyl-directed restriction enzymes.
The REBASE database is currently available in 39 formats! This extreme

heterogeneity is due to the large number of tools, each of which requires its
own format. Standard formats would help control this diversity.



114 5 Survey of Ontologies in Bioinformatics

MIPS mips.gsf.de
The Munich Information Center for Protein Sequences provides protein se-
quence-related information based on whole-genome analysis (Mewes et al.
2004). The main focus of the work is directed toward the systematic organi-
zation of sequence-related attributes as gathered by a variety of algorithms
and primary information from experimental data together with information
compiled from the scientific literature.

DIP dip.doe-mbi.ucla.edu
The Database of Interacting Proteins is a research tool for studying cellu-
lar networks of protein interactions (Salwinski et al. 2004). The DIP aims
to integrate the diverse body of experimental evidence on protein-protein
interactions into a single, easily accessible online database. Because the re-
liability of experimental evidence varies widely, methods of quality assess-
ment have been developed and utilized to identify the most reliable subset
of the interactions. This core set can be used as a reference when evaluating
the reliability of high-throughput protein-protein interaction data sets for de-
velopment of prediction methods, as well as in studies of the properties of
protein interaction networks.
Obtaining the DIP database requires registration. The database is available

in an XSD format called XIN, as well as in tab-delimited flat files and other
formats.

SpiD http://genome.jouy.inra.fr/cgi-bin/spid/index.cgi
The Subtilis Protein interaction Database is a protein-protein interaction net-
work database centered on the replication machinery of the gram-positive
bacterium Bacillus subtilis (Hoebeke et al. 2001). This network was found by
using genome-wide yeast two-hybrid screening experiments and systematic
specificity assays (Noirot-Gros et al. 2002).

MINT http://160.80.34.4/mint/
TheMolecular INTeraction database is a relational database containing inter-
action data between biological molecules (Zanzoni et al. 2002). At present,
MINT centers on storing experimentally verified protein-protein interactions
with special emphasis on proteomes of mammalian organisms. MINT con-
sists of entries obtained from data mining of the scientific literature. The
database is available in either a text format or in XML.

HPID http://wilab.inha.ac.kr/hpid/
The Human Protein Interaction Database was designed for the following
purposes (Han et al. 2004):
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1. Provide human protein interaction data precomputed from existing struc-
tural and experimental data using appropriate statistical methods.

2. Provide integrated human protein interactions derived from the Biomolec-
ular Interaction Network Database (BIND) (Bader et al. 2003), DIP (Sal-
winski et al. 2004), and the Human Protein Reference Database (HPRD)
(Peri et al. 2004).

3. Identify potential proteins from the databases that potentially interact
with proteins submitted by users. A score composed of three parts is
assigned to the predicted interaction data, and interactions with higher
scores indicate that the predictions are more reliable.

A set of online software tools has been developed to visualize and analyze
protein interaction networks.

5.5 Transcription Factor Databases

In humans, ribosomal RNA genes are transcribed by RNA polymerase I,
transfer RNA (tRNA) genes are transcribed by RNA polymerase III, and
protein-coding genes are transcribed by RNA polymerase II. Transcription
is initiated in the promoter region by a complex of different factors. The
following are the main transcription factor databases.

TRANSFAC transfac.gbf.de
The most complete transcription factor database is TRANSFAC (Wingender
et al. 1996). This database is concerned with eukaryotic transcription regula-
tion. It contains data on transcription factors, their target genes, and regula-
tory binding sites. The TRANSFAC database requires a license and fee, even
for noncommercial use. It uses a flat file format which can be browsed but
cannot be downloaded.

TRRD www.bionet.nsc.ru/trrd
The Transcription Regulatory Regions Database is a resource containing an
integrated description of gene transcription regulation. Each entry of the
database is concerned with one gene and contains data on localization and
functions of the transcription regulatory regions as well as gene expression
patterns (Kolchanov et al. 2002). TRRD contains only experimental data ob-
tained from annotations in scientific publications. TRRD release 6.0 contains



116 5 Survey of Ontologies in Bioinformatics

information on 1167 genes, 5537 transcription factor binding sites, 1714 reg-
ulatory regions, 14 locus control regions and 5335 expression patterns ob-
tained from 3898 scientific papers.
The TRRD is arranged in seven databases: TRRDGENES (general gene

description), TRRDLCR (locus control regions); TRRDUNITS (regulatory re-
gions: promoters, enhancers, silencers, etc.), TRRDSITES (transcription fac-
tor binding sites), TRRDFACTORS (transcription factors), TRRDEXP (expres-
sion patterns), and TRRDBIB (experimental publications). All of them are
relational databases, and the schema consists of a large number of table def-
initions. SRS is used as a basic tool for navigating and searching TRRD and
integrating it with external database and software resources.

COMPEL compel.bionet.nsc.ru
COMPEL is a database of composite regulatory elements, the basic struc-
tures of combinatorial regulation. Composite regulatory elements are two
closely situated binding sites for distinct transcription factors and represent
minimal functional units providing combinatorial transcriptional regulation.
Both specific factor DNA and factor-factor interactions contribute to the func-
tion of composite elements (CEs). Information about the structure of known
CEs and specific gene regulation achieved through such CEs appears to be
extremely useful for promoter prediction, for gene function prediction, and
for applied gene engineering as well.
Access to COMPEL requires registration, but it is free for noncommercial

use. The database consists of three relational database tables.

ooTFD www.ifti.org/ootfd
The purpose of ooTFD (object-oriented Transcription Factors Database) is to
capture information regarding the polypeptide interactions which constitute
and define the properties of transcription factors (Ghosh 2000). ooTFD is an
object-oriented successor to TFD (Ghosh 1993). The database is currently im-
plemented using ozone, a Java-based object-oriented database system. The
schema consists of nine primary Java data structures.

5.6 Species-Specific Databases

SGD www.yeastgenome.org
The Saccharomyces Genome Database is a database of the molecular biol-
ogy and genetics of the budding yeast Saccharomyces cerevisiae (Dwight et al.
2004). This database collects and organizes biological information about
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genes and proteins of this yeast from the scientific literature, and presents
this information on individual Locus pages for each yeast gene. The Pathway
Tools software (Karp et al. 2002a) and the MetaCyc Database of metabolic
reactions (Karp et al. 2002b) were used to generate the metabolic pathway
information for S. cerevisiae. Metabolic pathways are illustrated in graphical
format and the information can be viewed at multiple levels, ranging from
general summaries to detailed diagrams showing each compound’s chem-
ical structure. Enzymatic activities of the proteins shown in each pathway
diagram are linked to the corresponding SGD Locus pages.

FlyBase flybase.bio.indiana.edu
The fruit fly, Drosophila melanogaster, is one of the most studied eukaryotic or-
ganisms and a central model for the Human Genome Project (FlyBase 2002).
FlyBase is a comprehensive database containing information on the genetics
and molecular biology of Drosophila. It includes data from the Drosophila ge-
nome projects and data curated from the literature. FlyBase is a joint project
with the Berkeley Drosophila Genome Project.
FlyBase is one of the founding participants in the GO consortium. As an

example of how FlyBase is related to GO, consider the D. melanogaster gene
p53 (FlyBase ID: FBgn0039044). Through FlyBase GO annotations, we can
learn that p53 is classified by the organization principles as follows:

1. GO:Molecular function:The p53 gene encodes a DNA-binding protein prod-
uct which functions as a transcription factor for RNA polymerase II.

2. GO:Biological process: We can also learn that p53 is involved in important
molecular processes such as DNA damage response, apoptosis, and re-
sponse to radiation.

3. GO:Cellular component: Lastly, we find that the p53 protein is located in
the nucleus.

Besides these GO annotations, we can also learn from the FlyBase report that
the p53 gene is expressed not only in adult flies, but also during oogenesis
(including nurse cell and oocyte) and during the embryonic stage (includ-
ing embryonic/larval foregut, embryonic/larval hindgut, embryonic/larval
midgut, germ cell, and mesoderm).

MGD www.informatics.jax.org
TheMouse GenomeDatabase at the Jackson Laboratory in BarHarbor, Maine,
is a resource for mouse genome information. The human-mouse synteny
(i.e., the comparison of the two mammalian organisms) provides important
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clues regarding gene location, phenotype, and function. Synteny maps are
built based on the identification and mapping of conserved human-mouse
synteny regions. Comparative mapping is used to pinpoint unknown hu-
man homologs of known, mapped mouse genes.

GDB gdbwww.gdb.org
The GDB Human Genome Database is the main repository for all published
mapping information generated by the Human Genome Project. This data-
base is specific to Homo sapiens. The information stored in GDB includes
genetic maps, physical maps (clone, Sequence Tagged Site (STS), and Flu-
orescence In Situ Hybridization (FISH)-based), cytogenetic maps, physical
mapping reagents (clones, STSs), polymorphism information, and citations.

Pathbase www.pathbase.net
Pathbase is a mutant mouse pathology database that stores images of the
abnormal histology associated with spontaneous and induced mutations of
both embryonic and adult mice (Schofield et al. 2004). The database and the
images are publicly accessible and linked by anatomical site, gene, and other
identifiers to relevant databases. The database is structured around a novel
mouse pathology ontology, calledMPATH, and provides high-resolution im-
ages of normal and diseased tissues that are searchable through orthogo-
nal taxonomies for pathology, developmental stage, anatomy, and gene at-
tributes. The database is annotated with GO terms, controlled vocabularies
for type of genetic manipulation or mutation, genotype, and free text for
mouse strain and additional attributes. The MPATH ontology is available in
DAG-Edit format.

5.7 Specialized Protein Databases

ORDB senselab.med.yale.edu/senselab/ordb
The Olfactory Receptor Database is a central repository of olfactory recep-
tor (OR) and olfactory receptor-like gene and protein sequences (Crasto et al.
2002). The 2004 Nobel Prize in Physiology or Medicine was awarded jointly
to Richard Axel and Linda B. Buck for their discoveries of “odorant recep-
tors and the organization of the olfactory system.” Humans detect odorants
through ORs, which are located on the olfactory sensory neurons in the ol-
factory epithelium of the nose (Buck and Axel 1991; Buck 2000).
In building ORDB, relevant HTML files from GenBank and SWISS-PROT

and user-supplied text files are parsed to extract relevant data. Upon filter-
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ing, an XML-encoded file is then built that is entered into the database via an
HTML submission form. The ORDB can be downloaded as an HTML file.

RiboWeb smi-web.stanford.edu/projects/helix/riboweb.html
RiboWeb is a relational database containing a representation of the primary
3D data relevant to the structure of the ribosome of the prokaryotic 30S ribo-
somal subunit, which initiates the translation of messenger RNA (mRNA)
into protein and is the site of action of numerous antibiotics (Chen et al.
1997). The project has since been expanded to include structural data per-
taining to the entire ribosome of prokaryotes (but primarily Escherichia coli).
The project includes computational modules for constructing and studying
structural models,

5.8 Gene Expression Databases

Gene expression profiling includes both transcriptomics and proteomics. The
former monitors gene transcription, while the latter monitors gene trans-
lation. Proteomics has more restrictive expressions and post-translational
modifications. In contrast to transcriptomics, which is an “indirect” measure
of gene expression, proteomics provides a more direct measurement of gene
expression and is increasingly important in functional genomics. Thus, gene
expression databases contain both transcriptomics databases and proteomics
databases.

5.8.1 Transcriptomics Databases

It is useful to study the temporal and spatial patterns of gene expression.
Transcriptomics is defined as the use of quantitative mRNA measurements
of gene expression to characterize biological processes and elucidate gene
transcription mechanisms. Thus, the goal of gene expression experiments
is to quantify mRNA expression, particularly under certain conditions (e.g.,
drug intervention) or in a disease state. Differential gene expression mea-
surements are performed using a number of high-throughput techniques
such as (1) expression sequence tags (ESTs), (2) DNA microarrays (includ-
ing oligonucleotide microarrays and spotted microarrays), (3) subtractive
cloning, (4) differential display, and (5) serial analysis of gene expression
(SAGE). Gene expression experiments have as their goal the identification of
novel disease genes, drug targets, and coregulated gene groups. Transcrip-
tomics databases provide integrated data management and analysis systems
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for transcriptional expression. These databases can be used for both hypoth-
esis testing and knowledge discovery.
NCBI’s dbEST Database www.ncbi.nlm.nih.gov/dbEST/
The GeneCards Database

bioinformatics.weizmann.ac.il/cards
Kidney Development Gene Expression Database

organogenesis.ucsd.edu
Gene Expression in Tooth bite-it.helsinki.fi
Mouse Gene Expression Database www.informatics.jax.org
The Cardiac Gene Expression Knowledgebase

www.cage.wbmei.jhu.edu
Gene Expression Atlas expression.gnf.org/cgi-bin/index.cgi
NCBI’s Gene Expression Omnibus

www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=geo
Cancer Gene Expression Database

cged.hgc.jp/cgi-bin/input.cgi
Saccharomyces Genome Database www.yeastgenome.org
The Nematode Expression Pattern DataBase

nematode.lab.nig.ac.jp
WormBase www.wormbase.org
The Plasmodium Genome Resource plasmodb.org
The Zebrafish Information Network zfin.org

5.8.2 Proteomics Databases

Proteomics is defined as the use of quantitative protein-level measurements of
gene expression to characterize biological processes and elucidate the mech-
anisms of gene translation. The goal of proteomics is the quantitative mea-
surement of protein expression in various conditions such as under the in-
fluence of a drug or being in a specific disease condition. There are gener-
ally two steps in proteomics - protein separation and protein identification.
Protein separation is usually performed using 2D polyacrylamide gel elec-
trophoresis (2D-PAGE). Protein identification is usually accomplished using
Edman degradation, mass spectrometry, or Western blotting. Protein quan-
tification can be achieved through radiolabeling and scanning or phospho-
imaging. Proteomics is important in disease diagnosis and prognosis. For
example, human serum contains a spectrum of proteolytically derived pep-
tides (serum peptidome) that may provide a correlate of biological events
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occurring in the entire organism (Villanueva et al. 2004). Proteomics data-
bases address five biological questions that cannot be answered by DNA
analysis: (1) the relative abundance of protein products; (2) post-translational
modifications; (3) subcellular localizations; (4) molecular turnover; and (5)
protein-protein interactions (Celis et al. 1998).
HEART-2DPAGE

userpage.chemie.fu-berlin.de/∼pleiss/dhzb.html
Heart High-Performance 2-DE Database

www.mdc-berlin.de/∼emu/heart
SWISS-2DPAGE au.expasy.org/ch2d
SIENA-2DPAGE www.bio-mol.unisi.it/2d/2d.html
WORLD-2DPAGE us.expasy.org/ch2d/2d-index.html
PMMA-2DPAGE www.pmma.pmfhk.cz
RAT HEART-2DPAGE

www.mpiib-berlin.mpg.de/2D-PAGE/RAT-HEART/2d
HSC-2DPAGE www.expasy.org/cgi-bin/dbxref?HSC-2DPAGE
Phosphoprotein Database www-lecb.ncifcrf.gov/phosphoDB
REPRODUCTION-2DPAGE

reprod.njmu.edu.cn/cgi-bin/2d/2d.cgi
Toothprint Database biocadmin.otago.ac.nz/tooth/home.htm
COMPLUYEAST-2DPAGE babbage.csc.ucm.es/2d/2d.html
FishProm www.abdn.ac.uk/fishprom/index.shtml

Mining of proteome databases can reveal intrinsic patterns and relation-
ships in proteomics data, for example, protein-protein interactions and pro-
tein networks. The identification of patterns in complex proteome data sets
can generate new insights into gene translation and post-translational modi-
fication conditions and can characterize complex biological networks.

5.9 Pathway Databases

A pathway is a system of molecules (especially proteins) that work together.
Pathways are also called molecular interaction networks, and include meta-
bolic pathways, regulatory pathways, and molecular complexes.

BioPAX www.biopax.org/
BioPAX is a collaborative effort to create a data exchange format for biologi-
cal pathway data. The current format is called BioPAX level-1 and represents
metabolic pathway information. Future levels are planned for representing
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signaling, genetic regulatory, and genetic pathways. BioPAX is an OWL on-
tology.

KEGG www.genome.ad.jp/kegg
The Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto 2000;
Kanehisa et al. 2002) is the primary database resource of the Japanese Genome-
Net service for understanding higher-order functional meanings and utilities
of the cell or the organism from its genome information. KEGG consists of
the PATHWAY database for the computerized knowledge of molecular in-
teraction networks such as pathways and complexes, the GENES database
for information about genes and proteins generated by genome sequencing
projects, and the LIGAND database for information about chemical com-
pounds and chemical reactions that are relevant to cellular processes. In ad-
dition to these three main databases, limited amounts of experimental data
for microarray gene expression profiles and yeast two-hybrid systems are
stored in the EXPRESSION and BRITE databases, respectively. Furthermore,
a new database, named SSDB, is available for exploring the universe of all
protein coding genes in the complete genomes and for identifying functional
links and ortholog groups. The data objects in the KEGG databases are all
represented as graphs and various computational methods are developed to
detect graph features that can be related to biological functions.
The KEGGMarkup Language (KGML) is the exchange format of the KEGG

graph objects, especially the KEGG pathway maps that are manually drawn
and updated. KGML enables automatic drawing of KEGG pathways and
provides facilities for computational analysis and modeling of protein net-
works and chemical networks.

EcoCyc ecocyc.org
EcoCyc is an organism-specific pathway database that describes themetabolic
and signal transduction pathways of E. coli K12 MG1655, its enzymes, and
its transport proteins (Karp et al. 2002c). EcoCyc andMetaCyc are part of the
BioCyc relational database, which is available as a collection of flat files.

MetaCyc metacyc.org/
MetaCyc is a metabolic-pathway database that describes nonredundant, ex-
perimentally elucidated metabolic pathways from more than 240 different
organisms. (Karp et al. 2002c). Applications of MetaCyc include pathway
analysis of genomes, metabolic engineering, and biochemistry education.
MetaCyc and EcoCyc are queried using the Pathway Tools GUI, which pro-
vides a wide variety of query operations and visualization tools (Karp et al.
2002b).
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5.10 Single Nucleotide Polymorphisms

A single nucleotide polymorphism (SNP) is defined as a single base change that
occurs at a population frequency of at least 1%. SNPs represent the most
common form of variation in the human genome. SNPs are important land-
marks that can be applied in studies of molecular evolution as well as disease
mechanisms.
In contrast to rare Mendelian diseases caused mostly by high-penetrant

mutations, low-penetrance SNPs appear to form the most essential compo-
nent of the heritability of common, complex human diseases. Bioinformat-
ics has provided an unprecedented power and resource for deciphering the
enigma of such complex disorders, based on the tremendous amount of data
generated by the new, powerful, and high-throughput technologies of ge-
nomics and proteomics (Leung and Pang 2002). Several programs have been
developed to predict SNP effects in silico on protein functions/gene tran-
scriptional activities (Krishnan and Westhead 2003; Ng and Henikoff 2002,
2003; Conde et al. 2004). Also, there has been a surging interest in study-
ing complex human diseases using SNP-based haplotypes, and a number of
haplotype phasing algorithms have been developed (Niu 2004).
This section describes the major SNP and haplotype databases. For a list of

the databases in this area, see the HGVbase website at hgvbase.cgb.ki.
se/.

NCBI dbSNP database www.ncbi.nlm.nih.gov/SNP
The NCBI dbSNP database is the central depository for SNPs (Sherry et al.
2001). Because dbSNP entries may contain redundancies, all SNPs contained
in dbSNP have been grouped into nonredundant sets of SNPs by clustering
SNPs at identical genomic coordinates to create single, representative SNPs,
which are called reference SNPs (RefSNPs). These RefSNPs are designated
with an rs prefix in the ID.
Data are available in a wide variety of formats, including flat files, ASN.1,

FASTA, and XSD. The URI for the XSD schema is ftp://ftp.ncbi.nlm.
nih.gov/snp/specs/genoex.xsd.

HGVbase hgvbase.cgb.ki.se/
The objective of the Human Genome Variation Database is to provide an ac-
curate, high-utility, and ultimately fully comprehensive catalog of normal
human gene and genome variation, useful as a research tool to help de-
fine the genetic component of human phenotypic variation. All records are
highly curated and annotated, ensuring maximal utility and data accuracy.



124 5 Survey of Ontologies in Bioinformatics

HGVbase is the product of a collaboration between the Karolinska Institute
(Sweden), and the European Bioinformatics Institute (U.K.). Recently, a de-
cision was made to develop HGVbase into a phenotype/genotype database.
Data exchange with other databases is being maintained, but submissions
are not currently being accepted.
Database exchange of core information with dbSNP (Sherry et al. 2001)

ensures that HGVbase incorporates data from high-throughput discovery
efforts. Release 15 of HGVbase contains information on almost 3 million
SNPs, of which 29,000 are found in 10,000 genes and 41,000 have allele fre-
quency information. In HGVbase, the location of each represented variant
is presented in the context of available gene predictions, and SNPs within
or around genes are described as exonic, intronic, utr, or flank (within 2 kb
of the gene boundary). HGVbase currently considers only genes with a
HUGO nomenclature committee approved definition (Wain et al. 2002), as
represented in the Ensembl database (Hubbard et al. 2002). Nonsynonymous
SNPs are grouped into three broad classes based on their predicted effect on
the protein level: benign, possibly damaging, and probably damaging. The meth-
ods used for these functional predictions are described in (Ng and Henikoff
2003; Ramensky et al. 2002).
HGVbase is available in XML, FASTA, MySQL, and flat file formats. The

XML format is specified by the XMLDTD at ftp://ftp.ebi.ac.uk/pub/
databases/variantdbs/hgbase/hgvbase.dtd.

Ensembl www.ensembl.org/
Ensembl is a a comprehensive source of stable automatic annotation of in-
dividual genomes, and of the synteny and orthology relationships between
them (Birney et al. 2004). It is also a framework for integration of any bi-
ological data that can be mapped onto features derived from the genomic
sequence, including SNPs.
Data can be obtained in a variety of formats, including FASTA format, flat

files, GenBank format, and MySQL database dump format. The flat file for-
mat does not include all the data.

SNP500Cancer snp500cancer.nci.nih.gov
The Cancer Genome Anatomy Project (CGAP) was designed to provide pub-
lic data sets, material resources, and informatics tools to serve as a plat-
form to support the elucidation of the molecular signatures of cancer (Straus-
berg 2001; Strausberg et al. 2001). The SNP500Cancer Database provides se-
quence and genotype assay information for candidate SNPs useful in map-
ping complex diseases such as cancer. The database is an integral compo-
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nent of the Cancer Genome Anatomy Project (Packer et al. 2004) of the Na-
tional Cancer Institute (NCI). SNP500Cancer provides bidirectional sequenc-
ing information on a set of control DNA samples derived from anonymized
subjects (102 Coriell samples representing four self-described ethnic groups:
African/African-American, White, Hispanic, and Pacific Rim). All SNPs are
chosen from public databases and reports, and the choice of genes includes
a bias toward nonsynonymous and promoter SNPs in genes that have been
implicated in one or more cancers. The website is searchable by gene, chro-
mosome, gene ontology pathway, and by known dbSNP ID. For each ana-
lyzed SNP, the database includes the gene location and over 200 bp of sur-
rounding annotated sequence (including nearby SNPs). Other information is
also provided such as frequency information in total and per subpopulation
and calculation of the Hardy-Weinberg equilibrium for each subpopulation.
Sequence validated SNPswithminor allele frequency greater than 5% are en-
tered into a high-throughput pipeline for genotyping analysis to determine
concordance for the same 102 samples. The website provides the conditions
for validated genotyping assays.

SeattleSNPs Database pga.mbt.washington.edu
The SeattleSNPs is a collaboration between the University ofWashington and
the Fred Hutchinson Cancer Research Center, funded as part of the National
Heart Lung and Blood Institute’s (NHLBI) Programs for Genomic Applica-
tions (PGA). The goal of SeattleSNPs is to discover and model the associa-
tions between single nucleotide sequence differences in the genes and path-
ways that underlie inflammatory responses in humans. In addition to SNP
data (location, allele frequency, and function for coding SNPs), haplotypes
are presented graphically on the SeattleSNPs website. Haplotype tagging
SNPs (htSNPs) information is also provided that will allow fewer SNPs to be
genotyped per gene, thereby reducing cost and improving throughput. Data
is available in tab-delimited text files.

GeneSNPs www.genome.utah.edu/genesnps
The GeneSNPs database is sponsored by the National Institute of Environ-
mental Health Sciences and is being developed by the University of Utah
Genome Center. GeneSNPs is a component of the Environmental Genome
Project which integrates gene, sequence, and polymorphism data into indi-
vidually annotated gene models. The human genes included are related to
DNA repair, cell cycle control, cell signaling, cell division, homeostasis and
metabolism, and are thought to play a role in susceptibility to environmen-
tal exposure. Data are available in HTML, FASTA, and XML formats. The
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XML format does not use a DTD, and most of the information is encoded as
FASTA text within element content.

The SNP Consortium snp.cshl.org
The SNP Consortium (TSC) was established in 1999 as a collaboration of sev-
eral companies and institutions to produce a public resource of SNPs in the
human genome (Thorisson and Stein 2003). The initial goal was to discover
300,000 SNPs in 2 years, but the final results exceeded this. For example, at
the end of 2001, as many as 1.4 million SNPs had been released into the pub-
lic domain (ISMWG 2001). The database now contains over 1.8 million SNPs.
The data are stored in a relational database and are available in tab-delimited
flat files.

International HapMap Project www.hapmap.org
The International HapMap project is charting the haplotype structure across
the entire human genome in major human ethnic groups (IHMC 2003). The
haplotype data of this project are available in XML. The format is specified
using XSD in www.hapmap.org/xml-schema/2003-11-04/hapmap.xsd.
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This part addresses how ontologies are constructed and used. One uses on-
tologies far more frequently than one creates them, and it is a good idea to
have some experience with how ontologies are used before attempting to
design new ontologies. Accordingly, this part begins with the many uses for
ontologies, and it ends with how one constructs them.
One of the most common uses of ontologies is for querying and retrieval.

The first three chapters discuss how query processing works and how to for-
mulate effective queries. Because ontologies have deductive capabilities, the
result of a query makes use of inferred information as well as explicitly spec-
ified information. There are two main points of view that one can take with
respect to retrieval. The first point of view is based on imprecise queries,
while the second point of view is based on precise, logical queries. Imprecise
bioinformatics queries can be expressed in two ways: natural language or
biological sequences. Chapter 6 considers natural language queries, while
chapter 7 deals with biological sequence queries. Chapter 8 introduces com-
puter languages for unambiguous queries.
After information retrieval, the most common activity involving ontolo-

gies is transformation. The process whereby information is transformed from
one format to another is surveyed in chapter 9. Such processes can have
many steps and involve many groups of individuals. It is helpful to under-
stand the entire transformation process so that the individual steps can serve
the overall process better.
The individual transformation steps use a variety of programming lan-

guages and tools. One of the most common is Perl. While Perl is especially
well suited for data transformations involving unstructured files, it can also
be used for structured data. Chapter 10 is an introduction to Perl that em-
phasizes its use for data transformations. While Perl can be used effectively
on XML documents, there is now a language specifically designed for trans-
forming XML. This language is called XSLT, and it is introduced in chap-
ter 11. As bioinformatics data migrate from flat files to XML structured files,
one can expect that XSLT will play an increasing role.
This part ends with a detailed treatment of the process whereby ontolo-

gies are built. The ontologies and databases that were surveyed in chapter 5
were substantial endeavors involving many individuals and requiring the
agreement of the community being served. While ontologies certainly can
be developed in this way, it is also possible for ontologies to serve smaller
communities for more limited purposes. Chapter 12 is a practical guide for
developing ontologies in a systematic manner, whether the ontology will be
used by a large community, a small community, or even a single individual.



6 Information Retrieval

6.1 The Search Process

Research is a fundamental activity of knowledge workers, whether they are
scientists, engineers, or business executives. While each discipline may have
its own interpretation of research, the primary meaning of the word is “a
careful and thorough search.” In most cases, the thing one is searching
for is information. In other words, one of the most important activities of
modern educated individuals is searching for information. Whole industries
have arisen to meet the need for thorough searching. These include libraries,
newspapers, magazines, abstracting services, online search services, and so
on.
Biological systems also engage in searches. Enzymes can be highly specific

to a particular kind of substrate, and oligonucleotide probes will strongly
bind only with complementary DNA. Enzymes and probes diffuse through
their medium until they encounter and bind with their matching target. An-
tibodies are perhaps the most elaborate kind of biological probe. A particular
antibody not only continually searches for a particular kind of target but it
performs actions when the target is found. The resulting actions can be very
elaborate. Antibodies are the research agents of an organism, continually
studying their environment and responding to attacks and threats.
Not surprisingly, the search process itself has been studied at least since

the 1930s (Saracevic 1975), and a standard model was developed by the mid-
1960s (Cleverdon and Keen 1966). In this model, the searcher has an infor-
mation need which he or she tries to satisfy using a large collection or corpus
of information objects. The objects that satisfy the searcher’s needs are the
relevant objects. The searcher expresses an information need using a formal
statement called a query. Queries may be expressed using topics, categories,
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or words, individually or severally. The query is then given to a search in-
termediary. In the past the intermediary was a person who specialized in
searching. It is more common today for the intermediary to be a computer
system. Such systems are called information retrieval systems or online search
engines. The search intermediary tries to match the topics, categories, and
words from the query with information objects in the corpus. The interme-
diary responds with a set of information objects that, it is hoped, satisfy the
searcher’s needs.
Queries are certainly not the only way to find information in a corpus.

Another very commonly used technique is to follow citations or references
within the documents in the corpus. This technique is called browsing. Online
browsing tools are now ubiquitous. Such a tool allows a searcher to follow
references contained in information objects by simply clicking on a word or
picture within the information object. In the standard model for information
retrieval, a sharp distinction is made between searching using queries and
searching using references.
In the standard model, the quality of a search is measured using two num-

bers (Saracevic 1975). The first number represents how thorough the search
was. It is the fraction of the total number of relevant information objects that
are presented to the searcher. This fraction is called by various names, such as
the sensitivity, coverage, or recall. If the coverage is less than 100%, then some
relevant information objects have been missed. The second number repre-
sents how careful the search was. It is the fraction of the objects presented to
the searcher that are judged to be relevant. This number is called the precision
or selectivity. If the precision is less than 100%, then some irrelevant objects
were presented to the searcher.
Of course, one can always increase the coverage by adding many more

information objects to those already presented, thereby ruining the selectiv-
ity. Clearly, one would like to balance the coverage and selectivity so as to
achieve a search that is as careful and thorough as possible. In this chapter,
a variety of search techniques and services are introduced, and the role that
ontologies can play is described.
The queries considered above are expressed using topics, categories, or

words, or a combination of these. The assumption is that the query is an
imprecise and incomplete specification, and the search engine will make an
effort to retrieve documents that are likely, but not guaranteed, to be relevant.
Alternatively, one could use precise queries. Such queries must be expressed
in a formal language with precise semantics. The best-known example of
such a query language is SQL, which is used for retrieving information from
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relational databases. Formal query languages are programming languages
specialized for retrieval. The advantage of using a formal query language
is that one always has perfect retrieval: 100% coverage and 100% selectivity.
This holds because the criteria for retrieval have no ambiguity. But there are
several disadvantages. One must learn to program in the query language,
which can require a significant effort, and this technique only applies to a
corpus that is highly structured, such as a database or collection of XML
documents. Formal query languages for XML documents are discussed in
chapter 8.

Summary

• Online search engines are based on the standard model for information
retrieval.

• In the standard model, a query is matched against a corpus and the most
relevant documents are retrieved.

• The quality of the retrieval is measured by the coverage and selectivity.

6.2 Vector Space Retrieval

The simplest search technique is to look for documents that contain thewords
specified in a query. From this point of view a document is simply a set of
words, and the same is true of a query. Search consists of finding the docu-
ments that contain the words of the query. Many retrieval systems use this
basic technique, but this is only effective for relatively small repositories. The
problem is that the number of matches to a query can be very large, so some
mechanism must be provided that selects among the matching documents
or arranges the documents so that the best matches appear first.
Simply arranging the matching documents by the number of matching

words is not very effective because words differ in their selectivity. A word
such as “the” in English has little use in search by word matching because
nearly every document that uses English will have this word. For example,
PubMed (NIH 2004b) is a very large corpus containing titles, abstracts, and
other information about medical research articles. Table 6.1 gives the number
of times that the most common words occur in PubMed. The second column
of this table gives the number of times that the word occurs in the text parts
of the PubMed citations. The third column gives the number of documents
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that contain the word. Note that “of” occurs in more documents than “the,”
although the latter occurs more often.
One can deal with the varying selectivity of words in several ways. One

could ignore the most commonly occurring words. The list of ignored words
is called the “stop word list.” One can also weight the matches so that more
commonly occurring words have a smaller effect on the choice of documents
to be returned. When this technique is used, the documents are arranged in
order by how well the documents match the query. Many algorithms have
been proposed for how one should rank the selected documents, but the one
that has been the most effective is vector space retrieval, also called the vector
space model. This method was pioneered by (Salton et al. 1983; Salton 1989).
In this model, each document and query is represented by a vector in a very
high-dimensional vector space. The components of the vector (i.e., the axes
or dimensions of the vector space) are all the words that can occur in a doc-
ument or query and that can be used for searching. Such words are called
terms. Terms normally do not include stop words, and one commonly maps
synonymous words (such as words that differ only by upper- or lower-case
distinctions) to the same term.
The vector of a document or query will be very sparse: nearly all entries

will be zero for a particular document or query. The entry for a particular
term in the vector is a number called the term weight. Term weights can be
based on many criteria, but the two most important are the following (Salton
and McGill 1986):

1. Term Frequency. The number of times that the term occurs in a doc-
ument. The assumption is that if a term occurs more frequently in the
document, then it must be more important for that document.

2. Document Frequency. The number of documents that make use of the
term. When a term occurs in more documents, then it is less impor-
tant for the purposes of information retrieval. One makes this assump-
tion because terms that occur in more documents are less selective and
therefore less useful for distinguishing the relevant documents. For ex-
ample, “human” occurs in over 8.65 million PubMed documents, while
“normetanephrines” only occurs in five documents. Thus “human” is
much less selective than “normetanephrines.”

The term weight to be assigned to a document should combine the term
frequency with the document frequency. The most common way to do this
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Word Number of occurrences Number of documents
the 61735764 7656676
of 56188095 8838209
and 35936471 7398465
in 33774127 7492125
to 18670139 5482347
a 18257728 5846177
with 12881242 4904841
was 10202515 3683332
for 8961803 4155330
human 8823139 7284714
were 8569580 3348418
by 8312546 3872850
that 7060247 3500824
is 6941721 3340361
metabolism 6459988 2119436
on 5669049 3324379
effects 5383334 2450007
from 5230712 2868785
drug 5141572 2305403
patients 5120897 1680125
as 4631373 2635318
or 4628590 2551277
at 4127714 2236276
cells 4112303 1303540
blood 4040580 1646084
this 3982055 2657101
an 3942049 2647511
male 3908310 3580224
be 3803795 2491683
female 3777242 3496974
support 3751655 2924479
pharmacology 3667686 1550452
analysis 3660441 1964018
are 3650898 2205386

Table 6.1 Number of occurrences of the most common words in PubMed
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is based on a probabilistic cost/benefit approach. The two cost factors asso-
ciated with information retrieval are:

1. The loss associated with the retrieval of an irrelevant document. Such an
error is called a Type I error, or a false positive. Let c1 denote the cost of
this kind of error.

2. The loss associated with failing to retrieve a relevant document. Such an
error is called a Type II error, or a false negative. Let c2 denote the cost of
this kind of error.

The cost factors are shown diagrammatically in figure 6.1. This same dia-
gram applies to any situation in which a statistical decision must be made.

Figure 6.1 Types of errors that can occur during document retrieval.

Retrieval begins by specifying a query Q. Documents are either relevant
to the query Q or they are irrelevant to the query. The probability of rel-
evance is Pr(Relevant) and the probability of irrelevance is Pr(Irrelevant) =
1 - Pr(Relevant). If one is considering a particular document D, then the
probability of relevance is the conditional probability Pr(Relevant|D), and
the probability of irrelevance is Pr(Irrelevant|D) = 1 - Pr(Relevant|D). The
cost of retrieving this document is c1Pr(Irrelevant|D) and the cost of not re-
trieving it is c2Pr(Relevant|D). The ideal strategy is to retrieve the document
when the cost of retrieval is less than the cost of nonretrieval or

Pr(Relevant|D)/Pr(Irrelevant|D)>c1/c2.

In practice, one does not explicitly specify either c1 or c2 or even their ra-
tio. Rather, one attempts to arrange the documents in descending order by
the ratio Pr(Relevant|D)/Pr(Irrelevant|D). The person requesting the query
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can then examine the documents in this order until it is found that the doc-
uments are no longer relevant. In other words, the ratio c1/c2 is implicitly
determined by the researcher during examination of the document list.
The conditional probabilities Pr(Relevant|D) and Pr(Irrelevant|D) can be

“reversed” by applying Bayes’ law. Thus

Pr(Relevant | D) = Pr(D | Relevant)Pr(Relevant)/Pr(D)

and similarly for the probability of irrelevance. In the ratio of these two, the
term Pr(D) cancels, and we obtain the following expression:

Pr(Relevant | D)
Pr(Irrelevant | D)

=
Pr(D | Relevant)

Pr(D | Irrelevant)
Pr(Relevant)

Pr(Irrelevant)

The last factor in the equation above is a ratio that depends only on the
query Q, not on the document D. Consequently, arranging the documents in
descending order by the ratio Pr(D|Relevant)/Pr(D|Irrelevant) will produce
exactly the same order as using the ratio Pr(Relevant|D)/Pr(Irrelevant|D).
This is fortunate because the probabilities in the former ratio are much easier
to compute.
To estimate the ratio Pr(D|Relevant)/Pr(D|Irrelevant), first consider the

denominator. In a large corpus such as the web, with billions of pages, or
Medline with over 12 million citations, one will rarely be interested in more
than a very small fraction of all documents. Thus nearly all documents will
be irrelevant. As a result, it is reasonable to assume that Pr(D|Irrelevant) is
the same as Pr(D).
To estimate Pr(D|Relevant)/Pr(D) it is common to assume that the docu-

ments and queries can be decomposed into statistically independent terms.
We will discuss how to deal with statistical dependencies later. Statistical in-
dependence implies that Pr(D|Relevant) is the product of Pr(T|Relevant) for
all terms T in the document D, and Pr(D) is the product of the unconditional
probabilities Pr(T). Because queries can also be decomposed into indepen-
dent terms, there are two possibilities for a term T in a document D. It is
either part of the query Q or it is not. If T is in the query Q, then by defini-
tion the term T is relevant, so Pr(T|Relevant) = 1. If T is not in the query Q,
then the occurrence of T is independent of any relevance determination, so
Pr(T|Relevant) = Pr(T). The ratio Pr(D|Relevant)/Pr(D) is then the product of
two kinds of factor: 1/Pr(T) when T is in the query Q and Pr(T)/Pr(T) when
T is not in the query Q. So all that matters are the terms in D that are also in
Q.
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If there are N documents in the entire collection, and if M of them contain a
particular term T, then Pr(T) =M/N. The numberM is the called the document
frequency of the term. Since N is a constant for all documents, queries, and
terms, it is not needed for determining the ranking of documents. The ratio
1/M is the inverse document frequency (IDF). Most term-weighting techniques
make use of the IDF or some variation of it.
To see why IDF is important, consider a term such as “human,” which

occurs in 66.2% of the documents in Medline. Knowing that a citation con-
tains this word gives one less than 1 bit of information. By comparison, the
term “normetanephrines” only occurs in five Medline citations, so know-
ing that a citation contains this term gives one much more information. To
be precise, since there are over 12 million Medline citations, this term gives
approximately 21 bits of information.
Returning to the computation of Pr(D|Relevant)/Pr(D), we find that it is

the product of 1/Pr(T) for all terms that occur both in D and in the query Q.
Since the logarithm preserves order and converts products to sums, it is con-
venient to take the logarithm of this product. This implies that one should
order documents by the sum of log(1/Pr(T)) = -log(Pr(T)), for all terms that
occur both in each document and the query. This representation has the fur-
ther advantage that the terms in the sum can be interpreted as measurements
of information. It also explains why it makes sense to interpret documents
and queries as high-dimensional vectors. The vectors have one entry for each
possible term. Define the vector for a document D to have log(1/Pr(T)) as the
entry for the term T, whenever T is in D, and to have 0 if T is not in D. De-
fine the vector for a query Q to have 1 as the entry for the term T, whenever
T is in Q, and to have 0 if T is not in Q. In general, if v=(v1,v2,...,vn) and
w=(w1,w2,...,wn) are two vectors, then the dot product (also called the inner
product) of v and w is given by this sum:

v · w =
n∑
1

viwi

Consequently, the logarithm of the ratio Pr(D|Relevant)/Pr(D) is the dot prod-
uct of the vector for D and the vector for Q.
When the same term occurs more than once in a document, there is a ques-

tion of how to incorporate this in the term-weighting scheme. One way is to
treat each occurrence as being independent, so that one should add the IDF
each time. The number of occurrences of a single term in one document is
called its term frequency. The resulting term-weighting scheme is called the
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term frequency, inverse document frequency (TFIDF) weighting scheme. This
scheme is by far the most commonly used term-weighting scheme informa-
tion retrieval using the vector space model.
The interpretation of documents and queries as vectors gives a versatile

and intuitive geometric approach for information retrieval. The analysis
above made a number of assumptions which generally do not hold in prac-
tice. However, the vector space model can be adjusted to some extent when
these assumptions do not hold.

1. Documents can be decomposed into statistically independent terms. Statistical
dependencies among terms are manifest in the vector space model as axes
in the vector space that are not orthogonal. For example, “integrin” oc-
curs in about 28,000 PubMed citations, “primate” occurs in about 116,000
citations, and “fibronectin” occurs in about 23,000 citations. Given that
PubMed has about 15 million citations, one would expect that about 200
citations would have both “integrin” and “primate” and that about 40 ci-
tations would have both “integrin” and “fibronectin.” In fact, there are
about 300 citations in the former case and almost 5000 citations in the
latter. This suggests that “integrin” and “primate” are nearly indepen-
dent, but that “integrin” and “fibronectin” are significantly correlated.
One can incorporate correlations into the vector space model by using
a nonorthogonal basis. In other words, the terms are no longer geometri-
cally at right angles to one another.

2. Queries can be decomposed into statistically independent terms. Query terms
may have dependencies just as document terms can be dependent. How-
ever, queries are usuallymuch smaller, typically involving just a few terms,
and any dependencies can be presumed to be the same as the ones for
documents.

3. Queries are highly specific. In other words, the set of relevant documents is
relatively small compared with the entire collection of documents. This
holds when the queries are small (i.e., have very few terms), but it is less
accurate when queries are large (e.g., when one compares documents with
other documents). However, modern corpora (such as Medline or the
World Wide Web) are becoming so immense, that even very large docu-
ments are small compared with the corpus.

The dot product has a nice geometric interpretation. If the two vectors
have unit length, then the dot product is the cosine of the angle between the
two vectors. For any nonzero vector v there is exactly one vector that has unit
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length and has the same direction as v. This vector is obtained by dividing v
by its length: v

|v| . Thus the angle between vectors v and w is given by v·w
|v||w| .

The length |v| of a vector is also called its norm, hence v
|v| is called the nor-

malization of v. Some systems normalize the vectors of documents so that all
documents have the same “size” with respect to information retrieval, and so
that the dot product is the cosine of the angle between vectors. Normaliza-
tion does not have a probabilistic interpretation, so it is not appropriate for
information retrieval using a query. However, it is useful when documents
are compared with one another. In this case, the cosine of the angle between
the document vectors is a measure of similarity that varies between 0 and
1. A value of 0 means that the documents are unrelated, while a value of
1 means that the documents use the same terms with the same relative fre-
quencies. One can use similarity functions such as the cosine as a means of
classifying documents by looking for clusters of documents that are near one
another. All of the clustering algorithmsmentioned in section 1.5 can be used
to cluster documents either hierarchically or by using some other organizing
principle. Clustering techniques based on similarity functions are still in use,
but they have been superseded to some extent by citation-based techniques,
to be discussed in section 6.4.
In spite of the logical elegance of the vector space model, it has several

deficiencies.

1. In many languages, words are composed of letters which can be in more
than one “case.” In English, letters can be upper- or lower-case. Com-
puters actually deal with characters, not letters, so the upper-case variant
differs from the lower-case variant. To deal with this ambiguity, most
search techniques ignore case distinctions when comparing words.

Unfortunately, case distinctions are sometimes important. For example,
acronyms are usually written using upper-case letters to prevent confu-
sion with the ordinary word. Thus “COLD” (which is the acronym for
chronic obstructive lung disease) can be distinguished from “cold” (which
has several meanings) by the use of upper-case letters.

2. Many languages, including English, also vary the form of a word for
grammatical purposes. This is known as inflection. For example, English
words can be singular or plural. For example, while “normetanephrines”
only occurs in five PubMed citations, the singular form “normetanephrine”
occurs in 1207 citations. Although the singular and plural forms have dif-
ferent meanings, such distinctions are rarely important during a search.
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It is difficult to map the inflected forms of an English word to a single
concept because inflection is highly irregular and ambiguous.

3. The vector space model treats the document as just a collection of un-
connected and unrelated terms. There is no meaning beyond the terms
themselves.

4. It presumes that the terms are statistically independent, both in the collec-
tion as a whole and in each document. The vector space model in general
allows for terms that are correlated, but it is computationally difficult even
to find correlations between pairs of terms, let alone sets of three or more
terms, so very few retrieval engines attempt to find or to make use of such
correlations.

5. By focusing exclusively on terms, it cannot take advantage of document
structure. webpages and XML documents have a hierarchical structure
whose elements are tagged. XMLdocument elements are especiallymean-
ingful, but none of this meaning is expressible in the vector space model.

6. By treating documents as independent entities, the vector space model
cannot take advantage of interdocument links such as the citations that
occur in scientific research papers and the hypertext links that occur in
webpages.

Some systems attempt to alleviate these problems by adding dependencies
between terms such as how close the terms are to each other in the document.
However, these improvements do not address the fundamental weaknesses
of this approach.
Ontologies can be useful tools for dealing with these deficiencies, and

some of the techniques are introduced in the next section.

Summary

• Words have different degrees of selectivity.

• In the vector space model each document and query is represented by a
vector where each component of the vector is the term weight for a word
that can occur in a document.

• The most common term weight is the TFIDF weight which is the product
of the number of times that the word occurs in the document times the
logarithm of the inverse of the number of documents that have the word.
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• A query is evaluated by computing the inner product of the query vec-
tor and each document vector and sorting. The documents are arranged
(ranked) by the inner products.

• The vector space model is a geometric interpretation of the corpus which
can be used to classify documents by looking for clusters of documents
that are near one another.

• In spite of its elegance and geometric appeal, the vector space model de-
pends on many assumptions and has a number of limitations.

6.3 Using Ontologies for Formulating Queries

Ontologies can address the shortcomings of traditional information retrieval
in many ways. In this section, we look at how an ontology can be a context
and a source of terminology which can be used to help formulate queries
which are then given to an ordinary vector space retrieval engine.
The simplest way to browse an ontology is to use its hierarchical struc-

ture as a means of organizing the concepts. One first presents the top-level
concepts, then the next level, and so on. This is the same approach used to
organize directory structures (file system browsing) and XML documents.
(See section 1.4, especially table 1.1.) Ontologies that can be browsed in this
way are relatively small and simple, consisting of just a taxonomy.
However, biomedical ontologies can be very large repositories of termi-

nology which require their own information retrieval systems. Consider, for
example, the Unified Medical Language System (UMLS), which was intro-
duced in subsection 5.1.1. With 4.5 million terms, the UMLS is much too
large to be browsed in any casual manner, and a variety of tools have been
introduced to assist one in this task. Some tools are designed for general
ontologies, while others are specialized for specific biological or medical on-
tologies.
The Medical Subject Headings (MeSH) browser is possibly the best known

biomedical terminology browser. It is available at www.nlm.nih.gov/mesh.
The MeSH browser is a specialized browser for MeSH. MeSH is the con-
trolled vocabulary thesaurus of the National Library of Medicine (NLM).
MeSH consists of sets of terms naming descriptors in a hierarchical structure
that permits searching at various levels of specificity.
The MeSH hierarchy has 11 levels. There are currently 22,568 descrip-

tors in MeSH and more than 139,000 headings called supplementary concept
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records, available separately. There are 23,887 cross-references that assist in
finding the most appropriate MeSH heading, and 106,651 other entry points.
The MeSH thesaurus is used by the NLM for indexing articles from 4600 of
the world’s leading biomedical journals for the Medline repository and the
PubMed retrieval system.
The MeSH browser is a vocabulary lookup aid for a specific ontology. It is

designed to help quickly locate descriptors of possible interest and to show
the hierarchy in which descriptors of interest appear. The MeSH is a stand-
alone service that is not directly linked to any retrieval system.
TheMeSH browser finds all matches to a query, and orders them alphabet-

ically by primary subject heading. One can ask for exact matches, matches to
all of the words in the query, or matches to any of the words in the query. The
entries and descriptors contain a great deal of information about the concept.
Searches can be restricted in a variety of ways.
The MeSH browser is a very useful browser for medical terminology, but

the MeSH thesaurus is very small compared to the UMLS, which was de-
scribed in more detail in subsection 5.1.1. The UMLS includes MeSH as well
as terminology from over 100 other sources. The UMLS itself can be licensed
from the NLM, and the distribution includes a simple browser. More sophis-
ticated browsers for the UMLS are available from a number of companies, ei-
ther commercially or for free on the web. Know-ME is freely available on the
web at (Know-Me 2004). It is not known how much of the UMLS is covered
by Know-ME. The Apelon DTS covers 8 of the over 100 source vocabularies
of the UMLS. It is commercially available, but freely available to government
employees. The SKIP Knowledge Browser from SemanTx Life Sciences (Jarg
2005) is available on the web at www.semantxls.com and covers all of the
source vocabularies of the UMLS, subject to copyright restrictions.
The more sophisticated browsers described above allow one to use ontolo-

gies in a number of ways during information retrieval. The most important
feature of an ontology is its terminology. The terms of an ontology are called
the controlled vocabulary. They allow one to formulate a query using the key-
words that have been used in a corpus of documents. However, an ontology
consists of more than just a controlled vocabulary. It also organizes concepts
hierarchically and has many relationships between concepts. When one is
browsing an ontology, one can navigate from concept to concept in several
ways:

1. One can use more general concepts, when more specific concepts do not
find the desired information. This is known as “broadening” the query.
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2. One can use more specific concepts, when more general concepts find too
much information. This is known as “narrowing” the query.

3. One can use concepts that are related in ways that are nonhierarchical.
For example, a nucleolus is a part of the nucleus of a cell. This is a query
modification which neither broadens nor narrows the query.

Summary

• Ontologies are an important source of terminology that can be used to
formulate queries.

• Biological and medical ontologies can be so large and complex that spe-
cialized browsing and retrieval tools are necessary.

• Several browsers are now available for the UMLS.

• One can use ontologies as a means of query modification when a query
does not return satisfactory results.

6.4 Organizing by Citation

The popularity of the World Wide Web has led to many new search tech-
niques that attempt to utilize its structure. One such technique was devel-
oped by Kleinberg in (Kleinberg 1998; Chakrabarti et al. 1998; Gibson et al.
1998). A variation on this technique has since been implemented with con-
siderable success by Google (Page and Brin 2004).
The underlying structure that is utilized by the Kleinberg algorithm is the

graph structure of documents in which one document refers to other docu-
ments. In the terminology of directed graphs, the documents are nodes and
each reference from one document to another is represented by a directed
edge from the node of the referring document to the node of the document
being referenced.
Like any search algorithm, the Kleinberg algorithm begins with a query.

This query is processed using a form of vector space retrieval to obtain a col-
lection of candidate documents. Unlike search techniques based solely on
the vector space model, there is no need to be very precise or careful about
how term weighting is performed because the final ranking of the retrieved
documents uses a very different technique from the one used by vector space
retrieval engines. After obtaining the initial set of candidates, the set is ex-
panded somewhat by including documents which refer to or are referenced
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by the initial candidates. Many other refinements can also be employed to
improve the set of candidates.
The next step is unique to the Kleinberg algorithm. A matrix is computed

in which the entries represent references of one document to another. For
example, suppose that one has three documents called D, E, and F, such that
D refers to E and F, while F refers to E. None of the documents refer to D and
document E does not refer to any other document in this set. The matrix is
given as follows:

D E F
D 0 1 1
E 0 0 0
F 0 1 0

For example, the 1 in the first row and second column of the matrix indi-
cates that document D refers to document E. Note that the rows and columns
have been labeled for ease in understanding the meaning of the entries. This
matrix is called the adjacency matrix of the graph. It is usually designated by
the letter A. We now compute the matrix products ATA and AAT , where the
superscript T means that the matrix has been transposed. The following are
these two matrices:

D E F
D 0 0 0
E 0 2 1
F 0 1 1

D E F
D 2 0 1
E 0 0 0
F 1 0 1

The original matrix A will not be symmetric in general, but both of the
products will be. In fact, both matrices are positive semidefinite. In other
words, the eigenvalues will be nonnegative. The largest eigenvalue is called
the principal eigenvalue, and its eigenvectors are called the principal eigen-
vectors. While it is difficult in general to compute eigenvalues and eigen-
vectors of large matrices, it is relatively easy to find a principal eigenvector.
The space of principal eigenvectors is called the principal component. Prin-
cipal components analysis (PCA) is a commonly used statistical technique
for accounting for the variance in data.
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In the case of graphs, the entries in a principal eigenvector measure the rel-
ative importance of the corresponding node with respect to the links. Each
of the two matrices has a different interpretation. The matrix ATA is the au-
thority matrix. The principal eigenvector ranks the documents according to
howmuch they are referred to by other documents. In this case the principal
eigenvector is (0, 1, 0.618). Document D is not referred to by any other doc-
ument in this set, so it is no surprise that it is not an authority. Document E
is referred to by two other documents, and document F is referred to by just
one other document. Thus E is more of an authority than F.
It is interesting to compare the Kleinberg algorithm with what one would

obtain using simple citation counts, as is often done in the research literature.
Since E has twice as many citation counts, one would expect that E would be
twice as authoritative as F. However, the principal eigenvector adjusts the
authoritativeness of each citation so that the authority weights are consis-
tent. In effect, the algorithm is implicitly assigning a level of “quality” to
the citations. In other words, being cited by a more authoritative document
counts more than being cited by a less authoritative source.
The matrix AAT is the hub matrix. A hub or central source is a document

that refers to a large number of other documents in the same set. In the re-
search literature, a survey article in a field would be a hub, and it might not
be an authority. This would be the case shortly after the survey article has
been published and before it has been cited by other articles. The princi-
pal eigenvector ranks the documents according to how much of a hub it is
for the particular query. In the example, the principal eigenvector is (1, 0,
0.618). Since document E does not refer to any other documents in this set, it
is not a hub. Document D is the main hub, since it refers to two other doc-
uments, while document F is much less of a hub since it only refers to one
other document.
One interesting and useful feature of the Kleinberg algorithm is that it is

possible for a document to have considerable importance either as an au-
thority or a hub even when the document does not match any of the terms
in the query. As a result, the Kleinberg algorithm improves both selectivity
and coverage of retrieval. It improves selectivity by improving the ordering
of documents so that the most relevant documents are more likely to occur at
the beginning of the list. It improves coverage by retrieving documents that
do not match the query but which are cited by documents that do match.
However, the Kleinberg algorithm does have its weaknesses. Because it

focuses on the principal eigenvector, the other eigenvectors are ignored even
when they may represent the actual focus of interest of the researcher. This
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is the case when a relatively small community uses the same terminology as
a much larger community. For this reason, commercial search engines like
Google that are based on the Kleinberg algorithm do not implement it in its
original form.
Google, for example, uses a formula which differs from the Kleinberg al-

gorithm in several ways:

1. The rank of a document is normalized by dividing it by the total num-
ber of references made by that document. Thus a document with a large
number of references will have its influence reduced a great deal, while
documents with a small number of references will have more influence.
Presumably this was done to prevent the algorithm from being easily sub-
verted.

2. Instead of the normal eigenvector equation, an additional termwas added
that serves to “dampen” the process of computing the rank, but which
adds some arbitrariness to the computed rank.

3. The original adjacency matrix is used rather than either the authority or
hub matrix. Thus the algorithm is measuring a form of popularity rather
than whether the document is authoritative or a central source.

Current search engines have another weakness. The original set of candi-
date documents is obtained using simple word-matching strategies that do
not incorporate any of the meaning of the words. As a simple example, try
running these two queries with Google: “spinal tap” and “spinal taps.” From
almost any point of view these two have essentially the same meaning. Yet,
the documents displayed by Google have completely different rankings in
these two cases. Among the first ten documents of each query there is only
one document in common. Although the spinal tap query is problematic
because there is a popular movie by that name, one can easily create many
more such examples by just varying the inflection of the words in the query
or by substituting synonymous words or phrases.
One obvious way to deal with this shortcoming of Google would be to in-

dex using concepts rather than character strings. This leads to the possibility
of search based on the meaning of the documents. Many search engines, in-
cluding Google, are starting to incorporate semantics in their algorithms. We
discuss this in section 6.6.
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Summary

• Citations (such as hypertext links) can be used to rank documents relevant
to a query according to various criteria:

1. Authoritativeness

2. Central source

3. Popularity

• Citation ranking improves both selectivity and coverage.

• However, citation ranking has a number of weaknesses:

1. Current systems are based onmatching words in the query with words
in documents and do not consider the meaning of the words.

2. Only the principal eigenvector is used, so smaller communities will be
masked by larger ones.

6.5 Vector Space Retrieval of Knowledge Representations

One of the main assumptions of the vector space model is that documents
are composed of collections of terms. While some systems attempt to take
advantage of correlations between terms, such correlations are difficult to
determine accurately, and the number of correlations that must be computed
is huge. In any case, the terms are still disjoint from one another. Knowledge
representations change this situation. Terms can now be complex concept
combinations that are built from simpler terms. Thus a term like “flu vac-
cine” contains both “flu” and “vaccine” as well as the complex relationship
between these two concepts which expresses the effect of the vaccine on the
influenza virus as well as the the derivation of the vaccine from the virus and
in response to it. In the UMLS, all three of these are concepts, and they are
related to one another.
To see how natural, as well as how subtle, concept combinations can be,

try juxtaposing two commonly used terms in different orders. For example,
“test drug” and “drug test.” Although these two have completely different
meanings, most search engines give essentially the same answer for both.
Indeed, “test drug” can be interpreted in two ways depending on whether
“test” is a verb or adjective. The term “drug test” also has several meanings.
As an exercise, try some other pairs of terms to see how many meanings
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you can extract from them. Concept combination could be a powerful in-
formation retrieval mechanism, provided it is properly interpreted. With a
relatively small number of basic concepts along with a small number of con-
ventional relationships, one can construct a very large number of concept
combinations.
Concept combination, also called conceptual blending and conceptual inte-

gration, is an active area of research in linguistics. The meaning of a concept
combination requires a deeper understanding of the relationship between
words and the phenomena in the world that they signify. Based on the earlier
work of Peirce, de Saussure, and others in the field of semiotics, Fauconnier
and Turner (1998, 2002) have developed a theory of conceptual blending that
explains how concepts can be blended. However, this theory is informal.
Goguen has now developed a formal basis for conceptual blending (Goguen
1999; Goguen andHarrell 2004). Furthermore, Goguen and his students have
developed software that automates the blending of concepts, and their sys-
tem has been used to understand and even to create poetry and other narra-
tives. Concept combination is closely connected with human categorization
and metaphor. For an entertaining account of these topics, see Lakoff’s book
with the intriguing title Women, Fire and Dangerous Things: What Categories
Reveal about the Mind (Lakoff 1987).
The tool developed by Goguen and his students, mentioned above, is ca-

pable of finding a wealth of concept combinations even when the concepts
are relatively simple. For the words “house” and “boat,” their tool finds
48 complete blends and 736 partial blends. Two of these have become so
common that they are considered single words; namely, “houseboat” and
“boathouse.” Others are less obvious, but still make sense, such as a boat
used for transporting houses, an amphibious recreational vehicle, or a boat
used permanently on land as a house.
As one might imagine, the combinatorial possibilities for combinations be-

come enormous when there are more than two words being combined. A
typical title for a biomedical research article can have a dozen words. Un-
derstanding the meaning of such a title can be a formidable undertaking if
one is not familiar with the subject matter of the article, as we pointed out in
section 1.6. Goguen and Harrell (2004) pointed out that conceptual blending
alone is not sufficient for understanding entire narratives that involve many
such blends (Goguen and Harrell 2004). They introduced the notion of struc-
tural blending, also called structural integration, to account for the meaning of
whole documents.
Having introduced concept combinations, one still has the problem of how
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such topics can be handled by an information retrieval system. Unlike ordi-
nary terms, concept combinations are necessarily dependent on the concepts
that were combined (both semantically and statistically). As we noted in
section 6.2, terms are considered to be statistically independent by default.
No such assumption will be valid for concept combinations. Fortunately, the
vector space model can incorporate such dependencies.
To see how this is done, consider the term “flu vaccine.” In the usual vector

space model, this is just two independent terms, “flu” and “vaccine.” These
two terms represent two of the factors in the ratio

Pr(D | Relevant)/Pr(D | Irrelevant)

from section 6.2 which determines the degree of relevance of a document D
to a query. If we presume that “flu vaccine” is a concept combination which
has been indexed, then the two factors for “flu” and “vaccine” should be
replaced by the single factor for “flu vaccine.” In other words, the concept
combination is a new term which supersedes the terms that were combined.
However, this is done only when both the document and the query use the
concept combination. If only one of them has the combination, then the in-
dividual terms must still be used to measure relevance.
Although the vector space model can be adapted to deal with concept

combinations, it still suffers from the deficiencies already enumerated in sec-
tion 6.2. Techniques that deal more directly with the meaning of the docu-
ments and queries are considered in section 6.6 and in chapter 8.

Summary

• Concepts can be combined in many ways which are much deeper than
just the juxtaposition of the words used.

• The vector space model can be extended to deal with concept combina-
tions, but it is still subject to deficiencies because it does not deal with the
meaning of words.

6.6 Retrieval of Knowledge Representations

Information retrieval systems, including Google, generally do not make use
of the meaning of the information in the document. As a result, searches
will necessarily be hit-or-miss activities. Sometimes one will get lucky, other
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times the retrieval will be useless. These engines use a variety of mechanisms
for overcoming this limitation, but they can never completely eliminate it.
This is in striking contrast with relational database queries which always

return all of the items specified and no others. Using the terminology of
information retrieval, relational queries always have 100% coverage and se-
lectivity. It is natural to imagine that one could try to achieve the same cover-
age and selectivity with information retrieval. To do so one must overcome
several difficult problems:

1. The meaning of natural language text is complex and difficult to represent
in a manner necessary for retrieval using database query languages.

2. Even if one could develop a representation language for natural language,
it is very difficult to translate from natural language into the representa-
tion language.

The first problem above is addressed by ontologies. While we do not yet
have ontologies that are sufficiently deep and have enough coverage for the
biomedical domain, the ontologies are improving steadily. Even the incom-
plete and relatively shallow ontologies that are available today (such as the
UMLS) are recognized as important and useful resources for biomedical re-
search.
The second problem is in many ways the more problematic one. Natural

language text is not easily understood by computers. The process whereby
natural language is translated from text to the representation language is
called natural language processing (NLP). The result of applying NLP to a
document is called the knowledge representation of the document. In a know-
ledge representation, all terms are expressed unambiguously as instances of
classes in the ontology, that is, they refer to the corresponding concept in the
ontology. Relationships between terms are also expressed unambiguously
using the relationships in the ontology. To see what a knowledge representa-
tion looks like, see any of the XML documents shown in chapter 1, especially
the ones in section 1.6.
Once natural language text has been converted to a knowledge represen-

tation, one can infer additional facts that were not explicitly stated. These
inferences take advantage of the ontology which can have many rules that
allow such inferencing. For example, if one speaks of a patient that has leu-
kemia, one can infer that this individual is a human who has cancer.
NLP techniques are not yet sufficiently well developed to be able to pro-

duce knowledge representations that always exactly represent the meaning
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of every natural language statement. However, it is possible to extract know-
ledge representations that are good enough to be used for information re-
trieval. Some commercial systems are available already that extract know-
ledge representations from biomedical text and that index these knowledge
representations for rapid retrieval.
Once the knowledge representations have been extracted, there are two

approaches to querying the documents:

1. Use a precise and unambiguous query language. For relational databases
one can use the SQL language, and such languages are now being devel-
oped for XML.

2. Query the documents with natural language. This means that NLP tech-
niques must be used to extract the knowledge representation of the query.
The query knowledge representation can then be matched against the
knowledge representations of the documents.

Although both approaches support inferencing, they differ in many ways.
In the first approach the query uses a specialized query language that has

little resemblance to natural language. There is now a standard query lan-
guage for XML documents, and chapter 8 discusses it in some detail. The
advantage is that one can be confident that the query will return exactly
every item that is relevant to the query. However, if the knowledge repre-
sentations of the documents are inaccurate, then the query results will also
be inaccurate. Since NLP techniques are still not perfect, one cannot expect
that query results will also be perfect. The disadvantage of specialized query
languages is that one must learn how to program in the language, and this
can require a significant amount of effort.
The second approach allows a person to query the document corpus by

using natural language queries. The queries are expressed as a knowledge
representation in the same way that documents are expressed. The retrieval
system answers the query by looking for matching knowledge representa-
tions in the corpus. The match can be complete or partial. This approach
is less brittle than the specialized query language approach, and so is better
suited to knowledge representations that are somewhat inaccurate. How-
ever, the fact that it is less precise can be a disadvantage when the knowledge
representations are known to be good and one would like to extract precise
information from the corpus.
One example of the second approach is the Semantic Knowledge Indexing

Platform (SKIP). A demonstration is available online at www.semantxls.
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com. Figure 6.2 is an example of a query presented to SKIP. The query
in this case is “What regulates the adhesiveness of integrins at the plasma
membrane of lymphocytes, and is responsible for association of PSCDs with
membranes?” The database used by the public demonstration is the NCBI
Reference Sequences (RefSeq) database (NIH 2004a). One can further restrict
the query by specifying that it must include some concepts and that it must
exclude others.

Figure 6.2 Query screen for the SKIP retrieval system.

After clicking on “Run Query”, the query text is converted to a knowledge
representation as shown in figure 6.3. In this figure the knowledge represen-
tation for the query is to the right of the query. At the bottom of the figure
are references to the two documents that match the query best. Other doc-
uments that match in other ways are shown in figure 6.4. The boxes in the
knowledge representation represent instances of the concepts shown, and
the arrows between the boxes represent relationships between the concepts.
Note that “plasma membrane” is a single concept in the UMLS so it is repre-
sented using a single box rather than two boxes joined by a relationship.
SKIP uses a high-performance indexing technology that was inspired by

biological sequencematching. As discussed in chapter 7, one can find homol-
ogous sequences by using short sequences to index the sequence database.
One then extracts short sequences from the query and matches them with
the ones in the index. For nucleotide sequence matching this can actually be
done chemically by synthesizing the query sequence as an oligonucleotide
and hybridizing it with the target DNA (in single-stranded form). The SKIP
index generalizes this technique to find knowledge representations that are
homologous to a query (Baclawski 1997a).
The matching documents are arranged by how well they match the query.
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Figure 6.3 Top part of the result screen for the SKIP retrieval system showing the
knowledge representation of the query and the document that matches the query the
best.

The first two matching documents match the best. They contain all of the
concepts in the query, and all but two of them are related as in the query.
The only relationship that was not found in these documents was between
“plasma membrane” and “lymphocytes.” The knowledge representation to
the left of the document link shows the part of the query that was found in
the document.
Scrolling down the result screen gives figure 6.4 which shows a number

of other documents that contain fewer concepts and relationships than the
documents that match the best. Continuing to scroll the results screen will
show many more matching documents, but these match less and less of the
original query.
This approach to retrieval has some advantages that were already dis-

cussed above. Another advantage specific to SKIP is that the retrieved doc-
uments are arranged in groups and labeled by how they match using an
intuitive and visually appealing graphical structure.
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Figure 6.4 Other documents that match a query. The knowledge representations
shown on the left show the part of the query that occurs in the documents on the
right.

Summary

• Translating natural language text to a representation language that cap-
tures meaning remains an unsolved problem, but reasonably good know-
ledge representations are possible.

• Knowledge representations can be queried in two ways:

1. Using a formal query language

2. Matching against another knowledge representation

• Systems that use knowledge representation matching are now available.
Such a system allows one to query a corpus using natural language.





7 Sequence Similarity Searching
Tools

Information retrieval can take many forms, and does not have to be based
on natural language. In bioinformatics, it is very common to base queries on
biological sequences, the biochemical language of cells. Indeed, most predic-
tions of biological function are obtained by comparing new sequence data
(for which little is known) with existing data (for which there is prior know-
ledge). The comparison is performed by using the new sequence data as a
query to retrieve similar sequence data in a corpus of such data. Such com-
parisons are of fundamental importance in computational biology. Similar
sequences are referred to as being homologous.
In this chapter we present the basic concepts necessary for sequence sim-

ilarity and the main approaches and tools for sequence similarity search-
ing. The most commonly used sequence similarity searching tools in com-
putational biology are FASTA, Basic Local Alignment Search Tool (BLAST),
and the many variations of BLAST. All these algorithms search a sequence
database for the closest matches to a query sequence. It should be noted that
all three algorithms are database search heuristics, which may completely
miss some significant matches and may produce nonoptimal matches. Of
these three tools, BLAST is the most heavily used sequence analysis tool
available in the public domain.

7.1 Basic Concepts

Like information retrieval, sequence similarity searching is a process whereby
a relatively small “query” sequence is compared with a large genomic “cor-
pus” of sequence information. In a perfect match the query sequence occurs
as a subsequence of the corpus. In practice such perfect matches seldom oc-
cur so it is necessary to have a measure of similarity. Each potential match is
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a way of lining up the residues in the query sequence with part of a sequence
in the corpus. Such a lining up is called an alignment. In an alignment, the
match can fail to be an exact match in two ways: aligned residues can be
different and there may be gaps in one sequence relative to the other. For
each alignment one can compute a similarity measure or score based on the
residues that match or fail to match and the sizes of the gaps. Matches gen-
erally contribute positively to the overall score while mismatches and gaps
contribute negatively. The scoring matrix specifies the contribution to the
overall score of each possible match and mismatch. This contribution can
be dependent on the position of a residue in the query sequence, in which
case the scoring matrix is called a position-specific scoring matrix (PSSM). Such
matrices are also called “profiles” or “motifs.” If the contributions do not
depend on positions, then the scoring matrix specifies the score associated
with a substitution of one type of residue for another. Such a scoring matrix
is called a substitution matrix. The gap penalties specify the effect of gaps on
the score. The objective of a sequence similarity matching tool is to find the
alignments with the best overall score.
There are a number of ways to compute the alignment score. The pri-

mary distinction is between nucleotide sequences and amino acid sequences.
The scoring for amino acid sequence similarity is more complicated because
there are more kinds of amino acids and because amino acid properties are
more complicated than nucleotide properties. For example, chemical struc-
tures and amino acid frequencies can both be taken into consideration. If two
aligned residues have a very low probability of being homologous, a heavy
penalty score is given for such a mismatch. Protein evolution is believed to
be subject to stronger forces than DNA evolution, so that some amino acid
substitutions (which result in Mendelian disorders) are much less function-
ally tolerant than others because natural selection processes select against
them.
The two most commonly used substitution matrices for amino acids are

the point accepted mutation (PAM) (Dayhoff et al. 1978) and the blocks sub-
stitution matrix (BLOSUM) (Henikoff and Henikoff 1992). BLOSUM is more
popular than PAM. In both cases, the entries in the matrix have the form
sij = ClogC(rij), where C determines the units by which the entries are
scaled (usually 2 for BLOSUM and 10 for PAM) and rij is the ratio of the
estimated frequency with which the amino acids i and j are substituted due
to evolutionary descent, to the frequency with which they would be substi-
tuted by chance. The numerator of this ratio is computed by using a sample
of known alignments. This formula is known more succinctly as the log-odds
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formula. Logarithms are used so that total scores can be computed by adding
the scores for individual residues in the alignment. Vector space retrieval for
text databases uses the same technique. For convenience, sij is often rounded
to the nearest integer.
BLOSUMmatrices were based on data derived from the BLOCKS database

(Henikoff and Henikoff 1991, 1994), which is a set of ungapped alignments
of protein families (i.e., structurally and functionally related proteins). Using
about 2000 blocks of such aligned sequence segments, the sequences of each
block are sorted into closely related clusters, and the probability of a mean-
ingful amino acid substitution is calculated based on the frequencies of sub-
stitutions among these clusters within a family. The number associated with
a BLOSUM matrix (such as BLOSUM62) indicates the cut-off value for per-
centage sequence identity that defines the clusters. In particular, BLOSUM62
scores alignments with sequence identity at most 62%. Note that a lower
cut-off value would allow for more diverse sequences into groups, and the
correspondingmatrices are therefore appropriate for examiningmore distant
relationships.
The PAMmatrices are based on taking sets of high-confidence alignments

of many homologous proteins and assessing the frequencies of all substi-
tutions. The PAM matrices were calculated based on a certain model of
evolutionary distance from alignments of closely related sequences (about
85% identical) from 34 “superfamilies” grouped into 71 evolutionary trees
and containing 1572 point mutations. Phylogenetic trees were reconstructed
based on these sequences to determine the ancestral sequence for each align-
ment. Substitutions were tallied by type, normalized over usage frequencies,
and then converted to log-odds scores. The value in a PAM1 matrix repre-
sents the probability that 1 out of 100 amino acids will undergo substitution.
Multiplying PAM1 by itself generates PAM2, and more generally (PAM1)n is
a scoring matrix for amino acid sequences that have undergone n multiple
and independent steps of mutations. Thus, the PAM250 matrix has under-
gone 130 more steps of mutations than the PAM120 matrix. Hence, for align-
ing closely related amino acid sequences, PAM120 matrix is a good choice;
for aligning more distantly related amino acid sequences, PAM250 matrix is
a more appropriate choice. It should be noted that errors can be amplified
during the multiplication process, and thus higher-order PAM matrices are
more error-prone. By comparison, in a BLOSUM62 matrix, each value is cal-
culated by dividing the frequency of occurrence of the amino acid pair in the
BLOCKS database, “clustered” at the 62% level, by the probability that the
same amino acid pair aligns purely by chance. PAM matrices are scaled in
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10log10 units, which is roughly the same as third-bit units. BLOSUM matri-
ces are usually scaled in half-bit units. In either type of scoring matrix, if the
score is 0, then the alignment of the amino acid pair is equivalent to being
coincidental; if the score is positive, the alignment of the amino acid pair is
found to be more often than by chance; if the score is negative, the align-
ment of the amino acid pair is found to be even less often than by chance.
The NCBI BLAST tool allows one to choose from a variety of scoring matri-
ces, including PAM30, PAM70, BLOSUM45, BLOSUM62, and BLOSUM80. A
more complete roster of scoring matrices (PAM10-PAM500, and BLOSUM30-
BLOSUM100) is available at the following ftp site: ftp://ftp.ncbi.nlm.
nih.gov/blast/matrices.
Mutational events include not only substitutions but also insertions and

deletions. Consequently one must also consider the possibility of alignment
gaps. However, gaps are a form of sequence mismatch, so they affect the
score negatively. During the process of alignment, the initiation of a new
gap adds a penalty called an opening gap penalty, while the widening of
an existing gap adds an extension gap penalty. For amino acid sequences,
it is common to set extension gap penalties to be lower than opening gap
penalties because certain protein domains evolve as a unit, rather than as
single residues.

Summary

• Sequence similarity search is a process whereby a query sequence is com-
pared with sequences in a database to find the best matches.

• The score depends on the scoring matrix and the gap penalties.

• The scoring matrix can be position-independent (substitution matrix) or
position-sensitive.

• The most commonly used substitution matrices are PAM and BLOSUM.

7.2 Dynamic Programming Algorithm

The first algorithm that was used for sequence matching was a dynamic
programming algorithm, called the Needleman-Wunsch algorithm (Needle-
man and Wunsch 1970). A dynamic programming algorithm finds an op-
timal solution by breaking the original composite problem recursively into
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smaller and smaller problems until the smallest problems have trivial solu-
tions. The smaller solutions are then used to construct the solutions for the
larger and larger parts of the original problem until the original problem has
been solved. In this case, the composite problem is to determine the optimal
alignment of the two sequences at their full lengths. This alignment prob-
lem is split by breaking down the two sequences into smaller segments. The
splitting continues recursively until the subproblem consists of comparing
two residues. At this point the score is obtained from the scoring matrix. The
resulting alignment is guaranteed to be globally optimal. Smith and Water-
man (1981) modified the Needleman-Wunsch algorithm to make it run faster
but only guaranteeing that the alignment is locally optimal.
Although the exact dynamic programming algorithm are guaranteed to

find the optimal match (either global or local), they can be very slow. This
is especially true for a full search of the very large sequence databases such
as GenBank for nucleotide sequences and SWISS-PROT for amino acid se-
quences that are commonly used today. To deal with this problem, a number
of heuristic techniques have been introduced, such as FASTA and BLAST,
that give up the guarantee of optimality for the sake of improved speed.
In practice, the effect on optimality is small, so the improvement in perfor-
mance is worth the compromise. These new algorithms search for the best
local alignment rather than the best global alignment.

Summary

• The earliest sequence similarity searching algorithms applied exact dy-
namic programming either globally or locally.

• Current algorithms are heuristic methods that still use dynamic program-
ming but apply approximations to improve performance.

7.3 FASTA

FASTA is both a collection of programs and a widely used format (Pear-
son and Lipman 1988). The programs are available from www.ebi.ac.uk/
fasta33. This site is also a web service for performing FASTA sequence
searching.
The FASTA algorithm was the first widely used algorithm for amino acid

and nucleotide similarity searches. The first step of the FASTA algorithm
is to find exactly matching “words” of length ktup. The default value of
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ktup is 2 for amino acid and 6 for nucleotide sequences. The next step is to
extend the matches of length ktup to obtain the highest scoring ungapped
regions. In the third step, these ungapped regions are assessed to determine
whether they could be joined together with gaps, taking into account the
gap penalties. Finally the highest scoring candidates of the third step are re-
aligned using the full Smith-Waterman algorithm, but confining the dynamic
programming matrix to a subregion around the candidates. The trade-off
between speed and sensitivity is determined by the value of the ktup param-
eter. Higher values of ktup, which represent higher “word” sizes, will give
rise to a smaller number of exact hits and hence a lower sensitivity, but will
result in a faster search. For the purpose of tuning, the ktup parameter will
generally be either 1 or 2 for amino acid sequences and can range from 4 to 6
for nucleotide sequences.
A sequence file in FASTA format can contain several sequences. Each se-

quence in FASTA format begins with a single-line description, followed by
lines of sequence data. The description line must begin with a greater-than
symbol (>) in the first column. An example sequence in FASTA format is
shown in figure 7.1.

>gi|11066424|gb|AF200505.1|AF200503S3 Pongo pygmaeus
GGCGCTGATGGACGAGACCATGAAGGAGTTGAAGGCCTACAAATCGGAAC
TGGAGGAACAACTGACCCCGGTGGCGGAGGAGACGCGGGCACGGCTGTCC
AAGGAGCTGCAGGCGGCGCAGGCCCGGCTGGGCGCGGACATGGAGGACGT
GCGCGGCCGCCTGGTGCAGTACCGCGGCGAGGTGCAGGCCATGCTCGGCC
AGAGCACCGAGGAGCTGCGGGCGCGCCTCGCCTCCCACCTGCGCAAGCTG
CGCAAGCGGCTCCTCCGCGATGCCGATGACCTGCAGAAGCGTCTGGCAGT
GTACCAGGCCGGGGCCCGCGAGGGCGCCGAGCGCGGCGTCAGCGCCATCC
GCGAGCGCCTGGGGCCCCTGGTGGAACAGGGCCGCGTGCGGGCCGCCACT
GTGGGCTCCGTGGCCGGCAAGCCGCTGCAGGAGCGGGCCCAGGCCTGGGG
CGAGCGGCTGCGCGCGCGGATGGAGGAGATGGGCAGCCGGACCCGCGACC
GCCTGGACGAGGTGAAGGAGCAGGTGGCGGAGGTGCGCGCCAAGCTGGAG
GAGCAGGCCCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCT
CAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGCCAGTGGGCCG
GGCTGGTGGAGAAGGTGCAGGCTGCCGTGGGCACCAGCGCCGCCCCTGTG
CCCAGCGACAATCACTGA

Figure 7.1 FASTA format of a 718-bp DNA sequence (GenBank accession number
AF200505.1) encoding exon 4 of Pongo pygmaeus apolipoprotein E (ApoE) gene.
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Summary

• FASTA is a set of sequence similarity search programs.

• FASTA is also a sequence format, and this is currently the main use for
FASTA.

7.4 BLAST

The most widely used tool for sequence alignment is BLAST (McGinnis and
Madden 2004), and it plays an important role in genome annotation (Muller
et al. 1999). BLAST uses a heuristic approach to construct alignments based
on optimizing a measure of local similarity (Altschul et al. 1990, 1997). Be-
cause of its heuristic nature, BLAST searches much faster than the main
dynamic programming methods: the Needleman-Wunsch (Needleman and
Wunsch 1970) and Smith-Waterman (Smith and Waterman 1981) algorithms.
In this sectionwe begin by explaining the BLAST algorithm. The algorithm

is then used for a number of types of search, as presented in subsection 7.4.2.
The result of a BLAST search is a collection of matching sequences (or “hits”).
Each hit is given a number of scores that attempt to measure how well the
hit matches the query. These scores are explained in subsection 7.4.3. We end
the section with some variations on the BLAST algorithm.

7.4.1 The BLAST Algorithm

BLAST has become the most popular tool used by biologists. There are two
main versions of BLAST:

NCBI BLAST www.ncbi.nlm.nih.gov/blast
This is the version that is most commonly used (Altschul et al. 1990, 1997).

WU-BLAST blast.wustl.edu
Washington University BLAST (Altschul et al. 1990; Gish and States 1993;
States and Gish 1994)

The central idea of the BLAST algorithm is that a statistically significant
alignment is likely to contain a high-scoring matching “word.” BLAST is a
heuristic that attempts to optimize a specific measure of sequence similarity,
based on a “threshold” parameter. In terms of time complexity, the BLAST al-
gorithm requires time proportional to the product of the lengths of the query
sequence and the target database.
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Before discussing the algorithmic details of BLAST, it is helpful to mention
some key concepts. A segment is a consecutive sequence of letters from the
DNA or amino acid alphabet. Dashes are used to denote gaps in a sequence.
A segment pair is a pair of segments having the same length.
The BLAST algorithm consists of the following steps:

1. Preprocessing step. BLAST masks (omits) simple, low-complexity re-
gions in the query sequence because these regions are not biologically
informative.

2. Word generation step. BLAST generates a list of words (i.e., short se-
quences) from the query sequence. The default word lengths are 3 (for
amino acid sequences) and 11 (for nucleotide sequences). The words are
thenmatchedwith the database to find thematches whose score exceeds a
given threshold T . Such matches are called hits. BLAST uses BLOSUM62
as the default scoring matrix for amino acids to find the hits. No gaps are
allowed during this step of the algorithm. A higher threshold T increases
the speed but also increases the probability that biologically significant
segment pairs will be missed. Thus there is a tradeoff between speed
and sensitivity that can be adjusted according to individual needs and the
resources available.

A search across the entire target sequence database for exact matches of
the hits is then performed. The search makes use of database indexes for
efficiency. As a result, this part of the algorithm is very fast. Matches ob-
tained in this part of the algorithm are the seeds for a potential alignment
between the query and database sequences.

3. Word extension step. In this step some of the hits obtained in the word
generation step are extended to find full alignment matches. The original
BLAST algorithm (now called the one-hit method) uses all of the hits with
a score above the threshold. It then attempts to extend the alignment from
each matching word in both directions as long as the alignment score is
no worse than an amount X below the maximum score attained so far.
The resulting alignment of an extended word is called a high-scoring seg-
ment pair (HSP). The extension step is computationally expensive: if T

and X are chosen to attain a reasonable sensitivity, the extension step will
typically account for more than 90% of the execution time of BLAST. The
original BLAST algorithm did not allow gaps in matching alignments.

More recently the BLAST algorithm has used a different technique for
selecting the hits that will be extended. In the two-hit method, an HSP
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is detected if it contains two nonoverlapping words of length W whose
scores are at least the threshold T , with starting positions that differ by
no more than A residues. The gapped BLAST algorithm uses the two-hit
method (Altschul et al. 1997). The two hits are extended in both directions
by means of dynamic programming. In the two-hit method, a smaller
threshold T can be used because the requirement that two hits occur near
each other limits the number of hits that qualify. As the name suggests,
the gapped BLAST algorithm can introduce gaps to matching alignments.

4. Evaluation step. BLAST determines the statistical significance of each of
the HSPs obtained in the word extension step and gives a report on the
HSPs that have been found. This report is discussed in more detail in
subsection 7.4.3 below.

Sometimes two or more segment pairs can be merged into a single,
longer segment. In such cases, a joint assessment of the statistical sig-
nificance can be made using the Poisson method or the sum-of-scores
method. The earliest BLAST versions used the Poisson method, while
more recent BLAST versions (including WU-BLAST and gapped BLAST)
use the sum-of-scores method.

FASTA differs from BLAST primarily in that FASTA strives to get exact
“word” matches, whereas BLAST uses a scoring matrix (such as the de-
fault BLOSUM62 for amino acid sequences) to search for words that may
not match exactly, but are high-scoring nevertheless. FASTA does not have a
preprocessing step as in BLAST, and FASTA does not use the BLAST strategy
of extending seeds using sophisticated dynamic programming. Both FASTA
and BLAST have a word generation step which does not allow gaps, fol-
lowed by a Smith-Waterman alignment step that can introduce gaps.

Summary

• BLAST uses a heuristic approach to find alignments quickly.

• The BLAST algorithm consists of these steps:

1. Preprocessing: omit uninformative regions of the query.

2. Word generation: generate small seed matches.

3. Word extension: extend single seeds or pairs of seeds.

4. Evaluation: compute measures of significance.
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7.4.2 BLAST Search Types

BLAST can be used to perform the following types of sequence similarity
searches.

blastn
The query is compared against a nucleotide sequence database, using pa-
rameters appropriate for nucleotides.

blastp
Query against an amino acid sequence database, using parameters appropri-
ate for amino acid sequences.

blastx
The query is first translated into each of the six possible reading frames, then
compared against amino acid sequence databases.

tblastn
The query is taken to be an amino acid sequence, but it is compared against
a nucleotide sequence database after translating each database entry into an
amino acid sequence using all six reading frames.

tblastx
The query is first translated into each of all six possible reading frames, then
compared against nucleotide databases, with each database sequence trans-
lated into an amino acid sequence in each of its possible reading frames.

The advantage of using one of the blastx, tblastn, or tblastx search
methods is that it allows one to find matches to distantly related sequences.
The disadvantage is that the searches are computationally intensive andmay
take an inordinate length of time. An example of the use of blastx for a
DNA sequence similarity search is shown in figure 7.2.
BLAST searches can be obtained either by using a publicly available web

service (e.g., www.ncbi.nlm.nih.gov/blast/) or by downloading the
BLAST program and running it locally. Both of these techniques require that
the queries be in FASTA format. The web services are convenient but only
accept a single query at a time. This can take a long time if one needs to run
a large number of queries. It also has the disadvantage that there are only
a limited number of customization options. For example, there are typically
only a few choices for the substitutionmatrix used in an amino acid sequence
query.
Because of the large computational requirements of BLAST, it is becom-

ing increasingly common to run BLAST searches on a cluster of computers.
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Figure 7.2 Illustration of blastx (version 2.2.10) output using a 718-bp DNA se-
quence (GenBank accession number AF200505.1) encoding exon 4 of Pongo pygmaeus
ApoE gene.

This is necessary if one must process a large number of queries. Managing
such a collection of queries becomes a problem in itself, and software has
been developed for this task. For example, BeoBLAST is a Perl program that
distributes individual BLAST jobs across the nodes of a cluster (Grant et al.
2002). Although BeoBLASTwas designed for use on Linux Beowulf clusters,
it can be used on any collection of computers that satisfy a few basic require-
ments such as having a BLAST program, a web server, and the GNU queue
service. For more information about how one can configure a computer for
BeoBLAST, download it from bioinformatics.fccc.edu/software/
OpenSource/beoblast/beoblast.shtml and read the installation in-
structions.
As a general rule, if a query is an amino acid sequence, then it is bet-

ter to search against an amino acid sequence database rather than against
a nucleotide sequence database. There are several reasons for this. First,
the genetic codes are degenerate (i.e., several different genetic codes encode
the same amino acid). Direct amino acid sequence alignment eliminates the
noise that results from the degeneracy. Second, amino acid databases tend to
be more sparsely populated than nucleotide sequences because constraints
during protein evolution are more severe than during DNA evolution. Un-
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like DNA, a protein must fold into a functionally competent 3D structure.

Summary

• In addition to BLAST searches for nucleotide and amino acid sequences,
there are search types that take into account the translation from nucleotide
to amino acid.

• There are publicly available BLAST web services for searches done with
one sequence at a time.

• Clusters of computers are frequently used for performing large batches of
BLAST searches.

7.4.3 Scores and Values

The output of a BLAST search consists of a set of HSPs annotated with vari-
ous measures of their statistical significance. The score of each HSP is usually
denoted by S and is called the raw score. The raw score depends on the var-
ious customization parameters of the search such as the scoring matrix. The
normalized score adjusts the raw score so that alignment scores from differ-
ent searches can be compared (Altschul et al. 1997). The normalized score is
S′ = (λS− lnK)/ln2, where λ and K are the Karlin-Altschul statistics (Karlin
and Altschul 1990, 1993). The reason why one divides by ln2 is so that the
units of the normalized score are in bits, a term borrowed from information
theory (Altschul 1991). As a result, S′ is also called the bit score.
The HSP with the largest score is called the maximal-scoring segment pair

(MSP). Because the MSP is the best match of the query, it is the most impor-
tant. One should be careful when using MSP scores from multiple queries.
Since the MSP score is a maximum, its probability distribution is given by
the extreme value distribution, also known as the Fisher-Tippett or log-Weibull
distribution. This distribution is not the same as a normal distribution even
when scores in general are normally distributed. This distribution is shown
in figure 7.3 where it is compared with the normal distribution.
Sequence similarity searches are commonly used to determine the func-

tionality of a sequence by comparing it with sequences whose functionality
is known. Inferring functionality is reasonable only when the similarity is
statistically significant. To determine statistical significance one compares
the actual search result with what would be expected for a search using a
random query sequence. The expectation value for a score is the number of
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Figure 7.3 Comparison of the extreme value distribution with the normal distribu-
tion.

distinct HSPs that would have that score or higher entirely by chance. The
expectation value is written E and is approximated by a Poisson distribution
(Karlin and Altschul 1990; Altschul 1991). In terms of the normalized score
S′, the expectation value E is given by mn2−S′

, where m is the size of the
query and n is the size of the database. The expectation value is probably the
most useful in the BLAST output. The threshold for significance is usually
set at either 10% or 5%. In other words, when E is less than 0.1 or E is less
than 0.05, then the HSP is considered to be statistically significant (Altschul
et al. 1997).
Strictly speaking, the E-value is not a probability, so it should not be used

to determine statistical significance. However, it is easy to convert E to a
probability by using the formula P = 1−e−E . The P -value is the probability
that a search with a random query would produce at least one HSP at the
same score or higher. Table 7.1 shows the relationship between E and P . For
E-values below 0.01, there is essentially no difference between E and P . The
reason for this is that the Taylor expansion of ex is 1 + x + x2/2! + x3/3! + . . .

so that for x close to 0, we have ex is approximately equal to 1 + x and thus,
when E is close to 0, P = 1− e−E is approximately equal to 1− (1−E) = E.
The usual way to use BLAST is to find those sequences in a database that

are homologous to a given query sequence. This process compares sequences
in the database with the query sequence, but it does not compare the data-
base sequences with each other. If one wishes to learn about the evolution of
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E-value P -value
10 0.9999546
5 0.9932621
1 0.6321206
0.1 0.0951626
0.05 0.0487706
0.001 0.0009995 (about 0.001)
0.0001 0.0001000

Table 7.1 Comparison between E-values and their corresponding P -values.

the homologous sequences, it is necessary to compare them with each other
and to organize them to show important features such as highly conserved
regions and other subtle similarities. This is known as multiple sequence align-
ment (MSA). We have already mentioned MSAs in section 5.4 where they are
used in the PROSITE database. MSAs are also used in some BLAST variants.

Summary

• The raw score S for a search can be normalized so that the results of dif-
ferent searches can be compared.

• The expectation value E can be used to test whether the result of a search
has statistical significance.

7.4.4 BLAST Variants

Since the launch of the original version of BLAST,many BLAST variants have
been developed. The major variants are presented in the following.

bl2seq www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html
In many cases, biologists only want to compare two sequences, rather than
embarking on a time-consuming journey of a full database search. The BLAST
2 SEQUENCES program is specifically designed for pairwise comparisons of
DNA or amino acid sequences (Tatusova and Madden 1999).

PSI-BLAST bioinfo.bgu.ac.il/blast/psiblast_cs.html
Queries using PSSMs differ from queries using substitution matrices in some
important ways. Unlike substitution matrices, there are no default or stan-
dard PSSMs. In fact, the PSSM is an important part of the query itself.
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Another difference is that the result of a PSSM search can be expressed in
terms of the probability that a type of residue occurs in each position. In
other words, the output of a PSSM search is another PSSM. PSI-BLAST, the
position-specific iterated BLAST, algorithm takes advantage of these features
of PSSM searches to improve sensitivity by iterating the BLAST algorithm. In
other words, the output of a PSSM search is expressed as another PSSM and
used for another PSSM search. This process is then repeated. PSI-BLAST is
often much better at detecting relatively weak relationships than noniterated
sequence similarity queries (Taylor 1986; Dodd and Egan 1990). Another
advantage of PSI-BLAST is that motif boundaries can be more precisely de-
fined. Ordinary BLAST relies on cumbersome extension and trimming pro-
cesses to determine the optimal boundary.
The first step in the PSI-BLAST algorithm is to find all database segments

that match the query sequence with an E-value below a user-defined thresh-
old (say 0.01). The matching database segments are then organized as an
MSA. The next step following the construction of the MSA is to construct
a PSSM. Closely related sequences in the MSA are given relatively smaller
weights to avoid biasing the probability distributions. The BLAST algorithm
is then applied with this PSSM, and the whole process is iterated a large
number of times.
One disadvantage of PSI-BLAST is that false positives (with a lowE-value)

could kick in and cause corrupted PSSMs that eventually lead to spurious
results in subsequent iterations. To deal with this problem a modified ver-
sion of PSI-BLAST has been developed that incorporates composition-based
statistics (Schaffer et al. 2001). This technique significantly improves the ac-
curacy of PSI-BLAST by suppressing the corruption of constructed PSSMs.

PHI-BLAST bioinfo.bgu.ac.il/blast/psiblast_cs.html
PHI-BLAST, the pattern-hit initiated BLAST program, is a hybrid strategy
that addresses a question frequently asked by researchers; namely, whether
a particular pattern seen in a protein of interest is likely to be functionally
relevant or occurs simply by chance (Zhang et al. 1998). This question is
addressed by combining a pattern search with a search for statistically sig-
nificant sequence similarity. The input to PHI-BLAST consists of an amino
acid or DNA sequence, along with a specific pattern occurring at least once
within the sequence. The pattern consists of a sequence of residues or sets of
residues, with “wild cards” and variable spacing allowed. PHI-BLAST helps
to ascertain the biological relevance of patterns detected within sequences,
and in some cases to detect subtle similarities that escape a regular BLAST
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search. The disadvantage of PHI-BLAST is that it is designed to combine
pattern search with the search for statistically significant sequence similarity,
rather than to maximize search sensitivity.
Note that PHI-BLAST uses the same website as PSI-BLAST.

WU-BLAST2 www.ebi.ac.uk/blast2
This is a new version ofWU-BLAST that uses sum statistics for gapped align-
ments (Altschul and Gish 1996).

MegaBLAST www.ncbi.nlm.nih.gov/blast/mmtrace.shtml
This algorithm introduces a “greedy” alignment algorithm that can perform
much faster than the traditional dynamic programming algorithm for se-
quence alignment (Zhang et al. 2000). See also www.ncbi.nlm.nih.gov/
blast/tracemb.shtml.

RPS-BLAST
genopole.toulouse.inra.fr/blast/rpsblast.html

Reverse PSI-BLAST searches a query sequence against a database of pro-
files (Marchler-Bauer et al. 2002). This is the opposite of PSI-BLAST, which
searches a profile against a database of sequences. RPS-BLAST uses a BLAST-
like algorithm, finding single- or double-word hits and then performing an
ungapped extension on these candidatematches. If a sufficiently high-scoring
ungapped alignment is produced, a gapped extension is performed and the
gapped alignments with sufficiently low expectation value are reported. RPS-
BLAST uses a BLAST database, but also has some other files that contain
a precomputed lookup table for the profiles to allow the search to proceed
faster. RPS-BLAST is available at both the NCBI web server and the BLOCKS
web server.

MPBLAST blast.wustl.edu
This is a program that increases the throughput of batch blastn searches by
multiplexing (concatenating) query sequences to reduce the number of ac-
tual database searches performed (Korf and Gish 2000). Throughput was ob-
served to increase in inverse proportion to the component sequence length.
In other words, shorter component queries benefit more from MPBLAST
than longer component queries. For component DNA queries of length 500,
an order of magnitude speedup has been observed.

PathBLAST
www.pathblast.org/bioc/pathblast/blastpathway.jsp

This is a network alignment and search tool for comparing protein inter-
action networks across species to identify protein pathways and complexes
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that have been conserved by evolution (Kelley et al. 2004). The basic method
searches for high-scoring alignments between pairs of protein interaction
paths, for which proteins of the first path are paired with putative orthologs
occurring in the same order in the second path.

BLAT genome.ucsc.edu/cgi-bin/hgBlat
The BLAST-Like Alignment Tool is a very fast DNA/amino acid sequence
alignment tool written by JimKent at the University of California, Santa Cruz
(Kent 2002). It is designed to quickly find sequences of 95% and greater sim-
ilarity of length 40 bases or more. It will find perfect sequence matches of 33
bases, and sometimes find them down to 22 bases. BLAT on proteins finds
sequences of 80% and greater similarity of length 20 amino acids or more. In
practice DNA BLAT works well on primates, and protein BLAT on land ver-
tebrates. It is noted that BLAT may miss more divergent or shorter sequence
alignments.
BLAT is similar in many ways to BLAST. The program rapidly scans for

relatively short matches (hits), and extends these into HSPs. However, BLAT
differs from BLAST in some significant ways. For instance, where BLAST re-
turns each area of homology between two sequences as separate alignments,
BLAT stitches them together into a larger alignment. BLAT has a special code
to handle introns in RNA/DNA alignments. Therefore, whereas BLAST de-
livers a list of exons sorted by exon size, with alignments extending slightly
beyond the edge of each exon, BLAT effectively “unsplices” mRNA onto the
genome giving a single alignment that uses each base of the mRNA only
once, and which correctly positions splice sites. BLAT is more accurate and
500 times faster than popular existing tools for mRNA/DNA alignments and
50 times faster for amino acid alignments at sensitivity settings typically used
when comparing vertebrate sequences.
BLAT’s speed stems from an index of all nonoverlapping sequences of

fixed length in the sequence database. DNA BLAT maintains an index of
all nonoverlapping sequences of length 11 in the genome, except for those
heavily involved in repeats. The index takes up a bit less than a gigabyte
of RAM. The genome itself is not kept in memory, allowing BLAT to deliver
high performance on a reasonably priced computer. The index is used to
find areas of probable homology, which are then loaded into memory for a
detailed alignment analysis. Protein BLAT works in a similar manner, ex-
cept with sequences of length 4. The protein index takes a little more than 2
gigabytes.
BLAT has several major stages. It uses the index to find regions in the
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genome likely to be homologous to the query sequence. It performs an align-
ment between homologous regions. It stitches together these aligned regions
(often exons) into larger alignments (typically genes). Finally, BLAT revisits
small internal exons possibly missed at the first stage and adjusts large gap
boundaries that have canonical splice sites where feasible.

Figure 7.4 BLAT input window.

We illustrate the use of BLAT with a search of a 718-bp DNA sequence
(GenBank accession number AF200505.1) encoding exon 4 of the Pongo pyg-
maeus ApoE gene using the BLAT server at snp.ims.u-tokyo.ac.jp/
map/cgi-bin/Blat/blat_genome.cgi. Figure 7.4 shows the input win-
dow, and figure 7.5 shows the output window, where the human ApoE gene
was found to be similar to the query DNA sequence.

Summary

Many variations and enhancements of BLAST have been introduced:

1. Performance improvements in special cases or in general:

• bl2seq: 2 sequence comparison;
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Figure 7.5 BLAT output window.

• MPBLAST: sets of small queries;

• MegaBLAST: greedy algorithm;

• WU-BLAST2: new version of WU-BLAST;

• BLAT: high-performance BLAST.

2. Iterated BLAST:

• PSI-BLAST: iterate to construct new motifs;

• RPS-BLAST: reverse iterate to find a known motifs.

3. Integrate BLAST with other search criteria:

• PHI-BLAST: combine with a pattern search;

• PathBLAST: compare protein interaction networks.



174 7 Sequence Similarity Searching Tools

7.5 Exercises

1. Ifm = 100 and n = 120, 000, 000, what normalized bit score S′ is necessary
to achieve an E-value of 0.01? If the E-value threshold is lowered by 200
times (i.e., lowered to 5×10−5), what normalized bit score is necessary?

2. The probability of finding exactly k HSPs with a raw score S that is at least
S0 follows a Poisson distribution. Suppose that the expected number of
HSPs with a raw score S≥S0 is 0.01. What is the probability of finding no
HSPs with score at least S0? What is the probability of finding at least 2
HSPs with score at least S0?
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For relational databases the standard query language is SQL. The main pur-
pose of SQL is to select records from one (or more) tables according to se-
lection criteria. Having selected the relevant records, one can then extract
the required information from the fields of the relevant records. Because of
the success and popularity of SQL, it was natural to imitate SQL when a lan-
guage was developed for querying XML. However, XML documents have a
hierarchical structure that relational databases do not possess. Consequently,
XML querying involves three kinds of operation:

1. Navigation. This is the process of locating an element or attribute within
the hierarchical structure of an XML document.

2. Selection. Having located desirable elements and attributes, one selects
the relevant ones.

3. Extraction. The last operation is to extract required information from the
relevant elements and attributes.

The first kind of operation is unique to XML querying, while the other two
are similar to what one does in SQL.
Navigation is so important to XML that a separate language was devel-

oped to deal with it, called XPath (W3C 1999). This language is introduced
in section 8.1. XPath has been incorporated into many other languages and
tools, and so it is widely available. One such language isXQuery (W3C 2004c)
which is the standard query language for XML, covered in section 8.2. If one
has some experience with relational databases and SQL, it will look famil-
iar, although there are a few differences. The main difference is that XQuery
supports navigation using XPath. Indeed, a query using XQuery can consist
of nothing more than an XPath expression, and in many cases that is all one
needs.
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8.1 XML Navigation Using XPath

XPath is a language for selecting parts of an XML document (W3C 1999). If
one has used computer file systems, then XPath navigation should be famil-
iar. For example, in the health study database, one can obtain all interviews
with this query:

HealthStudy/Interview

One specifies locations in an XML document by using the same notation that
is used for locating directories (folders) and files in most operating systems
(except that in Windows, a backward slash is used where a forward slash
would be used in XPath). Queries in XPath are called paths because they
describe the path to be followed to obtain the desired information.
In a document that has a much deeper hierarchical structure, one can use

a double slash to mean “skip any number of intermediate levels.” For ex-
ample, in the Medline database, one can obtain all substances by using this
path:

//NameOfSubstance

To obtain this set of elements without the double slash, one would have to
specify this path:

MedlineCitation/ChemicalList/Chemical/NameOfSubstance

Attributes are specified by using the at-sign character (@). To get a list of
all of the body mass index (BMI) values in the health study, use this path:

//Interview/@BMI

The format of the result of a path will vary with the specific tool being used.
A typical result of the path above would look like this:

BMI = 18.66 BMI = 26.93 BMI = 33.95 BMI = 17.38
-> 4 item(s)

Apath consists of a sequence of steps. Each step selects one ormore desired
nodes. There are many kinds of node. The following are the most important:

1. element. To select an element, simply give its name. The name can in-
clude a namespace prefix as in section 1.7. To select every element at one
level, use an asterisk (*). The asterisk is also known as the “star” or the
“wild card.” For example, in a MedlineCitation, one can obtain every
child element of every Chemical node by using this path:
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//Chemical/*

2. attribute. To select an attribute, use an @ followed by the name of the
attribute. Wild cards can also be used for attributes. To obtain every at-
tribute of every Interview element, use this path:

//Interview/@*

3. text. Text contained in an element can be explicitly selected by using the
text() function. This is not usually necessary. If an element only con-
tains text, then selecting the element will also select its text content.

One can navigate from one step to another in several ways. XPath calls this
the axis of navigation. The most common are the following:

1. child element. This is the normal way to navigate from one node to an-
other. If no other axis of navigation is explicitly specified, then the path
navigates to the child element.

2. descendant element. A double slash will navigate any number of levels
to a matching node. This is handy when one has a deep hierarchy.

3. parent element. One can go up one level by using a double dot. To obtain
the PubMed identifier (PMID) of every Chemical node, use this path:

//Chemical/../../PMID

4. ancestor element. One can go up any number of levels by using the an-
cestor:: axis. For example, to obtain the PMID of every Chemical node,
even when it is located several levels above, use this path:

//Chemical/ancestor::PMID

5. root element. A slash at the start of a path means to start at the highest
level of the document. If a slash is not specified at the start of a path,
then the path starts at the current element. This depends on the context in
which XPath is used.
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While directory paths and XML paths are very similar, there is a distinction
mentioned in table 1.1 which is important for navigation; namely, there can
be many child elements with the same name. A molecule, for example, can
have many atoms (see figure 1.6). To select a particular atom, such as the first
one, use this path:

/molecule/atomArray/atom[position()=1]

This path will select the first atom of every molecule. One can abbreviate the
path above to the following:

/molecule/atomArray/atom[1]

which makes it look like the array notation used in programming languages,
except that child numbering begins with 1, while programming languages
usually start numbering at 0. However, this notation is an abbreviation that
can be used in this case only, and it should not be used in more complicated
selection expressions.
XPath brackets are a versatile mechanism for selecting nodes. In addition

to selection by position, one can also select by attribute and node values. For
example, to select the nitrogen atoms in nitrous oxide, use this path:

/molecule[@name=’nitrous oxide’]//atom[@elementType=’N’]

XPath hasmany numerical and string operations. Some of these are shown in
table 8.1. Selection criteria can be combined, using the Boolean operators. For
example, if one would like the carbon and oxygen atoms in hydroquinone,
then use this path:

/molecule[@name=’hydroquinone’]
//atom[@elementType=’C’ or @elementType=’O’]

The XPath query above should have been on a single line, but it was shown
on two lines for typographical purposes. Other XPath queries in this chapter
have also been split to fit in the space available.
When using more complicated expressions, one cannot use abbreviations.

For example, if one would like the last atom of each molecule, but only if it
is a carbon atom, then use this path:

/molecule
//atom[@elementType=’C’ and position()=last()]
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sum(set) Sum of a set of matching elements or attributes
count(set) Number of matching elements or attributes in a set
position() The position in the current context
last() The last position in the current context
and The logical and operator
or The logical or operator
not The logical negation operator
+ Addition of two values
- Subtraction. Because names can have hyphens

always put spaces before and after the minus sign.
div Division
mod The remainder after division
* Multiplication
round(number) Round a number to the nearest integer
floor(number) Round down to an integer
ceiling(number) Round up to an integer
. Navigate to the current element
.. Navigate to the parent element
/ Navigate to a child element
// Navigate to any contained (descendant) element
| Match either of two choices
starts-with(text) Test that text begins in a specified way
substring(start,end,text) A part of some text
string-length(text) The number of characters in some text
= Test for equality
!= Test for not equal to
&lt; Test for less than. Note that < has a meaning

in XML, so one must use the “escaped” notation.
> Test for greater than
&lt;= Test for less than or equal to
>= Test for greater than or equal to

Table 8.1 Some of the XPath operators
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The XPath language is already a versatile query language. However, it is
not a general query or transformation language. XQuery is a general query
language which extends XPath. XQuery is introduced in the next section.
XSLT is a general transformation language which uses XPath for navigation
and computation. XSLT is discussed in chapter 11.

Summary

• XPath is a language for navigating the hierarchical structure of an XML
document.

• Navigation uses paths that are similar to the ones used to find files in a
directory hierarchy.

• Navigation consists of steps, each of which specifies how to go from one
node to the next. One can specify the direction in which to go (axis), the
type of node desired (node test), and the particular node or nodes when
there are several of the same type (selection).

• An axis can specify directions such as: down one level (child), down any
number of levels (descendant), up one level (parent), up any number of
levels (ancestor), and the top of the hierarchy (root).

• Node tests include: elements, attributes (distinguished using an at-sign)
and text.

• One can select nodes using a variety of criteria which can be combined
using Boolean operators.

8.2 Querying XML Using XQuery

XQuery is a powerful and convenient language designed for processing hi-
erarchically structured data such as XML documents (W3C 2004c). To run an
XQuery query, one must have an XQuery engine. There are many XQuery
engines available, both open source and commercial. Furthermore, XQuery
has been incorporated into other tools.
The first step in any query is to specify which XML document is to be

queried. One can do this by using the document function. For example, the
query

document("healthstudy.xml")//Interview
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will return all of the interview records in the health study database.
Alternatively, one can specify a collection of XML documents for which

one will perform a series of queries. Such a collection is called the “database”
or corpus. The specification of the corpus will vary from one XQuery engine
to another. Once the corpus is ready, the queries do not have to mention any
documents.
So far we have only considered XPath expressions. Queries can be far

more elaborate. A general XQuery query may have four kinds of clause, as
follows:

1. for clause. This specifies a loop or iteration over a collection. It says that
a variable is to take on each value in the collection, one value at a time.
For example,

for $bmi in
document("healthstudy.xml")//Interview/@BMI

will set the $bmi variable to each BMI attribute. All variables in XQuery
start with a dollar sign. This clause corresponds to the FROM clause in
SQL queries, except that in SQL one has only one FROM clause, while an
XQuery expression can have any number of for clauses. Most program-
ming languages (including Perl, C, C++, and Java) use “for” to indicate
an iteration process, and the meaning is the same.

2. where clause. This restricts which values are to be included in the result
of the query. This clause corresponds to the where clause in SQL queries.
For example, if one were only interested in BMI values larger than 30, then
the query would be

for $bmi in
document("healthstudy.xml")//Interview/@BMI

where $bmi > 30

Programming languages like Perl prefer to use the word if to indicate a
restriction.

3. return clause. A query can have any number of variables. The ones
that should be printed are specified in the return clause. All of the
queries given so far are actually incomplete, since they did not indicate
what should be printed. To print the BMI values, the query above would
look like this:
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for $bmi in
document("healthstudy.xml")//Interview/@BMI

where $bmi > 30
return $bmi

The return clause corresponds to the SELECT clause in an SQL query.
Programming languages like Perl also use the word “return,” but the
meaning is completely different.

4. let clause. It is often convenient to do computations in a query. To sim-
plify the computations, it is helpful to be able to introduce variables that
are set to expressions using the other variables. This is done using let
clauses. There is no analogous capability in SQL. For example, the follow-
ing query has the same result as the one above:

let $bmilist :=
document("healthstudy.xml")//Interview/@BMI

for $bmi in $bmilist
where $bmi > 30
return $bmi

The $bmilist variable is set to the whole collection of BMI values. The
for clause then sets $bmi to each of the values in this collection, one at a
time.

XQuery uses variables in ways that are different from how they are used
in programming languages such as Perl. In Perl, the dollar sign is used to
indicate that a variable is a scalar. A different symbol, the at-sign (@), is used
to indicate variables that can have an array of values. In XQuery, there is no
distinction between scalars and arrays: a variable can be either one. More
significantly, Perl variables can be assigned to a value any number of times.
XQuery will only assign a variable to different values in a for clause. A
variable can only be given a value once by a let clause. Subsequent lets
for the same variable are not allowed.
One can build up more complicated XQuery expressions by combining a

series of for and let clauses. These are followed by an optional where
clause. The return clause is always the last clause. For example, suppose
that one wants to obtain the major topics of the Medline articles in a corpus
of Medline citations. One would use a query like this:
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for $desc in
document("medline.xml")//MeshHeading/DescriptorName

let $cite := ../../MedlineCitation
where $desc/@MajorTopicYN = "Y"
return $cite, $desc/text()

Summary

• XQuery is the standard query language for processing XML documents.

• Every XPath expression is a valid XQuery query.

• A general query is made of four kinds of clause:

1. A for clause scans the result of an XPath expression, one node at a time.

2. A where clause selects which of the nodes scanned by the for clauses
are to be used.

3. A return clause specifies the output of the query.

4. A let clause sets a variable to an intermediate result. This is an op-
tional convenience so that a complicated expression does not have to
be written more than once.

8.3 Semantic Web Queries

Unlike XML which has standard navigation and query languages, the Se-
mantic Web languages do not yet have a standard query language. Some
suggestions have been made, but it is still unclear what the standard lan-
guage will eventually look like.
There are several contenders for a Semantic Web query language:

1. A language similar to XQuery, which itself was inspired by SQL. Such a
language would treat the knowledge base as a database of triples. From
the point of view of the relational model, RDF has a very simple data
model: a table with three columns, the subject, predicate, and object.
The OWL languages are based on RDF triples so the same data model
would apply. However, this data model ignores the semantic differences
between relational databases and the Semantic Web languages.
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2. A language based on rule engines. As we noted in section 3.1, a query is
just a rule with no conclusion, just a condition. Thus any rule language
provides, as a special case, a query language. However, the same problem
arises here as in the possibility above. Rules engines generally do not
support the logic used in the Semantic Web languages.

3. A language based on formal logic. Processing a language such as OWL
requires a theorem prover in general. As discussed in section 3.3, one
queries a theorem prover by presenting it with a conjecture. This is not
the same as a query, because a theorem prover will only report whether
the query can be satisfied or not.

None of these choices is completely satisfactory. In two of the cases, one
would be ignoring the semantics of RDF and OWL, while in the third case,
the query language would be unsatisfactory for nearly all uses. To under-
stand the problem, suppose that one would like to know the number of
atoms in the nitrous oxide molecule as in exercise 8.2. This is such a simple
and obvious kind of query that it seems amazing that any query language
would have any trouble with it. However, in the Semantic Web languages,
the only statement that is entailed by the available information is that there
are at least two atoms. The fact that there are exactly two atoms is not en-
tailed. The reason for this has to do with the monotonicity of the Semantic
Web languages, as explained in section 4.4. A statement is entailed when it is
true in every model of the theory. Unfortunately, there are models for the ni-
trous oxide theory that have more than two atoms. One could certainly add
additional statements to the nitrous oxide theory which would allow one to
entail the fact that there are only two atoms in the molecule. However, that
would only resolve this particular query. It is not feasible to add all of the
additional statements to a knowledge base that would be needed to resolve
all possible queries. In fact, one can prove that it is logically impossible to
do this. As a result, there can never be a fully satisfactory query language
that will preserve the logic and semantics of the OWL languages as they are
currently defined. The same is true for the transformation tasks which are
discussed in Chapters 10 and 11.

8.4 Exercises

1. Using the health study database in section 1.2, find all interviews in the
year 2000 for which the study subject had a BMI greater than 30.
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2. Given a BioML document as in figure 1.3, find all literature references for
the insulin gene.

3. In the PubMed database, find all citations dealingwith the therapeutic use
of glutethimide. More precisely, find the citations that have “glutethimide”
as a major topic descriptor, qualified by “therapeutic use.”

4. Perform the same task as in exercise 8.3, but further restrict the citations
to be within the last 6 months.

5. For the health study database in section 1.2, the subject identifier is a field
named SID. Find all subjects in the database for which the BMI of the
subject increased by more than 4.5 during a period of less than 2 years.

6. How many associations does GO term 0003673 have?





9 The Transformation Process

9.1 Experimental and Statistical Methods as Transformations

Biology experiments consist of performing complex recipes by which input
materials are ultimately transformed into output measurements. Research
papers specify the experiment in the Materials and Methods section. There
are two different types of information presented in a Materials and Methods
section. One is the list of initial materials used in the experiment. In other
words, these are the ingredients. They are the source materials of the experi-
ment. The second type of information in the Materials and Methods section
is the description of the processes. Processes consist of a sequence of steps
that transform input substances into output substances and measurements.
Consider the following excerpt from a Materials and Methods section in

a biology paper (Stock and Stock 1987): “Immunoaffinity chromatography.
IgG was purified from mouse ascites fluid by DEAE-Affi-Gel Blue (Bio-Rad)
chromatography (5) followed by precipitation in 50% ammonium sulfate at
0◦C. Purified IgG (5 mg/ml) was dialized against 0.1M sodium bicarbonate,
pH 8.5, mixed with Affi-Gel 10 (Bio-Rad) at a ratio of 10 mg of IgG per ml of
Affi-Gel 10, and incubated for 12 h at 40◦C.. . . ” The corresponding series of
steps performed in this procedure is shown in figure 9.1. For simplicity, not
all of the attributes of the actual procedure are shown. Note that materials
can be introduced at steps other than just the first one. Sometimes measure-
ments can occur at more than just the last step (although that does not occur
in this example).
The information transformation process is similar to the processing per-

formed during an experimental procedure. The ingredients are called the
source or content. This is the material that is processed and transformed into
the desired output information. As in experimental procedures, information
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Figure 9.1 Immunoaffinity chromatography procedure for IgG shown as a series of
processing steps. The materials are shown in rectangular boxes, the processing steps
are shown in rounded boxes, and the attributes of a processing step are shown in
ellipses.

transformation is commonly performed in a series of discrete steps. Each
step transforms input information into output information according to the
type of step and the attributes that have been chosen. An example of an
information transformation process is shown in figure 9.2.
The myGrid project, www.mygrid.org.uk, has developed a toolkit for

much more elaborate transformation processes. The Taverna workbench
supports the scientific process for in silico experiments, including manage-
ment, sharing and reusing the results, recording their provenance and the
methods used to generate them. The myGrid project has developed a com-
prehensive loosely-coupled suite of middleware components specifically to
support data intensive in silico experiments in biology. Workflows and query
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Figure 9.2 Information transformation process for statistical analysis of a health
study.

specifications link together third party and local resources using web ser-
vice protocols. Taverna is a GUI used for assembling, adapting and running
workflows. Workflows that execute remote or local web services and Java
applications are the chief mechanism for forming experiments. Legacy appli-
cations are incorporated using myGrid wrapper tools. In addition to services
and applications, databases may be integrated using a query processor de-
veloped jointly with the UK OGSA-DAI project. An example of a myGrid
workflow is shown in figure 9.3. The software can be freely downloaded.

Summary

• Biology experiments and statistical analyses are transformation processes.

1. A biology experiment transforms biological and chemical materials
into quantitative measurements.
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Figure 9.3 An example of a myGrid workflow. The type of action performed by
each node in the workflow is indicated by its color (not shown).

2. A statistical analysis transforms survey information into statistical mea-
surements.

• The myGrid project supports in silico experiments by providing tools for
managing, sharing and reusing the results, recording their provenance
and the methods used to generate the results.

9.2 Presentation of Information

The dissemination of biological knowledge is steadily being transferred from
traditional print media to the web. Research papers are increasingly being
used to document data that has been produced by a laboratory and that are
available on the Internet. Many research contracts explicitly require that data
be disseminated on the Internet, and data made available this way are heav-
ily used by other laboratories. Accordingly, it is important that laboratory
websites be properly maintained and up to date.
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websites consist mainly of a collection of files written in the Hypertext
Markup Language (HTML) format. There exist many tools for creating these
files. However, constructing the files directly using such a tool is not a very
good way to construct a website. It has a number of serious disadvantages:

1. Most of the effort is directed at the visual appearance (presentation) rather
than the actual information (content) on each webpage.

2. The same information can appear on several pages, so updating informa-
tion requires one to find the information and update it in all its locations.

3. Small changes in the content can result in a large number of changes to
the website. For example, adding a new person to a department requires
that a series of pages be constructed for that person along with references
to those pages in numerous other pages. Similarly, when a person leaves,
one must delete many pages and remove references on other pages to
the deleted pages. The effect is reminiscent of the “butterfly effect” from
chaos theory, but on a smaller scale.

4. It is very difficult to maintain a uniform style throughout the website.
Small changes to the style require that a large number of webpages be
updated. The effort involved can be substantial.

The most effective way to deal with these problems is to divide the overall
process of constructing a website into a series of transformation steps. This is
called “separating concerns.” A typical example of how this is done is shown
in figure 9.4. The concerns in this example are:

1. Source content. For a biology laboratory this would include the current
projects, the people working in the laboratory, published papers, data and
software, scheduled events, and so on.

2. Logical structure. The source content is subdivided into overlapping views.
For a laboratory, each project has its own view that includes just those
people working on the project and the papers, data, and software for that
project. There are many ways in which these views overlap.

3. Presentation. The logical views of the previous step must be converted
into a format such as HTML, a spreadsheet format, or PDF so that it can
be presented to the person or program that is requesting it.

The process begins with source information that could be stored in files or
databases in a large variety of formats. The data are extracted and converted
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Figure 9.4 The transformation process for constructing a website. The process sep-
arates the content, logical structure, and presentation. Each of the steps can be devel-
oped and maintained by different individuals or groups.

to a single format: XML. If the original source data are already in XML, then
this step simply reads the file. Here is what it might look like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Source SYSTEM "source.dtd">
<Source>

<Person id="K.Baclawski">
<Name>Kenneth Baclawski</Name>
<PubName>K. Baclawski</PubName>
<Email>Ken@Baclawski.com</Email>
<PersonalPage>http://baclawski.com/ken</PersonalPage>

</Person>
...
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</Source>

The next step in the process selects and transforms the relevant source in-
formation. For example, if one is producing a webpage for a project, then
only information relevant to the project is extracted, such as its title, descrip-
tion, personnel, and so on. Here is what a project might look like after the
source information for one project has been extracted from the source:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Project SYSTEM "project.dtd">
<Project>

<Title>Genetic basis of non-insulin dependent
diabetes mellitus

</Title>
<Description>This study examines the literature

dealing with the genetic basis for type II or non-insulin
dependent diabetes mellitus (NIDDM). Substantial progress
has been made toward understanding the etiology of NIDDM.
By organizing the literature of NIDDM, it is expected that
one will be able to identify new therapeutic targets for
treatment of this common disease more effectively.

</Description>
...

This step is mainly concerned with selecting relevant source information and
rearranging it appropriately. For the most part it will not modify the source
information significantly.
The last step is to transform the selected information to a presentation for-

mat such as HTML or PDF. Unlike the previous step, this can result in a
substantially different format. The PDF format is completely different from
XML. Here is what the example above might look like in HTML:

<HTML>

<HEAD>

<META http-equiv="Content-Type"

content="text/html; charset=UTF-8">

<TITLE>

Harvard Medical School Bioinformatics Web Site

</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF">
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<TABLE CELLPADDING="2" CELLSPACING="0" BORDER="0">

<TR>

<TD VALIGN="TOP" ALIGN="LEFT">

<TABLE WIDTH="120">

...

</TABLE>

</TD>

<TD WIDTH="10">&nbsp;</TD>

<TD WIDTH="100%" VALIGN="TOP" ALIGN="LEFT">

<TABLE BGCOLOR="#336699" WIDTH="100%"

CELLPADDING="3" CELLSPACING="0" BORDER="0">

<TR>

<TD ALIGN="CENTER">

<B>

<FONT SIZE="+1" COLOR="#FFFFFF">

Genetic basis of non-insulin dependent

diabetes mellitus

</FONT>

</B>

</TD>

</TR>

<TR>

<TD>This study examines the literature

dealing with the genetic basis for type II or non-insulin

dependent diabetes mellitus (NIDDM). Substantial progress

has been made toward understanding the etiology of NIDDM.

By organizing the literature of NIDDM, it is expected that

one will be able to identify new therapeutic targets for

treatment of this common disease more effectively.

</TD>

...

Needless to say, the presentation information in this HTML file overwhelms
the content, and this particular style is relatively simple compared with what
one commonly encounters on the web.
Dividing the production of a website into steps does more than just reduce

the effort involved. It allows the presentation style to be developed indepen-
dently by completely different individuals. Thus a large organization can
much more easily enforce a single style for all webpages on its website. In-
stead of sending a memo explaining the style to everyone in the company,
which will be interpreted differently by different people, the company can
specify its style using a stylesheet, and it will be uniformly and accurately
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enforced. Furthermore, if the company chooses to change its style, it can do
so by simply changing the stylesheets that define the style. Neither the con-
tent nor the logical structure needs to be changed, and no employee needs to
be involved.

Summary

• Transformation is an effective means for controlling how data are pre-
sented.

• Information transformation is performed in a series of steps to reduce the
overall effort and to separate concerns.

• Different individuals and groups of individuals are concerned with each
step of the transformation process.

9.3 Changing the Point of View

An XML document is an organized repository of information. Information is
stored in a series of nested elements that act in some ways like the directories
and files of a file system, as discussed in section 1.4. However, hierarchical
structures are inflexible: the organization requires a commitment to a partic-
ular point of view. In this section we discuss what this involves and how to
deal with it using transformations.
Consider microarray information. This information consists of binding po-

tentials (which can be expressed in several ways) of proteins to a collection of
small molecules. One could choose to represent these data from the protein
point of view in which case the XML document would look something this:

...
<Protein id="Mas375">
<Substrate id="Sub89032">
<BindingStrength>5.67</BindingStrength>
<Concentration unit="nm">43</Concentration>
</Substrate>
<Substrate id="Sub8933">
<BindingStrength>4.37</BindingStrength>
<Concentration unit="nm">75</Concentration>
</Substrate>
...
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</Protein>
<Protein id="Mtr245">
<Substrate id="Sub89032">
<BindingStrength>0.65</BindingStrength>
<Concentration unit="um">0.53</Concentration>
</Substrate>
<Substrate id="Sub8933">
<BindingStrength>8.87</BindingStrength>
<Concentration unit="nm">8.4</Concentration>
</Substrate>
...

</Protein>
...

This certainly represents the data well, but one could equally well have cho-
sen to take the point of view of the substrates instead of the proteins, as
follows:

...
<Substrate id="Sub89032">
<Protein id="Mas375">
<BindingStrength>5.67</BindingStrength>
<Concentration unit="nm">43</Concentration>
</Protein>
<Protein id="Mtr245">
<BindingStrength>0.65</BindingStrength>
<Concentration unit="um">0.53</Concentration>
</Protein>
...

</Substrate>
<Substrate id="Sub8933">
<Protein id="Mas375">
<BindingStrength>4.37</BindingStrength>
<Concentration unit="nm">75</Concentration>
</Protein>
<Protein id="Mtr245">
<BindingStrength>8.87</BindingStrength>
<Concentration unit="nm">8.4</Concentration>
</Protein>
...
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</Substrate>
...

The data are the same, but the point of view has changed. The point of view
depends strongly on the purpose for which the data were collected. Chang-
ing the purpose generally requires that one also change the point of view.
The point of view is especially important when information is being dis-
played. There are many examples of this. One can present a list of research
papers organized in many different ways: by topic, by author, by publication
date.
The point of view is also important when data are being processed. The

processing program expects to receive the data in a particular way. Even
when the source document has all of the necessary data, the data can easily
be in the wrong form. Indeed, unless the source document and program
were developed together (or they conform to the same standard), it is very
unlikely that they will be compatible.
The process of changing the point of view of an XMLdocument is an exam-

ple of a transformation which is also called “repackaging” or “repurposing.”
Transformations in general are sometimes called “stylesheets” because they
were first used as a means of specifying the style (visual appearance) of a
document. Separating display characteristics from the content of a docu-
ment was one of the original motivations for the development of XML and
its predecessors.

Summary

• Transformation is the means by which information in one format and for
one purpose is adapted to another format for another purpose.

• Information transformation is also called repackaging or repurposing.

9.4 Transformation Techniques

One of the most powerful features of XML is that it is especially well suited
to being transformed. There are many reasons for transforming data:

1. The structure must be rearranged as in the microarray example in sec-
tion 9.3 above.

2. Some element and attribute names need to be changed.
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3. Attributes need to be changed into elements, or vice versa.

4. One must infer new information.

5. Several documents should be merged into a single document or a single
document should be split into several.

6. Information must be selected from one or more documents. This is essen-
tially the same as querying.

7. An entirely different kind of document is required, such as an HTML doc-
ument suitable for a web browser, a comma-separated values (CSV) file
suitable for a spreadsheet, even a LaTeX file suitable for typesetting.

8. Element information has to be combined. Processing can range from rel-
atively simple operations such as computing totals and averages to using
sophisticated algorithms.

Transformation is performed by means of a program. There are many
programming languages that can be used for transformation, and there are
many variations on how the transformation process can be carried out. The
one that is best will depend not only on the nature of the transformation but
also on one’s background and experience.
Traditional programming languages such as Perl and Java can be used for

XML transformation. If one is already familiar with one of these languages,
then it might be best to stay with it. Even so there are two distinctly different
approaches to transformation using traditional programming languages. A
third possibility that is becoming increasingly popular is to use a rule-based
language specifically designed for XML transformation. We now discuss
each of these three approaches.
The first approach is called event-based parsing or, more succinctly, parsing.

The document is read as input, and it identifies the interesting events, such
as the beginning of an element, the end of an element, the content of an ele-
ment, and so on. The events occur in exactly the same order as they appear
in the document. When each event occurs, a corresponding procedure is
called, and the features of the event are available as parameters. The pro-
cedures that are called form the application programming interface (API).
Event-based parsing for XML most commonly uses the simple API for XML
(SAX). For example, when the beginning of an element is encountered, the
startElement procedure is called. The parameters include the name of
the element and its attributes. This approach is covered in detail for Perl in
subsections 10.2.2 and 10.2.5.
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Event-based parsing has an intuitive appeal. Most programs in bioinfor-
matics act upon files that have a flat structure where each line of the file
represents one record or event. The program consists of an operation that
is performed on each input record. This works well for many problems, es-
pecially those that involve computation of statistics. However, event-based
parsing can be very difficult to use for any nontrivial transformation task,
such as the microarray example in section 9.3. The difficulty is that the trans-
formation may require information that is not immediately available at the
time the event occurs. Thus one must save information for later use. Creat-
ing data structures that serve this function requires a great deal of time and
experience.
The second approach is called tree-based processing. In this approach the en-

tire document is read into memory using a standard data structure. The data
structure is known as a “tree” to computer scientists, which is why this form
of processing is called tree-based. The most commonly used standard for the
data structure is called the document object model (DOM). The advantage of
this approach is that all information in the document is available at all times.
No additional data structures need to be developed just for the sake of ensur-
ing that information is always available when needed. However, the DOM
model is complicated and takes some time to understand.
Although traditional programming languages are an effective means of

processing documents, most transformation tasks can be accomplishedmuch
more easily by using languages designed specifically for this task. The dis-
advantage is that one must learn yet another language. This can be a very
serious disadvantage if one is not going to be using the language very often.
However, if one is performing relatively simple tasks, then one does not need
to know very much of the language.
Specialized transformation languages have the advantage that they em-

phasize the meaning of the document (its semantics) rather than its appear-
ance (its syntax). This is done by using rule-based (declarative) programming
rather than the more traditional procedural (imperative) programming style.
By focusing on the content rather than low-level details, one can develop
transformations much more effectively.
This approach has a long history going back to the style files of LaTeX that

are still in use today. The idea was to allow the writer of a document to focus
on its meaning rather than typesetting details. The typesetting details were
specified in a separate style file. In a LaTeX file one can specify the overall
style of the document as well as the style to be used for more specialized
purposes such as for the bibliography. One can change the style of a docu-
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ment by simply changing one line of the document. In a similar way, one can
specify the style of an XML document using a stylesheet as follows:

<?xml version="1.0"?>
<?xsl-stylesheet type="text/xml" href="transform.xsl"?>
...

In the example above, the XML document would be transformed by the
stylesheet file named “transform.xsl.” The stylesheet is a separate file just
as in LaTeX. There are many stylesheet languages for XML. Because of this
history, XML transformation programs are often called “stylesheets” even
when the transformation has nothing to do with presentation style.
The three approaches to transformation are covered in the next two chap-

ters. Event-based parsing and tree-based processing are covered using the
Perl programming language in subsections 10.2.2 and 10.2.5. Rule-based
transformation is covered by using the XML Transformation Language in
chapter 11.

Summary

A transformation step is performed using one of three main approaches:

1. Event-based parsing

2. Tree-based processing

3. Rule-based transformation

9.5 Automating Transformations

So far we have been assuming that transformations between ontologies will
be specified by people, usually domain experts. It is natural to suppose that
when two ontologies refer to the same concepts, it ought to be possible to
transform from one ontology to the other using some automated process
without the need for human effort. The problem of automating the process
of finding semantic correspondences between different ontologies has been
studied for many years. Most of the work has been for relational database
schemas, but there has also been some recent work on this problem for XML
DTDs and even for the more sophisticated ontologies of the Semantic Web.
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There aremany names for the process of discovering transformations. Rec-
onciling differing terminology in various ontologies is called ontology medi-
ation. For relational databases, the problem is called schema integration for
which there is a large literature. See, for example, (Rahm and Bernstein
2001) for a survey of schema integration tools. Similar structures and con-
cepts that appear in multiple schemas are called “integration points” (Berga-
maschi et al. 1999). When the data from a variety of sources are transformed
to a single target database, then the process is called data warehousing. Data
warehousing for relational databases is an entire industry, and many data
warehousing companies now also support XML. If a query using one vocab-
ulary is rewritten so as to retrieve data from various sources, each of which
uses its own vocabulary, then it is called virtual data integration. Another
name for this process is query discovery (Embley et al. 2001; Li and Clifton
2000; Miller et al. 2000).
Ontology mediation and transformation depend on identifying semanti-

cally corresponding elements in a set of schemas. (Do and Rahm 2002; Mad-
havan et al. 2001; Rahm and Bernstein 2001) This is a difficult problem to
solve because terminology for the same entities from different sources may
use very different structural and naming conventions. The same name can be
used for elements having totally different meanings, such as different units,
precision, resolution, measurement protocol, and so on. It is usually nec-
essary to annotate an ontology with auxiliary information to assist one in
determining the meaning of elements, but the ontology mediation and trans-
formation is difficult to automate even with this additional information.
For example, in ecology, the species density is the ratio of the number of

species by the area. In one schema one might have a species density ele-
ment, while in another, there might be elements for both the species count
and area. As another example, in the health study example in section 9.1, the
BMI attribute is a ratio of the weight by the square of the height. Another
database might have only the weight and height, and these attributes might
use different units than in the first database. Consequently, a single element
in one schema may correspond to multiple elements in another. In general,
the correspondence between elements is many-to-many: many elements cor-
respond to many elements.
Many tools for automating ontology mediation have been proposed and

some research prototypes exist. There are also some commercial products for
relational schema integration in the data warehousing industry. However,
these tools mainly help discover simple one-to-one matches, and they do
not consider the meaning of the data or how the transformation will be used.
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Using such a tool requires significant manual effort to correct wrongmatches
and add missing matches. In practice, schema matching is done manually
by domain experts, and is very time-consuming when there are many data
sources or when schemas are large or complex.
Automated ontology mediation systems are designed to reduce manual

effort. However, such a system requires a substantial amount of time to
prepare input to the system as well as to guide the matching process. This
amount of time can be substantial, andmay easily swamp the amount of time
saved by using the system. Unfortunately, existing schema-matching sys-
tems focus on measuring accuracy and completeness rather than on whether
they provide a net gain. Schema-matching systems have now been proposed
(Wang et al. 2004) that address this issue. However, such systems are not yet
available. The best that one can hope for from current systems is that they
can help one to record and to manage the schema matches that have been
detected, by whatever means.
One example of a schema integration tool is COMA, developed at the Uni-

versity of Leipzig (Do and Rahm 2002; Do et al. 2002), but there are many
others. See (Rahm and Bernstein 2001) for a survey of these tools. Some of
these tools also deal with XML DTDs (Nam et al. 2002). Unfortunately, they
are only research prototypes and do not seem to be available for download-
ing.
There are many ontology mediation projects, and some have developed

prototypes, such as PROMPT (Noy andMusen 2000) from the StanfordMed-
ical Informatics laboratory and the Semantic Knowledge Articulation Tool
(SKAT), also from Stanford (Mitra et al. 1999), but as with schema integra-
tion, none seem to be available for public use, either via open source software
or commercial software.

Summary

• Reconciling differing terminology hasmany names depending on the par-
ticular context where it is done, such as: ontology mediation, schema inte-
gration, data warehousing, virtual data integration, query discovery, and
schema matching.

• Automated ontology mediation systems attempt to reduce manual effort,
but they rarely provide a net gain.

• Most automated ontologymediation systems are still research prototypes.



10 Transforming with Traditional
Programming Languages

There aremany programming languages, but the one that has been especially
popular in bioinformatics is Perl. It is designed to “make easy jobs easy with-
out making the hard jobs impossible” (Wall et al. 1996). On the other hand,
this does not mean that hard jobs are best done with Perl. It is still the case
that programming languages such as Java and C++ are better suited for ma-
jor system development than Perl. It is likely that there will always be a need
for a variety of programming languages. Indeed, this is perfectly compatible
with the Perl slogan, “There’s More Than One Way to Do It” (TMTOWTDI).
Perl is especially well suited to data transformation tasks, and this is what

will be emphasized here. Perl is much too large a language for complete cov-
erage in even several books, let alone a chapter in just one book. However,
the coverage should be adequate for most transformation tasks.
In keeping with the TMTOWTDI philosophy of Perl, there are many ways

to approach any given transformation task. There are also many kinds of
transformation tasks. This chapter is organized first around the kind of trans-
formation task, and then for each kind of transformation, a number of ap-
proaches are given, arranged from the simpler to the more complex. When
one is facing a particular task, whether you think of it as transformation,
conversion, or reformatting, first look to the main classification to choose the
section for your task. Within a section, all of the techniques accomplish the
same basic task. The earlier ones are simple and work well in easy cases, but
get tedious for the harder tasks of this kind. The later ones require a more
careful design, but the result is a smaller program that is easier to maintain.
Accordingly, just scan through the possibilities until you reach one that is
sufficient for your needs.
Another aspect of TMTOWTDI is that one can omit punctuation and vari-

ables if Perl can understand what is being said. This increases the possibili-
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ties for what a program can look like enormously. It can also make it difficult
for a person to read some Perl programs even if the Perl compiler has no dif-
ficulty with it. Except for some common Perl motifs and an example in the
section 10.1 below, the examples in this chapter will try to use a programming
style that emphasizes readability over cleverness as much as possible.
Some of the most common programming tasks can be classified as being

transformations. Even statistical computations are a form of data transfor-
mation. To organize the transformation tasks, the world of data will be di-
vided into XML and text files. The text file category includes flat files as well
as the text produced by many bioinformatics tools. This lumps together a lot
of very different formats, but it is convenient for classification purposes. The
many file formats (such as PDF, Word, spreadsheet formats, etc.) that require
specialized software for their interpretation will not be considered unless the
format can be converted to either an XML file or a text file.
The first section of the chapter deals with non-XML text processing, and

the second section of the chapter deals with XML processing. Many tech-
niques from the first part reappear in the second, but some new notions are
also required.

10.1 Text Transformations

The subsections of this part of the chapter deal with increasingly complex
data and transformations of the data. The first two subsections consider data
having a structure that is uniform, as in flat files and database tables. The
first subsection shows how to process such information one line or record at
a time; the second introduces arrays which allow one to process the infor-
mation in some other fashion than as it is being received. The third subsec-
tion acts as an interlude between the first two and the last two subsections.
It covers procedures which are important for organizing programs as they
get larger. The last two subsections consider data with more complicated
structures. The fourth subsection shows how to extract information from
complicated text, which is processed as it is extracted. The fifth introduces
data structures which allow one to process complicated data in some other
fashion than as it is being extracted.
Perl can be invoked in many ways, but one of the most common is to use

a command such as this:

perl program.perl file.txt > result.txt

where program.perl is the name of the file containing the Perl program
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to perform the transformation, file.txt is the name of the file to be trans-
formed (also called the “input” file), and result.txt is the transformed
file that is produced by your program. One can specify more than one file to
be transformed, but there is only one file produced as a result of the transfor-
mation. It is as if there were a single input file made up of the data in all of
the files put together in order.
The programs in this part of the chapter consider input file formats and

transformation tasks that get progressively more complex. The early ones
use simple flat files with fixed-width format, and the later ones use more
complex formats. Early tasks make no changes to the data in the input files;
the task is just to change the format. Later tasks perform statistical computa-
tions.

10.1.1 Line-Oriented Transformation

The simplest approach to transformation is just to read the file one line at a
time, transforming each line as it is read. The program for this looks a lot
like a book or paper: it has an introduction, a main body, and a conclusion.
The introduction takes care of tasks that precede the transformation such as
printing a report title, and the conclusion performs tasks such as printing
summary information. Sometimes the introduction or the conclusion will be
omitted, but there will always be a body, as that is where the transformation
takes place.
Consider the task in which the health study mentioned in section 1.1 is to

be transformed from the fixed-width format to a variable-width format that
is more readable for people. The input file has lines that start like this:

011500 18.66 0 0 62 46.27102
011500 26.93 0 1 63 68.95152
020100 33.95 1 0 65 92.53204
020100 17.38 0 0 67 50.35111

The output should look like this:

Health Study Data

1/15/2000 18.66 normal 62 cm 46.27 kg 102 lb
1/15/2000 26.93 overweight 63 cm 68.95 kg 152 lb
2/1/2000 33.95 obese 65 cm 92.53 kg 204 lb
2/1/2000 17.38 normal 67 cm 50.35 kg 111 lb
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print("Health Study Data\n\n");

while (<>) {

$month = substr($_, 0, 2) + 0;

$day = substr($_, 2, 2) + 0;

$yr = substr($_, 4, 2) + 0;

$year = 1900 + $yr;

$year = 2000 + $yr if $yr < 20;

$bmi = substr($_, 6, 8) + 0;

$status = "normal";

$status = "obese"

if substr($_, 14, 3) + 0 > 0;

$status = "overweight"

if substr($_, 17, 3) + 0 > 0;

$height = substr($_, 20, 3) + 0;

$wtkgs = substr($_, 23, 8) + 0;

$wtlbs = substr($_, 31, 3) + 0;

print("$month/$day/$year $bmi $status");

print(" $height cm $wtkgs kg $wtlbs lb\n");

}

Program 10.1 Convert fixed-width fields to variable-width fields

One of the ways that this transformation can be accomplished is shown
in program 10.1. This program has only two parts: an introduction and a
body. It does not have any concluding part. Examples of programs that have
a concluding part are given later.
The first or introductory part of the program prints the title of the report.

The “\n” is called a newline; it ends the line at that point. Two newlines in a
row will insert an extra blank line between the title and the rest of the report.
The body of this program performs the same operation on all of the lines of

the file to be transformed. The while statement means that everything in the
braces is to be repeated as long as the condition (in parentheses) is true. The
<> angle brackets are used to get the next line of the input file. It succeeds
as long as there is another line, and it fails (i.e., it tells the while statement
that it should stop) when there is nothing left in the file.
The statements in the transformation block use variables. The variables

have names such as month, day. The dollar signs are not part of the name
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but rather indicate that the variables are scalars, that is, numbers or strings
(ordinary text). The line that was just read is available in the variable whose
name is an underscore character. One extracts parts of a string by using the
substr function (short for “substring”). Scalars have a kind of “split per-
sonality” since they can be either numbers or strings. The substr function
produces a string, but all of the substrings being extracted in this program
are supposed to be numbers. One can change a scalar to a number by adding
0 to it. If the scalar is already a number this does nothing. If the scalar is a
string, then this will find some way to interpret the string as being a number.
Perl is very flexible in how it interprets strings as numbers. For example, if
there is some text in the string that could not be part of a number, it (and
everything after it) is just ignored. For example “123 kgs” will be interpreted
as the number 123, and “Hello 123” will be interpreted as the number 0.
The computation of the year is somewhat problematic because there are

only two digits in the original file, but the full year number is expected in
the report. This is handled by adding conditions after the statements that
compute the full four-digit year. The assumption is that all years are between
1921 and 2020.
Program 10.1 is certainly not the only way to perform this task in Perl.

The style of programming was chosen to make it as easy as possible to read
this program. The use of angle brackets for obtaining the next line of the file
which is then represented using an underscore is a bit obscure, but it is a
commonly used motif in Perl. It is relatively easy to get used to it.
To illustrate some of the variations that are possible in Perl, program 10.1

could also have been written as in program 10.2. This program avoids the
use parentheses as much as possible, and when it does use them, it does
so differently than the first program. In general, one can omit parentheses in
functions, and it is only necessary to include themwhen Perl wouldmisinter-
pret your intentions. If the parentheses were omitted in the tests for obesity
and overweight, then Perl would have compared 0 with 3 rather than with
the number extracted from the original file. Notice also that the semicolon
after the last statement can be omitted because it occurs immediately before
a right brace.
The next task to consider is the computation of summary information. One

common use of data from a study is to compute the mean and variance. Pro-
gram 10.3 computes the mean, variance, and standard deviation of the BMI
column of the health study. Running this program on the four records at the
beginning of this section produces this report:
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print "Health Study Data\n\n";

while (<>) {

$month = 0 + substr $_, 0, 2;

$day = 0 + substr $_, 2, 2;

$yr = 0 + substr $_, 4, 2;

$year = $yr < 20 ? 2000 + $yr : 1900 + $yr;

$bmi = 0 + substr $_, 6, 8;

$status = "normal";

$status = "obese" if (substr $_, 14, 3) > 0;

$status = "overweight" if (substr $_, 17, 3) > 0;

$height = 0 + substr $_, 20, 3;

$wtkgs = 0 + substr $_, 23, 8;

$wtlbs = 0 + substr $_, 31, 3;

print "$month/$day/$year $bmi $status";

print " $height cm $wtkgs kg $wtlbs lb\n"

}

Program 10.2 Alternative version of program 10.1

Health Study Data

1/15/2000 18.66 normal 62 cm 46.27 kg 102 lb
1/15/2000 26.93 overweight 63 cm 68.95 kg 152 lb
2/1/2000 33.95 obese 65 cm 92.53 kg 204 lb
2/1/2000 17.38 normal 67 cm 50.35 kg 111 lb

Number of records: 4
Average BMI: 24.23
BMI Variance: 59.9052666666668
BMI Standard Deviation: 7.73984926640479

This program uses all three parts of a typical program. The first part prints
the title of the report as before, and the body processes the records in the
health study file, but now there is also a concluding part that prints the
statistics. The processing of the records has some additional computations.
The count variable has the number of records, the bmisum variable has the
sum of the BMI values for all records, and the bmisumsq has the sum of the
squares of the BMI values. These are set to 0 in the introductory part of the
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print("Health Study Data\n\n");

$count = 0;

$bmisum = 0;

$bmisumsq = 0;

while (<>) {

$month = substr($_, 0, 2) + 0;

$day = substr($_, 2, 2) + 0;

$yr = substr($_, 4, 2) + 0;

$year = 1900 + $yr;

$year = 2000 + $yr if $yr < 20;

$bmi = substr($_, 6, 8) + 0;

$status = "normal";

$status = "obese" if substr($_, 14, 3) + 0 > 0;

$status = "overweight" if substr($_, 17, 3) + 0 > 0;

$height = substr($_, 20, 3) + 0;

$wtkgs = substr($_, 23, 8) + 0;

$wtlbs = substr($_, 31, 3) + 0;

print("$month/$day/$year $bmi $status");

print(" $height cm $wtkgs kg $wtlbs lb\n");

$count = $count + 1;

$bmisum = $bmisum + $bmi;

$bmisumsq = $bmisumsq + $bmi ** 2;

}

print("\n");

print("Number of records: $count\n");

$bmimean = $bmisum / $count;

print("Average BMI: $bmimean\n");

$bmivar =

($bmisumsq - $count * $bmimean ** 2) / ($count - 1);

print("BMI Variance: $bmivar\n");

$bmisd = $bmivar ** 0.5;

print("BMI Standard Deviation: $bmisd\n");

Program 10.3 Computation of statistical information
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program, and modified for each record in the health study file. The mean,
variance, and standard deviation are computed from these three values by
well-known formulas.
It is not actually necessary to initialize the three variables to 0. In other

words these three lines in the first part of the program could have been omit-
ted:

$count = 0;
$bmisum = 0;
$bmisumsq = 0;

Perl will automatically set any variable to a standard default value the first
time it is used. For numbers the default initial value is 0. For strings it is the
empty string.
Many commonly occurring statements can be abbreviated. For example,

the statement

$bmisum = $bmisum + $bmi;

can be abbreviated to the more succinct statement

$bmisum += $bmi;

Similar abbreviations are available for all the arithmetic operations such as
subtraction, multiplication, and division, as well as for other kinds of opera-
tion. Incrementing a variable (i.e., increasing it by 1) is so common that it has
its own special operator. As a result, one can abbreviate

$count = $count + 1;

to the more succinct

$count++;

So far the transformation tasks have been on data files in a fixed-width
format. The transformed data have used fields that vary in length. The next
task is to transform a data file with variable-length fields separated from one
another by spaces. This requires a new kind of variable as well as operations
for them. An array or list is a sequence of values. Perl indicates an array
variable with an initial @ character. To transform a data file it must first be
split into fields. The result of the splitting operation is an array.
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print "Health Study Data\n\n";

while (<>) {

chomp;

@record = split(" ", $_);

@date = split("/", $record[0]);

$month = $date[0] + 0;

$day = $date[1] + 0;

$yr = $date[2] + 0;

if ($yr < 20) { $year = 2000 + $yr; }

elsif ($yr < 1000) { $year = 1900 + $yr; }

else { $year = $yr; }

$bmi = $record[1];

if ($record[2] + 0 > 0) { $status = "obese"; }

elsif ($record[3] + 0 > 0) { $status = "overweight"; }

else { $status = "normal"; }

$height = $record[4] + 0;

$wtkgs = $record[5] + 0;

$wtlbs = $record[6] + 0;

print("$month/$day/$year $bmi $status");

print(" $height cm $wtkgs kg $wtlbs lb\n");

}

Program 10.4 Reformatted health study data

Program 10.4 does the same transformation as program 10.1, except that
it assumes that the data file uses variable-length fields separated by spaces,
and that the month, day, and year in a date are separated from one another
by using the forward slash (“/”) character. This program will transform the
following data file:

1/15/2000 18.66 0 0 62 46.27 102
1/15/2000 26.93 0 1 63 68.95 152
2/1/2000 33.95 1 0 65 92.53 204
2/1/2000 17.38 0 0 67 50.35 111

to the following:

Health Study Data
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1/15/2000 18.66 normal 62 cm 46.27 kg 102 lb
1/15/2000 26.93 overweight 63 cm 68.95 kg 152 lb
2/1/2000 33.95 obese 65 cm 92.53 kg 204 lb
2/1/2000 17.38 normal 67 cm 50.35 kg 111 lb

The first step is to remove any extra space at the beginning and end of the
line. This is done with the chomp function. This was not necessary in previ-
ous programs because the fieldswere in fixed locations in the line. It is a good
idea to use chomp whenever the input has variable-length fields. The next
step is to split the record into fields using the split operator. This produces
the @record array. The values in this array are denoted by $record[0],
$record[1], $record[2],... The number in brackets is called the in-
dex or position of the value in the array. If one uses a negative index, then it
specifies a position starting from the last value (i.e., starting from the other
end of the array). Notice that the array as a whole uses @ but the individual
values use $. Remember that in Perl, the initial character on a variable (and
there are more than just $ and @) denotes the kind of value. It is not part of
the name of the variable.
The next step is to split the first field (i.e., the date) into its parts. The parts

are separated by slashes. The rest of the program is the same as the first
program except that array values are used instead of substrings. Another
difference is that the conditional statements are written with the if-conditions
first rather than after the statement. The first condition is indicated by if.
Subsequent conditions (except the last one) are indicated using elsifwhich
is short for “else if”. The last case is indicated by else which is used for
those cases not handled any other case. Putting the conditional after the
statement as in the first program is best if you think of the statement as being
subject to a condition. Putting a conditional before the statement is best if
you are thinking in terms of a series of cases, such that only one of them
applies to each record.
The split statement

@record = split(" ", $_);

could have been abbreviated to

@record = split(" ");

The default for splitting is to split up the value of $_. One can even abbrevi-
ate further to



10.1 Text Transformations 213

@record = split;

This is actually better than the previous form because it will treat all forms
of “white space” (such as tab characters) as being the same as spaces. Fi-
nally, one can abbreviate all the way to split; except that now the array
containing the fields of the line is @_ instead of @record.
The opposite of split is join. One can put the split array back together

after splitting by using

join(" ", @record);

This can be handy if one would like to separate the fields with a character
other than a space. For example,

join(",", @record);

would use a comma to separate the fields.
Statistics for an entire population as were just computed are generally of

limited interest. It is far more interesting to look for correlations between
various characteristics of the population. When characteristics, such as ages,
have a temporal significance, it is also interesting to look for trends. Consider
the task of computing the BMI as a function of the month and year. In statis-
tical terminology one is interested in the conditional probability distribution
of the BMI given the month and year. The month and year are specified by
the first and third parts of the first field of the health study record (the second
being the day of the month). The task is to compute the mean and variance
of the BMI grouped by the month and year.
Using scalar variables or arrays is not enough to accomplish this task. We

need a way to group information by month. The information belonging to a
month is said to be associated with the month and year. Each month is called
a key for the associated information, and each key is mapped to its associated
information. A mapping from keys to associated information is called an
associative array, hash table, or just hash, for short. Perl uses the character %
to distinguish hashes from scalars and arrays. In the following program,
statistics are computed for each month separately using three hashes:

print "Health Study Data\n\n";

%count = ();

%bmisum = ();

%bmisumsq = ();
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while (<>) {

chomp;

@record = split(" ", $_);

@date = split("/", $record[0]);

$month = $date[0] + 0;

$day = $date[1] + 0;

$yr = $date[2] + 0;

if ($yr < 20) { $year = 2000 + $yr; }

elsif ($yr < 1000) { $year = 1900 + $yr; }

else { $year = $yr; }

$bmi = $record[1];

if ($record[2] + 0 > 0) { $status = "obese"; }

elsif ($record[3] + 0 > 0) { $status = "overweight"; }

else { $status = "normal"; }

$height = $record[4] + 0;

$wtkgs = $record[5] + 0;

$wtlbs = $record[6] + 0;

print("$month/$day/$year $bmi $status");

print(" $height cm $wtkgs kg $wtlbs lb\n");

$m = "$month/$year";

$count{$m}++;

$bmisum{$m} += $bmi;

$bmisumsq{$m} += $bmi ** 2;

}

foreach $m (sort(keys(%count))) {

print("\nStatistics for $m\n");

print("Number of records: $count{$m}\n");

$bmimean = $bmisum{$m} / $count{$m};

print("Average BMI: $bmimean\n");

$bmivar = ($bmisumsq{$m} - $count{$m} * $bmimean ** 2)

/ ($count{$m} - 1);

print("BMI Variance: $bmivar\n");

$bmisd = $bmivar ** 0.5;

print("BMI Standard Deviation: $bmisd\n");

}

The hashes are used in each of the three parts of the program. In the intro-
ductory part, the three hashes are declared and initialized to empty hashes.
As in the case of scalars, it is not necessary to declare and initialize hashes. If
they are not declared and initialized, then they will be set to empty hashes.
Arrays also do not have to be initialized. By default, arrays are initially
empty.
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In themain body of the program, the hashes are used at the end to compute
the three statistics: count, sum, and sum of squares. First, the month and
year are combined into a single string. This string is then called the key for
the hash value. It is analogous to the index of an array, but the index for
array values can only be an integer, while a hash key can be any scalar. This
includes integers, other numbers, and strings. The value corresponding to
a hash key is specified by using braces as, for example, in the expression
$bmisum{$m}. By contrast, arrays use brackets to specify a value of an array.
The final and concluding part of the program introduces a new kind of

statement: the foreach statement. This statement is used for performing some
action on every element of a list. This is called iteration or looping because the
same action is done repeatedly, differing each time only by which element is
being processed. In this case the iteration is to be over all of the month-year
combinations that are in the hashes. The body of the iteration should be per-
formed once for each month-year combination. Each time it is performed $m
will be a different month-year combination. The month-year combinations
are the keys of any one of the three hashes. The program uses %count, but
any one of the three hashes could have been used. The keys function gets
the list of all keys of a hash. This list can be in any order, so one usually sorts
the keys to get output that looks better. If the order does not matter, then one
can omit using the sort function. The rest of the computation is nearly the
same as before except that the values in the hashes are used instead of simple
scalar statistics. Applying this program to the simple four-record example
data file will print the following:

Health Study Data

1/15/2000 18.66 normal 62 cm 46.27 kg 102 lb
1/15/2000 26.93 overweight 63 cm 68.95 kg 152 lb
2/1/2000 33.95 obese 65 cm 92.53 kg 204 lb
2/1/2000 17.38 normal 67 cm 50.35 kg 111 lb

Statistics for 1/2000
Number of records: 2
Average BMI: 22.795
BMI Variance: 34.1964499999997
BMI Standard Deviation: 5.84777308041272

Statistics for 2/2000
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Number of records: 2
Average BMI: 25.665
BMI Variance: 137.28245
BMI Standard Deviation: 11.7167593642611

As usual, there are many ways to abbreviate statements in this program.
One common abbreviation is to omit some of the parentheses in the foreach
statement. Thus

foreach $m (sort(keys(%count))) {

can be written

foreach $m (sort keys %count) {

One could also abbreviate it to

foreach (sort keys %count) {

in which case the scalar holding the key is $_ instead of $m.
Although hashes use a different notation than arrays, one can use hashes

to implement arrays. All one needs to do is write the index using braces
instead of brackets. Thus one would write $x{2} instead of $x[2]. Using
hashes instead of arrays is convenient when the indexes are not consecutive
or do not start at 0. The one place where one must be careful when using
hashes is when one is iterating. By default the sort function sorts the keys
as strings. If the keys are actually numbers, the order will look rather strange.
For example, “10” precedes “2” as strings. To sort in numerical order specify
{ $a <=> $b } after the sort function. For example, if %x is a hash whose
keys are numerical, then the following will print the values in numerical
order:

foreach $i (sort { $a <=> $b } keys %x) {
print("$i: $x{$i}\n");

}

Many other sorting orders can be used by varying the sort order used in the
braces after the sort function. The default order is dictionary ordering which
uses the cmp operator.
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Summary

• Programs are commonly organized into three parts: introduction, body,
and conclusion.

• While programs run, they store data in variables. As the program runs
the data stored in each variable will change. The simplest kind of variable
in Perl is a scalar, which holds a single string or number.

• The simplest way to transform data is to transform one line at a time. In
such a program:

1. The introduction prints the title and sets variables to initial values.

2. The body reads each line, extracts data from it and prints the data in
the required format.

3. The conclusion computes summary information and prints it.

• Perl has many ways to abbreviate commonly used operations.

• Perl has two kinds of variables for holding collections of data items:

1. An array holds a sequence of data items. Arrays are also called lists.

2. A hash maps keys to associated information.

• The foreach statement is used for performing operations on each data
item in a collection.

10.1.2 Multidimensional Arrays

The transformation technique we have used so far has been to transform one
line of a file at a time. This works well for files that have one record on each
line and each record has nearly the same structure as any other record. When
the input file is not so well arranged, it may be better to process the file in
some other order. In Perl it is very easy to read an entire file all at once as in
program 10.5.
The while statement of the programs in subsection 10.1.1 has been re-

placed by an assignment of the input operator <>. When the first statement
is finished, the lines array will have all of the lines of the input file.
The scalar function converts a variable of any kind to a scalar. This is a

general-purpose function whose meaning depends on the particular variable
being converted. In the case of arrays, scalar gives the size of the array. As
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@lines = <>;
$size = scalar(@lines);
print("The input file has $size lines.\n");

Program 10.5 Reading an entire file into an array

one might expect, this is used frequently in Perl programs, although it does
not necessary appear explicitly. In fact, in this case it can be omitted because
assigning an array to a scalar tells Perl that the array is to be converted to a
scalar. In the case of hashes, scalar gives information about the structure
of the hash that is usually not very useful. To get the size of a hash use
scalar(keys(%h)). This gives the number of keys in the hash.
One might think that one can simplify the last two lines of program 10.5 to

the one statement

print("Table size is scalar(@table)\n");

but this does not work. In a quoted string, the special meaning of scalar is
lost. The string “scalar” will be printed verbatim, and the scalar function
will not be invoked. Quoted strings know how to deal with variables, but
they do not understand computations in general. One can get around this
restriction in two ways:

1. Compute the information in separate statements using a number of vari-
ables, and then combine them into the string to be printed. This is the
technique that has been used so far.

2. Use string concatenation. Once a computation is outside a string, then
it will be performed as expected. Strings are concatenated using the pe-
riod character. In a print statement one can also use commas. The print
statement above can be done using this statement:

print("Table size is " . scalar(@table) . "\n");

or by using commas instead of periods.

Arrays are a versatile technique that can be used for lists of values as well
as for representing the mathematical notion of a vector. It is natural to con-
sider how to represent other mathematical structures such as matrices and
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while (<>) {
chomp;
push(@table, [split]);

}
$size = @table;
print("Table size is $size\n");

Program 10.6 Reading a file of records into a 2D array

tables. Once one has a concept of an array, it is easy to represent these other
mathematical structures. A matrix, for example, is just a vector of vectors, so
to represent it in Perl, one simply constructs a array whose items are them-
selves arrays.
Consider the task of reading all of the fields of all the records in an input

file. The array will have one item for each record of the data file. Each item,
in turn, will be an array that has one item for each field of the record. In
other words, the data will be represented as an array of arrays, also called a
two-dimensional array or database table. It is very easy to create such a table in
Perl. In program 10.6, the array is constructed, and its size is printed.
The push procedure adds new items to the end of a list. In this case, it

adds a new record to the table array. Each record is obtained by splitting the
current line. Recall that split by itself splits the current line into fields that
were separated by spaces.
The opposite of push is pop. It removes one item from the end of a list.

There are also procedures for adding and removing items from the beginning
of a list. The shift procedure removes the first item from a list. Unlike push
and pop, the shift procedure changes the positions of all the items in the
list (e.g., the one in position 1 now has position 0). The opposite of shift is
unshift, which adds items to the beginning of a list.
The brackets around split tell Perl to maintain the integrity of the record.

Without the brackets, the fields of the record would be pushed individually
onto the array resulting in a very large one-dimensional array with all of the
fields of all of the records.
Brackets around an array tell Perl that the array is to be considered a single

unit rather than a collection of values. The term for this in Perl is reference. It
is similar to the distinction between a company and the employees of a com-
pany. The company is a legal entity by itself, with its own tax identification
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number and legal obligations, almost as if it were a person. There are similar
situations in biology as well. Multicellular organs and organisms are living
entities that are made up of cells but which act as if they were single units.
Perl arrays are made into single entities (scalars) by using brackets. For ex-

ample, the array @lines could be made into a scalar by writing [@lines],
and one can assign such an entity to a scalar variable as in

$var = [@lines];

One can put any number of arrays and scalars in brackets, and the result is
(reference to) a single array. Hashes are made into single entities by using
braces. One can combine hashes by putting more than one in braces, and
one can add additional keys as in

$var = {
name => "George",
id => "123456",
%otherData,

};

In this case $var refers to a hash that maps “name” to “George” and “id” to
“123456,” in addition to all of the other mappings in %otherData.
Now consider the same statistical task as in program 10.3; namely, com-

pute the mean and standard deviation of the BMI. However, now use a
database table rather than computing it as the file is being read to obtain
program 10.7.
The statistical computation is done in the for statement. This is similar to

the foreach statement. Whereas the foreach statement iterates over the
items of a list, the for statement iterates over the numbers in a sequence.
The statement specifies the three parts of any such sequence: where to start
it, how to end it, and how to go from one number in the sequence to the next
one. The three parts in this case specify:

1. Where to start: $i = 0means start the sequence at 0.

2. How to end: $i < $count means to stop just before the number of
records in the database. The reason for ending just before the number
of records rather than at the number of records is that numbering starts at
0.

3. How to go from one number to the next: $i++means increment the num-
ber to get the next one. In other words, the sequence is consecutive.
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print "Health Study Statistics\n\n";

while (<>) {

chomp;

push(@table, [split]);

$bmi = $record[1];

}

$count = @table;

for ($i = 0; $i < $count; $i++) {

$bmisum = $bmisum + $table[$i][1];

$bmisumsq = $bmisumsq + $table[$i][1] ** 2;

}

print("Number of records: $count\n");

$bmimean = $bmisum / $count;

print("Average BMI: $bmimean\n");

$bmivar = ($bmisumsq - $count * $bmimean ** 2)

/ ($count - 1);

print("BMI Variance: $bmivar\n");

$bmisd = $bmivar ** 0.5;

print("BMI Standard Deviation: $bmisd\n");

Program 10.7 Computing statistics using a 2D array

This way of specifying sequences is very common. It is used in all of the
major programming languages, including C++ and Java.
The expression $table[$i][1] gets the second field of one record from

the table. This is how one obtains one item in a 2D array in Perl (and, for that
matter, also in C++ and Java). In the language of matrices, the first index is
the row and the second index is the column.

Summary

• An array of arrays is a two-dimensional array, also called a table. One can
construct arrays having any number of dimensions.

• Brackets are used for selecting one item from an array.

• Braces are used for selecting the value associated with a key in a hash.
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• Brackets enclosing an array variable or braces enclosing a hash variable
are used to refer to the array or hash as a single unit rather than as a
collection of items.

• The for statement is used to perform some action for each number in a
sequence.

10.1.3 Perl Procedures

While the programs above are very good for accomplishing their tasks, it
should be clear that they would get rather tedious if one were computing
statistics for more than a couple of fields. A real health study database will
have hundreds of fields, and one would like to perform a large number of
statistical computations. So some other way to deal with the transformations
will be needed. In the case of statistics, the same kind of computation is
required over and over again. Rather than program this same computation
endlessly, one should just program it once, and then use that same program
whenever it is needed.
In Perl, a collection of statements that can be performed as a unit is called

a procedure. They are also called subroutines or functions. Performing a proce-
dure is called invocation. One also says that the procedure is being executed or
called. One invokes a procedure by using the name of the procedure and a list
of parameters. Procedures have already been used in the programs presented
so far. For example, split is a procedure that splits apart a string into an
array of fields.
Returning to the health study, suppose that one would like to compute the

mean and variance for many of the fields. The computation for each field
is the same, so it is convenient to program it just once. Assuming that the
database is in a table (2D array) as in program 10.7, it is easy to use this table
to compute statistics with the following procedure named stats:

sub stats {
my $count = @table;
my $column = $_[0];
my $sum = 0;
my $sumsq = 0;
for ($i = 0; $i < $count; $i++) {
my $field = $table[$i][$column];
$sum += $field;
$sumsq += $field * $field;
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}
my $mean = $sum / $count;
my $var = ($sumsq - $count * $mean ** 2)

/ ($count - 1);
return ($mean, $var);

}

This procedure introduces some new notation. Themost noticeable change
from the previous Perl programs is the use of my at the beginning of most
lines. The variables that have been used so far are known as global variables.
They are accessible everywhere in the program. In particular, they can be
used in any of the procedures. The @table variable, for example, is used
in the first line of this procedure. A my variable, on the other hand, belongs
only to that part of the program in which it was declared. All but one of the
my variables in this procedure belong to the procedure. The two exceptions
are $i and $field. Both of these belong to the for statement. It is not
necessary to declare that such variables are my variables, but it is okay to do
so.
The advantage of my variables is that they prevent any confusion in case

the same variable name is used in more than one procedure. While one can
certainly use ordinary global variables for computation done in procedures,
it is risky. To be safe, it is best for all variables that are only used within a
procedure to be my variables.
The stats procedure is invoked by specifying the position of the field that

is to be computed. For example, stats(4) computes the mean and variance
of the column with index 4. This is actually the fifth column because Perl
array indexes start at 0. The number 4 in stats(4) is called a parameter of
the procedure. The parameters given to a procedure are available within the
procedure as the @_ array. In particular, the first parameter is $_[0], and
this explains the second line of the procedure:

my $column = $_[0];

which sets $column to the first parameter given to the procedure when it is
invoked.
The return statement has two purposes. It tells Perl that the procedure

is finished with its computation. In addition, it specifies the end result of
the computation. This is what the program that invoked the procedure will
receive. Note that a list of two values is produced by this procedure. One can
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use this list like any other. For example, the following program will print the
statistics for two of the columns of the database:

while (<>) {
chomp;
push(@table, [split]);

}
($mean, $var) = stats(1);
print("Statistics for column 1:");
print(" mean $mean variance $var\n");
($mean, $var) = stats(4);
print("Statistics for column 4:");
print(" mean $mean variance $var\n");

Of course, the program above has yet another opportunity for a procedure;
namely, one that prints the statistics:

sub printstats {
my $column = $_[0];
my ($mean, $var) = stats($column);
print("Statistics for column $column:");
print(" mean $mean variance $var\n");

}

One cannot help but notice that the scalar $_ and the array @_ are used
frequently in Perl. Because of this it is a good idea to assign the parameters
of a procedure to various my variables belonging to the procedure as soon as
possible. It also makes it much easier for a person to understand what a pro-
cedure is supposed to do. In this case, $column is a lot more understandable
than $_[0].
Putting all of this together, one obtains the solution to the task in pro-

gram 10.8.
The procedure definitions can go either before the main program or after it.

Summary

• A procedure is a collection of statements that can be performed as a unit.

• A procedure is invoked by using its name and giving a list of parameters.

• A my variable is limited to the part of the program in which it is declared.
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while (<>) {

chomp;

push(@table, [split]);

}

printstats(1);

printstats(4);

sub stats {

my $count = @table;

my $column = $_[0];

my $sum = 0;

my $sumsq = 0;

for (my $i = 0; $i < $count; $i++) {

my $field = $table[$i][$column];

$sum += $field;

$sumsq += $field * $field;

}

my $mean = $sum / $count;

my $var = ($sumsq - $count * $mean ** 2)

/ ($count - 1);

return ($mean, $var);

}

sub printstats {

my $column = $_[0];

my ($mean, $var) = stats($column);

print("Statistics for column $column:");

print(" mean $mean variance $var\n");

}

Program 10.8 Computing statistics with procedures

• The return statement marks the end of the computation and specifies
the value produced by the procedure.

10.1.4 Pattern Matching

So far the input files we have considered are record-oriented, that is, each
line has one record and all records have the same structure. Unfortunately,
a large amount of data does not have this simple structure. Consider the
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following file that was produced by BioProspector (Liu et al. 2001). Some
parts of the file were omitted to save space.

****************************************
* *
* BioProspector Search Result *
* *
****************************************

Read input sequences.
Use following data to represent motif score distribution.
1.950
1.982
[26 similar lines omitted]
2.027
1.943
Null motif score distribution mean: 2.005, standard deviation: 0.052
Look for motifs from the original sequences.
Try #1 2.462 CGTTCCGGAGACCG CGGTCTCCGGAACG 36
Try #2 2.295 CTCGAGGAGCTTGG CCAAGCTCCTCGAG 32
[36 similar lines omitted]
Try #39 2.274 CGCTTCCAGCCCTC GAGGGCTGGAAGCG 32
Try #40 2.516 GAAGTTTCCCGACC GGTCGGGAAACTTC 40
The highest scoring 3 motifs are:

Motif #1:
******************************
[1 line omitted]

Blk1 A G C T Con rCon Deg rDeg
1 0.00 0.21 0.21 0.59 T A T A
2 0.00 0.44 0.50 0.06 C G S S
[10 similar lines omitted]
13 0.44 0.00 0.56 0.00 C G M K
14 0.21 0.59 0.18 0.03 G C G C

Seq #1 seg 1 r998 TCATCCAATCAGAG
Seq #2 seg 1 f91 TCAACCGAACAGAA
[30 similar lines omitted]
Seq #27 seg 1 r343 GGAACCAATCAGCG
Seq #27 seg 2 r261 TCAGCCAATGACCG
******************************

[The other motifs were omitted]

The information produced by BioProspector is not only complex, but the
format is also complex. Furthermore, it is unique to BioProspector. There are
many other motif-finding programs available such as AlignACE (Hughes
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while (<>) {
chomp;
if (/Motif #1:/) {

print "The first motif has been found!\n";
}

}

Program 10.9 Using pattern matching to find one piece of data in a file

et al. 2000; Roth et al. 1998), CONSENSUS (Stormo and Hartzell III 1989;
Hertz et al. 1990; Hertz and Stormo 1999), and Gibbs sampler (Lawrence et al.
1993; Liu et al. 1995), and all of them use their own output formats. No
doubt many more formats already exist for motifs, and many more will be
used in the future. A similar situation exists for virtually every other kind of
bioinformatics information. Many tools are available for similar tasks, and
each one uses its own input and output formats.
To process information such as the BioProspector file above, we make use

of the pattern-matching features of Perl. Pattern matching is one of the most
powerful features of Perl, and it is one of the reasons why Perl has become
so popular.
Consider the task of extracting just the information about the first motif. A

motif is defined as a sequence of probability distributions on the four DNA
bases. We will do this in a series of steps. First we need to read the Bio-
Prospector file and find where the information about the desired motif is
located, as shown in program 10.9.
Each motif description begins with a title containing “Motif #” followed

by a number and ending with a colon. The condition /Motif #1:/ is re-
sponsible for detecting such a title. The text between the forward slashes is
the pattern to be matched. A pattern can be as simple as just some text that is
to be matched, as in this case.
If one wanted the line that contained exactly this text, one would use the

condition $_ eq "Motif #1:\n". Note that string comparison uses eq,
not the equal-to sign. Also note that every line ends with the newline char-
acter. In practice it is usually easier to use a pattern match condition than a
test for equality. The pattern match will handle more cases, and one does not
have to worry about whether or not the newline character might be in the
line.
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while (<>) {
chomp;
if (/Motif #[0-9]+:/) {
print "A motif has been found!\n";

}
}

Program 10.10 Using pattern matching to find all data of one kind in a file

The next task is to find where every motif begins, not just the first one.
This is done by modifying the pattern so that it matches any number rather
than just the number 1 as in program 10.10.
The pattern now has [0-9]+ where it used to have the number 1. Brack-

eted expressions in a pattern define character classes. This character class will
match any character between 0 and 9. The plus sign after the character class
means that the line must have one or more characters in this class. Any
character or character class can be followed by a quantifier:

+ One or more (i.e., at least one)
* Zero or more (i.e., any number of them)
? Zero or one (i.e., optional character)

Quantifiers can also be used to specify exactly how many times a character
must occur as well as a range of occurrences. This is done by placing the
number of times or the range in braces after the character or character class.
Character classes and quantifiers are specified using characters (such as

brackets, braces, etc.) just as everything is specified in Perl. However, this
means that these characters are special within a pattern. They are called
metacharacters. When used within a pattern they do not match themselves.
The metacharacters are backward slash, vertical bar, parentheses, brackets,
braces, circumflex, dollar sign, asterisk, plus sign, questionmark, and period.
If a pattern should match one of the metacharacters, then use a backward
slash. For example, \? means match the question mark character rather than
quantify the preceding character or character class.
The next task is to obtain the motif number. In principle, one could get

this number by using the split and substr functions, but there is a much
easier way. When Perl matches a pattern, it keeps track of what succeeded
in matching those parts of the pattern that are in parentheses. In this case,
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while (<>) {
chomp;
if (/Motif #([0-9]+):/) {

print "The motif $1 has been found!\n";
}

}

Program 10.11 Extracting information from a file using pattern matching

while (<>) {
chomp;
if (/Motif #([0-9]+):/) {

print "Probability distributions for motif $1\n";
} elsif (/^[0-9]+ /) {

split;
print "A $_[1] G $_[2] C $_[3] T $_[4]\n";

}
}

Program 10.12 Extracting an array of data from a file using pattern matching

we want the motif number so the number pattern is parenthesized as in pro-
gram 10.11.
One can have any number of parenthesized subpatterns. The part thatmatched
the first parenthesized subpattern is $1, the second is $2, and so on.
The next step in processing the BioProspector file is to findwhere the motif

probability distributions are located. Looking at the file, one can see that
the probability distributions are located on lines that begin with a number.
Program 10.12 extracts the array. The ˆ character means the “beginning of
the line.” The end of the line is denoted by $.

Summary

• Patterns are a powerful mechanism for extracting desired information.

• A pattern specifies the text that a string must have in order to match the
pattern.
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• When a pattern matches, Perl extracts the text that matches the whole
pattern as well as text that matches each subpattern.

10.1.5 Perl Data Structures

While pattern matching is a powerful feature for finding information in an
input file, it is not enough by itself when the information is arranged in a
different order than is needed by the transformation task. Consider the fol-
lowing excerpt from the output produced by the CONSENSUS (Stormo and
Hartzell III 1989; Hertz et al. 1990; Hertz and Stormo 1999) motif-finding
program:

MATRIX 2
number of sequences = 19
unadjusted information = 13.2069
sample size adjusted information = 12.0373
ln(p-value) = -198.594 p-value = 5.64573E-87
ln(expected frequency) = -57.9937 expected frequency = 6.51143E-26
A | 0 0 0 18 16 0 7 0 0 0 0 4 0 19
T | 18 0 0 0 1 8 3 15 19 3 2 0 0 0
C | 1 0 2 1 0 0 6 4 0 16 12 7 0 0
G | 0 19 17 0 2 11 3 0 0 0 5 8 19 0

This excerpt shows the probability distributions for one motif (labeled
“MATRIX 2”). There are two ways in which this file differs from what is
necessary for the task. First, the distributions are given in terms of frequen-
cies rather than probabilities. Second, the frequencies are listed by DNA base
rather than by position in the motif. The first difference is easy to fix: one can
just divide by the total number of sequences. The second difference is not so
easily handled because the information has the wrong arrangement.
To rearrange information obtained from an input file, it is necessary to

store information from several lines before printing it. This would be easy
if the information consisted of a few scalars, but it gets much more compli-
cated when substantial amounts of data must be organized. The technique
for doing this in programming languages is called a data structure. Some data
structures have already been used; namely, arrays and hashes. These are the
simplest data structures. One constructs more complex data structures by us-
ing a technique called nesting. A nested data structure is a data structure whose
items are themselves data structures. For example, one can have an array of
hashes, or a hash of arrays, or a hash of hashes of arrays, and so on. There is
no limit to how deeply nested a data structure can be. The special case of an
array of arrays was already developed in subsection 10.1.2. Data structures
extend the concept of multidimensional array to allow for dimensions that
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can be hashes as well as arrays. Furthermore, data structures in general can
mix arrays, hashes, and scalars in a single “dimension.” Thus it is possible to
have a data structure consisting of an array some of whose items are hashes,
some are arrays, and the rest are scalars. This kind of mixing is necessary
for representing XML documents as Perl data structures. This is developed
in subsection 10.2.3. However, one should avoid mixing arrays and hashes
in a completely arbitrary fashion, as this can get very confusing. One tech-
nique that helps keep the program simple is to use only hashes and scalars.
In other words, avoid arrays. As we saw in subsection 10.1.1, one can use a
hash instead of an array.
Consider the task of representing a DNA motif. A motif is a sequence of

probability distributions, so it should be represented as an array. Each item of
this array is a probability distribution. This probability distribution assigns
a number to each of the DNA bases. Such an assignment is most naturally
represented using a hash. Thus a motif is an array of hashes. A motif-finding
program produces several motifs, each with a label. The most natural way to
label the motifs is to use a hash. So the result of a motif-finding program is a
hash of arrays of hashes. However, to avoidmixing hashes and arrays, motifs
will be represented using a 3D hash. Program 10.13 extracts the probability
distributions from the output produced by CONSENSUS.
The program extracts information by using Perl patterns. The label of the

motif is indicated by a line that starts with MATRIX and followed by a num-
ber. Note the use of the dollar sign to specify that the line has nothing else
on it. The motif number is obtained from the pattern by putting parentheses
around the subpattern for the number. The number of sequences is obtained
in a similar fashion. Adding 0 to the number of sequences tells Perl that this
is a number. The motif label, by contrast, may look like a number but it is
being treated as being just text.
Themost complicated part of the program is the part that extracts the prob-

ability distributions. The frequencies for one DNA base are on a line that
begins with the name of the base, followed by a vertical bar. The rest of the
line consists of frequencies. The frequencies are obtained by splitting the line
and looping over the fields, starting with the third field (i.e., starting with
index 2 because arrays always start with 0).
The data structure being constructed is called motifs. It is a 3D hash. An

item in the the first dimension is a singlemotif and is determined by themotif
label. An item in the second dimension is one position in the motif. One
advantage of using a hash instead of an array is that the DNA positions need
not start at 0, and they need not be contiguous. In this case, the frequency of
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while (<>) {
chomp;
if (/^MATRIX ([0-9]+)$/) {
$label = $1;

} elsif (/^number of sequences = ([0-9]+)$/) {
$numberOfSequences = $1 + 0;

} elsif (/^[ACGT] [|]/) {
@record = split;
for ($i = 2; $i < scalar(@record); $i++) {
$motifs{$label}{$i-2}{$record[0]} =

$record[$i] / $numberOfSequences;
}

}
}
foreach $label (sort(keys(%motifs))) {

print "Probability distributions for motif $label\n";
%motif = %{ $motifs{$label} };
foreach $position (sort(keys(%motif))) {
foreach $base (A, C, T, G) {
print("$base $motif{$position}{$base} ");

}
print("\n");

}
}

Program 10.13 Extracting data structures from a file using pattern matching

the first DNA base is the third field on the line, the second frequency is the
fourth field, and so on. So it is necessary to subtract 2 from the field position
to get the DNA base position. Finally, an item in the third dimension is the
probability for one of the four DNA bases. This is obtained by dividing the
frequency by the number of sequences.
Having extracted the motifs, the next step is to print them. Since the motifs

are in a 3D data structure, the most natural way to use the structure is with
three nested loops. The first loop processes the motifs. The labels are the
keys of the motifs hash, and it is customary to sort the keys of a hash so
that they are printed in a reasonable order.
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Given the label for a motif, one can obtain the motif by using the label
as the key: $motifs{$label}. However, this is a scalar, not the hash of
DNA positions. This is the trickiest part of the program. To get the hash of
DNA positions, one must use the expression %{$motifs{$label}}. This
may seem mysterious at first, but it all makes sense when one finds out that
every use of the prefixes $, %, and @ are actually supposed to look like this.
Omitting the braces is an abbreviation that one can use for simple variable
names.
Once the hash for one motif has been obtained, one just loops over the

positions and then over the four bases. The program explicitly writes out the
DNA bases, because it is printing them in an order that is not alphabetical.
After printing the probability distribution, a newline is printed to end the
line. The output of the program will look something like this:

Probability distributions for motif 1
A 0.037037037037037 C 0.111111111111111 T 0.851851851851852 G 0
A 0.037037037037037 C 0.037037037037037 T 0 G 0.925925925925926
A 0 C 0.62962962962963 T 0.185185185185185 G 0.185185185185185
...

Perl will always print everything that it knows about a number. In many
cases the numbers will have far too many decimal places than are merited
by the data. To specify the exact number of decimal places that should be
printed one should use the printf statement. It would look like this:

printf(’%s %5.3f ’, $base, $motif{$position}{$base});

The first parameter of the printf statement is called the format. Its purpose
is to specify what kinds of data are to be printed as well as the precise format
to use for each one. Each format specification begins with a percent sign.
This use of the percent sign has no connection with the notion of a Perl hash.
The %s format means that the variable is to be printed verbatim. The s stands
for “string.” The %5.3f format means that the variable is to be printed as a
number with three digits after the decimal point and five characters in all (in-
cluding the decimal point). The f stands for “floating-point number.” Using
this format, the output of the program would look like this:

Probability distributions for motif 1
A 0.037 C 0.111 T 0.852 G 0.000
A 0.037 C 0.037 T 0.000 G 0.926
A 0.000 C 0.630 T 0.185 G 0.185
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A 0.222 C 0.407 T 0.074 G 0.296
...

Summary

• One can represent complex data structures by nesting arrays and hashes,
for example, by constructing an array of hashes,

• To keep the data structure simple, it is convenient to use only hashes.

• Individual elements of a nested data structure are obtained by using it as
a multidimensional data structure.

• To process all of the elements of a nested data structure use a series of
loops nested within each other.

• When printing numbers, one can specify howmuch precision will be used
by using the formatted print statement, printf.

10.2 Transforming XML

This section introduces techniques for transforming XML. It builds on the
techniques of the first section, but new concepts are also required. The first
subsection introduces the notion of a Perl module which allows one to extend
the basic Perl language with new features. Several such modules are then
used to process XML files and to produce them. The processing of XML
is covered first and producing XML is covered second. As in section 10.1,
processing can be performed either as it is encountered, one XML element
at a time, or in some other order, by means of a data structure. XML can
be produced starting from text or from XML. Transforming XML to XML is
especially important and it will be considered again in chapter 11.

10.2.1 Using Perl Modules and Objects

Perl has a mechanism for grouping together variables and procedures into
separate units. In fact, it has several mechanisms for doing this, but they
are very similar to one another. This idea is closely related to the notion of
a reference that was mentioned in subsection 10.1.2. There is a distinction
between a collection of entities and a collection regarded as a single unit.
The examples in that section consisted of arrays and hashes so these were
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rather more like tissues than organs or organisms, because all of the entities
that make up the collection are the same kind of entity. With modules and
objects, the grouping includes entities that are dissimilar. Thus one can group
together scalars, arrays, hashes, procedures, and so on, all in a single unit.
Modules are mainly used for publishing programs. One person or group

of persons constructs amodule for a specialized purpose. Themodule is then
published, usually at the Comprehensive Perl Archive Network (CPAN) lo-
cated at cpan.org. The modules can then be downloaded and installed by
other people. If you have installed your own personal Perl library, then you
can look for and install modules by running the cpan command. If you have
Perl, but do not have cpan, then try the following command:

perl -MCPAN -e shell

If you don’t have Perl, then you will need to install it.
The cpan command (or its equivalent) presumes that you know which

modules you want to install. If you do not knowwhich ones you would like,
then use one of the CPAN search engines, such as search.cpan.org. There
are over 100 packages that mention bioinformatics, plus there are many oth-
ers related to biology and medicine.
Once a module has been installed, the most common way for it to be used

is to construct a module object. Programs that use modules typically look
something like this:

use moduleName;

$p = new moduleName;
...

The use statement tells Perl that the program will be using a module. One
can use any number of modules. The new statement constructs an object. An
object is a reference to a collection of scalars, arrays, hashes, procedures, and
other objects, all of which have been grouped together in a single unit. The
parts of an object are obtained by using a special operator, written ->. For
example, if one of the parts of the module object $p is a procedure named
computeAverage, then the procedure is invoked by using the statement

$p->computeAverage;

Procedures that are in the context of an object are called methods.
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Once bioinformatics data have been represented in an XML format, it can
be transformed using awide variety of tools. In keepingwith the TMTOWTDI
philosophy of Perl, there are a great number of ways to transform XML us-
ing Perl. Here are some of the Perl modules that can be used to process XML
documents:

1. XML::Parser provides one with the ability to process XML one element
at a time. It is analogous to reading a file one line at a time. However,
because elements can contain other elements, it is important to know not
only when one starts reading an element but also when an element is fin-
ished. This process is similar to the pattern-matching programs in subsec-
tion 10.1.4 such as program 10.12. The XML parser looks for the patterns
that indicate when an element begins and when an element ends.

2. XML::DOM is analogous to program 10.5 in subsection 10.1.2. Instead of
processing the document one line at a time, the entire document is read
into a single data structure, and one is free to examine the parts in what-
ever order is convenient. Of course, XML has a hierarchical document
structure, so the Perl data structure will also be hierarchical.

3. XML::XPath organizes the document like a directory of files, exactly as in
section 8.1.

Summary

• A Perl module groups together scalars, arrays, hashes and procedures as
a single unit.

• The cpan command, or its equivalent, can be used to install Perl modules
that have been published on the CPAN website.

• The -> operator refers to one of the items in a module.

• Perl modules are available for processing and querying XML documents.

10.2.2 Processing XML Elements

The simplest way to process XML is to read the document one element at
a time. This is analogous to reading a file one line at a time, as in pro-
gram 10.1 of subsection 10.1.1. Processing an XML document is called pars-
ing, which is the term that computer scientists use for processing any com-
puter language. There is a Perl module that will parse XML documents
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use XML::Parser;

$p = new XML::Parser(Handlers => { Start => \&start });
$p->parsefile($ARGV[0]);

sub start {
$tag = $_[1];
%attributes = @_;
if ($tag eq "Interview") {

print("Weight $attributes{Weight}\n");
}

}

Program 10.14 Parsing XML attributes

called XML::Parser. Suppose that we would like to obtain the Weight at-
tribute of every Interview in an XML document that looks like this:

<HealthStudy>
<Interview Date=’2000-1-15’ Weight=’46.27’.../>
<Interview Date=’2000-1-15’ Weight=’68.95’.../>
<Interview Date=’2000-2-1’ Weight=’92.53’.../>
<Interview Date=’2000-2-1’ Weight=’50.35’.../>

</HealthStudy>

This task can be accomplished by using program 10.14. The use statement
imports the XML::Parser module. If this statement fails, then this module
has not yet been installed. You can install it by using the cpan command or
its equivalent as described in subsection 10.2.1.
The next two statements of the program construct the XML parser and

parse the document. There are several styles for parsing. The style for pro-
cessing the XML document one element at a time is called the “handlers”
style. Handlers are Perl procedures that are invoked as various kinds of data
are encountered in the XML document. A Start handler is invoked whenever
an XML element is first encountered. There are many kinds of handler that
will be discussed later. In this case the Start handler is a procedure called
start.
The initial \& in front of start is telling Perl that one is passing the start
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procedure to the parser as a parameter. Without this Perl would simply in-
voke the start procedure at this place in the program. In this case we never
explicitly invoke start in our own program. We want the parser to do this
instead. It will be invoked five times for the sample document: once for the
HealthStudy element and once each for the four Interview elements.
The parsing is actually done when the parsefile procedure is invoked.

This procedure belongs to the parser and is not one of your own procedures
(such as the start procedure), so it is invoked by using the -> operator on
the module object. Procedures that belong to a module are called methods.
The parameter is the name of the file to be parsed. In this case, the name of
the XML file will be specified on the command line. The file names on the
command line are in the ARGV array. Program 10.14 will be run by typing
this line to the computer:

perl printweights.perl healthstudy.xml

The start procedure will be invoked with two kinds of information: the
name of the element and the attributes of the element. The name of the el-
ement (also called its “tag”) is the second parameter. The first statement of
start sets the tag variable to the element name for later use. The rest of
the parameters are the attributes of the element. The simplest way to use
these parameters is to convert them to a hash and then look up the attributes
that are needed. The second statement converts the parameters to a hash
named attributes. The program prints the Weight attribute of every
Interview element. The output of the program is

Weight 46.27
Weight 68.95
Weight 92.53
Weight 50.35

The XML::Parser handlers all have a first parameter that is a reference to
an internal parsing procedure. This is used only if one wishes to get access
to low-level parsing information.
One might be curious about what those => symbols mean in this program.

As it happens, they are just another way of writing a comma. In other words,
one could equally well have constructed the parser using this statement:

$p = new XML::Parser(Handlers, { Start, \&start });

The purpose of the => symbols is to make the program easier to understand.
It is very common to specify parameters in pairs, where each pair consists of
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the name of the parameter and the value of the parameter. The => symbols
are suggestive of this way of using parameters. This style for designing pro-
cedures is analogous to the attributes in an XML element. One first gives the
attribute name and then the attribute value. In XML the attribute name and
attribute value are separated by an equal-to sign. In Perl they are separated
by => symbols.
Program 10.14 can only process information that is in XML attributes. XML

content requires additional handlers. Consider the task of parsing the output
of program 10.19 of subsection 10.2.4. The XML document in this case has no
XML attributes at all, and all of the data are in XML content. Program 10.15
will accomplish the task. Just as a story has a beginning, a middle, and an
end, there are now three handlers, one for when an element starts, one the
content, and the last one for when an element ends. The weightElement
variable is nonzero exactly when one is parsing a Weight element. This
ensures that the char procedure will print the content only for Weight ele-
ments. In general, the char procedure will be invoked several times within
a single element. It will usually be called once for each line of the content.
One of the most useful resources for general biomedical information is

PubMed. This is a repository of citations to biomedical publications. More
than half of the citations include abstracts. There are over 15 million citations
available online using PubMed. These citations are available as XML docu-
ments. The following is what part of a typical PubMed citation looks like.
The actual citation is over 130 lines long.

<MedlineCitation Owner="NLM" Status="Completed">
<MedlineID>99405456</MedlineID>
<PMID>10476541</PMID>
<DateCreated>
<Year>1999</Year>
<Month>10</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>1999</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2001</Year>
<Month>11</Month>
<Day>02</Day>
</DateRevised>
<Article>
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use XML::Parser;

$p = new XML::Parser(Handlers => { Start => \&start,
End => \&end,
Char => \&char });

$p->parsefile($ARGV[0]);

sub start {
$tag = $_[1];
if ($tag eq "Weight") {
print("Weight ");
$weightElement = 1;

}
}
sub char {

if ($weightElement) {
print($_[1]);

}
}
sub end {

if ($weightElement) {
print("\n");
$weightElement = 0;

}
}

Program 10.15 Parsing XML content

<Journal>
<ISSN>1083-7159</ISSN>
<JournalIssue>
<Volume>4</Volume>
<Issue>4</Issue>
<PubDate>
<Year>1999</Year>
</PubDate>
</JournalIssue>
</Journal>
<ArticleTitle>Breast cancer highlights.</ArticleTitle>
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<Pagination>
<MedlinePgn>299-308</MedlinePgn>
</Pagination>
<Affiliation>Massachusetts General Hospital,

Boston, Massachusetts 02114-2617, USA.
Kuter.Irene@MGH.Harvard.edu</Affiliation>

<AuthorList CompleteYN="Y">
<Author>
<LastName>Kuter</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Congresses</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>UNITED STATES</Country>
<MedlineTA>Oncologist</MedlineTA>
<NlmUniqueID>9607837</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Antineoplastic Agents, Hormonal</NameOfSubstance>
</Chemical>
...
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
...
<MeshHeading>
<DescriptorName MajorTopicYN="N">Piperidines</DescriptorName>
<QualifierName MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
...
</MeshHeadingList>
</MedlineCitation>

An XML document would contain this citation as one of its elements. Con-
sider the task of extracting the title of the article together with the list of all
MeSH descriptors. The program for parsing an XML document to extract
this information is shown in program 10.16. The result should look like this:

PubMed ID: 10476541
Title: Breast cancer highlights.
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use XML::Parser;

$p = new XML::Parser(Handlers => { Start => \&start,
Char => \&char });

$p->parsefile(’pubmed.xml’);

sub clear {
$pmidElement = 0;
$titleElement = 0;
$descElement = 0;

}
sub start {

if ($_[1] eq "PMID") {
$pmidElement = 1;

} elsif ($_[1] eq "ArticleTitle") {
$titleElement = 1;

} elsif ($_[1] eq "DescriptorName") {
$descElement = 1;

}
}
sub char {

if ($pmidElement) {
print("PubMed ID: $_[1]\n");

} elsif ($titleElement) {
print("Title: $_[1]\n");

} elsif ($descElement) {
print("Descriptor: $_[1]\n");

}
clear;

}

Program 10.16 Parsing PubMed citations
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Descriptor: Antineoplastic Agents, Hormonal
Descriptor: Antineoplastic Combined Chemotherapy Protocols
Descriptor: Breast Neoplasms
Descriptor: Chemotherapy, Adjuvant
Descriptor: Estrogen Antagonists
Descriptor: Female
Descriptor: Hematopoietic Stem Cell Transplantation
Descriptor: Human
Descriptor: Lymphatic Metastasis
Descriptor: Neoplasm Staging
Descriptor: Piperidines
Descriptor: Raloxifene
Descriptor: Randomized Controlled Trials
Descriptor: Risk Factors
Descriptor: Tamoxifen

The handlers style of processing XML documents is the most efficient way
to process XML. In fact, all other styles are based on the handlers style. How-
ever, the handlers style is difficult to use when one needs to do more compli-
cated processing of the document. Subsection 10.2.3 presents another style
that is better suited to more complex tasks.

Summary

• Oneway to process XMLdocuments is to parse the document one element
at a time. This is called the handlers style.

• In the handlers style, one specifies procedures that are invoked by the
parser. Most commonly one specifies procedures to be invoked at the
start of each element, for the text content of the element, and at the end of
the element.

• A common way to design procedures is for the parameters to be in pairs:
a parameter name and a parameter value. To make this easier to read, one
should separate the parameter name from the parameter value with the
=> symbol.

• The handlers style for parsing XML documents is efficient and fast but is
only appropriate when the processing to be done is relatively simple.
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use XML::DOM;

$p = new XML::DOM::Parser;
$doc = $p->parsefile($ARGV[0]);

$weights = $doc->getElementsByTagName(Weight);
for ($i = 0; $i < $weights->getLength; $i++) {

$weight =
$weights->item($i)->getFirstChild->getNodeValue;

print("Weight $weight\n");
}

Program 10.17 Converting an entire XML document using a Perl data structure

10.2.3 The Document Object Model

Although transforming XML element by element is capable of accomplishing
any transformation task, it gets very complicated very quickly. The problem
is that the information one needs at a given time might not be in the element
being processed. It may, for example, be in the parent element. To deal with
this, one can parse the entire document and then extract the parts that are
needed. For example, suppose that one would like to extract the date, height,
and weight of each interview. Program 10.17 uses the “whole document” ap-
proach to this task. This program uses the XML::DOMpackage. DOM stands
for document object model. It reads an entire XML document into a single
module object. Just as in the XML::Parser package, one constructs a parser,
but no handlers need to be defined. The parser is then invoked to parse a
document, and the module object containing the document is assigned to
the doc variable. After that, one extracts information about the document
by using DOMmethods.
There are many DOM methods. One of the most popular methods is

getElementsByTagNamewhich extracts all of the elements within the cur-
rent element which have a particular tag. Most DOM methods return an
object, so one uses the -> operator to extract information from it. The item
method gets one of the elements extracted by getElementsByTagName.
The itemmethod is yet another way to extract one of the items in a list. One
uses brackets to get one item in an array, and braces to get one item in a hash.
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For DOM lists one uses the itemmethod.
DOM uses the single word “node” for anything that can occur in an XML

document. Elements, attributes, and text content are all examples of DOM
nodes. There are many methods of DOM nodes. The following are the most
important methods:

• getAttribute. The value of one attribute of an element.

• getChildNodes. A DOM list consisting of all the nodes contained in an
element.

• getFirstChild. The first child node in an element.

• getParentNode. The containing element.

Summary

• The whole document style of XML processing reads the entire document
into a single Perl data structure.

• DOMmethods are used to extract information from an XML document.

• The entities that occur in an XML document are represented by DOM
nodes.

• DOM lists are used for holding a collection of DOM nodes.

10.2.4 Producing XML

While it is becoming increasingly common for bioinformatics data to be rep-
resented in XML, it is still the case that large amounts of data are still (and
will continue to be) in various text formats. As a result, one common task
will be to convert from text formats to XML format. This section is concerned
with transformations from text files to XML. This can be done in Perl by the
same kind of command that was used for transforming text files to text files;
namely, a command such as this:

perl program.perl file.txt ... > result.xml

except that the result file is an XML file.
The programs in this section consider input file formats and XML struc-

tures that get progressively more complex. The early ones use simple flat
(record) structures, and the later ones consider more complex structures.
Consider that health study again:
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print("<HealthStudy>\n");
while (<>) {

$month = substr($_, 0, 2) + 0;
$day = substr($_, 2, 2) + 0;
$yr = substr($_, 4, 2) + 0;
$year = 1900 + $yr;
$year = 2000 + $yr if $yr < 20;
$bmi = substr($_, 6, 8) + 0;
$status = "normal";
$status = "obese" if substr($_, 14, 3) + 0 > 0;
$status = "overweight" if substr($_, 17, 3) + 0 > 0;
$height = substr($_, 20, 3) + 0;
$weight = substr($_, 23, 8) + 0;
print("<Interview Date=’$year-$month-$day’");
print(" BMI=’$bmi’ Status=’$status’");
print(" Height=’$height’ Weight=’$weight’/>\n");

}
print("</HealthStudy>\n");

Program 10.18 Converting flat file information to XML attributes

011500 18.66 0 0 62 46.27102
011500 26.93 0 1 63 68.95152
020100 33.95 1 0 65 92.53204
020100 17.38 0 0 67 50.35111

The task is to convert this file to an XML document like this:

<HealthStudy>
<Interview Date=’2000-1-15’ BMI=’18.66’ .../>
<Interview Date=’2000-1-15’ BMI=’26.93’ .../>
<Interview Date=’2000-2-1’ BMI=’33.95’ .../>
<Interview Date=’2000-2-1’ BMI=’17.38’ .../>
</HealthStudy>

The solution is shown in program 10.18. This program stores all information
in XML attributes. Another way to store information is to use XML content
instead. For the health study example, the XML document would then look
like this:
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<HealthStudy>
<Interview>

<Date>2000-1-15</Date>
<BMI>18.66</BMI>
<Status>normal</Status>
<Height>62</Height>
<Weight>46.27</Weight>

</Interview>
<Interview>

<Date>2000-1-15</Date>
<BMI>26.93</BMI>
<Status>overweight</Status>
<Height>63</Height>
<Weight>68.95</Weight>

</Interview>
<Interview>

<Date>2000-2-1</Date>
<BMI>33.95</BMI>
<Status>obese</Status>
<Height>65</Height>
<Weight>92.53</Weight>

</Interview>
<Interview>

<Date>2000-2-1</Date>
<BMI>17.38</BMI>
<Status>normal</Status>
<Height>67</Height>
<Weight>50.35</Weight>

</Interview>
</HealthStudy>

To produce the XML document above use program 10.19.
It should be clear at this point that as the complexity of the XML file in-

creases, producing it starts becoming tedious, even with procedures. What
is especially bad is that it is very hard to see the structure of the XML file in
the program. Templates are a technique that remedies this to some degree.
Instead of burying the output text in strings scattered throughout the pro-
gram, templates bury the program inside the output text. To use an old term
for this, templates are closer to beingWYSIWIG (“What You See Is What You
Get”). There are many examples of the template style in use today. Active
Server Pages (ASP) and Java Server Pages (JSP), are examples of this style. In
both cases, the programs are HTML pages in which program code has been
inserted in appropriate places.
When using the Perl Template Toolkit, one will need both a Perl program

and a template file. Consider the task of producing an XML file that has just
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print("<HealthStudy>\n");
while (<>) {

$month = substr($_, 0, 2) + 0;
$day = substr($_, 2, 2) + 0;
$yr = substr($_, 4, 2) + 0;
$year = 1900 + $yr;
$year = 2000 + $yr if $yr < 20;
$bmi = substr($_, 6, 8) + 0;
$status = "normal";
$status = "obese" if substr($_, 14, 3) + 0 > 0;
$status = "overweight" if substr($_, 17, 3) + 0 > 0;
$height = substr($_, 20, 3) + 0;
$weight = substr($_, 23, 8) + 0;
print("<Interview>\n");
print(" <Date>$year-$month-$day</Date>\n");
print(" <BMI>$bmi</BMI>\n");
print(" <Status>$status</Status>\n");
print(" <Height>$height</Height>\n");
print(" <Weight>$weight</Weight>\n");
print("</Interview>\n");

}
print("</HealthStudy>\n");

Program 10.19 Converting flat file information to XML element content

two elements, one inside the other, that looks like this:

<Main>
<Part id=’p1’>XML Example</Part>

</Main>

except that the Part id and the content of the Part element are obtained from
an input file:

p1:XML Example

One can do this in Perl without templates by using program 10.20.
This program accomplishes the task, but as the transformation task gets

more complicated, it is difficult to understand what is being done by this
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print("<Main>\n");
while (<>) {
chomp;
split(/:/);
print(" <Part id=’$_[0]’>$_[1]</Part>\n");

}
print("</Main>\n");

Program 10.20 Converting text data to XML

<Main>
<Part id=’[% name %]’>[% content %]</Part>

</Main>

Template 10.1 Perl template for converting text data to XML

program because the XML text is spread throughout the Perl code. The Perl
template is shown in template 10.1.
Notice how the Perl template looks much more like the output that is to be
produced than the Perl program. The parts of the template in bracketed per-
cent signs are the variable parts of the template. The rest of the template is
the constant part. The constant part is printed exactly as shown. The variable
parts are instantiated with the values of what look like variables. However,
the names id and content are actually hash keys, not variables. The tem-
plate is used from program 10.21.
The first line of the program tells Perl that the Template Toolkit package is

being used. The data are obtained by reading the first line of the input file
and extracting the data to be used in the template. The last part of the pro-
gram invokes the template package. The first statement constructs the tem-
plate processor using the Template Toolkit package. The second statement
constructs a hash that tells the template processor the data that should be
used for instantiating the template. As noted earlier, what look like variables
in the template are actually hash keys. The third statement actually does the
processing. The template processor needs two parameters: the name of the
template file and the hash containing the data to be used for instantiation of
the template.
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use Template;

while (<>) {
chomp;
split(/:/);
$name = $_[0];
$content = $_[1];

}
$tt = new Template;
$vars = {

name => $name,
content => $content,

};
$tt->process(’part.tt’, $vars);

Program 10.21 Using Perl templates

Now consider a more interesting transformation task: the first task of this
chapter. To use a Perl template, the data extracted from the input file must
be organized into a data structure to be used by the template processor for
instantiating the template as in program 10.22. The while statement con-
structs an array of hashes. Each hash gives the information about one inter-
view of the health study. In other words, each hash represents one record of
the health study database. The template processor is given this array in the
same way as in the earlier program, except that now there is just one hash
key: HealthStudyInterviews. This will be the name of the array within
the template. The template is shown in template 10.2. Notice that one iter-
ates over the elements of the array in almost the same way as in Perl. The
Template Toolkit, however, uses a more simplified notation than Perl:

1. Variables usually have no initial character such as % or @. The Template
Toolkit does use the $ but only when one is substituting a value in an
expression. For example, if one has a variable named status whose
value is “obese,” then the expression i.statuswould have two different
meanings. Should it mean $i{status} or should it mean $i{obese}?
In the Template Toolkit one specifies the second one by writing i.$sta-
tus. The $ prefix in the Template Toolkit means “substitute the value of
the variable here.”
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use Template;

while (<>) {
$interviews[$i]{month} = substr($_, 0, 2) + 0;
$interviews[$i]{day} = substr($_, 2, 2) + 0;
$interviews[$i]{year} = 2000 + substr($_, 4, 2);
$interviews[$i]{bmi} = substr($_, 6, 8) + 0;
$status = ’normal’;
if (substr($_, 14, 3) + 0 > 0) { $status = ’obese’; }
if (substr($_, 17, 3) + 0 > 0)

{ $status = ’overweight’; }
$interviews[$i]{status} = $status;
$interviews[$i]{height} = substr($_, 20, 3) + 0;
$interviews[$i]{weight} = substr($_, 23, 8) + 0;
$i++;

}
$tt = new Template;
$vars = {
HealthStudyInterviews => [@interviews],

};
$tt->process("health.tt", $vars);

Program 10.22 Perl program that uses a template

<HealthStudy>
[% FOREACH i IN HealthStudyInterviews %]
<Interview Date=’[% i.year %]-[% i.month %]-[% i.day %]’

BMI=’[% i.bmi %]’ Status=’[% i.status %]’
Height=’[% i.height %]’ Weight=’[% i.weight %]’/>

[% END %]
</HealthStudy>

Template 10.2 Perl template to convert fixed-width fields to variable-width fields
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2. Selection of a part of a data structure is specified in Perl using brackets
for array indices (e.g., $x[1]) and braces for hash keys (e.g., $h{name}.
The Template Toolkit uses the dot notation for both of these (e.g., x.1 and
h.name, respectively).

3. Keywords such as FOREACH arewritten using all capital letters in the Tem-
plate Toolkit, but using lower-case letters in Perl.

The Template Toolkit can simplify its notation because it supports a very
limited range of features compared with Perl.
Next consider a more difficult transformation such as transforming the

output produced by BioProspector as in subsection 10.1.4. The Perl program
for extracting the motifs must be modified so that the information is kept in a
Perl data structure which is given to the template in the usual way, as shown
in program 10.23. The corresponding template is shown in template 10.3.
Running this program on the BioProspector file produces output that begins
like this:

<MotifData>

<Motif id=’1’>

<DNA>
<A>0.00</A>
<C>0.21</C>
<T>0.59</T>
<G>0.21</G>

</DNA>

...

The extra blank lines come from the FOREACH and END directives. These do
not produce any text by themselves, so they show up as blank lines in the
output. To get rid of the unnecessary blank lines and other spaces, just add
dashes at the end of each directive, as shown in template 10.4.

Summary

• To convert non-XML data to the XML format, one can use the same tech-
niques that apply to any kind of processing of text data. The XML docu-
ment is just another kind of output format.



10.2 Transforming XML 253

use Template;

while (<>) {
chomp;
if (/Motif #([0-9]+):/) {

$label = $1;
$i = 0;

} elsif ($label && /^[0-9]+/) {
split;
$motifs{$label}[$i]{A} = $_[1];
$motifs{$label}[$i]{G} = $_[2];
$motifs{$label}[$i]{C} = $_[3];
$motifs{$label}[$i]{T} = $_[4];
$i++;

}
}
$tt = Template->new();
$vars = {
MotifData => {%motifs},

};
$tt->process("motif.tt", $vars);

Program 10.23 Using pattern matching to extract data and then formatting it with
Perl templates

• The Perl Template Toolkit simplifies the production of XML documents
by using a WYSIWIG style.

• The Perl Template Toolkit has its own language for iteration and selecting
an item of a hash or array. The Template Toolkit language is much simpler
than Perl because it has fewer features.

10.2.5 Transforming XML to XML

The last type of transformation task is transforming from XML to XML. In
theory, this kind of transformation is just a special case of transforming from
XML to text. However, there are new issues that arise in this case, and there
are some new tools that are designed for this case.
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<MotifData>
[% FOREACH label IN MotifData.keys.sort %]

<Motif id=’[% label %]’>
[% FOREACH position IN MotifData.$label %]

<DNA>
<A>[% position.A %]</A>
<C>[% position.C %]</C>
<T>[% position.T %]</T>
<G>[% position.G %]</G>

</DNA>
[% END %]
</Motif>

[% END %]
</MotifData>

Template 10.3 Perl template for formatting Perl hashes and arrays

<MotifData>
[% FOREACH label IN MotifData.keys.sort -%]

<Motif id=’[% label %]’>
[% FOREACH position IN MotifData.$label -%]

<DNA>
<A>[% position.A %]</A>
<C>[% position.C %]</C>
<T>[% position.T %]</T>
<G>[% position.G %]</G>

</DNA>
[% END -%]

</Motif>
[% END -%]
</MotifData>

Template 10.4 Perl template that avoids unnecessary blank lines
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use XML::Parser;

$p = new XML::Parser(Handlers => { Start => \&start });

print("<HealthStudyUS>\n");
$p->parsefile($ARGV[0]);
print("</HealthStudyUS>\n");

sub start {
$tag = $_[1];
%attributes = @_;
if ($tag eq "Interview") {

print(" <Interview");
print(" Date=’$attributes{Date}’");
$WeightUS = $attributes{Weight} * 2.2;
print(" Weight=’$WeightUS’");
$HeightUS = $attributes{Height} * 0.39;
print(" Height=’$HeightUS’");
print("/>\n");

}
}

Program 10.24 Transforming XML attributes

The most efficient technique for transforming from XML to XML is to
use the handlers style. Consider the task of reading the health study data-
base and changing the height and weight from centimeters and kilograms to
inches and pounds. The input document looks like this:

<HealthStudy>

<Interview Date=’2000-1-15’ BMI=’18.66’ .../>

<Interview Date=’2000-1-15’ BMI=’26.93’ .../>

...

The output document should contain only the date, height, and weight at-
tributes of each interview. The result of running program 10.24 using the
example database is
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<HealthStudyUS>
<Interview Date=’2000-1-15’ Weight=’101.794’ Height=’24.18’/>
<Interview Date=’2000-1-15’ Weight=’151.69’ Height=’24.57’/>
<Interview Date=’2000-2-1’ Weight=’203.566’ Height=’25.35’/>
<Interview Date=’2000-2-1’ Weight=’110.77’ Height=’26.13’/>

</HealthStudyUS>

Program 10.24 deals only with information in attributes. When informa-
tion is in XML content, one must use additional handlers. Suppose that one
has the same task as in program 10.15, but the output must be in XML. The
output should look like this:

<WeightList>
<Weight>46.27</Weight>
<Weight>68.95</Weight>
<Weight>92.53</Weight>
<Weight>50.35</Weight>

</WeightList>

The solution is shown in program 10.25.
XML allows data to be in either attributes or content. Attributes are much

simpler to process, but they are more limited than content. Content can
have markup while attributes cannot. Generally speaking, one should use
attributes for simple data values and one should use content for more com-
plex data values.
One common transformation task is to convert from one of these two for-

mats to the other. Consider the task of converting the health study from con-
tent attributes to ordinary attributes. In program 10.26 the $printContent
variable is used by the start handler to inform the char and end handlers
that the content information is to be printed. The end handler turns this
variable “off.”
While the handlers style of parsing and processing XML documents is effi-

cient, programs can get very complicated as the transformation task involves
data and attributes on more than one level. As an exercise, try to modify
the program above so that it converts the weight and height from kilograms
and centimeters to pounds and inches. To do this exercise, one must intro-
duce one or more variables that allow the start handler to inform the char
handler about which attribute is being printed so that the appropriate con-
version can be performed. The problem with this style is that the handling
of each element is spread over the three handlers. It would be better if all
the processing for each type of element were handled in one place. Other
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use XML::Parser;

$p = new XML::Parser(Handlers => { Start => \&start,
End => \&end,
Char => \&char });

print("<WeightList>\n");
$p->parsefile($ARGV[0]);
print("</WeightList>\n");

sub start {
$tag = $_[1];
if ($tag eq "Weight") {

print(" <Weight>");
$weightElement = 1;

}
}
sub char {
if ($weightElement) {

print($_[1]);
}

}
sub end {
if ($weightElement) {

print("</Weight>\n");
$weightElement = 0;

}
}

Program 10.25 Transforming XML content
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use XML::Parser;
$p = new XML::Parser(Handlers =>
{ Start => \&start, End => \&end, Char => \&char });

$p->parsefile($ARGV[0]);
sub start {

$tag = $_[1];
if ($tag eq "HealthStudy") {
print("<HealthStudy>\n");

}
elsif ($tag eq "Interview") {
print("<Interview");

}
elsif ($tag eq "Date") {
print(" Date=’");
$printContent = 1;

}
...

}
sub char {

if ($printContent) {
print($_[1]);

}
}
sub end {

$tag = $_[1];
if ($tag eq "HealthStudy") {
print("</HealthStudy>\n");

}
elsif ($tag eq "Interview") {
print("/>\n");

}
elsif ($printContent) {
print("’");
$printContent = 0;

}
}

Program 10.26 Transforming XML content to XML attributes
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parsing styles can help simplify the program, but all of them have disadvan-
tages. A better approach that has become very popular is to use the XML
Transformation Language that is introduced in the next chapter.

Summary

• Transformation from XML to XML using Perl can be done using any of
the parsing styles.

• None of the styles are completely satisfactory when the transformation
task is complicated.

10.3 Exercises

In the following exercises, write a Perl program that determines the specified
information. The solutions to these exercises are available online at the book
website ontobio.org. Additional exercises are also available at this site.

1. Using the health study database in section 1.1, find all interviews in the
year 2000 for which the study subject had a BMI greater than 30. Print the
information for each such interview using tab-delimited fields. Compare
your answer with your solution to exercise 10.1.

2. Perform the same task as in exercise 10.1, but using a database in XML
format as in section 1.2. Write your program first by using patterns to
extract the information, and then by using the XML::Parser module.

3. Generalize exercise 10.2 to extract interviews for any year and any mini-
mum BMI value. Write your program as a Perl procedure which has two
parameters.

4. Given a BioML document as in figure 1.3, find all literature references
for the insulin gene. Compare your answer with your solution to exer-
cise 10.2.

5. As in exercise 10.3, find all PubMed citations dealing with the therapeu-
tic use of glutethimide. For each citation print one line containing the
MedlineID, the title, and the date of publication in tab-delimited format.
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6. For the health study database in section 1.1, the subject identifier is a field
named SID. Find all subjects in the database for which the BMI of the
subject increased by more than 4.5 during any period of time. For each
subject, print the subject identifier, the amount that the BMI increased,
and the period of time. Print the results in XML format. If this condition
is satisfied more than once by a subject, then print the maximum increase
in the BMI for this subject. Hint: Collect information about each subject
in a hash or array.

7. Read the GO association database, and compute the number of associa-
tions of the term GO:0003673. Unlike exercise 10.6, determine the actual
number of go:association elements for the specified GO term. Do not
use the n_associations attribute.

8. A file contains BioML data as in figure 1.3. For each gene in this file,
compute the total length of all exons that it contains.



11 The XML Transformation
Language

The XML Transformation Language (XSLT) (W3C 2001d) is one of the most
popular, as well as the most commonly available, transformation languages
for XML documents. Although this language was originally intended for use
by the XML Stylesheet Language (XSL), one can use XSLT for many other
useful transformations, including data transformations for bioinformatics.
In fact, XSLT is used mostly for transformation today. While there are many
XML transformation languages, XSLT has the advantage of being rule-based
and being itself written in XML. This chapter introduces this style of pro-
gramming.

11.1 Transformation as Digestion

XSLT is very different from the procedural style of programming that dom-
inates mainstream programming languages. XSLT is rule-based. An XSLT
rule is called a template, and an XSLT program is just a set of templates. The
templates are separate from one another (i.e., one template can never contain
another), and the order in which they appear in the program does not matter.
The whole XSLT program is called a transformation program or a transform.
Consider the document in figure 11.1 that shows some protein interaction

data from a microarray experiment. Suppose that one would like to change
the names (tags) of some of the elements. Specifically, suppose that instead of
Proteinwewant to use P, and instead of Substrate, use S. Transform 11.1
shows the XSLT program for doing this task. To understand how this pro-
gram functions, consider how enzymes digest molecules such as proteins.
Proteins are long chains of amino acids, and each enzyme is capable of split-
ting the chain at one or more specific points in the chain, which match the
active site of the enzyme. This process is shown symbolically in figure 11.2.
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<Array>
<Protein id="Mas375">
<interaction substrate="Sub89032">
<BindingStrength>5.67</BindingStrength>
<Concentration unit="nm">43</Concentration>
</interaction>
<interaction substrate="Sub89033">
<BindingStrength>4.37</BindingStrength>
<Concentration unit="nm">75</Concentration>
</interaction>
</Protein>
<Protein id="Mtr245">
<interaction substrate="Sub89032">
<BindingStrength>0.65</BindingStrength>
<Concentration unit="um">0.53</Concentration>
</interaction>
<interaction substrate="Sub80933">
<BindingStrength>8.87</BindingStrength>
<Concentration unit="nm">8.4</Concentration>
</interaction>
</Protein>
<Substrate id="Sub89032"/>
<Substrate id="Sub89033"/>

</Array>

Figure 11.1 Example of a document specifying some values obtained by a microar-
ray experiment.

Each template acts like an enzyme that acts upon one or more kinds of
elements in the XML document. The kinds of elements that the template
can “attack” is specified by the match attribute. Most commonly, the match
condition is either the tag of the elements that the template can attack or a
“wild card” that allows the template to attack any element. If there are both
specific and generic templates, then the specific ones take precedence.
Since elements and attributes can have the same names, XSLT distinguishes

them by prefixing attribute names with an @ sign. Thus chromosome is the
name of an element, but @start is the name of an attribute. The wild card
notation for elements is node(), and the wild card notation for attributes is
@*. The templates in transform 11.1 use both of the wild card notations.
Enzymes can only attack locations on a protein chain that are “exposed.”

In the same way, templates only attack the highest-level elements that can
be matched. Lower-level elements become exposed only when the contain-
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<?xml version="1.0"?>
<xsl:transform version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- Change all occurrences of Protein to P -->
<xsl:template match="Protein">

<P>
<xsl:apply-templates select="@*|node()"/>

</P>
</xsl:template>

<!-- Change all occurrences of Substrate to S -->
<xsl:template match="Substrate">

<S>
<xsl:apply-templates select="@*|node()"/>

</S>
</xsl:template>

<!-- Don’t change anything else -->
<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates match="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:transform>

Transform 11.1 An XML transformation program that changes the name of protein
elements from “Protein” to “P”, and similarly changes “Substrate” to “S”. All other
elements are unchanged.

ing elements have been “digested.” Digestion and the subsequent expos-
ing of child elements to attack by other templates is accomplished by using
the xsl:apply-templates command. One can be selective about exactly
which of the child elements will be exposed by using a select criterion.
Figure 11.3 illustrates how the hierarchical structure relates to the templates.
Note that the context changes as a result of the “digestion” of an element.
The last template in transform 11.1 is saying: “by default, copy all elements

and attributes, and then apply appropriate templates to the attributes and
child elements that are in each element.” This template is a handy one to
include in any XSLT program that is modifying some of the features of an
XML document, but which is leaving most of the features unchanged.
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Figure 11.2 Abstract depiction of the process of digestion. The original chain is
shown in A. An enzyme (dark gray region) attacks the chain (B, C, D) in two locations,
splitting the chain each time. A second enzyme (light gray region) attacks two of the
subchains (E, F, G). The end result is five subchains (H).

Summary

• An XSLT program consists of templates.

• A template either matches a specific kind of element or attribute or it uses
a wild card to match many kinds of elements and attributes.

• A template performs an action on the matching elements and attributes.
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Figure 11.3 The digestion process during XML transformation. The first template
digests a chromosome element and then releases the locus child elements to the
second template. The corresponding action on the hierarchy is to change the context
from the chromosome element to the locus as shown in the screen image.

• After transforming the matching element or attribute, a template can ap-
ply other templates to continue the transformation.

11.2 Programming in XSLT

Every XSLT template acts within a context. When one is using an XML editor,
the context is the element (or attribute) that is currently highlighted. One
selects context in an XML editor by clicking themouse on the desired element
in the hierarchy or by clicking on a data entry box for an attribute. In the
same way, the xsl:apply-templates changes the transformation context
from one element or attribute to another.
The context for an XML editor is selected by a person using a mouse. The

selection can occurwherever the person expresses an interest. The context for
an XML transformation is more systematic. Elements are normally selected
by reading the document from the beginning to the end, just as one would
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...
<!-- Change all occurrences of Protein to P -->
<xsl:template match="Protein">

<xsl:sort select="@id"/>
<P>

<xsl:apply-templates select="@*|node()"/>
</P>

</xsl:template>

<!-- Change all occurrences of Substrate to S -->
<xsl:template match="Substrate">

<xsl:sort select="@id"/>
<S>

<xsl:apply-templates select="@*|node()"/>
</S>

</xsl:template>
...

Transform 11.2 A modification of the program in transform 11.1 in which the pro-
teins and substrates have been sorted by their ids

read a novel. This order is called the document order. However, the order in
which elements are selected during the transformation can be changed by
using a xsl:sort element. In transform 11.2 a transformation is performed
that not only changes some element names but also changes the order of
those elements.
The apply-templates command serves to change the context of the

transformation from one element or attribute to another one. The for-each
is another command that accomplishes the same effect. The only difference
between them is that apply-templates causes another template to be-
come active in a new context while the for-each command stays inside
the same template. This is illustrated in transform 11.3 which changes the
tag of interaction elements within Protein elements to I.
While both apply-templates and for-each have the same effect, there

are some differences. The for-each command is a traditional technique for
controlling the actions performed by a computer program, and those who
have programming experience will find it a familiar command. By contrast,
apply-templates is a rule-based command that uses a matching or “lock-
and-key” mechanism which is much more flexible and powerful.
The power of the apply-templates rule-based command is illustrated

by transform 11.2. In this program, child elements of a Protein other than
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...
<xsl:template match="Protein">

<P>
<xsl:apply-templates select="@*"/>
<xsl:for-each select="interaction">

<I>
<xsl:apply-templates select="@*|node()"/>

</I>
<xsl:for-each/>

</P>
</xsl:template>
...
</xsl:transform>

Transform 11.3 A modification of the program in transform 11.1 in which the
interaction elements contained in Protein elements are changed to I elements.
All other kinds of child element in a Protein element are lost.

interaction elements would be lost. This would not occur if the trans-
formation of the interaction elements were done using another template.
The only interaction elements that will be transformed by the for-each
command are the ones that are child elements of a Protein element.
Nevertheless, the for-each command is useful, especially when one is

performing numerical calculations. This is the topic of the next section.

Summary

• A transformation action occurs in a context: the element or attribute being
transformed.

• The context is normally chosen in the same order in which the elements
or attributes appear in the document, but which can be changed by using
a sort command.

• The context is changed by using either an apply-templates (rule-based)
command or a for-each (traditional iteration) command.

11.3 Navigation and Computation

Like any programming language, one can perform numerical computations
using XSLT. This is specified using a notation similar to that in traditional
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...
<xsl:template match="Protein">

<P>
<xsl:attribute name="averageBindingStrength">
<xsl:value-of
select="sum(interaction/BindingStrength) div

count(interaction/BindingStrength)"/>
</xsl:attribute>
<xsl:apply-templates select="@*|node()"/>

</P>
</xsl:template>
..

Transform 11.4 Amodification of the program in transform 11.1 to compute the av-
erage binding strength of all interactionswith a protein. The average binding strength
is shown as another attribute in each P element.

programming languages such as Perl, but XSLT adds a new feature to com-
putation: navigation.
Navigation is the process of conducting vehicles from one place to another.

The original meaning was concerned with ships on the sea. Nowadays it is
more commonly applied to the directions for driving a car from one place to
another. In the case of XML documents, one navigates from one element to
another. Instead of streets one navigates over elements, and instead of turn-
ing from one street to another, one traverses either “down” from an element
to a child element, or “up” from an element to its parent element.
The template in transform 11.4 shows how to perform both navigation and

computation. The objective is to compute the average binding strength of all
interactions of a protein. The value-of command evaluates the expression
in its select attribute. The interaction/BindingStrength part of this
expression is the navigation using XPath as in section 8.1. It specifies that one
should select all interaction elements in the context and then select all
BindingStrength elements within the interaction elements. The slash
means that one navigates from a parent element to a child element. This
notation emulates the notation used for navigating among directories and
files (except that in Windows, a backward slash is used instead of a forward
slash).
An attribute command inserts an attribute into the current element (in

this case a P element). The sum is the numerical sum of all matching el-
ements, and the count is the number of all matching elements. The div
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...
<xsl:template match="interaction">

<interaction>
<xsl:attribute name="protein">

<xsl:value-of select="../@id"/>
</xsl:attribute>
<xsl:apply-templates select="@*|node()"/>

</interaction>
</xsl:template>
..

Transform 11.5 A template that adds the id of the containing element as a new
attribute

operator is short for “division.” Programming languages often use the slash
to denote division. Obviously one cannot use the same notation because that
would conflict with the use of slash to denote navigation.
Navigating from a child to a parent uses the same notation as in directories.

In transform 11.5, an attribute is added to the interaction element that
has the identifier of the corresponding Protein element.
The XSLT language inherits all of the operators that are available in XPath,

such as the ones in table 8.1. Two operators that seem to be missing are the
maximum and minimum operators. In fact, both of these can be computed
by using the xsl:sort command. This is explained in the next section.

Summary

• XSLT navigation is the process of traveling from one element or attribute
to another one in the document.

• Navigation is specified using the same notation as in directory trees.

• Computations are specified using operators, such as the ones shown in
table 8.1

11.4 Conditionals

Conditionals are used to define special cases. For example, in section 1.1
the health study record defined normal weight, overweight, and obesity in
terms of ranges for the body mass index (BMI). In XSLT these ranges would
be written like this:
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<xsl:choose>
<xsl:when test="@bmi&lt;25">
Normal

</xsl:when>
<xsl:when test="@bmi&lt;30">
Overweight

</xsl:when>
<xsl:otherwise>
Obese

</xsl:otherwise>
</xsl:choose>

By using sorting and conditionals one can compute the maximum and
minimum. Here is the computation of a maximum:

<xsl:for-each select="interaction/BindingStrength">
<xsl:sort data-type="number" select="."/>
<xsl:if test="position()=last()">
<xsl:value-of select="."/>

</xsl:if>
</xsl:for-each>

This computation sorts all the binding strengths in increasing numerical or-
der. It then selects just the last (largest) one. Note the use of the “.” to denote
the current element. Alternatively, one could have sorted in descending or-
der and selected the first one as follows:

<xsl:for-each select="interaction/BindingStrength">
<xsl:sort data-type="number"

order="descending" select="."/>
<xsl:if test="position()=1">
<xsl:value-of select="."/>

</xsl:if>
</xsl:for-each>

Conditionals can appear either as elements using xsl:choose or xsl:if
as above or within match and select attributes. For example,

<xsl:value-of select="BindingStrength[position()=1]"/>

will select just the first BindingStrength element. One can abbreviate the
test above as
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<xsl:value-of select="BindingStrength[1]"/>

but this should only be used in simple cases like this one. Do not expect such
abbreviations to work for more complicated expressions.

Summary

• Conditionals are used for special cases.

• The xsl:if conditional element is used to restrict to a single special case.

• The xsl:choose conditional element is used for handling several special
cases.

• Conditional can be specified in match and select attributes by writing
the condition in brackets after the match criterion.

11.5 Precise Formatting

XSLT is not limited to producing only XML files. The output file can have any
format, although XSLT is primarily intended for XML. Of course, the input
document must necessarily be an XML document. This book, for example,
was written in XML and then translated to the LaTeX typesetting language
using XSLT.
The most common formatting issue is the formatting of numbers. The

format-number function is used for formatting numbers. For example,

<xsl:value-of
select="format-number(3674.9806, ’#,##0.0##’)"/>

will print 3,674.981. The # symbol represents a digit that will be omitted
if it is insignificant. Zero represents a digit (not just 0) that will always be
printed even if it is insignificant. As another example,

<xsl:value-of
select="format-number(3674.9805, ’#,##0.000’)"/>

will print 3,674.980.
When XSLT is producing an XML file, it attempts to place the elements so

that one can read the output document without using any special tools. In
particular, the elements are successively indented to show the boundaries of
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the elements. Of course, it is better to view XML documents using an XML
editor.
Although XSLT is usually pretty good about guessing your intentions, it is

not always obvious whether your output file is supposed to be an XML file
or it just has some of the XML features. To tell XSLT exactly what you intend,
include one of the following at the beginning of your XSLT program:

• For XML output files:

<xsl:output method="xml" media-type="text/xml"/>

• For HTML output files:

<xsl:output method="html" media-type="text/html"/>

• For output files that are neither XML nor HTML:

<xsl:output method="text" omit-xml-declaration="yes"/>

If your output file is not an XML document, then you may want to exer-
cise more precise control over the output formatting by using the xsl:text
element. Consider these two templates:

<xsl:template match="Protein">
Protein information:
<xsl:apply-templates select="@*|node()"/>

</xsl:template>

<xsl:template match="Protein">
<xsl:text>Protein information:</xsl:text>
<xsl:apply-templates select="@*|node()"/>

</xsl:template>

The first template would produce generous amounts of space before and af-
ter the Protein information: text in the output file, while the second
would write nothing more than just the Protein information: text.
Since XSLT is designed to produce XMLdocuments, it automatically chang-

es the left angle bracket from < to &lt;. XSLT also automatically changes
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the ampersand character from & to &amp; These two characters have a spe-
cial meaning in XML documents. If XSLT is being used to produce a non-
XML document, then one may want these two characters to be left alone.
To force XSLT to write left angle brackets and ampersands verbatim, use
disable-output-escaping attribute in each element where this behav-
ior is desired.

Summary

• The format-number function allows one to specify the format of a num-
ber.

• The xsl:output element tells XSLT the kind of document that is being
produced so it can format the output document appropriately.

• The xsl:text element is used for controlling the amount of space in the
output document and also for informing XSLT whether or not to escape
the XML special characters.

11.6 Multiple Source Documents

When the amount of source information is large, it is convenient to break up
a large file into several smaller files. There are two strategies for dealing with
such collections of files:

1. The collection of files is a single XML document that was split into pieces
for convenience. In this strategy, all of the pieces must form a document
that conforms to a single DTD.

2. The collection of files is a collection of different XML documents that are
used for a single purpose. This strategy allows the individual files in the
collection to use different DTDs.

Suppose that one has performed five experiments and that the data are
stored in five separate files, called experiment1.xml through experiment5.
xml. The experiment1.xml file might look like this:

<Experiment date="2003-09-01">
<Observation id="A23">
...

</Experiment>
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The first strategy can be accomplished by using the notion of an XML en-
tity as discussed in section 1.4. A separate “main” file is created that looks
like this:

<?xml version="1.0"?>
<!DOCTYPE ExperimentSet SYSTEM "experiment.dtd"
[

<!ENTITY experiment1 SYSTEM "experiment1.xml">
<!ENTITY experiment2 SYSTEM "experiment2.xml">
<!ENTITY experiment3 SYSTEM "experiment3.xml">
<!ENTITY experiment4 SYSTEM "experiment4.xml">
<!ENTITY experiment5 SYSTEM "experiment5.xml">

]>
<ExperimentSet>

&experiment1;
&experiment2;
&experiment3;
&experiment4;
&experiment5;

</ExperimentSet>

The five files will automatically be incorporated into the main file. This is
done by the XML processor, not by XSLT, and there is nothing in the XSLT
transformation program that mentions anything about these files. Note that
only the main file mentions the DOCTYPE. This strategy requires that the files
being combined form an XML document that conforms to the overall DTD.
To accomplish the second strategy use the document function. For exam-

ple,

<xsl:for-each select="document(’experiment1.xml’)">
<xsl:apply-templates/>

<xsl:for-each>
<xsl:for-each select="document(’experiment2.xml’)">
<xsl:apply-templates/>

<xsl:for-each>

will process the experiment1.xml and experiment2.xml documents.
Unlike the first strategy, the second strategy processes each document inde-
pendently. So they could have different DTDs.
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Summary

• XSLT can process multiple input source files by using XML entities to in-
clude one file in another.

• Alternatively, XSLT can process multiple files by using the document
function.

11.7 Procedural Programming

Although XSLT is a rule-based language, one can also program in XSLT us-
ing the traditional procedural style. In particular, this means that one can
declare and use variables and procedures, and one can pass parameters to
procedures.
A variable is declared using the xsl:variable command. For example,

<xsl:variable name="x" select="BindingStrength[1]"/>

will set the variable x to the first binding_strength element in the current
context. This command has approximately the same meaning as

$x = $BindingStrength[0];

in Perl. Note that XSLT starts counting at 1 while Perl normally starts count-
ing at 0.
An XSLT variable is used (evaluated) by writing the $ character before

the variable name. This convention is almost the same as in Perl, except
that Perl variables are not declared so they always appear with a preceding
character such as $. Another difference is that Perl distinguishes between
variables that represent collections of values from variables that represent
single values (called “scalars” in Perl). XSLT makes no such distinction.
Procedures in XSLT are just templates that have a name. They are called

by using the xsl:call-template command. The following template com-
putes the average of all binding_strength elements in the current con-
text:

<xsl:template name="BindingStrengthAverage">
<xsl:value-of select="sum(BindingStrength) div

count(BindingStrength)"/>
</xsl:template>
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The procedure is called as follows:

<xsl:call-template name="BindingStrengthAverage"/>

Procedures often have parameters, and these are specified in XSLT by us-
ing xsl:param in the procedure. For example, the following will compute
the average of any set of elements:

<xsl:template name="average">
<xsl:param name="elements"/>
<xsl:value-of
select="sum($elements) div count($elements)"/>

</xsl:template>

When a procedure is called, the parameters are specified using the
xsl:with-param command as follows:

<xsl:call-template name="average">
<xsl:with-param name="elements"
select="BindingStrength"/>

</xsl:call-template>

In general, a computation procedure consists of the following parts:

1. The procedure declaration. This consists of the name of the procedure and
the names of the parameters.

2. The procedure body. This is the part that performs the actual computa-
tion. It usually consists of a conditional element having two parts:

(a) The computation performed on each subelement

(b) The computation performed after all subelements have been processed

The previous example shows the computation of the average, so it is natural
to consider how one might compute the variance using XSLT. The first step
is writing the procedure declaration. In this case there are three relevant
parameters. The first is the set of elements whose variance is to be computed.
The second is the accumulator. It is the variable that is used for computing
the sum of squares of the elements. It is called the accumulator because it
accumulates the sum by successively adding terms until the entire sum has
been computed. The last parameter is the iterator. Its purpose is to indicate
which term is to be added to the accumulator. Here is the declaration for a
procedure to compute the variance:
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<xsl:template name="variance">
<xsl:param name="elements"/>
<xsl:param name="ssq"/>
<xsl:param name="i"/>

The name of the procedure is variance. The set of elements to be used
for the computation is called elements. The accumulator is ssq and the
iterator is i. The second step is to write the procedure body. This consists of
a conditional element for the two cases. It looks like this:

<xsl:choose>
<xsl:when test="$i > count($elements)">

<!-- The final computation goes here. -->
</xsl:when>
<xsl:otherwise>

<!-- The computation on each subelement goes here. -->
</xsl:otherwise>

</xsl:choose>

Since the iterator starts at 1, the computation is complete when the iterator
exceeds the total number of elements to be processed. It does not matter
whether the final computation is written first or second. So it could also be
written this way:

<xsl:choose>
<xsl:when test="$i &lt;= count($elements)">

<!-- The computation on each subelement goes here. -->
</xsl:when>
<xsl:otherwise>

<!-- The final computation goes here. -->
</xsl:otherwise>

</xsl:choose>

The computation on each subelement consists of three steps:

1. Add the next square to the accumulator.

2. Increase the iterator by 1.

3. Continue the computation.

Here is the program:
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<xsl:call-template name="variance">
<xsl:with-param name="elements" select="$elements"/>
<xsl:with-param name="ssq"
select="$ssq + $elements[position()=$i] *

$elements[position()=$i]"/>
<xsl:with-param name="i" select="$i + 1"/>

</xsl:call-template>

The first xsl:with-param command adds the square of the next element
to the accumulator. The second command increases the iterator by 1. The
call to the procedure continues the computation. The two commands can
be written in either order as they take effect only after the computation is
continued. So the following program does the same computation:

<xsl:call-template name="variance">
<xsl:with-param name="i" select="$i + 1"/>
<xsl:with-param name="ssq"
select="$ssq + $elements[position()=$i] *

$elements[position()=$i]"/>
<xsl:with-param name="elements" select="$elements"/>

</xsl:call-template>

The final computation divides the sum of squares by the number of ele-
ments and subtracts the square of the average:

<xsl:variable name="avg"
select="sum($elements) div count($elements)"/>

<xsl:value-of
select="$ssq div count($elements) - $avg * $avg"/>

Putting these together gives the following procedure for computing the
variance:

<xsl:template name="variance">
<xsl:param name="elements"/>
<xsl:param name="ssq"/>
<xsl:param name="i"/>
<xsl:choose>

<xsl:when test="$i > count($elements)">
<xsl:variable name="avg"

select="sum($elements) div count($elements)"/>
<xsl:value-of

select="$ssq div count($elements) - $avg * $avg"/>
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</xsl:when>
<xsl:otherwise>

<xsl:call-template name="variance">
<xsl:with-param name="ssq"

select="$ssq + $elements[position()=$i] *
$elements[position()=$i]"/>

<xsl:with-param name="i" select="$i + 1"/>
</xsl:call-template>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

Here is an example of how this procedure would be called:

<xsl:variable name="trialvariance">
<xsl:call-template name="variance">

<xsl:with-param name="elements" select="trial"/>
<xsl:with-param name="ssq" select="0"/>
<xsl:with-param name="i" select="1"/>

</xsl:call-template>
</xsl:variable>
<xsl:value-of
select="format-number($trialvariance, ’###0.##’)"/>

As this example suggests, XSLT can be used for numerical computations
provided the computations are not too complicated. When the computations
get complex, it would be better to use software tools and languages that are
designed for such computations (such as Perl).

Summary

• XSLT can be used for traditional procedural programming.

• Variables are declared by using an xsl:variable element.

• Procedures are templates that have a name. The parameters of a proce-
dure are declared by using xsl:param elements.

• Procedures are called by using an xsl:call-template element. Pa-
rameters are passed to the procedure by using xsl:with-param ele-
ments.

• Although one could implement complex numerical algorithms in XSLT, it
is probably easier to use programming languages and tools that are de-
signed for such algorithms.
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11.8 Exercises

The following exercises use the BioML example in figure 1.3. Each exercise
is solved with one or two templates that transform the kinds of elements
mentioned in the exercise. Each of the solutions is an XSLT program having
the following form:

<xsl:transform version=’1.0’
xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>

<!-- The answer to the exercise goes here. -->

<!--
This template copies all elements and attributes
that do not appear in the template(s) above.

-->
<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:transform>

1. Copy the locus name attribute so that it is an attribute of gene.

2. Remove all locus elements, and move any reference elements from
being child elements of the locus element to being child elements of the
gene element.

3. Change the BioML example to have a striping layer between organism
and chromosome as shown in figure 1.14.

4. Change the reference elements to be either isStoredIn or isCited
By depending on whether the reference is to a sequence database or to a
literature reference.

5. Infer the EMBL sequence number and the organism of each gene, adding
them to the gene element as attributes.

6. For each gene, compute the total length of all exons that it contains. Com-
pare your solution with your solution to exercise 11.8.
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Ontologies

Unstructured data, such as natural language text, and semistructured data,
such as tables and graphs, are adequate mechanisms for individuals to com-
municate with one another using traditional print media and when the a-
mount of published material is relatively small. However, the amount of
biomedical knowledge is becomingmuch too large for traditional approaches.
While printed research publications are still very important, other forms of
biomedical information are now being published electronically. Formal on-
tologies can increase the likelihood that such published information will be
found and used, by making the data easier to query and transform. Given
this situation, it is not surprising to learn that ontologies for biology and
medicine are proliferating. Unfortunately, as we have seen in chapters 2 and
4, there are a many web-based ontology languages. Furthermore, even if one
has selected an ontology language, there aremanyways to build an ontology.
This chapter discusses how to deal with the diversity of ontology languages
and how to build high-quality ontologies.
However, before beginning to develop an ontology, one should examine

the purpose and motivation for embarking on this activity. The first section
is concerned with the questions that should be answered in this regard. Once
one has a clear understanding of the purpose of the ontology, there are four
major activities that must be undertaken: choosing an ontology language,
obtaining a development tool, acquiring domain knowledge, and reusing
existing ontologies. These activities are explained in a series of sections de-
voted to each of the topics. Although the topics are presented in a particular
order, they do not have to be undertaken in that order, and may even be
performed in parallel.
Having explained the major activities required for ontology development,

the chapter turns to the issue of how to ensure that the ontology being de-
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veloped is a high quality one. An ontology is a precise formulation of the
concepts that form the basis for communication. Accordingly, the main parts
of an ontology are the concepts and the relationships between them. The next
two sections consider each of these in turn. Section 12.6 discusses the con-
cept hierarchy and explains how to ensure that it is properly designed, and
the design of the relationships is discussed in section 12.7. Once an ontology
has been designed, it should then be validated to ensure that it satisfies its
purpose. If flaws are discovered during validation, then the ontology must
be modified. Ontologies are also modified after they have been published,
as the field evolves. Techniques for ontology validation and modification are
presented in section 12.8. Finally, the chapter ends with some exercises.

12.1 Purpose of Ontology Development

Before embarking on a project to develop an ontology it is important to have
a firm understanding of the purpose of your ontology and the community
that it is intended to serve. It is commonplace for ontology development
projects to have no explicitly stated purpose beyond the acquisition of the
domain knowledge. The assumption seems to be that the ontology should
not be dependent on any particular purpose. This situation is unfortunate
because it has been known at least since the middle of the nineteenth cen-
tury that the design of an ontology depends on its purpose and viewpoint
(Whewell 1847). This important fact has been forgotten and painfully redis-
covered frequently since then. The purpose of the ontology should include
the following:

1. Why the ontology is being developed. One of the most common reasons
for building a formal ontology is tomake shared informationmore usable.
However, there are other reasons why one would build a formal ontology.
It can be very useful for managing information used by small groups of
people or even by a single individual. This book, for example, was writ-
ten in XML, using an ontology that was built specifically for the needs of
this project. Yet another reason why one might build a formal ontology
is to analyze a domain, making explicit the assumptions being made by
the community. In this case, the very act of formalizing the domain can
be valuable irrespective of any other uses of the ontology. Finally, ontolo-
gies are often needed as part of a larger project, as in the example at the
beginning of the chapter.
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2. What will be covered by the ontology. This is also called its scope. A clear
definition of the scope will prevent the ontology development effort from
expanding unnecessarily. Many ontologies have already been developed.
If an existing ontology has overlapping scope, then one should consider
reusing it. When an ontology is being developed as part of a larger project,
the scope will be dependent on the project scope.

3. Who will be using the ontology. If an ontology will only be used by a few
persons, possibly only one person, then its design will be very different
from an ontology that will be used by a much larger community. Indeed,
if an ontology will only be used by one person for a short time, then it is
possible to avoid writing it down explicitly. The authors of this book built
a formal ontology to help with the writing of the book. This ontology was
very useful even though it was used by only two persons.

4. When and for how long the ontologywill be used. An ontology that will be
used for a fewweeks will generally have amuch different design than one
that is intended to be used for decades. Generally speaking, the longer an
ontology will be used, the more effort one should invest in its design.

5. How the ontology is intended to be used. An ontology intended for in-
formation retrieval may be different from one intended to be used for
scientific experimentation.

When a design choice is made, it is helpful to document the rationale for
the choice and to refer back to the original purpose of the ontology. A design
rationale should include the alternatives that were considered as well as the
reason for the choice that was made. When an ontology development project
involves a substantial amount of effort, then the statement of purpose will
take the form of a statement of project requirements. Such a statement can be
regarded as the contract which the developers have agreed to fulfill.
In this chapter we will use a medical chart ontology as an example of on-

tology development. Another example is developed in the exercises at the
end of the chapter. The purpose of an ontology has a significant influence
on how it should be developed. We begin by giving an informal descrip-
tion of the purpose of this ontology: A hospital would like to make its medical
chart information more easily available in its medical information system. The plan
is to develop an ontology that will be useful for the next decade. The medical chart
information will be used only by medical personnel who have permission to access
the information. The information will be used both for immediate diagnostic deci-
sions and for statistical data mining to detect long-term trends. The ontology must
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cover medically relevant events for patients and must also allow for personnel to
make notes about patients and events. Events include tests, drug prescriptions, and
operations performed. All events must be categorized using standard categories.
The purpose of this ontology is summarized in the following table:

Why Assist medical practice
What Relevant medical events
Who Medical personnel
When Ten years
How Diagnosis and trend analysis

Requirements for software development are often expressed using use case
diagrams. Use case diagrams are part of the Unified Modeling Language
(UML) (UML 2004). Although use case diagrams are intended for devel-
oping software, the technique can also be used for ontology development.
Use case diagrams are primarily useful for specifying who will be using the
ontology and how it will be used. They are not an effective way to spec-
ify why the ontology is being developed, what will be covered, and how
long the ontology will be used. A use case diagram shows the relationships
among actors and use cases. Actors represent anything that interacts with the
system. An actor is usually a role played by a person, but it can also repre-
sent an organization or another computer system. A use case represents an
interaction with the system. An ontology is not a computer system, but one
can identify the actors that interact with it, as well as the components with
which the actors interact. The requirements for the medical chart ontology
could be represented diagrammatically as in figure 12.1. This diagram was
created using the ArgoUML tool (Tigris 2004).

Summary

• Before developing an ontology, one should understand its purpose.

• The purpose of the ontology should answer the following questions:

1. Why is it being developed?

2. What will be covered?

3. Who will use it?

4. How long will it be used?

5. How will it be used?
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Medical Personnel

Ontologist

Data Mining Tool

Authorization

Chart Database

Chart Ontology

Figure 12.1 Use case diagram for the medical chart ontology.

• Use case diagrams can specify who will use the ontology and how it will
be used.

12.2 Selecting an Ontology Language

Ontology languages can be given a rough classification into three categories:

• Logical languages. These languages express knowledge as logical state-
ments. One of the best-known examples of such an ontology language is
the Knowledge Interchange Format (KIF) (Genesereth 1998).

• Frame-based languages. These languages are similar to database languages.
Frame-based languages organize data using record-like structures called
frames. As we saw in section 1.1, a database record consists of a series of
data items called “fields.” In the same way, a frame consists of a series of
data items called slots. One of the best-known frame-based languages is
KL-ONE (Brachman and Schmolze 1985).
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• Graph-based languages. These include semantic networks and conceptual
graphs. Knowledge is represented using nodes and links between the
nodes. XML and the Semantic Web languages are the best-known exam-
ples of graph-based languages.

Perhaps because of the strong analogy between hypertext and semantic net-
works, most recent ontology languages have been graph-based.
Deciding what approach to use for building an ontology is not an easy one.

In this book, the emphasis is on the major web-based approaches as follows:

• XML DTD is the most basic as well as the most widely supported. How-
ever, it has serious limitations as an ontology language.

• XSD is quickly gaining acceptance, and conversion from XML DTD to
XSD has been automated. However, it shares most of the limitations of
XML DTDs.

• XML Topic Maps is a language for defining abstract subjects, called top-
ics, and the relationships between them. Topic maps directly support
higher-order relationships, which is not the case for the other languages
in this list. On the other hand, topic maps do not have the complex data
structures of XSD or the sophisticated semantics of RDF and OWL. Un-
fortunately, there are very few tools available for XML Topic Maps, so the
development of ontologies using this language will not be discussed in
this chapter.

• RDF has been gaining in popularity. There are fewer tools available for
RDF than there are for XML, but new tools are continually becoming
available. Unfortunately, there is no easy path for converting from XML
DTDs or schemas to RDF (or vice versa). RDF has some inference built
in, and RDF semantics is compatible with modern rule engines (either
forward- or backward-chaining). It is alsowell suited to high-performance
graph matching systems.

• RDF specified with an XML DTD is an approach that is compatible with
XML DTD, XSD, RDF and the OWL languages. The Gene Ontology (GO)
has used this technique. In this approach the DTD is designed so that it
complies with RDF as well as with the OWL languages. Since an XML
DTD can easily be converted to XSD, this makes the documents compati-
ble with all major Web based ontology languages except for Topic Maps.
However, only the most rudimentary features of RDF and OWL can be
used by this approach.
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• OWL Lite. This limited form of OWL was intended more for develop-
ers than for serious use. It allows a developer a first step on the way to
supporting the more substantial OWL-DL and OWL Full languages.

• OWL-DL. For applications that fit the description logic approach, this is
a very effective ontology language. Unfortunately, many domains do not
fit.

• OWL Full. This is the richest and most flexible of the web-based ontology
languages. It is also the least supported. Inference using OWL Full can be
slow or can fail entirely. This is not a flaw of existing tools, but rather is a
fundamental aspect of this language.

The major ontology languages can be divided into these main groups:

• XML DTD and XSD.

• XML Topic Maps.

• RDF and the three OWL languages.

Ontologies within a single group are mostly compatible with one another.
XSD has more features than XML DTD, and it is easy to convert from a DTD
to a schema. Similarly RDF and the OWL languages differ from one another
mainly in what features are supported. Converting ontologies from one of
these language groups to another can be difficult. Converting from the first
group to one of the other two is especially problematic. Topic Maps, RDF,
and OWL require that all relationships be explicit, while XML relationships
are mostly implicit. As noted in the list above, there is an approach that com-
bines the first and third groups. Developing an ontology using this technique
is relatively easy, but it has the disadvantage that one is making no use of the
expressiveness of RDF and OWL.
Note that in the discussion of ontology languages above, the concern was

with conversion of ontologies from one ontology language to another, not
transformation of data from one ontology to another. Data transformation,
which we discussed at length in chapters 9 through 11, can involve trans-
forming data within the same ontology language group as well as between
language groups. Transformation can also involve data that are not web-
based or data that are not based on any formal ontology. While making a
good choice of an ontology language can make the transformation task eas-
ier, developing correct transformation programs can still be difficult.
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The choice of ontology language will be highly dependent on the purpose
of the ontology. As a first step one should choose among the four major
approaches: one of the three main groups or the combination of the first
and third groups. For the medical chart example, the intention is for the
ontology to be used for 10 years. This is a good argument for either RDF
or OWL because it is difficult to convert from an XML DTD or schema to
RDF or OWL. The fact that notes can be added to other entries is another
argument in favor of RDF or OWL, both of which are designed for annotating
resources that are stored elsewhere. So there are very good reasons why one
would choose RDF or OWL for themedical chart ontology. Since the purpose
of the development project focuses on data representation and not on logic
and reasoning, none of the more sophisticated features of OWL are needed.
Therefore this ontology should use the combined approach. This will make
the medical charts accessible to tools that are based on XML alone. This is
an advantage in the shortterm. In the longterm, the compatibility with RDF
allows one to take advantage of SemanticWeb tools as they become available.

Summary

• The major ontology languages used today can be classified as follows:

– Basic XML

* XML DTD

* XSD

– XML Topic Maps

– Semantic Web

* RDF

* OWL
1. OWL Lite
2. OWL-DL
3. OWL Full

• It is possible to use an approach that is compatible with XML DTD, XSD,
RDF, and the OWL languages.

12.3 Ontology Development Tools

Having chosen an ontology language or approach, the next step is to choose
a suitable development tool. Unfortunately, such tools seldom refer to them-
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selves as “ontology development tools.” They are more commonly called
“ontology editors.” This is unfortunate because it fails to distinguish be-
tween the development of the ontology itself and the creation of the know-
ledge base. In bioinformatics, the data being stored in the knowledge base
are often obtained by automated means, either directly or by means of a
transformation (as shown in chapters 10 and 11). Semantic Web ontolo-
gies, however, often presume that the knowledge base will be manually con-
structed. Indeed, SW data are often referred to as “annotations.” As a result,
Semantic Web ontology editors have focused on the annotation task rather
than the ontology development task. Nevertheless, many editing tools (es-
pecially XML editors) do include the ability to develop the ontology as well
as the documents.
The following is a rough classification of the approaches and tools that can

be used for ontology development:

1. No explicit ontology. One way to develop an ontology is to write the data
in XML using a text editor or a specialized XML editor, without any DTD.
XML can be parsed and processed without a DTD. This technique works
only when the data have a relatively simple structure and the data will be
used by a small number of people and processes.

2. DTD generator. A DTD can be automatically constructed from XML files
using a DTD generator program. Some XML editors (such as XML Spy)
include DTD generation as one of their features. There are also stand-
alone DTD generators. This kind of tool allows one to transition from
using no DTD to using a generated DTD. It is not necessary to obtain and
install a DTD generator as there are online services that will perform the
generation for you, such as the Hit Software website (Software 2004). This
site also has services for generating XML schemas and converting DTDs
to XML schemas. If the BioML document in figure 1.3 is processed by this
website, one obtains a DTD that looks like this:

<!ELEMENT bioml ( organism ) >

<!ELEMENT chromosome ( locus ) >
<!ATTLIST chromosome name CDATA #REQUIRED >
<!ATTLIST chromosome number NMTOKEN #REQUIRED >

<!ELEMENT db_entry EMPTY >
<!ATTLIST db_entry entry NMTOKEN #REQUIRED >
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<!ATTLIST db_entry format NMTOKEN #REQUIRED >
<!ATTLIST db_entry name CDATA #REQUIRED >

<!ELEMENT ddomain EMPTY >
<!ATTLIST ddomain end NMTOKEN #REQUIRED >
<!ATTLIST ddomain name CDATA #REQUIRED >
<!ATTLIST ddomain start NMTOKEN #REQUIRED >

<!ELEMENT dna ( #PCDATA ) >
<!ATTLIST dna end NMTOKEN #REQUIRED >
<!ATTLIST dna name CDATA #REQUIRED >
<!ATTLIST dna start NMTOKEN #REQUIRED >

<!ELEMENT exon EMPTY >
<!ATTLIST exon end NMTOKEN #REQUIRED >
<!ATTLIST exon name CDATA #REQUIRED >
<!ATTLIST exon start NMTOKEN #REQUIRED >

<!ELEMENT gene ( dna, ddomain+, exon, intron ) >
<!ATTLIST gene name CDATA #REQUIRED >

...

If the DTD generated by this tool is not exactly what one had inmind, then
it is easy to modify it. The most common modification is to relax some of
the constraints. For example, one might change some of the mandatory
(#REQUIRED) attributes to optional (#IMPLIED) attributes.

3. XML editor. There are many XML editors, and some of them allow one
to create DTDs and XML schemas. For a survey of these tools, see (XML
2004).

4. RDF editor. Many RDF editors are now available. For a survey of the
RDF editors that were available as of 2002, see (Denny 2002a,b).

5. OWL editor. There are very few of these. The few that do exist were
originally developed for another ontology language andwere adapted for
OWL. The best known OWL editor is Protégé-2000 from Stanford Medi-
cal Informatics (Noy et al. 2003). Protégé is an open source ontology and
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knowledge-base editor available at protege.stanford.edu. It is writ-
ten in Java, and can be used to create customized knowledge-based ap-
plications. It was not originally developed for OWL, but it has an OWL
“plug-in” called ezOWL (ezOWL 2004)that allows one to edit OWL on-
tologies. Two of the authors of Protégé have written a nice article on
ontology development using Protégé, called “Ontology 101” (Noy and
McGuinness 2001).

6. Computer-aided software engineering (CASE) tool. Ontologies are a
form of software and it is possible to use software engineering tools and
techniques to build ontologies (Baclawski 2003). There are differences be-
tween ordinary software development and ontology development, but
it is possible to reconcile these differences (Baclawski et al. 2001; Kogut
et al. 2002). The DAML UML Enhanced Tool (DUET) translates from the
Unified Modeling Language (UML), the standard modeling language for
software, to DAML, the predecessor of OWL (DUET 2002). If one is ac-
customed to using CASE tools, then it is convenient to use a CASE tool.
However, if one has no experience with CASE tools, it is better to use a
tool specifically designed for ontology development.

Summary

The following are the main groups of approaches and tools for ontology de-
velopment:

• No explicit ontology or tool

• Automatic generation of the ontology from examples

• XML editor

• RDF editor

• OWL editor

• CASE tool adapted for ontology development

12.4 Acquiring Domain Knowledge

All ontologies are ultimately based on “domain knowledge.” Acquiring and
formalizing knowledge about the domain is necessary for ontologies that are
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intended to be used by a larger community than just a local group of people.
If information is going to be posted on theweb, then it is especially important
to have a formal ontology of some kind.
Unfortunately, even if one is an expert in a field it can still be an effort to

formalize one’s knowledge about the subject. The two main ways to acquire
domain knowledge are glossaries and examples of use. For ontology devel-
opment projects, the statement of purpose or project requirements can also
be a source of relevant domain knowledge. A glossary or dictionary is a listing
of the terminology in the domain, together with definitions. A usage exam-
ple is a test case for an ontology. It is a statement using terminology from
the field. It is best to express usage examples using simple statements in the
form of subject-verb-object. More complex statements that have subordinate
clauses are also useful, provided that the subordinate clauses are in the form
of subject-verb-object. Glossaries and usage examples are often combined. A
definition is an example of a use of the term, and it is common for a glossary
to include examples of how each term is used.
To understand the structure of the definition of a word, recall that in biol-

ogy the genus is the next most general concept above the species level. One
“defines” a species by giving its genus and then specifying the features of
the species that distinguish it within its genus. Words are defined the same
way. One first gives the next most general term, which is called the “genus
proximus,” and then one specifies the features of the word that distinguish it
within the genus proximus. Consider this definition of “lumbar puncture:”

A lumbar puncture is a procedure whereby spinal fluid
is removed from the spinal canal for the purpose of
diagnostic testing.

The genus proximus in this case is “procedure.” The subordinate clauses
“spinal fluid is removed from the spinal column” and “for the purpose of
diagnostic testing” distinguish “lumbar puncture” from other “procedures.”
While the ideal form for a statement is subject-verb-object, it is not al-

ways easy or natural to express domain knowledge this way. One sometimes
uses verbs as concepts, and nouns or noun phrases are sometimes necessary
for expressing a relationship. In the lumbar puncture definition one finds
the phrase “for the purpose of diagnostic testing.” To express this using
the subject-verb-object format, one must use a statement such as “Lumbar
puncture has the purpose of diagnostic testing.” Although this statement is
awkward, it is much better for ontology development.



12.5 Reusing Existing Ontologies 293

Definitions of nouns are usually expressed by comparing them with more
general nouns. While verbs can also be defined this way, it is not as useful
as it is for nouns. In practice, most verbs are defined in terms of the corre-
sponding noun, which is defined in the usual way. This fails to address the
role that a verb plays, which is to express relationships between concepts.
Consider the following definition of “inject:”

give an injection to; "We injected
the glucose into the patient’s vein"

The definition begins by defining the verb in terms of the corresponding
noun. The usage example that follows is the more interesting part of the
definition. It suggests that “inject” relates some agent (e.g., some medical
practitioner) with a substance (in this case, glucose). One can also specify
the location where the injection occurs (e.g., the patient’s vein).
Here are some usage examples for the medical chart ontology:

George is a patient.
George is in the infectious disease ward.
George was admitted on 2 September 2004.
Dr. Lenz noted that George was experiencing nausea.
George’s temperature 38.9 degrees C.
Nausea is classified using code S00034.

Summary

• Ontologies are based on domain knowledge.

• The following are the main sources of domain knowledge for ontology
development:

1. Statement of purpose of the ontology

2. Glossaries and dictionaries

3. Usage examples

12.5 Reusing Existing Ontologies

If an ontology already exists for some of the terminology in your domain,
then it is sometimes better to use the existing ontology than to construct it
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anew. However, there are risks involved that must be balanced against the
advantages. Here are some of the reasons why existing ontologies might not
be appropriate:

1. The ontology may have inappropriate features or the wrong level of de-
tail. This could happen because the ontology was constructed for a differ-
ent purpose or in a different context.

2. The ontology may be in an incompatible language. For example, it is dif-
ficult, in general, to convert a database schema to one of the XML ontol-
ogy languages. Similarly, it is difficult to convert most XML DTDs and
schemas to RDF or OWL because DTDs and schemas may not explicitly
specify relationships. For example, the hospital that is developing the
medical chart ontology may already have a relational database that in-
cludes medical chart information. However, relational database schemas
are difficult to convert to any of the XML ontology languages.

3. Existing ontologies, especially database schemas, can have artifacts that
were introduced to improve performance rather than being fundamental
to the domain. Aside from the fact that such artifacts are conceptually
irrelevant, they might actually result in worse performance because per-
formance is highly dependent on the environment in which the database
is being used.

Having determined that an existing ontology is at least partially suitable
for reuse, there are a number of ways to incorporate it in another ontology.
The simplest technique is to download the ontology and copy (i.e., “cut and
paste”) all or part of it.1 One can then modify it if necessary. However, this
technique can result in very large and unwieldy ontologies. Maintaining an
ontology developed in this way can become very time-consuming if several
ontologies have been reused.
There are two alternatives to copying:

1. Include. This is nearly the same as cutting and pasting except that it oc-
curs every time that the document is processed. The inclusion is speci-
fied by giving the URL of the ontology to be included. The ontology is
downloaded and substituted like any other included document into the
place where the inclusion was requested. An example of this is shown in
section 1.4 where five XML documents containing experimental data are

1. Of course, one should be careful to ensure that doing this does not violate the copyright.
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merged to form a single XML document. The merger occurs each time the
main XML document is processed. In particular, this means that changing
one of the five XML documents would also change the merged document.
By contrast, if one constructed a new document by cutting and pasting,
then changes to any of the five XML documents would not be reflected in
the new document.

2. Import. This is similar to inclusion except that the information in an im-
ported ontology remains in its original namespace. To refer to a resource
in the imported document, it is necessary to qualify it with the namespace
of the imported ontology. Distinguishing imported resources with names-
paces helps prevent ambiguity when the same concept name is used in
more than one imported ontology.

Each ontology language has its own special way to include and to import:

1. XML. One can only include into an XML document. There is no XML
import mechanism. The mechanism for inclusion is called an entity, and
there are two main kinds of entity, distinguished by the character that sig-
nals the inclusion. One can use either an ampersand or a percent sign. The
percent sign is used for including material into a DTD. The ampersand is
used for including material into the XML document. This was discussed
in section 1.4.

2. XSD. Both include and import are supported by XSD. The include mech-
anism uses the include element. Because included elements are in the
same namespace, there is the possibility of the same name being used for
two different purposes. The redefine element can be used to eliminate
such an ambiguity. Alternatively, one can choose to use the import ele-
mentwhich prevents ambiguities by keeping resources in different names-
paces.

3. RDF. There is no special mechanism for importing or including RDF on-
tologies beyond what is already available for XML documents.

4. OWL.One can import anOWL ontology into another one by using a prop-
erty named owl:imports. In addition, it is possible to declare that a re-
source in one namespace is the same as a resource in another. This allows
one to introduce concepts from one namespace to another one namespace.
This is similar to the redefine element of XSD.
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We have already seen examples of including one XML file in another in
section 1.4. SBML is an example of an XSD schema that imports another. The
following shows how SBML imports the MathML schema:

<xsd:import
namespace=
"http://www.w3.org/1998/Math/MathML"
schemaLocation=
"http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd"/>

Note that the URI of the MathML namespace is not the same as its URL.

Summary

• Reusing existing ontologies can save time and improve quality.

• However, reusing an existing ontology is not always appropriate. One
must balance the risks against the advantages.

• There are three techniques for reusing an ontology:

1. Copy the ontology

2. Include the ontology

3. Import the ontology

12.6 Designing the Concept Hierarchy

The most important part of any ontology is its concept hierarchy. The con-
cepts are the subjects and objects that appear in whatever statement of pur-
pose, glossaries, and usage examples one has available. Consider themedical
chart ontology. From the purpose and usage examples, one finds the follow-
ing terms: medical personnel, chart, event, patient, note, test, prescription,
operation, category, and admission. The following are examples of how these
concepts could be organized in a hierarchy for two ontology languages:

1. XML DTD. The concepts are organized according to how they will be ar-
ranged in the document. The hierarchy is specified by giving the content
model for each concept in terms of other concepts. The top-level concept
of the medical chart ontology is the chart concept, which consists of a
sequence of events for a patient, which can be admission, tests, prescrip-
tions, or operations. Events are categorized using standard categories,
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and one can attach notes to events. Notes are made by medical personnel.
The following are the content models:

<!--
A chart consists of one patient
and a sequence of events.

-->
<!ELEMENT Chart (Patient,Event*)>

<!--
An event is an admission, test, prescription
or operation. It also has at least one category
and may have any number of notes.

-->
<!ELEMENT Event

((Admission|Test|Prescription|Operation),
Category+, Note*)

>

An XML DTD is developed by carefully restating requirements and defi-
nitions using simple sentences to relate concepts to other concepts. These
restatements appear in the comments of the DTD above. Use only verbs
and verb phrases such as consists of, contains, has, is, may, must, is a sequence
of, has exactly one, has at least one and has at most one. These expressions are
easily translated into content models. The content models can be con-
verted back into sentences which can be verified against the requirements
and definitions.

2. RDF. The concepts are organized according to subclass relationships. This
is very different from the hierarchical organization of an XML document.
In the medical chart ontology, we know that “a chart consists of one pa-
tient and a sequence of events,” so that there are relationships between
the chart concept and the patient and event concepts. However, neither
of these relationships is a subclass relationship. We also know that “an
event is an admission, test, prescription, or operation,” so there are re-
lationships between these concepts. Unlike the relationships with chart,
these four relationships do represent subclass relationships. How can one
determine that a relationship is a subclass relationship?
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There are a number of ways to help distinguish subclass relationships
from other hierarchical relationships. When a concept A is a subclass of
concept B, then the statement “Every instance of A is also an instance of
B” should be valid. To test whether two concepts are related by subclass,
try this statement in each direction to see if one of them is valid. Applying
this criterion to the chart and event concepts gives the statements “Every
chart is also an event” and “Every event is also a chart,” neither of which
is valid. So neither the chart concept nor the event concept is a subclass
of the other. Similarly, applying this criterion to events and tests gives the
statements “Every event is also a test” and “Every test is also an event.”
The first of these statements is not valid, as there are other kinds of event
than just tests, but the second statement is valid, so Test is a subclass of
Event.

Subclasses have an important feature called inheritance. An instance of a
subclass automatically inherits every characteristic of the superclass. Ex-
ceptions are never allowed. For example, one definition of a eukaryotic
cell is a cell with at least one nucleus. However, if one specifies that ery-
throcytes (red blood cells) are a subclass of eukaryotic cells, then one has
a problem because normal mature erythrocytes do not have nuclei. Gen-
erally speaking, if one wishes to allow a particular subclass to have some
exception, then it is best not to use a subclass relationship in this case. Al-
ternatives to the subclass relationship are discussed in subsection 12.7.1.

Other sentences that help distinguish subclass relationships are “A is a
kind of B,” “A is a subset of B,” or “A is a B.” One must be careful with the
last of these, as the same statement is often used to specify that a particular
instance belongs to a class.

Here is how the concept hierarchy for the medical chart ontology would
be defined using RDF:

<rdfs:Class rdf:ID="Chart"/>
<rdfs:Class rdf:ID="Patient"/>
<rdfs:Class rdf:ID="Event"/>
<rdfs:Class rdf:ID="Admission">
<rdfs:subClassOf rdf:resource="#Event"/>

</rdfs:Class>
<rdfs:Class rdf:ID="Test">
<rdfs:subClassOf rdf:resource="#Event"/>

</rdfs:Class>
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<rdfs:Class rdf:ID="Prescription">
<rdfs:subClassOf rdf:resource="#Event"/>

</rdfs:Class>
<rdfs:Class rdf:ID="Operation">
<rdfs:subClassOf rdf:resource="#Event"/>

</rdfs:Class>
<rdfs:Class rdf:ID="Category"/>
<rdfs:Class rdf:ID="Note"/>

When discussing concepts it is important to distinguish the concept from
the instances belonging to the concept. In the case of charts and events, the
same words are used for the concept and for an instance of the concept. To
make the distinction clear one can use the word “concept” or “class” when
one is referring to the concept. Thus “the chart class” refers to the concept
while “a chart” or “George’s chart” refer to instances. Capitalization is an-
other common technique for distinguishing concepts from instances. Thus
“Chart” refers to the chart concept, while “chart” refers to an instance chart.
However, capitalization is used for other purposes in many languages, so it
is not very reliable.
As we discussed in section 1.5, there are several ways to develop a concept

hierarchy. One can begin with the most general concepts and then succes-
sively specialize them. This is called top-down development. The XML DTD
for the medical chart ontology was developed by starting with the Chart con-
cept and then specializing it. Conversely, one can start with the most specific
concepts and successively group them in progressively larger classes. This
is called bottom-up development. Neither development technique is intrinsi-
cally better than the other. In practice, one uses a combination of top-down
and bottom-up techniques. In fact, there is evidence that human beings tend
to start in the middle of the hierarchy, generalizing and specializing from
there (Rosch and Lloyd 1978). This middle level is called the basic level.
If a concept hierarchy is large or is going to be in use for a relatively long

time, then one should make an effort to have a design of as high a quality
as possible. The hierarchy should be as uniform as possible, classes must be
distinguished from instances, concepts should be elaborated to the appropri-
ate level of detail, and one should specify whether classes can overlap one
another. For the rest of this section, we discuss these criteria in more detail.
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12.6.1 Uniform Hierarchy

To help understand large hierarchies one should try tomake them as uniform
as possible. While uniformity is a subjective notion, there are some objective
criteria that one can use to help make a taxonomy more uniform:

1. Every level of a hierarchy should represent the same level of generality.
In other words, all subclasses of one class should be at the same concep-
tual level. Of course, this depends on the purpose of the ontology. One
way to classify animals would be to divide them into three subclasses: hu-
mans, domesticated animals, and wild animals. For people in everyday
life, these three subclasses are on the same conceptual level. However,
this is not the case when animals are classified genetically.

2. Every class that has subclasses should be subdivided into at least two and
no more than a dozen subclasses. Subdividing into a single class suggests
that the ontology is either incomplete or that the subclass is superfluous.
Subdividing into a large number of subclasses makes it difficult for a per-
son to understand or to navigate the taxonomy.

Unfortunately, these two criteria can conflict with each other. The taxon-
omy of living beings is a good example of this. The most general concept is
subdivided into domains, which are subdivided into kingdoms, which are
subdivided into phyla, continuing until one reaches individual species. The
notion of a phylum, for example, serves to identify a level in the taxonomy,
and every phylum represents the same level of generality throughout the hi-
erarchy. However, the price that one pays for this uniformity is that some
subclassifications consist of a single subclass while others consist of a large
number of subclasses.
When the number of subclasses is large, one can introduce new levels into

the hierarchy. In the taxonomy of living beings, additional levels are some-
times used to reduce the number of classes in a subclassification, such as
“subphyla,” “superphyla,” “suborders,” “superfamilies,” and so on. Unfor-
tunately, there is no easyway to deal with classes that have only one subclass.
In the case of the taxonomy of living beings, one can argue that the single
subclass is the only one that is currently known, leaving open the possibility
that others may have existed in the past or may be discovered in the future.
The species H. sapiens is the only species in the genus Homo. However, there
were other species in this genus in the past.
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12.6.2 Classes vs. Instances

One important design issue is whether a concept should be represented as a
class or an instance. Up to now we have been tacitly assuming that concepts
are always classes and that it is obvious what it means to be an instance of
the class. Unfortunately, in general, there is no clear division between classes
and instances, and a concept can be either one. Choosing between them
represents a design choice that is dependent on the purpose of the ontology.
Consider, for example, the concept of a disease. Acute promyleocytic leu-

kemia is a particular form of leukemia. Should it be regarded as a subclass of
leukemia or an instance of leukemia? The answer depends on the purpose of
the ontology. If there are usage examples inwhich there are instances of acute
promyleocytic leukemia (such as particular cases of the disease), then acute
promyleocytic leukemia should be a class. It should also be a class if it has
subclasses. However, if there are no subclasses and no instances, then acute
promyleocytic leukemia should be an instance. This would be appropriate
for ontologies that are concerned with understanding the causes, symptoms,
and progression of diseases rather than with observations of occurrences of
diseases.
In general, instances represent the most specific concepts that are being

represented. If a concept has a subclassification, then the concept must nec-
essarily be a class. However, the absence of a subclassification does not mean
that a concept is an instance. The determination in this case relies heavily on
the usage examples.

12.6.3 Ontological Commitment

Ontology development efforts can sometimes be afflicted with an ailment
that frequently occurs in software development efforts. This is the tendency
to expand the scope of the development beyond the original purpose and in-
tent. This problem is known by many names, such as “featuritis” and “scope
creep.” The accumulation of new features is usually gradual, with each ad-
dition being so small that it generally gets overlooked in terms of its impact
on the project. However, the cumulative effect can be considerable. In on-
tology development, the term ontological commitment refers to the level of
elaboration and detail that has been chosen for each concept.
Consider, for example, the notion of the temperature of a human being.

This is commonly used for diagnostic purposes. There are, however, sev-
eral ways that the temperature can be measured, so one should also specify
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how the measurement was performed (e.g., orally, rectally, etc.). But one
might not stop there. Body temperature normally fluctuates with a circadian
rhythm, so the time of day should also be considered. One could continue
this elaboration forever.
As the example suggests, there is no limit to the degree of detail for any

concept. Aside from the additional development cost and effort that results
from scope creep, larger ontologies are harder to understand and to use. In
addition, overelaboration can result in overlapping scope with other ontolo-
gies. This is not a problem in itself, but it can become a problem when the
designs of the overlapping concepts are significantly different and it is nec-
essary to make use of both ontologies.
All ontological commitments should be documented with a rationale for

why the commitment was made. Documenting such commitments is much
harder than it seems. The problem is that one may not be aware of the as-
sumptions that are being made. Realizing that one is making implicit as-
sumptions can be a difficult exercise. The best way to discover such assump-
tions is to have a well-stated purpose and scope for the ontology. Ontological
commitments most commonly occur at the “boundaries” of the project scope.
It is best to keep the ontology as simple as possible and to elaborate all con-
cepts only as required. Staying within the scope not only limits the amount
of work required, it also furnishes a good rationale for ontological commit-
ments.

12.6.4 Strict Taxonomies

In many taxonomies, such as the taxonomy of living beings, there is an im-
plicit assumption that subclassifications are nonoverlapping. The mathemat-
ical term for this situation is that the subclasses are disjoint. In the medical
chart ontology, the four subclasses of the Event class are disjoint. For ex-
ample, a test cannot also be an admission event. Specifying that these two
classes are disjoint will help detect errors that would otherwise be missed.
Another way to look at this distinction is whether an instance can belong

to two different subclasses of another class. When this happens it may be
an indication that the taxonomy is inaccurate. For example, in the taxonomy
of living beings originated by Linnaeus there were just two kingdoms: Plant
and Animal. When microscopic living beings were discovered, it soon be-
came apparent that there were living beings that could be regarded as being
both plants and animals. Rather than allow the kingdoms to overlap, a new
kingdom Protista, was added to deal with these new kinds of living being.
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Asmore was learned about them, the taxonomy continued to change, but the
disjointness condition was maintained.
Ontology languages differ from one another with respect to how disjoint-

ness is specified and whether it is implicitly assumed. In some ontology
languages, subclasses are necessarily disjoint, unless one specifies otherwise.
Other ontology languages presume that subclasses may overlap unless one
specifies that they are disjoint. XML DTDs do not have a mechanism for al-
lowing a particular element to belong tomore than one type of element. Each
particular element has exactly one tag. Thus XML DTDs do not allow any
overlap among element types. By contrast, RDF and OWL allow instances to
belong to more than one class, as long as the classes have not been explicitly
specified to be disjoint (which can be specified in OWL, but not in RDF).

Summary

• XML hierarchies are concerned with the structure of the document.

• RDF and OWL hierarchies are concerned with the subclass relationships.

• Concept hierarchies can be developed in several ways:

1. From the most general to the most specific (top-down)

2. From the most specific to the most general (bottom-up)

3. Starting at an intermediate, basic level (middle-out)

• Developing high quality concept hierarchies is difficult. The following
techniques have been helpful:

1. Maintain a uniform structure throughout the hierarchy.

2. Carefully distinguish instances from classes.

3. Keep the hierarchy as simple as possible, elaborating concepts only
when necessary.

4. Specify whether or not the hierarchy is strict (nonoverlapping).

12.7 Designing the Properties

One can think of the class hierarchy as being the skeleton of the ontology. It
forms the structure on which the rest of the ontology is based. The properties
form the rest of the ontology, and are analogous to the rest of the organism:
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muscles, organs, skin, and so on. While one can have an ontology consisting
of just a class hierarchy, such as the many classic taxonomies, they are just as
lifeless as a skeleton by itself. Properties are essential for giving an ontology
real meaning.
Properties can be classified in several ways:

1. Attribute vs. relationship. In XML, attributes are very different from
child elements, both syntactically and semantically, as discussed in sec-
tion 2.2. RDF and OWL eliminate this distinction, as explained in sec-
tion 4.2.

2. Data vs. resource. XSD is in two parts. The first part deals with data struc-
tures (made up of XML elements) and the second deals with datatypes
(such as numbers and dates, which do not involve XML elements). In
XML, data structures are built using child elements. For example, a Med-
line citation such as figure 2.1 is an elaborate data structure using many
elements. A simple datatype value, on the other hand, can be represented
in XML using either XML attributes or XML elements. For example, the
fact that George’s height is 185 can be expressed either as an attribute:

<Person name="George" height="185"/>

or as a child element:

<Person name="George">
<height>185</height>

</Person>

3. Intrinsic or extrinsic. A property is intrinsic if it is a fundamental fea-
ture of the entity. For example, the chemical formula and structure of
an enzyme is intrinsic. Properties that are not intrinsic are said to be ex-
trinsic. For example, the name of an enzyme is extrinsic. To tell whether a
property is intrinsic or extrinsic askwhether changing the property would
change the entity. Changing the name of an enzyme would not normally
be regarded as changing it in a fundamental way. Changing its chemical
formula, however, would normally be seen as changing the enzyme.

Although being intrinsic or extrinsic is an important feature of a prop-
erty, none of the major ontology languages have such a notion. At the
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moment, one can only state this in the informal description of the prop-
erty. However, it is useful to classify properties this way since it affects
the design of the ontology. We will see examples in the rest of this section.

There is a notion of subproperty that is similar to the notion of subclass.
Mathematically, both are subset relationships. As a result, properties can be
organized as a hierarchy, just as classes can be so organized. However, the
subproperty relationship is not an important one in RDF and OWL ontolo-
gies, and it is not used very often. Unlike classes, which are often defined
by their position in the class hierarchy, properties are most often defined by
their relationships with classes. Usage examples are especially important for
determiningwhich properties will be needed in an ontology. The goal is to be
able to express every usage example using a property. In the rest of this sec-
tion we discuss the main issues involved in the design of properties: domain,
range, and cardinality constraints. However, before discussing the features
of properties, we first address whether one should introduce a property at
all.

12.7.1 Classes vs. Property Values

Although properties and classes are very different notions, there are cases
in which one must decide whether to use one or the other. In the medi-
cal chart ontology, the Event concept was subclassified into four subclasses:
Admission, Test, Prescription, and Operation. In the XML DTD these were
represented as child elements of the Event element. In RDF or OWL, these
were represented as subclasses of the Event class. An alternative to subclas-
sification is to use an XML attribute or an RDF property which can take four
possible values. For example, if Test is a class, then one would define an
instance of a test using a Test element, whereas if Test is a property value,
then an instance of a test would look like this:

<Event eventType="Test">
...

</Event>

The eventType attribute is defined in the XML DTD like this:

<!ATTLIST Event
eventType
(Admission|Test|Prescription|Operation) #REQUIRED>
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Alternatively, if one is using OWL, then the eventType property is defined
in the ontology as follows:

<owl:ObjectProperty rdf:ID="eventType">
<rdfs:range>
<owl:Class rdf:ID="EventType">

<owl:oneOf parseType="Collection">
<EventType rdf:ID="Admission"/>
<EventType rdf:ID="Test"/>
<EventType rdf:ID="Prescription"/>
<EventType rdf:ID="Operation"/>

</owl:oneOf>
</owl:Class>

</rdfs:range>
</owl:ObjectProperty>

Choosing between subclassing and property values can be difficult, and
it can be dependent on the purpose of the ontology. As a result, different
ontologies, ostensibly about the same domain, may use different designs.
There are a number of criteria that can help one make this design decision:

1. Intrinsic vs. extrinsic properties. Generally speaking, extrinsic property val-
ues should be designed as property values rather than subclasses. For
example, people are often classified into groups according to their ages,
such as Infant, Toddler, Adolescent, and Adult. However, the age of a
person is constantly changing so it is normally considered to be extrinsic.
Thus the age group is better handled using a property value rather than
as a subclass.

2. Exceptions. Subclasses have the important characteristic of inheritance. This
was already explained in the introduction to section 12.6. If one wishes to
allow exceptions, then it is better to use property values to distinguish
cases.

3. Subclasses have new properties. When a subclass will have additional fea-
tures, such as an additional property, then it is better to use subclassing
rather than property values. For example, in the Event classification of the
medical chart ontology, one would expect that each of the subclasses will
have properties unique to the subclass. For example, a prescription in-
stance will have a drug and administration schedule, which other events,
such as an admission, would not have. However, this criterion is not as
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compelling as the others mentioned above. If there is some good reason
for not using subclasses (such as exceptions or extrinsic properties), then
the introduction of new properties is not a sufficient reason for using sub-
classes. On the other hand, having additional kinds of properties is not
a requirement for using subclasses. There are many taxonomies, includ-
ing biological taxonomies, where subclasses do not introduce any new
properties.

Possibly the most subtle issue concerning subclasses is the issue of how
the instances act or are acted upon. The classic example of the resulting con-
fusion is the question of whether square is a subclass of rectangle. From a
logical point of view, it seems obvious that squares are a proper subset (and
therefore subclass) of rectangles. However, according to one view of cog-
nition and concepts, objects can only be defined by specifying the possible
ways of acting on them (Indurkhya 1992). For instance, Piaget showed that
the child constructs the notion of object permanence in terms of his or her
own actions (Piaget 1971).
Accordingly, the concept square, when defined to be the set of all squares

without any actions on them, is not the same as the concept square in which
the objects are allowed to be shrunk or stretched. In fact, it has been found
that children’s concepts of square and rectangle undergo several transfor-
mations as the child’s repertoire of operations increases (Piaget and Inhelder
1967; Piaget et al. 1981). This suggests that one shouldmodel “squareness” as
a property value of the Rectangle class, called something like isSquare,
which can be either true or false.
In general, concepts in the real world, which ontologies attempt to model,

do not come in neatly packaged, mind-independent hierarchies. There are
many actions that can potentially be performed on or by objects. The ones
that are relevant to the purpose of the ontology can have a strong affect on
how the ontology should be designed (Baclawski 1997b). For still more ex-
amples of how complex our everyday concept hierarchies can be, see (In-
durkhya 2002; Lakoff 1987; Rosch and Lloyd 1978).

12.7.2 Domain and Range Constraints

It is sometimes convenient to think of a property as being analogous to a
mathematical function. A mathematical function maps each element of a
domain to an element of a range. For example, the square-root function has the
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set of nonnegative numbers as its domain and range. However, ontological
properties differ from functions in two important ways:

1. A mathematical function is allowed to have only one value on each do-
main element. A property may, in general, have many values on each
domain element. One sometimes says that properties are “multivalued.”
For example, every positive number actually has two squareroots. The
property that maps every nonnegative number to all of its square roots
has the nonnegative numbers as its domain and all real numbers as its
range. This property is not a mathematical function.

2. A mathematical function must take a value on every element of its do-
main. A property need not have any values for some domain elements.
Mathematically, properties are only partial functions in general.

The domain of a property is the set of entities that are allowed to have that
property. For example, the supervisor property applies only to people.
The range of a property is the set of entities that may be values of the prop-
erty. For example, a height is a nonnegative number. When designing an
ontology it is useful to choose appropriate domains and ranges for proper-
ties. They should be neither too specific nor too general. If a domain or range
is too limiting, then acceptable statements may be disallowed. If a domain
or range is too general, then meaningless statements will be allowed.
A more subtle ontology design issue is to ensure that the property is at-

tached to the right set in the first place. For example, it may seem obvious
that the body temperature is a property of a person. However, this fails to
consider the fact that a person’s body temperature varies with time. This
may be important when one is recording more than one temperature mea-
surement as in the medical chart ontology. As a result, it would be more
appropriate for the domain of the body temperature to be an event rather
than a person.
In XML and XSD, the domain of an attribute is the set of elements that use

the attribute. In the BioML DTD, for example, virtually every element can
have a name attribute, but not every element can have a start attribute.
XML DTDs have only a limited capability for specifying ranges of attributes.
The most commonly used ranges are CDATA (arbitrary text) and NMTOKEN
(which limits the attribute to names using only letters, digits, and a few other
characters such as underscores). XSD has a much more elaborate capability
for specifying attribute ranges, as discussed in section 2.4.
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In RDF, the domain and range of a property are specified using domain
and range statements. For example, the height of a person would be declared
as follows:

<rdf:Property rdf:ID="personHeight">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="xsd:decimal"/>

</rdf:Property>

Similarly, only persons can have or be supervisors, so the supervisor prop-
erty would be declared as follows:

<rdf:Property rdf:ID="supervisor">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>

</rdf:Property>

In OWL, one can define domains and ranges in the same way as in RDF.
For example, in the medical chart ontology, each event may be authorized
by a member of the staff. This is specified in OWL as follows:

<owl:ObjectProperty rdf:ID="authorizedBy">
<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource="#Staff"/>

</owl:ObjectProperty>

In addition, OWL has the ability to specify local ranges relative to a domain
by means of owl:someValuesFrom. For example, suppose that admissions may
only be authorized by a doctor. In other words, when an event is in the
Admission subclass of Event, then the range of authorizedBy is the sub-
class Doctor of Staff. This is specified in OWL as follows:

<owl:Class rdf:about="#Admission">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#authorizedBy"/>
<owl:allValuesFrom rdf:resource="#Doctor"/>

</owl:Restriction>
<rdfs:subClassOf>

</owl:Class>
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Note that this does not require that admissions be authorized. It only states
that when an admission has been authorized, then it must be authorized by
a doctor. To require authorization, one must impose a cardinality constraint.
This is covered in the next subsection.
Many design methodologies treat classes as the most important design no-

tion, and relegate properties to a subsidiary role in which properties belong
to their domain classes. For example, the methodology in (Noy andMcGuin-
ness 2001) regards properties as “slots” belonging to a class. XML and XSD,
as well as most software engineering methodologies, take this point of view.
OWL and RDF use an alternative point of view in which classes and proper-
ties have the same status (Baclawski et al. 2001). This design methodology is
called aspect-oriented modeling, and it is supported by the most recent version
of UML (UML 2004).

12.7.3 Cardinality Constraints

Cardinality is another word for the number of elements of a set. When used in
the context of ontologies, the word refers to the number of values that can be
taken by a property or attribute. For example, in BioML every chromosome
can have at most one name. In terms of cardinalities, one would say that
the name property has maximum cardinality equal to 1. As another example,
every genus must have at least one species; in other words, the minimum
cardinality is equal to 1. One can impose both a minimum and a maximum
cardinality, and when these two are the same number, then it is called an
exact cardinality constraint. In such a case, the number of values will always
be the same. For example, if one requires that every patient have exactly one
name, then one says that the name property has cardinality equal to 1. The
most commonly imposed cardinality constraints are shown in the following
table:

Constraint Description XML DTD
No cardinality constraint Any number of values *
Minimum cardinality is 1 At least one value +
Maximum cardinality is 1 At most one value ?
Cardinality is 1 Exactly one value
Maximum cardinality is 0 Not applicable N/A

The last column shows the symbol used in XML DTDs, and Perl patterns.
One can impose cardinality constraints with numbers other than 0 or 1, but
this is rarely done. The last row in the table is used by properties that are
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defined on a general domain, but which do not apply for some subsets. One
cannot specify this in an XML DTD or Perl pattern. The various ontology
languages differ a great deal with respect to their ability to specify cardinality
constraints.

XML DTD. An attribute can only appear once in an element. In other
words, every attribute has maximum cardinality equal to 1. If an attribute is
#IMPLIED, then the attribute is optional. One can specify that an attribute is
#REQUIRED. This is the same as requiring that the cardinality be equal to 1.
The number of occurrences of a child element is specified using the character
in the last column of the table above.

XSD. As in XML DTDs, an attribute can only appear once in an element.
For child elements, the number of occurrences is specified using minOccurs
and maxOccurs.

RDF. In this case, properties can have any number of values, and one can-
not impose any cardinality constraints.

OWL. This language has the most elaborate cardinality constraints, and
they can be either global (i.e., applying to the property no matter how it
is used) or local (i.e., applying only to specific uses of the property). The
global cardinality constraints are owl:FunctionalProperty and owl:
InverseFunctionalProperty. If a property is declared to be an owl:
FunctionalProperty, then it is mathematically a partial function, that is,
it can take at most one value on each domain element. This is the same as
stating that this property has a maximum cardinality equal to 1. If a property
is declared to be an owl:InverseFunctionalProperty, then its inverse
property is a partial function.
The local cardinality constraints are:

1. owl:someValuesFrom. A constraint of this kind specifies that the prop-
erty has a minimum cardinality equal to 1 for a specified domain. In ad-
dition, the minimum cardinality must be fulfilled by using values from
a particular class. For example, in the medical chart ontology, suppose
that admission events must be authorized by a doctor. This is specified as
follows:

<owl:Class rdf:about="#Admission">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#authorizedBy"/>
<owl:someValuesFrom rdf:resource="#Doctor"/>
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</owl:Restriction>
<rdfs:subClassOf>

</owl:Class>

This constraint requires that at least one authorization of the admission
must be by a doctor. However, there could be multiple authorizations of
the same admission, and some of them could be by staff members who
are not doctors. To constrain all of the authorizations for a particular ad-
mission to be by doctors, one should use owl:someValuesFrom as in
the previous section.

2. owl:minCardinality. This restricts the number of values that a property
can have. For example, if every admission must be authorized, then spec-
ify the following:

<owl:Class rdf:about="#Admission">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#authorizedBy"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger"
>1</owl:minCardinality>

</owl:Restriction>
<rdfs:subClassOf>

</owl:Class>

3. owl:maxCardinality. This is the reverse of a minimum cardinality restric-
tion. It specifies the maximum number of values.

4. owl:cardinality. This is equivalent to two restrictions: a minimum and a
maximum, both specifying the same number. For example, if every event
should be authorized by exactly one staff member, then use the following:

<owl:Class rdf:about="#Admission">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#authorizedBy"/>
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger"
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>1</owl:minCardinality>
</owl:Restriction>

<rdfs:subClassOf>
</owl:Class>

Summary

• Properties can be classified in several ways:

– Attribute vs. relationship

– Property values are data or resources

– Intrinsic vs. extrinsic

• Subclassification and property values can sometimes be used interchange-
ably. Choosing between the two design possibilities can be difficult.

• One should specify the domain and range of every property. They should
be neither too general nor too specific.

• Cardinality constraints are important for ensuring the integrity of the know-
ledge base.

• Depending on the ontology language, one can specify other constraints,
but these are less important.

12.8 Validating and Modifying the Ontology

Validation is the process to determine whether a work product satisfies its
requirements. One should always validate an ontology, but the amount of
effort one should devote to validation depends on the size of the community
being served by the ontology. Validation can be performed after the ontology
has been developed, but it is usually better to validate while the ontology is
being built. There are several techniques that can be used to validate an
ontology:

1. Verify that the purpose has been fulfilled.

2. Check that all usage examples can be expressed in the ontology.

3. Create examples from the ontology and check that they are meaningful.
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4. Check that the formal ontology is consistent.

The fulfillment of the purpose is verified by examining the design ratio-
nales. Every design decision should be supported by a design rationale, and
each rationale should be complete and convincing. A rationale is complete if
all design alternatives have been considered.
Checking that the usage examples are expressible is done by expressing

them in the ontology language that has been chosen. For example, in the
medical chart ontology, the usage examples would look like the following:

<Patient rdf:ID="p08639" name="George"/>
<Admission patient="#p08639"

ward="#InfectiousDiseaseWard">
<date rdf:datatype="xsd:date">2004-09-02</date>

</Admission>
<Note patient="#p08639" author="#Lenz"

classification="#S00034">
Patient is experiencing nausea

</Note>
<Test patient="#p08639">
<temperature
rdf:datatype="xsd:decimal">38.9</temperature>

</Test>

Creating examples from the ontology is the reverse of the process above.
Instead of starting with meaningful usage examples and expressing them,
one expresses examples and checks that they are meaningful. The examples
can be either specific or generic. Some of the issues one should consider are
the following:

1. Disjointness. Can an instance belong to two different classes? This is test-
ing the disjointness property discussed in subsection 12.6.4. For example,
can an event be both a prescription and a test?

2. Cardinality. Can a property be left unspecified? Can a property have
more than one value? This kind of example tests whether the cardinality
constraints are valid and whether cardinality constraints should be added
(see subsection 12.7.3). For example, could a test not include a measure-
ment of body temperature? Could a test have two measurements of body
temperature?
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3. Dynamics. Can a property value change? This tests whether the property
is intrinsic or extrinsic and can affect the class hierarchy as discussed in
subsection 12.7.1. For example, can a patient change his or her name?

Consistency checking is the only validation activity that can currently be
done using automated tools. Obviously, consistency is fundamental to any
formal system that supports logical inference. If a formal system is inconsis-
tent, then every statement can be proven true (and also proven false, since
true = false in an inconsistent formal system). Nearly all XML parsers have
the ability to check consistency, but one must usually request that this be
done. XML parsers refer to consistency checking as validation, even though
this term more properly refers to much more than just consistency checking.
There are many RDF and OWL tools that can be used for checking consis-

tency:

• ConsVISor (Kokar et al. 2001) web service

• Euler (Euler 2003) downloadable software

• F-OWL (FOWL 2003) downloadable software

• Pellet (Pellet 2003) web service

• vOWLidator (vOWLidator 2003) web service

• WonderWeb (WonderWeb 2004) web service

Consistency checkers vary with respect to how they explain the problems
that are found. In addition to finding inconsistencies, most of the tools also
give advice about situations that are not inconsistencies but which could be
indicative of an error. Such a situation is called a symptom by analogy with
the medical notion of a symptom of a disease (Baclawski et al. 2004). The
ConsVISor consistency checker is unique in having the ability to produce
output that itself conforms to an ontology.
When flaws in the ontology design are revealed during validation, the on-

tology must be modified. Ontologies are also modified after they are pub-
lished. This can happen because new concepts have been introduced, exist-
ing concepts change their meaning, or concepts can be related in new ways.
When concepts and relationships change, it is tempting to modify the ontol-
ogy to reflect those changes. However, the danger is that programs and data
that depend on the ontology will no longer be compatible. Ontology modifi-
cation is also called ontology evolution. Certain modifications are relatively
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benign and are unlikely to have much effect on programs. Adding new at-
tributes and relaxing constraints are usually innocuous. Some of the more
substantial modifications include:

• Modifying property domains and ranges. A set of properties on sub-
classes can be changed to a single property on a superclass, or a property
on one class can be shifted to become a property on a related class.

• Reification. This is the process whereby concepts that are not classes are
given class status. For example, a relationship can be reified to become a
class. Reifying a relationship will replace the relationship with a class and
two relationships.

• Unreification. This is the reverse of reification.

Figure 12.2 Part of the medical chart ontology.

As an example of ontology evolution, consider the medical chart ontol-
ogy. In the part of the design shown in figure 12.2, the temperature of
Patient is unrelated to any event. The problem is that the body tempera-
ture of a patient could be important information for events. A prescription
could be based, in part, on a temperature measurement, but the current body
temperature could differ from the temperature when the test was performed.
To deal with these possibilities, the design should be modified as shown in
figure 12.3.
As another example of ontology evolution, it is a common practice to mea-

sure the body temperature of a patient at many significant events, not just
during tests. To allow for such a measurement for other events, one could
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Figure 12.3 Medical chart ontology evolution. The temperature property is now
connected to the Test class.

either connect it to all of the relevant subclasses of event. Alternatively, one
could simply connect it with the Event class as in figure 12.4 so that every
event can potentially have such a measurement.

Figure 12.4 Another medical chart ontology modification. The temperature prop-
erty is now connected to the Event class.

If an ontology is intended to be in use for a relatively long period of time,
one must expect that the ontology will evolve. When the ontology is being
used by a large community, one should develop standardized procedures for
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any additions or modifications to the ontology.

Summary

• Ontology validation consists of the following activities:

1. Verify the fulfillment of the purpose.

2. Check that all usage examples are expressible.

3. Create examples that are consistent with the ontology, and determine
whether they are meaningful.

4. Check that the ontology is formally consistent.

• Ontologies evolve over time due to changing requirements and circum-
stances.

12.9 Exercises

Most of the exercises are based on the development of an ontology for single
nucleotide polymorphism (SNP).

1. The informal description of the purpose of the SNP ontology is the follow-
ing: A small group of researchers would like to formalize their understanding of
single nucleotide polymorphisms. The ontology will only be used for a few weeks.
The ontology is only concerned with giving a high-level view of SNPs, which
does not deal with the details.

Summarize the purpose succinctly in a table as in section 12.1.

2. Add consistency checking to the use case diagram in figure 12.1 for the
medical chart ontology.

3. Choose an ontology language for the SNP ontology, and give a design
rationale for your choice.

4. There already exist ontologies that deal with SNPs. For example, the SNP
database (SNPdb) ontology in (Niu et al. 2003) is written in OWL and
gives detailed information about the methods for finding SNPs. Is it ap-
propriate to reuse SNPdb by importing it?

5. Build a concept hierarchy for the SNP ontology.
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The formal ontologies and languages developed in the first two parts of the
book are based on deductive reasoning and deterministic algorithms. There
is no room for uncertainty. Reality, unfortunately, is quite different, and any
endeavor that attempts to model reality must deal with this fact. This part
of the book compares and contrasts deductive and inductive reasoning, and
then proposes how they can be reconciled.
The first chapter compares deductive reasoning with inductive reasoning,

taking a high level point of view. There are several approaches to reasoning
about uncertainty, and these are surveyed. The most successful approach to
uncertainty is known as Bayesian analysis, and the rest of the book takes this
point of view. Bayesian networks are a popular and effective mechanism
for expressing complex joint probability distributions and for performing
probabilistic inference. The second chapter covers Bayesian networks and
stochastic inference.
Combining information from different sources is an important activity in

many professions, and it is especially important in the life sciences. One can
give a precise mathematical formulation of the process whereby probabilistic
information is combined. This process is known as “meta-analysis,” and it is
a large subject in its own right. The third chapter gives a brief introduction
to this subject.
The book ends by proposing a means by which inductive reasoning can

be supported by the World Wide Web. Because Bayesian networks express
reasoning with uncertainty, we refer to the inductive layer of the web as the
Bayesian Web. Although this proposal is speculative, it is realistic. It has the
advantage of allowing uncertainty to be formally represented in a web-based
form. It offers the prospect of assisting scientists in some important tasks
such as propagating uncertainty through a chain of reasoning, performing
stochastic inference based on observations, and combining information from
different sources.



13 Inductive vs. Deductive
Reasoning

Deductive reasoning, also known more briefly as “logic,” is the process for
which facts can be deduced from other facts in a completely unambiguous
manner using axioms and rules. Modern digital computer programs are
fundamentally logical. They function in a manner that is unambiguously
deterministic.
Reality is unlike a computer in many respects. It is much larger and far

more complex than any computer program could ever be. Furthermore, most
of what takes place is governed by rules that are either unknown or only
imperfectly known. The lack of full knowledge about reality manifests itself
as ambiguity and nondeterminism. There is no reason to suppose that reality
is actually ambiguous or nondeterministic. Despite this situation, people
manage to function effectively in the world.
There are two important mechanisms that people use to function in the

world. The first is the ability to restrict attention to a small part of all of
reality. The second is to accept that information is uncertain. These two
mechanisms are related to one another. In theory, if one were capable of
omniscience, then reality would be as unambiguous and deterministic as a
computer program. However, since people are not capable of such a capac-
ity, we are forced to suppress nearly all of what occurs in the world. The
suppressed details manifest themselves in the form of uncertainties, ambi-
guities, and nondeterminism in the details that we do choose to observe.
The former mechanism is called by various names such as “abstraction” and
“relevance.” Ontologies are fundamental to specifying what is relevant. The
latter mechanism is fundamental to scientific reasoning. The combination of
these two mechanisms is the subject of this part of the book.
When scientific reasoning is relatively simple, it is easy to ignore the role

of the ontology, leaving it informal or implicit. However, medicine and bi-
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ology are becoming too complex for informal descriptions of the context in
which reasoning is taking place. This is especially important for combining
inferences made in different contexts.

13.1 Sources and Semantics of Uncertainty

There are many sources of uncertainty. Many measurements, for example,
are intrinsically uncertain. This is apparent with sensors for which accuracy
of the measurement seems to be mainly a question of how much effort one
wishes to expend on the measurement. However, even at the level of sub-
atomic particles, there are limits to what one can measure, as stated by the
Heisenberg uncertainty principle.
A more common source of uncertainty is the fact that a stochastic model

will not include all possible variables that can affect system behavior. There
is effectively no limit on how elaborate a model can be. However, mod-
els that have too many variables become unwieldy and computationally in-
tractable. The model designer must make choices concerning which vari-
ables will be the most relevant and useful. The remaining variables are then
ignored. The cost of ignorance is nondeterminism and what appear to be
measurement errors, but what are in fact the result of unmodeled variables.
Yet another source of uncertainty is subjectivity. Probabilities are some-

times used as a means of expressing subjective assessments such as judg-
ment, belief, trust, and so on. Some philosophers take the position that prob-
ability can only be applied to events according to their relative frequencies
of occurrence, and they reject the interpretation of probability as a degree of
belief. This point of view is called frequentism. Most researchers and philoso-
phers today accept that probabilities can be applied both to relative frequen-
cies of occurrence as well as to other degrees of belief. This interpretation of
probability is called Bayesian analysis.
Some of themajor philosophical works (specifically, Spinoza’s Ethics (Spin-

oza 1998), Leibniz’s Monadology (Leibniz 1998), and Wittgenstein’s Tractatus
(Wittgenstein 1922)) propound some version of logical atomism. In other
words, they conceptualize the world using objects and their attributes, and
they propose relationships identified by words that link the the mental con-
cepts of objects and attributes to the corresponding physical objects. They
also specify how more complex objects can be constructed from more ele-
mentary objects. Unfortunately, this point of view ignores issues such as
observational uncertainty, belief, judgment, and trust, all of which affect our
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perception of the world. To address these issues, one must not only ac-
cept that our knowledge about the world is uncertain, it is also necessary
to quantify and formalize the notion of uncertainty so that statements about
the world will have more than just a vague, informal meaning.
Manymathematical theories have been introduced to give a formal seman-

tics to uncertainty. On can classify these approaches into two main classes
(Perez and Jirousek 1985):

1. Extensional. An approach of this kind treats uncertainty as a generalized
truth-value attached to formulas. Uncertainty is computed by applying
rules or procedures. When rules are used, the computation of uncertainty
is analogous to the determination of facts by a rule-based system, as in
chapter 3. When procedures are used, uncertainty is computed in a man-
ner that is more closely related to programming with traditional program-
ming languages such as Perl.

2. Intensional. This approach attaches uncertainty to “states” or “possible
worlds.” These approaches are also described as being declarative ormodel-
based. Intensional approaches have been implemented using computer
systems, as, for example, data mining and stochastic control systems.

Note that uncertainty is represented using probabilities regardless of whether
a system is extensional or intensional. In this chapter we discuss some of
the major theories of uncertainty, classifying them according to the exten-
sional/intensional dichotomy. For an excellent discussion and comparison
of these two approaches to uncertainty, see (Pearl 1988). Much of the mate-
rial in this chapter is based on the treatment in Pearl’s book.

Summary

• There aremany sources of uncertainty, such asmeasurements, unmodeled
variables, and subjectivity.

• Formalizations of uncertainty can be classified as either extensional or in-
tensional.

• Extensional uncertainty is a generalized truth-value.

• Intensional uncertainty assigns probabilities to possible worlds.
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13.2 Extensional Approaches to Uncertainty

One theory of uncertainty that has achieved some degree of popularity is the
theory of fuzzy logicZadeh (Zadeh 1965, 1981). Fuzzy logic is an extensional
approach to uncertainty. In fuzzy logic one associates a number between 0
and 1 with each statement. This number is called a truth-value or possibility to
distinguish it from probabilities used in probability theory. Truth-values are
either given a priori as ground facts, or they are computed. Statements may
be combinedwith other statements using the operations AND,OR, andNOT,
just as in classic Boolean logic. Fuzzy logic is a generalization of Boolean
logic in that if all statements are either fully true or fully false (i.e., their
truth-values are either 1 or 0), then combining the statements using Boolean
operations will always produce the same result as in Boolean logic. State-
ments that are entirely true or false are called crisp statements, and Boolean
logic is called crisp logic. The truth-value of general statements combined us-
ing the Boolean operations is determined by a function called the t-norm. The
t-norm is a function from a pair of truth-values to a single truth-value. It is
the function that computes the truth-value of the AND of two fuzzy state-
ments. The most commonly used t-norm is the minimum, also called the
Gödel t-norm.
Because fuzzy logic depends on the choice of a t-norm, there are many

different kinds of fuzzy logic. Truth-values computed using one t-norm are
not compatible with truth-values computed using a different t-norm. One
can define rules for fuzzy logic, and these rules can be fuzzy in the sense that
each rule is assigned a strength between 0 and 1. The strength specifies the
degree of confidence in the rule.
In rule-based systems, one begins with a collection of known facts and

rules. The rule engine then infers new facts using the rules. It can do this ei-
ther in a forward-chainingmanner where all facts are inferred or a backward-
chaining manner in which one infers only the facts needed to answer a par-
ticular query (see chapter 3 for how this works). Fuzzy logic, as in other ex-
tensional systems, is similar except that it is the truth-values that propagate,
not the facts. Like rule-based systems, one can use either forward-chaining
or backward-chaining.
Note that the term “fuzzy” is often used for any notion of uncertainty, not

just for the specific class of theories due to Zadeh. For example, there is a
notion of “fuzzy Bayesian network,” which is unrelated to fuzzy logic.
There aremany other extensional approaches to uncertainty. MYCIN (Short-

liffe 1976) is an expert system that was developed for the purpose of medical
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diagnosis. Like fuzzy logic, MYCIN propagates uncertainty using rules, each
of which has a strength (called the “credibility” of the rule). It differs from
fuzzy logic primarily in the formulas used for propagating certainty levels.

Summary

• Fuzzy logic associates a generalized truth-value between 0 and 1 to each
statement.

• A statement is crisp if it is fully true or fully false.

• There are many fuzzy logics, one for each choice of a t-norm.

• The generalized truth-value of a statement is computed by propagating
uncertainty when the statement is inferred.

• Extensional logics differ in the formulas used for propagating uncertainty.

13.3 Intensional Approaches to Uncertainty

The dominant intensional approach to uncertainty is probability theory. Prob-
ability theory assigns a number between 0 and 1 (inclusive) to statements.
Probabilistic statements are called events. Events can be combined to form
new events using Boolean operations, and the probability assigned to events
must satisfy the axioms of probability theory. In particular, there is a univer-
sal event that contains all others and that has probability 1. This universal
event has various names, such as the probability space or sample space.
A discrete random variable is a set of disjoint events such that each event is

assigned a value of the domain of the random variable, and such that the
union of all these events is the universal event. For example, the states of
a traffic light L are {green, yellow, red, failed}. The events are (L = green),
(L = yellow), (L = red), (L = failed). The probabilities are Pr(L = green),
and so on. These probabilities define the probability distribution of the random
variable. The sum of the probabilities over all possible values of the random
variable is equal to 1. This is a consequence of the fact that the universal
event has probability 1.
A continuous random variable is somewhat more difficult to define because

the probability of such a variable taking any particular value is 0. There are
two ways to define the probability distribution of such a variable:
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1. The probability on intervals or regions. For example, a temperature T

defines events such as (t1 ≤ T ≤ t2), the set of temperatures between t1
and t2.

2. The ratio of the probability on a small interval or region divided by the
size of the interval or region. This is called the probability density.

As with discrete random variables, the total probability must be 1. In terms
of the probability density this means that the integral over all possible values
is equal to 1.
Both discrete and continuous random variables have total probability 1.

However, it is sometimes convenient to relax this requirement. An assign-
ment of nonnegative weights to the possible values of a variable is called
a distribution. In mathematics, a distribution is called a measure. If a distri-
bution has a total weight that is some positive number other than 1, then
one can convert the distribution to a probability distribution by dividing all
weights by the total weight. This is called normalization. However, some
distributions cannot be normalized because their total weight is either 0 or
infinite.
The simplest example of a distribution is the uniform distribution. A ran-

dom variable has the uniform distribution when every value has the same
weight as every other value. A continuous random variable is uniformwhen
its density is a positive constant. Uniform distributions on infinite sets or
regions cannot be normalized.
When there are several random variables, their probabilistic structure is

completely defined by the intersections of their events. Thus the events de-
fined by the random variables L and T include such events as

(L = green and T ≤ 5).

The probabilities of these events define the joint probability distribution (JPD)
of the random variables L and T . A stochastic model is another name for a
collection of random variables. The probabilistic structure of the stochastic
model is the JPD of the collection of random variables. One could give a
strong argument that the stochastic model is the fundamental construct, and
that the probability space is secondary. However, it is convenient to treat the
probability space as fundamental and the random variables as derived from
it (as measurable functions on the probability space).
Given two events A and B, a conditional probability of A given B is any

number c between 0 and 1 (inclusive) such that Pr(A and B) = cPr(B).
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Note that when Pr(B) = 0, every number between 0 and 1 is a conditional
probability given B. The notation for a conditional probability is Pr(A | B).
The event B is the “condition” or “input,” while the event A is the “conse-
quence” or “output.” However, this terminology does not mean that B and
A have a cause-and-effect relationship.
Conditional probability is the most basic form of inference for probability

theory. If one knows that the event B has occurred, then the probability
of A changes from Pr(A) to Pr(A | B). If the probability of A does not
change, then one says thatA andB are independent or statistically independent.
More generally, as one finds out more about what has happened, then the
probability continually changes. Much more elaborate forms of stochastic
inference are developed in chapter 14.
The defining formula for the conditional probability of A given B is

Pr(A and B) = Pr(A | B)Pr(B).

If Pr(B) is nonzero, one can solve for the conditional probability:

Pr(A | B) =
Pr(A and B)

Pr(B)
.

This is sometimes used as the definition of the conditional probability. By
reversing the roles ofA andB, the defining formula for the conditional prob-
ability of B given A is

Pr(A and B) = Pr(B | A)Pr(A).

The left-hand side of this equation is the same as the left-hand side of the
defining formula for the conditional probability of A given B. Therefore

Pr(A | B)Pr(B) = Pr(B | A)Pr(A).

If Pr(B) is nonzero, then one can solve for Pr(A | B) to obtain

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B)
.

This is known as Bayes’ law. It is named after the English mathematician
Thomas Bayes who proved a special case of it.
In spite of its simplicity, Bayes’ law is powerful. For example, suppose that

A is a disease and B is a symptom of the disease. Pr(A) is probability of the
disease in the population and Pr(B) is the probability of the symptom. If we
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know how often the symptom occurs when a person has the disease, then
one knows Pr(B | A). Bayes’ law then gives the probability that a person
has the disease when the symptom is observed. In other words, Bayes’ law
gives important information which can be used for the diagnosis of diseases
based on symptoms. Specific examples of the use of Bayes’ law for diagnosis
are given in section 14.2.
As we discussed in section 13.1, The applicability and interpretation of

probability theory has been the subject of both philosophical and mathe-
matical analysis since the time it was originally founded. More recently,
other ways of expressing uncertainty have emerged, as we discussed in sec-
tion 13.2. The question is which of these approaches to uncertainty is the
best.
The current methodology for such comparing approaches to uncertainty

was introduced by De Finetti (De Finetti 1937) who formulated subjective
probability in terms of betting against an adversary. This formulation is
called the Dutch book argument. This made it possible to extend the appli-
cability of probability to questions such as “Will the sun rise tomorrow?” or
“Was there life on Mars?” It also can be used to prove the power of proba-
bility theory in general, and Bayesian analysis in particular. The argument
is that if one knows that an agent consistently follows a non-Bayesian belief
system in a known way, then one can arrange the bets so that the Bayesian
always wins (not just on average). If the departure from Bayesian analysis is
inconsistent, then the Bayesian can only win on average.
Although stated in financial terms, the Dutch book argument applies equal-

ly well to any activity which involves some form of utility, whether it is
financial or not, and the associated risk in trying to increase this utility. It fol-
lows that Bayesian analysis is a minimal requirement for rational inference
in experimental science.
There are significant advantages to probability theory as a mechanism for

expressing uncertainty. It is the only approach that is empirically grounded,
and it can be used either empirically or subjectively. Furthermore, Bayesian
analysis will always win over a non-Bayesian analysis whenever one quan-
tifies the risks associated with decisions based on the events in question.
However, probability theory has significant disadvantages. It is much

more computationally complex than the extensional approaches. Specify-
ing a general JPD is a formidable task as the number of random variables
increases. Even for random variables that can take only two values, if there
are 20 random variables, then a joint probability distribution has over 106

probabilities. Accordingly, it is very common to assume that the random
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variables satisfy various simplifying properties. The most common simplifi-
cation is to assume that the random variables are statistically independent.
This assumption works well for many random processes, such as card games
and queues, but it does not capture the more complex processes that occur
in biological systems, where interdependence is very common.
Another disadvantage of probability theory is that probabilistic inference

is not the result of a propagation process as it is for the extensional ap-
proaches. This makes the intensional approach incompatible with rule-based
reasoning systems.
Thus in spite of the advantages of probability theory pragmatically and

theoretically, other approaches to uncertainty have been introduced that are
more computationally tractable and more compatible with logical reasoning
systems. However, new techniques and algorithms for probabilistic reason-
ing have now been introduced that have made it muchmore tractable as well
as more compatible with rule-based systems. These techniques are discussed
in chapter 14.

Summary

• Probability theory is the dominant intensional approach to uncertainty.

• Probabilistic statements are called events.

• A random variable is a collection of events distinguished from one an-
other by a value of the variable.

• A stochastic model is a set of random variables together with their joint
probability distribution.

• Conditional probability is the most basic from of inference in probability
theory.

• Bayes’ Law is the basis for diagnostic inference and subjective probabili-
ties.

• The Dutch book argument shows that Bayesian analysis is always better
than non-Bayesian analysis.

• Probability theory has long been regarded as being too computationally
complex to be the basis for modeling the uncertainty of large systems, but
new techniques have been introduced that are changing this.
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Stochastic modeling has a long history, and it is the basis for the empiri-
cal methodology that has been used with great success by modern scien-
tific disciplines. Stochastic models have traditionally been expressed using
mathematical notation that was developed long before computers and GUIs
became commonly available. A Bayesian network (BN) is a graphical mecha-
nism for specifying the joint probability distribution (JPD) of a set of random
variables (Pearl 1998). As such, BNs are a fundamental probabilistic repre-
sentation mechanism for stochastic models. The use of graphs provides an
intuitive and visually appealing interface whereby humans can express com-
plex stochastic models. This graphical structure has other consequences. It is
the basis for an interchange format for stochastic models, and it can be used
in the design of efficient algorithms for data mining, learning, and inference.
The range of potential applicability of BNs is large, and their popularity

has been growing rapidly. BNs have been especially popular in biomedical
applications where they have been used for diagnosing diseases (Jaakkola
and Jordan 1999) and studying complex cellular networks (Friedman 2004),
among many other applications.
This chapter divides the subject of BNs into three sections. The sections

answer three questions: What BNs are, How BNs are used, and How BNs
are constructed. The chapter begins with the definition of the notion of a BN
(section 14.1). BNs are primarily used for stochastic inference, as discussed
in section 14.2. BNs are named after Bayes because of the fundamental im-
portance of Bayes’ law for stochastic inference. Because BNs require one to
specify probability distributions as part of the structure, statistical methods
will be needed as part of the task of constructing a BN. Section 14.3 gives an
overview of the statistical techniques needed for constructing and evaluating
BNs.
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14.1 The Bayesian Network Formalism

A Bayesian network is a graphical formalism for specifying a stochastic model.
The random variables of the stochastic model are represented as nodes of a
graph. We will use the terms “node” and “random variable” interchange-
ably. The edges denote dependencies between the random variables. This is
done by specifying a conditional probability distribution (CPD) for each node
as follows:

1. If the node has no incoming edges, then the CPD is just the probability
distribution of the node.

2. If the node has incoming edges, then the CPD specifies a conditional prob-
ability of each value of the node given each combination of values of the
nodes at the other ends of the incoming edges. The nodes at the other
ends of the incoming edges are called the parent nodes. A CPD is a func-
tion from all the possible values of the parent nodes to probability distri-
butions (PDs) on the node. Such a function has been called a stochastic
function in (Koller and Pfeffer 1997).

It is also required that the edges of a BN never form a directed cycle: a BN
is acyclic. If two nodes are not linked by an edge, then they are independent.
One can view this independence property as defined by (or a consequence of)
the following property of a BN: The JPD of the nodes of a BN is the product
of the CPDs of the nodes of the BN. This property is also known as the chain
rule of probability. This is the reason why the BN was assumed to be acyclic:
the chain rule of probability cannot be applied when there is a cycle. When
the BN is acyclic one can order the CPDs in such a way that the definitions
of conditional probability and statistical independence can be applied to get
a series of cancellations, such that only the JPD remains.
In section 13.3 we mentioned that it is sometimes convenient to use un-

normalized distributions. The same is true for BNs. However, one must be
careful when using unnormalized BNs because normalization need not pro-
duce a BN with the same graph. Furthermore, unnormalized BNs do not
have the same independence properties that normalized BNs have.
Some of the earliest work on BNs, and one of the motivations for the

notion was to add probabilities to expert systems used for medical diag-
nosis. The Quick Medical Reference Decision Theoretic (QMR-DT) project
(Jaakkola and Jordan 1999) is building a very large (448 nodes and 908 edges)
BN. A simple example of amedical diagnosis BN is shown in figure 14.1. This
BN has four random variables:
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Figure 14.1 Example of a BN for medical diagnosis. Rectangles represent discrete
random variables and the oval represents a continuous random variable.

1. Flu, meaning that a patient has influenza.

2. Cold, meaning that a patient has one of a number of milder respiratory
infections.

3. Perceives Fever (PF), meaning that the patient perceives that he or she has
a fever.

4. Temperature, the continuous random variable representing a measure-
ment of the patient’s body temperature.

Note that three of the random variables are Boolean, the simplest kind of
discrete random variable, and that the fourth random variable is continuous.
Two of the nodes have no incoming edges, so their CPDs are just PDs, and be-
cause the nodes are Boolean, they can be specified with just one probability.
We assume that Pr(Flu) = 0.0001, corresponding to the fact that the annual
incidence rate for influenza (serious enough to require hospitalization) in the
United States was 1.0 per 10,000 in 2002 (NCHS 2003). The common cold
is much more common. We will use Pr(Cold) = 0.01, although the actual
incidence rate is higher than this.
The CPD for the PF node has two incoming edges, so its CPD is a table that

gives a conditional probability for every combination of inputs and outputs.
For example, the CPD might be the following:
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not(PF) PF
not(Flu) and not(Cold) 0.99 0.01
not(Flu) and (Cold) 0.90 0.10
(Flu) and not(Cold) 0.10 0.90
(Flu) and (Cold) 0.05 0.95

The CPD for the Temperature (T) node has two incoming edges, so its CPD
will have four entries as in the case above, but because T is continuous, it
must be specified using some technique other than a table. For example, one
could model it as a normal distribution for each of the four cases as follows:

Mean Std Dev
not(Flu) and not(Cold) 37.0 0.5
not(Flu) and (Cold) 37.5 1.0
(Flu) and not(Cold) 39.0 1.5
(Flu) and (Cold) 39.2 1.6

As an example of one term of the JPD, consider the probability of the event
(Flu) and not (Cold) and (PF ) and (T ≤ 39.0). This will be the product of
the four probabilities: Pr(Flu), Pr(not(Cold)) = (1-Pr(Cold)), Pr(PF|Flu and
not(Cold)), and Pr(T≤39.0|Flu and not(Cold)). Multiplying these gives

(0.0001)(.99)(.90)(0.5) = 0.004455.

Although the BN example above has no directed cycles, it does have undi-
rected cycles. It is much harder to process BNs that have undirected cycles
than those that do not. Some BN tools do not allow undirected cycles be-
cause of this.
Many of the classic stochastic models are special cases of this general graph-

ical model formalism. Although this formalism goes by the name of Bayesian
network, it is a general framework for specifying JPDs, and it need not in-
volve any applications of Bayes’ law. Bayes’ law becomes important only
when one performs inference in a BN, as discussed below. Examples of the
classic models subsumed by BNs include mixture models, factor analysis,
hidden Markov models (HMMs), Kalman filters, and Ising models, to name
a few.
BNs have a number of other names. One of these, belief networks, hap-

pens to have the same initialism. BNs are also called probabilistic networks,
directed graphical models, causal networks, and “generative” models. The
last two of these names arise from the fact that the edges can be interpreted
as specifying how causes generate effects. One of the motivations for intro-
ducing BNs was to give a solid mathematical foundation for the notion of
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causality. In particular, the concern was to distinguish causality from corre-
lation. A number of books have appeared that deal with these issues such
as one by Pearl (Pearl 2000) who originated the notion of BNs. For causation
in biology, see (Shipley 2000). Other books that deal with this subject are
(Glymour and Cooper 1999; Spirtes et al. 2001).

Summary

• A BN is a graphical mechanism for specifying JPDs.

• The nodes of a BN are random variables.

• The edges of a BN represent stochastic dependencies.

• The graph of a BN must not have any directed cycles.

• Each node of a BN has an associated CPD.

• The JPD is the product of the CPDs.

14.2 Stochastic Inference

Themain use of a BN is to perform inference. This is done by observing some
of the random variables. One can then query the BN to determine how the
distributions of other random variables are affected. Specifying known facts
is done by giving the values of some of the random variables. The values can
be given as actual crisp values or as a PD on the values. The nodes that have
been given values are termed the evidence. One can then choose one or more
of the other nodes as the query nodes. The answer to the query is the JPD of
the query nodes given the evidence.
Inference in a BN is analogous to inference performed by a rule engine.

Recall from section 3.1, that in a rule engine one specifies a collection of if-
then rules, called the rule base. One can then input a collection of known
facts (typically obtained by some kind of measurement or observation). The
rule engine then explicitly (as in a forward-chaining rule engine) or implicitly
(as in a backward-chaining rule engine) infers other facts using the rules.
The set of specified and inferred facts form the knowledge base. One can
then query the knowledge base concerning whether a particular fact or set
of facts has been inferred. A BN is analogous to a rule base. The evidence
presented to a BN is analogous to the facts initially specified in a rule engine.
Both BNs and knowledge bases can be queried.
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Event A Pr(A)
PF and not(Flu) and not(Cold) (0.9999)(0.99)(0.01) = 0.0099
PF and not(Flu) and (Cold) (0.9999)(0.01)(0.10) = 0.0010
(PF and Flu) and not(Cold) (0.0001)(0.99)(0.90) = 0.0001
(PF and Flu) and (Cold) (0.0001)(0.01)(0.95) = 0.0000
not(PF) and not(Flu) and not(Cold) (0.9999)(0.99)(0.99) = 0.9800
not(PF) and not(Flu) and (Cold) (0.9999)(0.01)(0.90) = 0.0090
(not(PF) and Flu) and not(Cold) (0.0001)(0.99)(0.10) = 0.0000
(not(PF) and Flu) and (Cold) (0.0001)(0.01)(0.05) = 0.0000

Table 14.1 A joint probability distribution as the result of a stochastic inference.

Consider first the case of BN inference starting with no evidence at all.
In this case, the PS of the query nodes is computed by summing the terms
of the JPD over all of the random variables that are not in the query set.
For continuous random variables, one must integrate over the probability
density. Consider the diagnostic BN in figure 14.1. Suppose one would like
to know the probability that a patient reports a fever. Integrating over the
temperature node produces this JPD (rounding all results to four decimal
places):
Next, by summing the columns, one obtains the distribution of the PF node

(except for some roundoff error): Pr(PF ) = 0.011, Pr(not(PF )) = 0.989.
The process of summing over random variables is computing the marginal dis-
tribution.
Now suppose that some evidence is available, such as that the patient is

complaining of a fever, and that the practitioner would like to knowwhether
the patient has influenza. This is shown in figure 14.2. The evidence pre-
sented to the BN is the fact that the random variable PF is true. The query
is the value of the Flu random variable. The evidence is asserted by con-
ditioning on the evidence. This is where Bayes’ law finally appears and is
the reason why BNs are named after Bayes. To compute this distribution,
one first selects the terms of the JPD that satisfy the evidence, compute the
marginal distribution, and finally normalize to get a PD. This last step is
equivalent to dividing by the probability of the evidence.
To seewhy this is equivalent to Bayes’ law, consider the case of two Boolean

random variables A and B joined by an edge from A to B. The probability
distribution of a Boolean random variable is determined by just one prob-
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Figure 14.2 Example of diagnostic inference using a BN. The evidence for diagnosis
is the perception of a fever by the patient. The question to be answered is whether
the patient has influenza.

ability, so it is essentially the same as the probabilistic notion of an event.
Let A and B be the two events in this case. The BN is specified by giv-
ing Pr(A), Pr(B | A) and Pr(B | not A). Suppose that one is given the
evidence that B is true. What is the probability that A is true? In other
words, what is Pr(A | B)? The JPD of this BN is given by the four prod-
ucts Pr(B | A)Pr(A), Pr(not B | A)Pr(A), Pr(B | not A)Pr(not A), and
Pr(not B | not A)Pr(not A). Selecting just the ones for which B is true, gives
the two probabilities Pr(B | A)Pr(A) and Pr(B | not A)Pr(not A). The sum
of these two probabilities is easily seen to be Pr(B). Dividing by Pr(B) nor-
malizes the distribution. In particular, Pr(A | B) = Pr(B | A)Pr(A)/Pr(B),
which is exactly the classic Bayes’ law.
Returning to the problem of determining the probability of influenza, the

evidence requires that we select only the terms of the JPD for which PF is
true, then compute the marginal distribution. Integrating over the tempera-
tures in the first column of table 14.1 gives the following: We are only inter-
ested in the Flu node, so we sum the rows above in pairs to get: Normalizing
gives Pr(Flu) = 0.009. Thus there is less than a 1% chance of having the
flu even if one is complaining of a fever. Perceiving a fever has the effect of
increasing the probability of having the flu substantially over the case of no
evidence, but it is still relatively low.
The most general form of BN inference is to give evidence in the form

of a PD on the evidence nodes. The only difference in the computation is
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Event A Pr(PF and A)
not(Flu) and not(Cold) (0.9999)(0.99)(0.01) = 0.0099
not(Flu) and (Cold) (0.9999)(0.01)(0.10) = 0.0010
(Flu) and not(Cold) (0.0001)(0.99)(0.90) = 0.0001
(Flu) and (Cold) (0.0001)(0.01)(0.95) = 0.0000

Table 14.2 Intermediate result during a stochastic inference

Event A Pr(PF and A)
not(Flu) 0.0109
(Flu) 0.0001

Table 14.3 Final result of a stochastic inference

that instead of selecting the terms of the JPD that satisfy the evidence, one
multiplies the terms by the probability that the evidential event has occurred.
In effect, one is weighting the terms by the evidence. The probabilistic basis
for this process is given in chapter 15. We leave it as an exercise to compute
the probability of the flu as well as the probability of a cold given only that
there is a 30% chance of the patient complaining of a fever.
BN inference is substantially more complex when the evidence involves

a continuous random variable. We will consider this problem later. Not
surprisingly, many BN tools are limited to discrete random variables because
of this added complexity.
In principle, there is nothing special about any particular node in the pro-

cess of BN inference. Once one has the JPD, one can assert evidence on any
nodes and compute the marginal distribution of any other nodes. However,
BN algorithms can take advantage of the structure of the BN to compute the
answer more efficiently in many cases. As a result, the pattern of inference
does affect performance. The various types of inference are shown in fig-
ure 14.3. Generally speaking, it is easier to infer in the direction of the edges
of the BN than against them. Inferring in the direction of the edges is called
causal inference. Inferring against the direction of the edges is called diagnostic
inference. Other forms of inference are called mixed inference.
So far we have considered only discrete nodes. Continuous nodes add

some additional complexity to the process. There are several ways to deal
with such nodes:
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Figure 14.3 Various types of inference. Although information about any of the
nodes (random variables) can be used as evidence, and any nodes can be queried,
the pattern of inference determines how easy it is to compute the inferred probability
distribution.

1. Partition. The possible values are partitioned into a series of intervals
(also called bins). This has the disadvantage that it reduces the accuracy
of the answer. However, it has the advantage that one only has to deal
with discrete nodes. Many BN tools can only deal with discrete random
variables.

2. Restrict to one class of distributions. A common restriction is to use only
normal (Gaussian) distributions. This choice is supported by the central
limit theorem. As in the case of partitioning, it reduces the accuracy of
the answer. The advantage of this assumption is that the number of pa-
rameters needed to specify a distribution can be reduced dramatically. In
the case of a normal distribution, one needs only two parameters. There
are many other choices for a class of distributions that can be used. There
will always be a tradeoff between improved accuracy vs. the increase in
computational complexity. Since there will be many sources of error over
which one has no control, the improvement in accuracy resulting from a
more complex class of distribution may not actually improve the accuracy
of the BN.

3. Use analytic techniques. This is more a theoretical than a practical ap-
proach. Only very small BNs or BNs of a specialized type (such as con-
nectionist networks) can be processed in this way.
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The techniques above are concerned with the specification of PDs. A CPD
is a function from the possible values of the parent nodes to PDs on the node.
If there are only a few possible values of the parent nodes (as in the diagnostic
example in figure 14.1), then explicitly listing all of the PDs is feasible. Many
BN tools have no other mechanism for specifying CPDs. When the number
of possible values of the parent nodes is large or even infinite, then the CPD
may be much better specified using a function. In the infinite case, one has
no choice but to use this technique. Curve-fitting techniques such as least-
squares analysis can be used to choose the function based on the available
data.
A BN with both discrete and continuous nodes is called a hybrid BN. The

diagnostic BN example above is a hybrid BN. When continuous nodes are
dependent on discrete nodes, inference will produce a compound (mixed)
Gaussian distribution. Such a distribution is the result of a compound pro-
cess inwhich one of a finite set of Gaussians is selected according to a PD, and
then a value is chosen based on the particular Gaussian that was selected.
If a discrete node is dependent on continuous nodes, then the discrete node

can be regarded as defining a classifier since it takes continuous inputs and
produces a discrete output which classifies the inputs. The CPDs for this situ-
ation are usually chosen to be logistic/softmax distributions. Connectionist
networks (also called neural networks) are an example of this.
BNs are not the only graphical representation for stochastic models. Undi-

rected graphical models, also called Markov random fields (MRFs) or Mar-
kov networks, are also used, especially in the physics and vision communi-
ties.
One application of BNs is to assist in decision making. To make a decision

based on evidence one must quantify the risk associated with the various
choices. This is done by using a utility function. It is possible to model
some utility functions by adding value nodes (also called utility nodes) to a
BN and linking them with dependency edges to ordinary BN nodes and to
other utility nodes. The result of a decision is an action that is performed,
and these can also be represented graphically by adding decision nodes and
edges to a BN augmented with utility nodes. A BN augmented with utility
and action nodes is called an influence diagram (also called a relevance diagram)
(Howard and Matheson 1981). An influence diagram can, in principle, be
used to determine the optimal actions to perform so as to maximize expected
utility.
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Summary

• The main use of BNs is for stochastic inference.

• BN inference is analogous to the process of logical inference and querying
performed by rule engines.

• Bayes’ law is the foundation for BN inference.

• Evidence can be either hard observations with no uncertainty or uncertain
observations specified by a probability distribution.

• Evidence can be given for any nodes, and any nodes can be queried.

• The nodes of a BN can be continuous random variables, but inference in
this case is more complicated.

• BNs can be augmented with other kinds of nodes, and used for making
decisions based on stochastic inference.

14.3 Constructing Bayesian Networks

We now consider the important question of how to construct BNs. While
there are many tools for performing inference in BNs, the methodology com-
monly employed for developing BNs is rudimentary. A typical methodology
looks something like this:

1. Select the important variables.

2. Specify the dependencies.

3. Specify the CPDs.

4. Evaluate.

5. Iterate over the steps above.

This simple methodology will work for relatively small BNs, but it does
not scale up to the larger BNs that are now being developed. The following
are some of the development techniques that can be used as part of the pro-
cess of constructing BNs, and each of them is discussed in more detail in its
own section:

1. Requirements. Without clearly stated requirements, it is difficult to de-
termine whether a BN has been successfully developed.
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2. Machine learning. The PDs and CPDs are most commonly found by us-
ing statistical methods. There are a large number of such techniques.

3. Component-based techniques. A BN could be built from standard com-
ponents or modules.

4. Ontologies. Ontologies can be used as the basis for the graph structure of
the BN.

5. Design patterns. A BN development methodology has been introduced
in (Neil et al. 2000) that is based on design patterns.

6. Validating and revising. As with any development activity, one must
validate BNs. When testing uncovers a problem with a BN, it is necessary
to adjust its CPDs or its structure. Revising the structure of a BN can also
improve the design of a BN.

14.3.1 BN Requirements

Before embarking on any development project, it is important to have an
understanding of its purpose. We saw this already in section 12.1 for the
development of ontologies. The purpose of the BN should include the fol-
lowing:

1. Why the BN is being developed. One of the most common reasons for
building a BN is to support diagnostic inference. However, BNs can also
be used for combining information fromdifferent sources at different times.
Yet another reason why one might build a BN is to analyze a domain,
making independence assumptions more explicit. This allows these as-
sumptions to be tested.

2. What will be covered by the BN. This is also called its scope. A clear def-
inition of the scope will prevent the development effort from expanding
unnecessarily.

3. Who will be using the BN. As with ontology development, this will affect
the amount of effort that should be devoted to the design of the BN.

Analyzing the requirements of a BN not only involves acquiring an un-
derstanding of the domain, it should also determine the required accuracy,
performance, and interfaces. BN development typically ignores these re-
quirements. Indeed, the notion of a BN interface is only now beginning to be
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understood. BN interfaces are discussed in subsection 14.3.3. In most cases,
BN development projects have no explicitly stated purpose. When there is
a stated purpose, it is usually too generic to be useful in the development
process. Having a detailed stated purpose would not entirely determine the
required accuracy, performance, and interfaces, but it would certainly help.
Because the amount of knowledge to be acquired may be very large, it

is important for the knowledge to be well organized. It is also important
to track the source of knowledge so that one can determine its trustworthi-
ness. These issues can be addressed to some degree by using ontologies. An
example of this is discussed in subsection 14.3.6.

Summary

The purpose of a BN should address these issues:

• Why the BN is being developed and how it will be used

• What will be covered by the BN

• Who will be using the BN

• The required accuracy, performance, and interfaces

14.3.2 Machine Learning

This subsection gives some background on current statistical methods for
constructing PDs. It begins with an overview of techniques for empirically
determining PDs, CPDs, and BNs from data. Such data are regarded as be-
ing used to “train” the probabilistic model, so the techniques are known as
machine learning methods.
Machine learning is a very large area that would be difficult to survey ade-

quately, so we give only an overview. Since a BN is just a way of representing
a JPD, virtually any data-mining technique qualifies as a mechanism for con-
structing a BN. It is just a matter of expressing the end result as a BN. For
example, one might be interested in the body mass index (BMI) of individ-
uals in a research study. The individuals have various characteristics, such
as sex and age. Computing the average BMI of individuals with respect to
these two characteristics gives rise to a three-node BN as in figure 14.4. The
CPD for the BMI node gives the mean and standard deviation of the BMI for
each possible combination of sex and age in the study.
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Figure 14.4 Bayesian network for the result of a research study of body mass index
(BMI) as a function of age and sex.

It is common to assume that the CPDs are independent of each other, so
they can be estimated individually. When data for both the parent nodes
and the child node are available, estimating the CPD reduces to the problem
of estimating a set of PDs, one for each of the possible values of the parent
nodes. There are many techniques for estimating PDs in the literature. They
can be classified into two categories:

1. Frequentist methods. These methods are associated with the statistician
and geneticist Ronald Fisher, and so one sometimes sees at least some of
these methods referred to as Fisherian. They also go by the name maximum
likelihood (ML) estimation. The CPDs of discrete nodes that are depen-
dent only on discrete nodes are obtained by simply counting the number
of cases in each slot of the CPD table. This is why these techniques are
called “frequentist.” The CPDs for Gaussian nodes are computed by us-
ing means and variances. Other kinds of continuous node are computed
using the ML estimators for their parameters.

2. Bayesian methods. These methods also go by the name maximum a poste-
riori (MAP) estimation. To perform such an estimation, one begins with a
prior PD, and thenmodifies it using the data and Bayes’ law. The use of an
arbitrary prior PD makes these methods controversial. However, one can
argue that the ML technique is just the special case of MAP for which the
prior PD is the one which represents the maximum amount of ignorance
possible. So one is making an arbitrary choice even when one is using
frequentist methods. If one has some prior knowledge, even if it is sub-
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jective, it is helpful to include it in the estimation. As the amount of data
and learning increase, the effect of the prior PD gradually disappears.

The estimation techniques discussed above assume that data about all of
the relevant nodes were available. This is not always the case. When one
or more nodes are not directly measurable, one can either remove them from
the BN or attempt to estimate them indirectly. The latter can be done by using
BN inference iteratively. One treats the unobservable nodes as query nodes
and the observable nodes as evidence nodes in a BN inference process. One
then computes the expectations of the unobservable nodes and uses these
values as if they were actually observed. One can then use ML or MAP as
above. This whole process is then repeated until it converges. This technique
is known as expectation maximization (EM).
It is possible to use machine learning techniques to learn the structure of

the BN graph as well as to learn the CPDs. These tend to have very high
computational complexity, so they can only be used for small BNs. In prac-
tice, it is much better to start with a carefully designed BN and then modify
it in response to an evaluation of the quality of its results.

Connectionist networks are a class of BNs that are designed for efficient
machine learning. Such BNs are most commonly known as “neural net-
works” because they have a superficial resemblance to the networks of neu-
rons found in vertebrates, even though neurons have very different behavior
than the nodes in connectionist networks. Many kinds of connectionist net-
work support incremental machine learning. In other words, they continu-
ally learn as new training data are made available.
Connectionist networks constitute a large research area, and there aremany

software tools available that support them. There is an extensive frequently
asked questions list (FAQ) for neural networks, including lists of both com-
mercial and free software (Sarle 2002). Although connectionist networks are
a special kind of BN, the specification of a connectionist network is very dif-
ferent from the specification of a BN. Consequently, techniques for machine
learning of connectionist networks may not apply directly to BNs or vice
versa. However, BNs are being used for connectionist networks (MacKay
2004) and some connectionist network structures are being incorporated into
BNs, as in (Murphy 1998).

Summary

Probability distributions are computed by using statistical techniques.
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• Frequentist (ML) techniques make no a priori assumptions.

• Bayesian (maximum a priori) techniques start with a prior distribution
and gradually improve it as data become available.

• EM is used for determining the distribution of a random variable that is
not directly observable.

• Connectionist networks are special kinds of statistical models for which
there are efficient machine learning techniques.

14.3.3 Building BNs from Components

Modern software developmentmethodologiesmake considerable use of com-
ponents that have already been developed and tested. This greatly reduces
the amount of effort required to develop large systems. An approach to BN
development that makes use of previously developed BN components has
been proposed in (Koller and Pfeffer 1997). In addition to reducing the BN
development effort, this approach may also be able to improve performance
during inference. This approach is known as object-oriented Bayesian networks
(OOBNs). The basic OOBN concept is called an “object.” An OOBN object
can be just a random variable, but it can also have a more complex structure
via attributes whose values are other objects. An OOBN object can corre-
spond to an entity or it can be a relationship between entities.
A simple OOBN object corresponds to a BN node. It has a set of input

attributes (i.e., the parent nodes in the BN) and an output attribute (i.e., its
value). A complex OOBN object has input attributes just as in the case of a
simple OOBN object, but a complex object can have more than one output
attribute. The input and output attributes define the interface of the OOBN.
The interface defines the formal relationship of the object to the rest of the
BN. It can also have encapsulated attributes that are not visible outside the
object. A complex object corresponds to several BN nodes, one for each of
the outputs and encapsulated attributes. The notion of a complex object is a
mechanism for grouping nodes in a BN. The JPD of an OOBN, as well as the
process of inference, is exactly the same whether or not the grouping is used.
However, by grouping (encapsulating) nodes into objects, one gains a num-

ber of significant advantages:

1. Complex objects can be assigned to classes which can share CPDs. Reusing
CPDs greatly simplifies the task of constructing a BN.
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2. Classes can inherit from other classes which allows for still more possibil-
ities for reuse.

3. Encapsulation can be used during inference to improve performance. This
advantage is especially compelling. As shown in (Koller and Pfeffer 1997),
if a BN has an OOBN structure, then the performance of inferencing can
be improved by an order of magnitude or more compared with even a
well-optimized BN inference algorithm.

Another feature of theOOBNmethodology is the notion of an object-oriented
network fragment (OONF). An OONF is a generalization of a BN which spec-
ifies the conditional distribution of a set of value attributes given some set
of input attributes. If there are no input attributes, then an OONF is a BN.
An OONF can be defined recursively in terms of other OONFs. An OONF
can also be used as a component which can be “reused” multiple times in a
single BN. Component-based methods are powerful development method-
ologies that allow one to build BNs from standard components that have
been constructed independently.

Summary

The OOBN methodology introduces several notions to BN development:

• Components which can be used more than once

• Groupings of BN nodes with a formally defined interface

• Inference algorithms that take advantage of the OOBN structure to im-
prove performance significantly

14.3.4 Ontologies as BNs

One of the earliest large BNs was the QMR-DT mentioned in section 14.1
which added probabilities to an expert system. The close connection between
expert systems and ontologies would suggest that it ought to be possible to
“add probabilities” to ontologies. Perhaps because of this analogy, an active
research area has developed that is attempting to do this for ontologies, es-
pecially for ontologies based on description logic. See (Ding and Peng 2004;
Koller et al. 1997).
Given an OWL-DL ontology, the corresponding BN has one node for each

class. This node is a Boolean random variable which is true precisely when
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an entity belongs to the class. Edges are introduced when two classes are
related. The most common relationship is the subclass relationship which
means that one class is contained in another. Obviously this will result in a
stochastic dependency. Other kinds of relationship can be expressed in terms
of classes. For example, the age of a person (in years) gives rise to a collection
of disjoint subclasses of the person class, one for each possible value of the
age of a person.
Although this technique does seem to be a natural way to “add probabili-

ties” to ontologies, it does not seem to produce BNs that are especially useful.
The most peculiar feature of these BNs is that all of the classes are ultimately
subclasses of a single universal class (called the Thing class), and the random
variable for a class represents the probability that a randomly chosen thing
is a member of the class. While this might make sense for some class hier-
archies, the hierarchies of ontologies often contain a wide variety of types
of entity. For example, a biomedical ontology would contain classes for re-
search papers, journals, lists of authors, drugs, addresses of institutions, and
so on. It is hard to see what kind of experiment would sometimes produce a
drug, other times produce a list of authors, and still other times produce an
address.
On the other hand, this technique can be the starting point for BN devel-

opment, especially for diagnostic BNs. An example of this is discussed in
subsection 14.3.6, where the ontology is used as the background for the de-
velopment of a BN. The disadvantage of developing BNs by using ontologies
in this way is that whatever formal connection exists between the ontology
and the BN is quickly lost as the BN is modified. As a result, one cannot
use any logical consequences entailed by the ontology during BN inference.
Indeed, the ontology ultimately furnishes no more than informal documen-
tation for the BN.

Summary

• It is possible to define a BN structure corresponding to an ontology.

• Such BNs are seldom useful in their original form, but can be used as the
starting point for developing realistic BNs.

14.3.5 BN Design Patterns

The oldest and most commonly used design patterns for BNs are probabilis-
tic analogs of the logical and arithmetic operations. For example, the so-
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called “noisy OR-gate” models the combining of evidence in favor of a sin-
gle conclusion, as shown in figure 14.5 (Pearl 1988). The evidence nodes and
conclusion are all modeled as random variables that are either true or false.
Each evidence node that is true increases the likelihood that the conclusion
is true, and vice versa. If all of the evidence nodes are false, then the con-
clusion is certain to be false. Each evidence node can contribute a different
amount to the conclusion, and the evidence nodes contribute independently
to the conclusion. figure 14.5 shows how the conditional probability table
is defined for a noisy OR-gate. In this figure, the amount that an evidence
node X contributes to the conclusion is 1 − qX . If this parameter is equal
to 1, then the truth of the corresponding evidence node is conclusive: the
conclusion is true with probability 1. In practice, evidence nodes will have
much smaller contributions. Other “noisy” operations include noisy-AND,
noisy-MAX and noisy-MIN operations (Pradhan et al. 1994).

Figure 14.5 The noisy OR-gate BN design pattern.

Other authors have mentioned patterns that may be regarded as being de-
sign patterns, but in a muchmore informal manner. For example in (Murphy
1998) quite a variety of patterns are shown such as the BNs reproduced in
figure 14.6. In each of the patterns, the rectangles represent discrete nodes
and the ovals represent Gaussian nodes. The shaded nodes are visible (ob-
servable) while the unshaded nodes are hidden. Inference typically involves
specifying some (or all) of the visible nodes and querying some (or all) of the
hidden nodes.
A number of Design idioms for BNs were introduced by (Neil et al. 2000).

The definitional/synthesis idiom models the synthesis or combination of
many nodes into one node. It also models deterministic definitions. The
cause-consequence idiom models an uncertain causal process whose conse-
quences are observable. The measurement idiom models the uncertainty of
a measuring instrument. The induction idiom models inductive reasoning
based on populations of similar or exchangeable members. Lastly, the rec-
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Figure 14.6 Various informal patterns for BNs. These examples are taken from
(Murphy 1998).

onciliation idiom models the reconciliation of conflicting information. Note
that reconciliation of conflicting information is not the same as combining
compatible information, which is introduced in chapter 15.

Summary

• One methodology for designing BNs is to use design patterns or idioms.

• Many BN design patterns have been identified, but most are only infor-
mally specified.
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14.3.6 Validating and Revising BNs

Testing and validation have always been accepted as an important part of
any development activity. This is especially true for BNs. BNs have the ad-
vantage that there is a well-developed, sophisticated mechanism for testing
hypotheses about PDs. However, this is also a disadvantage because statis-
tical hypothesis testing generally requires more than one test case, and even
with a large sample of test cases the result of a test can be equivocal. A BN
test case is usually a specific example of a stochastic inference.
There are several techniques for validating BNs:

1. Test cases. When there are special cases whose answer is known, one can
perform the inference and check that the result is close to the expected
answer.

2. Sensitivity analysis. This technique determines the impact of inaccura-
cies of the CPD entries by systematically varying them and recording the
effects on test cases. As onemight expect, different CPD entries of BNs can
have very different sensitivities (Henrion et al. 1996; Pradhan et al. 1996).
Sensitivity analysis can also be used to focus attention on the probabilities
that need to be determined more accurately.

3. Uncertainty analysis. In this technique, all of the probabilities are varied
simultaneously by choosing each one from a prespecified distribution that
reflects their uncertainties. One then records the effects on test cases. This
technique can determine the overall reliability of a BN. However, it yields
less insight into the effect of separate probabilities than is the case for
sensitivity analysis.

4. Consistency checking. If a BN was developed using components as in
the OOBN methodology, then one can check that the components have
been used correctly. Software development tools make extensive use of
this technique, which is called “type checking.”

When an evaluation of a BN fails, the BN must be modified. Usually all
that is necessary is to change one or more of the CPDs. However, some-
times testing uncovers previously unsuspected dependencies, and the BN
structure must be changed. One can design a BN by starting with some
simple structure and then revising the design to make it more accurate or
simpler. This is the approach developed by Helsper and van der Gaag (2001,
2002). This methodology uses an ontology as the starting point, as in sub-
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section 14.3.4. The authors have studied the use of their methodology within
the domain of esophageal cancer.
The Helsper-van der Gaag methodology uses ontologies more as a back-

ground for the design process than as a formal specification for the BN struc-
ture. This is in contrast with the OOBN technique in subsection 14.3.3 in
which the design not only specifies the BN completely but also affects the
inference algorithm. In the Helsper methodology the ontology is used to pro-
vide an initial design for the BN in a manner similar to the way that this is
done in subsection 14.3.4. This step in the methodology is called translating.
However, this initial design is modified in a series of steps based on domain
knowledge. Some of the modifications use the ontology, but most of them
must be elicited from domain experts. The ontology “serves to document
the elicited domain knowledge.”
What makes the Helsper-van der Gaag methodology interesting are the

systematic modification techniques that are employed. The methodology
refers to this phase as improving and optimizing. The modifications must fol-
low a set of guidelines, but these guidelines are only explained by examples
in the articles.
One example of a modification operation used by Helsper and van der

Gaag is shown in figure 14.7. In this operation, a node that depends on two
(or more) other nodes is eliminated. This would be done if the node being
eliminated is not observable or if it is difficult to observe the node. There
are techniques for determining the CPDs for unobservable nodes such as
the EM algorithm discussed in subsection 14.3.2. However, this algorithm is
time-consuming. Furthermore, there is virtually no limit to what one could
potentially model, as discussed in section 13.3. Onemust make choices about
what variables are relevant, even when they could be observed, in order to
make the model tractable.

Figure 14.7 Modifying a BN by eliminating a node that other nodes depend on. The
result is that the parent nodes become dependent on each other.
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When a node is dependent on other nodes, the other nodes (which may
otherwise be independent) become implicitly dependent on each other via
the dependent node. In statistics this is known as Berkson’s paradox, or “se-
lection bias.” The result of dropping a node is to make the parent nodes
explicitly dependent on each other. This dependency can be specified in ei-
ther direction, whichever is convenient and maintains the acyclicity of the
BN.
The modification operation shown in figure 14.7 changes the JPD of the

BN because one of the variables is being deleted. Furthermore, the new JPD
need not be the same as the distribution obtained by computing the marginal
distribution to remove the deleted variable, although it is approximately the
same.
It is a general fact that the direction of a directed edge in a BN is proba-

bilistically arbitrary. If one knows the JPD of two random variables, then one
can choose either one as the parent node and then compute the CPD for the
child node by conditioning. In practice, of course, the specification works
the other way: the JPD is determined by specifying the CPD. For a particu-
lar modeling problem, the direction of the edge will usually be quite clear,
especially when one is using a design pattern.
However, sometimes the direction of the dependency is ambiguous, and

one of the modification operations is to reverse the direction. In this case
the JPD is not changed by the operation. This situation occurs, for example,
when two variables are Boolean, and one of them subsumes the other. In
other words, if one of the variables is true, then the other one is necessarily
true also (but not vice versa). Suppose that X and Y are two Boolean random
variables such that X implies Y. Then we know that Pr(Y = true | X =
true) = 1. This gives one half of the CPD of one of the variables with re-
spect to the other, and the dependency can go either way. This is shown in
figure 14.8

Summary

• It is important to test and validate BNs to ensure that they satisfy the
requirements.

• The most commonly used techniques for validating BNs are

1. specialized test cases,

2. sensitivity analysis,
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Figure 14.8 Modifying a BN by reversing the direction of a dependency when two
Boolean nodes are related by subsumption.

3. uncertainty analysis,

4. consistency checking.

• A BN that fails a test must be modified.

• BN modification can be used as a normal part of BN development.

• BNmodification operations have been identified and classified, and guide-
lines for when to apply them have been developed.

14.4 Exercises

1. In the diagnostic BN in figure 14.1, one can use either a temperature mea-
surement or a patient’s perception of a fever to diagnose influenza. Al-
though these two measurements are a priori independent, they become
dependent when one observes that the patient has the flu or a cold. In
statistics this is known as Berkson’s paradox, or “selection bias.” It has
the effect that a high temperature can reduce the likelihood that a patient
reports being feverish and vice versa. Compute the JPD of the PF and T
nodes in this BN given the observation that the patient has influenza.

2. Compute the probability that a patient has influenza using temperature
measurements. For example, try 37◦, 38◦, 39◦, and 40◦ C. These are all
(in theory) exact measurements. In fact, a thermometer, like all sensors,
can only give a measurement that is itself a random variable. Compute
the probability of influenza given a temperature of 38.40◦ C, normally
distributed with standard deviation 0.20◦ C.
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Meta-analysis is the integration of data from disparate sources. While this
can encompass a wide variety of phenomena, it is most commonly applied
to data obtained from sensors that are observing the same (or at least over-
lapping) environments. The sensors can be different sensors or they can be
the same sensor observing at different times. Scientific experimentation is
also a form of sensing. In this case one is observing natural phenomena.
Such observations are generally subject to uncertainty due to the lack of full
knowledge about the phenomena being observed as well as the limitations
of the measuring devices being used. One can reduce these uncertainties by
making a series of independent observations. Meta-analysis is the process of
combining the evidence afforded by the observations.
Meta-analysis goes by many names. The generic name is combining infor-

mation (CI). In the social and behavioral sciences, it is also known as quan-
titative research synthesis. In medicine, it is often called pooling of results or
creating an overview. Physicists refer to CI as viewing the results of research. For
chemists, CI is used for determining physical constants based on empirical
studies, and is called critical evaluation (NRC 1992). When applied to sensors,
CI is most commonly called data fusion. Sensor data fusion has the most elab-
orate forms of CI, and the field of multi-sensor data fusion has a standard for
data fusion, called the JDL Model that divides it into 4 levels (Steinberg et al.
1999).
Because of the uncertainty inherent in most forms of empirical knowledge,

it is normally stated as a probability distribution (PD) on a set of possi-
ble states. For example, when one speaks of a temperature measurement
of 30.5◦ ±0.4◦C, one is asserting that the measurement has a normal distri-
bution whose mean was 30.5◦C and whose standard error was 0.4◦C. Now
suppose that one performs a second, independent, measurement of the same
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temperature, obtaining 30.2◦ ±0.3◦C. One now has two independent normal
distributions. Combining the two measurements is the same as combining
the two distributions.
In this chapter the process ofmeta-analysis is formally defined and proven.

Combining discrete distributions is covered first, followed by the continuous
case. Stochastic inference is a special case of meta-analysis. More gener-
ally, one can combine two Bayesian networks (BNs). Conversely, the meta-
analysis process can itself be expressed in terms of BNs. This is shown in
section 15.3. The temperature measurement example above is an example
of the combination of observations that are continuous distributions. PDs
are not only a means of expressing the uncertainty of a observation, they
can themselves be observations. In other words, PDs can have PDs. A large
number of statistical tests are based on this idea, which is discussed in sec-
tion 15.4. The last section introduces an interesting variation on information
combination, called Dempster-Shafer theory.

15.1 Combining Discrete Information

We first consider the case of combining two discrete PDs. That means we
have two independent random variables X and Y, whose values are discrete
rather than continuous. For example, a patient might seek multiple inde-
pendent opinions from practitioners, each of which gives the patient their
estimates of the probabilities of the possible diagnoses. Combining these two
discrete random variables into a single random variable is done as follows:

Discrete Information CombinationTheorem
Let X and Y be two discrete random variables that represent two independent obser-
vations of the same phenomenon. If there exists a value v such that both Pr(X = v)
and Pr(Y = v) are positive, then there is a random variable Z that combines the
information of these two observations, whose PD is

Pr(Z = v) =
Pr(X = v)Pr(Y = v)∑
w Pr(X = w)Pr(Y = w)

Proof Since X and Y are independent, their JPD is given by Pr(X = u, Y =
v) = Pr(X = u)Pr(Y = v). The random variables X and Y are combined
by conditioning on the event (X = Y ). This will be well defined if and only
if Pr(X = Y ) is positive, which is the case when there is some value v such
that Pr(X = Y = v) is positive. When this is true, the distribution of the
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combined random variable Z is given by

Pr(Z = v) = Pr(X = v | X = Y ) =
Pr(X = v and X = Y )

Pr(X = Y )
.

Now (X = v and X = Y ) is logically equivalent to (X = v and Y = v). Since
X and Y are independent, Pr(X = v and Y = v) = Pr(X = v)Pr(Y = v).
Therefore,

Pr(Z = v) =
Pr(X = v)Pr(Y = v)

Pr(X = Y )
.

The result then follows.

Information combination depends on two important criteria: the obser-
vations must be independent and they must be measuring the same phe-
nomenon. As we saw in chapters 2 and 4, the essence of semantics is the
determination of when two entities are the same. Information combination
is also determined by sameness. Indeed, information combination can be
regarded as the basis for the semantics of uncertainty.
Another important assumption of the information combination theorem

above is that the event representing the sameness of two random variables
is (X = Y ), i.e., where the two observations are exactly the same. However,
it is conceivable that in some situations the sameness relationship could be
more complicated. This is especially true when the values being observed
are not sharply distinguishable. For example, not everyone uses the same
criteria to characterize whether a person is obese or overweight. As a result,
independent observations can be calibrated differently. Such observations
should not be combined unless they can be recalibrated. In section 15.5, we
consider a more general event for representing the sameness of two discrete
random variables that addresses these concerns to some degree.
To illustrate how the information combination theorem can be applied,

suppose that a patient is complaining of a severe headache. For simplicity,
assume that the only possible diagnoses are concussion, meningitis, and tu-
mor. One doctor concludes that the probabilities of the diagnoses are 0.7,
0.2, and 0.1, respectively. Another doctor concludes that the probabilities
are 0.5, 0.3, and 0.2, respectively. Combining these two yields the probabil-
ities 0.81, 0.14, and 0.05, respectively. Note that the most likely diagnosis
becomes more likely, while the least likely one becomes less likely. The rea-
son for this is that the diagnoses have been assumed to be independent. In
practice, diagnoses will be based on tests and symptoms that are observed
by both doctors. In addition, doctors have similar training and use the same
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criteria for making diagnoses. As a result, the diagnoses would not usually
be independent.
For a more extreme example, suppose that the first doctor concludes that

the probabilities are 0.9, 0.0, and 0.1; and the second doctor gives the prob-
abilities as 0.0. 0.9, and 0.1. The combined distribution will conclude that
the tumor has probability 1.0, while the other two diagnoses are impossible
(Zadeh 1984). This seems to be wrong. However, it makes perfectly good
sense. In the words of Sherlock Holmes in “The Blanched Soldier”, “When
you have eliminated all which is impossible, then whatever remains, how-
ever improbable, must be the truth.” Each of the doctors has concluded that
one of the diagnoses is impossible, so the third possibility must be the truth.
On the other hand, one can question whether such totally different diagnoses
would happen independently. In other words, it is unlikely that the doctors
are independently observing the same phenomenon. Such observations are
said to be incompatible.
However, there are other circumstances for which observations that are

incompatible are actually independent and therefore fusable. For example,
if one distribution represents the probability of occurrence of a rare disease,
and another distribution represents the observation that a particular patient
definitely has the disease, then the combination of the two distributions is
simple: the patient has the disease.
An even more extreme example would be two observations in which all of

the possibilities have been declared to be impossible in one or the other ob-
servation. The discrete information combination theorem gives no combined
distribution in this case because the hypotheses are not satisfied. One says
that such observations are inconsistent.

Summary

• The discrete information combination theorem gives the formula for fus-
ing independent discrete random variables that measure the same phe-
nomenon.

• Incompatible PDs can be combined but care must be taken to interpret the
combined distribution properly.

• Inconsistent PDs cannot be combined at all.
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15.2 Combining Continuous Information

One can also combine continuous random variables. The only difference
is that one must be careful to ensure that the combined distribution can be
rescaled to be a PD.

Continuous Information CombinationTheorem
Let X and Y be two continuous random variables that represent two independent
observations of the same phenomenon. Let f(x) and g(x) be the probability den-
sity functions of X and Y , respectively. If f and g are bounded functions, and
if

∫
f(y)g(y)dy is positive, then there is a random variable Z that combines the

information of these two observations, whose probability density function is

h(x) =
f(x)g(x)∫
f(y)g(y)dy

.

Proof The proof proceeds as in the discrete case except that one must check
that

∫
f(x)g(x)dx converges. Now f(x) was assumed to be bounded. Let

B be an upper bound of this function. Then f(x)g(x) ≤ Bg(x) for every x.
Since

∫
g(x)dx converges, it follows that

∫
f(y)g(y)dy also converges. The

result then follows as in the discrete case.

As with discrete random variables, information combination requires that
the observations be independent and they measure the same phenomenon.
Ensuring that the observations measure the same phenomenon can be dif-
ficult, as the observations can use different calibrations. Uncoordinated or
miscalibrated observations should not be combined unless they can be recal-
ibrated.
In both of the information combination theorems, the last step is to nor-

malize the distribution. Consequently, one can combine unnormalized distri-
butions as long as the combined distribution is normalizable. In particular,
it makes sense to combine a uniformly distributed random variable U with
a random variable X , even when the uniform distribution cannot be nor-
malized. It is easy to see that the combination of U with X is the same as
X . In other words, a uniform distribution adds no new information to any
distribution.
Normal distributions are an especially important special case which fol-

lows easily from the general case:

Combining Normal Distributions
If X and Y are independent normally distributed random variables with means m,
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n and variances v, w, respectively, then the combined random variable has mean

wm + vn

v + w
=

m
v + n

w
1
v + 1

w

and variance
vw

v + w
=

1
v

+
1
w

.

This result is easily extended to the combination of any number of in-
dependent normal distributions. The means are combined by means of a
weighted average, using weights that are proportional to the inverse vari-
ances.
We can now combine the two temperature measurements 30.5◦ ±0.4◦C

and 30.2◦ ±0.3◦C mentioned earlier. The variances are 0.16 and 0.09, so the
combined mean is 30.3◦ ±0.24◦C. The combined mean is closer to 30.2◦C
than to 30.5◦C because the former measurement is more accurate.
The formula for combining normal distributions applies equally well to

multivariate normal distributions. The only differences are that the mean is
a vector and the variance is a symmetric matrix (often called the covariance).
This formula is the basis for the Kalman filter (Maybeck 1979) in which a
sequence of estimates is successively updated by independent observations.
The Kalman filter update formula is usually derived by using an optimiza-
tion criterion such as least squares. However, nothing more than elementary
probability theory is necessary.
Information combination is commonly formulated in terms of a priori and

a posteriori distributions. The a priori or prior distribution is one of the
two distributions being combined, while the experiment or observation is
the other one. The a posteriori distribution is the combined distribution. Al-
though the formulation in terms of a priori and a posteriori distributions is
equivalent to information combination, it can be somewhat misleading, as
it suggests that the two distributions play different roles in the process. In
fact, information combination is symmetric: the two distributions being com-
bined play exactly the same role. One of the two distributions will generally
have more effect on the result, but this is due to it having more accuracy, not
because it is the prior distribution or the observation.
Another example of information combination is stochastic inference in a

BN, as presented in section 14.2. The evidence is combined with the BN, and
the distributions of the query nodes are obtained by computing the marginal
distributions of the combined JPD. Since the evidence usually specifies in-
formation about only some of the nodes, a full JPD is constructed by using
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independent uniform distributions for all of the other nodes. As we noted
earlier, a uniform distribution adds no information to an information com-
bination process. In general, the evidence can be a BN. In other words, one
can combine two independent BNs. However, the combined JPD need not
have the same graph as the BNs that were combined, even when the original
two BNs have the same graph. This is a consequence of Berkson’s paradox.
However, if the BNs are measurements from the same population and have
the same graph, then the combined BN should also have the same graph. In-
deed, if it does not, then this is evidence that the original BNs were not from
the same population.

Summary

• The continuous information combination theorem gives the formula for
fusing independent continuous random variables that measure the same
phenomenon.

• The derivation of an a posteriori distribution from an a priori distribu-
tion and an observation is a special case of the information combination
theorems.

• Stochastic inference in a BN is another special case of the information com-
bination theorems.

15.3 Information Combination as a BN Design Pattern

Figure 15.1 Information combination as a BN pattern. Two or more independent
observations are combined to produce a single probability distribution.

The combination of independent sources of evidence can be expressed as
the BN pattern shown in figure 15.1. This pattern differs from the reconcilia-
tion pattern discussed in subsection 14.3.5. In the reconciliation pattern, the
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dependency arrows are in the opposite direction. The conditional probabil-
ity distributions that define the BN for information combination are shown
in figure 15.2. The process of combining information frommultiple sources is
a special case of stochastic inference. The random variables to be combined
(called X and Y in the figure) are given as evidence to the BN. Then query
the BN to obtain the combined random variable Z.

Figure 15.2 The conditional probability distributions that define the BN for combin-
ing two independent observations of the same phenomenon. The prior probability
distribution on the Z is the uniform distribution.

Expressing information combination as a BN allows one to formulate more
general information combination processes. For example, one can combine
random variables that are dependent on each other or on common informa-
tion, or one can combine random variables that are not directly observable,
as shown in figure 15.3.

Summary

• The information combination process can be expressed as a BN.

• When expressed as a BN, information combination is a form of stochastic
inference.

• The BN formulation of information combination allows one to formulate
many information combination processes as well as other ways to com-
bine information.
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Figure 15.3 Examples of information combination processes. The process on the left
side combines two random variables that have a mutual dependency. The process on
the right side combines random variables that are not directly observable.

15.4 Measuring Probability

So far we have focused on PDs as a means of expressing an observation.
The range of possibilities for what one can observe is very large, including
concentrations, temperatures, pressures, and simple Boolean observations.
However, some of the most important observations are measurements of
PDs, and a large array of statistical tests (such as t-, chi-square, and F-tests)
are concerned with such measurements. When observing a PD, one must
be careful to distinguish the PD that is being measured from the one that is
used for expressing the observation of the PD. It can get confusing because
the observation is the PD of a PD.
To understand what this means, consider the problem of determining the

body mass index (BMI) of individuals in a population. If one just focuses
on the BMI measurement, then one will not capture the variation of BMI in
the population. As data are accumulated, one will get more accurate mea-
surements of the average BMI, and that is all. In practice, one is interested
in the distribution of values in a population. In other words, one is mea-
suring a PD. Although population distributions cannot be exactly normally
distributed, since they are finite distributions, they can usually be approxi-
mated by a normal distribution.
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A normal distribution is characterized by two parameters: the mean and
the variance. Consequently, the measurement of a normal distribution is
a measurement of these two numbers. When these are measured using a
random sample, the mean has the t distribution, and the variance has the chi-
square distribution. Both of these are approximately normally distributed
for large samples. The mean and variance of the sample mean and sample
variance are well-known:

Sample StatisticsTheorem
Let X be a random variable from a normally distributed population with mean μ

and variance σ2, For a random sample of N independent measurements of X :

1. The sample mean X has mean μ and variance σ2/N .

2. The sample variance s2 has mean σ2 and variance σ4/(N − 1).

When two populations are compared, one can compare them in a large va-
riety of ways. Their means can be compared with a t-test, and their variances
can be compared with either a chi-square test (to determine whether the dif-
ference of the variances is small) or an F-test (to determine whether the ratio
of the variances is close to 1).
It is easy to experiment with these concepts either by using real data or

by generating the data using a random number generator. In the follow-
ing, a random number generator was used to generate two independent
random samples of size 100 from a normal population with mean 10 and
variance 16. For such a large sample size, the t and chi-square distributions
are very close to being normal distributions. The estimates for the distribu-
tions (mean, variance) were (9.31, 13.81) and (10.55, 16.63). Now forget what
these are measuring, and just think of them as two independent measure-
ments. The uncertainty of each measurement is approximately normally dis-
tributed. The mean of the first measurement is the measurement itself, and

the variance matrix is
(

0.138 0
0 3.86

)
. The variance matrix of the second

measurement is
(

0.166 0
0 5.59

)
. The off-diagonal terms are zero because

the two measurements are independent, and hence uncorrelated. Combin-
ing these two measurements can be done in two ways. The first is to apply
the continuous information combination theorem. The combined distribu-

tion has mean (9.87, 14.97) and variance matrix
(

0.075 0
0 2.28

)
. The second

way to combine the two measurements is to treat them as a single combined



15.5 Dempster-Shafer Theory 365

random sample of size 200. In this case the distribution of the measurement

has mean (9.93, 15.53) and variance matrix
(

0.078 0
0 2.42

)
. The second way

of combining the information is closer to the true value (10, 16), but both
measurements are within one standard deviation of the true value, so they
are both as accurate as one would expect. Fusing the samples will usually be
more accurate because it makes use of more information about the measure-
ments. The information combination technique uses only the distributions,
not how the distributions were obtained. However, the advantage is small
compared with the estimation error of either technique.

Summary

• PDs can be measured.

• Many standard statistical tests are based on measurements of PDs.

• Independent measurements of PDs can be combined, just like any other
kinds of measurements.

15.5 Dempster-Shafer Theory

The analogy between the cosine similarity function for the vector spacemodel
in section 6.2 and the information combination theorem is intriguing. In both
cases, one computes the product of weights that occur in the same position in
a vector. In the vector space model the positions in the vector correspond to
terms that can occur in a document. In the information combination theorem
the positions are the possible values of the two random variables. In sec-
tion 6.5 we discussed how the vector space model could be extended to deal
with concept combinations. Surprisingly, a form of concept combination has
been considered for information combination. This interesting development
is called the Dempster-Shafer (D-S) theory of evidence (Shafer 1976).
D-S theory assumes that one has a set of entities which can be assigned

probabilities, and the sum of the probabilities for all entities adds up to 1,
exactly as in ordinary probability theory. The difference is that D-S theory
allows entities to be combinations of other entities. Compared with the con-
cept combinations considered in section 6.5, D-S combinations are very sim-
ple. A D-S combination is the set-theoretic union of its constituents. Thus,
while there are many ways to combine the two terms “test” and “drug,” D-S
theory has only one way to combine them.
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Consider the diagnosis problem of the patient suffering from a headache
introduced at the beginning of this chapter. D-S theory, not only includes
the three basic diagnoses, concussion, meningitis, and tumor, it also allows
combined diagnoses such as concussion-meningitis. Note that such a com-
bination is a separate point in the probability space, distinct from either con-
cussion or meningitis: it does not represent an event such as (concussion
OR meningitis). Try to imagine a new kind of trauma called a “concussion-
meningitis” or “meningitis-concussion.” Remember that there is only one
way to combine entities in D-S theory, so these two must be regarded as be-
ing the same even though most interpretations would regard them as being
different. The following are two examples of D-S distributions:

Diagnosis Distribution P Distribution Q
concussion 0.5 0.6
meningitis 0 0.2
tumor 0.3 0.2
concussion-meningitis 0.2 0

All entities in D-S theory are of three kinds: elementary, such as concussion
and meningitis; a combination, such as concussion-meningitis; or the “empty
entity,” corresponding to the set-theoretic notion of an empty set. The empty
entity plays a special role in D-S theory. We will say that a D-S distribution is
elementary if all of its probability is on elementary entities. The distribution
Q above is elementary, while distribution P is not.
The most important contribution of D-S theory is Dempster’s rule of com-

bination which specifies how to combine independent evidence. Unlike the
discrete information combination theorem, Dempster’s rule is postulated as
an axiom; it is not proven based on some underlying theory.

Dempster’s Rule of Combination
Let X and Y be two D-S distributions representing independent evidence for the
same phenomenon. Define a combination distribution M by the formula M(C) =∑

A∩B=C X(A)Y (B), for all nonempty C. If there exists some nonempty C such
that M(C) �= 0, then there exists a D-S distribution Z which combines X and Y

and is defined by the formula

Z(C) =
M(C)∑

nonemptyD M(D)
,

for every nonempty C. In other words, Z is obtained from M by rescaling so that
the probabilities add to 1.
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If X and Y are elementary D-S distributions which can be combined, then
the combination Z is also elementary and coincides with the distribution
given by the information combination theorem. In fact, if either X or Y is
elementary, then Z will also be elementary. Dempster’s rule is therefore an
extension of the information combination theorem. The combination of the
D-S distributions P and Q defined above is given as follows:

Diagnosis P Q Distribution M Combination Z
concussion 0.5 0.6 0.42 0.81
meningitis 0 0.2 0.04 0.08
tumor 0.3 0.2 0.06 0.11
concussion-meningitis 0.2 0 0 0

The only complicated entry in the computation above is the value of M(con-
cussion). This probability is the sum of two products: P(concussion)Q(con-
cussion) and P(concussion-meningitis)Q(concussion). The rationale for in-
cluding both of these in the combined probability for concussion is that both
concussion and concussion-meningitis contribute to the evidence (or belief)
in concussion because they both contain concussion.
There is some question about the role played by the empty entity. It is

sometimes interpreted as representing the degree to which one is unsure
about the overall observation. However, Dempster’s rule of combination
explicitly excludes the empty entity from any combined distribution. As a
result, the only effect in D-S theory of a nonzero probability for the empty
entity is to allow distributions to be unnormalized. The information com-
bination theorems also apply to unnormalized distributions, as we noted in
the discussion after the information combination theorems.

Summary

• D-S theory introduces a probabilistic form of concept combination.

• D-S distributions are combined by using Dempster’s rule of combination.

• Dempster’s rule of combination coincides with the discrete information
combination theorem when the distributions are elementary.
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16.1 Introduction

The Semantic Web is an extension of the World Wide Web in which infor-
mation is given a well-defined meaning, so that computers and people may
more easily work in cooperation. This is done by introducing a formal logical
layer to the web in which one can perform rigorous logical inference. How-
ever, the SemanticWeb does not include amechanism for empirical, scientific
reasoning which is based on stochastic inference. Bayesian networks (BNs)
are a popular mechanism for modeling uncertainty and performing stochas-
tic inference in biomedical situations. They are a fundamental probabilistic
representation mechanism that subsumes a great variety of other probabilis-
tic modeling methods, such as hidden Markov models and stochastic dy-
namic systems. In this chapter we propose an extension to the Semantic Web
which we call the Bayesian Web (BW) that supports BNs and that integrates
stochastic inference with logical inference. Within the BW, one can perform
both logical inference and stochastic inference, as well as make statistical
decisions.
Although very large BNs are now being developed, each BN is constructed

in isolation. Interoperability of BNs is possible only if there is a framework
for one to identify common variables. The BW would make it possible to
perform operations such as:

• Use a BN developed by some other group almost as easily as one now
navigates from one webpage to another

• Make stochastic inference and statistical decisions using information from
one source and a BN from another source
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• Fuse BNs obtained from disparate sources by identifying variables that
measure the same phenomenon

• Reconcile and validate BNs by checking mutual consistency

16.2 Requirements for Bayesian Network Interoperability

The most fundamental requirement of BN interoperability is to have a com-
mon interchange format. However, this alone would not be enough for one
to automatically combine data and BNs from different sources. In this sec-
tion we discuss the requirements for BNs to be fully interoperable in the
sense discussed in the introduction.
The following are the requirements for BN interoperability and the pro-

posed BW:

1. Interchange format. There already exists a format for representing BNs,
called the XML Belief Network format (XBN) (XBN 1999). This XML file
format was developed by Microsoft’s Decision Theory and Adaptive Sys-
tems Group. An example is shown in section 16.4 below.

2. Common variables. It should be possible for the same variable to appear
in different BNs. For example, whether a person has the flu should be the
same variable no matter which BN it appears in. Being able to specify or
to deduce that two entities are the same is a fundamental feature of the
Semantic Web. Of course the context within which a BN is valid affects
the meaning of the variable. For example, one might be interested only
in the occurrence of the flu in Spain in 1918. This would be very different
from the flu in Australia in 2004.

3. Annotation and reference makes it possible to specify the context of a BN.
In so doing one also specifies the meaning of the variables. One should
be able to refer to a BN and for a BN to refer to other information. In
other words, the BN should itself be an entity about which one can make
statements. Annotations are also important for authentication and trust.

4. Open hierarchy of distribution types. New probability distributions (PDs)
and conditional probability distributions (CPDs) can be introduced by
subclassing other distributions.

5. BN components. A BN can be constructed from known pieces. It can also
be constructed by instantiating templates A BN component is a partially
specified BN.
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6. Meta-Analysis. Multiple BNs can be combined to form new BNs. This is
a very different form of combination than component-based construction.
Meta-analysis and stochastic inference are closely related. As shown in
chapter 15, stochastic inference makes use of meta-analysis, and meta-
analysis can be expressed in terms of stochastic inference.

16.3 Extending the Semantic Web

We now give a concrete proposal for how the Semantic Web can be aug-
mented to include BNs and stochastic inference. The architecture for the
Semantic Web consists of a series of layers, as shown in figure 16.1. This fig-
ure was taken from a presentation by Tim Berners-Lee (Berners-Lee 2000a).
The layers that are relevant to the BW are the following:

1. The resource description framework (RDF) layer introduces semantics to
XML. It makes it possible to link one resource to another resource such
that the link and resources may be in different webpages. RDF is a mini-
malist semantic layer with only the most basic constructs.

2. The Web Ontology Language (OWL) layer expands on the RDF layer by
adding more constructs and richer formal semantics.

3. The Logic layer adds inference. At this layer one can have both resources
and links that have been inferred. However, the inference is limited by
the formal semantics specified by RDF and OWL.

4. The Proof layer adds rules. Rules can take many forms such as logical
rules as in the Logic layer, search rules for finding documents that match
a query, and domain-specific heuristic rules.

The proposed BW consists of a collection of ontologies that formalize the
notion of a BN together with stochastic inference rules. The BW resides pri-
marily on two of the Semantic Web layers: the Web Ontology layer and the
Proof layer. The BW ontologies are expressed in OWL on the Web Ontol-
ogy layer, and the algorithms for the stochastic operations are located on the
Proof layer. By splitting the BW into two layers, one ensures that BW in-
formation can be processed using generic Semantic Web tools which have
no understanding of probability or statistics. The result of processing at the
OWL layer is to obtain authenticated and syntactically consistent BNs. The
probabilistic and statistical semantics is specified on the Proof layer which
requires engines that understand probability and statistics.
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Figure 16.1 The Semantic Web architecture.

16.4 Ontologies for Bayesian Networks

The first requirement for a viable BW is to have a standard interchange for-
mat. An example of such a format is the XBN format. The XBN format is an
XML DTD. To illustrate this format, the medical diagnosis BN in figure 14.1
is represented as follows:

<?XML VERSION="1.0">
<!DOCTYPE ANALYSISNOTEBOOK SYSTEM "xbn.dtd">
<ANALYSISNOTEBOOK

NAME="Diagnostic Bayesian Network Example"
ROOT="InfluenzaDiagnosis">

<BNMODEL NAME="InfluenzaDiagnosis">
<STATICPROPERTIES>
<FORMAT VALUE="MSR DTAS XML"/>
<VERSION VALUE="1.0"/>
<CREATOR VALUE="Ken Baclawski"/>

</STATICPROPERTIES>
<VARIABLES>
<VAR NAME="Flu" TYPE="discrete">

<DESCRIPTION>Patient has influenza</DESCRIPTION>
<STATENAME>Absent</STATENAME>
<STATENAME>Present</STATENAME>

</VAR>
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<VAR NAME="Cold" TYPE="discrete">
<DESCRIPTION>Patient has mild upper respiratory

viral infection</DESCRIPTION>
<STATENAME>Absent</STATENAME>
<STATENAME>Present</STATENAME>

</VAR>
<VAR NAME="PerceivesFever" TYPE="discrete">

<DESCRIPTION>
Patient self-diagnoses a fever

</DESCRIPTION>
<STATENAME>Absent</STATENAME>
<STATENAME>Present</STATENAME>

</VAR>
<VAR NAME="Temperature" TYPE="continuous">

<DESCRIPTION>
Oral measurement of the body temperature
of the patient

</DESCRIPTION>
</VAR>

</VARIABLES>
<STRUCTURE>
<ARC PARENT="Flu" CHILD="PerceivesFever"/>
<ARC PARENT="Flu" CHILD="Temperature"/>
<ARC PARENT="Cold" CHILD="PerceivesFever"/>
<ARC PARENT="Cold" CHILD="Temperature"/>

</STRUCTURE>
<DISTRIBUTIONS>
<DIST TYPE="discrete">

<PRIVATE NAME="Flu"/>
<DPIS>
<DPI>0.9999 0.0001</DPI>

</DPIS>
</DIST>
<DIST TYPE="discrete">

<PRIVATE NAME="Cold"/>
<DPIS>
<DPI>0.99 0.01</DPI>

</DPIS>
</DIST>
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<DIST TYPE="discrete">
<CONDSET>
<CONDELEM NAME="Flu"/>
<CONDELEM NAME="Cold"/>

</CONDSET>
<PRIVATE NAME="PerceivesFever"/>
<DPIS>
<DPI INDEXES="0 0">0.99 0.01</DPI>
<DPI INDEXES="0 1">0.90 0.10</DPI>
<DPI INDEXES="1 0">0.10 0.90</DPI>
<DPI INDEXES="1 1">0.05 0.95</DPI>

</DPIS>
</DIST>
<DIST TYPE="gaussian">
<CONDSET>
<CONDELEM NAME="Flu"/>
<CONDELEM NAME="Cold"/>

</CONDSET>
<PRIVATE NAME="Temperature"/>
<DPIS>
<DPI INDEXES="0 0" MEAN="37" VARIANCE="0.25">
<DPI INDEXES="0 1" MEAN="37.5" VARIANCE="1.0">
<DPI INDEXES="1 0" MEAN="39" VARIANCE="2.25">
<DPI INDEXES="1 1" MEAN="39.2" VARIANCE="2.56">
</DPIS>

</DIST>
</DISTRIBUTIONS>

</BNMODEL>
</ANALYSISNOTEBOOK>

The ANALYSISNOTEBOOK element is the root. It allows one to specifymore
than one BN in a single XML document. In this case there is just one BN
which is specified by the BNMODEL element. The child elements of BNMODEL
specify the nodes, edges, and CPDs of the BN. One can also annotate the
BN with information such as who created it and which version it is. The
annotations are in the STATICPROPERTIES element, the nodes are in the
VARIABLES element, the edges are in the STRUCTURE element, and the CPDs
are in the DISTRIBUTIONS element. Nodes are specified by VAR elements.
Edges are specified by ARC elements. CPDs are specified by DIST elements.
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The CPDs are the most complex elements. In general, a CPD is a list of PDs.
The list is contained in a DPIS element. PDs are specified by DPI elements.
If a node has no incoming edges, then its CPD is a PD and there is only a
single DPI element. Nodes with incoming edges must specify several PDs.
The published DTD for XBN does not support continuous random variables,
so it was necessary to add two attributes to the DPI element: the MEAN and
VARIANCE.
The XBN format has a number of limitations as the basis for the BW. In its

current published form, it only supports random variables with a finite num-
ber of values. It does not support continuous random variables. It should be
possible to specify a wide variety of types of PD. Another significant lim-
itation is its lack of a mechanism for referring to external resources or for
external documents to refer to the BN. This makes it difficult to use this
mechanism to satisfy the requirement for common variables, and there is
only limited support for annotation.
These considerations suggest that a better choice of language for the BW

is OWL. We now present a series of three OWL ontologies that satisfy the
requirements for the BW.We present them in top-down fashion, startingwith
high-level concepts and successively elaborating them:

1. The ontology of phenomena which can be modeled using BNs

2. The ontology of networks of CPDs

3. The ontology of elementary PDs

Figure 16.2 Ontology for Bayesian networks.
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While one would think that the notion of a random variable is unambigu-
ous, in fact it is a combination of two different concepts. First, there is the
phenomenon that is being observed or measured, such as one toss of a coin
or the measurement of a person’s blood pressure. The second concept is the
PD of the phenomenon. It is the combination of these two notions which is
the concept of a random variable. The relationship between the phenomenon
and its PD is many-to-many. Many phenomena have the same PD, and the
same phenomenon can be distributed in many ways. The reason why a phe-
nomenon does not uniquely determine its PD is due to the notion of con-
ditioning. As one observes related events, the distribution of a phenomenon
changes. The phenomenon is the same; what changes is the knowledge about
it.
The top-level concept of the BW is the BN which is used to model net-

works of more elementary phenomena (see figure 16.2). A BN consists of
a collection of nodes, each of which represents one elementary phenomenon.
Think of a node as a random variable whose PD has not yet been specified. A
node has a range of values. For example, the height of a person is a positive
real number. A Node can depend on other Nodes. A dependency is called a
dependency arc. It is convenient to order the dependencies of a single node,
so in figure 16.2, a Node can depend on a NodeList, which consists of a
sequence of Nodes. The order of the dependencies is used when the con-
ditional probabilities are specified. A BN can import another BN. The nodes
and dependencies of an imported BN become part of the importing BN.
The most complex part of a BN is its joint probability distribution (JPD)

which is specified using a collection of conditional and unconditional PDs.
Since a BN can have more than one PD, the notion of a BN distribution (BND)
is separated from that of the BN. There is a one-to-many relationship between
the concepts of BN and BND. A BND consists of a collection of distributions,
one for each node in the BN. A node distribution (ND) relates one node to its
conditional distribution.
The notion of a conditional distribution is the main concept in the condi-

tional probability ontology, as shown in figure 16.3. A conditional distribu-
tion has three special cases. It can be a CPD table (CPT), a general stochastic
function (SF), or an unconditional PD. The CPT is used in the case of phenom-
ena with a small number of possible values (called states in this case). Most
current BN tools support only this kind of conditional probability specifica-
tion.
A CPT is defined recursively, with one level for each dependency. There is

one conditional probability entry (CPE) for each value of the first parent node.



16.4 Ontologies for Bayesian Networks 377

Figure 16.3 Ontology for conditional probability distributions.

Each CPE specifies a weight and a CPT for the remaining parent nodes.
Weights are nonnegative real numbers. They need not be normalized. At
the last level one uses an unconditional PD.
A SF is also defined recursively, but instead of using an explicit collection

of CPEs, it uses one or more functions that specify the parameter(s) of the
remaining distributions. The most common function is a linear function, and
it is the only one shown in the diagram. Functions are necessary to spec-
ify dependencies on continuous phenomena. More general functions can
be specified by using the Mathematical Markup Language (MathML) (W3C
2003).
PDs are classified in the PD ontology shown in figure 16.4. This ontology

is a hierarchy of the most commonly used PDs. The main classification is
between discrete and continuous distributions. Discrete distributions may
either be defined by a formula (as in the Poisson and binomial distributions)
or explicitly for each value (state). Every continuous distribution can be al-
tered by changing its scale or by translating it (or both). The most commonly
used continuous distributions are the uniform and normal (Gaussian) dis-
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tributions. The uniform distribution is on the unit interval and the normal
has mean 0 and variance 1. Other uniform and normal distributions can
be obtained by scaling and translating the standard ones. Other commonly
used distributions are the exponential and chi-square distributions as well as
Gosset’s t distribution, and Fisher’s F distribution.

Figure 16.4 Ontology for probability distributions.
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ANSWER TO

EXERCISE 1.1

<bio_sequence element_id="U83302" sequence_id="MICR83302"
organism_name="Colaptes rupicola" seq_length="1047" type="DNA"/>

<bio_sequence element_id="U83303" sequence_id="HSU83303"
organism_name="Homo sapiens" seq_length="3460" type="DNA"/>

<bio_sequence element_id="U83304" sequence_id="MMU83304"
organism_name="Mus musculus" seq_length="51" type="RNA"/>

<bio_sequence element_id="U83305" sequence_id="MIASSU833"
organism_name="Accipiter striatus" seq_length="1143" type="DNA"/>

ANSWER TO

EXERCISE 1.2

<!ATTLIST bio_sequence
element_id ID #IMPLIED
sequence_id CDATA #IMPLIED
organism_name CDATA #IMPLIED
seq_length CDATA #IMPLIED
molecule_type (DNA | mRNA | rRNA | tRNA | cDNA | AA)

#IMPLIED>

This example was taken from the AGAVE DTD (AGAVE 2002). The actual
element has some additional attributes, and it differs in a few other ways as
well. For example, some of the attributes are restricted to NMTOKEN rather
than just CDATA. NMTOKEN specifies text that starts with a letter (and a few
other characters, such as an underscore), and is followed by letters and digits.
Programming languages such as Perl restrict the names of variables and pro-
cedures in this way, and many genomics databases use this same convention
for their accession numbers and other identifiers.
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ANSWER TO

EXERCISE 1.3
<physical_unit name="millisecond">
<factor prefix="milli" unit="second"/>

</physical_unit>
<physical_unit name="per_millisecond">
<factor prefix="milli" unit="second" exponent="-1"/>

</physical_unit>
<physical_unit name="millivolt">
<factor prefix="milli" unit="volt"/>

</physical_unit>
<physical_unit name="microA_per_mm2">
<factor prefix="micro" unit="ampere"/>
<factor prefix="milli" unit="mitre" exponent="-2"/>

</physical_unit>
<physical_unit name="microF_per_mm2">
<factor prefix="micro" unit="farad"/>
<factor prefix="milli" unit="mitre" exponent="-2"/>

</physical_unit>

The XML DTD looks like this:

<!ELEMENT physical_unit (factor)*>
<!ATTLIST physical_unit name ID #REQUIRED>
<!ELEMENT factor EMPTY>
<!ATTLIST factor

prefix CDATA #IMPLIED
unit CDATA #REQUIRED
exponent CDATA "1">

ANSWER TO

EXERCISE 1.4

<component name="membrane">
<variable name="u" interface="out"/>
<variable name="Vr" interface="out" initial="-85.0"

physical_unit="millivolt"/>
<variable name="Cm" initial="0.01"

physical_unit="microF_per_mm2"/>
<variable name="time" interface="in"

physical_unit="millisecond"/>
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</component>
<component name="ionic_current">

<variable name="I_ion" interface="out"
physical_unit="microA_per_mm2"/>

<variable name="v" interface="in"/>
<variable name="Vth" interface="in"

physical_unit="millivolt"/>
</component>

The DTD is the following:

<!ELEMENT component (variable)*>
<!ATTLIST component name ID #REQUIRED>
<!ELEMENT variable EMPTY>
<!ATTLIST variable

name CDATA #REQUIRED
initial CDATA #IMPLIED
physical_unit IDREF "dimensionless"
interface (in|out) #IMPLIED>

IDREF means that the attribute refers to another one elsewhere in the docu-
ment. In this case it is referring to a physical unit definition in exercise 1.3.ANSWER TO

EXERCISE 2.1
The XML schema can be obtained by translating the molecule DTD in fig-
ure 1.6 using dtd2xsd.pl (W3C 2001a). The answer is the following:

<schema
xmlns=’http://www.w3.org/2000/10/XMLSchema’
targetNamespace=’http://www.w3.org/namespace/’
xmlns:t=’http://www.w3.org/namespace/’>

<element name=’molecule’>
<complexType>
<sequence>
<element ref=’t:atomArray’/>
<element ref=’t:bondArray’/>
</sequence>
<attribute name=’title’ type=’string’ use=’optional’/>
<attribute name=’id’ type=’string’ use=’optional’/>
<attribute name=’convention’ type=’string’ use=’default’ value=’CML’/>
<attribute name=’dictRef’ type=’string’ use=’optional’/>
<attribute name=’count’ type=’string’ use=’default’ value=’1’/>
</complexType>

</element>
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<element name=’atomArray’>
<complexType>
<sequence>
<element ref=’t:atom’ maxOccurs=’unbounded’/>

</sequence>
<attribute name=’title’ type=’string’ use=’optional’/>
<attribute name=’id’ type=’string’ use=’optional’/>
<attribute name=’convention’ type=’string’ use=’default’ value=’CML’/>
</complexType>
</element>

<element name=’atom’>
<complexType>
<attribute name=’elementType’ type=’string’ use=’optional’/>
<attribute name=’title’ type=’string’ use=’optional’/>
<attribute name=’id’ type=’string’ use=’optional’/>
<attribute name=’convention’ type=’string’ use=’default’ value=’CML’/>
<attribute name=’dictRef’ type=’string’ use=’optional’/>
<attribute name=’count’ type=’string’ use=’default’ value=’1’/>
</complexType>
</element>

<element name=’bondArray’>
<complexType>
<sequence>
<element ref=’t:bond’ maxOccurs=’unbounded’/>

</sequence>
<attribute name=’title’ type=’string’ use=’optional’/>
<attribute name=’id’ type=’string’ use=’optional’/>
<attribute name=’convention’ type=’string’ use=’default’ value=’CML’/>
</complexType>
</element>

<element name=’bond’>
<complexType>
<attribute name=’title’ type=’string’ use=’optional’/>
<attribute name=’id’ type=’string’ use=’optional’/>
<attribute name=’convention’ type=’string’ use=’default’ value=’CML’/>
<attribute name=’dictRef’ type=’string’ use=’optional’/>
<attribute name=’atomRefs’ type=’string’ use=’optional’/>
</complexType>
</element>

</schema>
ANSWER TO

EXERCISE 2.2
Change the line

<attribute name=’elementType’ type=’string’ use=’optional’/>
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in the molecule schema to

<attribute name=’elementType’
type=’elementTypeType’ use=’optional’/>

where elementTypeType is defined by

<xsd:simpleType name="elementTypeType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Ac"/>
<xsd:enumeration value="Al"/>
<xsd:enumeration value="Ag"/>

...
<xsd:enumeration value="Zn"/>
<xsd:enumeration value="Zr"/>

</xsd:restriction>
</xsd:simpleType>

ANSWER TO

EXERCISE 2.3
One possible answer uses an enumeration of cases:

<xsd:simpleType name="DNABase">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="A"/>
<xsd:enumeration value="C"/>
<xsd:enumeration value="G"/>
<xsd:enumeration value="T"/>

</xsd:restriction>
</xsd:simpleType>

Another answer uses a pattern restriction:

<xsd:simpleType name="DNAbase">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[ACGT]"/>

</xsd:restriction>
</xsd:simpleType>

ANSWER TO

EXERCISE 2.4
A DNA sequence could be defined using a list of bases as in
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<simpleType name="DNASequence">
<list itemType="DNABase"/>

</simpleType>

For example, the TATA sequence would be written as T A T A. The items
in an XML list are separated by spaces. A better answer would be

<simpleType name="DNASequence" base="xsd:string">
<restriction>
<pattern value="[ACGT]+"/>

</restriction>
</simpleType>

Using this definition, the TATA sequence would be written without spaces
as TATA, just as one would expect.ANSWER TO

EXERCISE 4.1
In the following answer, it was presumed that the concepts of atomArray
and bondArray were artifacts of the design of the XML DTD and schema
and were not fundamental to the meaning of a molecule. Other assumptions
would lead to many other designs.

<Class rdf:ID="Molecule"/>
<Class rdf:ID="Atom"/>
<Class rdf:ID="Bond"/>
<Property rdf:ID="atom">

<domain rdf:resource="#Molecule"/>
<range rdf:resource="#Atom"/>

</Property>
<Property rdf:ID="bond">

<domain rdf:resource="#Molecule"/>
<range rdf:resource="#Bond"/>

</Property>
<Property rdf:ID="title"/>
<Property rdf:ID="convention"/>
<Property rdf:ID="dictRef"/>
<Property rdf:ID="count">

<range rdf:resource=
"http://www.w3.org/2000/10/XMLSchema#positiveInteger"/>

</Property>
<Property rdf:ID="elementType">
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<domain rdf:resource="#Atom"/>
<range rdf:resource=

"http://ontobio.org/molecule.xsd#elementTypeType"/>
</Property>
<Property rdf:ID="atomRef">
<domain rdf:resource="#Bond"/>
<range rdf:resource="#Atom"/>

</Property>

ANSWER TO

EXERCISE 4.2
Using the ontology in the sample answer above, nitrous oxide would be the
following:

<Molecule rdf:ID="m1" title="nitrous oxide">
<atom>

<Atom rdf:ID="n1" elementType="N"/>
<Atom rdf:ID="o1" elementType="O"/>

</atom>
<bond>

<Bond>
<atomRef rdf:resource="n1"/>
<atomRef rdf:resource="o1"/>

</Bond>
</bond>

</Molecule>

ANSWER TO

EXERCISE 4.3
The bio sequence attributes can be interpreted as properties as follows:

1. element_id This is the identifier of the bio sequence, so it should be the
URI of the resource. So it corresponds to the rdf:ID property.

2. sequence_id This is another identifier, but it was not declared to be
of type ID so it is probably a reference to a URI in some other location.
Accordingly, it is interpreted as a functional property.

3. organism_name This is a name so it will be interpreted as a string-valued
property.

4. seq_length This is a length so it will be interpreted as a numerical prop-
erty.
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5. molecule_type This has six possible values so it is necessary to intro-
duce an enumerated class for the values of this property.

The OWL ontology looks like the following:

<owl:Class rdf:ID="bio_sequence"/>
<owl:ObjectProperty rdf:ID="sequence_id">

<rdfs:domain rdf:about="#bio_sequence"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="organism_name">

<rdfs:domain rdf:about="#bio_sequence"/>
<rdfs:range rdf:about=
"http://www.w3.org/2000/10/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="organism_name">

<rdfs:domain rdf:about="#bio_sequence"/>
<rdfs:range rdf:about=
"http://www.w3.org/2000/10/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="seq_length">

<rdfs:domain rdf:about="#bio_sequence"/>
<rdfs:range rdf:about=
"http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger"/>

</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="molecule_type">

<rdfs:domain rdf:about="#bio_sequence"/>
<rdfs:range rdf:about="#MoleculeTypes"/>

</owl:ObjectProperty>
<owl:Class rdf:ID="MoleculeTypes">

<owl:oneOf parseType="Collection">
<owl:MoleculeTypes rdf:ID="DNA"/>
<owl:MoleculeTypes rdf:ID="mDNA"/>
<owl:MoleculeTypes rdf:ID="rDNA"/>
<owl:MoleculeTypes rdf:ID="tDNA"/>
<owl:MoleculeTypes rdf:ID="cDNA"/>
<owl:MoleculeTypes rdf:ID="AA"/>

</owl:oneOf>
</owl:Class>

ANSWER TO

EXERCISE 8.1
To solve this exercise extract all interview elements that have attributes with
the desired characteristics. Dates always start with the year so the following
query gives the desired results:

document("healthstudy.xml")
//Interview[starts-with(@Date,"2000") and @BMI>30]
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Alternatively, one can use the XQuery function that extracts the year from
a date as in the following query:

document("healthstudy.xml")
//Interview[year-from-dateTime(@Date)=2000 and @BMI>30]

ANSWER TO

EXERCISE 8.2
First find the insulin gene locus. Then within this locus find all literature
entries. An entry is a literature reference if the reference element containing
the entry is named “Literature references.” Note the use of “..” to obtain
the name attribute of the parent element of the entry.

for $locus in document("bio.xml")//locus
where $locus/gene/@name = "Insulin gene"
return (for $entry in $locus/reference/db_entry

where $entry/../@name = "Literature references"
return $entry)

ANSWER TO

EXERCISE 8.3
Look for all citations that have a MeSH heading satisfying the criteria. The
following query looks at all citations, and then within each citation it looks
at every heading. Whenever a heading satisfies the criteria, the citation is
returned.

for $citation in
document("pubmed.xml")//MedlineCitation,

$heading in
$citation//MeshHeading

where $heading/DescriptorName/@MajorTopicYN="Y"
and $heading/DescriptorName="Glutethimide"
and $heading/QualifierName="therapeutic use"
return $citation

In the query above, if a citation has more than one MeSH heading that
satisfies the criteria, then the citation will be returned more than once. One
can avoid this problem by using a “nested” subquery as in the following
query. For each citation, this query runs a separate subsidiary query that
finds all headings within the citation that satisfy the criteria. If the nested
subquery has one or more results, then the citation is returned.
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for $citation in document("pubmed.xml")//MedlineCitation
where exists
(for $heading in $citation//MeshHeading
where $heading/DescriptorName/@MajorTopicYN="Y"
and $heading/DescriptorName="Glutethimide"
and $heading/QualifierName="therapeutic use"
return $heading)

return $citation

ANSWER TO

EXERCISE 8.5
To solve this exercise, extract all pairs of interviews for the same subject such
that the second interview is more than 2 years later, and the BMI attribute is
more than 4.5 larger.

for $i in document("healthstudy.xml")//Interview,
$j in document("healthstudy.xml")//Interview

where $i/@SID = $j/@SID
and $j/@BMI - $i/@BMI > 4.5
and $j/@Date - $i/@Date < "P2Y"
return $i/@SID

This query can return the same subject identifier more than once when a
subject satisfies the criteria multiple times.

ANSWER TO

EXERCISE 8.6
The number of associations is specified by the n_associations attribute of
the go:term element. The term number is specified by the go:accession
element. The GO namespace must be declared prior to using it in the query.

declare namespace
go="http://www.geneontology.org/dtds/go.dtd#";

document("go.xml")
//go:term[go:accession="GO:0003673"]/@n_associations

Unfortunately, the GO is a very large ontology. When the associations are
included, the GO is a 500 megabyte file. A query such as the one above
would have to read the entire file, which can take a long time. More efficient
techniques for querying such a large ontology were discussed in section 6.3.

ANSWER TO

EXERCISE 11.1
Here is one possible solution:
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<xsl:template match="gene">
<xsl:copy>

<xsl:attribute name="locus">
<xsl:value-of select="../@name"/>

</xsl:attribute>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

This template applies only to gene elements. All other elements are copied
exactly. For gene elements, the element itself is copied, then a new attribute
is added named locus, having a value equal to the name attribute of its
parent element.ANSWER TO

EXERCISE 11.2

<xsl:template match="locus">
<xsl:apply-templates select="gene"/>

</xsl:template>

<xsl:template match="gene">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
<xsl:apply-templates select="../reference"/>

</xsl:copy>
</xsl:template>

The first template removes the locus element, along with all of its child
elements, except for the gene element. The second template copies all gene
elements and adds the reference elements that were removed by the first
template.ANSWER TO

EXERCISE 11.3

<xsl:template match="organism">
<organism>

<xsl:apply-templates select="@*"/>
<contains>
<xsl:apply-templates select="node()"/>

</contains>
</organism>

</xsl:template>
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Note that the attributes of organism remain in the same element, but the
child elements of organism are made child elements of the new contains
element.ANSWER TO

EXERCISE 11.4

<xsl:template match="reference">
<xsl:choose>
<xsl:when test="@name=’Sequence databases’">
<isStoredIn>

<xsl:apply-templates select="@*|node()"/>
</isStoredIn>

</xsl:when>
<xsl:when test="@name=’Literature references’">
<isCitedBy>

<xsl:apply-templates select="@*|node()"/>
</isCitedBy>

</xsl:when>
</xsl:choose>

</xsl:template>
ANSWER TO

EXERCISE 11.5

<xsl:template match="gene">

<gene>

<xsl:attribute name="embl">

<xsl:value-of select=

"../reference[@name=’Sequence databases’]

/db_entry[@name=’EMBL sequence’]/@entry"/>

</xsl:attribute>

<xsl:attribute name="organism">

<xsl:value-of select="../../../../organism/@name"/>

</xsl:attribute>

<xsl:apply-templates select="@*|node()"/>

</gene>

</xsl:template>
ANSWER TO

EXERCISE 11.6

<xsl:template match="gene">
<gene>
<xsl:attribute name="totalExonLength">
<xsl:value-of
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select="sum(exon/@end)-sum(exon/@start)+count(exon)"/>
</xsl:attribute>
<xsl:apply-templates select="@*|node()"/>

</gene>
</xsl:template>

ANSWER TO

EXERCISE 12.1

Why Assist research
What High-level view
Who Researchers
When A few weeks
How Help understanding

ANSWER TO

EXERCISE 12.2
Consistency checking uses a software tool. This is analogous to the data-
mining tool in the diagram. So it should bemodeled as an actor. The consistency-
checking tool can check the ontology for consistency, and it can also check
that the chart database is consistent with the chart ontology. The modified
diagram is in figure 17.1

Medical Personnel

Ontologist

Data Mining Tool

Authorization

Chart Database

Chart Ontology

Consistency Checker

Figure 17.1 Modified use case diagram for the medical chart ontology. The diagram
now includes the consistency checking tool.

ANSWER TO

EXERCISE 12.3
For this project, one would like to make use of more advanced modeling
constructs. This is a good argument in favor of the OWL languages. In-
compatibility with the other major web-based ontology language groups is
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unimportant because the ontology will be used for research purposes by a
relatively small group of individuals for a short time. Since the purpose of
the project is to improve the understanding of concepts in the domain, it
will emphasize concept definitions. Description logic is ideally suited for
defining concepts. This suggests that one should use either OWL Lite or
OWL-DL. Since one would expect that the concepts will be relatively com-
plex, it is likely that OWL Lite will not be adequate. The most appropriate
language for this project is therefore OWL-DL.ANSWER TO

EXERCISE 12.4
It is probably not appropriate to reuse SNPdb. The SNP ontology to be de-
veloped is concerned with high-level information about SNPs, not low-level
information about the experimental procedures that are needed for finding
SNPs. Importing all of the SNPdb would incorporate much more than is
required. However, it is certainly useful to look at the SNPdb ontology for
design possibilities.ANSWER TO

EXERCISE 12.5
One possible way to classify SNPs is according to whether they affect genes
or are between genes. The SNPs that have a genetic effect are further subclas-
sified according to whether they are part of an exon, intron, or the regulatory
region of the gene. The class diagram is shown in figure 17.2. Of course,
there are many other ways that one could classify SNPs.

SNP

Genic SNP Intergenic SNP

Coding SNP Intron SNP Regulatory SNP

Figure 17.2 Concept hierarchy for the SNP ontology.



References

AGAVE, 2002. The Architecture for Genomic Annotation, Visualization and Ex-
change. www.animorphics.net/lifesci.html.

Al-Shahrour, F., R. Diaz-Uriarte, and J. Dopazo. 2004. FatiGO: a web tool for finding
significant associations of Gene Ontology terms with groups of genes. Bioinformat-
ics 20:578–580.

Altschul, S.F. 1991. Amino acid substitution matrices from an information theoretic
perspective. J. Mol. Biol. 219:555–565.

Altschul, S.F., and W. Gish. 1996. Local alignment statistics. Methods Enzymol. 266:
460–480.

Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local
alignment search tool. J. Mol. Biol. 215:403–410.

Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lip-
man. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25:3389–3402.

Andreeva, A., D. Howorth, S.E. Brenner, T.J. Hubbard, C. Chothia, and A.G. Murzin.
2004. SCOP database in 2004: refinements integrate structure and sequence family
data. Nucleic Acids Res. 32:D226–D229. Database issue.

Aronson, A.R. 2001. Effective mapping of biomedical text to the UMLS Metathe-
saurus: the MetaMap program. In Proc. AMIA Symp., pp. 17–21.

Asimov, I. 1964. A Short History of Biology. London: Thomas Nelson & Sons.

Attwood, T.K., P. Bradley, D.R. Flower, A. Gaulton, N. Maudling, A.L. Mitchell,
G.Moulton, A. Nordle, K. Paine, P. Taylor, A. Uddin, and C. Zygouri. 2003. PRINTS
and its automatic supplement, prePRINTS. Nucleic Acids Res. 31:400–402.

Attwood, T.K., D.R. Flower, A.P. Lewis, J.E.Mabey, S.R.Morgan, P. Scordis, J.N. Selley,
and W. Wright. 1999. PRINTS prepares for the new millennium. Nucleic Acids Res.
27:220–225.



394 References

Baclawski, K., 1997a. Distributed computer database system and method. United
States Patent No. 5,694,593. Assigned to Northeastern University, Boston.

Baclawski, K. 1997b. Long time, no see: categorization in information science. In
S. Hecker and G.C. Rota (eds.), Essays on the Future. In Honor of the 80th Birthday of
Nick Metropolis, pp. 11–26. Cambridge, MA: Birkhauser.

Baclawski, K. 2003. Ontology development. Kenote address in International Workshop
on Software Methodologies, Tools and Techniques, pp. 3–26.

Baclawski, K., J. Cigna, M.M. Kokar, P. Mager, and B. Indurkhya. 2000. Knowledge
representation and indexing using the UnifiedMedical Language System. In Pacific
Symposium on Biocomputing, vol. 5, pp. 490–501.

Baclawski, K., M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski, and
M. Aronson. 2001. Extending UML to support ontology engineering for the Se-
mantic Web. In M. Gogolla and C. Kobryn (eds.), Fourth International Conference on
the Unified Modeling Language, vol. 2185, pp. 342–360. Berlin: Springer-Verlag.

Baclawski, K., C. Matheus, M. Kokar, and J. Letkowski. 2004. Toward a symptom on-
tology for SemanticWeb applications. In ISWC’04, vol. 3298, pp. 650–667. Springer-
Verlag, Berlin.

Bader, G.D., D. Betel, and C.W. Hogue. 2003. BIND: the biomolecular interaction
network database. Nucleic Acids Res. 31:248–250.

Bairoch, A. 1991. PROSITE: a dictionary of sites and patterns in proteins. Nucleic
Acids Res. 19:2241–2245.

Baker, P.G., A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. 1998. TAMBIS–
transparent access to multiple bioinformatics information sources. In Proc. Int.
Conf. Intell. Syst. Mol. Biol., vol. 6, pp. 25–34.

Baker, P.G., C.A. Goble, S. Bechhofer, N.W. Paton, R. Stevens, and A. Brass. 1999. An
ontology for bioinformatics applications. Bioinformatics 15:510–520.

Bateman, A., L. Coin, R. Durbin, R.D. Finn, V. Hollich, S. Griffiths-Jones, A. Khanna,
M. Marshall, S. Moxon, E.L. Sonnhammer, D.J. Studholme, C. Yeats, and S.R. Eddy.
2004. The Pfam protein families database. Nucleic Acids Res. 32:D138–D141. Data-
base issue.

Benson, D.A., I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and D.L. Wheeler. 2004.
GenBank: update. Nucleic Acids Res. 32:D23–D26. Database issue.

Bergamaschi, S., S. Castano, and M. Vincini. 1999. Semantic integration of semistruc-
tured and structured data sources. SIGMOD Rec. 28:54–59.

Bergman, C.M., B.D. Pfeiffer, D. Rincon-Limas, R.A. Hoskins, A. Gnirke, C.J. Mungall,
A.M. Wang, B. Kronmiller, J. Pacleb, S. Park, M. Stapleton, K. Wan, R.A. George,
P.J. de Jong, J. Botas, G.M. Rubin, and S.E. Celniker. 2002. Assessing the impact of
comparative genomic sequence data on the functional annotation of the Drosophila
genome. Genome Biol. 3:RESEARCH0086.



References 395

Berman, H.M., T.N. Bhat, P.E. Bourne, Z. Feng, G. Gilliland, H. Weissig, and J. West-
brook. 2000. The Protein Data Bank and the challenge of structural genomics. Nat.
Struct. Biol. 7:957–959.

Berman, H.M., W.K. Olson, D.L. Beveridge, J. Westbrook, A. Gelbin, T. Demeny, S.H.
Hsieh, A.R. Srinivasan, and B. Schneider. 1992. The nucleic acid database. A com-
prehensive relational database of three-dimensional structures of nucleic acids. Bio-
phys. J. 63:751–759.

Berners-Lee, T., 2000a. Semantic Web - XML2000. www.w3.org/2000/Talks/

1206-xml2k-tbl.

Berners-Lee, T., 2000b. Why RDF model is different from the XML model. www.w3.
org/DesignIssues/RDF-XML.html.

BioML, 2003. Biopolymer Markup Language website. www.rdcormia.com/

COIN78/files/XML_Finals/BIOML/Pages/BIOML.htm.

Birney, E., T.D. Andrews, P. Bevan, M. Caccamo, Y. Chen, L. Clarke, G. Coates,
J. Cuff, V. Curwen, T. Cutts, T. Down, E. Eyras, X.M. Fernandez-Suarez, P. Gane,
B. Gibbins, J. Gilbert, M. Hammond, H.R. Hotz, V. Iyer, K. Jekosch, A. Kahari,
A. Kasprzyk, D. Keefe, S. Keenan, H. Lehvaslaiho, G. McVicker, C. Melsopp,
P. Meidl, E. Mongin, R. Pettett, S. Potter, G. Proctor, M. Rae, S. Searle, G. Slater,
D. Smedley, J. Smith, W. Spooner, A. Stabenau, J. Stalker, R. Storey, A. Ureta-Vidal,
K.C. Woodwark, G. Cameron, R. Durbin, A. Cox, T. Hubbard, andM. Clamp. 2004.
An overview of Ensembl. Genome Res. 14:925–928.

Bodenreider, O. 2004. The Unified Medical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Res. 32:D267–D270. Database issue.

Bodenreider, O., S.J. Nelson, W.T. Hole, and H.F. Chang. 1998. Beyond synonymy:
exploiting the UMLS semantics in mapping vocabularies. In Proc. AMIA Symp., pp.
815–819.

Brachman, R., and J. Schmolze. 1985. An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Sci 9:171–216.

Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert,
J. Aach,W. Ansorge, C.A. Ball, H.C. Causton, T. Gaasterland, P. Glenisson, F.C. Hol-
stege, I.F. Kim, V. Markowitz, J.C. Matese, H. Parkinson, A. Robinson, U. Sarkans,
S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron. 2001. Minimum
information about a microarray experiment (MIAME)–toward standards for mi-
croarray data. Nat. Genet. 29:365–371.

Buck, L. 2000. The molecular architecture of odor and pheromone sensing in mam-
mals. Cell 100:611–618.

Buck, L., and R. Axel. 1991. A novel multigene family may encode odorant receptors:
a molecular basis for odor recognition. Cell 65:175–187.



396 References

Bunge, M. 1977. Treatise on Basic Philosophy. III: Ontology: The Furniture of the World.
Dordrecht, Netherlands: Reidel.

Bunge, M. 1979. Treatise on Basic Philosophy. IV: Ontology: A World of Systems. Dor-
drecht, Netherlands: Reidel.

Camon, E., M. Magrane, D. Barrell, D. Binns, W. Fleischmann, P. Kersey, N. Mulder,
T. Oinn, J. Maslen, A. Cox, and R. Apweiler. 2003. The Gene Ontology Annotation
(GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Ge-
nome Res. 13:662–672.

Celis, J.E., M. Ostergaard, N.A. Jensen, I. Gromova, H.H. Rasmussen, and P. Gro-
mov. 1998. Human and mouse proteomic databases: novel resources in the protein
universe. FEBS Lett. 430:64–72.

CellML, 2003. CellML website. www.cellml.org.

Chakrabarti, S., B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan.
1998. Automatic resource list compilation by analyzing hyperlink structure and
associated text. In Proc. 7th Int. World Wide Web Conf.

Chen, R.O., R. Felciano, and R.B. Altman. 1997. RIBOWEB: linking structural com-
putations to a knowledge base of published experimental data. In Proc. Int. Conf.
Intell. Syst. Mol. Biol., vol. 5, pp. 84–87.

Cheng, J., S. Sun, A. Tracy, E. Hubbell, J. Morris, V. Valmeekam, A. Kimbrough, M.S.
Cline, G. Liu, R. Shigeta, D. Kulp, and M.A. Siani-Rose. 2004. NetAffx Gene On-
tology Mining Tool: a visual approach for microarray data analysis. Bioinformatics
20:1462–1463.

Cleverdon, C., and E. Keen. 1966. Factors determining the performance of indexing
systems. Vol. 1: Design, Vol. 2: Results. Technical report, Aslib Cranfield Research
Project, Cranfield, UK.

Clocksin, W., C. Mellish, andW. Clocksin. 2003. Programming in PROLOG. New York:
Springer-Verlag.

CML, 2003. Chemical Markup Language website. www.xml-cml.org.

Conde, L., J.M. Vaquerizas, J. Santoyo, F. Al-Shahrour, S. Ruiz-Llorente, M. Robledo,
and J. Dopazo. 2004. PupaSNP Finder: a web tool for finding SNPs with putative
effect at transcriptional level. Nucleic Acids Res. 32:W242–W248. Web server issue.

Cooper, D.N. 1999. Human Gene Evolution. San Diego: Academic Press.

Crasto, C., L. Marenco, P. Miller, and G. Shepherd. 2002. Olfactory Receptor Data-
base: a metadata-driven automated population from sources of gene and protein
sequences. Nucleic Acids Res. 30:354–360.

Dayhoff, M.O., R.M. Schwartz, and B.C. Orcutt. 1978. A model of evolutionary
change in proteins. In M.O. Dayhoff (ed.), Atlas of Protein Sequence and Structure,
vol. 5, pp. 345–352. Washington, DC: National Biomedical Research Foundation.



References 397

De Finetti, B. 1937. La prévision: ses lois logiques, ses sources subjectives. Ann. Inst.
Henri Poincaré 7:1–68.

Decker, S., D. Brickley, J. Saarela, and J. Angele. 1998. A query and inference service
for RDF. In QL’98 - The Query Language Workshop.

Dennis, G., Jr., B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, H.C. Lane, and R.A.
Lempicki. 2003. DAVID: Database for annotation, visualization, and integrated
discovery. Genome Biol. 4:P3.

Denny, J.C., J.D. Smithers, and R.A. Miller. 2003. “Understanding” medical school
curriculum content using KnowledgeMap. J. Am. Med. Inf. Assoc. 10:351–362.

Denny, M., 2002a. Ontology building: a survey of editing tools. www.xml.com/pub/
a/2002/11/06/ontologies.html.

Denny, M., 2002b. Ontology editor survey results. www.xml.com/2002/11/06/

Ontology_Editor_Survey.html.

Ding, Z., and Y. Peng. 2004. A probabilistic extension to ontology language OWL. In
Proc. 37th Hawaii Int. Conf. on Systems Science.

Do, H., S. Melnik, and E. Rahm. 2002. Comparison of schema matching evaluations.
In Proc. GI-Workshop “Web and Databases,” vol. 2593, Erfurt, Germany. Springer-
Verlag.

Do, H., and E. Rahm. 2002. COMA - a system for flexible combination of schema
matching approaches. In Proc. VLDB.

Dodd, I.B., and J.B. Egan. 1990. Improved detection of helix-turn-helix DNA-binding
motifs in protein sequences. Nucleic Acids Res. 18:5019–5026.

Draghici, S., P. Khatri, P. Bhavsar, A. Shah, S.A. Krawetz, and M.A. Tainsky. 2003.
Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare,
Onto-Design and Onto-Translate. Nucleic Acids Res. 31:3775–3781.

DUET, 2002. DAML UML enhanced tool (DUET). grcinet.grci.com/maria/

www/CodipSite/Tools/Tools.html.

Dwight, S.S., R. Balakrishnan, K.R. Christie, M.C. Costanzo, K. Dolinski, S.R. En-
gel, B. Feierbach, D.G. Fisk, J. Hirschman, E.L. Hong, L. Issel-Tarver, R.S. Nash,
A. Sethuraman, B. Starr, C.L. Theesfeld, R. Andrada, G. Binkley, Q. Dong, C. Lane,
M. Schroeder, S. Weng, D. Botstein, and J.M. Cherry. 2004. Saccharomyces genome
database: underlying principles and organisation. Brief Bioinform. 5:9–22.

EcoCyc, 2003. Encyclopedia of Escherichia coli Genes andMetabolism. www.ecocyc.
org.

Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics 14:755–763.

Embley, D., et al. 2001. Multifaceted exploitation of metadata for attribute match
discovery in information integration. In International Workshop on Information Inte-
gration on the Web.



398 References

Euler, 2003. Euler proof mechanism. www.agfa.com/w3c/euler/.

ezOWL, 2004. ezOWL website. iweb.etri.re.kr/ezowl/.

Fauconnier, G., and M. Turner. 1998. Conceptual integration networks. Cognitive Sci.
22:133–187.

Fauconnier, G., and M. Turner. 2002. The Way We Think: Conceptual Blending and The
Mind’s Hidden Complexities. New York: Basic Books.

Fenyo, D. 1999. The Biopolymer Markup Language. Bioinformatics 15:339–340.

Fitzhugh, R.A. 1961. Impulses and physiological states in theoretical models of nerve
membrane. Biophys. J. 1:445–466.

FlyBase. 2002. The FlyBase database of the Drosophila genome projects and commu-
nity literature. Nucleic Acids Res. 30:106–108.

Forgy, C. 1982. Rete: a fast algorithm for the many pattern/many object pattern
match problem. Artif. Intell. 19:17–37.

FOWL, 2003. F-OWL: an OWL inference engine in Flora-2. fowl.sourceforge.
net.

Fraser, A.G., and E.M. Marcotte. 2004. A probabilistic view of gene function. Nat.
Genet. 36:559–564.

Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models.
Science 303:799.

GAME, 2002. Genome Annotation Markup Elements. www.fruitfly.org/

comparative.

Genesereth, M., 1998. Knowledge Interchange Format draft proposed American
National Standard (dpANS) NCITS.T2/98-004. logic.stanford.edu/kif/

dpans.html.

Ghosh, D. 1993. Status of the transcription factors database (tfd). Nucleic Acids Res.
21:3117–3118.

Ghosh, D. 2000. Object-oriented transcription factors database (ooTFD). Nucleic Acids
Res. 28:308–310.

Gibson, D., J. Kleinberg, and P. Raghavan. 1998. Inferring Web communities from
link topology. In Proc. 9th ACM Conf. on Hypertext and Hypermedia.

Gilmour, R. 2000. Taxonomic Markup Language: applying XML to systematic data.
Bioinformatics 16:406–407.

Gish, W., and D.J. States. 1993. Identification of protein coding regions by database
similarity search. Nat. Genet. 3:266–272.

Glymour, C., and G. Cooper (eds.). 1999. Computation, Causation and Discovery. Cam-
bridge, MA: MIT Press.



References 399

GO, 2003. Gene ontology website. www.geneontology.org.

GO. 2004. The Gene Ontology (GO) database and informatics resource. Nucleic Acids
Res. 32:D258–D261.

GOA, 2003. Gene Ontology Annotation website. www.ebi.ac.uk/GOA.

Goddard, N.H., M. Hucka, F. Howell, H. Cornelis, K. Shankar, and D. Beeman. 2001.
NeuroML:model descriptionmethods for collaborativemodelling in neuroscience.
Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356:1209–1228.

Goguen, J. 1999. Semiotic morphism, representations, and blending for interface
design. Formal Aspects of Computing 11:272–301.

Goguen, J., and D. Harrell. 2004. Foundations for active multimedia narrative: semi-
otic spaces and structural blending. Technical report, University of California, San
Diego. www.cs.ucsd.edu/users/goguen/pps/narr.pdf.

Gough, J., K. Karplus, R. Hughey, and C. Chothia. 2001. Assignment of homology
to genome sequences using a library of hidden Markov models that represent all
proteins of known structure. J. Mol. Biol. 313:903–919.

Grant, J.D., R.L. Dunbrack, F.J. Manion, and M.F. Ochs. 2002. BeoBLAST: distributed
BLAST and PSI-BLAST on a beowulf cluster. Bioinformatics 18:765–766.

Guarino, N., and P. Giaretta. 1995. Ontologies and knowledge bases: towards a
terminological clarification. In N. Mars (ed.), Towards Very Large Knowledge Bases.
Amsterdam: IOS Press.

Guo, J., K. Araki, K. Tanaka, J. Sato, M. Suzuki, A. Takada, T. Suzuki, Y. Nakashima,
and H. Yoshihara. 2003. The latest MML (Medical Markup Language) version 2.3–
XML-based standard for medical data exchange/storage. J. Med. Syst. 27:357–366.

Hadley, C., and D.T. Jones. 1999. A systematic comparison of protein structure clas-
sifications: SCOP, CATH and FSSP. Struct. Fold. Des. 7:1099–1112.

Haft, D.H., J.D. Selengut, and O. White. 2003. The TIGRFAMs database of protein
families. Nucleic Acids Res. 31:371–373.

Han, K., B. Park, H. Kim, J. Hong, and J. Park. 2004. HPID: the Human Protein
Interaction Database. Bioinformatics 20:2466–2470.

Hanisch, D., R. Zimmer, and T. Lengauer. 2002. ProML–the Protein Markup Lan-
guage for specification of protein sequences, structures and families. In Silico Biol.
2:313–324.

Hayes, P., 2004. RDF semantics. www.w3.org/TR/rdf-mt/.

Heflin, J., J. Hendler, and S. Luke. 1999. Coping with changing ontologies in a dis-
tributed environment. In AAAI-99 Workshop on Ontology Management. MIT Press,
Cambridge, MA.



400 References

Heflin, J., J. Hendler, and S. Luke. 2000. SHOE: a knowledge representation lan-
guage for Internet applications. Technical Report www.cs.umd.edu/projects/-
plus/SHOE, Institute for Advanced Studies, University ofMaryland, College Park.

Helsper, E., and L. van der Gaag. 2001. Ontologies for probabilistic networks: A case
study in oesophageal cancer. In B. Kröse, M. de Rijke, G. Schreiber, and M. van
Someren (eds.), Proc. 13th Belgium-Netherlands Conference on Artificial Intelligence,
Amsterdam, pp. 125–132.

Helsper, E., and L. van der Gaag. 2002. A case study in ontologies for probabilistic
networks. In M. Bramer, F. Coenen, and A. Preece (eds.), Research and Development
in Intelligent Systems XVIII, pp. 229–242. London: Springer-Verlag.

Henikoff, J.G., E.A. Greene, S. Pietrokovski, and S. Henikoff. 2000. Increased coverage
of protein families with the blocks database servers. Nucleic Acids Res. 28:228–230.

Henikoff, S., and J.G. Henikoff. 1991. Automated assembly of protein blocks for
database searching. Nucleic Acids Res. 19:6565–6572.

Henikoff, S., and J.G. Henikoff. 1992. Amino acid substitution matrices from protein
blocks. Proc. Natl. Acad. Sci. U.S.A. 89:10915–10919.

Henikoff, S., and J.G. Henikoff. 1994. Protein family classification based on searching
a database of blocks. Genomics 19:97–107.

Henikoff, S., S. Pietrokovski, and J.G. Henikoff. 1998. Superior performance in protein
homology detectionwith the Blocks database servers. Nucleic Acids Res. 26:309–312.

Henrion, M., M. Pradhan, B. del Favero, K. Huang, G. Provan, and P. O’Rorke. 1996.
Why is diagnosis using belief networks insensitive to imprecision in probabilities?
In Proc. 12th Conf. Uncertainty in Artificial Intelligence, pp. 307–314.

Hertz, G.Z., G.W. Hartzell III, and G.D. Stormo. 1990. Identification of consensus
patterns in unaligned DNA sequences known to be functionally related. Comput.
Appl. Biosci. 6:81–92.

Hertz, G.Z., and G.D. Stormo. 1999. Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences. Bioinformatics 15:563–577.

Hoebeke, M., H. Chiapello, P. Noirot, and P. Bessieres. 2001. SPiD: a subtilis protein
interaction database. Bioinformatics 17:1209–1212.

Holm, L., C. Ouzounis, C. Sander, G. Tuparev, and G. Vriend. 1992. A database of
protein structure families with common folding motifs. Protein Sci. 1:1691–1698.

Holm, L., and C. Sander. 1998. Touring protein fold space with Dali/FSSP. Nucleic
Acids Res. 26:316–319.

Howard, R., and J. Matheson. 1981. Influence diagrams. In R. Howard and J. Mathe-
son (eds.), Readings on the Principles and Applications of Decision Analysis, vol. 2, pp.
721–762. Menlo Park, CA: Strategic Decisions Group.



References 401

Hubbard, T., D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox, J. Cuff,
V. Curwen, T. Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond, L. Huminiecki,
A. Kasprzyk, H. Lehvaslaiho, P. Lijnzaad, C. Melsopp, E. Mongin, R. Pettett,
M. Pocock, S. Potter, A. Rust, E. Schmidt, S. Searle, G. Slater, J. Smith, W. Spooner,
A. Stabenau, J. Stalker, E. Stupka, A. Ureta-Vidal, I. Vastrik, and M. Clamp. 2002.
The Ensembl genome database project. Nucleic Acids Res. 30:38–41.

Hucka, M., A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, A.P. Arkin,
B.J. Bornstein, D. Bray, A. Cornish-Bowden, A.A. Cuellar, S. Dronov, E.D. Gilles,
M. Ginkel, V. Gor, I.I. Goryanin, W.J. Hedley, T.C. Hodgman, J.H. Hofmeyr, P.J.
Hunter, N.S. Juty, J.L. Kasberger, A. Kremling, U. Kummer, N. Novere Le, L.M.
Loew, D. Lucio, P. Mendes, E. Minch, E.D. Mjolsness, Y. Nakayama, M.R. Nel-
son, P.F. Nielsen, T. Sakurada, J.C. Schaff, B.E. Shapiro, T.S. Shimizu, H.D. Spence,
J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang. 2003. The Systems
Biology Markup Language (SBML): a medium for representation and exchange of
biochemical network models. Bioinformatics 19:524–531. SBML forum.

Hughes, J.D., P.W. Estep, S. Tavazoie, and G.M. Church. 2000. Computational iden-
tification of cis-regulatory elements associated with groups of functionally related
genes in Saccharomyces cerevisiae. J. Mol. Biol. 296:1205–1214.

Hulo, N., C.J. Sigrist, V. Le Saux, P.S. Langendijk-Genevaux, L. Bordoli, A. Gat-
tiker, E. De Castro, P. Bucher, and A. Bairoch. 2004. Recent improvements to the
PROSITE database. Nucleic Acids Res. 32:D134–D137. Database issue.

IHMC. 2003. The International HapMap Project. Nature 426:789–796.

Indurkhya, B. 1992. Metaphor and Cognition. Dordrecht, Netherlands: Kluwer Acade-
mic.

Indurkhya, B. 2002. On the philosophical foundation of Lyee: interaction theories and
Lyee. In H. Fujita and P. Johannesson (eds.), New Trends in Software Methodologies,
Tools and Techniques, pp. 45–51. Amsterdam: IOS Press.

ISMWG. 2001. A map of human genome sequence variation containing 1.42 million
single nucleotide polymorphisms. Nature 409:928–933.

Jaakkola, T., andM. Jordan. 1999. Variational probabilistic inference and the QMR-DT
network. J. of Artif. Intell. Res. 10:291–322.

Jain, A., and R. Dubes. 1988. Algorithms for Clustering Data. Englewood Cliffs, NJ:
Prentice Hall.

Jarg, 2005. SemanTx Life Sciences, a division of Jarg Corporation. www.semantxls.
com.

Jung, E., A.L. Veuthey, E. Gasteiger, andA. Bairoch. 2001. Annotation of glycoproteins
in the SWISS-PROT database. Proteomics 1:262–268.

Jurowski, P., R. Gos, A. Kapica, andM. Zdzieszynska. 2004. Secondary glaucoma due
to progressive iris atrophy–a century after the first description. Case report. Klin.
Oczna 106:80–82.



402 References

Kanehisa, M., and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28:27–30.

Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya. 2002. The KEGG databases at
GenomeNet. Nucleic Acids Res. 30:42–46.

Karlin, S., and S.F. Altschul. 1990. Methods for assessing the statistical significance
of molecular sequence features by using general scoring schemes. Proc. Natl. Acad.
Sci. U.S.A. 87:2264–2268.

Karlin, S., and S.F. Altschul. 1993. Applications and statistics for multiple high-
scoring segments inmolecular sequences. Proc. Natl. Acad. Sci. U.S.A. 90:5873–5877.

Karp, P.D., S. Paley, and P. Romero. 2002a. The Pathway Tools software. Bioinformatics
18:S225–S232.

Karp, P.D., M. Riley, S.M. Paley, and A. Pellegrini-Toole. 2002b. The MetaCyc data-
base. Nucleic Acids Res. 30:59–61.

Karp, P.D., M. Riley, M. Saier, I.T. Paulsen, J. Collado-Vides, S.M. Paley, A. Pellegrini-
Toole, C. Bonavides, and S. Gama-Castro. 2002c. The EcoCyc database. Nucleic
Acids Res. 30:56–58.

Kelley, B.P., B. Yuan, F. Lewitter, R. Sharan, B.R. Stockwell, and T. Ideker. 2004. Path-
BLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res. 32:
W83–W88. Web server issue.

Kent, W.J. 2002. BLAT–the BLAST-like alignment tool. Genome Res. 12:656–664.

King, O.D., R.E. Foulger, S.S. Dwight, J.V. White, and F.P. Roth. 2003. Predicting gene
function from patterns of annotation. Genome Res. 13:896–904.

Kleinberg, J. 1998. Authoritative sources in a hyperlinked environment. In Proc.
ACM-SIAM Symp. on Discrete Algorithms.

Know-Me, 2004. Know-Me website. www.nbirn.net/Resources/Users/

Applications/KnowMe/Know-ME.htm.

Kogut, P., S. Cranefield, L. Hart, M. Dutra, K. Baclawski, M. Kokar, and J. Smith. 2002.
UML for ontology development. Knowledge Eng. Rev. 17:61–64.

Kohane, I.S., A.T. Kho, and A.J. Butte. 2003. Microarrays for an Integrative Genomics.
Cambridge, MA: MIT Press.

Kohonen, T. 1997. Self-organizating maps. New York: Springer-Verlag.

Kokar, M., J. Letkowski, K. Baclawski, and J. Smith, 2001. The ConsVISor consistency
checking tool. www.vistology.com/consvisor/.

Kolchanov, N.A., E.V. Ignatieva, E.A. Ananko, O.A. Podkolodnaya, I.L. Stepanenko,
T.I. Merkulova, M.A. Pozdnyakov, N.L. Podkolodny, A.N. Naumochkin, and A.G.
Romashchenko. 2002. Transcription Regulatory Regions Database (TRRD): its sta-
tus in 2002. Nucleic Acids Res. 30:312–317.



References 403

Koller, D., A. Levy, andA. Pfeffer. 1997. P-Classic: a tractable probabilistic description
logic. In Proc. 14th National Conf. on Artificial Intelligence, Providence, RI, pp. 390–
397.

Koller, D., and A. Pfeffer. 1997. Object-oriented Bayesian networks. In Proc. 13th Ann.
Conf. on Uncertainty in Artificial Intelligence, Providence, RI, pp. 302–313.

Korf, I., and W. Gish. 2000. MPBLAST : improved BLAST performance with multi-
plexed queries. Bioinformatics 16:1052–1053.

Krishnan, V.G., and D.R. Westhead. 2003. A comparative study of machine-learning
methods to predict the effects of single nucleotide polymorphisms on protein func-
tion. Bioinformatics 19:2199–2209.

Kulikova, T., P. Aldebert, N. Althorpe, W. Baker, K. Bates, P. Browne, A. van den
Broek, G. Cochrane, K. Duggan, R. Eberhardt, N. Faruque, M. Garcia-Pastor,
N. Harte, C. Kanz, R. Leinonen, Q. Lin, V. Lombard, R. Lopez, R. Mancuso,
M. McHale, F. Nardone, V. Silventoinen, P. Stoehr, G. Stoesser, M.A. Tuli, K. Tzou-
vara, R. Vaughan, D. Wu, W. Zhu, and R. Apweiler. 2004. The EMBL nucleotide
sequence database. Nucleic Acids Res. 32:D27–D30. Database issue.

Kuter, I. 1999. Breast cancer highlights. Oncologist 4:299–308.

Lakoff, G. 1987. Women, Fire, and Dangerous Things: What Categories Reveal about the
Mind. Chicago: University of Chicago Press.

Lassila, O., and R. Swick, 1999. Resource description framework (RDF) model and
syntax specification. www.w3.org/TR/REC-rdf-syntax.

Lawrence, C., S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton. 1993. De-
tecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment.
Science 262:208–214.

Leibniz, G. 1998. Monadology. In G.W. Leibniz Philosophical Texts (1714), pp. 267–
281. Translated and edited by R. Woolhouse and R. Francks. New York: Oxford
University Press.

Leif, R.C., S.B. Leif, and S.H. Leif. 2003. CytometryML, an XML format based on
DICOM and FCS for analytical cytology data. Cytometry 54A:56–65.

Letunic, I., R.R. Copley, S. Schmidt, F.D. Ciccarelli, T. Doerks, J. Schultz, C.P. Ponting,
and P. Bork. 2004. SMART 4.0: towards genomic data integration. Nucleic Acids
Res. 32:D142–D144. Database issue.

Leung, Y.F., and C.P. Pang. 2002. EYE on bioinformatics: dissecting complex disease
traits in silico. Appl. Bioinformatics 1:69–80.

Li, W., and C. Clifton. 2000. Semint: a tool for identifying attribute correspondences
in heterogeneous databases using neural network. Data and Knowledge Engineering
33:49–84.



404 References

Lindberg, D.A., B.L. Humphreys, and A.T. McCray. 1993. The Unified Medical Lan-
guage System. Methods Inf. Med. 32:281–291.

Liu, J.S., A.F. Neuwald, , and C.E. Lawrence. 1995. Bayesian models for multiple
local sequence alignment and Gibbs sampling strategies. J. Am. Statis. Assoc. 90:
1156–1170.

Liu, X., D.L. Brutlag, and J.S. Liu. 2001. BioProspector: discovering conserved DNA
motifs in upstream regulatory regions of co-expressed genes. In Pac. Symp. Biocom-
put., pp. 127–138.

Lutteke, T., M. Frank, and C.W. von der Lieth. 2004. Data mining the protein data
bank: automatic detection and assignment of carbohydrate structures. Carbohydr.
Res. 339:1015–1020.

Lynch, M., and J.S. Conery. 2000. The evolutionary fate and consequences of duplicate
genes. Science 290:1151–1155.

MacKay, D., 2004. Bayesian methods for neural networks - FAQ. www.inference.
phy.cam.ac.uk/mackay/Bayes_FAQ.html.

MacQueen, J. 1967. Some methods for classification and analysis of multivariate
observations. In L. Le Cam and J. Neyman (eds.), Proc. Fifth Berkeley Symp. Math.
Statis. and Prob., vol. 1, pp. 281–297, Berkeley, CA. University of California Press.

Madera, M., C. Vogel, S.K. Kummerfeld, C. Chothia, and J. Gough. 2004. The SU-
PERFAMILY database in 2004: additions and improvements. Nucleic Acids Res. 32:
D235–D239. Database issue.

Madhavan, J., P. Bernstein, and E. Rahm. 2001. Generic schemamatching with Cupid.
In Proc. VLDB.

MAGE-ML, 2003. MicroArray Gene Expression Markup Language website. www.

mged.org.

Marchler-Bauer, A., A.R. Panchenko, B.A. Shoemaker, P.A. Thiessen, L.Y. Geer, and
S.H. Bryant. 2002. CDD: a database of conserved domain alignments with links to
domain three-dimensional structure. Nucleic Acids Res. 30:281–283.

Maybeck, P. 1979. Stochastic models, estimation and control, vol. 1. New York: Academic
Press.

McCray, A.T., O. Bodenreider, J.D. Malley, and A.C. Browne. 2001. Evaluating UMLS
strings for natural language processing. In Proc. AMIA Symp., pp. 448–452.

McGinnis, S., and T.L. Madden. 2004. BLAST: at the core of a powerful and diverse
set of sequence analysis tools. Nucleic Acids Res. 32:W20–W25. Web server issue.

McGuinness, D., R. Fikes, J. Rice, and S. Wilder. 2000. An environment for merging
and testing large ontologies. In Proceedings of the 7th International Conference on
Principles of Knowledge Representation and Reasoning (KR2000), Breckenridge, CO.



References 405

Mellquist, J.L., L. Kasturi, S.L. Spitalnik, and S.H. Shakin-Eshleman. 1998. The amino
acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked
core glycosylation efficiency. Biochemistry 37:6833–6837.

Mewes, H.W., C. Amid, R. Arnold, D. Frishman, U. Guldener, G. Mannhaupt,
M. Munsterkotter, P. Pagel, N. Strack, V. Stumpflen, J. Warfsmann, and A. Ruepp.
2004. MIPS: analysis and annotation of proteins fromwhole genomes. Nucleic Acids
Res. 32:D41–D44. Database issue.

Miller, E., R. Swick, D. Brickley, and B. McBride, 2001. Semantic Web activity page.
www.w3.org/2001/sw/.

Miller, R., L. Haas, and M. Hernandez. 2000. Schema mapping as query discovery. In
Proc. VLDB, pp. 77–88.

Mitra, P., G. Wiederhold, and J. Jannink. 1999. Semi-automatic integration of know-
ledge sources. In Proc. 2nd International Conf. on Information Fusion.

Miyazaki, S., H. Sugawara, K. Ikeo, T. Gojobori, and Y. Tateno. 2004. DDBJ in the
stream of various biological data. Nucleic Acids Res. 32:D31–D34. Database issue.

Mulder, N.J., R. Apweiler, T.K. Attwood, A. Bairoch, D. Barrell, A. Bateman, D. Binns,
M. Biswas, P. Bradley, P. Bork, P. Bucher, R.R. Copley, E. Courcelle, U. Das,
R. Durbin, L. Falquet, W. Fleischmann, S. Griffiths-Jones, D. Haft, N. Harte,
N. Hulo, D. Kahn, A. Kanapin, M. Krestyaninova, R. Lopez, I. Letunic, D. Lons-
dale, V. Silventoinen, S.E. Orchard, M. Pagni, D. Peyruc, C.P. Ponting, J.D. Selengut,
F. Servant, C.J. Sigrist, R. Vaughan, and E.M. Zdobnov. 2003. The InterPro database,
2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318.

Muller, A., R.M. MacCallum, and M.J. Sternberg. 1999. Benchmarking PSI-BLAST in
genome annotation. J. Mol. Biol. 293:1257–1271.

Muller, A., R.M. MacCallum, and M.J. Sternberg. 2002. Structural characterization of
the human proteome. Genome Res. 12:1625–1641.

Murphy, K., 1998. A brief introduction to graphical models and Bayesian networks.
www.ai.mit.edu/∼murphyk/Bayes/bnintro.html.

Murray-Rust, P., and H.S. Rzepa. 2003. Chemical Markup, XML, and the World Wide
Web. 4. CML Schema. J. Chem. Inf. Comput. Sci. 43:757–772.

Murzin, A.G., S.E. Brenner, T. Hubbard, and C. Chothia. 1995. SCOP: a structural
classification of proteins database for the investigation of sequences and structures.
J. Mol. Biol. 247:536–540.

Nagumo, J. 1962. An active pulse transmission line simulating nerve axon. Proc. Inst.
Radio Eng. 50:2061–2070.

Nam, Y., J. Goguen, and G. Wang. 2002. A metadata integration assistant generator
for heterogeneous distributed databases. In Proc. Int. Conf. Ontologies, Databases,
and Applications of Semantics for Large Scale Information Systems, vol. 2519, pp. 1332–
1344. Springer-Verlag, New York.



406 References

NCHS, 2003. National hospital discharge survey, 1988-2002.

Needleman, S.B., and C.D. Wunsch. 1970. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48:443–453.

Neil, M., N. Fenton, and L. Nielsen. 2000. Building large-scale Bayesian networks.
Knowledge Eng. Rev. 15:257–284.

Ng, P.C., and S. Henikoff. 2002. Accounting for human polymorphisms predicted to
affect protein function. Genome Res. 12:436–446.

Ng, P.C., and S. Henikoff. 2003. SIFT: predicting amino acid changes that affect
protein function. Nucleic Acids Res. 31:3812–3814.

NHS, 2004. The Nurses’ Health Study. www.channing.harvard.edu/nhs.

NIH, 2004a. NCBI reference sequences. www.ncbi.nlm.nih.gov/RefSeq/.

NIH, 2004b. PubMed Central (PMC). www.pubmedcentral.nih.gov.

Niu, T. 2004. Algorithms for inferring haplotypes. Genet. Epidemiol. 27:334–347.

Niu, T., K. Baclawski, Y. Feng, and H. Wang. 2003. Database schema for management
and storage of single nucleotide polymorphism. Am. J. Human Genetics 73 (Suppl):
A467.

Noirot-Gros, M.F., E. Dervyn, L.J. Wu, P. Mervelet, J. Errington, S.D. Ehrlich, and
P. Noirot. 2002. An expanded view of bacterial DNA replication. Proc. Natl. Acad.
Sci. U.S.A. 99:8342–8347.

Notredame, C., D.G. Higgins, and J. Heringa. 2000. T-Coffee: a novel method for fast
and accurate multiple sequence alignment. J. Mol. Biol. 302:205–217.

Noy, N.F., M. Crubezy, R.W. Fergerson, H. Knublauch, S.W. Tu, J. Vendetti, and
M.A. Musen. 2003. Protégé-2000: an open-source ontology-development and
knowledge-acquisition environment. In Proc. AMIA Annual Symp., p. 953.

Noy, N., and D. McGuinness, 2001. Ontology 101. protege.stanford.edu/

publications/ontology_development/ontology101.html.

Noy, N., and M. Musen. 2000. PROMPT: algorithm and tool for automated intelli-
gence. In AAAI-2000, Austin, TX.

NRC. 1992. Combining Information: Statistical Issues and Opportunities for Research.
Washington, DC: National Academy Press.

Ogren, P.V., K.B. Cohen, G.K. Acquaah-Mensah, J. Eberlein, and L. Hunter. 2004.
The compositional structure of Gene Ontology terms. In Pac. Symp. Biocomput., pp.
214–225.

Opdahl, A. Henderson-Sellers, B., and F. Barbier. 2000. An ontological evaluation of
the OML metamodel. In E. Falkenberg, K. Lyytinen, and A. Verrijn-Stuart (eds.),
Information System Concepts: An Integrated Discipline Emerging, vol. 164, pp. 217–232.
Dordrect, Netherlands: Kluwer.



References 407

Orengo, C.A., A.D. Michie, S. Jones, D.T. Jones, M.B. Swindells, and J.M. Thornton.
1997. CATH–a hierarchic classification of protein domain structures. Structure 5:
1093–1108.

Orengo, C.A., F.M. Pearl, and J.M. Thornton. 2003. The CATH domain structure
database. Methods Biochem. Anal. 44:249–271.

Packer, B.R., M. Yeager, B. Staats, R. Welch, A. Crenshaw, M. Kiley, A. Eckert, M. Beer-
man, E. Miller, A. Bergen, N. Rothman, R. Strausberg, and S.J. Chanock. 2004.
SNP500Cancer: a public resource for sequence validation and assay development
for genetic variation in candidate genes. Nucleic Acids Res. 32:D528–D532. Database
issue.

Page, L., and S. Brin, 2004. Google page rank algorithm. www.google.com/

technology.

Pandey, A., and F. Lewitter. 1999. Nucleotide sequence databases: a gold mine for
biologists. Trends Biochem. Sci. 24:276–280.

Patel-Schneider, P., P. Hayes, and I. Horrocks, 2004. OWL web ontology language
semantics and abstract syntax. www.w3.org/TR/owl-semantics/.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. San Francisco: Morgan Kaufmann.

Pearl, J. 1998. Graphical models for probabilistic and causal reasoning. In D. Gabbay
and P. Smets (eds.), Handbook of Defeasible Reasoning and Uncertainty Management
Systems, Volume 1: Quantified Representation of Uncertainty and Imprecision, pp. 367–
389. Dordrecht, Netherlands: Kluwer Academic.

Pearl, J. 2000. Causality: Models, Reasoning and Inference. Cambridge, UK: Cambridge
University Press.

Pearson, W.R., and D.J. Lipman. 1988. Improved tools for biological sequence com-
parison. Proc. Natl. Acad. Sci. U.S.A. 85:2444–2448.

Pellet, 2003. Pellet OWL reasoner. www.mindswap.org/2003/pellet/.

Perez, A., and R. Jirousek. 1985. Constructing an intensional expert system (INES).
In Medical Decision Making. Amserdam: Elsevier.

Peri, S., J.D. Navarro, T.Z. Kristiansen, R. Amanchy, V. Surendranath, B. Muthusamy,
T.K. Gandhi, K.N. Chandrika, N. Deshpande, S. Suresh, B.P. Rashmi, K. Shanker,
N. Padma, V. Niranjan, H.C. Harsha, N. Talreja, B.M. Vrushabendra, M.A. Ramya,
A.J. Yatish, M. Joy, H.N. Shivashankar, M.P. Kavitha, M.Menezes, D.R. Choudhury,
N. Ghosh, R. Saravana, S. Chandran, S. Mohan, C.K. Jonnalagadda, C.K. Prasad,
C. Kumar-Sinha, K.S. Deshpande, and A. Pandey. 2004. Human protein reference
database as a discovery resource for proteomics. Nucleic Acids Res. 32:D497–D501.
Database issue.

Piaget, J. 1971. The Construction of Reality in the Child. New York: Ballantine Books.



408 References

Piaget, J., and B. Inhelder. 1967. The Child’s Conception of Space. New York: Norton.

Piaget, J., B. Inhelder, and A. Szeminska. 1981. The Child’s Conception of Geometry.
New York, NY: Norton.

Pingoud, A., and A. Jeltsch. 2001. Structure and function of type II restriction en-
donucleases. Nucleic Acids Res. 29:3705–3727.

Pradhan, M., M. Henrion, G. Provan, B. del Favero, and K. Huang. 1996. The sensi-
tivity of belief networks to imprecise probabilities: an experimental investigation.
Artif. Intell. 85:363–397.

Pradhan, M., G. Provan, B. Middleton, and M. Henrion. 1994. Knowledge engineer-
ing for large belief networks. In Proc. Tenth Annual Conf. on Uncertainty in Artificial
Intelligence (UAI–94), pp. 484–490, San Mateo, CA. Morgan Kaufmann.

Rahm, E., and P. Bernstein. 2001. On matching schemas automatically. Technical
report, Dept. of Computer Science, University of Leipzig. dol.uni-leipzig.

de/pub/2001-5/en.

Ramensky, V., P. Bork, and S. Sunyaev. 2002. Human non-synonymous SNPs: server
and survey. Nucleic Acids Res. 30:3894–3900.

Roberts, R.J., T. Vincze, J. Posfai, and D. Macelis. 2003. REBASE: restriction enzymes
and methyltransferases. Nucleic Acids Res. 31:418–420.

Rosch, E., and B. Lloyd (eds.). 1978. Cognition and Categorization. Hillsdale, NJ:
Lawrence Erlbaum.

Roth, F.R., J.D. Hughes, P.E. Estep, and G.M. Church. 1998. Finding DNA regulatory
motifs within unaligned non-coding sequences clustered bywhole-genomemRNA
quantitation. Nat. Biotechnol. 16:939–945.

Salton, G. 1989. Automatic Text Processing. Reading, MA: Addison-Wesley.

Salton, G., E. Fox, and H. Wu. 1983. Extended boolean information retrieval. Comm.
ACM 26:1022–1036.

Salton, G., and M. McGill. 1986. Introduction to Modern Information Retrieval. New
York: McGraw-Hill.

Salwinski, L., C.S. Miller, A.J. Smith, F.K. Pettit, J.U. Bowie, and D. Eisenberg. 2004.
The database of interacting proteins: 2004 update. Nucleic Acids Res. 32:D449–D451.
Database issue.

Saracevic, T. 1975. Relevance: a review of and a framework for the thinking on the
notion in information science. J. Am. Soc. Info. Sci. 26:321–343.

Sarle, W., 2002. Neural network FAQ. www.faqs.org/faqs/ai-faq/

neural-nets.

SBML, 2003. The Systems Biology Markup Language website. www.sbw-sbml.org.



References 409

Schaffer, A.A., L. Aravind, T.L. Madden, S. Shavirin, J.L. Spouge, Y.I. Wolf, E.V.
Koonin, and S.F. Altschul. 2001. Improving the accuracy of PSI-BLAST protein
database searches with composition-based statistics and other refinements. Nucleic
Acids Res. 29:2994–3005.

Schofield, P.N., J.B. Bard, C. Booth, J. Boniver, V. Covelli, P. Delvenne, M. Ellender,
W. Engstrom, W. Goessner, M. Gruenberger, H. Hoefler, J. Hopewell, M. Mancuso,
C. Mothersill, C.S. Potten, L. Quintanilla-Fend, B. Rozell, H. Sariola, J.P. Sundberg,
and A. Ward. 2004. Pathbase: a database of mutant mouse pathology. Nucleic Acids
Res. 32:D512–D515. Database issue.

Servant, F., C. Bru, S. Carrere, E. Courcelle, J. Gouzy, D. Peyruc, and D. Kahn. 2002.
ProDom: automated clustering of homologous domains. Brief Bioinform. 3:246–251.

Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton, NJ: Princeton University
Press.

Sherry, S.T., M.H. Ward, M. Kholodov, J. Baker, L. Phan, E.M. Smigielski, and
K. Sirotkin. 2001. dbSNP: the NCBI database of genetic variation. Nucleic Acids
Res. 29:308–311.

Shipley, B. 2000. Cause and Correlation in Biology. Cambridge, UK: Cambridge Uni-
versity Press.

Shortliffe, E. 1976. Computer-Based Medical Consultation: MYCIN. New York: Elsevier.

Sigrist, C.J., L. Cerutti, N. Hulo, A. Gattiker, L. Falquet, M. Pagni, A. Bairoch, and
P. Bucher. 2002. PROSITE: a documented database using patterns and profiles as
motif descriptors. Brief Bioinform. 3:265–274.

Smith, T.F., and M.S. Waterman. 1981. Identification of common molecular subse-
quences. J. Mol. Biol. 147:195–197.

Software, Hit, 2004. Hit Software XML utilities. www.hitsw.com/xml_utilites/.

Spellman, P.T., M. Miller, J. Stewart, C. Troup, U. Sarkans, S. Chervitz, D. Bernhart,
G. Sherlock, C. Ball, M. Lepage, M. Swiatek, W.L. Marks, J. Goncalves, S. Markel,
D. Iordan, M. Shojatalab, A. Pizarro, J. White, R. Hubley, E. Deutsch, M. Senger, B.J.
Aronow, A. Robinson, D. Bassett, C.J. Stoeckert, Jr., and A. Brazma. 2002. Design
and implementation of microarray gene expression markup language (MAGE-
ML). Genome Biol. 3:RESEARCH0046.

Spinoza, B. 1998. The Ethics (1677). Translated by R. Elwes. McLean, VA: IndyPub-
lish.com.

Spirtes, P., C. Glymour, and R. Scheines. 2001. Causation, Prediction and Search. Cam-
bridge, MA: MIT Press.

States, D.J., and W. Gish. 1994. Combined use of sequence similarity and codon bias
for coding region identification. J. Comput. Biol. 1:39–50.



410 References

Steinberg, A., C. Bowman, and F.White. 1999. Revisions to the JDL data fusionmodel.
In SPIE Conf. Sensor Fusion: Architectures, Algorithms and Applications III, vol. 3719,
pp. 430–441.

Stock, A., and J. Stock. 1987. Purification and characterization of the CheZ protein of
bacterial chemotaxis. J. Bacteriol. 169:3301–3311.

Stoeckert, C.J., Jr., H.C. Causton, and C.A. Ball. 2002. Microarray databases: standards
and ontologies. Nat. Genet. 32 (Suppl):469–473.

Stormo, G.D., and G.W. Hartzell III. 1989. Identifying protein-binding sites from
unaligned DNA fragments. Proc. Natl. Acad. Sci. U.S.A. 86:1183–1187.

Strausberg, R.L. 2001. The Cancer Genome Anatomy Project: new resources for
reading the molecular signatures of cancer. J. Pathol. 195:31–40.

Strausberg, R.L., S.F. Greenhut, L.H. Grouse, C.F. Schaefer, and K.H. Buetow. 2001. In
silico analysis of cancer through the Cancer Genome Anatomy Project. Trends Cell
Biol. 11:S66–S71.

Tatusov, R.L., M.Y. Galperin, D.A. Natale, and E.V. Koonin. 2000. The COG database:
a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids
Res. 28:33–36.

Tatusova, T.A., and T.L. Madden. 1999. BLAST 2 sequences, a new tool for comparing
protein and nucleotide sequences. FEMS Microbiol. Lett. 174:247–250.

Taylor, W.R. 1986. Identification of protein sequence homology by consensus tem-
plate alignment. J. Mol. Biol. 188:233–258.

Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:
4673–4680.

Thorisson, G.A., and L.D. Stein. 2003. The SNP Consortium website: past, present
and future. Nucleic Acids Res. 31:124–127.

Tigris, 2004. ArgoUML website. argouml.tigris.org/.

Tuttle, M.S., D. Sheretz, M. Erlbaum, N. Olson, and S.J. Nelson. 1989. Implementing
Meta-1: the first version of the UMLSMetathesaurus. In L.C. Kingsland (ed.), Proc.
13th Annual Symp. Comput. App. Med. Care, Washington, DC, pp. 483–487. New
York: IEEE Computer Society Press,

UML, 2004. Introduction to OMG’s Unified Modeling Language. www.omg.org/

gettingstarted/what_is_uml.htm.

Uschold, M., and M. Gruninger. 1996. Ontologies: principles, methods and applica-
tions. Knowledge Eng. Rev. 11:93–155.

van Harmelen, F., J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider, and
L. Stein, 2003. OWL web ontology language reference. www.w3.org/TR/

owl-ref/.



References 411

Villanueva, J., J. Philip, D. Entenberg, C.A. Chaparro, M.K. Tanwar, E.C. Holland, and
P. Tempst. 2004. Serum peptide profiling by magnetic particle-assisted, automated
sample processing andMALDI-TOFmass spectrometry. Anal. Chem. 76:1560–1570.

Volinia, S., R. Evangelisti, F. Francioso, D. Arcelli, M. Carella, and P. Gasparini. 2004.
GOAL: automated Gene Ontology analysis of expression profiles. Nucleic Acids
Res. 32:W492–W499. Web server issue.

vOWLidator, 2003. BBN OWL validator. owl.bbn.com/validator/.

W3C, 1999. XML Path language. www.w3.org/TR/xpath.

W3C, 2001a. A conversion tool fromDTD to XML Schema. www.w3.org/2000/04/
schema_hack/.

W3C, 2001b. eXtensible Markup Language website. www.w3.org/XML/.

W3C, 2001c. XML Schema website. www.w3.org/XML/Schema.

W3C, 2001d. XML Stylesheet Language website. www.w3.org/Style/XSL.

W3C, 2003. W3C Math Home. w3c.org/Math.

W3C, 2004a. Resource description framework (RDF): concepts and abstract syntax.
www.w3.org/TR/rdf-concepts/.

W3C, 2004b. XML information set (second edition). www.w3.org/TR/2004/

REC-xml-infoset-20040204.

W3C, 2004c. XML Query (XQuery) website. www.w3.org/XML/Query.

Wain, H.M., E.A. Bruford, R.C. Lovering, M.J. Lush, M.W.Wright, and S. Povey. 2002.
Guidelines for human gene nomenclature. Genomics 79:464–470.

Wall, L., T. Christiansen, and R. Schwartz. 1996. Programming Perl. Sebastopol, CA:
O’Reilly & Associates.

Wand, Y. 1989. A proposal for a formal model of objects. In W. Kim and F. Lochovsky
(eds.), Object-Oriented Concepts, Databases and Applications, pp. 537–559. Reading,
MA: Addison-Wesley.

Wang, G., J. Goguen, Y. Nam, and K. Lin. 2004. Data, schema and ontology integra-
tion. In CombLog’04 Workshop, Lisbon.

Wang, L., J.J. Riethoven, and A. Robinson. 2002. XEMBL: distributing EMBL data in
XML format. Bioinformatics 18:1147–1148.

Waugh, A., P. Gendron, R. Altman, J.W. Brown, D. Case, D. Gautheret, S.C. Harvey,
N. Leontis, J. Westbrook, E. Westhof, M. Zuker, and F. Major. 2002. RNAML: a
standard syntax for exchanging RNA information. RNA 8:707–717.

Westbrook, J.D., and P.E. Bourne. 2000. STAR/mmCIF: an ontology for macromolec-
ular structure. Bioinformatics 16:159–168.

Whewell, W. 1847. The Philosophy of the Inductive Sciences. London: Parker. 2nd ed.



412 References

Wingender, E., P. Dietz, H. Karas, and R. Knuppel. 1996. TRANSFAC: A database on
transcription factors and their DNA binding sites. Nucleic Acids Res. 24:238–241.

Wittgenstein, L. 1922. Tractatus Logico-Philosophicus. London: Routledge and Kegan
Paul. Translated by C. Ogden.

Wittgenstein, L. 1953. Philosophical Investigations. New York: Macmillan.

WonderWeb, 2004. WonderWeb OWL Ontology Validator. phoebus.cs.man.ac.
uk:9999/OWL/Validator.

Wroe, C.J., R. Stevens, C.A. Goble, and M. Ashburner. 2003. A methodology to mi-
grate the gene ontology to a description logic environment using DAML+OIL. Pac.
Symp. Biocomput. pp. 624–635.

XBN, 1999. XML Belief Network file format. research.microsoft.com/dtas/
bnformat/xbn_dtd.html.

Xerlin, 2003. Xerlin XML Modeling Application website. www.xerlin.org.

XML, 2004. Survey of XML editors. www.xml.com/pub/rg/XML_Editors.

XTM, 2000. The XTM website. topicmaps.org.

Yandell, M.D., and W.H. Majoros. 2002. Genomics and natural language processing.
Nat. Rev. Genet. 3:601–610.

Zadeh, L. 1965. Fuzzy sets. Information and Control 8:338–353.

Zadeh, L. 1981. Possibility theory and soft data analysis. In L. Cobb and R. Thrall
(eds.), Mathematical Frontier of the Social and Policy Sciences, pp. 69–129. Boulder, CO:
Westview.

Zadeh, L. 1984. A mathematical theory of evidence [book review]. Artif. Intell. 5:
81–83.

Zanzoni, A., L. Montecchi-Palazzi, M. Quondam, G. Ausiello, M. Helmer-Citterich,
and G. Cesareni. 2002. MINT: a Molecular INTeraction database. FEBS Lett. 513:
135–140.

Zeeberg, B.R., W. Feng, G. Wang, M.D. Wang, A.T. Fojo, M. Sunshine, S. Narasimhan,
D.W. Kane, W.C. Reinhold, S. Lababidi, K.J. Bussey, J. Riss, J.C. Barrett, and J.N.
Weinstein. 2003. GoMiner: a resource for biological interpretation of genomic and
proteomic data. Genome Biol. 4:R28.

Zhang, B., D. Schmoyer, S. Kirov, and J. Snoddy. 2004. GOTree Machine (GOTM): a
web-based platform for interpreting sets of interesting genes using Gene Ontology
hierarchies. BMC Bioinformatics 5:16.

Zhang, Z., A.A. Schaffer, W. Miller, T.L. Madden, D.J. Lipman, E.V. Koonin, and S.F.
Altschul. 1998. Protein sequence similarity searches using patterns as seeds. Nu-
cleic Acids Res. 26:3986–3990.

Zhang, Z., S. Schwartz, L. Wagner, and W. Miller. 2000. A greedy algorithm for
aligning DNA sequences. J. Comput. Biol. 7:203–214.



Index

abstraction, 321
acquire domain knowledge, 292
acronym, 138
active site, 51
actor, 284
acyclic graph, 332
adjacency matrix, 143
AGAVE, 105, 107, 379
AlignACE, 106
alignment, 156
ambiguity, 321
amino acid, 50
antecedent, 52
antibody, 129
Apelon DTS, 141
API, 198
a posteriori distribution, 360
a priori distribution, 360
ASN.1, 45
aspect-oriented modeling, 310
assertion, 53
asterisk, 176
at-sign, 176, 182
attribute link, 38
authority matrix, 144
automated conceptual blending, 147
automated reasoner, 61
axiom, 53, 56

backtrack, 57
BankIt, 107
Bayes’ law, 135, 327
Bayesian analysis, 328
Bayesian network, 331, 332, 369
accuracy, 342
causal inference, 338
component, 347, 370
consistency checking, 351
decision node, 340
design pattern, 349
diagnostic inference, 338
encapsulation, 346
evidence, 335
improving and optimizing, 352
interface, 342, 346
medical diagnosis, 333
mixed inference, 338
node, 376
performance, 342, 347
query, 335
random variable, 332
reliability, 351
sensitivity, 351
test cases, 351
testing, 351
training, 343
translating, 352
undirected cycle, 334



414 Index

utility node, 340
validation, 351
value node, 340

Bayesian Web, 369
BDGP, 105
belief network, 334
Berkson’s paradox, 353, 361
Berners-Lee, Tim, 61
BIND, 51
binding potential, 195
binding site, 51
biochemical reaction network, 102
BioCyc, 122
biology laboratory, 191
biomedical research, 149
biomedical terminology browser, 140
BioML, 9, 15, 69, 101, 260, 280, 289,

308, 310
BioPAX, 121
BioProspector, 106
bit score, 166
bl2seq, 168
BLAST, 107, 155
BLAT, 171
BLOCKS, 110, 157
BLOSUM, 110, 156
BMI, 343, 363
BN, 331
BNL, 111
Boolean constraint solvers, 58
brackets, 178
BRITE, 122
browsing, 130
BSML, 28, 100
butterfly effect, 191
BW, 369

C++, 203
cancer, 149
cardinality, 310, 314
CASE, 291
case distinctions, 138

catalysis, 52
CATH, 112
causality, 335
causal network, 334
CDATA, 308
CellML, 34, 103
cellular process, 104
central source, 144
CGAP, 124
chain rule of probability, 332
chemical hierarchies, 19
chi-square distribution, 364, 378
chi-square test, 364
chromatography, 187
classifier, 340
classifying documents, 138
closed world, 67, 83
Clustal, 110
ClustalW, 110
clustering, 21
CML, 6, 10, 67, 105
COG, 111
COMA, 202
combining information, 355
COMPEL, 116
computing the marginal distribution,

336, 360
concept combination, 146, 147, 365
conceptual blending, 147
conceptual integration, 147
conclusion, 52
conditional distribution, 376
conditional probability, 326
conditional probability distribution,

332
conditioning, 376
conjecture, 56, 184
connectionist network, 345
CONSENSUS, 106
consequent, 52
consistency checking, 56
constraints, 10



Index 415

containment, 25
continuous information combination,

359
continuous meta-analysis, 359
continuous random variable, 325, 359
controlled vocabulary, 141
CORBA, 105
corpus, 129
correlation, 137, 139, 146
cosine similarity function, 137, 365
covariance, 360
coverage, 130, 149
CPD, 332
CPT, 376
creating an overview, 355
credibility, 325
crisp logic, 324
crisp statement, 324
critical evaluation, 355
crystallographic information, 105
cut and paste, 294
cytometry data, 105
CytometryML, 105

D-S theory, 365
DAG-Edit, 94, 118
Dali, 113
DAML, 27
DAML+OIL, 27
DARPA Agent Markup Language, 27
data-clustering, 21
database
database schema, 4, 294
database table, 204

data fusion, 355
data structure, 230, 304
data warehousing, 201
DAVID, 95
dbEST, 120
dbSNP, 123
DDBJ, 107
decision support system, 58

declarative programming, 52, 199
deductive reasoning, 321
Dempster’s rule of combination, 366
Dempster-Shafer theory, 356, 365
de Saussure, F., 147
description logic, 57, 287, 347
design rationale, 283, 314
DIP, 114
directed graph, 142
directed graphical model, 334
directory structure, 10
discrete information combination, 356
discrete meta-analysis, 356
discrete random variable, 325, 356
disjoint classes, 302
disjointness, 314
dissemination of knowledge, 190
distribution, 326
DL, 57
DNA binding motif, 51, 106
DNA sequence, 43
document frequency, 132
DOM, 199
domain knowledge, 291
dot product, 136
double slash, 176, 177
Drosophila, 105
DTD, 6, 38, 286
DTD generator, 289
DUET, 291
Dutch book, 328

EBI, 97, 105, 107
EcoCyc, 19, 122
ecology, 201
eigenvalue, 143
element node, 38
EM, 345, 352
EMBL, 49, 105, 107, 280
empty entity, 367
enforce style, 194
Ensembl, 124



416 Index

entailed, 83, 184
entailment, 83
Entrez, 107
enzyme, 51, 129, 261
erythrocyte, 298
esophageal cancer, 352
event-based parsing, 198, 200
expectation maximization, 345, 352
experimental procedure, 187
expert system, 52, 61
exponential distribution, 378
EXPRESSION, 122
eXtensible Markup Language, 5
extensional uncertainty, 323
extrinsic property, 304, 306

F-test, 364
FASTA, 107, 110, 155, 159, 163
FatiGO, 95
Fauconnier, G., 147
F distribution, 378
featuritis, 301
fibronectin, 137
file folder structure, 10
Fischer, Emil, 51
FISH, 118
Fisherian, 344
FishProm, 121
Fitzhugh-Nagumo model, 33
fixed-column, 4
fixed-width, 4, 113, 205, 206, 210
Flow Cytometry Standard, 105
FlyBase, 105, 117
Forgy, Charles, 56
formal query language, 131
formal semantics, 38
frame-based language, 285
frequentism, 322
frequentist method, 344
FSSP, 113
fuzzy Bayesian network„ 324
fuzzy logic, 324

possibility, 324

GAME, 105
gapped BLAST, 163
gap penalty, 156, 158
GDB, 118
GEML, 103
GenBank, 107, 118
GeneCards, 120
gene classification, 22
Gene Expression Markup Language,

103
gene families, 22
generative model, 334
gene regulation, 52
GENES, 122
GeneSNPs, 125
GenMAPP, 94
genus proximus, 292
Gibbs motif sampler, 106
GO, 64, 92
GOA, 97
GOAL, 95
Goguen, J., 147
GoMiner, 94
GONG, 98
Google, 142
GOTM, 96
graph-based language, 286

HapMap Project, 126
Harrell, 147
HEART-2DPAGE, 121
Heisenberg uncertainty principle, 322
HGVbase, 123
hierarchical structure, 139
inflexibility, 195

hierarchy, 9, 20, 296
uniformity, 300

HMMER, 110
Holmes, Sherlock, 358
homologous, 155



Index 417

HPID, 114
HSC-2DPAGE, 121
HSP, 162
HTML, 61, 76, 191
htSNPs, 125
HTTP, 61
hub matrix, 144
human categorization, 147
human insulin gene, 8
hybrid BN, 340
hypertext link, 139
Hypertext Markup Language, 61, 191

IBM, 38
ICE syndrome, 80
identify theft, 61
IDF, 136
imperative programming, 53, 199
imported ontology, 295
inclusion of ontology, 294
incompatible observations, 358
inconsistent observations, 358
induced-fit model, 51
influence diagram, 340
influenza virus, 146
information broker, 98
information retrieval system, 130, 148
information transformation, 187
infoset, 38
inner product, 136
inositol lipid-mediated signaling, 93
integration point, 201
intensional uncertainty, 323
interchange format, 38
InterPro, 98, 110
intrinsic property, 304
iridocorneal endothelial syndrome,

80
IUPAC, 105

Java, 198, 203
joint probability distribution, 326, 331

JPD, 326, 331
Jumbo browser, 105

Kalman filter, 360
KEGG, 122
KGML, 122
KIF, 285
KL-ONE, 285
Kleinberg algorithm, 142
Google, 145

Know-ME, 141
knowledge base, 53, 59
Koshland, Daniel E., Jr., 51
Krebs cycle, 74

LaTeX, 199, 271
leukemia, 149, 301
lexical space, 47
LIGAND, 122
linguistics, 147
Linnaeus, 302
local ranges, 309
lock-and-key model, 51
logic„ 321
logical inference, 369
logical language, 285
Logical structure, 191
lumbar puncture, 35, 292
lvg, 91

machine learning, 343
MAGE-ML, 103
MAGE-OM, 103
MAML, 103
MAP, 344
MAPPBuilder, 94
MAPPFinder, 94
markup languages, 9
Materials and Methods, 187
mathematical function, 307
mathematical logic, 27
MathML, 377
maximum a posteriori, 344



418 Index

maximum cardinality, 310
maximum likelihood, 344
maxOccurs, 311
medical chart ontology, 283, 288, 293,

296, 308, 309, 314, 316
medical data exchange, 106
medical data storage, 106
medical diagnosis, 328
Medical World Search, 92
Medline, 36, 67, 91, 141, 176, 182, 304
MegaBLAST, 170
MeSH, 90, 140
MeSH browser, 140
MeSH thesaurus, 141

META, 90
meta-analysis, 355
MetaCyc, 117, 122
metadata, 4
MetaMap, 91
MetamorphoSys, 91
metaphor, 147
MGD, 117
MGED, 103
MIAME, 103
microarray data, 103, 261
microarray information, 195
minimum cardinality, 310
minOccurs, 311
MINT, 114
MIPS, 114
ML, 344
mmCIF, 109
MML, 106
model, 35, 82
monotonicity, 83, 184
MotifML, 106
motifs, 156
MPATH, 118
MPBLAST, 170
MSA, 110, 168
MSP, 166
MYCIN, 325

myGrid, 188

namespace, 28
namespace prefix, 28
NCBI, 90
NCBI BLAST, 161
NCBI Reference Sequences, 151
NCI, 125
NDB, 108
Needleman-Wunsch algorithm, 158
nested data structure, 230
NetAffx GO Mining Tool, 95
neural network, 345
NeuroML, 106
neuroscience, 106
NHLBI, 125
nitrous oxide, 37, 41, 87, 178, 184
NLM, 90, 140
NLP, 149
NMTOKEN, 308
noisy OR-gate, 349
nondeterminism, 321
nonorthogonal basis, 137
normal distribution, 334, 355, 359,

363, 378
normalization, 138, 326
normalized score, 166
normetanephrines, 132, 136

OBO, 98
olfactory receptor, 118
oligonucleotide probe, 129
one-hit, 162
online search engine, 130
Onto-Tools, 95
ontological commitment, 301
ontology, 4, 36
ontology development tool, 289
ontology editor, 289
ontology evolution, 315
ontology language, 38
ontology mediation, 201



Index 419

ontology modification, 315
OOBN, 346
OONF, 347
ooTFD, 116
open world, 67, 83
ORDB, 118
ordered list, 76
overelaboration, 302
OWL, 27, 58, 79, 98, 99, 183, 371
enumeration, 80
interpretation, 82
restriction, 81
theory, 82

OWL-DL, 58, 79, 287, 347, 392
OWL editor, 290
OWL Full, 58, 79, 287
OWL Lite, 58, 79, 287
ozone, 116

PAM, 156
paramodulation, 79
parent-child link, 38
parsing, 198
partial function, 311
partitioning, 23
Pathbase, 118
PathBLAST, 170
PATHWAY, 122
Pathway Tools, 122
pattern-action paradigm, 52
PDB, 51, 102, 109–111
PDBML, 112
Pearl, J., 323
Peirce, Charles Sanders, 147
periodic table, 49
Perl, 181, 198, 203, 268, 275, 279, 323
Pfam, 109
PGA, 125
PHI-BLAST, 169
phylogeny, 106
Piaget, Jean, 307
PMMA-2DPAGE, 121

pooling of results, 355
prefix, 28
presentation format, 193
presentation style, 194
primate, 137
principal component analysis, 143
principal eigenvalue, 143
principal eigenvector, 143
PRINTS, 110, 111
prior distribution, 360
probabilistic inference, 327
probabilistic network, 334
probability density, 326
probability distribution, 325, 355
probability theory, 325, 365
procedural programming, 53, 199, 261
ProDom, 111
profiles, 156
project requirements, 283, 292
project scope, 283
ProML, 106
PROMPT, 202
proof, 56
propagation of uncertainty, 324
PROSITE, 109
protein, 50
Protein Data Bank, 102
protein sequence, 106
proteomics, 119, 120
Protista, 302
prototype theory, 22
PSI-BLAST, 168
PSSM, 156
PubMed, 107, 131, 137, 141
purpose of Bayesian network, 342
purpose of ontology, 36, 281, 282, 292,

306, 313

QMR-DT, 332
quality of a citation, 144
quantitative research synthesis, 355
query, 129, 198



420 Index

query discovery, 201
query modification, 142

random variable, 376
RDF, 26, 64, 286, 371
annotating resources, 72
anonymous resources, 68
blank node, 68
class hierarchy, 67
collection, 76
data model, 183
defining resources, 72
domain constraint, 71
Domain rule, 73
graph, 67
inference, 66, 72
inheritance, 72
link, 67
many-to-many relationship, 66
node, 67
property, 67
property hierarchy, 305
range constraint, 71
Range rule, 74
reference, 65
referring, 72
sequence container, 75
Subclass rule, 73
subClass rule, 72
Subproperty rule, 73
triple, 69

RDF editor, 290
RDF graph, 68, 82
RDFS, 70
RDF Schema, 70
RDF semantics, 65
reasoning, 53
reasoning context, 59
REBASE, 113
recall, 130
reconciling terminology, 201
reduce effort, 194

redundancy of information, 191
reference, 26, 130
RefSeq, 151
RefSNPs, 123
regulatory transcription factor, 51
reification, 316
relational database, 52, 56, 131, 149,

175, 183
relational database table, 32
relational query, 52
relationship, 36
relationship link, 38
relationships, 25
relevance, 321
relevance diagram, 340
repackaging, 197
representing knowledge, 36
REPRODUCTION-2DPAGE, 121
repurposing, 197
research, 129
resource, 63
Rete algorithm, 56
reuse, 28
rhodopsin, 83
ribosome, 119
RiboWeb, 119
RNA interaction, 105
RNAML, 104
RNA sequence, 104
root node, 38
RPS-BLAST, 170
rule, 52, 149
rule-based inferencing, 52, 53
rule-based programming, 199, 261
rule-based system, 53, 323
rule-based systems, 324
rule-based transformation, 200
rule engine, 53, 184, 335
backward-chaining, 55
business rule system, 58
forward-chaining, 54
goal, 55



Index 421

rule invocation, 53
rule translator, 58

sample statistics, 364
SAX, 198
SBML, 28, 102
schema, 4
schema integration, 201
schema integration tool, 202
schema matching, 202
scientific reasoning, 321
SCOP, 112
scope creep, 301
scoring matrix, 156
search intermediary, 130
SeattleSNPs, 125
second-class properties, 310
selection bias, 353
self-describing, 5, 17
self-organizing map, 23
semantics, 35
Semantic Web, 61, 64, 183, 369
architecture, 371
query language, 183

semiotics, 35, 147
sensitivity, 130
sensitivity analysis, 351
separating concerns, 191
Sequin, 107
set constructor, 81
SF, 376
SGD, 116
sharing information, 36
SIENA-2DPAGE, 121
simple API for XML, 198
SKAT, 202
SKIP, 92, 150
SKIP Knowledge Browser, 141
SMART, 109
SN, 90
SNP, 123
SNP500Cancer, 124

SNP ontology, 318
Source content, 191
SPECIALIST, 90
species density, 201
SpiD, 114
SQL, 130, 175, 181
FROM, 181
SELECT, 182
WHERE, 181

SRS, 107, 116
SSDB, 122
Stanford Medical Informatics, 202,

290
statistical computations, 204
statistically independent, 139, 327
stochastic function, 332, 376
stochastic inference, 331, 360, 362, 369
stochastic model, 326, 331
stop word list., 132
striping, 25, 65
structural blending, 147
structural integration, 147
STS, 118
style file, 199
stylesheet, 194, 200
subcellular process, 104
subclass, 22, 73, 297
subjective probability, 328
subjectivity, 322
subproperty, 305
subroutine, 222
substrate, 51
substring, 207
suppressed details, 321
survey article, 144
SWISS-2DPAGE, 121
SWISS-PROT, 98, 108, 110, 111, 118
syntactic variations, 35
syntax, 35
Systems Biology Markup Language,

28



422 Index

T-Coffee, 110
t-norm, 324
t-test, 364
tableaux, 57
TAMBIS, 98
taxonomy, 19
t distribution, 364, 378
Template Toolkit, 249
term frequency, 132
text file, 204
text node, 38
TFD, 116
TFIDF, 137
theorem, 56
theorem prover, 56, 184
constraint solver, 57
description logic, 57

The SNP Consortium, 126
TIGRFAMs, 111
TML, 106
TMTOWTDI, 203
transcription factor, 52
transcriptomics, 119
TRANSFAC, 115
transformation process, 192
transformation program, 287
transformation task, 184, 203, 287
tree-based processing, 199, 200
TrEMBL, 98, 108, 111
TRRD, 115
TSC, 126
Turner, 147
two-hit, 162
Type I error, 134
Type II error, 134

UML, 102, 284, 291, 310
UMLS, 36, 90, 140, 141, 146, 149
UMLSKS, 92
uncertainty analysis, 351
uniform data, 204
uniform distribution, 326, 378

uniform style, 191
unmodeled variables, 322
unnormalized Bayesian network, 332
unnormalized distribution, 332, 359
unordered container, 76
unreification, 316
usage example, 292, 305, 314
use case, 284

validation of ontology, 313
value space, 47
variable-width, 205, 206
vector space model, 132, 146, 365
document frequency, 136
inverse document frequency, 136
term frequency, 136
term weight, 132

vector space retrieval, 132
viewing the results of research, 355
virtual data integration, 201
visual appearance, 191, 197
vocabulary, 9

Webin, 107
Web Ontology Language, 27, 58, 64,

98
webpage content, 191
website maintenance, 190
wild card, 176
WORLD-2DPAGE, 121
World Wide Web Consortium, 61, 64
WormBase, 120
WU-BLAST, 161
WU-BLAST2, 170

XBN, 370, 372
XEMBL, 105, 107
XER, 45
Xerlin, 10, 34
XIN, 114
XML, 5, 46, 192, 204
ATTLIST, 11
attribute, 5, 304



Index 423

CDATA, 6
changing attribute names, 197
changing attributes to elements,
198

changing element names, 197
changing elements to attributes,
198

child element, 9, 66
combining element information,
198

content, 11
content model, 11, 297
default value, 6
DOCTYPE, 274
ELEMENT, 11
element, 5, 304
entering data, 6, 10
ENTITY, 11
entity, 295
fragment, 38
hierarchy, 9
IDREF, 381
implicit class, 70
merging documents, 198
NMTOKEN, 379
order of attributes, 40
order of elements, 39, 66, 74
parent element, 9, 66
root, 9
sibling elements, 9
special character, 7
splitting documents, 198
syntax, 38
text content, 16
updating data, 6, 10
viewing data, 10

XML::DOM, 236
XML::Parser, 236
XML::XPath, 236
XML Belief Network format, 370
XML editor, 34, 289, 290
XML Schema, 42, 286

bounds, 48
canonical, 47
complex data type, 42
date, 47
facets, 47
ordered, 47
simple data type, 42

XML Spy, 34, 289
XML Stylesheet Language, 261
XML Topic Maps, 77, 286
association, 77
scope, 77
topic, 77

XML Transformation Language, 261
XPath, 175
ancestor element, 177
attribute, 177
axis, 177
child element, 177
descendant element, 177
element, 176
node, 176
numerical operations, 178
parent element, 177
root element, 177
step, 176
string operations, 178
text, 177

XQuery, 175, 180, 183
corpus, 181
database, 181
document, 180
for, 181, 182
let, 182
return, 181
where, 181

XSD, 42
xsdasn1, 45
XSL, 261
XSLT, 180, 261
accumulator, 276
and, 179



424 Index

apply-templates, 266
asterisk, 179
attribute, 268
ceiling, 179
conditionals, 270
context, 263, 265
count, 179
digestion metaphor, 264
disable-output-escaping, 273
div, 179
document, 274
document order, 266
floor, 179
for-each, 266
format-number, 271
formatting, 271
indentation, 271
iterator, 276
last, 179
match, 262
maximum, 270
minimum, 270
mod, 179
navigation, 268
not, 179
numerical computations, 267
or, 179
output format, 272
position, 179
procedure, 275
procedures, 275
round, 179
select, 263, 268
starts-with, 179
string-length, 179
substring, 179
sum, 179
template, 261
transform, 261
transformation program, 261
value-of, 268
variable evaluation, 275

variables, 275
verbatim, 273
wild card, 262

XTM, 77

Zadeh, L., 324, 358
zebrafish, 98


	Contents
	Preface
	Part I Introduction to Ontologies
	1 Hierarchies and Relationships
	2 XML Semantics
	3 Rules and Inference
	4 The Semantic Web and Bioinformatics Applications
	5 Survey of Ontologies in Bioinformatics

	Part II Building and Using Ontologies
	6 Information Retrieval
	7 Sequence Similarity Searching Tools
	8 Query Languages
	9 The Transformation Process
	10 Transforming with Traditional Programming Languages
	11 The XML Transformation Language
	12 Building Bioinformatics Ontologies

	Part III Reasoning with Uncertainty
	13 Inductive vs. Deductive Reasoning
	14 Bayesian Networks
	15 Combining Information
	16 The Bayesian Web
	17 Answers to Selected Exercises

	References
	Index

